
Graz University of TehnologyFaulty of Computer SieneInstitute for Software Tehnology
Dotor of Philosophy Dissertation

An Empirial Investigation intoChanges and Bugs by MiningSoftware DevelopmentHistoriesbyJaved Ferzund
Supervisor: Univ. Prof. Dipl.Ing. Dr.teh. Franz WotawaNovember 2009Graz, Austria

To My Parents

Foreword
This dissertation was written as a partial ful�llment of the requirements for thedegree of Dotor of Philosophy in Informatis at the Graz University of Tehnol-ogy, Austria.The researh work presented in this thesis was arried out at the Institutefor Software Tehnology, In�eldgasse 16b/2, 8010 Graz, Austria. This work wasstarted in Deember 2006 and involved both researh and development.The subjet of this thesis is to evaluate software repositories in order to de-velop novel approahes for software debugging. Software hanges and bugs areresearhed to develop models for bug preition and to study the features of bug in-troduing hanges. A signi�ant part of this dissertation was published at variousonferenes.This work was suggested and supervised by Prof. Franz Wotawa and waspartially funded by Higher Eduation Commission, Government of Pakistan.

e

Abstrat
Software repositories hold enormous amount of data that an be used for softwareevolution studies. Finding and removing bugs from software is a hallengingtask. Mining development history of software an improve the debugging proess.Software on�guration management systems reord all software hanges that aremade during its evolution. A signi�ant part of these hanges is used to �xbugs in software. Both bug �x and bug introduing hanges an be extratedfrom software repositories. Bug introduing hanges an be analyzed to studyharateristis of soure ode that result in bugs. This dissertation presents twoempirial studies that investigate the role of language onstruts in introduingbugs and in�uene of programming language on post release bugs.Revision histories of eight open soure projets developed in multiple lan-guages are proessed to extrat bug-induing language onstruts. Twenty sixdi�erent language onstruts and syntax elements are hosen for this study. Fun-tion alls, assignments, onditions, pointers, use of NULL, variable delaration,funtion delaration and return statement are found to be the most frequentbug-induing language onstruts. They are found in 38-62%, 30-42%, 17-40%,11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug induing hunks respetively.These onstruts aount for more than 70 perent of bug-induing hunks. Fun-tion Calls are found to be the most dominant soure of errors in all projets.Use of pointers and NULL is highly problemati in projets developed in the lan-guage C. Di�erent projets are statistially orrelated in terms of frequenies ofbug-induing language onstruts. Most of the developers tend to fae di�ultieswith similar language onstruts. Statistial analysis indiates that the majorityof the developers indue similar kinds of bugs independent of the projet andprogramming language.Within our work the development history of Mozilla projet with a span of11 years had been extrated and di�erent ode and evolution metris had beenalulated. Mozilla is a heterogeneous projet developed in C, C++ and Java.Defet densities of �les written in the three languages are statistially analyzedin order to �nd a relationship between defets and programming languages. Lifeg

span of bugs within the three kind of programs is also alulated to omparethe e�orts required to �x bugs in the di�erent languages. Statistial analyses ofbug densities revealed that post release bugs are in�uened by the programminglanguage. Results of hypothesis testing showed that Java programs are less errorprone than C or C++ programs, and that C programs are less error prone thanC++ programs in same projet. We found that the bug life time of Java programsis twie as long as for C or C++ programs.This thesis also introdues a new set of metris alled hunk metris and a teh-nique to lassify hunks as buggy or bug-free. The hunk lassi�ation approahuses hunk metris as input variables to lassify hunks into buggy and bug-free.Classi�ation models are built using logisti regression and random forests, andtheir performane is evaluated and ompared. Bug predition abilities of individ-ual metris are also evaluated. The hunk lassi�ation approah is evaluated oneight large open soure projets. It an lassify hunks as buggy or bug-free with81% auray, 77% buggy hunk preision and 67% buggy hunk reall on average.Hunk metris related to hange and history are found to be better preditor ofbugs than ode related hunk metris. Preditors obtained from one projet whenapplied to a di�erent projet ould lassify hunks with more than 60% auray.

Zusammenfassung
Software-Repositories halten enorme Menge von Daten, die für die Software-Entwiklung Studien verwendet werden. Suhen und Entfernen von Software-Fehler ist eine anspruhsvolle Aufgabe. Mining Entwiklungsgeshihte von Soft-ware zur Verbesserung der Debugging-Prozess. Software Con�guration Management-Systeme erfassen alle Software-Änderungen, die während ihrer Entwiklung gemahtwerden. Ein erhebliher Teil dieser Veränderungen wird verwendet, um Fehler inder Software beheben. Beide Fehler zu beheben und Fehler der Einführung vonÄnderungen können von der Software-Repositories extrahiert werden. Bug derEinführung von Änderungen können analysiert werden, um Merkmale der Quell-ode zu studieren, die zu Fehlern. Diese Dissertation präsentiert zwei empirisheStudien, dass die Rolle der Sprahe zu untersuhen Konstrukte bei der Einführungvon Bugs und der Ein�uss der Programmiersprahe über den Post Release Bugs.Revision Geshihten von aht Open-Soure-Projekte in mehreren Sprahenentwikelt werden verarbeitet, um Fehler zu extrahieren-induzierende Sprahkon-strukte. Zwanzig sehs vershiedenen Sprahkonstrukte und Syntax Elementesind für diese Studie ausgewählt. Funktionsaufrufe, Zuweisungen, Bedingun-gen, Zeiger, die Verwendung von NULL, der Deklaration von Variablen, Funk-tion Erklärung und return-Anweisung gefunden werden, um die häu�gste Fehler-induzierende Sprahkonstrukte. Sie sind gefunden in 38-62%, 30-42%, 17-40%, 11-30%, 1-22%, 11-25%, 8-12% und 8-15% der Fehler hunks bzw. veranlassen. DieseKonstrukte einen Anteil von mehr als 70 Prozent der Fehler-induzierende hunks.Funtion Calls �nden sih als die wihtigste Quelle von Fehlern in allen Projek-ten. Verwendung von Zeigern und NULL ist höhst problematish an Projektenin der Sprahe C. Vershiedene Projekte entwikelt werden, korreliert statistishin Bezug auf die Häu�gkeit der Fehler-induzierende Sprahkonstrukte. Die meis-ten Entwikler neigen dazu, Shwierigkeiten mit ähnlihen Sprahe Gesiht Kon-strukte. Die statistishe Analyse zeigt, dass die Mehrheit der Entwikler, ähn-lihe Arten von Bugs unabhängig von der Projekt-und Programmiersprahe zuinduzieren. i

Im Rahmen unserer Arbeit die Entwiklung der Geshihte von Mozilla-Projektmit einer Spannweite von 11 Jahren wurde extrahiert und anderen Code-Metrikenund-entwiklung war errehnet worden. Mozilla ist ein heterogenes Projekt in C,C ++ und Java. Defet Dihten von Dateien in den drei Sprahen geshrieben wer-den statistish ausgewertet, um einen Zusammenhang zwishen Fehler und Pro-grammiersprahen zu �nden. Lebensdauer von Fehlern innerhalb der drei Artenvon Programmen ist auh geeignet, die Anstrengungen erforderlih, um Fehler inden vershiedenen Sprahen �x vergleihen. Statistishe Analysen ergaben, dassFehler Dihten nah Freigabe durh die Fehler der Programmiersprahe beein-�usst werden. Ergebnisse der Hypothese Tests ergaben, dass Java-Programmeweniger fehleranfällig als C oder C ++ Programme sind, und daÿ C Programmesind weniger fehleranfällig als C ++ Programme in einem Projekt arbeiten. Wirhaben gefunden, dass der Fehler Lebensdauer von Java-Programmen ist doppeltso lang wie C oder C ++ Programmen.Diese wird auh ein neues Set von Kennzahlen genannt hunk Metriken undeine Tehnik, um hunks als Buggy oder Bug-frei einzustufen. Die Einstufunghunk Metriken Ansatz verwendet als Eingangsgröÿen hunks in Buggy und Bug-freieinzustufen. Klassi�kation Modelle werden mit Hilfe logistisher Regression undzufällige Wälder, und ihre Leistung wird evaluiert und verglihen werden. BugVorhersage Fähigkeiten der einzelnen Kennzahlen werden ebenfalls bewertet. DieEinstufung hunk Ansatz basiert auf aht groÿen Open-Soure-Projekte ausgew-ertet. Es kann klassi�zieren hunks als Buggy oder Bug-frei mit 81% Genauigkeit,77% Buggy hunk Präzision und 67% Buggy hunk erinnern, im Durhshnitt. HunkMetriken im Zusammenhang mit der Veränderung und der Geshihte gefundenwerden, besser zu sein als Indikator für Fehler im Zusammenhang hunk Code-Metriken. Prädiktoren, erhalten aus einem Projekt, wenn ein anderes Projektkönnte hunks mit mehr als 60% Genauigkeit zu klassi�zieren angewendet.

Contents
Contents i1 Introdution 31.1 Roadmap . 61.2 Empirial Analysis of Language Construts 71.3 Programming Languages and Bugs 81.4 Hunk Classi�ation . 81.5 Terminology . 102 Extration of Data from Repositories 132.1 Arhiteture . 132.2 Database Shema . 152.3 Extration of Hunks . 162.4 Identi�ation of bug-induing Hunks 172.5 Projets Analyzed . 193 Empirial Analysis of Bug-Induing Language Construts 233.1 Extration of Language Construts 253.2 Proportion of Di�erent Hunk Types 303.3 Most Frequent Bug-Induing Language Construts 313.4 Projet Similarities . 343.5 Developer Similarities . 363.6 Bug Lateny . 403.7 Comparison with Non Bug-Induing Hunks 423.8 Summary . 454 Language Spei� Bug Patterns 474.1 Researh Hypothesis . 484.2 Projet Studied . 484.3 Evolution Metris . 49i

ii CONTENTS4.4 Results . 504.5 Proving hypothesis H1 . 574.6 Threats to Validity . 614.7 Summary . 625 Hunk Classi�ation 635.1 The Approah . 645.2 Tools Used . 655.3 Hunk Metris . 655.4 Evaluation Criteria . 685.5 Classi�ation Tehniques . 695.5.1 Logisti Regression . 695.5.2 Random Forests . 715.5.3 Prinipal Component Analysis (PCA) 715.5.4 Point Biserial Correlation 725.6 Results . 735.6.1 Correlation between Hunk Metris and Bugs 735.6.2 PCA and Logisti Regression 735.6.3 Random Forests . 755.6.4 Comparison of Logisti Regression and Random Forests . . 765.6.5 Performane of Individual Metris 785.6.6 Performane of Combination of Metris 795.6.7 Cross Projet Preditions 825.7 Appliations . 846 Threats to Validity 877 Related Work 897.1 Mining Software Change History 897.2 Bug Predition . 907.3 Software Change Extration and Analysis 927.4 Buggy Code Features and Loations 958 Future work 979 Conlusion 99Bibliography 103A List of Publiations 111List of Figures 113List of Tables 115

iiiStatutory Delaration 118

Aknowledgments
I feel immense pleasure to thank the many people who diretly or indiretly madethis thesis possible.I am greatly indebted to my supervisor, Prof. Franz Wotawa, for openingthe door to researh for me. I am thankful to him for his ontinuous guidaneand support at eah step of my researh areer. He gave me freedom to thinkand work on interesting researh topis. He always enouraged me and providedadvie whenever it was needed. Without his guidane, it would not have beenpossible to �nish this dissertation.I am grateful to Prof. Shahram Dustdar for taking time out of his busyshedule to at as seond reviewer of my dissertation.I am thankful to my olleague Syed Nadeem Ahsan for his valuable ommentsand suggestions on my work. We worked on many researh topis together andsolved the problems with disussions. We spent a very good time and enjoyed ourresearh work.I would like to thank the people at IST for making me feel at home. Theirfriendship and are made my stay omfortable. Espeially, I am thankful to PetraPihler for providing help and support whenever I needed it.I was luky to have many good friends from Pakistan Community at Graz.Their love and support made my life easy and joyful. We lived like a family andenjoyed our stay in Graz.I am grateful to my parents for their ontinuous love and support in everymatter of my life. They allowed me to do whatever I wanted. Whenever I feltdownhearted they enouraged me and supported me. Without their support andguidane it would not have been possible for me to ahieve preious milestones inmy life. Javed FerzundGraz, Austria, November 20091

Chapter 1
Introdution
Changes and bugs are interrelated in the software development proess. Somehanges are made to �x bugs, and on the other hand bugs are introdued bymaking hanges to software. Change is a basi property of evolving software.When hanges are made, errors may be generated in the soure ode, whihresult in software failures. These errors in turn are orreted by making hanges,so hanges and bugs are in a sense omplementary to eah other. Changes are amust for long life of software. Aording to Lehman's Law of Program Evolution,software needs to be ontinuously hanged otherwise it will beome progressivelyless useful [59℄Changes are made to the software due to several reasons suh as �xing bugs,adding new funtionality, performane enhanement, improving ompatibility,refatoring et. Pressman has lassi�ed software hanges into four ategories,orretion, adaptation, enhanement and prevention [63℄. Corretive hanges aremade to �x bugs, whereas adaptive hanges are required to adjust the software tohanges in the external environment. Enhanements are required to extend thefuntionality of the software. Preventive hanges are those made to enhane thelife of the software.Software undergoes the proess of aging due to ontinuous hanges appliedto it. Parnas has alled the e�et of ontinuous hange as ignorant surgery.That means, di�erent developers hange the software at di�erent times, without athorough awareness of the software and its design [58℄. Usually bugs are to be �xedin short time periods. Due to this time pressure, developers annot understandthe software fully before �xing bugs. A software system is hanged by multipledevelopers. So hanges inrease inonsisteny, omplexity, understandability andthe size of software. Sometimes these hanges introdue new bugs into the soureode [67℄.Bugs are reated due to mistakes or errors in the soure ode or design of soft-3

4 CHAPTER 1. INTRODUCTIONware. Software bugs vary in their omplexity and severity, and need to be detetedand removed before software deployment. Undeteted bugs an be detrimentalfor life and resoures [25℄. In 1985 Thera-25, a radiation therapy devie malfun-tioned due to a software bug. It delivered lethal radiation doses and resulted indeaths and injuries [25℄. In 1996 Ariane 5, the European Spae Ageny's roketwas destroyed a few seonds after launh, due to a bug in the guidane omputerprogram. It resulted in a loss of 1 billion US$ [3℄.Loating and removing bugs from software is a tedious and time-onsumingpart of software development. Developers spend a lot of time and e�ort to �ndand remove bugs, whih is sometimes more expensive than writing new soureode [74℄. A bug life yle onsists of bug identi�ation, bug assignment, bug�xing, quality assurane and re-assignment of bugs. Bugs are assigned to relevantdevelopers, a proess alled bug triage [5℄. Bugs with highest priority are �xed�rst and other known bugs are delivered with the software in eah release.Extensive researh is going on in software debugging to produe high quality,reliable and bug-free software. Mining software repositories is a new tehnique tobe also applied for software testing and debugging. Many bugs are not detetedby the traditional testing tehniques like regression testing, unit testing, odereviews and the use of debugging tools. Mining software repositories an exploreuseful hidden information from software repositories and bug databases [19, 65℄.Sine software repositories store historial information about hanges and bugs,important lessons an be learned by analyzing this information.Version ontrol systems reord hanges made to the soure ode as softwaredevelopment progresses. These systems maintain a log of the hanges, inludingdate and time of hange, identity of the developer and reason of the hange. Bugtraking systems reord information related to bugs. These systems hold infor-mation about identi�ation, assignment and resolution of bugs. Mailing lists andommuniation arhives reord onversation between developers about partiulardeisions throughout the life of a software projet. All this data an be pooled toondut empirial studies involving software evolution [7, 20℄. In this dissertationwe fous on three goals:The �rst goal of this researh is to identify the language onstruts whihintrodue bugs most of the time, thus helping in the debugging proess.The seond goal of this researh is to study the in�uene of programminglanguage on the ourene of post release bugs.The third goal of this researh is to help developers in identifying and removingbugs, thereby reduing the testing e�ort and maintenane osts.To meet these goals, this work proposes tehniques to identify bug-induinglanguage onstruts and to predit bugs in terms of hunk lassi�ation. In par-tiular this thesis ontributes to the following tasks:� Empirial analysis of language onstruts

5� Identi�ation of frequent bug prone language onstruts� Analysis of di�erent projets, developers and programming languages forthe frequenies of bug-induing language onstruts� Analysis of bug densities of programs written in di�erent languages� Study of various evolution metris obtained from programs written in dif-ferent languages� Exploration of new software metris to be used as bug preditors� Development of hunk lassi�ation models� Comparison of preditor models based on statistial and mahine learningtehniquesThe oneptual ontribution of this thesis fouses on mining software devel-opment history, identi�ation and extration of bug-induing hunks, de�nitionof new software metris, and extration of language onstruts. The tehnialontribution of this thesis fouses on development of bug predition models basedon metris, approahes for hange lassi�ation, and an analysis of language on-struts for their role in introdution of bugs. The empirial ontribution of thisthesis is the appliation and evaluation of the proposed tehniques to the releasehistory of eight large, long lived open soure software projets.The major ontributions of this thesis are:� An approah to extrat bug-induing hunks by proessing revision history ofa software projet. The approah makes use of on�guration managementsystems and bug databases.� Empirial analysis of bug-induing language onstruts in terms of theirfrequenies.� Correlation analysis of di�erent projets, developers and programming lan-guages in terms of frequenies of bug-induing language onstruts.� Findings about the relationship between programming language and postrelease bugs� Comparative study of various evolution metris� De�nition of 27 hunk metris and an empirial analysis of these metris aspreditor of bugs.� Constrution of hunk lassi�ation models and their evaluation.

6 CHAPTER 1. INTRODUCTION1.1 RoadmapThis setion desribes the layout of this thesis and relationship of eah hapterwith my seleted publiations.Chapter 2 desribes the tehniques to extrat data from software release history.We present the arhiteture of the database used to store and analyze datafor this study. A simple approah is desribed to extrat bug-induing hunksfrom hange history of a projet.Chapter 3 presents an empirial analysis of language onstruts. We identifythe language onstruts that introdue bugs more frequently. We present aorrelation analysis of di�erent projets, developers and programming lan-guages for the frequenies of bug-induing language onstruts. This workontributed to a publiation [16℄ that was presented at Working Confereneon Reverse Engineering (WCRE 2009).Chapter 4 presents a ase study to �nd the in�uene of programming langaugeon post release bugs. We alulate and ompare various evolution metrisfor programs written in di�erent languages. This work ontributed to apubliation [4℄ that was presented at International Conferene on SoftwareEngineering Advanes (ICSEA 2009).Chapter 5 desribes the hunk lassi�ation approah. We de�ne hunk metrisand present a tehnique to alulate them. We use statistial and mahinelearning tehniques to build lassi�ation models. These models are evalu-ated on data of eight open soure projets. This work ontributed to twopubliations [18, 17℄. First [18℄ was presented at International Confereneon Software Maintenane (ICSM 2009). Seond [17℄ is to be presented atInternational Conferene on Software Proess and Produt Measurement(MENSURA 2009).Chapter 6 disusses the threats to validity. It desribes the limitations of thisstudy.Chapter 7 reviews the related work in the �eld of mining software hange his-tory, bug predition, software hange extration, software hange analysisand buggy ode features and loations.Chapter 8 disusses the future work.Chapter 9 presents the onlusions.

1.2. EMPIRICAL ANALYSIS OF LANGUAGE CONSTRUCTS 71.2 Empirial Analysis of Language Construts
Reduing bugs in software is a key issue in software development. Many teh-niques and tools have been developed to automatially identify bugs. These teh-niques vary in their omplexity, auray and ost. Bug �nding tools use pre-de�ned bug patterns, model heking and theorem proving to detet bugs. Per-formane of these tools an be enhaned by paying attention to those languageonstruts whih frequently ontribute to bugs. Testing e�ort an be foused onmore risky language onstruts. More test ases an be generated and models anbe developed for frequently bug-introduing language onstruts. Code reviewsan be made with a areful examination of bug-introduing language onstruts.In this way maintenane ost will be redued as well as software quality will beimproved.Software repositories maintain reord of all hanges made to software. Thesehanges are made to �x bugs, to add new features, to improve performane or torestruture the ode for easy maintenane. Bug �x hanges are identi�ed by aomment reorded by a developer in the on�guration management system. Thesehanges an be traed bak to the loations, where the bug was atually intro-dued into the soure ode [67, 37℄. Bug-introduing hanges an be extratedfrom software repositories and their properties an be studied.This thesis presents an empirial study of bug-induing hanges with a fous onlanguage onstruts. One goal of this work is to identify syntax elements of a lan-guage whih frequently ontribute to introdution of bugs. We try to �nd whihlanguage onstruts are more problemati. Change history of eight open soureprojets is analyzed to �nd, whether there are ommon language onstruts whihontribute to bugs. These projets are developed in di�erent languages inludingC, C++ and Java. We also analyze hanges made by di�erent developers to �nd,whether di�erent developers make similar mistakes.When developers make a hange, they hange lasses, funtions, variables, sele-tion and ontrol strutures. We analyze the bug-induing hanges to �nd the syn-tax elements whih ontribute to bugs. Twenty six di�erent language onstrutsand syntax elements are hosen for this study. We �nd that most frequent bug-induing language onstruts are funtion alls, assignments, onditions, pointers,use of NULL, variable delaration, funtion delaration and return statement.These onstruts aount for more than 70 perent of bug-induing hunks. Dif-ferent projets are statistially orrelated in terms of frequenies of bug-induinglanguage onstruts. Developers within a projet and between di�erent projetsalso have similar frequenies of bug-induing language onstruts.

8 CHAPTER 1. INTRODUCTION1.3 Programming Languages and BugsComparing pros and ons of various programming languages is an interesting de-bate among programmers and omputer sientist. There exist strong opinions forand against various programming languages. Some studies exist on omparisonof programming languages. Prehelt evaluated programs written in di�erent lan-guages for memory onsumption, runtime e�ieny, reliability, program lengthand programming e�ort [62℄. A similar study was onduted by Garia et al.[24℄ on support for generi programming. The authors identi�ed eight languagefeatures that support generi programming. They found that generi features areneessary to avoid awkward designs, poor maintainability, unneessary run-timeheks, and painfully verbose ode.Most of the published work in empirial software engineering that deals withbug detetion or bug predition does not ompare the number of post-releasebugs for programs written in di�erent programming languages. A number ofstudies exist on harateristis of bugs and defet prone modules [39, 42, 43, 49,51℄. Li et al. [43℄ used natural language text lassi�ation tehniques to analyzebug harateristis in two large open soure projets. The authors found thatmemory-related bugs have dereased exept some simple memory-related bugssuh as NULL pointer dereferenes, whereas seurity bugs with severe impatsare inreasing. They also found that semanti bugs are the dominant root auses,requiring more e�orts to detet and �x them. Mohagheghi et al. [49℄ in anempirial study analyzed the impat of reuse on defet-density and stability, aswell as the impat of omponent size on defets and defet-density in the ontextof reuse, using historial data on defets, modi�ation rate, and software size.This thesis presents an empirial study providing insight into post release bugs.In this study programming languages are ompared but in a new dimension that issoftware evolution. It fouses on exploring the in�uene of programming languageon post release bugs. Various evolution metris are ompared for three di�erentlanguages inluding C, C++ and Java. Development history of Mozilla projetover the past 11 years is used for this study. It is found that Java is less errorprone than C language and C language is less error prone than C++ language, atleast for the Mozilla projet. Although these results are hard to generalize, theyprovide useful insight into the relationship between programming languages andbugs.1.4 Hunk Classi�ationMaking hanges to software is a ruial task during di�erent phases of softwareevolution. Changes are required to add new features, to �x the bugs, to improveperformane or to restruture the ode for easy maintenane. These hanges areimplemented by adding, modifying or deleting the soure ode in di�erent �les

1.4. HUNK CLASSIFICATION 9of software. A �le an be hanged at one or more plaes, alled deltas or hunks.These hunks of soure ode, whih are added either newly or after modi�ations,may introdue bugs and result in failures later on. Eah hunk has a likelihood ofbeing buggy or bug-free.A large part of time and resoures is onsumed in software testing and debuggingduring the evolution of software. We an save this e�ort if we an �nd the partsof the soure ode where the probability of bugs is more and apply these resoureson �les whih require it most.In order to predit the number of bugs or to provide a preditor with regard to alassi�ation shema there are two approahes possible. The �rst approah usesstatistial methods like multiple linear regression, logisti regression, and prini-pal omponents analysis [41, 52℄. Linear regression an be suessfully used if thedependent variables hange linear with the independent variables. As most of themetris normally orrelate with eah other, there is a strong need to overomethe multiolinearity problem. Prinipal omponent analysis is used in this respetto redue the multiolinearity e�et. Logisti regression an be used for binarylassi�ations.The seond approah relies on mahine learning tehniques like deision tree in-dution, support vetor mahine, arti�ial neural networks, k-nearest neighborsto mention some of them. Mahine learning tehniques have the ability to learnfrom past data and these tehniques an be employed in a variety of omplexsituations (see [72℄).A lot of researh has been arried out on bug predition using di�erent approahesand at di�erent levels of granularity. Most of the researhers have used ode met-ris as preditors of bugs [29, 40, 52, 55, 15, 14℄, while others have used proessmetris as preditors of bugs [27, 35, 64℄. Previous researh was foused on dif-ferent levels of granularity suh as modules, �les, lasses and methods. Someresearhers predited the number of faults for modules or �les [52, 55℄, while oth-ers foused on individual lasses and methods [29, 56℄.This dissertation presents a hunk lassi�ation approah that predits bugs insmallest units of a hange, whih are hunks. Two predition models are on-struted using statistial and mahine learning tehniques. The models are builtusing hunk metris of previous buggy and bug-free hunks obtained by mining thehange history of a software projet. Logisti regression and Random Forests areused to build the preditor models.Our lassi�ation approah an lassify hunks as buggy or bug free with 82 per-ent auray, 77 perent buggy hunk preision and 67 perent buggy hunk reallon average. Preditors obtained from one projet, based on hunk metris, an besuessfully applied to other projets.

10 CHAPTER 1. INTRODUCTION1.5 TerminologyThis hapter de�nes various terms used in this thesis.Software Con�guration Management (SCM): It is the proess of handlinghanges made to the software during its development. It is used to ontrolthe evolution of software projets. SCM omprises four operations: Iden-ti�ation, ontrol, status aounting and audit. (IEEE Guide to SoftwareCon�guration Management. 1987. IEEE/ANSI Standard 1042-1987.)Bug Traking System: A bug traking system is used to store and manageinformation about bugs suh as when a bug is reported, who reported abug, short desription of a bug, severity of a bug, platform on whih a bugis reported, module in whih a bug is reported and status of a bug.Version or Revision: These two terms are used interhangeably. A version orrevision represents instane of a �le at a partiular time. As a softwaresystem evolves, hanges are made to the �les. Revisions are used to identifydi�erent instanes of a hanged �le.Version Control: It is an important feature of a software on�guration man-agement system, used to manage di�erent revisions of �les in a softwareprojet.Commit: It is the proess of submitting hanges to an SCM system. Initiallynew �les of a projet are ommitted to the SCM system. Then eah hangeto a �le is ommitted. A ommit may involve a single �le or multiple �lestogether.Change: Software evolution is haraterized by making hanges to the �les. Ahange represents a single modi�ation stored in the SCM repository.Change Delta: It is the result of making a hange to a �le. The hanged linesin a �le omprise a hange delta.Added Delta: It onsists of the lines added for making a hange.Deleted Delta: It onsists of the lines deleted for making a hange.Hunk: Changes are made to �les in hunks of soure ode that are dispersed ina �le. These hunks of ontiguous soure ode lines are alled hunks. Therean be multiple hunks in a hange delta.Modi�ation hunk: If soure ode lines are modi�ed to make a hange, theresulting hunk is alled a modi�ation hunk.

1.5. TERMINOLOGY 11Addition Hunk: If new soure ode lines are added to make a hange, the re-sulting hunk is alled an addition hunk.Deletion Hunk: If new soure ode lines are removed to make a hange, theresulting hunk is alled a deletion hunk.Change log: When a developer ommits a hange to the SCM system, shereords a message desribing the purpose of the hange. This message isalled hange log. Change logs an be proessed to identify di�erent kindsof hanges.Change Annotation: It is a basi feature of on�guration management sys-tems. An SCM system annotates eah soure ode line with the date ofmodi�ation, author of the line and the revision in whih that line washanged.Bug: A bug is haraterized by a programming mistake or error in soure odethat results in malfuntioning of software.Fix: A �x is haraterized by replaing erroneous soure ode with the orretode. A �x is used to remove a bug from software.Bug Fix Change: A hange applied to software, to �x a bug is alled a bug �xhange.Bug-Induing Change: A hange whih resulted in malfuntioning of softwarelater on is alled a bug-induing hange or buggy hange.Bug Fix Hunk: A hunk whih is part of a �x is alled a bug �x hunk.Bug-Induing Hunk: A hunk whih resulted in malfuntioning of software lateron is alled a bug-induing hunk.Bug-Fix Developer: A developer who makes hanges to �x a bug is alled abug-�x developer.Bug-Induing Developer: A developer, modi�ations made by whom resultedin malfuntioning of software, is alled a bug-induing developer.

Chapter 2
Extration of Data fromRepositories
The work presented in this thesis is based on data obtained from mining soft-ware release history. Information related to hanges and bugs is extrated fromon�guration management systems and bug databases. Soure ode and hangeinformation is extrated from CVS and SVN repositories. All revisions of eah �leare analyzed for hanges made at di�erent times. Bug information is extratedfrom Bugzilla and this information is mapped to revisions of �les from respetivesoftware repositories.We use our own developed modules to extrat information from CVS and bugdatabases. The extrated information is stored into a database. This databaseis used for training hunk lassi�ation models as well as for analyzing languageonstruts.This hapter desribes the arhiteture of the data extration proess, the stepsto extrat and identify bug-induing hunks and a shema of the database used tostore hunks.2.1 ArhitetureThe data extration proess used in this study involves four modules along witha fat database. The four modules are desribed shortly.Log Parser It extrats log information from a software repository. Whenever ahange is ommitted to the repository, on�guration management systemreords the purpose of hange and meta data of hange. Log parser onnets13

14 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIESto CVS and SVN, extrats log information for all revisions and stores thisinformation into the fat database.Annotation Parser It takes annotations for every revision of all �les in a projet.Con�guration management systems annotate eah line of ode with authorand date information. This information is important for analysis of hanges.Annotation parser onnets to CVS and SVN, extrats annotations for all�les and stores this information into the fat database.Di�erene Parser It takes di�erene of two onseutive revisions of eah soure�le, extrats the hange deltas and store this information into the fatdatabase.Bug Parser It extrats bug reports from a bug database and stores this infor-mation into the fat database.Fat DataBase It holds all the information regarding �les, revisions, developers,bugs, transations and hanges.Arhiteture of data extration proess is depited in Figure 2.1. Data extra-tion is ompleted in four steps:� Log information is extrated from CVS and SVN repositories. CVS main-tains log for eah revision of a �le separately while SVN maintains log forevery revision of the projet. So log information from SVN repositories isfurther proessed to relate the log to hanged �les only.� Di�erenes are extrated between two onseutive revisions for all �les. CVSand SVN provide the faility to view and get di�erenes between two revi-sions. This information reveals the ode additions, deletions and modi�a-tions made during the evolution of software.� Annotations are obtained for eah line of ode in all revisions. This infor-mation is also extrated from CVS and SVN repositories. Annotations arehelpful in studying evolutionary aspets of software.� Bug reports are extrated from bug databases. Bug reports hold importantinformation inluding desriptions, report and �x dates, developers involvedin �xing and pathes of ode.Details for extration and labelling of hunks are desribed in the next setions.

2.2. DATABASE SCHEMA 15

Figure 2.1: Arhiteture for Data Extration2.2 Database ShemaA simple database is designed to hold the log, di�erene and annotation infor-mation. This database is further analyzed to identify bug-induing and bug-�xhunks. The database onsists of three tables, details of whih are given below:CVSLog holds information extrated from log messages for eah revision. Adesription of its attributes is given in Table 2.1.CVSDi�erene holds information about hange deltas between every two on-seutive revisions of eah �le. A desription of its attributes is given inTable 2.2.CVSAnnotations holds information extrated from annotations obtained foreah revision of every �le. A desription of its attributes is given in Table2.3.

16 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIESTable 2.1: CVSLog table desriptionField Type Desription�le varhar(255),not null Name and path of the �lerevision varhar(10),not null Revision number of a �lerdate date,not null Revision date and timeauthor varhar(50) Name of author who made the revisionstate varhar(20) State of the revisionlinesadd integer, not null Number of lines added to this revisionlinesdel integer, not null Number of Lines deleted from this revisionomment longtext Comments added by the authorbug varhar(3),not null Indiates whether a bug is �xedTable 2.2: CVSDi�erene table desriptionField Type Desription�le varhar(255),not null Name and path of the �lerevision varhar(10),not null Revision number of a �lehunk_id varhar(10),not null represents hunk identi�erhunk_text text,not null Contains the atual soure ode in a hunkbug_indue varhar(3),not null Indiates a bug-indue hunkbug_�x varhar(3),not null Indiates a bug-�x hunkTable 2.3: CVSAnnotations table desriptionField Type Desription�le varhar(255),not null Name and path of the �lerevision varhar(10),not null Revision number of a �leline_number integer, not null Position of a line in the revisionline_revision varhar(10),not null line modi�ation revisionauthor varhar(50) author of the linedate date date and time of modi�ationline_ode text Atual soure ode of the line2.3 Extration of HunksEvolution history of a projet holds a lot of information inluding hanges madeto it. A single hange an be applied to one or multiple �les. Changes are made insmall hunks of ode, that are dispersed in a �le. These hunks are alled hunks.To extrat hunks from a software repository, steps illustrated in Figure 2.2are used. Exeution of these steps populates the tables mentioned in the previoussetion.In the �rst step, log information is obtained for all revisions of eah �le, usingthe log ommand of CVS and SVN. A part of CVS log output is shown in Figure2.4. It ontains date and time, author, state, lines added and deleted, ommitstatus and a omment added by the developer. The omment part is proessed

2.4. IDENTIFICATION OF BUG-INDUCING HUNKS 17

Figure 2.2: Steps for Hunk Extrationto identify bug-�x revisions as desribed in [47, 20℄.In the seond step, a di�erene is taken between eah pair of onseutive revisionsfor all �les, using the diff ommand of CVS and SVN. A sample of di�ereneoutput is shown in Figure 2.5. It onsists of di�erent hunks, with eah hunkindiating the lines added, deleted or modi�ed between the two revisions. Thelines starting with '<' indiate the lines removed/modi�ed from previous revi-sion, whereas the lines starting with '>' indiate the lines added into the urrentrevision. Lines starting with '>' are stored into the CVS di�erene table for eahrevision. It indiates the ode added either newly or after modi�ations. Thisportion of ode will be used for extration of language onstruts and syntax el-ements.In the third step annotations are obtained for all latest revisions preeding thebug-�x revisions, using the annotate ommand of CVS and SVN. A sample ofannotations is shown in Figure 2.6. It provides for eah line, the last revision inwhih this line was added or modi�ed, the author who added this line, the datewhen this line was last added or modi�ed and the atual ode. This informationhelps to identify the origin of the bugs [67℄.2.4 Identi�ation of bug-induing HunksBug-induing hanges an be identi�ed using SZZ algorithm [67, 37℄. HoweverSZZ algorithm identi�es hanges at �le level. It does not reognize bug-induinghunks, rather it onsiders whole hange as bug-induing. A manual review ofbug-induing hanges have shown that not all hunks of a bug-induing hange

18 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

Figure 2.3: Steps for identifying bug-induing hunksontribute to bugs. So a tehnique is required whih an disriminate betweenbug-induing and non bug-induing hunks.This dissertation proposes a tehnique for identifying bug-induing hunks. Adetail of the tehnique is illustrated in Figure 2.3. This tehnique makes useof the database desribed earlier. The steps to identify bug-induing hunks areexplained using an example. Suppose we have a �le from Elipse projet namedJDTCompilerAdapter.java. In the �rst step log information is extrated from theCVS repository. Figure 2.4 shows a sample of log taken for the above mentioned�le. It ontains information related to revision, author, date, time, lines added ordeleted, status and a omment added by the developer. Comments are proessedto �nd keywords Fix, Fixed, Path, Bug or a numeri identi�er of a bug. Suhomments are highlighted using boldfae in Figure 2.4. To illustrate the hunkidenti�ation proess, revision 1.66 is seleted in whih a bug is �xed, revision1.66 is marked as bug �x revision. To �x a bug in this revision hanges weremade to revision 1.65.A di�erene is taken between revision 1.65 and 1.66. Figure 2.5 shows thedi�erene of both revisions. There are two hunks in Figure 2.5, whih are high-lighted. First hunk indiates that lines 110-113 are hanged in revision 1.65 to line110 in revision 1.66. Lines starting with '<' indiate the lines removed/modi�edfrom revision 1.65, whereas the lines starting with '>' indiate the lines addedinto revision 1.66.To identify the latest revision in whih these lines were added, annotationsare obtained for revision 1.65. Figure 2.6 shows the annotations organized ina tabular form. Comments are ignored and ode of lines 110,115,116 and 117 is

2.5. PROJECTS ANALYZED 19

Figure 2.4: CVS Logseleted. These lines were reently modi�ed or added in revision 1.38 and revision1.29 as indiated in Figure 2.6. CVS di�erene table is queried to identify thehunks in whih these hanges were made. Figure 2.7 shows all the added hunksin revision 1.38. String omparison is used to identify the hunks in whih lines110,115 and 117 were added. The hunks ontaining these lines are highlighted inFigure 2.7 and these hunks are marked as bug-induing hunks.2.5 Projets AnalyzedFor this study 8 open soure projets are seleted. These projets are seleteddue to easy availability of their development history and bug information. Table2.4 shows some statistis of these projets. We desribe the projets shortly:Apahe HTTP 1.3 is the most popular web server on the Internet, providingseure, e�ient and extensible HTTP servies (http://httpd.apahe.org/).Columba is an Email Client written in Java, featuring a user-friendly graphialinterfae with wizards and internationalization support. We seleted for ourstudy the main trunk of Columba.(http://www.olumbamail.org/drupal/)Elipse is an integrated development environment (IDE) for software develop-ment. We seleted JDT part of Elipse projet for our study, that providesJava Development Tools (http://www.elipse.org/).Epiphany is a simple and easy to use web browser for GNOME desktop(http://projets.gnome.org/epiphany/).

20 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

Figure 2.5: CVS Di�erene

Figure 2.6: CVS Annotations

2.5. PROJECTS ANALYZED 21

Figure 2.7: CVSDi�erene table entriesTable 2.4: Desription of ProjetsProjet Software Type Language PeriodApahe HTTP 1.3 HTTP Server C 01/1996-01/2008Columba Email lient Java 07/2006-12/2007Elipse JDT Java Development IDE Java 06/2001-10/2008Epiphany Web Browser C 12/2002-02/2009Evolution Groupware Client C 04/1998-06/2007Mozilla Web Browser C/C++/Java 03/1998-07/2008Nautilus File Manager C 10/1999-02/2009PostgreSQL DBMS C/C++ 07/1996-10/2008Evolution provides integrated mail, address-book and alendaring funtionalityto users of the GNOME desktop (http://projets.gnome.org/evolution/).Nautilus is a powerful �le manager.(http://projets.gnome.org/nautilus/)Mozilla is a popular and widely used web browser. (http://www.mozilla.org/)PostgreSQL is a widely used database management system. (http://www.postgresql.org/)

Chapter 3
Empirial Analysis ofBug-Induing LanguageConstruts
As a software evolves, hanges are ontinuously applied to the soure ode. Soft-ware on�guration management systems reord these hanges made to the soureode. This information an be extrated and used for software evolution studies.Log messages of a transation help to identify reasons for software hanges [47℄.Bug databases hold important information related to bugs [1℄. This informationan be used to study harateristis and behavior of bugs. Software on�gurationmanagement data ombined with bug data provides a rih soure for di�erentkinds of empirial studies. In the reent years researh is foused on produinggood quality software with redued osts. Partiularly researhers are interestedin reduing testing e�ort and maintenane osts. Most of the work is aimed atfault ourrene and fault predition in the software [13, 27, 36, 54, 60, 71℄.Software hange history an be mined to disover interesting hange patterns.Researh has been onduted on di�erent levels of granularity to �nd hangepatterns. Some researhers have studied �le o-hange patterns [73℄ , others havestudied logial ouplings among di�erent modules [12, 23℄ and line o-hangepatterns [76℄ . More �ne grained researh is also onduted to �nd appliationspei� patterns, to �nd item ouplings, to predit hange propagation and to�nd signature hange patterns [31, 32, 75℄.In this hapter an empirial study of hanges and bugs is presented. Soft-ware hange history of 8 open soure projets is mined and harateristis ofbug-introduing hanges are analyzed. A number of language onstruts are ex-trated from bug-introduing hanges and their abilities of bug-introdution are23

24 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSstudied. Di�erent language onstruts are ompared and more bug-prone lan-guage onstruts are identi�ed.Revision histories of 8 open soure projets are mined to extrat bug-induinghunks. These hunks are proessed to extrat language onstruts and syntax el-ements whih ontribute to bugs. The objetive of this study is to �nd languageonstruts whih are more problemati. If suh bug-induing syntati elementsare identi�ed, testing e�ort an be foused on the most frequent bug-induingelements. Further developers an be areful while making hanges, keeping inmind the frequent bug-induing elements. When developers make a hange, theyhange lasses, funtions, variables, seletion and ontrol strutures. My �rst re-searh objetive is to �nd whih language onstruts or syntax elements introduebugs most of the time. This formulates my �rst researh question:� Researh Question 1. What are the most frequent bug-induing languageonstruts.Di�erent projets are developed for spei� purpose and by a di�erent groupof developers. Further projets an be developed in di�erent programminglanguages. So it would be interesting to know whih language onstrutsommonly introdue bugs in di�erent projets. It gives rise to the followingtwo researh questions:� Researh Question 2. Is the frequeny of bug-induing language onstrutssimilar between projets developed in the same language.� Researh Question 3. Is the frequeny of bug-induing language onstrutssimilar between projets developed in di�erent languages.Di�erent developers may have di�erent programming skills, so they may feeldi�ulty with di�erent language onstruts and hene introdue di�erentkinds of bugs. There an be domain spei� features whih inrease thedi�ulty of developers. This observation gives rise to the following researhquestions:� Researh Question 4. Is the frequeny of bug-induing language onstrutssimilar between developers of the same projet.� Researh Question 5. Is the frequeny of bug-induing language onstrutssimilar between developers of di�erent projets.� Researh Question 6. Is the frequeny of bug-induing language onstrutssimilar between developers of the same programming language.� Researh Question 7. Is the frequeny of bug-induing language onstrutssimilar between developers of di�erent programming languages.

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 25To ondut this study, 8 open soure projets developed in multiple languages andhaving a long development history are seleted. A desription of these projets isalready given in Chapter 2.3.1 Extration of Language ConstrutsBug-induing hunks are identi�ed using the tehniques mentioned in Chapter2. A stati soure ode parser is implemented in Java, whih extrats di�erentsyntax elements from a given hunk. It parses the hunk and �nds the ourreneof di�erent language onstruts. 26 di�erent syntax elements are hosen, and theparser is designed to �nd these elements. A detail of these syntax elements isshown in Table 3.1, with examples extrated from Elipse and Apahe hangedata. Syntax elements presented in last �ve rows of Table 3.1, are extrated forJava �les only, whereas pointers, inlude statement, de�ne statement, strutures,assertions and goto statement are not extrated for Java �les.A short desription of eah language onstrut is presented below:Conditions: Conditional expressions provide a seletion mehanism in the pro-gram. Developers implement onditions in a program to provide multi-ple paths of exeution. Conditions usually evaluate a Boolean expressionand depending on the evaluation result, exeution path is seleted. Therean be simple and omplex onditions in a program. Simple onditionsinvolve single Boolean expression, whereas omplex onditions involve mul-tiple Boolean expressions. Further onditions are nested up to many levels.As onditions involve Boolean expressions and use of relational operators,developers an make a mistake in seleting appropriate relational or logialoperators. Usually equality operator is mistakenly used and it is sometimesmissed by testing tools.Loops: Loops provide an iteration mehanism in a program. Developers useloops to repeat a statement or group of statements many times. Thereare three kinds of loops, one whih exeutes statements for the spei�ednumber of times, the other repeats statements until a spei�ed onditionbeomes false, and the third one exeutes statements at least one even ifthe spei�ed ondition is false.Developers may make a mistake in speifying the ounter variable in theloop, or the ontrolling ondition may be set wrong.Assignments: Assignments are used to set or hange the value of a variable.This value an be set using a onstant, other variable or an expression. Theexpression may be arithmeti, logial, objet instantiation or some funtionall.

26 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS
Table 3.1: Language ConstrutsSyntax Element Symbols ExamplesConditions if, else, else if if (this.ompileList.length != 1) {Loops for, while, do while for (int i = 0, max = pathEle-ments.length; i< max; i++) {Assignments = this.target=true;Funtion Calls Foo (); lasspath.addExisting(new Path(null,jre_lib.toOSString()))Funtion Del./Def. bar () { } private void addExtdirs(Path extDirs,Path lasspath) {Variable Delaration int foo; Map ustomDefaultOptions;Pointers Int * foo; har *fspe;Logial Operators &&, ||, ! if (!resultValue && this.logFileName !=null) {Relational Operators <, >, ==, !=, <=, >= if (this.aessRules == null) {Return statement return a; return ClasspathDiretory + this.path;//NON − NLS − 1Use of NULL foo= NULL; private Map �leEnodings = null;Inlude statement # inlude # inlude <sys/stat.h>De�ne statement # de�ne # de�neMPE_WITHOUT_MPELX44Strutures strut foo { } strut utsname os_version;Assertions assert () assert(idx < APACHE_ARG_MAX);Arrays int foo [℄ String[℄ dirs = extDirs.list();Case statement ase foo: ase READING_JAR:Goto statement goto foo: goto return_from_multi;In-de operator ++,- - if (len > 2 && errstr[len-3℄ == .) len--;Break statement break; state = destinatonPathStart; break;Exeption handlers try, ath try {zipFile.lose();}ath(IOExeption e) {Class delaration lass foo publi lass ClasspathDiretory imple-ments FileSystem.Classpath {New operator new foo() this(new ZipFile(�le), true, null);Throw statement throw foo-exeption; throw new BuildExeption(Jdtom ,e);//NON − NLS − 1Imports import import org.elipse.ore.runtime.IPath;Inheritane extends, implements publi lass ClasspathJar extendsClasspathLoation {

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 27Developers an make mistakes in assignments by using wrong values orinappropriate expressions.Funtion Calls: Funtions or methods are a way to modularize programs. Inobjet oriented programming methods at as interfaes to lasses. Devel-opers write methods or funtions to perform ertain tasks. Whenever thattask is required, they an make a all to it. A proper syntax of a methodall inludes method name and its parameters. If the funtion or methodreturns a value, it should be used in an assignment expression.Programmers an make a mistake in providing the orret parameters orarguments to a funtion all, or they an make a all at the wrong plae.Funtion De�nitions: Funtions or methods are required to be de�ned beforethey an be alled in a program. Method de�nitions are an essential partof objet oriented programming. Classes are inomplete without methods.Method de�nitions onsist of signature of the method and a body of themethod. Signature of a method onsists of an aess spei�er, return type,method name and a list of parameters. Method body onsists of a set ofstatements.Developers an make mistakes in writing signature of a method.Variable Delarations: Variables are used to oupy memory loations for hold-ing data. Variables an be delared or de�ned in a program. Variable dela-ration involves a data type and a variable name, whereas variable de�nitionadditionally involves an assignment of initial value to the variable. Variablesan be of simple data types or omplex user de�ned data types. In objetoriented programming, variables are also used to hold instanes of lasses.Developers an make wrong delarations or inorret instantiations, whihmay lead to errors in programs.Pointers: Pointers are a kind of variables whih hold memory addresses. Devel-opers use pointers to refer di�erent memory loations in a program. Pointersare extensively used in programs developed in C language. Pointers an bedelared of any data type and they an point to memory loations of thesame type.Major draw bak of pointers is memory management. Pointers an referto wrong loations or they an oupy memory when it is no more needed.Developers an make mistakes in pointer initializations or pointer updations.They an also forget to free memory after using it.Logial and Relational Operators: Logial operators are used to ombine Booleanexpressions whereas relational operators are used to onstrut Boolean ex-pressions. They are normally used as part of the onditions and loops.

28 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSDevelopers an make a mistake in using the appropriate operator at theappropriate plae.Return Statement: Return statement is used in a method or funtion to returna value. If a return type is mentioned in method signatures, it should havea return statement in its body. Return statement is a way to use the resultsof a funtion exeution outside the body of a funtion.Developers an forget to return a value or they an make a mistake inreturning the orret value.Use of Null: Null is treated as 0 or void in C and C++. In Java it is a speialliteral of the null type and it doesn't neessarily have value zero. It isimpossible to ast to the null type or delare a variable of this type.Developers an make invalid use of null or they an make mistakes in as-signing null.Inlude Statement: Inlude statement is used to ombine library �les or otheruser written �les in a C or C++ program.De�ne Statement: De�ne statement is used to de�ne maros in a C or C++program.Strutures: Strutures are a way to ombine di�erent data types into a singledata type. In proedural languages strutures are used to ombine variablesand funtions. A struture represents a omplex data type onsisting ofmultiple simple data types.Developers an make a mistake in de�ning the struture or assessing theelements of the strutures.Assertions: In large programs, before proeeding further it is useful to knowwhether a ondition or set of onditions is true. To start a partiular om-putation, developers usually make sure that the program is in a state, inwhih they believe it to be. It is aomplished by use of a statement alledassertion. If an assertion fails, a diagnosti message an be displayed andthe program is terminated.Programmers an make mistakes in using valid assertions.Arrays: Arrays provide a way to store olletion of data items of same typeat ontiguous memory loations. Individual elements an be aessed byspeifying the index of that element. Objet oriented languages providefuntions related to arrays that an be used to manipulate arrays.Developers an make mistakes in delaring arrays or aessing the elementsof an array.

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 29Case Statement: Swith statement provides a way to have multiple exeutionpaths based on the value of a single variable. Di�erent values of the swithvariable are provided by using ase statement. During the exeution of aprogram, statements after the mathing ase are exeuted. A default aseis also provided, whih is exeuted when none of the ases math with theurrent value of the swith variable.Developers an make inorret use of ases.Goto Statement: Goto statement is used to shift ontrol from one plae toanother plae in a program. It is used in programs written in C language.Labels are used to mark loations in a program, goto statement an shiftontrol to these labels.Programmers an make erroneous use of goto statement.Inrement-derement Operator: Inrement operator when applied to a vari-able, inreases its value by adding one to it. Similarly derement operatorwhen applied to a variable, dereases its value by subtrating one from it.These operators are short notation of an assignment expression, doing thesame. Use of the operator on left or right side of the operand produesdi�erent results.Programmers sometimes do not make use of inrement-derement operatorarefully and unexpeted results are produed.Break Statement: Break statement is used in loops to stop the iterations ofa loop based on some ondition. Sometimes you do not want the loop toomplete the spei�ed iterations, and stop the repetition based on the stateof an external variable. Break statement helps in suh kind of situations.Mishandling of break statement an produe unexpeted results.Class Delaration and De�nition: Classes are the ore of objet oriented pro-gramming languages. Classes implement the data enapsulation, inheri-tane and polymorphism, that are typial features of objet oriented pro-gramming. Classes are omposed of data members and methods, with pub-li, private and proteted aess spei�ers for these two. A lass an be usedin a program by reating instanes of it, whih are alled objets.Programmers an make several types of mistakes while de�ning lasses.New Operator: New operator is used when a new instane of a lass is required.New operator reserves memory for an instane of a lass and names it withthe variable for whih that instane is reated.Programmers an mistakenly reate wrong instantiations, or they may usewrong arguments to the onstrutor of a lass.

30 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSImport Statement: Import statement is used to inlude di�erent pakages ina program. It is not very muh onerned with errors, however it mayindiretly involve in reation of bugs.Inheritane: It is a typial feature of objet oriented programming. A lass aninherit either from a single lass or multiple lasses. C++ supports multipleinheritane, whereas in Java interfaes are used to implement multiple in-heritane. By using inheritane, features of the parent lass are transferredto the hild lass. The hild lass an have additional features of its own.Improper handling of inheritane an result in multitude of errors whihause failure of the program.Exeption Handlers: Exeption handling is a way to trap known errors in aprogram. It is implemented by a try and ath mehanism. Parts of theode whih are known to generate errors are plaed in a try blok. Eahtry blok is aompanied by a ath blok, in whih error handling ode isplaed. Exeption handling prevents a program from terminating, when anerror ours.An exeption may not be trapped by the ath bloks provided and resultin program failures.Throw Statement: Throw statement is used to throw an exeption of a spei-�ed type.Invalid throw statement an result in errors, ausing malfuntioning of aprogram.3.2 Proportion of Di�erent Hunk TypesExtrated hunks are grouped into four ategories based on the bug information.These hunk types are:Bug-Fix Hunks These hunks are part of bug-�x hanges. A bug-�x hunk isreated when a developer �xes a bug.Bug-Induing Hunks These hunks are origin of bugs. A bug-induing hunk isreated when a developer makes a hange, whih results in failure later on.Bug-Fix-Induing Hunks These hunks are part of bug-�x hanges but intro-due bugs later on. A bug-�x-induing hunk is reated when a developer�xes a bug but at the same time introdues another bug.Clean Hunks These hunks are neither part of bug �xes nor introdue any bug.

3.3. MOST FREQUENT BUG-INDUCING LANGUAGE CONSTRUCTS 31

Figure 3.1: Proportion of hunk types in di�erent projetsAs development of software progresses new features are added and size of soft-ware grows. Chanes of errors are inreased as the number of hanges inreases.Bug-induing hunks onstitute a signi�ant proportion of total hunks made inthe development history of a projet. Figure 3.1 shows the proportion of di�erenttypes of hunks in 8 projets. Mozilla projet is desribed with three languagesseparately.All projets have more than 20% bug-�x hunks. Proportion of bug-induinghunks is higher in projets developed in C language. Mozilla and Nautilus havea higher perentage of bug-�x-induing hunks. Projets developed in JAVA haveomparatively higher perentage of lean hunks.3.3 Most Frequent Bug-Induing Language ConstrutsFrequenies of language onstruts in bug-induing hunks are alulated. A ma-jority of the bug-induing hunks involved a hange to more than one languageonstrut. To answer the researh question 1, for eah language onstrut, theproportion of total bug-induing hunks, it was involved in is alulated. Themost frequent bug-induing language onstruts are funtion alls, assignments,onditions, pointers, use of NULL, variable delaration, funtion delaration andreturn statement. Table 3.2 and 3.3 show the proportion of total bug-induinghunks whih ontain a given language onstrut, expressed as perentage val-ues. Columns from 2 to 8 in Table 3.2 indiate the perentage of total hunksinvolving a spei� language onstrut for Apahe, Epiphany, Evolution, C �lesof Mozilla, C++ �les of Mozilla, Nautilus and PostgreSQL respetively. In Table

32 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSTable 3.2: Frequenies of Bug-Induing Language Construts(a)Syntax Element Ap. Ep. Ev. Moz-C Moz-CPP Nau. Pg-SQLConditions 40 22 29 28 28 21 17Loops 11 4 7 5 4 4 6Assignments 38 39 42 35 31 31 25Funtion Calls 54 57 62 38 47 59 36Funtion Delaration 12 12 11 8 8 11 7Variable Delaration 14 24 25 16 14 18 13Pointers 30 24 29 15 11 24 12Logial Operators 30 16 18 17 15 15 10Relational Operators 23 17 15 12 14 14 9Return statement 15 9 11 13 14 8 7Use of NULL 19 22 22 11 0.8 18 6Inlude statement 0.69 7 5 1 2 5 1De�ne statement 2 2 1 1 0.65 2 0.57Strutures 2 1 3 0.83 0.2 0.58 1Assertions 0.09 0 0 0.01 0.01 0 0.07Arrays 10 5 4 11 3 2 6Case statement 2 2 3 2 1 1 5Goto statement 0.38 0.35 0.57 3 0.19 0.22 0.23In-de operator 2 0.45 0.63 4 2 0.37 3Break statement 3 2 3 3 1 1 2
3.3 olumns from 2 to 4 provide values for Columba, Elipse and Java �les ofMozilla respetively.Funtion alls range from 38-62%, assignments range from 30-42%, onditionsrange from 17-40%, pointers range from 11-30%, use of NULL ranges from 1-22%, variable delarations range from 11-25%, funtion delarations range from8-12% and return statement ranges from 8-15% in the studied projets. Columbaontains a high number of bug-induing hunks involving imports and objet in-stantiations (use of new operator). Use of inrement-derement operator, asestatement and objet instantiations is high in bug-induing hunks of Elipse. Ar-rays have aused more problems in Apahe, Elipse and C �les of Mozilla. Numberof goto statement is higher in bug-induing hunks of Mozilla C �les as omparedto other projets.More than 50% bug induing hunks of Apahe involve funtion alls and about40% bug induing hunks have onditions and assignments. Pointers are present in30% bug induing hunks of Apahe. Funtion delarations, variable delarations,null, return statement and loops are present in 12%, 14%, 19%,15% and 11% buginduing hunks of Apahe respetively. About 10% bug induing hunks of Apahe

3.3. MOST FREQUENT BUG-INDUCING LANGUAGE CONSTRUCTS 33Table 3.3: Frequenies of Bug-Induing Language Construts(b)Syntax Element Columba Elipse Mozilla-JConditions 20 31 17Loops 8 7 4Assignments 37 33 30Funtion Calls 50 41 39Funtion Delaration 8 11 10Variable Delaration 20 12 11Logial Operators 9 17 11Relational Operators 12 15 10Return statement 10 14 9Use of NULL 5 7 4Arrays 4 11 7Case statement 0.59 11 5In-de operator 0.59 8 5Break statement 0.59 3 3Exeption handlers 4 2 2Class delaration 4 2 2New operator 17 10 6Throw statement 3 2 4Imports 12 3 0.47Inheritane 4 1 1also involve use of arrays. Remaining language onstruts are present in less than3% bug induing hunks of Apahe.Epiphany has almost similar proportion of language onstruts to Apahe,present in bug induing hunks. However proportion of onditions, pointers, loopsand return statement is omparatively less with 22%, 24%, 4% and 9% bug in-duing hunks involving these onstruts. Variable delarations are present in 24%bug induing hunks of Epiphany. Surprisingly, proportion of inlude statementsis higher in bug induing hunks of Epiphany.More than 60% bug induing hunks of Evolution involve funtion alls andonditions are found in 29% bug induing hunks. Proportion of other languageonstruts is similar to Apahe, with slightly higher number of inlude statements.C and C++ �les of Mozilla have similar proportion of language onstruts inbug induing hunks. Both kinds of �les vary in funtion alls, use of null andarrays. Number of funtion alls is higher in C++ �les whereas use of null andnumber of arrays is higher in bug induing hunks of C �les. Funtion alls arepresent in 47% and 38% bug induing hunks of C++ and C �les respetively. Nullis used in 11% bug induing hunks of C++ �les, whereas in C �les this proportionis less than 1%. Arrays are present in 11% bug induing hunks of C �les and 3%

34 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSof C++ �les.Conditions, loops, assignments, funtion delarations, variable delarations,return statement and pointers are present in 28%, 5%, 35%, 8%, 16%, 13% and15% bug induing hunks of Mozilla C �les respetively. C++ �les have similarproportion of these onstruts.Nautilus has similar proportion of language onstruts as found in bug indu-ing hunks of Apahe.PostgreSQL has slightly lower proportion of language onstruts in its buginduing hunks as ompared to other projets. Funtion alls are present in 36%and assignments in 25% bug induing hunks. Use of null and funtion delarationsis very low in PostgreSQL as ompared to other projets. Conditions are foundin 17% bug induing hunks of PostgreSQL. Other language onstruts are presentin less than 10% bug induing hunks.In Columba projet, 50% bug induing hunks involve funtion alls, whereasassignments, onditions, loops, variable delarations, funtion delarations andreturn statement are present in 37%, 20%, 8%, 20%, 8% and 10% bug induinghunks respetively. Columba projet surprisingly has higher number of importstatement in its bug induing hunks. About 12% bug induing hunks ontainimport statement. Columba also takes a lead in the use of new operator. Objetinstantiations have reated more bugs in Columba as ompared to other projets.Elipse and Java �les of Mozilla have more or less similar proportion of dif-ferent language onstruts in bug induing hunks. Conditions, return statementand use of null have reated more problems in Elipse as ompared to Java �lesof Mozilla. Elipse also leads in the use of ase statement and arrays in its buginduing hunks. About 11% bug induing hunks of Elipse ontain ase statement.Inrement-derement operator is present in 8% bug induing hunks of Elipse.This perentage is highest among all projets. Funtion alls, assignments andonditions are present in 39%, 30% and 17% bug induing hunks of Mozilla Java�les. Other language onstruts are present in less than 11% bug induing hunks.3.4 Projet SimilaritiesIn order to answer researh questions 2 and 3, we analyzed the data using PearsonCorrelation. There are some language onstruts spei� to a partiular language,so we seleted the language onstruts whih are ommon to C, C++ and Javalanguages. Table 3.4 shows the values of orrelation oe�ients with p<0.001.Columns from 2 to 11 represent orrelation values for Apahe (Ap.), Columba(Col.), Elipse (El.), Epiphany (Epi.), Evolution (Evo.), Mozilla Java �les (Mz-J), Mozilla C �les (Mz-C), Mozilla C++ �les (Mz-CPP), Nautilus (Nau.) andPostgreSQL (Pg-SQL).The orrelation oe�ients range from 0.84-0.99, indiating that all projets

3.4. PROJECT SIMILARITIES 35Table 3.4: Correlation oe�ients for di�erent projetsProjet Ap. Col. El. Epi. Evo. Mz-J Mz-C Mz-CPP Nau. Pg-SQLAp. 1.0 0.84 0.90 0.92 0.92 0.90 0.92 0.90 0.90 0.93Col. 1.0 0.87 0.92 0.94 0.93 0.89 0.88 0.93 0.95El. 1.0 0.86 0.87 0.96 0.91 0.93 0.84 0.93Epi. 1.0 0.99 0.92 0.94 0.85 0.98 0.95Evo. 1.0 0.93 0.94 0.89 0.98 0.96Mz-J 1.0 0.96 0.94 0.91 0.96Mz-C 1.0 0.90 0.89 0.97Mz-CPP 1.0 0.85 0.92Nau. 1.0 0.93Pg-SQL 1.0

Figure 3.2: Bug-induing language onstruts in di�erent projets (a)are statistially orrelated for the frequenies of bug-induing language onstruts.Projets developed in the same programming language are highly orrelated ex-ept Elipse and Columba, for whih orrelation oe�ient is 0.87. Projetsdeveloped in di�erent languages are signi�antly orrelated but the orrelationoe�ients are slightly lower as ompared to projets developed in the same pro-gramming language. We an see in Figure 3.2 and 3.3 that all projets havesimilar patterns of bug-induing language onstruts.Highest orrelation is found between Evolution and Epiphany and lowest or-relation between Columba and Apahe. Apahe is statistially orrelated to otherprojets, for frequenies of bug induing language onstruts with a orrelationoe�ient of greater than 0.9. Columba has strong orrelation with Epiphany,Evolution, Nautilus and PostgreSQL having more than 90% orrelation.Elipse is highly orrelated with Mozilla and PostgreSQL. It has 86%, 87%and 84% orrelation with Epiphany, Evolution and Nautilus.Mozilla is also highly orrelated with all other projets having orrelationvalues above 90%.

36 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.3: Bug-induing language onstruts in di�erent projets (b)Nautilus has strong orrelation with all projets exept Elipse and Mozilla.It has 84% and 85% orrelation with Elipse and Mozilla C++ �les. Other or-relations are above 90%.PostgreSQL has strong relationships with all projets, having orrelation val-ues above 92%.3.5 Developer SimilaritiesIn order to answer researh questions 4, 5, 6, and 7, we alulated the frequen-ies of bug-induing language onstruts for eah developer of all projets. Weseleted the 10 most bug-induing developers from eah projet, exept Columbain whih ase only 5 developers were involved in bug-induing hunks, and appliedthe Pearson orrelation on the seleted data. Table 3.5 shows the orrelationoe�ients between developers of the same projet, whereas orrelation amongdevelopers of di�erent projets is given in Table 3.6. Due to the spae onstraintswe mention only the minimum and maximum values of the orrelation oe�ients.For detailed frequeny distribution of orrelation oe�ients see Figure 3.4 and3.5. Results of orrelation analysis presented in Table 3.5 and 3.6 are obtainedfor 10 seleted developers from eah projet. However the orrelation oe�ientsdepited in Figure 3.4 and 3.5 are alulated for all developers. Some developersare very ative and others ontribute at irregular intervals. Developers havingminor ontributions will have weak orrelation with the ative developers. So theorrelations in Figure 3.4 and 3.5 are as low as 0.15 and -0.1. However majorityof the orrelations are above 80% for developers from di�erent projets and above90% for developers from the same projet.Most of the developers of di�erent projets have similar frequenies of bug-induing language onstruts. Table 3.6 shows the minimum and maximum val-ues of orrelation oe�ients obtained. Developers of the projets developed in

3.5. DEVELOPER SIMILARITIES 37Table 3.5: Correlation Coe�ients (developers of same projet)Projet Min. Value Max. ValueApahe 0.82 0.98Columba 0.54 0.89Elipse 0.70 0.98Epiphany 0.64 0.98Evolution 0.95 0.99Mozilla-J 0.76 0.97Mozilla-C 0.31 0.97Mozilla-CPP 0.88 0.98Nautilus 0.89 0.99PostgreSQL 0.33 0.97

Figure 3.4: Frequeny distribution of orrelation oe�ients (same projet)the same language have higher orrelation values as ompared to developers ofthe projets developed in the di�erent languages. However there are a very fewdevelopers, who vary in frequenies of bug-induing language onstruts, withorrelation values as low as 0.19.Developers of the same programming language have strong orrelations, with a fewexeptions for eah language. Table 3.7 shows the minimum and maximum valuesof the orrelation oe�ient obtained for developers of eah language. There arevery few developers of eah language whih vary from other developers of thesame language.� Answer to Researh Question 4. Pearson orrelation analysis shows thatdevelopers within the same projet are strongly orrelated for the frequenies

38 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.5: Frequeny distribution of orrelation oe�ients (di�erent projet)of bug induing language onstruts. The orrelation oe�ients within thesame projet range from 0.31 to 0.99.Minimum orrelation among any pair of developers of Apahe is 0.82 andmaximum orrelation found is 0.98. Similarly, minimum orrelation amongany pair of developers of Columba is 0.54 with a maximum orrelation of0.89.Results of orrelation analysis on developers of Elipse indiate a minimumorrelation oe�ient of 0.7 and a maximum orrelation oe�ient of 0.98.For developers of Java �les in Mozilla similar results are found.Developers of Evolution are strongly orrelated having orrelation oe�ientabove 0.94.Developers of C �les in Mozilla and PostgreSQL have shown similar results.In both ases, minimum orrelation found among any developers is about0.3 and the maximum orrelation oe�ient is 0.97.Correlation analysis of frequenies of bug induing language onstruts fordevelopers of Nautilus and C++ �les in Mozilla has produed similar results.Minimum orrelation among any pair of developers of these projets is 0.88and maximum orrelation oe�ient found is 0.99.Note that these results are for top ten developers from eah projet. Fromeah projet ten developers are seleted whih have introdued most of thebugs.

3.5. DEVELOPER SIMILARITIES 39Table 3.6: Correlation Coe�ients (developers of di�erent projets)Projet Language Min. Value Max. ValueSame 0.82 0.98Di�erent 0.19 0.89� Answer to Researh Question 5. A orrelation analysis is applied on data ofdevelopers from di�erent projets. These projets are developed in C, C++and Java. Results obtained indiate a minimum orrelation oe�ient of0.82 among any pair of developers of di�erent projets but developed in thesame language. The maximum orrelation oe�ient found is 0.98 for thesame set of developers.Correlation analyses of developers of di�erent projets that are developedin di�erent languages indiate a minimum orrelation oe�ient of 0.19,whereas maximum orrelation oe�ient is 0.89 for the same set of data.� Answer to Researh Question 6. Developers are grouped into three at-egories depending on the programming language. Developers of Java aregrouped together irrespetive of the projet, similarly developers of C aregrouped together and developers of C++ are grouped separately. A orre-lation analysis is applied on eah group in order to know the relationshipsamong developers of the same programming language. Table 3.7 shows theminimum and maximum values of the orrelation oe�ient obtained fordevelopers of eah language.Results obtained indiate a minimum orrelation of 0.62 among any pair ofdevelopers of C language, whereas maximum orrelation oe�ient found is0.97 for the same set.Correlation analyses of developers of C++ language indiate a minimumorrelation oe�ient of 0.88 and a maximum orrelation oe�ient of 0.98.Minimum orrelation oe�ient among any pair of developers of Java lan-guage is 0.54 and maximum orrelation found is 0.98.� Answer to Researh Question 7. Developers of di�erent programming lan-guages are pooled together and a orrelation analysis is applied on thegrouped data. Last row of Table 3.6 shows the minimum and maximumvalues of orrelation oe�ients obtained among developers of di�erent lan-guages. Results of the orrelation analysis indiate a minimum orrelationoe�ient of 0.19 among any pair of developers of di�erent programminglanguages. Highest orrelation oe�ient found is 0.89 among developers ofdi�erent programming languages.

40 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSTable 3.7: Correlation Coe�ients (developers of same language)Programming Language Min. Value Max. ValueC 0.62 0.97C++ 0.88 0.98Java 0.54 0.983.6 Bug LatenyWhen a developer makes a hange to �x a bug, on�guration management systemreords the date and time of the ommit. During the proess of �nding bug-induing hanges, as desribed in Chapter 2, date of modi�ation for eah bug-induing hange an be extrated. Interval between bug-indue date and bug-�xdate an be alulated in number of days, as well as in number of revisions. Inthis study number of revisions made between bug-indue date and bug-�x date isalulated. This value is alled bug life time or bug lateny and alulated for eahbug-induing language onstrut. CVS maintains revisions of eah �le, whereasSVN maintains revisions at the projet level. Whenever a hange is made, CVSupdates the revision of the hanged �le, whereas SVN inrements the revision ofwhole projet.Bug lateny values for Apahe, Columba, Epiphany, Evolution and Nautilusare alulated by taking di�erene of projet revision numbers and for the restof the projets by taking di�erene of �le revision numbers. Table 3.8 shows theaverage bug lateny values, alulated in terms of number of revisions the bugexisted, for �ve language onstruts. Columns 2 to 6 indiate bug latenies foronditions, assignments, funtion alls, variable delarations and funtion dela-rations respetively.In Apahe projet funtion alls are �xed on an average earlier than otherlanguage onstruts. Conditions have more average bug lateny than other on-struts.For Columba onditions are found more ritial and they are �xed on anaverage earlier than other onstruts. Assignments and funtion alls have equalbug lateny and buggy variable delarations persist longer in Columba.In Elipse projet funtion delarations are �xed on an average earlier thanother language onstruts. Conditions and funtion alls have equal bug latenyvalues, similarly assignments and variable delarations have on average equal buglateny. Buggy assignments and variable delarations persist longer in Elipse onan average.Conditions and funtion alls are more ritial in Epiphany and Evolution, asompared to other onstruts. Funtion delarations persist longer in Epiphanyand variable delarations persist longer in Evolution.In Mozilla projet funtion delarations are �xed on an average earlier than

3.6. BUG LATENCY 41Table 3.8: Bug Lateny (Average Values)Projet Conds. Assig. Funt-Calls Var-Del. Funt-Del.Apahe HTTPS 1.3 3389 2944 2562 3127 2695Columba 206 209 209 227 213Elipse JDT 159 187 159 187 114Epiphany 1979 2125 2018 2212 2832Evolution 4532 4675 4515 5031 4987Mozilla 124 101 106 116 91Nautilus 1518 1739 1671 1656 1731PostgreSQL 109 107 111 85 103
Table 3.9: Bug Lateny Correlation Values between Language ConstrutsConds. Assig. Funt-Calls Var-Del. Funt-Del.Conditions 1.0 0.99 0.98 0.99 0.96Assignments 1.0 0.99 0.99 0.98Funtion Calls 1.0 0.99 0.99Variable Delaration 1.0 0.98Funtion Delaration 1.0

other language onstruts. Conditions took more time to be �xed ompared toother onstruts.For Nautilus onditions have on average short bug lateny and assignmentshave long bug lateny. Bug lateny values of other onstruts lie between thesetwo onstruts.Variable delarations are more ritial in PostgreSQL with shorter bug laten-ies, whereas onditions have longer bug latenies. Funtion alls, onditions andassignments have nearly similar bug latenies in PostgreSQL.A orrelation analysis is applied on average bug lateny values of onditions,assignments, funtion alls, variable delarations and funtion delarations in thestudied projets. Results of the orrelation analysis are presented in Table 3.9.These language onstruts are statistially orrelated for bug lateny. Most of theorrelation oe�ients are above 0.95.It indiates that bug latenies for individual language onstruts vary in sim-ilar fashion in di�erent projets. Short bug lateny indiates that the bug isritial and needs to be �xed soon. Long bug lateny indiates that either thebug is minor having low priority or it is more omplex to be �xed. In this studyaverage values are used, so a more detailed study is required for some onreteonlusions. However this study represents a brief piture of bug latenies ofdi�erent language onstruts.

42 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.6: Comparison of Bug-Induing and Clean Hunks (Apahe)3.7 Comparison with Non Bug-Induing HunksBug induing and lean hunks are ompared for the ourrene of onditions,funtion alls, funtion delaration, assignments, variable delarations, returnstatement and use of null. Although these onstruts are also present in nonbug-induing hunks, there perentage is higher in bug-induing hunks. Amongall these onstruts funtion delarations have di�erent trend, they are present inhigher perentage of lean hunks in all projets. It an not be stated that eahtime one of these onstruts is used, bugs will be introdued. The ontext inwhih these onstruts are used is important. However we an say these are therisky language onstruts beause most of the bug-induing hunks involve theseonstruts.Figure 3.6 shows that the perentage of bug induing hunks ontaining ondi-tions is about double of lean hunks in Apahe projet. There is a large di�erenebetween perentages of bug induing and lean hunks involving funtion alls.Other onstruts also onstitute large proportion of bug induing hunks as om-pared to lean hunks.In Elipse projet onditions are present in more than 30% of bug induinghunks whereas in lean hunks this proportion is less than 20%, as depited inFigure 3.7. Funtion alls are present in more than 40% bug induing hunks and30% lean hunks. Return statement is present in equal proportions in both kindsof hunks. For the remaining onstruts di�erenes are not large but bug induinghunks have higher perentages as ompared to lean hunks.Figure 3.8 shows that the perentage of bug induing hunks ontaining re-turn statement and using null is about double of lean hunks in Mozilla projet.Remaining onstruts are present in omparatively higher perentage of bug in-duing hunks. Conditions onstitute 20% of lean hunks and 29% of bug induing

3.7. COMPARISON WITH NON BUG-INDUCING HUNKS 43

Figure 3.7: Comparison of Bug-Induing and Clean Hunks (Elipse)

Figure 3.8: Comparison of Bug-Induing and Clean Hunks (Mozilla)hunks. Assignments onstitute 30% of lean hunks and about 36% of bug induinghunks.In PostgreSQL perentage of bug induing hunks ontaining return statementis about double of lean hunks, as shown in Figure 3.9. Use of null is almost doublein bug induing hunks as ompared to lean hunks. Conditions are present inabout 11% of lean hunks and 18% of bug induing hunks. Assignments onstitute17% of lean hunks and 25% of bug induing hunks. Funtion alls are found in36% of bug induing hunks and 25% of lean hunks.Figure 3.10 depits that onditions are present in 30% bug induing hunksand less than 20% lean hunks of Evolution. Assignments are found in 30% leanhunks and more than 40% bug induing hunks. More than 60% bug induinghunks ontain funtion alls whereas in lean hunks this proportion is less than

44 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.9: Comparison of Bug-Induing and Clean Hunks (PostgreSQL)

Figure 3.10: Comparison of Bug-Induing and Clean Hunks (Evolution)50%. Use of return statement is almost double in bug induing hunks as omparedto lean hunks.Use of null and onditions is almost double in bug induing hunks of Epiphanyas ompared to lean hunks, see Figure 3.11. Assignments are found in 26% oflean hunks and 40% of bug induing hunks, whereas funtion alls are presentin 58% of bug induing hunks and 42% of lean hunks.In Columba use of null and onditions is almost double in bug induing hunksas ompared to lean hunks, see Figure 3.12. Return statements are equallypresent in both kinds of hunks. Variable delarations are found in higher perent-age of lean hunks, in ontrast to other projets. Assignments onstitute 24% oflean hunks and 38% of bug induing hunks. Funtion alls are found in 50% ofbug induing hunks and 39% of lean hunks.

3.8. SUMMARY 45

Figure 3.11: Comparison of Bug-Induing and Clean Hunks (Epiphany)

Figure 3.12: Comparison of Bug-Induing and Clean Hunks (Columba)Figure 3.13 shows that onditions are present in 21% bug induing hunks andless than 14% lean hunks of Nautilus. Assignments are found in 23% lean hunksand more than 30% bug induing hunks. About 60% bug induing hunks ontainfuntion alls whereas in lean hunks this proportion is less than 48%. Returnstatement onstitutes 5% of lean hunks and 9% of bug induing hunks whereasnull is used in 19% of bug induing hunks and 12% of lean hunks.3.8 SummaryThis hapter presented an investigation into language onstruts and syntax ele-ments. In partiular bug-induing hunks were analyzed to �nd the frequenies ofdi�erent language onstruts. It is found that most of the bugs are reated due

46 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.13: Comparison of Bug-Induing and Clean Hunks (Nautilus)to errors in funtion alls, assignments, onditions, pointers, variable delaration,funtion delaration and return statement. Statistial analysis showed that dif-ferent projets and developers are orrelated for the frequenies of bug-induinglanguage onstruts.These �ndings an be helpful during the testing and debugging proess. De-velopers an make a priority list for testing. They an �rst apply testing onfuntion alls, then on assignments, followed by onditions and so on. Applyingtesting resoures on the frequent bug-induing language onstruts an save timeand resoures. Similarly if a path of ode is identi�ed as buggy, problemationstruts an be easily identi�ed from it. In short this study provided a meansof reduing ost and improving quality of software.

Chapter 4
Language Spei� BugPatterns
During the last years there has been a growing interest in analyzing and miningthe available information that is olleted during all phases of the software lifeyle. The used information soures are for example bug reports, whih are storedin bug databases, or soure ode evolution information from on�guration man-agement systems (CMS). Most of the published studies fous on software quality.Researhers have tried to explore the distribution and harateristi of faults inprograms [53, 13℄.Most work in the empirial software engineering domain has been using opensoure software beause of several fators. First, the soure ode, CMS, andbug data base information is freely available for everyone. Seond, the projetslike Mozilla have been developed in a distributed way. Hene, there is a largervariability in programming. Third, some of the open soure programs ompriseseveral thousands kilo lines of ode (kLo) and several thousands �les. They arelarge enough to test available tehniques in a realisti setting that would alsoour in industrial pratie. Beause of this reasons results obtained from suhprojets might be generalizable whih is not always the ase.Modern software projets are developed using objet oriented programminglanguages, however a number of projets still exist in proedural languages. Clanguage is ommonly used for development of open soure software projets. Dif-ferent programming languages failitate developers in writing e�ient and leanode. There are some programming features spei� to a partiular programminglanguage e.g; JAVA provides automati memory management and a good exep-tion handling mehanism. There is no multiple inheritane and no pointers inJAVA. 47

48 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNSPrograms written in di�erent languages may have di�erent distribution ofbugs. The main goal of this hapter is to analyze whether post-release bugsare in�uened by a programming language. A ase study is presented to revealwhether the number of bugs per lines of ode (LOC) is the same for programswritten in di�erent programming languages or not. In addition various evolutionmetris are alulated and ompared for di�erent programming languages. Threeommon programming languages are hosen for this study, inluding C, C++ andJAVA.4.1 Researh HypothesisThe researh objetive of this study is formulated in the following hypothesis:Hypothesis H1: Programs written in a programming language A are more er-ror prone in terms of more bugs per LOC than programs written in a di�erentlanguage B.Hypothesis H1 an be rejeted when proving that programs written in a lan-guage A are more fault prone than programs in a language B by means of statis-tial inferene. In this hapter hypothesis H1 is validated up to a ertain degreeof signi�ane, when applied to some languages.When using statistial inferene are has to be taken of the available informa-tion and methods. In this ase proving H1 would require to state that the meanor median of the post-release bugs per LOC of programs written in one languageis really larger or smaller than the same value obtained from the programs writ-ten in the other programming language. Sine, the distribution of the underlyingprobability variable is not known in advane, a statistial test is required thatonsiders this ase. For this purpose rank-sum test is used beause it is wellknown to be independent on the underlying probability distribution [69℄.4.2 Projet StudiedFor this study, Mozilla projet is used beause it is a heterogeneous projet de-veloped in C, C++ and JAVA. Further, it has a long development history and itsinformation is easily available. Data is extrated from CVS and bug repositoriesof Mozilla using the tehniques mentioned in Chapter 2. Development historyof Mozilla is analyzed from 1998 to 2008. Table 4.1 shows the number of �leswritten in di�erent languages C, C++, and Java, as well as the lines of ode foreah year.

4.3. EVOLUTION METRICS 49Table 4.1: Number of Soure Files and Total LOCYear Number of Files Total LOC (KLo)C C++ JAVA C C++ JAVA1998 1118 792 193 843 563 251999 1754 3365 1390 1043 1977 2652000 2395 4958 2309 1457 2593 3852001 2437 5207 3070 1495 2587 5302002 2500 4762 2980 1490 2477 4902003 2200 4845 2750 1362 2519 4422004 2072 4776 2716 1274 2450 4442005 2111 5141 2485 1447 2342 4332006 2010 5183 2583 1549 2226 4202007 2162 5016 2117 1353 2391 4782008 2096 4704 1923 1416 2430 4914.3 Evolution MetrisIn addition to the bug density, some other evolution metris are alulated foreah language. These metris are used to study bug features and ode evolutionspei� to a programming language. Bug features are studied in terms of bugdensity, bug frequeny, bug severity, bug �x time and platform spei� bug o-urene. Code evolution is studied in terms of additions, deletions, ode gain,number of authors and �le revision frequeny. Following metris are alulatedfor programms written in the seleted languages:� Authors: The authors ontributing to the �le.� Revision frequeny: The number of revisions for eah year� Bug frequeny: The number of orreted bugs per eah year.� Bug density: The number of bugs per thousand LOC (kLo).� Code gain: The sum of lines added redued by the sum of lines removed ineah �le.� Bug �x time: The time between �xing a bug, whih is mentioned in theCVS log �le, and the time where the bug was deteted, whih is obtainedfrom the bug report.� Bug lifetime: The time between �xing a bug and the time where the bugwas introdued. The latter an be obtained from the CVS [33, 70℄.� Number of hanges: The number of hanges per eah �le and year.

50 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.1: Average bug densities4.4 ResultsIn this setion evolution of the Mozilla projet over the past years is disussed. Inpartiular evolution metris are ompared for the three languages. Beause theMozilla projet omprises C, C++, and Java �les, values of di�erent measurementategories are obtained for the three languages.� Average bug density: To ompute the bug density in bugs per 1000 LOC,i.e., kLOC, following equation is used:
bug density =

number of bugs

LOC
· 1000The obtained results are depited in Figure 4.1. It is evident from the�gure that C++ �les have higher bug densities than �les written in otherlanguages. Java �les have the least bug density values exept in 2007 and2008.� Perentage of faulty �les: Figure 4.2 shows the perentage of faulty�les in eah year of development. From the �gure it an be onluded thatC++ �les have a higher perentage of faulty �les than the other languages.Java �les are least likely to be faulty exept in the years 1998, 2004, and2007.� Average LOC per faulty �le: The results of this measure are given inFigure 4.3. On average faulty �les in Java are smaller than faulty C++�les. Programs written in C have a di�erent behavior with respet to theaverage number of LOC per faulty �le. The size of the faulty �les dereasesin the initial years of Mozilla development and abruptly inrease in 2004.This might be due to �xing a high number of major bugs in C �les in thisyear.

4.4. RESULTS 51

Figure 4.2: Perentage of faulty �les

Figure 4.3: Average LOC of faulty �les� Average revision frequenies: Figure 4.4 shows the revision frequeniesover the years. Java �les show a stable behavior having a low revisionfrequeny with exeptions in 2003 and 2006. In these years Java �les havea higher revision frequeny. C++ �les have a higher revision frequenythan the other languages. C �les have revision frequeny in-between C++and Java with one exeption in 2006 where C �les have the highest averagerevision frequeny.� Average ode gain per �le: The ode gain desribes the inrease of sizeof a �le and is an indiator of its stability. The average ode gain for the�les of the Mozilla projet is shown in Figure 4.5. It an be seen that Java�les are more or less stable in growth whereas C++ �les show a ontinuousdeline in average ode gain. C �les show a mixed behavior with a high risein ode gain in 2006, whih may be due to the high number of bug �xes.

52 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.4: Average revision frequeny

Figure 4.5: Average ode gain per �le� Bug severity distribution: Beside the number of bugs someone is alsointerested in the severity of bugs and its distribution. Figure 4.6 shows thebug distribution aording to severity levels. All three languages ontributeda major fration of normal bugs. Java takes the lead when onsideringtrivial and major bugs. Most of the bugs due to enhanements are madein Java �les followed by C and C++ �les respetively. Most of the blokerbugs ourred in C �les followed by C++ �les. C++ �les have the largestnumber of ritial bugs followed by C �les. From this distribution we mightonlude that C and C++ are used as the programming language of hoiein the kernel of Mozilla. Hene, ritial or bloking bugs are reated by Cand C++ �les.� Average bug lifetime: Figure 4.7 shows the average bug lifetime for eahbug severity level. It an be seen that bugs due to enhanements took moretime to be �xed for C++ �les. Minor bugs to be �xed took more time when

4.4. RESULTS 53

Figure 4.6: Bug severity distributionJava was used. If we have a look at Figure 4.11 and Figure 4.10 we seethat a large number of additions and deletions are made in Java �les to �xminor bugs. Bloker and trivial bugs took more time to be �xed in Java �leswhen ompared with C and C++ �les. Hene, what we see is that di�erentlanguages have a di�erent bug lifetime for bugs of di�erent severity.From the bug severity distribution and the knowledge of the number ofdays to �x a bug, average bug lifetime an be omputed for the di�erentlanguages as follows:
bug lifetime =

∑

bug severity x

p(x) · fix time(x)where p(x) denotes the probability of a bug severity, whih follows from thebug severity distribution. and fix time(x) is the average number of daysneessary to �x a bug.For the Mozilla projet average bug lifetime is 175 days for C �les, 192days for C++ �les, and 333 days for Java �les. From this follows that bugsremain almost twie as long in the soure ode of Java �les. This result is inline with the previous result where bugs in C and C++ �les also ontributeto the lass of bloking and ritial bugs, whih have to be orreted �rst.� Average ode additions: Figure 4.8 shows a delining trend of ode ad-ditions in ase of C++ �les. Whereas in ase of C there is a deline in the�rst year, a stable rate for the following 5 years, and a peak in 2006 followedby a fall. Java �les are almost stable with two peaks in 2003 and 2006.

54 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.7: Average bug lifetime

Figure 4.8: Average ode additions� Average ode deletions: Code deletions have almost the same patternaross the time line as ode additions. However deletions are less in numberthan additions as shown in Figure 4.9.� Average ode deletions per bug �x: Bloker and ritial bugs involvedmore deletions in C++ followed by C and Java. However enhanements,major, normal and trivial bugs involved more deletions in C �les followedby C++. Minor bugs involved highest deletions of all bugs and these werein Java �les as shown in Figure 4.10.� Average ode additions per bug �x: Code additions have almost thesame trend as ode deletions. However additions are larger in number thandeletions as shown in Figure 4.11.� Average number of hange deltas: In the initial years of developmentC++ �les have higher number of hange deltas. This number dereasesontinuously in the following years. C �les have lower number of hange

4.4. RESULTS 55

Figure 4.9: Average ode deletions

Figure 4.10: Average Code Deletions / Bug Fix

Figure 4.11: Average ode additions per bug �x

56 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.12: Average number of hanges

Figure 4.13: Distribution of bugs on di�erent platformsdeltas but the pattern is di�erent from C++ �les, with ups and downs inthe entire development period. Java �les have very low number of hangedeltas with an exeption in 2004 and 2005 as shown in Figure 4.12.� Platform spei� bugs distribution: Most of the bugs generated bythree languages are reported on all platforms. However a major proportionof the bugs reported on PC and Maintosh are related to C++ �les whereasmajority of the bugs reported on Sun are related to C and Java. Figure 4.13depits di�erent platforms on whih programs written in the three languagesaused failures.� Operating System spei� bugs distribution: A large proportion ofthe bugs in three languages is reported on all operating systems. HoweverC++ is on top in the number of bugs reported on Linux and Windowsfollowed by C language. Java �les have very few bugs reported on Maintoshwhile C and C++ have an equal proportion of bugs reported on Maintosh.

4.5. PROVING HYPOTHESIS H1 57

Figure 4.14: Distribution of bugs on di�erent operating systemsFigure 4.14 depits the types of operating systems and the proportion ofbugs generated on these systems by programs of di�erent languages.The obtained results show that the evolution metris have di�erent patternsfor Java, C, and C++ �les in the Mozilla projet. This might be due to the spei�projet. However, at least the results of the bug density should be generalizablebeause of the large number of available soure �les and involved programmers. Inthe next setion, it is statistially proved that the number of bugs to be expetedis in�uened by the used programming language.4.5 Proving hypothesis H1In order to test hypothesis H1 for the languages C, C++, and Java, hypothesistesting (a methodology from probability theory to draw stati inferene fromavailable data under given assumptions) is used. Hypothesis testing is loselyrelated to the proedure of interval estimation [69℄. In both ases a onlusionan be drawn, whih is orret for the given data set, the used statisti andprobability distribution, and the desired level of signi�ane usually denoted by
α. In hypothesis testing a hypothesis H0 is going to be proven. If the probabilitythat the given data set X1, . . . ,Xn under the test statisti T falls within an area
A, whih is provided by the hypothesis H0, is equal or larger than 1 − α, thehypothesis H0 an be aepted. Otherwise, H0 is said to be rejeted beause theobservations di�er signi�antly from the expetations.To prove the in�uene of a programming language on the number of post-release bugs per LOC, we have the number of bugs and the size of the �les wherethe bugs have been �xed. There might be remaining bugs in the �les, however,sine every �le regardless of the used programming language is used in the sameprogram and assuming that they are all used during program exeution, there isan equal probability of deteting a bug. Hene, the probability that a bug goes

58 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNSundeteted in one �le is equivalent for all �les with no exeption regarding oneprogramming language used. As a onsequene for eah language
H0 : fX(x) = fY (x) versus H1 : fX(x) = fY (x + c)where c is a positive onstant. These tests are also referred to as tests for theequality of two population medians, whih is �ne in this ase. If we know that themedian of the bugs per LOC is lower for Java programs than for C++ programs,hypothesis H1 an be aepted for those languages.The following rank-sum is one test for omparing two population means. Inthis ase two independent random samples x1, . . . , xn and y1, . . . , ym are assumed.In the �rst step the samples are ombined and ranked aordingly to inreasingvalues. Hene, an ordered olletion of size n+m is obtained. Then eah resultingelement is assigned a rank r from 1 to n + m. The statisti that an be used toompare the two means is de�ned as follows:

W =

m
∑

i=1

r(yi)Hene, in this ase only the elements, whih belong to the random sample
y1, . . . , ym are onsidered. Using ombinatorial theory a probability funtion forstatisti W an be omputed, and the signi�ane level α is determined by:

P (W ≥ w|H0) ≤ αKnowing the equivalene P (W ≥ w|H0) = 1 − P (W < w|H0), followinginequality is determined, whih must hold in order to aept H0:
P (W < w|H0) > 1 − αIn this speial ase where both n and m are larger than 10, W an be approx-imated with a normal distribution. In this ase the mean and the variane aregiven by:

µ = E[W] =
n(n + m + 1)

2

σ2 = V ar[W] =
nm(n + m + 1)

12Assuming a signi�ane level α = 0.01 we are able to obtain a value w = 2.33if W is a Standard Normal Random Variable. Sine the statisti W in gen-eral is not Standard Normal we have to standardize it using µ and σ. For val-ues of W (x1, . . . , xn, y1, . . . , ym) that are smaller than 2.33σ + µ, we are ableto aept H0 at the signi�ane level of 0.01. Note that in this ase the on-�dene in the deision is 99 perent. Alternatively, we an ompute a value
Z = W (x1,...,xn,y1,...,ym)−µ

σ
. If Z > 2.33 we aept H0, and otherwise we rejet it.

4.5. PROVING HYPOTHESIS H1 59Hypothesis Sum of ranks W µ σ2 Z Deision
H11

0 582,319,897 610,240,013 1,519,019 -18,38 rejet
H12

0 747,866,055 940,156,771 2,761,791 -69,63 rejet
H13

0 682,409,176 809,540,221 2,562,772 -49,61 rejetTable 4.2: Results of the rank-sum testIn the following rank-sum-test is used for testing three instanes of hypothesisH1 using the available data sets obtained from the Mozilla projet:
H11

0 : fJava(x) = fC(x) versus H11
1 : fJava(x) = fC(x + c)

H12
0 : fJava(x) = fC++(x) versus H12

1 : fJava(x) = fC++(x + c)

H13
0 : fC(x) = fC++(x) versus H13

1 : fC(x) = fC++(x + c)The size of the samples for eah programming language is given as follows:Language Sample sizeJava 25,387C++ 48,074C 22,687Note that in this ase every revision of every soure �le is ounted as onesample. Using this information and the samples, results given in Table 4.2 an beomputed.From Table 4.2 following results an be onluded:� The �rst hypothesis must be rejeted with on�dene 0.99. From this followsthat we have to aept the alternative hypothesis that states Java programsas less error-prone than C programs.� The seond hypothesis must also be rejeted. Hene, again Java programsare less error prone than C++ programs.� The third hypothesis has to be rejeted as well. It an be onluded that C�les are less error prone than C++ �les.The bug density distributions given in Figure 4.15, 4.16 and 4.17 also justifythe results of the rank-sum test.

60 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.15: The bug density distribution of �les written in Java

Figure 4.16: The bug density distribution of �les written in C

4.6. THREATS TO VALIDITY 61

Figure 4.17: The bug density distribution of �les written in C++4.6 Threats to ValidityThere are ertain threats to the validity of this study. Among some of these are:� Only one projet is seleted for this study, so the error patterns may be re-sulted from the Mozilla ommunity rather than the programming languages.� Although Mozilla is a heterogeneous projet, the hoie of programminglanguages for this study may be biased to a spei� problem. So it ispossible that the results re�et the problem rather than the programminglanguage itself.� No onsideration is made for the features implemented in di�erent lan-guages. The nature of the funtionality implemented in one language mayhave an impat on the various metris than just the language.� JAVA is a omplete development environment, so results may be biased tothe development methodology.� There may be hanges in the pool of quali�ed programmers for spei�languages over 11 years of Mozilla development.� There are hanges in the tool support for spei� languages over the years.

62 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS4.7 SummaryIn this hapter empirial results obtained from 11 years of development of theopen soure software projet Mozilla are presented. Moreover, statistial �ndingsobtained from the development history of Mozilla are disussed. The main fousof this study is post-release bugs. In partiular the hypothesis is tested whetherthe number of post-release bugs are in�uened by the used programming language.The Mozilla projet omprises soure ode written in Java, C, and C++ and istherefore the right projet to look for in order to test the hypothesis.In summary, this hapter has the following ontributions:� It is shown that bug lifetime is about twie as long for Java than for C andC++.� The programming language has an in�uene on the number of bugs, at leastfor the Mozilla projet. It is statistially proved that Java programs are lesserror prone than C or C++ programs, and C programs are less error pronethan C++ programs within same projet.Although, the �ndings might not be generalizable they indiate a onnetionbetween post-release bugs and programming languages.

Chapter 5
Hunk Classi�ation
Making hanges to software is a ruial task during di�erent phases of softwareevolution. Changes are required to add new features, to �x the bugs, to improveperformane or to restruture the ode for easy maintenane. These hanges areimplemented by adding, modifying or deleting the soure ode in di�erent �les ofsoftware.A �le an be hanged at one or more plaes, alled deltas or hunks. Thesehunks of soure ode whih are added either newly or after modi�ations mayintrodue bugs and result in failures later on. Eah hunk has a likelihood ofbeing buggy or bug-free. This hapter desribes a tehnique for prediting theprobability of a hunk being buggy or bug-free. Software engineers and researhersfae the hallenge of reduing bugs to improve the quality of software. A lot ofresearh has been arried out on bug predition using di�erent approahes and atdi�erent levels of granularity. Most of the researhers have used ode metris aspreditors of bugs [29, 40, 52, 55, 15, 14℄, while others have used proess metrisas preditors of bugs [27, 35, 64℄.Previous researh was foused on di�erent levels of granularity suh as mod-ules, �les, lasses and methods. Some researhers predited the number of faultsfor modules or �les [52, 55℄, while others foused on individual lasses and methods[29, 56℄.Change management is an important ativity in software maintenane. Changesare made to the soure ode as software evolves. In the past, researhers haveused di�erent hange properties to predit the failure probability of hanges. Re-searhers have shown that hange properties suh as size, duration, di�usion,developer expertise and type of hange have strong impat on the risk of failure[48℄.Features extrated from omplete soure ode of �les, hange metadata andomplexity metris an be used to lassify hanges as lean or buggy [34℄. We63

64 CHAPTER 5. HUNK CLASSIFICATIONTable 5.1: Statistis of ProjetsProjet # of Developers # of Revisions # of HunksApahe HTTP 1.3 54 7,246 17,287Columba 8 2,471 2,694Elipse JDT 17 58,565 215,824Epiphany 52 5,217 9,035Evolution 134 20,709 40,450Mozilla 833 325,920 1,382,747Nautilus 131 11,104 29,303PostgreSQL 25 54,012 466,106further narrow down the problem of hange lassi�ation to individual units of ahange, the hunks. We lassify individual hunks as buggy or bug-free.We have de�ned a set of hunk metris and onstruted models for hunk lassi-�ation using these metris as preditors. We used logisti regression and RandomForests to onstrut hunk lassi�ation models.Kim et al. [34℄ onduted a similar study to lassify software hanges as leanor buggy, but our researh objetives are di�erent and go a step forward. WhileKim et al. lassi�ed individual hanges and used features extrated from ompletesoure ode, hange meta data, log messages, �le names and �le omplexity met-ris, we lassify individual hunks, whih is a unit of hange, and use only the hunkmetris. Our approah is simple and works at the smallest level of granularity.5.1 The ApproahThis hapter provides an overview of alulation of hunk metris, labeling ofhunks, preparation of data for training, hunk lassi�ation, and evaluation oflassi�ers.To evaluate our approah, we extrated the hange history of 8 open soureprojets listed in Table 5.1. The period indiates the time span used to extratthe hange history. The # of revisions olumn indiates the number of revisionsextrated and the # of hunks indiates the number of hunks extrated. The # ofdevelopers indiates the number of developers involved in making these hunks.To onstrut a hunk lassi�ation model following steps are used:Preparation of Data Set Data is prepared befor it an be fed into a lassi�er.Data instanes are reated in the following way:� Extrat hunks from 8 open soure projet histories using the proessmentioned in Chapter 2.� Identify the bug �x hunks for eah �le by using the algorithm given inChapter 2.

5.2. TOOLS USED 65� Identify bug-introduing hunks by using the pseudo ode given inChapter 2.� Label the bug-introduing hunks as buggy and others as bug-free.� Calulate hunk metris for eah hunk.� Combine the set of metris of eah hunk with its label indiating buggyor bug-free hunk, to make a single instane for eah hunk.Classi�ation After preparation of data, statistial and mahine learning las-si�ers are trained on this data.� Train lassi�ers for eah projet, using the labeled instanes.� Evaluate lassi�ation performane of eah lassi�er, using the mea-sures of auray, reall, preision, and F-value.Identi�ation of Signi�ant Metris Some metris may be better preditorsof bugs than others, so those metris should be seleted whih produebetter results.� Individual and groups of metris are used to onstrut models and theirperformane is evaluated.5.2 Tools UsedThe random forest algorithm implemented in WEKA [2℄ is used for this study. Toapply logisti regression, the statistial tool R is used. Random forest is used dueto its ability to quikly handle large number of input variables. Output of randomforest is the mode of all outputs of individual trees, so it produes better resultsthan other mahine learning lassi�ers. Logisti regression is used beause thereare two possible preditions for a hunk, buggy or bug-free. Preditive apabilitiesof individual as well as ombination of metris are studied.5.3 Hunk MetrisSoftware metris deals with the measurement of the software produt and theproess by whih it is developed. We brie�y desribe the ategories of softwaremetris used so far, followed by an introdution to hunk metris.Classi�ation of Software Metris Software metris an be lassi�ed into twomajor ategories, produt metris and proess metris.� Produt metris deals with the measurements of the software produtitself. These metris inlude measures at various stages of softwaredevelopment starting from requirements to installed system. Produt

66 CHAPTER 5. HUNK CLASSIFICATIONTable 5.2: Measurement TypesType of Data Possible Operations Desription of DataNominal = , 6= CategoriesOrdinal <,> RankingsInterval +,- Di�erenesRatio / Absolute zerometris may inlude the software design omplexity, the size of the�nal soure or objet ode, or the number of doumentation pagesprodued.� Proess metris deals with the measurements of the software develop-ment proess used. These metris may inlude total development time,type of methodology used, or the level of expertise of the programmersinvolved.Categories of Metris Metris an be ategorized as primitive metris or om-puted metris� Primitive metris an be diretly measured and do not need any ompu-tations. This ategory may inlude the program size metris observedas total lines of ode, number of defets found during testing, or thetotal development time.� Computed metris annot be diretly measured and require other met-ris for their omputation. These metris may inlude produtiv-ity metris suh as LOC produed per person-month (LOC/person-month), or quality metris suh as number of defets per thousandlines of ode.Measurement Sales for Software Metris For statistial analysis, measureddata an be lassi�ed into four basi types that are nominal, ordinal, inter-val, and ratio. It is important to know the type of information involvedbefore any data olletion. Software metris should belong to these ate-gories, for their optimum utilization in empirial studies.Good metris should hold apabilities to be used in the development of e�-ient preditor models. An ideal metris should be apable of prediting softwareprodut or proess features. Thus good metris should be simple, preise, easy toobtain, valid and robust.In this study following hunk metris are onsidered:� No. of Conditions (NOCN) is the total number of onditional statementsin a hunk, suh as if, else if and else statement.

5.3. HUNK METRICS 67� No. of Loops (NOL) is the total number of loops in a hunk, suh as for,while and do while loop.� No. of Funtion Calls (NOFC) is the total number of funtions alled in ahunk.� No. of Funtion Delarations (NOFD) is the total number of funtionsdelared or de�ned in a hunk.� No. of Variable Delarations (NOV) is the total number of variables delaredor de�ned in a hunk.� No. of Assignments (NOA) is the total number of assignment statementsused in a hunk.� No. of Logial Operators (NOLO) is the total number of logial operatorsused in a hunk.� No. of Relational Operators (NORO) is the total number of relational op-erators used in a hunk.� No. of Return Statements (NORS) is the total number of return statementsused in a hunk.� No. of Arrays (NOAR) is the total number of array delaration or aessstatements used in a hunk.� No. of Null Statement (NON) is the total number of times NULL is usedin a hunk.� No. of Case Statements (NOCS) is the total number of ase statementsused in a hunk.� No. of Break Statements (NOB) is the total number of break statementsused in a hunk.� No. of Classes (NOC) is the total number of lasses delared in a hunk.� No. of Objet Instantiations (NOO) is the total number of objets instanti-ated using the new operator in a hunk.� No. of Imports (NOIP) is the total number of import statements used in ahunk.� No. of Inheritane Statements (NOIH) is the total number of inheritanestatements suh as extends, implements used in a hunk.� No. of Exeption Handlers (NOE) is the total number of exeption handlersused in a hunk.

68 CHAPTER 5. HUNK CLASSIFICATION� No. of Throw statements (NOTH) is the total number of throw statementsused in a hunk.� Total Hunks (NOH) is the total number of hunks made in a revision.� No. of Previous Buggy Hunks (NOBH) is the total number of buggy hunksmade in the previous revisions of a �le.5.4 Evaluation CriteriaFour measures are ommonly used to assess the performane of a lassi�er in-luding auray, preision, reall and F-Measure. Auray is the perentageof orretly lassi�ed instanes. We explain these measures with the use of thefollowing onfusion matrix. PreditedObserved No YesNo n11 n12Yes n21 n22We represent buggy hunks with Yes and bug-free hunks with No. Auray isthe ratio of the orret lassi�ations to the total number of instanes. Corretlassi�ations is the sum of atual buggy hunks lassi�ed as byggy and the atualbug-free hunks lassi�ed as bug-free. Auray an be alulated by the followingformula:
Accuracy =

(n11 + n22)

n11 + n12 + n21 + n22
∗ 100Buggy hunk preision is the ratio of atual buggy hunks predited as buggy tothe total number of hunks predited as buggy.

Buggy Hunk Precision =
n22

n22 + n12Buggy hunk reall is the ratio of atual buggy hunks predited as buggy to thetotal number of atual buggy hunks.
Buggy Hunk Recall =

n22

n22 + n21Bug-free hunk preision is the ratio of atual bug-free hunks predited as bug-freeto the total number of hunks predited as bug-free.
Bug − Free Hunk Precision =

n11

n11 + n21

5.5. CLASSIFICATION TECHNIQUES 69Bug-free hunk reall is the ratio of atual bug-free hunks predited as bug-free tothe total number of atual bug-free hunks.
Bug − Free Hunk Recall =

n11

n11 + n12F-Measure ombines both preision and reall and is a ratio of the 2 times produtof preision and reall to the sum of preision and reall.
F − Measure =

2 ∗ Precision ∗ Recall

Precision + Recall5.5 Classi�ation TehniquesMany mahine learning algorithms are available to be used as lassi�ers.5.5.1 Logisti RegressionLogisti regression is used when the dependent variable is a binary ategorialvariable and the independent variables are ontinuous and/or ategorial [38℄.Logisti regression an determine the perent of variane in dependent variableexplained by the independent variables and the relative importane of indepen-dents.Linear regression annot work when the response variable is binary. In situ-ations where response variable is a probability that takes values between 0 and1, logisti regression is used. It bounds the response variable to values between 0and 1, in ontrast to linear regression whih allows arbitrary large or small values.Logisti regression assumes that the response variable follows the Logit-funtionshown in Figure 5.1.To understand logit-funtion we should know the onept of odds. The oddsof an event that ours with probability P is de�ned as
Odds = P / (1 − P) (5.1)Figure 5.2 depits the odds funtion. We an see the odds of an event goes from0 to in�nity when the probability for that event goes from 0 to 1.In terms of odds, the logit-funtion an be written as

logit(P) = log(odds(P)) = log(P/(1 − P)) (5.2)If we use logit-funtion, we an bound values of P between 0 and 1 with a linearrepresentation for input variable X.
logit(P) = α + β ∗ X (5.3)Multivariate logisti regression an be represented by the equation:

P (X1,X2, . . . ,Xn) =
eC0+C1.Xi1

+...+Cn.Xin

1 + eC0+C1.Xi1
+...+Cn.Xin

(5.4)

70 CHAPTER 5. HUNK CLASSIFICATION

Figure 5.1: Logit Funtion

Figure 5.2: Odds Funtion

5.5. CLASSIFICATION TECHNIQUES 71The Xis are the hunk metris in our ase and P is the probability of a hunk beingbuggy.5.5.2 Random ForestsThe Random Forest is a meta-learner omprised of many trees and operatesquikly on large datasets. It uses random samples to build eah tree in the for-est. Attributes at eah node of a tree are seleted randomly and then attributesproviding the highest level of learning are seleted.A detail of the working of Random Forests is out of the sope of this thesis.However a brief overview is presented here as desribed in [9℄. Random forestsuse a ombination of tree preditors with eah tree depending on the values of arandom vetor sampled independently and with the same distribution for all treesin the forest. To lassify a new objet from an input vetor, eah input vetor isput down eah of the trees in the forest. Eah tree gives a lassi�ation or votesfor that lass. The forest hooses the lassi�ation having the most votes amongall the trees in the forest.Eah tree in the forest grows as follows:� Suppose N is the number of ases in the training set, randomly N asesare sampled with replaement from the original data. This sample ats astraining set for growing the tree.� Suppose M is the number of input variables, a number m≪M is spei�edin suh a way that m variables are seleted randomly out of M at eahnode and the best split on these m is used to split the node. The value ofm is kept onstant as the tree grows.� No pruning is applied and eah tree in the forest grows to the largest extentpossible.The error rate of random forest depends on two things:� High orrelation between any two trees inreases the error rate of randomforest.� Higher strength of individual trees dereases the error rate of random forest.We used the random forest algorithm implemented in WEKA [2℄.5.5.3 Prinipal Component Analysis (PCA)Prinipal omponent analysis is used to identify patterns in data, and express thedata in suh a way as to highlight the similarities and di�erenes among patterns.It is di�ult to �nd patterns in high dimensional data, so PCA helps to analyze

72 CHAPTER 5. HUNK CLASSIFICATIONsuh kind of data. PCA helps to �nd patterns in data and ompress the data toredue the number of dimensions, without muh loss of information. To applyPCA mean (average aross eah dimension) is subtrated from eah of the datadimensions. X̄ is subtrated from all X values and Ȳ is subtrated from all Yvalues. In this way we get a dataset having mean zero. In the next step a o-variane matrix is alulated for the data. Then eigenvetors and eigenvalues arealulated for the ovariane matrix. By taking the eigenvetors of the ovari-ane matrix, we an extrat lines that haraterize the data. Then the data istransformed so that it an be expressed in terms of these lines.Eigenvetors are ordered by eigenvalues from highest to lowest, produingomponents in order of signi�ane. Components with lesser signi�ane an beignored to redue the data dimensions. If we have n dimensions in data and thereare n alulated eigenvetors and eigenvalues, and we hoose �rst m eigenvetorsthen the �nal data will have m dimensions. A feature vetor is made by forminga matrix with the hosen eigenvetors.
Feature vector = (eig1 eig2 eig3 · · · eign) (5.5)Finally transpose of the feature vetor is multiplied on the left of the transposedoriginal data set.

Final Data = RowFeatureV ector ∗ RowDataAdjust (5.6)Where RowFeatureVetor is the matrix with the eigenvetors in the olumns trans-posed, and RowDataAdjust is the mean-adjusted data transposed. In this waydata is represented in terms of vetors whih desribe patterns in the data.Some of the hunk metris are orrelated with eah other. These inter-orrelationsan be overome using the prinipal omponent analysis (PCA). PCA redues thenumber of dimensions without muh loss of information. Prinipal omponentsare extrated by using a variane maximizing rotation of the original variables.We used the extrated prinipal omponents in logisti regression.5.5.4 Point Biserial CorrelationThe point biserial orrelation measures the assoiation between a ontinuous vari-able and a binary variable [28℄. It an take values between -1 and +1. AssumingX as a ontinuous variable and Y as ategorial with values 0 and 1, point biserialorrelation an be alulated using the formula
r =

(X̄1 − X̄0)
√

p(1 − p)

Sxwhere X̄1 is the mean of X when Y=1 ,
X̄0 is the mean of X when Y=0 ,

5.6. RESULTS 73
Sx is the standard deviation of X ,and p is the proportion of values where Y=1 .Positive point biserial orrelation indiates that large values of X are assoiatedwith Y=1 and small values of X are assoiated with Y=0. Point biserial orrela-tion values greater than 0.2 are onsidered good.5.6 ResultsThis setion presents the results obtained by lassifying hunks using randomforests and logisti regression. Performane of individual as well as group ofhunk metris is evaluated for hunk lassi�ation. Classi�ation auraies areompared for random forests and logisti regression. Hunk metris are analyzed,and those metris are identi�ed whih an serve as better preditor of bugs.5.6.1 Correlation between Hunk Metris and BugsAs a hunk an be either buggy or bug-free, point biserial orrelation is alulatedbetween eah hunk metris and the hunk type i.e buggy or bug-free. Most of thehunk metris have positive point biserial orrelation with hunk type exept NOI,NOTH and NOIP having negative orrelation, see Table 5.3. The majority ofthe orrelation values are greater than 0.15, indiating that hunk metris an dis-riminate between buggy and bug-free hunks. NOH has higher orrelation valuesin all projets as ompared to other metris. It means NOH an better disrimi-nate between buggy and bug-free hunks. NOBH has higher values for Elipse andMozilla as ompare to other projets, the reason may be large number of revisionsof these projets as ompared to other projets.Some projets have similar orrelation values like Apahe, Epiphany and Evolu-tion are similar for most of the hunk metris. Similarly Nautilus and PostgreSQLhave almost similar values. It indiates the possibility of a single lassi�ationmodel whih an be applied to di�erent projets.5.6.2 PCA and Logisti RegressionWe applied logisti regression both with and without using PCA, but the resultsare almost similar in both ases. However one advantage of using PCA is thatnumber of input variables is redued. Logisti regression provides the probabilityof a hunk being buggy and the values range between 1 and 0. We used a uto�value of 0.5 to lassify hunks as buggy, it means that if P > 0.5, the hunk islassi�ed as buggy and bug-free otherwise. Auray, preision and reall valuesare alulated for eah projet (both C and JAVA �les are proessed for Mozilla).The auray values vary from 60 perent for Nautilus to 74 perent for Mozilla.The F-Measure for buggy hunks varies from 0.11 for Mozilla to 0.61 for Nautilus

74 CHAPTER 5. HUNK CLASSIFICATIONTable 5.3: Point biserial orrelation between hunk metris and hunk typeMetris Apahe Elipse Epiphany Evolution Mozilla Nautilus PostgreSQLNOCN 0.32 0.23 0.25 0.24 0.20 0.17 0.22NOL 0.25 0.09 0.23 0.30 0.16 0.14 0.18NOA 0.26 0.12 0.25 0.27 0.15 0.17 0.19NOFC 0.36 0.16 0.28 0.28 0.15 0.25 0.22NOFD 0.16 0.12 0.23 0.25 0.13 0.23 0.19NOV 0.18 0.09 0.25 0.26 0.09 0.18 0.18NOP 0.27 � 0.27 0.28 0.19 0.24 0.21NOLO 0.31 0.15 0.22 0.22 0.15 0.12 0.18NORO 0.28 0.13 0.23 0.16 0.11 0.11 0.15NORS 0.27 0.02 0.14 0.22 0.17 0.14 0.22NON 0.32 0.15 0.26 0.21 0.20 0.15 0.16NOI -0.17 � 0.14 -0.03 -0.03 -0.02 -0.11NOD 0.04 � 0.16 0.06 0.03 0.11 0.07NOS 0.20 � 0.12 0.28 0.11 0.16 0.12NOAS 0.02 � 0.01 0.01 -0.17 0.01 0.15NOAR 0.25 0.08 0.21 0.16 0.16 0.06 0.14NOCS 0.25 0.31 0.18 0.16 0.13 0.19 0.04NOG 0.36 � 0.22 0.23 0.14 0.26 0.13NOB 0.29 0.16 0.23 0.22 0.21 0.20 0.15NOE � 0.08 � � 0.14 � �NOC � 0.09 � � -0.01 � �NOO � 0.04 � � 0.05 � �NOTH � -0.03 � � 0.09 � �NOIP � -0.01 � � -0.31 � �NOIH � 0.15 � � -0.09 � �NOH 0.33 0.28 0.28 0.34 0.36 0.22 0.37NOBH 0.10 0.61 0.05 0.11 0.27 0.05 0.06and the F-Measure for bug-free hunks varies from 0.58 for Nautilus to 0.85 forMozilla. Preision and Reall values are lower for buggy hunk as ompare tobug-free hunks, see Table 5.5. We an adjust preision and reall values for buggyand bug-free hunks by hanging the uto� value. If we use uto� value of 0.3, thepreision and reall for buggy hunks is improved.Appliation of PCA has not improved the results, see Table 5.4. The reason isthat in majority of the hunk instanes most of the hunk metris are 0. Althoughthere is orrelation between hunk metris but the orrelation values are not sohigh.Regression analysis have shown that NOCN, NOA, NOFC, NORS, NOBH andNOH are signi�ant preditors of buggy hunks at signi�ane level 1 % in mostof the projets, see Table 5.6 and 5.7 . NOH are found signi�ant for lassifyingthe hunks as buggy or bug-free in all projets. NORO, NON, NOAR, NOB, and

5.6. RESULTS 75Table 5.4: Preision P, Reall R and Auray A using LR with PCAProjet A Buggy Hunk Bug-Free HunkP R F1 P R F1Apahe 0.65 0.68 0.36 0.47 0.88 0.64 0.74Elipse 0.69 0.73 0.17 0.28 0.97 0.69 0.80Epiphany 0.68 0.63 0.20 0.30 0.94 0.69 0.79Evolution 0.67 0.65 0.24 0.35 0.92 0.67 0.78Mozilla-C 0.74 0.55 0.05 0.09 0.99 0.75 0.85Mozilla-J 0.69 0.72 0.33 0.46 0.92 0.68 0.78Nautilus 0.60 0.62 0.66 0.64 0.53 0.57 0.55PostgreSQL 0.61 0.66 0.40 0.50 0.84 0.62 0.71Table 5.5: Preision P, Reall R and Auray A using LR without PCAProjet A Buggy Hunk Bug-Free HunkP R F1 P R F1Apahe 0.66 0.69 0.37 0.48 0.87 0.65 0.74Elipse 0.69 0.74 0.17 0.28 0.97 0.69 0.81Epiphany 0.66 0.57 0.09 0.15 0.96 0.67 0.79Evolution 0.66 0.65 0.19 0.30 0.94 0.66 0.77Mozilla-C 0.74 0.56 0.06 0.11 0.98 0.75 0.85Mozilla-J 0.69 0.73 0.33 0.45 0.92 0.68 0.78Nautilus 0.60 0.64 0.60 0.61 0.60 0.56 0.58PostgreSQL 0.62 0.67 0.42 0.52 0.83 0.61 0.70NOFD are also signi�ant in half of the projets. The set of signi�ant hunkmetris is di�erent in all projets with one exeption, that is NOH.
5.6.3 Random ForestsRandom forests have produed the most aurate results. We used 10-fold rossvalidation to build the lassi�ation model. In 10-fold ross validation the data isbroken down into 10 sets of size n/10. The lassi�er is trained on 9 data sets andtested on 1 data set. This proedure is repeated 10 times and a mean auray istaken [72℄. The auray values produed by our model vary from 74 perent forEpiphany to 87 perent for Elipse, see Table 5.8. The F-measure for buggy hunksvaries from 0.57 for Epiphany to 0.81 for Elipse and the F-measure for bug-freehunks varies from 0.75 for Nautilus to 0.91 for Elipse and Mozilla. Preisionvalues for buggy hunks are between 66% and 84%, and the reall values for buggyhunks are between 51% and 78%.

76 CHAPTER 5. HUNK CLASSIFICATIONTable 5.6: Results of Multivariate Logisti Regression (a)Metris Apahe Epiphany Evolution NautilusCoe�. p-value Coe�. p-value Coe�. p-value Coe�. p-valueonstant -0.87 0.000 -1.21 0.000 -1.11 0.000 -0.15 0.000NOP 0.02 0.01 0.04 0.01 0.02 0.003 0.02 0.02NOCN 0.07 0.000 0.07 0.04 0.02 0.15 0.02 0.22NOL -0.03 0.52 -0.01 0.94 0.01 0.8 -0.03 0.62NOLO 0.03 0.05 -0.01 0.76 -0.06 0.000 -0.11 0.000NORO -0.06 0.002 0.12 0.003 0.07 0.000 0.03 0.15NOA -0.11 0.000 -0.07 0.02 0.01 0.26 -0.08 0.000NOFC 0.12 0.000 0.07 0.001 0.07 0.000 0.09 0.000NORS -0.02 0.58 -0.47 0.000 -0.03 0.2 -0.14 0.000NON 0.07 0.01 0.06 0.04 -0.01 0.26 -0.09 0.000NOS 0.03 0.79 -0.05 0.87 0.08 0.22 -0.13 0.38NOAR 0.04 0.08 -0.07 0.37 -0.07 0.002 -0.06 0.03NOCS 0.16 0.03 -0.08 0.46 -0.1 0.001 0.14 0.02NOG 1.04 0.01 -0.16 0.59 0.22 0.1 0.82 0.02NOB -0.36 0.000 0.21 0.23 0.07 0.14 0.08 0.43NOV -0.03 0.2 0.05 0.06 0.02 0.06 -0.01 0.34NOFD -0.08 0.002 0.16 0.000 0.09 0.000 0.14 0.000NOBH 0 0.91 0 0 0.001 0.26 0.001 0.000NOH 0.02 0.000 0.05 0.000 0.03 0.000 0.01 0.0005.6.4 Comparison of Logisti Regression and Random ForestsRandom forests have produed better results as ompared to logisti regression.Auraies obtained by training and applying both models are shown in Figure 5.3.Maximum and minimum auraies obtained by applying random forests are 87%and 74% respetively. For Elipse, Mozilla and PostgreSQL it has lassi�ed morethan 80% hunks aurately. Appliation of logisti regression produes maximumand minimum auraies of 74% and 60% respetively. In most of the projets,logisti regression an lassify less than 70% hunks aurately.Figure 5.4 shows the buggy hunk preision obtained by training and apply-ing both models. Again random forest has out lassed logisti regression and itprodues maximum and minimum buggy hunk preision of 84% and 66% respe-tively. It produes more than 80% buggy hunk preision for Elipse, Mozilla andPostgreSQL. Maximum and minimum buggy hunk preision obtained by applyinglogisti regression is 74% and 56% respetively. Using logisti regression, buggyhunk preision falls between 60% and 70% for most of the projets.Buggy hunk reall obtained by applying both models is shown in Figure 5.5.Logisti regression has produed very poor reall. However in more than halfprojets random forest has produed more than 70% buggy hunk reall. Maxi-mum and minimum reall obtained by applying random forests is 78% and 51%

5.6. RESULTS 77Table 5.7: Results of Multivariate Logisti Regression (b)Metris PostgreSQL Elipse MozillaCoe�. p-value Coe�. p-value Coe�. p-valueonstant -0.72 0.000 -1 0.000 -0.99 0.000NOP 0.08 0.000 � � 0.04 0.000NOCN 0.15 0.000 0.04 0.000 0.07 0.000NOL 0.1 0.01 -0.01 0.37 -0.09 0.067NOLO 0.03 0.1 0.01 0.09 0.04 0.021NORO -0.16 0.000 -0.01 0.1 -0.1 0.000NOA 0.04 0.000 -0.02 0.000 0.01 0.157NOFC 0.06 0.000 0.04 0.000 0.05 0.000NORS 0.3 0.000 -0.06 0.000 0.05 0.000NON -0.09 0.000 0.19 0.000 -0.06 0.109NOS 0.14 0.02 � � � �NOAR -0.14 0.000 -0.04 0.000 0.12 0.000NOCS -0.24 0.000 0.02 0.002 -0.03 0.041NOG -1.08 0.000 � � � �NOB 0.28 0.000 -0.14 0.000 -0.01 0.625NOV 0.07 0.000 0.01 0.03 0.02 0.044NOFD 0 0.68 0 0.85 0.01 0.610NOE � � -0.09 0.000 0.03 0.382NOO � � 0.01 0.4 -0.15 0.000NOC � � -0.02 0.56 0.3 0.002NOTH � � -0.1 0.000 -0.09 0.001NOIP � � 0 0.78 -0.5 0.000NOIH � � 0.15 0.001 -0.4 0.000NOBH 0 0.000 0 0.000 0 0.000NOH 0 0.000 0 0.000 0.01 0.000Table 5.8: Preision P, Reall R and Auray A using random forestsProjet A Buggy Hunk Bug-Free HunkP R F1 P R F1Apahe 0.76 0.75 0.65 0.70 0.76 0.84 0.80Elipse 0.87 0.84 0.78 0.81 0.89 0.92 0.91Epiphany 0.74 0.66 0.51 0.57 0.77 0.86 0.81Evolution 0.75 0.70 0.53 0.63 0.77 0.85 0.81Mozilla-C 0.86 0.81 0.62 0.70 0.88 0.95 0.91Mozilla-J 0.84 0.83 0.76 0.79 0.85 0.90 0.87Nautilus 0.77 0.79 0.78 0.78 0.75 0.76 0.75PostgreSQL 0.83 0.81 0.72 0.76 0.84 0.89 0.86

78 CHAPTER 5. HUNK CLASSIFICATION

Figure 5.3: Auraies using Random Forest and Logisti Regression

Figure 5.4: Buggy Hunk Preision using Random Forest and Logisti Regressionrespetively. Buggy hunk reall obtained by applying logisti regression is lessthan 40% for most of the projets. It produes maximum and minimum buggyhunk reall of 60% and 6% respetively.5.6.5 Performane of Individual MetrisTo evaluate the performane of individual metris, we used single hunk metri asthe independent variable and presene or absene of bug as the dependent variable.Our objetive was to evaluate eah metri separately as preditor of bugs. Mostof the ode related hunk metris have produed similar results. Hunks may di�erin their ode ontents, so di�erent metris may lassify the same hunk di�erently.However overall auraies are almost similar for ode related metris, see Table5.9 and 5.10. Two hunk metris have produed better results as ompared to other

5.6. RESULTS 79

Figure 5.5: Buggy Hunk Reall using Random Forest and Logisti Regressionmetris. One of these metris is related to size of hange that is total number ofhunks in a revision (NOH). Other is related to history that is number of buggyhunks found in the previous history of a �le (NOBH).Individual metris an distinguish between buggy and bug-free hunks with60% auray on an average, see Figure 5.6. For Mozilla projet, funtion dela-rations, return statement, number of total hunks and number of previous buggyhunks have shown better buggy hunk preision. Whereas for Elipse projet,loops, funtion alls, return statements, arrays, break statement and lasses haveshown better buggy hunk preision, as depited in Figure 5.7.Individual metris have produed very poor reall values. Among the oderelated hunk metris, funtion alls, Null statement and ase statement haveprodued better buggy hunk reall for the Mozilla projet. Change and historyrelated hunk metris have produed best buggy hunk reall for both projets, seeFigure 5.8.5.6.6 Performane of Combination of MetrisTo evaluate the performane of metris groups, we ombined related metris intothree groups. The �rst group was omposed of hunk metris related to methods.The seond group was related to lasses and the third group was related to hangesize and history. Following is a detail of the groups:� Group 1. NOCN, NOL, NOA, NOFC, NOFD, NOV, NOLO, NORO,NORS, NON, NOAR and NOB.� Group 2. NOC, NOO, NOIP and NOIH.� Group 3. NOH and NOBH.

80 CHAPTER 5. HUNK CLASSIFICATIONTable 5.9: Preision , Reall and Auray for Mozilla using individual metrisMetris Auray Buggy Hunk Bug-Free HunkPreision Reall F1 Preision Reall F1NOCN 0.59 0.566 0.066 0.119 0.59 0.963 0.732NOL 0.58 0.527 0.036 0.068 0.585 0.977 0.732NOA 0.58 0.516 0.008 0.016 0.583 0.995 0.735NOFC 0.60 0.577 0.144 0.231 0.601 0.924 0.728NOFD 0.58 0.615 0.017 0.034 0.584 0.992 0.736NOV 0.58 0.303 0.001 0.002 0.582 0.999 0.735NOLO 0.58 0.479 0.006 0.011 0.582 0.996 0.735NORO 0.58 0.516 0.008 0.016 0.583 0.995 0.735NORS 0.58 0.667 0.005 0.01 0.583 0.998 0.736NON 0.60 0.562 0.156 0.223 0.591 0.914 0.731NOAR 0.58 0.558 0.018 0.035 0.584 0.99 0.735NOCS 0.58 0.586 0.166 0.219 0.591 0.951 0.722NOB 0.58 0.558 0.024 0.046 0.585 0.986 0.734NOC 0.58 0 0 0 0.582 1 0.736NOO 0.58 0.489 0.004 0.007 0.582 0.997 0.735NOIP 0.58 0.5 0 0 0.582 1 0.736NOIH 0.58 0 0 0 0.582 1 0.736NOH 0.73 0.829 0.461 0.592 0.706 0.932 0.804NOBH 0.77 0.783 0.624 0.695 0.764 0.876 0.816Table 5.10: Preision , Reall and Auray for Elipse using individual metrisMetris Auray Buggy Hunk Bug-Free HunkPreision Reall F1 Preision Reall F1NOCN 0.65 0.541 0.01 0.02 0.656 0.995 0.791NOL 0.66 0.638 0.006 0.011 0.656 0.998 0.791NOA 0.66 0.554 0.009 0.018 0.656 0.996 0.791NOFC 0.66 0.619 0.009 0.018 0.656 0.997 0.791NOFD 0.66 0.596 0.008 0.015 0.656 0.997 0.791NOV 0.66 0.593 0.005 0.011 0.655 0.998 0.791NOLO 0.66 0.578 0.01 0.02 0.656 0.996 0.791NORO 0.66 0.604 0.008 0.016 0.656 0.997 0.791NORS 0.66 0.625 0.006 0.011 0.656 0.998 0.791NON 0.65 0.532 0.06 0.08 0.666 0.985 0.788NOAR 0.66 0.616 0.003 0.006 0.655 0.999 0.791NOB 0.66 0.601 0.007 0.015 0.656 0.997 0.791NOC 0.65 0.639 0.001 0.003 0.655 1 0.791NOO 0.66 0.62 0.006 0.012 0.656 0.998 0.791NOIP 0.65 0.473 0.002 0.005 0.655 0.999 0.791NOIH 0.66 0.548 0.008 0.015 0.656 0.997 0.791NOH 0.75 0.839 0.326 0.47 0.731 0.967 0.833NOBH 0.79 0.781 0.553 0.648 0.796 0.918 0.853

5.6. RESULTS 81

Figure 5.6: Auraies using Individual Metris

Figure 5.7: Buggy Hunk Preision using Individual Metris

Figure 5.8: Buggy Hunk Reall using Individual Metris

82 CHAPTER 5. HUNK CLASSIFICATIONTable 5.11: Preision , Reall and Auray for Mozilla using metris groupsMetris Auray Buggy Hunk Bug-Free HunkPreision Reall F1 Preision Reall F1Group1 0.60 0.583 0.174 0.268 0.606 0.911 0.727Group2 0.58 0.543 0.006 0.011 0.583 0.997 0.735Group3 0.84 0.84 0.768 0.803 0.843 0.895 0.868Table 5.12: Preision , Reall and Auray for Elipse using metris groupsMetris Auray Buggy Hunk Bug-Free HunkPreision Reall F1 Preision Reall F1Group1 0.68 0.619 0.189 0.289 0.687 0.939 0.793Group2 0.66 0.696 0.01 0.02 0.656 0.998 0.792Group3 0.87 0.869 0.723 0.789 0.866 0.943 0.902We used eah group of metris as explanatory variables and trained and testedthe lassi�er. Group 2 produed poor results, see Table 5.11 and 5.12. One reasonmay be few hunks involving lass delarations and inheritane statements. Group1 produes better auray but reall values are poor. Group 3 produed the bestresults. It indiates that buggy �les ontinue to introdue bugs in later releases.Hunk metris related to methods and lasses an distinguish between buggyand bug-free hunks with similar auraies, see Figure 5.9. They are equallypreise also in identifying buggy hunks, as depited in Figure 5.10. However lassrelated hunk metris have very poor buggy hunk reall value. Method related hunkmetris have produed slightly better results with average buggy hunk reall of18%, as shown in Figure 5.11. The reason may be a few number of hunks involvinghanges to lasses as ompared to hunks involving hanges to methods.History and hange related hunk mtris have outperformed other two groups.History related group an distinguish buggy and bug-free hunks with 85% au-ray on an average. It has produed muh better buggy hunk preision and reallvalues that are 85% and 74% respetively.5.6.7 Cross Projet PreditionsIn order to know whether a preditor obtained from one projet an be appliedto other projets, we tested the onstruted models aross di�erent projets. Wetested the models built using random forests, beause they produed better resultsfor the same projet. Projets developed in JAVA language have some additionalmetris related to objets, so we made two groups. One group having JAVAprojets and the other having C projets. Table 5.13 shows the lassi�ationauraies obtained by applying preditor obtained from one projet, to otherprojets. The auray values range from 49 perent to 75 perent, with most ofthe values greater than 60 perent. It indiates that preditors obtained from one

5.6. RESULTS 83

Figure 5.9: Auraies using Metris Groups

Figure 5.10: Buggy Hunk Preision using Metris Groups

Figure 5.11: Buggy Hunk Reall using Metris Groups

84 CHAPTER 5. HUNK CLASSIFICATIONTable 5.13: Classi�ation auraies using models from a di�erent projetProjet Apahe Elipse Epiphany EvolutionMozilla-CMozilla-J Nautilus PostgreSQLApahe � � 0.67 0.64 0.74 � 0.52 0.65Elipse � � � � � 0.61 � �Epiphany 0.65 � � 0.63 0.69 � 0.54 0.63Evolution 0.63 � 0.63 � 0.69 � 0.54 0.62Mozilla-C 0.75 � 0.63 0.61 � � 0.52 0.63Mozilla-J � 0.65 � � � � � �Nautilus 0.53 � 0.60 0.59 0.60 � � 0.49PostgreSQL 0.64 � 0.64 0.63 0.71 � 0.52 �projet based on hunk metris an be suessfully applied to other projets.Preditor obtained from Apahe projet ould lassify hunks from Epiphany,Evolution and PostgreSQL with a similar auray of 64%. It ould lassify only50% hunks of Nautilus aurately. However it showed better results for Mozillaprojet with an auray of 75%.Preditor obtained from hange data of Epiphany ould lassify hunks fromother projets with an average auray of 63%, whereas preditor obtained fromEvolution projet ould lassify 62% of hunks from other projets orretly.Classi�er trained on histori data of Mozilla showed better results omparedto other lassi�ers. On an average it ould lassify 69% hunks orretly, with bestauraies for Apahe and PostgreSQL.Preditor obtained from PostgreSQL showed results similar to the preditorobtained from Apahe projet. It ould lassify hunks from Apahe, Epiphanyand Evolution with a similar auray of 64%. It ould lassify only 50% hunksof Nautilus aurately, whereas for Mozilla projet it also showed better resultswith an auray of 71%.Classi�ers obtained from Elipse and Mozilla, when applied on eah other,produed similar results. In both ases the auray of lassi�ation was about60%.5.7 AppliationsHunk lassi�ation approah an be used in di�erent ways:� Hunk lassi�ation approah an identify buggy hunks immediately after ahunk is made. It an alarm the developers about the bad ode. Developersan review the ode hanges they have made before ommitting them to therepository. So hunk lassi�er an be used as a ommit inspetor.� It an be used as part of the software development proess. Developers anmake hanges to the soure ode, apply hunk lassi�er to hek the hanges,

5.7. APPLICATIONS 85reeive noti�ation about the hange, modify the hanges if required andrepeat the same yle again. One advantage of using hunk lassi�er is thesmallest level of granularity. Developers have to inspet a few lines of oderather than the whole hange.

Chapter 6
Threats to Validity
This hapter desribes the threats to the validity of this work.All analyzed projets are open soure: The software systems used in thisempirial study are all open soure, hene they follow a di�erent develop-ment methodology. Commerial software projets use di�erent developmentand maintenane tehniques, so there may be di�erent patterns of hangesand bugs. Commerial projets use skilled programmers and analysts, sobug introdution patterns may be slightly di�erent. Time pressure is alsoa major di�erene between open soure and ommerial projets whih anin�uene the hange patterns.Studied projets might not be representative: Although eight large opensoure projets belonging to di�erent domains are used in this study, theyannot represent all kinds of software. Projets with better bug reportingand bug linking failities may produe better results for lassi�ation au-raies. Real time and distributed software may have di�erent hange andbug patterns and hene di�erent buggy hunk lassi�ation auraies.Quality of log omments: A areful proessing is used to extrat ommentsfrom on�guration management systems and to identify bug �xes. Howeverquality of the log omments an in�uene the results. A developer may notproperly omment the hange, so some bug �xes may be missed. All projetsdo not use a standard way of writing omments. Some projets follow anumeri bug identi�er sheme to represent �x omments while others usekeywords like �x, bug or path in their omments. So some ommits maybe mistakenly identi�ed as �xes. 87

88 CHAPTER 6. THREATS TO VALIDITYGranularity of Versioning Systems: Con�guration management systems reordhanges on line level. So it is di�ult to identify whih individual syntaxelement is modi�ed during a hange. There may be either a single syntaxelement hanged in a line or multiple elements. Better tehniques for iden-ti�ation of individual syntax elements may further enhane the auraiesof results.Software Design Issues: In this study, hanges and bugs of projets are on-sidered whih have a development history. No emphasis is given to softwaredesign and design time �aws. Di�erent software designs may produe dif-ferent hange and bug patterns. It would be nie to inlude design timemetris and information for study of hanges and bugs.Although it is di�ult to extrat preise data from software repositoriesbeause of several reasons that may be mapping between bugs and soureode loations, extration of hanged ode or mapping of hanges and bugsto the developers, we an not say that the derived onlusions are entirelywrong. Using a publi data set we have to ompromise on the validity ofdata to a ertain extent. Keeping in view the available data soures, theseresults are aeptable.

Chapter 7
Related Work
In this hapter work related to this thesis is disussed. First di�erent approahesand tehniques are disussed for extrating valuable fats from software repos-itories. Next di�erent bug predition models and tehniques are disussed andompared with the hunk lassi�ation tehnique. Then a disussion is made onhange extration and hange analysis. Finally a review of buggy ode featuresand ode loations is presented.7.1 Mining Software Change HistoryHipikat is a tool that forms impliit group memory for a projet by inferring linksbetween stored artifats and that then reommends relevant part of the groupmemory to a developer working on the task [12℄. It groups four types of artifats:bug and feature desriptions, soure �le revisions, messages posted on developerforums, and other projet douments. It helps new omer/developer in opensoure projet by providing an e�ient and e�etive aess to the group memoryfor a software development projet. Hipikat an be viewed as a reommendersystem for software developers that draws its reommendation from a projetsdevelopment history.Kenyon is a tool that provides automated on�guration retrieval from SCM toa loal �le system and applies fat extrators on eah retrieved on�guration andthen saves the extrated information into a relational database using an obje-t/relation mapping (ORM) system [8℄. It redues the time of researh, automateson�guration retrieval and allows user ontrol on on�guration times. Di�erentSCM systems and multiple data input soures are supported. Kenyon providese�ient, aessible, and optional storage of extrated fats. It uses Hibernate tomap its Java objets to a relational database. Hibernate provides a solution to89

90 CHAPTER 7. RELATED WORKmap database tables to a lass. It opies the database data to a lass. In theother diretion it supports to save objets to the database. In this proess theobjet is transformed to one or more tables. Our modules do a similar job of fatextration from on�guration management systems.Sliwerski et al. [66℄ developed a prototype HATARI to detet loations inthe software development history where hanges have been risky in the past. Itrelates version arhives (suh as CVS) to a bug database (suh as BUGZILLA)to identify and loate the risky ode loations. HATARI makes this risk visiblefor developers by annotating soure ode with olor bars. Furthermore, HATARIprovides views to browse through the most risky loations and to analyze the riskhistory of a partiular loation.7.2 Bug PreditionDefet predition studies involve di�erent approahes inluding produt-entri,proess-entri and a ombination of both. Produt-entri approahes use mea-sures obtained from stati and dynami struture of soure ode or measuresextrated from requirements and design douments. A number of studies exist onthe use of produt-entri approah.Gyimothy et al. [29℄ validated the objet-oriented metris for fault preditionin open soure software. The authors used logisti regression and mahine learn-ing tehniques to identify faulty lasses in Mozilla. They used Chidamber andKemerer metris in their study. The authors evaluated eight metris inludingweighted methods per lass, depth of inheritane tree, response for a lass, numberof hildren, oupling between objet lasses, lak of ohesion on methods, lak ofohesion on methods allowing negative value and lines of ode. Bugzilla databasewas proessed and bugs were assoiated with lasses. The authors found thatoupling between objet lasses is the best hoie for prediting faulty lasses.Lines of ode metris also performed well in prediting faulty lasses.Porter and Selby [61℄ used lassi�ation trees based on metris from previ-ous releases to identify omponents having high-risk properties. The authorsdeveloped a method of automatially generating measurement-based models ofhigh-risk omponents.Koru and Liu [40℄ ombined stati software measure with defet data at lasslevel and applied di�erent mahine learning tehniques to develop bug preditormodel. The authors analyzed the CM1, JM1, KC1, KC2, and PC1 data sets in thePROMISE repository, whih belong to �ve software produts developed by NASA.Several models were built to predit the defetive modules in these produts, usingthe stati measures as preditor variables and the binary defetiveness indiatoras the response variable. The authors onluded that the predition performanewas not disouraging but not very satisfatory either. However the authors have

7.2. BUG PREDICTION 91proposed defet predition guidelines based on their experiene. They suggest toobtain stati measures, aggregate measurs, ollet defet data, build a preditionmodel, predit defet prone lasses and improve predition models. These stepsare similar to our approah however we obtain defet data on the level of hunksand our model is automatially improved as more history data beomes availablefor a projet.Moser et al. [50℄ presented a omparative analysis of the preditive power ofprodut and proess metris for defet predition. The authors lassi�ed Java�les of Elipse projet as defetive or defet-free. They built lassi�ation modelsusing logisti regression, Naive Bayes and deision trees. The authors performeda ost sensitive lassi�ation to allow di�erent osts for predition errors. Theyonluded that hange data and proess related metris ontain more disrimina-tory and meaningful information about distribution of defets in software thanthe soure ode itself. The authors used 18 hange metris to train a deisiontree learner and obtained greater than 75% auray, 80% reall and less than30% false positive rate. The hange metris inluded in their study are number ofrevisions, number of refatorings, number of bug �xes, number of authors, LOCadded, LOC deleted, Codehurn, hange set and age of a �le. Their �ndings aresimilar to us as hange and history related hunk metris produe better resultsthan the ode related hunk metris. Note that in ontrast to defet predition for�les, our tehnique produes preditions for individual hunks.Pan et al. [56℄ introdued program sliing metris to be used as bug preditors.They used program slie information to measure the size, omplexity, ouplingand ohesion properties of C language programs. The sliing metris used intheir study inlude slie ount, verties ount, edges ount, edges to verties ratio,slie verties sum, maximum slie verties, global input, global output, diret fanin, diret fan out, indiret fan in, indiret fan out and lak of ohesion. Theauthors ompared bug lassi�ation apabilities of program sliing metris withUnderstand for C++ suite of metris in a number of experiments. They foundthat program sliing metris produe slightly better lassi�ation auraies thanUnderstand for C++ metris at the �le level.Nagappan et al. [52℄ applied prinipal omponent analysis on ode metris anddeveloped regression models to predit the post-release defets. The authors foundthat there is no single set of omplexity metris that ould at as a universallybest defet preditor. The authors also found that preditors obtained from oneprojet were signi�ant for other similar projets.Menzies et al. [46℄ showed that preditors obtained from stati ode attributesare useful in defet predition with a mean probability of detetion of 71 perentand mean false alarms of 25 perent. The authors found that it is more important,how the attributes are used to build preditors than whih partiular attributesare used. A number of attributes were used in this study inluding Mabe and

92 CHAPTER 7. RELATED WORKHalstead omplexity metris.Ostrand et al. [55℄ used ode of the �le in urrent release and fault andmodi�ation history of the previous releases to predit the expeted number offaults in eah �le of the next release.Proess-entri approahes use measures extrated from the software history suhas hanges made to software, developers involved, size and time of hanges, andage of software. Various studies are found in literature using proess artifats.Ratzinger et al. [64℄ used regression models and deision trees to predit de-fets in short time frames of two months. The authors used features extratedfrom version ontrol and feature traking systems to build their models. The au-thors also investigated the preditability of several severities of defets in softwareprojets.Kim et al. [35℄ proposed a bug �nding algorithm using the projet-spei�bug and �x knowledge base developed by analyzing the history of bug �xes. Theauthors implemented a tool BugMem for deteting potential bugs and suggestingorresponding �xes.Hassan and Holt [30℄ presented an approah named, The Top Ten List, to pre-dit the ten most suseptible subsystems having a fault. The authors used someheuristis to reate the Top Ten List. These heuristis were based on the hara-teristis of software system suh as reeny, frequeny and size of modi�ationsas well as ode metris and o-modi�ations.7.3 Software Change Extration and AnalysisFluri and Gall [21℄ proposed an approah for analyzing and lassifying hangetypes based on ode revisions. Using that approah, hanges on the method orlass level ould be di�erentiated and their signi�ane in terms of the impat ofthe hange types on other soure ode entities be assessed. The authors found thatin many ases large numbers of lines added and/or deleted are not aompaniedby signi�ant hanges but small textual adaptations. The authors presented ataxonomy of soure ode hanges to be used for hange oupling analysis and usedtree edit operations in the AST to lassify hanges. Their lassi�ation approahould assess error-proneness of soure ode entities, qualify hange ouplings, oridentify programming patterns.Canfora et al. [11℄ proposed a tehnique to identify hanges at soure ode linelevel from CVS repositories. They used Vetor Spae Models and the Levenshteinedit distane to determine if CVS/SVN di�s are due to line additions/deletionsor if they are due to line modi�ations. A tokenizer was used instead of a parserto extrat symbols and then ompute the osine similarity. Appliation of thetehnique on a random sample of ArgoUML snapshots indiated high preision(96%) and a high reall as well (95%). We use a di�erent approah to identify

7.3. SOFTWARE CHANGE EXTRACTION AND ANALYSIS 93the bug-induing hunks and the hanged soure ode lines.Fluri et al. [22℄ in an empirial study found that hange type patterns dodesribe development ativities and a�et the ontrol �ow, the exeption �ow,or hange the API. The authors used agglomerative hierarhial lustering todisover patterns of hange types. To explore whether hange types appear fre-quently and ommonly, the authors extrated data from one ommerial and twoopen soure software systems. In ontrast to general hange types we study thefeatures of bug-induing hanges.Stoerzer et al. [68℄ presented an approah for hange lassi�ation that helpsprogrammers identify the hanges responsible for test failures. The authors pro-posed several hange lassi�ers that assoiate the olors Red, Yellow, or Greenwith hanges, aording to the likelihood that they were responsible for test fail-ures. The authors used a model of atomi hanges, with hange ategories suh asadded lasses (AC), deleted lasses (DC), added methods (AM), deleted methods(DM), hanged method bodies (CM), added �elds (AF), deleted �elds (DF), andlookup hanges (LC) (i.e., hanges to dynami dispath). The authors onsideredhanges to method bodies as one CM hange regardless of the number of state-ments hanged within the respetive method's body. They onduted two asestudies to investigate whether or not hange lassi�ation an be a useful tool forfousing the attention of programmers on failure-induing hanges. In ontrast weonsider atomi hanges as hanges to individual language onstruts and proessthe hange history of a projet rather than test information. We study whihlanguage onstruts have more likelihood of generating bugs.Mokus and Weiss [48℄ presented a model to predit the risk of new hanges,based on histori information. The authors modeled the probability of ausingfailure of a hange made to software. They used properties of a hange as modelparameters suh as size in lines of oded added, deleted or unmodi�ed, di�usion ofthe hange re�eted by the number of �les, modules or subsystems touhed, severalmeasures of developer experiene and the type of hange. The authors found thathange di�usion and developer experiene are essential to predit failures.Aversano et al. [6℄ developed a model to predit if a new hange may intro-due a bug or not. The authors extrated bug-introduing hanges from softwarehange history and onstruted feature vetors from the soure ode. They rep-resented software hanges as elements of an n-dimensional vetor spae of terms.The onstruted vetors were used to train di�erent lassi�ers on data of two opensoure projets. The authors used K-Nearest Neighbor, simple logisti, Multi-Boosting, C4.5 and Support Vetor Mahines as lassi�ers. K-Nearest Neighborprodued better results as ompared to other lassi�ers. This work is similar toour work but the results of hange lassi�ation are poor with 63% preision and40% reall for buggy hanges. Our tehnique produes muh better results andworks at �nest level of granularity.

94 CHAPTER 7. RELATED WORKKim et al. [34℄ introdued a tehnique for lassifying a software hange aslean or buggy. The authors trained a mahine learning lassi�er using featuresextrated from revision history of a software projet. The features used inludeall terms in the omplete soure ode, the lines modi�ed in eah hange (delta),hange metadata suh as author, hange time, and omplexity metris. Theproposed model ould lassify hanges as lean or buggy with 70 perent aurayand 60 perent buggy hange reall on average. The authors predited faults atthe �le hange level whereas our approah predits faults at the smallest level ofgranularity, that is a hunk. Furthermore, hunk lassi�ation approah uses veryless data for lassi�ation, so it is simple and easy to apply. It produes betterresults as ompared to [34℄ while using less number of input variables.Graves et al. [27℄ proessed hange management data to predit distributionof faults over modules of a software system. The authors found that the numberof times a ode has been hanged is a good preditor of faults. The authorsfurther found that modules whih hanged reently may have more faults thanthose modules whih are not hanged sine a longer time.Hassan and Holt [31℄ analyzed the development history of �ve open soureprojets to study hange propagation. They proposed several heuristis to predithange propagation and validated their results using the obtained historial data.German [26℄ studied the harateristis of modi�ation requests with respetto soure �les and their authors. The author proposed several metris to quantifymodi�ation requests and used these metris to reate visualization graphs forunderstanding interrelationships.Gall et al. [23℄ developed an approah using release history information ofa system to identify logial ouplings and hange patterns among modules. Theauthors used strutural information about programs, modules, and subsystems,together with their version numbers and hange reports to unover hidden depen-denies in the soure ode.Ying et al. [73℄ mined software hange history data to �nd �le o-hangepatterns. The authors proposed that hange patterns an be used to reommendpotentially relevant soure ode to a developer performing a modi�ation task.Weiβgerber and Diehl presented a tehnique to detet hanges that are likelyto be refatorings and rank them aording to the likelihood. The evaluationof the tehnique showed a high reall and a high preision, it �nds most of therefatorings, and most of the found refatoring andidates are really refatorings.The proposed tehnique is able to �nd strutural and loal refatorings. Struturalrefatorings inlude Move Class, Move Interfae, Move Field, Move Method, andRename Class, whereas loal refatorings inlude Rename Method, Hide Method,Unhide Method, Add Parameter, and Remove Parameter.

7.4. BUGGY CODE FEATURES AND LOCATIONS 957.4 Buggy Code Features and LoationsPan et al. [57℄ de�ned bug �x patterns using the syntax omponents and ontextof the soure ode involved in bug �x hanges. Software repositories of seven opensoure projets, developed in JAVA, were used to extrat the bug �x patterns.The authors found 45.7% to 63.3% of the total bug �x hunk pairs in these projetshaving the de�ned bug �x patterns. The most ommon individual patterns aremethod all with di�erent atual parameter values, hange in if onditional, andhange of assignment expression. Correlation analysis of seven projets and �vedevelopers showed similar frequenies of bug �x patterns. This study is similar toours, but we onsider bug-induing hanges instead of bug-�x hanges. Further-more, we use software systems developed in di�erent languages rather than samelanguage.Kim et al. [36℄ analyzed the version history of seven software systems topredit the most fault prone entities and �les. The authors implemented a ahefor holding loations that are likely to have faults: starting from the loation ofa known (�xed) fault, the loation itself, any loations hanged together withthe fault, reently added loations, and reently hanged loations. A developeran detet likely fault-prone loations by onsulting the ahe whenever a faultis �xed. The developed algorithm is evaluated on seven open soure projets,and it is 73%-95% aurate at prediting future faults at the �le level and 46%-72% aurate at the entity level with optimal options. The predition algorithmis exeuted over the hange history of a software projet, whih yields a smallsubset (usually 10%) of the projet?s �les or funtions/methods that are mostfault-prone. The authors base their algorithm on the observation that most faultsare loal, they do not our uniformly in time aross the history of a funtion,rather they appear in bursts. Four di�erent kinds of loality are onsidered forbug ourrenes inluding hanged-entity loality, new-entity loality, temporalloality and spatial loality.Brun and Ernst [10℄ proposed a tehnique for identifying program propertiesthat indiate errors. They trained mahine learning models on program propertiesthat resulted from errors and then applied these models to program properties ofuser written ode to lassify and rank properties that ould lead to errors. Given aset of properties produed by the program analysis, the tehnique selets a subsetof properties that are most likely to reveal an error. Dynami invariant detetionis used to generate program properties and two mahine learning tools are used tolassify those properties. The authors used support vetor mahine and deisiontree in their experiments, and found that this tehnique inreases the relevane(the onentration of fault-revealing properties) by a fator of 50 on average forthe C programs, and 4.8 for the Java programs. The authors onluded thatmost of the fault-revealing properties do lead a programmer to an error. Theysuggested that ranking and seleting the top properties is more advantageous than

96 CHAPTER 7. RELATED WORKseleting all properties onsidered faultrevealing by the mahine learner. For Cprograms, on average 45% of the top 80 properties are fault-revealing, whereas, forJava programs, 59% of the top 80 properties are faultrevealing. In the preliminaryexperiments most of the fault-revealing properties lead a programmer to the error,but it is not neessary for all properties.Li and Zhou [44℄ proposed a method alled PR-Miner to e�iently extratimpliit programming rules from large software ode written in an industrial pro-gramming language suh as C. It uses a data mining tehnique alled frequentitemset mining and requires little e�ort from programmers without any priorknowledge of the software. PR-Miner an extrat programming rules in generalforms (without being onstrained by any �xed rule templates) that an ontainmultiple program elements of various types suh as funtions, variables and datatypes. The authors also proposed an e�ient algorithm to automatially detetviolations to the extrated programming rules, whih an be strong indiations ofbugs. PR-Miner was evaluated with large software ode, inluding Linux, Post-greSQL Server and the Apahe HTTP Server, having 84K-3M lines of ode eah.Experiments showed that PR-Miner an e�iently extrat thousands of generalprogramming rules and detet violations within 2 minutes.Livshits and Zimmermann [45℄ proposed a tool alled DynaMine, that analyzessoure ode hek-ins to �nd highly orrelated method alls as well as ommonbug �xes in order to automatially disover appliation-spei� oding patterns.Potential patterns disovered through mining are passed to a dynami analysistool for validation and the results of dynami analysis are presented to the user.The authors ombined revision history mining and dynami analysis tehniquesfor disovering appliation spei� patterns and for �nding errors. DynaMineis evaluated on two widely-used, mature, highly extensible appliations, Elipseand jEdit, that olletively onsist of more than 3,600,000 lines of ode. Theauthors disovered 56 previously unknown, highly appliation-spei� patterns,out of whih 21 were dynamially on�rmed as very likely valid patterns, andfound 263 pattern violations by mining history data of Elipse and jEdit.

Chapter 8
Future work
A stati parser was used to extrat language onstruts and syntax elements.A bug induing hunk may ontain multiple language onstruts. It is possiblethat only one onstrut is hanged, or there may be multiple onstruts hangedin a single hunk. Currently all language onstruts in a bug induing hunk areonsidered bug induing beause on�guration management systems provide in-formation on the line level. We plan to develop tehniques to identify the exatindividual language onstrut whih ontributes to a bug within a hunk.In this study, only frequenies of bug induing language onstruts are exam-ined. No ontext information is extrated from the soure ode. Our parser sansthe ode of bug induing hunks and extrats the language onstruts involved.We would like to know the ontext in whih di�erent language onstruts intro-due bugs. We also want to study the oupling between language onstruts forintrodution of bugs.Our parser an only extrat syntati elements and no onsideration is givento semantis of the program. As same language onstruts are present in thebug induing and lean hunks, it would be interesting to know the situationsin whih a partiular language onstrut an introdue bugs. For this purpose,we plan to inlude program ontrol �ow and data dependene information witheah onstrut. We will enhane the parser with program analysis apabilities infuture.To study the in�uene of programming language on post release bugs, asestudy of Mozilla projet is used. Although Mozilla is a large, heterogeneousprojet, generalized onlusions an not be drawn from a single projet. We wantto extend this study to a diverse set of projets as a future work.To study the relationship between the programming language and the defetdensity, whole program �les are used without any onsideration of implementedfuntionality. We want to analyze the features implemented in di�erent languages97

98 CHAPTER 8. FUTURE WORKas a future work. We would like to split this study on module level and arhite-tural units in future. Although hunk lassi�ation approah has produed exel-lent results, there still exists room for improvement. Among the mahine learninglassi�ers, only random forest is used in this study. Other mahine learning algo-rithms an also be tried and their auraies evaluated. It may be possible thatother mahine learning tools produe better preision and reall.Mahine learning algorithms an be modi�ed to suit the spei� problemneeds. Modi�ed algorithms may produe better results than existing ones interms of auray, preision and reall. Hunk lassi�ation approah has usedtwo hange and history related metris. Exploration of other proess relatedhunk metris remains as future work. It is possible that some other proess re-lated hunk metris may better lassify hunks as buggy or bug-free.Online mahine learning algorithms an be used to train a lassi�ation modeland provide the results during the development of the projet. It would be great tohave a lassi�er whih an be updated online. We plan to integrate this tehniquein an integrated development environment.

Chapter 9
Conlusion
This dissertation presented an empirial analysis of hanges and bugs by miningsoftware development history. Main fous of this study was to analyze features ofbug induing hanges and develop a bug predition model. Changes were studiedat the �nest granularity level of hunks. A tehnique was introdued in this thesisto identify bug induing hunks. Di�erent language onstruts and syntax elementswere extrated from bug induing hunks and their frequenies were ompared. Astatistial analysis of projets and developers was presented for the frequeniesof bug induing language onstruts. Bug lateny values for individual languageonstruts were alulated and statistially analyzed. Bug densities of programswritten in di�erent languages were statistially analyzed to �nd the in�uene ofprogramming language on post release bugs. A number of evolution metris werealulated and ompared for programs written in di�erent languages. Finallya new set of metris was introdued alled hunk metris and a tehnique waspresented to lassify hunks as buggy or bug free.Bug introduing hanges hold important information about the reator ofbugs and the time of reation. Further bug induing hanges an be used tostudy features of soure ode whih result in bugs. An algorithm for identifyingbug induing hanges was proposed by Sliwerski et al. [67℄ . It was further en-haned by Kim et al. [37℄. this algorithm an identify hanges at �le level. Anapproah was presented in this thesis that an identify bug induing hunks. Itexamines all hunks involved in a hange and marks only those hunks as buggywhih atually ontributed to bugs. Language onstruts and syntax elementswere extrated from bug induing hunks of eight open soure projets. Twentysix di�erent language onstruts were hosen for this study. The results show thatmost frequent bug-induing language onstruts are funtion alls, assignments,onditions, pointers, use of NULL, variable delaration, funtion delaration andreturn statement. These eight onstruts are found in 38-62%, 30-42%, 17-40%,99

100 CHAPTER 9. CONCLUSION11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug induing hunks respetively.Overall these eight elements aount for more than 70% of the bug-induinghunks. Funtion Calls is found to be the most dominant soure of errors in allprojets. Use of pointers and NULL is highly problemati in projets developedin C language.A orrelation analysis was applied on bug induing language onstruts of dif-ferent projets. The results show that di�erent projets are statistially orrelatedfor the frequenies of bug induing language onstruts. The obtained orrelationoe�ients are signi�ant at p<0.001. It indiates that most of the time similarlanguage onstruts reate problem in di�erent projets.Results of the orrelation analysis show that di�erent developers are signif-iantly orrelated for the frequenies of bug induing language onstruts. Theorrelation oe�ients obtained within the same projet range from 0.31 to 0.99.Results obtained indiate a minimum orrelation oe�ient of 0.82 among anypair of developers of di�erent projets but developed in the same language. Themaximum orrelation oe�ient found is 0.98 for the same set of developers. How-ever majority of the orrelation oe�ients found either within the same projetor di�erent projets are above 0.80. The results show that most of the developerstend to fae di�ulties with similar language onstruts. Statistial analysis in-diates that majority of the developers indue similar kinds of bugs independentof the projet and programming language.Bug lateny values were alulated for onditions, assignments, funtion alls,variable delarations and funtion delarations. Correlation analysis of these on-struts shows that these language onstruts are statistially orrelated for buglateny. Most of the obtained orrelation oe�ients are above 0.95. It an beonluded that bug latenies for individual language onstruts vary in similarfashion in di�erent projets.Statistial analyses of bug densities have revealed that post release bugs arein�uened by programming language. Results of hypothesis testing have shownthat Java programs are less error prone than C or C++ programs, and C programsare less error prone than C++ programs within same projet. It is found thatbug life time for Java is twie as long as for C or C++.This thesis introdued hunk metris and a tehnique to lassify hunks as buggyor bug-free based on these metris. A hunk is the smallest unit of a hange andthis tehnique works for this �nest level of granularity with an average aurayof 81%. Bug predition models were built using logisti regression and randomforests. Results have shown that random forests an better disriminate betweenbuggy and bug-free hunks. The hunk lassi�ation tehnique was evaluated oneight large open soure projets. It lassi�ed hunks with 77% buggy hunk preisionand 67% buggy hunk reall on average.Individual hunk metris were analyzed for their bug predition apabilities.

101Results of multivariate logisti regression have shown that NOCN, NOA, NOFC,NORS, NOBH and NOH are signi�ant for lassifying hunks in most of theprojets. Hunk metris related to hange and history are found to be betterpreditor of bugs than ode related hunk metris.Preditors based on hunk metris were also used for ross projet preditions.Preditors obtained from one projet when applied to a di�erent projet ouldlassify hunks with more than 60% auray.Overall, work presented in this thesis has strengthened the existing body ofknowledge on bug predition and hange analysis. I hope this work will provide abase for further work on bug induing hanges and soure ode analysis. Miningof software hange history an reate awareness among developers for buggy odefeatures and it an improve the debugging proess.

Bibliography
[1℄ Bugzilla. http://www.bugzilla.org/. [ited at p. 23℄[2℄ Weka. http://www.s.waikato.a.nz/ml/weka/. [ited at p. 65, 71℄[3℄ Software bug, 2006. http://en.wikipedia.org/wiki/Computer_bug. [ited at p. 4℄[4℄ S. N. Ahsan, J. Ferzund, and F. Wotawa. Are there language spei� bug patterns?results obtained from a ase study using mozilla. In Pro. of Fourth InternationalConferene on Software Engineering Advanes (ICSEA'09), Porto, Portugal, 2009.[ited at p. 6℄[5℄ S. N. Ahsan, J. Ferzund, and F. Wotawa. Automati software bug triage system(bts) based on latent semanti indexing and support vetor mahine. In Pro. ofFourth International Conferene on Software Engineering Advanes (ICSEA'09),Porto, Portugal, 2009. [ited at p. 4℄[6℄ Lerina Aversano, Luigi Cerulo, and Conettina Del Grosso. Learning from bug-introduing hanges to prevent fault prone ode. In Pro. Ninth international work-shop on Priniples of software evolution, pages 19�26, Dubrovnik, Croatia, 2007.[ited at p. 93℄[7℄ T. Ball, J. Kim, A. A. Porter, and H. P. Siy. If your version ontrol system ouldtalk. In Pro. ICSE Workshop Proess Modelling and Empirial Studies of SoftwareEng., 1997. [ited at p. 4℄[8℄ J. Bevan, E. J. Whitehead Jr., S. Kim, and M. Godfrey. Failitating software evolu-tion with kenyon. In Pro. Of the 2005 European Software Engineering Confereneand 2005 Foundations of Software Engineering (ESEC/FSE 2005), pages 177�186,Lisbon, Portugal, 2005. [ited at p. 89℄[9℄ L. Breiman. Random forests. Mahine Learning, 45:5�32, Otober 2001.[ited at p. 71℄[10℄ Y. Brun and M. D. Ernst. Finding latent ode errors via mahine learning over pro-gram exeutions. In Pro. of 26th International Conferene on Software Engineering(ICSE 2004), pages 480�490, Sotland, UK, 2004. [ited at p. 95℄103

http://www.bugzilla.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://en.wikipedia.org/wiki/Computer_bug

104 BIBLIOGRAPHY[11℄ G. Canfora, L. Cerulo, and M.D. Penta. Identifying hanged soure ode lines fromversion repositories. In Pro. Int?l Workshop Mining Software Repositories, pages14�21, 2007. [ited at p. 92℄[12℄ D. Cubrani and G. C. Murphy. Hipikat: Reommending pertinent software devel-opment artifats. In Pro. 25th International Conferene on Software Engineering(ICSE), pages 408�418, Portland, Oregon, 2003. [ited at p. 23, 89℄[13℄ N.E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a omplexsoftware system. IEEE Trans. On Software Engineering, 26:797�814, Aug 2000.[ited at p. 23, 47℄[14℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Analysing bug predition apabilities ofstati ode metris in open soure software. In Pro. of International Confereneon Software Proess and Produt Measurement, LNCS Vol. 5338, pages 331�343,Munih, Germany, 2008. [ited at p. 9, 63℄[15℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Automated lassi�ation of faults in pro-gramms using mahine learning tehniques. In Pro. of Arti�ial Intelligene Teh-niques in Software Engineering Workshop, ECAI, Patras, Greee, 2008. [ited at p. 9,63℄[16℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Bug-induing language onstruts. In Pro.of 16th Working Conferene on Reverse Engineering (WCRE'09), Lille, Frane,2009. [ited at p. 6℄[17℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Empirial evaluation of hunk metrisas bug preditors. In Pro. of International Conferene on Software Proess andProdut Measurement, Amsterdam, Netherlands, 2009. [ited at p. 6℄[18℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Software hange lassi�ation using hunkmetris. In Pro. of 25th IEEE International Conferene on Software Maintenane(ICSM'09), Edmonton, Alberta, Canada, 2009. [ited at p. 6℄[19℄ M. Fisher, M. Pinzger, and H. Gall. Analyzing and relating bug report data forfeature traking. In Pro. 10th Working Conferene on Reverse Engineering (WCRE2003), Vitoria, British Columbia, Canada, 2003. [ited at p. 4℄[20℄ M. Fisher, M. Pinzger, and H. Gall. Populating a release history database fromversion ontrol and bug traking systems. In Pro. 19th Int'l Conferene on SoftwareMaintenane, pages 23�32, Amsterdam, The Netherlands, 2003. [ited at p. 4, 17℄[21℄ B. Fluri and H. C. Gall. Classifying hange types for qualifying hange ouplings. InProeedings of the 9th International Conferene on Program Comprehension, pages35�45, 2006. [ited at p. 92℄[22℄ B. Fluri, E. Giger, and H. C. Gall. Disovering patterns of hange types. In Pro-eedings of the 23rd International Conferene on Automated Software Engineering,2008. [ited at p. 93℄[23℄ H. Gall, K. Hajek, and M. Jazayeri. Detetion of logial oupling based on produtrelease history. In In Pro. Int'l Conf. Software Maintenane (ICSM'98), pages190�198, 1998. [ited at p. 23, 94℄

105[24℄ R. Garia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willok. A omparativestudy of language support for generi programming. In Pro. of the 18th annualACM SIGPLAN onferene on Objet-oriented programing, systems, languages, andappliations, Anaheim, California, USA, 2003. [ited at p. 8℄[25℄ S. Gar�nkel. History's worst software bugs, 2005.http://wired.om/news/tehnology/bugs/0,2924,69355,00.html. [ited at p. 4℄[26℄ D.M. German. An empirial study of �ne-grained software modi�ations. InPro. 20th Int'l Conf. Software Maintenane (ICSM'04), pages 316�325, 2004.[ited at p. 94℄[27℄ T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Prediting fault inidene usingsoftware hange history. IEEE Transations on Software Engineering, 26:653�661,July 2000. [ited at p. 9, 23, 63, 94℄[28℄ J. P. Guilford and B. Fruhter. Fundamental Statistis in Psyhology and Eduation.MGraw-Hill, New York, 1973. [ited at p. 72℄[29℄ T. Gyimothy, R. Feren, and I. Siket. Empirial validation of objet-oriented metrison open soure software for fault predition. IEEE Trans. Software Eng., 31(10):897�910, Ot 2005. [ited at p. 9, 63, 90℄[30℄ A. E. Hassan and R. C. Holt. The top ten list: Dynami fault predition. In Pro.21st Int'l Conf. Software Maintenane, pages 263�272, 2005. [ited at p. 92℄[31℄ A.E. Hassan and R.C. Holt. Prediting hange propagation in software systems. InPro. Int'l Conf. Software Maintenane (ICSM 2004), 2004. [ited at p. 23, 94℄[32℄ S. Kim, Jr. E. J. Whitehead, and J. Bevan. Properties of signature hange patterns.In Pro. of International Conferene on Software Maintenane (ICSM 2006), pages4�14, Dublin, Ireland, 2006. [ited at p. 23℄[33℄ S. Kim and E. J. Whitehead Jr. How long did it take to �x bugs? In Pro.international workshop on Mining software repositories, pages 173�174, Shanghai,China, 2006. [ited at p. 49℄[34℄ S. Kim, E. J. Whitehead Jr., and Y. Zhang. Classifying software hanges: Clean orbuggy? IEEE Trans. Software Eng., 34(2):181�196, Mar/Apr 2008. [ited at p. 63,64, 94℄[35℄ S. Kim, K. Pan, and E. J. Whitehead Jr. Memories of bug �xes. In Pro. 14th ACMSymp. Foundations of Software Eng., pages 35�45, 2006. [ited at p. 9, 63, 92℄[36℄ S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Prediting faultsfrom ahed history. In Pro. 29th Int'l Conferene on Software Engineering (ICSE2007), pages 489�498, Minneapolis, USA, 2007. [ited at p. 23, 95℄[37℄ S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr. Automati identi�ationof bug-introduing hanges. In Pro. 21st IEEE/ACM International Conferene onAutomated Software Engineering, pages 81�90, 2006. [ited at p. 7, 17, 99℄[38℄ D. G. Kleinbaum and M. Klein. Logisti Regression �A Self-Learning Text. Springer-Verlag, New York, 2002. [ited at p. 69℄

http://wired.com/news/technology/bugs/0,2924,69355,00.html

106 BIBLIOGRAPHY[39℄ A. G. Koru and J. Tian. An empirial omparison and haraterization of highdefet and high omplexity modules. Journal of Systems and Software, 67:153�163,Sep 2003. [ited at p. 8℄[40℄ A.G. Koru and H. Liu. Building e�etive defet-predition models in pratie. IEEESoftware, 22:23�29, November/Deember 2005. [ited at p. 9, 63, 90℄[41℄ F. Lanubile and G. Visaggio. Evaluating preditive quality models derived fromsoftware measures: lessons learned. Journal of Systems and Software, 38:225�234,Sep 1997. [ited at p. 9℄[42℄ Y. Levendel. Reliability analysis of large software systems: Defet data modeling.IEEE Transations on Software Engineering, 16:141�152, Feb 1990. [ited at p. 8℄[43℄ Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things hanged now?: anempirial study of bug harateristis in modern open soure software. In Pro. 1stworkshop on Arhitetural and system support for improving software dependability,pages 25�33, San Jose, California, 2006. [ited at p. 8℄[44℄ Z. Li and Y. Zhou. Pr-miner: Automatially extrating impliit programming rulesand deteting violations in large software ode. In Pro. of 13th International Sym-posium on Foundations of Software Engineering, pages 306�315, Lisbon, Portugal,2005. [ited at p. 96℄[45℄ B. Livshits and T. Zimmermann. Dynamine: Finding ommon error patternsby mining software revision histories. In Pro. of 13th International Symposiumon Foundations of Software Engineering, pages 296�305, Lisbon, Portugal, 2005.[ited at p. 96℄[46℄ T. Menzies, J. Greenwald, and A. Frank. Data mining stati ode attributes to learndefet preditors. IEEE Trans. Software Eng., 33(1):2�13, Jan 2007. [ited at p. 91℄[47℄ A. Mokus and L. G. Votta. Identifying reasons for software hanges using historidatabases. In Pro. 16th Int'l Conferene on Software Maintenane, pages 120�130,San Jose, California, USA, 2000. [ited at p. 17, 23℄[48℄ A. Mokus and D. M. Weiss. Prediting risk of software hanges. Bell Labs TehnialJ., 5(2):169�180, 2002. [ited at p. 63, 93℄[49℄ P. Mohagheghi, R. Conradi, O. M. Killi, and H. Shwarz. An empirial study of soft-ware reuse vs. defet-density and stability. In Pro. 26th International Confereneon Software Engineering, pages 282�292, 2004. [ited at p. 8℄[50℄ R. Moser, W. Pedryz, and G. Sui. A omparative analysis of the e�ieny ofhange metris and stati ode attributes for defet predition. In Pro. of Inter-national Conferene on Software Engineering (ICSE'08), pages 181�190, Leipzig,Germany, 2008. [ited at p. 91℄[51℄ J. C. Munson and T. M. Khoshgoftaar. The detetion of fault-prone programs.IEEE Transations on Software Engineering, 18:423�433, May 1992. [ited at p. 8℄[52℄ N. Nagappan, T. Ball, and A. Zeller. Mining metris to predit omponent failures.In Pro. of 28th Int'l Conferene on Software Engineering, Shanghai, China, 2006.[ited at p. 9, 63, 91℄

107[53℄ T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large industrial soft-ware system. In Pro. 2002 ACM SIGSOFT international symposium on Softwaretesting and analysis, pages 55�64, 2002. [ited at p. 47℄[54℄ T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are. In Pro. of 2004ACM SIGSOFT International Symposium on Software Testing and Analysis, pages86�96, Boston, Massahusetts, USA, 2004. [ited at p. 23℄[55℄ T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Prediting the loation and numberof faults in large software systems. IEEE Trans. Software Eng., 31(4):340�355, 2005.[ited at p. 9, 63, 92℄[56℄ K. Pan, S. Kim, and Jr. E. J. Whitehead. Bug lassi�ation using program sliingmetris. In Pro. Sixth IEEE Int'l Workshop Soure Code Analysis and Manipula-tion, 2006. [ited at p. 9, 63, 91℄[57℄ K. Pan, S. Kim, and E. J. Whitehead Jr. Toward an understanding of bug �xpatterns. Empirial Software Engineering, 14:286�315, June 2009. [ited at p. 95℄[58℄ D. L. Parnas. Software aging. In Pro. 16th International Conferene on SoftwareEngineering, pages 279�287, 1994. [ited at p. 3℄[59℄ S. L. P�eeger and J.M. Atlee. Software Engineering �Theory and Pratie. PearsonEduation, In., 3rd edition, 2006. [ited at p. 3℄[60℄ M. Pighin and A. Marzona. An empirial analysis of fault persistene throughsoftware releases. In Pro. IEEE/ACM ISESE, pages 206�212, 2003. [ited at p. 23℄[61℄ A. A. Porter and W. R. Selby. Empirially-guided software development usingmetri-based lassi�ation trees. IEEE Software, 7:46�54, Mar 1990. [ited at p. 90℄[62℄ L. Prehelt. An empirial omparison of seven programming languages. IEEEComputer, 33:23�29, 2000. [ited at p. 8℄[63℄ R. S. Pressman. Software Engineering �A Pratitioner's Approah. MGraw-HillHigher Eduation, 5th edition, 2001. [ited at p. 3℄[64℄ J. Ratzinger, M. Pinzger, and H. Gall. Eq-mine: Prediting short-term defetsfor software evolution. In Pro. of FASE'07, pages 12�26, Braga, Portugal, 2007.[ited at p. 9, 63, 92℄[65℄ A. Shroter, T. Zimmermann, R. Premraj, and A. Zeller. If your bug database ouldtalk. In Pro. 5th International Symposium on Empirial Software Engineering,pages 18�20, 2006. [ited at p. 4℄[66℄ J. Sliwerski, T. Zimmermann, and A. Zeller. Hatari: Raising risk awareness. InPro. 10th European Software Eng. Conf. and 13th ACM SIGSOFT SymposiumFoundations Software Eng., pages 107�110, 2005. [ited at p. 90℄[67℄ J. Sliwerski, T. Zimmermann, and A. Zeller. When do hanges indue �xes? InPro. of Int'l Workshop on Mining Software Repositories, pages 24�28, Saint Louis,Missouri, USA, 2005. [ited at p. 3, 7, 17, 99℄

108 BIBLIOGRAPHY[68℄ M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding failure-induing hanges injava programs using hange lassi�ation. In Pro. Symposium Foundations SoftwareEng, pages 57�68, 2006. [ited at p. 93℄[69℄ K. S. Trividi. Probability Statistis with Reliability, Queuing, And Computer SieneAppliations. Prentie-Hall In., Englewood Cli�s, NJ, 1982. [ited at p. 48, 57℄[70℄ C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to �xthis bug? In Pro. international workshop on Mining software repositories, 2007.[ited at p. 49℄[71℄ C. C. Williams and J. K. Hollingsworth. Automati mining of soure ode reposito-ries to improve bug �nding tehniques. IEEE Trans. Software Eng., 31(6):466�480,2005. [ited at p. 23℄[72℄ I. H. Witten and E. Frank. Data Mining: Pratial mahine learning tools andtehniques. Morgan Kaufmann, San Franiso, 2005. [ited at p. 9, 75℄[73℄ A.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Prediting soure odehanges by mining hange history. IEEE Trans. Software Eng., 30:574�586, Sept2004. [ited at p. 23, 94℄[74℄ A. Zeller. Why Programs Fail: A Guide to Systemati Debugging. Elsevier, 2006.[ited at p. 4℄[75℄ T. Zimmerman, P. Weissgerber, S. Diehl, and A. Zeller. Mining version histories toguide software hanges. In Pro. of Int'l Conferene on Software Engineering (ICSE'04), pages 563�572, Edinburgh, Sotland, UK, 2004. [ited at p. 23℄[76℄ T. Zimmermann, S. Kim, A. Zeller, and Jr. E. J. Whitehead. Mining version arhivesfor o-hanged lines. In Pro. of Int'l Workshop on Mining Software Repositories(MSR 2006), pages 72�75, Shanghai, China, 2006. [ited at p. 23℄

Appendies

109

Appendix A
List of Publiations
The work overed by this thesis led to following publiations:� J. Ferzund, S. N. Ahsan, and F. Wotawa. Bug-induing language onstruts.In Pro. of 16th Working Conferene on Reverse Engineering (WCRE'09),Lille, Frane, 2009.� S. N. Ahsan, J. Ferzund, and F. Wotawa. Are there language spei�bug patterns? results obtained from a ase study using mozilla. In Pro.of Fourth International Conferene on Software Engineering Advanes (IC-SEA'09), Porto, Portugal, 2009.� J. Ferzund, S. N. Ahsan, and F. Wotawa. Software hange lassi�ationusing hunk metris. In Pro. of 25th IEEE International Conferene onSoftware Maintenane (ICSM'09), Edmonton, Alberta, Canada, 2009.� J. Ferzund, S. N. Ahsan, and F. Wotawa. Empirial evaluation of hunkmetris as bug preditors. In Pro. of International Conferene on SoftwareProess and Produt Measurement, Amsterdam, Netherlands, 2009.

111

List of Figures
2.1 Arhiteture for Data Extration . 152.2 Steps for Hunk Extration . 172.3 Steps for identifying bug-induing hunks 182.4 CVS Log . 192.5 CVS Di�erene . 202.6 CVS Annotations . 202.7 CVSDi�erene table entries . 213.1 Proportion of hunk types in di�erent projets 313.2 Bug-induing language onstruts in di�erent projets (a) 353.3 Bug-induing language onstruts in di�erent projets (b) 363.4 Frequeny distribution of orrelation oe�ients (same projet) 373.5 Frequeny distribution of orrelation oe�ients (di�erent projet) . . 383.6 Comparison of Bug-Induing and Clean Hunks (Apahe) 423.7 Comparison of Bug-Induing and Clean Hunks (Elipse) 433.8 Comparison of Bug-Induing and Clean Hunks (Mozilla) 433.9 Comparison of Bug-Induing and Clean Hunks (PostgreSQL) 443.10 Comparison of Bug-Induing and Clean Hunks (Evolution) 443.11 Comparison of Bug-Induing and Clean Hunks (Epiphany) 453.12 Comparison of Bug-Induing and Clean Hunks (Columba) 453.13 Comparison of Bug-Induing and Clean Hunks (Nautilus) 464.1 Average bug densities . 504.2 Perentage of faulty �les . 514.3 Average LOC of faulty �les . 514.4 Average revision frequeny . 524.5 Average ode gain per �le . 524.6 Bug severity distribution . 534.7 Average bug lifetime . 54113

114 LIST OF FIGURES4.8 Average ode additions . 544.9 Average ode deletions . 554.10 Average Code Deletions / Bug Fix . 554.11 Average ode additions per bug �x . 554.12 Average number of hanges . 564.13 Distribution of bugs on di�erent platforms 564.14 Distribution of bugs on di�erent operating systems 574.15 The bug density distribution of �les written in Java 604.16 The bug density distribution of �les written in C 604.17 The bug density distribution of �les written in C++ 615.1 Logit Funtion . 705.2 Odds Funtion . 705.3 Auraies using Random Forest and Logisti Regression 785.4 Buggy Hunk Preision using Random Forest and Logisti Regression . 785.5 Buggy Hunk Reall using Random Forest and Logisti Regression . . . 795.6 Auraies using Individual Metris . 815.7 Buggy Hunk Preision using Individual Metris 815.8 Buggy Hunk Reall using Individual Metris 815.9 Auraies using Metris Groups . 835.10 Buggy Hunk Preision using Metris Groups 835.11 Buggy Hunk Reall using Metris Groups 83

List of Tables
2.1 CVSLog table desription . 162.2 CVSDi�erene table desription . 162.3 CVSAnnotations table desription . 162.4 Desription of Projets . 213.1 Language Construts . 263.2 Frequenies of Bug-Induing Language Construts(a) 323.3 Frequenies of Bug-Induing Language Construts(b) 333.4 Correlation oe�ients for di�erent projets 353.5 Correlation Coe�ients (developers of same projet) 373.6 Correlation Coe�ients (developers of di�erent projets) 393.7 Correlation Coe�ients (developers of same language) 403.8 Bug Lateny (Average Values) . 413.9 Bug Lateny Correlation Values between Language Construts 414.1 Number of Soure Files and Total LOC 494.2 Results of the rank-sum test . 595.1 Statistis of Projets . 645.2 Measurement Types . 665.3 Point biserial orrelation between hunk metris and hunk type 745.4 Preision P, Reall R and Auray A using LR with PCA 755.5 Preision P, Reall R and Auray A using LR without PCA 755.6 Results of Multivariate Logisti Regression (a) 765.7 Results of Multivariate Logisti Regression (b) 775.8 Preision P, Reall R and Auray A using random forests 775.9 Preision , Reall and Auray for Mozilla using individual metris . 805.10 Preision , Reall and Auray for Elipse using individual metris . . 805.11 Preision , Reall and Auray for Mozilla using metris groups . . . 825.12 Preision , Reall and Auray for Elipse using metris groups . . . 82115

116 LIST OF TABLES5.13 Classi�ation auraies using models from a di�erent projet 84

	Contents
	Introduction
	Roadmap
	Empirical Analysis of Language Constructs
	Programming Languages and Bugs
	Hunk Classification
	Terminology

	Extraction of Data from Repositories
	Architecture
	Database Schema
	Extraction of Hunks
	Identification of bug-inducing Hunks
	Projects Analyzed

	Empirical Analysis of Bug-Inducing Language Constructs
	Extraction of Language Constructs
	Proportion of Different Hunk Types
	Most Frequent Bug-Inducing Language Constructs
	Project Similarities
	Developer Similarities
	Bug Latency
	Comparison with Non Bug-Inducing Hunks
	Summary

	Language Specific Bug Patterns
	Research Hypothesis
	Project Studied
	Evolution Metrics
	Results
	Proving hypothesis H1
	Threats to Validity
	Summary

	Hunk Classification
	The Approach
	Tools Used
	Hunk Metrics
	Evaluation Criteria
	Classification Techniques
	Logistic Regression
	Random Forests
	Principal Component Analysis (PCA)
	Point Biserial Correlation

	Results
	Correlation between Hunk Metrics and Bugs
	PCA and Logistic Regression
	Random Forests
	Comparison of Logistic Regression and Random Forests
	Performance of Individual Metrics
	Performance of Combination of Metrics
	Cross Project Predictions

	Applications

	Threats to Validity
	Related Work
	Mining Software Change History
	Bug Prediction
	Software Change Extraction and Analysis
	Buggy Code Features and Locations

	Future work
	Conclusion
	Bibliography
	List of Publications
	List of Figures
	List of Tables
	Statutory Declaration

