
Graz University of Technology

Institute for Computer Graphics and Vision

Master Thesis

Simultaneous localisation and mapping

for mobile robots with recent sensor

technologies

Elmar A. Rückert
Graz, Austria, December 2009

Thesis supervisors

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Dipl.-Ing. Matthias Rüther

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

Autonomous mobile robots need a map of the environment for navigation. Simultaneous

Localisation and Mapping (SLAM) is essential for autonomous navigation, path planning

and obstacle avoidance. SLAM describes a process of building a map of an unknown envi-

ronment and computing at the same time the current robot position. Both steps depend

on each other. A good map is necessary to compute the robot position and on the other

hand just an accurate position estimate yields to a correct map. Several popular SLAM

packages, like DP-SLAM, GMapping or GridSLAM are available for research purposes

and allow a not yet available and meaningful comparison between sensors and algorithms.

The aim of this work is to find a robust method to generate 2D or 3D maps with recent

sensor technologies. We compare a grid based method with two implementations of geo-

metric feature based SLAM algorithms. All methods rely on a probabilistic estimate of

the robot state realised with a Particle Filter. Recent sensor technologies: Laser range

finders, sonar sensors and time of flight cameras are evaluated with respect to accuracy

and robustness. Laser beam based sensors yield to the most exact results and are com-

monly used. Because of the low price of sonar sensors, ambitious efforts are being made to

build cheap household robots. The last sensor technology, listed, is the newest and allows

3D scans of the environment. The experiments take place in indoor environments and a

quantitative evaluation of the results is performed with the recently published RawSeeds

datasets.

Keywords. SLAM, particle filter, time of flight, laser scanner, sonar sensor, sensor

fusion, line features, corner features, player/stage, rawseeds

iii

Kurzfassung

Autonome mobile Roboter benötigen eine Karte der Umgebung zum Navigieren. Das

gleichzeitige Erstellen dieser Karte, ohne Wissen über die aktuelle Roboterposition wird

im Englischen Simultaneous Localisation and Mapping (SLAM) genannt und ist essentiell

für selbstständiges Navigieren, Pfad Planung und Kollisionsvermeidung. Dieser Prozess

ist komplex, da eine gute Karte vonnöten ist um die Roboterposition zu bestimmen und

umgekehrt führt nur eine genaue Position zu einer korrekten Karte. Mehrere bekannte

Softwarepakete wie DP-SLAM, GMapping oder GridSLAM sind für Forschungszwecke

frei verfügbar und ermöglichen einen noch nicht da gewesenen und aussagekräftigen Ver-

gleich zwischen Sensoren und Algorithmen für SLAM. Das Ziel dieser Arbeit ist es, robuste

Methoden zu finden um 2D oder 3D Karten mit gängigen Sensortechnologien zu erstellen.

Wir vergleichen eine Zellen basierende Methode (GMapping) mit zwei auf geometrischen

Strukturen basierenden Implementierungen. Alle Methoden beruhen auf einem statistis-

chen Schätzen der Roboterposition mit einem Particle Filter. Die gängigen Messtechnolo-

gien: Lasermesssysteme, Sonar Sensoren und Tiefenbildkameras werden auf Genauigkeit

und Robustheit untersucht. Lasermesssysteme führen zu sehr genauen Ergebnissen und

werden häufig für SLAM verwendet. Da Sonar Sensoren günstiger sind, wird intensiv

daran geforscht diese Technologie in Haushaltsrobotern einzusetzen. Die zuletzt erwähnte

Sensortechnologie ist die neueste und generiert ein 3D Distanzbild der Umgebung. Alle

Experimente finden im Innenbereich statt und eine quantitative Auswertung der Ergeb-

nisse wird mit dem kürzlich veröffentlichten RawSeeds Datensatz durchgeführt.

v

Danksagung

Bei Herrn Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof bedanke ich mich für die Vergabe

und Betreuung der Diplomarbeit. Besonderen Dank schulde ich Herrn Dipl.-Ing. Matthias

Rüther für die Betreuung der Arbeit. Katrin Pirker danke ich für stete Diskussionsbere-

itschaft, geduldige Hilfestellung und vielseitigen Denkanstöße. Ich danke meinen Freunden

Marian Kepesi, Gregor Perner, Rene Ranftl, Robert Beierheimer, der Designgöttin Claudi

und meinem Bruder el Profeta Paolo für ihre spontane Bereitschaft dem Werk den letzten

Schliff zu verpassen. Nicht zuletzt möchte ich meinen Eltern für den Rückhalt und die

liebevolle Betreuung meines Hundes Aki in arbeitsintensiven Zeiten danken.

vii

Contents

1 Introduction 1
1.1 Motivation . 5
1.2 Overview . 5

2 Related work 7
2.1 SLAM Methods . 7
2.2 Algorithms for SLAM . 9
2.3 Sensor Fusion Methods . 10
2.4 Evaluation Methods . 12

3 Theory and Background 15
3.1 Notation . 16
3.2 Probabilistic Filters . 16
3.3 Kalman Filter . 18

3.3.1 Discrete Kalman Filter . 18
3.3.2 Extended Kalman Filter . 20

3.4 Particle Filter . 22
3.5 Rao-Blackwellised Particle Filter . 24
3.6 Motion Models . 26

4 Sensor Technologies 31
4.1 Introduction . 32
4.2 Sonar . 32
4.3 Laser Range Finder . 34
4.4 Time of Flight Camera . 37

5 Simultaneous Localisation and Mapping 41
5.1 Introduction . 42
5.2 The SLAM Problem . 44
5.3 SLAM Methodologies . 48

5.3.1 Corner Feature based SLAM . 50
5.3.2 Edge Feature based SLAM . 55

ix

x CONTENTS

5.3.3 Discussion . 59
5.4 Sensor Fusion . 60
5.5 Conclusion . 60

6 Experiments 63
6.1 Distance Sensor Evaluation . 64
6.2 RawSeeds Indoor . 66

6.2.1 Dataset and Setup . 66
6.2.2 Laser Range Finder . 67
6.2.3 Sonar . 73
6.2.4 Sensor Fusion: Laser and Sonar . 73

6.3 ICG Lab Indoor . 75
6.3.1 Dataset and Setup . 76
6.3.2 Laser Range Finder . 76
6.3.3 Sonar . 78
6.3.4 Time of Flight Camera . 78
6.3.5 Sensor Fusion: Sonar and Time of Flight 78

7 Summary and Outlook 81
7.1 Comparison of Recursive Filters . 82
7.2 Comparison of Motion Models . 82
7.3 Sensors and Sensor Fusion . 84
7.4 Outlook . 85

A Acronyms and Symbols 87

B How to Write a Player Driver 89

C How to use Realtime Player Data within Matlab 99

D ICG Environment Characteristics 101

Bibliography 106

List of Figures

1.1 The DARPA Urban Challenge (2007), [12] 1
1.2 Fraunhofer-Institute IPA, Museum for Communication, [21] 2
1.3 Hierarchical robot layer model . 3
1.4 Interaction between the map and the robot for SLAM 3

2.1 Landmark uncertainties from Smith et al. [47] 8
2.2 Outdoor FastSLAM evaluation from Montemerlo et al. [36] 9
2.3 High quality indoor map, GMapping from Grisetti et al. [29] 10
2.4 High quality indoor map, GridSlam from Hähnel et al. [31] 11
2.5 High quality indoor map, DP-SLAM 2.0 from Eliazar et al. [18] 11
2.6 The RawSeeds project, One indoor map . 13

3.1 Particle Motion Model . 29
3.2 Gaussian Probabilistic Motion Model . 30

4.1 Ultrasonic transducer measuring principle, Stiegwart ETH Zürich [46] . . . 33
4.2 Sonar belt from ActivMedia’s PeopleBot [1] 33
4.3 Typical sonar measurement errors, Gaurav S. Sukhatme [48] 34
4.4 Laser Range Finder samples . 35
4.5 Laser range finder measuring principle, Siegwart ETH Zürich [46] 36
4.6 3D Laser range finder measuring principle, IBEO-Alasca XT 36
4.7 Laser range finder problems with window panes, Yang et al. [53] 37
4.8 PMDTechnologies GmbH [24] time of flight sensor 38
4.9 Time of flight camera depth images from PMDTec [24] 38
4.10 Time of flight camera measuring principle [24] 39

5.1 SLAM algorithm procedure . 43
5.2 The SLAM problem, Hugh Durrant-Whyte et al. [16] 45
5.3 Kalman Filter and Particle Filter representation for localisation tasks,

Thrun et al. [49] . 46
5.4 Kalman Filter and Particle Filter procedure 47
5.5 Map representation examples . 48

xi

xii LIST OF FIGURES

5.6 SLAM procedure of our realisation . 49
5.7 Laser point relationships, Xavier et al. [52] 50
5.8 Corner feature representation . 51
5.9 Corner extraction procedure . 51
5.10 Corner distance measure angular part . 52
5.11 Corner association with orientation . 53
5.12 Edge feature transformation . 56
5.13 Edge extraction procedure . 57

6.1 ICG indoor environment characteristics . 65
6.2 RawSeeds static indoor dataset (2009-02-25b) 67
6.3 Mobile indoor robot of the RawSeeds project [6] 68
6.4 SLAM methods evaluation example maps 69
6.5 Robot pose interpolation for the evaluation 70
6.6 SLAM methods evaluation results ”Bicocca 2009-02-25b” ATE 71
6.7 SLAM methods evaluation results ”Bicocca 2009-02-25b” Standard Deriva-

tion . 72
6.8 SLAM methods computational time evaluation, ”Bicocca 2009-02-25b” . . . 73
6.9 Sonar Evaluation on RawSeeds ”Bicocca 2009-02-25b” dataset 74
6.10 Sensor Fusion of Laser and Sonar evaluation results ”Bicocca 2009-02-25b” 75
6.11 ICG static indoor dataset . 76
6.12 Mobile robot used for the experiments at ICG 77
6.13 Laser Range Finder Evaluation on ICG indoor dataset 77
6.14 Sonar Evaluation on ICG indoor dataset . 78
6.15 TOF Evaluation on ICG indoor dataset . 79
6.16 Sonar and TOF Evaluation on ICG indoor dataset 79

7.1 Example Transition, Rotation by 145 degrees 84

D.1 ICG indoor dataset example, Concrete wall 101
D.2 ICG indoor dataset example, Concrete wall 102
D.3 ICG indoor dataset example, Metal Doors 103
D.4 ICG indoor dataset example, Window Panes 104
D.5 ICG indoor dataset example, Metal Fences 105

List of Tables

3.1 Particle Filter pseudo code . 23
3.2 Rao-Blackwellised Particle Filter pseudo code. 26
3.3 Nomenclature of motion model parameters 27

4.1 Sensor comparison of distance. Accuracy figures are given according to
specification sheets . 40

5.1 Sensor Fusion with a Particle Filter example code 61

6.1 Distance Sensor Accuracy evaluation . 65
6.2 SLAM methods evaluation results ”Bicocca 2009-02-25b”, ATE 71
6.3 Sensor Fusion evaluation results ”Bicocca 2009-02-25b”, ATE 74

7.1 Filter algorithm comparison. Properties . 82
7.2 Filter algorithm comparison. Comments . 83

xiii

Chapter 1

Introduction

Contents

1.1 Motivation . 5

1.2 Overview . 5

’Everything that is new or uncommon raises a pleasure in the imagination,

because it fills the soul with an agreeable surprise, gratifies its curiosity, and

gives it an idea of which it was not before possessed.’, Joseph Addison.

(a) (b)

Figure 1.1: The DARPA Urban Challenge (2007), [12]: Two examples of autonomous
vehicles driving in traffic.

Mobile robots have become more and more present in our daily life. These helpers

clean our flat or mow the lawn while we are in the office. In some years, a machine may

be cooking your favourite dishes or a robot nanny is taking care of your children while

1

2 Chapter 1. Introduction

(a) (b) (c)

Figure 1.2: Fraunhofer-Institute IPA, Museum for Communication, [21]: Three entertain-
ment robots.

they are doing their homework. The content of this thesis, Simultaneous Localization

And Mapping (SLAM), is essential for all these tasks and many more: autonomous

navigation, path planning and obstacle avoidance. In the following some popular research

projects are described.

The DARPA Urban Challenge competitions have made it their goal to build

autonomous vehicles capable of driving in traffic, see Figure 1.1. Fraunhofer Institute

for Manufacturing Engineering and Automation (IPA) [21] are developing mobile

autonomous guides, see Figure 1.2. The three robots are guiding visitors in a

museum and provide additional audio-visual information. The success of these

applications depend highly on the accuracy and robustness of their SLAM implementation.

A robot system can be structured the following way: First of all, the hard-

ware needs to meet the requirements to solve a group of tasks, like exploring the

environment or picking up various objects. A driver separates the algorithmic layer from

the hardware layer, which means the same algorithm can be used for many different

actuators or sensors as long as they implement the same functionality. The algorithm

layer contains basic software modules to solve a group of tasks like Simultaneous

Localization And Mapping (SLAM), face recognition or object grasping. Finally, the

networking layer, on the top of this structure, connects different software modules from

3

the algorithmic layer, as shown in Figure 1.3.

Figure 1.3: Hierarchical robot model: A robust SLAM algorithm is the base for many
more complex tasks. The ambition of this work is to create indoor maps and discover
sensor technologies and algorithms.

Figure 1.4: Interaction between the map and the robot for SLAM. A good map is necessary
to compute the robot position, but only an accurate position estimate yields to a correct
map.

Simultaneous Localisation And Mapping (SLAM) describes the process of building a

map of an unknown environment and computing at the same time the robot position

with the constructed map. Both steps depend on each other. A good map is necessary

to compute the robot position, but only an accurate position estimate yields to a cor-

rect map, see Figure 1.4. This is often referred as the chicken or the egg causality dilemma.

4 Chapter 1. Introduction

Much research work on this topic has been contributed over the past

decades, see Section 2. Hugh Durrant-Whyte et al. [16] states that a solution to the

SLAM problem is the ’holy grail’ for the mobile robotics community. A robust method

would make a robot truly autonomous.

Despite considerable progress over the past decades, the SLAM problem is

not solved and some issues are still remaining. Existing SLAM methods are limited to

specialised robot platforms, small environments and certain sensor technologies. It is

mandatory to find solutions, which work for a large variety of robots without altering the

underlying concept. This is important to reuse an existing algorithm for a more general

class of mobile robots. Another issue is to build accurate and large maps of dynamic

environments. The methods should run in real time with the available memory, even for

large maps. Finally, it is desirable to solve the SLAM problem with low-cost sensors, like

sonars.

To find proper solutions to the above mentioned problems, different SLAM methodologies

are discussed and evaluated in this work. The GMapping grid SLAM algorithm is

compared with two feature based implementations. The first implementation uses corner

features, while the second method is based on edge information. Both implementations

are designed for laser range measurements. In contrast, grid SLAM algorithms

have also been successful applied to noisy sonar readings. Hereby, maps gener-

ated with a laser range finder, sonars and time of flight cameras are compared in Section 6.

Another problem is the evaluation of SLAM methods. Due to the lack of

ground truth data in the past, many authors evaluated their methods based on

qualitative impressions of the resulting maps. In this context, often large maps with

several loops were evaluated to prove the robustness and correctness. Although this

methodology is suitable to compare different approaches, it is hard to compare the

algorithms. Only a few weeks ago, indoor and outdoor SLAM datasets with ground truth

measurements have been published by The RawSeeds project [6]. This is the first effort

in this direction and will probably benchmark the results of the robotics community

in future. This master thesis is one of the first with quantitative comparable SLAM results.

1.1. Motivation 5

1.1 Motivation

It is an open question, which sensor technology suits well for state of the art SLAM

methods. Furthermore, it would also be exciting to known which sensor technologies can

be combined to enhance the map accuracy. Concerning these questions, this work has

two main ambitions. First, different SLAM methods for building large and accurate maps

are evaluated. This topic is settled in the algorithmic layer of Figure 1.3. The GMapping

grid SLAM algorithm is compared with two feature based implementations. The first

implementation uses corner features, while the second method extracts edges. Additionally

to the comparison of SLAM methods, an evaluation of state of the art sensor technologies

is given. SLAM is a complex task, because of large and dynamic environments, noisy

sensors or occlusions. Therefore, most methods are designed for highly accurate laser

range finders, which are relatively expensive. An ambition of this thesis is to evaluate

different sensor technologies with respect to accuracy and robustness. New consumer

household robots need to be cheap and are often equipped with noisy sensors. Hereby, a

static ground truth dataset from the RawSeeds [6] project is used to evaluate methodical

differences, while a small indoor dataset from our lab is applied to compare maps created

with different sensor technologies. The evaluated time-of-flight camera [24] is a rather new

sensor technology and as far as we know, nobody has tried to solve the SLAM problem

with it. Finally, we also consider a sensor fusion approach to combine the different sensor

technologies.

1.2 Overview

The thesis is structured as follows: Section 2 describes the recent work in the field of

mobile robotics for the SLAM problem. The theoretical background can be found in

Section 3. Properties of the evaluated sensor technologies are summarised in Section 4.

The general SLAM problem and realisation considerations are described in Section 5.

Section 6 considers the experiments done within this work. Finally, the work is concluded

with a summary and an outlook in Section 7.

Chapter 2

Related work

Contents

2.1 SLAM Methods . 7

2.2 Algorithms for SLAM . 9

2.3 Sensor Fusion Methods . 10

2.4 Evaluation Methods . 12

Simultaneous localisation and mapping (SLAM) has been studied for more than twenty

years and Hugh Durrant-Whyte et al. [16] states that the ’solution’ of the SLAM problem

has been one of the notable successes of the robotics community. The topic is still not

completed and reasons therefor are discussed in Section 5.

To understand the bandwidth of the developed approaches, a chronological description of

the progress is provided first in this chapter. Followed by a description of state of the

art SLAM algorithms. Because in this work a new sensor fusion approach is proposed,

existing sensor fusion techniques are discussed. Finally, we talk about evaluation methods

and existing ground truth datasets.

2.1 SLAM Methods

The statistical basis of the SLAM problem was first described by Smith et al. [47] and

Durrant-Whyte [15]. These key papers provide probabilistic estimation techniques for cor-

relations between features and robot poses. Furthermore, they have been the first, who

proposed methods to refine geometrical uncertainties with continuous observations. A suc-

cessive update process of the uncertainties, described by uncertainty ellipses is illustrated

in Figure 2.1.

7

8 Chapter 2. Related work

Figure 2.1: Landmark uncertainties from Smith et al. [47]: The successive update process
of the uncertainties is described by uncertainty ellipses. A new observation results in
decreasing uncertainties for all previously seen landmarks.

A key finding of their work is that there must be a high correlation between different map

features and that indeed these correlations are growing with successive observations.

Crowley [10] and Leonard et al. [34] proposed SLAM methods using line segments ex-

tracted from ultrasonic data. Other researchers like Vandorpe et al. [50] and Gonzalez et

al. [26] were using laser data instead. At the same time Ayache and Faugeras [3] developed

the earliest work in visual navigation and mapping.

A consistent solution to the SLAM problem would require a joint state vector with the

robot pose and all landmarks. This huge state vector needs to be updated after each

observation, which leads to a high computational effort.

Leonard et al. [33] tried to reduce computational effort by splitting the state vector into

local sub parts. This concept was later skipped, because in the year 1995, a break-through

came with the realisation that the SLAM problem is convergent and the huge state vector

is essential. The more the correlations between features grow, the better the solution is.

So far, the robot pose was described by a pose and a certainty, like the landmarks. Mur-

phy [38] introduced Particle Filters, which are in general discretised representations of

probability density functions. With Particle Filters the robot pose is represented by a set

of discrete states. In contrast to the previously used, feature based map representations,

Murphy proposed an occupancy grid map, which is a quantisation of the world in blocks

2.2. Algorithms for SLAM 9

or cells.

Later on, Montemerlo et al. [36] gave an extension to feature based maps (FastSLAM).

The map is estimated with a Kalman Filter, while the robot pose is represented by a Par-

ticle Filter. Montemerlo demonstrated that just a few features are sufficient to navigate

in a map with a size of several square kilometres, see Figure 2.2.

Figure 2.2: Outdoor FastSLAM evaluation from Montemerlo et al. [36] (2003): The yellow
path is the estimated path of the mobile robot. The blue dashed line represents the GPS
ground truth data. Features or landmarks extracted from visual data are illustrated by
yellow circles.

2.2 Algorithms for SLAM

The main advantage of a Particle Filter is the ability to represent multi modal probability

functions. Many authors like [18] , [29] and [30] use a combination of Particle Filters

and grid based map representations to address the SLAM problem with large maps under

dynamic conditions, see Figure 2.3, Figure 2.4 and Figure 2.5.

GMapping (see Figure 2.3) was developed by Grisetti et al. [29] and uses a Particle Filter

in combination with an occupancy grid. Hähnel et al. [31] published an algorithm called

GridSlam (see Figure 2.4) and Eliazar et al. [17] proposed a SLAM method called DP-

SLAM (see Figure 2.5). All of the three algorithms use a Particle Filter for the robot pose

10 Chapter 2. Related work

Figure 2.3: High quality indoor map, GMapping from Grisetti et al. [29] (2007): This in-
door map was created with the GMapping algorithm and 80 particles. The robot travelled
1.9km without losing the correct vehicle pose.

estimation and a grid based map representation. The minor differences exist in the way

they try to decrease the computational cost while maintaining a high level of robustness.

GMapping and GridSlam reduce the number of particles, while DP-SLAM works with sub

maps and an effective tree-based data structure.

These state of the art algorithms are freely available on the internet, see The OpenSLAM

Project [11]. The next section gives a review about sensor fusion techniques and sensor

comparison publications.

2.3 Sensor Fusion Methods

Two main types of sensor fusion techniques can be distinguished. A centralised sensor

fusion approach works on a single computer. Whereas, a decentralised method runs on a

distributed system with a team of robots. Only the centralised sensor fusion model is

considered in this thesis. For further information concerning the decentralised model, we

refer to the works of Rosencrantz et al. [44] and Makarenko et al. [35].

2.3. Sensor Fusion Methods 11

Figure 2.4: High quality indoor map, GridSlam from Hähnel et al. [31] (2003): This
indoor map was created with the GridSlam algorithm and 500 particles.

Figure 2.5: High quality indoor map, DP-SLAM 2.0 from Eliazar et al. [18] (2004): This
indoor map was created with the DP-SLAM 2.0 algorithm.

12 Chapter 2. Related work

It is simple to combine sensor data from the same type of sensor. For exam-

ple, the laser readings from two laser range finders (LRFs) can be fused if the pose of

each sensor is given. This technique is applied on the data of the two Sick LRFs from the

indoor datasets, obtained from the RawSeeds project [6]. One could name this approach

single modality sensor fusion, comparable to registration methods from the medical

image analysis field. The modality describes the image acquisition technique. (Computer

Tomography (CT), Magnetic Resonance (MR) ...).

In terms of this nomenclature, multi modality sensor fusion denotes the combination of

observations from two different types of sensor technology. Yang et al. [53] describe an

elegant way to cope with wrong laser measurements caused by mirrors or glass panes.

His approach and the method from Diosi [13] combine a laser range finder with sonar

readings.

Moravec H. P. [37] first published an occupancy grid based sensor fusion method, which

combines sonar data with features extracted from a stereo vision system. The reliability

of the grid map is increased by merging occupied cells of the stereo vision grid map and

the sonar grid map.

Castellanos and Tardos [7] describe a fusion of laser data and monocular vision data.

The corners, extracted with the vision system reduces the covariances of the previously

observed laser corners.

2.4 Evaluation Methods

This section describes evaluation strategies, especially for indoor datasets.

Due to the lack of ground truth data, many authors like [4], [29], [31] or [17] evaluated

their methods based on qualitative impressions of the resulting maps. In this context, of-

ten large maps with several loops were evaluated to prove the robustness and correctness.

Balaguer et al. [4] published an evaluation of simulation environments, and also a com-

parison of the algorithms GMapping, GridSlam and DP-SLAM. He states:

’The three algorithms seem to be equally and reasonably robust to noise in the

SICK laser.’

Sometimes a blue print of a building is available and can be used for the evaluation, see

Nguyen et al. [40]. But even in this case, every publication is evaluated with a different

dataset and a direct comparison is impossible. To overcome these issues, the The RawSeeds

2.4. Evaluation Methods 13

project was founded.

The RawSeeds project [6], funded under the European Union’s Sixth Framework Programme

(FP6), is the first effort to provide ground truth (GT) data to evaluate SLAM algorithms,

see Figure 2.6. The GT data is a fusion of stationary laser range finder distance measure-

ments and observations of a multi camera system. The final GT data uncertainty is less

than a few centimetres and enables a quantitative comparison of SLAM algorithms.

Figure 2.6: The RawSeeds project [6], is the first effort to provide ground truth data to
evaluate SLAM algorithms. http://www.rawseeds.org

http://www.rawseeds.org

Chapter 3

Theory and Background

Contents

3.1 Notation . 16

3.2 Probabilistic Filters . 16

3.3 Kalman Filter . 18

3.4 Particle Filter . 22

3.5 Rao-Blackwellised Particle Filter 24

3.6 Motion Models . 26

This chapter provides the theoretical basics, required to understand the content of this

master thesis. Different SLAM approaches are founded on different basic filter concepts,

which are explained in detail in this section.

Starting with a brief description of the notation, the mathematical basics of the Kalman

Filter, the Extended Kalman Filter, the Particle Filter and the Rao-Blackwellised Particle

Filter are reviewed.

There exist many more algorithms related to robotics and navigation, like the Unscented

Kalman Filter and the Information Filter for example, see [49], but the provided selection

is founded by the fact that our implementations rely on the Rao-Blackwellised Particle

Filter, which can be seen as a combination of Extended Kalman Filters and a Particle

Filter.

At the end of this section, two motion models are discussed in detail, namely the Particle

Motion Model and the Gaussian Probabilistic Motion Model. Motion models, describing

the kinematics of a mobile robot, play an important role for developing robust and fast

SLAM algorithms.

15

16 Chapter 3. Theory and Background

3.1 Notation

The notation is similar to the book of Thrun et al. [49]. Vectors are denoted by lower case

letters with subscripts (xt or zt for instance) and upper case letters are used for matrices

(H or K for example). Constants are indicated by lower case Greek letters, like α1 for a

motion model noise control parameter. Finally, scalars are denoted by lower case letters

without subscripts (the x coordinate of the robot pose for instance) .

A robot state at time step t is denoted by xt and, in the two dimensional case, it is a

vector consisting of a position x, y and a heading angle θ. For simplicity, it is assumed

that only one observation is made at each time step, which is denoted by zt.

In the description of filters, one often needs to distinguish between vectors before and after

the filter process. Therefore the a priori vectors are denoted by a minus as superscript

(x− for instance), and the a posteriori vector is denoted by x+ for this example.

At time step t, the filter estimate is denoted by x̃t. In contrast, the true state is xt.

The non-linear extension of a state xt, is denoted by x̂t. A superscript with brackets, x[i]
t

denotes one sample of a list Xt.

The proposed notation is used consistently throughout this work. Only in some special

cases a different notation is used, if a declaration is established in common literature (see

the coefficient Neff in Equation 3.32 for example).

3.2 Probabilistic Filters

What is filtering in principal? This is discussed next and the chapter concludes with a

practical example.

All algorithms discussed in this chapter are based on the Bayes Rule. The simplest time-

discrete example is denoted by Equation 3.1 for conditional probabilities.

P (A|B) =
P (A) · P (B|A)

P (B)
, (3.1)

where P (A|B) is the posterior probability, P (A) is the prior probability, P (B|A) is the

conditional probability of the random variable B and P (B) acts as a normalisation con-

stant. The simple example can be extended by an arbitrary conditional random variable

z and this results in:

P (A|B, z) =
P (A|z) · P (B|A, z)

P (B|z)
. (3.2)

3.2. Probabilistic Filters 17

We are interested in computing the probability P (xt|z1:t, u1:t), where x denotes the robot

state. In the two dimensional case, the vector x consists for example of a cartesian

coordinate and a heading angle. The set z1:t represents all observations and u1:t are

control commands. Control commands for a simple velocity motion model consist of a

translational velocity vt and a rotational velocity ωt. More complex odometry motion

models are discussed in Section 3.6.

At the current time step, we are interested in estimating the state xt with

the last state xt−1, the observation zt and the control input ut. Earlier states,

observations or control inputs do not provide additional information and this leads to

the simplification:

P (xt|z1:t, u1:t) = P (xt|xt−1, zt, ut). (3.3)

Two assumptions are made in computing xt. First, the states follow a first-order Markov

process, which means the current state depends only on the last state, P (xt|x1:t−1) =

P (xt|xt−1). Secondly, the current observation zt is independent of previous observations

z1:t−1. In the following, the mathematical derivation applying the Bayes Rule is shown:

P (xt|z1:t, u1:t) =
P (zt|xt, z1:t−1, u1:t) · P (xt|z1:t−1, u1:t)

P (zt|z1:t−1, u1:t)

=
P (zt|xt) · P (xt|z1:t−1, u1:t)

P (zt|z1:t−1, u1:t)
= η ∗ P (zt|xt) · P (xt|z1:t−1, u1:t),

where η = 1/P (zt|z1:t−1, u1:t) is a normalisation term, which can often be neglected, if

likelihoods are sufficient. The remaining two probabilistic terms are essential for filtering

and inference.

The probability P (zt|xt) is the prediction of an observation, known as Measurement

Model. Probability P (zt|z1:t−1, u1:t) represents the Motion or Transition Model and

implies knowledge about the robot kinematics. Further information can be found in

Chen’s publication [8] or in Thrun’s book [49].

As a practical example for a filtering process, imagine a person trying to

take a turn at a dangerous crossing. His view is occluded by some parking cars and

therefore, he can see the moving vehicles just for some seconds and has to guess when

18 Chapter 3. Theory and Background

the road is clear. This guessing or prediction step is one of many examples for a filter

process.

Based on the basic knowledge about Bayes filtering processes in mobile

robotics, the next section discusses the linear Kalman Filter.

3.3 Kalman Filter

In the year 1960, R. E. Kalman [32] proposed a novel recursive filter technique. He

provided an efficient solution to estimate the state of a static or dynamic process. This

filter can estimate the past, the present or the future state, even if parts of the model

are unknown. Many filtering algorithms, especially for navigation tasks are based on the

Kalman Filter.

Welch et al. [51] gives a detailed introduction of the Discrete Kalman Filter and to the

Extended Kalman Filter and he concludes with a simple intuitive example. In this work,

the same structure is followed. First the Discrete Kalman Filter is reviewed, followed by

the Extended Kalman Filter. The interested reader find an intuitive example in [51].

3.3.1 Discrete Kalman Filter

A Kalman Filter estimates an n dimensional state xt at time step t by applying the

stochastic differential Equation:

xt = A · xt−1 +B · ut−1 + wt−1, (3.4)

where the matrix A relates the state at the previous time step xt−1 to the current state

xt. B denotes the influence of the optional control input u to xt and wt−1 indicates the

Gaussian transition noise with zero-mean.

An observation zt is expressed by:

zt = H · xt + vt, (3.5)

where the system Jacobian H is calculated by the observation model and vt is a random

variable introducing zero mean Gaussian noise to the filter.

We define the a priori state x̃− to be the estimated state before the filter update and the

a posteriori state x̃+ to be the estimate state after the update step. The a priori filter

3.3. Kalman Filter 19

error is therefore e−t = xt − x̃−t , where xt denotes the true value and the corresponding

covariance is given by P−t = E[e−t · e
−T
t] (E indicates the expected value).

We are now able to describe a Kalman Filter, which estimates the a posteriori state x̃+
t

with the a priori state x̃−t and a weighted difference between the current observation zt

and the predicted observation H · x̃−t :

x̃+
t = x̃−t +K · (zt −H · x̃−t), (3.6)

where K is the Kalman Gain, which minimises the a posteriori error covariance P+
t . The

term zt−H · x̃−t is called residual or measurement innovation and expresses the difference

between the predicted and the actual measurement. There are various ways to determine

the Kalman Gain. A common definition of K is:

K =
P−t H

T

HP−t H
T +R

. (3.7)

If the observation error covariance R decreases, the actual observation zt is treated to be

more accurate than the prediction H · x̃−t . On the other hand, a smaller a priori error

covariance P−t leads to a less important actual measurement zt and weights the prediction

more.

In summary, a discrete recursive Kalman Filter consists of two alternating steps. The

next state and the new error covariance matrix P−t is computed in the prediction step:

x̃−t = A · x̃+
t−1 +B · ut−1 (3.8)

P−t = A · P+
t−1 ·A

T +Q, (3.9)

where Q is the transition noise variance of the random variable w.

In the correction or update step, the Kalman Gain K is computed as well as the a posteriori

state x̃+
t and the a posteriori error covariance P+

t :

Kt =
P−t H

T

HP−t H
T +R

(3.10)

x̃+
t = x̃−t +K · (zt −H · x̃−t) (3.11)

P+
t = (I −Kt ·H) · P−t . (3.12)

Note that Equations (3.10) and (3.11) are the same as (3.7) and 3.8 and they are listed

here for completeness.

20 Chapter 3. Theory and Background

The prediction and the correction step of the Kalman Filter are performed alternating.

The filter is very popular because of the computational efficiency, for small state matrices

A, and the simple implementation.

Regarding the computational complexity, the Kalman Filter is quite efficient. The most

time consuming part is the matrix inversion in Equation 3.10, (HP−t H
T +R)−1. State of

the art algorithms come up with a complexity of approximately O(d2.4), where the matrix

is of the size d x d.

One problem of the Kalman Filter is the initial choice of the parameters. For further

information the reader is refered to the book of Grewal et al. [28]. A mathematical

derivation of the Kalman Filter based on the Equation 3.4 can be found in the book of

Thrun et al. [49].

The Extended Kalman Filter, considered in the next section, is able to cover non-linear

models, which is important because often the motion kinematics of mobile robots are

non-linear problems.

3.3.2 Extended Kalman Filter

In contrast to the Discrete Kalman Filter, the extended variant is able to model a non-

linear system, by extending the basic Equations (3.4) and (3.5). A Taylor series expansion

is used, which is indicated by the functions f and h. The function f represents the system

model and function h the measurement model:

x̂t = f(xt−1, ut−1) + wt−1 (3.13)

ẑt = h(xt) + vt. (3.14)

The full recursive estimation equations are then:

xt ≈ x̂t +A · (xt−1 − x̃+
t−1) +W · wt−1 (3.15)

zt ≈ ẑt +H · (xt − x̂t) + V · vt, (3.16)

where ≈ denotes the approximation of the true state xt and the true observation zt. The

Jacobian matrices A and W are partial derivatives of the transition function f (3.13),

with respect to the state x respectively to the random variable w. H and V are partial

3.3. Kalman Filter 21

derivatives of the measurement function h (3.14), with regard to x and v respectively:

A[i, j] =
∂f [i]
∂x[j]

(x̃+
t−1, ut−1) (3.17)

W [i, j] =
∂f [i]
∂w[j]

(x̃+
t−1, ut−1) (3.18)

H[i, j] =
∂h[i]
∂x[j]

(x̂t) (3.19)

V [i, j] =
∂h[i]
∂v[j]

(x̂t). (3.20)

All Jacobian matrices A,W,H and V are time dependent. The subscript t was omitted to

keep the formulas readable.

The following two equations are evaluated during the update or prediction step. In con-

trast to the Discrete Kalman Filter (3.8), the covariance matrix Q is multiplied with the

Jacobian W :

x̃−t = f(xt−1, ut−1) + wt−1 (3.21)

P−t = A · P+
t−1 ·A

T +W ·Qt−1 ·W T
t . (3.22)

The correction process is described by the following Equations, which are very similar

to (3.10), (3.11) and (3.12). The measurement noise covariance R is multiplied with the

observation Jacobian V :

Kt =
P−t H

T

HP−t H
T + V ·R · V T

(3.23)

x̃+
t = x̃−t +K · (zt − h(x̃−t)) (3.24)

P+
t = (I −Kt ·H) · P−t . (3.25)

Again, matrices H and V are time dependent. A more detailed mathematical derivation

of the Extended Kalman Filter based on (3.4) can be found in the book of Thrun et al.

[49].

Two drawbacks remain with the Extended Kalman Filter. First, the filter can model only

unimodal, Gaussian probability distributions of x and the filter diverges easily in the case

of strong non-linearities in the state transitions [16].

In contrast, the Particle Filter, explained in the following section, is able to model multi-

modal distributions.

22 Chapter 3. Theory and Background

3.4 Particle Filter

A Particle Filter approximates an optimal Bayesian filter [27] by representing the robot

position through an arbitrary, multimodal probability distribution, using a set of particles:

Xt = {x[1]
t , x

[2]
t , x

[3]
t , ..., x

[M]
t }, (3.26)

where M is the number of particles. A single state, or one particle, x[i]
t is associated with

an importance factor or weight:

< x
[i]
t , w

[i]
t >= P (x[i]

t |z1:t, u1:t), (3.27)

The weight reflects the probability of the particle and is updated after each new observa-

tion:

P (xt|z1:t, u1:t) = η ∗ P (zt|xt) ∗ P (xt|z1:t−1, u1:t). (3.28)

Based on (3.28), the a priori estimate P (xt | z1:t−1, u1:t) is recursively computed by:

P (xt | z1:t−1, u1:t) =
∫
P (xt | xt−1, z1:t−1, u1:t) · P (xt−1 | z1:t−1, u1:t))dxt−1 (3.29)

=
∫
P (xt | xt−1, ut) · P (xt−1 | z1:t−1, u1:t))dxt−1, (3.30)

which is valid, because previous observations and control inputs do not provide any addi-

tional information if xt−1 is known: P (xt | xt−1, z1:t−1, u1:t) = P (xt | xt−1, ut).

The idea behind a Particle Filter is that the probability given by (3.28) can be approxi-

mated by a set of particles (3.26), where a single state is approximated by:

x
[m]
t ≈ P (xt|z1:t, u1:t). (3.31)

The Particle Filter constructs the actual belief of the state x in a recursive way, which

implies that the current particle set Xt (3.26) is recursively calculated from Xt−1. In Table

3.1 the most basic variant of a Particle Filter is illustrated. The temporary variable X̄t

holds a list of particles and their correspondent likelihood, denoted by the weights wt. The

third line shows the generation of a hypothetical state x[m]
t based on the previous particle

x
[m]
t−1 and the control input ut. This is done by the transition or motion model, which is

discussed in Chapter 3.6.

The probability of a sampled hypothesis is proportional to the measurement or observa-

3.4. Particle Filter 23

Xt = filter(Xt−1, ut, zt)
1: X̄t = Xt = 0
2: for m = 1 to M
3: sample x[m]

t ∼ P (xt | ut, x[m]
t−1)

4: w
[m]
t = P (zt | x[m]

t)
5: X̄t = X̄t+ < x

[m]
t , w

[m]
t >

6: endfor

7: for m = 1 to M
8: draw i with probability ∝ w[m]

t from X̄t

9: add x
[i]
t to Xt

10: endfor
11: return Xt

Table 3.1: Particle Filter pseudo code

tion probability P (zt | x[m]
t). In literature, wt is often referred to as the importance factor.

For a navigation task in robotics, the observation probability is based on the difference

between the current observation and the predicted observation according to the stored

map of the sampled particle x[m]
t .

Lines seven to ten in Table 3.1 describe the resampling step. This step creates a new

particle set Xt out of the current one X̄t to reduce the variance of the underlying distri-

bution. Particles with a higher weight will appear more often in the new list than ones

with lower likelihoods. In other words, good hypotheses of robot poses will remain in the

non-parametric representation of the state, while others vanish.

Several resampling techniques are known (e. g. Multinomial Resampling, Residual Resam-

pling, Stratified Resampling and Systematic Resampling). For detailed information and

implementation issues, the reader is referred to [49] and a resampling strategy comparison

was published by Douc et al. [14].

Particle Filters are powerful tools and used for many filtering, tracking and navigation

tasks, but sometimes the performance is lower compared to Kalman Filters. Usually,

Kalman Filters are preferred for small state matrices and small non-linearities, which is

not the case for localisation and mapping tasks with mobile robots.

The computational effort is proportional to the number of particles and the most time

consuming part is the resampling step (lines seven to ten in Table 3.1), because this step

creates copies of the particles to re-use. For navigation tasks with mobile robots, it is not

necessary to resample if the robot stops or if no observations are made. Other methods like

24 Chapter 3. Theory and Background

GMapping [29] or DP-SLAM [17] resample only, if the particle weight variance is above a

certain threshold. Equation 3.32 describes a measure for the particle weight variance:

Neff = 1/
M∑
m=1

[(w[m]
t)2]. (3.32)

The coefficient Neff is maximal for equal weights and resampling would not reduce the

variance of the represented probability distribution.

Resampling could also be dangerous and could lead to the deprivation or depletion prob-

lem. The deprivation problem describes the case if no particle exists in the vicinity of the

correct state. This problem is triggered by the resampling step and it may happen that

even good samples are replaced and the final particle distribution loses track of the correct

state. Mostly, the problem occurs when M is too small.

3.5 Rao-Blackwellised Particle Filter

As stated at the beginning of this chapter, the Rao-Blackwellised Particle Filter can be

seen as a combination of a Particle Filter and an Extended Kalman Filter.

The created map of the environment consists of features, which could be corners or

edges for instance. A Particle Filter models the robot pose, and each map feature is

represented by an Extended Kalman Filter. This leads to an efficient solution of the

SLAM problem and is also referred as FastSLAM [49]. The Kalman Filter needs to

update the full system Jacobian (3.5), while an update here affects only one feature.

Therefore, the Extended Kalman Filter scales between linearly and quadratically with

the number of dimensions of the estimation problem, while the Particle Filter scales

exponentially. A more detailed discussion can be found in Section 7.

Each particle represents one hypothesis of a robot pose and contains its own

set of map features describing the map, see (3.33). A map feature position is denoted by

µ and the certainty is denoted by Σ.

Note that the covariance of the Extended Kalman Filter P−t (3.22) is denoted by Σ[i]
n,t−1

for one particle (in Particle Filter notation). The mean is labelled with µn,t in contrast

to x̃+
t in (3.24):

x
[i]
t =< [(x, y, θ)T][i], µ

[i]
1,t,Σ

[i]
1,t, µ

[i]
2,t,Σ

[i]
2,t, ..., µ

[i]
N,t,Σ

[i]
N,t >, (3.33)

3.5. Rao-Blackwellised Particle Filter 25

where the vector (x, y, θ)T represents one robot pose hypothesis, i is the particle index

and t denotes the point in time. The list of µ’s and Σ’s represents the map.

Table 3.2 illustrates the Rao-Blackwellised Particle Filter. Note the similarity between

this algorithm and the Particle Filter example (Table 3.1).

The correspondence variables are denoted with ct and are computed by a data association

method. The data association process is responsible to correlate observations with a stored

map. In the case of a feature map (see Section 5.2), a simple matching strategy could be

a nearest neighbour approach with a defined distance measure. More details about data

association strategies can be found in the book of Thrun et al. [49].

For simplicity it was assumed that only one observation zt was measured at each point

in time t. The third line shows the generation of a hypothetical state x[m]
t based on the

previous particle x[m]
t−1 and the control input ut.

Lines 10 to 17 describe the Extended Kalman Filter map update procedure for each land-

mark or feature.

For new features, only the parameters µ[m]
j,t and Σ[m]

j,t , representing a map feature, are ini-

tialised. This is shown in lines 6 to 8. The function h−1 denotes a transformation from a

local (robot) frame to a global (world) coordinate system and H is the Jacobian of h−1

with respect to the local observation zt.

The ’else’ path describes the necessary calculations for re-observed features. Vector z̃ de-

notes the measurement prediction and is used to update the mean µ
[m]
j,t in line 14 and to

calculate the importance factor w[m] (line 16). The transformation from a world frame to

a local coordinate is performed by the function h. Matrix H in Line 11 of Table 3.2 is the

corresponding Jacobian, with respect to the global map feature µ[m]
j,t .

The resampling procedure is illustrated by lines 20 to 24 and we refer to the description

in the Particle Filter chapter 3.4.

The Rao-Blackwellised Particle Filter is one of the easiest SLAM algorithms to imple-

ment and combines the advantages of a Particle filter and Extended Kalman Filters. The

interested reader will find a more detailed description and a mathematical derivation in

the book of Thrun et al. [49]. There, an optimised variant of this algorithm, referred

as FastSLAM 2.0, is also discussed. This optimisation includes a different distribution

x
[m]
t ∼ P (xt | ut, x[m]

t−1, z1:t), which takes the current measurement into account, see line 3

in Table 3.2.

26 Chapter 3. Theory and Background

Xt = filter(Xt−1, ut, zt, ct)
1: X̄t = Xt = 0
2: for m = 1 to M
3: sample x[m]

t ∼ P (xt | ut, x[m]
t−1)

4: j = ct
5: if feature j never seen before
6: µ

[m]
j,t = h−1(zt, x

[m]
t)

7: H = h−1′(x[m]
t , µ

[m]
j,t)

8: Σ[m]
j,t = HQtH

T

9: else
10: z̃ = h(µ[m]

j,t−1, x
[m]
t)

11: H = h
′
(x[m]
t , µ

[m]
j,t)

12: Q = HΣ[m]
j,t−1H

T +Qt

13: K = Σ[m]
j,t−1H

TQ−1

14: µ
[m]
j,t = µ

[m]
j,t−1 +K(zt − z̃)

15: Σ[m]
j,t = (I −KH)Σ[m]

j,t−1

16: w[m] = 1√
|2πQ|

exp{−1
2(zt − z̃)TQ−1(zt − z̃)}

17: endif

18: X̄t = X̄t+ < x
[m]
t , w

[m]
t >

19: endfor

20: for m = 1 to M
21: draw i with probability ∝ w[m]

t from X̄t

22: add x
[i]
t to Xt

23: endfor
24: return Xt

Table 3.2: Rao-Blackwellised Particle Filter pseudo code.

3.6 Motion Models

Motion models describe the kinematics of a mobile robot and play an important role for

developing robust and fast SLAM algorithms.

For a Rao-Blackwellised Particle Filter for instance, only a wise population of new particles

ensure a good estimation of the real pose. Improper motion models need many more

particles to cover all possible robot states and finally, the computational complexity grows

with the number of particles.

3.6. Motion Models 27

In the two dimensional case, three parameters are used to describe the state of a mobile

robot (x, y and the heading or bearing direction θ). For robots operating in the three

dimensional space, six parameters (x, y, z, roll, pitch and yaw angle) are necessary. This

section considers only the 2D case and all models describe kinematics of two wheeled robots

with differential drives. Thrun et al. [49] distinguishes between velocity and odometry

motion models. The two models analysed in this chapter are odometry based and the

interested reader will find a good introduction to velocity models in [49].

Introduction

A probabilistic motion model describes the transition between the previous (xt−1) and the

current robot pose (xt) and can be expressed by the conditional density:

p(xt|ut, xt−1), (3.34)

where parameter ut denotes the motion commands. The used nomenclature for the motion

models is summarised in Table 3.3:

Parameter Description
x̄t−1 = (x̄, ȳ, θ̄) odometry pose of the previous state

x̄t = (x̄′, ȳ′, θ̄′) odometry pose of the current state

xt−1 = (x, y, θ) particle estimate of the previous state

xt = (x
′
, y
′
, θ
′
) modified or moved pose estimate

x̄t − x̄t−1 = (δx̄, δȳ, δθ̄) relative odometry movement

Table 3.3: Nomenclature of motion model parameters

The models should be able to deal with the following odometry error sources:

• different tire pressures (in general: different wheel diameters)

• ground unevenness

• inaccuracy of the wheel attachment

• drift.

28 Chapter 3. Theory and Background

Authors like Fulgenzi et al. [22] often do not mention which motion model they use. In

many cases the motion model is neglected and each robot pose is simply shifted by the

distance travelled. Afterwards, the bearing angle is corrected and finally Gaussian noise is

added to model odometry errors. This simplified model linearises the true robot motion.

The rotation is performed before the translation and finally the heading angle is updated.

The model is only valid if rotation and translation are performed independently, which is

in reality hardly ever the case. The linearisation is still useful if the odometry updates

arrive within small time intervals.

In the next two sections, the Particle Motion Model from Thrun et al. [49] and the

Gaussian Probabilistic Motion Model from Eliazar et al. [19] are explained. A discussion

of these two models is given in Section 7.2.

Particle Motion Model

The motion model described by Thrun et al. [49] consists of three parameters (δrot1 , δrot2 ,

δtrans), see Figure 3.1. Two parameters denote a pre- and a post-rotation, whereas δtrans
describes the translational part. After the last pose xt−1 is moved to the current position

xt, the bearing angle is updated. The following equations describe the motion model

update process:

x
′

= x+ δtrans · cos(θ + δrot1) (3.35)

y
′

= y + δtrans · sin(θ + δrot1) (3.36)

θ
′

= (θ + δrot1 + δrot2) mod 2π. (3.37)

Zero mean Gaussian noise is added to the parameters δrot1 , δrot2 and δtrans, to model

odometry errors:

σrot1 = α1 · |δrot1 |+ α2 · δtrans (3.38)

σrot2 = α1 · |δrot2 |+ α2 · δtrans (3.39)

σtrans = α4 · (|δrot1 |+ |δrot2 |) + α3 · δtrans. (3.40)

Gaussian Probabilistic Motion Model

Eliazar et al. [19] introduce a new parameter C, modelling an orthogonal robot shift. In

Figure 3.2 the sequence of operations for the transition is shown. The distance travelled

is labelled with D, and T denotes the relative angle δθ̄ between the previous and the

3.6. Motion Models 29

Figure 3.1: Particle Motion Model: The model consists of three parameters (δrot1 , δrot2 ,
δtrans). Two parameters are for a pre- and post rotation and one parameter is the trans-
lational part. First the last pose xt−1 is moved to the current position xt then the bearing
angle is updated.

current robot pose. First, the pose xt−1 is rotated by T/2 and then translated with D.

The parameter C approximates a drift along the orthogonal direction. This drift cannot

be modelled with the Particle Motion Model. The mean of C is usually zero because

on odometry sensor is unable to measure the drift. The following Equations denote the

odometry update rules:

x
′

= x+D · cos(θ +
T

2
) + C · cos(θ +

T + π

2
) (3.41)

y
′

= y +D · sin(θ +
T

2
) + C · sin(θ +

T + π

2
) (3.42)

θ
′

= (θ + T) mod 2π. (3.43)

Like for the Particle Motion Model, the added noise follows a zero mean Gaussian distri-

bution:

σD = α1 ·D + α4 · |T | (3.44)

30 Chapter 3. Theory and Background

Figure 3.2: Gaussian Probabilistic Motion Model: The distance travelled is labelled with
D and T denotes the relative angle δθ̄ between the previous and the current robot pose.
First the pose xt−1 is rotated by T/2 and then translated with D. Now the new parameter
C approximates a drift along the orthogonal direction.

σC = transvarC ·D + rotvarC · |T | (3.45)

σT = α3 · |T |+ α2 ·D. (3.46)

The motion models discussed in this section describe different motion transition sequences.

In Section 7.2, the differences are discussed.

Chapter 4

Sensor Technologies

Contents

4.1 Introduction . 32

4.2 Sonar . 32

4.3 Laser Range Finder . 34

4.4 Time of Flight Camera . 37

Simultaneous Localisation and Mapping (SLAM) algorithms estimate the actual robot

pose based on observations of the environment. These observations are gathered by sen-

sors and could be distance measurements, camera images, radio frequency identification

(RFID) signals, etc.

The robustness and accuracy of SLAM methods is highly related to the sensor technology

used. This is the motivation for this chapter, which describes three sensor technologies

with respect to their measuring characteristics and their performance. We have chosen

sonars, laser range finder and time of flight cameras because they are all distance sensors,

which allows a comparison, and their popularity in mobile robotics. The description is a

brief introduction and may not be seen as a detailed physical description of the hardware.

More details about sensors in mobile robotics can be found in the book of Everett [20]

and an evaluation of the sensor accuracy can be found in Section 6.1. Examples of sensor

observations, made in a typical office like environment, can be found in the Appendix

Section D.

31

32 Chapter 4. Sensor Technologies

4.1 Introduction

The measuring principle of the described sensors is the same and is based on the time

of flight method. First, a signal is emitted from the sensor. This signal is reflected by

an object and received again. The sensor device measures the time between the signal

emission and the signal reception. This principle can also be found in nature. Dolphins

use ultrasonic waves the locate objects under water, while bats are able to navigate at

night. The mathematical description of the time of flight principle is denoted by:

d = c · t, (4.1)

where d denotes the distance travelled (usually round-trip), c expresses the speed of wave

propagation and the time of flight is labelled with t.

In the following, sonar sensors, laser range finder and time of flight cameras

are described with respect to their measuring characteristics and their problems. At the

end of this chapter, we conclude with a sensor feature comparison.

4.2 Sonar

Sonar (Sound Navigation and Ranging) sensors were chosen because of their popularity

and the low costs. The measuring accuracy and quality is low compared to a laser range

finder. Common ultrasonic transducers have an operating range between 15 cm and 5

m and have a variance of up to 20 cm per meter. According to specification sheets 10

observations per second are typical for common sonars. In recent years, many researchers

like Pandey et al. [42] or Schröter et al. [45] address the SLAM problem with sonar sensors

and large maps. This is challenging because of the wide cone shaped wave propagation

beam of a sonar.

Measuring Characteristics

An ultrasonic sensor transmits a sound wave and measures the time until the reflected

wave is received, see Figure 4.1. The detection threshold of the receiving device is in-

creased during the measurement, because of the attenuation of the signal strength with

increasing distance. When the reflected signal strength exceeds the detection threshold,

the receiver is triggered and the distance is evaluated.

4.2. Sonar 33

Figure 4.1: Ultrasonic transducer measuring principle, Stiegwart ETH Zürich [46]: The
first row shows an emitted burst and the last row indicates the increasing sensitivity of
the receiving device. When the reflected signal strength exceeds a threshold, the receiver
is triggered and the distance is evaluated.

Figure 4.2: Sonar belt from ActivMedia’s PeopleBot [1]: The transducers of the sonar belt
are individually activated by a multiplexer.

In a sonar belt, see Figure 4.2, only one transducer is active at the same time (multiplex-

ing). Without multiplexing, all sensors of the belt would measure a response simultane-

ously. This is one of the reasons for the low response time compared to a laser range

finder. The response time or measurement interval is important, because frequent map

updates increases the SLAM algorithm robustness.

34 Chapter 4. Sensor Technologies

Problems

Incoming sonar beams could be misinterpreted because of reflections caused by low

impact beam angles, noise and maximum range measurements, see Figure 4.3. Any

obstacle in the field of view (FOV) of an ultrasonic transducer triggers the distance

measuring system. The real distance is often longer than measured. On the contrary,

maximum range measurements occur when the obstacle or the wall is out of range.

The next section describes the more accurate laser range finder technology.

Most problems of sonar sensors are caused by the wide cone shaped sound propagation.

In contrast, the light beam of a laser range finder is a sharp ray.

Figure 4.3: Typical sonar measurement errors, Gaurav S. Sukhatme [48]: Sonar sensors
have a limited range (approximately 5m) and are very noisy. Most errors arise because of
the cone-shaped wave propagation.

4.3 Laser Range Finder

Laser range finders are the most popular sensors for navigation and map building tasks in

the robotics community. They can have a range up to 200m, a resolution as low as 0.1◦ and

an accuracy of less than 1 cm per meter. Examples are the Sick LMS 200 ∗, Ibeo ALASCA

XT † or the cheap HOKUYO URG-04LX ‡, see Figure 4.3. The high accuracy and the

big FOV are the main advantages compared to other sensor technologies. Drawbacks are

the energy consumption and the high costs compared to sonar sensors. According to the

specification sheets, the measurement interval is between 5 and 10 observations per second.

∗http://www.sick.com
†http://www.ibeo-as.com
‡http://www.hokuyo-aut.jp

4.3. Laser Range Finder 35

(a) (b) (c)

Figure 4.4: Laser Range Finder samples: The Sick LMS 200 laser scanner (a) is very
accurate and often used for industrial tasks. This applies also for the Ibeo ALASCA XT
sensor (b), which will be used for obstacle detection in cars. The HOKUYO URG-04LX
(c) is the cheapest and only used for indoor tasks.

Measuring Characteristics

The sensor has a rotating mirror which reflects the emitting laser beam. The incoming

beam is again reflected by the mirror to a lens and then measured by a photo receiver

device, see Figure 4.5. The rotating mirror and the housing is often the restricting factor

for the field of view. Sensor Intelligence§ has recently introduced a 3D sensor developed

for the automotive industry, see Figure 4.6. This sensor uses the same principle like the

one in Figure 4.5, but consists of four parallel laser diodes and achieves a range of 200m.

The horizontal field of view is 240◦ and the vertical 3.2◦.

Problems

Since the laser range finder works with light, the main problems are mirrors and windows,

see Figure 4.7. The measurement fails, if the beam is not reflected. Therefore, Yang et

al. [53] describes a method to combine sonar measurements with laser scans to overcome

these issues.

The laser range finder is a pure 2D sensor. Recent SLAM publications, see Section 2,

discuss the generation of 3D maps with rotated laser range finders. First, the sensor is

rotated by a motor and thereafter, the distances are measured. Since the rotation and the
§http://www.sick.com

36 Chapter 4. Sensor Technologies

Figure 4.5: Laser range finder measuring principle, Siegwart ETH Zürich [46]: This prin-
ciple works with a rotating mirror which reflects the emitting laser beam. The incoming
beam is again projected by the mirror to a lens and then measured by a photo receiver
device.

Figure 4.6: 3D Laser range finder measuring principle, IBEO-Alasca XT: This sensor uses
the same principle like the one in Figure 4.5, but consists of four parallel working laser
diodes and achieves a range of 200m. The horizontal field of view is 240◦ and the vertical
3.2◦.

4.4. Time of Flight Camera 37

scan takes some time, the mobile robot may not drive fast or even needs to stop for a new

measurement. Furthermore, the rotation of the device is error prone.

In the following, a time of flight camera is introduced, which directly generates a 3D

distance image without any mechanical rotating parts.

Figure 4.7: Laser range finder problems with window panes, Yang et al. [53]: Laser range
finders have problems with mirrors and windows.

4.4 Time of Flight Camera

A time of flight (TOF) camera is a promising 3D sensor, which creates a contrast

and a depth image simultaneously, see Figure 4.9. This sensor can be used for many

applications, like object detection in a storehouse, where a depth sensor is mounted on a

fork truck, see Figure 4.4 (b). In this work, a TOF camera is used to address the SLAM

problem.

TOF cameras are very fast (up to 60 fps) compared to the previously dis-

cussed technologies, which have measurement intervals of about 10 fps. Burak et al. [25]

state that their camera has a depth resolution of a few millimetres, dependent on the

distance and the amount of reflected light of the target object. An accuracy evaluation

of a TOF camera from PMDTec can be found in Section 6.1.

Despite these advantages, the image resolution is low and the calibration step tends to

be challenging. Another drawback to address the SLAM problem with current TOF

cameras is the small field of view (FOV). For the camera from PMDTec, see Figure 4.4

(a), the FOV is in the order of 40◦ horizontally and 30◦ vertically. Multiple cameras

could cover a bigger FOV, but this is still an open issue because of light interferences.

The maximum measurement range is for this camera 7.5 metres and restricts the usage

for indoor SLAM problems. Furthermore, sun light causes wrong measurements. This

38 Chapter 4. Sensor Technologies

can be reviewed in the experimental Section 6.1. Because of these issues, the TOF

camera is often used as a helping sensor for obstacle avoidance and not for SLAM.

(a) (b)

Figure 4.8: PMDTechnologies GmbH [24] time of flight sensor: (a) represents the current
PMD[Vision] R© O3 Sensor and (b) illustrates one example application, where a depth
sensor is mounted on a fork truck.

Figure 4.9: Time of flight camera depth images from PMDTec [24]: Depth image on the
left and intensity image on the right.

Measuring Characteristics

A TOF camera consists of a modulated light source (LED or laser diode), a CMOS or

CCD pixel array and an optical system to focus the incoming light onto the sensor. The

phase shift between the emitted light and the received light is calculated for each pixel

simultaneously. This is why the sensor is relatively fast compared to other technologies,

4.4. Time of Flight Camera 39

Figure 4.10: Time of flight camera measuring principle [24]: A1 to A4 denotes four ampli-
tude values sampled with constant sample time. These four values are used to calculate
the phase shift between the emitted and the received light. a denotes the received signal
amplitude and b represents the pixel gray value.

like a laser range finder. Equation 4.2 denotes the calculation step for the distance to the

target object. The phase shift φ can be calculated from four amplitude values:

d =
c · φ

4 · π · fm
, (4.2)

where c is the speed of light, φ is the measured phase shift and fm is the modulation

frequency of the emitted light:

φ = arctan(
A1 −A3

A2 −A4
), (4.3)

where A1 to A4 denotes four amplitude values sampled at constant time intervals, see

Figure 4.10.

The maximum sensor range is given by the modulation frequency fm and the speed of

light c:

dmax =
c

2 · fm
. (4.4)

For a more detailed description we refer to [24] and [25].

40 Chapter 4. Sensor Technologies

Problems

The problem with recent TOF cameras is the limited FOV. This issue is addressed in

the evaluation part of this work in Section 6. The 3D sensor used (PMD[Vision] R© O3

from PMDTec [24]) has a distance variance of approximately 10 cm per meter, dependent

on the target distance and the amount of reflected light. The reflection coefficient of the

target object plays an important role regarding the measurement accuracy. Similar to

laser range finders, window panes and mirrors are crucial factors. Finally, the camera

calibration tends to be difficult because of the low sensor resolution (64x48 pixel for a

PMD[Vision] R© O3).

Concluding, a comparison highlights the main differences according to information ob-

tained from specification sheets.

Comparison

The robustness and the accuracy of SLAM algorithms depend on many sensor features.

Most important are the field of view (FOV), the observation interval (speed), the mea-

surement accuracy and the sensor range, see Table 4.1 for specification sheet information.

Sonars and laser range finder are pure 2D sensors. In contrast, a TOF camera generates

3D depth images of the scene.

Sensor name FOV Speed Accuracy per m Range Price
PeopleBot Sonar belt 360◦ 100 ms 20 cm 5 m 300 euros
Sick LMS 200 180◦ 200 ms 1 cm 30 m 4500 euros
HOKUYO URG-04LX 240◦ 100 ms 5 cm 4 m 900 euros
PMD[Vision] R© O3 40◦ 130 ms 10 cm 7m 1800 euros

Table 4.1: Sensor comparison of distance. Accuracy figures are given according to speci-
fication sheets

The sensor technologies discussed in this chapter are evaluated in the experimental Section

6.

Chapter 5

Simultaneous Localisation and

Mapping

Contents

5.1 Introduction . 42

5.2 The SLAM Problem . 44

5.3 SLAM Methodologies . 48

5.4 Sensor Fusion . 60

5.5 Conclusion . 60

Simultaneous localisation and mapping (SLAM) is an essential task in robotics. The

knowledge of the environment and the robot pose is mandatory for a mobile vehicle to

navigate autonomously.

A brief introduction and a description about the general nature of the SLAM problem is

given first to understand the difficulties. The strengths and weaknesses of state of the art

solutions are discussed and a categorisation based on pose estimation techniques and map

representations is introduced.

Furthermore, the SLAM methods used in this work are described, including the mathemat-

ical background to implement the algorithms. A simple sensor fusion approach is proposed

to increase robustness. It is possible to merge different types of SLAM algorithms, like a

feature based approach and an occupancy grid SLAM method, or to fuse different sensor

technologies. For instance, sonar readings can balance the sensitivity of laser range finders

to window panes or mirrors. Finally, a conclusion discusses the proposed approaches.

41

42 Chapter 5. Simultaneous Localisation and Mapping

5.1 Introduction

Map building and localisation is essential for all these tasks and many more: autonomous

navigation, path planning and obstacle avoidance.

Simultaneous Localisation and Mapping (SLAM) describes the process of building a map

of an unknown environment and computing at the same time the robot position with

the constructed map, see Chapter 1. Both steps depend on each other. A good map is

necessary to compute the robot position and on the other hand just an accurate position

estimate yields to a correct map.

Much research work on this topic has been undertaken over the past decades,

see Section 2. Hugh Durrant-Whyte et al. [16] states that a solution to the SLAM

problem is the ’holy grail’ for the mobile robotics community. A robust method would

make a robot truly autonomous. Today, several SLAM algorithms are available on the

internet for science research. State of the art methods are discussed in Section 3.

Despite considerable progress over the past decades, the SLAM problem is not solved and

some issues are still remaining. Existing SLAM methods are limited to specialised robot

platforms, small environments and certain sensor technologies. It is mandatory to find ro-

bust SLAM solutions, which work for a large variety of robots without altering the model.

This is important to reuse an existing algorithm for a more general class of mobile robots.

Another issue is to build accurate, large maps of dynamic environments. The methods

should run in real time and need to get by with the available memory, even for large

maps. Finally, it is desirable to solve the SLAM problem with low-cost sensors, like sonars.

To find proper solutions to the above mentioned problems, different SLAM

methodologies are discussed here and an evaluation is given in Section 6. A SLAM

algorithm consists of two alternating steps. The prediction, or motion model, determines

a new robot pose from the previous pose, possibly taking motion sensor readings as input.

Inertial measurement units (IMU) or global positioning systems (GPS) are commonly

used. The update, or observation model, corrects the predicted robot pose based on

observations of the environment. Sensors like laser range finders, stereo cameras, or time

of flight cameras are used to create a map, which could be an occupancy grid map, a

feature map or a topological map. All SLAM methodologies discussed in this work rely

on the same basic concept, illustrated in Figure 5.1.

5.1. Introduction 43

Figure 5.1: SLAM algorithm procedure: (1) The prediction, or motion model, determines
a new robot pose based on motion sensors as input. (2) The update, or observation model,
corrects the predicted robot pose based on observed features or grid cells.

SLAM algorithms build maps of the environment to estimate the true robot pose. These

maps could be in general occupancy grid maps, feature maps or topological maps. There

exist more exotic map representations, and the interested reader is referred to the book

of Thrun et al. [49].

To evaluate the quality of a SLAM algorithm, in this chapter the differences between

occupancy grid based SLAM methods and feature based methods are described.

Topological map based algorithms were neglected, because this would go beyond the

scope of this master thesis.

Hereby, an existing grid map based algorithm, named GMapping is compared to two

feature based approaches. GMapping is well documented, freely available and uses a

laser range finder as sensory input. In contrast, a freely available feature based SLAM

implementation could not be found for research purposes and therefore a detailed

44 Chapter 5. Simultaneous Localisation and Mapping

description of two feature based approaches of the SLAM problem is given in Section 5.3.

5.2 The SLAM Problem

SLAM algorithms can be roughly classified by their estimation techniques and their map

representations. Both aspects are considered in detail in this section.

As mentioned before, a typical SLAM method consists of prediction and an

update step, see Figure 5.2. In practice, the true robot position is unknown. A SLAM

algorithm estimates the true trajectory (solid line) with observations (dark stars) of the

environment. The prediction step leads to an initial guess of the vehicle pose, denoted by

the thick, dashed-dotted line, and is furthermore corrected in the update step. Note that

the robot surroundings (map) and the robot path are estimated simultaneously. This is

the real challenge and makes the problem difficult.

Parts of the map could be either new observations or re-observed. The latter are used for

the vehicle pose and feature correction process. New parts are added to the map and

initialised with a default uncertainty.

In the following, a categorisation based on pose estimation techniques and map

representations is introduced. The difference between a Kalman Filter and a Particle

Filter is discussed. The theoretical background can be found in Section 3.

Another way to categorise SLAM algorithms is based on the map representation. This

section highlights the strengths and weaknesses between occupancy grid maps, which are

used by the GMapping method, and feature maps.

Robot Pose Estimation Techniques

Since the 1990s, probabilistic methods like Kalman Filters (KFs), Particle Filters (PFs)

and Expectation Maximisation Methods (EMs) have become popular approaches for the

SLAM problem. The theory behind Kalman Filters (KFs) and Particle Filters (PFs) has

been discussed in detail in Section 3. Here, the differences between the Kalman Filter and

Particle Filter are discussed.

A Kalman Filter is a linear recursive filter. The assumption of linearity does not hold

for motion sequences of typical mobile robots and therefore some extensions have been

developed. An Extended Kalman Filter uses a Taylor series expansion to handle non-

5.2. The SLAM Problem 45

Figure 5.2: The essential SLAM problem, Hugh Durrant-Whyte et al. [16]: The robot
trajectory and the landmarks are estimated simultaneously. The true robot path xk (solid
line) and the true landmarks mi (dark stars) are unknown. Control commands uk are used
for an initial prediction and the observations zk,j are necessary for the estimation process.

linearities, see Section 3.3.2. The Compressed Kalman Filter is similar to the Extended

Kalman Filter but reduces the computational complexity by updating only a local subset

of the map features. There exist many more extensions and the reader is referred to the

comprehensive work of Thrun et al. [49].

A Particle Filter approximates a Bayes filter with a set of discrete states. The likelihood of

a discrete state hypothesis is given by a weight. New observations lead to weight changes

and continuous resampling prevents degeneration of the estimated robot pose.

To illustrate the differences between a Kalman Filter and a Particle Filter, one imagines an

localisation example. The map is known and the task is to estimate the robot pose. First,

a mobile robot is equipped with a specific door detector and travels through a corridor,

see Figure 5.3 (a). The doors are numbered and the estimator knows exactly its location

at each detected door.

In the case of a Kalman Filter, the robot pose distribution has one peak around the door

location. When no observation is made, the peak is shifted by the odometry information

and stretched because of the higher uncertainty. But what happens, if the door detector

cannot distinguish between the three doors? In this case the Kalman Filter fails, because

46 Chapter 5. Simultaneous Localisation and Mapping

(a)

(b)

Figure 5.3: Kalman Filter and Particle Filter representation for localisation tasks, Thrun
et al. [49]: (a) A Kalman Filter represents the pose of a robot with a uni-modal Gaussian
density function. b) A Particle Filter can represent arbitrary density functions with
discrete states.

it is averaging over the three observations.

In contrast, a Particle Filter is able to represent arbitrary density functions with a set

of discrete weights. In the first case, the doors are numbered and the exact position is

known. The particles with the highest weights are located at the door position and the

pose representation is a discrete version of the parametric representation, used by the

Kalman Filter. In the second case, when the door number is unknown the particle weights

are higher at all three observations, see Figure 5.3 (b). A Particle Filter is able to track

multiple hypotheses simultaneously and is able to recover from a lost track of its location.

In the higher dimensional case, a Kalman Filter represents a robot pose by a state vector

and a corresponding uncertainty, often denoted by the covariance ellipses, see Figure 5.4

(a). The discrete state vector of a Particle Filter is shown in Figure 5.4 (b).

For a more detailed comparison between different filter algorithms see Section 7.1.

In addition to the pose estimation technique, SLAM approaches can also be categorised

5.2. The SLAM Problem 47

(a) (b)

Figure 5.4: Kalman Filter and Particle Filter procedure: (a) A Kalman Filter represents
a robot pose by a state vector and a corresponding uncertainty, often denoted by the
ellipses. (b) A Particle Filter represents the pose by an arbitrary density function with
discrete states.

by their map representation. This is done in the next section.

Map Representation

For SLAM algorithms, a map can be in general an occupancy grid map, a feature map or

a topological map. This section covers the details of occupancy grid maps and feature

maps. Topology maps are discussed in [49].

An occupancy grid quantises the world in small blocks and uses raw data

observations directly to estimate the robot trajectory. Each block (cell) of the map could

be either labelled as free or occupied cell in the binary case, or obtain a real value,

describing the uncertainty (0 - free, 0.5 - uncertain and 1 occupied). No assumption

about the environment is made and therefore arbitrary object structures can be modelled,

see Figure 5.5 (a). The map can consist of corners, edges, circles, chairs, etc. as long as

the block resolution is small enough.

Occupancy grid maps are quite robust to outliers (e.g. moving persons in dynamic

environments), because an observation often leads to several hundred block updates,

which is a lot compared to a few block outliers.

Large maps could lead to huge memory consumptions. One optimisation is to store only

blocks in the map where a laser beam, for instance, ends. More details and efficient

implementations can be found in the work of Grisetti et al. [29] and in the publication of

Eliazar et al. [18].

Grid maps are mostly limited to two dimensions. Grid SLAM algorithms are also

48 Chapter 5. Simultaneous Localisation and Mapping

limited to geometry information obtained from distance sensors. In contrast, feature

SLAM methods can handle arbitrary multidimensional features (geometrical features like

corners, SIFTs, barcodes ...).

(a) (b) (c)

Figure 5.5: Map representation examples: (a) An occupancy grid based approach quantises
the world in small blocks and uses raw data observations directly to estimate the robot
trajectory. (b) Feature maps represent specific geometrical objects of the environment.
Here, corners were extracted from laser readings. (c) Corresponding detail blue-print of
environment.

Feature maps represent specific objects of the environment. Corners and edges are

typical features extracted from laser readings, see Figure 5.5 (b).

Regarding the computational time necessary for the map update and the data association

step (see Section 3.3.2), feature based maps are very efficient. The main drawback is

that feature extraction methods are sensitive to noise and outliers. The second problem

is the sensitivity of the SLAM algorithms to incorrect data association. Kalman Filters

may easily diverge, whereas Particle Filters are more robust because of the multiple

hypotheses.

It depends on the specific task and the sensor technology, which map representation

is the best choice. Occupancy grid maps tend to become the state of the art map

representation for sonar and laser readings, see [29] and [18]. In vision based SLAM

algorithms, more often feature based maps are used, see [49].

5.3 SLAM Methodologies

In this section, different SLAM algorithms are discussed. The chosen occupancy grid

map based algorithm is GMapping. It is well documented ([49], [29] and [11]), freely

available and uses a laser range finder as sensory input.

A freely available feature based SLAM implementation could not be found for research

5.3. SLAM Methodologies 49

purposes. Therefore, this section describes a corner based SLAM method and an

edge based SLAM approach. The motivation behind this geometrical feature choice,

relies on the fact that these are easy to extract from laser readings and there exist

a lot of reference publications (Vandorpe et al. [50] and Gonzalez et al. [26]), see Section 2.

Both feature SLAM methods are based on Rao-Blackwellized Particle Filters

(see Section 3.5), which is a state of the art recursive filter. In principle, both methods

are designed for a laser range finder and wheel encoders, see Figure 5.6.

Figure 5.6: SLAM procedure of our realisation: Our choice was a feature based algorithm
with an efficient implementation of a Particle Filter. A laser range finder (Sick LMS 200)
is used as measurement input and the wheel encoders of the PeopleBot are the source for
the motion model.

The first method relies on corner features, while edges are used by the second SLAM

algorithm. In both cases, an assumption of orthogonal geometric relationships between

the features like in the work of Nguyen et al. [40] and Fulgenzi et al. [22] is applied. This

assumption is useful to restrict geometrical feature search space, especially for indoor

office like environments.

In both proposed algorithms, the feature extraction procedure was inspired by the work

of Xavier et al. [52]. He has published an efficient method to extract arcs, lines and legs

from laser readings. The geometrical relationships between the two-dimensional laser

points are used for a fast feature extraction, see Figure 5.7. Starting from an arbitrary

center, a local, growing neighbourhood is evaluated to test if the angular values are

within a defined range. This relationship between neighbouring points is used to find

center points which build within their neighbours a geometrical structure, like a corner

50 Chapter 5. Simultaneous Localisation and Mapping

or an edge.

Figure 5.7: Laser point relationships, Xavier et al. [52]: The edge extraction procedure
uses the relationships between local laser points. Starting from an arbitrary center, a local,
growing neighbourhood is evaluated to test if the angular values are within a defined range.

In the following, a detailed description of a corner SLAM method and an edge based

SLAM algorithm is proposed. To conclude this section, a comparison between these two

feature based approaches is given, highlighting their strengths and weaknesses under

certain environmental conditions.

5.3.1 Corner Feature based SLAM

Corner features can be easily extracted from laser data and are used in [40], [22] and [2].

Altermatt et al. [2] uses a relative corner map approach in combination with a Kalman

Filter. Instead of the relative map, the following technique uses a geometric constraint on

the orientation of the extracted corners and a Rao-Blackwellized Particle Filter (Section

3.5).

Corner Representation

To apply the orthogonality constraint, a two dimensional corner position (µx, µy) is ex-

tended by a corner orientation µα, see Figure 5.8.

A local (robot) coordinate of a corner position is denoted by the two dimensional vector

(zr, zθ)T and is observed in the local frame indicated by xL and yL. Map corners are

stored as global features, belonging to the global frame, which is indicated by xW and yW .

Corner Extraction

As stated in the introductory part of this chapter, a local relationship between neighbour-

ing two dimensional laser points is used to find center points which build a geometrical

structure, like a corner, see Figure 5.9 (a).

5.3. SLAM Methodologies 51

Figure 5.8: Corner feature representation: The two dimensional corner position (µx, µy)
has been extended by a corner orientation µα. The local coordinate frame is denoted by
xL and yL and the global frame is labelled with xW and yW .

For robustness, corners with less than four neighbour points lying on the rectangular

triangle are rejected (b). This simple constraint removes bad corners caused by noisy

observations.

The orthogonality constraint restricts the possible corner space to a smaller sub set and

is calculated with respect to the coordinate system x-axis, see Figure 5.9 (c). This can

increase the robustness of the algorithm for some special environments. In a typical office-

like indoor environment, corners are often orthogonal to walls, but the assumption may

not hold outdoors. Further discussions can be found in Section 5.3.3.

Figure 5.9: Corner extraction procedure: (a) A local relationship between two dimensional
laser points is used to find center points which build a rectangular triangle. (b) Corners
with less than four neighbour points, lying on the rectangular triangle are rejected. The
orthogonality constraint restricts the possible corner space to a smaller sub set (c). The
orientation is calculated with respect to the coordinate system x-axis. (d) illustrates the
final result with two remaining orthogonal corners.

52 Chapter 5. Simultaneous Localisation and Mapping

Corner Association

In principle, the data association process is responsible for connecting an observation to

correspondences in the stored map representation (see Section 3.5). An observation is

extracted in a local frame and the goal is to find a match in the hole map. For a corner

SLAM algorithm, a simple data association technique could be performed by a nearest

neighbour approach, as shown in Figure 5.11. This technique is also used by Altermatt et.

al. [2]. The distance measure used, is a combination of a Euclidean distance between two

corner positions and the difference of their orientations, see Equation 5.1. Map corners

are denoted by the red arrows (1 and 3). The dashed green arrow (2) illustrates an

observation. Due to the influence of the corner orientation, the association is correct.

A purely Euclidean distance measure would associate the other map corner (3) with the

observation.(2). The corner distance measure is:

d = k1 ·
√

(x− x̃)2 + (y − ỹ)2 + k2 · |sinh(θ − θ̃)|, (5.1)

where the first corner is given by the vector [x, y, θ] and the second one by [x̃, ỹ, θ̃]. The

weighting parameters k1 and k2 balance the influence of the position and the angular dif-

ference. In this work, the values for k1 and k2 were empirically set to k1 = 5 and k2 = 1/5.

The sinh function was chosen because |sinh(x)| is symmetric in the range [−π, π], see

Figure 5.10.

Figure 5.10: Corner distance measure angular part: The sinh function was chosen because
|sinh(x)| is symmetric in the range [−π, π].

An association between an observation and a map feature leads to a map feature update.

The mathematical description can be found in Section 3.3.1 and the following section

describes the computation of the necessary Jacobian matrices for a complete SLAM algo-

rithm implementation.

5.3. SLAM Methodologies 53

Figure 5.11: Corner association with orientation: The map corners are denoted by the red
arrows (1 and 3). The dashed green arrow (2) illustrates an observation. Due to the influ-
ence of the corner orientation, the association is correct for this example. The Euclidean
distance measure would associate the other map corner (3) with the observation.(2)

Transition Function and System Jacobian

By now, it has been described how corners are associated with map features. For a

complete implementation, see Section 3.5, a mapping from local features to global features

and vice versa is needed. This is mapping described in the following.

New Features The features are extracted in a local frame, transformed with h−1 to a

global feature, see Equation 5.3, and finally added to the map. An example code of the

Rao-Blackwellised Particle Filter has been presented in Table 3.2, where the mean of a

new landmark is computed in Line 6. Given a particle robot pose x[m]
t and a local feature

zt (see Figure 5.8), the global feature µ[m] are computed by:

µ[m] = h−1(zt, x
[m]
t) (5.2)

=


µx

µy

µα

 =


x[m] + zr · cos(θ[m] + zθ)

y[m] + zr · sin(θ[m] + zθ)

θ[m] + zθ

 . (5.3)

The mapping function h−1 describes the transformation from a locally extracted feature

to a global or absolute landmark.

Line 8 of Table 3.2 describes the computation of the initial landmark covari-

ance Σ[m]
j,t = HQtH

T . Equation 5.4 shows the computation of the involved Jacobian H of

54 Chapter 5. Simultaneous Localisation and Mapping

h−1.

H = h−1′(x[m]
t , µ

[m]
j,t) (5.4)

=

(
∂µ1

∂zr
∂µ1

∂zθ

∂µ2

∂zr
∂µ2

∂zθ

)
(5.5)

=

(
cos(θ[m] + zθ) −zr · sin(θ[m] + zθ)

sin(θ[m] + zθ) zr · cos(θ[m] + zθ)

)
. (5.6)

Note that the corner orientation zα is not involved in the computation, because it is only

used for an orthogonal filter pre-processing step.

Re-observed Features In contrast to a new feature, a re-observed feature µ
[m]
j,t−1

is already stored in a map, where t denotes the time index and the associated feature

number is labelled by j. Map features before the update procedure are labelled by the

index t− 1 (see Line 14 in Table 3.2).

In Line 10 in Table 3.2, the local feature z̃ = h(µ[m]
j,t−1, x

[m]
t) with the stored

absolute landmark µ
[m]
j,t−1 and the robot pose x

[m]
t is estimated. The measurement

function h is defined as a transformation from a global coordinate frame to the local

robot coordinate system and the estimated landmark is:

z̃ = h(µ[m]
j,t−1, x

[m]
t) (5.7)

=

(√
q

tan−1(µ
y−y[m]

µx−x[m])

)
, (5.8)

where the distance q is:

q = (µx − x[m])2 + (µy − y[m])2. (5.9)

The Jacobian H of function h (Line 11 in Table 3.2) is calculated with respect to the map

feature:

H =

(
∂z̃1
∂µx

∂z̃1
∂µy

∂z̃2
∂µx

∂z̃2
∂µy

)
=

 µx−x[m]
√
q

µy−y[m]
√
q

−µy−y[m]

q
µx−x[m]

q

 , (5.10)

5.3. SLAM Methodologies 55

where q is defined in (5.9).

The next Section describes an edge based SLAM algorithm and follows the same structure

like this chapter.

5.3.2 Edge Feature based SLAM

We propose a method similar to the work of Nguyen et al. [40]. There, edge features, ex-

tracted from laser data are used. Recently, a three dimensional variant of the method was

also published [41]. Compared to this laser based technique, Choi et al. [9] extracts edge

features from sparse and noisy sonar readings. Both authors use geometrical constraints

to restrict the feature space and to increase the robustness.

Regarding the SLAM method of Nguyen et al. [40], we use a different feature extraction

procedure and a simplified data association technique. A clustering step based on angles

between neighbouring points is performed to reduce the computational costs. Furthermore

a different distance measure is proposed.

Like for the corner based SLAM method, first the feature representation is discussed. The

next section describes the feature extraction procedure and is followed by an association

technique description. The algorithm section is concluded with a mathematical description

about the transition functions and the system Jacobians.

Edge Representation

An edge, extracted in a local coordinate frame, is denoted by the two dimensional vector

zt = (zr, zθ)T , where r represents the perpendicular distance from an infinite line to the

origin of a reference frame and θ denotes the orientation with respect to the x-axis, see

Figure 5.12. This representation was also used by Leonard et al. [33] and introduced as

the Plane Target Model.

Edge Extraction

As stated in Section 5.3, a local relationship between neighbouring two dimensional laser

points is used to find center points which build a geometrical structure.

At first a clustering is performed. The angles between neighbouring points are evaluated.

Valid, consecutive points are grouped, which is indicated by the ellipses in Figure 5.13 (a).

To increase the feature robustness, all clusters containing less points than a given threshold

are rejected. Furthermore, a least squares method is used to obtain the edge parameters

(r, θ).

56 Chapter 5. Simultaneous Localisation and Mapping

Figure 5.12: Edge feature transformation: The red line denotes one edge feature, which
is represented by the vector (rW , θW)T in world coordinates. The local representation is
denoted by (rL, θL)T and the transformation is given by (5.13).

Finally the orthogonality constraint is applied to the remaining edges. The edge angle is

evaluated with respect to the x-axis of the world coordinate system and compared with

a previously extracted reference angle (extracted from the first edge). This constraint is

useful for some special environments. In a typical office-like indoor environment, edges

are characterised by walls, which are usually orthogonal to each other. The assumption

may not hold outdoors. Further discussions on this topic can be found in Section 5.3.3.

Edge Association

In principle, the data association process is responsible for connecting an observation to

correspondences in the stored map representation (see Section 3.5). An observation is

extracted in a local frame and the goal is to find a match in the hole map.

Like for the corner SLAM algorithm, a simple edge feature data association technique

could be performed by a nearest neighbour approach. The proposed distance measure:

d = r2 + r̃2 − 2 · r · r̃ · cos(θ − θ̃), (5.11)

where the first edge is given by the vector [θ, r] and the second one by [θ̃, r̃]. Note that

the distance measurement is the Euclidean distance between two polar coordinates,

which are intersection points of the edge feature and the perpendicular lines from the

origin (next to the dot of Figure 5.12). A small variation of θ has a big influence on

5.3. SLAM Methodologies 57

Figure 5.13: Edge extraction procedure: (a) At first, the angles between neighbouring
points are evaluated. Valid, consecutive points are grouped to clusters. (b) To increase the
feature robustness, all clusters containing less points than a given threshold are rejected.
(c) illustrates how the orthogonality constraint affects the remaining edges. The edge
angle is evaluated with respect to the x-axis of the world coordinate system.

edges, far from the coordinate origin. In contrast, edges close to the origin are not

affected that much. This local dependency is not desirable and more details can be found

in the discussion Section 5.3.3.

An association between an observation and a map feature leads to a map

feature update. The mathematical description can be found in Section 3.3.1 and the

following section describes the computation of the necessary Jacobian matrices for a

complete SLAM algorithm implementation.

Transition Function and System Jacobian

By now, it has been described how edges are associated with map features. For a complete

implementation, a mapping from local features to global features and vice versa is needed.

This is mapping described in the following.

New Features The mapping from a local to a global feature, denoted by the transition

function h−1 was rather intuitive and simple for corner landmarks (see Equation 5.3). We

will have a closer look to the geometrical relations of a function which maps a local edge

to a global one in Figure 5.12.

The red line denotes one edge feature, which is represented by the vector (rW , θW)T in

58 Chapter 5. Simultaneous Localisation and Mapping

world coordinates. The local representation is denoted by (rL, θL)T and the transformation

is given by:

µ[m] = h−1(zt, x
[m]
t) (5.12)

=

(
rW

θW

)
=

(
rL + x[m] · cos(θL + θ[m]) + y[m] · sin(θL + θ[m])

θL + θ[m]

)
. (5.13)

The parameter θW can be used for the orthogonal filter pre-processing step. Per definition,

rW may not be negative and in the case of a negative distance, the corrections rW = −1·rW

and θW = θW + π are applied.

The computation of the system Jacobian H (Line 8 of Table 3.2) is necessary to calculate

an initial landmark covariance Σ[m]
j,t = HQtH

T . Equation 5.16 shows the estimation of

the involved Jacobian H of h−1.

H = h−1′(x[m]
t , µ

[m]
j,t) (5.14)

=

(
δµ1

δrL
δµ1

δθL

δµ2

δrL
δµ2

δθL

)
(5.15)

=

(
1 −x[m] · sin(θW + θ[m]) + y[m] · cos(θW + θ[m])

0 1

)
. (5.16)

Re-observed Features In contrast to a new edge, a re-observed feature µ[m]
j,t−1 is already

stored in a map, where t denotes the time index and the associated feature number is

labelled by j. Map features before the update procedure are labelled by the index t − 1

(see Line 14 in Table 3.2).

A local landmark z̃ is estimated with a robot hypothesis x[m] and a stored world feature

µ
[m]
j,t−1. The transformation from a world feature µ[m]

j,t−1 to a local estimate z̃ is given by:

z̃ = h(µ[m]
j,t−1, x

[m]
t) (5.17)

=

(
rL

θL

)
=

(
rW − x[m] · cos(θW)− y[m] · sin(θW)

θW − θ[m]

)
, (5.18)

where the vector µ[m]
j,t−1 is computed with (5.13). The parameter rL may not be negative

and in the case of a negative distance, the corrections rL = −1 · rL and θL = θL − π are

applied.

The involved Jacobian H (see Line 15 in Table 3.2) of the function h for edge features can

5.3. SLAM Methodologies 59

be calculated with respect to the world feature µ[m]
j,t−1 the following way:

H =

(
δz̃1
δrW

δz̃1
δθW

δz̃2
δrW

δz̃2
δθW

)
(5.19)

=

(
1 x[m] · sin(θW)− y[m] · cos(θW)

0 1

)
. (5.20)

Two feature based SLAM methods were proposed until now and the next section concludes

with a discussion about the geometric feature choice and useful applications.

5.3.3 Discussion

The quality of a feature based SLAM algorithm depends heavily on the number of

re-observed features. The more often a corner or an edge is updated the better is its

quality and the better is the current robot pose estimate. Clearly, the algorithm fails if

no observations are made at all.

Concerning the frequency of occurrence, corners and edges could be a proper choice in

a typical office-like environment. Note that for Particle Filters, continuous updates are

important to prevent degeneration of the estimated robot pose.

The edge feature representation, discussed in this section, is sensitive to the distance to

the coordinate origin. A small variation of θ has a big influence on edges, far from the

coordinate origin. Therefore, a relative map approach is used by Nguyen et al. [40].

Corners could be extracted from laser readings more accurate, but are also easily

occluded. In contrast, edges could be observed more frequently than corners in long

straight corridors. For more details concerning different geometrical features we refer to

the book of Castellanos et al. [7].

The motivation behind our feature type selection relies on the nature of the evaluated

indoor datasets. The first recording is a static indoor dataset from RawSeeds [6] and the

second dataset was generated at our university, which has the structure of a typical office

like environment.

Therefore, the observed results (see Section 6) are only valid for special indoor

environments.

60 Chapter 5. Simultaneous Localisation and Mapping

5.4 Sensor Fusion

Sensor fusion is desired to build more robust and more accurate algorithms based on

multiple sensors. As mentioned in the previous section, SLAM algorithms may fail,

if no observations are made over a longer time period. This could occur for specific

geometrical features, like corners, or for different sensor technologies. For instance, laser

range finders are sensitive to window panes or mirrors (see Section 4) and a vision based

system may fail, in the case of homogeneous regions, like a white wall.

This section describes a simple SLAM framework to take advantages of different sensor

technologies and different SLAM algorithms. The influence of a combination of different

sensor technologies is evaluated in Section 6.

Our fusion framework is based on Particle Filters, which were discussed in Section

3.4. The described approach relies on separate particle weight updates for each SLAM

method and each sensor technology.

Each sensor type or algorithm builds its own map and updates for an observation all

particle weights. These weight updates can be performed independent of the arrival time

of the different observations, see lines 4 to 6 in Table 5.1.

For simplicity, only one motion model was implemented, (see Section 3.6 for details)

denoted by Line 3, where a robot hypothesis x[m]
t is sampled from P (xt | ut, x[m]

t−1).

5.5 Conclusion

In this section, the SLAM problem it self and possible SLAM methodologies were dis-

cussed. GMapping is a well documented, freely available occupancy grid SLAM method.

A freely available feature based SLAM implementation could not be found for research

purposes and therefore a detailed description of two feature based approaches of the SLAM

problem was given.

Finally, the reader was introduced to a new sensor fusion framework based on a Particle

Filter. This framework takes advantages of a combination of different SLAM algorithms

and of different sensor technologies.

In future, the fusion framework can be the basic concept to integrate new sensor tech-

nologies. By now, the discussed maps were two dimensional. More research has to be

undertaken to evaluate the capabilities of three dimensional maps. This map could be

generated by a time of flight camera (see Section 4.4), for instance.

5.5. Conclusion 61

Xt = filter(Xt−1, ut, zt)
1: X̄t = Xt = 0
2: for m = 1 to M
3: sample x[m]

t ∼ P (xt | ut, x[m]
t−1)

4: w
[m]
t = w

[m]
t · PSonar(zt | x[m]

t)
5: w

[m]
t = w

[m]
t · PLaser(zt | x[m]

t)
6: w

[m]
t = w

[m]
t · PV ision(zt | x[m]

t)

7: X̄t = X̄t+ < x
[m]
t , w

[m]
t >

8: endfor

9: for m = 1 to M
10: draw i with probability ∝ w[m]

t from X̄t

11: add x
[i]
t to Xt

12: endfor
13: return Xt

Table 5.1: Sensor Fusion with a Particle Filter example code: Each sensor (PSonar, PLaser
and PV ision) updates the particle weights of the current population independently and
reduces the final variance of the scattered particle positions.

Chapter 6

Experiments

Contents

6.1 Distance Sensor Evaluation . 64

6.2 RawSeeds Indoor . 66

6.3 ICG Lab Indoor . 75

The main question of this thesis is, which sensor technologies and combinations of

them, suit well for state of the art SLAM methods. For this reason, two datasets are used

for the experiments, which are both indoor datasets. The datasets were chosen, because

of the limited measurement range of the evaluated sensors. The laser range finder can be

used outside too, but sonars and the time of flight (TOF) camers are restricted to a range

of about five meters.

In Section 4 the sensor noise, which is a crucial factor for SLAM, was presented according

to the specification sheets. To prove this specifications, an evaluation of the sensors is

given at the beginning.

The RawSeeds dataset, ”Bicocca 2009-02-25b”, is a static indoor dataset with artificial

lighting, which is, compared to other RawSeeds indoor datasets, often referred by other

contributions of the RawSeeds web page. This dataset is used to evaluate different SLAM

methods and for a sensor fusion between laser measurements and sonars. The generated

maps have a size of 200 times 200 metres and contain several big loops.

For the sensor comparison between TOF readings, sonars and laser measurements in gen-

eral, a new dataset was created, because TOF measurements are not included in the

RawSeeds dataset. The recordings were made at the institute for Computer Graphics and

Vision (ICG), Graz University of Technology. A small loop with a perimeter of about 40

63

64 Chapter 6. Experiments

metres is used for the evaluation.

Only the RawSeeds dataset provides ground truth (GT) measurements and the evaluation

with the dataset from ICG must be performed based on a comparison of the resulting

maps.

On the algorithmic side, the GMapping method, a corner feature based SLAM implemen-

tation and an edge feature based SLAM implementation have been reviewed in Section

5.3, which are evaluated with the RawSeeds dataset. A fusion of sonars and time of flight

camera measurements is evaluated on the ICG indoor dataset.

6.1 Distance Sensor Evaluation

Sensor specific problems have been reviewed theoretically in Section 4 and a practical

discussion is given in the following. The accuracy of the evaluated distance sensors depends

on the environmental structures and in general, the distance measure fails, if the sonar or

the light ray is not reflected back to the sensor. This occurs, dependent on the coarseness

of the material surface, if the angle between the obstacle and the ray is too small. In

addition, laser range finders and TOF cameras are sensitive to transparent or reflective

materials, like window panes and mirrors. Sonars suffer from reflections in narrow floors

or corners.

Distance Accuracy Evaluation

Laser measurements are used as ground truth (GT), to evaluate the accuracy of the used

sonar transducers and the TOF camera from PMDTec, see Table 6.1. The experiment

took place in front of a non-reflecting concrete wall. Only two sonar transducers at front

of the mobile robot were evaluated. For the experiment, the robot was placed in front of a

concrete wall and was not moving. The maximum error of the sonars is -0.1499m, whereas

the TOF maximum error is 0.0532m.

The experimentally evaluated working range for the sonar transducers, mounted on the

PeopleBot, is 0.18m to 4.8m. In contrast the working range of the TOF camera from

PMDTec is 0.1m to 5.5m.

Environmental Characteristics

In this chapter, four environmental structures are considered: Concrete walls, metal doors,

window panes and metal fences, see Figure 6.1. For each of these structures, samples taken

6.1. Distance Sensor Evaluation 65

Sonar Distance Measurements with Laser Readings as GT in [m]
GT mean variance mean error number of observations
0.5497 0.5315 0.0001 0.0182 310
1.0582 1.2081 0.6 -0.1499 232
2.0743 2.0783 0 -0.004 192
4.0821 4.1511 0 -0.0690 186

TOF Distance Measurements with Laser Readings as GT in [m]
GT mean variance mean error number of observations
0.5497 0.5304 0.0001 0.0193 6336
1.0582 1.0048 0.0040 0.0534 4992
2.0743 2.0391 0.0022 0.0352 4032
4.0821 4.0800 0.0114 0.0021 3904
5.0800 5.0532 0.0215 0.0268 3581

Table 6.1: Distance Sensor Accuracy evaluation in [m]: For the experiment, the robot was
placed in front of a concrete wall and was not moving. The maximum error of the sonars
is -0.1499m, whereas the TOF maximum error is 0.0532m. Laser measurements are used
as ground truth (GT).

from the side and the front are discussed. The sensor observations can be found in the

Appendix Section D, where the wrong measurements are marked red.

(a) (b) (c)

Figure 6.1: ICG indoor environment characteristics:(a) Concrete wall and metal fence. (b)
Reflecting metal door. (c) Transparent window pane.

Sun light reflections on concrete walls can lead to wrong measurements for TOF cameras,

see Figure D.1 and Figure D.2. In contrast, the Sick LMS200 laser range finder is not

sensitive to environmental light. Some sonar beams are wrong because of reflections.

Metal doors lead to reflections, which causes error prone distance measurements of the

sonar transducers and the TOF camera. With the side view, Figure D.3 (b), half of the

66 Chapter 6. Experiments

TOF measurements are reflected.

Window panes are error sources for vision based sensors. Laser readings and the TOF

measurements are corrupted. Sonar distances are correct, despite the large noise, see

Figure D.4.

The metal fences, present at ICG, are very fine (2cmx2cm) and therefore, the distance

measurements imprecisions can be led back to the sensor noise, see Figure D.5.

6.2 RawSeeds Indoor

The RawSeeds project [6], funded under the European Union’s Sixth Framework Programme

(FP6), is the first effort to provide ground truth (GT) data to evaluate SLAM algorithms,

see Section 2.4. For the chosen static indoor dataset, ”Bicocca 2009-02-25b”, the GT data

is a fusion of stationary laser range finder distance measurements and observations of a

multi camera system. The final GT data uncertainty is less than a few centimetres and

enables a quantitative comparison of SLAM algorithms. The GT measurements are only

available for one place in the environment, see yellow region in Figure 6.2. This is sufficient

for an evaluation, because the GT region is crossed two times during the experiment. For

more information concerning the GT measurements, see [6].

6.2.1 Dataset and Setup

The RawSeeds dataset contains several sensor measurements:

• Ultrasound transducers

• Inertial measurement unit (IMU)

• Onboard camera systems

– Binocular and trinocular black-and-white (B/W) vision

– Normal perspective, colour and B/W cameras

– Omnidirectional colour vision with hyperbolic mirror

• Laser range finders (LRFs)

– Two short-range (4m range, less at low reflectivity) Hokuyo URG-04LX LRFs

– Two Sick LRFs: LMS200 and LMS291

6.2. RawSeeds Indoor 67

Figure 6.2: RawSeeds static indoor dataset (2009-02-25b): This figure illustrates the blue-
print of the environment. The red trajectory indicates the travelled path and was manually
annotated. The odometry is denoted by the blue lines and the yellow region shows the
only place of the environment where the ground truth information is extracted.

This dataset is used to evaluate the performance of the GMapping method, a corner

feature based SLAM implementation and an edge feature based SLAM implementation.

In addition, the performance gain, obtained by a fusion of laser measurements and sonars

is evaluated. Therefore, the sensors used are the front Sick laser range finder (LMS291)

and the 12 sonar transducers, see Figure 6.3. The travelled trajectory is 823m long and

was recorded in about 25 minutes.

6.2.2 Laser Range Finder

The GMapping grid SLAM method, the corner feature based SLAM implementation and

the edge feature based SLAM implementation are evaluated, see Figure 6.4, and are com-

pared with respect to their accuracy, their robustness and their computational time. The

odometry is denoted by the red line, while the estimated trajectory is blue.

68 Chapter 6. Experiments

Figure 6.3: Mobile indoor robot of the RawSeeds project [6]: This robot is equipped
with four laser range finders, four camera systems, sonar sensors and with an inertial
measurement unit.

SLAM Methods Accuracy

The accuracy is evaluated based on the estimated trajectory. The mean squared error is

used to compute the difference between the absolute ground truth pose xt = [xi, yi] and

the estimated pose x̃t = [x̃i, ỹi]. This measurement over all ground truth points in time is

referred as the absolute trajectory error (ATE) and is given by:

error =
1

NGT
·
NGT∑
i=1

√
(xi − x̃i)2 + (yi − ỹi)2, (6.1)

where NGT denotes the number of ground truth measurements. The heading angle θi is

not involved, because a wrong angle would automatically result in a position displace-

ment. The estimated poses have different points in time compared to the ground truth

measurements. Therefore, an interpolation of the estimate pose x̃t = [x̃i, ỹi] between two

estimates x̃t̃−1 and x̃t̃ around the ground truth position xt is necessary, see Figure 6.5.

6.2. RawSeeds Indoor 69

(a) (b)

(c) (d)

Figure 6.4: SLAM methods evaluation example maps: (a) RawSeeds static indoor dataset
”Bicocca 2009-02-25b”. (b) GMapping result, obtained with 50 particles. (c) Corner
feature based map, generated with 50 particles. (d) Resulting map of the edge feature
based SLAM implementation, using 50 particles.

70 Chapter 6. Experiments

Figure 6.5: Robot pose interpolation for the evaluation: The estimated poses have different
points in time compared to the ground truth measurements. Therefore, an interpolation
is necessary to compute the absolute trajectory error. x̃t̃−1 and x̃t̃ denote the estimated
poses, the ground truth position is labelled with xt and the interpolated pose is denoted
by x̃t.

The GMapping grid SLAM method, the corner feature based SLAM implementation and

the edge feature based SLAM implementation were evaluated 10 times with 20, 50 and

100 particles, see Table 6.2. For both feature based SLAM implementations, only every

third laser reading was used for the update step. The edge feature based SLAM imple-

mentation, using 100 particles, has an average ATE of 0.88m. In contrast the ATE of the

odometry is 2.25m. The SLAM methods fail sometimes, if not enough particles are in the

vicinity of the true robot state. This is indicated by dashes.

A comparison of different SLAM results is published on the RawSeeds web page [6], see

Figure 6.6. Best results are obtained by the GraphSLAM method with an ATE of 0.38m.

GMapping leads to an ATE of 1.19m, while our implementations have an average er-

ror of less than one meter. More particles would result in a lower ATE by the cost of

computational complexity and computational time, which are unknown for the published

methods on the RawSeeds web page. The GMapping result used, is the average ATE of

our experiments with 100 particles.

SLAM Methods Robustness

There are mainly two indicators for robust SLAM algorithms evaluated with the static

indoor dataset ”Bicocca 2009-02-25b”. First, methods fail more often if the number of

particles is too low. This occurs more often with less than 50 particles. Secondly, the

methods under test are probabilistic algorithms, were the variance of the ATE indicates

6.2. RawSeeds Indoor 71

Corner feature based SLAM
Particles MEAN VAR
20 1.32 1.52 0.83 0.89 1.64 0.99 0.83 1.42 1.23 0.96 1.16 0.09
50 1.17 - - - 0.94 1.22 1.47 0.89 0.98 1.01 1.1 0.04
100 1.47 1.31 0.85 0.57 0.68 1.22 0.8 1.06 0.81 0.93 0.97 0.08

Edge feature based SLAM
Particles MEAN VAR
20 1.87 1.08 1.97 1.8 1.07 1.16 - 1.63 1.51 2.04 1.57 0.15
50 1.7 1.79 - - 0.67 1.24 - 0.83 0.7 0.96 0.88 0.05
100 0.67 1.37 0.82 1.31 0.62 0.64 0.58 0.87 0.61 1.17 0.87 0.09

GMapping grid SLAM
Particles MEAN VAR
20 1.21 1.21 - 1.14 0.45 1.77 0.32 2.19 2.18 1.33 1.31 0.44
50 2.24 - - 2.41 0.80 - 0.73 - 0.69 1.07 1.33 0.62
100 0.56 0.73 0.52 0.7 1.11 1.97 - 2.09 1.54 0.83 1.19 0.37

Table 6.2: SLAM methods evaluation results ”Bicocca 2009-02-25b”, ATE in [m]: Results
of corner feature based SLAM, edge feature based SLAM and GMapping evaluated with
the ”Bicocca 2009-02-25b” dataset.

Figure 6.6: SLAM methods evaluation results ”Bicocca 2009-02-25b” ATE in [m]: Eval-
uation results published at The RawSeeds Project [6]. Comparison of different SLAM
method results for the static indoor dataset.

72 Chapter 6. Experiments

the repeatability, see Table 6.2. The variance is in general anti-propotional to the number

of particles.

Results published at the RawSeeds web page [6] provide the standard deviation (StdD) of

the ATE, see Figure 6.7. This information is a sign of the smoothness of the estimated

trajectory.

Figure 6.7: SLAM methods evaluation results ”Bicocca 2009-02-25b” Standard Deviation
in [m]: Evaluation results published at The RawSeeds Project [6]. Comparison of different
SLAM method results for the static indoor dataset.

Computational Time

For research purposes, our framework was first implemented with MATLAB and later

ported to C#. The computational time of our feature based implementations are linear

proportional to the number of particles and was evaluated with the C# framework, see

Figure 6.8. In contrast, GMapping is an efficient C++ implementation with logarithmic

time complexity, [29]. The test platform was an Intel 2.6GHz, 2GB Ram machine running

in the VirtualBox environment.

The corner feature based implementation is the fastest, but only every third laser reading

was used, like for the edge feature based implementation. In the ”Bicocca 2009-02-25b”

dataset, the mobile robot travelled 823m in 26 minutes.

6.2. RawSeeds Indoor 73

Figure 6.8: SLAM methods computational time evaluation, ”Bicocca 2009-02-25b” in
[min]: Linear time dependency for all three methods. Test platform: Intel 2.6 Ghz, 2GB
Ram, VirtualBox.

6.2.3 Sonar

The ”Bicocca 2009-02-25b” dataset contains sonar readings from 12 circular arranged

sonar transducers. For the presented experiment, the ATE, generated with 50 particles,

is 14.76m, see Figure 6.9. The odometry is denoted by the red line, while the estimated

trajectory is blue. A map based error measurement would indicate the improvement of

sonar SLAM compared to raw odometry. The upper part of the map shows rectangular

structures, but the map in the lower part is corrupted.

6.2.4 Sensor Fusion: Laser and Sonar

The sensor fusion of laser measurements and sonar readings was evaluated 5 times, see

Table 6.3. The laser measurements were used by the corner and edge feature based im-

plementation, while sonar readings were used by a grid SLAM method, see Figure 6.10.

The odometry is denoted by the red line, while the estimated trajectory is blue. Edges

are denoted by the green lines, where the used feature representation is not based on end

points, see Section 5.3.2. The results are very similar to the results obtained without sonar

readings, see Table 6.2.

74 Chapter 6. Experiments

Figure 6.9: Sonar Evaluation on RawSeeds ”Bicocca 2009-02-25b” dataset: This map was
generated with 12 sonar transducers, a cell size of 20cm and 50 particles. The upper part
of the map shows rectangular structures.

Fusion of Corner feature SLAM Laser and Grid SLAM Sonar
Particles 1 2 3 4 5 MEAN VAR
20 0.8 0.76 1.34 1.3 1.3 1.1 0.09

Fusion of Edge feature SLAM Laser and Grid SLAM Sonar
Particles 1 2 3 4 5 MEAN VAR
20 2.17 2.15 2.28 1.93 1.21 1.95 0.19

Table 6.3: Sensor Fusion evaluation results ”Bicocca 2009-02-25b”, ATE in [m]: Results of
corner feature based SLAM combined with sonar grid SLAM. Edge feature based SLAM
and sonar grid SLAM evaluated with the ”Bicocca 2009-02-25b” dataset.

6.3. ICG Lab Indoor 75

(a) (b)

Figure 6.10: Sensor Fusion of Laser and Sonar evaluation results ”Bicocca 2009-02-25b”:
(a) Corner feature based SLAM implementation, using laser readings in combination with
a sonar grid SLAM method. The map was generated with 20 particles and results in an
ATE of 0.8m. (b) Edge feature based SLAM combined with sonar SLAM leads to an ATE
of 1.21m with this run.

6.3 ICG Lab Indoor

This dataset is used to compare a time of flight (TOF) camera with a laser range finder

and sonars and was recorded at Graz University of Technology. In general, the ICG

dataset consists of four structures: Concrete, metal, glass and fences, which lead to dif-

ferent measurement errors, see Section 4. This chapter provides an evaluation of these

effects. Furthermore, the distance accuracy of the sensor technologies is evaluated in an

experiment. Finally, maps generated with all three sensor technologies are compared. For

this experiment, a small loop is sufficient. Accurate results lead to rectangular maps and

are evaluated in a qualitative way, because of the lack of ground truth measurements.

76 Chapter 6. Experiments

6.3.1 Dataset and Setup

The dataset was recorded at the institute for Computer Graphics and Vision ICG, Graz

University of Technology, and is used to compare maps generated with a laser range finder,

sonars and a time of flight camera, see Figure 6.12. The travelled trajectory in the office

like environment is a small loop of about 30 metres, see Figure 6.11.

For the experiment, the two-wheeled PeopleBot from ActivMedia [1] was equipped with a

Sick LMS200 laser range finder, 36 sonar transducers and a time of flight (TOF) camera

from PMDTec (PMD[Vision] R© O3). The laser range finder maximum range was set to

7 metres and the angular resolution to 0.5 degrees. The working range of the PeopleBot

sonar belt is 0.2 metres to 4 metres, according to the specification sheet. Finally, the TOF

camera has a resolution of 64x50 pixels and the maximum range was set to 5 metres. The

laser range finder and the TOF camera are mounted in the viewing direction of the robot.

Details about the sensor technology specific characteristics can be found in Section 4. The

hardware was addressed by a robot software framework, which is described next.

(a) (b)

Figure 6.11: ICG static indoor dataset: (a) illustrates the blue-print of the environment
at Graz University of Technology. The red trajectory indicates the travelled path and was
manually annotated. (b) Picture of the environment.

6.3.2 Laser Range Finder

The ICG dataset and a laser range finder were used to create maps with the GMapping

method, and a grid SLAM implementation, see Figure 6.13. The odometry is denoted by

the red line, while the estimated trajectory is blue. The resulting maps of the feature

6.3. ICG Lab Indoor 77

Figure 6.12: [Mobile robot used for the experiments at ICG: This mobile robot is equipped
with two sonar belts, a Sick LMS 200 laser range finder and time-of-flight camera from
PMDTec. The stereo camera was not used for this work. FOV means field of view.

based SLAM implementations are not present, because the geometrical features are hard

to visualise. GMapping does not provide robot trajectories in the resulting map.

(a) (b)

Figure 6.13: Laser Range Finder Evaluation on ICG indoor dataset: (a) GMapping result,
obtained with 100 particles. (b) Grid SLAM map created with 50 particles.

78 Chapter 6. Experiments

6.3.3 Sonar

The sonar sensors used are noisy, see Section 6.1 and therefore, the only SLAM method

used for the evaluation, is a grid SLAM approach, see Figure 6.14. The resulting maps

were generated with 100 particles.

(a) (b)

Figure 6.14: Sonar Evaluation on ICG indoor dataset: (a) Sonar Grid SLAM result after
a few iterations. (b) Final map, created with sonar grid SLAM, using 100 particles.

6.3.4 Time of Flight Camera

The ICG indoor dataset was evaluated with a TOF camera, mounted at front, see

Figure 6.15. The maps were generated with 50 particles and a maximum range of 2.5

metres reduces the amount of noisy measurements. Because neither corners nor edges

could be extracted from the TOF camera readings, only a grid SLAM method was used.

The center line of the 3D information, observed by the TOF camera, is used.

6.3.5 Sensor Fusion: Sonar and Time of Flight

The sensor fusion results of sonar grid SLAM and TOF camera grid SLAM were created

with 50 particles, see Figure 6.16.

6.3. ICG Lab Indoor 79

(a) (b)

Figure 6.15: TOF Evaluation on ICG indoor dataset: (a) TOF grid SLAM result after a
few iterations. (b) Final TOF grid SLAM results, using 50 particles.

(a) (b)

Figure 6.16: Sonar and TOF Evaluation on ICG indoor dataset: (a) Sensor fusion of sonar
and TOF Grid SLAM results after a few iterations. (b) Final result, using 50 particles.

Chapter 7

Summary and Outlook

Contents

7.1 Comparison of Recursive Filters 82

7.2 Comparison of Motion Models 82

7.3 Sensors and Sensor Fusion . 84

7.4 Outlook . 85

Within this thesis, it was discovered, which sensor technology suits well for common

state of the art SLAM methods. Sensor technologies could be combined to enhance the

map accuracy. For an easy sensor comparison, all evaluated devices were distance sensors:

A laser range finder, sonars and a time of flight (TOF) camera.

Sensor fusion is desired to build more robust and more accurate methods. The proposed

sensor fusion framework relies on separate particle weight updates for each sensor technol-

ogy. It was shown that robust SLAM approaches can be build with GMapping or feature

based mapping approaches using an accurate laser range finder. In contrast, the evaluated

sonar sensors and TOF measurements are too sparse and noisy to build accurate maps.

The fusion of a laser range finder and sonar sensors did not improve either the mapping

nor the localisation accuracy. The environmental structures could be represented proper

by the laser scanner alone.

In Section 3 basic filter concepts were reviewed. The strengths and weaknesses of the

discussed filters with respect to the SLAM problem are highlighted in the following. Fur-

thermore, two motion models, namely the Particle Motion Model and the Gaussian Prob-

abilistic Motion Model are reviewed. The results of the experiments are discussed and

improvements are proposed. This chapter closes with an outlook.

81

82 Chapter 7. Summary and Outlook

7.1 Comparison of Recursive Filters

In the theoretical part of this work, Section 3, several filters have been reviewed. In this

chapter the strengths and weaknesses of the discussed filters are highlighted. Tables 7.1

and 7.2 summarise the features of the discussed algorithms.

Algorithm State Probability State Noise Transition Model
Kalman Filter unimodal Gaussian Gaussian linear
Extended Kalman Filter unimodal Gaussian Gaussian non-linear
Particle Filter arbitrary multimodal white non-linear
Rao-Blackwellised Particle Filter arbitrary multimodal white non-linear

Table 7.1: Filter algorithm comparison. Properties.

The Kalman Filter is commonly used for linear, low dimensional tasks and is often the

first choice because of the computational efficiency. Large maps with many features lead

to huge state matrices and the filter becomes impractical. Non-linear state transitions

are possible with the Extended Kalman Filter.

Some applications need to track several objects simultaneously or follow mul-

tiple hypotheses. This filter nature is achieved by the Particle Filter. The Particle Filter

is more robust against wrong data associations, because of its probabilistic resampling

step.

Finally, the Rao-Blackwellised Particle Filter uses simple Extended Kalman Filters for

the feature estimates and a robust Particle Filter models the robot state. This leads

to an efficient SLAM implementation which scales logarithmically with the number of

features.

7.2 Comparison of Motion Models

In Section 3 two motion models, namely the Particle Motion Model and the Gaussian

Probabilistic Motion Model were reviewed. This chapter discusses the differences.

It can be said that both models are equivalent, except for a robot motion consisting of a

single rotation. In this case, the translational part is zero.

7.2. Comparison of Motion Models 83

Algorithm Comment
Kalman Filter Computational time increases quadratically with the

number of features. Mostly not practical to use this
filter for SLAM, because of non-linear robot motions.

Extended Kalman Filter Computational time increases quadratically with the
number of features, but the filter can model non-linear
state transitions. Fails if the non-linearities are too
strong.

Particle Filter Computational time is proportional to the number of
particles. Difficult to find a proper number of particles
and the resampling process is crucial.

Rao-Blackwellised Particle Filter The computational time of efficient implementations
of the FastSLAM algorithm scales logarithmic with
the number of features. The resampling process is
crucial.

Table 7.2: Filter algorithm comparison. Comments.

With the Particle Motion Model, only the heading angle is affected by Gaus-

sian noise. The particle positions (x, y) stay the same, see Figure 7.1 (a). Note that some

minimum noise is added to create the plot.

With the Gaussian Probabilistic Motion Model, the robot positions are affected by

Gaussian noise, see Figure 7.1 (b). This behaviour is requested to model real robot

kinematics. A rotation often results in a small shift of the robot center.

For both motion models it is challenging to find proper noise control parameters (α1, α2,

α3 and α4). The robot kinematic uncertainties depend not only on the robot architecture

and motion sensing technology (incremental sensor, IMU ...), but also on environmental

conditions. A bumpy or slippery ground floor leads to completely different parameter

values. Additionally, the amount of added noise has a direct impact on the variance of

the particle weights. One strategy to avoid too frequent resampling, is based on variance

of the particle weights, see Section 3.4. Therefore, different noise control parameters

result in different filter behaviour.

84 Chapter 7. Summary and Outlook

(a) (b)

Figure 7.1: Example Transition, Rotation by 145 degrees: (a) The Particle Motion Model
does not implement a drift and all particle positions would stay the same after the rotation.
(b) In contrast, with the Gaussian Probabilistic Motion Model the robot positions are
affected by Gaussian noise, see Figure 7.1 (b).

7.3 Sensors and Sensor Fusion

The sensor distance accuracy was evaluated with a laser range finder as ground truth and

scene specific sensor problems, like reflections on metal door were considered in Section

6.1. In the static experiment, the evaluated sonars had a maximum distance error of

about 20 cm, whereas the TOF camera had a maximum error of 5.34 cm. Different robot

heading angles or a dynamic experiment, where the measurements are made while the

robot is moving, would lead to bigger measurement errors. The maximum accuracy is

given by the laser range finder, which is used as reference distance sensor.

The evaluated TOF camera is sensitive to sun light and to reflections on metal and glass

surfaces, see Figure D.2, Figure D.3 and Figure D.4 . The evaluated sonar sensors of our

mobile robot are sensitive to the angle of inclination, see Figure D.2. Only the sonar

transducers, orthogonal to obstacles, a concrete wall, a metal fence etc., provide useful

measurements, see Figure D.4. Laser beams are reflected by window panes and lead to

corrupted measurements, see Figure D.4. A combination of different sensor technologies

should balance the weaknesses.

The laser range finder is the most accurate sensor evaluated in this thesis.

7.4. Outlook 85

The GMapping, the corner feature SLAM implementation and the edge feature SLAM

implementations lead to accurate trajectories with 100 particles or more, see Table 6.2.

Within the RawSeeds dataset, the robot made 826m in 26 minutes. The fastest method

was the corner based SLAM approach, which runs in realtime.

Sonar grid SLAM did not give good results with the RawSeeds dataset. A combination

of sonar readings and laser measurements did not reduce the absolute trajectory error

(ATE), but the estimated trajectory was smoother, see Figure 6.10. The amount of

completely wrong positioned particles was reduced by the sensor fusion. The map,

created by the laser range finder, could not be improved by the noisy and sparse sonar

readings.

The evaluation of the ICG indoor dataset showed good quality maps with a

laser range finder, see Figure 6.13. The laser range finder was robust against reflections

on concrete walls, metal doors and metal fences.

Sonar grid SLAM and TOF camera grid SLAM could not cope with the big systematic

drift of the odometry trajectory and the environmental difficulties, see Figure 6.15.

A fusion of sonars and TOF camera measurements did not improve the map quality

with the evaluated sensors. Sonar and TOF camera readings were only evaluated

with a grid SLAM method because no geometrical features could be extracted from

the measurements, see Figure 6.16. Either, more sophisticated SLAM methods are

necessary to correct the robot trajectory with the sparse and noisy sensor readings or

more accurate sensors should be used.

7.4 Outlook

More sophisticated sonars, a TOF camera with a higher resolution or multiple TOF cam-

eras used simultaneously could be a launch for further investigations. Multiple simultane-

ously operating TOF cameras are still an open issue, because the infrared beams must not

interfere with each other. In order to solve this problem, different modulation frequencies

of the LED sources could be used. Another solution could be multiplexing, where only

one camera is active.

Other sensor technologies can be easily integrated into the developed sensor fusion frame-

work. In the presented experiments the integrated sensors are of the same importance. An

adaptive weighting strategy could improve the result. If one is able to detect misleading

observations, like reflected TOF camera rays at metal doors, they could be neglected and

86 Chapter 7. Summary and Outlook

only the reliable measurements would be used to correct the robot pose.

Most of the experiments were performed with 100 particles. More particles, representing

the robot pose, would increase the accuracy of the estimated trajectory by the cost of

computational time. Particle Filters are easy to parallelise and a SLAM implementation

for the graphics processing unit (GPU) is obvious.

The performance of the feature based SLAM implementations can be enhanced by the use

of a more sophisticated data association strategy. The implemented method is a simple

nearest neighbour approach. Neira et al. [39] proposes a joint compatibility measure to

consider the correlations between map features.

In the experiments, only one line of the 3D information, observed by the TOF camera,

was used. A higher resolution would be necessary to extract geometric features, which

could be used for SLAM with a feature based approach. For a 3D grid SLAM approach,

a more sophisticated memory strategy would be necessary.

Appendix A

Acronyms and Symbols

List of Acronyms

CT Computer Tomography

EM Expectation Maximisation

FOV Field of View

GPS Global Positioning System

GT Ground Truth

IMU Inertial Measurement Unit

KF Kalman Filter

LASER Light Amplification by Stimulated Emission of Radiation

LRF Laser Range Finder

MR Magnetic Resonance

PF Particle Filter

SLAM Simultaneous Localisation and Mapping

SONAR Sound Navigation and Ranging

87

Appendix B

How to Write a Player Driver

The Player Project [23] is a popular robot software framework, which handles the

communication between the robot hardware and the software clients. It was used to

record the data during the experiments and is a client server architecture with a TCP

socket based communication. The framework makes interaction between different

software modules, like a path planer and an obstacle detector, easy and flexible. The

clients can be implemented in any programming language and the only drawback is the

TCP socket based communication bandwidth. Therefore, big video streams may be

transmitted via different communication methods, like firewire (IEEE 1394).

The hardware is addressed with a driver and many drivers are already implemented for

common robot hardware. For example, the PeopleBot motion control hardware and the

Sick LMS laser range finder are ready to use directly after the framework installation.

For more information about the The Player Project, see [23].

To proceed the experiments, only a driver for the time of flight camera from PMDTec

[24] was developed.

This chapter is a simple guideline, how to implement a hardware driver. The driver

methods are not considered in detail, because there exist already good descriptions, see

the HowTo from Petersen et al. [43]. This chapter provides source code templates, ready

to use after a few modifications.

In the most simple case, a driver consists of three files: The main source

code file, a Makefile for the compilation and finally to run the driver, a configuration file,

which provides the runtime parameters. A similar example can be found in the player

installation folder, called exampledriver, but the provided template is easier to adapt.

89

90 Chapter B. How to Write a Player Driver

In the following, three template listings for a complete driver implementation are

provided. This driver provides an audio interface.

Driver Source Code

/*

* Player - One Hell of a Robot Server

* Copyright (C) 2003

* Brian Gerkey

*

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*

*/

/*

* A simple example of how to write a driver that will be built as a

* shared object.

*/

#linux config

driver

(

91

name "TemplateDriver"

plugin "libTemplateDriver"

provides ["audio:0"]

)

// ONLY if you need something that was #define’d as a result of configure

// (e.g., HAVE_CFMAKERAW), then #include <config.h>, like so:

/*

#if HAVE_CONFIG_H

#include <config.h>

#endif

*/

#include <unistd.h>

#include <string.h>

#include <stdio.h>

#include <math.h>

#include <libplayercore/playercore.h>

#include <libplayerxdr/playerxdr.h>

//

// The class for the driver

class DriverTemplate : public Driver

{

public:

// Constructor; need that

DriverTemplate(ConfigFile* cf, int section);

// Must implement the following methods.

virtual int Setup();

virtual int Shutdown();

92 Chapter B. How to Write a Player Driver

// This method will be invoked on each incoming message

virtual int ProcessMessage(QueuePointer &resp_queue,

player_msghdr * hdr,

void * data);

private:

// Main function for device thread.

virtual void Main();

player_devaddr_t source_audio_adr0;

float *data0;

};

// A factory creation function, declared outside of the class so that it

// can be invoked without any object context (alternatively, you can

// declare it static in the class). In this function, we create and return

// (as a generic Driver*) a pointer to a new instance of this driver.

Driver*

DriverTemplate_Init(ConfigFile* cf, int section)

{

// Create and return a new instance of this driver

return((Driver*)(new DriverTemplate(cf, section)));

}

// A driver registration function, again declared outside of the class so

// that it can be invoked without object context. In this function, we add

// the driver into the given driver table, indicating which interface the

// driver can support and how to create a driver instance.

void DriverTemplate_Register(DriverTable* table)

{

table->AddDriver("DriverTemplate", DriverTemplate_Init);

93

}

//

// Constructor. Retrieve options from the configuration file and do any

// pre-Setup() setup.

DriverTemplate::DriverTemplate(ConfigFile* cf, int section)

: Driver(cf, section, false, PLAYER_MSGQUEUE_DEFAULT_MAXLEN,

PLAYER_AUDIO_CODE)

{

//request memory

memset (&this->source_audio_adr0, 0, sizeof (player_devaddr_t));

data0 = NULL;

//no interface to add, because this driver provides only one interface

return;

}

//

// Set up the device. Return 0 if things go well, and -1 otherwise.

int DriverTemplate::Setup()

{

puts("Example driver initialising");

// Here you do whatever is necessary to setup the device, like open and

// configure a serial port.

//Allocate memory

data0 = new float[100];

// Start the device thread; spawns a new thread and executes

// DriverTemplate::Main(), which contains the main loop for the driver.

StartThread();

94 Chapter B. How to Write a Player Driver

return(0);

}

//

// Shutdown the device

int DriverTemplate::Shutdown()

{

puts("Shutting example driver down");

// Stop and join the driver thread

StopThread();

// Here you would shut the device down by, for example, closing a

// serial port.

//free memory

if(data0 != NULL)

delete[] data0;

puts("Example driver has been shutdown");

return(0);

}

int DriverTemplate::ProcessMessage(QueuePointer & resp_queue,

player_msghdr * hdr,

void * data)

{

// Process messages here. Send a response if necessary, using Publish().

// If you handle the message successfully, return 0. Otherwise,

// return -1, and a NACK will be sent for you, if a response is required.

95

assert(hdr);

if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_DATA,

PLAYER_AUDIO_DATA_WAV_REC, source_audio_adr0))

{

player_audio_wav_t *waveData = reinterpret_cast<player_audio_wav_t *> (data);

memcpy(data0, waveData->data, waveData->data_count);

}

return(0);

}

//

// Main function for device thread

void DriverTemplate::Main()

{

pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,NULL);

while (1)

{

ProcessMessages();

pthread_testcancel();

pthread_testcancel();

}

pthread_exit(NULL);

}

//

// Extra stuff for building a shared object.

96 Chapter B. How to Write a Player Driver

/* need the extern to avoid C++ name-mangling */

extern "C" {

int player_driver_init(DriverTable* table)

{

puts("Template driver initializing");

DriverTemplate_Register(table);

puts("Template driver done");

return(0);

}

}

Makefile

LIBPATH = lib

INCPATH = inc

CFLAGS = -Dlinux32 -Wall -fpic -g3 -I$(INCPATH) ‘pkg-config --cflags playercore‘

LDFLAGS += -Wl,-rpath,$(LIBPATH) -L$(LIBPATH) -lpthread -ldl

CC = g++

OBJ = MCSoundV1.o

TARGET = libDriverTemplate.so

all: $(TARGET)

%.o: %.cc

$(CC) $(CFLAGS) -c $? -o $@

$(TARGET): $(OBJ)

$(CC) $? -shared -o $@ $(LDFLAGS)

clean:

rm -f *.o *.so.0

97

Configuration File

driver

(

name "DriverTemplate}"

plugin "libDriverTemplate}"

provides ["audio:0"}]

)

Conclusion

For a specific implementation, only a few modifications are necessary. First replace the

class name DriverTemplate and than modify the publishing method ProcessMessage.

Finally, the configuration file needs to be altered according to the provided interfaces,

defined in the ProcessMessage.

Because of the special character of player drivers, one needs to distinguish

between drivers with a single interface and drivers with multiple interfaces. The source

code listing, provided before considers the first case, where the player server is responsible

for the interface registration and the constructor calls a specialised base constructor.

If multiple interfaces are implemented, a registration of each interface is necessary

in the constructor section of the source code file. The following constructor code

listing describes the modifications for a driver, which provides a laser and a camera

interface. Note that the base constructor call in this example is simply Driver(cf, section).

PMDV3::PMDV3(ConfigFile* cf, int section)

: Driver(cf, section)

{

//request emory

memset (&this->i_cam_addr, 0, sizeof (player_devaddr_t));

memset (&this->laser_addr, 0, sizeof (player_devaddr_t));

provideLaser = FALSE; provideICam = FALSE;

// Outgoing laser interface

98 Chapter B. How to Write a Player Driver

if (cf->ReadDeviceAddr(&(this->laser_addr), section, "provides",

PLAYER_LASER_CODE, -1, NULL) == 0)

{

if (this->AddInterface (this->laser_addr) != 0)

{

this->SetError (-1);

return;

}

provideLaser = TRUE;

}

// Outgoing intensity::camera:0 interface

if (cf->ReadDeviceAddr (&(this->i_cam_addr), section, "provides",

PLAYER_CAMERA_CODE, -1, "intensity") == 0)

{

if (this->AddInterface (this->i_cam_addr) != 0)

{

this->SetError (-1);

return;

}

provideICam = TRUE;

}

return;

}

The development of player drivers is very intuitive and easy to understand. With the

driver HowTo from Petersen et al. [43] and the provided source listings, the reader is able

to develop new hardware drivers at minimum costs.

Appendix C

How to use Realtime Player Data

within Matlab

This chapter describes a library, permitting a communication between Matlab, a common

scientific programming tool, and the player server. The developer enjoys the advantages

of Matlab, like complex plotting procedures or easy signal processing, and has access the

many player client modules in realtime.

Thanks to Kevin Barry [5], who developed the Matlab client library, called PlayerMex.

The latest version of PlayerMex can be downloaded from [5]. The reader has

the choice between pre compiled linux and windows versions, which is often sufficient.

If an interface is not implemented, the source code version of PlayerMex is the proper

choice. A new interface implementation would affect the file playermex generated.c, but

this modification is not explained in this work.

In the following, a simple matlab code example explains the basic communi-

cation process. Note that the PlayerMex library folder is added to the Matlab path

variable.

Matlab Player Communication

The following example demonstrates a communication between Matlab and a player client,

implementing a position2d interface (PeopleBot driver for instance).

%% init player connection

99

100 Chapter C. How to use Realtime Player Data within Matlab

try, player(’destroy’, pos2d); end;

try, player(’client_disconnect’, client); end;

try, player(’destroy’, client); end;

% Now we can create a client to connect to the player server (192.168.0.1)

client = player(’client_create’, ’192.168.0.1’, 6665);

if (player(’client_connect’, client))

error ’Could not connect to player’;

end

%subscribe

pos2d = player(’position2d_create’, client, 0);

player(’subscribe’, pos2d);

%enable motors

status = player(’position2d_enable’, pos2d, 1);

%loop

while quit_flag == 0

%read data from player server

player(’client_read_raw’, client);

if (player(’isfresh’, pos2d))

%display robot pose

[pos2d.px pos2d.py pos2d.pa]

end

end

% Clean up

try

player(’unsubscribe’, pos2d);

player(’destroy’, pos2d);

player(’client_disconnect’, client);

player(’destroy’, client);

catch

Appendix D

ICG Environment Characteristics

Figure D.1: ICG static indoor dataset, Concrete Walls: Front view of a concrete wall.
Sonar, laser and TOF camera scans.

101

102 Chapter D. ICG Environment Characteristics

Figure D.2: ICG static indoor dataset, Concrete Walls: Side view of a concrete wall.
Sonar, laser and TOF camera scans. Red labelled structures denote wrong measurements.
Some TOF measurements are wrong because of sun light reflections.

103

(a)

(b)

Figure D.3: ICG static indoor dataset, Metal Doors: (a and b) Front and side view of
metal doors. Each image with sonar, laser and TOF camera scans. Metal doors lead to
reflections, which causes error prone distance measurements of the sonar transducers and
the TOF camera.

104 Chapter D. ICG Environment Characteristics

(a)

(b)

Figure D.4: ICG static indoor dataset, Window Panes: (a and b) Front and side view of
a window pane. Each image with sonar, laser and TOF camera scans. Laser readings and
the TOF measurements are corrupted.

105

(a)

(b)

Figure D.5: ICG static indoor dataset, Metal Fences: (a and b) Front and side view of a
metal fence. Each image with sonar, laser and TOF camera scans. Present imprecisions
can be lead back to the sensor noise.

106

Bibliography

[1] ActivMedia (2009). Mobile robots inc. http://www.activmedia.com. Visited on

december 6th 2009.

[2] Altermatt, M., Martinelli, A., Tomatis, N., and Siegwart, R. (2004). SLAM with

Corner Features Based on a Relative Map. In None.

[3] Ayache, N. and Faugeras, O. (1988). Building, registrating, and fusing noisy visual

maps. Int. J. Rob. Res., 7(6):45–65.

[4] Balaguer, B., Carpin, S., and Balakirsky, S. (2007). Towards quantitative comparisons

of robot algorithms: Experiences with slam in simulation and real world systems. In

Workshop on ”Performance Evaluation and Benchmarking for Intelligent Robots and

Systems” at IEEE/RSJ IROS.

[5] Barry, K. (2009). Playermex. http://barryk.googlepages.com/playermex. Visited

on november 14th 2009.

[6] Burgard, W., Ruhnke, M., Stachniss, C., and Grisetti, G. (2001). The rawseeds project.

http://www.rawseeds.org/home/. Visited on july 28th 2009.

[7] Castellanos, J. A. and Tardos, J. D. (2000). Mobile Robot Localization and Map

Building: A Multisensor Fusion Approach. Kluwer Academic Publishers, Norwell, MA,

USA.

[8] Chen, Z. (2003). Bayesian filtering: From kalman filters to particle filters, and beyond.

Technical report, McMaster University.

[9] Choi, Y.-H., Lee, T.-K., and Oh, S.-Y. (2008). A line feature based slam with low

grade range sensors using geometric constraints and active exploration for mobile robot.

Auton. Robots, 24(1):13–27.

[10] Crowley, J. (1989). World modeling and position estimation for a mobile robot usig

ultrasonic ranging.

[11] Cyrill Stachniss, Udo Frese, G. G. (2001). Openslam. http://www.openslam.org/.

Visited on july 28th 2009.

[12] Defense Advanced Research Projects Agency (2009). The DARPA Urban Challenge.

http://www.darpa.mil/grandchallenge/index.asp. Visited on july 28th 2009.

http://www.activmedia.com
http://barryk.googlepages.com/playermex
http://www.rawseeds.org/home/
http://www.openslam.org/
http://www.darpa.mil/grandchallenge/index.asp

BIBLIOGRAPHY 107

[13] Diosi, A. and Kleeman, L. (2004). Advanced sonar and laser range finder fusion for

simultaneous localization and mapping. In Proceedings of 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems.

[14] Douc, R. and Cappe, O. (2005). Comparison of resampling schemes for particle

filtering. In Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings

of the 4th International Symposium on, pages 64–69.

[15] Durrant-Whyte, H. (1988). On uncertain geometry in robotics. 4(1).

[16] Durrant-Whyte, H. and Bailey, T. (2006). T.: Simultaneous localisation and map-

ping (slam): Part i the essential algorithms. robotics and automation magazine. IEEE

Robotics and Automation Magazine, 2:2006.

[17] Eliazar, A. and Parr, R. (2003). Dp-slam: Fast, robust simultaneous localization and

mapping without predetermined landmarks.

[18] Eliazar, A. and Parr, R. (2004a). Dp-slam 2.0. volume 2, pages 1314–1320 Vol.2.

[19] Eliazar, A. I. and Parr, R. (2004b). Learning probabilistic motion models for mo-

bile robots. In ICML ’04: Proceedings of the twenty-first international conference on

Machine learning, page 32, New York, NY, USA. ACM.

[20] Everett, H. R. (1995). Sensors for mobile robots: theory and application. A. K.

Peters, Ltd., Natick, MA, USA.

[21] FraunhoferIPA (2009). Fraunhofer institute for manufacturing engineering and au-

tomation ipa. http://www.ipa.fraunhofer.de.

[22] Fulgenzi, C., Ippoliti, G., and Longhi, S. (2009). Experimental validation of Fast-

SLAM algorithm integrated with a linear features based map. Mechatronics.

[23] Gerkey, B., Howard, A., Koenig, N., and Vaughan, R. (2009). The player project.

http://playerstage.sourceforge.net/. Visited on november 14th 2009.

[24] GmbH, P. (2009). Pmdtechnologies gmbh. http://www.pmdtec.com/. Visited on

august 8th 2009.

[25] Gokturk, S. B., Yalcin, H., and Bamji, C. (2004). A time-of-flight depth sensor -

system description, issues and solutions. In CVPRW ’04: Proceedings of the 2004 Con-

ference on Computer Vision and Pattern Recognition Workshop (CVPRW’04) Volume

3, page 35, Washington, DC, USA. IEEE Computer Society.

http://www.ipa.fraunhofer.de
http://playerstage.sourceforge.net/
http://www.pmdtec.com/

108

[26] Gonzalez, J., Ollero, A., and Reina, A. (1994). Map building for a mobile robot

equipped with a 2d laser rangefinder. In Proc. IEEE International Conference on

Robotics and Automation, pages 1904–1909.

[27] Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to

nonlinear/non-gaussian bayesian state estimation. Radar and Signal Processing, IEE

Proceedings F, 140(2):pages 107–113.

[28] Grewal, M. S. and Andrews, A. P. (1993). Kalman filtering: theory and practice.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[29] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid

mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23:2007.

[30] Hähnel, D., Burgard, W., Fox, D., and Thrun, S. (2003a). An efficient fastslam

algorithm for generating maps of large-scale cyclic environments fram raw laser range

measurements. In In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), pages 206–211.

[31] Hähnel, D., Burgard, W., Fox, D., and Thrun, S. (2003b). An efficient fastslam

algorithm for generating maps of large-scale cyclic environments from raw laser range

measurements. In In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), pages 206–211.

[32] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Transactions of the ASME Journal of Basic Engineering, (82 (Series D)):35–45.

[33] Leonard, J. J. and Durrant-Whyte, H. F. (1992). Directed Sonar Sensing for Mobile

Robot Navigation. Kluwer Academic Publishers, Norwell, MA, USA.

[34] Leonard, J. J. and Whyte, D. H. (1991). Simultaneous map building and localization

for an autonomous mobile robot. In IEEE International Conference on Intelligent Robot

Systems, Osaka, Japan.

[35] Makarenko, A. and Durrant-Whyte, H. (2004). Decentralized data fusion and control

in active sensor networks. In In Proceedings of the Seventh International Conference

on Information Fusion.

[36] Montemerlo, M. and Thrun, S. (2003). Simultaneous localization and mapping with

unknown data association using fastslam.

BIBLIOGRAPHY 109

[37] Moravec, H. (1988). Sensor fusion in certainty grids for mobile robots. AI Mag.,

9(2):pages 61–74.

[38] Murphy, K. P. (2000). Bayesian map learning in dynamic environments. In In Neural

Info. Proc. Systems (NIPS), pages 1015–1021. MIT Press.

[39] Neira, J. and Tards, J. D. (2001). Data association in stochastic mapping using the

joint compatibility test.

[40] Nguyen, V., Harati, A., Martinelli, A., Siegwart, R., and Tomatis, N. (2006). Orthog-

onal slam: a step toward lightweight indoor autonomous navigation. pages 5007–5012.

[41] Nguyen, V., Harati, A., and Siegwart, R. (2007). A lightweight slam algorithm using

orthogonal planes for indoor mobile robotics. pages 658–663.

[42] Pandey, A. K., Krishna, K. M., and Hexmoor, H. (2007). Feature chain based occu-

pancy grid slam for robots equipped with sonar sensors. pages 283–288.

[43] Petersen, B. and Fonseca, J. (2009). Writing player/stage drivers. http:

//image.diku.dk/mediawiki/images/e/e2/Driverhowtodoc_HandedIn.pdf. Visited

on november 14th 2009.

[44] Rosencrantz, M., Gordon, G., and Thrun, S. (2003). Decentralized sensor fusion with

distributed particle filters. In In Proc. of UAI.

[45] Schröter, C. and Gross, H.-M. (2007). Efficient gridmaps for slam with rao-

blackwellized particle filters.

[46] Siegward, R. (2009). Perception - sensors. http://www.asl.ethz.ch/education/

master/mobile_robotics/4a_-_Perception_-_Sensors.pdf. Visited on december

5th 2009.

[47] Smith, R. and Cheeseman, P. (1986). On the representation and estimation of spatial

uncertainty.

[48] Sukhatme, G. S. (2009). Usc robotics research lab. http://www-robotics.usc.edu/

~gaurav/. Visited on december 6th 2009.

[49] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press.

http://image.diku.dk/mediawiki/images/e/e2/Driverhowtodoc_HandedIn.pdf
http://image.diku.dk/mediawiki/images/e/e2/Driverhowtodoc_HandedIn.pdf
http://www.asl.ethz.ch/education/master/mobile_robotics/4a_-_Perception_-_Sensors.pdf
http://www.asl.ethz.ch/education/master/mobile_robotics/4a_-_Perception_-_Sensors.pdf
http://www-robotics.usc.edu/~gaurav/
http://www-robotics.usc.edu/~gaurav/

110

[50] Vandorpe, J., Van Brussel, H., and Xu, H. (1996). Exact dynamic map building for

a mobile robot using geometrical primitives produced by a 2d range finder. In Proc.

IEEE International Conference on Robotics and Automation, volume 1, pages 901–908.

[51] Welch, G. and Bishop, G. (1995). An introduction to the kalman filter. Technical

report, Chapel Hill, NC, USA.

[52] Xavier, J., Pacheco, M., Castro, D., and Ruano, A. (2005). Fast line, arc/circle and

leg detection from laser scan data in a player driver. In In 2005 IEEE International

Conference on Robotics and Automation, Barcelona, Spain, pages 3930–3935.

[53] Yang, S.-W. and Wang, C.-C. (2008). Dealing with laser scanner failure: Mirrors

and windows. In IEEE International Conference on Robotics and Automation (ICRA),

Pasadena, California.

BIBLIOGRAPHY 111

	Introduction
	Motivation
	Overview

	Related work
	SLAM Methods
	Algorithms for SLAM
	Sensor Fusion Methods
	Evaluation Methods

	Theory and Background
	Notation
	Probabilistic Filters
	Kalman Filter
	Discrete Kalman Filter
	Extended Kalman Filter

	Particle Filter
	Rao-Blackwellised Particle Filter
	Motion Models

	Sensor Technologies
	Introduction
	Sonar
	Laser Range Finder
	Time of Flight Camera

	Simultaneous Localisation and Mapping
	Introduction
	The SLAM Problem
	SLAM Methodologies
	Corner Feature based SLAM
	Edge Feature based SLAM
	Discussion

	Sensor Fusion
	Conclusion

	Experiments
	Distance Sensor Evaluation
	RawSeeds Indoor
	Dataset and Setup
	Laser Range Finder
	Sonar
	Sensor Fusion: Laser and Sonar

	ICG Lab Indoor
	Dataset and Setup
	Laser Range Finder
	Sonar
	Time of Flight Camera
	Sensor Fusion: Sonar and Time of Flight

	Summary and Outlook
	Comparison of Recursive Filters
	Comparison of Motion Models
	Sensors and Sensor Fusion
	Outlook

	Acronyms and Symbols
	How to Write a Player Driver
	How to use Realtime Player Data within Matlab
	ICG Environment Characteristics
	Bibliography

