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Abstract

Learning from data, in order to make predictions, is an important problem in computer science. To tackle
this problem, many learning algorithms have been developed. It is well-known that prediction perfor-
mance can be improved by combining several individual predictions that are based on distinct learning
processes. Such combination techniques are called ensemble methods. Two widely used ensemble tech-
niques are bagging and boosting. Different predictions are obtained by either resampling the training
set (bagging) or laying focus on hard examples (boosting). Combining different kinds of learning al-
gorithms (e.g. linear regression, k-nearest neighbors, neural networks, kernel ridge regression) is not
the aim of bagging and boosting. For this problem, known methods are stacking and cascade learning.
Furthermore, we analyze residual training as a combination algorithm. This thesis consists of an exhaus-
tive experimental evaluation of different combination and training algorithms for ensemble learning. In
the experimental section, we evaluate ensemble learning techniques on 14 UCI datasets and two larger
datasets (UCI Letter, MNIST). The application of ensemble learning to recommender systems is ana-
lyzed with the Netflix dataset, that consists of 108 movie ratings samples. We found that simple linear
combination of predictions is not optimal in with respect to the minimization of the prediction root mean
squared error (RMSE). To predict ratings with collaborative filtering we use a set of predictions from dif-
ferent models (SVD, KNN, Restricted Boltzmann machine, Asymmetric Factor model, Global Effects)
from the participation on the Netflix prize. These models are state of the art in the field of collabora-
tive filtering. To perform all reported experiments, a C++ based framework for ensemble learning was
developed. We provide a description of this framework in the last section of this thesis.





Kurzfassung

Das Lernen aus Daten, um Vorhersagen treffen zu können, ist ein wichtiges Problem der Informatik, und
viele Algorithmen wurden entwickelt um Prediktoren zu trainieren. Es ist bekannt, dass die Vorhersage-
genauigkeit verbessert werden kann, wenn man die Vorhersagen einzelner Prediktoren kombiniert. Me-
thoden zur Kombinationen von Prediktoren werden Ensemble Methoden genannt. Zwei weit verbreitete
Techniken sind bagging und boosting. Bagging basiert auf dem Resampling einen Datensatzes. Boosting
fokusiert sich sukzessive auf die schwer zu erlernenden Beispiele. Die Kombination von verschiedenen
Lernalgorithmen (z.B. lineare Regression, k-nearest neighbors, Neuronale Netzwerke oder Kernel Ridge
Regression) ist nicht das Ziel von bagging oder boosting. Für diese Art der Probleme eignen sich stacking
und cascade learning. Weiters analysieren wir das Trainieren auf dem verbleibenden Modellfehler (Re-
siduals). Diese Diplomarbeit fokusiert sich auf eine experimentelle Auswertung verschiedenster Kom-
binationen von einzelnen Lernalrogithmen mit verschiedenen Ensemble Lernmethoden. Dabei führen
wir eine experimentelle Auswertung auf UCI Datensätzen aus. Weiters werden Ensemble Lernmethoden
auf den Datensätzen UCI Letter und MNIST analysiert. Die Anwendung auf dem Gebiet der Empfeh-
lungssysteme wird mit Hilfe des Netflix-Datensatz ermittelt. Dieser hat eine Größe von 108 Ratings.
Das Ensemble von Vorhersagen liefern verschiedene Collaborative Filtering Algorithmen (SVD, KNN,
Restricted Boltzmann Maschine, Asymmetric Factor Modell, Globale Effekte). Ein häufig verwende-
te einfache Methode der Kombination von Vorhersagen ist lineare Regression. Wir zeigen dass lineare
Regression nicht optimal ist wenn auf das Fehlermaßroot mean squared error (RMSE) optimiert wird.
Im Zuge der Diplomarbeit wurde ein auf C++ basierendes Software Framework entwickelt. Das letzte
Kapitel beschreibt das Framework in groben Zügen.
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Chapter 1

Introduction

A machine learning algorithm learns a hidden function from data. We can aggregate multiple results
from various learners. This thesis is about ensemble learning, where the results of different learning
algorithms are combined in a clever way.

Theory and practice in supervised learning has a long history, and many learning algorithms were
proposed in the literature. A learning algorithm is a technique for learning a mapping from input space
to its output space from a given dataset. Input and output space are typically high dimensional, the task
of a learner is to approximate the mapping function Ω in order to get low error on unknown test examples
(unseen examples). This means the algorithm must generalize to new data points. If input and output
space is high dimensional the problem of sparseness is a big issue.

The application of different algorithms on the same problem leads to different approximations of the
mapping function Ω. This behavior can be used to construct a better approximation so that the error on
the test set becomes lower than the error of any individual algorithm.

Generalization is a major concern in all supervised models. There is always a tradeoff how well the
model can fit the data, also known as bias-variance tradeoff. If the fit is too accurate it may not perform
well on new data. If the model is not powerful enough to extract the underlying function, the error on
unknown data is also high.

1.1 Ensemble of Models

An “ensemble” is a set of trained models which are combined in a clever way [1]. The goal of ensemble
learning is to aggregate learned models in order to improve the prediction accuracy on unknown input
data (generalization). The success of combining multiple models depends on the error of each individual
and the correlation between them [2]. In a good ensemble, the pool of prediction models are accurate
individually and learn different structure from the data to add valuable information. So in practice,
how well an ensemble performs is data dependent. For example if a neuronal network has enough
expressiveness to learn the underlying function of the given problem well enough, there is less or no
room for improvement (one of the experiences based on our experiments). Another point why ensembles
can fail is due to the small sample size of the training data. Consider the case of only a few hundreds
available train examples. Then the combination of models can lead to overfitting (another experience
based on our experiments). But in general if the combination schema is applied correctly, the ensemble’s
prediction is better than each individual in it.

To measure accuracy, the following two error measures are widely used, the first one is the classifi-
cation error or accuracy. We use this to measure the performance on classification tasks. This is simply
the percentage of wrongly classified examples. There are N samples in total and nfalse is the number of

1



2 1. Introduction

wrong classified samples.
Ecrate[%] =

nfalse
N

· 100% (1.1)

The second one is the normalized form of the squared error, the RMSE or root mean square error. It
has a smoother behavior compared to the classification error. The classification error has relatively large
jumps, the number of steps depends on number of samples and number of targets. Later, when we discuss
optimization, it has several advantages to optimize directly the RMSE of the ensemble. This is because
the RMSE is more like a probablistic error measure when we train a classification problem.

RMSE =

√√√√ 1
N

N∑
i=1

(pi − yi)2 (1.2)

Where the prediction values are denoted by pi and the targets values by yi. This measure is used in the
Netflix Prize [4] to rank the participant’s submissions.

1.2 Ways of Constructing an Ensemble of Models

The following ideas are a loose summary of techniques for building an ensemble of predictions. In other
words, how to build a library of diverse predictors as input for an ensemble learning method/combiner.
Most of the concepts focus on ending up in a fairly accurate set of diverse models.

Different learners

The construction of an ensemble with different types of models is a very promising and popular approach
[11]. We use this kind of ensembling in the evaluation Section 5. Recommender systems achieve great
accuracy when operating with an ensemble of different learners [24], [29], [42], see Section 6 for details.
The motivation behind is that different learners (like k-nearest neighbors or neural networks) achieve
good accuracy while the predictions are less correlated. Both properties are needed in order to gain
performance with ensembling.

Modify the Trainings Tet

Train the algorithm multiple times on a modified version of the training set. This leads to different
prediction behavior when predicting new data. The idea is to reduce the variance in the model by taking
the average prediction over multiple training runs with slightly different data. When doing sampling with
replacement, this process is called “Bagging” [6]. One can show that this can improve the prediction
accuracy a lot if the predictions are uncorrelated. Models with high prediction variance are needed in
order to apply bagging successfully. Decision trees are ideal candidates for bagging.

There is another approach to re-sample the training data without replacement, namely “Dagging”
[40]. Here, the training sets are disjoint subsets, hence it is only applicable when a lot of samples are
available.

Modify the Sample Weights

In most data sets, the training error of an algorithm per example is not equally large. The training error
is an indicator of how good the model can fit to the data, low error means good fit. Some examples are
easy to learn, while others are hard. This can come from noise in the data set or the algorithm’s model is
not powerful enough to capture all the variance in the data. An interesting idea is to give each example i
in the training list a weight wi. In the first round each example has wi = 1. Now, run the algorithm. In
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the second round modify the sample weights, examples with large training error receive a higher weight,
while examples with low error get lower weights. This procedure is used in “Boosting” to construct
an ensemble of predictors, each predictor focus on examples, where the learners in previous rounds are
not good at. In Section 4.3 we present Adaboost.M2 [34] as a train list sampling approach to boosting.
This has the advantage that the learn algorithms itself needs no modification. The standard Adaboost
algorithm [13] assumes that the learner can handle weighted train samples.

Randomness

Some models extract latent parameters from data (the internal weights), for example neural networks or
decision trees. Often, the optimal parameters can not be calculated in a closed form. The error surface
contains many hills and valleys with a lot of local minima. Therefore an initial set of weights is chosen
and the parameters are optimized via gradient descent. For this reason, the initial parameter set has an
important impact on the final parameters. This can be used to construct an ensemble, just by choosing
different initial parameters. The success of this method is known to be low because the predictors are
highly correlated [10].

Noise

Adding noise to the training data X leads to diversity in the model, this can be used to build the ensemble.
Similar to the previous paragraph, the outcomes are highly correlated and therefore less successful in
combination. Adding L2-regularization to the error function is equivalent to add stochastic Gaussian
noise to the input samples.

Different Accuracy on Different Regions in Input Space

The prediction accuracy of prediction models can be dependent of where the input example xi is located
in input space. If we have enough data, a decision tree can be used to split the input space and assign
a different model as predictor on a particular region of input space. A small neural net, called gating
network is used in [23]. This gating net is trained simultaneously with the ensemble to “gate through”
different models on different inputs. The largest problem of this approach is to handle high dimensional
input vectors.

Force Diversity

Most models optimize a quadratic error function. It is possible to add a penalty term to the error function
for equal prediction values compared to existing ones in the ensemble. So this can be used to force the
diversity of the ensemble by constructing a model, which should be as different as possible and still
have low error. This technique is known as “negative correlation learning” and is well described in the
PhD thesis of Brown [10]. This approach can be applied easily to every gradient decent based training
algorithm.

Repeat the Experiment where the Data came from

If we have the ability to repeating the machinery, which generates our training data, there is an easy
way to get a good ensemble by train models on different collected subsets of training data. For example
generate the data on different days and average over many models.
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Vary Model Architecture

By varying the architecture of a neural network, one can expect different prediction behavior, this can be
used to construct an ensemble [10]. Different distance functions in a k-nearest neighbor algorithm can
lead to different predictions (Pearson vs. euclidean). An ensemble is constructed by vary different model
parameters, add regularization or change the error function.

Vary Model Parameters

Many algorithms such as linear regression, k-nearest neighbors or kernel ridge regression have strong
meta-parameters. The regularization constant is important to control the model complexity, kernel hy-
perparameters have a large impact on the model. By varying this meta-parameters an ensemble of many
predictors can be constructed. This technique is used by Caruana et.al. in combination with different
models in “Ensemble Selection” [11] to generate a large library of models.

Artificial Training Examples

Sampling new data from the training distribution can lead to an increase in robustness. In [28] significant
improvement is shown when little data is available. They report results on UCI datasets when only a
fraction of the data is used for training the model. It can be shown that artificial training examples
in an OCR (optical character recognition) data set can help to improve the generalization ability of a
learner. There are various reports, that people augmented the MNIST data set with duplicates, generated
by elastic distortions of training samples. This special artificial training samples incorporate knowledge
to the problem by known geometric invariance.

1.3 Organization of this Diploma Thesis

The content of the thesis is the experimental evaluation of ensemble learning techniques. We use 14
smaller UCI data sets, the UCI LETTER, the MNIST data set of handwritten digits and 18 predictors
from the Netflix Prize challenge. The results show that a well constructed ensemble of models always
outperform the best single individual.

In Chapter 1.2 we motivate possible ways of constructing an ensemble. One of the most promising
approaches is to combine results from many different models. This is demonstated it in many experi-
ments. Chapter 2 gives an introduction to supervised learning. We explain what generalization means
and how to control the learning process in order to prevent overfitting. Chapter 3 consists of a descrip-
tion of all base learners we use. They are explained by formulas and an algorithm block of pseudo code,
which sketches how each model is trained. We describe how the training data is normalized and how
the algorithm dependent parameters are optimized. Chapter 4 gives an overview of ensemble learning
methods and how they are applied in order to combine learners. Chapter 5 describes the setup and the
outcomes of the experimental evaluation on 14 smaller UCI data sets. We report significantly wins of
ensemble methods over single learners in 6 of 14 data sets. Furthermore the results on LETTER and
MNIST are reported here. Chapter 6 demonstrates the abilities of ensemble learning when applied on
recommender systems. The improvement is impressive compared to the best individual predictor. We
use the Netflix Prize data set and investigate different blending techniques. The outcome is that blending
predictors with a neural network works best. Chapter 7 gives an introduction of the developed sofware
for the ensemble learning. It is a C++ based framework where the focus is laid on training speed. The
last Chapter 8 consists of discussions of the results and possible extentions.



Chapter 2

Supervised Learning

The concept of supervised learning comes from the supervisor, acting as a teacher in the learning process.
In other words, the teacher says during training how the output of the learner should be. Supervised
learning is besides unsupervised and reinforcement learning part of the scientific discipline machine
learning. C.M.Bishop [5] and T.Hastie et.al. [18] are good introductory books to the topic. The first is
more related to a probabilistic view to the machine learning topic, the second one has a strong statistics
viewpoint.

2.1 Definition

The goal of supervised learning is to build a learning system that models a target function. Training is
performed on a list of tuples, each tuple consists of an input and a target vector. Targets can also be class
labels, in the case of a classification problem. The list of tuples is called training set. A good learner
predicts targets as accurate as possible, for any given input vector. This property is called generalization
(generalize to new data).

Training data is essential in supervised learning. It can come from different sources like artificial
data, sensory data, databases, human generated data etc. Each dataset has its own underlying function,
which the learner is trying to model. The error of the moel is the difference between the true and the
predicted target. The proper error measure is problem or data set dependent, it gives a real-valued number
of the performance of the learner on a test set. Our goal is to minimize the prediction error on the test
set.

There are two related problem types in supervised learning, the first is regression and the second
classification. For example the “Boston Housing” dataset from the UCI data set repository 1 is a re-
gression problem. The goal is to predict the crime rate (real-valued) based on a number of features like
pupil-teacher ratio, accessibility to highways or nitric oxides concentration. A popular classification data
set is the MNIST 2, the aim is to predict the label of handwritten digits (0...9). The input vectors are
784-dimensional (28x28 pixel grayscale image) and the targets are labels.

The error measure is typically different in context of supervised regression or classification. In re-
gression it is usual to take root mean square error (RMSE), mean square error (MSE) or mean absolute
error (MAE) as the error to be optimized. In classification problems it is more convenient to use classi-
fication error (accuracy) or area under the ROC curve curve (AUC, for binary problems). For more than
two target classes it is common to use a confusion matrix to visualize the false classified examples. The
rows of the square confusion matrix are the predicted labels, the columns are the real labels. The number
of diagonal elements is equivalent to the accuracy.

1http://archive.ics.uci.edu/datasets/Housing
2http://yann.lecun.com/exdb/mnist
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Furthermore supervised learning can be categorized into offline and online learning. In offline learn-
ing, there is a data set available where the learner can build the internal model without any limits in
accessing the data. For example, the Netflix Prize [4] is such an offline data set. It is a movie rating data
set with 100M samples collected in the time from 1998 to 2005. The competitors have time to carefully
analyze the dataset, build large predictive models and combine them in a sophisticated way. This is the
sketch of the winner solution. The solution was provided approximately three years after start of the
competition. In contrast to offline learning, online learning has access to a sample only once. The goal
is the same, predicting targets as accurate as possible. For example, stock market prediction can be seen
as online learning. The algorithm makes a prediction of the stock, little time after the real stock price is
available, this information can be incorporated to the learner to further improve the prediction accuracy.
In general, there is very much data availaible in an online learning setup, the data set grows continuously.
Offline learning has equal or superior accuracy compared to online learning when the same amount of
data is used. All experiments in this paper are done in an offline learning fashion.

Input features are also called input vectors or attribute vectors, the targets are sometimes called
outputs or desired values. The type of features play a crucial role when do supervised learning. For most
data sets, one real-value is a single feature. The number of available features assemble the feature vector.
Each training example is a tuple of a feature vector and the corresponding target vector. A single feature
can have “the categorical” type, which means only a discrete number of values are allowed. For example
the feature “State” can have the values {“Nevada”, “Washington”, “Utah”,...}, or “Sex” can have the
values {“male”, “female”}. There is a third type of value, namely “missing”. Such missing features
are a problem for most machine learning algorithms. For example decision trees can work with missing
feature natively. A possible work around for missing features is to replace missing values with the mean
value (or the median) in the training set. This approximation works well in most cases, we also use mean
feature values to replace missing features.

To be more general, the supervised learning problem can be formulated as function approximation
from an input to an output space. A classical trainable model for function approximation are neural
networks. Usually, the input dimension is much larger than the output dimension. When we look to
the supervised learning problems from the UCI machine learning repository 3, almost all data sets have
more training examples than the number of features. A feature is one dimension of the input space. This
is the standard case when doing learning from data. There are a small number of exceptions, mainly
in the domain of biochemistry, where many features and less observations are available. Such data sets
consist of for example genomes, DNA microarrays, drug discovery or mass-spectrometric data. In the
last chapter of the book from T.Hastie et.al. [18], there is a good introduction to such high-dimensional
problems.

2.2 Formal Description of Learning Problems

Bold faced symbols (X,Y,x...) are used for vectors and matrices, non-bold for scalars. In Figure 2.1
there is an overview of the data matrices used in this paper. Throughout the thesis we use a multiple
feature/input and multiple target/output notation, which is dedicated to cover the high dimensional input
and output space. The data matrix is X, a NxF matrix with elements xij , where N is the number of
training examples and F is the size of the input (input dimensionality). xij is the j-th feature of sample
i. The rows of X are the input features. Target values yij are denoted as matrix Y of size NxT , where
T is the number of target values (output dimensionality). yij is the j-th target value of sample i. Each
single target is a row in Y. Predictions pij are denoted as matrix P of size NxT . Any learner uses X
and Y to build the internal predictive model. A single prediction is a row in P. The prediction model is
Ω : RF 7→ RT , which represents the function approximation from input to output space. When working
with classification problems, C is the number of classes, the corresponding encoded target vectors yi are

3http://archive.ics.uci.edu/ml/index.html
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Figure 2.1: Mathematical notation of the supervised learning problem, used in this paper. A learner
Ω appoximates the real-valued function Ω : RF 7→ RT . The train data is the matrix X,
the corresponding targets are Y. Both matrices has the same number of N rows. The
matrix P consists of predictions.

C-dimensional with labels li. We use the value of +1 to encode class labels and −1 for other values in
yi.

When we view the data in form of a list, we use L = {(x1,y1)...(xN ,yN )} as notation for the
training set. Each sample is a tuple of the feature vector and the target. This is typical for gradient
descent based algorithms, where the training is done epoch-wise, in one particular epoch example-wise.

2.3 Curse of Dimensionality

The curse of dimensionality means that it is difficult to work with high dimensional data. This concerns
input features. Consider the case of an one-dimensional input and 10 training samples. When we go to
two inputs, 100 training samples are required to sample the input space equally. The previous mentioned
dataset “Boston Housing” has 14 features, which would result in an equivalent of 1014 training samples.
We see that real world data do not have enough observations to get a dense sampling of the input space.
Targets from almost all the input space are not unknown. Therefore it is hard for a learner to build a
reliable model based on the observations.

Dimensionality reduction is in some cases useful. There exist several techniques, an easy approach is
feature selection, where only a subset of the features is used to train the supervised learning model. More
advances techniques in dimensionality reductions are PCA (project to subspace with most variance),
KernelPCA (non-linear version of PCA) and Autoencoder (multi-layer neural network, that is trained to
reproduce the output by pass the data through an bottleneck - the code layer). Less dimensions makes
the handling of the data much easier, furthermore it reduce the storage space.

Occam’s Razor theory of building models by using the minimum number of parameters is very
effective when handling high dimensional data sets. When two different learners with equal performance
have a different number of free parameters, choose the one with less parameters.

2.4 Encoding of inputs and outputs

During this thesis we use one-out-of-n encoding for categorical features and categorical targets. This
lead us to an simplified view of any supervised learning problem and ensemble learning strategies. Cat-
egorical inputs are encoded by +1 and −1 values, we use the number of categories for this particular
feature as replacement for real-valued inputs. The Figure 2.2 shows a sketch of such an encoding on an
artificial classification data set. The first two features have numeric values, the third one is categorical.
The target labels are categorical and encoded in the same way. Combining predictions with the ensemble
learning technique ”stacking” (explained in Section 4.4) is solving a special linear regression problem.
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Figure 2.2: Transformation of a classification problem with numerical and categorical inputs to a
regression problem with numeric input features only. This transformation turns any
supervised learning problem to this unified view.

The technique of blend-stopping (explained in Section 4.7) is a directly minimzation of the linear com-
bination, hence the requirement is that the computation time should be low. The predicted values are
considered a likelihood vector, this enables us to successfully apply linear regression as a combiner.

The following example shows how a classification problem can be transfered to a multi-target regres-
sion problem by 1-of-n target encoding. Assume we have C possible class labels. The training sample i
has the label li and the corresponding target vector is yi ∈ {−1, 1}C . For instance, when we have three
classes C = 3 and the target is the second class, the target vector would result in yi = (−1,+1,−1).

yi = (yi1, ..., yiC), where yili = 1 , yij = −1 for j 6= li (2.1)

The algorithm predicts pi ∈ RC , the predicted class is given by the maximum response, li =
argmaxj=1...C pij .

2.5 Overfitting and Underfitting
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Figure 2.3: The model complexity influences the train and the test error. There are two regions,
the first is known as underfitting, where the learner in not strong enough to capture
the train data. This results in high train and test error. Overfitting is the well known
phenomenon of memorizing the train set, this lead to poor performance on test samples.

The term “overfitting” implies that the performance on test set is much lower than on training set. In
contrast, “underfitting” means that the model can not learn the data well enough, the learner is too weak.
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Both, the performance on the train and the test set is low. In the area of overfitting, the learner starts to
capture all the noise in the data set and not the real function behind. The predictive error on unknown
test samples rises. Any learned model should generalize well on new data.

In the machine learning literature, the bias and variance analysis are often used to analyze the ex-
pected prediction error of a learner. The bias denotes the accuracy of the learner, low bias is desired.
The variance is the spread of the error distribution on a set of test samples, low variance reduces the
error. High learning bias occurs, when the model can not identify the underlying data structures, it is not
powerful enough or has too less free parameters. In the Figure 2.3 we vary the model complexity. The
left side called underfitting region, this results in high bias and low variance. The right side has low bias
and high variance, which is typical for overfitting the data. The point of overfitting is be best tradeoff
between low bias and low variance.

2.6 Controlling Overfitting - Selection of Good Meta Parameters

The classic approach in supervised learning is to have a train and a test set. There two sets should have
the same statistical properties. The test set should not be used for training and tuning of the algorithms.
The simplest apporach is to split a validation set from the train set, the size is typically 20% and do
performance measuring all tuning on this set.

It is common to use powerful learning models, such as neural networks, support vector machines or
decision trees to capture different aspects in the data. For small data sets, the learner is able to achieve
nearly zero training error. This is the tail of the blue line in Figure 2.3, overfitting the data is clearly a
problem here.

Let us start with training data and a learner, a reliable measure of the true accuracy (accuracy on new
test samples) is not an easy task. For example, we want to know during training when we should stop
learning. Error on the train set should go down when the model complexity increases. Simple models,
for example linear regression, are known as they can not fit the data well enough (underfitting). One
possible way of measure the accuracy is to split a validation set LV from the training data L and do not
train on the validation set. Predictions on LV are now a good indicator of the real performance of the
learner. For example in the Netflix Prize [4], the train list L has a size of 100M. Within this data set a
validation set of 1.4M samples, called “probe set”, is also available. This validation set is a representative
set for measuring the real error. It comes from the same distribution as the test set. Because of the huge
size in this example, the error on 1.4M data points is very reliable to determine when the model begins to
overfit the data. For smaller data sets, it can be shown that splitting a random validation set is not reliable
enough to estimate the true error. A typical size of a validation set is 10% to 50% of all available data.

We can virtually enlarge the validation set by splitting the training list L into k equal sized sets L(−k)

and train k copies of the model (with same initial conditions) on the remaining data. This is called “k-
fold cross validation” and is well known in the scientific machine learning literature. We use k-fold cross
validation during training to determine what parameter set yields best performance.

Early stopping is well known for gradient descent based algorithms to stop training, when the error on
a validation set becomes minimal. We use this in combination with k-fold cross validation for example in
neural networks and gradient boosted decision trees. Furthermore, techniques such as pruning or weight
sharing (for example in convolutional neuronal networks) can be used to fight against overfitting. One of
the most popular methods is regularization. The basic idea is to penalize large weights during training.
L2-regularization for example adds a quadratic term with respect to the weights to the error function.

The technique of k-fold cross validation is not only useful in training a single algorithm. Also for
ensemble learning, where the prediction of the training set is needed. The extreme case of k-fold cross
validation is to use k = N (N ...number of training samples), which is also called leave-one-out cross
validation or LOOCV. This is computational very expensive, in particular when we have many training
examples.
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An alternative to cross validation is bagging. Bagging constists of many boostrap replicates of the
training set, the model is applied to each of them. A boostrap sample is an equal sized training set,
drawn from the original data with replacement. This means that some training samples are not in the
new training set, the procedure is also called bootstrap sampling. The non-drawn samples act now as
validation set. Since bagging works with many such bootstrap samples, the out-of-bag estimate (mean
over validation samples) is a good measurement of the real accuracy.



Chapter 3

Basic Regression Models

In this section we list and describe the details of the used regression models. The first linear lodel is the
simplest of them, neural networks are generic function approximators and performs well on many appli-
cations. K-nearest neighbors is a memory based algorithm and the prediction is based on a weighted sum
of nearest neighbors. Kernel ridge regression is a very powerful kernelized linear regression technique,
the big disadvantage is that it requires O(N2) memory, where N is the number of training examples.
Last, we introduce from the tree algorithm family the gradient boosted decision tree, which combines a
lot of clever ideas to improve accuracy. The following boxes summarize important ideas, we use during
the evaluation.

The metaparameters of all algorithms are tuned in order to optimize the squared error of all
targets T on all N samples: E =

∑N
n=1

∑T
t=1 (pnt − tnt)2 on a k-fold cross validation set.

On classification problems, the predicted class label is selected by taking the index of the
maximum output value: li = argmaxj pij

We always normalize the training input data (feature-wise) to have zero mean and standard
deviation of 1. Other normalization is denoted explicitly.

3.1 Data Normalization

Many machine learning models need proper data normalization, for example neural networks need well
normalized data in order to find a good local minima by gradient descent. K-nearest neighbors algorithm
rely on a distance measure in feature space. In the case of unnormalized data, dimensions with high
variance would dominate the euclidean distance. For this reasons, we use a simple and widely applied
method of normalization. Every input dimension is normalized to have mean value of 0 and standard
deviation equals 1. Raw numeric values from the dataset are denoted by Xorig. The features we use to
train the models and the ensembles are saved in the matrix X.

µj =
1
N

N∑
i=1

xorigij : mean of the feature j in the training data (3.1)

σj =

√√√√ 1
N

N∑
i=1

(xorigij − µj)2 : standard deviation of the feature j in the training data (3.2)

11
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xij =
xorigij − µj

σj
: data normalization (centering and scaling), i = 1...N , j = 1...F (3.3)

Mean value and standard deviation per input dimension is denoted by µj and σj . Please note that σj can
have values near to 0, if input dimensions have very small or constant values. In order to ensure stable
normalization behaviour, we limit the value to σj ≥ 0.01.

3.2 The MSE Error Function and L2 Regularization

The performance measure we use for cross validation of all models the mean squared error (MSE) or the
square root of the MSE, the RMSE. This implies a quadratic error function to be optimized. Furthermore
the MSE is a smooth function. On the other hand, directly optimizing a misclassification rate can be
hazardous because it is has large steps in learning curve and optimizers are prone to get stuck in a first
local minima.

To control large model parameters, we use L2 regularization whenever possible. The tradeoff be-
tween MSE and this penalty is given by the regularization constant λ. The global error function has the
following form.

E = E(Y,P) + λ ·
all parameters∑

i=1

|wi|d (3.4)

The first term E(Y,P) is the error function over all examples as a function of the targets Y and the
corresponding predictions P. A quadratic error results in E(Y,P) =

∑N
i=1

∑T
j=1(yij − pij)2.The

second term is responsible to penalize weights, this acts as a regularizer to control the model complexity.
Large values of the constant λ reduce the ability to learn the data. The exponent d sets the type of
the regularization. L2 regularization uses d = 2. The following values of d has been used by several
applications and have established names in the literature.

• d = 0 : L0, penalizes the number of non-zero parameters, related to MDL (min. description
length)

• d = 1 : L1, also called Lasso, leads to sparse models, some parameters are exactly 0

• d = 2 : L2, quadratic penalty, leads to many small weights, ridge regression in linear model

The math in deriving learning rules for algorithms is easiest when using L2 regularization. For example
the linear regression technique has the nice property of having a closed solution when L2 regularization
is used.

3.3 Linear Regression - LR

A linear regression model predicts new input samples by a linear combination of input features with
weights W. The weights are denoted by a FxT matrix, so new inputs x (row vectors) are predicted by

p = x ·W (3.5)

Estimation of the weights can be done by gradient descent, but a linear solver is more efficient. Linear
combination weights can be obtained by evaluating the following expression. The matrix X is the data
set (features) and Y the target values.
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W = (XTX)−1XTY (3.6)

One can penalize large weights by modifying the loss function with L2-regularization of the weights,
this is also known as “weight-decay”. Following function needs to be minimized with respect to W.

When we apply the norm ||·|| to a matrix, we take the frobenius norm ||A||F =
√∑#rows

i=1

∑#cols
j=1 |aij |2.

min
W

‖XW −Y‖2 + λ‖W‖2 (3.7)

The next equation is the closed solution to this minimization problem.

W = (XTX + λI)−1XTY (3.8)

The identity matrix is denoted by I and λ is the ridge regression constant (or Tikhonov regularization
[39]). The regularizer λ controls the smallest eigenvalues of XTX, thus the magnitudes of the weights
W shrinks with higher values of λ. In our software implementation we multiply the constant λ by the
number of equations N .

Input: Data matrix X, targets Y, new test feature x
Output: The prediction model Ω(x)
Tunable: Ridge regression constant λ
W = (XTX + λI)−1XTY1

Ω(x) = x ·W2

Algorithm 1: The LR - “linear regression” learning algorithm

3.4 Polynomial Regression - PR

Polynomial regression is linear regression with a non-linear transformation on the input features. This
means the training features x are enlarged by the help of a binomial series (1 + x)α.

The number of terms, in the case of adding all cross interactions to augment the feature set is F ·(F+
1)/2 when having a degree-2 polynomial. It is clear that this only works for a small number of features.
In the evaluation we are going to use the shortcut “poly2” for a polynomial regression with degree 2 and
no cross-terms. “poly2-cross” is the same as poly2 but with all cross interaction terms.

3.5 Artificial Neural Networks - NN

Artificial neural networks are functions approximators, based on simple computational units, called neu-
rons. The model was developed in the 70’ and is somewhat “brain-inspired” where biological neurons
aggregate weighted inputs to produce a non-linear output. In biology, neural nets use spikes (small elec-
tric impulses), artificial neural networks operate in the real-valued domain. The net is built of single
neurons, connected together via weights. The structure can be defined by the designer, but in general it
is layer oriented. This enables a more structured view on the arrangement of neurons and a net structure
can be fully described by the number of hidden layers and the number of neurons in each layer. Learning
is typically done with gradient descent [27], [26].

In the past, neural networks have beed used in many applications, such as handwritten digit recog-
nition [26], email spam detection, financial prediction, biometrics, image recognition and feature extrac-
tion. They often outperform simple methods like linear regression or k-nearest neighbors methods and
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feature x 2nd order (no cross terms) 2nd order (poly2-cross)
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1 x
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2 x
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Table 3.1: In polynomial regression, additional input features are constructed with the help of a
polynomial. The first column shows examples of two and three dimensional input fea-
tures. In the second column there are poly-2 terms without the interactions between
them. The content of the third column shows the construction of poly-2 terms with all
cross interactions by an outer product. Terms in the blue squares are the new features.

compare well to SVMs. One of the big advantages of neural networks is that all learned knowledge is
encoded in the weights, this makes the prediction very fast.

The internal modeling of the data, found by the weights, are hard to interpret. All learned infor-
mation, during training a Neural Network, are encoded in its weights. An artificial neural network can
model complex interactions within the data and has no problem in handling collinear inputs. The output
is bounded by the activation function of the output layer. But it is also possible to place linear output
units for prediction.

An alternative usage of a neural networks is the training of an autoencoder (as mentioned in Section
2.3). An autoencoder is a layer-symmetric net (with one coding layer in the middle), the goal is to
perform non-linear dimensionality reduction. In this type of network architecture, the inputs should be
equal to the outputs, the idea is to reconstruct the output by passing the data through a bottleneck layer.
The low-dimensional code in the middle layer can be used as new dimensionality-reduced features.
Further informations can be found under [21].

There exists a computational efficient algorithm to train neural networks, the backpropagation algo-
rithm. In Algorithm 2, there is a sketch how the stochastic gradient training is done. We wont go into the
details of the backpropagation algorithm because it is well known in machine learning. A good paper for
backprop and training neural networks is [27] from LeCun et.al.

When training a classification task, where the targets have values of −1 and +1, it is not optimal
to place a tanh unit at the output layer. The tanh unit has an output swing of −1 to +1, thus it will
never approximate the targets with zero error because the targets are placed to the asymtotes of the
tanh function. Based on many experiments on the MNIST and UCI data sets we found a simple output
mapping, which suggests to muliply the output of the tanh unit with 1.2. This keeps the non-linearity
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and enables the net to cover the output range.

Input: Data matrix X, targets Y, new test feature x
Output: The prediction model Ω(x)
Tunable: Neural architecture based constants (number of neurons, number of layers, learnrate,..)
foreach epoch e = 1..E do1

foreach sample i = 1..N do2

Forward calculation3

Backward calculation: store ∆W (calculated with backprop)4

Weight update: Wnew = W − η∆W5

end6

end7

Ω(x) = NetEval(x,W)8

Algorithm 2: The NN - “neural network” learning algorithm

3.6 K-Nearest Neighbors - KNN

Finding k-nearest neighbors in the feature space is one of the oldest machine learning algorithms. The
algorithm is instance-based and uses a distance metric (e.g. euclidean distance) to find k-nearest training
samples to the one, which is going to be predicted. For regression, the prediction of a new test feature x is
generated by a weighted sum over k-nearest targets y in the training set. The KNN requires no training,
on every new prediction, the algorithm must search through the whole training set to find best neighbors.
The algorithm is very strong when distances are well defined. The following formula is used to predict a
test feature x. The k-nearest neighbors algorithm is a popular approach in collaborative filtering (decribed
in Section 6), the prediction accuracy can be improved by applying a non-linear envelop (e.g. sigmoid
function) over the distances d(x,xk), see [42] as reference. We also tried to wrap a sigmoid function
around the distances, but we observed no improvement. The prediction vector is given by

p =
∑

k∈D yk · d(x,xk)∑
k∈D |d(x,xk)|

(3.9)

The set D consists of indices of the k-nearest Neighbors to x in the training samples, yk are the corre-
sponding target vectors in the training set. This means we calculate the distances to the input features
and select the largest k. The distance metric d(a,b) is used to compare two feature vectors and find the
k-nearest neighbors in the feature space RF . The whole prediction formula (3.9) is a weighted average
of k targets in the training set, hence the name “instance based” learner. Since the distance measure can
have negative values (e.g. Pearson correlation), the denominator is the sum of absolute distances.

Input: Data matrix X, targets Y, new test feature x
Output: The prediction model Ω(x)
Tunable: The integer constant k, to select k-nearest neighbors
Ω(x) =

P
k∈D yk·d(x,xk)P
k∈D |d(x,xk)| , D is the set of indices to the k-nearest neighbors in the train set X1

Algorithm 3: The KNN - “k-nearest neighbors” learning algorithm
A popular distance metric is the euclidean distance de(a,b), the following formula is the definition of
the euclidean distance between two feature vectors a and b.

de(a,b) =

√√√√ 1
F

F∑
i=1

(ai − bi)2 (3.10)
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another distance measure is the Pearson correlation coefficient, given by

dp(xi,xj) = Z(xi)TZ(xj) (3.11)

where Z(x) denotes the z-score of the vector x. The z-score is calculated by centering the values in x
around its mean and scale it to standard deviation to 1 (the same idea as in Section 3.1). The advantage of
the Pearson correlation is that the distance is calculated by a dot product of z-normalized input features.
This can be done very efficiently by matrix-matrix multiplication. We show later that the euclidean
distance can also be computed efficiently using matrix-matrix multiplication routines.

In order to find the closest match we use the inverse of the euclidean distance d(xi,xj) = 1
de(xi,xj)+0.01

as distance metric, it works well in our experiments. The inverse function is necessary, because we are
selecting the k-largest distances in the feature space. The number of 0.01 in the denominator makes the
inverse stable for small values of de. This forms the set D, the indices to the k-nearest neighbors.

K-nearest neighbors models have quadratic prediction time O(N2), N is the number of training
samples, which is not suitable for generating fast predictions (in the case of a large training set). On the
other hand, no training is required.

3.7 Kernel Ridge Regression - KRR

Linear regression can be viewed in a dual representation (Section 6.1 in Bishop [5]). Where standard
linear regression needs dot products of input dimensions (columns of data matrix X), kernel ridge re-
gression relies on dot product of input features (rows of data matrix X). If a linear kernel k(a,b) = aTb
is used, KRR is equivalent to linear regression. Recall the prediction of a linear regression is p = x ·W.
Where the linear weights are calculated by W = (XTX + λI)−1XTY. Now we can reformulate the
prediction formula (Section Kernel Methods, 6.1 Dual Representation, C.Bishop [5])

p = (x ·XT ) · (XXT + λI)
−1

Y (3.12)

The matrix G = XXT is called the “gram matrix”, it contains all dot products of input features and is
symmetric. Also the first term x ·AT are dot products of the new input feature with the training set A.
Therefore we can kernelize the dot products by defining a mapping φ(x) to a high dimensional space

k(a,b) = φ(a)T · φ(b) (3.13)

We experimented with few different kernels, the following two kernels are most successful. The first
is the polynomial kernel k(a,b) = (α · aTb + β)p and the gauss kernel (or RBF kernel) k(a,b) =
exp (−‖a−b‖2

σ2 ).

Input: Data matrix X, targets Y, new test feature x
Output: The prediction model Ω(x)
Tunable: Ridge regression constant λ, kernel hyperparameters
K = kdot(X,XT ), where kdot(A,B) is the kernelized matrix dot product1

W = (K + λI)−1Y2

Ω(x) = kdot(x,XT ) ·W3

Algorithm 4: The KRR - “kernel ridge regression” learning algorithm
In Algorithm 4 you can see the steps required to train the KRR regression algorithm. We use the notation
of kdot(A,B) to denote the kernelized matrix-matrix product. This means that on each point of the
target matrix, the dot product gets calculated with the current kernel. The computational and memory
intensive step is the inverse of the Gram matrix (K + λI)−1, which time complexity is O(N3). This
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limits the number of training samples to around 60000, when using KRR as learn algorithm (assuming
single precision an a 16GB machine).

3.8 Gradient Boosted Decision Trees - GBDT

The shortcut “GBDT” is associated with many great ideas. We will explain them in this section. First,
this learning algorithm comes from the family of trees. A decision tree consists of nodes and leafs. A
single tree has one root node, this is the starting point of the algorithm. When the tree makes a prediction,
it compares a certain feature xi of the feature vector x with a threshold θ. If the feature is larger than
θ, the algorithm continues recursively with the left subtree, else with the right subtree. When a leaf is a
termination node, the prediction is a constant value (in most trees). The constant can be the average of
the targets from the train samples reching this termination node. A decision tree uses axis-parallel splits
to slice and dice the feature space. We can now summarize, a node stores a threshold θ, an index i to
the feature xi and two pointers to a left and a right subtree (again nodes). A leaf stores a constant (the
prediction) and is itself a termination node. The challenge of training a decision tree is to find good split
values θ and good corresponding single feature indices i. We use a greedy algorithm to train the decision
tree, which uses the best split in terms of reducing the RMSE after each split. One tree is trained for
every target. Begin with the root node, where the training algorithm has access to all input features. The
first split is the one that reduces the RMSE best when predicting two constant values. The next node for
the next split is choosen as the one with the most training samples. The process of spliting is stopped
when one of the following criterias is met. First, no split improves the RMSE on the training set. Second
the maximum number of splits are reached. Or third, when the number of training examples, which are
passed through the tree, has a size less than 2 (too less data available).

A tree alone has several disadvantages. For instance, axis-parallel splits can not model a smooth
function, the prediction is a constant for some regions of the input space. The tree is known to easily
overfit the data. And it is prone to have an unstable behavior, small changes in the train data can lead to
total different trees. Breiman has published a useful idea in 2001, the name of the paper was “Random
Forests” [8]. The core idea is to limit the number of feature candidates in finding the optimal split per
node. Per node, a new random subspace of features is generated. A good empirical value is starting with
a random subset of

√
F features taking in consideration to find the optimal split. No pruning is used

here. This modification leads to better generalization behavior, in other words lower error on the test set.

Gradient boosting is an idea from Friedman [15], [16] and has a distinctive relation to training on
residuals (see Section 4.6, ensemble learning methods). The algorithm runs epoch-wise, in each epoch
the learner is trained on the residuals of the outcomes from all previous learners. In the first epoch the
targets Y1 are the original residuals, the learner’s prediction is P1. In the second epoch, the targets
are Y2 = Y1 − ηP1. In the third epoch, the targets are Y3 = Y1 − ηP1 − ηP2. This means that
only a part of the learned model is subtracted from the targets. Hence the name “gradient” because
gradient boosting appoaches the target with the gradient of the learner’s prediction. The learning rate η
controls how much of the predictions are subtracted by the targets, this mechanism results in learning
only a fraction of the data in one epoch. The learning curve can be compared to neural network, where
after some epochs the gradient boosted decision tree begins to overfit. This is the point to stop training
(early stopping mechanism). Typical values for η are 0.1. The final effect of gradient boosting applied
to learning decision trees is to smooth the predictions.

Both ideas, random forests and gradient boosting improves the accuracy and generalization ability of
the decision tree as base learner. This has the drawback of longer training and prediction time.
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Algorithm Free parameters Initial values
linear regression ridge regression λ λ = 0.01
neural network number of training epochs n 30 < n < 100
k-nearest neighbors k-best neighbors k = 4

kernel ridge regression
ridge regression λ λ = 0.1
gauss kernel width σ σ = 5.0

Table 3.2: A listing of tunable parameters and their initial value per regression model. Three of
the four models has exact one optimization parameter, the kernel ridge regression with
a Gauss kernel has two metaparameters. We optimize the parameters with a simple
coordinate search technique for 20 epochs.

3.9 Optimization Process

To compare different ensemble learning methods, each of them must be tuned to the specific data set in
order to get a comparative result. As part of the ensemble, every individual algorithm has metaparame-
ters, such as regularization λ. These parameters need to be optimized automatically. Table 3.2 lists the
available parameters per model for auto-tuning. Linear regression, neural networks, k-nearest-neighbors
and kernel ridge regression are used as basic models in the evaluation on 14 UCI datasets. The algo-
rithms cover different approaches to supervised learning. The linear model learns linear dependencies of
input features to output variables. Neural networks have layer-oriented structure and are somewhat brain-
inspired. The k-nearest neighbors algorithm is a memory based algorithm, its prediction is a weighted
sum of best correlating neighbors of the training set. And the kernel ridge regression algorithm is a pow-
erful kernel method. Figure 3.1 shows an overview how a single algorithm is tuned. We use the cross
validation RMSE as feedback of the performance.

ECV=RMSE ∑k=1

K
 ,  

Auto-optimize meta-parameters
1,2, ... ,N

Evaluate CV error
(-1)

(-2)

(-3)

(-4)

5

3

2

1
(-2)

(-3)

(-4)

(-5)

(-k)

4

Figure 3.1: A sketch of how metaparameters get optimized. The optimizer (e.g. structured coor-
dinate search) is the outer loop. The goal is to find good metaparameters α1, ..., αN

in order to minimize the cross validation error (CV error). The CV error is calculated
over the leave-out sets L1, ...,LK . On every cross fold, the training of the model is per-
formed on L(−k), predictions are stored in Lk. ECV denotes the merged RMSE over
all cross folds. In other words L(−k) are the training sets and Lk are the validation sets.



3.9. Optimization Process 19

Optimization

Ensemble Learning Method

Optimization
Model 1

Combiner

Output

Model 2
Optimization

Model N

ECV=RMSE ∑k=1

K
 ,  

(-1)

(-2)

(-3)

(-4)

5

3

2

1
(-2)

(-3)

(-4)

(-5)

(-k)

4

ECV=RMSE ∑k=1

K
 ,  

(-1)

(-2)

(-3)

(-4)

5

3

2

1
(-2)

(-3)

(-4)

(-5)

(-k)

4

ECV=RMSE ∑k=1

K
 ,  

(-1)

(-2)

(-3)

(-4)

5

3

2

1
(-2)

(-3)

(-4)

(-5)

(-k)

4

Figure 3.2: Training of the ensemble. Basically, in the process of ensemble learning, each of the
basic models are trained and tuned sequentially. The ensemble output is a combination
of all basic models. For example, Stacking calculates a linear combination with non-
negative weights at the end of tuning each individual training (loose coupling). In
contrast, residual training optimizes the linear combination of all algorithms in each
optimization epoch. In other words, residual training directly optimizes the whole
linear blend. Cascade learning takes the prediction from the last algorithm in the chain.

Cross Validation

To estimate the performance on unknown data, the simplest method is a hold-out set (equivalent to 1-fold
cross validation). Averaging over multiple hold-out sets leads to cross validation (CV). The error on the
CV is usually a little higher compared to the real error, this comes from the smaller size of the training
set. The extreme case is holding back only one example, this leads to leave-one-out cross validation.
In our experiments we tried different sizes, from 4-fold-CV to 10-fold-CV. More folds are better, but
increases the training time.

The error on the cross validation set is a reliable feedback to search for dataset-dependent meta-
parameters. We use this technique throughout all base models, for details see Figure 3.1 and 3.2.

Parameter Tuning

The process of searching for optimal metaparameters (such as regularization in a linear model, the k in a
KNN or kernel hyperparameters in KRR) is done without derivates [9]. These searchers are direct search
methods, also known under derivative-free optimization. For example genetic algorithms fall in this
category. Several algorithms have been proposed, a popular one is the Nelder-Mead Simplex algorithm
[25]. Due to high complexity of Nelder-Mead we use a simple coordinate searcher to optimize a few
metaparameters simultaneously.

The name coordinate search comes from the epoch based search, where only a single parameter (one
coordinate) is changed at a time. If a new best point was found, the searcher keeps this value and the
search direction. Is the new parameter worse, the search direction of this parameters is switched and
the step size is reduced. In Algorithm 5 there is a complete pseudo code for the structured coordinate
search algorithm. The optimizer takes as input the function, which needs to be optimized. In our case it
is the prediction RMSE on the cross validation set. References to N algorithm dependent parameters pi
are inputs to the searcher. After the optimization has finished, the output is the parameter set p. Initial
values p and search step size e can be set at the begin of the coordinate search. New values are actual
best values multiplied by the search step ei. A good value for ei is 0.8.
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Optimization in a high dimensional parameter space is very difficult. The found solution manly
depends on the initial parameter set p. Coordinate search is prone to find the first local minima and
has problems escaping from it. As part of our implementation, we extend the coordinate search with a
shrinkage of the search width when the error gets worse. This enables us to stabilize the search around a
found solution. This modification is not part of the pseudo code in Algorithm 5.

Input: A function f(p), N meta-parameters p = [pi]
Output: Tuned metaparameters p
Tunable: Start values p, search steps e
Init search directions d = 01

Init parameter position i = 12

Init best error Emin =∞3

Init parameters p = p4

foreach search epoch j do5

pnew = p6

if di = 0 (negative search direction of pi) then7

pnewi = pi · ei (try a smaller value)8

else9

pnewi = pi · ei−1 (try a larger value)10

end11

Enew = f(pnew) (calculate new error)12

if Enew < Emin then13

pi = pnewi (new best parameter found)14

else15

(reverse search direction)16

if di = 0 then17

di = 118

else19

di = 020

end21

end22

i = i+ 1 (set to next parameter position)23

if i > N then24

i = 125

end26

end27

Algorithm 5: Optimize a function f(p) with many parameters pi by coordinate search

Retraining

In the first step, algorithm parameters were optimized by cross validation. Under “retraining” we under-
stand to train the model with best parameters on the whole training data L. For example, stop criteria
for gradient descent based learning algorithms (such as neural networks) are also taken from the cross
validation run. This re-evaluation of the model leads to better prediction accuracy by training on all
available data, which lowers also the test error.
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For predicting new test samples, we always use the retrained model. In other words we train
the learner at the end again with best found meta-parameters (optimized on the RMSE of
the cross validation set). This makes use of all available training data.
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Chapter 4

Ensemble Learning Methods

Many techniques exist for the problem of how to combine predictions. We will describe in the following
a few established and successful methods in ensemble learning. These algorithms rely on the outcome
of many predictive models. The goal is to build a predictor, which has good generalization properties on
new test samples.

4.1 Linear Combination

For a regression problem with quadratic objective function, optimal linear combination can be achieved
via linear regression. We have an input matrix X and corresponding target values Y. The solution to
the minimization problem minW ‖XW −Y‖2 is W = (XX′)−1XY. In the context of ensemble
algorithms, the columns of X are the feature-wise predictions and the rows xi are so called feature
vectors. We use no regularization is linear combination. This simple linear combination works fine
(outcome of the final analysis). One can apply a non-negative constraint to the combination weights α,
as suggested by Ting and Witten [41] in their stacked generalization framework. Stacking is explained
in Section 4.4.

4.2 Bagging

Bagging [6], [40] is an acronym for “boostrap aggreagating”. It is a simple technique of resampling
the training set with replacement and was first mentioned by Breiman [6]. Consider the training list
L = {(xi,yi, )} and the predictive model Ω(x,L) as a function of the new input vector and the list
of train data. The idea of bagging is now to construct new train sets L(b) in order to produce diverse
prediction behavior of the base model Ω. Bagging works with B copies of the learner, each individual is
trained on a new boostrap sample L(b). There are many sample duplicates in each boostrap set. Breiman
shows that the amount of sample replicates in each bootstrap set L(b) converges to about 63% [6]. The
final outcome of the bagged ensemble is the average of all trained models

ΩB(x) =
1
B

B∑
b=1

Ω(x,L(b)) (4.1)

Breiman [6] shows that this works well for unstable models, where the build model behaves different
if the train list is changed. For example, decision trees are well suited for bagging. He demonstrated the
power of bagging on various UCI data sets with classification trees as learner. In his work, he figured
out that 100 bootstrap replicated are enough to build a good ensemble. In general, bagging is a relative
simple way to improve accuracy of a given method by adding computational power to the problem.

23
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Bagging is also well suited for parallel computing because each run can be calculated independently. In
Algorithm 6, there is a simple sketch of the whole procedure.

If the individual predictions in bagging runs are uncorrelated then the error of the committee is de-
crease by 1/N , where N is the size of the ensemble. But this is never the case in real world data.

Input: prediction model Ω(x,L), training list L = {(xi,yi)}
Output: bagged prediction of model ΩB(x)
foreach Bootstrap sample i = 1..N do1

Draw a new set L(i) by sampling with replacement2

Build the model Ω(i)3

Add Ω(i) to the ensemble4

end5

ΩB(x) = avgi Ω(i)(x)6

Algorithm 6: The bagging algorithm for boost the performance of a prediction model

The gain in prediction accuracy of the bagged ensemble is mainly due to reduction in variance.
Averaging over many slightly different models takes the way of the middle, the average prediction. For
models with high biases, such as linear regression, bagging offers no advantages over the model itself.

4.3 Boosting

Boosting is a technique to improve accuracy of a pool of learners [13]. The basic idea is to construct
a linear ensemble of models, each specialized to the training data for which previous learners had dif-
ficulties. In the early 90’ R. Schapire has done the first study with boosting weak learners [33]. The
most successful algorithm is AdaBoost. This technique was first mentioned in 1995 by Schapire [12].
It is designed to solve a binary classification problem by selecting a different base classifier in every
cascade layer, based on a weighted sample error function, where the focus is on the hard-to-learn exam-
ples. When the AdaBoost stops learning, the final classifier is a linear combination of the selected base
learners from all rounds.

Input: Base learners Ωt(x,L), training list L = {(xi, yi)}, yi = {−1, 1},xi ∈ RF , i = 1..N
Output: The boosted binary prediction model ΩT (x)
For the weighted error function, initialize wi = 1

N1

foreach training round t = 1..T do2

Fit a classifier Ωt(x) to minimize the weighted error function on L3

εt =
∑N

i=1wi · (yi 6= ΩT (xi))/(
∑N

i=1wi) (calc weighted train error)4

αt = 0.5 · ln(1−εt
εt

) (calculate the weight of the classifier)5

∀i : wnewi = wi · exp(−αtyiΩT (xi))/Z (reweight and normalize examples, lay focus on6

hard-to-learn)
end7

ΩT (x) = sign(
∑T

t=1 αtΩ
t(x))8

Algorithm 7: The AdaBoost algorithm for solving a binary classification problem with a pool of
binary base learners

In the AdaBoost Algorithm 7, the examples have equal weights at t = 1 (first epoch), the first step is to
fit a classifier which has the lowest error on the training set. This learner is called Ωt. In the next steps
εt (the confidence score) and αt (the normalized confidence score) get updated. At the end of round t,
all examples get reweighted, examples with higher train error receive a higher weight on the next round
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(t = 2). Samples which the model fits well have low error and their weights become lower. The error
function of the AdaBoost ensemble learning algorithm has an exponential shape. The following equation
is the error for a single example. The target is y and the prediction is p. The error is minimal, if y = 1
then p =∞, if y = −1 then p = −∞.

E = e−y·p, y ∈ {−1, 1}, p ∈ {−1, 1} (4.2)

AdaBoost uses weak classifiers, which means a single classifier must have a slightly better performance
than random guessing. The AdaBoost algorithm has nice generalization behavior. It can be shown that
the algorithm maximizes the classification margin, even when the training classification error has reached
value of 0.

Schwenk and Bengio investigate the ability of boosting neural networks for multi-class learning
by using the AdaBoost.M2 algorithm [34],[31]. This algorithm modifies the original AdaBoost by a
pseudo-loss term, which rely on a resampling technique based on the training error per example. Here,
the reweighting of the error function is done by modify the sample probabilities. Algorithm 8 summa-
rizes the AdaBoost.M2 learning algorithm.

Input: Base learners Ωt(x,L), training list L = {(xi,yi)}
Variables: yi ∈ RC where yi is generated by one-hot encoding a from ci, xi ∈ RF , i = 1..N
Output: The boosted multi-class prediction model ΩT (x)
Initialize example probabilities equally by di = 1

N1

foreach training round t = 1..T do2

if t = 1 then3

Lt = L (in the first round take the original train set)4

else5

Lt = sample from(L,d) (select samples with replacement with probability di)6

end7

Train the model Ωt(x) on example list Lt8

Predict the training set Lt and store real-value predictions ([0 1] normalized) in pi ∈ RC9

Calculate per-example margins: qi =
P
∀c6=ci

(1+pi(ci)
−pic)

C−1 (ci is the target class label)10

Calculate: ε = 0.5 ·
PM

i=1 di·
P
∀c6=ci

(1−pi(ci)
+pic)

C−111

Calculate: βt = ε
1−ε12

Update sample probabilities: ∀i ∈M : di = β0.5·qi
t13

Normalize sample probabilities: ∀i ∈M : di = diPM
j=1 dj14

end15

ΩT (x) = argmaxc(
∑T

t=1 βtΩ
t(x))16

Algorithm 8: The AdaBoost.M2 algorithm for solving a multi-classification problem with a pool
of real-valued multiclass learners

aOne value is 1 for the matching class, 0 otherwise. E.g. yi = (0, 0, 1, 0) for a 4-class problem with target=3rd class
Algorithm 8 is designed to solve a multi-class problem (AdaBoost in its original form is only capable
to solve binary classification problems). We give now the explanation how AdaBoost.M2 works. The
algorithm works round-based, in the first round (t = 1) the model is trained on the full train data L,
after the model has finished training, every training example (xi, yi) is predicted by the trained model.
The goal is to determine which examples are learned well. This is called the example margin qi, it
describes how well is the target class separated from all others. By calculating the pseudo-loss ε and β
we are now able to update the sample probabilities di. After normalization, the next round starts with
sampling a modified train set Lt with size N by sampling with replacement and using the per-example
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probabilities di. The AdaBoost.M2 algorithm stops when T rounds are performed. At the end we get a
classification model, which is based on the trained models on different sample sets. The prediction class
is the maximum response of the output vector.

The nice property of boosting is that it maximizes the margin between the positive and negative
classes. This lead to good generalization behavior. AdaBoost is sensitive to wrong-labeled examples,
they can destroy all the good properties. This means incorrect training data can lead to weird behavior
and bad overall performance. In the experimental section we show results on the UCI LETTER dataset
of the AdaBoost.M2 algorithm with neural networks as base learner (Section 5.3).

4.4 Stacking

Stacking or stacked generalization was first mentioned by Wolpert in 1992 [46]. Ting and Witten [41]
give a comprehensive overview of the ensemble learning method Stacking. The basic idea is to train
different prediction models in parallel on the same data. The training stops when each individual model
begin to overfit on a k-fold cross validation set. This means the models are independently trained and
combined with a loose coupling. I.e. there is no interaction in the training of the models. At the end the
models are combined, as recommended by Ting and Witten [41], with a linear combination, where the
blending weights are restricted to be non-negative. They investigated other combination strategies, such
as decision trees or k-nearest neighbors algorithms, but non-negative linear combination delivered best
overall results. The blending/combination model is called high-level model or level-1-model. Combina-
tion is more effective when low-level-learners predicts class probabilities rather than a single class label
when solving classification problems. This means that all classification problems are converted with a
simple encoding (see Section 2.4 for details) to multi-response regression problems.

prediction of the train set         
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Figure 4.1: Prediction of the training set by cross validation to minimize the effect of self-
influence. Self-influence is the effect of predicting examples, while training on these
examples. A prediction of the train set with the model itself would go the zero error.

The ensemble learning algorithm stacking works as follows. Given a training list L = (xi,yi), i =
1...N and a list of supervised trainable models Ωt. We have T models in total. Each of the models are
called a low-level model or level-0 generalizer, which need to be combined is a clever way. All models
are trained on the same training list L. For example level-0 models can be naive bayes, decision tree,
neural networks or k-nearest neighbors. The more diverse the models the better. The training should be
controlled by k-fold cross validation. After the training of the t-th model has finished, the best prediction
of the cross validation set LCV of each model is stored (see Figure 4.1 for an collection example). Then
the model Ωt gets retrained with all available data, we store all model parameters in order to predict
any new test sample. At the end we get for each model Ωt a prediction of the complete training set,
which is called LtCV . The predictions LtCV are a NxT matrix of outputs of class probabilities (in a
classification problem). This is the input to the level-1 model, the combiner. Tine and Witten compares
three different combination methods, a decision tree, a KNN and a linear combiner (MLR - multiple
linear regression). Only the last combiner is suitable to improve the ensemble’s performance over the
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best single prediction in various experiments. In Algorithm 9 we show how a linear equation system can
be solved efficiently by having the non-negativity constraints on the weights. We use for the constants
ε = 10−9 and E = 1000.

Input: Data matrix A ∈ RNxF , targets b ∈ RNx1, precision ε, maximum number of iterations E
Output: Non-negative regression weights x ∈ RFx1 (minimize the MSE: minx,x>0 ‖Ax− b‖2)
r = 1 (init vector to zero, r ∈ RFx1)1

x = 1 (init solution to zero)2

C = ATA (precalculate the covariance matrix, C ∈ RFxF )3

D = ATb (precalculate, D ∈ RNx1)4

e = 15

while ‖r‖ < ε do6

r = D−C · x (the residuals)7

foreach i = 1..F do8

if AND(xi = 0,ri < 0) then9

ri = 010

end11

end12

α = rT r
rT Cr

(adjust step size)13

foreach i = 1..F do14

if AND(ri < 0,α > −xi/ri) then15

α = −xi/ri16

end17

end18

x = x + α · r (the weight update)19

foreach i = 1..F do20

if xi < 10−9 then21

xi = 022

end23

end24

if e = E then25

break26

end27

e = e+ 128

end29

Algorithm 9: A iterative linear Regression solver with non-negative constraint to the weights

4.5 Cascade Learning

Cascade generalization from Gama and Brazdil [17] couples learners Ωt, t = 1...T by a cascade-like
structure, where algorithms in later cascades have access to all the predictions of algorithm in lower
levels (probabilities per output of the train set). The output of the whole ensemble generates ΩT (the
last model in the cascade). The dimension F of the input increases continuously by C in every level of
learning. C is the number of classes in a classification problem.

The ensemble learning algorithm “cascade learning” or cascade generalization fits the first model
Ω1 in the first cascade layer, based on the whole train list L = (xi,yi), i = 1...N . The model in the
second cascade Ω2 are trained on L′, this in an enlarged train set. In Equation 4.4 there is shown how the
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second-level train list is assembled. The new features x′i are the original features x with the predictions
of the Ω1 appended. We get this predictions during training by taking the cross-fold prediction of the
train set. For the third cascade layer (see Equation 4.5) the features x′′i are xi appended by predictions
from all previous layers.

L = {xi,yi} (4.3)

L′ = {

x′i︷ ︸︸ ︷
{xi,Ω1(xi,L)},yi} (4.4)

L′′ = {

x′′i︷ ︸︸ ︷
{xi,Ω1(xi,L),Ω2(xi,L)},yi} (4.5)

The Equation 4.3 denotes the original training list, Ω1 learns on it. Equations 4.4 and 4.5 are the aug-
mented training data for learners Ω2 and Ω3. This means output of the learners in previous cascades are
inputs to higher-level cascades. In Figure 4.2 there is an overview of the “cascade learning” process.
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Figure 4.2: Cascade generalization. Models on higher cascade levels have access to predictions
from lower level models. The training data here is for example 4-dimensional. The
output is 2-dimensional. The last model in the cascade makes the prediction of the
whole ensemble.

Computation in cascade learning is serial, therefore parallelization of the cascade is impossible. In
contrast to cascade learning, stacking can be trained in parallel.

4.6 Training on Residuals

In many supervised learning problems, a single model can not learn the given task perfectly. It always
makes an error on the training samples. This error is called “residual” or model error. One part of the
error is unavoidable because of noise in the data, the other part is the systematic error, the error that the
model’s structure can not capture. The principle of “training on residuals” is to fit another model to the
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residuals. In Figure 4.3 there is a graphical sketch of the information flow. All models Ωt in the ensemble
are trained on the same training features X, the targets are taken from the residuals of the previous model.
The first model Ω1 (layer 0) is trained on the original training list L = (xi,yi), i = 1...N . The second
model Ω2 (layer 1) is trained on the targets Y − Ω1(X). This means that learner Ωt tries to learn the
structure of the data, which was not learned by the models in the previous layers 1...t − 1. The final
outcome can be either the prediction of the last algorithm in the chain or a linear combination of the
predictions in all layers.

We need predictions of the training targets in order to create residuals of the training set. The resid-
uals are the original targets subtracted by the model prediction (Figure 4.3). When we speak about
prediction, we mean the prediction of a particular model in the chain. As prediction we use the val-
ues from the cross validation metaparameter selection process. This has the property that the validation
samples on each fold of the cross-validation are not part of the model’s training set (see Section 2.6).
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Figure 4.3: Training on residuals of other models.

The problem with training on residuals is the effect of self-influence. This leads to over-optimistic
cross validation estimates of the true error. We use the best prediction of the cross validation process in
order to generate the new training targets. The effect of self-influence starts when training > 1 models.

In the experimental evaluation, we combine this method with “blend stopping” (see below). This
means that every time a model Ωt is added to the ensemble and trained, we try to minimize the whole
ensemble’s RMSE by stopping the training of this model when the error of the linear combination over
all models Ω1...Ωt is minimal.

4.7 Blend Stopping

This technique is used in combination with the “training on residuals” ensemble method. As the name
indicates, we search for meta-parameters, or stop training a gradient descent algorithm, when the error
of the combination (blending) of the ensemble becomes minimal. The RMSE is minimized through a
regularized linear regression of the current ensemble. In other words, we stop training of the individual
model when the error of the linear blend is minimal. This idea stems from the Netflix Prize competition,
where we used it to minimize the error of an ensemble of predictions rather than the individual predictors
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(Sec. 3.2 in BigChaos Grand Prize Report [42]).

Blend stopping relies on the cross validation error on the training set where one constant predictor is
added to the ensemble. Even in the first model in the ensemble, we add a constant prediction to the linear
combination, the constant acts like an prior estimate or can center the predictions. The objective is

min
w

N∑
i=1

‖yi −

lin. combination︷ ︸︸ ︷
[1 pi]Tw ‖2 + λ

∑
i

wi (4.6)

whereN is the number of training examples. The notation [1 pi] indicates that the constant 1 is appended
to the ensemble’s predictions. Training targets are denoted by yi, the regression weights are denoted
by the column vector w and pi are the predictions from the cross validation process. The resulting
weights w without the use of cross validation would lead to large overfitting. This phenomenon was
also discovered by Leo Breiman in 1996 in the paper “Stacked Regressions” [7]. He suggested to use
leave-one-out cross validation in order to get predictions for every model on the training data.

The second problem, which Breiman [7] analyzed, is that all models in the ensemble try to predict
the targets and therefore they are highly correlated. This could be a problem for the linear combination,
for example very high/low weight pairs can occur when predictions differ only slightly. He suggest to use
again cross validation in combination with ridge regression to select a good value for the ridge regression
constant λ (the same constant as in the model linear regression, Section 3.3).

Breiman [7] used non-negative weights with the constraint that the weight sum is 1,
∑

iwi = 1. In
contrast to him, we allow negative weights. In all our experiments with blend stopping (in combination
with training on residuals) we use a small constant regularization constant λ = 10−5.

4.8 Ensemble Selection

The technique of ensemble selection [11] was proposed in 2004 by Caruana et.al. In 2009, Alexandru
Niculescu-Mizil and his 11-member team from IBM research won the KDDCup09 1. The winning entry
was based on ensemble selection on a library of 1200 single models. The KDDCup09 was a large-scale
supervised learning problem with 3 different binary targets. The number of training samples are 50000,
the number of features was 15000 (numerical and categorical). The goal was to achieve the best AUC
score on a hidden test set (size 50000).

The technique “ensemble selection” [11] is based on a library of thousands of models. The models
are build using different learning algorithms with various parameter settings. The combination strategy
is based on a greedy forward selection algorithm. Ensemble selection starts with the best model of the
library, in the next round ensemble selection chooses the predictor, which improves the error the most.
This improvement is typically measures on a validation set. In the third round, again a predictior is
selected from the whole library. The combined predictor approximates a weighted average. Ensemble
selection enables us to optimize any performance metric (such as RMSE, AUC, accuracy,...). In [11]
they investigate the optimization on 10 different error measures. The combined result is a non-negative
combination of the selected learners, because predictors can be selected multiple times. One of the
advantages of ensemble selection is that is can be fully parallelized, which means the library (the most
time consuming part) can be build independently.

We were not able to do experimental evaluation of this ensemble learning technique, due to the
requirement of having access to thousands of predictions. Despite of this aspect, ensemble selection
is one of the latest achievements and is a state-of-the-art technique in ensemble learning. The success
of ensemble selection is proved on many datasets and contests. The big advantage is that is is able to
optimize any performance metric effectively.

1Fact-sheet of the winning entry: http://www.kddcup-orange.com/factsheet.php?id=66

http://www.kddcup-orange.com/factsheet.php?id=66
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4.9 Issues in Overfitting and Objective Evaluation

Our intention is to perform an objective evaluation of our experiments. This means that the whole
ensemble and all its individual models are build by using the data from a training set. During training, the
test set is not used. It is very important to consider the issue of self-influence when evaluating methods.
For example we observe some over-optimistic estimate of the cross validation error when training on
residuals. The learning strategy of “cascade learning” is based on a chain of models. Estimated errors at
the end can be much better than on a real test set. In general, when a single model is trained, the error
on a test set should be lower compared to the cross-validation error because we retrain the model on all
available data.
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Chapter 5

Evaluation on Datasets

This is the main part of the thesis, the evaluation of different models and ensemble learning techniques
on various data sets.

5.1 Toy Data

Toy data is generated by an artificial process. The input space is typically two-dimensional. The optimal
decision boundary can be calculated by using optimal Bayes decisions, when the sampled distribution
is known (see Figure 2.5 in Hastie [18]). This makes visualization easy. After training we can divide
the input space into a discrete grid and apply the algorithm on each grid point. In this way we obtain a
color-coded image of the predictions on the input space. This gives us a feeling how different types of
models behave. Three different toy problems are analyzed: “Spiral”, “Circle” and “Chess”. All of them
are binary classification problems, the first class is encoded with small red circles, the other class with
blue circles (see Table 5.1). As mentioned in previous sections, we use 1-hot encoded target vectors to
train all learners, hence a two-class classification problem leads to two outputs p0 and p1. The target
values are given by +1 for class red and −1 for class blue. We visualize the prediction value v with
v = 0.5 · (p0 − p1), furthermore we clip v outside of [−1.5,+1.5] to avoid large prediction values.

By illustrating predictions as images, we obtain a good impression of what was learned. Even a
non-expert in machine learning can see how the algorithm classifies the data. The next items summarize
the advantages of the use of toy data for the comparison of learning algorithms.

• Decision boundaries can be visualized

• Behavior of the algorithm on regions, where no training data is available can be observed

• The power of the algorithm to split the input space is visualized

• The operation point of a classifier is equivalent to the selection of a color as threshold, this works
for binary problems

The Figure 5.1 shows the Spiral dataset, separated by a KNN model.

The three toy data examples are generated by the Spider machine learning framework [44] (Spiral-
data: Figure A.1, Circle-data: Figure A.2 and Chess-data: Figure A.3, all are available in the Appendix).
Spider is an object orientated environment for machine learning in Matlab. It is written by members
from the Max Planck Institute for Biological Cybernetics, the code is available online 1. In the Figure’s
caption we note the command, for generating the data (Appendix).

1http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html
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Figure 5.1: Predictions of a KNN model on the Spiral data set. The Spiral data set (left), and the
prediction of a KNN model (middle) with k = 8. The right plot shows the prediction
with the data superimposed.

K-Nearest Neighbors
The behavior of the KNN algorithm can be easily explained for all three data set. The prediction depends
on the closest neighbors in the feature space. This technique of nearest neighbors works perfect, if the
input space is densely sampled.

Polynomial Regression We use polynomial regression with all cross terms, hence the algorithm name
PolyX-cross. This results in a feature space extension with all interaction between feature dimensions.
For the toy examples polynomial regression was not able to achieve low classification error, the predicted
output is typical for polynomials.

Gradient Boosted Decision Tree The predicted values are typically aligned in rectangles, this is the
behavior of a Decision Tree. A tree is based on axis-parallel splits of one particular input feature. Gra-
dient boosting enables the tree to result in a more smooth surface. We observed an improvement in the
Spiral and the Circle data set when the GBDT is trained with random split values (GBDT-randomSplit).
In other words the threshold value in the nodes is just a random value, not the value that reduces the
RMSE best. The Chess data set is perfectly suited for decision trees due to the axis parallel data align-
ment.

Neural Networks The number of the neurons and the number of layers specify the power of a neu-
ral network. On the Spiral dataset the neural net with only one hidden layer was not able to learn the
structure of the data, the small 2 hidden layer 5-5 net has too little expressiveness, the 30-30 net was able
to learn the task. On the circle dataset, all net configurations were able to separate the red ring. In the
chess data, only the larger 2 hidden layer net delivers good results.

Kernel Ridge Regression The Gaussian kernel works perfect for all toy tasks, the poly and the tanh
kernel have worse results.

In toy data, the input space is sampled very densely compared to real-world problems (see Section 2.3,
The curse of dimensionality). Predictive behavior of models are not well comparable to high-dimensional
inputs, good and meaningful visualization is impossible when having many input features.

5.2 14 smaller UCI Data Sets

In Section 4 we discussed many ensemble learning methods. To determine, which technique works best,
a large evaluation on various UCI data sets is performed in this section.
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Figure 5.2: Measurement of prediction accuracy by average over multiple test-set splits. We use as
test set a random subset of the available data (20% on average). The number of splits is
R, by averaging over many simulated test sets we can estimate the prediction accuracy
and the variance (the stability) of the result. Furthermore we apply a paired-t test to
report significant improvements. We used R = 100 in this thesis.

We use data sets from the UCI machine learning repository from the University of California, Irvine
[3]. It is a very comprehensive collection of different databases. Most of the UCI data sets consist of
a training table of features and targets/labels with no predefined test set. We divide each dataset into
two sets, the training set and the test set, see Figure 5.2. Each data sample was choosen as training
sample with probability 0.8. This resulted in a training set that consisted of 80% of the data samples
on average. The test set was given by the remaining samples. We generated 100 such splits for each
data set. By averaging over the errors of 100 splits we obtain the mean and the standard deviation of the
classification error (accuracy). For all performed experiments we use our machine learning framework.
This framework was named ELF (ensemble learning framework), see Section 7 for an introduction. Table
5.1 gives an overview over the datasets used in this section.

The aim of the evaluation is to determine which combination or configuration and which ensemble
learning algorithm is the best. The big picture of the experimental evaluation can be found in Figure
5.3. We use four different supervised machine learning techniques as base learners (linear regression,
k-nearest neighbors, kernel ridge regression, neural networks). Additionally, we explore in different
combinations and different orders of the base learners. We compare “Stacking”, “Cascade Learning”,
“Training on Residuals” and “Cascade Learning combined with Training on Residuals”. We do all the
evaluations on 14 different UCI data sets, which are listed in Table 5.1. These data sets were chosen for
easy comparison with experiments in [41] and [17]. We skip larger data sets (over 1000 train samples)
due to the fact that runtime in the exploration process would increase a lot (Figure 5.3). All the data sets
have no predefined test set.

The data sets are summarized in the following.

CREDIT

The CREDIT data set [30] has 8 categorical and 6 numerical attribute values. The number of samples
is 690. It is a binary classification task and concerns credit card applications. It can be found under
http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval).

http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
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64 x : Setup of algorithm chain

100 x : Split a 20% test set

1...4 : Each model in the chain

20 epochs : Meta parameter optimization

6-fold cross validation (multithreaded)

Train single algorithm
Linear Model K-Nearest Neighbor

Neural network Kernel Ridge Regression

4 : Methods (Residual, Res+Cas, Cascade, Stacking)

14 : UCI Datasets

Re-Train single algorithm (with best meta parameters)

Figure 5.3: Cascaded loops in evaluation on UCI datasets. The explaination goes from the outer
loop to the inner. The outer loop (14x) is responsible for the analysis of all 14 data sets.
The next loop (100x) splits the data set randomly into train and test set. We evaluate 4
different ensemble learning methods (4x). The next loop (64x) creates different chains
of models, the order of four different models is varied. Each model in the chain is going
to be optimized (4x). We search for maximum number of 20 epochs per algorithm in
order to optimize meta parameters (20x). The optimization is done on a 6-fold cross
validation set, this runs multithreaded. In total we make 14·100·4·64·4·20·6 = 1.7·108

model training steps.

BALANCE

The BALANCE data set has 4 numerical attribute values. The number of samples is 625. It is a 3-class
classification task. The data was collected in order to model psychological experiments. The goal is to
model the scale balance equation: (left-distance * left-weight) and (right-distance * right-weight). It can
be found under http://archive.ics.uci.edu/ml/datasets/Balance+Scale.

BREAST

The BREAST data set [45] has 10 numerical attribute values. The number of samples is 699. It is a binary
classification task. The data stem from medical science. It can be found under http://archive.ics.
uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original).

DIABETES

The DIABETES data set [38] has 8 numerical attribute values. The number of samples is 768. It is
a binary classification task. The data are collected from females, at least 21 year old and Pima In-

http://archive.ics.uci.edu/ml/datasets/Balance+Scale
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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Name #classes #feat #feat(intern) #samples
CREDIT 2 14 43 690
BALANCE 3 4 5 625
BREAST 2 10 11 699
DIABETES 2 8 9 768
GERMAN 2 20 62 1000
GLASS 6 9 10 214
HEPATITIS 2 19 20 155
IONOSPHERE 2 34 35 351
IRIS 3 4 5 150
SONAR 2 60 61 208
SURVIVAL 2 3 4 306
VEHICLE 4 18 19 846
VOTES 2 16 49 435
WINE 3 13 14 178

Table 5.1: Overview of small UCI datasets. With #feat(intern) we denote the number of attributes,
which are actually used inside the algorithms (e.g. categorical value encoding, adding
of a constant feature column).

dian heritage, the task is to classify the disease (positive or negative). It can be found under http:
//archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.

GERMAN

The GERMAN data set has 7 numerical and 13 categorical attribute values. The number of samples
is 1000. It is a binary classification task. The data are collected from the Institut für Statistik und
Ökonometrie at university of Hamburg and contains credit related attributes. It can be found under
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).

GLASS

The GLASS data set has 9 numerical attribute values. The number of samples is 214. It is a 6-class
classification task. The data are collected from the Home Office Forensic Science Service (UK), the
task is to classify the type of glass based on chemical related attributes. It can be found under http:
//archive.ics.uci.edu/ml/datasets/Glass+Identification.

HEPATITIS

The HEPATITIS data set has 19 numerical attribute values. The number of samples is 155. It is a binary
classification task. The data is based on medical properties, the task is to determine if the patients die or
live. It can be found under http://archive.ics.uci.edu/ml/datasets/Hepatitis.

IONOSPHERE

The IONOSPHERE data set [36] has 34 numerical attribute values. The number of samples is 351. It
is a binary classification task. The data are collected by a radar in Goose Bay, Labrador. The target is
to determine the free electron status good or bad. It can be found under http://archive.ics.uci.
edu/ml/datasets/Ionosphere.

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://archive.ics.uci.edu/ml/datasets/Glass+Identification
http://archive.ics.uci.edu/ml/datasets/Hepatitis
http://archive.ics.uci.edu/ml/datasets/Ionosphere
http://archive.ics.uci.edu/ml/datasets/Ionosphere
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Name LM PR NN KNN KRR
CREDIT 13.46±2.5 15.13±2.0 14.44±2.3 16.70±3.1 13.25±3.0
BALANCE 12.26±2.5 8.50±1.9 8.42±1.6 11.26±2.5 8.38±1.6
BREAST 3.95±1.8 3.27±1.6 3.43±1.2 3.02±1.4 3.51±1.6
DIABETES 23.57±2.1 22.10±2.8 23.51±3.5 23.53±3.1 23.32±3.5
GERMAN 24.74±3.6 25.07±3.1 24.20±2.8 26.19±3.4 25.10±2.9
GLASS 41.86±5.7 38.01±5.3 36.93±8.3 30.19±6.8 30.33±6.1
HEPATITIS 15.81±6.0 15.90±4.2 13.43±6.6 15.59±5.9 13.79±4.9
IONOSPHERE 12.48±4.0 8.12±2.7 12.19±2.9 15.35±4.0 7.39±2.8
IRIS 16.39±8.8 4.89±4.2 3.73±3.4 5.05±4.1 5.54±3.5
SONAR 23.13±5.6 18.77±7.4 24.14±5.7 16.24±6.1 13.62±4.5
SURVIVAL 24.39±5.3 24.20±3.9 24.38±4.2 26.07±4.6 25.81±5.5
VEHICLE 23.51±3.5 20.86±1.4 17.46±2.6 29.30±2.9 19.31±2.7
VOTES 4.12±1.5 4.49±2.1 4.91±2.4 7.17±2.7 4.01±1.6

Table 5.2: Test error for single models on small UCI data sets. Reported is the percentage of
classification error (mean ± std). Bold faced numbers are the winners per data set.
LM=linear model, PR=polynomial regression, NN=neural network, KNN=k-nearest
neighbors, KRR=kernel ridge regression.

Name LM PR NN KNN KRR
CREDIT 0.65±0.04 0.67±0.04 0.65±0.05 0.71±0.04 0.63±0.04
BALANCE 0.56±0.03 0.56±0.03 0.38±0.03 0.51±0.03 0.46±0.02
BREAST 0.37±0.04 0.36±0.05 0.32±0.05 0.32±0.06 0.33±0.07
DIABETES 0.80±0.03 0.77±0.03 0.79±0.04 0.82±0.04 0.79±0.04
GERMAN 0.82±0.04 0.83±0.03 0.81±0.03 0.85±0.03 0.82±0.03
GLASS 0.61±0.03 0.62±0.03 0.60±0.04 0.53±0.05 0.54±0.04
HEPATITIS 0.69±0.08 0.70±0.08 0.62±0.10 0.64±0.12 0.65±0.05
IONOSPHERE 0.64±0.07 0.55±0.04 0.62±0.06 0.70±0.08 0.49±0.06
IRIS 0.60±0.07 0.35±0.06 0.35±0.07 0.32±0.08 0.30±0.07
SONAR 0.81±0.06 0.76±0.13 0.81±0.07 0.68±0.09 0.63±0.06
SURVIVAL 0.83±0.04 0.85±0.04 0.84±0.05 0.87±0.08 0.83±0.06
VEHICLE 0.60±0.02 0.57±0.02 0.51±0.02 0.61±0.02 0.52±0.02
VOTES 0.36±0.04 0.37±0.07 0.38±0.07 0.45±0.06 0.38±0.04

Table 5.3: Test error for single models on small UCI data sets. Reported is the RMSE (mean± std).
Bold faced numbers are the winners per data set. LM=linear model, PR=polynomial
regression, NN=neural network, KNN=k-nearest neighbors, KRR=kernel ridge regres-
sion.
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IRIS

The IRIS data set has 4 numerical attribute values and is one of the most popular sets used in pattern
recognition. The number of samples is 150. It is a 3-class classification task. The data is from 1936
collected by Fischer, the target is to recognize iris plants based on physical dimensions of the sepal and
petal. It can be found under http://archive.ics.uci.edu/ml/datasets/Iris.

SONAR

The SONAR data set has 60 numerical attribute values. The number of samples is 208. It is a binary clas-
sification task. The data comes from bouncing sonar signals under different angles off a metal cylinder.
It can be found under http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+
(Sonar,+Mines+vs.+Rocks).

SURVIVAL

The SURVIVAL data set has 60 numerical attribute values. The number of samples is 306. It is a binary
classification task. The data stem from a long-term study on the survival rate when having breast cancer.
It can be found under http://archive.ics.uci.edu/ml/datasets/Haberman’s+Survival.

VEHICLE

The VEHICLE data set has 18 numerical attribute values. The number of samples is 846. It is a 4-class
classification task. The data comes from classifying vehicles, based on image shape descriptors/features.
It can be found under http://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes).

VOTES

The VOTES data set has 16 categorical attribute values. The number of samples is 435. It is a binary
classification task. The data are collected by Jeff Schlimmer and includes votes for each of the U.S.
House of Representatives. The task is to classify inputs whether they belong to democrat or republican.
It can be found under http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+
Records.

WINE

The WINE data set has 13 categorical attribute values. The number of samples is 178. It is a 3-class
classification task. The data results from a chemical analysis of wines grown in Italy. It can be found
under http://archive.ics.uci.edu/ml/datasets/Wine.

The UCI Results

Table 5.2 lists the classification test errors for every single algorithm. Bold faced numbers denote the
winners (lowest classification error) per dataset. Again, statistics are based on 100 random test splits.
Remember that the metaparameters of every algorithm are optimized to lower the RMSE over the cross
validation data. For completeness, we list the RMSE values per algorithm in Table 5.3, the best RMSE
value does not necessarily correspond to best classification error. The trend is that algorithms with low
RMSE also has low classification error. RMSE as an error measure is more stable for optimization
of metaparameters (like class probabilities), therefore lowering the classification error directly leads
to getting stuck early in local minima. We tried this and the outcome points to worse test accuracy.

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
http://archive.ics.uci.edu/ml/datasets/Haberman's+Survival
http://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes)
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Wine
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Classification error is a discretized measure, while RMSE is smooth real valued. Table 5.4 compares best
ensemble techniques (using the best chain configurations for each of the ensemble learning techniques).
Table 5.5 lists the best configurations (the models and the exact ordering). Table 5.6 and Figure 5.4
compares the errors of the best single versus the best ensemble learning technique.

Now we briefly return to single model results. The goal of each individual model is to minimize
the prediction RMSE (see Equation 1.2). 8 of the 14 datasets (= 57.1%) have the minimum both
on RMSE and classification error (CREDIT, DIABETES, GERMAN, GLASS, HEPATITIS, IONO-
SPHERE, SONAR, VEHICLE). All other tested data sets have different winners. Furthermore, we
analyze the accuracy of the learner, which is equivalent to classification error. The worst single model
is linear regression (0 wins) followed by polynomial regression and k-nearest neighbors (both 2 wins),
neural networks (4 wins) and the single model winner is kernel ridge regression (5 wins).

In Table 5.4 we see the comparison of the results from ensemble learning methods. The technique
Training on Residuals never wins, Stacking has 3 wins, Residual+Cascade Learning wins 5 times and
Cascade Learning has 7 times the best accuracy, therefore it is the overall winner. Additionally to
the mean classification error we report the standard deviation of them, it is quite large compared to the
margin of the winner to the first runner-up. A significance analysis of the margin is given in Table 5.6
and Figure 5.4.

For each ensemble learning technique, we try all possible model chains (as shown in Figure 5.3), the
winners are listed in Table 5.5. A chain is a special ordered configuration of learners, combined by one
of the 4 ensemble learning techniques. Such a chain can be a linear regression, followed by a k-nearest
neighbors model, where the predicted output of the linear regression is feed into the KNN’s training list,
this is the configuration for cascade learning. We have 4 base learners, in exploring all different chain
combinations of size 1, 2, 3 and 4 we end up with 64 different setups. In Stacking, the order of the
models do not play a role, because of the loose coupling, therefore we have in Stacking 16 different
setups. Our intention was to figure out a best configuration chain, but that was unsuccessful. Different
chains of single models are winners, so there exists no “best configuration” (see Table 5.5). J. Gama and
P. Brazdil in [17] mentioned that weak models should be placed in front of strong models. Based on our
results, we can not confirm their suggestion. Every data set has its own best setting.

In Table 5.6 we analyze the significance of the improvement of the best ensemble model compared
to the best single model. It turns out that ensembling often outperform the best single model. Ensemble
learning wins on 13 of 14 cases, only on the GERMAN data set kernel ridge regression delivers the same
performance as single model. Statistical significance analysis over 100 test splits shows that ensemble
learning outperforms the best single model 6 times with p < 0.05 in a paired t-test. This is done by
simply using the function ttest from Matlab.

The number of training samples is the dominating value for training time of the ensemble, because
some single models (KNN, KRR) have quadratic runtime with respect to the sample size. The simulation
time goes from 0.5 hours (HEPATITS, 155 samples) to 10.7 hours (GERMAN, 1000 samples) on an
Intel i7 QuadCore Desktop PC with 12GB RAM running on 3.8GHz. The meta-parameter optimization
process with 6-fold cross validation is run in parallel (2x3 threads).

Graphical visualization of the accuracy of best ensembles and the best single models is plotted in
Figure 5.4. For each data set and each test run we place the result (classification error) to the correspond-
ing plot. Some test splits result in the exact same classification error, therefore the histogram-like plot
style. In only one (BALANCE) of the 14 data sets the outcome of ensemble learning clearly outperforms
the best single models, here the red samples (ensemble learning) have a clear margin to the blue samples
(single model). In all other data sets the winner is not very clearly visible. The spread of the observed
classification errors is high compared to the difference of the mean errors on ensemble versus single
model learning. This means we have a high variance of the experimental analysis on all 14 UCI data
sets. As discussed before, further analysis of the significance can be found in Table 5.6.

All detailed outcomes, assorted per dataset, are attached in the Appendix section, the corresponding
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Dataset Residual Residual+Cascade Cascade Stacking
CREDIT 13.65±3.0 13.65±3.0 13.43±2.9 13.78±2.3

BALANCE 7.88±2.4 4.40±2.2 4.31±2.2 8.79±2.1

BREAST 3.11±1.3 3.05±1.6 2.96±1.4 3.11±1.3

DIABETES 22.51±2.9 22.29±3.2 22.49±3.0 22.55±3.1

GERMAN 23.59±2.8 23.59±2.8 23.46±2.8 23.46±2.8

GLASS 30.41±6.3 30.16±6.5 30.59±5.8 30.91±6.2

HEPATITIS 15.00±6.8 15.00±6.8 14.32±6.0 14.01±5.7

IONOSPHERE 7.26±2.9 6.79±3.0 7.04±2.9 8.24±2.7

IRIS 3.52±3.1 3.22±2.9 3.26±2.6 4.20±3.6

SONAR 13.12±5.2 13.12±5.2 11.29±3.9 12.72±5.5

SURVIVAL 24.66±4.7 24.86±4.4 25.20±5.3 24.59±4.5

VEHICLE 19.08±2.7 18.24±2.5 17.55±2.5 18.52±3.0

VOTES 3.93±2.0 4.13±1.9 3.72±1.9 4.02±1.9

WINE 1.10±1.5 1.05±1.5 1.33±2.0 1.13±1.6

Number of Wins 0 5 7 3

Table 5.4: Comparision of best ensemble learning methods for each dataset. Values are classifica-
tion error± standard deviation on 100 random test sets. Per result, the best configuration
of single models (ordering) is used here. The listing of best configurations is in Table
5.5.

tables are: Table A.1 for CREDIT, Table A.2 for BALANCE, Table A.3 for BREAST, Table A.4 for
DIABETES, Table A.5 for GERMAN, Table A.6 for GLASS, Table A.7 for HEPATITIS, Table A.8 for
IONOSPHERE, Table A.9 for IRIS, Table A.10 for SONAR, Table A.11 for SURVIVAL, Table A.12 for
VEHICLE, Table A.13 for VOTES, Table A.14 for WINE.
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Dataset Residual Residual+Cascade Cascade Stacking
CREDIT L L K-R-N K-R-L-N
BALANCE R-K-L-N N-L-K N-L-R-K L-N
BREAST N-L-R L-K L-R-N K-R-L
DIABETES R-N-L R-L-K R-L-K K-L
GERMAN R R R R
GLASS R R-L R-L R
HEPATITIS N N L-R K-R-L-N
IONOSPHERE R-N-L R-K-N R-L-K-N R
IRIS K-N N-L-R N-L R-L-N
SONAR R R K-L-R K-R
SURVIVAL N-R-L N-R-L L-N K-N
VEHICLE N-L-R N-L-K N-K-R-L K-R-N
VOTES N-R-K-L N-R-K-L N-R K-R-L-N
WINE L-N L-R R-L K-R-L-N

Table 5.5: Compare the success of different ensemble configurations per dataset, we report the
winning chains. Here, we list the winners with lowest classification error.

Dataset Best Single Best Ensemble p-value significant? (p < 0.05)
CREDIT 13.65±3.0 (L) 13.43±2.9 (K-R-N,Cas) 0.598 no
BALANCE 8.96±2.1 (N) 4.31±2.2 (N-L-R-K,Cas) 0.000 yes
BREAST 3.24±1.3 (R) 2.96±1.4 (L-R-N,Cas) 0.112 no
DIABETES 23.10±3.2 (L) 22.29±3.2 (R-L-K,Res+Cas) 0.075 no
GERMAN 23.46±2.8 (R) 23.46±2.7 (K-R-N,Sta) 0.999 no
GLASS 30.41±6.3 (R) 30.16±6.5 (R-L,Res+Cas) 0.796 no
HEPATITIS 14.93±6.9 (N) 14.01±5.7 (K-R-L-N,Sta) 0.310 no
IONOSPHERE 8.15±2.6 (R) 6.79±3.0 (R-K-N,Res+Cas) 0.001 yes
IRIS 4.23±3.4 (K) 3.22±2.9 (N-L-R,Res+Cas) 0.030 yes
SONAR 13.12±5.2 (R) 11.29±3.9 (K-L-R,Cas) 0.003 yes
SURVIVAL 25.37±4.9 (N) 24.59±4.5 (K-N,Sta) 0.209 no
VEHICLE 19.09±2.9 (N) 17.55±2.5 (N-K-R-L,Cas) 0.000 yes
VOTES 4.21±2.3 (N) 3.72±1.9 (N-R,Cas) 0.086 no
WINE 1.56±2.0 (L) 1.05±1.5 (L-R,Res+Cas) 0.036 yes

Table 5.6: Errors of the best single model vs. the best ensemble. The reported errors are clas-
sification errors±std, followed by the configuration with the corresponding ensemble
learning method. The last two columns are the values from the paired t-test.
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Figure 5.4: Distribution of the errors. Best single errors versus best ensemble, each result of the
100 test splits is plotted here. Ensemble learning is the clear winner on the BALANCE
data set, in all other there is not clear, who the winner is. A high standard deviation of
the errors is present on all data sets.
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5.3 UCI LETTER - Boosting and Bagging Neural Networks

The UCI online archive [3] is a large repository of real world data sets covering various application
domains. Their number of samples varies from a few tens to over 105. In the previous section, we picked
sets with less than 1000 training samples, here we show results on the LETTER (letter recognition) data
set. It is a popular alphabetic character dataset, used by many scientists ([11], [17], [40], [34]). The
target is to classify attribute vectors to one of the 26 classes. Letters are described by 16 numeric values
(moments of edges and counts), the number of training samples is 16000, the fixed test set has size of
4000 (the last 4000 in the training table). For details on the data set see [14].
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Figure 5.5: LETTER dataset. The blue curve corresponds to Boosting.M2 as described in Section
8 applied on the Letter UCI dataset with neural nets as base learner. The neural network
hat 2 hidden layers with 70 and 50 neurons, the learn rate is 0.01 and no weight decay.
We limit the number of training epochs to 200. The test classification error was about
1.5% after 100 boosting epochs.

The LETTER dataset is used for experiments of bagging from Section 4.2 and boosting described in
Section 4.3. The base learner is a multi-layer neural network with 2 hidden layer, the number of neurons
are 70 and 50. This is exactly the same net setup as proposed by Schwenk and Bengio in [34] (they use a
16-70-50-26 net). Our single net is trained with stochastic gradient descent for 160 epochs (determined
by cross validation) with a constant learn rate of 0.01. The RMSE and the classification error on a 10-fold
cross validation set are RMSE = 0.135224 and classErr = 5.49%. On the 4000 predefined test samples,
the net achieves RMSE = 0.133441 and classErr = 5.55% error. Figure 5.5 shows the learning curve
of the Boosting.M2 resampling algorithm and the curve for bagging. The boosted neural net ensemble
clearly outperforms the single model (1.5% versus 5.5% classification error) and also outperforms a
bagged neural net ensemble. Bagging achieves an error rate of about 3%, which means a reduction of
50% compared to the single model result.

Both boosting and bagging shows outstanding performance compared to the single model result.
The error rate of 1.5% from boosted neural networks coincides with the one reported in [34]. Bagging
has 3% classification error, our result is superior compared to the reported 4.3% in [34]. Additionaly,
we tried stacking different base models. Table 5.7 shows the results, we list the results according to
their accuracy. Stacking is a loose coupling of learners, with the target to reduce the prediction RMSE,
actually this holds for the stacked ensemble (RMSE = 0.0990909). Also the classification error of the
stacked ensemble is lower (3.475%) compared to the best single model (KNN 4.625%).

All ensemble techniques boosting (1.5%), bagging (3%) and stacking (3.5%) improves the accuracy
on the test set over the best single model (KNN with 4.6% error). Boosting neural nets outperforms the
two other ensemble techniques.
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# model test class.
error

test
RMSE

metaparameters

1 linear regression 42.575% 0.31799 λ = 0.00026
2 poly3 regression 32.175% 0.286507 λ = 6.3e− 5
3 kernel ridge regression 16.275% 0.581653 Gauss kernel, σ = 2.0, λ = 0.0086
4 neural network 5.25% 0.132987 2HL:70-50, η = 0.01, 124 epochs
5 k-nearest neighbors 4.625% 0.105756 euclidean distance, k = 4

Stacking 1+2+3+4+5 3.475% 0.0990909 non-negative blending weights

Table 5.7: LETTER dataset. Performance of single models.

5.4 MNIST - Handwritten Digit Recognition

The widely used MNIST dataset of handwritten digits is a 10-class classification problem, details on the
generation and various results can be found online under http://yann.lecun.com/exdb/mnist/.
The name stems from modified and merged versions of two NIST databases (SD-1, SD-3). It is one of the
larger datasets with 60000 training samples and 10000 samples in the predefined test set. The attribute
vectors have 784 elements, which corresponds to a grayscale pixel image with size of 28 x 28. One of the
most successful models on this dataset are convolutional neural networks, which are specially connected
neural network architectures with heavy weight sharing (much more connections than weights). They
have local receptive fields, similar to neurons in the brain (layer-oriented visual cortex). This means that
the net structure is based on knowledge of the structure of the data. A convolutional net is designed
to handle geometric data. The best known permutation-invariant model are deep belief nets (neural
network with many hidden layers) pretrained with a stack of RBMs (Restricted Boltzmann Machines).
Good explanations can be found in [26] or T.Hastie [18] Sec. 11.7 or in C.M.Bishop [5] Sec. 5.5.6.

We need a lot of time to tune and optimize various single models on the MNIST dataset, see Table
5.8 for the listing. The four models exhibit quite different performance. Linear regression is the fastest
model to train but has the worst performance of 14.7% classification error on the test set. The next
model is template based, a k-nearest neighbors model with an accuracy of 2.27%. A neural network with
two hidden layers achieves a performance of 1.34% misclassified examples, the drawback of stochastic
gradient descent training is the long time it takes (86 hours), but predictions can be made fast (20[s]
for 105 samples). The last model with the best classification error is kernel ridge regression with a
Gaussian kernel and 1.23% error. Tuning time for the KRR is about 10 hours. One of the interesting
observations is that KRR has higher RMSE compared to KNN or NNs, but has the best accuracy in terms
of misclassification error. The lowest RMSE is achieved by the neural net, see Figure 5.6.

As an example we show the learning curves of the large 2-layer neural network in Figure 5.6. We
use 4-fold cross validation to prevent overfitting, but we stop the slow training after 60 epochs due to
time constraints. The learning curve on the cross validation get saturated (short before overfitting). Both
RMSE and classification error smoothly decrease during training. We use sigmoid output units in the
net, the output is multiplied by the constant 1.2 in order to cover the output swing of +1...− 1.

Furthermore we tried Stacking as an combiner of the obtained results from Table 5.8. The results are
shown in Table 5.9. The aim of Stacking is to reduce the RMSE of the combination, which is true for
our experiments. Stacking is bad when looking at the classification error as error measure. The stacked
ensemble achieves an accuracy of RMSE = 0.0994859 and 1.36% error, where the best single result
has RMSE = 0.1481 and classification error of 1.23%. This evaluation shows clearly that reduction in
RMSE does not necessarily correspond to an improvement in classification accuracy.

http://yann.lecun.com/exdb/mnist/
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model notes training
time (60k
samples)

prediction
time (10k
samples)

RMSE
train
(4-CV)

RMSE
test

class.
error
train
(4-CV)

class.
error
test

LR - linear
regression

regularization
λ = 0.0159

1[min] <1[s] 0.394749 0.391008 14.793% 13.83%

KNN -
k-nearest
neighbors

Pearson correlation,
neighborhood size k = 4

30[min] 3[min] 0.126198 0.12802 2.27% 2.31%

NN - neural
network

2 hidden, 1500 and 1200
neurons, learn rate η =
0.003, weight decay λ =
0.0001, 60 epochs

86[h] 20[s] 0.109234 0.102282 1.425% 1.34%

KRR - ker-
nel ridge re-
gression

regularization λ = 10−7 ,
Gauss kernel, σ = 30

10[h] 15[min] 0.1481 0.14336 1.30% 1.23%

Table 5.8: Single model results on the MNIST dataset. Training time includes searching 15 epochs
for good metaparameters in LM, KNN and KRR with 4-fold cross validation. Errors on
the test set are in general a little better because of the effect of retraining on all available
training data by using optimized metaparameters.

models RMSE train
(4-CV)

RMSE
test

class. er-
ror train

class. er-
ror test

LM + KNN 0.126176 0.127985 2.26667% 2.31%
LM + KNN + NN 0.104033 0.0995943 1.423% 1.37%
LM + KNN + NN + KRR 0.103855 0.0994859 1.426% 1.36%

Table 5.9: Stacked generalization (Section 4.4) applied to results on the MNIST dataset. Stack-
ing hurts in terms of accuracy measured in classification error (KRR as single model
achieves 1.23%). Stacking optimizes the combination RMSE.
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Figure 5.6: MNIST dataset. RMSE and classification error during training a neural network with 2
hidden layers (1500-1200) by stochastic gradient descent. Values are calculated from
a 4-fold cross validation during training. Each epoch needs about 1 hour, 60 epochs
trained in total. Retraining the model on the whole train set results in RMSE=0.102282
and 1.34% misclassification error on the 10k test set.
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Chapter 6

Combining Predictions in a Recommender
System

A recommender system helps users to navigate through portals or web shops with a lot of content by
aggregating data generated by other users. For example, amazon.com provides each user with a per-
sonalized shop page on login (“your personal shop”), based on the user’s past purchase data. A user is a
unique person, which generates events, like purchases, ratings, bookmarks or clicks. An item is an indi-
vidual product or a unique piece in an online portal (e.g. movies, jeans, watches, sunglasses). User-item
predictions are personalized item scores for a user. Item-item correlations are unpersonalized relation-
ships between items (not user dependent). A typical recommendation system consists of two parts, the
first part is the prediction model, which is responsible for delivering accurate user-item predictions and
item-item correlations. The prediction model should exhibit good scaling to large number of users and
items. The second part is the recommendation module, this module is responsible for presenting a set of
items to the user. A typical way of doing this is to predict for a given user all available items and sort
their scores in descending order and take the top-K products as personalized recommendation (top-K
recommendation).
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Figure 6.1: The sparse user x item matrix in an recommendation system. The data sketch here is
from a 5-star rating system. The target for the prediction model is to accurately predict
the missing values in the matrix.

Consider the case of having a 5-star (from one the five starts, one star means bad and 5 stars means
excellent) rating system on a web portal. The problem of prediction can be seen as a sparse user-item
matrix (Figure 6.1). The goal is to make accurate prediction for the missing values. In collaborative
filtering, the system infers a model from all available data. For example a low-rank matrix factorization
leads to a very accurate prediction model. Another approach is to use content filtering for prediction,
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which uses meta information on user and item side, for example product sub-categories or geographic
user information.

Collaborative filtering is based on data analysis. Data can be any source of user-generated informa-
tion, such as purchases, ratings, clicks, bookmarks, favorite-adds, whishlist-adds, etc. We will call this
data “events” in the following. Users and items become anonymous numbers in the collaborative filtering
system. A user is fully described by the set of events (what the user does). The Netflix Prize [4] is a
benchmark for collaborative filtering algorithms. It is the largest public available dataset, which contains
108 rating events, collected in a time period of 7 years. Before the Netflix Prize started in October 2006,
the MovieLens dataset with about 106 ratings was the largest dataset for applying collaborative filtering
algorithms on real world data 1.

Content filtering relies on additional data from users and items. In general, users complete a form
when they create a login to the site, so we have the name, address, zip code, age, gender, preferences,
etc. An item can be for example a music song, a t-shirt or a DVD. The same on item side, a shop or
a portal keeps additional information of the items, such as main category, subcategory, price category,
color, size, language(movies), etc. A common technique is to analyze this information by find similar
users, who bought items from the same subcategory. Another approach is to use simple string matching
to find products that the user like.

Research in the field of collaborative filtering has become popular since the 1M $ Netflix Prize was
announced in 2006. Before that, the work of researchers in this field was focused on neighborhood
models, such as item-item or user-user KNN algorithms. Herlocker et. al. give a good overview of
neighborhood based approaches in [19].

The error function is crucial in measuring the accuracy of collaborative filtering algorithms. The
Netflix Prize uses RMSE, which is a perfect measure in a competition due to the smooth behavior. Other
error measures such as average rank or hitrate are more appropriate in evaluating the quality in a top-K
recommender system.

RMSE =

√√√√ 1
|L|

∑
(u,i)∈L

(r̂ui − rui)2 (6.1)

The list of ratings is denoted by L = 〈(u1, i1), ..., (uL, iL)〉, predicted ratings are r̂ui and the real ratings
are rui. Other error measures such as mean absolute error or ranking based errors are discussed by
Herlocker [20].

Training set Qualifying setProbe set

Quiz    Test     

cnt=100,480,507 cnt=1408395 cnt=2817131

50% 50%

 Leaderboard feedback

Figure 6.2: The Netflix Prize dataset. The training set size is about 100M ratings, the goal is to
predict the qualifying set, which has a size of 2.8M ratings. Netflix provides a 4-digit
accurate feedback from a 50% random subset, the “quiz set”. To win the competition,
one must have the best RMSE score on the hidden “test set”.

The prediction of a collaborative filtering model should lie between a lower and an upper bound. In
the case of 5-star ratings, the bounds are 1 and 5. One can show that predictions of a SVD model are
not bounded, they can have values greater or lower than the bounds. Clipping at the bound values is not
correct due to the loss of ranking possibility. When a recommendation system does top-K recommenda-

1http://www.grouplens.org/node/73, in 2008 groupslens published a 10M dataset (107 ratings)
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tions, it is common to denote the predictions as “scores”. Scores can have any scale or offset, since the
ranking of the scores stays the same.

In a web shop, there is often a lack of a rating system. The shop operator has a large database of
the customer’s consumption history. In other words the webmaster has access to data of who bought
what. This is known as binary view of the user-item rating matrix and it is similar to a “I like it”
rating system. Purchase information has high-quality because the customer actually spends money on
the item. The user-item matrix can be seen as completely filled with 1 for the purchased and 0 for all
other entries. The matrix cells, which have value of 0 are potential candidates for recommended items.
Consider the case of a full-filled matrix in the Netflix Prize dataset, the number of values in the matrix
is about 500k · 18k = 9 · 109 (9 billion numbers). The training time would be prohibitive for a SVD
algorithm based on gradient descent. Training on a full-filled matrix would result in O(U ·M) training
time (standard is O(|L|), where |L| is the number of data points). U is the number of users and M is
the number of items in the system. We found a simple way to do gradient descent with a SVD model on
purchase data. The idea is to use a random subset of the zero values rather than all. Stochastic gradient
descent runs for example 30 epochs through the training list L and updates the user and item features.
This training can be done effectively user-wise. Now we draw per user a subset of items with target rating
0 addidionally to the 1’s. We found that 1% of |M | works well for 0-sampling. Hu and Koren in [22]
has done analysis on implicit feedback datasets, for example with data from IPTV 2 where users watch
films with his set-top boxes. They propose an alternating least squared matrix factorization algorithm,
that overcome the problem of handling the large filled user-item matrix by considering only the 1’s in the
data.

During an active participation in the Netflix Price contest, Andreas Töscher (a colleague of me) and
I have gained a lot of experience with various collaborative filtering algorithms (we are also part of
the winning team!). The training set size is 100M, Netflix held back a qualifying set of 2.8M ratings,
which should be predicted by the participants of the contest. RMSE feedback was calculated on a 50%
random subset - called the quiz set, for details see Figure 6.2. One of the largest challenges is to handle
the huge size of the data, hence we need algorithms with good asymptotic runtime, both in the training
and in the prediction phase. For example user-user neighborhood approaches have horrible runtime
bounds. Furthermore they have O(U2) memory consumption, where U is the total number of users.
For the Netflix data set, we have 500k users, which leads to approx. 500GB of memory consumption
when we store the upper triangle matrix of all user-user correlations in floating point accuracy. In the
following, we will list and summarize collaborative filtering models in terms of speed, runtime and
practical implementation challenges.

In Table 6.1 we list the most useful collaborative filtering algorithms from the Netflix Prize challenge.
The RMSE column is the error that a single algorithm can achieve with good learning parameters (e.g.
proper learn rate and regularization constants). Each single algorithm models the data in a different way,
for example a linear combination of all single models would lead to a 0.87 RMSE score. Netflix own
prediction algorithm, called “Cinematch” has an RMSE of 0.95 at the time when the competition starts
in 2006 [4]. More sophisticated blending techniques lowers the RMSE below 0.87. In the following
section we use the word “blending” as an acronym for combining a set of predictions.

The following list gives a technical overview of collaborative filtering algorithm listed in Table 6.1.
We focus on the overview of each individual, not going deep into the training process. For further detailed
explanation, we recommend to read the Netflix Prize Winner Reports [42], [24], [29].

• KNN item-item
A prediction r̂ui in an item based k-nearest neighborhood model is made by calculating a weighted
sum over k-nearest items, the weights are proportional to the correlations cij (similar to the k-
nearest neighbors algorithm from Section 3.6). Therefore a precalculated item-item correlation
matrix C is useful, due to the need of constant access time of any item-item correlation cij . This

2IPTV means Internet Protocol television
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algorithm RMSE
(approx.)

training
time

prediction
time

memory
consumption

implementation

KNN item-item 0.92 O(U ·M2) O(U · log(U)) O(M2) easy-medium
KNN user-user 0.93 O(M · U2) O(M · log(M)) O(U2) easy-medium
SVD (matrix fac-
torization)

0.90 O(L) O(1) O(M + U) easy

AFM (asymmetric
factor model)

0.92 O(L) O(1) O(M) medium

SVD extended
(SVD with asym-
metric, time and
frequency effects)

0.88 O(L) O(1) O(M + U) medium-hard

RBM (Restricted
Boltzmann Ma-
chine)

0.90 O(L) O(1) O(M) hard

GE (global effects) 0.95 O(L) O(1) O(M + U) medium
Blend of all models < 0.87

Table 6.1: A list of various collaborative filtering algorithms with asymptotic time and memory
consumption. We add RMSE values on the Netflix Prize dataset (qualifying RMSEs)
to give a value of accuracy for each of the models. The training time is needed before
prediction can be made. The prediction time is defined to generate a single r̂ui value.
Each algorithm has internal parameters/features, the size of them are listed as memory
consumption. To make the algorithms run, there are various challenges, because some
of them are totally new in this field. We list “how challenging” the implementation is
in the last column. M is the total number of items (18k), U is the total number of users
(500k) and L the total number of ratings (100M) in the data set. Red values are critical
for large scale applications.
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results in a memory consumption of O(M2) (M is the number of items). Training time is building
the item-item correlation matrix C, which is limited to O(U ·M2) operations. For one prediction,
the KNN selects k-best correlations to the item i, this can take up to O(U) operations. Sort the list
takes O(U · log(U)), which is the upper bound in prediction time.

• KNN user-user
The model is exactly the same as in the KNN item-item, but items and users are flipped. Hence the
prediction and training bounds are also flipped. See Table 6.1 for the complete list. For the Netflix
Prize dataset this method is unpractical due to the huge memory consumption. Here, we want to
mention the possibility of learning an implicit factorization of the full user-user correlation matrix,
this reduces the amount of required memory down to O(U · K) where K is the dimensionality
of the factor matrices. This enables us to keep all the user-user correlations in memory by storing
the factorized version, one particular correlation is then just a dot product of the corresponding
features. For details see Töscher, Jahrer and Legenstein in [43].

• SVD (matrix factorization)
This is probably the most popular collaborative filtering technique since the Netflix Prize started
in 2006. A prediction is given by the dot product of a user feature pu and an item feature qi:
r̂ui = pTuqi, henceO(1) runtime per prediction. The SVD learns two factor matrices, user features
P = [p1, ...,pU ] and item features Q = [q1, ...,qM ] via stochastic gradient descent. In practice
this means the whole training needs a few ten epochs over the whole dataset until convergence -
therefore O(L) training time. The model parameterizes two matrices with f rows, this leads to
O(M + U) memory consumption. We assume the number of f is a constant, in practice usual
values are e.g. f = 50. Both, training and prediction time have optimal asymptotic runtime
behavior, this makes the SVD an excellent candidate for large scale recommendation applications.
As an extention to the excellent prediction capability of SVD models, item-item and user-user
correlations can be calculated efficiently with a normalized euclidean distance measure between
user or item feature vectors.

• AFM (asymmetric factor model)
In the plain SVD model, a user is represented by the feature qu. The AFM model represents a
user by the items he has rated, this means that no explicit user feature is stored as parameter. In
other words, the AFM model parameterizes only item features. A so called “virtual user feature”
yu is given by yu = |N(u)|−1/2 ∑

i∈N(u) pi. The set of items, which was rated by the user u is
N(u). pi are item-dependent features. One can show that the special normalization of the item
feature sum is necessary when assuming normal-distributed feature values. This representation
offers several benefits, for example integration of new data and new users without retraining the
whole model. The prediction time is constant (like SVD), because we can store the precalculated
virtual user features after training, r̂ui = yTuqi. Training time is similar to SVD, because the AFM
is trained with stochastic gradient descent and a batch update on the virtual features pi. Further
explanation can be found in [42].

• SVD extended
The Netflix Prize dataset comes with rating date information, this enables us to add additional user
and item features, based on the time and rating frequency. We define as frequency the number
of votes a user gives on a particular day t. Integration of this information is not straight forward,
because for each additional feature the learn rate and regularization parameters has to be set cor-
rectly by optimizing them on a validation set. Training time rises by a constant, therefore the same
asymptotic complexity as plain SVD: O(L). The same applies for prediction time and memory
consumption. Large extended SVD models, (called SBRAMF and extensions in [42]), have shown
outstanding accuracy over the rest of collaborative filtering algorithms. They are specialized SVD
models and need a lot of effort in training and tuning various meta-parameters.
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• RBM (Restricted Boltzmann Machine)
In general, a Boltzmann machine is a stochastic generative model. The restricted Boltzmann ma-
chine [32] is a neural network with one input layer and one hidden layer. Neither the visible nor
the hidden units have connections to itself, which means that the net has no recurrences. For col-
laborative filtering, the number of visible units are the number of items in the system. The number
of hidden units represents the number of features, each user is mapped to a low-dimensional rep-
resentation in the hidden layer. Learning works well with contrastive divergence learning [32].
Prediction complexity is constant, because the probabilities of the hidden layer can be precalcu-
lated user-wise. This leads to a simple dot product enclosed by a sigmoid function for generating
recommendations (same complexity as SVD). The accuracy of RBMs applied on collaborative
filtering problems are superior compared to AFMs because of the non-linearity. Training is per-
formed user-wise and converges after a few ten epochs.

• GE (global effects)
Global effects [42] are based on user and item features, such as support (number of votes), mean
rating, mean standard deviation, mean rating date, etc. The idea of global effects is to calculate
“hand-designed” dependent features, which is equivalent to a SVD with either fixed item or fixed
user features. The RMSE of 16 global effects applied to the Netflix Data is about 0.95. Global
effects can be effective when applied to residuals of other algorithms. A detailed explanation can
be found in the Netflix Prize Winner Report [42].

• Combinations
A popular way of combining algorithms is residual training. We found that item-item KNNs are
most effective, when they are applied on residuals on RBMs. This means the KNN and its corre-
lations are calculated not on raw ratings, but on ratings from which the predictions of the RBM
are subtracted (similar to the ensemble learning technique “training on residuals” from Section
4.6). When constructing such a residual chain, the ensemble of collaborative filtering (CF) results
becomes more diverse, which is good for the final blend. The final blender has access to all the
predictors generated by various CF models on various residuals of other models. Another way of
combination is to insert predictions from another model into the training list of the current, but this
approach was not very successful, in our experiments.

Combining different kinds of CF algorithms is the motivation of the next chapters. We use predictors
(Table 6.2) from the Netflix Prize dataset as input. Many machine learning models are not directly ap-
plicable because of the huge number of samples. Blending is done on the probe dataset (1.4M samples),
which is a hold-out set of the 100M training set. The probe set is not a random subset of the training
data, it reflects the optimization goal by taking per user the latest 3 ratings. Furthermore every user
was sampled with equal probability. We begin with simple methods like linear blending, then we move
to binned blending, which is the application of learners on structured subsets. Furthermore, we find
the most successful blending schema is a blend with a neural network. Additionally, the computational
costly k-nearest neighbors and the kernel ridge regression algorithm are applied to blend predictions by
averaging multiple models trained on small random subsets. Finally we compare the results.

6.1 Notation

Prediction blending is a supervised machine learning problem, therefore we adopt the notation defined
in Section 2.2. Data matrix X : NxF matrix of predictions, where N is the number of samples and F
the number of predictors. To this matrix, we always assume to add a constant column. This is needed
for linear regression to work correctly on uncentered targets. Target value Y : Nx1 vector, in our case:
Integer ratings from 1 to 5. The blending algorithm is formally a function Ω : RF 7→ R, the input is a
vector of individual predictions, the output is a scalar.
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cnt name probe RMSE description
- - 0.9520 Netflix’s “Cinematch” [4] algorithm is the baseline
1 SVD-1 0.9074 A rating matrix factorization with 300 features, trained with stochastic

gradient descent, 158 epochs, learn rate η = 8e − 4, regularization
λ = 0.01, based on item-mean centered data.

2 SVD-2 0.9172 A rating matrix factorization with 20 features, trained with stochastic
gradient descent, 158 epochs, learn rate η = 0.002, regularization λ =
0.02, based on item-mean centered data.

3 SVD-3 0.9033 A rating matrix factorization with 1000 features and adaptive user fea-
tures (item-item similarity correction). 158 epochs, learn rate η =
0.001, regularization λ = 0.015.

4 SVD-4 0.8871 An extended rating matrix factorization with 150 features. Learnrates
and regularizations are automatically tuned in order to minimize the
RMSE on the probe set, thus they have individual values per trained
parameters, details can be found in [42].

5 AFM-1 0.9362 An asymmetric factor model, where the user is expressed via the rated
movies. 200 features were used, learn rate η = 1e − 3, regularization
λ = 1e − 3, we multiply all η with 0.95 from epoch 30, 120 epochs
were trained in total.

6 AFM-2 0.9231 An asymmetric factor model, where the user is expressed via the rated
movies. 2000 features were used, learn rate η = 1e − 3, regularization
λ = 2e − 3, 23 epochs were trained in total. Based on residuals from
KNN-5.

7 AFM-3 0.9340 An asymmetric factor model, where the user is expressed via the rated
movies. 40 features were used, learn rate η = 1e − 4, regularization
λ = 1e− 3, 96 epochs were trained in total.

8 AFM-4 0.9391 An asymmetric factor model, where the user is expressed via the rated
movies. 900 features were used, learn rate η = 1e − 3, regularization
λ = 1e− 2, 43 epochs were trained in total.

9 RBM-1 0.9493 Restricted Boltzmann Machine with discrete input units. The number of
hidden units is 10. Learnrate η = 0.002 and regularization λ = 0.0002.

10 RBM-2 0.9123 Restricted Boltzmann Machine with discrete input units. The number
of hidden units is 250. Learnrate η = 0.002 and regularization λ =
0.0004.

11 KNN-1 0.9110 A item-item k-nearest neighbors model, similarity measure is the Pear-
son correlations. We use k = 24 neighbors, this model is based on
residuals from AFM-1.

12 KNN-2 0.8904 A item-item k-nearest neighbors model, similarity measure is the set
correlation, explained in [42]. We use k = 122 neighbors, this model
is based on residuals from a chain of algorithms: RBM-KNN-GE(with
time).

13 KNN-3 0.8970 A item-item k-nearest neighbors model, similarity measure is the Pear-
son correlation. We use k = 55 neighbors, this model is based on
residuals of a RBM with 150 hidden units.

14 KNN-4 0.9463 A item-item k-nearest neighbors model, similarity measure is the Pear-
son correlation. We use k = 21 neighbors, this model is based on
residuals from GE-2.

15 GE-1 0.9079 Global Effects model. Based on residuals from KNN-1, hence this re-
sult is the third algorithm in a chain of training on residuals.

16 GE-2 0.9710 Global Effects model, trained on raw ratings.
17 GE-3 0.9443 Global Effects model, trained on residuals from KNN-5.
18 GE-4 0.9209 Global Effects model with time integration, trained on residuals from

AFM-2.

Table 6.2: This results are the input to various blenders. The table summarizes major results from
the Netflix Prize competition. Please note that the RMSE on the probe set is 0.0030
to 0.0090 worse than the quiz RMSE. For example a 0.9100 probe score, would result
0.9030 quiz score, because the probe set is hold back when we predict the probe set
itself. Probe set and quiz set have equal statistic properties.
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6.2 Linear Combination

Assuming a quadratic error function, optimal linear combination weights w (vector of length N ) can be
obtained by solving the least squares problem.

X ·w = Y (6.2)

This is exactly the linear model from section 3.3. For any input vector x, the blending model is given
by Ω(x) = xTw = x1w1 + x2w2 + ... + xNwN . We extend this model with L2 regularization (see
equation 3.8), also called ridge regression. This has two reasons. L2 is the preferred regularization when
the error function is quadratic. And second, when we blend many predictions, the effect of overfitting
occurs, which means that the test error increases while the train error goes down. Cross-validation can
be used in order to get a good estimate of the proper ridge regression constant λ.

6.3 Histogram based Linear Combination
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Figure 6.3: Statistical properties in the Netflix Prize data set. The first diagram shows the distri-
bution of support. We understand under the support the number of votes, given from a
user u. The support histogram has the mode on 20 votes/user, where the average num-
ber is 200. The second diagram shows the distribution of ratings over the time, most
ratings were collected at the end of the time period. The aforementioned frequency
histogram is shown at the bottom, most users gave one or two ratings per day.

Every CF algorithm is trained on the data set with the hold-out set removed. This hold-out set is
used to determine the stopping time in gradient descent based algorithms (such as SVD). Blending is
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performed by training a supervised regression model on the hold-out set. In the Netflix data set, this set
is called “probe set” and consists of 1.4M ratings. Due to the huge size of the probe set, one can divide
the set into disjoint B bins and calculate separate blending weights per bin. Starting from pure linear
regression, the blending weights w become wb, where b is the corresponding bin to the predicted rating
r̂ui. Each bin should approximately have the same number of ratings.

Figure 6.3 summarizes the main effects in the Netflix data set. This insight in the data motivates the
following three criteria for binned linear regression, i.e. the training set can be split by using a histogram
on one of the following criteria.

• Support : the number of votes from a user. The blender can now overweight particular predictions
dependent on how many rating the user gave. RBMs are prone to receive high weight when the
user has only a few votes in the data. SVDs are overweighted when many information from a user
is available.

• Time : when the rating rui was performed. Predictions are mixed together with time dependency.
When using this binning criteria, the blender can easily model time-dependent blending.

• Frequency : the number of ratings from a user at time t. The time t is measured in days from 1998.
This criteria enables the blender to be selective, based on the user’s rating day. The blender has
the ability to give predictions other weights when a user votes many times on a particular day. The
explanation in different number of votes on one day can be that all people in a household using the
same account (see Figure 6.3).

A prediction is given by

r̂ui = xTwb (6.3)

This means we calculate B separate blending weights wb. For example, when we divide the Netflix
probe-set into 5 support-bins (approximately equal sized bins) following formula gives the bin b. |N(u)|
denotes the number of rating of a user u.

b =



1, |N(u)| < 34
2, 35 ≤ |N(u)| < 70
3, 71 ≤ |N(u)| < 146
4, 147 ≤ |N(u)| < 321
5, else

(6.4)

6.4 Neural Network

A neural network is a function approximator. Small nets can be trained efficiently on huge data sets,
therefore it is very suitable for a nonlinear blending algorithm. We use a network with one hidden layer.
The training of neural nets is sketched in Section 3.5. The output neuron has again a sigmoid activation
function with an output swing of [−1...+1], to generate rating predictions in the range of [1...5] we use a
simple output transformation, the output gets multiplied by 3.6 and the constant 3.0 is added (works well
on our experiments). The learning rate η is initialized with 0.0005 and every epoch the constant 10−6

is subtracted. No weight decay is used. Pure stochastic gradient descent is applied to train the weights,
no batch training or momentum term is used. In the result section, the number of neurons in the hidden
layer is reported.
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6.5 Tree Blending - BGBDT

Decision trees are known as a good supervised learning tool. Our idea is to use them in order to mix
predictions. The main drawback of a single decision tree is the moderate accuracy. Breiman [6] shows
how bagging can be extended to improve the accuracy of decision trees. The discretized output function
of a tree limits the ability of modelling a smooth function. The number of possible output values of a
tree corresponds to the number of leafs. For regression problems, such as blending predictions, this is a
big disadvantage. Blending predictions should result in a smooth function. In 1999, Jerome Friedman
introduced an interesting idea to improve the accuracy of a learning machine. He called his technique
“Stochastic Gradient Boosting” [15], [16]. The core idea is to train the learner on residuals from itself,
like the ensemble learning technique “Training on residuals” described in Section 4.6. The main differ-
ence is that not the full residual is taken, but only a fraction from it (controlled by the learn rate η). We
described this approach in the previous Section 3.8 (GBDT).

N
boost

N
bag

Gradient Boostingparallel
(independent)

serial (chain)

Figure 6.4: Bagged Gradient Boosted Decision Tree. A prediction from the BGBDT consists of
results fromNbag ·Nboost single decision trees. The Bagging and Boosting idea greatly
improves the accuracy of the blended predictions.

Additionally we found it useful to add the random subspace idea in the determination of the optimal
split on each node (as described in Section 3.8). Finally, we end up with a tree blending technique that
combines the benefits from Bagging, Gradient Boosting and Random Subspace selection. The algorithm
is called now BGBDT - Bagged Gradient Boosted Decision Tree (see Figure 6.4). The prediction of
a BGBDT is much smoother than from a single tree. We use the bagging size Nbag and the number
Nboost of boosting steps in the chain. One prediction of test feature is done internally with evaluation
of Nbag · Nboost single trees. Good parameters are Nbag = 128, Nboost = 1000, Nsubspace = 2 and
η = 0.01 when blending about 20 predictions. For the analysis on the Netflix Prize dataset we use the
user support, movie support and the raw time as additional input features. Further information of the
BGBDT approach can be found in [42].

6.6 Kernel Ridge Regression Blending

The Section 3.7 describes the KRR algorithm in detail. We use it for blending CF predictions. KRR has
a training time complexity of O(N3) and space requirements of O(N2), hence it is impossible to train
on 1.4M data points. To make it work, we use a small subset of the data to train the KRR model. Doing
this multiple times and average all outcomes, we obtain an accurate blending model. We evaluate the
impact of the subset size with respect to the accuracy measured in RMSE. The Gauss kernel was applied
successfully. We tune the kernel width σ and the regularization constant λ with cross validation.
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6.7 K-Nearest Neighbors Blending

The template-based KNN algorithm from Section 3.6 is applied to blending predictions. KNN is very
slow when the training set is large, because all distances are calculated on the fly (training and prediction
time rise withO(N2)). Therefore we use again a small subset of the train set to build the model. Averag-
ing over many random subsets delivers our final prediction. Again, we investigate the impact of the size
of the subset. We found out that KNN has very bad accuracy compared to all other blending techniques.
One possible explanation is that predictions on new test samples are based on a weighted average of the
features from the training set, which are themselves predictions. KNN is not able to deliver a successful
blending model.

6.8 Results

Submissions on the Netflix Prize homepage (www.netflixprize.com) are not longer available, the
constest has finished on July, 26th 2009. The winning team with the name “BellKor’s Pragmatic Chaos”
won with a leaderboard score of 10.09%. Since the submission system and the qualifying set is not
available at this time point our experimental analysis relies only on probe set predictions. The process of
training a CF algorithm on the Netflix Prize dataset is shows in Algorithm 10. In the first step of training,
we remove the probe set from the dataset. This probe set acts as a hold out set and is a very reliable
performance measure during training, because of its huge size of 1408395 ratings.

Input: A CF algorithm, the data in L, a probe set p (the hold-out set)
Output: The prediction for the probe and the qualifying set
Remove the probe set p from L1

Train the CF algorithm, by optimizing the RMSE on p. For gradient based algorithms it means2

that the stopping point (the #epoch) is optimized, for metaparater optimization we search a few
ten epochs with a coordinate based optimizer.
Predict the probe set p3

Add the probe set p into L4

Re-train the CF algorithm, with found metaparameters from line 2.5

Predict the qualifying set6

Algorithm 10: Overview of the training process, used within the Netflix Prize competition

We decide to evaluate blending methods based on a 50% random subset of the 1.4M probe set. The
probe set is splited into two halves, one half for training and the other half for testing (Figure 6.5). All
reported RMSE values in the next Figures and Tables are evaluated on this test set. It is never touched
during training the blending models.

Train
size=704197

Test
size=704198

random split

Netflix Prize
probe set

Figure 6.5: Split the Netflix probe set randomly into two sets, one for training one for test.

www.netflixprize.com
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The described techniques are now trained on the 700k training set and evaluated on the test set, the
relative difference in RMSE values seems to be marginal. Keep in mind that the Netflix Prize contest
awards the winner 1M $ for an 10% improvement in RMSE. The baseline was set by Netflix’s internal
collaborative filtering system “Cinematch” with a RMSE of 0.9525 on the Netflix quiz set (see Figure
6.2). The 10% improvement is equivalent to an RMSE of 0.8563. The leaderboard shows the submission
feedback with an accuracy of 4 digits after the comma. Which means that a RMSE of 0.8600 or 0.8599
makes a difference. At the end of the Netflix Prize contest, the winning team has the better score on a
hidden test set. The second placed team “The Ensemble” shows in his blog 3 that the rounded RMSE
score of both teams were the same, the first-submitter rule determines the winner (both teams had a test
set RMSE of 0.8567, which corresponds to 10.06% improvement).

Our reported RMSE values have at least 4 digit accuracy, a significance improved blending technique
lowers the RMSE score compared to linear regression (RMSE = 0.8752 used as baseline) at 0.001. A
marginal improvement results in a 0.0001...0.0002 lower RMSE. For example the KNN algorithm has
significantly inferior performance (RMSE 0.884), this shows that KNN is the wrong supervised learning
technique for blending CF predictions.

Linear Blending

The linear blending technique is used to have a baseline estimate of the RMSE on the test set. This is
done with regularized linear regression, the ridge regression constant λ is set to minimize the RMSE on
a cross validation set. The constant λ will have very small values, because the Linear Regression weights
are estimated using a training set of 700k samples. The Table 6.3 shows the weights, from each of the
input predictors (from Table 6.2) including the constant input. The largest weight has the constant 1
input because of the uncentered target values, the weight of 3.673 corresponds to the mean value of the
targets. The second largest weight has the strongest model (with the lowest RMSE), SVD-4 has a weight
of 0.237. Due to the nature of linear regression, the weights are not restricted to be positive. Some of
the predictors receive negative weights, this can be interpreted as negative-compensation of a particular
effect in the data.
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−0.009 0.093 0.077 0.237−0.082 −0.083 −0.077 0.088 0.026 0.063 0.028 0.276 −0.102 0.004 0.099 −0.003 −0.074 0.173 3.673

Table 6.3: Blending weights of an optimal linear combination. This leads to 0.875277 RMSE on
the test set. The RMSE on the 4-fold cross validation set is 0.8755. The number in the
brackets is the RMSE per model.

Dataset Binning based on Support, Date and Frequency

This is linear blending on predefined subsets of training data, as described above. For each of the training
and test samples we have the support (number of ratings), the date (day of the rating) and the frequency
(number of ratings per day). Based on this information we split the data into 2, 5, 10 or 20 nearly equal
sized bins. We compare these three blending methods: linear regression (LR), polynomial regression
with and without cross terms (PR) and neural networks (NN). We tune the meta-parameters like regu-
larization or number of epochs in neural network training on a 4-fold cross validation set separately per

3http://www.the-ensemble.com/

http://www.the-ensemble.com/
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bin. The reported RMSE values are those on the test set (see Table 6.4 for all results), the RMSE on the
internal cross validation set is the small numbers in brackets below.

The column “no bins” from Table 6.4 shows results of the investigated models without binning the
dataset. This means that all 700k samples are used for training. The neural network with 30 neurons in
the hidden layer performs best on all data (RMSE = 0.873934) second best is polynomial regression with
2nd order and all cross terms (RMSE = 0.874488), linear regression as baseline has RMSE = 0.875277.
Based on the outcomes from Table 6.4 we see that the support binning criteria delivers best results. All
investigated models have lowest RMSEs on the support bins. Most of the models perform best when
dividing the data to 2 bins. The winner is the neural net on 2 support bins with RMSE = 0.87365.
The best result with date-based binning is achieved by the neural net on 2 bins with RMSE = 0.87415.
The best result with frequency-based binning is again the neural net on 2 bins with RMSE = 0.87408.
Additionally we tried kernel ridge regression with a Gauss kernel on 20 support bins, because of the
computational complexity the KRR can not applied to fewer bins. The KRR results in a RMSE of
0.87432, which is better than all other models on 20 bins.

Too many bins increase the RMSE. The best result are obtained by 2 bins. Neural networks are the
best learners in our experimental analysis on binned based. The KRR model has very promising result
on 20 bins, unfortunately it can not directly applied on larger training data.

Neural Network Blending

The binned data analysis in the previous section shows that neural networks are the best performing
blending models. Here we investigate various number of neurons in the hidden layer and two hidden
layers. Table 6.5 shows the outcome. We tried one and two hidden layer, the RMSEs with one hidden
layer are slightly better. For one hidden layer we get the best results with 500 neurons (RMSE =
0.873848). The performance can be enhanced by adding the log(#userV otes) as additional input,
this lowers the RMSE to 0.873334 (generated by a 1-layer net with 100 neurons). Too many neurons
in the hidden layer perform bad, for example with 500 neurons the net has the minimum 4-fold cross
validation error on training epoch 69, maybe there is a need for a small weight decay, we have not tried
this. The training time for the best individual net is 496 · 16[s] = 7936[s], but the time for retraining is
not included. Neural networks with the support as additional input achieve the lowest RMSE values in
our experimental evaluation of blending techniques applied to collaborative filtering algorithms (single
models).

Tree Blending

The analysis of the Bagged Gradient Boosted Decision Tree (BGBDT) model from Section 6.5 is done
by varying the bagging size, the subspace size and the learning rate in the gradient boosting approach.
We try to find the dependence of these parameters to the RMSE value of the blend. Figure 6.6 shows
some learning curves of the BGBDT. The plot on the left shows the variation of the learning rate λ.
Larger learning rate leads to longer training, which is obvious. The full line is the RMSE on the out-of-
bag estimate (“oob” in the legend of Figure 6.6), the dotted line corresponds to the RMSE on the training
set. Early overfitting occurs with large learning rates. Minimum out-of-bag RMSE with λ = 0.02 is
on epoch=1126, with λ = 0.01 on epoch 1998 and with λ = 0.005 on epoch 4209. In the Figures
in the middle and on the right we clamp λ = 0.02 and vary the subspace size (denoted with “size” in
the legend). Subspace size is the number of features considered in each node to find the optimal split.
The learning curves are nearly equal in the middle Figure, the right one shows the magnified region of
interest. Subspace size of 4 works best on our experiments. This is close to the recommended subspace
size of

√
#features from Breiman [8]. In Table 6.6 we list the detailed outcomes, when we either fix

the subspace size or the learning rate. The influence of the bagging size Nbag is considered in Table 6.7,
larger bagging size improves the prediction RMSE on the test set.
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type of binning model no bins 2 bins 5 bins 10 bins 20 bins
support linear 0.875277

(T:0.875516)

0.874877
(T:0.87517)

0.874741
(T:0.8750)

0.874744
(T:0.87499)

0.87485
(T:0.87513)

support poly2 0.874911
(T:0.875167)

0.87444
(T:0.87475)

0.874309
(T:0.87459)

0.87434
(T:0.87463)

0.874567
(T:0.87495)

support poly3 0.874754
(T:0.875002)

0.874299
(T:0.8746)

0.874188
(T:0.87448)

0.87426
(T:0.87454)

0.874562
(T:0.87498)

support poly5 0.874812
(T:0.874991)

0.874306
(T:0.87459)

0.874227
(T:0.87452)

0.874322
(T:0.87467)

0.874713
(T:0.87519)

support poly2-cross 0.874488
(T:0.874791)

0.87401
(T:0.87442)

0.873989
(T:0.87436)

0.87413
(T:0.87461)

0.87452
(T:0.87523)

support NN-1HL:30 0.873934
(T:0.874244)

0.87365
(T:0.87399)

0.873828
(T:0.87424)

0.874199
(T:0.87458)

0.87462
(T:0.87524)

support KRR gauss 0.87432
(T:0.87465)

date linear 0.875212
(T:0.87545)

0.875195
(T:0.87541)

0.87527
(T:0.87544)

0.87537
(T:0.87558)

date poly2 0.87482
(T:0.8751)

0.874816
(T:0.8751)

0.874924
(T:0.87514)

0.87512
(T:0.87546)

date poly3 0.874685
(T:0.87492)

0.87471
(T:0.87489)

0.87488
(T:0.87509)

0.87521
(T:0.8755)

date poly5 0.874713
(T:0.87492)

0.874771
(T:0.87496)

0.87499
(T:0.87522)

0.87544
(T:0.8758)

date poly2-cross 0.87444
(T:0.87478)

0.874608
(T:0.87488)

0.87478
(T:0.87514)

0.87517
(T:0.87567)

date NN-1HL:30 0.87415
(T:0.87446)

0.874325
(T:0.87481)

0.874736
(T:0.87507)

0.87533
(T:0.87572)

frequency linear 0.87518
(T:0.87537)

0.87510
(T:0.87521)

0.87512
(T:0.8752)

0.87517
(T:0.87531)

frequency poly2 0.874817
(T:0.87498)

0.874747
(T:0.87492)

0.874812
(T:0.87496)

0.874947
(T:0.87514)

frequency poly3 0.874659
(T:0.87482)

0.874615
(T:0.87472)

0.87473
(T:0.87486)

0.874918
(T:0.87501)

frequency poly5 0.874650
(T:0.8748)

0.87466
(T:0.87478)

0.87483
(T:0.875)

0.87512
(T:0.87525)

frequency poly2-cross 0.874415
(T:0.87456)

0.874509
(T:0.87467)

0.874586
(T:0.87482)

0.874985
(T:0.87524)

frequency NN-1HL:30 0.87408
(T:0.87427)

0.87425
(T:0.87448)

0.874488
(T:0.87475)

0.87476
(T:0.87501)

Table 6.4: RMSE on the test set from support/date/frequency binned blending. Models are trained
on a 50% random half of the probe set, the other half is used as a test set. The reported
values are RMSEs on the test set. Each particular model on each of the bins was opti-
mized on 4-fold cross validation set. The small numbers in the brackets are the RMSEs
on the cross validation set.

Our results suggest that smaller learning rates and larger bagging sizes improve the RMSE. The
optimal subspace size dependens on the data, a good value to start with is the square root of the number
of features.
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neurons per layer RMSE train (4-CV) RMSE test #epochs #weights time/epoch
1HL:20 0.874329 0.874019 497 421 4[s]
1HL:30 0.874285 0.873955 496 631 5[s]
1HL:100 0.874196 0.873916 498 2101 15[s]
1HL:200 0.874128 0.873931 498 4201 27[s]
1HL:500 0.874122 0.873848 498 10501 59[s]
2HL:20-20 0.874343 0.874056 490 841 6[s]
2HL:50-50 0.874335 0.874053 486 3601 22[s]
1HL:30 +support input 0.873737 0.873417 498 661 5[s]
1HL:50 +support input 0.873707 0.873385 496 1101 10[s]
1HL:100 +support input 0.873728 0.873334 496 2201 16[s]
1HL:500 +support input 0.874699 0.874731 69 11001 61[s]

Table 6.5: Results from different neural network blends. Training parameters: ηinit = 0.0005,
η(−) = 1e − 6, the tanh unit in the output layer is translated by: out · 3.6 + 3.0.
This output transformation is necessary, because target ratings have values from 1 to 5.
Training was stopped when the RMSE on a 4-fold cross validation set begin to rise. The
time/epoch denoted the time, which is needed to train one epoch in a 4-fold CV setup.
The total number of weights in the net is #weights. Prediction on the test set are done
with the retrained net. We used a Intel Core2 Duo machine with 2.53GHz in generating
these results.
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Figure 6.6: BGBDT - Bagged Gradient Boosted Decision Trees applied to blend CF predictions.
“oob” means out-of-bag estimate. Bagging size is fixed to Nbag = 32. The left Figure
shows the influence of the learning rate on the RMSE, feature subspace size is fixed to
2. In the Figure in the middle and right we fix the learning rate to λ = 0.02.

Kernel Ridge Regression Blending

Kernel ridge regression is not directly applicable to the training set of 700k samples. Based on the
algorithm from Section 3.7, the gram matrix with size of NxN , where N is the sample size, must be
inverted. A state of the art PC with 16GB of main memory can store and invert matrices up toN = 60000
(assume single precision floating point). We therefore use the following method: Training many KRR
models on random subsets and average their predictions, the Figure 6.7 shows curves where subsets with
1% to 6% of the training set were used. The regularization constant and the width of the Gaussian kernel
are optimized on a 4-fold cross validation set for every single model. Not very surprisingly, the outcome
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size=2
λ =
0.02

size=2
λ =
0.01

size=2
λ =
0.005

λ =
0.02
size=3

λ =
0.02
size=4

λ =
0.02
size=5

λ =
0.02
size=6

λ =
0.02
size=7

min. out-of
bag RMSE

0.874338 0.874306 0.874258 0.874319 0.874309 0.874348 0.874337 0.874373

test RMSE 0.874036 0.874009 0.873992 0.874006 0.874020 0.874049 0.874073 0.874107

Table 6.6: BGBDT blending results on the test set. Here the learn rate (Table on the left, fix sub-
space size=2) and the random subspace size (Table on the right, fix learnrate 0.02) are
varied. Bagging size is 32.

bag=4 bag=32 bag=64 bag=128
min. out-of
bag RMSE

0.874616 0.874273 0.874085 0.874063

test RMSE 0.874227 0.874009 0.873948 0.873945

Table 6.7: BGBDT blending results on the test set. Here, we vary the bag size. Feature subset size
is 3. Learnrate is 0.02.

shows that more data is better. All models benefit from averaging over multiple runs with different data.
This approach can be seen as a form of Bagging. An average of nine KRR models on 6% data achieves
an RMSE of 0.8740 on the test set, which is significantly better than the linear regression baseline
RMSE = 0.8752. The curves with 1% and 2% data show a saturation effect at about 100 averaged
models, i.e. no improvement can be expected with an increase of the number of averaged models above
100.
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Figure 6.7: Kernel ridge regression applied to the blending of CF predictions. The KRR is trained
on a random subset of the data (1%...6%). More data and more averaged models result
in a lower RMSE.

K-Nearest Neighbors Blending

The runtime of the k-nearest neighbors algorithm is quadratic in N (the number of training samples).
Training and metaparameters-tuning on all 700k data is too time consuming. We therefore try the same
approach as in the KRR blending model. We investigate the effect of averaging many models, where
each of them is trained on a random subset from of data. The results are shown in Figure 6.8. Again,
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more data and more averaged models are better. But the KNN shows very bad performance in terms of
RMSE. The reported RMSEs are in the region of 0.885...0.884. Recall that the linear regression baseline
achieves RMSE = 0.8752 on the test set.
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Figure 6.8: K-nearest neighbors applied to the blending of CF predictions. The KNN is trained
on a random subset, we averaged the predictions from many random subsets. In each
model, the neighborhood size k is optimized, typical values are k = 200.

Bagging with Neural Networks, Polynomial Regression and GBDT

We investigate the ability of bagging and blend stopping applied to many different models in order to
blend the 18 predictions from Table 6.2. It results in a very accurate prediction in terms of RMSE.
This was the motivation of this experiment. Blend stopping (from Section 4.7) was used to search for
proper meta parameters or stop the training in gradient-descent based models. We use bagging [6] and
the out-of-bag estimate (see Section 4.2) for the prediction of the training set. Blend stopping uses a
simple linear regression of the predictors as combination strategy. The order of model training is the
same as listed in Table 6.8. The models in the ensemble are neural networks, gradient boosted decision
trees and polynomial regression. We use a bagging size Nbag of 128 (this can be run in parallel). Each
individual model in listed in Table 6.8. The ensemble achieves an RMSE of 0.873093 on the test set, the
prediction time was about 45 minutues for the size of the test set. The training time was about 3 days
on a quad-core PC (Intel i7). This is an notable improvement compared to the best RMSE achieved by
a single neural network (RMSE:0.873334, Table 6.5). The second-placed team from the Netflix Prize
competions published a paper of their best blending technique [37]. They get an improvement to linear
regression of about 0.0020 RMSE on the Netflix test set. We get about 0.0021 RMSE improvement
compared to linear regression.
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Model oob RMSE weight parameters
const. 1 - -0.016 -
NN 0.873535 0.191 1HL:100, of = 3.0, sc = 3.6, η = 0.0005, η(−) = 10−6, 500 epochs
GBDT 0.874835 0.089 subspace = 3, maxLeafs = 100, η = 0.2, 100 epochs, optSplitPoint
PR 0.874344 0.122 order=1, λ = 0.001, with cross interactions
PR 0.893329 -0.061 order=3, λ = 0.05, no cross interactions
NN 0.873513 0.278 1HL:100, of = 3.0, sc = 2, η = 0.0005, η(−) = 10−6, 500 epochs
NN 0.873463 0.332 2HL:30-50, of = 3.0, sc = 2, η = 0.0005, η(−) = 10−6, 500 epochs
GBDT 0.878749 0.049 subspace = 3, maxLeafs = 10000, η = 1.0, 10 epochs, noOptSplitPoint
lin. blend 0.873349

test:0.873093

Table 6.8: Blend stopping applied to blend CF predictions from the Netflix Prize dataset. The
second column reports the out-of-bag (oob) estimate during bagging. The third column
shows the values of the linear blending weights. Accurate blending methods receive
high weights.



Chapter 7

Ensemble Learning Framework Software
- ELF

We use our own ensemble learning software for all experiments and reported error values, except for the
BGBDT - bagged gradient boosted decision trees results in Table 6.6, Table 6.7 and Figure 6.6.

The “ELF” is written in C++ and is a supervised learning framework. The class inheritance diagram
is shows in Figure 7.1. The Scheduler-class is responsible for the coordination of the training and
prediction process. The StandardAlgorithm-class implements the basic class of all supervised
learners. The Data class hold the data set with train and test set and the cross validation data. The
AutomaticParameterTuner implements the structured coordinate search. Linear combination of
models is done with the BlendStopping class. In the DatasetReader there are the methods for
reading a particular data set. NumericalTools hold diverse equation solvers which are used in the
framework.

Design Goals

The ELF can handle regression as well as classification problems. For classification problems the ELF
has build in support for multiple domains, for example the KDDCup2009 data set has 3 binary targets
on the same features. The framework was designed for efficient learning with the help of numerical
optimized libraries from Intel’s MKL and IPP. Many base models get a sustainable speedup via these
libraries. The internal data representation is based on the REAL*-datatype (float pointers). Even matri-
ces or multidimensional arrays are stored as a large array, where accession is implemented by pointer
arithmetics. The REAL data type is a typedef and stands for single or double precision floating point
accuracy. The whole framework can easily change its internal floating point accuracy, which enables a
speedup of about 2x and a reduction of memory consumption (when switching from double to float).
All implemented models are able to save the model’s internal parameters. This property enables us to
set an ensemble in a ready-to-predict mode in order to predict the targets of any feature vector. We use
the class StreamOutput to replace the STL cout object. This has the advantage that we can grab the
console output to a dsc file, which can be used to automatically record each model’s output. The class
Framework holds some global properties like mode, randomSeed, maxThreads or startupParameters in
static members.

Usage

The training setup of the ensemble are specified in the Master.dsc file under the specific data set
directory. The following structure is the minimum requirement for start the training process on a specific
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Figure 7.1: Class inheritance diagram of the ensemble learning framework (ELF).

data set. The file ending .dsc stands for description file, the format is plain text.
DATASET/Master.dsc : Master description file, global training options and a list of model dsc files
DATASET/model-name0.dsc : A model in the ensemble, e.g. LinearModel-1.dsc
DATASET/model-name1.dsc : A model in the ensemble, e.g. NeuralNetwork-1.dsc
DATASET/DataFiles : This directory contains the data set.
DATASET/DscFiles : The directory where the console output of the models are captured.
DATASET/FullPredictorFiles : The directory of the prediction of the train set.
DATASET/TempFiles : The directory, where combination weights and model weights are stored.

The data set name and [t,b,p] must be specified in the console in order to start the training or predic-
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tion.
$ ./ELF LETTER t : start training
$ ./ELF LETTER b : start blending existing algorithms
$ ./ELF LETTER p : start prediction

The Master.dsc file

All global options and the order of the single models can be defined in the file. The first line must contain
e.g. dataset=LETTER. The second line must contain isClassificationDataset=[0,1] to
specify the type of training, 0 for regression, 1 for classification. The settings in Table 7.1 are optional.
After that the section of model dsc files begin, the line with [ALGORITHMS] start this section. From
now, each line contains the name of the specific dsc file of the single model description.

Implementation of the Proposed Ensemble Learning Techniques

Here we give a sketch of how we implement the ensemble learning techniques in the framework.

Linear combiner. This is a simple linear regression of all models in the ensemble, the set of models are
defined in the ALGORITHMS section in the Master.dsc file in the data set folder. Each model mini-
mized the linear combination by stop training or search for proper metaparameters. blendingAlgorithm
must be set to LinearRegression. In each algorithm dsc file, the option minimzeBlend=1 must be set.

Stacking. A linear regression with non-negative weights combines the algorithms without any inter-
actions in the training. blendingAlgorithm must be set to LinearRegressionNonNeg. In each
algorithm dsc file, the option minimzeProbe=1 must be set.

Cascade Learning. The first model in the chain is trained in the standard way. The second one
has an enlarged feature set by the cross-fold predictions of the train set of the first model and so on.
enableCascadeLearning must be set to 1. blendingAlgorithm must be set to TakeLast in
order to make final predictions only from the last model in the chain. In each algorithm dsc file, the
option minimzeBlend=1 must be set.

Training on Residuals. In each algorithm dsc file, there exist an option called TRAIN ON FULLPREDICTOR.
When the value specifies a valid prediction file, the targets are subtracted by them. For example TRAIN ON
FULLPREDICTOR=NeuralNetwork 1.datwould train on residuals from a neuronal network. blending
Algorithmmust be set to LinearRegression. In each algorithm dsc file, the option minimzeBlend=1
must be set.

Training on Residuals + Cascade Learning. Options enabled by Training on Residuals and enable
CascadeLearning must be set to 1.

Bagging. The experiments with bagging on the LETTER data set (Section 5.3) is done by calling the ELF
with ./ELF LETTER x. The bagging is implemented in the class Scheduler and StandardAlgorithm.
The idea is to draw a bootstrap sample of the data set when the model gets retrained.

Boosting. The experiments with boosting on the LETTER data set (Section 5.3) is done by calling the
ELF with ./ELF LETTER y. The AdaBoost.M2 algorithm is implemented in the class Scheduler.
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name type default value description

maxThreads int 2 Maximum number of threads used in MKL and IPP functions
maxThreadsInCross int 2 Maximum number of parallel threads in the cross validation
nCrossValidation int 6 The value of k in k-fold cross validation
validationType string Retraining The type of validation. Possible values are Retraining, CrossFold-

Mean and Bagging
positiveTarget float 1.0 The value of positive class target
negativeTarget float −1.0 The value of negative class target
randomSeed int 1234 Initial state of the random number generator, the string “time(0)”

specifies a random init value
nMixDataset int 20 Mix the data set by make n times the number of samples swaps
nMixTrainList int 100 Mix the internal training index list by n times the number of sam-

ples swaps
standardDeviationMin float 0.01 The minimum value for normalizing the input features
blendingRegularization float 0.0001 The value of the ridge regression constant in the linear combiner
blendingEnableCrossValidation int 0 This enables of disables the automatic search of the optimal ridge

regression constant in the linear combiner
blendingAlgorithm string LinearRegression The algorithm for the combination of the models. Possible values

are LinearRegression, LinearRegressionNonNeg, TakeLast, Nel-
derMead(for AUC optimization) and Average

enablePostNNBlending int 0 When set to 1, it enables the a neural network (specified in the
NeuralNetwork.dscblend file) to blend the existing predic-
tions

enableCascadeLearning int 0 When set to 1 the cascade learning mode is enabled
enableGlobalMeanStdEstimate int 0 This enables uniform normalization over all input features by aver-

age mean and standard deviations
enableSaveMemory int 1 This should be set to 1 in order to save memory when the size of

nCrossValidation is large
addOutputNoise float 0.0 Add prediction noise, this value specifies the standard deviation of

a normal distributed noise
enablePostBlendClipping int 0 This should be set to 0 when the dataset type is classification, it

clips the predictions
enableFeatureSelection int 0 The setting enables the option of a features selection process with

a regularized linear model on double cross validation
featureSelectionWriteBinaryDataset int 0 This works in combination with enableFeatureSelection,

it makes a binary dataset from the feature selection process
enableGlobalBlendingWeights int 1 Equal weights in the linear combination for all output variables
errorFunction string RMSE Specified error function, possible values are RMSE, MAE or AUC
disableWriteDscFile int 0 When set, no dsc files are written in the DscFiles directory
enableStaticNormalization int 0 When set, the mean and standard deviations are taken from the next

two options
staticMeanNormalization float 0.0 Static mean value for normalizing the input features
staticStdNormalization float 1.0 Static standard deviation value for normalizing the input features
enableProbablisticNormalization int 0 Used in combination with dimensionalityReduction
dimensionalityReduction string no Gives the ability of use an Autoencoder as dimensionality reduc-

tion. When Autoencoder is set, the file Autoencoder.dsc spec-
ify the neuronal net structure

subsampleTrainSet float 1.0 Do a sub-sampling of the samples in the train set, the specified
value corresponds to the percent

subsampleFeatures float 1.0 Do a sub-sampling of the features in the train and test set, the spec-
ified value corresponds to the percent

globalTrainingLoops int 1 Number of loops through the chain of models in order to refine the
metaparameters

Table 7.1: All optional settings in the Master.dsc file.

Basic Regression Models

In this section we list all available regression models and list the implemented details. All learners are
derived from the class StandardAlgorithm.

class LinearModel : This learner is based on linear regression with ridge regression. The linear re-
gression is calculated for each target. No constant feature is added here, the constant must be included
in the data set. Ridge regression constant can be automatically optimized. An example dsc file is shown
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in Table 7.2.

class NeuralNetwork : Multilayer neural network implementation trained with the backprop algorithm.
Table 7.2 shows various options concerning the net structure and learn parameters. The number of train-
ing epochs are optimized with the parameter tuner.

class KNearestNeighbor : Online k-nearest neighbor algorithm. It is online, because for each pre-
diction the set of k-nearest neighbors is calculated again. In other words we do not precalculate all
correlations between all samples. The distance measure can be Pearson correlation or inverse euclidean
distance. Tunable parameters is the neighborhood size k and some distance measure specific constants.
Table 7.2 shows an example dsc file.

class KernelRidgeRegression : Implements the kernel ridge regression learn algorithm. Gauss, polyno-
mial or tanh kernel can be selected. Tunable parameters are the kernel constants and the ridge regression
constant. The computational expensive step is calculating the inverse of the Gram matrix, this is done
with Cholesky factorization. Based our knowledge, this is the fastest way to solve a linear system of
equations. This let us work with data sets up to size of 60k samples.

class PolynomialRegression : This is linear regression with an enlarged feature set, therefore very
similar to the LinearModel.

class GBDT : An implementation of the gradient boosted decision tree algorithm. A single tree is
build in a greedy fashion by split the largest node recursive, the stop criteria is the maximum number of
leafs. The user can specify weather the split should be found optimal or a random split. A subspace size
ca be set. The number of gradient boosting epochs are optimized automatically.

class LinearModelNonNeg : This is an experimental algorithm, the idea is to restrict a linear regression
model with non-negative weights.

class LogisticRegression : This is an experimental implementation of logistic regression.

class NeuralNetworkRBMauto : The idea here is to train an autoencoder network in the first step,
then train the neural network with the trained weights from the autoencoder. It is an experimental imple-
mentation.

Extensions and Ongoing Development

The ELF is a supervised learning tool and is applied to many data sets from the UCI database [3] as
well as in the Netflix Prize competition in order to blend predictions. The framework implements a few
ensemble learning techniques paired with solid base learners. It can be used to train from only a single
model up to a long chain of coupled models. It was also applied by us on three other competitions, the
KDDCup2009 1, the Prudsys Data Mining Cup 2 and on the AusDM2009 Analytic Challenge 3. There
is always room for improvement of the framework’s architecture or clean bugs in the code. We plan to
implement new base learners and integrate bagging as model validation process. The parallelization of
the validation process over a computer cluster is also planned. Furthermore the usability of some classes
and the documentation are currently under work.

1http://www.kddcup-orange.com/
2http://www.data-mining-cup.com/2009/Wettbewerb/
3http://www.tiberius.biz/ausdm09/index.html

http://www.kddcup-orange.com/
http://www.data-mining-cup.com/2009/Wettbewerb/
http://www.tiberius.biz/ausdm09/index.html
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LinearModel 1.dsc NeuralNetwork 1.dsc KNearestNeighbors 1.dsc

ALGORITHM=LinearModel
ID=1
TRAIN_ON_FULLPREDICTOR=NeuralNetwork_1.dat
DISABLE=0

[int]
maxTuninigEpochs=10

[double]
initMaxSwing=0.1
initReg=0.1

[bool]
tuneRigeModifiers=0
enableClipping=0
enableTuneSwing=0

# minimize probe/blend RMSE
minimzeProbe=0
minimzeProbeClassificationError=0
minimzeBlend=1
minimzeBlendClassificationError=0

[string]
weightFile=LinearModel_1_weights.dat
fullPrediction=LinearModel_1.dat

ALGORITHM=NeuralNetwork
ID=1
#TRAIN_ON_FULLPREDICTOR=GBDT_1.dat
DISABLE=0

[int]
nrLayer=2
batchSize=1
minTuninigEpochs=10
maxTuninigEpochs=530

[double]
initMaxSwing=1.0

# output = outputNN * scale + offset
offsetOutputs=3.0
scaleOutputs=3.8

etaPosRPROP=1.05
etaNegRPROP=0.9
minUpdateRPROP=1e-8
maxUpdateRPROP=1e-2

initWeightFactor=1.0
learnrate=1.0e-3
learnrateMinimum=1e-6
learnrateSubtractionValueAfterEverySample=0.0e-12
learnrateSubtractionValueAfterEveryEpoch=2e-6
momentum=0.0
weightDecay=0.0e-2
minUpdateErrorBound=3e-7

[bool]
enableL1Regularization=0
enableClipping=0
enableTuneSwing=0
useBLASforTraining=1
enableRPROP=0

# minimize probe/blend RMSE
minimzeProbe=0
minimzeProbeClassificationError=0
minimzeBlend=1
minimzeBlendClassificationError=0

[string]
neuronsPerLayer=50,50
weightFile=NeuralNetwork_1_weights.dat
fullPrediction=NeuralNetwork_1.dat

ALGORITHM=KNearestNeighbor
ID=1
#TRAIN_ON_FULLPREDICTOR=LinearModel_1.dat
DISABLE=0

[int]
kInit=4
maxTuninigEpochs=1
evaluationBlockSize=2000

[double]
initMaxSwing=1.0
initScale=5.0
initScale2=1.0
initOffset=2.0
initGlobalOffset=-0.05
initPower=1.0
euclideanPower=1.0
euclideanLimit=0.01

[bool]
takeEuclideanDistance=1
#denormalize trainset with mean and std
dataDenormalization=0
optimizeEuclideanPower=1
enableAdvancedKNN=0
enableClipping=0
enableTuneSwing=0

# minimize probe/blend RMSE
minimzeProbe=0
minimzeProbeClassificationError=0
minimzeBlend=1
minimzeBlendClassificationError=0

[string]
weightFile=KNearestNeighbor_1_weights.dat
fullPrediction=KNearestNeighbor_1.dat

Table 7.2: Example dsc files. A linear regression, neural network and k-nearest neighbors. The
#-sign starts a comment line.

How to Build the Framework under Linux

We have tested the following instructions under Ubuntu Linux. This setup the Intel compiler and perfor-
mance libraries for non commercial usage.

1. Download the Intel C++ compiler from
http://software.intel.com/en-us/articles/non-commercial-software-download/

and select the Intel C++ Compiler Professional Edition for Linux. Extract
the 700MB tgz and follow the install instructions. This installs the compiler, the MKL and IPP to
/opt/intel/Compiler/... on the system.

2. Edit the /etc/ld.so.conf file by adding the following lines. Replace the XX with the current
version code of the Intel toolchain. After that run ldconfig.
/opt/intel/Compiler/XX.X/XXX/lib/intel64
/opt/intel/Compiler/XX.X/XXX/mkl/lib/em64t
/opt/intel/Compiler/XX.X/XXX/ipp/em64t/sharedlib

3. Modify path to IPP and MKL headers and libraries in the Makefile.

4. Go to the directory of the ELF and do make. Done.

http://software.intel.com/en-us/articles/non-commercial-software-download/
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Conclusion and Outlook

Ensemble learning techniques or simply “Ensembling” works well in many situations. The motivation of
ensemble learning is that the accuracy of a set of models is superior compared to the best single model.
This set can be assembled in many different ways (see Section “Introduction” 1.2 for a summary). The
success of the ensemble depends on the diversity and the accuracy of each of the individuals, but this is
a contradiction. Accurate models are always similar, they all model the same latent function. Different
models have different prediction behaviour, for example a neural network’s prediction should be different
to the one obtained from a k-nearest neighbor algorithm (KNN is memory based and neural networks are
not).

One of the simplest techniques for the construction of an ensemble is bagging from Breiman [6].
In bagging the type of model is fixed, each individual model is learned multiple times with a slightly
modified version of the training set (“bootstrap sampling” of the data set, Section 4.2). Breiman shows
significant improvement of the generalization error, when the base learner has unstable behavior. Deci-
sion trees are good candidates for bagging. Our results with bagging show a remarkable improvement
(Section 5.3 and Section 6.8).

Another appoach for building the ensemble set of predictors is to run different kind of models. For
example linear regression, neuronal networks, k-nearest neighbors and decision trees. Each of the four
learners has different training mechanisms and therefore the predictions are not highly correlated. Less
correlation and high accuracy are needed to build a good ensemble. The goal now is to combine them. We
investigate four different techniques in order to obtain an accurate ensemble model. The four techniques
are stacking, cascade learning, training on residuals and cascade learning with training on residuals.
Stacking and cascade learning are well known in the literature, training on residuals has a relationship to
boosting, because each of the models are learned on the residuals of the model before.

The outcome of the analysis on 14 small UCI data sets shows that cascade learning is the most
successful technique to combine predictors. We investigate an ensemble of maximum 4 different kinds
of models (linear regression, neural networks, kernel ridge regression and k-nearest neighbors). All
possible configurations are explored when building the ensemble, because 3 of the 4 techniques are
affected by the ordering of the individual models (only stacking is a loose coupling). When we compare
the best single model versus the best ensemble (Table 5.6) we see that the ensemble never looses and
improves performance significantly for 6 times out of 14 data sets. The winner, Cascade learning by
Gama and Bradzil [17] is a technique which enlarges the feature space with the predictions of models in
lower layers. This means that for every training example the current trained model has additional access
to the predictions generated by all other models. This enables the current model to learn special structure
out of the data. In the data set BALANCE [35] the approach of cascade learning significantly improves
the accuracy on the test set.

Boosting was successfully applied on the LETTER data set, the results are shown in Figure 5.5. We
use the Adaboost.M2 algorithm from Schwenk and Bengio [34], Adaboost.M2 does not a reweighting
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of the training examples (like Adaboost), instead it does resampling the training list based on the train
error. Examples with high train error get a higher probability to be in the training set of the next round.
We plot the accuracy over the boosting epochs and compare it to bagging. Adaboost.M2 outperforms
bagging significantly. The obtained accuracy of 1.5% are well comparable to those in [34].

We apply stacking of 4 different models on the MNIST data set. The results are shown in Table
5.9. Stacking is designed to minimize the mean square prediction error by optimizing a non-negative
combination of predictions. This declines the combined performance in terms of classification error. The
best single model is kernel ridge regression with 1.23% classification error and an RMSE of 0.14336.
The combination of all 4 models lowers the RMSE to 0.09948 but result in an increase of the classifi-
cation error to 1.36%. This is a demonstrative example that minimizing the RMSE does not necessarily
minimize the classification error.

Over all investigated single models kernel ridge regression is one of the strongest supervised learn-
ing algorithms. It has the drawback of bad scalability, training time rises with the third power of the
number of training examples. Neural networks have also good performance in various experiments.
Linear regression is used many times as a baseline model due to its simplicity.

The accuracy in recommender systems greatly improves with the help of ensembling techniques. The
Netflix Prize data set is used here to generate the predictions. We used 18 different predictors obtained
from k-nearest neighbors, SVD, asymmetric factor models, restricted boltzmann machines and global
effect models. All of them are collaborative filtering models and trained on 100M ratings. Some of
them are trained on the residuals of others. The complete list is under Table 6.2. This 18 predictors
are now the ensemble of models, which needs to be combined. The evaluation of different blending
algorithms are done on the probe set, which is a 1.4M subset of the whole Netflix data set. Furthermore
we make a 50:50 split of the probe in a train and a test set. Linear regression with ridge regression acts as
baseline and result in RMSE=0.8752 on the test set. We found that splitting the data based on the support
criteria delivers best results. Linear regression with 5 bins gives RMSE=0.874741. A neural network
with 500 neurons on the hidden layer achieve a RMSE of 0.873848 on the test set, when we add the
log(support) as additional input the RMSE drops the 0.873334 (results from Table 6.5). This is the best
result obtained from neural networks and the best result from all blending techniques investigated here.
Tree blending with a GBDT achieves RMSE=0.873945. Additionally we tried kernel ridge regression
and k-nearest neighbors on a random subset of the train set and report the performance when many
models are averaged. Kernel ridge regression delivers good results, the RMSE drops to 0.8740, k-nearest
neighbors are totally unsuitable for blending, the best achieved RMSE value was 0.8840. In section
6.8 we investigate the ability of bagging applied to 7 different blending models. Linear regression in
combination with blend stopping was used to combine those 7 models. At the end we can show with a
lot of computing power the RMSE on the test set can be lowered to 0.873093.

Almost all experiments were done with a own-developed framework for supervised ensemble learn-
ing. The details are sketched in Section 7. The main design goal was a fast implementation of the base
learners with the help of optimized Intel libraries for numerical computations (MKL, IPP). This C++
based framework was not only developed for running experiments for this thesis, it can easily deployed
to real world problems.

Possible Improvements

The ensemble learning techniques cascade learning and training on residuals learn models in a chain by
a greedy reduction of the ensemble’s RMSE. Parameters found in the first model need not to be optimal
when the ensemble chain has finished training. A possible extention is to repeat training of the model
chain by keeping all other model predicitons constant and re-optimize the current one. This can be
understood as a refinement of the metaparameters when the ensemble is already build.

In stacking and training on residuals we use a linear combination as the combiner (non-negative
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weights for stacking). The linear combination can lead to overfitting on small data sets or on data
sets with many predicted outputs (e.g. multi-class problems). A possible improvement is to add cross
validation in order to optimize the ridge regression constant used for doing the linear regression (LR as
combiner).

In the ensemble learning technique “ensemble selection” from Caruana et al. [11], one uses cross
validation for parameter and model selection. When a prediction of a test sample is done one uses the
mean of the k models in the cross validation set. In contrast to this approach, we use retraining of the
model with best metaparameters. Averaging the predictions from all k models leads to a bagging-like
effect, which helps to improve the accuracy. This approach can also be used during our evaluation.
Furthermore, bagging can replace the cross validation process by optimizing on the out-of-bag estimate.
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Appendix A

Additional Tables and Figures from the
analysis of ensemble learning techniques

Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 13.65±3.0 13.65±3.0 13.92±3.0 13.92±3.0 N 14.34±2.7 14.34±2.7 14.30±2.7 14.30±2.7

K 17.39±3.2 17.39±3.2 17.51±3.1 17.51±3.1 R 14.81±2.8 14.81±2.8 14.78±2.8 14.78±2.8

L-N 14.56±2.8 14.69±2.8 14.48±2.9 14.74±2.7 L-K 13.85±2.6 13.81±2.6 14.45±2.9

L-R 14.29±2.8 14.06±2.8 14.24±3.1 N-L 14.17±2.6 14.21±2.6 14.41±3.2

N-K 14.98±2.8 15.03±2.7 15.00±2.8 N-R 14.55±2.6 14.58±2.7 14.40±2.6

K-L 14.72±2.9 13.87±3.9 14.40±4.3 14.11±2.7 K-N 14.67±2.8 13.70±2.8 13.59±2.7 14.05±2.5

K-R 15.24±3.3 14.05±3.3 13.50±3.0 14.28±2.6 R-L 13.97±2.7 14.52±2.9 14.43±4.0 14.28±2.9

R-N 14.03±2.6 14.27±2.6 13.81±2.6 14.87±2.8 R-K 15.63±2.8 15.20±3.0 15.13±2.9

L-N-K 13.95±2.6 13.92±2.5 13.74±2.7 L-N-R 14.90±5.8 15.08±7.4 14.36±3.1

L-K-N 14.49±2.7 14.16±2.5 13.80±2.7 L-K-R 15.22±4.3 15.13±5.1 14.68±2.9

L-R-N 14.45±3.9 14.72±4.6 13.98±2.8 L-R-K 13.76±2.8 13.67±2.8 13.49±2.6

N-L-K 14.49±2.9 14.60±2.9 13.62±2.8 N-L-R 15.09±2.7 15.32±2.5 14.92±2.7

N-K-L 14.76±2.9 14.57±2.8 14.00±2.8 N-K-R 14.83±2.9 14.87±2.9 14.21±2.5

N-R-L 14.85±2.7 14.98±2.7 15.08±3.1 N-R-K 15.02±2.8 14.88±2.8 14.34±2.4

K-L-N 15.43±2.9 14.73±3.1 13.60±2.6 14.26±2.7 K-L-R 15.65±2.7 14.02±2.5 14.25±2.3

K-N-L 15.66±2.9 13.86±2.7 13.98±3.8 K-N-R 15.45±3.0 14.26±2.6 13.78±2.8

K-R-L 15.46±3.2 14.19±3.1 14.77±4.7 13.88±3.1 K-R-N 14.65±2.9 13.90±2.7 13.43±2.9 13.93±2.6

R-L-N 14.62±2.8 14.76±2.8 13.84±2.4 14.25±3.8 R-L-K 14.90±2.4 15.17±2.4 13.70±2.9

R-N-L 14.61±3.0 14.73±2.7 14.44±3.8 R-N-K 14.76±3.0 14.76±2.7 13.52±2.5

R-K-L 15.18±2.4 15.08±2.6 14.47±3.1 R-K-N 14.73±2.5 15.00±2.7 13.80±2.5

L-N-K-R 14.74±4.0 14.96±4.8 14.51±2.9 L-N-R-K 14.49±4.7 14.60±6.1 13.86±2.2

L-K-N-R 15.35±6.2 15.55±8.9 14.14±2.7 L-K-R-N 14.05±2.8 13.87±2.5 13.52±2.1

L-R-N-K 14.14±2.4 14.06±2.5 13.73±3.0 L-R-K-N 14.06±2.7 13.94±2.8 13.78±2.9

N-L-K-R 15.03±2.8 14.83±2.7 14.36±2.7 N-L-R-K 14.20±3.0 14.50±2.9 13.59±2.5

N-K-L-R 14.75±2.9 13.84±3.0 13.98±3.1 N-K-R-L 15.18±3.1 14.99±3.2 14.34±3.0

N-R-L-K 15.05±2.7 14.89±2.7 14.03±2.9 N-R-K-L 15.02±2.6 14.97±2.9 14.61±3.7

K-L-N-R 16.04±2.8 14.62±2.6 14.10±2.4 K-L-R-N 15.57±3.0 14.41±3.0 13.51±2.7

K-N-L-R 15.98±2.8 14.14±2.9 14.11±2.6 K-N-R-L 15.89±3.0 14.39±2.4 13.92±2.4

K-R-L-N 15.31±2.9 14.54±2.8 13.85±2.6 13.78±2.3 K-R-N-L 16.06±3.0 14.72±2.6 14.64±2.6

R-L-N-K 15.12±2.7 15.37±3.0 13.94±2.7 R-L-K-N 15.50±2.5 15.56±2.7 14.49±2.6

R-N-L-K 14.94±2.6 14.50±2.9 13.61±2.6 R-N-K-L 15.25±3.6 15.14±3.5 14.13±3.1

R-K-L-N 15.57±3.2 15.74±2.9 14.24±3.1 R-K-N-L 14.69±2.5 14.43±2.6 14.02±2.8

Table A.1: Results for the CREDIT dataset, errors are reported in mean classification error over 100
test splits. L=linear regression, N=neural network, K=k-nearest neighbors, R=kernel
ridge regression. Red values are per-column ensemble winners. Large red and under-
lined is the minimum mean value.
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Dataset
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Figure A.1: Spiral dataset, comparision of the model prediction in feature space. We opti-
mized each particulars model parameters in order to lower the error. The re-
ported value (right beside the model name) is the classification error on a 4-
fold cross validation set. KNN=k-nearest neighbors, PolyX=polynomial regres-
sion, GBDT=gradient boosted decision trees, NN=neural networks, KRR=kernel
ridge regression. The trainig set has a size of 4000 samples. Generated with:
d=gen(spiral(’m=2000’,’n=2.2’,’noise=1.0’));
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Figure A.2: Circle dataset, comparision of the model prediction in feature space. We opti-
mized each particular’s model parameters in order to lower the error. The re-
ported value (right beside the model name) is the classification error on a 4-
fold cross validation set. KNN=k-nearest neighbors, PolyX=polynomial regres-
sion, GBDT=gradient boosted decision trees, NN=neural networks, KRR=kernel
ridge regression. The trainig set has a size of 4000 samples. Generated with:
d=gen(toy2d(’2circles’,’l=2000’));
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Dataset
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Figure A.3: Chess dataset, comparision of the model prediction in feature space. We opti-
mized each particular’s model parameters in order to lower the error. The re-
ported value (right beside the model name) is the classification error on a 4-
fold cross validation set. KNN=k-nearest neighbors, PolyX=polynomial regres-
sion, GBDT=gradient boosted decision trees, NN=neural networks, KRR=kernel
ridge regression. The trainig set has a size of 4000 samples. Generated with:
d=gen(toy2d(’chess’,’l=3000’));



81

Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 12.81±2.6 12.81±2.6 12.81±2.6 12.81±2.6 N 8.96±2.1 8.96±2.1 8.96±2.1 8.96±2.1

K 10.00±2.5 10.00±2.5 9.96±2.5 9.96±2.5 R 9.46±2.1 9.46±2.1 9.51±2.1 9.51±2.1

L-N 9.92±2.1 10.87±2.6 9.76±2.5 8.79±2.1 L-K 10.01±2.7 9.49±2.8 10.00±2.8

L-R 9.29±2.5 8.53±2.3 8.89±2.5 N-L 9.24±2.5 4.68±2.6 4.79±2.6

N-K 8.95±2.3 4.91±2.3 5.74±2.3 N-R 8.75±2.5 4.92±2.5 5.11±2.5

K-L 10.05±2.2 10.20±2.4 11.32±8.4 12.93±3.2 K-N 10.21±2.3 10.05±2.5 9.47±2.4 9.25±2.5

K-R 10.32±2.7 8.94±2.7 9.06±2.7 9.16±2.5 R-L 9.55±2.3 9.36±2.3 9.36±2.3 13.13±2.5

R-N 9.66±2.6 8.61±2.9 7.33±3.2 9.05±2.2 R-K 8.63±2.3 8.28±2.4 9.16±2.4

L-N-K 9.46±2.3 8.00±2.5 7.91±2.5 L-N-R 10.23±2.8 7.54±2.8 6.63±2.4

L-K-N 9.70±2.3 9.20±2.2 9.28±2.3 L-K-R 9.56±2.3 8.67±2.2 8.88±2.2

L-R-N 9.53±2.3 8.67±2.6 7.19±3.0 L-R-K 8.20±2.5 7.42±2.1 7.25±2.5

N-L-K 8.61±2.2 4.40±2.2 4.55±2.3 N-L-R 9.21±2.3 4.80±2.4 4.52±2.1

N-K-L 8.82±2.4 4.77±2.4 4.94±2.1 N-K-R 8.17±2.2 5.04±2.3 5.14±2.5

N-R-L 9.10±2.6 4.63±2.3 4.66±2.1 N-R-K 8.61±2.3 5.69±2.4 5.01±2.3

K-L-N 9.76±2.6 9.48±5.4 9.00±2.9 8.88±1.9 K-L-R 10.54±2.5 9.45±4.1 9.14±2.5

K-N-L 10.22±2.7 10.19±2.7 8.90±3.0 K-N-R 10.64±2.2 9.61±2.4 8.68±2.4

K-R-L 10.66±2.4 9.59±2.4 9.26±2.5 12.71±2.8 K-R-N 9.95±2.6 9.00±2.6 8.61±2.5 9.15±2.3

R-L-N 9.18±2.4 5.10±2.2 5.41±2.5 9.00±2.2 R-L-K 8.74±2.7 6.77±2.6 7.22±2.7

R-N-L 9.40±2.3 8.53±2.6 5.71±2.4 R-N-K 8.62±2.1 6.47±2.2 6.25±2.3

R-K-L 8.61±2.5 8.15±2.4 8.54±2.8 R-K-N 8.22±2.4 7.84±2.3 7.15±2.4

L-N-K-R 8.55±2.5 8.41±2.4 7.37±2.3 L-N-R-K 9.33±2.3 8.06±2.5 7.43±2.6

L-K-N-R 9.52±2.5 8.42±2.5 7.79±2.4 L-K-R-N 9.63±2.4 8.16±2.3 8.64±2.5

L-R-N-K 8.42±2.4 7.30±2.3 6.65±2.3 L-R-K-N 8.19±2.5 7.43±2.4 6.58±2.2

N-L-K-R 8.28±2.2 5.01±2.2 4.87±2.1 N-L-R-K 8.79±2.6 4.58±2.4 4.31±2.2

N-K-L-R 8.60±2.8 5.15±2.2 5.37±2.8 N-K-R-L 8.74±2.5 4.82±2.2 5.44±4.0

N-R-L-K 9.30±2.4 5.88±2.3 5.00±2.0 N-R-K-L 8.48±2.3 4.68±2.1 5.27±7.3

K-L-N-R 10.06±2.6 8.91±3.1 8.07±2.9 K-L-R-N 10.21±2.4 8.99±2.7 8.59±2.6

K-N-L-R 10.65±2.5 9.46±2.5 8.75±2.5 K-N-R-L 10.32±2.4 9.00±2.3 8.15±2.1

K-R-L-N 10.43±2.5 8.89±2.6 8.67±2.7 12.63±3.1 K-R-N-L 10.21±2.4 8.90±2.2 7.13±2.3

R-L-N-K 8.61±2.5 5.55±2.2 5.29±2.3 R-L-K-N 8.11±2.6 6.44±2.2 6.02±2.3

R-N-L-K 8.84±2.6 6.89±2.4 5.32±2.1 R-N-K-L 8.25±2.6 6.38±2.4 7.18±8.7

R-K-L-N 7.88±2.4 7.87±2.4 7.32±2.2 R-K-N-L 8.38±2.0 7.93±2.3 5.78±2.6

Table A.2: Results for the BALANCE dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 3.92±1.7 3.92±1.7 4.09±1.8 4.09±1.8 N 3.51±1.5 3.51±1.5 3.51±1.5 3.51±1.5

K 3.36±1.4 3.36±1.4 3.37±1.4 3.37±1.4 R 3.24±1.3 3.24±1.3 3.24±1.3 3.24±1.3

L-N 3.71±1.6 3.66±1.5 3.27±1.4 3.29±1.5 L-K 3.15±1.5 3.05±1.6 3.00±1.5

L-R 3.60±1.4 3.49±1.4 3.24±1.5 N-L 3.27±1.3 3.29±1.3 3.25±1.2

N-K 3.62±1.4 3.66±1.4 3.59±1.5 N-R 3.47±1.3 3.44±1.3 3.34±1.3

K-L 3.46±1.7 3.44±1.7 3.39±1.7 3.84±1.5 K-N 3.28±1.2 3.29±1.2 3.24±1.3 3.29±1.3

K-R 3.29±1.3 3.32±1.3 3.26±1.3 3.30±1.3 R-L 3.47±1.4 3.47±1.4 3.33±1.7 4.20±1.6

R-N 3.44±1.4 3.46±1.3 3.16±1.2 3.57±1.3 R-K 3.32±1.4 3.27±1.4 3.31±1.4

L-N-K 3.62±1.4 3.37±1.4 3.41±1.4 L-N-R 3.49±1.3 3.43±1.2 3.34±1.3

L-K-N 3.34±1.3 3.30±1.2 3.33±1.3 L-K-R 3.33±1.4 3.27±1.3 3.16±1.3

L-R-N 3.36±1.5 3.33±1.5 2.96±1.4 L-R-K 3.51±1.3 3.64±1.4 3.22±1.3

N-L-K 3.70±1.4 3.63±1.3 3.63±1.4 N-L-R 3.11±1.3 3.24±1.3 3.11±1.2

N-K-L 3.32±1.3 3.36±1.3 3.21±1.3 N-K-R 3.54±1.3 3.59±1.4 3.35±1.3

N-R-L 3.52±1.3 3.51±1.3 3.42±1.4 N-R-K 3.60±1.3 3.59±1.4 3.53±1.4

K-L-N 3.39±1.6 3.35±1.6 3.22±1.5 4.23±1.7 K-L-R 3.40±1.4 3.42±1.4 3.40±1.4

K-N-L 3.62±1.4 3.56±1.4 3.58±1.5 K-N-R 3.53±1.4 3.55±1.4 3.51±1.3

K-R-L 3.49±1.3 3.45±1.4 3.44±1.3 3.11±1.3 K-R-N 3.60±1.4 3.61±1.4 3.49±1.4 3.19±1.3

R-L-N 3.52±1.4 3.55±1.5 3.12±1.4 4.07±1.3 R-L-K 3.68±1.4 3.57±1.2 3.19±1.3

R-N-L 3.60±1.3 3.62±1.3 3.30±1.4 R-N-K 3.61±1.3 3.52±1.3 3.22±1.2

R-K-L 3.62±1.4 3.54±1.3 3.23±1.3 R-K-N 3.84±1.3 3.71±1.3 3.27±1.3

L-N-K-R 3.61±1.5 3.47±1.4 3.34±1.4 L-N-R-K 3.47±1.5 3.33±1.4 3.10±1.3

L-K-N-R 3.65±1.4 3.58±1.6 3.39±1.5 L-K-R-N 3.65±1.4 3.40±1.4 3.26±1.4

L-R-N-K 3.45±1.6 3.46±1.4 3.20±1.4 L-R-K-N 3.72±1.5 3.67±1.4 3.16±1.4

N-L-K-R 3.70±1.3 3.72±1.5 3.41±1.4 N-L-R-K 3.37±1.3 3.45±1.4 3.26±1.3

N-K-L-R 3.35±1.3 3.37±1.3 3.17±1.3 N-K-R-L 3.44±1.4 3.32±1.4 3.73±4.0

N-R-L-K 3.46±1.4 3.45±1.4 3.27±1.2 N-R-K-L 3.72±1.5 3.77±1.5 3.70±1.5

K-L-N-R 3.37±1.4 3.40±1.4 3.28±1.4 K-L-R-N 3.30±1.3 3.34±1.3 3.16±1.2

K-N-L-R 3.71±1.4 3.73±1.5 3.67±1.5 K-N-R-L 3.54±1.4 4.50±9.1 4.16±4.6

K-R-L-N 3.60±1.5 3.59±1.4 3.55±1.3 3.25±1.3 K-R-N-L 3.30±1.2 3.26±1.2 3.18±1.3

R-L-N-K 3.87±1.4 3.90±1.5 3.48±1.4 R-L-K-N 3.81±1.4 3.81±1.4 3.06±1.3

R-N-L-K 3.57±1.4 3.44±1.4 3.13±1.3 R-N-K-L 3.88±1.6 3.95±1.7 3.36±1.5

R-K-L-N 3.63±1.5 3.73±1.5 3.24±1.4 R-K-N-L 3.64±1.4 3.63±1.4 3.18±1.4

Table A.3: Results for the BREAST dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 23.10±3.2 23.10±3.2 23.10±3.2 23.10±3.2 N 23.43±3.1 23.43±3.1 23.50±3.1 23.50±3.1

K 25.39±3.0 25.39±3.0 25.31±3.1 25.31±3.1 R 23.12±3.2 23.12±3.2 23.12±3.1 23.12±3.1

L-N 23.81±3.6 23.83±3.5 23.48±3.4 23.44±3.4 L-K 23.06±3.3 22.95±3.3 23.33±3.1

L-R 23.69±3.2 23.57±3.2 23.23±2.9 N-L 22.62±3.4 22.74±3.5 22.79±3.4

N-K 23.20±3.1 23.09±2.9 23.50±3.4 N-R 23.45±3.0 23.46±2.8 22.92±3.0

K-L 24.49±3.5 23.51±3.3 23.39±3.3 22.55±3.1 K-N 24.21±3.8 23.04±3.3 23.39±3.3 22.58±3.4

K-R 24.36±3.4 23.30±3.3 23.50±3.3 22.65±3.0 R-L 23.17±3.2 23.25±3.2 22.87±2.9 23.11±3.3

R-N 22.78±2.9 22.93±3.1 22.92±2.7 23.19±3.0 R-K 23.14±2.9 22.85±2.5 23.46±2.7

L-N-K 24.61±3.3 24.27±3.2 23.79±3.0 L-N-R 23.64±3.5 23.61±3.6 23.34±3.4

L-K-N 24.01±3.0 24.05±3.2 23.57±3.0 L-K-R 24.30±3.2 24.49±2.9 22.98±2.9

L-R-N 23.36±3.0 23.40±2.9 23.26±3.1 L-R-K 23.48±3.5 22.97±3.2 22.66±2.9

N-L-K 22.98±2.9 22.98±2.9 22.95±3.2 N-L-R 23.26±3.2 23.25±3.1 22.96±3.2

N-K-L 23.49±3.2 23.29±2.9 23.30±2.7 N-K-R 23.69±3.2 23.75±3.0 23.30±3.3

N-R-L 23.21±3.5 23.50±3.7 23.59±3.9 N-R-K 23.88±3.0 23.69±3.2 23.31±3.3

K-L-N 24.57±3.4 25.13±6.5 23.42±3.2 22.85±3.1 K-L-R 25.17±2.9 24.02±2.5 23.24±2.3

K-N-L 24.72±3.0 24.12±3.0 23.95±2.7 K-N-R 24.57±2.7 23.48±2.9 23.37±2.9

K-R-L 24.96±3.0 23.88±4.6 23.32±2.9 22.95±3.1 K-R-N 24.91±3.0 23.82±3.2 23.96±3.0 22.69±2.9

R-L-N 23.70±3.4 23.95±3.2 23.63±3.2 22.70±3.3 R-L-K 22.56±3.2 22.29±3.2 22.49±3.0

R-N-L 22.51±2.9 22.68±2.8 22.56±2.7 R-N-K 22.79±2.9 22.83±3.0 22.66±3.0

R-K-L 23.53±3.4 23.28±3.2 22.79±2.9 R-K-N 23.11±3.2 22.59±3.2 23.07±3.5

L-N-K-R 24.46±2.9 24.10±3.0 23.17±2.8 L-N-R-K 23.80±3.3 23.77±3.3 23.37±3.3

L-K-N-R 24.48±3.3 24.61±3.3 23.72±3.1 L-K-R-N 24.34±3.2 24.17±3.2 22.79±3.0

L-R-N-K 24.18±3.4 23.93±3.3 23.44±3.4 L-R-K-N 24.43±2.9 24.22±3.0 23.75±3.2

N-L-K-R 22.84±3.3 22.88±3.1 22.92±2.8 N-L-R-K 23.46±2.8 23.18±2.7 23.26±2.6

N-K-L-R 23.82±3.2 23.42±3.3 23.18±3.2 N-K-R-L 23.58±3.2 23.90±3.6 23.36±3.1

N-R-L-K 23.35±3.1 23.59±3.1 23.00±3.4 N-R-K-L 23.37±3.1 23.27±3.1 23.30±3.0

K-L-N-R 24.96±3.0 25.09±7.5 23.34±2.9 K-L-R-N 24.55±3.4 23.93±3.2 23.63±3.3

K-N-L-R 24.69±3.5 23.96±3.6 23.58±3.4 K-N-R-L 25.33±3.4 24.08±3.2 23.92±3.2

K-R-L-N 25.05±3.1 24.40±4.0 23.83±3.2 22.64±3.1 K-R-N-L 24.88±3.7 23.35±3.3 23.45±3.3

R-L-N-K 23.26±3.1 23.20±3.4 23.53±3.8 R-L-K-N 23.67±3.4 22.91±3.4 23.84±3.3

R-N-L-K 23.13±3.1 22.82±3.0 22.94±3.1 R-N-K-L 23.71±3.5 22.92±3.3 22.87±3.0

R-K-L-N 23.05±3.1 22.89±2.8 23.28±3.1 R-K-N-L 23.47±3.1 23.30±2.8 23.13±2.9

Table A.4: Results for the DIABETES dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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techniques

Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 24.43±2.8 24.43±2.8 24.37±2.8 24.37±2.8 N 24.83±3.2 24.83±3.2 24.78±3.2 24.78±3.2

K 26.55±3.0 26.55±3.0 26.69±2.9 26.69±2.9 R 23.59±2.8 23.59±2.8 23.46±2.8 23.46±2.8

L-N 25.95±2.7 26.39±2.7 25.83±3.0 24.73±2.9 L-K 25.10±3.3 25.23±3.1 26.01±3.2

L-R 25.38±3.1 25.31±3.0 23.81±3.0 N-L 25.72±3.4 25.74±2.8 26.40±3.2

N-K 25.25±2.8 25.36±2.9 25.72±2.8 N-R 26.06±2.7 25.83±2.8 24.29±2.7

K-L 25.22±2.5 24.38±2.8 24.78±2.9 24.92±3.0 K-N 25.23±2.6 24.16±2.9 23.96±2.6 24.81±3.3

K-R 26.75±2.8 26.41±2.8 23.78±2.6 24.18±2.8 R-L 26.68±3.1 25.34±2.7 25.73±3.6 24.76±2.6

R-N 26.70±2.9 25.91±2.8 25.04±2.9 24.62±2.8 R-K 26.14±2.8 26.01±2.8 26.22±2.5

L-N-K 25.81±3.0 26.68±3.1 25.18±2.8 L-N-R 25.50±2.7 25.94±2.4 24.92±2.4

L-K-N 25.87±3.0 26.50±2.9 26.49±3.0 L-K-R 26.42±3.1 26.23±2.7 24.00±2.6

L-R-N 26.35±3.2 26.71±3.4 26.32±3.3 L-R-K 25.43±2.9 25.80±2.9 25.84±2.9

N-L-K 25.99±3.0 26.13±5.4 25.70±2.9 N-L-R 25.98±2.5 25.18±2.7 23.78±2.6

N-K-L 25.76±2.8 25.74±2.8 26.16±3.1 N-K-R 26.41±3.1 25.50±3.0 24.03±2.9

N-R-L 25.10±3.0 24.48±3.1 26.23±4.4 N-R-K 25.67±2.8 25.89±3.0 25.22±2.9

K-L-N 26.16±2.8 26.16±3.1 26.31±2.8 24.74±2.7 K-L-R 25.96±3.5 26.40±4.7 23.59±2.8

K-N-L 26.87±3.2 25.68±5.6 26.02±3.3 K-N-R 27.27±3.2 26.72±3.2 24.05±3.3

K-R-L 26.43±2.7 25.33±2.8 25.33±3.7 23.91±2.7 K-R-N 26.59±2.5 25.63±2.3 25.90±3.3 23.46±2.7

R-L-N 25.68±3.3 26.28±3.4 25.53±3.4 24.01±2.8 R-L-K 27.03±3.3 25.74±5.8 25.03±2.9

R-N-L 25.36±2.8 24.50±3.0 26.08±3.8 R-N-K 27.47±3.0 26.98±3.1 25.52±2.8

R-K-L 27.38±3.2 26.36±3.1 25.75±3.4 R-K-N 26.88±3.2 26.00±3.1 24.84±3.0

L-N-K-R 26.36±2.8 26.49±2.9 24.67±2.8 L-N-R-K 25.52±3.1 26.65±3.3 24.82±2.9

L-K-N-R 25.73±2.9 26.92±2.9 25.00±3.0 L-K-R-N 25.66±3.1 26.28±3.0 25.90±3.2

L-R-N-K 25.73±2.9 26.67±2.7 24.79±2.7 L-R-K-N 25.88±3.4 26.28±3.2 25.71±2.9

N-L-K-R 26.14±2.6 26.10±2.7 24.23±2.6 N-L-R-K 25.88±2.9 26.06±2.9 25.31±3.2

N-K-L-R 25.91±2.8 25.59±3.0 23.97±3.0 N-K-R-L 26.68±2.8 26.38±2.8 26.72±3.3

N-R-L-K 25.92±2.9 25.02±2.8 25.13±2.9 N-R-K-L 25.95±3.1 24.77±2.8 26.19±3.8

K-L-N-R 27.29±3.0 27.30±6.6 25.24±3.0 K-L-R-N 26.92±2.9 26.20±3.1 26.24±2.8

K-N-L-R 27.45±2.8 26.06±2.8 24.05±2.9 K-N-R-L 27.58±3.3 25.49±3.1 26.46±3.4

K-R-L-N 27.22±2.8 27.65±3.0 25.93±3.4 24.22±2.8 K-R-N-L 27.91±3.0 26.27±2.9 26.15±2.9

R-L-N-K 26.27±2.9 25.93±2.5 25.39±2.7 R-L-K-N 27.23±3.1 25.97±3.1 25.09±2.9

R-N-L-K 25.99±2.9 25.07±3.1 24.85±2.4 R-N-K-L 26.93±2.9 25.12±2.8 25.79±3.2

R-K-L-N 26.19±3.2 26.31±3.3 25.05±3.3 R-K-N-L 26.34±2.6 24.83±2.6 26.45±4.1

Table A.5: Results for the GERMAN dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 40.79±6.6 40.79±6.6 40.61±6.7 40.61±6.7 N 38.77±6.6 38.77±6.6 38.77±6.6 38.77±6.6

K 33.11±6.8 33.11±6.8 32.90±7.0 32.90±7.0 R 30.41±6.3 30.41±6.3 30.91±6.2 30.91±6.2

L-N 46.88±7.8 46.23±7.9 40.23±7.9 39.38±7.0 L-K 32.72±6.5 34.01±6.6 35.22±6.8

L-R 39.45±9.2 34.10±8.1 32.56±6.8 N-L 40.34±6.7 39.28±6.5 40.11±6.2

N-K 32.36±6.4 33.44±6.2 33.79±6.3 N-R 40.46±7.2 37.65±6.9 32.19±6.7

K-L 33.89±5.8 32.79±6.1 32.16±6.0 39.61±7.7 K-N 33.15±6.0 32.88±6.2 31.39±6.6 39.13±7.2

K-R 36.77±7.8 34.70±6.6 33.09±6.6 31.81±6.9 R-L 30.56±6.8 30.16±6.5 30.59±5.8 40.87±7.3

R-N 31.29±5.9 30.80±5.9 31.43±5.5 38.45±6.4 R-K 33.84±5.9 31.17±6.6 31.91±7.1

L-N-K 33.48±6.9 37.42±7.7 35.75±7.7 L-N-R 36.88±10.1 34.44±7.9 32.93±6.8

L-K-N 34.53±7.2 36.42±7.3 36.03±6.5 L-K-R 34.48±5.9 36.44±6.4 32.62±6.3

L-R-N 41.20±9.8 35.62±7.7 34.05±7.3 L-R-K 32.89±6.6 34.29±6.3 33.49±6.7

N-L-K 34.20±6.5 34.21±7.1 35.02±8.2 N-L-R 40.80±7.3 38.61±7.6 34.12±6.7

N-K-L 32.70±6.7 32.66±7.0 33.53±7.3 N-K-R 34.59±6.4 33.90±6.5 33.67±5.9

N-R-L 39.25±6.7 36.04±7.3 31.23±6.4 N-R-K 33.27±6.5 33.72±5.5 32.50±5.3

K-L-N 33.49±7.6 33.56±7.9 32.84±7.3 38.71±6.0 K-L-R 33.98±7.2 34.43±8.6 33.27±6.0

K-N-L 34.40±5.9 32.96±6.1 33.90±5.7 K-N-R 33.89±7.0 32.90±7.0 31.54±6.7

K-R-L 35.04±6.0 31.49±5.9 31.64±6.3 40.99±5.5 K-R-N 35.95±6.4 33.72±6.0 31.84±6.5 38.47±7.2

R-L-N 30.94±6.3 31.19±6.3 31.85±6.3 37.49±7.2 R-L-K 34.87±6.7 32.75±5.2 33.19±7.3

R-N-L 32.62±7.1 31.38±7.0 33.67±7.0 R-N-K 32.81±6.2 31.08±6.5 30.67±6.8

R-K-L 33.70±7.1 31.04±6.4 31.24±6.9 R-K-N 33.09±7.4 30.53±7.0 31.46±7.9

L-N-K-R 35.27±7.1 38.22±6.8 33.40±6.3 L-N-R-K 34.02±6.5 35.48±7.4 34.44±7.2

L-K-N-R 33.52±6.2 34.98±6.4 32.57±5.9 L-K-R-N 35.18±7.5 36.57±6.8 35.07±7.2

L-R-N-K 33.53±5.4 35.19±6.6 33.58±6.5 L-R-K-N 34.94±7.6 34.98±7.4 34.22±6.4

N-L-K-R 36.53±7.1 35.98±7.4 33.25±6.8 N-L-R-K 33.69±6.4 36.21±7.2 34.02±7.4

N-K-L-R 32.82±7.2 34.10±7.6 32.32±8.3 N-K-R-L 34.92±7.0 33.44±6.3 34.16±7.1

N-R-L-K 34.57±7.0 34.39±6.8 32.61±6.7 N-R-K-L 33.89±5.8 34.22±6.0 33.10±6.0

K-L-N-R 34.55±6.9 33.80±6.5 32.62±7.0 K-L-R-N 33.18±6.8 32.75±6.9 31.92±6.5

K-N-L-R 35.43±7.6 34.34±7.2 34.29±6.5 K-N-R-L 34.98±7.3 33.28±6.9 33.82±6.4

K-R-L-N 34.48±6.0 34.17±6.4 32.00±5.7 38.49±6.6 K-R-N-L 35.58±7.0 32.73±6.9 34.25±7.3

R-L-N-K 33.39±7.8 30.82±7.9 30.70±6.9 R-L-K-N 34.95±6.3 31.66±6.7 31.14±7.1

R-N-L-K 34.07±6.4 30.96±6.4 31.98±7.3 R-N-K-L 32.92±6.2 30.39±6.7 32.02±6.1

R-K-L-N 34.03±6.4 32.16±6.1 32.19±6.7 R-K-N-L 32.52±5.7 30.42±6.3 32.60±6.2

Table A.6: Results for the GLASS dataset, errors are reported in mean classification error over 100
test splits. L=linear regression, N=neural network, K=k-nearest neighbors, R=kernel
ridge regression. Red values are per-column ensemble winners. Large red and under-
lined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 15.70±5.9 15.70±5.9 15.62±5.9 15.62±5.9 N 15.00±6.8 15.00±6.8 14.93±6.9 14.93±6.9

K 15.52±6.5 15.52±6.5 15.40±6.5 15.40±6.5 R 15.91±6.3 15.91±6.3 15.80±6.3 15.80±6.3

L-N 16.63±6.5 16.69±6.4 15.37±6.0 15.66±6.6 L-K 16.46±6.9 15.66±6.6 15.79±6.3

L-R 15.99±6.7 15.67±6.2 14.32±6.0 N-L 16.18±6.5 16.07±5.1 16.97±5.7

N-K 15.98±6.6 16.38±6.7 15.62±5.8 N-R 15.17±5.3 15.11±5.3 15.47±5.4

K-L 15.99±6.2 15.83±6.3 16.17±5.9 15.22±6.1 K-N 16.05±7.0 15.44±6.5 15.02±6.9 15.12±5.2

K-R 16.72±7.1 16.69±7.1 14.64±6.3 15.39±5.8 R-L 17.22±6.5 18.08±6.6 16.88±7.4 14.76±6.2

R-N 16.39±6.3 15.85±6.1 14.36±6.0 15.22±6.6 R-K 17.93±6.0 16.92±6.3 16.79±4.7

L-N-K 16.90±6.3 16.24±5.9 15.60±5.8 L-N-R 17.04±6.6 16.63±7.0 15.38±6.3

L-K-N 17.10±6.0 16.50±5.8 14.61±6.1 L-K-R 18.03±6.6 16.15±6.2 15.53±6.0

L-R-N 16.78±6.3 16.96±6.6 15.33±6.4 L-R-K 16.55±6.0 16.43±6.3 15.97±6.0

N-L-K 17.19±6.8 17.42±7.0 16.29±7.0 N-L-R 16.33±5.7 18.43±6.3 15.88±6.0

N-K-L 15.98±6.0 17.05±6.1 17.45±7.1 N-K-R 17.72±6.8 17.19±6.7 15.96±6.1

N-R-L 15.71±6.4 16.82±6.7 18.23±7.1 N-R-K 15.90±6.5 15.32±6.3 15.39±6.2

K-L-N 16.31±6.2 16.65±6.7 15.36±6.1 14.85±5.6 K-L-R 17.64±5.8 17.87±6.1 16.07±5.8

K-N-L 15.97±5.7 17.35±9.6 17.89±6.5 K-N-R 16.18±6.0 15.37±5.9 14.82±6.1

K-R-L 17.26±7.2 17.94±9.9 17.81±7.5 14.86±6.0 K-R-N 16.86±5.9 16.94±6.4 15.48±6.5 15.73±6.4

R-L-N 16.38±7.0 18.47±7.0 15.09±7.1 14.81±7.2 R-L-K 16.65±6.0 15.82±6.4 15.30±5.5

R-N-L 18.62±6.8 18.12±6.4 18.50±5.8 R-N-K 17.57±5.7 17.21±6.4 14.80±5.8

R-K-L 18.28±7.2 18.78±7.1 17.69±6.3 R-K-N 16.75±6.4 17.18±6.1 14.87±5.9

L-N-K-R 17.44±6.7 16.35±7.2 15.60±6.4 L-N-R-K 17.80±6.2 17.89±5.8 16.12±5.7

L-K-N-R 16.43±5.8 15.98±6.6 15.38±5.1 L-K-R-N 17.15±6.1 17.39±6.5 15.49±5.9

L-R-N-K 17.70±7.0 17.99±7.3 16.01±7.1 L-R-K-N 17.65±6.8 17.88±7.5 15.48±6.1

N-L-K-R 16.60±6.2 17.99±6.3 15.73±5.5 N-L-R-K 15.88±6.3 18.37±7.0 15.78±6.2

N-K-L-R 15.61±6.3 17.94±6.9 15.51±6.1 N-K-R-L 16.84±6.5 16.85±6.5 18.21±7.7

N-R-L-K 16.77±6.1 17.24±6.1 15.97±6.4 N-R-K-L 15.54±7.0 15.69±6.3 17.43±8.2

K-L-N-R 16.82±6.8 16.78±6.6 15.81±7.1 K-L-R-N 16.96±7.0 17.30±7.8 14.69±6.9

K-N-L-R 16.57±6.0 17.07±6.5 15.32±6.0 K-N-R-L 16.87±6.3 16.72±6.5 17.35±6.7

K-R-L-N 16.78±6.0 18.32±7.4 15.17±6.5 14.01±5.7 K-R-N-L 16.79±5.9 17.51±6.1 18.18±6.5

R-L-N-K 16.84±6.2 18.93±7.6 15.88±6.3 R-L-K-N 17.79±7.0 19.71±7.8 15.81±6.2

R-N-L-K 16.78±6.3 16.65±6.1 15.29±5.5 R-N-K-L 16.66±7.2 16.43±7.2 18.89±9.1

R-K-L-N 18.02±6.8 19.75±6.8 17.77±5.8 R-K-N-L 17.15±6.6 16.90±6.6 17.86±7.9

Table A.7: Results for the HEPATITIS dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 12.28±4.0 12.28±4.0 12.63±4.1 12.63±4.1 N 11.21±3.6 11.21±3.6 11.36±3.5 11.36±3.5

K 15.04±3.7 15.04±3.7 15.36±3.8 15.36±3.8 R 8.15±2.6 8.15±2.6 8.24±2.7 8.24±2.7

L-N 12.14±3.8 12.11±3.7 12.66±3.6 11.88±3.8 L-K 13.06±3.5 13.19±3.4 14.99±3.6

L-R 11.39±3.7 11.66±3.8 8.34±3.3 N-L 12.30±3.5 12.11±3.6 11.94±3.6

N-K 11.20±3.3 11.13±3.5 13.83±4.1 N-R 10.73±3.4 10.60±3.4 8.72±3.1

K-L 11.97±3.9 12.44±3.7 12.12±3.7 12.95±3.5 K-N 11.24±3.9 11.78±4.0 10.07±3.5 11.74±3.7

K-R 11.19±4.4 11.20±4.7 8.59±3.0 8.43±3.0 R-L 8.29±3.1 8.00±2.9 7.60±2.8 12.78±3.7

R-N 7.32±2.9 7.19±2.7 8.02±3.0 12.12±3.6 R-K 7.90±3.2 7.90±3.2 12.63±4.1

L-N-K 12.23±4.0 12.04±3.9 13.36±4.1 L-N-R 11.27±3.1 11.54±3.4 8.73±3.3

L-K-N 11.15±3.9 11.63±4.1 10.46±3.7 L-K-R 12.53±3.6 12.97±3.6 9.33±3.5

L-R-N 10.61±3.9 10.14±3.7 9.25±3.5 L-R-K 11.08±3.5 11.03±3.6 12.13±3.6

N-L-K 12.50±4.1 12.40±4.2 13.32±4.3 N-L-R 12.34±3.8 11.90±3.8 8.94±3.5

N-K-L 11.82±3.4 11.62±3.3 11.42±3.3 N-K-R 10.82±3.8 11.08±3.9 8.88±3.5

N-R-L 11.52±3.8 11.25±3.9 9.02±3.8 N-R-K 10.64±3.2 10.75±3.1 12.54±3.6

K-L-N 11.48±3.9 12.19±3.8 10.29±3.6 12.54±3.8 K-L-R 10.48±3.5 10.96±3.5 8.31±3.3

K-N-L 12.21±3.8 12.41±3.9 10.71±3.6 K-N-R 10.49±3.6 10.88±4.0 8.91±3.5

K-R-L 10.66±3.6 10.25±3.7 8.32±3.1 8.43±2.9 K-R-N 10.13±4.0 10.08±3.7 8.04±3.3 8.28±3.1

R-L-N 8.60±3.5 7.53±2.9 7.98±2.7 13.01±3.8 R-L-K 8.31±3.2 7.86±3.2 12.60±3.8

R-N-L 7.26±2.9 7.27±3.1 7.30±3.0 R-N-K 7.28±2.8 7.03±2.8 11.90±3.7

R-K-L 8.45±3.5 8.45±3.8 8.26±3.4 R-K-N 7.34±3.0 6.79±3.0 7.49±3.3

L-N-K-R 11.70±4.0 12.24±4.3 8.82±3.4 L-N-R-K 12.46±3.8 12.16±3.8 13.80±4.4

L-K-N-R 10.00±3.5 10.59±3.6 8.95±3.4 L-K-R-N 11.17±3.6 11.57±3.4 8.95±3.1

L-R-N-K 9.63±3.5 9.17±3.2 12.14±4.2 L-R-K-N 10.40±3.6 10.40±3.7 8.86±2.9

N-L-K-R 12.26±3.0 11.98±3.2 9.14±2.7 N-L-R-K 11.90±3.6 11.43±3.6 12.35±3.9

N-K-L-R 11.58±3.7 11.26±3.8 8.75±3.5 N-K-R-L 11.79±3.3 11.59±3.1 9.43±3.4

N-R-L-K 11.25±3.6 10.81±3.7 12.06±3.9 N-R-K-L 11.72±3.6 11.21±3.4 8.71±3.1

K-L-N-R 10.68±3.8 10.93±4.4 8.78±3.3 K-L-R-N 9.95±3.6 10.31±3.7 8.16±2.9

K-N-L-R 10.98±3.6 11.47±3.4 8.84±3.1 K-N-R-L 10.70±3.4 11.09±4.0 9.16±3.1

K-R-L-N 11.04±3.9 10.91±4.0 7.89±3.1 11.13±3.4 K-R-N-L 10.89±3.7 10.67±3.7 7.96±2.8

R-L-N-K 7.82±3.3 7.05±2.9 10.89±3.2 R-L-K-N 7.59±3.1 6.95±3.0 7.04±2.9

R-N-L-K 8.14±2.9 8.07±2.9 11.16±3.6 R-N-K-L 7.83±3.1 7.98±3.1 7.63±2.9

R-K-L-N 8.20±2.9 7.62±3.2 7.31±2.7 R-K-N-L 7.68±3.3 7.78±3.1 7.59±3.2

Table A.8: Results for the IONOSPHERE dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 16.78±6.9 16.78±6.9 16.63±6.9 16.63±6.9 N 4.79±3.4 4.79±3.4 4.79±3.4 4.79±3.4

K 4.23±3.4 4.23±3.4 4.26±3.5 4.26±3.5 R 4.72±3.2 4.72±3.2 4.78±3.2 4.78±3.2

L-N 10.03±7.6 8.28±7.3 4.72±3.8 4.98±3.8 L-K 4.33±3.5 4.76±3.8 4.17±3.6

L-R 5.44±4.1 5.46±4.0 5.49±3.8 N-L 4.78±3.3 3.27±2.6 3.26±2.6

N-K 4.72±3.6 5.20±4.1 5.09±3.9 N-R 4.92±3.4 4.66±3.6 4.73±3.5

K-L 4.43±3.2 5.47±9.6 5.78±10.6 16.32±7.2 K-N 3.52±3.1 3.44±3.2 3.84±3.3 4.70±3.4

K-R 4.07±3.5 4.07±3.6 3.95±3.7 4.72±3.6 R-L 4.67±4.0 4.59±4.0 4.50±4.0 18.10±6.6

R-N 4.39±3.3 4.72±3.2 5.01±3.3 5.17±3.9 R-K 6.04±3.9 5.50±3.7 4.81±3.6

L-N-K 4.64±3.6 4.74±3.3 4.42±3.1 L-N-R 5.35±4.0 4.36±3.7 4.49±3.6

L-K-N 5.06±3.4 5.58±3.6 4.96±3.4 L-K-R 5.29±3.9 5.09±3.4 4.49±3.2

L-R-N 5.10±4.0 4.42±3.7 4.43±3.6 L-R-K 5.47±3.9 4.59±3.8 4.08±3.4

N-L-K 4.41±3.7 3.72±3.4 3.73±3.4 N-L-R 5.50±3.7 3.22±2.9 4.00±3.3

N-K-L 4.47±3.6 4.20±3.7 5.44±9.8 N-K-R 4.18±3.3 4.40±3.6 4.30±3.6

N-R-L 5.40±3.5 4.51±3.5 4.25±3.2 N-R-K 5.01±3.9 4.26±4.1 4.47±3.9

K-L-N 4.09±3.5 5.33±10.0 4.61±4.3 5.36±4.0 K-L-R 4.54±3.8 5.49±9.3 4.49±3.9

K-N-L 4.17±3.6 3.94±3.7 4.64±7.0 K-N-R 4.54±3.4 4.64±3.6 4.50±3.7

K-R-L 4.74±3.4 4.72±3.7 5.21±7.4 17.06±6.1 K-R-N 4.22±3.0 4.15±3.1 4.37±3.2 4.98±4.0

R-L-N 4.06±3.5 3.73±3.3 4.40±3.6 4.20±3.6 R-L-K 5.39±3.6 5.05±4.0 4.50±3.7

R-N-L 4.49±3.7 4.31±3.5 4.45±3.5 R-N-K 5.49±3.6 4.94±3.4 4.80±3.5

R-K-L 5.65±3.7 4.98±3.4 4.39±3.3 R-K-N 5.43±3.3 5.23±3.6 4.97±3.5

L-N-K-R 5.28±3.7 4.87±3.6 4.47±3.4 L-N-R-K 6.01±4.1 5.19±4.1 4.89±3.4

L-K-N-R 4.92±3.9 5.29±3.4 4.35±3.3 L-K-R-N 5.11±4.0 4.65±3.6 4.53±3.9

L-R-N-K 5.35±3.8 4.15±3.9 4.00±3.2 L-R-K-N 5.76±3.7 4.69±3.6 4.23±3.7

N-L-K-R 4.55±3.7 3.48±3.1 3.78±3.4 N-L-R-K 5.01±3.5 3.41±3.3 4.17±3.2

N-K-L-R 4.79±3.4 4.20±3.7 4.73±4.1 N-K-R-L 4.87±3.1 3.95±3.0 6.39±11.0

N-R-L-K 5.29±4.3 3.90±3.7 4.35±3.7 N-R-K-L 5.03±3.9 4.03±3.6 4.48±5.6

K-L-N-R 4.15±4.0 5.06±9.3 4.70±4.9 K-L-R-N 4.52±3.4 4.80±4.3 4.31±3.4

K-N-L-R 5.01±3.4 5.19±5.2 5.02±3.8 K-N-R-L 3.68±3.2 4.47±7.0 3.79±3.6

K-R-L-N 4.40±3.5 5.34±9.2 4.28±3.4 17.26±7.1 K-R-N-L 4.41±3.2 4.22±3.3 3.95±3.2

R-L-N-K 5.63±3.8 5.47±3.9 4.99±3.4 R-L-K-N 5.10±3.6 4.24±3.5 4.05±3.2

R-N-L-K 5.04±3.4 4.27±3.4 4.41±3.4 R-N-K-L 6.02±3.7 5.42±3.7 4.79±3.0

R-K-L-N 5.32±4.1 4.91±3.9 4.96±3.6 R-K-N-L 5.76±3.8 5.28±3.8 4.63±3.6

Table A.9: Results for the IRIS dataset, errors are reported in mean classification error over 100 test
splits. L=linear regression, N=neural network, K=k-nearest neighbors, R=kernel ridge
regression. Red values are per-column ensemble winners. Large red and underlined is
the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 23.10±6.2 23.10±6.2 23.05±6.4 23.05±6.4 N 21.72±5.7 21.72±5.7 21.57±5.7 21.57±5.7

K 16.49±5.3 16.49±5.3 16.66±5.5 16.66±5.5 R 13.12±5.2 13.12±5.2 13.26±5.3 13.26±5.3

L-N 25.71±7.4 24.85±6.6 20.95±6.1 20.98±5.6 L-K 14.83±6.0 15.16±6.2 16.89±6.7

L-R 14.16±5.2 14.18±5.3 13.25±5.2 N-L 22.31±6.7 21.80±6.3 22.41±6.3

N-K 17.55±6.9 17.54±7.1 16.50±6.2 N-R 17.41±6.6 16.79±6.6 13.13±5.5

K-L 16.88±6.3 16.82±6.2 15.12±5.8 21.55±6.4 K-N 17.05±5.8 17.03±5.8 16.64±6.0 20.47±6.2

K-R 14.48±5.2 14.36±5.0 11.86±5.1 12.72±5.5 R-L 13.51±5.0 14.03±5.4 13.59±4.8 22.71±6.3

R-N 14.38±4.9 14.71±4.8 16.71±6.1 21.67±6.0 R-K 14.60±5.5 14.79±5.5 16.20±5.9

L-N-K 15.93±6.6 15.29±6.0 16.28±5.9 L-N-R 14.35±4.9 14.49±4.5 14.25±4.9

L-K-N 17.30±6.3 17.08±5.9 16.96±5.5 L-K-R 15.19±5.3 15.68±5.3 11.90±4.7

L-R-N 15.86±5.5 15.95±6.0 16.22±5.6 L-R-K 15.13±5.0 15.13±5.3 16.20±5.4

N-L-K 17.66±6.2 17.93±6.1 16.25±5.9 N-L-R 17.54±6.4 17.57±6.5 13.86±5.6

N-K-L 18.83±6.6 17.80±5.6 18.63±5.5 N-K-R 17.94±5.8 18.44±6.4 12.97±5.7

N-R-L 19.11±6.0 18.00±6.1 16.19±5.2 N-R-K 17.37±5.6 16.88±6.1 15.49±5.7

K-L-N 17.95±6.4 17.20±6.3 15.34±5.2 20.90±5.5 K-L-R 16.55±5.8 15.99±5.9 11.29±3.9

K-N-L 17.59±6.5 17.49±6.5 17.42±6.5 K-N-R 16.80±6.1 16.36±5.6 12.68±5.0

K-R-L 16.80±5.4 16.50±5.8 14.14±5.0 13.74±4.8 K-R-N 15.82±6.4 15.55±5.9 14.17±4.6 13.71±5.0

R-L-N 14.93±5.6 13.97±5.5 14.98±6.1 22.71±6.5 R-L-K 15.39±5.9 15.36±5.7 15.22±5.1

R-N-L 15.17±5.4 15.78±5.5 16.28±5.8 R-N-K 16.07±5.6 15.01±6.0 14.63±6.1

R-K-L 15.44±6.0 15.36±5.8 14.78±5.2 R-K-N 16.03±6.2 15.38±5.7 14.95±5.7

L-N-K-R 17.82±6.4 17.86±6.1 13.62±5.6 L-N-R-K 16.03±5.6 15.89±6.1 15.80±5.1

L-K-N-R 17.55±5.6 17.08±5.5 13.15±4.9 L-K-R-N 17.06±5.8 17.39±5.9 15.27±4.9

L-R-N-K 16.34±5.5 16.62±6.1 15.97±5.9 L-R-K-N 16.30±5.0 16.57±5.7 14.89±5.1

N-L-K-R 18.33±6.1 18.88±6.2 14.17±5.3 N-L-R-K 16.38±5.3 16.55±5.3 15.65±5.6

N-K-L-R 18.16±5.9 17.23±5.4 12.84±5.0 N-K-R-L 18.08±5.8 17.59±5.9 16.20±5.7

N-R-L-K 18.78±6.6 18.27±6.3 15.32±5.4 N-R-K-L 18.09±5.8 17.31±5.9 15.64±6.9

K-L-N-R 17.81±6.0 17.86±5.5 11.87±5.1 K-L-R-N 17.89±5.5 17.81±6.0 14.99±5.1

K-N-L-R 17.24±5.6 17.55±5.4 13.03±4.7 K-N-R-L 16.79±6.0 16.63±6.0 15.89±6.2

K-R-L-N 16.98±5.9 16.80±6.3 14.20±5.1 18.97±5.9 K-R-N-L 16.70±6.1 16.94±6.2 16.09±6.8

R-L-N-K 15.82±5.6 14.86±5.8 14.28±5.8 R-L-K-N 16.52±6.6 15.28±5.8 14.82±4.6

R-N-L-K 15.26±5.3 15.88±5.8 14.78±5.7 R-N-K-L 15.48±5.4 16.03±5.9 15.33±5.6

R-K-L-N 16.42±5.4 15.91±4.6 14.60±5.3 R-K-N-L 15.58±5.4 15.31±6.0 15.03±5.7

Table A.10: Results for the SONAR dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 26.08±4.9 26.08±4.9 26.08±4.9 26.08±4.9 N 25.41±5.1 25.41±5.1 25.37±4.9 25.37±4.9

K 28.57±5.3 28.57±5.3 28.09±5.2 28.09±5.2 R 26.15±4.8 26.15±4.8 26.00±4.8 26.00±4.8

L-N 26.05±4.9 25.38±4.7 25.20±5.3 24.78±5.1 L-K 26.25±5.2 26.10±5.2 26.71±5.2

L-R 26.06±5.0 26.25±5.0 26.88±5.5 N-L 25.07±4.3 25.58±4.7 25.93±4.5

N-K 25.48±5.1 25.60±5.1 27.01±5.4 N-R 25.77±5.5 25.51±5.4 27.49±6.2

K-L 27.57±5.0 26.66±5.0 25.90±5.1 25.72±5.1 K-N 28.35±5.2 27.05±6.1 26.53±5.6 24.59±4.5

K-R 28.03±5.0 28.20±5.4 28.60±6.0 26.35±6.0 R-L 27.36±5.4 26.91±5.3 26.31±5.3 25.90±5.2

R-N 26.01±5.1 25.90±4.8 25.24±4.9 25.33±5.0 R-K 25.13±5.3 25.59±5.3 27.37±5.7

L-N-K 26.34±5.1 25.42±5.3 25.93±4.6 L-N-R 26.19±5.4 25.82±5.6 26.66±5.8

L-K-N 25.39±4.5 25.17±4.4 25.74±4.4 L-K-R 26.64±5.2 26.05±5.3 28.18±5.8

L-R-N 25.89±5.3 25.70±5.3 25.96±5.1 L-R-K 26.54±4.7 25.63±4.8 26.64±5.0

N-L-K 26.04±4.8 26.51±4.8 27.28±5.0 N-L-R 25.93±4.3 26.56±4.6 27.59±4.7

N-K-L 26.05±5.3 26.64±5.4 26.32±5.5 N-K-R 26.41±5.0 26.12±5.3 27.80±5.1

N-R-L 24.66±4.7 24.86±4.4 27.10±5.4 N-R-K 26.05±5.0 26.01±4.9 27.42±5.1

K-L-N 27.33±5.0 28.87±11.7 25.23±4.9 25.40±4.8 K-L-R 27.32±5.6 26.98±6.8 28.17±4.8

K-N-L 26.92±5.4 26.04±5.3 26.48±5.7 K-N-R 27.91±5.8 26.32±5.5 28.54±5.2

K-R-L 26.74±5.6 25.94±5.4 26.24±5.0 25.79±5.2 K-R-N 26.87±5.6 26.83±5.5 27.67±5.3 26.04±5.2

R-L-N 26.45±5.0 26.24±4.8 25.79±4.8 25.85±5.8 R-L-K 25.79±5.5 25.64±5.4 26.83±5.3

R-N-L 26.11±5.0 26.21±5.3 27.04±5.4 R-N-K 27.03±4.9 27.10±5.0 28.04±5.0

R-K-L 25.60±5.3 25.88±5.4 25.28±5.6 R-K-N 25.47±5.2 25.78±5.0 25.82±5.1

L-N-K-R 26.73±5.2 25.87±5.1 27.62±5.1 L-N-R-K 27.32±5.6 26.47±4.7 27.49±5.4

L-K-N-R 26.72±4.0 26.51±4.3 28.55±5.3 L-K-R-N 25.92±5.0 25.90±4.8 27.02±5.1

L-R-N-K 25.86±5.0 25.81±5.2 27.13±5.3 L-R-K-N 26.17±6.1 26.01±6.0 26.37±6.0

N-L-K-R 25.71±4.6 25.67±4.4 27.57±5.2 N-L-R-K 25.64±4.7 26.14±5.0 26.91±4.9

N-K-L-R 26.62±4.5 26.76±4.8 28.25±5.7 N-K-R-L 26.93±5.1 26.95±5.6 28.26±5.3

N-R-L-K 25.39±5.4 25.39±5.4 27.13±5.0 N-R-K-L 25.78±4.6 26.43±4.9 27.26±5.1

K-L-N-R 25.90±4.8 27.28±7.5 27.61±5.4 K-L-R-N 26.94±5.2 26.46±7.4 27.67±5.4

K-N-L-R 26.55±5.2 27.06±6.9 28.46±5.9 K-N-R-L 26.84±5.2 26.13±5.6 27.32±6.3

K-R-L-N 27.10±5.3 26.75±6.6 27.51±5.5 24.84±4.8 K-R-N-L 28.31±5.2 27.36±5.4 28.14±5.0

R-L-N-K 25.16±5.3 25.56±4.9 26.76±5.5 R-L-K-N 25.76±4.9 26.62±6.8 26.26±5.0

R-N-L-K 26.19±5.0 26.36±5.2 27.57±5.6 R-N-K-L 25.99±5.6 26.50±5.6 26.72±5.5

R-K-L-N 26.11±4.6 26.04±4.6 26.84±4.8 R-K-N-L 25.44±4.9 25.74±4.5 25.94±4.9

Table A.11: Results for the SURVIVAL dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 23.91±2.8 23.91±2.8 23.94±2.8 23.94±2.8 N 19.09±2.9 19.09±2.9 19.09±2.9 19.09±2.9

K 28.36±3.4 28.36±3.4 28.26±3.4 28.26±3.4 R 21.63±2.8 21.63±2.8 21.59±2.8 21.59±2.8

L-N 21.23±2.8 20.61±2.9 18.88±2.9 19.25±2.8 L-K 22.10±3.1 21.32±3.1 22.92±3.2

L-R 19.53±3.0 19.06±2.8 18.86±2.8 N-L 19.72±2.8 18.42±3.2 18.46±3.1

N-K 19.24±3.0 19.13±3.1 22.20±3.1 N-R 19.86±2.7 19.28±2.8 18.61±2.8

K-L 25.18±3.2 21.44±3.0 21.60±3.0 24.38±3.1 K-N 25.71±3.0 23.01±2.8 20.54±2.6 19.13±3.0

K-R 27.43±3.9 20.88±3.0 21.75±3.0 21.78±2.8 R-L 19.67±2.7 19.10±2.7 18.89±2.7 24.29±3.2

R-N 21.36±2.7 20.89±2.9 19.24±2.5 18.85±3.0 R-K 21.86±3.4 21.43±3.0 23.53±3.1

L-N-K 20.84±3.4 20.22±3.1 20.67±3.1 L-N-R 21.49±3.3 19.13±3.1 19.24±2.9

L-K-N 22.79±3.3 20.61±3.0 19.44±3.2 L-K-R 23.61±3.3 20.67±3.3 18.38±2.7

L-R-N 19.09±3.1 18.47±2.6 18.03±2.8 L-R-K 19.67±2.9 19.60±3.0 20.50±2.8

N-L-K 19.28±3.0 18.24±2.5 20.66±3.1 N-L-R 19.08±2.7 18.25±2.5 17.97±2.7

N-K-L 19.62±3.2 18.76±2.7 18.89±2.5 N-K-R 19.93±2.8 18.98±2.6 17.64±2.5

N-R-L 19.36±3.3 18.66±2.9 18.45±2.6 N-R-K 19.89±3.2 19.60±3.1 21.05±2.8

K-L-N 25.69±3.4 22.43±3.1 20.02±2.9 18.83±3.0 K-L-R 26.33±3.7 20.09±3.1 19.94±2.9

K-N-L 25.65±3.0 21.07±3.0 19.17±2.9 K-N-R 28.17±3.1 22.56±3.1 19.71±2.8

K-R-L 25.07±3.6 19.15±2.8 18.57±2.8 24.15±3.1 K-R-N 25.92±3.4 21.15±3.2 19.08±3.2 18.52±3.0

R-L-N 20.27±2.8 19.69±3.0 19.54±3.1 18.96±2.9 R-L-K 20.72±2.9 19.63±2.9 22.51±3.1

R-N-L 21.06±2.7 19.85±2.6 19.69±2.9 R-N-K 22.77±3.0 21.49±3.1 23.12±3.2

R-K-L 20.74±2.7 19.98±2.8 20.07±3.0 R-K-N 22.29±2.9 20.25±3.0 19.38±2.8

L-N-K-R 23.02±2.8 20.14±3.0 18.91±2.7 L-N-R-K 21.09±2.8 19.97±3.2 20.48±2.6

L-K-N-R 24.34±3.2 21.07±3.1 19.37±3.2 L-K-R-N 23.92±2.8 20.81±3.2 19.05±2.8

L-R-N-K 19.91±2.7 19.16±2.8 20.32±3.0 L-R-K-N 19.93±3.0 19.25±3.1 19.27±3.0

N-L-K-R 20.12±2.8 18.76±2.7 17.85±3.0 N-L-R-K 19.49±2.9 18.57±2.9 20.37±3.3

N-K-L-R 20.63±2.6 18.43±2.6 18.19±2.8 N-K-R-L 20.91±2.9 18.64±2.5 17.55±2.5

N-R-L-K 19.78±2.7 18.71±2.7 20.37±2.8 N-R-K-L 20.23±3.1 19.09±3.0 18.46±2.9

K-L-N-R 26.65±3.6 20.33±3.2 19.62±3.4 K-L-R-N 26.79±3.4 20.44±3.0 19.53±3.0

K-N-L-R 27.24±3.6 21.49±2.8 20.24±2.8 K-N-R-L 27.39±3.4 21.44±3.0 19.34±2.7

K-R-L-N 24.70±3.3 19.30±2.9 19.19±3.0 18.99±2.6 K-R-N-L 25.62±3.3 19.20±2.5 19.08±2.6

R-L-N-K 21.00±2.6 19.75±2.6 22.08±3.1 R-L-K-N 20.43±2.8 20.04±2.9 19.91±3.1

R-N-L-K 21.42±3.1 19.99±3.3 21.44±3.3 R-N-K-L 20.88±3.1 19.72±3.2 19.35±2.9

R-K-L-N 20.36±2.9 19.49±3.0 20.34±3.3 R-K-N-L 21.05±2.7 20.40±2.9 19.65±2.7

Table A.12: Results for the VEHICLE dataset, errors are reported in mean classification error
over 100 test splits. L=linear regression, N=neural network, K=k-nearest neighbors,
R=kernel ridge regression. Red values are per-column ensemble winners. Large red
and underlined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 4.44±1.8 4.44±1.8 4.43±1.8 4.43±1.8 N 4.21±2.3 4.21±2.3 4.24±2.4 4.24±2.4

K 8.10±2.3 8.10±2.3 8.07±2.3 8.07±2.3 R 4.23±2.2 4.23±2.2 4.22±2.2 4.22±2.2

L-N 4.74±2.1 4.72±2.2 4.02±1.8 4.05±1.8 L-K 4.63±1.9 4.61±2.0 6.53±2.2

L-R 4.68±1.8 4.65±1.8 4.31±1.9 N-L 4.20±2.0 4.21±2.1 4.32±2.1

N-K 4.15±1.6 4.18±1.7 6.67±2.3 N-R 4.11±2.0 4.20±2.0 3.72±1.9

K-L 5.40±2.3 5.01±2.4 4.56±2.0 4.71±1.9 K-N 5.37±2.1 4.76±2.0 4.52±2.1 4.18±2.1

K-R 5.20±2.2 4.63±2.2 4.34±2.2 4.34±2.1 R-L 4.86±2.1 4.84±1.9 4.98±2.8 4.59±1.8

R-N 4.64±2.1 4.91±2.2 4.13±2.0 4.17±1.7 R-K 4.39±2.0 4.29±1.9 7.08±2.2

L-N-K 4.71±2.1 4.78±2.2 5.99±2.3 L-N-R 4.79±1.7 4.81±1.8 3.99±1.8

L-K-N 4.80±1.9 4.75±2.0 4.55±1.8 L-K-R 4.51±2.2 4.48±2.2 4.43±2.2

L-R-N 4.74±1.9 4.84±2.0 3.90±1.9 L-R-K 4.25±1.8 4.21±1.8 5.49±1.9

N-L-K 4.30±1.9 4.19±2.0 5.18±2.3 N-L-R 4.19±1.8 4.31±1.9 3.98±2.0

N-K-L 4.14±2.1 4.21±2.1 4.43±2.1 N-K-R 3.97±2.0 4.18±2.0 4.03±2.0

N-R-L 4.16±1.8 4.31±1.9 4.47±2.1 N-R-K 4.33±1.8 4.66±1.9 5.31±2.1

K-L-N 6.93±8.8 6.32±6.3 4.67±2.1 4.54±2.1 K-L-R 5.64±2.2 5.46±1.9 4.46±2.0

K-N-L 5.93±2.5 4.93±3.3 4.55±1.8 K-N-R 5.34±2.4 5.22±2.3 3.91±2.1

K-R-L 5.79±2.3 5.02±2.1 5.10±2.2 4.17±2.2 K-R-N 5.91±2.5 5.07±2.2 4.46±1.9 4.49±2.0

R-L-N 5.40±2.3 5.45±2.1 4.82±2.1 4.61±1.9 R-L-K 4.46±1.9 4.51±2.1 5.72±2.3

R-N-L 4.80±2.3 4.42±2.1 4.28±2.1 R-N-K 4.52±2.0 4.92±1.9 5.80±2.1

R-K-L 4.56±2.1 4.44±2.1 4.93±2.3 R-K-N 5.00±2.4 4.94±2.4 4.70±2.0

L-N-K-R 4.91±2.2 4.98±2.1 4.48±2.0 L-N-R-K 4.54±2.0 4.76±2.2 5.34±2.3

L-K-N-R 4.64±2.1 4.69±2.1 4.44±2.2 L-K-R-N 4.67±2.0 4.76±2.0 4.58±2.2

L-R-N-K 4.67±1.8 4.56±1.8 5.20±2.2 L-R-K-N 5.17±2.5 5.18±2.5 4.97±2.3

N-L-K-R 3.98±1.9 4.14±1.9 3.82±2.0 N-L-R-K 4.43±2.0 4.65±2.0 5.36±2.0

N-K-L-R 3.99±1.8 4.24±2.0 3.79±1.7 N-K-R-L 3.96±2.0 4.16±2.0 4.39±1.9

N-R-L-K 4.39±1.9 4.49±2.0 5.23±2.1 N-R-K-L 3.93±2.0 4.13±1.9 4.50±2.6

K-L-N-R 5.75±2.4 5.10±2.5 4.12±1.9 K-L-R-N 6.08±2.1 6.75±7.7 4.49±2.1

K-N-L-R 5.55±2.3 4.51±2.1 3.90±2.0 K-N-R-L 5.87±2.4 4.94±2.1 4.99±2.9

K-R-L-N 5.91±2.4 5.43±5.3 4.53±2.1 4.02±1.9 K-R-N-L 5.40±2.4 4.29±2.7 4.30±2.6

R-L-N-K 4.93±2.2 5.29±2.1 5.73±2.2 R-L-K-N 4.61±2.0 4.76±2.0 4.59±2.0

R-N-L-K 4.42±2.2 4.55±2.1 5.53±2.4 R-N-K-L 4.36±2.0 4.48±2.0 4.46±2.1

R-K-L-N 4.81±2.1 5.07±2.0 4.60±2.1 R-K-N-L 4.51±2.0 4.65±2.0 4.83±1.9

Table A.13: Results for the VOTES dataset, errors are reported in mean classification error over 100
test splits. L=linear regression, N=neural network, K=k-nearest neighbors, R=kernel
ridge regression. Red values are per-column ensemble winners. Large red and under-
lined is the minimum mean value.
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Setup Res Res+C Cas Stack Setup Res Res+C Cas Stack

L 1.56±2.0 1.56±2.0 1.56±2.0 1.56±2.0 N 1.79±2.2 1.79±2.2 1.79±2.2 1.79±2.2

K 3.83±2.9 3.83±2.9 3.83±2.9 3.83±2.9 R 2.00±2.1 2.00±2.1 2.00±2.1 2.00±2.1

L-N 1.10±1.5 1.28±1.6 1.53±1.7 1.55±1.7 L-K 2.22±2.6 2.03±2.4 3.09±2.8

L-R 1.12±1.7 1.05±1.5 1.48±2.0 N-L 2.00±2.0 2.17±2.1 1.96±2.1

N-K 1.78±1.9 1.80±2.0 2.19±2.3 N-R 2.46±2.3 2.44±2.2 2.22±2.1

K-L 2.89±2.7 3.83±10.0 3.34±6.6 1.43±1.9 K-N 2.71±2.6 2.73±2.7 2.34±2.4 1.93±2.0

K-R 2.79±3.0 2.85±2.9 2.42±2.6 1.81±2.3 R-L 1.96±2.3 1.77±2.2 1.33±2.0 1.25±1.8

R-N 2.06±2.5 1.91±2.5 1.79±2.2 1.67±1.9 R-K 1.96±2.1 2.26±2.4 2.41±2.6

L-N-K 1.76±2.2 1.71±2.2 1.91±2.2 L-N-R 1.26±1.8 1.19±1.9 1.64±2.1

L-K-N 2.57±2.6 2.33±2.6 2.44±2.5 L-K-R 2.56±2.6 2.31±2.5 1.97±2.2

L-R-N 1.69±2.1 1.41±1.8 1.93±1.9 L-R-K 1.94±2.2 1.67±2.0 2.36±2.6

N-L-K 2.18±2.4 2.32±2.3 2.14±2.5 N-L-R 2.00±2.1 1.93±1.9 1.92±1.8

N-K-L 2.65±2.5 2.44±2.3 2.32±2.5 N-K-R 2.07±2.3 2.11±2.3 1.75±2.0

N-R-L 2.59±2.7 2.59±2.5 2.41±2.4 N-R-K 1.91±2.3 1.90±2.2 2.30±2.4

K-L-N 2.81±2.9 2.64±2.8 2.33±2.6 1.95±2.0 K-L-R 3.23±2.9 3.16±2.9 2.42±2.9

K-N-L 2.76±2.9 2.83±2.9 2.34±2.3 K-N-R 3.80±3.5 3.52±3.0 2.29±2.5

K-R-L 3.10±2.8 3.17±2.9 2.89±2.9 1.33±1.8 K-R-N 2.91±2.5 2.75±2.4 2.53±2.4 2.02±1.9

R-L-N 1.52±2.0 1.48±1.7 1.70±2.1 2.07±2.1 R-L-K 2.08±2.2 2.57±2.2 2.38±2.3

R-N-L 1.56±1.9 1.64±2.1 1.70±2.1 R-N-K 1.52±2.1 1.86±2.1 1.67±2.0

R-K-L 2.13±2.6 2.25±2.4 2.29±3.1 R-K-N 2.09±2.3 2.10±2.3 1.91±2.1

L-N-K-R 2.80±2.5 2.27±2.2 2.13±2.1 L-N-R-K 1.94±2.1 1.57±2.0 1.94±2.2

L-K-N-R 2.50±2.8 1.87±2.0 2.05±2.2 L-K-R-N 2.33±2.7 2.05±2.4 2.06±2.2

L-R-N-K 1.61±2.0 1.57±1.9 1.73±2.0 L-R-K-N 1.71±2.1 1.56±2.0 1.94±2.1

N-L-K-R 2.15±2.4 2.10±2.5 2.05±2.3 N-L-R-K 2.18±2.4 2.02±2.2 2.06±2.2

N-K-L-R 2.10±2.5 2.29±2.3 1.80±2.5 N-K-R-L 2.53±2.7 2.62±2.9 2.74±2.5

N-R-L-K 2.33±2.5 2.32±2.4 1.99±2.3 N-R-K-L 2.25±2.4 2.32±2.5 2.04±2.3

K-L-N-R 3.73±3.0 4.48±10.1 2.90±2.5 K-L-R-N 3.41±2.9 3.48±2.9 2.66±2.2

K-N-L-R 3.36±2.5 3.22±2.8 2.54±2.5 K-N-R-L 3.39±3.0 3.33±3.0 2.80±2.9

K-R-L-N 2.86±2.9 3.05±2.8 2.30±2.3 1.13±1.6 K-R-N-L 3.58±3.2 3.53±3.0 2.80±2.5

R-L-N-K 2.29±2.7 2.06±2.8 1.94±2.4 R-L-K-N 2.36±2.8 2.32±2.7 2.19±2.6

R-N-L-K 2.29±2.3 2.30±2.7 1.92±2.6 R-N-K-L 2.42±2.6 2.47±2.8 1.81±2.4

R-K-L-N 2.18±2.5 2.27±2.5 2.12±2.5 R-K-N-L 2.27±2.4 2.39±2.3 2.30±2.7

Table A.14: Results for the WINE dataset, errors are reported in mean classification error over 100
test splits. L=linear regression, N=neural network, K=k-nearest neighbors, R=kernel
ridge regression. Red values are per-column ensemble winners. Large red and under-
lined is the minimum mean value.
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[42] A. Töscher, M. Jahrer, and R. M. Bell. The BigChaos solution to the Netflix Grand Prize, 2009.
(Cited on pages 2, 15, 30, 51, 53, 54, 55 and 58.)
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