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Abstract

In the last decade, automatic fingerprint based personal authentication has matured to
the point where it can be successfully applied in a myriad of applications. These ap-
plications are ranging from the low cost door opener for private use up to the critical
government application ensuring national security.
One common ground of all this fingerprint based personal authentication systems is
the necessity for estimation of fingerprint ridge orientation. The importance of ridge
orientation can be deflected from the fact that it is inevitably used for detecting, describ-
ing and matching fingerprint features such as minutiae and singular points. Using the
ridge orientation, not only the error rates can be improved, but also more efficient im-
age compression and a speed up in database queries can be achieved. This is the main
motivation of this thesis and of many publications available in literature for modelling
fingerprint ridge orientation.
In this thesis we analyse current available techniques and propose a novel method
for fingerprint ridge orientation modelling. One of the main problems it addresses is
smoothing orientation data while preserving details in high curvature areas, especially
around singular points. We show that singular points, which result in a discontinuous
orientation field, can be modelled by the zero-poles of orthogonal polynomials. The
models parameters are obtained in a fast two staged optimization procedure.
Another contribution of this thesis is the application of a priori knowledge in finger-
print orientation models. Starting from the view point of flexible templates models, we
develop a method which constraints the fingerprint orientation to vary only in ways as
they occur in nature.
Extensive experiments using a commercial state-of-the-art fingerprint matcher, have
been carried out. We can report statistically significant improvements in both, singu-
lar point detection and matching rates.





Zusammenfassung

Im letzten Jahrzehnt konnte die Leistungsfähigkeit von automatischen Fingerabdruck-
Erkennungssystemen erheblich verbessert werden. Mittlerweile kommen diese biometri-
schen Erkennungssysteme immer häufiger im öffentlichen als auch im privaten Bereich
zum Einsatz.
Eine Gemeinsamkeit aller Fingerabdruck-Erkennungssysteme ist die Notwendigkeit zur
Extraktion der Richtungen von papillaren Linien eines Fingerabdruckes. Dies resultiert
aus der Tatsache das diese Orientierungsinformation für die Detektion, Beschreibung
und für das Verifizieren von Fingerabdrücken verwendet wird. Weiters können diese
Orientierungfelder für die effiziente Kompression von Fingerabdruck-Bildern als auch
zum Beschleunigen von vorhandenen Algorithmen verwendet werden. Fehlerraten ei-
nes Fingerabdruck-Erkennungssystemen hängen damit direkt mit der Qualität des Ori-
entierungfeldes zusammen. Dies ist die Hauptmotivation für die Forschung an einem
modellbasierten Verfahren zur Bestimmung des Orientierungsfeldes.
In der vorliegenden Arbeit werden vorhandene Methoden der Literatur zur Modellie-
rung von Orientierungsfeldern von Fingerabdrücken analysiert. Es werden neue, ver-
besserte Methoden erarbeitet, die eine erhebliche Verbesserung im Vergleich zu vorhan-
denen Methoden darstellen. Ein zentrales Problem bei der Bestimmung von Orientie-
rungsfeldern besteht darin den Einfluss von Störungen möglichst zu reduzieren aber
gleichzeitig die singulären Punkte zu erhalten.
Eine weitere Kontribution der vorliegenden Dissertation ist die Anwendung von a priori
Wissen für die Extaktion von Orientierungsfeldern. Hier wird ausgehend von sogenann-
ten ’flexible template models’ systematisch eine Methode entwickelt die Orientierungs-
felder auf biologisch plausible Varianten begrenzt.
Im experimentellen Teil werden die Vorteile des in dieser Arbeit beschriebenen Modells
mittels kommerziell erhältliche Fingerprint-Software nachgewiesen. Es konnte einerseits
die Fehlerrate verringert und andrerseits die Zuverlässigkeit der Detektion von Singu-
laritäten erhöht werden.





All models are wrong, but some are useful.

George Edward Pelham Box
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2 Chapter 1. Introduction

Abstract

The primary goal of the first chapter is to give a general introduction on biometrics with focus on

fingerprint verification. It is explained how a fingerprint verification system extracts distinctive

features and uses these features for ’matching’ two fingerprints. One of the main modules of a

fingerprint verification system, namely fingerprint ridge orientation estimation, is described in

detail. We will describe the role of this module and discuss the motivations behind fingerprint

ridge orientation modelling. These motivations are mainly concerned with lower error rates,

higher compression ratios and lower processing times. In the last part of this chapter an outline

of the thesis is given.

1.1 Biometric systems

Humans have experience in recognizing a familiar person based on his/her specific
characteristics, like voice, face, gait etc. Nowadays, there is an increasing need for reli-
able personal identification by automatic means. This has resulted in the establishment
of a new research and technology area known as biometric recognition or simply ’bio-
metrics’ [47]. In this case the term ’biometrics’ refers to automatic recognition of an
individual based on behavioural and/or anatomical characteristics (e.g.: fingerprints,
face, iris, voice, signature, etc.).

Most of the basic knowledge associated with person identification was already es-
tablished by forensic scientists in the early 20th century. For example Alphonse Bertillon
developed the anthropometric identification approach, based on the measure of phys-
ical characteristics of a person [37]. Galton [27] identified the characteristics by which
fingerprints can be identified. These characteristics (called minutia) are basically still in
use today, and are also referred to as Galton’s Details.

Today, we are seeing an increasing deployment of biometric systems in many aspects
of life, including face, fingerprint, gait and iris recognition systems at airports (examples
are given in Figure 1.1 and 1.2) as well as access to highly secure facilities [19]. Biometric
systems offer great convenience and several advantages over traditional security systems
based on passwords (can be forgotten, shared, copied) or keys (can also be stolen, copied
or lost). Without sophisticated means, biometrics are difficult to share, steal or forge
and cannot be forgotten or lost. Therefore, biometrics provide a higher security level in
identity prove. Additionally, the combination of possession (key) and knowledge (pin)
with biometrics makes the identity proof even more secure.
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A significant difference between a biometrics based person identification and con-
ventional methods is that the latter involves a complex pattern recognition method and
hence not always performs accurately as intended by their system designers. A pass-
word based authentication method provides a clear answer if a person is who she/he
claims to be, whereas a biometric system usually provides a similarity score.

Biometric systems are not perfectly accurate and basically commit two types of er-
rors. In the first case the system may identify an impostor to be a genuine user. In
the second case the system rejects a genuine user as an impostor. Whereas the false
reject leads to inconvenience for users, a false acceptance provides the access to a non
authorised user.

Other issues are related to biometric systems being a privacy concern. Usually, a
part of a personal information is stored in a database. In contrast to passwords, which
are usually stored encoded by a hash function, securing biometric templates represents
a very difficult task. This is due to the reason that it is difficult to find a hash function
being error tolerant enough for biometric data and at the same time being non invertible.
Biometrics based security systems are generally classified into verification systems and
identification systems. Verification systems usually output a decision about whether a
query biometric matches the holding template on a one-to-one basis, whereas identifica-
tion suggest whether or not the query can find a match in the database, which is instead
a one-to-many matching process.

Any human physiological or behavioural characteristic can be used as a biometric
identifier to recognize a person as long as it satisfies the following requirements [44]:

• universality: each person should have the perspective biometric.

• distinctiveness: the biometrics of any two persons should be sufficiently different.

• permanence: biometrics should be sufficiently invariant over a period of time.

• collectability: the biometrics can be measured quantitatively.

Additionally, there are a number of practical issues which should be considered:

• performance: refers to achievable recognition accuracy, speed, robustness, the re-
source requirements to achieve the desired recognition accuracy and speed, as
well as operational or environmental factors that affect the recognition accuracy
and speed.

• acceptability: which indicates the extent to which people are willing to accept a
particular biometric identifier in their daily lives.
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• circumvention: refers to how easily the system can be fooled by fraudulent meth-
ods.

A practical biometric system should have acceptable recognition accuracy and speed
with reasonable resource requirements, should be harmless to the user, accepted by the
user, accepted by the intended population, and sufficiently robust to various fraudulent
methods.

Figure 1.1: An official taking fingerprints of a passenger arriving at Dallas’ airport.

1.2 Fingerprint Features: global and local

The attractiveness of fingerprints results from their uniqueness which does not change
through the life of individuals [72]. Characteristic fingerprint features can be categorized
[44, 43] into three levels (visual explanation given in Figure 1.3).
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Figure 1.2: Regular guests scanning their fingerprints during a recent trial of a finger-
print identification systems at the Metropolis Fremantle nighclub in Perth, WA, Western
Australia.

• Level 1 features are the macro details of the fingerprint. A fingerprint forms a
pattern of ridges and valleys on the surface of a fingertip. Ridges and valleys
form an almost smooth pattern. On closer examination singular points (SPs) can
be found where the orientation is discontinues. Though not unique, these level
1 features play an important role in automatic fingerprint matching algorithms.
Typically, level 1 features are used to classify a fingerprint into one of several
classes. Level 1 features have been used in fingerprint analysis for a long time.
In 1892 Galton [27] already used them to classify fingerprints into three different
classes (loops, whorls and arches). A more modern terminology, usually called
the Henry-Galton classification schema (shown in Figure 1.4), uses the following
six classes: an arch is a fingerprint featuring no SP at all, loops and tented archs
show one core and one delta, whorls and twin loops have two deltas and one or
two cores. Classification reduces the amount of data to be searched for matches as
the database can be partitioned into subsets. Especially in large scale applications
this results in a vital speed up. Furthermore, the matching process can be made
more robust by using SPs. Usually this is done by aligning a pair of fingerprints
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Figure 1.3: Fingerprint features of different levels. From left to right: minutiae, singular
point and a pore.

before matching. All SP detection algorithms make use of the ridge orientation,
which as described below, can be very difficult to extract in certain regions.

• Level 2 features represent the back end of automatic fingerprint authentication sys-
tems. The so-called minutiae arise at positions where ridges end or bifurcate. An
overview of all three features is given in Figure 1.3. Theoretical considerations [72]
show that these level 2 features have enough discrimination power to guarantee
the individuality of a fingerprint over (at least) billions of samples. Practical anal-
yses [45, 15, 62, 20] show that poor image quality severely affects the recognition
performance - especially in large scale applications.

• Level 3 features are on every ridge of the finger epidermis - in form of many
tiny sweat pores and other permanent details (e.g. scares). Pores are considered
to be highly distinctive in terms of their number, position, and shape. However,
extracting pores is feasible only in high-resolution fingerprint images (for example
1000 DPI) and in very high quality images. Therefore, this kind of representation
is only rarely adopted by current systems. A recent example where level 3 features
are applied for forensic purpose is given in [43].
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(a) arch (b) left loop (c) right loop

(d) tented arch (e) whorl (f) twin loop

Figure 1.4: Henry-Galton fingerprint classification scheme: arch, left loop, right loop
(top). tented arch, whorl, twin loop (bottom). Core type singular points are marked
with ’◦’ and delta type singular points are marked with a ’4’.

1.3 Fingerprint Recognition

As mentioned before, there are different type of biometric identifiers in use in various
applications. Among them are ear, face, facial thermogram, hand thermogram, hand
vein, hand geometry, fingerprint, iris, retina, signature, footsteps, gait, keystroke dy-
namics, voice, odor and DNA.

Comparing different biometrics will show that fingerprints are one of the most at-
tractive. In [44] several biometric identifiers are compared (see Table 1.1). This compar-
ison shows that between many biometric modalities fingerprints have a good balance
of all the desirable properties mentioned above. Every human possesses fingerprints,
with the exception of any hand-related disabilities. Fingerprints are very distinctive,
their details are permanent, even if they temporarily change slightly due to cuts and
bruises on the skin. Fingerprint scanner can capture high-quality images and tasks like
the segmentation into foreground and background are comparably basic problems. The
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FACE H L M H L H H
Fingerprint M H H M H M M
Hand geometry M M M H M M M
Hand/finger vein M M M M M M L
Iris H H H M H L L
Signature L L L H L H H
Voice M L L M L H H

Table 1.1: Comparison of common biometric traits. Entries in the table as given in
the 2009 Edition of the Handbook of Fingerprint Recognition [44]. High, Medium and
Low are denoted by H, M and L, respectively. Note that a reason for the popularity of
fingerprint recognition is the very good balance between the given properties.

deployed fingerprint-based biometric systems offer good performance and fingerprint
sensors have become very small and affordable. On the downside, fingerprints have the
stigma of criminality associated with them because they have a long history of use in
forensics. However, this is changing with the high demand of automatic recognition to
fight identity fraud in in many applications. Fingerprint recognition has become one of
the most mature biometric technologies and is therefore suitable for a large number of
applications. See Table 1.1 for a compact comparison of different biometric modalities.

1.3.1 Fingerprint Sensing

Fingerprint images may be classified as off-line or live-scan. Off-line images are typ-
ically obtained by smearing ink on the fingertip and creating an inked impression of
the fingertip on paper. The inked impression is then digitized by scanning the paper
using an optical scanner. In forensic application, there exist so called latent fingerprints
found at crime scenes. The latent fingerprints result from the oily nature of the human
skin - impressions of a fingerprint are deposited on a surface that is touched by a finger.
These impressions can be lifted from the surface by employing certain chemical tech-
niques [44]. Historically, fingerprint databases were acquired by means of the off-line
method.

A live-scan image on the other hand, is acquired by sensing the tip of the finger



1.3. Fingerprint Recognition 9

directly, using a sensor that is capable of digitizing the fingerprint on contact. A fin-
gerprint sensor is an electronic device used to capture a digital image of the fingerprint
pattern. The most important part of fingerprint scanner is the sensor, which is the com-
ponent where the fingerprint image is formed. In the following an overview of some of
the most commonly used fingerprint sensor technologies is given [44, ?].

• Optical: optical fingerprint imaging involves capturing a digital image of the print
using visible light. This type of sensor is, in essence, a specialized digital camera
(using either a CCD or CMOS sensor). The finger touches the top side of a glass,
while the ridges enter in contact with the prism surface, the valleys remain at a
certain distance. A lack of reflection allows the ridges to be discriminated from
the valleys. A scratched or dirty touch surface can cause a bad image of the
fingerprint.

• Ultrasonic: ultrasound sensing may be viewed as a kind of echography, based
on sending acoustic signals toward the fingertip and capturing the ’echo signal’.
This echo signal can be used to compute a fingerprint image. The sound waves
are generated using piezoelectric transducers and the reflected energy is also mea-
sured using piezoelectric materials. An clear advantage of this method is that it
eliminates the need for clean, undamaged epidermal skin and a clean sensing sur-
face. However, scanner of this type are large with many mechanical parts and too
expensive for many applications. Moreover, it may take several seconds to acquire
an image, although some scanner of the latest generation are as fast as optical
scanners.

• Capacitive: capacitive sensors utilize the principles associated with capacitance
in order to form a fingerprint image. Each sensor array pixel acts as one plate
of a small parallel-plate capacitor. The dermal layer of the fingerprint, which is
electrically conductive, acts as the other plate while the non-conductive epidermal
layer acts as a dielectric.

• Thermal: These sensors are made of pyroelectric material that generates current
based on temperature differentials. The fingerprint ridges, being in contact with
the sensor surface, produce a different temperature differential than the valleys,
which are further away from the sensor surface. To increase the temperature dif-
ference, thermal sensors are heated up electrically. The temperature difference
produces an image when it occurs, but this image soon disappears because the
thermal equilibrium is quickly reached. Therefore, a common implementation of
this sensor technology is a sweep sensor. A sweep sensor enjoys several advan-
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tages, including cost, sensitivity to ESD and sensor size. A general disadvantage of
these sensors is the necessity to reliably reconstruct one image out of several slices.
Furthermore, novice users have difficulties in performing the sweeping properly.

• Piezoelectric: This Sensor consists of pressure sensitive elements that have been
designed to produce an electrical signal when a mechanical stress is applied to
them (piezoelectric effect). Because ridges and valleys are present at different dis-
tances from the sensor surface, they result in different pressure and thus different
amounts of generated current. A disadvantage of this type of sensor is the limited
sensitivity of the used materials which leads to rather blurry images.

A new generation of touchless live scan sensors that generate a 3D representation
of fingerprints is appearing [56]. Such a sensor acquires several images from different
views and constructs a 3D representation for a fingerprint. This sensing technology
overcomes some of the problems that intrinsically appear in contact-based sensors (e.g.
improper finger placement, skin deformation, sensor dirt). On the other hand, some new
challenges emerge, for example low ridge-valley contrast and 3D to 2D image mapping.

1.3.2 Preprocessing and Feature Extraction

For ’matching’ (comparing) two fingerprints most available methods use distinctive fea-
tures of the fingerprint. There exist correlation-based methods for fingerprint matching,
who directly compare the images (without the need for feature extraction) but usually
their performance is poor, mainly because gray scale intensities are known to be un-
stable. As described in the next section, there exist three different levels of features in
fingerprint images: pores, minutiae and flow patterns. Figure 1.6 and 1.7 shows the
extraction steps using a sample fingerprint.

To make feature extraction easy and robust, the following pre-processing step are
commonly performed:

• Estimation of local ridge orientation. The local ridge orientation at a pixel level
is defined as the angle that the fingerprint ridges form with the horizontal axis.
Usually the local ridge orientation is computed block wise. The simplest approach
for local ridge orientation estimation is based on gray-scale gradient. Since this
feature extraction step is in the main focus of this thesis, we give thorough details
on existing orientation estimation techniques in the next chapter.

• Computing local ridge frequency. The local ridge frequency at pixel level can
be defined as the number of ridges per a given length along a hypothetical seg-
ment centered at this pixel and orthogonal to the local orientation [44]. Similar to
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(a) Finger835K from Sunplus (b) Guardian L SCAN from Crossmatch Technologies

Figure 1.5: Commercial fingerprint-scanners. Figure (a) shows a lowest cost thermal
sweep sensor from Sunplus. For an fast and easy assembly this sensor is already
equipped with an USB interface. Such sensors can be obtained for only a few Euros.
The second sensor (shown in Figure (b)) is a high quality optical ten-print capture scan-
ner as used by the U.S. Bordercontrol. The price of this scanner is in the range of several
thousands of Euros.

the local orientation, the local frequency is computed block wise. Many existing
methods model the ridge-valley structure as a sinusoidal-shaped wave, where the
ridge frequency is estimated as the frequency of this sinusoid. For a more detailed
overview see [10] and references therein.

• Enhancement of the captured fingerprint image. In fingerprint images, ridges
and valleys flow smoothly in a locally constant direction. However, in practice
there are many factors that can affect the image quality of a fingerprint.

– wetness or dryness of the skin

– noise from the sensor
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– cuts and bruises on the skin

An example is given in Figure 1.6. This topic is discussed in detail in Chapter 5.

• Segmentation of fingerprints into foreground and background. Fingerprint seg-
mentation algorithms are used to separate the fingerprint area (foreground) from
the background. This is a useful step to avoid spurious extraction of fingerprint
features in the background area. Most of the existing methods exploit the fact
that fingerprint images contain oriented patterns while the background area is a
non-oriented isotropic pattern. See Figure 1.6 for an visual example.

1.3.3 Matching

A matching step is necessary for the ’comparison’ of two given fingerprints and report-
ing the degree of similarity (typically reported as a match score). As reported above,
reliable fingerprint matching methods are based on minutiae. Existing approaches can
be classified into three families [44]:

• correlation-based matching: two fingerprint images are superimposed and the
correlation between corresponding pixels is computed for different alignments.
Due to non-linear distortions, different impressions of the same finger may result
in differences of the global structure which finally results in unreliable compar-
isons. For a complete high resolution fingerprint image such a correlation based
method results in slow algorithms. Therefore, this type of algorithm is only used
to compare local fingerprint texture (e.g. around minutiae).

• minutiae-based matching: this is the most popular and widely used technique
and it is based on finding the alignment between two minutiae sets, resulting in
the maximum number of minutiae pairings. Minutiae based matching essentially
consists of finding the alignment between the template and the input minutiae sets
that results in the maximum number of minutiae pairings. This type of algorithm
usually starts with the thinning (skeletonization) of a binarized fingerprint image.
This thinning step reduces the ridge thickness to one pixel, allowing straightfor-
ward minutiae detection. See Figure 1.7 for an visual example. During the thin-
ning step a number of spurious imperfections may appear. Usually, this wrong
detections must be handled in a second post processing step. Additionally, bina-
rization and thinning may suffers from several other problems (loss of structural
information, computational cost, lack of robustness for lower quality images).
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(a) original image (b) segmentation mask

(c) orientation field (OF) (d) enhanced

Figure 1.6: This figure shows the segmentation and the extracted OF of a example
fingerprint. Subfigure (d) shows the fingerprint after enhancement.

• ridge feature-based matching: the approaches belonging to this family compare
fingerprints in terms of features extracted from ridge patterns such as local ori-
entation and frequency, ridge shape or texture information. Ridge feature infor-
mation is less discriminative than minutiae, but more reliable under low quality
conditions [21].
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(a) input image (b) binarized

(c) skeletonized (d) detected minutiae

Figure 1.7: Minutiae detection. After the binarization of the enhanced (input) image a
thinning step is performed. Minutiae are detected directly using the skeletonized image.

• pore based: Sweat pores have been used for a long time by forensic experts and
have been proven to be very distinctive features. Recently [43, 101], sweat pores
have been applied as features for personal identification successfully. However,
it is not possible to extract pores from low resolution images - it is necessary to
use high resolution scanners with more than 1000 dpi. Furthermore, pore extrac-
tion depends even more heavily on clean fingerprint images than the minutiae
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extraction.

Many available matcher use a combination of the above mentioned approaches. Note
that many other techniques described in literature can principally be associated with one
of the above mentioned methods.

1.3.4 Classification

In order to identify a person, his/her fingerprint have to be compared with each fin-
gerprint in a database. In case of a large database, the identification typically has an
unacceptably long response time. A common strategy to speed up the query is to nar-
row the search by dividing the fingerprint database into a number of bins (based on
some predefined classes). A given fingerprint to be identified is then compared only
to the fingerprints in a single bin. The most important and widely used classification
schemes are variants of Henry’s classification scheme. Most popular is the Henry-Galton
classification schema which classifies fingerprints into six classes (see Figure [36]).

Due to its importance, classification has attracted a significant amount of interest. In
particular, almost all the methods are based on one or more of the following features:
orientation field, singular points and Gabor filter responses. Note that the latter two
features can be only computed using the OF. Thus, classification heavily depends on
correctly estimated fingerprint orientations. Existent methods can be coarsely assigned
to the following categories [44]:

• rule-based: A fingerprint is simply classified according to the number and the po-
sition of the singularities. This approach is commonly used by human experts for
manual classification, therefore several authors proposed to adapt the same tech-
nique for automatic classification. In [50] Kawagoe and Tojo proposed to use the
Poincáre index to find the SP. Due to it’s simplicity and more than adequate per-
formance in most images, this singularity based method enjoys high popularity in
fingerprint recognition systems. However, there are principal weaknesses adhered
to the method. Many rules and heuristics have been proposed by different authors
(e.g. [92]) in order to make the method robust against noise and minor occlusions.

• syntactic: Syntactic methods describe patterns by means of terminal symbols and
production rules. Therefore, a grammar is defined for each class and parsing
process is responsible for classifying each new pattern. Generally, syntactic ap-
proaches require very complex grammars whose inference implies complicated
and unstable approaches. Therefore, the use of syntactic methods for fingerprint
classification has been almost abandoned.
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• structural: Structural approaches are based on the relational organization of low-
level features into higher-level structures. This relational organization is repre-
sented by means of symbolical data structures (i.e. trees or graphs) which allow
hierarchical organization of the information. Usually, the orientation image is used
for structural representation. An example for this type of method is given in [61]
which exploits the fact that partioning the orientation image in regions charac-
terizedby homogeneous orientations implicitly reveals the position of singulari-
ties. The borderline between two adjacent regions is called a fault-line. By noting
that fault lines converges towards loop singularities and diverge from deltas, the
authors define a geometrical method for determining the convergence and diver-
gence points. The main advantage of this approach is that it is able to deal with
partial fingerprints, where sometimes SPs are not available. A disadvantage of
the method is the dependency on robust segmentation of the orientation field into
homogeneous regions. This is a difficult problem in noisy images.

• statistical: Statistical approaches use a fixed size numerical feature vector derived
from each fingerprint and a general purpose statistical classifier. A simple exam-
ple for such a classifier is the k-nearest neighbour [6]. Many existing approaches
directly use the OF as a feature vector, by simply nesting its rows. Since the train-
ing of the resulting high dimensional feature vector (minimum 900 dimensions)
requires large amounts of memory and time, a principal component analysis is
applied first.

1.4 System Error Rates

Due to the variations present on each instance of a fingerprint capture, no recognition
system can give an absolute answer about the individual’s identity. Instead it provides
the individual’s identity information with a certain confidence level based on a similarity
score. This is different from traditional authentication systems (e.g. as passwords)
where the match is exact and an absolute ’yes’ or ’no’ answer is returned. The validation
procedure in such cases is based on whether the user can prove the exclusive possessions
(cards, keys, ...) or the secret knowledge (password or PIN number). The biometric
signal variations of a persons finger are usually referred to as intraclass variations -
whereas variations between different persons are referred to as interclass variations.

A fingerprint matcher takes two fingerprints, F1 and F2, and produces a similarity
measurement S(F1, F2), which is usually normalized in a interval, eg. [0, 1]. If S(F1, F2)
is close to 1, the matcher has greater confidence that both fingerprints come from the
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same individual.
In the commonly used terminology, the identity of a queried fingerprint is either a

genuine type or an imposter type. Therefore resulting in two statistical distributions of
similarity scores - usually called genuine distribution and imposter distribution. Using
a matcher, the input fingerprints are classified into ’match’ or ’non-match’. This can
result into the following four scenarios:

1. a genuine individual is accepted

2. a genuine individual is rejected

3. an imposter individual is accepted

4. an imposter individual is rejected

The ideal fingerprint authentication system should produce only the first and fourth
outcomes. Due to low image quality and intraclass variations (e. g. different overlaps)
of the fingerprint images, and the limitations of a real fingerprint verification system, a
genuine individual could be mistakenly recognized as an imposter and vice versa. The
first scenario is referred to as ’false reject’ and the corresponding error rate is called the
False Reject Rate (FRR). The second scenario, an imposter individual mistakenly recog-
nized as genuine, is referred to as ’false accept’ and the corresponding error rate is called
the False Accept Rate (FAR). FAR and FRR are used as a measurements in evaluation
of fingerprint systems [15, 62, 20]. Commonly, the distributions of the similarity score
of genuine attempts and imposter attempts cannot be separated completely by a single
carefully chosen threshold. This results in a trade off between FAR and FRR, which
must be carefully selected depending on the application. FRR and FAR are functions of
a given threshold t and can be computed as following:

FRR(t) =
∫ t

0
pi(x)dx (1.1)

FAR(t) =
∫ inf

t
pg(x)dx (1.2)

where pi(x) and pg(x) are the imposter and genuine distributions, respectively.
When t decreases, the system would have more tolerance to intraclass variations

and noise, however the FAR will increase. Similarly, if t is higher, the system would
be more secure and the FRR will increase. Depending on the nature of the application,
the biometric system can operate at low FAR configurations (e.g. military use), which
requires high security, or on low FRR where easy access is required (i.e. amusement
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Figure 1.8: Typical distribution of genuine and imposter match scores. Note how FRR
and FAR are functions of a given threshold t.

parks). For reporting the quality of fingerprint system, a common technique is to use a
Receiver Operating Characteristic (ROC) curve which can be obtained by plotting FAR
versus 1-FRR at all thresholds. The threshold t of the related authentication system
can be carefully selected to meet the requirement of the given application. An example
illustrating the above facts is given in Figure 1.9.

Additionally, the following system error rates are reported:

• Equal Error Rate (EER): the error rate where FAR equals FRR. In practice, the oper-
ating point corresponding to EER is rarely adopted in the fingerprint recognition
system, and the threshold t is tailored to the security needs of the application.

• Zero FNMR: the lowest FAR at which no false reject occurs.

• Zero FMR: the lowest FRR at which no false accept occurs.

• Failure To Capture Rate: the rate at which the biometric acquisition device fails to
automatically capture the biometric features. A high failure to capture rate makes
the biometric system hard to use.
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1.5 Thesis Motivation

This thesis focuses on fingerprint ridge orientation modelling. The importance of ridge
orientation can be deflected from the fact that it is inevitably used for detecting, describ-
ing and matching fingerprint features such as minutiae and singular points. Therefore,
the orientation field (OF) is a prerequisite for high quality algorithms in fingerprint
based personal authentication systems. The research carried out in this thesis is moti-
vated by the below mentioned subsections.

1.5.1 OF prediction for improved feature extraction

Low image quality arises from wet, dirty or greasy fingers and thereby is existent even
on impressions made by the highest quality sensors. Figure 1.10 shows two examples of
fingerprints with low quality regions. The first fingerprint image (a) shows the effects of
wet fingerprints on a sliding sensor, while the second image (b) shows the impression
of a greasy finger on an off-line print.

Researchers [70, 38, 82, 11, 1, 95, 8, 26] have found ways to bypass the problem in cer-
tain cases by using frequency and orientation selective filters. Usually the successful
application of these filters is possible, only if the affected region is correspondingly
small. This filtering schema, often referred to as contextual filtering, suppresses un-
wanted noise and extracts the last bit of information available in the affected region. It
increases the detection of correct minutiae and leads to less spurious minutiae. There-
fore correct orientation estimation can make a strong difference in the final performance
of an fingerprint verification system. The required frequency parameter of these filters
can be estimated using any good quality region in the fingerprint image - and if neces-
sary the same parameters can be applied to other regions. However, the computation
of the ridge orientation must be done locally, meaning that it needs to be computed for
every region in the fingerprint image separately. Unfortunately, determination of ridge
orientation becomes more difficult as image quality degrades. Thus even the ’best’ ori-
entation estimation algorithm will fail - resulting in a chicken-egg problem: due to the
low image quality, one can not extract the orientation; but using the correct orientation,
an enhancement of the image could be accomplished.

A visual example showing the perspective effects of image enhancement is given in
Figure 1.11. In this experiment we simulated low quality by adding synthetic noise to a
given fingerprint image. This simulated scenario, where the ’ground truth’ fingerprint
(including its OF) is available, shows the benefits of correctly estimated ridge orienta-
tion. For illustration, the two images were matched against the original image using
a commercial fingerprint matcher. While for the noisy OF the matcher reported 30%
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similarity to the original image, it reported more than 65% for the image enhanced us-
ing the ground truth OF. This illustration also shows how the large number of spurious
minutiae can be drastically reduced by using the ground truth OF.

1.5.2 Compression

Police forces use automatic fingerprint identification systems to match fingerprints in or-
der to identify individuals during criminal investigations. In these systems, fingerprint
image compression is essential because AFIS data bases may contain several million
fingerprint images. The Discrete Wavelet Transform (DWT) is widely used in image
analysis and coding (see [81] and references therein). The compact support of the basis
functions of the DWT implies an ability to adapt to local image structures. The U.S.
Federal Bureau of Investigation (FBI) has specified an adapted wavelet method for their
own use in large fingerprint data bases [69].

Potential improvements of this compression schemes could be based on the ridgelet
transformation - which, for its application requires orientation information. Ridgelet
compression is different from wavelet compression in that sense that it exploits the high
directional redundancy in fingerprint images [71].

Another possibility results from [18] who show that fingerprint texture can be al-
most perfectly approximated using a so called AM-FM modulation. In this scheme, a
fingerprint image is modelled as a 2D frequency modulation signal whose phase con-
sists of the continuous part and a spiral part (for modelling minutiae). The authors
show that the reconstructed fingerprints contain only few spurious minutiae. Again,
the reconstruction (’de-compression’) of the fingerprint requires the precise OF of the
fingerprint.

A natural consequence of such a compression schemes is the requirement of an OF
model which uses the smallest possible number of coefficients.

1.5.3 Classification and Indexing.

Formally, fingerprint classification refers to the problem of assigning a fingerprint to a
class in consistent and reliable way [44]. Generally, fingerprint classification is based on
global features, such as global ridge flow and singular points. These features can only
be computed from the fingerprints OF. Allusively, all existing classification techniques
depend on a correctly estimated OF.

Other shortcomings of many systems which are based on the Henry classification
schema (see Figure 1.4) are that the different classes are unevenly distributed among a
small number (typically 6) of Henry classes. Consequently, a single fingerprint class can
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still contain a huge number of entries to search among. Moreover, some fingerprints
are naturally ambiguous which makes them difficult for exclusive classification. To ad-
dress these issues, a continuous classification has been proposed in literature [60]. In
the continuous classification schema fingerprints are not partitioned into disjoint classes,
but instead indexed by numerical vectors that summarize their main features. The nu-
merical vectors constitute a multidimensional feature space, in which each fingerprint
corresponds to a single point. Retrieval assumes that similar fingerprints tend to cluster
together in the feature space. Thus, a query fingerprint should find its match within a
given distance by checking against its closest neighbours projected in the feature space.
Model coefficients would represent a suitable feature for the described continuous clas-
sification and indexing method.

1.5.4 Intrinsic coordinate systems for the extraction of Finger Codes

Parametric models which are invariant under an Euclidean transformation can be used
to define a coordinate system which is invariant to translation and rotation. Such a in-
trinsic coordinate system could immensely simplify the matching process. When using
the intrinsic coordinates instead of pixel coordinates, minutiae are defined with respect
to their position in the OF. Instead of the common practice of treating the OF and the
minutiae as two separate descriptions, of which one is used for classification and the
other one for matching, one feature vector would be used. Using intrinsic coordinates
the matching of fingerprints would depend mainly on the enrolment module, but less
on the matcher itself. Such a matcher would query fingerprints in the feature space,
where a matching between fingerprints corresponds to searching nearest neighbours in
a feature space. Thus, a intrinsic coordinate system could simplify the matching to the
above mentioned indexing task. On top of the mentioned advantages, an intrinsic co-
ordinate system would aid biometric key extraction and biometric encryption methods.
In conclusion, the intrinsic coordinate system can be seen as the link between the two
feature levels (minutiae and flow pattern) and would simplify and speed up fingerprint
matching. We want to note, that up today there does not exist a method fulfilling the
above requirements.

1.6 Outline

This Dissertation is structured as described in the follwing:

1. This Chapter gives an general introduction on biometrics. The motivation and an
outline of the thesis is given.
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2. Chapter 2 discusses related work on fingerprint ridge orientation modelling. We
will discuss the different representations of orientation and mention the problems
which arise due to orientation being a π cyclic quantity. Furthermore a comparison
of available fingerprint orientation models is given.

3. Chapter 3 proposes a fingerprint ridge orientation model which addresses the
problem of smoothing orientation data while preserving high curvature areas.

4. Chapter 4 applies a priori knowledge to the fingerprint ridge orientation models
which are proposed in chapter 3. The main contribution of this chapter is the
application of a priori knowledge to the process of fingerprint ridge orientation.
The model constraints the orientation to vary only in ways as they occur in nature.

5. Chapter 5 describes enhancement algorithms in order to suppress noise in the
input images. We choose an available method from literature and demonstrate the
effectiveness of the fingerprint ridge orientation estimation models proposed in
the previous chapters.

6. Chapter 6 concludes the thesis, summarizing the main results obtained and out-
lining future research lines.
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Figure 1.9: ROC curve. Evaluation of a fingerprint verification algorithm using the
FVC2004db2a dataset. First, genuine and imposter distributions were computed using
the matcher (Figure (a)). FRR and FAR are derived from the score distribution, shown
in Figure (b). Finally, the ROC curve is derived from the FRR and FAR distributions in
Figure (c) and is eliminates the use of any thresholds.
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(a) (b)

Figure 1.10: Examples for low quality fingerprint images. Figure (a) shows the effects
of a wet finger on a low cost sliding sensor (Atmel FingerChip AT77C101B). Figure (b)
shows a off-line scan from NIST (special database 4 [91]). Low image quality results in
ridges and valleys which can not be well separated. Note that this is a prerequisite for
orientation estimation, hence it is not possible to compute the orientation at the affected
regions. As mentioned in the section above, correctly estimated OF is a prerequisite for
successful image enhancement.
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(a) simulation of noisy image (b) ground truth image

(c) OF of noisy image (d) ground truth OF

(e) enhancement of noisy image (f) enhancement of noisy image using ground truth
OF

Figure 1.11: Simulated noise scenario. In this experiment we simulated low quality by
adding synthetic noise to a given image. This simulated scenario, where the ’ground
truth’ OF is available, shows the benefits of correctly estimated ridge orientation. Figure
(e) and (f) are enhanced versions of Figure (a). While for the noisy OF the matcher
reported 30% similarity to the original image, it reported more than 65% for the image
enhanced using the ground truth OF. Furthermore, this illustration also shows how the
large number of spurious minutiae can be drastically reduced by using the ground truth
OF in Figure (f).
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Abstract

This chapter discusses prior work related to this thesis. First, we will give an overview of the

orientation estimation process. We will discuss the different representations of orientation, which

are necessary because orientation is a π cyclic quantity. In the second section of this chapter

we give a list of available fingerprint ridge orientation models in literature. This literature will

be classified based on different aspects. The third part of this chapter shows a deep analysis

of the standard orientation averaging method which is based on vectorial orientation smoothing.

Furthermore, we will discuss the Bias-Variance trade-off applicable to the orientation smoothing.

2.1 Orientation Estimation, Averaging and Representation

As we have discussed in the introduction (Chapter 1) fingerprint matching inherently
depends on correctly estimated fingerprint ridge orientation. This section discusses the
steps necessary for fingerprint OF estimation.

Image gradient directions can be extracted for the full 360 degree range. Ridge
orientation is orthogonal to these image gradients and therefore is defined only for 180
degrees. Figure 2.3 shows a simplified sketch illustrating this fact. An example, using a
real fingerprint image is given in Figure 2.3.

(a) (b)

Figure 2.1: Two examples showing the gradient direction (blue) and orientation (red).
Note that although the image gradients in this two examples point in the opposite
direction, the resulting orientation is the same.

Due to noise in images, orientation estimation can be understood as the task of
estimating the ’average’ orientation of a bunch of measured vectors.

In the vast majority of existing schemes, the described ’bunch of measured vectors’
is extracted by the analysis of grey value gradients. It is well known that the unbiased
computation of gradients from discrete signals is a difficult problem in itself. There has
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been much work performed for computing derivatives with high precision. We refer the
reader to [59] for a detailed overview on gradient estimation techniques.
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ABSTRACT

This paper outlines the ubiquitous presence of generalized
orientation (or subspace) estimation problems in image analy-
sis. We show the potential sources of bias in naive approaches
to directional estimation problems, discuss countermeasures
against this bias, and point out the direct relation to the To-
tal Least Squares problem. An improved method (‘equili-
bration’) for a precise direct estimation of moving planes(8
parameter motion model)concludes this paper.

1. INTRODUCTION

Many problems in image processing and motion video ana-
lysis have inherently the character of estimatingdirections
or orientations. This does not only refer to the orientation
of textures or edges in an image, but much more generally
to the mathematical structure of the problem which is under
consideration. For instance, if colors which are specified in
the RGB or YUV color spaces are to be compared for the
purpose of matching or object recognition, this is mainly a
problem of comparing directions in these color spaces, in-
stead of comparing points. Further examples areillumina-
tion invariant change detection(sometimes slightly incor-
rectly denoted asmotion detection), andillumination inde-
pendent motion estimation, where the ’pattern’ ofrelative
brightness variation in a limited image patch defines the rel-
evant information, and not so much the temporal variation
of overall multiplicative factors.

Many of these situations can be understood as the task of
estimating theaverage direction~x of a bunch of measured
vectors~ai (a ’pencil of rays’). However, note that the exact
meaning of the word’average’still remains to be specified;
it should be related to finding the optimum of some reason-
able criterion, in analogy to forming the arithmetic mean
of some numbers by minimizing the sum of squared differ-
ences. Ultimately, this criterion should be derived from the
distribution of the errors in the considered measurement or
estimation task, in order to obtain statistically meaningful
results.

1.1. Example 1: orientation estimation

We approach the analysis of the mathematical structure of
direction estimation problems by the relative simple exam-
ple of determining the orientation of a local image signal
area. In accordance with many authors, we regard for this
purpose the statistical distribution of the gradients in the re-
garded area.

Let~g be the gray value gradient of the image signal. We
assume that the gradient process{~g} is zero mean, station-
ary and ergodic in a local neighbourhood. Then the covari-
ance matrixCg of vector~g is

Cg = Cov [~g] = E
[
~g · ~gT

]

and a reasonable definition of ’orientation’ is the direction
~n, |~n| = 1, which ison an averageperpendicular to the local
gradients.

We therefore consider

~gT · ~n = |g| · cosϕ (since|~n| = 1)

The optimal direction is given bytheunit vector~n, for which
the following expectation value is minimized:

E
[∣∣~g T~n

∣∣2
]

= E
[
~nT~g · ~g T~n

]
= ~n TE

[
~g~g T

]
~n → min

So we have to solve:

~n T ·Cg · ~n → min subject to|~n| = 1

This is an optimization problem with constraints which can
be solved using Lagrange multipliers. A geometrical con-
sideration gives additional insight:Q(~n) = ~nT · Cg · ~n

Figure 2.2: central question: How can the estimated gradients be ’averaged’ to one
orientation? Illustration taken from Mester and Mühlich [64], who argue that orientation
averaging is a Least Squares Problem.

Almost all established techniques for orientation averaging are based on the same
criterion, disguised in several apparently different formulations [65] , and finally lead-
ing to an eigenvalue problem. In the following, we list the most prominent (from the
fingerprint community point of view) approaches, which are all equivalent:

- Witkin and Kass [48] proposed the doubling of the orientation angle. After dou-
bling the angles, opposite gradient vectors will point in the same direction and
therefore will reinforce each other, while perpendicular gradients will cancel. Due
to its simplicity (see Figure 2.7 and 2.7) this method has been heavily adopted by
the fingerprint community and is applied by the majority of the literature. Note
though, that many authors (especially outside of the biometrics community) cite
Granlund [31] as the one who invented the double angle notation in a very early
paper in 1978. See [4, 44] for an detailed overview of this method.

- Bazen and Gerez [4] propose a PCA based approach to orientation smoothing. A
proof is given by the authors that their method is equivalent to the above men-
tioned method.

- Bigün and Granlund [5] used the knowledge that orientation can be determined
by either analysing the joint statistics of gradient vectors, or the angular distribu-
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(a) typical fingerprint image (b) gradients (c) orientation

Figure 2.3: direction versus orientation: Image gradient directions can be extracted for
the full 360 degree range. Ridge orientation is orthogonal to these image gradients and
therefore is defined only for 180 degrees. Figure (a) shows a fingerprint image. The red
rectangle is enlarged in Figure (b) and the image gradients are plotted. Figure (c) shows
the computed orientation.

tion of signal power in its energy spectrum. Interestingly, this idea resembles the
approach of Witkin and Kass [48] which has been published in the same year.

For the two dimensional case, the double angle representation (which is a vector
representation), is equivariant to the tensor representation of orientation as proposed by
Knutsson in [52]. This fact has been proven by Nordberg et al. in [68].

In [74] Perona extended the idea of diffusions to orientation like quantities. His pa-
per presents details for a discrete implementation and explores the problem analytically
and experimentally. A number of open problems are proposed at the end of this paper.

Farnebäck [17] describes a method of estimating the orientation tensor more accu-
rately. It is based on a local polynomial model of the signal, using polynomials up to
the second order. The approach is based on making a least squares approximation of a
polynomial model to the local signal. Through a so-called theory of normalized convo-
lution, the parameters can be computed as filter responses where the filters are given by
dual basis functions relative to the polynomial basis.

Another interesting idea for achieving higher accuracy in orientation averaging algo-
rithms is available from Mühlich and Mester in [66,65,64]. They show that averaging is a
Total Least Squares problem, which will agree to our argumentation (formulated in the
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last section of this chapter) that the optimization has to be performed with respect to the
important entity, (i.e. the sought orientation angle), but not with respect to intermediate
entities.

2.2 Literature on Fingerprint Ridge Orientation Models

This section discusses available methods in literature. The motivation of available meth-
ods is manifold. All of them tempt to solve at least one problem mentioned in the
introduction. In the next section we will outline criteria on which these methods can be
differentiated.

• Solution to the inverse problem. Some models are applicable only for the qualita-
tive explanation of fingerprint flow patterns, meaning given the model parameters
a fingerprint flow pattern can be generated but not vice versa. On the other hand,
there exist models which can solve the inverse problem of finding those model
parameters which fit the model to the given data. Since we are interested in model
coefficients for various applications (indexing, classification, see Chapter 1), our
main interest lies in such methods.

• Chicken egg problem. Many existing models can only be applied when the finger-
prints SPs class and position is given. Since the computation of SPs is depending
on the OF itself, it is obvious that these models are stuck in a ’chicken egg problem’
for low quality images.

• Prior Information about Fingerprints. Another issue is the prior information
about fingerprint flow patterns. Briefly, this is the ability of the model to gener-
ate (only) pattern of real fingerprint flow patterns and therefore correcting noisy
OFs. This is especially important in relation with interpolation and extrapolation
methods. Currently, almost all available methods comprising prior information
are using differential equations whose trajectories have the structure of fingerprint
ridges. We will discuss this issue in more detail in chapter 4.

• Assumption of smoothness. One fact, not directly stated by most of the authors, is
the assumption that fingerprints always form an almost smooth pattern. While this
is true for almost all of the fingerprint area, at closer examination discontinuities
(singular points) can be seen. In order to remove noise a orientation model must
spatially average orientation. On the other hand, it should be noted that smoothing
usually will harm the high curvature information, especially SPs. This is an issue
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which is known as the Bias-Variance dilemma in approximation theory [6] and
usually there is no circumvention to this trade off.

• Parmetric vs free form. Note that there exist also parameter free methods for
the estimation and/or smoothing fingerprint ridge orientation. Such methods are
typically based around partial differential equations (PDE) which then are solved
numerically.

Below, we will give a brief overview of available methods in literature.

2.2.1 Models for the synthesis of fingerprint orientations

Smith [84] was one of the first to model orientation fields using by differential equa-
tions. His work was later refined by Mardia et al. [63]. A more recent work is available
from Kücken et al. [54] who have presented physically motivated differential equations
explaining the formation of fingerprints. All these studies aimed at a qualitative expla-
nation of fingerprint patterns and cannot be used for our purpose.

2.2.2 Parametric models for the inverse problem

Sherlock and Monroe [83] model the orientation using a so-called zero-pole model. Un-
fortunately, this orientation model is too simple and fails describing the ridge orientation
accurately. Vizcaya and Gerhardt improve on this model in [89] by using a piecewise
linear model around the singular point. Since the distances and orientations between
singular points are not modelled correctly the mentioned approach can not be used suc-
cessfully for accurate orientation modelling. Note that, despite obvious limitations this
model (and variants of it) can be successfully used for the synthesis of fingerprints (i.e.
in the prominent SFINGE [44] approach of Capelli et al.) A remarkable feature of the
zero-pole approach is the elegant way of modelling SP by the use of zeros and poles.
See Figure 2.4 for illustrations on the zero-pole model.

Capelli et al. [7] describe a method for the reconstruction of fingerprints from stan-
dard minutiae templates. For orientation reconstruction the authors propose a method
based on the before mentioned zero-pole model [83]. Similiar to Vizcaya and Ger-
hardt [89] the model is improved using an a piecewise linear function. Given the posi-
tions and types of the SPs, these piecewise functions can be computed. Each piecewise
function is defined only for a quadrant of the image. Due to this reason the final cost
function for the full fingerprint contains eight so called control points. The mentioned
cost function is then optimized using a Nelder-Mead simplex [67] optimization while
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(a) original fingerprint (b) Sherlock et al. [83] (c) Vizcaya and Gerhardt [89]

(d) Sherlock et al. [83] (e) Sherlock et al. [83] (f) Sherlock et al. [83]

Figure 2.4: First row: Comparison of the original zero-pole model (Sherlock et al. [83],
shown in Figure (b)) with one of its variants (piecewise linear model by Vizcaya and
Gerhardt [89], shown in Figure (c)). Note that, despite obvious limitations the latter
model can be successfully used for the synthesis of fingerprints (i.e. in the prominent
SFINGE [44] approach of Capelli et al.) Second row: the zero-pole model fitted to
fingerprints. Another obvious limitation of this method is that arch type fingerprints
(no SPs) can not be modelled. A remarkable feature of the zero-pole approach is the
elegant way of modelling SP by the use of zeros and poles (visible in Figure (e) and (f)).
Original images courtesy of [103, 39].

simultaneously applying heuristics. In the last stage this approach performs post pro-
cessing in order to remove possible interpolation artefacts.

In a very recent paper Huckemann et al. [41] propose a global OF model-based on
Quadratic Differentials. Quadratic Differentials are a mathematical tool for extremal
problems for mappings and moduli of complex domains. The authors approach can be
seen as specifically tailored Quadratic Differentials for the purpose of fingerprint ridge
orientation modelling. The coefficients (typicall five) of the model are geometrically in-
terpretable and have a clear meaning. Typically, such approaches create flow patterns
which do not occur in natural fingerprints. Another drawback of this method is the abil-
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(a) global approximation (b) local approximations (c) combination of both

Figure 2.5: Combination Model (images courtesy of [103]). Many available models in
literature proceed as shown in the above images. First, the global field is approximated.
High curvature areas (typically around SPs) are modelled separately. In a third step the
local and global orientations are combined.

ity to not generalize well for all types of fingerprints. This is especially true for arches.
However, it should be noted that in comparison to other approaches, this approach has
been evaluated on a large enough database which affirms numerical stability as well
as the practical applicability of the method. Figure 2.6 shows the model fitted to some
fingerprint OFs using the approach of [41].

A very prominent method is described by Zhou and Gu in [103, 102]. In a first
step, the authors propose to model the global orientation using power series. Since the
global model only poorly describes singularities, in a second step the authors propose
to model the singularities using a so called point-charge model [102]. No solid rules
are defined for using this combination method in larger databases. Furthermore the
algorithm depends on reliable detection of SP - a problem which itself is proven to be
hard to solve. Figure 2.5 shows an example of the method as described in [103].

Li [57] et al. model the orientation of fingerprints using higher order phase portraits.
Therefore the method first divides the fingerprint into several regions and approximates
them using piecewise linear phase portraits. In a further step their method computes
a global model using the piecewise linear phase portraits. Unfortunately, the algorithm
is very difficult for an application in practice. Three reasons can be outlined : a) robust
detection of SPs b) robust separation of fingerprints into predefined regions c) non-linear
methods having impractical runtimes. Recently, the same authors have proposed [58] a
modification of their algorithm and gave a thorough stability analysis. Although some
of the above mentioned issues have been addressed, the method still lacks the proof of
usefulness on larger scale applications (eg. tested only on 38 pre-selected fingerprint
images). Furthermore the model still demands constraints for each of the singularities.
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(a) (b) (c)

Figure 2.4. Construction of σbasic,k: orientation fields for a loop generated by the quadratic
differentials of Equations (2.18) to (2.20), respectively, for k = 2.

Now, the real line no longer is a trajectory any more, see Figure 2.4(a). To fix this, we
restore the symmetry with respect to the real axis by mirroring all singular points across
it. We thus artificially add simple poles c̄1, c̄2 and zeros d̄1, d̄2, leading to the quadratic
differential

(2.19) Qc1,c2,d1,d2(z) Qc̄1,c̄2,d̄1,d̄2
(z) σk(z, dz) =

(z − d1)(z − d2)
(z − c1)(z − c2)

(z − d̄1)(z − d̄2)
(z − c̄1)(z − c̄2)

dz2

(z2 − 1)k
.

Figure 2.4(b) shows that indeed the real axis is a trajectory again, a fact easily verified.
Noting that near to and beyond the joint of a fingerprint the ridges are parallel we extend
the field from the upper half plane continuously to the lower half plane by parallel lines, see
Figure 2.4(c):

(2.20) σbasic,k(z, dz) =

{
Qc1,c2,d1,d2(z) Qc̄1,c̄2,d̄1,d̄2

(z) σk(z, dz) for Im z > 0,
dz2 for Im z ≤ 0.

This is the basic model for the orientation field of a fingerprint. See Figure 2.4(c) and
Figure 2.5(a)-(b) for an illustration of σbasic,k with k = 2, 4, 6 for a right loop. Note that
using poles of order k ≥ 8 does not change the qualitative behaviour of the trajectories in
the region we are considering, cf. also Figure 2.1, but that they have empirically been found
to lead to instabilities if they get too close to the fingerprint domain. We thus consider only
poles of order 2, 4 or 6.

Recalling that the ridges are circular or elliptic near the fingertip, we might want to
incorporate this into our model as well. From Figure 2.3 we see that σ2 has the unit circle

(a) (b) (c)

Figure 2.5. Orientation fields for a loop generated by the quadratic differentials of σbasic,4,
σbasic,6, and σcirc, respectively. The green upper half of the unit circle is a trajectory of σcirc.

(a)

26 3. Algorithms

Figure 3.5. Orientation fields (orange) of models σbasic,2 (top row), σbasic,4 (second row),
σbasic,6 (third row), and σcirc (bottom row), fit to an orientation field (blue) of an arch (left
column), loop (middle column) and whorl (right column) where the symmetry axes (black)
have been obtained using algorithm energy.

fingerprint σbasic,2 σbasic,4 σbasic,6 σcirc σSM σZG

arch 11.9 11.2 10.9 11.9 32.1 19.1
loop 7.9 7.3 7.3 8.9 21.3 11.9
whorl 8.6 8.4 8.3 7.8 15.0 9.0

Table 3.1. Average deviations for the orientation fields shown in Figures 3.5 and 3.6.

(b)
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Figure 4.4. Orientation fields of model σbasic,6 (orange) fitted to the orientation fields (blue)
extracted from fingerprints where a 101× 101 pixel square (black) has been cut out.

Note that prediction gets more difficult when there are more singular points – which seems
counter-intuitive as the opposite behaviour was observed for the accuracy of the fit. A possible
explanation lies in the increased difficulty to detect all singular points correctly, especially
since they are allowed to be arbitrarily close to the removed region. An example of this effect
can be seen in Figure 4.4 where the square was cut out so close to the cores of the whorl that
they have been misplaced afterwards. Still, the newly proposed models achieve much better
predictions than models σSM and σZG.

4.3. Variation of the parameters

There are several reasons why one might be interested in measuring how much parameters
vary between different imprints of the same finger:

Stability: it allows us to measure how stable the extracted parameters remain under
Euclidean motions, partial observations, etc., cf. Section 1.1.

Information content: the amount of information the parameters contain about in-
dividual fingers can be quantified as the variation of the parameters for different
imprints of a single finger relative to the variation of the parameters in the whole
population.

Indexing: the less parameters vary between different imprints of the same finger when
compared to their variation in the population the greater the savings can be if they
are used as database indices.

Recall that the only parameters that can be expected to be invariant under Euclidean motions
are the scaling parameters sx and sy of models σbasic,k and σcirc whilst none of the parameters
of models σSM and σZG has this property. For simplicity, we will report results only for model
σbasic,6, cf. the discussion in Section 4.1.

One could argue from their definition that sx measures the width of a finger whereas sy

measures its height. We can thus derive measures of the size as well as of the thickness (or
rather “thinness”) of the finger, namely

(4.1) sp = sxsy and sr = sy/sx,

respectively. Note that sr also measures the non-conformity of the model’s quadratic differ-
ential, cf. Section 2.3.

Since all parameters in question are scaling parameters it is natural to take their loga-
rithms prior to analysis, we thus consider

(4.2) lx = log10 sx ly = log10 sy lp = log10 sp and lr = log10 sr.

(c)

Figure 2.6: Approach of Hotz et al. Subfigure (a) shows a orientation field generated by
Quadratic Differentials. The hypothetical fingerprint area is shown as a grey window.
The artificial poles, essential for this approach, are marked by orange stars. Note also
that the lower image plane needs to be ’blanked’ out for the application to real OFs. Sub-
figure (b) shows the model (orange) fitted to a arch type fingerprint (blue). Apparently
the model is not able to perfectly generalize. In Figure (c) the interpolation ability of
the model is shown. The interpolation quality is high only for certain areas and certain
fingerprints. Furthermore the method often fails to generate plausible fingerprint flow
patterns. All illustrations taken from [39].

Wang et al. [90] presented a Fingerprint Orientation Model based on trigonometric
polynomials. Their approach (named FOMFE) does not require prior knowledge of
singular points. One mentioned application is the restoration of poor quality fingerprint
areas through contextual filtering. Another application is database indexing based on
the model parameters.

2.2.3 Non-parametric models

An axiomatic approach for interpolation and smoothing OFs based on partial differen-
tial equations (PDEs) has been presented by Chessel [9]. Their method is able to preserve
singularities. Two applications of the so called Absolutely Maximizing Lipschitz Exten-
sion (AMLE) operator are shown, which take advantage of its faithful and continuous
interpolation of orientations to extract curves in poorly contrasted image. The authors
suggested that one of the application of their method is the orientation interpolation in
biological images.

Another method not directly related to orientation modelling, but orientation com-
putation for reconstruction of fingerprint images from minutiae is presented by Ross et
al. in [80]. In their schema the orientation field is computed using minutia triplets. First
a weight which is depending on the distance to each of the three minutiae is computed.



36 Chapter 2. Related Work

This weight is then used to assign a value to each pixel in the minutiae triplet. In the last
stage the resulting orientation is smoothed using an averaging filter. A disadvantage of
the method is clearly that it can not be applied to large regions (or regions with missing
minutiae triplets) and usually gives rather poor performance for high curvature areas.

Table 2.1 gives an overview of the above cited methods. These methods can be
differentiated by being parametric or free form and by the ability of solving the inverse
problem. Furthermore the table shows whether the chicken-egg problem (the necessity
for computing SPs before the model coefficients) is solved and if the possibility for
applying prior knowledge is given. The table also sums up the principles exploited
for OF modelling. DE denotes to ’differential equation’, RF stands for ’rational function’
where the orientation is modelled using a nominator and a denominator. Many methods
also apply vectorial data (VD) computed using the sine and cosine from the OF for
modelling a fingerprints OF.
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2.3 Modelling Fingerprints using the Double Angle Represen-
tation

Obviously, one of the simplest ways for modelling fingerprint ridge orientation is us-
ing the double angle representation as described by Rao and Schunck in [78]. As we
have described above, the double angle representation can be used to apply standard
numerical approaches to orientation data, e.g. convolution for smoothing (averaging)
orientation data. Equation 2.1 sums up the mathematical context of this method.

O(x, y)s =
1
2

arctan
sin(2O(x, y)) ∗G
cos(2O(x, y)) ∗G (2.1)

O(x, y)s denotes the smoothed orientation, which can be obtained by convolving the
sine and cosine part of the doubled angle orientation by a convolution mask G. For
more details on this method we refer the reader to the Appendix. However, it is also
possible to fit a set of polynomials to the orientation data, as this representation solves
the discontinuity between zero and π. See Figure 2.7 and 2.8 for an illustration.

An approximation of a (discrete) two dimensional function f(x, y) can be done using
use linear combinations of n basis functions φ(x, y) (usually polynomials).

f(x, y) ≈
n∑

j=0

ajφj(x, y) (2.2)

This technique is also known as regression [6]. We will introduce this technique in detail
in Chapter 3.

For the task of fingerprint ridge orientation modelling, linear regression can be ap-
plied to the double angle representation. In application, this means that instead of using
convolution for smoothing the orientation data, polynomials are used for smoothing and
approximation of this data:

sin(2O(x, y)) ≈
n∑

j=0

ajφj(x, y) cos(2O(x, y)) ≈
n∑

j=0

bjφj(x, y) (2.3)

where 2O(x, y) represents the doubled angle of the orientation at the coordinate (x, y).
Finally, the modelled orientation can be back converted using the following formula:

O(x, y) =
1
2

arctan

∑n
j=0 ajφj(x, y)∑n
j=0 bjφj(x, y)

(2.4)



2.3. Modelling Fingerprints using the Double Angle Representation 39

The above described modality, is applied in several approaches [90,103,102,57,58] avail-
able in literature. We found that this straightforward approach for modelling fingerprint
OFs leads to problems which are summarised in the next two subsections.

2.3.1 Issues with Non-linearity and Error Propagation

From Equation 2.4, one can observe that any two coefficients aj and bj influence the final
orientation in a non-linear way. Errors in the approximation of the individual data parts
could either sum up or cancel each other in the final quantity (the orientation). Espe-
cially notable is the fact, that the actual amplitude of each polynomial can be cancelled
by the division - thus making smaller amplitudes more sensitive to approximation er-
rors. Moreover, one should note that the final quantity is further obtained trough the
use of the non-linear arctan function. These facts are a clear argument against the linear
and independent approximation of the vectorial orientation data.

Note that this argumentation agrees with Mester et al. [66, 65, 64] who show that
orientation estimation and averaging is a Total Least Squares problem and the spatial
smoothing using the double angle representation approach has drawbacks.

The second important issue, concerning the parameter estimation is error propaga-
tion. The approximation of vectorial orientation data using the above mentioned scheme
does not deal with this phenomenon. An illustration showing this effect is given in Fig-
ure 2.9.

The real measure for fitting a ridge orientation model to a fingerprint’s orientation
should be directly computed by using the orientation angle as opposed to its vectorial
parts. In order to minimize the least square error (of the orientation), the following
non-linear function must be minimized:

min
aj ,bj

i∑

j=1

ωj

[
arctan

∑n
j=0 ajφj(x, y)∑n
j=0 bjφj(x, y)

− 2O(xj)
]2

(2.5)

Where aj and bj are the desired coefficients of the polynomial approximation. i repre-
sents the number of pixels and n is the total number of basis functions. It should be
noted that Equation 2.5 is not usable as formulated, due to the discontinuity problem at
0 and π.

The problem of this discontinuity at 0 and π can be solved as described in the fol-
lowing. In an early paper Rao and R. Jain [76] proposed the sine as a distance measure
for non-linear parameter estimation in linear phase portraits. In their optimization rou-
tine, they minimize the absolute values of this measure. Later, Ford and Strickland [25]
suggested that the sum of squares of these distances should be minimized. One should
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note that in these references the authors intention is to use directly the orientation to
obtain the model’s parameters. As we carry out our modelling already in the doubled
angle space, we have to half the angle for correct determination of the error functional.
Then, rewriting the cost function results in:

min
a,b

i∑

j=1

ωj

[
sin
(

1
2

arctan

∑n
j=0 ajφj(x, y)∑n
j=0 bjφj(x, y)

−O(xj)
)]2

(2.6)

2.3.2 Impact of Spatial Smoothing on Singular Points

SPs cause discontinuities in the OF. This discontinuities are also present in the vectorial
data. (see Figure 2.10 and 2.11 for an example). Such discontinuities represent a prob-
lematic case for data approximations using polynomials, as one needs a large number
of parameters for their approximation. On the other hand, low order polynomials are
preferred as they have better smoothing capabilities.

A visual explanation for the problem is given in Figure 2.11, where the vectorial ori-
entation data of a loop type fingerprint is given. In the centre, these two surfaces contain
a discontinuity, a jump from -1 to 1. The presence of this discontinuity is important, be-
cause the SP is defined by the roots of this discontinuity. This fact can be easily verified
by back conversion of the vectorial data using the formula in Equation 2.4. Modelling
the vectorial data using a second order Fourier-Series (25 parameters each) results in
shifting their zero-poles and hence also in shifting of the SP. Furthermore, the Fourier
series straightens the discontinuity, which results in false orientation around the SP (see
Figure 2.10). This problem plaques not only standard numerical methods for smoothing
but also every potential ridge orientation modelling approach. It is not important to
precisely approximate the individual discontinuities. Because the appearance of a SP is
strictly defined by the roots and the ratio of the two shown surfaces. Existing approaches
put high emphasize on the exact and separate approximation of the vectorial data. Our
argumentation is that the approximation should be done in a coupled way in order to
precisely model the orientation data. This would reposition the roots of the vectorial
data back to the correct location. Furthermore, one can use lower order polynomials,
which will result in better smoothing properties and fewer coefficients.
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(a) extracted OF (b) orientation field O

(c) sin 2O (d) cos 2O

Figure 2.7: The double angle representation. Orientation modelling directly using an-
gles as quantity faces the problem of the discontinuity between the values 0 and π (see
Subfigure (b)). A popular approach [48] for solving this problem is the doubling of the
orientation angle and splitting it up into a vectorial representation. This procedure re-
moves the discontinuity problem at π and zero and allows standard numerical methods
to be applied to orientation data (eg. averaging, smoothing using convolution, approxi-
mation using polynomials, ...). In Subfigures (c) and (d) the double angle representation
is shown as meshgrid.
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(a) smoothed sin 2O (b) smoothed cos 2O

(c) smoothed OF overlaid (d) smoothed orientation

Figure 2.8: Modelling orientation using the doubled angle representation. This illus-
tration shows how the OF is modelled using the doubled angle representation. Subfig-
ure 2.7(c) and 2.7(d) are approximated from the data given in Figure 2.7 using polynomi-
als. Subfigures (a) and (b) show the sine and cosine parts smoothed using polynomials.
Note how the back-converted OF again contains the discontinuity between 0 and π.
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(a) orientation angle, varying from 0 to π.
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0

1

(b) f2, x-part

−1

0

1

(c) f1, y-part

Figure 2.9: Illustration of error propagation and non-linearity. Synthetic noise has been
added to the orientation data (subfigure 2.9(a)). Due to the non-linear connection of
orientation and vectorial data, errors propagate further in a non-linear way. Note how
the amplitude of the error changes. Independent modelling of orientation data using its
vectorial parts does not account for this fact.
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(a) original (b) modelled

Figure 2.10: In 2.10(a) the orientation field of a loop type fingerprint image can be seen.
This image has been synthetically generated. In Figure 2.10(b) the OF is approximated
by a second order Fourier polynomials. This modelling approach is akin to the approach
of Witkin and Kass [48], where one separately models/smoothes the vectorial data using
Fourier series. Note how the SP is shifted away from the low curvature area.
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(a) sin 2O(x, y) (b) modelled sine data

(c) cos 2O(x, y) (d) modelled cosine data

Figure 2.11: In 2.11(a) and 2.11(c) the vectorial data of a loop type fingerprint can be
seen (as shown in Figure 2.10). In 2.11(b) and 2.11(d) these surfaces have been modelled
using a second order Fourier series. An explanation why the SP shifts after modelling
can be given by looking at the zero-poles of these surfaces, which define the position of
the SP. The shift of the zero-pole causes also the SP to shift.
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Abstract

Based on the findings from Chapter 2.3 this chapter proposes a solution for fingerprint ridge

orientation modelling. One of the main problems the presented method addresses is smoothing

orientation data while preserving details in high curvature areas, especially singular points. We

show that singular points, which result in a discontinuous orientation field, can be modelled

by the zero-poles of Legendre Polynomials. The model parameters are obtained in a two staged

optimization procedure. Another advantage of the proposed method is a extremely compact rep-

resentation of the orientation field, using only 56 coefficients. We have carried out extensive

experiments using a commercial fingerprint matcher and a singular point detector. Moreover,

we compared the proposed method with other state-of-the-art fingerprint orientation estimation

algorithms. We can report significant improvements in both, singular point detection as well as

matching rates.

3.1 Generating Legendre Polynomials

The proposed method uses Legendre Polynomials as basis functions for fingerprint
ridge orientation modelling. These polynomials are orthogonal in the interval [−1, 1],
a necessary property which improves the stability of the optimization process by cre-
ating good conditioned linear equation systems. Furthermore, this basis functions are
fast to evaluate through the use of few multiplications and additions and are simple to
construct and to generalize to higher dimensions.

Legendre Polynomials φ(x) are named after the French mathematician Adrien-Marie
Legendre (1752 - 1833). Mathematically, the orthogonality can be described as [53].

∫ 1

−1
φn(x)φm(x)dx = 0

Where n,m ∈ Z and m 6= n. Each univariate Legendre polynomial φn(x), can be com-
puted using Rodrigues formula [28]:

φn(x) =
1

2nn!
dn

dxn
[
(x2 − 1)n

]
(3.1)

Another iterative (and faster) method to compute the Legendre polynomials uses the so
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called three-term recurrence relation:

φn+1(x) =
2n+ 1
n+ 1

φn(x)− n

n+ 1
φn−1(x) (3.2)

where the first two Legendre polynomials are φ0(x) = 1 and φ1(x) = x. The first six
basis functions are given in Table 3.3.

φ0(x) = 1

φ1(x) = x

φ2(x) =
3x2 − 1

2

φ3(x) =
5x3 − 3x

2

φ4(x) =
35x4 − 30x2 + 3

8

φ5(x) =
63x5 − 70x3 + 15x

8

φ6(x) =
231x6 − 315x4 + 105x2 − 5

16

φ7(x) =
429x7 − 693x5 + 315x3 − 35x

16
(3.3)

Another important property of Legendre polynomials is the simple generalization
to higher dimensions by using the method of separable variables [86]. Consider the
Legendre polynomials φn−m(x) and φm(y) in the two variables x and y. Then one can
compute the set of basis functions for the kth order Legendre polynomial expansion as:

φnm = φn−m(x)φm(y)
(
n = 0, 1, 2, . . . , k

m = 0, 1, 2, . . . , n

)

See table 3.1 for details on the number of parameters.
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Figure 3.1: Function plot of some Legendre polynomial basis functions as given in equa-
tion 3.3.

Remarks on the Choice of Basis Functions

In the simplest case the basis functions Φ(x, y) can be constructed using the monomials
known from ’common’ polynomials:

Φ(x, y) = [1 x y xy . . . xn−kyk]

with n = 0, 1, 2, . . . k = 0, 1, 2, . . . , n

Unfortunately, the use of these monomials can lead to computational problems. As
described in the next subsection, the approximation of a discrete function requires a
solution to an overdetermined linear system of equations. When using non orthogonal
polynomials this system becomes ill-conditioned. Moreover, it gets worse with higher
orders of the polynomial. In such a case the solution of the overdetermined linear system
of equations Vx = f is overly sensitive to perturbations in V or f . A numerical solution
to an ill-conditioned system of equations is difficult (if not impossible) to determine.
Additionally, the solution of large equation systems could introduce enormous round-
off errors. In the worst case, higher order Taylor polynomials may oscillate around the
desired values. One can improve the stability of the optimization process by choosing
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number of parameters

Order 2 3 4 5 6 7 8 9 10
Legendre 12 20 30 42 56 72 90 110 132
FOMFE 50 98 162 242 338 450 578 722 882

Table 3.1: The number of parameters given for a particular order of the polynomials.
Note that Legendre polynomials allow a finer graduation for the number of parameters
in comparison to Fourier series as described in [90].

the basis functions Φ(x, y) to be members of an orthogonal set. This convenience guar-
antees that the round off errors gets small and the optimization method becomes stable,
even for large datasets and high order approximations. An additional advantage is that
the resulting parameter space is Euclidean.

Wang et al. [90] propose the use of Fourier series for orientation modelling. Trigono-
metric functions naturally obey the property of being orthogonal. Fourier approxima-
tions substantially reduce the problem of ill conditioned equation systems, but are slow
to compute and evaluate. Furthermore, they are still subject to error for higher terms.
A major advantage in behalf of Legendre Polynomials is that the discretization error is
minimized.

Furthermore, Legendre Polynomials are known for their fast evaluation [99] through
the use of recurrence relations (Equation 3.2). In comparison to Fourier-Series [90],
Legendre Polynomials allow a finer graduation of the number of parameters. See Table
3.1 for a detailed overview.

3.2 Application to Orientation Data

This section describes the model architecture. A function f(x, y) can be approximated
using a number of Legendre polynomials≈∑n

j=0 ajφj(x, y) as described above. Usually,
one seeks for the parameters aj so that the equation is fulfilled. Since the number of
observed data points usually is much larger than the number of parameter, this equation
leads to a overdetermined system of equations. A common method for the solution of
such an overdetermined equation system is the Pseudoinverse technique. This method
is described in the Appendix 6.2.

In the following, we will discuss how this method can be used to model orienta-
tion data. The given (doubled) orientation is denoted with 2O(x, y). In digital images,
the gradients direction can be extracted for the full 360 degree range. Ridge orienta-
tion, which is orthogonal to these image gradients, can be determined only up to 180
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degrees. Smoothing orientation is not straightforward. Orientation vectors cannot be
averaged in their local neighbourhood since opposite orientation vectors would cancel
each other, even if they correspond to the same orientation. This is caused by the fact
that local orientations remain unchanged when rotated for 180 degrees. Witkin and
Kass [48] proposed the doubling of the orientation angle (equivalent to squaring the
orientation vector, see [4, 78]). After doubling the angles, opposite gradient vectors will
point in the same direction and therefore will reinforce each other, while perpendicular
gradients will cancel. This procedure guarantees an continues occurrence (meaning no
discontinuities at zero and π) of the vectorial data and thus enables standard filtering
procedures (e.g. low pass filter) to be applied on orientation data. Note also that vari-
ants of this method are used throughout the literature to model orientation data. More
details are given in the Appendix.

Using the above mentioned method, one can model orientation data as described in
the following:

a = (VTWV)−1VTWf1 (3.4)

b = (VTWV)−1VTWf2

Where a and b are the parameters of a Legendre expansion of the vectorial orientation
data f1 and f2. The vectorial data f1 and f2 can be computed from the orientation data
O using the sine and cosine function respectively, see Equation 3.10. The size of the
system matrix V is determined by the number of coordinate points i and the number of
basis functions n. W = diag(ω1, .., ωi) is the diagonal weighting matrix containing the
weights for every coordinate.

Finally, the modelled orientations can be back converted using the following formula:

O(xj) =
1
2

arctan
Φ(xj)aT

Φ(xj)bT
(3.5)

As described in Section 2.3 the solution vectors a and b are coupled and influence
the final orientation in a non-linear way. Errors which result from this simplification can
be seen especially around SPs. This makes it very difficult to compute the parameters
independently and linear as described in Equation 3.4.

The real measure for fitting a ridge orientation model to a fingerprint’s orientation
should be directly computed by using the orientation angle as opposed to its vectorial
parts. In order to minimize the least square error (of the orientation), the following
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non-linear function must be minimized:

min
a,b

i∑

j=1

ωj

[
arctan

Φ(xj)aT

Φ(xj)bT
− 2O(xj)

]2

(3.6)

Where a and b are the desired parameter vectors for the Legendre approximation. The
coordinates are xj and i the number of points. It should be noted that Equation 3.6 is
not usable, due to the discontinuity problem at 0 and π.

The problem of this discontinuity at 0 and π can be solved as described in the fol-
lowing. In an early paper Rao and R. Jain [76] proposed the sine as a distance measure
for non-linear parameter estimation in linear phase portraits. In their optimization rou-
tine, they minimize the absolute values of this measure. Later, Ford and Strickland [25]
suggested that the sum of squares of these distances should be minimized. One should
note that in these references the authors intention is to use directly the orientation to
obtain the model’s parameters. As we carry out our optimization already in the doubled
angle space, we have to half the angle for correct determination of the error functional.
Then, rewriting the cost function results in:

min
a,b

i∑

j=1

ωj

[
sin
(

1
2

arctan
Φ(xj)aT

Φ(xj)bT
−O(xj)

)]2

(3.7)

3.3 Parameter Fitting

The optimization of the above mentioned functional (Equation 3.7) can only be carried
out using a non-linear technique. A single non-linear optimization would consume
too much time for optimization. Furthermore, such a method needs special treatment
against local minima. This is the reason why we propose a hybrid optimization method
which delivers accurate parameters and is still reasonable fast.

In the first optimization step we roughly approximate the model’s parameters using
a closed form solution (Pseudoinverse, see Appendix). In a second step, a non-linear
refinement of Equation 3.7 delivers the accurate parameters. Our approach is not de-
pending on other, prior computed data such as SPs.

3.3.1 First Step

In the first step, we propose to independently model the vectorial data (f1 and f2) of the
given orientation field O(x, y). To obtain the parameters, it is necessary to compute the
weighted pseudo inverse V+

W of the system matrix V. For details on the pseudo inverse
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technique we refer to the Appendix.

V+
W = (VTWV)−1VT (3.8)

Note that the coordinates x and y need to be normalised to the range [−1, 1]. The
weighting matrix W is computed using fingerprint segmentation, ω = 0 for background
and ω = 1 for foreground pixels. The parameter vector a and b for the sine and cosine
approximation can be computed as described in the following:

a0 = V+
WWf1 (3.9)

b0 = V+
WWf2

f1 and f2 contain the sine and cosine data.

f1 = [sin 2O(x1), sin 2O(x2), . . . , sin 2O(xi)]T (3.10)

f2 = [cos 2O(x1), cos 2O(x2), . . . , cos 2O(xi)]T (3.11)

3.3.2 Second step for refinement

The minimization of the cost function in Equation 3.7 is done using the Levenberg-
Marquard-Algorithm (LMA).

The LMA is an iterative technique that locates a local minimum of a multivariate
function that is expressed as the sum of squares of several non-linear, real-valued func-
tions. It has become a standard technique for non-linear least-squares problems, widely
adopted in various disciplines for dealing with data-fitting applications. LMA can be
thought of as a combination of Steepest Descent and the Gauss-Newton method. When
the current solution is far from a local minimum, the algorithm behaves like a steepest
descent method: slow, but likely to converge. When the current solution is close to a
local minimum, it becomes a Gauss-Newton method and exhibits fast convergence.

A LMA iteration can be given as:

citer+1 = citer + (H− λiterdiag[H]−1)d (3.12)

Where c consists of the concatenated parameter vectors c = [a,b]. H is the Hessian
and d is the derivative of the cost function. Notice that while d is exactly the average er-
ror gradient, H is not the true Hessian of the function. Instead, H is an approximation to
the Hessian which is obtained by averaging outer products of the first order derivative.

Note, that a detailed description of the LMA is beyond the scope of this thesis and
we refer the interested reader to [67, 51] for more extensive treatments.
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We use numerical evaluations of the cost function in order to compute d and H. The
initial parameter c0 is computed using the closed form solution and provides a good
starting point. Therefore the maximum number of iterations is set to 15. If the minima
is detected before the maximum number of iterations has been exceeded, the algorithms
quits and returns the current parameters. This process uses typically two seconds on a
state of the art computer (Intel Xeon 5160, 3 GHz, Matlab 7.2, single threaded) for typical
image sizes of 388x374. It should be mentioned that the computation can be carried out
much faster using lower resolutions and that this task can be parallelized.

3.4 Robust Estimation

The above mentioned procedure relies on the method of least squares for estimation
of the parameters in the model. Least-squares estimators assume that the noise cor-
rupting the data is Gaussian distributed with zero mean. A common problem that is
encountered in the application of least squares is the presence of outliers in the data.
An outlier is an observation that is numerically distant from the rest of the data. In
the worst case, even one outlier can destroy the least squares estimation, resulting in
parameter estimates that do not provide useful information for the majority of the data.
Robust methods have been developed as an improvement to least squares estimation in
the presence of outliers.

There basically exist two approaches in order to solve the problem:

• Regression diagnostics, where certain quantities are computed from the data with
the purpose of pinpointing influential points, after which these outliers can be
removed or corrected, followed by an least squares analysis on the remaining cases.

• Robust regression, which tries to devise estimators that are not so strongly affected
by outliers

In the following, we give a short summary of related work on robust parameter esti-
mation procedures. This summary represents an excerpt from [35, 100]. For a more
thorough overview, we refer the reader to [79].

Let

rj = sin
(

1
2

arctan
Φ(xj)aT

Φ(xj)bT
− 2O(xj)

)
(3.13)

be the residual for the coordinate xj). Then we have the following, possibilities to extract
the parameters robustly:



56 Chapter 3. Modelling Fingerprint Ridge Orientation using Legendre Polynomials

1. Least squares. Least squares is the most common estimator. One noteworthy
advantage of this estimator is that for common regression tasks, there exists a
closed form solution through the pseudo inverse (see Appendix 6.2).

min
a,b

i∑

j=1

r2
j

In many real-world situations, the assumption of the Gaussian noise characteristics
is not relevant. Applying the least squares estimator for such data can result in
completely erroneous estimates.

2. L-estimators. The class of L-estimators is based on linear combinations of order
statistics. A widely known variant is the least absolute values regression, also
known as L1 regression. It can be determined by

min
a,b

i∑

j=1

|rj |

Other variants are the alpha-regression quantile and the alpha-trimmed estimator.

3. M-estimators. M-estimators are based on the idea of replacing the squared residu-
als used in least square estimation by another function of the residuals rj , yielding

min
a,b

i∑

j=1

ρ(rj)

where ρ is a symmetric function with a unique minimum at zero. Differentiating
this expression with respect to the regression coefficients yields

i∑

j=1

ψ(rj)xj = 0

where ψ is the derivative of ρ, and x is the row vector of explanatory variables of
the jth observation. The M-estimate is obtained by solving a system of p non-linear
equations. The solution is not equivariant with respect to scale. Thus, the residuals
should be standardized by means of some estimate of the standard deviation σ so
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that

i∑

j=1

ψ(rj/σ)xj = 0

where σ must be estimated simultaneously. One possibility is to use the median
absolute deviation scale estimator:

σ = Cmed(|ri −medri|) (3.14)

where C = 1.4826 if Gaussian noise is assumed. There exist various M-estimators
in literature. Widely known are the Huber [40], Tukey and Hampel estimators.
M-estimators are statistically more efficient (at a model with Gaussian errors) than
L1 regression, while at the same time they are still robust with respect to out-
lier values. Generalized M-estimators add the possibility to weight the different
residuals.

4. R-estimators. R-estimators are based on the ranks of the residuals. If Rj is the
rank of rj , then the objective is to

min
a,b

i∑

j=1

ai(Rj)rj

where the score function ai(Rj) is monotone and satisfies

i∑

j=1

ai(j) = 0 (3.15)

Some possibilities for the scores ai(j) are the Wilcoxon scores, the Van der Waerden
scores, the median scores as well as the bounded normal scores [79].

An important advantage of R-estimators compared to M-estimators is that they
are automatically scale equivariant.

5. S-estimators. S-estimators form a class of affine equivariant estimators. They are
defined by minimization of the dispersion of the residuals:

min
a,b

s(r1(a,b), ....ri(a,b))
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with final scale estimate

σ = s(r1(a,b), ....ri(a,b)) (3.16)

The dispersion s(r1(a,b), ....ri(a,b)) is defined as the solution of

K =
1
n

i∑

j=1

ρ(
rj
s

)

Where K is often put equal to EΦ[ρ]. The function ρ must satisfy the following
conditions. It must be symmetric and continuously differentiable, ρ(0) = 0 and
that there exists a c > 0 such that ρ is strictly increasing on [0, c]. An example ρ-
function is called Tukey’s biweight function [79]. S-estimators are computationally
expensive, because of the iteratively computation of non-linear equations. The
main difference between M and S-estimators is that the scale is estimated a certain
type of robust M-estimator.

6. Least Median of Squares. Least median of squares (LMS) estimation is defined
by

min
a,b

med
j

r2
j

Some properties of the LMS estimator are:

• There always exist a solution for the LMS estimator.

• The LMS estimator is regression equivariant, scale equivariant and affine
equivariant.

• High breakdown point ( 50%).

The main disadvantage of the LMS method is the lack of efficiency, when errors
would really be normally distributed. The convergence rate of the LMS method is
bad. Efficiency of the method can be improved - usually by using a LMS estimation
as starting value for computing a one-step M-estimate.

7. Least Trimmed Squares (LTS). The LMS estimator performs poorly from the point
of view of asymptotic efficiency. One possibility to repair this is to use the Least
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Trimmed Squares (LTS) estimator given by

min
a,b

h∑

j=1

(r2
j )j:i

where (r2)1:i ≤ · · · ≤ (r2)i:i are the ordered squared residuals. The formula is very
similar to LS, the only difference being that the largest residuals are not used in
the summation. Some properties of the LTS estimator are:

• There always exist a solution for the LTS estimator.

• The LTS estimator is regression equivariant, scale equivariant and affine equiv-
ariant.

• Same high breakdown point as the LMS with the given conditions.

• The LTS has the same asymptotic efficiency at the normal distribution as the
M-estimator.

The main drawback of the LTS method is that the objective function requires sort-
ing of the squared residuals.

8. Iteratively Reweighed Least Squares. Iteratively Reweighed Least Squares (IRLS)
is mainly used in M-estimation and should not be used with S-estimators, LMS
and LTS.

IRLS requires initialization which is usually performed with the least squares es-
timator. The procedure is as following:

• Begin with a initial estimate (a,b)

• Form the residuals rj

• Update the estimate σ = 1.4826med(|rj −medrj |)
• Define weights

wj =
ψ(rj/σ)
rj/σ

• Update the estimate (a,b) by performing weighted least squares using the
new weights wj .

• Iterate until convergence.

Using IRLS one obtains a L1 treatment of large residuals and a L2 treatment of
small residuals.
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9. Hough transform. One of the oldest robust methods used in image analysis and
computer vision is the Hough transform [85]. The idea is to map data into the
parameter space, which is appropriately quantized, and then seek for the most
likely parameter values to interpret data through clustering. A classical example
is the detection of straight lines given a set of edge points. Because of its nature of
global search, the Hough transform technique is robust, even when there is a high
percentage of gross errors in the data. Due to runtime reasons, this technique can
usually not be applied to solve problems having more than three unknowns.

How many subsamples should be considered? In principle, one could repeat the
procedure for all possible subsamples of size p, of which there are

10. RANSAC. The RANSAC (Random Sample Consensus) [23] is a paradigm for fit-
ting a model to experimental data developed within the computer vision com-
munity. It is closely related to the robust estimators and the random resampling
algorithm.

The RANSAC paradigm is formally stated as follows:

(a) Given a model that requires a minimum of p data points to instantiate its free
parameters, and a set of data points A such that the number of points in A

is greater than p, randomly select a subset S1 of p data points from A and
instantiate the model.

(b) Use the instantiated model M1 to determine the subset S∗1 of points in A that
are within some error tolerance of M1. The set S∗1 is called the consensus set
of S1.

(c) If #(S∗1) is greater than some threshold t, which is a function of the estimate of
the number of gross errors (outliers) in A, use S∗1 to compute (possibly using
least squares) a new model M∗1 .

(d) If #(S∗1) is less than t, randomly select a new subset S2 and repeat the above
process.

(e) If, after some predetermined number n of trials, no consensus set with t

or more members has been found, either solve the model with the largest
consensus set found, or terminate in failure.

There are three unspecified parameters: the error tolerance, the number of subsets
to try, and the threshold t. The principal difference between robust estimation and
RANSAC is that the robust estimators try to find the solution that minimizes some
dispersion measure, but in RANSAC the objective is to find the (largest) consensus
set of the observations.
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The main advantage of RANSAC is its ability to do robust estimation of the model
parameters, i.e., it can estimate the parameters with a high degree of accuracy even
when outliers are present in the data set.

A disadvantage of RANSAC is that there is no upper bound on the time it takes to
compute these parameters. When an upper time bound is used (e.g. a maximum
number of iterations) the solution obtained may not be the optimal one. Another
disadvantage of RANSAC is that it requires the setting of problem-specific thresh-
olds.

The number of iterations n can be computed using the following formula :

n =
log(1− z)

log[1− (1− ε)m]
(3.17)

Where z is the confidence level, m is the number of model parameters to be esti-
mated and ε is the outlier proportion. It should be noted that for models with a
large number of parameters, the number of iterations becomes impractically high
for common confidence levels. e.g for 56 parameters, a confidence level of z = 0.95
and an outlier proportion of ε = 0.2 the number of iterations becomes 80000.

11. Outlier diagnostics. Outlier diagnostics are statistics that focus attention on obser-
vations having a large influence on the least squares estimators. Several diagnostic
measures have been designed to detect individual cases or groups of cases that
may differ from the bulk of the data.

Outlier diagnostics is often based on observing the diagonal elements of the LS
projection matrix H also called the hat matrix

H = X(XTX)−1XT

which transforms a observed vector y into its least square estimate

ŷ = Hy

The diagonal elements hii of the hat matrix can reveal the leverage points in the
data. When hii is large, that is near 1, then variance of the ith residual is almost
zero. The main cause for this may be that the case in question has an unusually
large influence on the LS regression coefficients.
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3.4.1 Proposed Robust Method

In order to remove the sensitivity to outliers, we propose a robust estimation technique
which is described below. Apparently, the worst possible outlier in orientation data is
one which is perpendicular to the models estimation (90 degree). This is in contrast
to other scenarios, where an outlier can be arbitrarily away from the model estima-
tion. Therefore replacing the L2 norm and using other robust norms (e.g. L1) may not
significantly improve the parameter extraction.

The non robust method uses least squares. The residuals are

min
a,b

i∑

j=1

r2
j

The proposed method computes the residuals rj as the sine of the differences of the
model compared to the observed value.

rj = sin
(

arctan
Φ(xj)aT

Φ(xj)bT
− 2O(xj)

)
(3.18)

This Equation 3.18 contains the sine-function as cost function. In order to minimize
the influence of outliers, we propose the use of sin(2α) function instead of the sin(α)
function (see Figure 3.2). This change in the equation is very important, as overly large
residuals (90 degree outliers) yield in small values. The final robust energy functional
can be derived from equation 3.7, and can be given as:

min
a,b

i∑

j=1

ωj

[
sin
(

arctan
Φ(xj)aT

Φ(xj)bT
− 2O(xj)

)]2

(3.19)

Unlike other robust functions from literature, there are no additional added costs for the
computation.

3.5 Evaluation

In order to evaluate the proposed ridge orientation model, we conduct a large number
of experiments.

This section is structured as described in the following. The first two subsections
3.5.1 and 3.5.2 define the datasets and the performance measures for the evaluations.
The optimal number of iterations for the non-linear optimization, as well as the optimal
order of Legendre polynomials is determined in the experiments described in subsection
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Figure 3.2: Two cost functions. non-robust sin(α) and robust sin(2α). Orientation π and
zero result in the same cost. The robust cost function sin(2α) eliminates the influence of
outliers.

3.5.3. Exemplary results are given in Subsection 3.5.4. In Subsection 3.5.5 we examine
the SP detection capability of the proposed method in comparison to other methods.
Note that all the SPs in the images have been manually labelled. In subsection 3.5.6
we examine how the proposed methods affects the minutiae matching performance of
a commercially available fingerprint matcher. Subsection 3.5.7 compares the proposed
robust parameter fitting method to a normal least squares method.

3.5.1 Datasets

We use the following two publicly available databases (shown in Figure 3.3) for our
experiments:

• FVC2004 DB3A [62]: a database containing 800 fingerprints of low quality. These
images have been created by a low cost thermal sweeping sensor (FingerChip
FCD4B14CB by Atmel). Most of the included images contain low quality regions,
thus the ridge orientation interpolation ability can be tested on this database.

• FVC2006 DB2A [20]: a database containing 1680 fingerprints recorded using an
optical sensor. The population is more heterogeneous and the database includes
fingerprint images of manual workers and elderly people. In order to reduce the
computational load, we used the first 67 fingerprints for our experiments. Using
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the available 12 impressions per fingerprint this results in 804 images.

Raw orientation estimation as well as the segmentation into foreground/background is
done using a industrial fingerprint matcher from Siemens (Siemens IT Solutions and
Services, Biometrics Center).

(a) FVC2004, db3a (b) FVC2006, db2a

Figure 3.3: Typical examples of images in the two databases used for evaluation.
FVC2004 [62], database 3 (Figure 3.3(a)) consists of 800 images sized 300x480 pixels.
The FVC2006 [20] database 2 dataset (Figure 3.3(b)) contains 1680 images of fingerprints
with the size 400x560. In order to reduce the computational load, we used 804 images
of this dataset.

3.5.2 Performance Measures

Singular Point Detector

For measuring the performance of a SP detection algorithm, the two quantities of interest
are clearly the number of correct detections and the number of spurious detections.
Obviously, the ultimate goal is to maximize the number of correct detections and to
minimize wrong detections.

Unfortunately, there is no established ’standard’ in literature for evaluating SP detec-
tion approaches. Although most authors give true positive and false positive numbers,
there seems to be no consensus on how large the threshold should be, on which this
decision is based on. In this publication, we intend to vary this threshold and display
the precision and recall figures as a function of it. The definition of the performance
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measures is given in the following:

Recall =
TP

TP + FN
(3.20)

Precision =
TP

TP + FP
(3.21)

F-Measure =
2 · Recall · Precision
Recall + Precision

(3.22)

Where TP=true positive, FN=false negative and FP=false positive. The first quantity
of interest, namely, the proportion of SPs that are detected, is given by the recall. The
second quantity of interest is the number of correct detections relative to the total de-
tections made by the system is given by the precision. Note that we are also interested
in the threshold parameter that achieves the best trade-off between the two quantities.
This will be measured by the F-measure which summarizes the trade-off between recall
and precision, giving equal importance to both.

Fingerprint Matcher

The final performance of a fingerprint matcher is assessed by two indices: False Accep-
tance Rate (FAR) and the False Rejection Rate (FRR). The FAR index is defined as the
general percentage of an imposter being falsely accepted by the system. On the other
hand, the FRR index is the percentage of how many genuine users are falsely rejected.
The System performance is reported by a Receiver Operating Characteristic (ROC) curve
plotting FAR versus FRR at various matching thresholds. Besides the above ROC curve
there also exist some indices which summarize the accuracy of a verification system
(see [44]). Most prominent is the Equal-Error-Rate (EER), which will be reported in our
experiments. The EER denotes the error rate at a threshold for which FRR and FAR are
identical (FRR=FAR). In order to conduct the experiments we match every fingerprint
with every other fingerprint (except itself) in the database. The matches are carried out
in a symmetric way, eg. A is matched with B and B is matched with A. For a database
of 800 images with 100 fingerprints and 8 impressions per fingerprint this results in
799 ∗ 800 = 639200 matches. From these matches 7 ∗ 800 = 5600 are genuine pairs and
8 ∗ 99 ∗ 800 = 633600 imposter pairs. Note that these figures are slightly different for the
FVC2006db2a dataset, since we use 804 images here. Note that this choice was done in
order to reduce the runtime necessary for matching all fingerprints with each other in
the database. The computed statistical significance level (see Section 3.5.8) suggests that
this is a valid choice.
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(a) FVC2004db3a, SP detection results
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(b) FVC2006db2a, SP detection results

Figure 3.4: Model Selection using the FVC2004db3a and FVC2006db2a dataset. SP de-
tection is done on the smoothed OF using a PI based method. The models order has
been varied from 3 to 9. The maximum number of iterations are varied from zero to 33.
The F-Measure is computed for a threshold of 15 pixels (FVC2004db3a) and 20 pixels
(FVC2006db2a) respectively. The black dotted line shows results on the original OF.

3.5.3 Model Selection

Formally, model selection is the task of selecting a statistical model from a set of poten-
tial models, given the data. In our particular case we have to find the optimal number of
parameters (order of the Legendre polynomial) for the proposed method. The measure
for determining the best number of parameter (goodness of fit) is based on both, the
singular point detection as well as on the matching quality. More details and and a
formal definition of model selection is given in the Appendix.

Model Selection using Singular Points

Here we conduct an experiment in order to determine SP detection capability of the
proposed model. We vary the polynomial order from 3rd to 9th order. The maximum
number of iterations for the LMA is varied from zero to 33. The F-Measure is computed
using a threshold of 15 pixels (FVC2004 db3a) and 20 pixels (FVC2006 db2a) respectively.
This value is adjusted to twice the typical ridge valley distance in both databases. Figure
3.4 shows the results for these two datasets.

As can be seen Legendre polynomials with order of 6-8 score the best results. Fur-
thermore, it can be seen that there is only a mere improvement after 15 iterations.
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(a) FVC2004db3a, Matching results
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(b) FVC2006db2a, Matching results

Figure 3.5: Model Selection using the FVC2004db3a and FVC2006db2a dataset. This plot
shows how the EER of the fingerprint matcher varies versus the number of iterations.
This evaluation is done using different orders of the Legendre polynomials. The black
dotted line shows results using the original OF.

Model Selection using Minutiae

In order to determine the best order for the model we conduct fingerprint matching.
Again, the polynomial order is varied from 3 to 9. The maximum number of iterations
for the LMA is varied from zero to 33. On the y-axis we plot the EER. Similar to the
SP detection results, Legendre polynomials with orders 6-8 result in the lowest error
rates. Note the black dotted line, which represents the results from the original OF of
the matcher.

This experiment shows, that the order of the polynomial is not a critical parameter.
Polynomials with order from 5 - 8 give very good results. Furthermore, on can see that
the non-linear approach gives good results after 5 iterations already.

3.5.4 Exemplary Results

In Figure 3.7 the orientation smoothing capability of different methods is illustrated. The
image shown is of Central Pocket Loop type. This image contains both, high curvature
areas (tiny whorl) and noise, making it the ideal benchmark for orientation smoothing
algorithms. Methods which independently smooth the vectorial data, will be plagued
by the Bias-Variance Trade-off [6]. Using our method we can circumvent this problem
to some extend.

Ridge orientation 3.6(b) has been extracted using a gradient based method from the
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original image 3.6(a). Subfigures 3.7(j)-3.7(f) show the orientation field smoothed using
Gaussian convolution. While low smoothing (sigma = 5, 8) causes wrong detections,
too much smoothing (sigma = 17, 25) usually causes a smoothing of the high curvature
area and results in a poor overall orientation field. Subfigures 3.7(a)-3.7(e) show the
orientation modelling capability of the FOMFE approach [90]. In Figure 3.7(a) and
3.7(b) we use a low order trigonometric polynomial (k=2 and k=3, resulting in 50 and 98
parameters). The reconstructed orientation in the noise affected area is not satisfactory.
In Figure 3.7(c) the optimal number of 162 parameters is used and in Figure 3.7(d) and
Figure 3.7(e) we used 338 parameters for describing the orientation. Note that in all
cases wrong singularities are detected. In Subfigure 3.6(c) the computed orientation of
our proposed method is shown. Emphasize should be paid on the correct reconstruction
of the orientation in the noise affected region and to the accurate determination of the
SPs position.

(a) original image (b) extracted (c) proposed56

Figure 3.6: Orientation estimation of a Central Pocket Loop type pattern. In Subfigure
3.6(c) the proposed method (6th order Legendre polynomial, resulting in 56 parameters)
after 15 iterations is shown. It should be emphasized that our approach was able to
reconstruct the fine details (eg. small whirl) while being able to eliminate the influence
of noise.
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(a) FOMFE50 (b) FOMFE98 (c) FOMFE162 (d) FOMFE242 (e) FOMFE338

(f) Gaussian, σ = 25 (g) Gaussian, σ =
17

(h) Gaussian, σ =
12

(i) Gaussian, σ = 8 (j) Gaussian, σ = 5

Figure 3.7: Illustration of the Bias-Variance Dilemma in standard orientation esti-
mation techniques. Starting from the gradient based orientation estimation shown in
Figure 3.6(a), the orientation is smoothed using the FOMFE approach [90] (first row)
and using a convolution based smoothing as described in [4] (named GAUSSIAN here).
In the first row the approximation capability of the FOMFE approach can be seen. The
order of the Fourier polynomials have been changed from k=2 to 3,4,5 and 6. This re-
sults in 50, 98, 162, 242 and 338 parameters. The images are labelled using this number.
In the second row, the smoothing capability of Gaussian convolution based methods is
demonstrated. Here we varied σ between 5, 8, 12, 17 and 25. Note that using these two
approaches it was not possible to accurately estimate the ridge orientation of the shown
FP.

3.5.5 Singular Point Detection Results

In this subsection the results from a Poincare Index (PI) [44] based SP detector are given.
We compare the proposed method with two other OF estimation methods available in
literature [90,4]. Both methods are varied between heavy smoothing, normal smoothing
(values as proposed by the authors) and low smoothing. The first method is the Fourier
expansion [90] of a OF denoted as FOMFE. Here we vary the order of the two dimen-
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(a) start (b) iteration 1 (c) iteration 5 (d) iteration 8

Figure 3.8: Illustration of the second optimization step (using the same input data as
shown Figure in 3.7). In (a) the output of the closed form optimization can be seen. In
(b), (c) and (d) it is illustrated how the non-linear method converges towards the final
solution, which is shown in Figure 3.6(c).

sional Fourier series between 2,4 and 6 (resulting in 50, 162 and 338 parameters). The
second method is the smoothing of the orientation using a Gaussian convolution mask.
This method is described by Bazen and Gerez in [90, 4] and denoted as ’Gaussian’. The
parameter σ is varied between the values 5, 12 and 25.

The results, obtained using the manually labelled position of SPs, are given in Figure
3.9 for the FVC2004 db3a and in Figure 3.10 for the FVC2006 db2a database. The results
can be summarised as in the following.

• low smoothing using conventional methods: Recall rates are very good, mainly
due to the fact that no real SPs are ’smoothed out’ using low smoothing. Note that
noisy OFs contain many random detections which will be counted as true positive
and hence ’improve’ the recall rates. On the other hand, low smoothing results
in poor precision rates, meaning many wrong detections are present. Both this
findings can be observed for the two datasets, depicted in Figure 3.9. In defence
of the FOMFE approach, one should mention that it yields much better precision
rates than simple Gaussian smoothing.

• heavy smoothing using conventional methods: ideally, one would expect that
more smoothing results in better precision figures and in worse recall figures.
Unfortunately, this findings can not be observed in practice, since heavy smoothing
shifts the positions of core type SPs beyond any usable threshold and destroys all
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high curvature information. Therefore, heavy smoothing results in bad precision
and bad recall numbers. For deltas, it can be observed that heavy smoothing does
not result in as bad figures.

• best trade off using conventional methods: The best trade off between the two
above mentioned scenarios is a medium smoothing ,denoted with ’FOMFE162’
and ’Gaussian σ = 12’. These values have been suggested by the corresponding
authors [90, 4].

• proposed method: The proposed method has very high precision and recall fig-
ures. The trade off, smoothing artefacts while preserving high curvature areas, has
been significantly improved for the FVC2004db3a in comparison to other methods.
We can report an increase of 10% for the F-Measure.
For the FVC2006db2a database there is no significant improvement to SP detection
in comparison to competing methods. This is due to the fact that this database is
of very high quality and therefore there is no improvement in smoothing (also
reflected by the very low EER of the matcher).

3.5.6 Matcher Results

In this subsection we present the fingerprint matching results using the industrial matcher
from Siemens IT Solutions and Services, Biometrics Center. Everything else being equal,
we only replace the original orientation processing/smoothing method. The matcher
uses the following features for matching two fingerprints [20] : Minutiae, Ridges or
Pseudo-Ridges, OF, Raw fingerprint image or parts of it and the global ridge frequency.
Please note that the results presented here are not directly comparable with the results
published in [62] and [20] since the number of imposters is much smaller in this com-
petitions, mainly due to computational reasons.

The results (shown in Figure 3.11(a) and 3.11(b)) can be summed up as described in
the following:

• For the FVC2004db3a the EER of the original matcher is 2.38%. Using the FOMFE
approach this measure can be reduced to 2.28%. Using the proposed method we
can reduce the EER to 1.81%, a relative improvement of 24%.

• For the newer database FVC2006db2a the original matcher has an EER of 0.284%.
The FOMFE based OF results in an EER of 0.284%. In comparison we can achieve
an EER of 0.18% using the proposed method. This is a relative improvement of
37%. In conclusion, the use of this database shows a good generalisation ability of
the proposed algorithm.
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(a) Precision
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(b) Recall
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(c) F-Measure
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(d) Precision, Cores only
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(e) Recall, Cores only
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(f) F-Measure, Cores only
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(g) Precision, Deltas only
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(h) Recall, Deltas only
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Figure 3.9: SP detection results using the FVC2004 database 3a. Recall, Precision and the
F-Measure evaluated for different Fingerprint Ridge Orientation smoothing approaches.
On the y-axis, the threshold for obtaining the mentioned performance measures is given.

3.5.7 Robust versus Non-Robust Parameter Estimation

In this subsection we will give a small comparison of the robust parameter fitting
method with the classic least squares method. Both, the non robust fitting method,
as well as the robust fitting method use polynomials of 6th order (50 parameters) and
use 15 iterations for the non-linear parameter estimation. As can be seen from Figure
3.16 and 3.15 the robust parameter estimation has a significant impact on the matching
performance. For the FVC2006db2a dataset, the EER can be decreased from 0.26 to 0.18
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(a) Precision
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(b) Recall
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(c) F-Measure

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold [pixels]

 

 

FOMFE50
FOMFE162
FOMFE338
Gaussian σ=25
Gaussian σ=12
Gaussian σ=5
proposed

(d) Precision, Cores only
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(e) Recall, Cores only
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(f) F-Measure, Cores only
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(g) Precision, Deltas only
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(h) Recall, Deltas only
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Figure 3.10: SP detection results using the FVC2006 database 2a. Recall, Precision
and the F-Measure evaluated for different Fingerprint Ridge Orientation smoothing
approaches. On the y-axis, the threshold for obtaining the mentioned performance
measures is given.

%. The robustness has a smaller impact on the FVC2004 db3a dataset, where the EER
can be reduced from 1.96% to 1.81% using the robust algorithm. The robust version can
only gain little in performance. The main reason for this fact is that the orientation data
in the mentioned databases contains only a small amount of Gaussian noise. This repre-
sents the best case for a Least-Squares Estimator. In any other cases (e.g. many regions
with biased orientation data caused by ghosting, scars or crinkles) a robust parameter
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(b) FVC2006db2a

Figure 3.11: ROC Curves, using commercial matcher. For the FVC2004db3a the EER
of the original matcher is 2.38%. Using the FOMFE approach this measure could be
reduced to 2.28%. Using the proposed method we can reduce the EER to 1.81%, a
relative improvement of 24%. For the FVC2006db2a database the original matcher has
an EER of 0.284%. The FOMFE based OF results in an EER of 0.284%. In comparison we
can achieve an EER of 0.18% using the proposed method. This is a relative improvement
of 37%.

estimation will give significant better results.
In Figure 3.12 a visual example comparing the non-robust version with the robust pa-
rameter fitting method is given. As can be seen, the robust version is persistent to the
occurring outliers.
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(a) FOMFE50 (b) unsmoothed (c) FOMFE162 (d) Gaussian σ = 12

(e) start, non robust
version

(f) iteration 1 (g) iteration 5 (h) iteration 15

(i) start, robust ver-
sion

(j) iteration 1 (k) iteration 5 (l) iteration 15

Figure 3.12: Robust vs non robust parameter estimation. The image in 3.6(a) results in
a noisy orientation field (seen in 3.6(b)). The distribution of the noise is non-Gaussian,
representing bad data for classic least squares algorithms. Subfigure 3.12(c) and 3.12(d)
show the results of the FOMFE model and of the smoothing capability of a Gaussian
low pass. The second row shows our approach with a normal (non robust) least squares
parameter estimation technique. In the third row, one can see the proposed robust
Legendre polynomial fitting. Again, we used a 6th order Legendre polynomial and 15
iterations for the non-linear fitting.
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Figure 3.13: SP detection using FVC2004db3a: Robust vs non robust parameter fitting.
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Figure 3.14: SP detection using FVC2006db2a: Robust vs non robust parameter fitting.
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Figure 3.15: FVC2004db3a. ROC comparing the non robust with the proposed robust
parameter fitting method. The EER decreases from 1.96% to 1.81%.
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Figure 3.16: FVC2006db2a. ROC comparing the non robust with the proposed robust
parameter fitting method. EER decrease from 0.26 to 0.18 %.



78 Chapter 3. Modelling Fingerprint Ridge Orientation using Legendre Polynomials

3.5.8 Statistical significance of experimental results

This subsection evaluates the statistical significance of the achieved results.
Guyon et al. [33] address the problem of determining the size of the testing samples

to guarantees statistical significance in a recognition task. It is assumed that the errors of
both evaluations are distributed according to the binomial law, which is approximated
by the Normal law. For the estimation of the test set size which allows comparing the
performance of two ’recognizers’, Guyon [33] states:

n =
(
zα
β

)
2
p

(3.23)

where p = (p1 + p2)/2 and β = (p2 − p1)/p. p1 and p2 are the empirical error rates of the
two evaluations to be compared. zα represents the z-value of the given confidence level
α and can be obtained from the Normal (Gaussian) distribution.

Wu and Wilson [98] from the National Institute of Standards and Technology (NIST)
illustrated that the discrete probability distribution functions of the match and non-
match similarity scores, generated by using fingerprint matching algorithms on data
sets, have no definite underlying distribution functions. See Figure 3.17 for the genuine
and imposter match score distributions of the FVC2004db3a dataset. Clearly, it can be
seen that the distributions are non Gaussian. As a consequence, the mentioned approach
of Guyon [33] et al. is not feasible here. Instead a non-parametric approach (as desribed
in [98]) must be employed in the analysis of the fingerprint similarity scores.
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Figure 3.17: FVC2004db2a. Genuine and imposter score distributions.

Furthermore Wu and Wilson [98] argue that although the sizes of fingerprint data
sets are much larger than the sizes of the data sets that are dealt with in the medical
practice, the same significance evaluations [34] can be performed on fingerprint matcher
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statistics.

One of the most significant argument in the mentioned paper [98] is that the area
under an ROC curve stands for the probability that the score obtained for the genuine
match is higher than the score assigned for the impostor match given both genuine
match and impostor match assuming the score is a continuous random variable. There-
fore, to evaluate a fingerprint matching algorithm, an ROC curve as a whole rather than
an ROC curve at a specific point or within a chosen region should be taken into account.
Even if a part of an ROC curve produces lower error values, this does not guarantee that
the ROC curve as a whole is better.

Furthermore, the variance of the area under an ROC curve can be obtained by cal-
culating the variance of the Mann–Whitney statistic. In addition, the Mann–Whitney
statistic is asymptotically normally distributed regardless of the distributions of the
match and non-match similarity scores thanks to the Central Limit Theorem. Thus,
the Z statistic can be formulated. The Z statistic can be computed in a conservative way
depending on how to deal with the correlation coefficients. Therefore, the Z statistic
hypothesis test offers a systematic way to detect the statistical significance of differences
between two underlying ROC curves, namely, differences between performances of two
fingerprint matching algorithms. The method investigated in [98] provides the informa-
tion on if the model based OF produces better results, as well as the information about
whether the difference is real or just by chance at a quantified significance level.

The straightforward way to test the significance of the difference between two areas
under ROC curves is the Z-test. The Z statistic is defined as the difference of two areas
divided by the square root of the variance of two-area difference [34], and it is subject
to the standard normal distribution with zero expectation and a variance of one. The Z
statistic can be expressed as:

Z =
A1 −A2√

SE2(A1) + SE2(A1)− 2 ∗ r ∗ SE(A1) ∗ SE(A2)
(3.24)

where A1 and A2 are two areas under ROC the curves, SE(A1) and SE(A2) are two
standard errors of these areas, respectively. r is the correlation coefficient between two
areas. In order to estimate r it is necessary to compute the Kendall τ correlations be-
tween the paired ratings CIMP (imposters) and CGEN (genuine). r can be estimated
by computing the mean of the correlations r = (rIMP + rGEN )/2 and reading out the
corresponding entry of the table given in [34].

The computed values for the FVC2004 db3a and for the FVC2006 db2a are listed in
Table 3.2 and 3.3. We computed the Kendall τ correlations CGEN and CIMP using the
Matlab statistical toolbox. It should be noted that for the given large number of imposter
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database A1 A2 SE(A1) SE(A2)

FVC2004db3a 0.9950 0.9963 0.0007 0.0006
FVC2006db2a 0.9979 0.9988 0.0003 0.0003

Table 3.2: The areas under the ROC curve and the corresponding standard errors.

database Cgen Cimp C r Z ponetail ptwotail

FVC2004db3a 0.7649 0.4749 0.6199 0.45 1.89 2.87% 5.74%
FVC2006db2a 0.8590 0.4892 0.6741 0.49 2.97 0.13% 0.26%

Table 3.3: Kendall τ correlations of the imposter and genuine distributions. The com-
puted Z values and the one tail/two tail probabilities.

match scores ( 640.000) it may take several hours for the computation of this measures,
therefore [98] suggest a stochastic approach. For the computation of the areas under the
ROC curve we used a available Matlab script from Mathworks [29].

For the FVC2006db2a database the two tailed p value is 0.26% and for the FVC2004db3a
the two tailed p value is 5.74%. Note that for the relative comparison of two fingerprint
matchers, it is suggested [98] to use the one tail distribution. The values for the one tail
p value are 2.87% and 0.13%, respectively. The borderline value for assuming signifi-
cantly better performance between two ROC curves is p ≈ 5%. Thus, for both databases
these values suggest that the observed difference may not be random. In other words,
the performances of the corresponding algorithms are most likely different - the impact
of the model based OF is statistically significant.

3.6 Conclusion

In this chapter we proposed a novel method for fingerprint ridge orientation modelling
using Legendre Polynomials. The method proceeds in two steps. In the first step we
roughly estimate the parameters using a closed form solution. In the second optimiza-
tion step, we propose to use a non-linear optimization technique for more precise pa-
rameter estimation. We showed, that only five iterations of the Levenberg-Marquardt
algorithm lead to a significantly improved orientation field. Due to the small number
of necessary iterations, the runtime is typically two seconds for a fingerprint, using
unoptimized Matlab code and high resolution orientation fields.

We want to point out that despite similarities to [90] our method enjoys important
additional benefits. Apart the different basis functions, we model singularities more
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effectively. In [90] discontinuities, which result from singular points, are directly mod-
elled. Due to the fact that Fourier series and polynomials are not well suited for the
approximation of discontinuous signals, this achievement is obtained by a very high or-
der approximation. On the other hand, using a high amount of basis functions leads to
poor noise suppression and to poor interpolation properties. This problem is known as
the Bias-Variance dilemma [6] in approximation theory. For further details we refer the
reader to the Appendix. To solve this fundamental problem, we utilize the fact that sin-
gular points can be modelled by the zero-poles of the vectorial orientation data, without
the necessity to directly model any discontinuities. As we have explained in detail, this
can be achieved by using a non-linear parameter fitting technique. As a result, the pro-
posed method enjoys a significantly higher smoothing fidelity in comparison to other
methods available in literature.

Another significant attribute of the proposed model is the ability to represent any
fingerprint ridge orientation field with a comparatively small number of parameters
(typically 56).

For evaluation of the proposed method we perform feature extraction on publicly
available databases (FVC2004db3a and FVC2006db2a). We compare our model based
method to other state of the art methods and can report higher performance rates. Sin-
gular points are detected using a Poincáre-Index based detection algorithm and were
compared to manually annotated data. Furthermore, for testing the improvement in
orientation extraction, we replaced the orientation field of a state of the art fingerprint
matcher. The matching results show improvements of 24% for the FVC2004db3a and
37% for FVC2006db2a databases, respectively. These improvements have been con-
firmed to be statistical significant.
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Abstract

In this chapter we apply a priori knowledge to the fingerprint ridge orientation model from the

previous chapter. Using a priori knowledge, the OFs can be constrained by the model to vary

only in ways as they occur in nature. In the first part of this chapter, we will describe the idea of

flexible templates models. This models, usually used for shape analysis in literature, can be used

to apply prior knowledge within pattern recognition algorithms. Furthermore, we will give an

overview of these methods and describe some of the available techniques. In an another section,

we will describe how a similar technique can be used to estimate OFs in noisy fingerprints as well

as to interpolate larger OF parts. The proposed method does not depend on any pre-alignment

or registration of the input image itself. The training can be done fully automatic without any

user interaction. We evaluated both, the generalisation as well as the prediction capability of the

proposed method.

4.1 Introduction

The constructivist theorists of cognitive psychology believe that the process of seeing
is an active process in which our world is constructed from both the retinal view and
prior knowledge [75]. A visual example is given in Figure 4.1, where the black blobs
can be deciphered only using a priori knowledge (hint: a Dalmatian is shown). This
fact constitutes the motivation of all learning-based computer vision methods. A Widely
used and established technique is based around so-called deformable templates models,
who enable the user to apply a priori knowledge.

4.1.1 Deformable Template Models

In the last decade, the model-based approach towards image interpretation has proven
very successful. This is especially true in the case of images containing objects with
large variability. A deformable template model can be characterized as a model, which
under an implicit or explicit optimization criterion, deforms a shape to match a known
object in a given image [24].

Deformable template models are capable of dealing with a variety of shape deforma-
tions and variations, while maintaining a certain structure. The deformable models have
wide applications in pattern recognition and computer vision, including image/video
database retrieval, object recognition and identification, image segmentation, restoration
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Figure 4.1: Image interpretation using a priori knowledge. The black blobs in the
famous image from Preece et. al [75] could never be deciphered without a priori knowl-
edge. This is the main assumption behind the ’constructivist approach’ as described
in [75], namely, that visual perception involves the intervention of representations and
memories such as ’dog’, ’park’ etc.

and object tracking (for a detailed overview see [46] and references therein).

A representative problem for the application of deformable template models in com-
puter vision is shape matching. Early research in this area concentrated mainly on rigid
shape matching, where the matched shapes were obtained by applying simple trans-
formations such as translation, rotation, scaling, and affine transformation [12] to the
model template, which can be recovered using correlation-based matching or the Hough
transform [16, 3]. Because of the rigidness of the above mentioned approaches, their
practicability is limited. In most applications, an exact geometric model of the object is
not available because of the variability in the imaging process and inherent within-class
variabilities. Deformable template matching is more versatile and flexible in dealing
with the deficiencies of rigid shape matching. The concept of deformable templates was
introduced to computer vision simultaneously in the year 1973 by Widrow [96, 97] with
the ’rubber masks’ and Fischler and Elschlager [22] with the spring-loaded templates.
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Deformable template matching is a more powerful technique because of its capability
to deal with shape deformations and variations (see Figure 4.2). A deformable model is
active in the sense that it can adapt itself to fit the given data. It is a useful shape model
because of its flexibility, and its ability to both impose geometrical constraints on the
shape and to integrate local image evidence. Therefore, the objective function consists
of two parts:

1. The internal energy, prior, or geometrical information is related only to the geo-
metric shape of the deformed template which is an intrinsic property of the tem-
plate, independent of the input image.

2. The likelihood term, in all the cases, pertains to the input image data. Using
this term, the deformable model interacts with the image, being attracted to the
desired salient image features. This term measures the fidelity, or goodness of fit,
of the template to the input image.

Figure 4.2: An example of template matching. The example fish can be matched to
only 3 fishes (solid lines) with rigid template matching using translation, scaling and
rotation. Ideally, it can be matched to all the fishes using a deformable template model
(dashed lines). Illustration courtesy of [46].

Deformable template models can be partitioned into two classes. First, the freeform
models who can represent any arbitrary shape as long as some general regularization
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constraints (continuity, smoothness, etc.) are satisfied. They are generally called active
contours. On the other hand, parametric deformable models are capable of encoding
a specific characteristic shape and its variation. The shape can be characterized by a
parametric formula or using a prototype and deformation modes. Figure 4.3 shows a
classification schema of various template models.

Of particular interest in context with this work are the parametric deformable tem-
plate models. This type of flexible models can be used when some prior information of
the geometrical shape is available, which can be encoded using a small number of pa-
rameters. It should be noted, that although a direct application of existing shape models
is not possible for fingerprint OFs, some of the insights can be used to create flexible
templates for OFs of fingerprints.

For parametric flexible templates, there exist generally two ways to parametrize the
shape class and its variations [46]:

• The analytical deformable template are defined by a set of analytical curves (e.g.
ellipses). The geometrical shape of the template can be changed by using different
values of the parameters. Variations in the shape are determined by the distri-
bution of the admissible parameter values. This representation requires that the
geometrical shapes are well structured. Such ’hand crafted methods’ can capture
detailed knowledge of expected shapes, but usually this approach lacks generality.
It is necessary to design both a new model and a scheme for fitting to images for
each application.

• The prototype-based deformable templates are defined around a so called ’stan-
dard’, ’prototype’ or ’generic’ templates which describes the ’most likely’, ’average’
or ’characteristic’ shape of a class of objects (e.g. hands) which has a global con-
forming structure and possibly individual deviations. Each instance of the shape
class is derived from the ’prototype’ via a parametric mapping. The use of differ-
ent parameter values again gives rise to different shapes. Variations in the shape
are also determined by the distribution of the admissible parameter values of the
mapping.

An example for an early and very well known deformable template models is the
Active Contour Model (also known as Snakes) proposed by Kass et al. [49]. Snakes
represent objects as a set of outline landmarks upon which a correlation structure is
forced to constrain local shape changes. In order to improve specificity, many attempts
at hand crafting a priori knowledge into a deformable template model have been carried
out.
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Template based Object Matching

Rigid Template Matching

Correlation Hough Transform

Deformable Model Matching

Free Form Parametric

Analytic Prototype-Based

Figure 4.3: An overview of the template matching techniques as described in [46]

In a more general approach, while preserving specificity Cootes et al. [13] proposed
the Active Shape Models (ASM) where shape variability is learned through observation.
In practice, this is accomplished by a training set of annotated examples followed by a
expert analysis [30] combined with a principal component analysis. A direct extension
of the ASM approach has lead to the Active Appearance Models [14]. Besides shape in-
formation, the texture information, i.e. the pixel intensities across the object, is included
into the model. For further information on deformable template models, the reader is
referred to the surveys given in [46, 24]

4.1.2 Prior Knowledge within Fingerprint Ridge Orientation Models

When studying available literature on fingerprint ridge orientation models, one will note
that many authors discuss the same issues as described by flexible template models. The
fundamental underlying concepts sound similar (a flexible template for a fingerprint
class), with the strong distinction that instead of shapes, OFs are necessary. Surprisingly,
this similarity has not been studied by researchers in the biometrics community in the
past.

Besides exploiting the smoothness constrain in fingerprint images, many authors of
existing work apply some type of parametric flexible templates. Usually, these meth-
ods exploit the fact that trajectories of certain differential equations (e.g. linear phase
portraits, quadratic differentials) resemble the structure of fingerprint ridges. The un-
derlying problem of such methods is the restricted adaptability to real fingerprint flow
patterns. Generally, there exists a large trade off between generalisation and specificity.
To sum up, these methods are:
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• not general enough: while it is possible to fit the models to many classes of finger-
prints, some fingerprints can not be modelled (eg. in case of linear phase portraits
and quadratic differentials arch type fingerprints are impossible to model).

• not specific enough: many analytic parametric models can not only be used for
the creation of fingerprint like pattern but also other geometric patterns (e.g. ’im-
proper nodes’ or ’saddles’ in case of linear phase portraits). In many cases it is
necessary to use heuristics in order to prevent the occurrence of these patterns,
which overall leads to a less robust method.

• not able to model a entire fingerprint: because most analytic parametric template
models can only describe a part of the fingerprint, several instances of a model
need to be combined in order to model a entire fingerprint. Other methods (i.e.
Zhou and Gu [32] use a point charge model) use only parametric analytic tem-
plates for SP modelling. Again, overall such combinations lead to a less robust
method.

Studying the recent literature on orientation modelling suggests that a solution to
the above mentioned problem lies in more suitable analytic expressions which result
in a more specific and more general model than the existing ones. On the other hand,
these ’hand crafted’ analytic expressions together with the suggested heuristics are be-
coming more and more complex while still being of limited usefulness. In general, the
mechanisms which give rise to variability are insufficiently well understood to allow a
theoretical model of deformability to be proposed.

The only feasible apporach is to ’learn’ specific patterns of variability from a rep-
resentative training set of the OFs to be modelled. Therefore, this chapter proposes a
method which uses a parametric deformable template model (as described in chapter
3 but applies a parametric prototype-based method. This contrasts all other existing
fingerprint models and eliminates the need for a ’perfect’ analytic expression.

The word ’active’ in literature usually serves in two ways. First, ’active’ refers to the
ability of a model to adapt itself to fit the given data. Second, and more importantly,
the word active is used to emphasize that a method ’actively’ learns OFs from training
samples. Due to the similarity to such flexible template models the proposed method in
this chapter is called Active Fingerprint Ridge Orientation Model (AFROM).
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4.1.3 Training and application of prototype-based parametric deformable mod-
els

The success of deformable template model approaches depends on the accurate descrip-
tion of the shape class - the expected shape instances and their variations. Some existing
work on shape modelling has focused on the active learning of the shape models from
training samples. In this existing work shape classes are described by learning both -
the ’representative’ shape and the ’variability’ in the shape class [13, 55].

A common technique which has been shown to be very useful in many computer vi-
sion applications, is principle component analysis (PCA). This usefulness is mainly due
to its capability to reduce the dimensionality and to ’extract’ the important dimensions
in terms of the amount of variations they explain. As a result, PCA plays an important
role in learning object representations (e.g., eigenfaces [88]). A very prominent example
for the application of PCA is given by Cootes et al. [13] who have adopted the method
of learning deformable template models. Their method, called ’active shape models’,
learns the prototype shape and its deformations from a collection of correctly annotated
example shapes. This completely contrasts other methods where instead the parametric
form is ’hand crafted’ for the given shape class. Basically, polygonal representations are
used for modelling the shapes. Therefore, it is necessary to manually aligning the train-
ing set, i.e., establishing the correspondences between the ’landmark points’ (nodes) of
training samples of the same class and to calculate the mean position and variation of
each node from the training shapes. The mean shape is used as the generic template
of the class of shapes. A number of modes of variation, i.e., the eigenvectors of the
covariance matrix, are determined for describing the main factors by which the exem-
plar shapes tend to deform from the generic shape. A small set of linearly independent
parameters are used to describe the deformation. In this way, their shape model allows
for considerable meaningful variability, but is still specific to the class of structures it
represents. The major contribution of their work is that the active shape model is able to
learn the characteristic pattern of a shape class and can deform in a way which reflects
the variations in the training set. The limitations of the approach are its sensitivity to
partial occlusion, and its inability to handle large scale and orientation change.

4.2 Training the Model

We use a commercial fingerprint software from Siemens (Siemens IT Solutions and Ser-
vices, Biometrics Center) for local OF estimation and for the segmentation of the image
into foreground and background pixels. Note that no other processing, i.e. registra-
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tion or alignment has been employed. For the training step, the extracted raw OF is
smoothed using the method described in Chapter 3. Using this method it is possible to
estimate the OF also in the corners of the image (background). Furthermore, the method
suppresses artefacts (contained in many images).

4.2.1 Representation of Fingerprint Flow Patterns

For the representation of fingerprints OFs, we use 12th order Legendre Polynomials
similar as described in Chapter 3. Alternatively, one could also use the parametric
OF representation as described in [90] by Wang et al. In the following, we give a short
overview of the used OF approximation method. Let 2O(x, y) be the doubled orientation
and

Φ(x) = [φ0(x) . . . φn(x)] (4.1)

the row vector containing Legendre polynomials φ(x) evaluated for a given coordinate
x = (x, y). The system matrix is given as V and consists of the row vectors Φ(x),

V =




Φ(x1)
Φ(x2)

...
Φ(xi)




=




φ0(x1) φ1(x1) . . . φn(x1)
φ0(x2) φ1(x2) . . . φn(x2)

...
...

. . .
...

φ0(xi) φ1(xi) . . . φn(xi)




(4.2)

fx and fy contain the vectorial orientation data (computed using sine and cosine
function from 2O(x, y)). Then one can compute the parameter vector c = [a,b] for the
vectorial approximation as described in the following:

a = V+
wWfy b = V+

wWfx (4.3)

Where

V+
w = (VTWV)−1VT (4.4)

is the pseudo-inverse of the system matrix V. For details on the computation of the
pseudo-inverse we refer to the Appendix in chapter 6.2. The diagonal weighting matrix
W is computed using fingerprint segmentation, where the diagonal elements are ω = 0
for background and ω = 1 for foreground pixels.
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4.2.2 Computing a Subspace

Suppose now we have s sets of parameters ci = [ai,bi] which were generated from s

fingerprints as described above. These vectors form a distribution in the n dimensional
space. If one can model this distribution, one can generate new examples similar to
those in the original training set. Furthermore, one can decide whether a given OF is
a plausible fingerprint flow patterns. We apply Principal Component Analysis (PCA)
to the set of parameters in order to model flow variations of naturally occurring finger-
prints. Therefore, we compute the mean vector c

c =
1
s

s∑

i=1

ci (4.5)

and the covariance matrix S

S =
1

s− 1

s∑

i=1

(ci − c)(ci − c)T (4.6)

of the data, followed by the eigenvectors

e = [e1, e2, . . . , et] (4.7)

and the corresponding eigenvalues

λ = [λ1, λ2, . . . , λt] (4.8)

of S (sorted largest first). Let Ω be the space of all possible parameters and Ψ the linear
subspace spanned by the PCA. Then we can project parameters from Ω to Ψ using the
linear projection ϕ:

di =ϕ(ci) =eT (ci − c) projection ϕ (4.9)

ci =ϕ−1(di) =ci + edi inverse projection ϕ−1 (4.10)

here ci represents a point in the high dimensional space Ω and di the same point pro-
jected in to the linear subspace Ψ. The number of eigenvectors t to retain should be
chosen so that the model represents a sufficiently large proportion of the total vari-
ance. Thus, the original high dimensional data can be approximated using a model
with much fewer parameters. In Figure 4.4 the eigenvalue spectrum of 2000 fingerprint
vectors (NIST4, f-prints database) is shown. Note that these fingerprints were not regis-
tered nor aligned in any other form. Only image cropping according to a segmentation
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has been performed.
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Figure 4.4: Eigenvalue spectrum of 2000 fingerprint vectors (NIST4 f-prints database).
No registration or alignment to this database has been applied. From the figures (nor-
malised variance), it can be seen that the first 40 eigenvalues accord to the majority
( 95%) of the total variance. Another important observation worth mentioning is that
the first two eigenvalues dominate the eigenvalue spectrum.

4.2.3 Interpretation of ’Eigen-orientations’

Informally, Eigen-orientations can be seen as a set of ’standardized orientation ingredi-
ents’, derived from statistical analysis (PCA as described above) of many fingerprints.
Any fingerprint can be considered to be a combination of these standard orientations.
This interpretation is similar to other methods available in literature (e.g. Eigenfaces as
described by Turk and Pentland in [88]). A major distinction to the above mentioned
method is that we do not have pixel based representation, the eigen-orientations are
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coefficients of Legendre polynomials. In other words, the mean fingerprint can be mod-
ified using previously computed ’perturbation’ functions.

Regarding the visualization of Eigenmodes there are limitations in comparison to
Eigenfaces. The relation between coefficients and the orientation vectors is non-linear
(arctan function, fraction), therefore it is not possible to directly visualize a individual
Eigen-orientation. Instead we have to show the impact of each Eigen-orientation on
the mean vector ci. From a different point of view, the Eigen-orientations can be seen
as ’orientation ingredients’ which, when applied, can be used to modify a standard
fingerprint in order to generate every other possible fingerprint. Figure 4.5(a) shows
the mean of the coefficient vectors as described in Equation 4.5. The first 15 Eigen-
orientations are shown in Subfigure 4.5(b)-4.5(p). All of this Eigen-orientations form
smooth patterns of fingerprints.

In Figure 4.6 it is shown how the fingerprint flow pattern changes when moving
along the principal axis. As can be seen, it is possible to generate left and right loop
type fingerprint flow patterns. In Figure 4.7 the same procedure is done for the second
axis. This illustration shows that using the second Eigen-orientation it is possible to
model the patterns of whorls and arch type fingerprints.

Using the first two eigenvalues, it is possible to model five types of fingerprints
(the mean can be interpreted as tented arch pattern). This fact explains also the high
dominance of the first two Eigen-orientations in the eigenvalue spectrum. However, it
should be noted that the foremost two eigen-Orientations can be used only for a ’rough’
global approximation of fingerprint OFs. For a finer modelling of fingerprints it is
necessary to apply a higher amount of eigen-Orientations. For details on the selection
of the optimal number of eigen-Orientations see Section 4.4.3.
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(a) mean c (b) c+ e1 (c) c+ e2 (d) c+ e3

(e) c+ e4 (f) c+ e5 (g) c+ e6 (h) c+ e7

(i) c+ e8 (j) c+ e9 (k) c+ e10 (l) c+ e11

(m) c+ e12 (n) c+ e13 (o) c+ e14 (p) c+ e15

Figure 4.5: Eigen-orientations. This illustrates the Eigenmodes (’Eigen-orientations’)
computed using PCA. Note that it does not make much sense to visualize a Eigen-
orientation ei directly, because of the non-linear correlation between orientation and
coefficients (due to the arctan function and the division for back conversion to the angle
space). Due to this reason we show how the mean can be altered by adding different
Eigen-orientations. Interestingly almost all of the Eigen-orientations result in smooth
OFs of fingerprints.
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(a) c+ we1, w = −4/2 (b) c+ we1, w = −3/2 (c) c+ we1, w = −2/2

(d) c+ we1, w = −1/2 (e) c+ we1, w = 0/2 (f) c+ we1, w = 1/2

(g) c+ we1, w = 2/2 (h) c+ we1, w = 3/2 (i) c+ we1, w = 4/2

Figure 4.6: Movement along the principal axis. The illustration shows how the flow
pattern changes along the principal axis. Moving in negative and positive direction (on
the principal axis) varies the flow from left loop to right loop.
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(a) c+ we2, w = −4/4 (b) c+ we2, w = −3/4 (c) c+ we2, w = −2/4

(d) c+ we2, w = −1/4 (e) c+ we2, w = 0/4 (f) c+ we2, w = 1/4

(g) c+ we2, w = 2/4 (h) c+ we2, w = 3/4 (i) c+ we2, w = 4/4

Figure 4.7: Movement along the second axis. In this illustration we move along the
second axis. As can be seen, the fingerprint flow pattern changes from whorl type to
arch type. Note that the usage of the first two Eigen-orientations allows to model five
different fingerprint types.
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4.3 Fitting the Model to the Nearest Plausible Fingerprint Flow
Pattern

In order to only generate examples similar to the training set, we have to choose a
parameter d ∈ Ψ. Therefore, we propose to minimize the following cost function:

min
d

i∑

j=1

ωi

[
sin
(
M(xj)−O(xj)

)]2

+µ
[

1
P (xj)

− P (xj)
]2

(4.11)

The cost function compares the model’s orientation estimation M(xj) with the observed
function value O(xj) (obtained from local image gradients). We use the sine-function in
order to resolve the discontinuity problem at zero and π. Then, one can compute M(xj)
as described in Equation 4.12:

M(xj) =
1
2

arctan
Φ(xj)aT

Φ(xj)bT
(4.12)

P (xj) = (Φ(xj)aT )2 + (Φ(xj)bT )2 (4.13)

Note that the vectors a and b can be computed by the inverse mapping c = [a,b] =
ϕ−1(d) The second term of Equation 4.11 is a penalty function which regularizes the
orientation vector to unit length (sin2 + cos2 = 1). The regularization prevents solutions
which represent ’illegal’ linear combinations of the Eigen-orientations. Such ’illegal’ lin-
ear combinations create orientation vectors much larger or much smaller than unit size
and hence create flow patterns completely different from the learning dataset. Enforc-
ing the orientation vector to unit length creates hard to optimize problems and does
not generalize well on a slightly different image set (intra class variability). Practical
observations show that allowing a minor variation from the unit size (eg. in the range
[0.3 − 3]) enables the model to generalize much better, at the same time disabling the
model to create ’illegal’ flow patterns. A typical scenario is shown in Figure 4.8 where
a different OF (compared to the training set) is fitted to the model. We want to point
out, that this regularization scheme is the main mechanism to enable the model to fit
slightly rotated and shifted fingerprints.
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(a) no treatment (b) regularisation as proposed (c) constraining to unit length

Figure 4.8: Optimization options. In this Figure three types of optimization prefer-
ences are shown for illustration. We use a fingerprint from the fvc2006db2a fingerprint
database. The input data is given in red colour, the output of the optimization is shown
in green. In Figure 4.8(a) the optimization is done without any treatments. In this
case, the optimization finds linear combinations of Eigen-orientations which result in
an extremely low error in the input data (red), unfortunately the solution is not opti-
mal regarding interpolation and extrapolation (green) quality. Basically, the problem
can be accounted to invalid linear combinations of Eigen-orientations. Such linear com-
binations can result in extremely large or extremely small numerical values (length of
orientation vectors). One way to enforce the optimization to employ linear combina-
tions which were similar to the ’learned’ one is to constrain the orientation vectors to
unit length. Unfortunately such a optimization (shown in Figure 4.8(c)) it is not easy to
carry out (many local minima). This is especially an issue for Fingerprints which are
different from the learning set (e.g. contain off-centric cores where the learned one has
centred cores only). Regularisation allows a variation of the orientation vector lengths
but still favouring solutions with unit length. Using this procedure, it is possible to
model fingerprint flows which are slightly different from the training dataset.

Optimization

The minimization of the cost function in Equation 4.11 is done by using the Levenberg-
Marquard (LM) algorithm. A LM iteration can be given as:

diter+1 = diter + (H− λiterdiag[H]−1)D (4.14)
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H is the Hessian and D is the derivative of the cost function. λiter is called the damping
parameter and is an integral part of the LM. For further details we refer the reader
to [67]. The parameter vector d can be computed as described in Equation 4.9 using
the transformation di ≈ ϕ(ci). Where c consists of the concatenated parameter vectors
c = [a,b]. Note that, as described above, each iteration of the LM uses the inverse
mapping ci = ϕ−1(di) in order to evaluate the cost function as given in Equation 4.11.
The factor µ is set to 3 ∗ 10−4 in all our experiments. The initial value d0 for the LM
is set to the null vector. This corresponds to the mean OF (c). The LM algorithm stops
when a minima is reached or when the number of iterations exceeds 40.

4.4 Evaluation

This section presents the experimental results. For training the model, we used the
NIST4 special database [91]. This database contains 2000 fingerprints evenly distributed
among the five Henry classes. The number of Eigen-orientations is limited to 80. For
evaluation of the proposed method, we used the NIST4 s-prints (all 2000 images) and
the FVC2006 2a [20] (all 1680 images) database.

4.4.1 Generalisation Test

In this subsection we test how well the proposed model generalises to a given test
database. Therefore the model is fitted to the raw (unsmoothed) OF of the given fin-
gerprint. To measure the quality of the fit, we compute the absolute mean deviation
between the ground truth OF and the fitted orientation field in degrees, where an error
is only computed for foreground pixels. The ground truth OF is computed using the
mentioned fingerprint software. The figures depicted in Figure 4.9(a) show cumulative
distribution functions of the absolute mean deviation in degrees summarized over all
images of the database. Most of the images show a mean deviation of smaller than five
degrees. A large fraction of this error can be adhered to the block-wise processing of
the commercial fingerprint matcher. Furthermore, we want to point out that the ground
truth OF contains errors and thus a possible improvement using the proposed method
is impossible to measure.

The reader should note that this evaluation procedure is exactly the same as de-
scribed in [41]. The experiments and datasets are identical, but the authors of [41]
deleted 20% of the images (due to missing SPs). In direct comparison our model gener-
alises significantly better to fingerprints than the one proposed by Huckemann et al. [41].
We can report almost all of the images to have smaller than 10 degrees absolute mean
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deviation, in comparison [41] can only report 50%.
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Figure 4.9: Generalisation and Prediction Evaluation.

4.4.2 Prediction Test

The orientation interpolation capability of the proposed algorithm is tested in a simu-
lated scenario where we remove 70% of the OF. The OF remains in a rectangle with 40%
area size, except a smaller rectangle with 10% of the total image size in pixels. Both
rectangles are centred in the middle of the image and exhibit the same aspect ratio as
the image. See Figure 4.4.2 for a visual explanation of the proportions.

Using this scenario, we tested the extrapolation as well as interpolation ability of the
proposed algorithm. The figures are computed for the predicted OF only. Additionally,
the background is removed from the input OF. This prediction evaluation is done using
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Figure 4.10: Image proportions for prediction scenario. The black area constitutes the
fingerprint image area which is removed for the prediction evaluation. The white space
displays the area from which the orientation information is used for the interpolation
and extrapolation of the fingerprints OF.

the same database configuration as mentioned above. It should be noted that not all
predictions with a large absolute mean deviation are wrong in terms of plausibility.

The only comparable work with a significant large evaluated database is available
from Hotz [39] (co-author of [41]). In his evaluation scenario the prediction was per-
formed for only 5% occlusion (compared to 70% of our testing scenario). Unfortunately,
this makes a possible comparison meaningless.

4.4.3 Estimating the Number of Eigen-orientations

In order to estimate the best number of Eigen-orientations we performed the above men-
tioned prediction and generalisation experiments for a varying number. The evaluation
criteria for the prediction and generalisation figures was the relative number of finger-
prints with less than eight degrees average error. Due to the computational burden, only
the first 100 images of the NIST4 database (s-prints) were used. We performed this eval-
uation for two scenarios. In the first scenario (shown in Subfigure 4.11(a)) one can see
how the number of coefficients affects the model without regularisation. Furthermore,
it shows the trade off between generalisation and prediction capability of the method.
In general, a lower number of Eigen-orientations results in good prediction figures but
bad generalisation capability of the model - and vice versa. The second scenario (see
Subfigure 4.11(b)) shows the model as proposed with the regularisation. It is clearly
visible that the regularisation leads to a significant improvement.

In Figure 4.12 we give a example of the model fitted to a noisy fingerprint OF.
The number of Eigen-orientations is varied from low to high. It can be seen that the
application of a very higher number of Eigen-orientations is prone to noise (Subfigure
4.12(b)). Using a number in between these two extrema represents the best trade off. As
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Figure 4.11: Regularisation. Applying a regularisation on the cost function, where we
force the orientation vectors to unit length, we can significantly improve the results.

can be seen in Figure 4.12(c), the model correctly estimated the OF, while at the same
time preserving fine details of the OF.

4.4.4 Illustrative Examples

In this subsection we want to display some illustrative examples showing the abilities
of the proposed method. Figure 4.13 shows the model fitted to difficult fingerprint sam-
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(a) raw OF (b) 182 Eigenmodes

(c) 80 Eigenmodes (d) 5 Eigenmodes

Figure 4.12: Effects of the number of Eigen-orientations. In case of to few Eigen-
orientations (Subfigure (d)) the model fails to generalize. Typically the application of
a very higher number of Eigen-orientations is prone to noise (Subfigure (b)). Using a
number in between these two extrema represents the best trade off. As can be seen in
Figure 4.12(c), the model correctly estimated the OF, while at the same time preserves
fine details.

ples, by using the above mentioned prediction scenario for illustration. The prediction is
shown in green color. Subfigure 4.13(a) shows the model fitted to a rotated fingerprint.
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Although artefacts started to raise, the model’s prediction is still acceptable. Subfigure
4.13(b) shows the model fitted to a loop type fingerprint, here the SP is shifted to the far
right. The model is able to perfectly fit and predict the OF of the shown fingerprint. Sub-
figures 4.13(c) and 4.13(d) show the model fitted to fingerprints from a completely dif-
ferent database (FVC2006db2a) in comparison to the learning dataset. Subfigure 4.13(c)
shows a completely uncentred whorl type fingerprint fitted. In Subfigure 4.13(d) we
fitted the model to a fingerprint image which has been wrongly segmented. Although
the prediction is far from perfect, the resulting flow pattern looks naturally possible.

A prediction capability comparison to other methods available in literature is given
in Figure 4.14. We used a noise image of a whorl type fingerprint (shown in 4.14(a)) for
this illustration.

The proposed method (see Subfigure 4.14(b)) is generating a smooth and plausible
OF, exhibiting a very high prediction quality. The FOMFE approach of [90] shown in
Subfigure 4.14(c) has very poor prediction capabilities, especially visible in the outer re-
gions. In direct comparison, the proposed method from chapter 3 generates a smoother
flow. Despite this smoothness the method is not able to correctly recover the flow pattern
of the fingerprint.

Figure 4.15 shows fingerprint examples where the model failed to fit the OF. In
Subfigure 4.15(a) the algorithm failed to correctly model the left loop of the twin loop. In
Subfigure 4.15(b) one can see the model fitted to a noisy OF, apparently the application
of the algorithm was not successful.

Illustration 4.15 shows the 180 degree rotation of a loop type fingerprint. While
in the unrotated case (Subfigure 4.16(a)) the model perfectly fitted the fingerprint, the
model corrects the OF of the rotated version to a whorl type fingerprint.

Figure 4.17 shows the OF estimation in comparison to a commercial fingerprint
matcher.

4.4.5 Conclusion

In this chapter we presented a deformable template method for fingerprint ridge flows.
The fingerprint orientation field (OF) can be constrained by the Active Fingerprint Ridge
Orientation Model (AFROM) to vary only in ways seen in a training set. The OF of fin-
gerprints is represented by a vectorially linear regression using Legendre polynomials.
Fitting parameters to a given fingerprint is done using the Levenberg-Marquard (LM) al-
gorithm. During the optimization procedure the parameters are limited to a previously
learned linear subspace, where only ’legal’ fingerprints reside. Using the proposed
method, the AFROM iteratively deforms to fit an OF of a fingerprint. Our method does
not depend on any pre-alignment or registration of the considered images. The training
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can be done fully automatic without any user interaction. Furthermore, our method
does not depend on any other computed data, except a segmentation.

In the evaluation section of this chapter, we perform generalisation and prediction
tests of the proposed method. A generalisation test is done in order to evaluate how
well the model ’fits’ to a large number of OFs. Using the presented prediction test,
we asses how specific the model is. This is the ability to constrain unknown or noisy
regions of the OF to valid fingerprint flow patterns. All experiments are performed on
public databases, one of the databases is is fairly different to the learning dataset) These
experiments, comparable with a very recent paper [41], assess our method a very good
performance. Furthermore, it should be noted that our method is the first fingerprint OF
model making use of prior knowledge for OF estimation. The major conception behind
existing methods (e.g. [41]) is a hand crafted model which fits only to valid fingerprint
OFs, without the possibility for machine based training. Our approach can also be seen
as a method to find those elements (Eigenmodes comply to ’Eigen-Orientations’) which,
when (linear) combined, give biological valid patterns of fingerprints. We want to point
out, that we used the full NIST4 f-prints database for training, including many noisy
fingerprint images.

Future work includes the experimentation with other subspace methods than PCA
(e.g. ICA, K-PCA, etc.). Moreover, the regularization term of the cost functional accom-
modates a large potential for future improvements. Another topic is the inclusion of
an image quality estimation algorithm, where the model adjusts the amount of prior
knowledge depending on the local image quality.
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(a) rotation (b) translation

(c) different database, uncentred core (d) different database, segmentation error

Figure 4.13: Difficult prediction samples. Subfigure 4.13(a) shows a 45 degree ro-
tated fingerprint image. In Subfigure 4.13(b) an uncentered loop type fingerprint is
shown. Subfigure 4.13(c) shows a slightly rotated and uncentered fingerprint from the
FVC2006db2a [20] database. The predicted OF is shown in green.
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(a) input OF highlighted (b) proposed

(c) FOMFE, 162 parameters (d) Legendre Polynomials

Figure 4.14: Prediction ability of various methods proposed in literature. Input OF
as shown in 4.14(a), including noise. Green color is used to display the interpolat-
ed/extrapolated OF. Subfigure 4.14(b) shows the results of the proposed method. The
prediction cabability of the FOMFE approach (exactly implemented as described in [90])
is shown in image 4.14(c). Subfigure 4.14(d) shows results of the approach described in
Chapter 3. Note how the proposed method (Figure 4.14(b)) generates the most plausible
OF.
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(a) example 1 (b) example 2

Figure 4.15: Estimation errors. In Subfigure 4.15(a) the method failed to generalise the
original OF. The twin loop is not correctly modelled. Subfigure 4.15(b) shows the model
fitted to a noisy OF. The algorithm could not achieve a plausible fit.

(a) loop type fingerprint (b) upside down of 4.16(a)

Figure 4.16: Illegal example test. In this example we create a ’illegal’ fingerprint ex-
ample by rotating a given fingerprint by 180◦. Note how the model corrected the flow
pattern to the most plausible type - a whorl type fingerprint.
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(a) input OF (b) block based smoothing (c) model

Figure 4.17: Fitting a noisy OF. The input image in Subfigure 4.17(a) is processed with
commercial fingerprint software (Subfigure 4.17(b)). In Subfigure 4.17(c) the same data
has been processed with the proposed method.
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Abstract

Automatic fingerprint identification systems apply enhancement algorithms in order to suppress

noise in the input data. As described in the chapters before, one of the most important parameter

for enhancement algorithms is orientation. This chapter demonstrates the effectiveness of the

fingerprint ridge orientation estimation methods proposed in the previous chapters. For image

enhancement we choose a suitable method available in literature and show how it impacts one

the error rates of a commercially available fingerprint matcher. The evaluations and comparison

made in this chapter emphasize the importance of image enhancement methods and highlight the

saliency of fingerprint ridge orientation.

5.1 Introduction

The extractability of both features, SPs and minutiae is heavily depending on successful
determination of ridge orientation. In general, there are several types of degradation
associated [44] with fingerprint images:

1. the ridges are not strictly continuous, containing gaps and small breaks.

2. parallel ridges are not well separated. This is due to the presence of noise which
links parallel ridges, and thus results in their poor separation.

3. cuts, creases, and bruises.

The above mentioned degradations make ridge extraction extremely difficult in highly
corrupted regions, particularly resulting in problems during minutiae detection. In
noisy images typically a significant number of spurious minutiae are extracted. On the
other hand a large number of genuine minutiae are missed due to noise in the input
image. Another issue introduced by noise is the precise determination of the minutiae
position. To ensure good performance of the ridge and minutiae extraction algorithm in
poor quality fingerprint images, an enhancement algorithm is necessary. Generally [44],
the fingerprint areas can be divided into three categories (see Figure 5.1 for a visual
explanation of the mentioned regions):

1. well-defined region: ridges are clearly differentiated from each other.

2. recoverable region: here ridges are corrupted by a small amount of gaps, creases,
smudges links and the like, but they are still visible and the neighbouring regions
provide sufficient information about their true structure.
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3. unrecoverable regions: ridges are corrupted by such a severe amount of noise and
distortion that no ridges are visible and the neighbouring regions do not allow
them to be reconstructed.

It should be noted that the above mentioned classification is depending on the en-
hancement strategy used. Therefore a ’better’ enhancement algorithm may be able to
recover regions which otherwise are unrecoverable.

Figure 5.1: Fingerprint quality categories : well defined, recoverable (using image en-
hancement strategies) and unrecoverable regions. Image courtesy of [44].

The above mentioned reasons represented a high motivation for many authors [70,
38, 82, 11, 1, 95, 8, 26] who have demonstrated the successful application of their image
enhancement schemas. The principal idea of such image enhancing methods can be
summarised [44] as in the following:

- low pass filtering with the aim of linking small gaps and filling impurities due to
pores or noise

- band pass filtering in the direction orthogonal to the ridges in order to increase
the discrimination between ridges and valleys.
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5.2 Related Work: Image Enhancement Techniques

Image enhancement can be seen as a basic step in fingerprint recognition algorithms
and is absolutely essential for reconstructing the actual fingerprint pattern as true to the
original as possible. The number of publications on this topic is literally endless, which
emphasizes its importance. In the following, we will sum up some of the available
methods in literature. Basically, the approaches can be classified into Spatial domain
based and Fourier domain based.

Without exception, all described methods ( [70,38,82,11,1,95,8,26]) highly depend on
the correctly extracted orientation of the considered fingerprint. As already mentioned
the extraction of the latter is difficult in areas with low image quality. Allusively, all
these papers underline the necessity for ridge orientation modelling.

5.2.1 Fourier domain filtering

In [82] the authors propose filtering in the Fourier domain. The advantage in contrast
to spatial domain techniques, which use large convolution masks is mainly execution
time. However, the algorithm assumes that the ridge frequency is constant throughout
the image in order to prevent a large amount of precomputed filters.

In [11] Sharat et al. introduce a method for fingerprint enhancement based on short
time Fourier Transform Analysis. This approach proceeds by analysing the image in
local windows and simultaneously computing the orientation and frequency map. In
the last step the authors propose the application of so calls raised cosine filters.

5.2.2 Spatial domain filtering

A classic in terms of fingerprint enhancement is the paper of Hong et al. [38]. The
authors propose a set of Gabor band-pass filters tuned to the corresponding ridge fre-
quency and ridge orientation. All operations are performed in the spatial domain.

Almansa and Lindeberg [1] propose fingerprint enhancement by application of au-
tomatic scale selection mechanisms. The discrete scale space prevents the occurance
of artefacts which often plagues blockwise methods. Furthermore the level of detail is
adapted to the local image quality.

Weikert [95] proposes the application of coherence-enhancing diffusion filtering for
image enhancement. The underlying concept enables true anisotropic behaviour by
adapting the diffusion process not only to the location, but also allowing variable smooth-
ing depending on the directions. This smoothing schema has been adopted by Cheng et
al. [8] and extensively evaluated using an AFIS.
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A method based on a so called Reaction-Diffusion System is described in [42]. In this
paper the authors exploit the fact that non-linear reaction diffusion dynamical systems
can be used to generate biological textures, including fingerprint like formations. The
proposed method combines ridge orientation estimation and an adaptive digital reaction
diffusion system in order to enhance a given image of fingerprints.

A very recent approach towards image enhancement is given by Fronthaler et. al [26].
The authors propose bandpass filtering using a multi level pyramid. The typical ridge-
valley flow is coherence enhanced by using directional averaging at the structure tensor
direction at each level of the pyramid.

5.3 Proposed Method

For enhancing fingerprint images we use the above mentioned subsequent combination
of two methods, one for band pass filtering and another one for directional averaging.
Enhancement algorithm outline:

1. Fourier domain based band pass filtering: In order to suppress noise (of very
high or very low frequency in comparison to the ridge frequency and/or different
orientation than the computed one) we use a block based band pass filtering. The
Fast Fourier Transform (FFT) is applied for each block. A butterworth filter in the
temporal domain is used for filtering. Each overlapping block is filtered using the
given orientation.

2. PDE based directional smoothing: In order to prevent block artefacts the direc-
tional smoothing is applied using a partial differential equation (PDE). Such a
method is more suitable for linking small gaps than block based methods. Espe-
cially important, is the possibility to adapt the amount of ’blurring’ depending on
the curvature of the fingerprint. Usually, low curvature areas allow more smooth-
ing while high curvature areas need less smoothing.

5.3.1 Fourier domain based band pass filtering

The chosen approach for band pass filtering is similar to Chikkerur et al. [11], where
during a short time Fourier transform (STFT) analysis, the image is divided into over-
lapping windows. The overlapping preserves the ridge continuity and reduces block
effects common with block processing image operations. It should be noted, that unlike
regular Fourier transform, the result is depending on the choice of the spectral window.
Since we are interested in enhancing and reconstructing the fingerprint image directly
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(a) window parameters (b) overlap (c) spectral window

Figure 5.2: Window parameters used in the STFT analysis [11].

from this Fourier analysis, the choice of windows is restricted. In order to provide suit-
able reconstruction during enhancement, we use a raised cosine window that tapers
smoothly near the border and is unity at the center of the window. The raised cosine
window is obtained using:

W (x, y) =





1 if (|x|, |y|) < BLKSZ/2,
1
2(1 + cosπ(x−BLKSZ/2)

OV RLP ) otherwise.
(5.1)

where BLKSZ is the blocksize and OVRLP the overlapping of the window in pixels.
Figure 5.2 shows a thumbnail sketch of the overlapping windows and the raised cosine
window. Our values for WNDSZ are 32, for BLKSZ = 10 and for OVRLP = 11.

The directional bandpass filter can be expressed as a separable function [82]:

H(ρ, φ) = Hradial(ρ)Hangle(φ) (5.2)

in order to allow independent manipulation of its directional and frequency re-
sponses Hangle(φ) depends on the local ridge orientation, while Hradial(ρ) depends on
the ridge frequency. Any good classical bandpass filter would be adequate for Hradial(ρ).
The Butterworth was suggested by Sherlock and Monroe in [82] because its implemen-
tation is simpler than any alternatives. The expression for this filter is:
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(a) angular filter Hangle(φ) (b) radial frequency filter
Hradial(ρ)

(c) combined H(ρ, φ)

Figure 5.3: Bandpass filtering. Each block of the fingerprint image is filtered by a
frequency selective bandpass filter. Note that the bandpass is orientation selective.

Hradial(ρ) =

√
(ρ · ρBW )2n

(ρ · ρBW )2n + (ρ2 − ρ2
0)2n

(5.3)

where ρBW and ρ0 are the desired bandwidth and centre frequency. A value of n=2
worked well and used throughout all experiments. For ρBW we use a value of 20 and for
ρ0 a value of 14. Note that these values should be adjusted for the spatial resolution of
the given fingerprint sensor. We used this rather generic values for all our experiments.

For Hangle(φ) the following function was used [82]:

Hangle(φ) =





cos2 π(φ−φc)
2φBW

if |φ| < φBW

0 otherwise
(5.4)

where φBW is the ’angular bandwidth’ of the filter, i.e. the range of angles for which
|Hangle| ≥ 0.5 and φc is the model based computed orientation. The directional bandpass
filter is shown in Figure 5.3. Throughout all the experiments we used φBW = 0.5.
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5.3.2 PDE based directional smoothing

We adapt an anisotropic diffusion filtering method which uses a diffusion tensor to
evolves the initial image under an evolution equation of type:

∂tu = div(D∇u) (5.5)

u(x, y, 0) = u0

where u(x, y, t) is the evolving image, t is the diffusion time, and D is the diffusion
tensor, a positive definite symmetric matrix that is adapted on the local ridge curvature.

D can be given as:

D =
(
w1 w2

)(c 0
0 c

)(
w1

w2

)
(5.6)

where c represents the diffusion strength and w1 and w2 describe the orientation of the
diffusion. Note that the orientation O is assumed to be given for this pre-processing
step. Then w1 and w2 can be computed directly by:

w1 = cos(O) (5.7)

w2 = sin(O) (5.8)

The diffusion strength c is necessary in order to adapt the amount of smoothing
depending on the curvature. Typically, the directional smoothing should be lower at
high curvature areas (singular points) and higher at low curvature areas. For computing
the diffusion strength we use the coherence (computed from the given orientation) as
described in [48]. This measure quantifies how well all orientation vectors share the
same orientation and is defined in the range [0, 1]:

c =
√
J2

1 + J2
2 (5.9)

where J1 and J2 can be computed by convolving the vectorial orientation by using an
Gaussian Gρ.

J1 = cos(2O) ∗Gρ (5.10)

J2 = sin(2O) ∗Gρ

Note that the coherence computed from orientation vectors needs no normalization as
opposed to the coherence computed from image gradients as in [48]. We used a standard
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(a) fingerprint (b) diffusion strength and orientation

Figure 5.4: Diffusion strength c. Lower values (blue) for the diffusion strength are used
in regions of high curvature in order to preserve the image details. In low curvature ar-
eas (red) the diffusion strength is increased. The orientation of the diffusion is computed
using the proposed method as described in chapter 3.

deviation of ρ = 12 for the Gaussian convolution mask in all our experiments.

Note that the proposed method for directional smoothing resembles Weikert’s [95]
’coherence enhancing diffusion’. Weikert embeds the structure tensor approach into
a non-linear diffusion process, where the diffusion process is steered by the diffusion
tensor. In our method the diffusion tensor is not directly computed from the image but
instead from the given orientation.
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Numerical Issues

For the numerical approximation of the described partial differential equation (PDE),
one needs to replace the derivatives by finite differences. The PDE has the structure:

∂tu =
m∑

i,j=1

∂xi(dij∂xju), (5.11)

the simplest discretization is given by the finite difference scheme:

∂tu =
m∑

i,j=1

LkijU
k. (5.12)

In this notation, U describes a vector containing the values at each pixel. The upper
index denotes the time level and Lij is a central difference approximation to the operator
∂xi(dij∂xj ). Equation 5.12 can be rewritten as

Uk+1 = (I + ∆t
m∑

i,j=1

Lkij)U
k (5.13)

Uk+1 can be calculated explicitly from Uk without any matrix inversions. For this reason
this scheme is called explicit scheme (for more details see [2]).

The problem adhered to such an explicit scheme is that it requires very small time
steps (high runtime!) in order to be stable. Therefore, it is suggested in literature [94,95]
to use an implicit scheme having the same first-order Taylor expansion in ∆t, but better
stability properties. One possibility is the so called ’additive operator splitting stabilized
scheme’ (AOS scheme), which has been introduced in [94] as an efficient and reliable
method for isotropic non-linear diffusion filtering and which performs well on parallel
computer architectures. Equation 5.14 shows one way how to extend the AOS-scheme
to anisotropic processes with a diffusion tensor:

Uk+1 =
1
m

m∑

l=1

(I −m∆tLkll)
−1 · (I + ∆t

m∑

i=1

∑

j 6=i
Lkij)U

k (5.14)

This method achieves a stabilization through the non-negative matrices (I −m∆tLkll)
−1.

They describe a semi-implicit discretization of the diffusion caused by the l-th diagonal
entry of the diffusion tensor. The typically necassary step size ∆t = 2 is about an order
of a magnitude larger than the ones for of the classic explicit scheme. For the standard
approximations with central derivatives within a (3x3)-stencil, the matrix inversions
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in Equation 5.14 comes down to solving diagonally dominant tridiagonal systems of
linear equations. This can be performed in linear complexity with a modified Gaussian
algorithm (Thomas algorithm, see [93, 2]).

The final algorithm is as follows:

1. Calculation of the diffusion tensor in each pixel.

2. Calculation of:

V k = (I + ∆t
m∑

i=1

∑

j 6=i
Lkij)U

k

3. For l=1..m: calculation of

W k+1
l = (I −m∆tLllk)−1V k (5.15)

by means of the Thomas algorithm ( [93]).

4. Calculation of

Uk+1 =
1
m

m∑

l=1

W k+1
l . (5.16)

This algorithm has proven to be of low computational complexity. We apply 30
iterations of this algorithm in our Matlab implementation. Using a good C/C++ imple-
mentation and exploiting multiple cores on a state of the art computer run times are
reported to be less than 70 ms for a 512x512 image.

Figure 5.5 shows an example fingerprint enhanced using the proposed method.

5.4 Evaluation

The performance of the enhancement algorithm is assessed on the FVC2004 db3 and
FVC2006 db2 dataset. We demonstrate that incorporating the enhancement algorithm
in the a commercial fingerprint verification system improves the system performance.
Figure 5.6 5.7 show the ROC curves which demonstrate the improvements made using
the proposed method.

For the FVC2004db3a the original matcher’s EER is 2.38%. Using Legendre polyno-
mials as described in Chapter 3 we can decrease the EER to 1.81 (24% improvement).
Additionally, using the mentioned enhancement method we can decrease the EER to
1.61% which represents a relative improvement of 33%.
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When applying the proposed enhancement strategy to the FVC2006db2a dataset,
the EER can be reduced to 0.136%. While the original EER was 0.284% we could reduce
it 0.18% using the ridge orientation model only. The relative improvement using the
model was 37%, using the model and the proposed enhancement strategy we can more
than half (52%) the EER or the original matcher.

5.5 Conclusion

In this chapter we have applied a pre-enhancement step to a commercial fingerprint
verification system. The proposed enhancement algorithm was chosen to the following
reasons. First, it should be noted that ridge frequency estimation as often proposed in
literature, is very difficult (if not impossible) to realize in low quality regions. Therefore,
the ridge frequency filtering is done for a given possible ridge frequency range. In our
implementation this is achieved by bandpass filtering of the image in the Fourier space.
Note that this orientation sensitive filtering adds very little additional computational
costs to the final matching algorithm as the Fourier transformation is already part of
most commercial AFIS (eg. for image quality estimation). Second, we apply directional
smoothing using a partial differential equation (PDE). This method is chosen in order to
prevent blocking effects and to reduce spurious minutiae detection, a common problem
with many other filtering methods. Furthermore, the PDE allows an adoption of the
smoothing strength depending on the curvature and scale of the fingerprint.

Both mentioned filtering steps, necessarily make use of the fingerprint’s ridge ori-
entation. We have performed several evaluation on publicly available databases. These
experimental results show that the enhancement algorithm is capable of improving the
recognition rates.

Note that the algorithm can be further improved by excluding unrecoverable regions,
which can be detected during the enhancement step.
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(a) original image (b) estimated orientation

(c) bandpass filtered (d) directionally smoothed

Figure 5.5: Enhancement example. The original image (a) is taken from the fvc2004
database 1a and contains ridges which can not be well discriminated from the val-
leys. The orientation in Subfigure (b) is estimated using the model based procedure
as described in chapter 3. The bandpass filtering results in the image (c). The final
enhancement including the directional smoothing is shown in (d).
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Figure 5.6: ROC for fvc2006db2a. This figure shows the improvements made using
the proposed enhancing method. The improvements using the orientation model from
chapter 3 are 37%. Using the proposed enhancement we can increase this rate to 52%.
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Figure 5.7: ROC for fvc2004db3. This figure shows the improvements made using
the proposed enhancing method. The improvements using the orientation model from
chapter 3 are 24%. Using the proposed enhancement we can increase this rate to 33%.



Chapter 6

Thesis Conlusion

6.1 Summary

In this PhD thesis we have studied fingerprint ridge orientation modelling. This section
gives a summary of the individual chapters.

Chapter 1

The goal of the first chapter is to give a general introduction on biometrics with focus
on fingerprint verification. It is explained how a fingerprint verification system extracts
distinctive features and uses these features for ’matching’ two fingerprints. One of the
main modules of a fingerprint verification system, namely fingerprint ridge orientation
estimation, is described in detail. We will describe the role of this module and discuss
the motivations behind fingerprint ridge orientation modelling. These motivations are
mainly concerned with lower error rates, higher compression ratios and lower process-
ing times. In the last part of this chapter an outline of the thesis is given.

Chapter 2

This chapter discusses prior work related to this thesis. First, we will give an overview
of the orientation estimation process. We will discuss the different representations of
orientation, which are necessary because orientation is a π cyclic quantity. In the second
section of this chapter we give a list of available fingerprint ridge orientation models
in literature. This literature will be classified based on different aspects. The third part
of this chapter shows a deep analysis of the standard orientation averaging method
which is based on vectorial orientation smoothing. Furthermore, we will discuss the
Bias-Variance trade-off applicable to the orientation smoothing.

125
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Chapter 3

Based on the findings from the previous chapter, Chapter 3 proposes a novel method
for fingerprint ridge orientation modelling. One of the main problems the presented
method addresses is smoothing orientation data while preserving details in high cur-
vature areas, especially singular points. We show that singular points, which result in
a discontinuous orientation field, can be modelled by the zero-poles of Legendre Poly-
nomials. The method proceeds in two steps. In the first step we roughly estimate the
parameters using a closed form solution. In the second optimization step, we propose
to use a non-linear optimization technique for more precise parameter estimation. We
showed, that only five iterations of the Levenberg-Marquardt algorithm lead to a sig-
nificantly improved orientation field. Another advantage of the proposed method is
a extremely compact representation of the orientation field, using only 56 coefficients.
We have carried out extensive experiments using a commercial fingerprint matcher and
a singular point detector. Moreover, we compared the proposed method with other
state-of-the-art fingerprint orientation estimation algorithms. We can report significant
improvements in both - singular point detection as well as matching rates.

Chapter 4

In this chapter we apply a priori knowledge to the fingerprint ridge orientation models
as described in the previous chapter. In the first part of this chapter, we will describe
the idea of flexible templates models. This models, usually used for shape analysis in
literature, can be used to apply prior knowledge within pattern recognition algorithms.
Furthermore, we will give an overview of these methods and describe some of the
available techniques. Using a priori knowledge, the OFs can be constrained by the model
to vary only in ways as they occur in nature. We will describe how such a method can be
used to estimate OFs in noisy fingerprints as well as to interpolate larger OF parts. The
proposed method uses Active Fingerprint Ridge Orientation Models (AFROMs) which
iteratively deform to fit an OF of a fingerprint. Our method does not depend on any
pre-alignment or registration of the considered images. The training can be done fully
automatic without any user interaction. Furthermore, our method does not depend on
any other computed data, except a segmentation. We give a exhaustive evaluation - the
generalisation as well as the prediction capability of the proposed method is analysed.

Chapter 5

Automatic fingerprint identification systems apply enhancement algorithms in order to
suppress noise in the input data. As described in the chapters before, one of the most im-
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portant parameter for enhancement algorithms is orientation. This chapter demonstrates
the effectiveness of the fingerprint ridge orientation estimation methods proposed in the
previous chapters. For enhancing fingerprint images, we choose a suitable method from
literature. In order to suppress artefacts we use block based band pass filtering. This
is done by applying the Fast Fourier Transform for each block. A Butterworth filter in
the temporal domain is used for the final filtering. Each overlapping block is filtered by
using the computed orientation. In a second step, directional smoothing is applied us-
ing a partial differential equation. The proposed ’continuous’ method is more suitable
for linking small gaps than block based only methods. Especially worth mentioning
is the possibility to adapt the amount of ’blurring’ depending on the curvature of the
fingerprint. The evaluations and comparison made in this chapter clearly underline the
importance of image enhancement methods and highlight the saliency of fingerprint
ridge orientation. Finally, it should be noted that all experiments carried out have been
performed using state of the are commercial fingerprint software.

6.2 Main Contributions

This section emphasizes on the research contributions of this PhD Thesis.

• Literature review: Fingerprint ridge orientation modelling methods are studied
for over 30 years, this thesis gives a deep analysis of related work. We are using
profound issues for the partitioning of this literature into several classes. The un-
derlying concepts, as well as the advantages and disadvantages of these methods
are discussed. This literature review is given in Chapter 2.

• Novel methods:

– A novel method for higher (compared to state of the art methods) fidelity
in fingerprint ridge orientation estimation is presented. One of the main
problems the proposed method addresses is smoothing orientation data while
preserving details in high curvature areas, especially around singular points.
We show that singular points, which result in a discontinuous orientation
field, can be modelled by the zero-poles of orthogonal polynomials. The
models parameters are obtained in a fast two staged optimization procedure.
This part is described in Chapter 3.

– Another contribution of this thesis is the application of a priori knowledge
in fingerprint orientation models. Available methods construct a model by



128 Chapter 6. Thesis Conlusion

applying a suitable analytic expressions (e.g. differential equations with tra-
jectories similar to fingerprint flow patterns). These ’hand crafted’ analytic
expressions together with the suggested heuristics are very complex while
still being of limited usefulness. This is due to the fact that the mechanisms
which give rise to variability are insufficiently well understood to allow a
theoretical model of deformability to be proposed. Starting from the theoret-
ical framework of flexible templates models, we developed a method which
constraints the fingerprint orientations to vary only in ways as they occur in
nature. The proposed procedure statistically ’learns’ specific patterns of vari-
ability from a representative training set of the OFs. Furthermore, we want to
note that the proposed model is one of the rare models which can be used to
model all classes of fingerprints, including arch type fingerprints. Arch type
fingerprints are difficult to model because they do not contain singular points.
Another advantage of the method is that the user does not need to label any
samples. Instead, the statistically relevant ’ingredients’ are extracted from
large enough sample database (a few hundred images). This contribution is
given in Chapter 4.

• Evaluation:

– For evaluating the proposed method we perform feature extraction on pub-
licly available databases. For testing the improvement in orientation extrac-
tion, we replace the orientation field of a state of the art fingerprint matcher
with a orientation field computed using the proposed method. The matching
results show statistically significant improvements.

– Current literature does not have an established ’standard’ for evaluating SP
detections. This thesis presents a systematic method for the evaluation of SP
detections, therefore creating a common basis for comparing two different
singularity detectors without depending on specific thresholds.

In conclusion, the fingerprint orientation model proposed in this PhD thesis pro-
vides a clear improvement over prior models. This improvements are backed up by the
extensive studies conducted in this thesis. Further research might however be needed
to allow for their wide-spread applicability.



Appendix

6.3 Weighted Pseudoinverse Technique for Least Squares Ap-
proximation

For the approximation of a discrete two dimensional function f(x, y) we propose to use
a linear combination of n basis functions. Then for every point xi = (xi, yi) the following
equation can be evaluated:

f(x, y) ≈
n∑

j=0

ajφj(x, y) (6.1)

Let

Φ(xi) = [φ0(x) φ1(x) . . . φn(x)] (6.2)

be the row vector containing the set of basis functions [φ0(x) φ1(x) . . . φn(x)] eval-
uated for a given coordinate x = (x, y), the system matrix V can be defined as:

V =




Φ(x1)
Φ(x2)

...
Φ(xi)




Using this expression, we can complete the system matrix to:

V =




φ0(x1) φ1(x1) . . . φn(x1)
φ0(x2) φ1(x2) . . . φn(x2)

...
...

. . .
...

φ0(xi) φ1(xi) . . . φn(xi)




(6.3)
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Where the size of the system matrix V is determined by the number of coordinate points
i and the number of basis functions n. Further, we can write the parameter vector as:

a = [a1, a2, . . . , an]T (6.4)

and the vector of observed function values f as:

f = [f(x1), f(x2), . . . , f(xi)]T (6.5)

where f(xk) is the observed function value at the coordinate xk. We use the method
of least squares to model the numerical data f . The best fit is characterized by the
least value of the sum of squared residuals F . Furthermore, a weight ω to every pixel
x = (x, y) is assigned because not all points are of equal value in determining a solution.
Using this convention, we can write:

F =
i∑

j=1

ωj [Φ(xj)aT − f(xj)]2. (6.6)

Since the number of data points (and thus equations) is much larger than the number
of basis functions, we use the pseudoinverse technique to estimate a solution [28, 73].
The solution vector a can be obtained as following:

a = (VTWV)−1VTWf (6.7)

Where W = diag(ω1, .., ωi) is the diagonal weighting matrix containing the weights for
every coordinate.

6.4 Averaging Orientation Data

Rao and Schunk

This section is based on [77]. Rao and Schunk [77] mention that it is not possible to
sum up directions vectorially in order find the average of two directions. This will not
work for two reasons. Firstly, any given line segment does not have a unique direction,
since it could be taken to point either in the direction φ or φ + π. Secondly, even if the
line segments (ridges and valleys in fingerprint images) were assigned directions, there
is the danger that segments pointing in opposite directions will cancel each other out,
instead of influencing the choice of dominant orientation as they should. One way to
tackle this problem is as follows. Assume that the pixels are indexed by the subscripts i,
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where i ranges from 1 to N , the number of pixels. Consider a line oriented at an angle
φ as shown. Let jth segment subtend an angle φj . The next few steps will show that it
does not matter what sense this angle is taken in, i.e. it is immaterial as to what vector
direction one chooses for the line segment. Let Rj be the length of the jth segment.
The projection of this segment onto the line is Rj cos(φj − φ). Consider the sum of the
absolute value of all such projections,

S1 =
j=N∑

j=1

||Rj cos(φj − φ)|| (6.8)

S1 varies as the orientation of the line φ is varied. That value of φ which maximizes
S1 is the dominant orientation of the given set of line segments. Thus, one can evaluate
the dominant orientation by maximizing S1 with respect to φ. Since the absolute value
function is not differentiable everywhere, one can equivalently maximize the sum S2,
where

S2 =
j=N∑

j=1

R2
j cos2(φj − φ) (6.9)

Here we have taken the sum of the square of the projections. Differentiating Equation
6.9 with respect to φ we get

∂S2

∂φ
=

j=N∑

j=1

R2
j cos(φj − φ) sin(φj − φ) (6.10)

Setting Equation ∂S2/∂φ to zero in order to obtain an extremum, we get from the
above equation

j=N∑

j=1

R2
j2 sin(φj − φ) = 0 (6.11)

j=N∑

j=1

R2
j2 sin 2φj cos 2φ =

j=N∑

j=1

R2
j2 cos 2φj sin 2φ (6.12)

Hence

tan 2φ =

∑j=N
j=1 R2

j sin 2φj
∑j=N

j=1 R2
j cos 2φj

(6.13)
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Let φ̂ be the value of φ which satisfies Equation 6.13. Instead of finding the sum S2

at different orientations, Equation 6.13 tells us in a single computation the orientation
φ̂ that maximizes S2 and hence the dominant direction of the pattern of line segments.
That φ̂ indeed maximizes S2 will be proven shortly.

Equation 6.13 has an interesting interpretation. Consider the line segments to lie in
the complex plane, each segment being represented by Rje

iφj , where Rj is the length
of the segment and φj is its direction. Now square all the segments, which have been
represented as complex numbers. Thus each segment will give rise to a term or the form
R2
je

2iφj . If summing up these numbers, the resulting complex number has an orientation
α, with respect to the x-axis, given by

tanφ =

∑j=N
j=1 R2

j sin 2φj
∑j=N

j=1 R2
j cos 2φj

(6.14)

This equation is the same as Equation 6.13. Interestingly, Witkin and Kass [48] ar-
rived at a similar result. Their method is described in the next subsection. The orienta-
tion smoothing method described in Equation 6.13 is one of the most cited method for
orientation smoothing.

Witkin and Kass

This section describes the orientation smoothing approach as described by Witkin and
Kass in [48]. In their paper they discuss squaring the gradient vectors a necessary step
for deriving a smooth orientation vector field. This section is based on [77].

Consider the vector in the complex plane formed by combining the gradients Gx
and Gy as (Gx + iGy). Let this vector have the polar representation Reiφ. The square
of this vector is R2e2iφ. Consider the vector Re2iφ+2π = Re2iφ. Hence, squaring gradient
vectors that point in opposite directions makes them reinforce each other. This is the
basis of the first scheme for combining gradient orientations, and has been proposed by
Witkin and Kass [48].

Let J(i, j) denote the squared gradient vector at (i, j). The x component of J is
Jx = Gx(i, j)2 − Gy(i, j)2 and the y component of J is Jy(i, j) = Gx(i, j)Gy(i, j). Jx
and Jy are computed from the gradient of the image in this manner. The next step is to
smooth Jx and Jy in order to average the orientation estimates over a neighbourhood.
This is done using Gaussian filters. Let Jx∗(i, j) and Jy∗(i, j) represent the smoothed
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squared gradient vector at (i, j). Let φij be defined by the equation

φij = arctan
Jy∗(i, j)
Jx∗(i, j)

1
2

(6.15)

where the arctangent is computed using two arguments and lies in the range [0, 2π). The
division by 2 occurs because the original gradient vector was squared. The estimated
orientation angle at (i, j) is then φij + π

2 , since the gradient vector is perpendicular to
the direction of anisotropy.

It should be mentioned, that this method is equivariant to the above mentioned
method of Rao and Schunk [77]. This fact can be easily verified by converting the
Cartesian coordinates into Polar coordinates.

6.5 The Bias-Variance Tradeoff

This section describes the bias-variance tradeoff and is represents a quote from [87]. The
bias-variance tradeoff (also known as bias-variance dilemma) is a very important issue
in data modelling. Ignoring it is a frequent cause of model failure and although it has
a deep theoretical rooting, it can be explained in simple terms. The phenomenon is not
specific to a specific model. In fact, it shows-up under various guises in any kind of
model. So, quite generally, the bias-variance tradeoff principle can be stated as follows :

• Models with too few parameters are inaccurate because of a large bias (not enough
flexibility).

• Models with too many parameters are inaccurate because of a large variance (too
much sensitivity to the sample).

• Identifying the best model requires identifying the proper ’model complexity’
(number of parameters)

6.5.1 A model is a set of estimators

We’ll use regression as an example. The data is supposed to have been generated by a
process:

y = f(x1, x2, ..., xp) + ε (6.16)

where f is deterministic, and ε is random with 0 mean. A regression model y∗ =
f∗(x1, x2, ..., xp) is built from the sample. Let x0 be a point of the feature space. Then
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f∗(x0) is hoped to be close to y0 = f(x0), the true value of the regression function. Be-
cause of the randomness of ε, that is, the randomness of the sample, the model depends
on the actual sample used to build it. Another sample would have led to a different
model, and therefore a different response at x0. So the response of a model at any point
is a random variable. In the terminology of Statistics, such a regression model there-
fore puts at each and every point x0 of the feature space a random variable that is an
estimator of y0, the true value of the regression function at this point. This estimator is
denoted by f∗(y, x = x0), or f∗0 for short.

6.5.2 Bias-Variance decomposition

We here focus on the response error at x0 (although a more general study can be con-
ducted on the entire space, taking into account the unconditional probability distribu-
tion p(x). The estimator f∗0 is good if its realizations are close to the true value y0 in a
probabilistic sense, that is, for instance, if its Mean Square Error (MSE):

MSE = E[(f∗0 − y0)2] (6.17)

is small. It is easily shown that:

MSE = Bias2 + Variance (6.18)

where ’Bias’ and ’Variance’ are that of the response of the model, considered as an
estimator of y0. So the errors made by a model have two origins:

• The Bias, that measures how far the model response f *(x0) is from the value f(x0)
of the true regression function on the average (that is, over all possible samples),

• The Variance, that measures how sensitive f *(x0) is to the particular sample that
was used for building the model.

It is never the case that a data set makes obvious the choice of a particular model
architecture. The analyst will always consider several candidate models, and his goal
is of course to select the model with the most accurate response (on new data). For
example, in the case of regression, it is common to have many candidate independent
variables (the regressors). A large part of the effort of model building will consist in
identifying an adequate subset of regressors to be incorporated into the model. But
each subset of regressors will yield a model, so a family of models is to be considered.
At point x0, each of these models will have its own bias, its own variance, and therefore
its own error level (MSE).
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6.5.3 The Bias-Variance Tradeoff

The bias-variance tradeoff principle states that within a given family of models :

• A model with a low bias has a large variance.

• A model with a low variance has a large bias.

• The best model (lowest MSE) in the family will have neither a very low bias, nor a
very low variance.

Identifying this best model with certainty is of course impossible, as this would
require knowing the true regression function f(x). But attempts can be made to identify
models which are probably good. This is the object of ’model selection’ (see below).

(a) Sample 1 (b) Sample 2

Figure 6.1: Bias. If the data is highly non-linear, a low degree polynomial (order 1,
shown in blue in this illustration) will not have the flexibility needed to capture the
global shape of the distribution. The polynomial line will be most of the time far from
the data points, leading to large errors. The model is then said to have a large bias
because the bias of its predictions for a given x (blue dot) is high. On the other hand,
because of this very rigidity, the predictions of the model will depend only little on the
particular sample that was used for building the model, and will therefore have a low
variance (lower image of the illustration below). Images courtesy of [87].

6.5.4 Model complexity

It is convenient to consider the number of parameters (the complexity of the model) as a
way to sort models in a family. The bias-variance tradeoff then states that, in the family
of models:

• Low complexity models have a low variance but a large bias.

• High complexity models have a low bias but a large variance.
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(a) Sample 1 (b) Sample 2

Figure 6.2: Variance. But too large a degree will make this polynomial line very sensitive
to the details of the sample. Another sample would have lead to a completely different
model, with completely different predictions (lower image of the illustration below).
The model is then said to have a large variance because the variance of its predictions
(for a given x) is large. In good models, points that are far from the true regression
line (green) have a large contribution to the quadratic error. But here, because of the
flexibility conferred by its high degree, the polynomial line can now get close to these
points (low bias), and the quadratic error measured on the design sample is low. So
the model appears to be performing well, but will in fact perform poorly on new data.
Images courtesy of [87].

Consequently, the ’best’ model will always have a number of parameters that is neither
too small nor too large. The analyst will have to find the proper tradeoff between bias
and variance within this family of models, largely (but not only) by tuning the number
of parameters.

6.5.5 Overparametrization and Overfitting

The true performance of a model is that observed on new data that did not take part to
the construction of the model, not the observed performance on the design data.

• For a model that is higly biased because its complexity is too low, these two per-
formances are similar, and both poor.

• But for a model with too large a variance because its complexity is too high (over-
parametrization), one will observe :

– Excellent (but meaningless) performance on the design data, and

– Poor performance on new data because of the high variance of the local esti-
mators. This is called overfitting.
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For example, if f∗ is chosen in the family of polynomials, then higher degree polyno-
mials (large number of parameters) can get closer to the data points than lower degree
polynomials, thus leading to a lower quadratic error. In fact, if the design set contains n
data points, it is well known that a n-degree polynom will go exactly through the points,
thus reducing the error on the design set to 0. But this polynom undergoes oscillations
that are both very large and whose features strongly depend on the exact positions of
the points, thus conducing to a model with a huge variance and very large response
errors.

Let’s insist again: even a moderate overparametrization can cause the variance of the
model to grow in an explosive way. Because this phenomenon is masked by excellent
performances on the design set, and becomes visible only when it is too late (that is,
when the model is put to work on new data), it tends to be overlooked by the newcomer
to data modelling.

6.5.6 Sample size

Quite generally, larger samples make for smaller variances. Unfortunately, practical
considerations prohibit resorting to arbitrarily large samples to bypass the bias-variance
problem. Conversely, small samples make the bias-variance tradeoff even more acute.
For a given bias, the variance of the model response is larger than for a model built from
a larger sample. The sample size issue is both important and complex as a new concept
now steps in: that of the dimension of the data space. Is a 1000-observation sample large
or small ?

• Suppose that one wants to make a 10-bin histogram of this 1-dimensional data :
then 1000 observations is plentiful, for there will be an average of 100 observations
per bin, and the variance of the histogram will be small, and the bias reasonable.

• Suppose now that the data is 3-dimensional (there are 3 variables xi). One wants
to make a 3-dimensional histogram for the purpose of probability density estima-
tion, and wants to maintain the 10-bracket resolution per dimension. The ’3D-
histogram’ will then have 103 = 1.000 bins (cubic boxes), and there will be an
average of only 1 observation per bin. Clearly, such a histogram is useless because
of its huge variance.

So sample size by itself means nothing. What really matters is not the number of
observations, but the density of the observations in the feature space. This density col-
lapses as more dimensions are added for a given sample size, and therefore as more
parameters added to the model. Conversely, if one wants to maintain the same density
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(and therefore maintain the accuracy of the model) when more dimensions are added,
then the sample size should increase enormously (usually exponentially with the num-
ber of dimensions). This is known as the ’curse of dimensionality’.

6.5.7 Model selection

In the family of models that is being considered, how is the ’best’ model going to be
identified? First, we will never be certain that we have identified the best model in the
family, because of the random nature of the sample. But it is possible (and necessary) to
identify models that are probably fairly good. This can be done in two ways:

• The error level measured on the design set is always lower than the error level ob-
served on new data (an extreme case is that of the polynom of degree n that goes
through every point of the design set, the ’in-sample’ error level being then 0). It
is said to be ’optimistic’. In some cases, additional assumptions about the mecha-
nism that generated the data allow this optimism to be quantified analytically. An
estimation of the true error level can then be calculated. This is for example the
case in Linear Regression. When the assumptions of the Linear Model are met:

– The Coefficient of determination R2 is a measure of the performance of the
model on the design set.

– The ’Adjusted R2’ is a (calculated) estimation of the performance of the model
on new data.

The analyst then builds several models, and retains the model with the lowest
predicted error level.

• If the direct estimation of the error level is not feasible, one can apply various
computer-intensive simulation techniques like:

– Cross-validation, that repetitively puts aside some of the data to simulate
’new’ data.

– Bootstrap, that uses the empirical distribution function as an estimate of the
true distribution function.
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1989



BIBLIOGRAPHY 143

[53] Erwin Kreyszig, Advanced Engineering Mathematics, Wiley, 6th edition, 1988

[54] M. Kucken and A. Newell, Fingerprint formation, Journal of Theoretical Biology
235(1), pages 71–83, July 2005

[55] Kok F. Lai and Roland T. Chin, Deformable Contours: Modeling and Extraction, IEEE
Transactions on Pattern Analysis and Machine Intelligence 17(11), pages 1084–
1090, 1995

[56] C.H. Lee, S.H. Lee, and J.H. Kim, A Study of Touchless Fingerprint Recognition
System, pages 358–365, 2006

[57] J. Li, W.Y. Yau, and H. Wang, Constrained nonlinear models of fingerprint orientations
with prediction, PR 39(1), pages 102–114, January 2006

[58] Jun Li, Wei-Yun Yau, Jian-Gang Wang, and Wee Ser, Stability Analysis of Constrained
Nonlinear Phase Portrait Models of Fingerprint Orientation Images, In ICB, pages 493–
502, 2007

[59] Tony Lindeberg, Scale-Space Theory in Computer Vision, Kluwer Academic Publish-
ers, 1994

[60] Maio Dario Luminia Alessandra and Maltoni Davide, Continuous versus exclusive
classification for fingerprint retrieval, Pattern Recognition Letters 18(10), pages 1027–
1034, October 1997

[61] D. Maio and D. Maltoni, A structural approach to fingerprint classification, Pattern
Recognition, 1996., Proceedings of the 13th International Conference on 3, pages
578–585 vol.3, 1996

[62] Dario Maio, Davide Maltoni, Raffaele Cappelli, James L. Wayman, and Anil K.
Jain, FVC2004: Third Fingerprint Verification Competition., In David Zhang and
Anil K. Jain, editors, ICBA, volume 3072 of Lecture Notes in Computer Science, pages
1–7. Springer, 2004

[63] Li Q. Mardia K. V. and Hainsworth, On the Penrose hypothesis on fingerprint patterns,
IMA Journal of Mathematics Applied in Medicine & Biology (9), pages 289–294,
1992

[64] R. Mester and M. Muhlich, Improving Motion and Orientation Estimation Using an
Equilibrated Total Least Squares Approach, In ICIP01, pages II: 929–932, 2001

[65] Rudolf Mester, Orientation estimation: conventional techniques and a new approach, In
InProc. European Signal Processing Conference (EUSIPCO2000), Tampere, 2000
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