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Abstract

The modeling i.e. the capturing of geometric information plays a key role for our fast

growing urban communities. Until recently the process of capturing three-dimensional

data was a labor intensive task, but with the advent of high resolution digital imaging

instruments a high degree of automation is within reach.

Urban architecture however, proves to be a very challenging territory for image-based

modeling methods. Nevertheless modern photogrammetric and computer vision methods

feature both, high robustness to cope with complex outdoor scenes and improved efficiency

to allow the processing of huge amounts of data in reasonable time frames.

This work presents a collection of methods for the efficient feature-based 3D modeling

of urban environments. High resolution digital images are the sole data source. The

term feature-based modeling in this context means that the proposed methods do not

directly work on the pixel-based image information, but higher level geometric features

are extracted in an initial preprocessing step. Every subsequent method then operates on

those primitives.

The topics presented span low-level feature extraction such as edges and ridges and

corners via the robust detection of mid-level features such as ellipses and 2D line segments

and new efficient methods for extracting 3D primitives from 2D features.

The main contributions of this work are methods for extracting vanishing points, ro-

bust fitting of regular polygons, a method for the efficient matching of points-of-interest

via a semi-global descriptor and finally a method for the efficient feature-based 3D recon-

struction from multiple images.

In the experimental section an in-depth analysis of the presented methods, concerning

their robustness as well as their accuracy, is conducted. The experiments are conducted

on synthetic as well as real data sets.
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Chapter 1

Introduction

Contents

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . 1

1.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 State-of-the-art of 3D modeling . . . . . . . . . . . . . . . . . . . 17

1.4 The project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Key Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Background and motivation

A recent study of the United Nations Population Fund (UNFPA) shows that in 2007 about

3.3 billion people were living in towns and cities. By 2008 for the first time in history more

than half of the world’s population will be living in urban settlements or suburban areas

that encompass only 380.000 square kilometers - that is less than the total area of Japan.

The study further predicts that in 2030 more than 5 billion of the world’s population will

live in cities. Assuming 600 buildings per square kilometer in a high density area (city

cores) and 300 buildings per square kilometer in suburban areas gives a rough estimate of

230 million buildings.

In order to keep track of such vast growing habitats a permanent monitoring concept

is necessary. Given the complexities of larger cities and demands for increased levels of

detail combined with the necessity for full automation brings traditional mapping tech-

niques to their limits. Acknowledging this fact, it is only consequential to put efforts into

the development of automatic systems that are capable of performing large parts of the

1



2 Chapter 1. Introduction

mapping/modeling work flow. Newly emerging geo-information systems like Google Earth

(http://earth.google.com) or Microsoft’s Virtual Earth (http://bing.com/maps) support

this argument. These systems provide efficient access to geo-referenced imagery, addi-

tional vector data (roads, borders, building-outlines etc.), meta-data (road names, names

of places etc.) and recently also 3D content (mostly buildings and landmarks of significant

interest). The great attraction that these systems provide can be explained by their intu-

itive user interfaces as well as their common availability that allows a person with access

to the Internet to satisfy his/her urge to explore the world. These online map exploring

systems are the answer to the problems that the average user experiences in dealing with

complex environments such as large cities. Navigation is one of these challenges, be it

either the directions to a user specified site or the closest route to the next business that

provides a desired service.

These systems stand in sharp contrast to traditional city maps or maps in general,

which are excellent examples for abstraction, since they provide only that amount of

information necessary for navigation. The new web-based geographic information systems

(GIS) are digital interactive maps that try to solve the abstraction problem by allowing

the user to specify which information is displayed. Actually they provide an augmented

version of the reality by combining real imagery with vector data and other meta data

(real-time traffic information, weather).

At the beginning the birds-eye-view on the planet gives a new sense of freedom. This

euphoria fades away when real world tasks like finding the location of the hotel for the

next conference is on the to-do list. Up to now all imagery is mapped onto a ’bald earth’

model and the few existing building blocks are hand modeled and sometimes untextured.

The lack of detailed elevation models makes the textures look flawed e.g. if tall buildings

seem to lean away from the observer and even sophisticated blending methods can not

conceal discrepancies at image borders. Figure 1.1 illustrates this effect for the downtown

area of Houston, Texas: Due to the mapping of the aerial images onto the flat surface

model the buildings seem to lean.

All these artifacts are unavoidable if no detailed building models are available. In

order to overcome these shortcomings and to provide a more immersive experience for

the user, fully textured and detailed 3D models of cities are necessary. The capturing

of these habitats must be highly automated in order to provide a cost efficient alterna-

tive to traditional modeling methods. Buildings are the most prominent objects in an

urban environment and therefore the recording of their geometrical as well as their visual
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Figure 1.1: View of city center in Houston, Texas as provided in Google Earth. At the
border of aerial images the skyscrapers seem to lean into different directions. This is
caused by the traditional ortho-image generation method of mapping perspective images
onto a ’bald earth’ digital elevation model (DEM). Structures that deviate significantly
from this DEM, suffer from perspective distortion.

appearance has been of increased interest since the early days of photogrammetry and

even before the advent of photography, perspective drawings of cities were made e.g. the

famous ’Huberplan’ - a perspective drawing of the city of Vienna made in 1734. Therefore

modeling and reconstruction of architectural objects has been a field of intensive ongoing

studies.

3D city models can be roughly categorized according to one of the following five levels:

1. Level 0 simple (polygonal) building outline + estimated height = block model, often

modeled manually
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2. Level 1 block model + roof shape, modeled either manually or automatically using

image or Lidar data

3. Level 2 detailed 21
2D model + true ortho-image, modeled automatically from aerial

images.

4. Level 4 fully textured 3D model, modeled from aerial + street level images

5. Level 5 abstracted 3D model with semantic information e.g. number of stories,

windows, type of building etc.

1.1.1 History of city models

Man’s need to measure his surroundings can be traced back to the ancient Egyptians and

Greeks. The basic trigonometric principles developed more than 2000 years ago are still

valid and build the foundations for today’s applications. The measurement technologies

however have changed dramatically since then. In the early 1400’s artists began do amend

their drawings by mimicking perspective cameras through the introduction of vanishing

points. The foundations for photogrammetric measurements were laid in the mid 1800’s,

shortly after the invention of photography by Joseph Niepce in 1834. The first use of pho-

tographs for the extraction of geometric information was probably the work of the French

officer Aime Laussedat (1819-1907) who used terrestrial images in 1851 (and later on

aerial imagery acquired from kites) for creating topographical maps. While this technique

originally was called ’iconometry’ he is nowadays referred to as the ’Father of Photogram-

metry’. The first reported photogrammetric measurements of buildings date back to 1858

and were performed by the German Albrecht Meydenbauer (1834-1921). He developed the

predecessor of modern metric cameras in 1867 and cued the term ‘Photogrammetry’ [47].

In 1866 the Austrian physicist Ernst Mach published his idea to use the stereoscope to

perform volumetric measures. Carl Pulfrich presented the first stereo comparator in 1902

and revolutionized the process of mapping from stereo pairs. In 1921 Sherman Fairchild

produced an aerial map of Manhattan Island composed from one hundred overlapping

images. During the 1930s the bundle block adjustment methods were developed based on

Carl Friedrich Gauß’s calculus of observations.

Aerial images have played an important role in city modeling since the early days of

photography. Accurate mapping was done by geometric analysis of images. The cost of

analogue film and the labor intensive process of performing the estimation of the exterior

camera orientation parameters, lead to an efficient and well defined work flow. As a
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consequence, as few images as possible were taken during a mapping mission in order to

reduce the significant amount of manual work involved in the determination of the exterior

orientation based on measuring ground control points and especially in the production

of elevation models, where corresponding points are measured in a stereo pair. Due to

this high amount of manual interaction the resulting elevation models typically exhibit a

relatively large grid size (tens of meters).

The modeling of urban environments was and often still is restricted to the survey

of isolated buildings or single building blocks. So up to now the task of modeling larger

portions of a city is a time consuming task which involves a lot of manual work. The

creation of a 3D city model with a little more geometric detail than simple building

blocks composed from planar facades requires a lot of manual interaction. Due to these

limitations the resulting models are bound to a high level of abstraction. However for

many applications these coarse models are sufficient.

1.1.2 Modern mapping systems

With new sensor technologies emerging and continually growing processing power, the

creation of large scale city models is now becoming a feasible task. The availability of

lower cost digital cameras and fast laser scanners has led to a new boom in 3D city

scanning/mapping. Each mapping project aims at different goals and these goals are used

to define individual specifications for the capturing missions. Based on the sensors used,

the generated model varies in the level of detail as well as in the geometric primitives that

result from the modeling process (21
2D mesh, point cloud, 3D primitives). State-of-the-

art methods for modeling record 3D information either directly e.g. range finding devices

(total station, 3D laser scanner) or indirectly via photogrammetric methods. Based on the

sensing technology the distinction between mapping systems can be drawn. However the

largest differences manifest themselves with a closer look at the mapping platform. The

three main classes of mapping platforms are space borne systems, airborne systems and

terrestrial systems. Space borne platforms are satellites that perform large scale or global

mapping tasks and use highly specific sensors like synthetic aperture Radar, multi spectral

cameras et cetera. The class of airborne platforms encompasses airplanes, helicopters and

more exotic platforms such as balloons, airships, kites et cetera. Terrestrial platforms can

be all forms of motor vehicles, but also much simpler ones such as a camera or a laser

scanner on a tripod. Also wearable systems become more popular with the shrinking

size of sensors. The choice for a specific platform depends on the project area and on
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the type of data that is to be recorded. For standard mapping applications where larger

projects can span entire districts, airborne platforms are the method of choice. Vehicle-

based terrestrial platforms play a role in the creation of large scale street level city maps

or mapping the condition of roads. For the precise mapping of individual sites hand held

cameras or tripod-mounted laser scanners are used. In the following a short taxonomy of

sensor systems will be given.

One reason for this is that in contrast to aerial mapping the work flow for terrestrial

mapping is not so well defined.

Passive sensors Passive 3D measurement devices are restricted to process the informa-

tion that the scene provides - which is mainly visual information. Theodolites are high

precision instruments for angular measurements but are nowadays more and more replaced

by total stations (see 1.1.2). The most common passive 3D sensors are cameras. For the

image-based acquisition of geometric information numerous methods exist. The earliest

were developed in the 19th century for the purpose of photogrammetric surveying. Modern

methods that derive 3D data from images are generally referred to as ’Computer Vision’

techniques. All those image-based 3D measurement techniques rely on the triangulation

principle.

The use of modern vision algorithms theoretically allows for high precision image-based

measurements but image-based modeling methods have the disadvantage that the accuracy

of the achievable 3D measurements depends strongly on the geometric configuration of the

camera setup. This fact is acknowledged by using simultaneously triggered stereo or multi

camera setups, where the relative pose (rotation and translation) between the cameras is

known and consequently 3D data can be extracted for each ’shot’ [124].

Active sensors Active sensors emit well defined signals that allow for a robust measure-

ment of distances from the instrument. The signal can be a pulse of light (laser) or sound

(especially ultra sound) or electromagnetic radiation (e.g. Radar). For highly accurate

measurements the distance measurements are carried out with laser-based instruments.

Total stations are measuring devices that are used for high precision measurements at a

low measurement rate (typically several points per minute). They are used at construction

sites as well as for architectural documentation. For surveying larger parts of a city this

type of instruments is inapplicable.

Another class of direct 3D sensing instruments are 3D laser scanners which are capable

of generating vast amounts of reasonably accurate 3D measurements. The measurement
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principle is based on time-of-flight measurements for the emitted laser pulse. A subclass of

these instruments are profile scanners which acquire depth measurements in one dimension

only. In order to capture depth information in two dimensions these scanners are typically

mounted on moving platforms. A good example are the airborne Lidar platforms where a

profile scanner measures reliable depth values, while an accurate GPS/INS unit provides

position and bearing information of the platform (slow flying planes or helicopters). This

sensor combination has brought new impetus to the field of automatic DEM generation,

since the error prone generation of dense 3D data is solved. The filtering and interpretation

of Lidar data is now the main course of research.

An improved version of the profile scanners are the ’panoramic’ 3D scanners that

are capable of capturing depth information across most of the hemisphere but need a

significant amount of time for completing a full scan. This is due to the fact that the

instrument can only measure one point after the other by rotating a reflecting mirror

about the two spherical axis. The result of the scanning process is a depth matrix that

can be interpreted as 21
2D height-field.

The advantage of direct 3D measuring devices is the reliability of the recorded data.

The average measurement error is known in advance and independently of the working

distance. On the other hand the recording rates of total stations is several points per

minute and for 3D laser scanners like the Riegl LMS Z360 [101] it is 11.000 points per

second. During recording the device must not move and it takes in the order of tens of

seconds to minutes to complete a scan at finer resolution. Thus for recording the geometry

of buildings from street level the scanner platform operates in a stop-and-go mode moving

from one capturing position to the next. For large scale city modeling where several

kilometers of facades have to be captured such a strategy is not sufficient.

A somewhat more efficient approach was demonstrated in [41], where two profile laser

range scanners are used in an orthogonal setup. One scanner measures vertical profiles

and the other one scans in the horizontal plane. The profile scanners record several

tens of profiles per second and thus allow for a mobile platform. However, due to the

moving platform the relative orientation between consecutive 3D profiles is unknown and

a registration step has to be performed in order to transform all measurements to a common

coordinate system. The orthogonal arrangement of the profile scanners is used to extract

the rotation and the translation parameters of the scanning platform. Assuming a rigid

scene consecutive horizontal profiles are registered by a variant of the iterative closest

point (ICP) algorithm. The vertical profiles are aligned by detecting linear structures in
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the profile and the assumption that these structures belong to dominant vertical facade

planes. The registered 3D profiles are then transformed into a common coordinate system,

converted into a mesh representation and finally textured from images of a camera that

are calibrated to the profile scanners. This computationally highly complex approach

finds its counterpoint in commercial applications such as StreetMapper [48]. For this

system the task of geo-registration is performed from the data of a high performance

GPS/inertial navigation system. In general, modern mapping systems are realized by a

combination of different sensors. These additional sensors either augment the captured

data by recording data that can not be sensed by the main instrument or they are even

an essential component whose data is crucial for the processing. In the following a short

survey of such augmenting sensors is given.

1.1.2.1 Augmenting sensors

The combination of several sensors on a capturing platform provides enriched information

but results also in the problem of sensor fusion and registration of data from different

sensors. Examples are electronic compasses, GPS receivers or inertial sensors (IMU’s);

These sensors alleviate the task of computing the exterior orientation of imaging sensors

by producing good estimates for the platform orientation and position. Especially for

airborne platforms the combination of a GPS receiver with a high precision inertial sensor

is often used to provide accurate estimates for the image orientation.

Whereas GPS receivers provide accurate position information when used in an aerial

mapping system, they suffer from a substantial loss of accuracy when used in a mobile

terrestrial setup. For example the position coordinates are corrupted with noise due to

multiple reflections of the satellite’s signal on facades. When driving through very narrow

alleys or tunnels the GPS sensor might not receive any signal at all and the only way to

provide position and orientation estimates is the use of an IMU sensor.

Another frequently used sensor in terrestrial mapping systems is a wheel encoder that

provides information about the vehicle’s velocity, or in the case of multiple sensors on

different wheels, also information about the heading of the mobile platform. As mentioned

before, the main problem for the combined sensor platform is fusion of data coming from

individual instruments. Every sensor has its own capturing rate which may vary from

several tens of readings per second for the odometer to a couple of GPS readings per second

to less than one image per second captured by the cameras. The same inhomogeneity holds

for the accuracy provided by the individual sensors.
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1.1.3 Mapping scenarios

In order to capture large areas in an efficient manner the choice between two dominant

methods, namely photogrammetric methods and laser scanning, has to be made. For

airborne platforms photogrammetric methods are preferred, but lately laser scanning also

showed promising results. For terrestrial mobile platforms laser scanning dominates since

the on-site data recording times are short and the post-processing can be automated to a

high degree.

1.1.4 Aerial mapping

Airborne mapping has traditionally been performed with cameras. The process of image

acquisition, image orientation, geo-referencing and 3D data generation is very well struc-

tured and documented in numerous publications. The range of products that are generated

encompass digital surface models (DSM’s), digital terrain models (DTM’s), ortho-images,

road networks et cetera. Images are acquired by flying a pattern of parallel lines over the

project area - this results in strips of overlapping images.

Traditionally the 3D data acquisition for creating maps was accomplished by manual

measurements taken from aerial photographs. This strategy made perfect sense as long as

only prominent features were measured e.g. roads, larger buildings or isolated landmarks.

As soon as the number of measurements increases the manual picking of points becomes

a tedious task. Nevertheless manually assisted modeling methods are still state-of-the

art [1]. The advantage of this strategy is that humans are good at abstracting complex

geometry. Typically a model is then built in a hierarchical manner by performing a natural

coarse-to-fine modeling strategy. This is especially useful when the resulting models should

be as simple as possible (in terms of facets per building model) in order to allow a fast

transfer over networks.

With the advent of digital aerial cameras the degree of overlap between the images has

drastically increased [74]. The increased redundancy allows for the robust automation of

the workflow.

1.1.4.1 Terrestrial mapping (Streetside)

Building modeling from terrestrial photographs differs from the aerial modeling path in

several ways. The camera viewpoints generally lie on a complex path and automatic

orientation becomes significantly more challenging. The camera path is constricted by

narrow streets and it is often a non-trivial task to have every surface patch of a facade
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covered by a sufficient number of images (at least two for stereo). In contrast to aerial-

based surface models which traditionally are 21
2D, a city model is 3D. This fact makes

modeling of large areas especially challenging.

1.1.5 Applications

In the following subsection an overview of the various applications of of spatial information

will be given. Furthermore the connection to the 3D data that are generated by the

methods developed in this project are explained.

1.1.5.1 City maps

3D city models are met with a growing demand. Various business models depend strongly

on the existence of spatial data. In the following a short survey of the most prominent

applications will be given.

Recent web-based applications by global providers like Google maps

(http://maps.google.com/), Microsoft’s Bing maps (http://www.bing.com/maps/) as

well as solutions by local providers such as Herold (http://www.herold.at/routenplaner/)

or Klicktel (http://www.klicktel.de/kartensuche/) show the potential of modern

geographic information systems. They provide easy access to map data and are

continually working on enriching the contents (business locations, road vector data,

content provided by the web community etc.).

A better term for these types of applications would be ’geographic entertainment’

systems, since many users consider these web-based platforms as a social meeting place.

Especially community based interaction shows that the information system acts as a plat-

form for sharing localized information.

These systems initially were filled with digital vector data and subsequently augmented

by ortho-imagery from satellite cameras or from national aerial ortho-photo programs.

Trends show that in the future the main focus will lie on capturing and modeling infor-

mation at the ’human scale’, thus focussing on the ’urban canyons’. Those areas, which

consist mainly of vertical facades are hard to capture from aerial views - roof overhangs

and dense vegetation obstruct the clear view of facades. Mobile image acquisition plat-

forms will be used for the efficient mapping of the major routes within a city. Automated

street side mapping began in the mid 1990’s. A first version of such a system was pre-

sented by Google [46] - it allows the seamless navigation through the captured streets

and offers a panoramic 360 degree view. For navigation tasks it provides a good visual
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impression from a set of predefined viewpoints. However, since the image data is unedited

it represents a snapshot taken at a certain date and time. Due to the fact that no 3D

information is present the navigation path is restricted to lie on the path of the capturing

vehicle. In fact the system is basically a collection of geo-referenced images that can be

transformed into a seamless stream.

A real 3D model however supports the visualization from arbitrary view points, allows

to take measurements and permits the insertion of artificial objects in order to augment the

experience. A good example for the use augmentation are car navigation systems where

the route is dynamically overlaid on the model. The realization of such a model constitutes

a significantly greater challenge to the creators. The only feasible way to derive 3D models

is a fully or nearly fully automated workflow. However, in order do derive a 3D model

in an automated way the collection of input images must provide sufficient redundancy

(overlap between images). Many transient objects, which are mainly vehicles and people,

can not be modeled and must therefore be detected and ignored in the texture generation

process. Furthermore, complex objects such as trees and bushes are hard to model. Thus,

a semantic interpretation framework seems to be essential. Such a framework would detect

generic object classes in the images and drive the 3D modeling.

1.1.5.2 Planning / Real Estate

For planning in densely packed urban areas a detailed 3D model helps to assess the visual

impact of planned constructions. City officials, architects and contractors are able to

easily grasp the situation on site. Public participation is made easier for people who are

not skilled in reading 2D plans. High quality renderings give a realistic impression of

the project before the first brick is laid. Another driving force is the multi-million real

estate business. Aerial views allow potential customers to assess the neighborhood and

infrastructure around an estate in a very efficient manner.

1.1.5.3 Tourism / Cultural Heritage

With so many places to visit in a strange town, tourists can use a visually appealing model

to plan their visits to important sites and also for faster acquiring a feeling for navigating

in an unknown town. Hotels and restaurants can place advertisements and cultural events

can be announced and be pinpointed to.

Archeology is a field which suffers from a chronic lack of money. A cost efficient web-

based presentation of excavation sites to a broad audience could help raising funds and
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at the same time serve as an education platform and help to popularize the results of

archeological research. Previous projects like 3D Murale [90] showed a high potential in

creating 3D models of those sites but failed in creating an ongoing interest due to a lack

of a standardized web-platform for serving the content to the interested community.

1.1.5.4 Communications

Wireless communication can be optimized by analyzing the signal propagation and placing

a transceiver station on the ideal location. While for wave propagation simulations a

coarse building outline may be sufficient, the physical properties of the facades may be

of interest. This application became very relevant in the late 1990’s, when the mobile

telecommunication boom started.

1.1.5.5 Defense / Public safety

Urban-wide hazard analysis benefits from detailed 3D models which allow e.g. for an ac-

curate simulation of the spreading of harmful gases. Industries that deal with hazardous

products can be placed on locations where they are least harmful in the case of an accident.

Fire fighters and counter-terrorism forces can both make use of detailed facade plans that

provide information about window placement and other ways of getting access to a build-

ing. Assessment and rescue planning becomes important. For those types of applications

an abstracted visualization might serve better than a photo-realistic rendering and robust

methods for automatic recognition and measurement of facade elements (e.g. number of

stories, location of windows, doors etc.) become important.

1.1.5.6 Gaming

Interactive games that are set in realistic looking environments that represent real world

locations give the player the feeling of better immersion. Photo-realistic models with a

low polygon count are desired in this context.

1.2 State-of-the-art

The 3D modeling of buildings from images is a topic of ongoing research since the early

days of photogrammetry. What is new is the need for, and interest in achieving full

automation. The two main areas of research are modeling from aerial sensed data and

modeling from terrestrial data. The creation of models from images was traditionally a
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field for photogrammetrists and the goal was to perform accurate measurements of geo-

metric features. Typically a small number of points was measured and converted into line

drawings which serve as a good abstraction of detailed facades. Another typical product

is the so called ortho-photo of a facade - this is basically a perspective image transformed

into a parallel projection. Generally the photogrammetry work flow for generating 3D

information from images involves a significant amount of manual work.

Since the computer vision community has adopted this field the degree of automation

has been drastically increased. The range of products that are derived from input images

has also increased and often the geometric accuracy has to give way to visually appealing

models.

The methods used differ in amount of manual input, types of sensors used and result-

ing models. The two main data sources are digital images and laser sensed range data

(Lidar) - in this project we want to concentrate solely on image data. While the airborne

methods are mainly concerned with map building and classification, the terrestrial meth-

ods are traditionally aimed at 3D modeling e.g. for architectural documentation. The

main difference between computer vision and photogrammetry is, that the latter is a stan-

dardized technology and industry and less of a research area. In general photogrammetry

approaches define a complete work flow for a specific problem (e.g. from digital images to

photo realistic models) while in computer vision often only specific problems are tackled

(e.g. wide baseline matching, camera pose estimation, reconstruction). An overview of

existing city modeling techniques can be found in [55].

1.2.1 3D modeling from aerial images

Aerial-based modeling approaches are used to generate 3D models of large urban areas.

Commercial products for large scale modeling, like CyberCity modeler [1, 129] are mainly

using aerial images to compute ortho-photos, digital elevation models (DEM’s) and 3D

building models. Geo Systems [120] offers a product for the generation of detailed 3D

models that are created with their semiautomatic modeling approach. The degree of au-

tomation in the early processing steps of aerial sensed data is high. This is achieved

mainly through the use of additional sensors such as high accuracy GPS receivers and in-

ertial navigation systems (INS). These sensors provide an accurate estimate for the camera

pose and therefore allow for a robust triangulation. Methods for automatic generation of

digital surface models (DSM) and the derived digital elevation models (DEM) do exist,

however the reliable automatic detection and modeling of building primitives is still a topic
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of ongoing research [67].

Research projects aim at fully automated systems. In [62] a system for automatic

detection and reconstruction of buildings from aerial images is presented. The output

of such systems ranges from camera poses to photo-realistic textured 3D models. The

automatic land-use classification problem however is still a field of ongoing research. Other

topics are the automatic extraction of road networks [15], detection and classification of

buildings and vegetation. All these methods aim at the fully automated extraction of

data that can be fed into the various abstraction layers of a GIS system. The emerging

of new digital high-resolution sensor systems such as the UltraCam D [75] brings new

impetus to the field. These new airborne sensors are capable of capturing large urban

areas with a significantly higher overlap of images than was possible with film-based aerial

cameras. A typical overlap ratio is 80% in flight direction and 60% across neighboring

strips. This increased redundancy allows for processing of data with a much higher degree

of automation and increased robustness.

1.2.2 3D modeling from terrestrial images

In contrast to aerial-based modeling methods, the automated terrestrial modeling still

faces a number of challenges. The scenes are more often complex because man-made

structures represent ambiguities, occlusions exist, translucent and specular surfaces make

an automatic interpretation hard. Semiautomatic approaches are preferred, since auto-

mated approached are yet to evolve. Current commercial solutions are [58, 100].

Modern 3D computer vision provides powerful methods for the automation of the

work flow’s main stages. Despite intensive research in the field, the main hurdles in

the terrestrial 3D modeling work flow for street side images are the establishment of

robust point correspondences between the images and the generation of a consistent dense

3D model. The correspondence problem has been recognized to be a hard problem and

countless publications report on solutions. Recently there has been substantial progress in

this area using invariant local features and probabilistic modeling [61, 78, 83–85]. These

local approaches have demonstrated considerable success in a variety of applications, like

recognition of objects [22, 39, 73, 105], wide-base line stereo [126], robot navigation [37,

44, 114], and image retrieval [63, 133].

The general task of generating 3D models from images has been one of the central

goals in computer vision, applicable to areas such as reverse engineering, cultural heritage,

building reconstruction, etc. [62, 116]. The structure and motion problem (recovering the
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3D scene structure and the camera motion simultaneously) [7, 68, 79, 95, 96, 118] has

already reached a state of maturity.

However, in the area of street side modeling one has to cope with repeating patterns,

significant changes in view point and camera orientation (so called wide-baseline setups),

occlusions, variations in illumination, highly reflective or translucent materials and last

but not least dynamically changing scenes. Recent developments that are based on the

extraction of affine covariant features increased the robustness of image correspondence

estimation and the subsequent camera pose estimation.

On the other hand, man-made objects exhibit properties that alleviate the detection

of corresponding points. Building facades are often planar structures and contain straight

line segments. A special property of building facades is the frequent presence of groups

of parallel line segments that form strongly distinct vanishing points in images. The

knowledge of two vanishing points that belong to orthogonal sets of 3D lines allow a robust

estimation of the relative rotation between successive camera view points. Vanishing point

detection techniques use Hough-like voting schemes [103, 128], voting methods on the unit

sphere [27] or grouping strategies [108].

The detection of planar structures via the use of homographies is another frequently

applied method [6, 97, 104, 134, 135]. Homographies can be extracted from four point

correspondences between an image pair and allow a direct point-to-point transfer, thus

imposing stronger constraints on the correspondences than an arbitrary relative orientation

described by the fundamental matrix. The presence of rectangular structures such as

windows or doors has been exploited in [98] to extract local homographies that are derived

from those parallelograms. Ellipses or elliptic arcs are another class of primitives frequently

found in architectural images. Robust detection methods for ellipses or conics are described

in [25, 94, 99].

The automatic detection of vanishing points, homographies and ellipses are examples

where a specific geometric property of buildings is used to improve image matching or

object modeling methods.

Repeating structures, such as identical windows, friezes or stucco work, are problematic

when correspondences are computed by matching local descriptors alone. However, recent

publications show that a combination of local and global descriptors can overcome some

of the matching ambiguities. The method proposed by Mortensen [89] combines global

features that were initially used to compare 2D shapes with local descriptors in order to

provide a more robust similarity measure. Tell and Carlsson [123] proposed a method
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that incorporates the topology of neighboring points via intensity profiles to improve the

stability of the matching process.

After establishing point correspondences between image pairs, the parameters of the

relative orientation between the two images can be computed. Finally the pairwise image

correspondences are linked over multiple images and the exterior orientation parameters of

an image sequence are computed using bundle adjustment [76]. The methods mentioned

above result in a sequence (a ’block’) of oriented images and sparse 3D primitives (points,

lines). In order to bridge the gap between sparse reconstructions and the desired surface

model a dense stereo or multi-image matching technique is applied. These depth estimation

methods assign a distance value to every pixel in a reference image. Numerous approaches

to dense stereo matching have been published [19, 30, 52, 119, 137]. Those methods are

global approaches that are determining all disparities simultaneously by applying energy

minimization techniques such as graph cuts, belief propagation, dynamic programming,

scan-line optimization or simulated annealing. The accuracy of a dens matching result is

being defined as the error in depth (distance from the camera). This error is a function

of the intersection geometry of the optical rays, of the matching accuracy (influenced by

texture similarities, specular surfaces etc.), and of differences in the overlapping images.

Recently, segment-based methods [19] have attracted attention due to their convincing

performance. They are based on the assumption that the scene structure can be approx-

imated by a set of non-overlapping planes in the disparity space and that each plane is

coincident with at least one homogeneous color segment in the reference image. Especially

for the modeling of buildings, the segment-based approaches seem to be promising.

When it comes to the modeling of larger portions of a city from ground views, few

practicable approaches have been published. The research group lead by Seth Teller has

published several papers [2, 3, 117, 124] concerned with the creation of detailed building

models from digital street side photographs.

Fully automatic approaches such as [41] combine active sensors such as laser range

finders with digital imaging sensors for robust recording of 3D structure and texture.

A problem that still draws the attention of researchers is automatic abstraction of

the dense surface data that are generated in the modeling process. The need for fast

transmission over limited bandwidth connections and the huge amounts of geometrical as

well as texture data that are generated with automatic modeling methods make a data

reduction step that is usually achieved by abstraction necessary.

With approaches that work on the geometric properties of the model itself [43, 53], the
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degree of abstraction versus the visual appearance is limited. Systems that automatically

recognize recurring structures or dominant portions that can be modeled with simple

analytic surfaces (e.g. planes, cylinders or parametric surfaces) have the potential to

reach significantly higher amounts of data reduction, while still retaining a good visual

appearance.

1.3 State-of-the-art of 3D modeling

Many ways exist to traverse the path from input images to a 3D model, but generally

3D modeling methods branch into two large groups: image-based modeling [19, 30, 52,

119, 137] and feature-based modeling [64, 112, 135]. While the field of image-based mod-

eling is extremely popular among researchers, the number of publications that deal with

feature-based modeling is much smaller. The main reason for this imbalance is the fact

that dense surface models are perfectly suited for visualization and can easily be inter-

preted/understood - even by an untrained user. The result of feature-based modeling

approaches is often a sparse cloud of points or lines and typically lacks many of the de-

tails present in dense 3D models. Thus, sparse point clouds constitute a significantly

harder challenge for an interpretation. Most image-based modeling methods use area-

based matching algorithms which are known to be problematic at sharp edges or depth

discontinuities.

3D primitives that are derived from features often contain complementary information

that can not or only with high effort be extracted by image-based modeling. This fact

makes feature-based modeling methods valuable, despite the fact that they can not be

used as a stand-alone 3D reconstruction approach. They need to be seen as a supplement

to enrich the overall quality of the derived model.

Historically, feature-based modeling was the only way to extract geometric information

from a set of images by hand. The labor intensive collection of manual image measurements

allowed only for creating very sparse sets of 3D primitives.

Many manual photogrammetric applications still provide only means for measuring

3D points and 3D lines. An important reason for this restriction is the fact that these

simple 3D primitives can be derived from image measurements using well defined geomet-

ric algorithms. Especially in the case of multi image vision this property is important.

The class of methods that estimate the optimal 3D primitive from 2D measurements in

a set of images are the so called EM algorithms [38] pp. 357 ff. For problems related to

the estimation of geometric 3D primitives, the criterion that is minimized is the squared
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reprojection error i.e. the sum of all squared distances of the 2D image measurements with

respect to the projection of the reconstructed primitive. Another important property of

simple 3D primitives is that the achieved accuracy of the reconstruction can be evaluated

by means of error propagation [122] pp. 260 ff. This fact, together with the above men-

tioned capability of providing accurate geometric measurements on depth discontinuities,

makes feature-based modeling approaches especially interesting.

Dense area-based reconstruction methods (as in contrast to feature-based) methods are

bound to minimize an energy function. The energy function typically tries to find a good

trade off between the smoothness of the reconstructed surface and the data fidelity. Recent

approaches use energy minimization schemes like total-variation optimization [87] or graph

cuts [69] to extract the 3D surface. Due to the fact that the optimization criterion does

not directly measure the reprojection error of the created 3D surface points these methods

can not provide measures for geometric uncertainty of the resulting surface. Another

drawback of dense multi view modeling methods is the complex handling of visibility - a

3D surface evolves during the optimization process, which creates dynamically changing

visibility conditions that pose great challenges to true multi-image modeling methods.

Many dense surface modeling methods circumvent this by creating 3D surfaces for each

image pair by means of dense stereo matching methods and obtain the final model via a

subsequent fusion step [138].

Geometric image features give very strong visual cues and allow a good perception

of the prominent characteristics of a scene from a small amount of data. Figure 1.2

illustrates of this effect: despite the fact that only strong edge features are present the

prominent landmark (clock tower in Graz) can be clearly recognized. These contour

segments capture the most important shape properties of the object. Thus, a line drawing

is nearly as descriptive as the image itself, but needs significantly less memory to store

it. The challenge is to convert the set of features from multiple images that show the

same object into a meaningful 3D description. Several publications have shown that this

is possible [64, 112, 135].

1.4 The project

Our interest lies in automated methods for creating 3D city models from overlapping im-

ages. The focus lies on the extraction on 3D modeling based on geometric image features.

In the course of this project methods for the extraction of geometric 2D features from

single images will be presented. It will be shown how these geometric features can be
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Figure 1.2: Canny edges for a well known landmark in Graz - can you recognize it? - it is
the famous clock tower (Uhrturm).

used to establish point correspondences between pairs of images and finally 3D modeling

approaches based on geometric image features will be introduced and discussed. The goal

is to show that 3D structure from geometric image features can be derived with high

geometric accuracy. The source data will be high resolution digital images which show

objects with a great redundancy. The fact that an object point is visible in several images

improves the robustness of the 3D modeling approaches.

1.5 Outline

The rest of the document is structured as follows:
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1. Feature extraction We first introduce various classes of geometric image features.

Beginning with point-like features (edges, ridges, corners) we advance to features

based on grouped points (contours, straight line segments). We present methods for

the robust detection of vanishing points from sets of straight line segments. The last

two sections of the chapter are on features that are computed by estimating geomet-

ric primitives from point-like features (2D line segments, ellipses, affine transformed

squares). Experiments are performed to assess the geometric accuracy of the ex-

tracted features.

2. Feature matching We then proceed to the establishment of correspondences be-

tween features and introduce the various types of so called transform invariant im-

age descriptors. We introduce state-of-the-art descriptors and a new semi-global,

rotation-invariant descriptor.

3. 3D modeling Finally we extract 3D primitives from sequences of oriented images.

Methods for detecting 3D points, 3D lines and 3D planes are presented. This material

presents the main contribution of the project, namely a method for efficient 3D

reconstruction of object contours. In the experimental section we finally show that

the proposed method is applicable to a wide range of applications and that the

achievable accuracy is sufficient to serve as valuable input for subsequent modeling

approaches.

4. Discussion based on data The performance of the presented methods for synthetic

as well as real data is shown. The setup of the experiments is explained and the

results are discussed.

5. Conclusion and outlook The final chapter recapitulates the main contributions,

discusses the findings and closes with an outlook on future work.

1.6 Key Publications

The main publications that are the basis for the presented work are reported in the fol-

lowing list. The aims and the key findings of each paper are shortly described.

• Bauer, J. and Klaus, A. and Karner, K. and Zach, C. and Schindler, K., METROP-

OGIS: A Feature Based City Modeling System, In Proceedings of the ISPRS Comis-

sion III Symposium, Graz, 2002, pp. 22 - 27, [11]; In this publication, a feature-based
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frame work for generating 3D primitives from multiple oriented images of building

facades was presented.

• J. Bauer and H. Bischof and A. Klaus and K. Karner, Robust And Fully Automated

Image Registration Using Invariant Features, In Proceedings of ISPRS - Int. Soci-

ety for Photogrammetry and Remote Sensing, 2004, pp. 12 - 23, [10], This paper

reports on a method for the robust extraction and description of points-of-interest

by intersection straight line segments. The generated primitives, called ’Zwickels’,

are used to establish robust correspondences between image pairs.

• J. Bauer, K. Karner, and K. Schindler, Plane parameter estimation by edge set

matching, In Proceedings of the 26th Workshop of the Austrian Association for

Pattern Recognition, 2002, pp. 29 - 36, [60]; This article describes a method for

the efficient generation of 3D plane hypotheses by performing a feature-based sweep

approach.

• J. Bauer, A. Klaus, M. Sormann, K. Karner, Sparse 3D Reconstruction by Edgel

Sweeping, In Proceedings of the CVWW - Computer Vision Winter Workshop, 2004,

pp. 11 - 20, [59] This is the first of three publications on the feature-based space

sweeping approach. The generation of 3D primitives from directed 2D image features

(edgels) is demonstrated.

• Bauer, J and Klaus, A and Sormann, M and and Karner, K, Efficient 3D Recon-

struction by Edgel Sweeping, In Proceedings of Optical3D (Optical 3-D Measurement

Techniques), 2005, pp. 253 - 262, [12] This is the second publication on the feature-

based space sweeping approach. Improvements in the robustness are presented.

• Joachim Bauer and Christopher Zach and Horst Bischof, Efficient Sparse 3D Recon-

struction by Space Sweeping, In Proceedings of the International Symposium on 3D

Data Processing Visualization and Transmission, 2006, pp. 527 - 534, [13] In this

work an improved sweeping approach, based on rectified images is presented.
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2.1 Geometric image features

The extraction of geometric image features is one of the most important tasks of a modern

computer vision system, it not only reduces the amount of data to be processed, but also

increases the robustness and accuracy of measurements in digital images. Geometric image

features are primitives that are created by performing transforms on the raw image data.

Most image features can be assigned to one of the following categories:

• Point-like features such as edges, ridges and corner points. These are pixel-level

features i.e. they can be calculated at each pixel using e.g. derivatives or color

information at each pixel.

• Region-like features as e.g. watersheds, MSER’s,

23



24 Chapter 2. Feature extraction

• Higher geometric primitives arising from grouping operations such as contour lines,

or features detected by fitting geometric models to sets of point features like straight

line segments or conics (ellipses, parabolas, hyperbolas).

Another categorization can be made with respect to the application the features are

used for: For establishing image matches, point-like primitives with a high spatial accuracy

and good repeatability under various geometric transforms are preferred, while for image

segmentation region-like features play an important role. In the field of 3D reconstruction

point features and higher geometric primitives such as straight line segments or conics are

of special interest. The reason is that these features can be simultaneously used to compute

the camera’s pose as well as the 3D scene structure. Furthermore a theoretically sound

model for estimating the optimal 3D primitive as well as its uncertainty is available [9, 51].

The classification given above is not unique, but we define a hierarchy on the feature

classes that will be used within this document. Low-level features are extracted directly

from the original images, whereas higher level features result from geometric operations

performed on low-level features.

2.1.1 Point-like features

The most basic feature is a point. Depending on the extraction method additional scalar

attributes can be associated with the feature point. Corners for example are locations in

the image where both eigenvalues of the 2 × 2 structure tensor attain large values. The

strength of a corner is a function of the structure tensors determinant and trace and is

encoded as additional scalar. Corner locations are very distinct in an image and thus cor-

ners play an important role in image matching methods and the means for their extraction

are described in several publications [40, 49]. Features that are found by searching an im-

age’s scale space e.g. by detecting local maxima of difference-of-Gaussian filter results as

proposed by Lowe [77] have their principal scale as additional attribute.

The next class are oriented point features. The two main types are edges and ridges. An

edge element (short edgel) describes an image location where a strong intensity difference

to one of the neighboring pixels occurs. Edgels can be extracted very efficiently using

the method of Canny [24]. Due to the use of differential geometry operators not only

the location of the edge but also the direction of the gradient is determined. Many higher

level geometric primitives are formed by grouping edgels, so these simple features form the

basis for many subsequent algorithms. Ridges are another class of oriented point features.

Ridges are used to detect line-like structures in the image. The extraction of ridges is
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also performed by methods of differential geometry, in this case by analyzing the Hessian

matrix. The orientation vector associated with ridges points either in direction of the

ridge (= minimal curvature) or perpendicular to it (= maximal curvature).

2.1.2 Region-like features

The class of region-like features plays an important role in segmentation applications.

Examples for region features are watersheds, maximally stable extremal regions (MSERs)

proposed by Matas et al. [61] or regions defined by clustering methods and subsequent

grouping e.g. mean-shift regions proposed by Comaniciu and Meer [28]. Region-like

features will not be covered in this document.

2.1.3 Higher level primitives

All the afore mentioned features can be used to build higher level primitives. This can

be achieved either by grouping, where points are connected to form chains or by fitting a

geometric model to a set of points. The most prominent features are straight line segments

but also the family of conics (parabolas, hyperbolas and ellipses). Rather exotic features

are the recently published affine superellipses [92, 136].

The following sections provides more details on the various feature extraction methods,

limiting ourselves, however, to the most important ones. The structure is hierarchical and

starts with a short introduction to edge and ridge extraction. Next is the extraction of

corners. One level above the simple point-like features are the geometric primitives that

are generated by grouping those point-like features, namely contours and straight line

segments. A special interest exists in the fitting of primitives to sets of point-like features.

Finally we discuss two methods for extracting vanishing points.

For denoting image operations we follow the notation of Lindeberg [121] and define:

An image f , and a Gaussian kernel g:

g(x;σ2) =
1

2πσ2
e−(x2+y2)/2σ2

, (2.1)

where σ is the standard deviation of the Gaussian kernel. The convolution of the image

with the Gaussian kernel is

L(:;σ2) = g(:;σ2) ⋆ f. (2.2)
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The derivatives are then defined by:

Lxαyβ (.;σ2) = ∂xαyβL(.;σ2) = gxαyβ (.; σ2) ⋆ f ; (2.3)

Thus the convolution of the image with the first-order derivative of Gaussian kernel

with respect to x is denoted as: Lx and the convolution of the image with the second-order

derivative of Gaussian kernel w.r.t y is denoted as: Lyy etc.

2.2 Edges

Edges are the most eye-catching features in images and deserve the full focus of the image

processing community. An edge is defined by a sharp change in image brightness that can

arise from several scenarios:

• Object boundaries e.g. a dark object on a light background or vice versa.

• Sharp changes in the surface orientation of objects e.g. the common boundary of

two orthogonal planar faces of an object.

• Changes in the material properties of the viewed object e.g. changes in the reflection

coefficient.

• Partial occlusions of an object by another one.

• Changes in illumination e.g. the border between a brightly lit region and a shadow

region.

Mathematically an edge is a maximum of the magnitude of the first derivative in the

2-dimensional image space. This is why most edge detection methods rely on computing

the gradient magnitude and performing a thresholding on the magnitude. A well accepted

approach for edge extraction was proposed by Canny [24] and comprises four major steps:

• Computing of partial derivatives Lx and Ly of the image f by convolution with

first-order derivatives of a Gaussian kernel gx and gy. The standard deviation σ of

the derivative-of-Gaussian kernels determines the degree of image noise suppression:

Lx = gx ⋆ f, Ly = gy ⋆ f .

• Computing the gradient magnitude as m(x, y) =
√

Lx(x, y)2 + Ly(x, y)2 (see

Fig. 2.2(b)).
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• Thresholding to find potential edge candidates i.e. locations where the gradient

magnitude m is above a predefined threshold are marked as probable edge candidate

(see Fig. 2.2(c)).

• Applying a non-maximum suppression scheme that filters out candidates that are

not a local gradient maximum. The non-maximum suppression can also be used

to calculate the location of the edgel with sub-pixel accuracy. An explanation of

this extension to the classical approach can be found in the technical report of

Devernay [31]. Basically the sub-pixel location is done by fitting a parabola to the

magnitude sampled in gradient direction (see Fig. 2.1(d)).

• Generation of contours by tracing edges. This approach is based on the assumption

that dominant edges lie on continuous curves. A hysteresis thresholding scheme

involving two thresholds is applied. The higher threshold is used to select start edges

for the tracing and the lower threshold is applied during the tracing and therefore

accepts also fainter edges.

(x, y)

(x−1, y+1)

(x−1, y) (x+1, y)

(x+1, y−1)

v
d

d

Figure 2.1: Non-maximum suppression for sub-pixel edge detection: point (x, y) is ac-
cepted as valid edgel, if the gradient magnitudes of the neighbor points sampled in the
direction of the gradient direction v are smaller than the center magnitude: m(x, y) >
max(m((x, y) + v), m((x, y) − v)). The values at m((x, y) + v) and m((x, y) − v) can
be approximated by: m(m((x, y) + v) = m(x + 1, y − 1)d + m(x + 1, y + 1)(1 − d) and
m((x, y) − v) = m(x − 1, y − 1)(1 − d) + m(x − 1, y + 1)d. The center value and the
approximated values can be used to compute a refined maximum position by fitting a
parabola.

Figure 2.2(d) shows the final edgels with their gradient direction.

The important contribution of Canny was in showing that the optimal smoothing filter

can be well approximated by the first-order derivative of a Gaussian kernel. He achieved a

trade-off between detection rate and localization accuracy and the proposed non-maximum

suppression avoids multiple responses from a single edge.
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Figure 2.2: Edge extraction example: (a) Original image; (b) Gradient magnitude; (c) All
edge candidates; (d) Remaining edges after non-maximum suppression (magnified portion
of the image);

An improved method for edge extraction was proposed by Rothwell et al. [106] and

yields more robust results in the vicinity of junctions where the step edge model tends to

fail.
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2.3 Ridges

With the approach of Canny it is possible to extract step edges i.e. point locations

that are on the boundary of two regions with significantly different intensities. For many

applications it is also desirable to extract ridges - these are geometric entities that represent

thin line-like structures in an image. Ridges can be viewed as topographical watersheds

that separate image regions (sometimes denoted as basins). Lindeberg [121] gives a more

formal definition: At an image point p = f(x, y), the curvature directions p and q of the

brightness function are computed. From the the second-order derivatives Lxx and Lyy

and the mixed derivative Lxy a local coordinate system that is aligned to the principal

curvature directions p and q is defined. This makes the mixed second-order derivative Lxy

vanish. Ridges in the p, q system are then image locations where the following conditions

are fulfilled:

Lp = 0, Lpp < 0, |Lpp| ≥ |Lqq| (2.4)

or

Lq = 0;Lqq < 0; |Lqq| ≥ |Lpp| . (2.5)

Depending on whether p or q corresponds to the maximum absolute value of the

principal curvature. This definitions hold for bright ridges but extend naturally to dark

ridges (also denoted as valleys). Based on the sign of the maximal absolute second-order

derivatives |Lpp| and |Lqq| two ridge types a bright one and a dark one are defined: If

|Lpp| > |Lqq| and Lpp < 0 a bright ridge has been found otherwise a dark ridge (valley)

has been encountered.

The particular ridge extraction method in this work proceeds as follows:

• Compute the the second-order derivatives Lxx and Lyy and the mixed derivative

Lxy.

• Set up the Hessian matrix H for each image point: H =
( Lxx Lxy

Lxy Lyy

)

. A ridge is

detected by analyzing the eigenvalues λ1 and λ2 of H: The point under consideration

is a ridge or valley if:

1. λmax = max(‖λ1‖, ‖λ2‖) > th (where th is a predefined threshold) and

2. the local gradient sampled along the eigenvector corresponding to the smaller

eigenvalue is below a certain threshold (this verifies the condition Lp = 0 or

Lq = 0).
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If the eigenvalue with the larger magnitude is smaller than zero the point is a ridge

otherwise it is a valley.

(a) (b)

Figure 2.3: Ridge extraction example: (a) Original image; (b) Extracted ridgels with their
associated orientation.

2.4 Corners

In many applications that are related to finding point correspondences between images

one does not try to establish matches between all image pixels, but looks for points in the

image that are in some way distinct. Such points are referred to as interest points and

are located using an interest point detector. As Canny’s approach is the most common

method for the extraction of edges, the Harris [49] corner detector is the most popular

algorithm for corner extraction from images. Corners are locations in the image where

dominant and different edge directions in a local neighborhood around the point occur.

This is the case when regions of different intensity meet and form distinctive shapes such as

L-junctions, T-junctions or Y-junctions. One of the earliest methods for extraction corners

was published by Moravec [88] and is based on analyzing the auto-correlation function for

shifted templates: A small square template window (3 × 3 to 7 × 7 pixel) is placed at

a position p = (x, y) in the image and the intensity variation between this window and
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shifted instances of the window are measured. The windows are shifted into the eight

principal directions: horizontally, vertically and the four diagonals. The sum of squared

differences between corresponding pixels in these two windows gives the intensity variation

S. For homogeneous regions the intensity variation is low, for edges it attains high values

for some shifting directions and for corners S is high for all shifting directions. In the case

of interest points, the auto-correlation function is high for all shifting directions. However,

the operator is not invariant to rotations because the intensity variation is only calculated

for a discrete set of shifting directions.

The method proposed by Beaudet [16] achieves invariance against rotation due to the

fact that it derives a cornerness measure from the determinant of the Hessian matrix H

which is the 2 × 2 matrix of the second order partial derivatives. The determinant of the

Hessian det(H) = LxxLyy − L2
xy is used as a measure for the strength of interest points.

The corner extraction method from Harris and Stephens [49] is based on the second

moment matrix and can still be regarded as state-of-the art. The basic idea of this detec-

tor comes from the observation that the auto-correlation function can be approximated

by the second moment matrix (also called the structure tensor). The first step is the

approximation of the sum of squared differences between two square windows (denoted S

for the Moravec detector). This is done by constructing the tensor T that is the outer

product of the 2-vector holding the partial derivatives:

T =
(

Lx Ly

)

(

Lx

Ly

)

=

(

L2
x LxLy

LxLy L2
y

)

(2.6)

The tensor T is of rank 1 and thus has only one non-zero eigenvalue. However, summing

the tensors Ti of a local square window leads to the structure tensor Ts:

Ts =
∑

u

∑

v

(

L2
x LxLy

LxLy L2
y

)

. (2.7)

The structure tensor Ts is a positive semi-definite, symmetric matrix and thus has only

positive eigenvalues. The two eigenvalues λ1, λ2 are used to the corner response function

C:

C = det(Ts) − κ trace(Ts)
2 (2.8)

The optimal value of κ = 0.04 was determined empirically. In case of corners C attains

large positive values and edges are indicated by large negative values of C.
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2.5 Chains

Chains are sets of connected point-like features. The method of linking points can either

be straightforward as in the case of finding the border pixels of a segmented region in

an image - in this case the border points can be extracted by sequence of morphological

operations described in Gonzalez and Woods [45] (pp. 548). However if the points are

the result of an differential geometry-based feature detection approach, this is e.g. the

case for edgels or ridgels, the grouping of points to chains is a somewhat more heuristic

approach. In these cases the linking is based on the analysis of properties of the feature

points. The edge tracing of Canny’s method is such an example, here two thresholds

are used to determine initial candidates with a high gradient magnitude and the contour

following is terminated if a new candidate points falls below a lower threshold. Properties

under consideration are in this case the proximity (only immediate neighbor pixels are

examined) and the gradient magnitude due to the hysteresis thresholding approach. A

brief sketch of a general linking method can also be found in [45] (pp. 585).

The introduction of further constraints can make the contour linking more stable. Typ-

ically the linking strategy should also incorporate the angular difference between candidate

points and also be able to bridge gaps. In the following we propose a general method for

linking oriented point features (typically edges or ridges). The proposed linking approach

no longer works on the discrete image grid but directly on the subpixel coordinates of the

extracted features. Thus the linking of points to chains involves the search for the nearest

neighbors around a query point (the last point added to the contour chain). In order to

avoid the exhaustive search through the whole set of extracted points, a KD-tree is used

for efficient range queries. This data structure allows to detect points in a local search

range around a query location in O(log(n)).

These features have a principal direction associated to them, which can be used to

make the chaining process more robust. A simple growing algorithm for the generation of

contour chains is the following (see Figure 2.4 for an illustration):

1. Choose two values thhigh and thlow for the hysteresis-based thresholding.

2. Sort extracted features according to their magnitude m (gradient magnitude for

edgels, absolute curvature for ridgels). This sorting avoids that the chain growing

starts at points with a magnitude below thhigh.

3. Build a 2D KD-tree for the feature positions - this allows for fast nearest neighbor

queries.
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4. Select a seed point ps with a magnitude m ≥ thigh.

5. Start the growing from ps and accept only features that lie within a predefined search

radius r, have a magnitude m ≥ tlow and have the same general orientation as the

current terminal point of existing chain (v) i.e. the inner product of the directions

must be greater than zero. At the start of the growing this is the direction of the

seed point, if more points are inserted the direction can be estimated from the most

recently inserted points of the contour chain. In case of ridge linking the type, either

ridge or valley, is also taken into account. Every inserted point is marked as invalid.

6. If no more points can be added, the growing is repeated at the starting point ps, in

the opposite direction.

7. If no more points can be found for the current chain, select a new seed point and

continue until no more valid seed points are available.
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Figure 2.4: Contour growing scheme. Starting from a seed point ps, points with a suffi-
ciently small angular difference and a distance below r are added to the contour. While
the enclosed angle between point pj and the current chain direction v is too high, point pi

fulfills the angle and distance criterion and is therefore added to the chain.

In figure 2.5 extracted edgel and ridgel chains are shown.
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(a)

(b)

Figure 2.5: Illustration of contour chain extraction from edgels (a) and ridgels (b). The
image has a resolution of 491 × 338 pixel. Note that the fine structure of the shutters is
captured well in both plots.
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2.6 Lines

Straight lines are among the most prominent features in man-made scenes. Their extrac-

tion has been the subject of extensive studies since the early years of image processing.

2.6.1 Hough transform

A popular method for line extraction was published by Hough [54]. The so called Hough

transform detects straight lines in 2D point sets by transforming the points to the line

parameter space, where each point represents a pencil of lines. The transform to the

bounded line parameter space allows to define a discrete, and thus memory efficient,

accumulator space. In this accumulator space groups of collinear points form local maxima.

The local maxima in the accumulator represent the parameters of potential straight 2D

lines. In its original definition the HT is a global method with the following properties:

• The Hough transform is an efficient method for detecting dominant lines.

• Few parameters are necessary to control the algorithm.

• The Hough transform lacks of locality: short segments are likely to be missed due

to the fact that their maxima disappear in the noise produced by spurious responses

from groups of non-connected, collinear points.

• The original Hough transform does not make use of direction information (e.g. gra-

dient vectors) associated to the points. The integration of direction information can

increase the robustness and speed of the method.

Several improvements of the HT have been published and the method has been extended

to detect other parametric primitives, but due to the fact that the detection of parametric

shapes with n parameters requires an n-dimensional parameter space Hough transforms

are limited to detect simple shapes such as circles (3 degrees of freedom) and ellipses

(5 degrees of freedom). Illingworth [57] gives an extensive overview on the various HT

techniques.

2.6.2 Local methods

Local methods for the extraction of straight lines can be found in [23, 91, 132]. The Burns

line finder [23] is designed to detect straight lines in complex images of outdoor scenes and

can be considered as the prototype of local line extraction methods. The method is split

up into four basic steps:
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1. Firstly, edgels are grouped according to their gradient orientation.

2. The surface defined by the image’s intensity values is approximated by a weighted

least squares fit.

3. The line parameters are extracted from the result of the fitting step.

4. A filtering stage selects the desired candidates based on various criteria (minimal

length, minimal contrast, line groups with a particular orientation etc.)

The general observation for local line extraction methods is that more parameters are

necessary to control the algorithms. This makes the approaches somewhat more heuristic

than the global Hough transform.

Lately Schmid and Zisserman [111] proposed an approach to solve the line extrac-

tion problem by connecting the Canny edgels to contour chains (similar to the algorithm

described in 2.5) and then fitting lines to this chains.

In the following two approaches for detecting straight 2D line segments are presented.

The detailed outline of the approaches is intended to familiarize the reader with the general

concept of line detection for 2D point sets. The first approach directly operates on directed

point-like primitives such as edgels or ridgels. The second method uses contour chains as

input. Both approaches are capable of extracting robust line segments in an efficient

manner.

Line detection for directed, point-like 2D primitives The first algorithm takes a

set of edgels as input. The edgels are sorted according to their magnitude in descending

order. The sorting yields good starting points for the line segment detection, since edgels

that are close to corners have a lower magnitude. A KD-tree is build for the Canny edgel

set - this allows efficient range queries on the point set. In order to detect line hypothesis,

a bottom-up approach is used. Each edgel with its position ps = (x, y) and its tangent

direction t = (−dy, dx) (perpendicular to the gradient direction g = (dx, dy)) defines a line

hypothesis. The validity of the hypothesis is verified considering all neighboring points

within distance r around the point (see Figure 2.6) and is proportional to the number

of supporting points. A supporting point must fulfill several criteria: It must lie within

the maximal perpendicular distance d of the line hypothesis (solid lines), the enclosed

angle of its tangent direction and the lines direction must not exceed a certain threshold

ϕmax. The score of a line hypothesis is then computed as the number of supporting

points, divided by the search radius r thus representing the density of points in the search
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region. Typical parameters are d = 0.3...1.5pixel, r = 3...10pixel, ϕmax = 20...90◦ and

scoremin = 0.5...1.0. Every line hypothesis with a score > scoremin is then processed

further. All accepted hypotheses are then handed over to a growing process, similar to the

one described in 2.5, where new edgels are added based on distance and enclosed angle

thresholds.

s
p

r

2d
φ

Figure 2.6: Hypothesis verification for a line segment. The tangent direction of a seed
point ps defines a 2D line hypothesis. In order to support the hypothesis, a directed point
must lie within the search radius r, have a perpendicular distance smaller than d and an
enclosed angle smaller than φ.

Line detection for contour chains The second approach for line segment extraction

is inspired by [111] and based on the analysis of contour chains. Since the complexity

of contour chains is higher than that of an edgel set, the algorithm works with fewer

parameters and due to the fact that a set of connected points is analyzed, the verification of

line hypothesis is significantly faster. The algorithm works as follows: For every chain the

best start segment (with a maximal number of collinear edgels) is searched by calculating a

least squares line fit to a local subset of contour points and summing up the perpendicular

distances as a quality measure. If a valid start segment is encountered the algorithm

tries to increase the length of the line segment by subsequently adding new points. This

growing is constrained by a maximal gap that can be bridged to a new point and the

enclosed angle of the point’s tangent direction and the line’s direction. Figure 2.7 shows a

typical scenario, where the initial segment is the dashed rectangle and the solid rectangle is

the final line segment after the growing step (the width of the box symbolizes the maximal

perpendicular distance).

Figure 2.8 shows the extracted 2D lines segments for a subpart of a facade image.
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Figure 2.7: Growing of a line segment for a contour chain. The points of the initial line
segment define the orientation and length of the search region (shown as dashed rectangle).
After adding new points the new search region (shown as solid rectangle) is longer and has a
slightly different orientation. The width of the box symbolizes the maximal perpendicular
distance.
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(a)

(b)

Figure 2.8: Illustration of straight 2D line segment extraction from edgels. Plot (a) shows
an overall view with the line segments drawn in red and (b) a zoomed out detail view with
the lines in red and the edgels (symbolized with their gradient direction) in blue. The
image has a resolution of 491 × 338 pixels. Note that even for the fine structure of the
shutters many line hypothesis are detected.
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2.7 Vanishing points

Buildings, as well as other man-made structures, exhibit many linear structures. Further-

more the linear structures are often in a parallel arrangement. An important property

of parallel linear structures is that, in perspective mapping, those linear structures con-

verge in a single point, called the vanishing point. Vanishing points have been used since

the Renaissance when artists concluded that lines that are parallel in 3D, when properly

transferred to the image, would appear to meet at a single point on the horizon. A typical

scenario is shown in Figure 2.9: The parallel lines of the depicted facades are converging

to three different vanishing points (illustrated in red, green and blue).

Figure 2.9: Typical vanishing point scenario in an urban environment. Three dominant
vanishing points are present in this image: The vertical vanishing point (read lines) and
two horizontal vanishing points (green and blue). One horizontal vanishing point is located
in the image.

2.7.1 Vanishing point extraction

In literature many methods for automatic vanishing point extraction have been published.

In the following the most prominent methods will be introduced and their advantages and

disadvantages will be discussed.

An efficient approach for vanishing point detection was proposed by Kosecka and

Zhang [70]. Their detection process relies on a two stage strategy, where in the first
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stage, line segments are extracted and in the second stage the location of the vanishing

points is determined by an expectation maximization (EM) scheme.

In the method proposed by Tuytelaars et al. [128] vanishing points are detected by

repeatedly applying the Hough transform: the first run of the Hough transform uses the

location of extracted edges as input and therefore detects straight line hypothesis.

In the second run the transform is applied on the most prominent peaks from the first

run (basically a parametric representation of detected lines) and detects locations where

several straight lines in the original image intersect. In order to map line the intersections

to a bounded accumulator space, different parametric representations are chosen for the

areas outside the original image bounds. This method has the advantage that it works on

point primitives and needs no additional information about the camera’s intrinsic geometry

(focal length, principal point).

Another accumulator-based method for finding vanishing points can be found in [27].

This approach assumes that the intrinsic camera parameters are known. With the known

camera geometry it is possible to compute the planes that are generated by the two

rays that correspond to the line’s end-points. If these planes are now intersected with

a Gaussian sphere (sphere with unit radius) that is placed on the camera’s origin, the

resulting intersections are great circles on the sphere. This is explained by the fact that

all rays (and therefore all planes) also pass through the camera’s origin. The method

of intersecting planes with a sphere allows to transform the line intersections from the

unbounded image plane onto the bounded surface of a sphere. In this case the accumulator

cells are the triangles of the tessellated sphere.

Schaffalitzky and Zisserman [108] use a RANSAC technique to detect the vanishing

points but also statistical methods as in [131] are used for detection.

In the following two methods for vanishing point detection will be discussed in more

detail. These two methods use very different approaches to achieve the same goal and

therefore reflect the great variety of available methods.

Rother’s method Rother [103] published a method, that directly works on the ex-

tracted line segments and is based on a voting scheme for the detected intersections of line

segments. In Rother’s approach, vanishing points are detected by applying a Hough-like

algorithm where the image plane is directly used as accumulator space. The input data

for the algorithm are line segments that are extracted in a pre-processing step. For all

extracted line segments in the image, the mutual intersections are computed. These inter-

sections are then used as accumulator cells for the detection process. Each intersection is
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treated as a potential vanishing point and votes for each cell are determined by inspecting

all other line segments. Figure 2.10 shows a line segment s of length l with the midpoint

m. The weight w of the line segment s for the intersection point i formed by the line

segments l′ and l′′ is calculated as follows:

w(s) = k1

(

1 −
α

αmax

)

+ k2

(

l

lmax

)

(2.9)

Where αmax is the maximal enclosed angle between the line segment and the vector point-

ing to the intersection - if a line segment exceeds this maximal angle it is not taken into

account for the voting of the respective intersection; lmax is the length of the longest line

segment and k1 and k2 are set to 0.3 and 0.7 respectively (according to Rother). The final

formula for the voting process of all line segments in the set L for an intersection point is:

W (i) =
∑

∀l∈L

w(l)|α ≤ αmax (2.10)

α
m

l

i

image plane

s
l’

l’’

Figure 2.10: Orientation of a line segment s versus the direction towards a potential
vanishing point. The contribution weight of the segment is computed from its length l,
the enclosed angle α between the line vector and the vector from the line segments mid
point to the vanishing point i.
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This voting process is applied to all intersections and the intersection with the highest

weight is then accepted as potential vanishing point.

Thales point method Brauer-Burchardt and Voss [21] propose a method for deter-

mining vanishing points in images based on the Thales circle method (TCM). Figure 2.11

illustrates the principle: An arbitrary reference point pr is chosen (it may lie anywhere

within the 2D plane but typically within the image borders) and based on the assumption

that every line belongs to a vanishing point the Thales points (TP’s) are computed. This

is performed for all lines within the image. The result of this transform is that, instead of

dealing with intersection points that lie in the unbounded 2D plane, a set of points within

the image bounds is created. All TP’s that belong to a specific vanishing point lie on a

VP
MPRP

TC

Figure 2.11: Vanishing point detection using Thales’ theorem. If a number of line segments
point towards a common (vanishing) point V P , the orthogonal projections of an arbitrary
reference point RP onto the line segments (illustrated as black dots) are points lying on
a circle - the Thales circle TC.

circle - the Thales circle. In their experiments Brauer-Burchardt and Voss used a set of

synthetic line segments, that point towards a single vanishing point.

However for practical applications the line segments that are detected in an image will

belong to more than one vanishing point. A typical facade image exhibits line segments

that belong to two or three vanishing points and there may also be a number of line

segments that can not be assigned to any vanishing point. Furthermore lines belonging to

a vanishing point will be corrupted by image noise.

In the following an extension of the TCM that allows the robust detection of multiple

vanishing points is presented. Due to the presence of multiple vanishing points and the



44 Chapter 2. Feature extraction

corrupting influence of image noise the Thales points for the individual vanishing points

will form rather noisy circles. The key to robust detection of vanishing points is an

outlier tolerant circle detection method based on the RANSAC principle: Three points

are randomly chosen and a circle hypothesis is computed from these three points. All TP’s

are now tested for their distance to the circle hypothesis. If a TP distance to the circle

is below a predefined threshold distance it is considered to be an inlier for the current

vanishing point hypothesis. In contrast to general circle detection, where only 2D points

are available, the TP’s also provide directional information (from their generating line

segment). This directional information can be used as an additional criterion in inlier

detection. Figure 2.12 shows how the directional information can be used for putting

a further constraint to inlier selection: For a circle formed from three randomly chosen

TP’s the location of the vanishing point V P can be inferred from the midpoint MP . The

inliers are selected from those TP’s with a sufficiently small distance from the Thales circle

TC and with a sufficiently small enclosed angle between the vector that is formed by the

line segment’s mid point and V P and the line segments vector lv. In the illustration line

segment l3 would be accepted as inlier because its TP lies within the distance threshold

from the circle and its enclosed angle α0 is also below a given threshold, line segment l4

would be rejected for not fulfilling the enclosed angle criterion.
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Figure 2.12: Inlier selection for the Thales circle detection. Three randomly chosen Thales
points, belonging to the line segments l0, l1 and l2 form the Thales circle TC. Inlier points
must lie within the gray shaded area that defines the maximal perpendicular distance of
a Thales point to the circle and must also point to the vanishing point VP.
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In the experimental section it will be shown that the proposed extension is capable of

detecting multiple vanishing points in a robust manner. Figure 2.13 illustrates the Thales

circle detection for a typical urban vanishing point scenario. Extracted 2D line segments

(in gray), the corresponding Thales points (black dots) and the three detected Thales

circles are shown. The RANSAC-based circle detection is robust against outliers and the

circles radii, especially for the large circles, are detected robustly, despite the low coverage

(the largest Thales circle has a point coverage of approximately 15% of its circumference).

The original image is shown in figure 2.14.

Figure 2.13: Vanishing point detection using the Thales circle method. The plot illustrates
extracted 2D line segments (in gray), Thales points (as black dots) and the three Thales
circles that correspond to three dominant vanishing points in the image. The image has a
resolution of 2032 × 1352 pixel and the reference point is in the center of the image.

Figure 2.14 shows an example of vanishing point extraction with the Thales circle

method.

A comparison showed the proposed method is superior to Rother’s method in exe-

cution speed, and reaches equal levels of robustness and accuracy. The main reason for

lower running times lies in the amount of data that have to be processed: The number of

Thales points on which the RANSAC-based circle detection is performed, is the same as

the number of input lines, whereas Rother’s method creates all pairwise line intersections

which results in approximately n2

2 intersections for n input lines. In practical applications

the vanishing point detection methods report vanishing point hypotheses and the corre-

sponding line segments and the optimal vanishing point location is determined by a least

squares solution.
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In this refinement step the detected location of the vanishing point is improved using

the maximum likelihood estimate (MLE) procedure proposed by Hartley and Zisserman

in [108]. In this approach the distance between the end points of line segments that vote

for a vanishing point and the line that goes through the mid point of the voting segment

to the vanishing point is minimized using a nonlinear least squares optimization method.

2.7.2 Applications using vanishing points

Vanishing points provide information about the scene structure and can be used to detect

plane hypotheses, perform a rectification and in the case of calibrated cameras the presence

of orthogonal vanishing points can be used to compute the rotation between the camera

and the observed planar structure: If two orthogonal vanishing points have been detected

within an image, the relative rotation of the (calibrated) camera with respect to the

vanishing directions can be computed. Using this relative rotation it is possible to perform

a so called rectification of the image. Since the camera undergoes a pure rotation for

the rectification step, this transform can be expressed as a 3 × 3 homography matrix.

Figures 2.15(a) and (b) show an exemplary rectification for an image of a facade plane.

A logical extension is the use of orthogonal vanishing point pairs for estimating the

relative rotation between image pairs.

If only one vanishing point can be detected in an image this information can be used

to define a reference direction within the image. This reference direction can then used to

compute rotational invariant descriptors, thus making the point correspondence detection

an easier task.

If two orthogonal vanishing points can be detected, their geometric configuration can

be used to determine the principal point of the camera (see [50] pp. 226). Given the

knowledge of three orthogonal vanishing points a camera calibration can be performed.

(see also [50] pp. 226).

In the experimental section the method of Rother and the proposed extension to the

method of Brauer-Burchardt and Voss will be analyzed for their usability for vanishing

point detection in man-made scenes.
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(a)

(b)

Figure 2.14: Illustration of vanishing point extraction with the Thales circle method. Plot
(a) shows the image and (b) shows the line segments that correspond to the three extracted
vanishing points (in red, green and blue) and the detected Thales circles. The location of
the vanishing point is marked by a star symbol on the circles.
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(a) (b)

Figure 2.15: Rectification of an image, based on orthogonal vanishing points. (a) shows
the original image captured by a mobile mapping setup, (b) shows the result of image
rectification. The rectification removes perspective distortion for all features on the facade
plane. Since the transform is a pure rotation the aspect ratio is left unchanged.
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2.8 Circles and ellipses

From the class of conics ax2 + bxy + cy2 + dx + ey + f = 0 that comprises parabolas,

hyperbolas and ellipses, the ellipse is the shape for which many detection and fitting

algorithms have been proposed. Ellipses belong to the family of conics and are described

with five parameters either explicitly via center, large axis, small axis and rotation angle,

or the implicit equation:
x2

a2
+

y2

b2
= 1. (2.11)

One of the properties that makes the ellipse particularly useful is the fact, that the

perspective projection of a circle always is an ellipse. Furthermore is the perspective

projection of an ellipse again an ellipse (see [50] page 36).

2.8.1 Ellipse properties

Elementary properties of ellipses defined by equation 2.11 are:

• Area: πab

• Eccentricity: e =
√

1 − b2

a2 . e varies from 0 (circle) to 1 and reflects the elongation

of the ellipse.

• Circumference: The computation of the exact circumference leads to an elliptic

integral, but the Indian mathematician Ramanujan found a good approximation:

c ≈ π[3(a + b) −
√

(3a + b)(a + 3b)]

2.8.2 Ellipse detection/fitting

The Hough transform is among the most widely used methods for detecting ellipses, but

since the ellipse is described by five parameters (center, large axis, small axis and rota-

tion angle) the parameter space has considerable memory demands and makes the HT

computationally expensive.

An alternative approach, described by Cheng [25], uses a modified version of the

RANSAC [33] technique that does not depend on global thresholds (K-RANSAC). The

proposed method works on labeled edge images and thus does not make use of directional

information associated to the edges.

Fitzgibbon and Fisher [34] published an extensive comparison of the various ellipse

fitting methods in terms of the used error measures and analyzed the behavior of the

fitting under different levels of noise and occlusion.
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In order to increase the robustness of ellipse detection and to lower the computational

complexity, ellipse detection is performed on higher level primitives such as contour chains.

As Fitzgibbon et al. [34] showed in their experiments, the contour must cover at least fifty

to sixty percent of the ellipse’s circumference to guarantee a robust fitting result, given

moderate noise levels. Another problem with ellipse fitting is, that unconstrained fitting

often results in one of the two other conics, namely a parabola or a hyperbola. Pilu,

Fitzgibbon and Fisher [35, 93] solved this problem by introducing a direct ellipse specific

fitting method that always returns coefficients that describe an ellipse.

Since it can not be ensured that a chain that possibly forms an ellipse, contains points

lying on the ellipse only, it is necessary to deal with possible outliers. The RANSAC

technique [33] is known to perform robustly in presence of outliers. A strategy for the

robust detection of ellipse hypotheses draws samples of five random points, computes the

ellipse specific conic parameters and tests the hypothesis using all points of the contour.

If an ellipse is detected for a sample of points, hypothesis is improved by computing

a least squares fit for all inlier points. Figure 2.16 shows the result of this the ellipse

detection/fitting process on contours extracted in an image of a facade.

Figure 2.16: Ellipse fitting result for a part of a building facade. Ellipses are detected for
the arches on top of the windows.

2.9 Affine transformed primitives

Many structures in urban environments are composed from rectangular shapes. So it

seems quite natural to develop methods that can detect these shapes. However, due to the

perspective projection rectangular shapes are mapped to general quadrilaterals. Thus,

a general approach for detection will have to estimate not only the parameters of the

rectangular shape, but also the perspective transform that maps the physical points into
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the image space. Furthermore, a robust approach will have to cope with noisy data and

outliers as well. These observations make it clear that the robust detection of rectangular

shapes is a challenging task. Several approaches for detecting rectangular shapes in urban

environments have been proposed. Kosecka and Zhang [71] propose the use of line segments

and vanishing points to reduce the complexity of the problem. The presence of two

orthogonal vanishing points is used to generate rectangle hypotheses by intersecting line

segments belonging to different vanishing points. The hypotheses are then verified in a

two step approach: first by searching for supporting corner points for the rectangle corners

and second by computing a normalized fronto-parallel patch for the hypothesis region and

analyzing the image orientation (which should be consistent with the vanishing direction).

The main disadvantage of this approach is the exhaustive search for rectangle hypothesis

in the extracted line segments. A more efficient method was recently proposed by Micuśık

et al. [81] which also works on line segments and dominant orthogonal vanishing points.

The detection of rectangles is achieved by searching the Maximum Aposteriori Probability

(MAP) solution of the Markov-random-field defined on line segments that are consistent

with the vanishing points. Both methods have in common that they avoid the estimation

of the perspective distortion by using orthogonal vanishing points.

In contrast to these approaches stand the local methods that infer also the perspective

mapping. These methods generally work on 2D point sets that are extracted from the

images. A primitive that is regarded as well suited for describing rectangular shapes is

the superellipse.

2.9.1 Affine super ellipses

By adding the parameter ǫ the class of ellipses can be generalized to describe a much

wider range of shapes. Equation 2.12 describes a general axis-aligned superellipse with

sides lengths a and b.
(x

a

)ǫ
+
(y

b

)ǫ
= 1 (2.12)

The parametric representation is:

x = ±a cos
2

ǫ t (2.13)

y = ±a sin
2

ǫ t (2.14)

(2.15)

for t = 0 . . . π.
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Figure 2.17 shows super ellipses (ASE’s) generated with different values of ǫ and a =

b. With values for ǫ varying from 0.2 . . . 7 the shape changes from a pinched diamond,

sometimes also named a hyper ellipse, at ǫ = 0.2 to a circle (ǫ = 1) and gradually to an

axis aligned square (ǫ → ∞).
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Figure 2.17: Super ellipses for varying parameter ǫ
Super ellipses for ǫ = [0.2, 0.5, 0.7, 1.0, 2.0, 5.0, 7.0] and a = b.

This great variety of shapes makes the super ellipse interesting for shape description.

Especially the diamond and the square are shapes that often occur on facades and

other man-made structures. However since the projective mapped versions of squares or

rectangles seldom result in the exact shape of the super ellipse, a further generalization

is necessary. Osian et al. [92] proposed the use of an affine transform to fit super ellipses

to partial contours. They also introduced a simplified error measure that allows for an

efficient evaluation of the fitting error.

Since the equation for the super ellipse is no longer linear, the process of detec-

tion/fitting involves iterative, nonlinear optimization processes. Due to the high number

of degrees of freedom, an efficient detection with RANSAC is not possible. Rosin [102]

and Zhang and Rosin [139] describe methods for fitting super ellipses to complete and

partial contours, and perform evaluations for different approximations of the error-of-fit.

Their conclusion is that for partial contours and in the presence of outliers, a full 6 degree

of freedom fit performs best. The error-of-fit that Osian chose, approximates the distance

of a data point to the super ellipse by taking the distance of the ray that goes from the

center of the ellipse through the ellipse boundary to the data point.
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2.9.2 Affine transformed squares

Images of urban surroundings are typically composed of many linear structures and on a

higher level the linear structures group into rectangles, triangles or polygons. Rectangles

are by far the most dominant structure in facade images. Nearly every window, door, ad-

vertisement etc. is of rectangular shape. However due to the perspective imaging process

the orthogonality is not preserved and the rectangles are mapped as general convex poly-

gons. If the rectangular structures are small with regard to the image size the perspective

distortion can be approximated by an affine transform. In the following a method for

fitting affinely transformed squares in noisy 2D point sets is presented. The point sets are

generated by segmenting the image into regions and extracting the region’s outer contour.

In our study we use MSER regions as proposed by Matas et al. [61], but any other region

segmentation method can be used. Since the segmentation process extracts many contours

from which only a subset represents perspective distorted rectangles and furthermore the

contours of this subset are contaminated by noise and outliers (points that do not belong

to the squares/rectangles outline), a robust fitting algorithm has to be applied.

The proposed method uses a nonlinear optimization framework that estimates the

affine transform that maps the contour points to an axis aligned canonical square (unit

side length, centered at the origin). Using this primitive instead of to the previously

described affine super ellipses makes the method more stable against noise. Especially the

parameter ǫ that controls the shape of the superellipse is sensitive to noise. Given the fact

that we are looking for squares or rectangles this restriction is no limitation.

The optimization criterion is the minimization of the sum of squared distances of the

2D points to the sides of an affine distorted square. Thus the goal of the fitting process is

to find the six parameters of the affine transform A (x/y-translation, x/y-scale, rotation

and shear) that define the optimal transformed square for the given set of 2D points.

However, for the efficient computation of this point-to-affine square distances an inverse

mapping is used. This means that instead of transforming the unit square to match the

point set, points are mapped to the unit square. As a consequence the parameters of the

inverse affine transform A−1 are optimized. The advantage of estimating the transform

for a model in canonical orientation makes the computation of the perpendicular distances

straightforward. Since the points are transformed to match the unit square the distance

to the closest side or closest corner of the square can be computed efficiently. Figure 2.18

shows the principle: the original points are mapped to the canonical square by the affine

transform A−1.
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Figure 2.18: Illustration of the inverse affine mapping. The affine transform A−1 maps
the point set (shown as dots) to canonical square. In this configuration the point square
distance can be computed in an efficient manner.

The evaluation of the perpendicular distance of a 2D point p = (x, y) to the unit square

can be split up into three different cases (illustrated in figure 2.19):

1. The point is inside the unit square, in this case the perpendicular distance to the clos-

est edge of the square is computed. This is simply the smallest absolute coordinate:

d = min(|x|, |y|).

2. If the point p lies outside the square but its projection is contained by one of the

squares edges (these areas are marked by the 45o hatching) the distance d is the

absolute difference between the x-coordinate of the line and the x-coordinate of the

point for vertical edges and the y-difference for horizontal edges.

3. For points that lie in the corner areas (shown in vertical hatching) the Euclidean

distance to the corner point is reported.

In order to cope with outliers the Huber kernel is used to implement a robust distance

function as proposed by Fitzgibbon [36]. In this work it was shown that the use of

a robust error function can widen the basin of convergence significantly. The robust

distance measure makes the estimation invariant against outlier points, at least as long as

the initialization provides a sufficiently good starting position. When it comes to choose

the Huber threshold the magnitude of the noise of the inlier points has to be known (at

least approximately). Due to the fact that the distances are measured with respect to a

canonical square, a fixed threshold can be chosen. In our experiments we set this threshold

to be 0.1. That means that every point that is further than 10% of the square’s side length

is considered an outlier.
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Figure 2.19: Illustration of the point to unit square distance. The three different cases are
shown: The distance for a point inside the square is simply the absolute value of the smaller
coordinate (due to the fact that the square is placed at the origin). For points outside the
square whose projection is contained by one of the edges (these areas are marked by the
45o hatching), the distance is also the absolute difference between the x-coordinate of the
line and the x-coordinate of the point for vertical edges and the y-difference for horizontal
edges. For points that lie in the corner areas (shown in vertical hatching) the Euclidean
distance to the corner point is reported.

However, if the contour contains a significant amount of outliers (points that do not

belong to the affine distorted square) the robust least squares optimization may still not

converge to the correct solution. The main observation is that a proper initialization

is still crucial for achieving robust convergence. Assuming that a sufficient amount of

contour points is in fact inliers (at least 70%) a set of potential inlier points is determined

by searching for the best fitting ellipse. This approach has the advantage that a fast

RANSAC-based detection method can be used to provide an initial set of good points to

start the non-linear square fitting. Figure 2.20 shows three examples of synthetic contour

points and the best fitting ellipse is shown. The RANSAC approach robustly detected an

initial set of square points (marked by circles around the points). For this subset of points

an initial solution for the affine transform is computed and in a final optimization step

all points are used to refine the solution. The computation of parameters of the forward

transform A from A−1 is straightforward.

When the proposed method is used to detect squares and rectangles in perspective

images the following limitation should be kept in mind:

• The estimated scale parameters model the scale differences that arise from the per-

spective distortion as well as the scale differences that are present in the physical

rectangle. These two effects can not be separated without further constraints.
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• The perspective projection maps a general rectangle (the square is a special case)

to a convex quadrilateral. Therefore it is not possible to verify whether a primitive

is a rectangle, a square or some general quadrilateral that is well described by the

given transform. In order to do this, further geometric cues are necessary e.g. the

3D plane on which the primitives lie must be known.

Fitting affine squares to contours has many applications in urban modeling scenarios.

The automatic detection of windows is one example. The examples shown in figures 2.20

and 2.21 illustrate the potential of the method.
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Figure 2.20: Examples for fitting affine distorted squares to noisy point sets. In each plot
the points are drawn as solid dots, the detected ellipse as dotted line, the fitted affine
square as solid line and the inlier points are marked by circles. Plot (a) shows the result
for a point set with 15 percent outliers (30 points from 200), (σ = 0.06). Plot (b) shows
the result for a point set with 15 percent outliers (30 points from 200), (σ = 0.15). Plot (c)
shows the result for a point set with 30 percent outliers (60 points from 200), (σ = 0.09).
Plot (d) shows the result for a point set with 30 percent outliers (60 points from 200),
(σ = 0.21).



58 Chapter 2. Feature extraction

(a)

(b)

Figure 2.21: Examples for fitting affine distorted squares to contours of MSER regions.
In each plot the contour points are drawn as red dots and the fitted affine squares as blue
rectangles. Note that many squares are detected for the MSER regions of the window
panes.
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3.1 Introduction

This chapter addresses the problem of establishing point correspondences between pairs

of images - the so called correspondence problem. Throughout the computer vision com-

munity the vision problem is recognized as one of the hardest problems and numerous

publications propose solutions. What makes the correspondence problem hard to solve are

strong changes in the visual apperance of a physical point mapped from different view-

points. Another problem that occurs especially in scenes containing man-made structures

is the presence of repeating patterns that result in large groups of nearly identical points.

Traditionally the correspondences are established between point-like features. Descriptors

are used to measure the similarity between a possibly corresponding point pair. In order

to be discriminative descriptors should be invariant against viewpoint and illumination

changes.

59
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3.2 Descriptors

Descriptors are multidimensional vectors that serve as an abstraction for local or global

properties of an image. Simple global descriptors are for example histograms, that rep-

resent one aspect of the image content. A gray value histogram e.g. is a vector where

each bin corresponds to the frequency of occurrence of a specific gray value in the image.

Whenever descriptors are used, a part of the original information is given up in order to

gain invariance. Histograms are useful to compute statistics on the pixel values but bear

no longer information of the location of a particular pixel. Scale invariant features, as the

name implies, sacrifice the information about the features scale and location to gain an

invariant representation.

A hierarchical classification of descriptors can be done by regarding the levels of in-

variance:

• rotational invariance

• rotational and scale invariance

• affine invariance

The most simple descriptor is an axis aligned window containing the image content

around a point. This simple descriptor is only invariant against translational shifts and

breaks down quickly in the presence of perspective transforms or even small rotations.

Commonly used features are the affine invariant ones, since perspective transforms, as

they occur in wide baseline setups can be locally approximated by an affine transform.

Typically an interest point detector provides locations at which a local affine invariant

descriptor is computed. Based on the assumption, that the area around the interest point

is planar or sufficiently smooth, an affine invariant descriptor is useful. Several methods

have been proposed in literature e.g. by Baumberg [14], Lowe[77], Schmid and Mohr [110].

Mikolajczyk and Schmid [86] evaluated the performance of several local descriptors. The

most challenging problem in these approaches is to find the correct scale i.e. the spatial

extension of the support region around the point. Other methods define an invariant region

by finding a stable border as proposed by Schaffalitzky and Zisserman [109], Tuytelaars

and Van Gool [127] or Matas et.al [80]. Larger regions seem to be preferable because they

allow a more distinctive description, but on the other hand are more likely to contain

occlusions if the same region is viewed from a different viewpoint. Larger regions may

also deviate from the planar case or exhibit large perspective distortion. The computation
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of descriptors often involves a transform of the image content around a specific point

to a different representation. In case of SIFT features [78] the area around a point is

transformed into a set of orientation histograms, another example is the use of generalized

moments as proposed in [127].

3.3 Robust Image Correspondences using Invariant

Features

This section introduces a novel method for computing affine invariant features using

Zwickels∗. The proposed hat is especially well suited for images of man-made structures.

Zwickels are sections defined by two intersecting line segments, dividing the neighborhood

around the intersection point into two sectors. The information inside the smaller sector

is used to compute an affine invariant representation. We rectify the sector using the line

information and compute a histogram of the edge orientations as a description vector. The

descriptor combines the advantage of accurate point localization through line intersection

as well as high ability to discriminate through use of a larger image region compared to

descriptors computed around the points. A geometrically motivated approach for select-

ing the characteristic scale of Zwickels is used for delineation. Compared to other affine

invariant descriptors we demonstrate that our method avoids the problem of depth dis-

continuities. In several matching experiments we show that our features are insensitive

against viewpoint changes as well as illumination changes.

A Zwickel is formed by the intersection of two lines, where the intersection points

of the line segments serve as interest points. The principal idea behind this approach

is, that the area between intersecting lines is in many cases planar. Unlike other

methods that compute the descriptor for a symmetric or skew-symmetric region around

the interest point, we use the dividing property of the line segments to compute the

descriptor only for the smaller sector. This has the advantage, that if two sectors match,

we compare only the correct parts and thereby achieve a higher discrimination ability,

especially if lines are lying on depth discontinuities. Our approach is split up into two

steps: first we detect potential Zwickels by searching for intersecting line pairs. This step

yields accurate points of interest and subdivides the region around this point into two

sectors. The lines therefore automatically provide a segmentation by dividing the region

around the interest point into two sectors.

∗German: zwicken : to nip
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In the second step we compute affine invariant descriptors for those sectors that are

enclosed by the intersecting lines. The computation of the affine invariant descriptor

involves a rectification of the enclosed sector and the construction of a histogram of the

edge orientations. It is clear, that the proposed interest points can only be detected in

images, where a sufficient number of lines is present - this is true for images containing

typical man-made structures. The geometric accuracy of the intersection points is higher

than those of corner-based points of interest.

The outline of subsequent sections is as follows: In section 3.4 we describe the detection

of Zwickels and the computation of the affine invariant descriptor. Section 3.4.5 shows

the application of the Zwickel descriptors for image matching. Experiments with real and

synthetic images are presented in section 3.4.7 and we close with concluding remarks.

3.4 Zwickel detection and description

In the following we describe how Zwickels are detected, explain the rectification process

in more detail and address the computation of the affine invariant descriptor.

3.4.1 Zwickel detection

p
i l1

l2l2

l1

ϕ

p
i

A

Figure 3.1: Left: geometry of a Zwickel: pi is the intersection point of the lines l1 and
l2 which are extended by a factor (extensions are shown dashed) to ensure intersection.
Right: For the rectification the lines l1 and l2 with the enclosed angle ϕ are mapped
to an orthogonal frame using the affine transform matrix A. The transform maps the
intersection point pi to origin and the lines to the axes of the coordinate system.

The detection of Zwickels is performed as follows: In the first step 2D line segments

are extracted from the image, those segments are extended by a predefined factor to

ensure that lines, that are close enough, will intersect. All reported intersections are
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then handed over to the Zwickel formation procedure. For the line detection we use

a hierarchical approach, that finds straight lines in a coarse-to-fine pyramid search. In

every pyramid layer we extract Canny edges [24] with sub-pixel accuracy and fit straight

line segments to sets of collinear edges. In order to compute intersections we extend the

resulting line segments to ensure a sufficient number of line intersections. The detection

of Zwickels is affine invariant. The lines of the detected Zwickels are ordered clockwise to

ensure the correct correspondence between the lines of two matching Zwickels. As already

mentioned we extend the originally extracted lines, therefore the intersection points may

lie in a homogeneous region. This is one of the additional advantages over point-of-interest

methods that rely on detection of location of high gradient curvature such as the Harris

corner detector [49]. Figure 3.2 shows two examples of extracted Zwickels with low gradient

curvature at the intersection point.

(a) (b)

Figure 3.2: Examples of extracted Zwickels where the intersection point (denoted by the
circle) of the two extended lines does not lie on a location of high gradient curvature i.e.
no Harris corners would be detected at the intersection point.

3.4.2 Detection of the characteristic scale

Since by definition the Zwickels are created by intersecting two line segments they do

not provide information about their characteristic scale. However scale information is

necessary do compute an affine invariant descriptor. In contrast to local descriptors that

perform the scale selection using a signal theoretic approach (e.g. DOG, Hessian) the

often complex visual appearance of the region inside a sector bounded by the Zwickels

lines often makes this approach futile.

Figure 3.3 shows examples of Zwickels detected for typical facade images where the
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sector between the bounding lines contains complex patterns.

(a) (b)

Figure 3.3: Examples of extracted Zwickels where the intersection point (denoted by the
circle) of the two extended lines does not lie on a location of high gradient curvature i.e.
no Harris corners would be detected at the intersection point.

Man-made structures, especially buildings comprise many rectangles - nearly every

window, door sign etc. is of rectangular shape. This rectangular structures can be repre-

sented by a combination of Zwickels simply by combining two edges that share a corner

point. This observation leads to a geometric approach for Zwickel delineation.

3.4.3 Zwickel rectification

In order to compute an affine invariant representation of a Zwickel, we map the image

data inside the sector that is bounded by the lines to an orthogonal frame (see Figure 3.1).

An affine transform is computed from one corresponding point (the intersection point is

mapped to the origin) and the two line directions. The image region in the sector is then

rectified by applying the affine transform that maps the sector to an orthogonal frame with

the intersection point as origin and the lines as axes of the coordinate system. Equation 3.1

shows the general form of an affine transform and its decomposition into a rotation, scaling

and shear transform. The rectification eliminates four of the six unknowns of the affine

transform: the translation [tx, ty] through shifting the intersection point to the origin and

rotation ϕ and skew s through mapping the lines as orthogonal axis. The remaining

unknowns are the scale factors sx and sy. In order to determine the unknown scale we

use a similar approach as in [77, 82]. Both approaches use a scale space search to find the

correct scale of the support region.
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Figure 3.4 shows two examples of the rectification step.

(a) (b)

(c) (d)

Figure 3.4: Orthogonal rectification: (a) and (c) original image regions inside Zwickel. (b)
and (d) rectified image regions.
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3.4.4 Descriptor

In order to achieve affine invariance we apply a scale invariant descriptor. The descriptor

is inspired by Lowe’s [77] SIFT-features.

We first calculate the edge orientation ϕ and magnitude m at each pixel inside the

rectified frame I:

m(x, y) =
√

(Ix−1,y + Ix+1,y)2 + (Ix−1,y + Ix+1,y)2 (3.2)

ϕ(x, y) = atan((Ix−1,y + Ix+1,y)/(Ix−1,y + Ix+1,y)) (3.3)

An orientation histogram is used as a region descriptor, the magnitude and the distance of

the pixels from the origin are used as a weight. More formally the histogram is calculated

as

H(θ) =
∑

ϕǫN
δ(θ, ϕ) ∗ wϕ, (3.4)

where H(θ) is the value for bin θ (θ ∈ [0◦, 1◦ . . . 360◦]) and ϕ denotes angle values in a

neighborhood N inside the Zwickel, wϕ is the weight of ϕ and δ(θ, ϕ) is the Kronecker delta

function. The angles ϕ are quantized in accordance with the histogram bins θ. The weight

wϕ is computed from the magnitude of ϕ and a function decreasing with increasing radius

r from the origin (x0, y0). We use a Gaussian function thus wϕ(x, y) = m(x, y)∗g(r), with

r =
√

(x − x0)2 + (y − y0)2 and g(r) = 1
σ
√

2π
e

−r2

2σ2

The parameter σ of the Gaussian function has to be adapted according to the detected

scale. Due to the use of image derivatives illumination insensitivity is also achieved.

3.4.5 Matching

In the matching step we want to detect similar regions in an image pair. Using the Zwickel

representation it is easy to implement several pre-selection criteria to speed up the match-

ing by reducing the number of putative candidates. The pre-selection is performed on the

basis of geometric constraints as well as on image information. We only allow a maximal

angle difference between corresponding lines of a Zwickel candidate pair. Furthermore

we enforce the lines to have the same gradient direction. If a Zwickel encloses a darker

region than the surrounding, the two lines have different gradient directions and therefore

different line types.

Other pre-selection criteria for candidates e.g. by comparing the difference of the gray-

value median for the Zwickels can be easily implemented. For the remaining candidates
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Figure 3.5: Visualization of orientations in the rectified frame: (a) image region with
vectors visualizing the edge orientation (vector length corresponds to the magnitude). (b)
histogram of edge orientations

we detect the most similar ones by comparing the descriptors. In order to accomplish this

task we have to choose a proper distance function for the comparison of the orientation

histograms.

3.4.6 Distance functions

Since the descriptors described in section 3.5 are histograms we use probabilistic dis-

tance measures to describe the similarity. Distance measures for histogram comparison

are the L1 and L2 norm, the Bhattacharyya distance, and the Matusita distance. The

earth movers distance is a more complex method for histogram comparison and is com-

puted by solving the so called transportation problem, proposed for image indexing by

Rubner et.al [107]. Huet and Hancock [56] give a comparison of the performance of this

measures for histogram comparison. Following the conclusions of Rubner we chose the

Bhattacharyya distance which is defined as:

DBhatt(HA, HB) = −ln
∑

i

√

HA(i) · HA(i) (3.5)

The Zwickel pair with the smallest distance is the most similar in terms of the histogram

comparison.
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3.4.7 Experiments

We carried out several experiments to show the performance of the proposed method. In

all experiments the region size was 30 × 30 pixel. In order to increase the robustness of

the matching we also compute the normalized correlation coefficient cc for the rectified

image patches. The distance function therefore modifies to:

D = DBhatt(HA, HB) ∗ (1 − cc(A, B)) where A and B denote the two rectified image

patches and HA and HB are the orientation histograms for the image patches. In the first

experiment we assess the invariance of the descriptor against viewpoint changes. Sequences

of several box-like objects were acquired by a turntable setup. The rotation between two

subsequent images is five degrees resulting in a 72 image series. A key image is selected and

we perform the matching with all subsequent images. For evaluation purposes we keep

thirty percent of the best matches (smallest D) and determined the number of correct

matches by calculating the epipolar geometry. Figure 3.7(a) and Figure 3.7(b) show the

rate of correct matches versus the rotation angle between the camera of the key image

and the camera of the second image used for the matching. The correct matches are the

inliers resulting from computing the essential matrix. The experiment is carried out with

two different versions for the support region: Version one uses the sector as described in

our approach. In version two the support region is centered skew symmetric around the

point of interest. This comparison assesses the increase in discrimination ability when

using only one sector of the interest point’s surrounding. The inlier rate for our approach

is represented by a solid line, the dashed line is the inlier rate for the skew symmetric

support region.

Figure 3.6 shows the differences in the used support region.

P p
i i

l

l

l

l
l l

22

Figure 3.6: Illustration of the two cases for the support region. Left: support region
lies inside the sector defined by the intersecting lines. Right: support region lies skew-
symmetrically around intersection point

Figure 3.7(a) shows the results for the turntable sequence for real images. One can

clearly see the superior behavior of the sector representation (approx. 20 percent increase
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in performance). The variance can be explained by occlusion effects e.g. when a new

face of the box appears and the number of possible candidates increases or when a face

disappears and the number of candidates drops. Our approach outperforms the version

with the skew symmetric support region as the rotation between the cameras increases.

In Figure 3.7(b) illustrates the results for the synthetic turntable sequence. The scene

consists of a planar object with several differently structured textures ’glued’ on it. Due

to the lack of depth discontinuities the performance between the two versions for the

support region differs less, which again nicely demonstrates the superiority of Zwickels on

depth discontinuities.
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Figure 3.7: Illustration of the invariance against viewpoint changes: The rotation between
the two cameras is increased in five degree steps from five to ninety degrees. The continuous
line is the result for our approach, the dashed lines is for the centered support region. (a)
shows the results for the data of the turntable sequence for real images. The variance
results from occlusion effects, when new faces appear or other vanish. (b) illustrates the
results for the synthetic turntable sequence.

In the following experiment we took several image pairs and evaluated the matching

performance. Figure 3.8 shows the 30 percent best matching correspondences for those

image pairs. Table 3.1 lists the results for four different image pairs. Results using other

images are similar. In column 2 we list the number of total matches found, column

3 shows the number of best matching correspondences used for estimating the epipolar

geometry. In column 3 and 4 we list the number of inliers and outliers accepted or rejected

by enforcing epipolar consistency. Note that all image pairs show a significant rotation

between views. It is clearly seen that our novel method produces many good matches
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Object total matches matches used for inliers outliers
epipolar geometry

aerial image pair 1 67 67 59 8
aerial image pair 2 51 51 42 9

turntable images ’Obi’ 229 68 66 2
virtual turntable images 282 84 80 4

Valbonne image pair 112 50 41 9

Table 3.1: Evaluation of the matching performance. Results are given for five image pairs.
Note that for the turntable images as well as for the virtual turn table scene most of the
inliers lie inside a planar region, for the aerial image pairs several matches lie on depth-
discontinuities where the Zwickel-based descriptor is well suited. For the Valbonne image
pair several matches were found at depth discontinuities since many prominent lines were
found on the borders of planar regions.

and only few outliers. The matching, including the estimation of epipolar geometry, takes

between 6 and 14 seconds on a Pentium 4 machine with 2.4 GHz.

Our experiments show, that these descriptors are invariant against viewpoint changes

as well as illumination changes. Our method is suitable for images where a sufficient num-

ber of lines and therefore Zwickels can be extracted and the sectors inside the Zwickels

provide enough texture information to distinguish competing candidates. A further possi-

ble improvement is the use of a more powerful distance measure for histogram comparison,

such as the earth-movers distance.
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(a)

(b)

(c)

Figure 3.8: Matching results for two aerial image pairs and a terrestrial image pair (Val-
bonne church). For clarity only 30 percent of the best correspondences are shown. (a)
Image pair 1. (b) Image pair 2. (c) Valbonne image pair
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3.5 Global Descriptors for robust correspondence detection

3.5.1 Introduction

In city modeling applications typical scenes consist of dominant facades, vegetation, non-

static objects like pedestrians, moving and parking cars etc. The camera pose can only

be estimated from point correspondences on static objects. Matches between non-static

objects are removed during the image orientation step. Matches on cars are often geomet-

rically unstable due to smooth or specular surfaces. This facts imply that it is desirable to

establish matches on the rigid facade planes, however the appearance of building facades

makes a robust matching difficult. The main reason for this is the presence of repeating

patterns. Repeating patterns are common in man-made structures and make robust cor-

respondence estimation based on local descriptors a challenging task. Although there has

been substantial progress in this area by methods like [61, 78, 83–85] the robust estimation

of correspondences under the presence of repeating patterns is still challenging.

The reason for this difficulty is that local features, as the name implies, use only

a relatively small portion of the image in their immediate neighborhood to compute a

robust descriptor. The robustness is achieved when the region around the point is planar -

in this case an affine invariant representation of the patch is possible. This strategy makes

local desriptors well suited for wide baseline matching but introduces ambiguities when

the same pattern occurs repeatedly.

Figure 3.9 illustrates the problem: it is not clear which of the window corners in the

right image corresponds to the window corner in the left image, especially when only the

local neighborhood of the corner is considered.

A solution to this problem is the incorporation of a larger area for the derived descrip-

tor. However, the larger the area becomes, the higher is the probability that the enclosed

region is no longer planar. In this case the computation of an affine invariant descriptor

is no longer possible. Even if the region is planar an affine invariant representation is not

sufficient to describe the patch, since for larger regions the perspective distortion becomes

dominant.

In the light of this findings several methods that derive descriptors for points-of-

interest, incorporating information from the whole image or a large portion of the image,

have been introduced. Mortensen et al. [89] combines local descriptors and shape context

descriptors. Shape context [17] uses the distribution of points to compute a simple descrip-

tor for a point-of-interest. While this method is originally intended for object recognition
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Figure 3.9: Establishing correspondences between views that contain repeating patterns
is a challenging task. The window corner marked by the circle in the left image matches
with a great number of window corners in the right image.

the combination with a local descriptor results in a more discriminant descriptor.

Tell and Carlsson [123] proposed a method that incorporates the topology of neigh-

boring points via intensity profiles to improve the stability of the matching process. The

method is based comparing gray level profiles that are sampled between corner points. If

these profiles lie on a planar surface, a homography relates the image contents between

different views of the same surface patch. Furthermore for every corner on the patch the

cyclic ordering to all other corners on the patch is preserved under perspective and there-

fore constitutes a powerful invariant. For the N nearest points of a corner in an image the

descriptor is formed by computing the grey level profiles from the center point to its sur-

rounding neighbour points. The topology constraint is then enforced on the configuration

of profiles emitting from one corner point.

In this section we present an overview of the shape context descriptor and show its

usefulness for image matching as proposed by Mortensen. Furthermore an introduction to

the template matching method based on geometric blur by Berg and Malik [18] is given.

We then present a method for approximating the geometric blur operator for computing

semi-global and global descriptors and compare them with the approach of Mortensen et

al. [89]. These new descriptors allow for a robust estimation of correspondences between

image pairs in the presence of repeating patterns. We test the performance of the various

global descriptors for correspondence estimation and image orientation in the field of city
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modeling.

3.5.2 Combining SIFT and Shape context

The approach of Mortensen et al. is motivated by the search for consistent point corre-

spondences in the presence of repeating patterns. The robust SIFT descriptor provides

scale invariant local information for a point and the shape context descriptor is used to

incorporate information of a larger surrounding area. Shape context [17] descriptors are

histograms where the entries are composed of the number of edge points that fall into

individual log-polar bins.

Figure 3.10: Principle of the shape context descriptor for contour points: (a) and (b)
are the contour points of two shapes. (c) Diagram of log-polar histogram bins used in
computing the shape contexts (five bins for log(r) and 12 bins for theta). In (d), (e)
and (f) example shape contexts for reference samples marked by ◦, ⋄, ⊳ in (a) and (b) are
shown. Each shape context is a log-polar histogram of the coordinates of the point set.
The radius r is measured using the reference point as the origin. (Dark=large value). In
(g) correspondences found by bipartite matching, with costs defined by distance between
histograms, are shown. Figure taken from [17]

Figure 3.10 illustrates the approach for the contour points of two instances of the letter

A. The value of each bin in the log-polar histogram is the number of edge points that fall

into the corresponding sector. The exponentially increasing area of the histogram bins

makes the descriptor less sensitive to perspective distortions and scale changes. In [17]

the points used were silhouette points of 2D shapes, whereas Mortensen et al. used the
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maximum curvature at each pixel. For a given pixel at position (x, y), the maximum

curvature is the absolute maximum eigenvalue of the Hessian matrix. This makes entries

invariant against changes in image contrast. The diameter for computing the descriptor

is equal to the diagonal of the image. The shape context descriptor is inherently not

invariant against rotation, that means if a shape is slightly rotated, the shape context

histogram changes in the way that the entries are shifted to neighboring bins and the

distance between the histogram of a shape to its rotated version increases. A way to

overcome this, is to make use of the key orientation provided by the SIFT descriptor and

to compute all angles w.r.t. this key orientation. This strategy makes the shape context

descriptor invariant against rotation.

In the matching stage the similarity measure for comparing two descriptors is the

weighted sum of the Euclidean distance of the SIFT descriptors and the χ2 distance of the

global shape context histogram.

The experiments demonstrated that a significant improvement of the matching rate

can be achieved.

A disadvantage of the proposed method is that the computational overhead for gener-

ating the global descriptor is high. This is caused by the necessity to perform a sampling

on a large patch in order to fill the bins of the shape context histogram. This overhead

makes the approach cumbersome for correspondence estimation in high resolution images.

A strategy to overcome the exhaustive sampling for the global descriptor will be pre-

sented in the following.

3.5.3 Approximated shape context

The motivation for this new semi global descriptor is to achieve a computationally efficient

description of a relatively large region around a point of interest. The proposed descriptor

is inspired by both shape context[17] and the concept of using geometric blur for template

matching presented by Berg and Malik [18]. Figure 3.11 shows the principal concept of

geometric blur:

The general design of geometric blur is based on the observation that in case of template

matching the positional uncertainty inside template windows is zero at the central pixel of

the window and increases towards more peripheral positions. Figure 3.12 illustrates this

for two template windows of a facade detail: With increasing distance from the window

center the number of mismatched pixels and therefore the difference increases.
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Figure 3.11: Principle of geometric blur: The leftmost figure depicts a 2D signal; The
figure in the middle shows the effect of geometric blur - in this case the amount of blurring
depends on the distance from the origin and the rightmost figure shows the result of
Gaussian blur with an uniform kernel

Figure 3.12: Left and middle: Two template windows of 81 × 81 pixels. Right: Difference
image.

Berg and Malik formally defined the geometric blur operator as follows:

GI(x) =

∫

y
I(x − y)Kx(y)dy (3.6)

Where I(x−y) is the image centered at position x and Kx(y) is a spatially varying kernel.

In oder to compute descriptors for similarity measurements between points of interest

the geometric blur operator is applied to oriented edge filter responses computed on an

image region (template) around a point. The original approach uses six different orien-

tation filters resulting in six ’channels’. The blurred templates for all channels are then

compared by adding together normalized cross correlation using geometric blur from each

of the channels. The authors performed tests using their method for object recognition

and wide baseline matching. Computational costs are also an issue in this approach, es-

pecially the split of an image patch into several channels and performing the geometric

blur on each channel separately is expensive.

In our new approach, the concept of increasing blur from the point of interest is realized

by stacking layers of exponentially growing bins. Thus the descriptor is basically a hier-
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archically sampled image patch. Figure 3.13 illustrates the approach: The sampled area

increases exponentially with increasing distance from the center. This strategy preserves

the local information close to the center and generalizes at larger distances. One of the

key advantages of this descriptor is the low computational cost. By using integral images

the cost for computing the descriptor is linear in the number of layers since the mean

grey value of a rectangular, axis aligned patch can be computed in linear time from four

sampled values in the integral image. Another advantage is that the size of the descriptor

is linear in the number of layers, while the covered area increases exponentially.

Figure 3.13: Semi global descriptor principle. The red grid depicts the sampling region
covered by exponentially increasing sampling areas.

In order to make the descriptor rotation invariant we assign a key orientation to each

corner point as described in subsection [89] and sample the descriptor entries at the cor-

rected positions (see Figure 3.14). The sampled regions are still axis aligned to retain the

efficiency of the fast mean computation with the integral image approach.

In our implementation the innermost area consists of nine samples at pixel resolution

resulting in an initial box size of three for the first layer that is computed from the integral

image. The side length of sample regions then increases by powers of three (3, 9, 27, etc.),

so that for a number of four layers the diameter of the covered region is 81 pixel.

In contrast to the exponentially increasing area covered by the descriptor the dimension

of the descriptor grows linearly in steps of eight for each new layer. A descriptor with four

layers has a dimension of 33.
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Figure 3.14: Rotation invariant semi global descriptor. The axis aligned samples are shown
as red squares and the key orientation for the corner point is shown in blue.

3.5.3.1 Relation between shape context and geometric blur

The proposed approximation scheme can be used for the efficient computation of both,

shape context and geometric blur descriptors. When using sparse input images the only

difference between shape context and geometric blur is that for computing the entries into

the geometric blur descriptor, the value for a particular box resulting from the integral

image access is normalized and therefore equivalent to a box shaped mean filtering. In

case of shape context the sum over all pixels in the box is not normalized by the box area

and represents therefore a measure for the frequency of occurrence of features.

The approximation accuracy for shape context is higher, because the boxes constitute

a good approximation of the log-polar bins. Approximation for geometric blur is less accu-

rate since the level of blur jumps significantly with every layer and instead of a Gaussian

convolution kernel, a box filter is used.

The similarity measure for the matching step is the normalized cross correlation for

the geometric blur and the χ2 distance for the shape context histograms.

3.5.3.2 Global or semi-global?

Since the origin of shape context is in the field of object recognition the computation of

the descriptor always includes all available information. This is justified by the fact that

a segmentation for the objects is available in the learning phase: Either the outlines of

objects were already available as point sets or the image capturing was performed under

controlled lighting and with a well defined background. In the case of correspondence
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estimation between image pairs the situation is completely different: The goal is to improve

the discrimination ability by augmenting local descriptors through incorporation of image

information of a larger area around the point-of-interest. As Mortensen et al. mention in

the conclusion of their paper the computation of shape context descriptors for the whole

image makes it necessary to ignore bins that lie outside the image bounds and for bins

that lie partially inside the image a proper normalization is necessary.

For the image matching task the descriptor radius for each point-of-interest is deter-

mined by the number of layers used in the integral image approximation of shape context.

Regardless of the radius it is required that the descriptor’s footprint is fully inside the

image. For practical reasons the number of layers is restricted to four or five (resulting in

radii of 40 and 121). This restriction makes the proposed descriptor semi-global.

In the experimental section a comparison of shape context versus the proposed ap-

proximation scheme will be carried out and it will be shown that the normalization of

the histogram entries by the box area results in a descriptor that is similar to geometric

blur and has a higher discrimination ability. Experiments performed on typical facade

data indicate that the developed descriptor is invariant against rotation and shows good

performance under scale changes and perspective distortions.

3.5.3.3 Advantages of the approximation

An important advantage of the approximation is the reduced computational effort for

computing the descriptors. The original method for computing shape context works on

point-like features and the complexity is therefore linear in the number of points. A

solution to speed up the procedure for large point sets is to render the points into an

image, derive the integral image from and perform the approximation. This strategy

reduces the complexity to O(8n), where n is the number of layers.

Compared to the shape context descriptor used in [89], where the content of each bin

is directly sampled from an image, the gain is even higher, since the number of image

samples that are necessary to fill the bins grows exponentially.
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Feature-Based Modeling

The following two sections are concerned with the extraction of 3D primitives from images.

In contrast to popular methods that compute dense depth maps from two or more input

images the method described here use image features as input data. More concretely

the features used here are edgels and primitive derived from edgels (contour chains and

straight line segments) that are extracted with sub-pixel accuracy in a preprocessing step.

Both methods have in common that so called sweeping strategies are used to traverse the

3D search space. Due to the use of efficient geometric data structures the methods are

fast, and robust similarity metrics allow for the generation of reliable 3D hypothesis.

The first method is concerned with the extraction of 3D plane hypothesis from two or

more images with known relative orientation. The particular scenario for this method is

the detection and delineation of facade planes in a terrestrial city mapping setup.

Contents

4.1 Plane parameter estimation by edge sweeping . . . . . . . . . . 81

4.2 Sparse 3D reconstruction by edgel-based space-sweeping . . . 89

4.1 Plane parameter estimation by edge sweeping

In this section a new method for the automatic generation of 3D plane hypothesis based

on a sweeping process is presented. The method is feature-based in contradiction to earlier

methods which rely on image correlation. The features used are edgel elements (’edgels’)

which are extracted in a preprocessing step. The experiments show an improvement in

speed as well as in accuracy.

81
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Figure 4.1: Sketch of the work flow: On the left side the feature extraction work flow is
visualized, on the right side the 3D modeling pipeline is depicted. The grey shaded areas
are discussed in this paper.

4.1.1 Introduction

The automatic generation of 3D models from digital images is a popular topic. Especially

in the field of city modeling, where huge amounts of data have to be processed, a high

degree of automation is desirable. The work-flow of our system is shown in Figure 4.1.

In this paper we discuss the gray shaded parts, which describe a feature-based algorithm

for 3D plane hypothesis generation based on a sweeping process. A set of images with

known exterior orientation together with extracted 2D lines are the input data. A line

matching method is applied to generate 3D line hypothesis and subsequent plane-based

homographies for image pairs. Using the homographies the edgel sets in the vicinity of the

projected 3D lines are swept in order to detect the optimal orientation of the half planes.

The sweeping process is also used to validate the 3D line hypothesis. Our approach is

based on image features, namely edgels, instead of using plain image information as in

earlier approaches by Zissermann et al. [4] and Baillard et al. [5]. The method is also

comparable to the technique described by Coorg and Teller in [29]. The advantage is a

significant speedup and better geometrical accuracy. Results using the proposed algorithm

on a set of synthetic images and a sequence of real images are presented.
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4.1.2 Line matching

Our approach for the computation of a 3D line set, using oriented images and extracted 2D

lines, closely follows the one described by Schmid and Zisserman [113]. Multiple images

of a scene together with extracted 2D line segments are used to compute and verify 3D

line hypotheses. The algorithm uses both, the geometrical information of the 2D line

segments and the photometric information of the corresponding images. The result of the

line matching process is a set of 3D line segments in object space.

4.1.3 Plane sweeping

The process of plane sweeping is discussed in [140] and [5] and will only be briefly sketched

here. The main difference is the use of a similarity function based on edgel point sets

instead of computing the similarity via image correlation for interest points. The 3D lines

are used to generate planes hypothesis from which the plane homographies between image

pairs are computed. The homographies induced by the sweeping plane are represented as

a 3× 3 homography matrix H and allow direct point transform between images that view

a planar region. This means that the edgel point sets A of the planar region captured

by the first cameras image can now be directly transformed to its corresponding view Ã

for the second cameras image. This is done by multiplication with the given homography

matrix: Ã = HA.

The homographies are computed for a 3D plane that is observed from two different

views. A detailed description an be found in [50] pp. 325 ff. The plane is defined by its

normal vector n and distance to origin d.

4.1.3.1 A similarity measure for point sets

With the homographies given, we are able to transfer edgel sets in the vicinity of the

projected 3D lines and measure the degree of similarity. The similarity between two point

sets Ã and B, where Ã is the transformed edgel point set of the first image, is measured

by counting the number of points in Ã that have a corresponding point in B within a

predefined radius r. The same measure is computed for B̃ - in this case B is mapped with

the inverse homography. This approach makes the measure robust against segmentation

errors and clutter. A further increas in robustness can be achieved when the orientation

of the 2D features is also taken into account. For typical sweeping scenarios the radius r

is in the range 0.5 . . . 5 pixel. For fast location of the nearest neighbor the 2D edgel sets

are stored in a KD-tree.
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4.1.3.2 Sweeping modes

In this subsection the different sweeping modes are explained. There are two possible

sweeping modes: a rotational sweep mode and a translational sweep mode. Figure 4.2

shows an illustration of the two modes. The rotational sweep in this example is performed

for the eave line of the captured facade (the camera is symbolized as a pyramid) and the

translational sweep is performed for the whole facade.

(a) (b)

Figure 4.2: Illustration of the two sweeping modes (the camera is symbolized by its frus-
tum). (a) rotational sweep planes for the eave line of the facade; (b) translational sweep
planes;

Rotational sweep In case of the rotational sweep a 3D line serves as rotational axis

for a set of plane hypothesis. The 2D edgels which are transformed during the sweeping

process are taken from the neighborhood of the projected 3D line from the first image and

actually split into two edgel sets on both sides of this 2D line are extracted. Assuming a

planar patch on at least one side of the line, one of the two edgel sets will be aligned.

In the next step an initial hypothetical sweeping plane using the 3D line and the origin

of the camera is instantiated. In the following sweeping step the plane is rotated around

the axis formed by the two points of the 3D line. In order to avoid numerically instable

conditions at the start of the sweeping process, when the plane is viewed edge on, it is

first rotated to a reasonable start position by a fixed angle ϕmin. This condition is also

met at the end, so the sweep angle range for the plane is ϕmin ≤ ϕ ≤ π−ϕmin. The plane

hypothesis at the start position, two of the subsequent planes and the end position are

shown in Figure 4.2(a). Generally the rotatonal sweep is of lesser importance due to the

fact that it needs 3D liness for initialization and the achievable accuracy strongly depends

on the accuracy of the particular line that defines the sweeping plane.
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Translational sweep The translational sweep is typically used to detect dominant fa-

cade planes. For the translational sweep the plane hypothesis is not induced by a 3D line

but by a vector that defines the sweeping direction. This sweeping direction can be com-

puted from 3D lines by clustering, but can also be determined from two known vanishing

points [108]. A pair of orthogonal vanishing points is a strong indicator for the existence

of a 3D plane, but non orthogonal vanishing points may also belong to a planar structure

(think e.g. of floor tilings, diagonal elements in a facade etc.).

The input for the clustering are crossproduct vectors from 3D line pairs, where only

line pairs with a reasonable large inner product are considered - this ensures that lines that

point into the same general direction are not used to generate vectors for the clustering

step.

In contradiction to the rotational sweep, where the sweep range is bounded, the trans-

lational sweep is only bounded at one side, the camera origin. The second bound must be

determined from the scale of the observed scene e.g. from reconstructed 3D points from

the image orientation stage. This initial plane is then swept along the direction of the

normal vector. Figure 4.2(b) shows three plane hypothesis for the dominant facade.

4.1.3.3 Sources of error

The orientation of the detected planes in sweeping mode is sometimes slightly inaccurate,

caused by the fact that detected 3D lines do not lie exactly on the plane. In case of

architectural models 2D lines often are detected on topological features that stand out of

the facade plane such as window sills and friezes or lie behind the facade plane e.g. window

frames. In this case the final orientation of the plane does not match the normal vector of

the facade. A typical case is a 3D line that is detected on a protruding window sill; The

best alignment that can be found for the plane is somewhere on the facade and therefore

incorrect. Another problem are 3D lines with an inaccurate orientation, for those lines the

planes are also slightly inaccurate. With the translative sweeping approach it is possible

to overcome the problems described above, since the normal vector for a translative sweep

is computed by clustering.

4.1.4 Experiments

We conducted several experiments with synthetic as well as real image data. In Figure 4.3

the sweeping process for synthetic data is shown. Figure 4.4 shows the detected plane for

the synthetic data.
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Figure 4.3: Alignment of edgel sets for a 3D line. (a) template edgel sets left (light crosses)
and right (dark crosses)from a projected 3D line. (b) transformed left edgel set at 40o and
(c) 60o (d) final alignment of the left edgel point set (d) sweep scores for both edgel point
sets (dashed and solid) over the sweep range (20o − 160o).

The next experiment compares the image-based methods versus the feature-based ap-

proach. Figure 4.5 shows the score values plotted against the sweep angle. The score for

the feature-based method is plotted solid, the score for the image based method is dotted.

Multiple maxima, caused by repeating patterns on the facade, make it difficult to detect

the best maximum for the image based approach. The score function for the image based

approach gets smoother if a larger correlation window is used, in our experiments the size

of the correlation window was 19.

Accuracy investigations complete the series of experiments. These experiment was

carried out using synthetic data which known ground truth. Table 4.1.4 shows a compari-

son of the image-based method versus the feature-based approach. The error between the

normal vector of the detected plane and the correct normal vector is used to compare the

accuracy of the two methods. The experiments were carried out on images corrupted with

different levels of Gaussian noise using 23 planes. The feature-based method performs

better than the image-based algorithm especially if the images are corrupted with noise.

Our method is about twelve times faster than the image-based approach, though there
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(a) (b) (c)

Figure 4.4: Synthetic input data and resulting plane hypotheses, note the accurate align-
ment of the planes. (a) synthetic input image; (b) view from the left side; (c) view from
the right side.

% noise mean error std. deviation

Feature-based 0 0.8736 1.1087

Image-based 0 2.0568 7.52

Feature-based 2 0.9216 0.9873

Image-based 2 2.0378 8.1545

Feature-based 5 1.4808 5.4877

Image-based 5 3.2758 11.4760

Table 4.1: Feature-based method versus image-based method. The error is the difference
between correct normal vector and the normal vector of the detected plane. (23 planes
were used in this experiment)

was no effort made to optimize the image based method for speed.

We presented an improved method for plane hypothesis generation using a feature-

based plane sweeping approach. The experiments showed that the feature-based approach

is faster than the image-based method and yields also more accurate results. As mentioned

in subsection 4.1.3.3 errors are mainly caused by 3D lines that are not lying on the plane.

A solution for this problem could be a final alignment of the point set with a nonlinear

optimization method that performs an estimation of the 3D parameters based on the

detected point correspondences. Such aa approach is proposed by Fitzgibbon [36].
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Figure 4.5: Comparison of sweep scores of new edgel-based approach and the image-based
approach. The scores for the image-based approach are dashed and the scores of the new
edgel-based method are shown as continuous line. Note the significantly sharper peak for
the feature-based method.
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4.2 Sparse 3D reconstruction by edgel-based space-

sweeping

In this section a method for the efficient and robust generation of directed 3D primitives

from 2D edgel observations is presented. The description of this method concludes the

theoretical part of this theses and should be considered the main contribution of the work.

From the first implementation to its present state the proposed method underwent several

iterations which all resulted in an improvement in robustness as well as computational

efficiency. In short a feature-based method for the fast generation of sparse 3D point

clouds from multiple images with known exterior orientation is presented. The proposed

approach works solely on directed 2D primitives (e.g. edgels or ridgels). These geometric

image features are described by their 2D position plus an associated orientation vector.

Edgels and ridgels can be extracted with sub-pixel accuracy from the given input images.

A so called space-sweeping scheme is used to compute the accurate 3D location of these

edge features. The proposed approach relies mainly on the geometric properties of the

extracted primitives and incorporates a robust uncertainty estimation scheme to detect

outliers.

4.2.1 Introduction

The computation of 3D structure from multiple images is one of the most important tasks

in computer vision. In literature many different approaches have been described. Many of

the basic methods are working with image tuples, the stereo pair. Especially many dense

stereo matching methods were formulated for stereo image pairs. Recent methods [65],

incorporate multiple images to achieve a more robust matching result. Correlation-based

dense stereo matching methods are usually restricted to small baseline setups and in the

case of video-based stereo to image sequences with very large overlap factors. These dense

image matching methods compute a disparity map for the scene, i.e. for every pixel

a disparity vector d(x, y) is given. The disparity is often constrained by a smoothness

criterion and the ordering constraint. The negative effect of the smoothness constraint

is that sharp creases or depth-discontinuities appear smooth in the reconstructed model.

Another branch are the various voxel coloring methods [72, 115]. Those methods produce

a volumetric model of the scene and also work for scenes where the ordering constraint

is violated. All the above mentioned reconstruction approaches have the drawback of

processing times in the order of minutes. Even though if the processing time is reduced by
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hardware implementations of the algorithms (nowadays especially on graphics hardware)

the complexity may still be prohibitive.

The method that is going to be presented in the following produces sparse clouds of

3D primitives. Each primitive is characterized by a 3D position and an associated orien-

tation vector. Such clouds of 3D primitives are useful for model-based reconstruction. For

example the extraction of 3D lines, the detection of 3D planes or other 3D primitives can

be based on sparse 3D data. Furthermore the proposed approach yields accurate measure-

ments on depth discontinuities and thus is suitable to enrich the fidelity of reconstructions

carried out by standard dense matching/modeling approaches. One can think of using the

sparse 3D primitives as robust seed points for a subsequent dense reconstruction.

The introduction of the space sweeping method is structured as follows: At first an

introduction to the general plane sweeping strategy is given and the key publications are

discussed. The next subsection gives a more detailed presentation of the implementation

of the method and an in-depth analysis of the spatial data structures involved in the

hypothesis collection stage. The topic of the third subsection is the ’weeding’ stage,

namely the selection of valid hypothesis. We discuss the use of an image-based similarity

measure to verify the resulting 3D hypotheses and propose an error propagation scheme

to verify the hypotheses using purely geometric criteria. The fourth and final subsection

proposes the use of contour chains as higher level primitives combined with an energy

minimization scheme in order to improve the robustness of the method. This subsection

also provides concluding remarks and an outlook on future work concerning this part of

the theses.

4.2.2 Space-sweeping methods

Space sweeping methods are a common way to realize a multi-image 3D reconstruction

approach. Collins [26] introduced a feature-based space sweeping approach for sparse

3D reconstruction and formed the notion of true multi-image matching methods. These

methods should:

1. Generalize to any number of images greater than two;

2. Have an algorithmic complexity that is linear in the number of images;

3. All images should be treated equally;

While condition one is met by many reconstruction approaches, condition two addresses

the efficiency of the reconstruction method: if it repeatedly processes a subset of images
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and then fuses the results it can, according to Collins, not be considered a true multi-image

reconstruction scheme. However, a valid strategy is the sequential processing of image

pairs and a subsequent fusion stage. The third condition, namely the equal treatment of

all images can only be met by algorithms working in object space.

(a) (b)

Figure 4.6: Top view of the space-sweep setup: Four cameras (symbolized by their image
plane and camera origins O1 . . . O4) view an object (light gray). The sweep plane moves
from front to back, the previous and subsequent instance of the sweep plane is illustrated
as dashed line. The on left the space sweeping method as proposed by Collins [26] is
shown. In this case all cameras are treated equally and the detection and verification
of 3D hypotheses happens in the object space. The right sketch shows the proposed
approach where the detection and verification of hypotheses is preformed in the image
space. A reference camera (origin O2) is chosen and from this camera a 3D ray (shown
as bold vector) is intersected with the sweeping plane (bold line). The verification of 3D
hypotheses is achieved by projecting the resulting 3D point into all slave-cameras.

In general a space sweeping method is used to traverse the volume for which the

3D reconstruction should be performed. Figure 4.6(a) and (b) show the top views of

such a setup. Figure 4.6(a) shows the space sweeping approach of Collins - here the

hypothesis verification happens in object space - meaning that all cameras are treated

equally. Multiple cameras C1 . . . C4 (symbolized by their image plane) view an object

(light gray). A virtual sweeping plane π traverses the volume from front to back and

3D hypotheses are gathered by intersecting rays emanating from the cameras with the
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sweeping plane and evaluating a proximity-based criterion. Collins uses a 3D accumulator

plane (a plane partitioned into cells) and increases the accumulator count of the cells that

are closest to the intersection location. This way every cell counts the number of rays that

coincide in a discrete volume in space. If a sufficient number of votes from different cameras

is encountered in an accumulator cell a tentative 3D hypothesis is recorded. Subsequently

a simple statistical model of clutter is used to determine whether a hypothesis, formed

by the intersection of several rays, is a valid one. Despite the elegant formulation of the

multi-image matching problem the main drawbacks of Collin’s approach are the expensive

hypothesis evaluation based on the 3D accumulator plane and the fact that geometrical

properties of the 2D image features, such as edge orientation or principal directions of

corners, are neglected.

Another class of space sweeping algorithms are the voxel coloring approaches that

also work in object space: These methods produce a volumetric reconstruction of the

scene. The reconstruction volume is represented as discrete voxel space and a image-

based similarity criterion, namely the color consistency, is used to discard all voxels that

lie in front of a surface point. All voxels that are invisible in all views are assumed to

belong to the actual object volume and are therefore retained.

In figure 4.6(b) one camera (C2) is chosen as key/reference camera. For all features

that are extracted in the image of this camera the corresponding rays are intersected with

the 3D sweeping plane. The resulting 3D point is projected into all other slave-cameras

for hypothesis gathering and verification. It is obvious that criterion three of Collin’s

true multi-image reconstruction postulate is violated, however the hypothesis verification

in image space has advantages over the object space approach: Efficient 2D spatial data

structures can be used to evaluate the proximity criterion and various geometric criteria

and image-based similarity criteria ( e.g. normalized cross correlation) can be used for the

robust selection of 3D hypothesis. An example is the method proposed by Jung et al. [64]

which computes sparse 3D point clouds from multiple oriented images. The method is

used for extracting 3D information from aerial images. It uses edgels that are extracted

with sub-pixel accuracy from the input images and are then transformed into 3D rays for

the intersection with the sweeping plane. The intersections are projected into the slave

images and an efficient quad tree search is used to determine a set of 3D hypotheses.

All hypotheses are then refined using a least-median-of-squares technique. Finally the

3D direction of the point hypothesis is computed using the 2D direction associated to

the edgels that support an individual 3D hypothesis in the following way: Planes are
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formed by the edgels position, the edgels direction and the camera center. The pairwise

intersection of the planes from the different cameras gives a bundle of possible directions.

From this bundle the best direction is determined by a LMS technique.

The approach that is proposed in this thesis is inspired by [64], but differs from this

work in several aspects:

1. Efficient spatial data structures are employed to speed up the search for tentative

3D hypotheses.

2. The 3D reconstruction is based on directed 2D primitives instead of point primitives.

3. Contour chains are used to provide pre-segmented input data.

4. An energy minimization scheme is used to determine outliers within a contour chain.

5. While the original method [64] is used for reconstructing buildings from aerial images

the proposed method is applied for close range scenes.

The following a detailed description of the individual steps of the proposed approach is

given. The principal work-flow of our approach can be outlined by five consecutive steps:

1. Feature extraction: Directed 2D primitives are detected with sub-pixel accuracy.

These can be edgels or ridgels.

2. Space Sweeping: 3D rays are formed for all 2D features in the reference camera and

used to select candidate features in the slave images i.e. features that lie close to

the reprojection of the 3D search ray.

3. Generation of 3D hypothesis: 3D planes are computed for the candidate features

that are found in the slave images and used to compute tentative 3D hypothesis.

4. An error propagation scheme is used to estimate the reconstruction uncertainty

in object (3D) space. The detection of outliers is based on the evaluation of the

reconstruction uncertainty.

5. Optionally an energy minimization scheme can be applied to eliminate remaining

outliers. This step assumes that individual 2D features are linked to chains and

applies a smoothness criterion on the reconstructed object points.

In the following subsections we will explain the methods in more detail.



94 Chapter 4. Feature-Based Modeling

4.2.3 Feature extraction

The proposed approach uses 2D point primitives with an associated 2D direction. This

can be either edgels or ridgels which are extracted with sub-pixel accuracy. Furthermore a

robust gradient direction must be associated with each edgel. In order to capture also very

fine detail ridgels can be used, however the direction associated with ridgels is ambiguous

(see 2.3) and these primitives have to be treated differently in the sweeping approach.

Edgels and ridgels capture most of the prominent features of typical urban scenes such as

structural and textural elements of facades. The extracted primitives can also be grouped

into contour chains and this higher level knowledge can then be used for detecting outliers

in a post-processing step. such a grouping step, where only chains with a certain number

of supporting primitives are accepted, also helps to remove isolated primitives that are

often generated by small structures and therefore have an unreliable direction assigned

with them.

Harris corners are another class of 2D primitives that can be extracted with sub-pixel

accuracy, however the estimated principal direction (e.g. one of the two eigenvectors of the

structure tensor) is corrupted by significantly more noise than it is for edgels or ridgels.

Due to the sparseness of the extracted corners a robust grouping is not possible and as a

consequence corners are not used in this approach.

4.2.4 Space sweep

As mentioned in the introduction a good hypothesis is characterized by a low reprojection

error, i.e. the 2D image location of the reprojected 3D point is close to a feature point in all

or many of the slave-cameras. The evaluation of the proximity criterion is the most costly

step in the sweeping framework, since it involves reprojection of the 3D hypothesis into

all slave images and the determination of the closest neighboring edgel to the reprojected

hypothesis. Essentially this boils down to finding candidate features in all slave images

by performing a nearest neighbor search for the reprojected 3D point. In the following an

overview of spatial data structures for an efficient nearest neighbor search is given.

4.2.4.1 Candidate selection

In the sweeping stage the initial selection of hypotheses is primarily based on the proximity

criterion. In the original paper of Jung et al. [64] the proximity criterion is evaluated

using a quad-tree for the nearest neighbor search. The quad-tree approach, however, has

a computational complexity of O(log n), where n is the number of points in the set, per
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nearest neighbor query. A data structure of the same computational complexity is the

KD-tree.

A more efficient method is the class of distance transforms. The distance transform

is computed for a set of 2D points and can be considered as an image where the value of

each pixel encodes the distance to its closest point. Distance transforms can be computed

efficiently in linear time using Chamfer filtering [20]. In order to keep the relationship

between the points and the distance image an additional label image is created. Figure 4.7

shows the 2D source points on the left, the distance transform image in the middle and

the label image on the right.

Figure 4.7: Illustration of the distance transform: For a set of 2D input points (left) the
distance transform encodes the distance to the closest points and the label image (right)
holds the index to the corresponding point or in other words the pixel value refers to the
index of the closest point. The distance transform image and the label image allow for
fast nearest neighbor queries.

The distance transform allows nearest neighbor queries for 2D point sets in O(1).

For the plane sweeping a separate distance transform image is computed for the edgel

locations of every slave image. Since the 2D coordinates of the reprojection are non-

integers the image access operation in the distance transform images is performed using

either with bi-linear or with bi-cubic interpolation. An experiment where the distance

transform approach was compared with an exact KD-tree-based nearest neighbor search

showed that an average distance error of less than 0.6 pixel can be achieved. This shows

that it is justified to use the much faster distance transforms to generate an initial set of

3D hypotheses. However the memory consumption of distance transforms is not negligible

and despite the fact that the nearest neighbor queries for 2D point sets can be performed

in O(1), the computational overhead is considerable.

A disadvantage of all aforementioned methods is that the detection of hypothesis in-

volves a linear search along the reprojected 3D search ray in all the slave images. Figure 4.8

illustrates the search range of a reprojected 3D ray for two slave cameras. The 3D ray is
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defined by the 2D position of a feature in the reference image and the reference cameras ex-

terior orientation. A predefined volume of interest or another estimate for the depth range

of the observed scene are used to define a minimal distance dmin and maximal distance

dmax that delimit the ray. The search space for candidate features in the slave images is

now a 2D line segment (shown as dashed line) that is generated by the projection of the

bounded 3D ray.
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Figure 4.8: Illustration of the search range that is generated by reprojection of a bounded
3D ray that emerges from the reference camera (with origin O1 and illustrated as thick
line ranging from dmin to dmax) into two slave images (with origins O0 and O2). The
reprojected ray (the epipolar line) is shown as dashed line in the slave images.

A direct approach that uses distance transforms would now perform a linear search

along the 2D lines in order to find candidate features. For close range scenarios, where the

relative rotation between camera pairs can be large, the projection of the 3D search ray

can become quite long. For a high resolution image the reprojection of a typical search

ray can span several hundred pixels. The necessity for performing a linear search implies

that the complexity of the hypotheses generation process depends not only on the data

(the 2D primitives) only, but also on the geometrical configuration of the cameras.

As a consequence a more efficient search strategy based on stereo rectification was

devised. In order to accelerate the spatial search for edgels lying close to the reprojection
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of the 3D search ray a pairwise stereo rectification between the reference camera and the

particular slave cameras is performed. The stereo rectification determines a perspective

plane-to-plane transform (homography) for each image such that all pairs of matching

epipolar lines become collinear and parallel to the x-axis. In the case of n input images

I1 . . . In one ends up with n−1 pairs of homography transforms (Hki
, Hi), i = 1 . . . n|i 6= k

where Hki
is the transform matrix to achieve the stereo rectification for the reference

image Ik with the slave image Ii and Hi is the homography matrix for the slave image.

All extracted 2D features, except those of the reference image Ik, are transformed with

the respective homography transform. Note that also the principal direction associated

to the features has to undergo this transform. Additionally the transformed features are

sorted with respect to their y-coordinate. This sorting allows a very efficient query for

features that lie close to an epipolar line.

Hi
l’

l
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C2
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Figure 4.9: Illustration of stereo rectification: The 2D features in the original image Ii

(left) are transformed by the homography Hi. After the transformation the epipolar line
l′ is parallel to the y-axis (and so is every reprojection of the 3D search rays). In the
rectified image it is now possible to filter out features with a tangent vector that is nearly
parallel to the epipolar line (l in the original image and l′ in the rectified frame). The
edgels of contour C2 would therefore not be used in the sweeping process.

An additional advantageous side-effect of the rectification is that features with a tan-

gent vector that is nearly parallel to the epipolar line can easily be identified and excluded

from sweeping process. Figure 4.9 illustrates this elimination process for the features of

two contours C1 and C2: The tangent directions of the feature points of C1 have a signif-

icantly larger enclosed angle with the epipolar line l than the features of contour C2. In

this case all features of C2 would be discarded in the sweeping process. Due to the recti-

fication process the detection of features whose tangent direction is nearly parallel to the

epipolar line can be achieved by simply testing the magnitude of the y-coordinate of the

normalized tangent direction (or the x-direction of the gradient vector) of the geometric
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primitives. The filtering is carried out with a threshold of 10 degrees in all our test cases.

This simple strategy helps to avoid ambiguous situations, where many primitives with a

tangent direction that is nearly parallel to an epipolar line segment prevent the detection

of a distinct 3D hypothesis.

The rectification process introduces a perspective distortion that transforms the rect-

angular image plane into a general convex polygon. In order to overcome the effect of

additional uncertainty in location accuracy introduced by the rectifying transform, the

relation between original features and rectified primitives is kept and for all 3D recon-

struction steps the rays/planes formed by the original primitives are used. We use the

rectification method proposed by Fusiello et al. [42]. In contrast to image-based matching

approaches the rectification method needs not to be optimal with regard to the introduced

distortion, since we keep the relationship between original and rectified features.

The space sweeping is performed by computing a 3D search ray r for each feature in

the reference image Ik. The bounding points of the 3D ray are defined by the volume of

interest (or a front and back plane that bounds the depth range).
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Figure 4.10: Illustration of the space sweeping principle for a reference camera (image
plane πk with origin Ok) and a slave camera (image plane πi with origin Oi): A 3D line
segment r (a portion of the 3D search ray) is projected into the slave image and forms
an epipolar line segment. All edgels that lie within the gray shaded area are considered
potential candidates.

Figure 4.10 shows the principle: the 3D line segment r is projected into all slave images

in order to detect features that lie within distance d (gray shaded area) of the epipolar
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line segment. Since the features are sorted with respect to their y-coordinate and the

epipolar line is parallel to the x-axis, the range query for candidate features can now be

accomplished in a very efficient manner. Basically a binary search detects the upper and

lower bound for valid feature points. However, the search rectangle in the un-rectified

image plane is distorted to a convex four point polygon in the rectified image plane. We

use the bounding rectangle of this polygon do determine a conservative axis-aligned box

in which we search for candidate edgels. A typical threshold-distance d used in all our

experiments is 0.5 pixel. Figure 4.11 illustrates this spatial query with an epipolar line

segment.

Hi

Figure 4.11: Nearest neighbor queries for rectified image planes: The rectangle defined
by the epipolar line (continuous line) in the original image is shown on the left. The
homography Hi transforms the rectangle into a convex four point polygon in the rectified
image plane on the right. A conservative axis-aligned bounding box (shown with a dashed
outline) is used to collect the feature candidates.

Here another advantage of the stereo rectification comes into play: we can enforce that

the feature in the reference image (that forms the 3D search ray) and the candidate features

have the same principal direction. This means that if the edgel in the reference image

is formed by a bright-to-dark edge all candidate edgels in the slave images must also be

formed by a bright-to-dark edge. This constraint resolves many of the ambiguous situations

that occur when only the proximity of the edgels to the epipolar line is considered. As a

result of the space sweeping a set of candidate features is found in each of the slave images.

This strategy can not be used for ridgels due to their orientation ambiguity. All candidate

features that are found by this efficient search are then used to generate 3D hypotheses in

the subsequent 3D hypothesis generation process.
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4.2.4.2 3D hypothesis generation

In the 3D hypothesis generation step we treat the 2D primitives no longer as oriented point-

like features, but use the associated tangent directions to form 3D planes for all candidates.

These 3D planes are then intersected with the 3D search ray from the reference camera

and thereby generate depth events for all candidates. This strategy allows to transform

all candidates into the common reference frame of the 3D object coordinate system. The

generation of depth events is performed for all candidate edgels from all slave images.

Figure 4.12 illustrates how the tangent direction of a 2D primitive is used to form a

depth event: The feature position (black dot) and the tangent direction of a valid candidate

feature form a 3D plane πe, which is intersected by the 3D search ray rk at v (marked by

a circle). The introduction of depth events allows now to impose an ordering on the 3D

planes π with respect to the 3D query ray rk.
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Figure 4.12: Generation of depth events that lie exactly on the 3D search ray rk. The
feature location (black dot) and the tangent vector (vector intersecting the epipolar line
l) form the plane πe and the intersection of πe and rk generates the depth event v (shown
as circle).

Thus, for a particular 3D search ray rk a number of depth events is generated and

the events are sorted with respect to their distance from the reference cameras origin Ok.

This sorting of depth events according to their depth from the reference cameras origin

Ok allows the efficient detection of clusters, where rays from different cameras intersect, to
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be achieved in an event-driven manner. The actual 3D hypotheses are found by searching

for clusters of depth events on the ray rk. In order to generate a valid 3D hypothesis,

depth events from m < n (where n is the total number of cameras) different cameras must

vote for a similar depth. For the event-driven clustering a 1D range query for all depth

events along the search ray is performed. If sufficiently many depth events from different

cameras can be found within a given depth range, the current depth event is considered

a tentative 3D hypothesis. The depth range is a user specified parameter that determines

how closely packed the depth events must be in order to form a valid 3D hypothesis. A

possible approximation of the depth range must consider the relative pose of the cameras,

the size of the reconstructed volume as well as the overall accuracy of the camera pose

estimation and feature extraction. Due to the sorting of the depth events the complexity

of clustering is reduced to a 1D range query. Figure 4.13 shows an illustration for the

detection of 3d hypotheses on a 3D search ray.

Figure 4.13: Illustration of the detection of 3D hypotheses on a 3D search ray. A number
of depth events v0 . . . v7 lie on the 3D ray. The depth events are sorted according to their
distance from the reference camera’s origin Ok. The criterion for a valid 3D hypothesis is
that m < n depth events from different slave cameras form a cluster within the predefined
range ε. Thus, for m = 2, two 3D hypothesis are found, the first for the depth events
v1 . . . v4 and the second for the depth events v5, v6. The depth events v0 and v7 are too
far from any neighboring event to form a valid hypothesis.

For all detected clusters with sufficiently many votes from depth events, we compute the

3D line segment that minimizes the sum of squared perpendicular distances to the planes
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πei
that are associated with the depth events vi. This is an efficient linear operation and

is described in more detail in [50] (p323). This approach avoids the separate estimation of

the 3D position (based on multiple ray intersection) and the 3D direction as it is proposed

in [64]. The resulting 3D point is defined by the intersection of the reconstructed 3D line

and the 3D search ray.

Briefly summarized the search for a valid 3D hypothesis along a particular 3D ray is

now reduced to the detection of clusters of depth events. The events must be spatially

close and be related to different slave cameras. The 3D primitive is reconstructed from

all the 3D planes that are associated to the depth events by a linear method. Despite the

fact that only one physically correct depth value does exist for a particular 3D ray, we

reconstruct and store all 3D hypothesis and perform a subsequent hypotheses selection

step.

4.2.5 3D hypothesis verification

The sweeping process is designed to detect all tentative 3D hypotheses on the 3D sweep

rays. This strategy implies that it is possible to find multiple hypothesis along a particular

search ray. The number of ambiguous hits depends on the observed scene as well as the

geometric configuration of the camera poses. Cluttered scenes where many features are

detected or objects that exhibit recurring patterns lead to ambiguous situations, where

several equally ranked hypotheses are found along a particular search ray. Performing the

sweeping for typical close range scenes with a high depth range, might also increase the

number of hypotheses on a search ray.

The task of the 3D hypothesis verification is to find the one hypothesis which most

likely describes the correct physical point.

For the detection of these hypotheses two methods have been devised. The first method

uses the image information around the candidate features to judge whether a 3D hypothe-

ses is accepted or not.

4.2.5.1 Image-based Outlier Removal

In order to detect and remove false positive matches, an image-based similarity measure is

applied: The normalized cross correlation (NCC) is computed for image patches that are

sampled around the candidate features. In order to achieve a robust similarity measure for

a 3D hypothesis the local patches are sampled in a rotation and scale invariant way. Scale

invariance is achieved due to the fact that the 3D coordinate of the hypothesis is known.
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The scale of the patch can be directly computed from the 3D hypothesis’ distance from the

camera. Rotation invariance is achieved due to the known directional component of the

hypothesis - remember that the hypothesis is constructed from is used to define a reference

direction in the image space. Bearing in mind that the 3D hypotheses are often formed by

edgels lying on depth discontinuities the reference direction is used to split the image region

into two separate patches. These makes the similarity criterion also insensitive against

occlusions. Figure 4.14 shows the generation of rotation and scale invariant descriptors for

candidate edgels in two images: The image position of the reprojected primitive (shown

as disc) and its associated tangent direction (continuous line) is used to divide the local

region and to sample the two patches on opposite sides (shown with a different hatching).

Due to a depth discontinuity the lower right patch in the two image regions is occluded.

In such a case only one side can be used for reliable similarity comparison.

Figure 4.14: Sampling of a scale and rotation invariant patches. Reprojecting a 3D hy-
pothesis into the images allows to sample a rotation and scale invariant patch. The 2D
image position (shown as disc) and the 2D direction of the projected hypothesis define the
location and orientation of the patch. The distance of the hypothesis from the respective
camera origin defines the scale. The 2D line that is defined by the position and orientation
of the primitive (shown as continuous line) is used to split the patch in half and sample two
descriptors (illustrated with a different hatching). This approach increases the robustness
for hypotheses that lie on depth discontinuities.

Therefore we compute the normalized cross correlation separately for the two image

regions between the reference image and the slave images and take only the higher cor-

relation value into account. The correlation based similarity measure is performed in all

images with a contributing image feature. The final score is then computed as the average
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correlation value over all contributing images. The 3D hypothesis with an average correla-

tion value above a given threshold (0.8 in our experiments) is finally accepted. A drawback

of this image-based similarity criterion is the fact that the detected primitives are often lo-

cated on borders between homogeneous regions. Therefore the window size of the sampled

patches has to be sufficiently large in order to allow distinction. Large windows however

suffer from the effect of perspective distortion and the robustness deteriorates. Based on

the assumption that the geometric information from the 2D image features provides suf-

ficient constraints for outlier detection a purely geometry-based outlier detection method

was developed.

4.2.5.2 Geometry-based outlier removal

The following approach is designed to perform an estimation of the covariance of the

extracted 3D primitives via error propagation. This mathematical framework allows to

estimate an uncertainty measure for the parameters of the reconstructed primitives. Given

an estimate of the a-priori uncertainty of the 2D primitives (edgels and ridgels in our

case) the estimation of the final uncertainty (encoded by a covariance matrix) of the

reconstructed primitives is performed using the error propagation principle. From this

covariance matrices and the remaining residuals the uncertainties of the parameters of a

3D primitive that is reconstructed from several 2D image observations can be estimated.

The distinction between inliers and outliers is then achieved by a simple thresholding on the

uncertainty level of the individual parameters. In typical photogrammetric applications

the uncertainties of all estimated parameters is computed during the non-linear bundle

adjustment (see Luhmann et al. [122] pp. 234 ff.). The situation in the present case is

somewhat easier since the 3D primitive is computed directly by a fast linear method and

only the a posteriori covariance has to be computed.

The theoretical framework for error propagation is explained in detail in Luhmann et

al. [122] page 52 ff. A compact outline that follows the notation of the book will be given

below. The basis for the estimation of the uncertainties is the functional model for the

least squares adjustment:

Given a vector L of observations:

L = (L1, L2, . . . Ln)T , (4.1)
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we want to determine the values for a vector X of unknown parameters:

X = (X1, X2, . . . Xu)T , (4.2)

where the number of observations n must be larger than the number of unknown param-

eters u. The functional model expresses the relation between the ”true” observations X̃

and the ”true” unknowns L̃ as a nonlinear correction equation:

L̃ = ϕX̃ , (4.3)

where ϕ is a vector of functions of the unknowns. Due to the fact that the true observation

values are not known, L̃ is replaced by the measured observations L and associated residual

vector v. Likewise the vector of unknowns X̃ is replaced by the estimated unknowns X̂.

This results in:

L + v = ϕX̂ . (4.4)

For given approximate values X0 for the unknowns the estimated unknowns can be written

as:

X̂ = X0 + x̂ . (4.5)

From X0, approximate values for the observations can be computed as

L0 = ϕ(X0) . (4.6)

The so called reduced observations are then computed as:

l = L − L0 . (4.7)

For small values of x̂ the correction equation is expanded into a first-order Taylor series

and after introduction of the Jacobian matrix A the linearized correction equations are

obtained as:

l̂ = l + v = Ax̂ . (4.8)

The Jacobian matrix A contains the partial derivatives of the functions in ϕ with respect

to the unknown parameters. Finally the update equation for the unknowns follows as:

x̂ = (ATA)−1ATl . (4.9)
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The matrix

Q = (ATA)−1 (4.10)

is called the cofactor matrix. From the residuals vector v for the adjusted parameters the

a posteriori standard deviation can be expressed as:

ŝ0 =

√

vTPv

n − u
. (4.11)

The covariance matrix for the adjusted parameters follows as:

K = ŝ0
2Q . (4.12)

In the present case we are interested in estimating the uncertainties of the parameters

of the reconstructed 3D primitives. The primitives are represented a 3D position with

an associated 3D direction vector, thus the parameters are equal to that of a 3D line.

The minimal representation of a 3D line G uses four parameters [8], but we choose a

representation that uses five parameters G = [g1, g2, . . . g5], but is more convenient for the

purpose of estimating the covariance matrix of the parameters. The first three parameters

encode the position in 3D space p = (g1, g2, g3) and the last two parameters encode the

lines normalized direction vector a, using the two spherical angles: θ = g4 = tan−1( y
x)

and ϕ = g5 = cos−1(z). Thus a = (cos θ sinϕ, sin θ sin ϕ, cos ϕ) and any point pi on the

line can be expressed as a function of the parameter t by: pi = p + a t.

For the purpose of estimating the uncertainty of the line parameters we can divide the

problem. First we estimate the uncertainty of the location p and then the uncertainty of

the spherical angles θ and ϕ.

For computing the Jacobian matrices the partial derivatives with respect to the param-

eters are computed numerically, using a finite differencing scheme. The Jacobian matrix

Ap for the position is a n × 3 matrix, where n is the number of 2D edgel measurements

in the images. The residual vector vp is the vector of perpendicular distances of the

reprojected 3D position to the image measurements. As described in 4.2.4.2 the 3D po-

sition is the intersection of the 3D search ray that is defined by the a feature’s position

in the reference camera and the reconstructed 3D line. The image measurements are the

corresponding 2D features in the images. The covariance matrix for the position results

as:

Kp = ŝp0
2Qp =

√

vT
p Pvp

n − u
(AT

p Ap)−1. (4.13)
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The Jacobian matrix Aa for the spherical angles is a n×2 matrix. The residual vector

va is the vector of enclosed angles of the reprojected 3D direction with respect to the

orientation vector of the 2D image measurements - the features tangent directions in this

case. The tangent direction of the features is perpendicular to the features normal vector.

The covariance for the orientation results as:

Ka = ˆsa0
2Qa =

√

vT
a Pva

n − u
(AT

a Aa)
−1. (4.14)

The weight matrix P encodes the a priori uncertainty of the 2D image measurements.

For the experiments, typical values for the uncertainties are estimated from simulations

on synthetic data.

By computing the eigenvalues and eigenvectors of the estimated covariance matrices

the magnitudes and directions of the uncertainties can be computed. The eigenvalues of

Kp, [λp1, λp2, λp3] represent the variances of the 3D position, and the eigenvalues of Ka,

[λa1, λa2] are the variances of the spherical angles θ and ϕ. Since the matrices Kp and ka

are positive definite, all eigenvalues are also zero or positive. The eigenvalues are sorted

in ascending order so that λp1 ≤ λp2 ≤ λp3, and λa1 ≤ λa2 holds. The standard deviations

[σp1, σp2, σp3] and [σa1, σa2] are then computed as the square roots of the variances.

The standard deviations for the parameters of the 3D position [σp1, σp2, σp3], that are

computed from the eigenvalues of the covariance matrix Kp should have the following

properties: The eigenvalue σp3
should be significantly larger than max(σp1, σp2) - this

would be the eigenvalue that corresponds to the 3D primitives dominant eigenvector, that

is the direction vector. The magnitude of other two eigenvalues depends on the residuals of

the projected 3D position with respect to the 2D image measurements and the geometric

configuration of the cameras (intersection angles of the 3D planes). For the standard

deviations of the spherical angles no statement about general properties can be made.

Thus, for the outlier detection the magnitudes of [σp1, σp2] and [σa1, σa2] are of interest.

The separation of inliers and outliers is achieved by two thresholds Tp and Ta, one for the

position uncertainty (Tp) and one for the orientation uncertainty (Ta). A 3D hypothesis

with all position uncertainties below the threshold: max(σp1, σp2) < Tp and all angular

uncertainties below the threshold: max(σa1, σa2) < Ta is accepted as a valid hypothesis.

Up to now all outlier detection approaches only focussed on the primitives detected

for a single 3D search ray. The fact that, for the proposed approach, every 2D feature also

belongs to a contour chain allows to use this additional geometric information to devise
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robust outlier detection method based on energy minimization.
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4.2.5.3 Outlier Removal based on Energy Minimization

The following method exploits the geometric properties of the extracted 3D hypotheses

in order to perform a robust outlier detection. This approach basically assumes that the

input features are grouped to form contour chains and furthermore that the 2D features

that are grouped within a contour chain in 2D, also describe a smooth contour in 3D.

Based on this assumption the selection of valid hypotheses is achieved by applying an

energy minimization scheme. Basically, we are trying to match a deformable model to

data points by means of energy minimization.

The input data for this optimization step are all 3D hypothesis that are detected for

each 3D search ray. The contour linking/chaining in the reference image provides the

ordering of the hypotheses in 3D. Figure 4.15 shows the principal configuration: For the

search ray rk multiple 3D hypotheses are detected (three in this illustration). The correct

hypothesis (black dot) is not necessarily the one with the highest certainty. The incorrect

hypotheses (marked as circles) are generated by primitives from contours that also fulfill

the multi-ray convergence criterion.
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Figure 4.15: Multiple 3D hypotheses on a 3D search ray rk. During the sweeping process
multiple hypotheses per 3D search ray rk can be encountered. In this illustration three
hypotheses were detected - the correct hypothesis (marked by a dot) and two incorrect
hypotheses (marked as circles) that are generated by features from image contours that
also fulfill the multi ray convergence criterion.

The proposed approach takes all 3D hypotheses that are detected for a single 2D
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contour in the reference image into account. Figure 4.16 illustrates an example of such

an optimization scenario using six rays r0 . . . r6. For every individual ray all valid depth

hypotheses (those with a sufficient support count, and low uncertainty) are stored (e.g.

p0,0 . . . p0,3 for r0). The aim of the optimization is now to detect the optimal contour path

(shown as continuous line) within the upper and lower envelope (shown as dotted lines).
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3
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Figure 4.16: Illustration of the input data for the optimization step: For every search ray
r0 . . . r6 all detected hypotheses (e.g. p0,0 . . . p0,3 for r0) are stored. The dashed lines show
the upper and lower envelope of the possible contour paths, whereas the continuous line
shows the correct contour path.

The proposed approach makes several simplifications and should only be considered

as a proof of concept. Basically the problem of selecting the inlier points is based on the

following assumptions:

1. The smoothness of the 3D contour is measured by the depth values of the 3D prim-

itives of the contour. The depth of a primitive is measured from the origin of the

reference camera (Ok in figure 4.16).

2. The number of outliers is significantly smaller then the number of correct 3D prim-

itives.

3. Only the 3D position of the primitives is considered in the optimization process, the

orientation is neglected.
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The simplified assumption that only depth values are used, allows to formulate the op-

timization as a 2D problem. Therefore the implicit function that optimally approximates

the 3D primitives while adhering a smoothness constraint is actually found in 2D. Fig-

ure 4.17 illustrates how the example shown in figure 4.16 is transferred to a 2D problem.

Figure 4.17: Illustration of the 2D energy minimization problem. On the y-axis the
distance d of the 3D primitives pi,j to the reference camera origin (Ok in figure 4.16) is
shown and the x-axis denotes the parameter s that varies from [0, 6] along the length of
the contour in the reference image. The dashed lines show the upper and lower envelope
of the possible contour paths, whereas the continuous line shows the correct contour path.

The extraction of the optimal path involves the solution of an energy minimization

problem. Given the two main conditions for the minimization:

1. The resulting path should connect the 3D primitives and minimize the distance to

the primitives.

2. The resulting path should be smooth.

The first condition is the so called data fidelity and the second condition is a smoothness

constraint. A similar problem is solved for the active contour models that are also called

snakes. Introduced by Kass et al. [66]) the energy functional for an active contour model

v(s) is defined as:

Etotal =

∫ 1

0
Eint(v(s)) + Eimage(v(s)) + Econ(v(s)). (4.15)

Eint is the internal energy of the contour model and depends solely on its shape. Eimage

denotes the image energy and depends on the image intensity values along the path of the

contour model and Econ is the constraint energy that can be based on artificial energy

fields imposed by the user.
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In our case Eimage is renamed to Edata and measures the distance of the contour model

to the data points (the converted primitives pi,j in 2D space as shown in figure 4.17). Thus,

Edata measures the data fidelity. This is the difference between the measured depth values

and the current value of the functional. In order to be robust against outliers the data

residuals are computed using the Huber kernel. Based on a specified threshold σ Huber

kernel weighs the distance r(s) = v(s) − ps,i between the functional and the depth of a

hypothesis as:

ρ(r(s), σ) =

{

r(s)2 if r(s) ≤ σ

2σ|r(s)| − σ2 if r(s) > σ
(4.16)

Since for one particular depth value several measurements may exist a single data

residual is expressed as:

Edata(s) =
1

i

n
∑

i=1

ρ((v(s) − ps,i), σ) . (4.17)

Where vs is the current value of the functional for the ray rs and ps,i is the depth of the

primitive ps,i

Eint measures the local smoothness using the second order derivative:

Eint =

(

∂2v(s)

∂s2

)2

. (4.18)

As proposed in [66] the derivative is approximated by finite differences:

δ2v(s)

s2
≈ v(s + 1) − 2v(s) + v(s − 1) . (4.19)

The third term of the energy integral comes from external constraints imposed either

by user interaction or some higher level interpretation. This term is neglected in our case.

This energy formulation is then minimized using a variant of the Levenberg-Marquardt

algorithm. The Jacobian matrix A that holds the partial derivatives of the unknowns (see

4.9) is also computed using finite differences. Since the smoothness term at a particular

position v(s) is only dependent on is immediate predecessor v(s−1) and successor v(s+1)

the Jacobian matrix A is a tridiagonal banded matrix and the matrix product AT A is a

pentadiagonal banded matrix. The inverse of a non-singular pentadiagonal matrix can be

computed efficiently as proposed in [32] pp.98 ff.

Using this global optimization method the number of outliers could be reduced by 83%
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in experiments with synthetic data. In figure 4.18 examples for the performance of the

energy minimization approach on synthetic data are shown. The true hypotheses lie on

the upper half of a sine wave that is scaled by a factor of 50.0. The number of true points

is 120, but 20 points are removed at random positions and from position 30 to 35 a series

of outliers is simulated, making the number of true hypotheses 94. The number of outlier

points increases from 10 to 30, 50 and 100. The noise level (uniform random noise is added

to the y-coordinates of the points) increases from 0.0 to 0.5, 1.0 and 2.0. The functional

v(s) is initialized with the average depth from all hypotheses - this make the initial shape

a horizontal line.
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Figure 4.18: Examples for outlier detection by energy minimization on synthetic data.
The true points lie on the upper half of a sine wave (scaled by a factor of 50.0). The
number of true points is 120, but 20 points are removed at random positions and from
position 30 to 35 a series of outliers is simulated, making the number of true hypotheses
94. The number of outlier points increases from 10 in (a) to 30 in (b), 50 in (c) and
100 in (d). The noise level (uniform random noise is added to the y-coordinates of the
points) increases from 0.0 in (a) to 0.5 in (b), 1.0 in (c) and 2.0 in (d). The functional
v(s) is initialized with the average depth from all hypotheses - this make the initial shape
a horizontal line.
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Figure 4.19: Examples for outlier detection by energy minimization on real data. The plots
(a) to (c) illustrate the performance of the energy minimization method on real data. In
typical data sets the number of outliers is significantly lower than the number of correct
hypotheses. As in the examples with synthetic data the functional v(s) is initialized with
the average depth from all hypotheses.
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4.2.6 Concluding Remarks

The presented method allows for the efficient computation of sparse clouds of 3d primitives

(3D points with associated direction vector) from 2D features that are extracted in multiple

oriented images. The main contribution is the use of stereo rectification to accelerate the

spatial query for edgel candidates the lie close to the epipolar line, the incorporation of

directional information associated to the 2D features in the selection process and the event

driven 3D hypothesis generation using an uncertainty measure. The image-based outlier

detection proved not to be sufficient for the robust detection of outliers. However, the

energy minimization approach shows promising results and can be used to achieve robust

verification of 3D hypotheses. This introduction of a global optimization scheme carried

out on contours significantly increased the robustness of the process.
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The analysis of the reconstruction accuracy of an image-based modeling framework

includes the study of influences from different sources of error. For measurements taken

with a camera the main factors that influence the accuracy of the reconstructed 3D points

are the accuracy of the measurements taken from the images, the accuracy of the image

orientation process, the accuracy of the intrinsic camera parameters (focal length, prin-

cipal point, lens distortion parameters) and the geometric configuration, also known as

strength, of the camera positions and orientation. Furthermore the overall complexity of

the observed scene influences the

The experimental section is structured as follows:

1. Analysis of the extraction accuracy of edges and ridges in individual images. The

findings provide estimates for all subsequent extraction/modeling methods.

2. Analysis of the extraction accuracy of straight 2D lines segments and vanishing

points in single images.

3. Evaluation of the performance of model fitting. In this section the ellipse fitting and

the affine square fitting methods are evaluated, again on single images.

117
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4. Assessment of the matching performance of the descriptors from section 3.2.

5. Analysis of the reconstruction accuracy of the space sweeping approach.

5.1 Evaluation framework

For the evaluation of the extraction accuracy of image features we use a framework that

generates synthetic images. The analysis of feature extraction methods using synthetic

images has the advantage that the ground truth is known. In order to avoid sampling

artifacts, that get introduced when primitives with non axis aligned lines or curved outlines

are rendered in an image, only simple geometric primitives consisting of axis aligned

straight line segments are used. In the present case we use axis aligned squares and lines.

The images have a radiometric resolution of 8bit (256 intensity values). Figure 5.1 shows

two rows of example images: The first row contains images of an axis aligned square filled

with different shades of gray. The square is placed on a mid gray back ground. These

images are used to test the accuracy of edgel extraction. The second row shows images

of a vertical line, again with different shades of gray, that is placed on a mid gray back

ground. These images are used for assessing the accuracy of the ridge extraction method.

To all test images Gaussian noise is added to the intensity values of the image pixels. The

standard deviation σ in the depicted images is 3 and 5 intensity values. Subsequently the

feature extraction is performed on these images. Finally, the evaluation the positions and

orientations of the extracted features are compared to the ground truth data.

The performance analysis for the vanishing point extraction methods is also carried

out on synthetic data. These synthetic data sets are created by defining a set of random

vanishing points p0 . . . pn in the bounded 2D plane (−105 < x < 105, −105 < y < 105).

The number of vanishing points is chosen to correspond to typical urban scenes which

exhibit one to five dominant vanishing points. The set of supporting 2D line segments is

generated in a bounded image plane. The number of lines supporting a particular vanishing

point is randomly varied between predefined bounds (30 to 1500 in our experiments). In

order to simulate real world conditions, the length of the line segments varies from 20 to

300 pixels and the direction vector of the 2D lines is corrupted with increasing amounts

of Gaussian noise (σ = 1..5o). Furthermore a variable number of random line segments

is inserted to test the robustness of extraction. Figure 5.2 shows an illustration of the

synthetic setup:

The evaluation of the performance of fitting affinely distorted squares to point sets is
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(a) (b)

(c) (d)

Figure 5.1: Illustration of synthetic test images for the feature extraction experiments.
Top row: Two images with an axis aligned square - these images are used to evaluate
the extraction accuracy of edgels and straight 2D lines. Bottom row: Two images with
a vertical line - these images are used to evaluate the extraction accuracy of ridgels.
The primitives in the images have increasing contrast (left: 20 intensity values, right
70 intensity values) and the images are contaminated by increasing amounts of additive
Gaussian noise (radiometric resolution = 8bit, image noise left σ = 3.0, image noise right
σ = 5.0).

also performed on synthetic data. In this experiment the 2D points of a synthetic square

are transformed by a random affine transform. In order to assess the robustness of the

method, the point coordinates are perturbed by increasing amounts of Gaussian noise.

Effects of imperfect segmentation are introduced by disturbing portions of the square

points by a smoothly varying random function. Thus the square fitting method faces
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VP
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Figure 5.2: Illustration of a synthetic line set for the analysis of the vanishing point
extraction methods. A number of line segments supports two vanishing points ( V P1

and V P2 shown as circle). The orientation of the line segments deviates from the true
orientation shown as thin continuous lines. Additionally a number of line segments that
do not support any vanishing point is present (shown as dashed lines). Note that the
indicated image frame is for illustration purposes only - the features are not rendered into
a synthetic image, but are directly fed to the vanishing point extraction methods.

the challenge of determining the affine transform parameters from a noisy point set that

contains outliers. In figure 5.3 examples for the test data sets are shown: From left to right

the amount of Gaussian noise as well as the number of outlier points increases. The result

of the fitting process is an affine transform that should match the generating transform as

close as possible.
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Figure 5.3: Illustration of synthetic 2D point sets for the evaluation of the affine square
fitting. From left to right the number of outlier points increases (left=0%, middle=15%,
right=30%) and the point locations are perturbed by decreasing amounts of additive
Gaussian noise (left σ = 0.21, middle σ = 0.15, right σ = 0.06). Note that the
illustrated feature points are not rendered into a synthetic image, but are directly fed to
the affine square fitting method.
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The evaluation of the multi-view space-sweeping method for the generation of sparse

point clouds from directed 2D primitives (edgels and ridgels) is also evaluated with syn-

thetic data. The use of a synthetic data set for the assessment of the accuracy of the

proposed space sweeping method allows to isolate the effects of individual parameters.

With this synthetic setup it is for example possible to analyze the influence of errors in

the image measurements without the effect of noisy camera parameters (intrinsic as well as

extrinsic). For this purpose a dataset with noise-free camera parameters and noisy image

features, in the particular case edges, is created.

Initially a set of synthetic cameras is generated, in the present case the cameras are all

looking into the same general direction. An axis aligned bounding box that is fully visible

for all cameras is defined - all 3D features are restricted to be in this box. This strategy

ensures that a valid image projection for each 3D primitive exists. The scene features

are 3D circles at a random position, with a random normal vector and a random radius.

These circles have an analytic representation and are therefore well suited for evaluation

purposes. The rounded outline of the circles allows to demonstrate the advantages of the

proposed method over other feature-based modeling methods that operate on straight line

segments.

From the 3D circles point sets are generated by sampling the circle at regular intervals.

The spatial resolution is chosen so that the distance between two adjacent points in the

image space of each camera is significantly smaller than one pixel - this ensures a contiguous

chain when projecting into the image space of the synthetic cameras. The 2D image edges

are directly created by re-projection of the synthetic 3D points instead of being extracted

from images. The vector between adjacent projected points is used to compute a direction

vector for these synthetic edges. Due to the high density of 3D points many points project

onto one discrete pixel position and a subsequent thinning process ensures that only one

edgel per pixel remains in the image. This ensures that circles that are farther from a

particular camera are sampled at a physically correct rate. The effect of image noise is

simulated by perturbing the position and the normal vector of the synthetic edgels with

Gaussian noise.

With this data set it is now possible to independently vary parameters and observe

the effects. Due to the known ground truth the evaluation is carried out in a straightfor-

ward way by simply comparing the reconstructed 3D primitives with their ground truth

neighbor.

Figure 5.4 shows three views of a test scene with fifteen 3D circles that are observed
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by six cameras.

(a) (b)

Figure 5.4: Two renderings of a set of fifteen synthetic 3D circles for the evaluation of
the space sweeping. The scene is observed by six synthetic cameras (symbolized by their
frustums) and all circles are fully visible in all cameras. The synthetic edgels are created
by projecting the 3D circle points into the cameras.

Having introduced the evaluation framework we now report the results of the experi-

ments.

5.2 Accuracy of edge and ridge extraction

In this section the geometric accuracy of the various point-like image features is analyzed.

This analysis is necessary since the geometric uncertainty of the extracted features influ-

ences all subsequent processing steps such as line extraction, vanishing point estimation,

image orientation and 3D modeling. Geometric uncertainties are the deviations of the

location of an extracted primitive from its true position. The degree of deviation is in-

fluenced by image noise and the types of geometric models that are used to estimate the

location. All features that are investigated in this section are extracted with sub-pixel

accuracy i.e. their position is not fixed to the integer grid of the image. The analysis

starts with an assessment of the location of edges and ridges. The extraction methods are

tested on synthetic and real images.

The synthetic test image for assessing the detection accuracy of the edge extraction

method consists of a set squares. In order to avoid a bias from the rendering methods only

axis aligned squares are used. The squares are rendered with decreasing contrast. For the

experiment different amounts of Gaussian noise are added to the images. For every test
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image the edgels are extracted using the method described in section 2 - Canny’s edge

extraction approach plus estimation of the location estimation. The evaluation analyses

the position and orientation of the extracted edges to the ground truth. Figure 5.5 shows

a crop out of a test image with extracted edgels (red arrows) and ground truth edge (cyan

line) overlaid.

Figure 5.5: Crop out of edgel extraction result in a noisy test image. The extracted
edgels are illustrated as red arrows and the ground truth as cyan line. Gaussian noise
with a standard deviation of 3.6 gray levels (the full range is 256 levels) was added in this
particular case.

Figure 5.6 lists the results of the edgel extraction on the synthetic images.

The intensity values of the 8-bit test images are corrupted by increasing amounts of

additive Gaussian noise (σ = 0.1 . . . 5) and three different contrast levels c are investigated

namely 20, 50 and 100 intensity values - this corresponds to 7.8 percent, 19.5 percent and

39 percent of the intensity range of an 8bit image. Due to the known ground truth the

evaluation of the extraction accuracy can by achieved in a straightforward manner. The

edges that are extracted close to the corners of the square are neglected in order to avoid
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Figure 5.6: Results for the edgel extraction using Canny’s extraction approach plus esti-
mation of the location estimation. In order to simulate realistic imaging conditions the
intensity values of the 8-bit test images are corrupted by increasing amounts of additive
Gaussian noise (σ = 0.1 . . . 5). Three different contrast levels are investigated namely 20,
50 and 100 intensity values - this corresponds to 7.8 percent, 19.5 percent and 39 percent
of the intensity range of an 8bit image. Due to the known ground truth the evaluation of
the extraction accuracy can be achieved in a straightforward manner. The figure on the
left shows the position error - which is the perpendicular distance of an edgel’s position
to the ground truth edge of the square. The figure on the right shows the orientation
error - which is the difference angle between the estimated normal vector of an edgel and
the ground truth normal vector of the square’s edge. The main observation is that the
position error remains low even under considerable noise and low contrast (maximum is
0.15 pixel for a contrast of 20 and σ = 4.6) whereas the orientation error is more sensitive
to noise (maximum is 7.2 degrees for a contrast of 20 and σ = 4.6).

influences of The figure on the left shows the position error - which is the perpendicular

distance of an edgel’s position to the ground truth edge of the square. The figure on the

right shows the orientation error - which is the difference angle between the estimated

normal vector of an edgel and the ground truth normal vector of the square’s edge. The

main observation is that the position error remains low even under considerable noise

and low contrast (maximum is 0.15 pixel for a contrast of 20 and σ = 4.6) whereas the
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orientation error is more sensitive to noise (maximum is 7.2 degrees for a contrast of 20

and σ = 4.6).

For testing the accuracy of ridge extraction the synthetic test images are filled with

vertical lines of 3 pixel width (this is a typical width that also occurs in natural images).

The background of the test image is mid gray and the lines are rendered with varying

contrast levels - the same values as for the edgel extraction experiments (20, 50 and 100

intensity values).

Figure 5.7 shows a crop out of a test image with extracted ridgels (red arrows) and

ground truth center line (in cyan) overlaid.

Figure 5.7: Crop out of ridgel extraction result in a noisy test image. The extracted
ridgels are illustrated as red arrows and the ground truth as cyan line. Gaussian noise
with a standard deviation of 3.6 gray values (the full range is 256 levels) was added in this
particular case. Note that the orientation of the extracted ridges has an ambiguity of ±π.

Figure 5.8 lists the results of the ridge extraction on the synthetic images.

The experiments in this section showed that directed features - in the particular case

edgels and ridgels can be extracted with sub-pixel accuracy. For moderate image noise
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Figure 5.8: Results for the ridgel extraction. In order to simulate realistic imaging con-
ditions the intensity values of the 8-bit test images are corrupted by increasing amounts
of additive Gaussian noise (σ = 0.1 . . . 5). Three different contrast levels are investigated
namely 20, 50 and 100 intensity values - this corresponds to 7.8 percent, 19.5 percent
and 39 percent of the intensity range of an 8bit image. Due to the known ground truth
the evaluation of the extraction accuracy can by achieved in a straightforward manner.
The figure on the left shows the position error - which is the perpendicular distance of a
ridgel’s position to the straight center line of the ridge. The figure on the right shows the
orientation error - which is the difference angle between the estimated normal vector of a
ridgel and the ground truth normal vector of the ridge’s center line. The main observa-
tion is that the position error remains low even under considerable noise and low contrast
(maximum is 0.15 pixel for a contrast of 20 and σ = 4.6graylevels) whereas the orien-
tation error is more sensitive to noise (maximum is 7.2 degrees for a contrast of 20 and
σ = 4.6graylevels). Another fact worth mentioning is the observation, that the location
and orientation errors of ridges are significantly lower than the errors for edges.

(σ = 1 . . . 5), as it is typical for digital images that are captured with consumer cameras,

the position accuracy is below 0.1 pixel and the orientation accuracy is below 5 degrees.

The influence of image noise grows if the contrast between ’background’ and ’foreground’

decreases. This dependency should be taken into account when features are used for

detecting more complex geometric primitives such as straight line segments or ellipses. In
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typical images the number of edgels is significantly higher than the number of ridgels but

as the experiments showed: Ridgels are a class of directed primitives that can be extracted

with an accuracy that is better than the achievable accuracy for edgels. In general ridges

may serve to provide information in regions where edge detection fails or becomes prone

to gross errors e.g. in cluttered regions.

5.3 Accuracy of 2D line segment and vanishing point ex-

traction

For testing the accuracy of the 2D line segment extraction the same synthetic images as

for the evaluation of the edgel extraction accuracy are used. For the Canny edges that

are extracted in these images straight line segments are extracted. The estimated line

parameters are then compared with the known ground truth, namely the sides of the

squares. Figure 5.9 shows the mean error for the translational and the rotational part.

The translational error is the average perpendicular distance of the two corresponding

corners of the synthetic squares to the estimated line segment. The rotational error is the

absolute enclosed angle between the normalized line vector of the estimated line and the

normal vector of the ground truth edge of the square.

The most notable observation is that the accuracy of the 2D line segments is sig-

nificantly higher than the accuracy of single edges. However keeping in mind that the

estimation of the line parameters is performed by an outlier sensitive linear least squares

approach, these results can only be expected when a proper inlier selection process, such

as RANSAC, is performed in advance. In conclusion the detection and fitting of straight

2D line segments increases the geometric accuracy and provides a compact representation.

The following experiments will analyze the performance and geometric accuracy of

Rother’s vanishing point extraction (RM) and for the Thales circle method (TCM) that

were both presented in Section 2.7. The first set of experiments uses synthetically gener-

ated line sets to assess the geometric accuracy.

Figure 5.10 shows the results for the two methods. The relative location error is

the measured distance of the located vanishing point from the images principal point

normalized by the true distance.

The main observation of this experiment is that the relative position error for Rother’s

method is approximately half as high as for the Thales circle method. However both

methods perform well, even under the presence of a high number of outlier lines. The
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Figure 5.9: Results for the straight line extraction. In order to simulate realistic imaging
conditions the intensity values of the 8-bit test images are corrupted by increasing amounts
of additive Gaussian noise (σ = 0.1 . . . 5). Three different contrast levels are investigated
namely 20, 50 and 100 intensity values - this corresponds to 7.8 percent, 19.5 percent and
39 percent of the intensity range of an 8bit image. Due to the known ground truth the
evaluation of the extraction accuracy can by achieved in a straightforward manner. The
figure on the left shows the position error - which is the average perpendicular distance
of the two corresponding corners of the synthetic squares to the estimated line segment.
The figure on the right shows the orientation error - which is the absolute enclosed angle
between the normalized line vector of the estimated line and the normal vector of the
ground truth edge of the square. The main observation is that the position error remains
low even under considerable noise and low contrast (maximum is 0.15 pixel for a contrast
of 20 and σ = 4.6) whereas the orientation error is more sensitive to noise (maximum
is 7.2 degrees for a contrast of 20 and σ = 4.6). Another fact worth mentioning is the
observation, that by fitting straight 2D lines to sets of collinear points the location and
orientation errors can be significantly reduced, compared to the source primitives - this
an inherent property of the least squares fitting model.

inferior accuracy of the TCM is caused by the indirect approach that detects the domi-

nant Thales circle using a RANSAC approach, whereas Rother’s method performs a direct

search on the line intersections. Since both methods are used for vanishing point detec-

tion the processing time is more crucial than the location accuracy. Given the fact that
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Figure 5.10: Results for the vanishing extraction. In order to simulate realistic imaging
conditions the end points of the straight 2d line segments are perturbed by increasing
amounts of additive Gaussian noise (σ = 0.1 . . . 5) and increasing amounts of random
outlier lines are added - the outlier rate or assumes the values 0.0, 0.1 and 0.5. The figure
on the left shows the relative position error for the Thales circle method and the right plot
shows the relative position error for Rother’s method [103]. The relative location error
is the measured distance of the located vanishing point from the images principal point
normalized by the true distance. The main observation is that the relative position error
for Rother’s method is approximately half as high as for the Thales circle method.

for high precision applications a subsequent least squares optimization of the vanishing

point position is a standard procedure, the lower accuracy of the Thales circle method is

outweighed by it’s speed: the Thales circle method is approximately 25 times faster than

Rother’s method.

The second experiment is carried out on real facade images and here the evaluation

is restricted to the visual verification of the detection results. Figures 5.11 an 5.12 shows

the extraction result for a typical facade image.

For the experiments with real data the number of RANSAC samples for the Thales

circle detection was to five times the number of extracted lines. The reference point was
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coincident with the image center. With these settings the method was able to robustly

identify the dominant vanishing in 40 test images.
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(a)

(b)

Figure 5.11: Example1: Illustration of extracted vanishing points for a real facade image.
The top image shows the inlier lines for the three detected vanishing points overlaid on the
original image. The bottom image shows the inlier lines and their corresponding Thales
circles, the vertical vanishing point (illustrated by the red line segments) and the right
horizontal vanishing point (shown in blue) lie far outside the image border, but the left
horizontal vanishing point (shown in green) lies close to the image so its Thales circle is
fully visible.
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(a)

(b)

Figure 5.12: Example2: Illustration of extracted vanishing points for a real facade image.
The top image shows the inlier lines for the three detected vanishing points overlaid on the
original image. The bottom image shows the inlier lines and their corresponding Thales
circles, the vertical vanishing point (illustrated by the red line segments) and the right
horizontals vanishing points (shown in blue and green). Since all vanishing points lie
relatively close to the image border, the corresponding Thales circles are fully visible.
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5.4 Accuracy of affine square fitting

For testing the performance of the affine square fitting we start with an evaluation of the

method on synthetic points sets as shown in the introduction of the framework 5.1. The

square fitting method faces the challenge of determining the affine transform parameters

from a noisy point set that contains outliers. The fitting process is a two stage approach:

In the first step a robust ellipse is detected for the point set. The inlier points for this

ellipse are then used to estimate an initial solution and in the second stage all points are

used to refine the affine square parameters. This approach helps to deal with gross outliers

and provides a robust initialization.

The estimated parameters are then compared with the known ground truth. For the

experiment we generated affine distorted squares and perturbed the point coordinate with

Gaussian noise. The standard deviation of the noise ranges from σ = 0.0..0.27. Addi-

tionally parts of the contour are replaced by outlier points - this models the influence of

imperfect segmentation. The completeness assumes values of c = 1.0, 0.85, 0.7 resulting in

outlier rates of 0%, 15% and 30%. Figure 5.13 shows the mean errors for the translational,

the scale parameters, the rotation angle and the shear factor.

The translational and scale errors are the average Euclidean distance between the

true position tx, ty and scale sx, sy and the estimated position and scales t′x, t′y, s
′
x, s′y. So

the scale error is computed as the Euclidean distance es =
√

(sx − s′x)2 + (sy − s′y)2, the

translational error is computed in the same way. The rotation error and the shear error

are computed as absolute difference between the ground truth value and the estimated

value. For low outlier rates the estimated parameters are close to the ground truth values,

but for an outlier rate of 30% the errors increase significantly. This is caused by the fact

that one complete side of the square is replaced by outlier points. Thus the estimation of

the parameters is strongly influenced by the outlier points. However if the outlier points

are more evenly distributed along the synthetic contour, the parameter estimation is likely

to be more robust. We chose the present outlier simulation to mimic the typical errors

that are present in contours that are generated by segmentation methods.

Figures 5.14 and 5.15 shows fitting results for the synthetic data.
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Figure 5.13: Results for the affine square fitting. The four plots show the errors of the
translation, scale rotation and shear. The translational and scale errors are the average
Euclidean distance between the true position tx, ty and scale sx, sy and the estimated
position and scales t′x, t′y, s

′
x, s′y. The rotation error and the shear error are computed

as absolute difference between ground truth value and estimated value. The standard
deviation of the noise ranges from σ = 0.0 . . . 0.27. The completeness assumes values of
c = 1.0, 0.85, 0.7 resulting in outlier rates of 0%, 15% and 30%.
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Figure 5.14: Illustration of the affine square fitting approach on synthetic 2D point sets.
The number of outlier points is 15% and the point locations are perturbed by Gaussian
noise (left σ = 0.03, right σ = 0.12, lower σ = 0.24). The dots represent the initial point
set and the circled points are the detected inlier points. The detected ellipse is shown as
dotted line and the fitted affine square is drawn using continuous lines.
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Figure 5.15: Illustration of the affine square fitting approach on synthetic 2D point sets.
The number of outlier points is 30% and the point locations are perturbed by Gaussian
noise (left σ = 0.03, right σ = 0.12, lower σ = 0.24). The dots represent the initial point
set and the circled points are the detected inlier points. The detected ellipse is shown as
dotted line and the fitted affine square is drawn using continuous lines.
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For the experiment with real data we extracted MSER’regions (Maximally Stable Ex-

tremal Regions) proposed by Matas et al. [61] from typical facade images and fitted affine

squares to the outer contour of this regions. A successful fit is reported if 70% of the

squares circumference is covered by inlier points (an inlier point must have a perpen-

dicular distance lower than 10% of the squares scale). The images have a resolution of

approximately 3000 × 2000 pixel. The overall processing time is in the range of 7 . . . 12

seconds on a 2.1Ghz machine.

Figures 5.16 and 5.17 show the results of this fitting process. The contours points of

the detected MSER’s are shown as red dots and the fitted affine squares are shown in blue.

The first image is a typical facade image taken in the city of Graz. The face is highly

structured and the detected MSER’s often have a complex shape. Thus the detection

of the correct transform parameters often fails. However for many contours the visually

correct parameters are found, the detail views 5.16(b),(c) show some examples. Note the

fitting results for the letters on the side of the bus.

The second image is from a publically available dataset that can be found at

http://cvlab.epfl.ch/ strecha/multiview/denseMVS.html. In this case the facade is

dominated by large windows that contain many small window panes. The fitting method

was able to detect many of these rectangular structures.

In conclusion the proposed approach is suitable for detecting rectangular structures in

facade images. The affine squares can be used to drive subsequent segmentation and clas-

sification methods. Since the fitting approach works on single images only the true aspect

ratio of the fitted primitives can not be estimated from the affine transform parameters.

This would require further knowledge of the scene, for example perpendicular vanishing

points or a 3D facade plane. Especially the presence of a 3D plane would allow to perform

a verification step that weeds out bad hypothesis by projecting the affine distorted squares

onto the plane and testing for right angles or symmetry.

During the experiments with real data a strong dependency on a robust initialization

was observed - a couple of outlier points can have a dominant influence on the estimated

parameters. A solution to this problem might be the use of the orientation information

that is implicitly present in the contour data. In that case not only the distance of a

point to the side of the square but also the angular difference between the points tangent

vector and the direction vector of the corresponding side of the square would be taken

into account in the fitting process.
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(a)

(b) (c)

Figure 5.16: Illustration of the affine square fitting approach on a real facade image.
The outer contour points of the MSER regions are shown as red dots and the fitted affine
square is overlaid in blue. Note that many rectangular details such as traffic signs or
details on the bus are detected correctly.
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(a)

(b) (c)

Figure 5.17: Illustration of the affine square fitting approach on a real facade image. The
outer contour points of the MSER regions are shown as red dots and the fitted affine
square is overlaid in cyan. Note that many of the window panes are detected correctly.
For objects that are small with respect to the image dimensions, the affine transform is a
good approximation for the perspective distortion effects. Due to the fact that the fitting
approach works on single images only and the true aspect ratio of the fitted primitives can
not be estimated. This would require further knowledge of the scene e.g. perpendicular
vanishing points or a 3D facade plane.
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5.5 Evaluation of combined descriptors

In this section the combination of local and global descriptors is evaluated.

The evaluation of the descriptors is performed on several image pairs of different build-

ings. For each building pair we perform the matching step using all descriptors. All

descriptors are computed for Harris corners that are extracted from each image in a pre-

processing step. As a reference descriptor we use a 15 × 15 pixel image patch that is

sampled w.r.t. a key orientation to achieve rotation invariance. The orientation for each

corner point is computed as described in [78]. We perform the matching between the image

pairs using normalized cross correlation as a similarity function for descriptor comparison.

In order to constitute a valid correspondence, the correlation between two descriptors must

be larger than 0.9 and the back matching must also be successful (i.e. the matching with

the best matching descriptor, detected in the right image by forward matching a query

descriptor from the left image to all descriptors in the right image, must again detect the

query descriptor as best match in the left image). For those test images that contain a

dominant planar structure we use a RANSAC method to detect the best fitting homogra-

phy that relates the correspondences. The distance threshold for inlier points was set to

15 pixel - this has the effect that image correspondences with small depth variations on

a generally planar object have less influence on the robust estimation of the underlying

homography. For image pairs that depict a non planar structure we compute the fun-

damental matrix with a robust RANSAC scheme. The number of inliers that fulfill the

geometric constraint (either homography or epipolar constraint) and the ratio of outlier

points to inlier points is used to measure the performance of the particular descriptor.

The first test is carried out on a set of images depicting a planar wall showing graffiti

paintings. This is one of the data sets used in the evaluation framework of local descriptors

presented in [85]. The images are taken from varying viewing angles and slight rotation

of the camera.

Since the wall is approximately planar we computed the best fitting homography from

the image correspondences in order to determine the inlier correspondences. Tables 5.1

and 5.2 show the number of total matches, the number of inliers and the ratio of inlier vs.

total matches.

When matching the descriptors of image a with the descriptors of image b the reference

method (cross correlation) performs best. This is due to the small view point change.

When matching image a and image c the pseudo global method performs best. The

shape context approach detects the largest number of total matches in both cases, but the
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Method total inliers ratio
matches

cross correlation 465 428 0.92
shape context 1537 548 0.35

pseudo global method 911 703 0.77

Table 5.1: Results for matching descriptors of image (a) with descriptors of image (b).

Method total inliers ratio
matches

cross correlation 174 119 0.68
shape context 1117 144 0.12

pseudo global method 456 415 0.91

Table 5.2: Results for matching descriptors of image (a) with image (c)

number of inliers is always worst.

The second test is carried out on three images of the historical facade of the national

library at Josefsplatz in Vienna. The facade has two dominant planes but the planes

exhibit strong depth deviations, so a robust fundamental matrix estimation is used to

determine the inlier correspondences.

Method total inliers ratio
matches

cross correlation 603 512 0.84
shape context 2611 550 0.21

pseudo global method 815 630 0.77

Table 5.3: Results for matching descriptors of image (a) with image (b).

Method total inliers ratio
matches

cross correlation 315 220 0.69
shape context 1669 153 0.092

pseudo global method 427 280 0.65

Table 5.4: Results for matching descriptors of image (a) with image (c).

The tables 5.3 and 5.4 for this data set show that the reference method is performing

well, the cyclic string matching and the shape context have poor performance and the

pseudo global approach yields an acceptable inlier rate of 65 to 77 percent.
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This data set is one of the data sets used in the evaluation framework of local descriptors

presented in [85]. The images are taken from different distances and considerable rotation

of the camera. Since the scene is dominated by an approx. planar facade we computed

the best fitting homography from the image correspondences in order to determine the

inlier correspondences.

Method total inliers ratio
matches

cross correlation 1658 715 0.43
shape context 2871 397 0.14

pseudo global method 1728 723 0.42

Table 5.5: Results for matching descriptors of image (a) with image (b).

Method total inliers ratio
matches

cross correlation 153 87 0.56
shape context 1355 failed failed

pseudo global method 507 465 0.91

Table 5.6: Results for matching descriptors of image (a) with image (c).

Table 5.5 shows that all methods are robust against image rotation and while cross

correlation has the best inlier vs. total matches ratio, the pseudo global method yields the

largest number of inliers. Table 5.6 demonstrates, that cross correlation is very sensitive

against scale changes and shape context failed to detect a valid homography. The pseudo

global method performs best and also the cyclic string matching has an inlier vs. total

matches ratio of 75 percent.

This data set consists of three images of the Mars statue at the Landhaus in Graz

taken from significantly different viewpoints. The scene has a large depth variation and

no dominant planar structures are present. For the determination of the inlier points we

compute the fundamental matrix.

Method total inliers ratio
matches

cross correlation 427 371 0.87
shape context 1586 61 0.03

pseudo global method 654 528 0.81

Table 5.7: Results for matching descriptors of image (a) with image (b)
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Method total inliers ratio
matches

cross correlation 134 49 0.36
shape context 1256 failed failed

pseudo global method 224 72 0.32

Table 5.8: Results for matching descriptors of image (a) with image (c)

Table 5.7 shows that the cross correlation performs well under weak view point changes

and that the pseudo global method and the cyclic string matching method both yield a

high number of inliers and a good inlier vs. total matches rate. In Table 5.8 it becomes

obvious that the shape context method is not sufficient to handle large view point changes

and that the other methods deteriorate under wide baseline setups.

This data set depicts three images of a modern facade with many repeating patterns.

Due to the planarity of the object we use a robustly estimated homography to determine

the number of inliers.

Method total inliers ratio
matches

cross correlation 269 171 0.63
shape context 2025 126 0.06

pseudo global method 308 223 0.72

Table 5.9: Results for matching descriptors of image (a) with image (b)

Method total inliers ratio
matches

cross correlation 163 39 0.23
shape context 1612 failed failed

pseudo global method 195 82 0.42

Table 5.10: Results for matching descriptors of image (a) with image (c)

The most noteworthy fact in table 5.9 is that the pseudo global approach performs best

and that the cyclic string matching method yields most inlier points but has a low ratio

of inliers to total matches. Table 5.10 shows, that the pseudo global approach deterio-

rates significantly slower than the cross correlation method and the cyclic string matching

method failed. The failing can be explained with the large number of nearly identical

corner points in the brick wall, that prevents the method from finding unambiguous cor-

respondences.
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In this section we presented an evaluation of three methods for the computation of

global descriptors. The pseudo global approach performed well for all data sets and yields

a good ratio of inliers vs. total matches, which is of significant importance for the robust

estimation of the geometric relation between images (epipolar geometry or planar homog-

raphy). The efficient implementation based on integral images makes it a suitable method

for matching large numbers of images, as it is the case in city modeling applications. The

cyclic string matching approach yielded the highest number of inliers in five of the ten

experiments, but the ratio of inliers vs. total matches is significantly worse when com-

pared with the pseudo global approach. The shape context method performed worst in

all experiments, this makes it clear that it is no stand-alone solution for image matching

and justifies the combination with a local descriptor as described in [89]. All methods can

still be improved and some fine tuning may improve the quality of the results.

In the light of existing methods for descriptor evaluation [85] it is clear that such

an evaluation should be carried out in order to have a fair comparison to existing local

descriptor approaches. Furthermore our modified version of the cyclic string matching

method should be evaluated against the existing one of Tell and Carlsson [123].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.18: Top row: Three of six images a graffiti scene. Middle row: Three of fifteen
images of a church. Bottom row: Three views of the 36 image ’dinosaur’ dataset. All data
can be downloaded from http://www.robots.ox.ac.uk/∼vgg/data.html
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(a) (b) (c)

Figure 5.19: Three images of the graffiti scene.
http://www.robots.ox.ac.uk/∼vgg/data.html

(a) (b) (c)

Figure 5.20: Three images of the facade of the national library in Vienna.

(a) (b) (c)

Figure 5.21: Three images of the UBC data set.
http://www.robots.ox.ac.uk/∼vgg/data.html
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(a) (b) (c)

Figure 5.22: Three images of the Mars statue at the Landhaus in Graz.

(a) (b) (c)

Figure 5.23: Three images of a modern facade with many repeating structures.
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5.6 Accuracy of 3D modeling

The final set of experiments analyzes the performance of the 3D modeling using the edge

sweeping approach from section 4.2. Recall that this method generates 3D hypotheses

using a space sweep approach and directed 2D primitives (edgels, ridgels) as input. The

evaluation is carried out on synthetic and real data sets. The synthetic data sets are

directly generated sets of 2D primitives . In contrast to features that are extracted from

synthetically generated images this approach has the advantage that all geometric errors

of the features are known.

For the experiments with real image data the error propagation method is used to

estimate the position and orientation uncertainty of the reconstructed 3D primitives.

For each dataset the uncertainties are illustrated by histograms, whereas the first two

histograms show the 3D uncertainty of the reconstructed primitives and the rightmost

histogram shows the distribution of the residuals in image space.

5.6.1 Synthetic data

The first of the following three experiments will investigate the effect of position errors

and orientation errors of the extracted primitives. The synthetic setup for this experiment

consists of six cameras that view 15 3D circles. The cameras are arranged in two rows

of three cameras. The baseline in the row is three meter and the two rows are separated

by 2 meter. This arrangement ensures a vertical and horizontal parallax. The 3D circles

are located at distances between 9 and 15 meters from the cameras. The focal length of

the synthetic cameras is 1200 pixel, the image resolution is 1600 × 1200 pixel and the

principal point is at (800, 600). The image edgels are generated by projecting the 3D

points of the circles into the image space and adding Gaussian noise to the 2D position

and the orientation (the normal vector of the edgel). Figure 5.24 shows a 3D rendering of

the setup and two illustrations of the 2D image data.
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Figure 5.24: Illustration of the setup for generating the synthetic edgel data. The upper
image shows a 3D rendering of the setup: Six cameras (symbolized by their frustums)
view a set of fifteen 3D circles. The circles are projected into the cameras to generate the
synthetic edgels. The images have a resolution of 1600 × 1200 pixel. Subfigures (b) and
(c) show the projected edgels for two different cameras.
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Thus the noisy position p′ of an edge is its true position p plus a random offset:

p′ = p + (dx,dy)T , where dx and dy are uniformly distributed random values from the

interval (−epos, epos) and epos varies from 0.1 to 0.5 pixel. The noisy normal vector v′ is

the true normal v perturbed by a random angular offset eori, where eori varies from 1 to

10 degrees.

Figures 5.26, 5.27 and 5.28 show the error histograms. The left histogram shows the

distribution of the 3D position errors, the histogram in the middle shows the distribution

of the 3D orientation errors and the right histogram shows the distribution of the image

residuals (== distance from re-projected 3D primitive to directed 2D feature).

For the given synthetic data the position error of a reconstructed primitive is the

Euclidean distance to the closest point on the corresponding 3D circle. The general idea is

illustrated in figure 5.25. For this projection the reconstructed primitive is first projected

onto the 3D plane that is defined by the 3D circle and the projection onto the circle is

then achieved by determining the circle’s intersection with the chord that spans from the

circle’s mid-point to the projected point.

The orientation error is determined as the enclosed angle between the circle’s tangent

(at the projected point) and the direction vector of the reconstructed primitive. For the

determination of outlier points we set a threshold of 10mm, that means every 3D primitive

that lies further from its corresponding circle is classified as outlier.

The main observation is that the reconstruction accuracy strongly depends on the

accuracy of the extracted features. The introduction of a fixed threshold for the classi-

fication of outliers is somewhat arbitrary and a dynamic threshold that takes the noise

levels into account would allow to make a better distinction between outliers and inliers.

For the next two experiments we set the noise level for the position to the maximal value

(epos = 0.5 pixel and the noise level for the orientation to the minimal value eori = 1 degree

and vice versa (epos = 0.1 pixel, eori = 10 degrees). This allows us to analyze which error

type has a stronger influence on the reconstruction accuracy.

Figures 5.29 and 5.30 again show the error histograms for the position errors and the

orientation errors of the reconstructed 3D primitives.

The most striking observation of the last two experiments is that the reconstruction

accuracy mainly depends on the position accuracy of the extracted primitives, less so on

the orientation accuracy. Even with an orientation noise level of eori = 10 degrees the

reconstruction accuracy of most of the primitives is below ±3mm, the mean is ±1.14mm.

In contrast, for the experiment with the position noise level set to its maximal value
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Figure 5.25: Illustration of the 3D position error of a reconstructed point p with respect to
a 3D circle: In order to compute the distance d, the point is first projected onto the plane
that is defined by the circle (shown in gray) resulting in point p′. The projection onto the

circle is then computed as: p′′ = r p′−pm

‖p′−pm‖ , where mp is the mid-point and r is the radius

of the circle. The distance d follows as d = ‖p − p′′‖. The orientation error between the
direction vector n associated with point p and the circle is the enclosed angles between n
and the circles tangent vector at p′′.

epos = 0.5 pixel, the reconstruction accuracy drops to an average value of ±7.12mm.

These findings give a strong hint on where to improve in the feature extraction pipeline,

namely on the position accuracy of the features.
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Figure 5.26: Error histograms for the synthetic data set: Fifteen 3D circles are observed
by six cameras. The position noise for the edgels is (epos = 0.1 pixel, the orientation
noise is eori = 1 degree. From the 7896 edgels in the reference image, 6513 hypotheses
are reconstructed, that is a rate of 0.82, 11 of the reconstructed primitives are classified
as outliers since they lie more than 10mm from the true position. The left histogram
shows the distribution of the 3D position errors, the histogram in the middle shows the
distribution of the 3D orientation errors and the right histogram shows the distribution of
the image residuals (== distance from re-projected 3D primitive to directed 2D feature).

Figure 5.27: Error histograms for the synthetic data set. The position noise for the edgels
is (epos = 0.3 pixel, the orientation noise is eori = 5 degrees. From the 7896 edgels in
the reference image, 3365 hypotheses are reconstructed, that is a rate of 0.43, 14 of the
reconstructed primitives are classified as outliers since they lie more than 10mm from the
true position.
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Figure 5.28: Error histograms for the synthetic data set. The position noise for the edgels
is (epos = 0.5 pixel, the orientation noise is eori = 10 degrees. From the 7896 edgels in
the reference image, 1425 hypotheses are reconstructed, that is a rate of 0.17, 18 of the
reconstructed primitives are classified as outliers since they lie more than 10mm from the
true position.

Figure 5.29: Error histograms for the synthetic data set. The position noise for the edgels
is maximal (epos = 0.5 pixel), the orientation noise is minimal (eori = 1 degree). From
the 7896 edgels in the reference image, 2313 hypotheses are reconstructed, that is a rate of
0.29, 24 of the reconstructed primitives are classified as outliers since they lie more than
10mm from the true position. The histogram of the position errors and the outlier count
indicate that the reconstruction accuracy strongly depends on the position accuracy of the
extracted features.
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Figure 5.30: Error histograms for the synthetic data set. The position noise for the edgels
is minimal (epos = 0.1 pixel), the orientation noise is maximal (eori = 10 degrees). From
the 7896 edgels in the reference image, 4633 hypotheses are reconstructed, that is a rate of
0.58, 20 of the reconstructed primitives are classified as outliers since they lie more than
10mm from the true position. This experiment shows that the reconstruction accuracy is
dominated by the position accuracy of the extracted features
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5.6.2 Real data

5.6.2.1 The fountain data

The first experiment with real data uses a multi image data set of a fountain. This

data set is part of an evaluation initiative for multi view stereo methods, organized

by the universities of Lausanne and Leuven and the Forschungsinstitut Optronik

und Mustererkennung in Ettlingen, Germany. The data set is publically available:

http://cvlab.epfl.ch/∼strecha/multiview/denseMVS.html . The fountain scene was

recorded by taking eleven images and in order to generate a ground truth surface, the

scene was also recorded with a 3D laser scanner. The Lidar data are represented as closed

surface using a triangle mesh. This mesh is also part of the publically available data.

Figure 5.31 shows a rendering of the triangle mesh.

The intrinsic camera parameters are known and exterior orientation parameters are

also provided. The images are images are free of lens distortion. Figure 5.32 shows four of

the eleven images. The resolution of the images is 3072× 2048 and the Lidar data consist

of 12.99 million triangles. The high density of Lidar points makes the data set well suited

for evaluating the proposed feature-based modeling method.

For our experiments we use the first six images of the sequence. The average distance

between the camera origins (baseline) is 1.37 meter. The positions of the reconstructed

primitives are then compared to the Lidar data, which serve as ground truth. The error of

the 3D point with respect to a triangle mesh is either the distance to the closest triangle

facet (if the 3D point projects into the facet), or the perpendicular distance to a triangle’s

edge. Any point that is further than 10mm from the triangle mesh is considered as outlier.

To recapitulate the main steps of the workflow are:

1. Feature extraction; Extract edgel chains from the input images (parameters for

Canny edge detection:σ = 1.0, tlow = 4.0, thigh = 6.0, parameters for edge-to-chain

linking: minimal chain points = 15).

2. Space sweeping; Extract 3D primitives using the proposed space-sweeping approach

(parameters: minimal number of image measurements=4).

3. Evaluation of the 3D position errors by comparing the position of the reconstructed

primitives with the Lidar data.

The three plots in figure 5.33 show the error histograms for the position errors. The

histograms are computed from the reconstruction errors of three individual runs. In each
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Figure 5.31: Rendering of the triangle mesh of the fountain scene, based on Lidar data.
The mesh consists of 12.99 million triangles. The high point density makes this data set
well suited for evaluating reconstruction results of image-based 3D modeling methods.
The image was taken from http://cvlab.epfl.ch/∼strecha/multiview/denseMVS.html

.

run a different image serves as reference image, namely image 2, image 3 and image 4 of

the sequence. For reference image 2, 95973 3D primitives are generated (356 points are

classifies outliers), for reference image 3, the number of primitives is 103095 (487 outliers),

and for reference image 4, 131716 primitives are found (434 outliers). The error distribu-

tions look similar and the mean reconstruction errors are ±7.4mm for reference image 2,
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(a) (b)

(c) (d)

Figure 5.32: Four of the eleven images of the fountain sequence - a publically avail-
able multi view data set for evaluation of image-based 3D reconstruction methods
(http://cvlab.epfl.ch/∼strecha/multiview/denseMVS.html). The images do not depict a
typical urban scene but the combination of high resolution images (3072×)2048 and high
resolution Lidar data (12.99 million triangles) provide a good basis for evaluating the
proposed feature-based modeling method.

±7.5mm for reference image 3, and ±8.7mm for reference image 4. The number of out-

liers is in approximately the same range for all reference images. Despite the relatively low

outlier count compared to the total number of primitives, their presence might influence

subsequent processing steps. However the detection of outliers based on their estimated

3D position and orientation uncertainty fails for certain degenerate cases.

The evaluation gives a good estimate of the achievable reconstruction accuracy. It also

shows the discrepancy of point densities between the modeling methods: The proposed

space sweeping approach produces less than 1% of the data points of the Lidar scanner.

This comparison holds also for dense multi-view stereo methods, where the number of

generated 3D points is approximately the number of pixels (6.3 MPixels in the present
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case). However, given the fact that approximately 500.000 edgels are detected in the input

images the reconstruction rate is low.

However the experiment is not ultimately conclusive, since no accuracy for the Lidar

data is given and the accuracy of the registration of the Lidar coordinate system to the

coordinate system of the cameras is also unknown. Another factor that makes the test

somewhat inconclusive is the fact that the space-sweeping method is based on edgels

and many edgels are detected on sharp depth-discontinuities where the Lidar scanning

technology can not perform at its highest accuracy (due to a non negligible spot size of

the laser beam).

Figure 5.33: Error histograms for the position errors of three individual runs. The left his-
togram shows the error distribution for image 2 serving as reference image, the histogram
in the middle shows the distribution for reference image 3 and the right histogram depicts
the error distribution for image 4 serving as reference image. The errors are measured as
the perpendicular distance of the reconstructed 3D primitive with respect to the closest
triangle facet of the mesh that is defined by the Lidar data points. The error distributions
look similar and the mean reconstruction errors are ±7.4mm for (a), ±7.8mm for (b) and
±9.3mm for (c). The evaluation gives a good estimate of the achievable reconstruction
accuracy. However the experiment is not ultimately conclusive, since no accuracy for the
Lidar data is given and the accuracy of the registration of the Lidar coordinate system to
the coordinate system of the cameras is also unknown.
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The following experiments use real images that were acquired with digital SLR cameras

in the city of Graz. The intrinsic camera parameters are determined by an off-line camera

calibration and the exterior camera orientation parameters of the images are determined

by automatic multi-image matching followed by an estimation of the relative orientation of

image pair in the sequence and a final bundle adjustment for all images. The depth range

for the sweeping is automatically calculated from the reconstructed tie-points of the image

orientation stage. Due to the fact that for these data sets no ground truth is available,

the position and orientation uncertainties of the generated 3D primitives is estimated by

error propagation. Thus the workflow is structured as follows: To recapitulate the main

steps of the workflow are:

1. Feature extraction; Extract edgel chains from the input images (parameters for

Canny edge detection:σ = 1.0, tlow = 4.0, thigh = 6.0, parameters for edge-to-chain

linking: minimal chain points = 15).

2. Space sweeping; Extract 3D primitives using the proposed space-sweeping approach

(parameters: minimal number of image measurements=4).

3. Estimation of the 3D position and orientation uncertainties by error propagation.

5.6.2.2 The historical courtyard in Graz

The first data set that is investigated consists of five images of the historical Landhaus

courtyard in Graz. The images have a resolution of 2160×1440 pixel. The most prominent

objects are the historical facade and roof structure and the ironwork that covers the well.

Figure 5.34 shows three of the five images and renderings of the reconstructed 3D primitives

from different viewpoints. The overall structure of the scene is captured and many details

show up in the reconstruction. Especially notable is the partial reconstruction of the

ironwork of the well - it was modeled despite its sparse structure.

For the visual assessment of the reconstruction accuracy and completeness the ex-

tracted 2D edgels and the projected 3D primitives are overlaid onto the original images.

For greater clarity only a small portion of the image is visualized. Four such overlays

are shown in figure 5.35. These illustrations serve two purposes: First it gives an im-

pression of the reconstruction accuracy by comparing the extracted 2D edgels position

to the reprojected primitives position. Since the criterion for accepting a 3D hypothesis

is a low reprojection error the projections of the primitives are always within less than

0.5 pixel from the 2D edgel. The second purpose for this illustration is the estimation of
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the completeness of the reconstruction, or in other words how many 2D edgels do have a

3D primitive associated with them? In the case of the Landhaus facade many horizontal

edgels do not have a 3D primitive associated with them. This is caused by the fact that

cameras are displaced in horizontal direction, parallel to the facade and thus horizontal

structures cannot be reconstructed with a low uncertainty.

In order to estimate the accuracy of the reconstruction the covariances for the position

and orientation are computed by error propagation. For the a priori position uncertainty a

value of ±0.25 pixel was assumed and for the orientation uncertainty of the edgels normal

vectors a value of ±3 degrees was assumed. The mean position uncertainty is ±12.2mm

and the mean orientation uncertainty is ±3.9 degrees. The histogram that illustrates the

orientation uncertainty is cut at 9 degrees - this was the predefined threshold for accepting

a 3D hypothesis during the sweeping.

Figure 5.36 shows the histograms for the a posteriori uncertainties of the position and

the orientation.
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(a) (b)

(c)

(d) (e)

(f)

Figure 5.34: Top row: Three of the five images of the courtyard scene (image size = 2160
× 1440, 210k edgels on average) Bottom row: Three views of the resulting 3D point cloud.
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(a) (b)

(c) (d)

Figure 5.35: Overlays of extracted 2D edgels (in blue) and projected 3D primitives (in
orange) onto four source images. This illustration gives an impression of the reconstruc-
tion accuracy by comparing the extracted 2D edgels position to the reprojected primitives
position. Furthermore it shows that horizontal features do not have a 3D primitive asso-
ciated to them - this is due to the geometric configuration of the cameras (only horizontal
displacements).
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Figure 5.36: Histograms for the estimated position uncertainty (a) and the estimated
orientation uncertainty (b). The estimates are computed using error propagation from
estimated a priory uncertainties of the extracted 2D features. The mean position uncer-
tainty is ±12.5mm and the mean orientation uncertainty is ±3.9 degrees. The histogram
that illustrates the orientation uncertainty is cut at 9 degrees - this was the predefined
threshold for accepting 3D hypothesis during the sweeping.
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The second data set that is investigated consists of five images of the Mars statue

at the main entry to the Landhaus courtyard in Graz. The scene differs significantly

from the courtyard scenario - in this case the camera motion describes an approximate

half circle around the object. Figure 5.37 shows three of the five images and renderings

of the reconstructed 3D primitives from different viewpoints. The overall structure of

the statue is captured and many details show up in the reconstruction. This scene is

especially interesting due to the presence of many curved lines. The rendering shows that

many curves were reconstructed correctly, particularly at examining the reprojections in

figure 5.38.

As for the courtyard scene overlays of edgels, and projected 3D primitives onto the

source images are presented. The statues head and part of the upper body is shown in

four such overlays in figure 5.38. A notably observation is that despite a significant change

of viewpoints and thus significant differences in the appearance of the first and the last

image in the sequence, many primitives are reconstructed correctly. One outlier is visible

in the upper right corner of image 5.38(d).

As in the courtyard example the covariances for the position and orientation are com-

puted by error propagation. The same a priori position uncertainty (±0.25 pixel) and

orientation uncertainty (±3 degrees) are assumed. Figure 5.39 shows the histograms for

the a posteriori uncertainties of the position and the orientation.

The mean position uncertainty is ±5.7mm and the mean orientation uncertainty is

±3.6 degrees. The histogram that illustrates the orientation uncertainty is cut at 7 degrees

- this was the predefined threshold for accepting 3D hypotheses during the sweeping. The

fact that the position uncertainty is significantly lower for the statue scene as it was for

the courtyard scene can be explained by the different camera motion: While the camera

motion was dominantly linear for the courtyard scene, it was nearly circular for the statue

scene. Another cause is the object distance - the statue was only 2 to 4 meters from the

cameras, the distance from the facade to the camera positions was more than 20 meters.

These two experiments show the influence of the recording strategy on the final re-

sults. In traditional photogrammetric recording considerable effort goes into the mission

planning. In this stage the best recording positions for a given scene are determined. The

goal of this strategy is to minimize the number of images that are necessary for the desired

measurements and to determine camera positions that allow the most accurate measure-

ments. In an automated recording mission that is carried out with a mobile platform

such considerations can often not be incorporated due to restricted access to the objects
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that are to be recorded or due to mechanical limitations of the recording platform itself.

Automatic recording missions will therefore not be capable of producing recordings with

the same fidelity as well planned manual recording missions. However this is compensated

by increased redundancy. Mainly they will suffer from limitations that inhibit recording

from the geometrically optimal view points and from the constraint that such platforms

will have to be perpetually in motion.

In the experimental section we showed that the accuracy of the reconstructed 3D prim-

itives is influenced by two factors: the accuracy of the 2D primitives and the configuration

of the camera network. Since in an efficient city modeling work-flow the configuration

of the camera network is constrained, an optimal system should ensure a vertical base-

line between consecutive views. This allows to reconstruct structures that are parallel to

the platforms motion vector. The magnitude of the vertical baseline will determine the

achievable geometric accuracy for those structures. As a conclusion, it can be said that

the design of a mobile recording platform will have a significant influence on the achievable

geometric accuracy.
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(a) (b)

(c)

(d) (e)

(f)

Figure 5.37: Top row: Three of the five statue images (image size = 2032 × 1352, 270k
edgels on average). Bottom row: Three views of the resulting 3D point cloud.
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(a) (b)

(c) (d)

Figure 5.38: Overlays of extracted 2D edgels (in blue) and projected 3D primitives onto
four source images. This illustration gives an impression of the reconstruction accuracy by
comparing the extracted 2D edgels position to the reprojected primitives position. Further-
more it shows that also for edgels that belong to curved lines a successful reconstruction
can be performed. Also notable is the significant change of the images appearance due to
large view point changes.
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Figure 5.39: Histograms for the estimated position uncertainty (a) and the estimated
orientation uncertainty (b). The estimates are computed using error propagation from
estimated a priory uncertainties of the extracted 2D features. The mean position uncer-
tainty is 0±5.7mm and the mean orientation uncertainty is ±3.6 degrees. The histogram
that illustrates the orientation uncertainty is cut at 7 degrees - this was the predefined
threshold for accepting 3D hypothesis during the sweeping.
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This project is concerned with the fully automatic extraction of 3D primitives from

digital images. The chosen testbed is the creation of 3D models of buildings as this is an

area of ongoing research. The results contribute to the improvement of current methods

used for modeling buildings from multiple images. The use of modern computer vision

methods for the extraction of 3D data guarantees an efficient and robust way for data

acquisition and furthermore allows for the fully automatic processing of large data sets.

The consequent usage of image features throughout the whole processing chain showed

the potential of the proposed methods to produce meaningful results.

Indeed, the project is a good starting point for anyone who is interested in feature based

modeling. It presents powerful methods for extracting, processing geometric primitives

and demonstrates a powerful 3D modeling approach.

6.1 Contributions of the thesis

The main contributions of the thesis can be divided into three major parts:

Accurate feature extraction In this part we showed that geometric features can be

extracted in a robust and efficient manner. Especially the methods for computing

points-of-interest from geometric features such as the Zwickel method demonstrated

an alternative to standard approaches. The robust vanishing point extraction based

171
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on the Thales circle is an interesting new approach with applications in mobile map-

ping. The efficient detection of vanishing points allows for the estimation of the

relative rotation (or components of the rotation) between successive images. The

vertical vanishing provides a consistent estimate for the up-direction (which can be

integrated as gauge constraint in a bundle adjustment approach). For two or more

orthogonal vanishing points a rectification of scene planes can be performed. The rec-

tified images are suited for automatic interpretation approaches. The robust fitting

of affine squares has applications in the field of automatic semantic interpretation of

images.

Robust correspondence estimation The proposed feature-based descriptors for

matching points-of-interest were carefully derived for the particular case of city

modeling, but can also be used in other application where similar image capturing

strategies are used. In Urschler et al. [130] the use of the approximated shape

context descriptor for the registration of volumetric computer tomography data

sets was demonstrated.

Efficient 3D modeling by space sweeping The space sweep based 3D modeling ap-

proach, that works with chains of directed primitives is the main contribution of

this project. This sparse modeling approach makes use of the high overlap between

images within a sequence and is therefore well suited for the specific task of modeling

buildings. We showed that the generation of directed 3D primitives can be achieved

in an efficient manner and demonstrated a method for robust outlier removal based

on energy minimization. We showed that high accuracy and efficiency do not con-

tradict each other. In contrast to earlier feature-based 3D modeling approaches that

work with sets of straight lines and conics, the ability to directly model from a set

of arbitrary 2D chains produces significantly richer models. Applications for these

models range from robust fitting of building models to direct primitive fitting for

the individual 3D chains.

Using the proposed modeling method to tackle specific problems is also a possibility:

The algorithm works well on problematic surfaces since it is inherently robust against

outliers. A scenario could be the modeling of windows with specular reflections -

dense image matching methods have problems finding the optimal surface whereas

the proposed method only models the stationary contours. Another example is the

modeling of cars in urban images. Cars are mainly responsible for large occlusions



6.2. Open problems 173

of the facades and their appearance (the surfaces are highly specular, smooth and

textureless) makes a robust reconstruction with dense modeling nearly impossible,

again the space sweep approach would only model the stationary outlines. In general

we come to the conclusion that the proposed method constitutes a viable alternative

to dense modeling techniques.

A point that can not be stressed enough, is the observation, that increases in ro-

bustness are mainly achieved by the high redundancy in the image sequences.

6.2 Open problems

This work merely scratched on the surface of the field. Nevertheless the proposed methods

constitute improvements to existing methods. During the course of this work solutions

to several problems originated, but in the same instant other problems emerged. In the

following the most pressing problems from the author’s view will be discussed and potential

solutions will be proposed.

6.2.1 Data propagation

A mobile photogrammetric platform capturing its environment will produce image data in

consecutive order and with a high redundancy (due to a high overlap between neighboring

images). While this knowledge is exploited to speed up the tasks of image orientation it is

almost neglected in the modeling stage. In the presented work the modeling was performed

on small sets of images but for each set individually - no strategy for propagating 3D

data to the next image set was performed. An improved strategy would be the sliding

window approach that incrementally adds a new image and removes the oldest image of the

sequence. Consequently a well designed strategy to propagate 3D primitives and then use

these data for narrowing down the search space for potential matches could considerably

lower the computational burden of the work flow. In many cases a new match might

be directly used to improve the accuracy of an existing 3D primitive or the search for

a match can be terminated prematurely. The necessity for making use of previously

generated models is even higher in case of update missions.

6.2.2 Update missions

In order to keep a city model coherent, regular update missions are necessary. The au-

tomatic detection of significant changes and the completion of cartographic features such
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as roads or buildings can be achieved with higher certainty. In such missions the cap-

turing platform is in charted territory and can make use of already existing information.

An automatic location via image similarity measures and subsequent pose estimation can

determine the exterior orientation parameters of the new images. If available, GPS coordi-

nates can narrow down the search space. In urban environments robust change detection

is an important topic and efficient 3D modeling methods can help in this context.

Another potential advantage of such missions is the possibility of completing geometry

and textures for previously occluded areas (e.g. by cars on roads, vegetation, people,

self-occlusions) and the refinement of existing models. Recognition methods can help

by significantly reducing the complexity for the pose estimation by providing a rough

localization through efficient delimiting of the number of possible camera poses. Through

the introduction of further images the spatial accuracy of already reconstructed geometric

primitives can be enhanced and ambiguities can be resolved. Guided reconstruction can

be applied to densify regions where the reconstructed mesh has a low resolution and on the

other hand abstraction algorithms can benefit from a denser modeled mesh. Radiometric

properties of the imaged objects can be estimated if the recording missions are performed

under different lighting conditions.

6.2.3 Segmentation vs. classification

The extraction of 3D information from images during the modeling stage relies on the seg-

mentation of geometric primitives such as edgels, contour chains, line segments etc. This

corresponds to a typical bottom-up scheme of data processing. Contrary to this approach

a top-down scheme would perform a classification of the scene by semantically labeling re-

gions in the images. This labelling partitions the scene into meaningful entities for which

specific 3D reconstruction methods can be applied. Examples would be a detector for

windows within the facades or a detector for cars.

6.2.4 Data fusion

The feature-based modeling and area-based reconstruction approaches produce 3D data of

very different modalities. While feature-based 3D reconstruction methods produce sparse

data with high spatial accuracy, area-based reconstruction methods produce dense height

fields or triangle meshes with a reduced geometric accuracy in textureless regions and

smoothed depth discontinuities. An ideal approach should join the 3D data produced by

the two methods by making the best use of the somehow ”dual” characteristics of the
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data. The faster execution time of the feature-based approach implies that it should be

ran in advance of any area-based method and then be used to initialize and guide the

area-based modeling. An approach for using sparse point data in an area-based dense

matching approach was demonstrated in [125].

6.2.5 Privacy

Whenever large urban areas are mapped the produced images contain people and the

unedited publishing may therefore raise privacy concerns. In fact every non stationary

object depicted in the imagery (especially people and cars) that may lead to the identifi-

cation of a person, e.g. via the recognizable faces or license plates, are prone to misuse. It

is not far-fetched to predict that after a few incidents of doubtful or unauthorized use of

the data by a government agency an extensive public debate will take place. Even though

in this thesis no method for producing texture information was proposed, the potential

risks of misuse of high resolution terrestrial image data is worth mentioning. This line

of argument holds since even the archiving of the raw data may constitute a violation of

privacy laws. The huge effort of recent recording missions and produced amount of data

will spawn efforts for the automatic blurring of faces and license plates in their wake.

6.2.6 Concluding remarks

During the work on this thesis many of the assumptions changed. While in 2001 the

creation of 3D city models was mainly in the hand of a few specialized companies and

academic institutions, it is now a battlefield for few (two?) global players. The reason

for this is the need for constant maintenance of such fast changing entities as urban

areas. Furthermore, a solid business model is needed to finance a globally spanning geo-

information system. The near future will show to what degree this ubiquitous mapping

will change our private lives. Maybe the next generation will develop a whole new sense

of spatial embeddedness.

The integration of real time information into the visual presentation of geo-information

will allow for fast assessment of complex local phenomena (e.g. real-time weather situ-

ation with cloud overlay, readings from various environmental sensors, real-time traffic

information, GPS tracking for everybody but especially for children/property etc.). The

amount of data that is provided by the general public is increasing exponentially. Espe-

cially digital images and videos are a valuable data source that is gaining more attention

of the scientific community.
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Some of the prospects may appear spooky at the first glance but the future will tell if

they become socially accepted.
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