
contact: Antonio Rella antonio.rella@student.tugraz.at

WAVELET BASED REAL-TIME DEFORMABLE OBJECTS

A wavelet approach for BEM

Antonio Rella

Inst. for Computer Graphics and Vision
Graz University of Technology, Austria

Master thesis
Graz, December 14, 2009

mailto:antonio.rella@student.tugraz.at




Master Thesis

Wavelet based real-time deformable objects
A wavelet approach for BEM

Master’s Thesis

at

Graz University of Technology

submitted by

Antonio Rella

Institute for Computer Graphics (ICG),
Graz University of Technology

Inffeldgasse 16/2
A-8010 Graz, Austria

December 14, 2009

© Copyright 2009 by Antonio Rella

Advisor: Dipl.-Ing. Dr.techn. Markus Grabner





Abstract

Calculation of deformation of 3-D models is a well know realm in analytic mathematics. As early
as a century past algorithms have been developed to compute such deformations. In general, these
computations for physically correct and accurate deformations are cumbersome and time-consuming.
For a few years computers became more powerful and have the capabilities to compute deformations
for complex models in an appropriate period of time. Beside these physically correct deformations,
realistic and intuitive deformations have been described by less time consuming algorithms, which
also could be computed in real-time. However, these deformations are not precise and can only satisfy
an observer at first sight. This thesis is concerned with the boundary element computation algorithm
for accurate deformation descriptions of three dimensional models. For this method the underlying
coefficient matrix is fully populated and therefore more difficult to solve. The approach of lazy
wavelets, on the contrary, is able to remove less relevant geometrical information while accepting the
emerging error, to achieve a more sparse coefficient matrix and to ease the calculation.





Kurzfassung

Berechnungsalgorithmen zur Verformung von 3-D Modellen sind ein bekanntes Gebiet in der der
analytischen Mathematik. Schon vor einem Jahrhundert wurden verschiedene Methoden entwickelt
um solche Verformungen zu errechnen. Rechenschritte für die Berechnung einer exakten Verformung
sind im Allgemeinen sehr aufwendig und zeitintensiv. Erst seit ein paar Jahren sind Computer so-
weit entwickelt, dass sie diese Verformungen auch für komplexere Modelle in einem angemessenen
Zeitrahmen berechnen können. Neben den exakten, realen Verformungen wurden auch realistische,
intuitive Verformungen beschrieben, deren Rechenschritte nicht so aufwendig sind und in Echtzeit be-
rechnet werden können. Allerdings sind diese nicht exakt und genügen dem Betrachter nur bei einem
schnellen Blick. Diese Diplomarbeit befasst sich mit der Berechnungsvorschrift der Randelementen-
methode, auch bekannt als Boundary element method, für die Verformung von drei-dimensionalen
Modellen. Die zugrunde liegende Koeffizientenmatrix ist hierbei dicht besetzt und schwer zu lösen.
Der Ansatz von lazy wavelets hingegen ist im Stande weniger relevante geometrisch Information
bei der Beschreibung dieser Matrix auszublenden um letztendlich eine dünn besetzte Matrix für eine
einfachere Berechnung zu erhalten.
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Chapter 1

Introduction

This thesis is concerned with a 3-D deformation method to compute surface displacements due to
acting forces on an arbitrary body. Its main goal is to find a way for a nearly real deformation in
an appropriate period of time. Real deformation means in this context, the deformation is physically
correct and not an approximation. Since real deformations are computationally very expensive, a new
way will be presented here, where errors are accepted to reduce this computational effort. However,
if no error is accepted the result is physically correct and precise. A second goal is the real-time
capability, which will give a more intuitive feeling for a virtual deformation to the user. Further, a
force feedback device will be included to feel the reacting forces. This approach uses the wavelet
technique and the boundary element method having a much smaller underlying matrix compared
to other real deformation method, to achieve these goals. Additionally to decrease the computing
time, the software will be implemented on the GPU for parallel processing using CUDA. The use
in application areas, such as in medicine and in engineering, gives the motivation to deform models
in an accurate and fast way. These applications, using the boundary element method for virtual
deformations, or similar neighbor topics – heat transfers and fluid flows –, are widely used. For
instance for training purposes in virtual medical surgery, allowing a medical trainee to interact with
virtual human organs and to deform them by stitching them up.

1.1 Overview

The following chapters explain in detail the required methods and functions to understand how de-
formations are described using the boundary element method and wavelets. Chapter 2, Related work,
gives an overview on the related work in the context of deformation methods and explains the main
differences between them. This thesis uses the boundary element method as a mathematical instru-
ment to describe and compute body deformations. The theoretical part about this method is explained
in the Chapter 3, Boundary element method, showing how to prescribe deformations, setting up the
underlying coefficient matrix and computing a final result. Since this topic is normally not part of
computer graphics it is explained in-depth in a self-contained way. Chapter 4, Elastostatics, is de-
signed to describe 3-D deformations for solid materials in their mathematical and analytical way
and depicts the definition of displacement, of stress and of strain. Similar to the boundary element
chapter it is explained in-depth since this topic is not frequently addressed by the computer graph-
ics community. Chapter 5 guides through 3-D multiresolution surfaces and explains several surface
subdivision algorithms needed to create a surface representation with subdivision connectivity of the
model’s boundary, as well as the usage of wavelets to store this newly created surface with sub-
division connectivity. Chapter 6 deals with Matrix representations and storage and shows several

3
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techniques to store a sparse matrix efficiently. Chapter 7 covering Iterative numerical solvers for
linear equation systems gives an overview to some common iterative solvers and to the finally im-
plemented bi-conjugate gradient solver. The used haptic force feedback device and its properties are
shown in Chapter 8, Haptic Device. The appendix also guides through the installation under Linux
as there might be conflicts between installed Linux distributions and device driver versions. The first
Chapter of contribution, Chapter 9 called Extension to the boundary element method gives a 1-D ex-
ample and shows the reformulation of the boundary integral equation needed for this work. Chapter
10, Wavelets, explains the application of the boundary element methods on the new created surface
with subdivision connectivity, using wavelets for the boundary element values representation. Some
problems and implemented solutions of the application are shown in Chapter 11, Application. The
setup of the implemented application and its execution parameters can be found in the appendix. The
results are collected in Chapter 12, Results, and shows performance, accuracy and computed data vol-
umes in context of CPU and GPU tested on several computer platforms. In Chapter 13, Conclusion
and future work, benefits and drawbacks of the thesis are being evaluated.

1.2 Contribution

This thesis uses wavelets to simplify and reduce the mathematical data amount for a faster compu-
tation, while accepting an error threshold during the calculation. For different types of interpolating
a function over the boundary of the body different types of wavelets can be used. For a constant
interpolation one surface patch relates to one displaceable surface point. For linear interpolation a
surface patch partly relates to at least three displaceable surface points. The difficulty now lies in the
usage of linear wavelets, interpolating over the element and relating the integrated data to the several
surface points. To assemble the coefficient matrix in the linear case a reformulation of the boundary
integral equation is needed. Since subdivision connectivity, here also denoted as sub-connectivity, of
the model is needed to apply the wavelets approach, the mesh points of the surface are needed to be
recomputed to achieve sub-connectivity, which was not part of this thesis. The sub-connectivity was
created out of a simple base mesh using subdivision methods for test purposes. For a model with
sub-connectivity, the resulting coefficient matrices is going to be transformed using linear wavelets
into a new representation form. Within this new matrix formulation it is allowed to ignore small
matrix entries resulting more sparse coefficient matrices consisting around 80% of zero entries natu-
rally depending on the error threshold accepted. The sparse matrix storage uses the compressed row
storage format. In a first solution the matrix has been setup completely and small values have been
deleted. However, this solution is very time consuming since all connections are taken into account,
are computed and evaluted, just to be deleted afterwards. An improvement has been implemented
whereas all needed connections are determined in a first step and computed in a second step. The
solution uses the subconnectivity to determine in upper subdivision levels if a connection in lower
levels needs also to be checked or is allowed to be skipped. An iterative solver using the bi-conjugate
gradient method is fed with this sparse matrix and computes the deformation result. This approach
has been tested with several surface meshes on several computer platforms. Another important goal,
which has been achieved for simplified cases, is the real-time capability of the computation. By the
usage of the wavelets approach the computing time is still reduced dramatically, as there is less data
stored in the matrix. The iterative solver is the most time consuming part in the computation process
and was decreased by using the parallel computation capability of the graphics card. The solver was
implemented in the graphics programming language CUDA to solve the equation system and results
in a second speedup.
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Chapter 2

Deformation methods

2.1 State of the art

Calculation of deformation of 3-D models is a well know realm in analytic mathematics. As early
as a century ago algorithms have been developed to compute such deformations. Generally, they can
be classified into two groups. On the one hand, real deformations which are physically correct and
depend on material properties like the stiffness tensor. They follow physical laws for elastic deforma-
tion and have high computation loads. On the other hand, realistic deformations which are intuitively
correct, but do not describe a correct physical deformation. They commonly satisfy the impression of
a deformation for an observer. However, since real deformation approaches have very high computing
times to calculate an exact solution of a given problem, realistic deformations have the right to exist
next to them and are welcome for applications whose deformation’s accuracy is secondary. The fi-
nite element method or boundary element method are common for real deformation computations. A
second classification can be done by the type of computation, namely by differentiating into classical
analytical methods and into numerical methods. For analytical solutions an integral formulation of
the deformation is described over the whole body, but they are limited, since there are difficulties to
carry out the integrals procedure (Equation 2.1.1). Analytical formulations have been found for very
specific cases only. ∫∫∫

Ω

· · · dxdydz = ??? (2.1.1)

In contrast, for numerical solutions this integral is evaluated partially over the body and is well adapted
for deformation problems in the mechanics of solids (Equation 2.1.2).∫∫∫

Ω

· · · dxdydz ≈
∑
e

∫∫∫
Ωe

· · · dxdydz (2.1.2)

The formulated problem has many solutions as depicted in Figure 2.1.

2.2 Computer trends

In the last decade, personal computers became powerful machines pushed by the computer game in-
dustry whose capacity is increasing with each game generation produced. The customer needs to be
satisfied with better, faster and finally also more realistic impressions of the game. The first step, it
can be said, was the introduction of 3-D graphics which later have been departed from the CPU, due
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Figure 2.1: Approaches for deformable objects

to the high computation loads for 3-D rendering. An special processor, the GPU, which has been de-
veloped just for 3-D graphics computations and renderings, was placed on the graphics card and has
been improved faster than Moores’s law predicts. This law prescribes a long-term trend in the history
of computer hardware as shown in Figure 2.2 [nVidia, 2008]. In order to render 3-D models equipped
with textures and lights, these processors use a pipeline technique to calculate the pixels on the screen.
Figure 2.3, referred from the book of Foley et al. [1995], shows this pipeline principle. Furthermore,
this procedure is parallelized by many cores inside the GPU and, since these pipeline steps were hard
wired on the GPU, it was not possible to interrupt or change these computation procedures. Only by
the introduction of vertex and fragment shader – in Figure 2.3 they are named programmable vertex
and fragment processors – it was possible to influence this pipeline and add new code segments to
create better visual effects like waves, environmental reflections and shadows among others. There-
fore, several high level shading programming languages like Cg (C for graphics), HLSL (High Level
Shading Language for DirectX) and Renderman were developed. Renderman was created and used
by Pixar Animation Studios. More about these languages can be found in the books of Fernando and
Kilgard [2003] and Luna [2006]. The GPU becomes more and more a new instrument for parallel-
programmed applications for general purposes. The latest state of GPU hardware can be seen and
programmed as a parallel processor using an extended programming language of C called CUDA,
which is a shorten form for Compute Unified Device Architecture, developed by nVidia for their
graphics cards and applicable since the nVidia GeForce 8800 series. Nowadays affordable graphics
cards have many shader cores – also called CUDAcores – for parallel processing, for instance the new
nVidia GT300’s chip architecture will have up to 16 multiprocessors with 32 shader cores each, thus
512 shader cores.

2.3 Real deformation methods

2.3.1 Finite element method

The finite element method (FEM) is a very famous numerical approach for real physical deformations
to compute and calculate stresses and strains inside a given model [Gaul, 2009]. In numerical math-
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Figure 2.2: Long-term trend of the nVidia product series

Figure 2.3: Graphics pipeline for 3-D rendering
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ematics FEM has a wide range of applications, namely for stress and torsion analysis or heat transfer
and fluid flow determination among others. As the name already bespeaks, this method subdivides
the body into a finite number of elements and nodes to compute the strains and stresses between these
nodes. These nodes are defined on the elements, with one or more nodes per element, depending
on the degree of accuracy wanted. In a first process, each node can be assigned a stress or a strain,
depending on the boundary conditions, while the opposite value will be computed. Relations and
interaction values of these nodes are calculated and are stored in a matrix. Normally, for a static body
deformation, due to an external force, all nodes inside the body are assigned no stress, while the strain
or the displacement of the nodes is being computed to yield the resulting body deformation. In case
of gravity all nodes inside the body are loaded with a gravity related stress and the displacement is
computed. Figure 2.4 shows a 2-D example of a deformed I-beam. The interaction values stored

Figure 2.4: 2-D example for FEM

in the matrix, which is normally sparse for the finite element method, can be rearranged to result in
a linear equation system whose solution will lead to the unknown stresses and strains at each node.
Iterative linear equation solvers allow to solve those sparse matrix equation systems in a finite number
of steps. More information can be found in the book of Braess [2007] and others.

2.3.2 Boundary element method

The boundary element method (BEM), as a second representative for numerical approaches to com-
pute real physical deformations, has lived in a shadowy existence beside the finite element method,
since the resulting matrix equation system is non-symmetric and fully populated, resulting in diffi-
culties to solve the system by iterative algorithms [Rüberg, 2008]. However, the matrix is smaller
and since computers became more powerful, a matrix inversion of boundary element problems with
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(a) FEM discretization (b) BEM discretization

Figure 2.5: 2-D discretization of a model for FEM and BEM [Gaul, 2009]

a reduced number of nodes can be computed in an appropriate amount of time. The application area
for BEM is similar to FEM and ranges from stress and torsion analysis to fluid flow and heat transfer
determination. An important difference between the finite element method and the boundary element
method, apart from the need to continuously resist against shears and torsions inside the body, is the
required assumption of a homogeneous body material as it is impossible to prescribe material rela-
tions inside the body without knowing about geometrical or material differences [Wrobel, 2002]. By
this reduction in the degree of freedom, the deformation problem can be defined over the boundary
only. Figure 2.5a shows a discretized model for the FEM while Figure 2.5b depicts the discretization
of the same model for the BEM [Gaul, 2009]. The advantages and disadvantages of BEM, referring
to the lecture notes of Gaul [2009], are:

+ Discretization of the boundary only.

+ Simplified pre-processing.

+ Improved accuracy in stress concentration problems.

+ Simple and accurate modeling of problems involving infinite and semi-infinite domains.

+ Simplified treatment of symmetrical problems (no discretization needed in the plane of sym-
metry).

– Non-symmetric, fully populated system of equations in collocation BEM.

– Treatment of inhomogeneous and non-linear problems.

– Requires the knowledge of a suitable fundamental solution.

– Practical application relatively recent, not as well known as FEM among users.

Similar to the finite element method, the boundary of the solid body needs to be split in a finite num-
ber of elements and nodes with their desired boundary conditions. They can also be set to stresses
or displacements and are defined over the elements, with one or more nodes per element, depending
on the degree of accuracy wanted. One node per element requires a constant interpolation, while two
or more nodes give the opportunity to interpolate linear, quadratic or higher order over the element.
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Of course, a constant interpolation of the boundary element values over the elements leads to cheaper
computation while its accuracy is lower than when doing linear or higher ordered interpolations of
the boundary values over the elements. However, the accuracy also increases with the number of
elements created out of the boundary through denser mesh representations. More detail description
of the boundary element method can be found in the books of Gaul et al. [2003], Wrobel [2002] and
Banerjee [1994] among others. An implementation of the boundary element method used for de-
formations of virtual objects is shown in their Artdefo (accurate real-time deformable objects) paper
from James and Pai [1999]. The investigation uses the constant element case and applies only for
smaller meshes, as the amount of data increases for large objects consisting of many triangles. A fast
update results from the requirement of an only few boundary conditions change. An extension to this
boundary element method can be given by using a subconnected mesh description for a given bound-
ary. From several mesh subdivision algorithms, such as the Loop subdivision method [Loop, 1987]
for triangles or the Catmull-Clark’s subdivision method [Catmull and Clark, 1978] for quadrilaterals
among others, a mesh with subdivision connectivity can be created. Eck et al. [1995] present methods
to resample arbitrary surface meshes to achieve sub-connectivity. In combination with the usage of
wavelets the number of close-to-zero values inside the matrix will be increased, which are set, by
accepting this error, to zero and therefore the matrix becomes sparser. The computed matrix resulting
from the boundary element method will have normally no zero entries. A constant boundary value
interpolation with usage of adapted Haar wavelets was discussed and developed at the ICG at Graz
University of Technology. This theses shows how this can be extended and adapted for a linear inter-
polation using linear or lazy wavelets and also gives a clue for the usage of higher ordered wavelets
and interpolation types.

2.4 Realistic deformation methods

2.4.1 Spring-mass-damper method

The spring-mass-damper model is the most common real-time representative due to its lower compu-
tation effort. The model is commonly used to simulate deformations of human organs or muscles. The
simulation can have to effect on the whole body or the boundary of the body only [Hähnke, 2004].
The spring-mass-damper method connects each vertex or node of the body to each neighboring node
via a spring-mass-damper system [Yoon, 2008]. A displacement of any of the nodes will affect the
neighboring nodes and so on (Figure 2.7a). Each node carries a perceptual value of the whole body
mass while the spring’s values between them represent the stiffness or elasticity of the body. To pre-
vent an oscillation of the body, which would be a result of the masses and springs and is not desired, a
third component, the damper value, is needed. Figure 2.6 explains the spring-mass-damper principle
for a mass connected to a fixed boundary. The force acting on one node due to elasticity results from
the influence of the nodes in the vicinity. Additionally, directions to neighboring nodes can be taken
into account to simulate different physical properties, for instance, stretching the body in direction of
x to be harder than in direction of y. For cheaper computational costs the number of nodes might be
reduced to those on the surface, which also leads to a deformation, but the model does not deform like
a balloon anymore, because during a deformation of this type the volume of the body is not taken into
account. However, additionally each node needs also be connected via a spring and damper to it’s
original undeformed position in space to allow the node to return to it’s initial position. This is shown
in figure 2.7b giving such an example for a 2-D case. Application areas for the spring-mass-damper
method ranges form clothes simulation, living tissue simulation, emotion sensitive avatars and virtual
medical surgeries for training purposes or as virtual preview to the patient in case of aesthetic surgery.
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Figure 2.6: Spring-mass-damper system

(a) SMD model with inner nodes (b) SMD model with boundary nodes only

Figure 2.7: 2-D spring-mass-damper model types
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2.4.2 Cellular neural network method

Methods using a neural network as backbone of a deformation algorithm were derived and improved
by [Zhong et al., 2008] and [Morooka et al., 2008]. The deformation is formulated as an dynamic
cellular neural network. The energy stored in the body due to an acting external force, is propagated
along mass points or nodes, resulting from a subdivision, by non-linear cellular neural network activ-
ities. The method is used for highly non-linear or plastic deformations in simulations of soft objects
like human organs. In combination with the finite element method, the method tries to reduce the
computation load needed to solve the linear equation system and the huge amount of data stored in
the matrix, normally at the expense of the accuracy of the computed result. The linear elastic defor-
mation problem is changed into a cellular neural network to avoid the expensive computations for
linear elasticity. An advantage is the large-ranged deformation possibility, while only small-ranged
deformations are computed by FEM, BEM or spring-mass-damper model. In the paper of [Hambli
et al., 2006] a neural network in combination with the finite element method is described. Neural
networks are employed as numerical devices which substitute the finite element computation part
needed for the deformation. In offline pre-calculations the artificial neural network is trained by some
randomly generated parameter sets which are suited to deform the model. As an easy example, a ball
can be considered whose used neural network is trained with radial forces only to finally simulate a
jumping ball with realistic physical deformation properties. This method predicts the typical behav-
iors of living tissues and easily accommodates isotropic, anisotropic and inhomogeneous materials
next to local and large-range deformations.



Chapter 3

Boundary element method

3.1 Introduction

This part of the thesis will be concerned with related work to the boundary element method. The
boundary element method, introduced in 1970, describes a way for computational solutions of engi-
neering problems [Brebbia, 1979]. These problems can be defined as elliptic, parabolic or hyperbolic.
Additionally, a boundary value problem is generally defined as static or dynamic (time-depended), but
in this thesis the attention is mainly focused on the elliptic static boundary value problem. In general
it is used for computation of complex problems described by differential equations, like those which
come up in the electrostatic field, in fluids, in electromagnetism or, as in this context, in material
deformations. The finite element method [Braess, 2007] solves these equations by subdividing the
domain into a finite number of subdomains. For the boundary element method these equations will
be transformed into their boundary elements for calculation. Applying the boundary element method
instead of the finite element method computation gets easier and more efficient. The computation is
valid as long as the applied domain is homogeneous. This section will guide through related methods
and algorithms of the boundary element technique.

Initial steps in this direction were done by the Swedish mathematician Ivar Fredholm [1903] who
formulated first boundary value problems and demonstrated solutions by discretizing the problem.
Most of this work was done in the theoretical perspective due to scarce possibilities realm for solving
large linear matrix systems. Most of the time has been spent to find evidences for the existence and
uniqueness of solutions. Nowadays, high-speed computers allow doing practical steps and applica-
tion, whose enable numerical solutions. The first numerical algorithms to solve Fredholm boundary
integral equations were implemented by Jaswon and Symm [1977].

In general, interactions between the elements - finite elements as well as boundary elements - are
stored in a matrix format. The finite element method will lead to big sparse matrices in contrast to
the boundary element method which will lead to smaller dense matrices. Solving a linear equation
system using these matrices results in a valid solution of the defined problem.

3.2 Linear differential operators

Linear differential operators are an essential part of the boundary element method. They are used
to define the boundary integral equations introduced in section 3.8. Linear differential operators are
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defined as

Lu(x) =
∑
i∈N

αi
∂iu

∂xi
(3.2.1)

with αi ∈ R For example, one linear differential operator may be the Laplace operator

Lu(x) = ∆u(x) =
∂2u(x)
∂x2

(3.2.2)

or for three dimensions

Lu(x) = ∆u(x) =
∂2u(x)
∂x2

x

+
∂2u(x)
∂x2

y

+
∂2u(x)
∂x2

z

(3.2.3)

3.3 Gauss’s divergence theorem

Gauss divergence theorem states that the sum of the derivative of all sources and sinks inside a domain
Ω yields the sum of all fluxes through Γ = ∂Ω, the boundary of Ω (Figure 3.1).

F









n
F

3­D:

2­D:

n

d 

d

Figure 3.1: Gauss divergence theorem

∫
Ω

(∇F )dΩ =
∮
∂Ω

nFdΓ (3.3.1)

F denotes a field at an arbitrary surface point and the orientation of the unit normal field n is pointing
outwards of the boundary Γ.
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3.4 Elliptic boundary value problems

Each elliptic boundary value problem will be formulated in an open domain, denoted as Ω, where Ω
is assumed to be bounded. In other words, the problem can be formulated inside a ball Br with a
finite radius r.

||x|| < r ⇔ Ω ⊂ Br (3.4.1)

∂Ω will be defined as the surface of Ω, denoted as Γ. It is closed, since Ω is bound [Rüberg, 2008]. A
unit normal vector on Γ is marked as n and is orientated outwards from Ω. A elliptic boundary value
problem can be defined as a linear differential operator as introduced in section 3.2.

Lu(x) = f(x) (3.4.2)

f(x) is the so-called source term [Gaul et al., 2003] and can be a vector, in for instance elastody-
namics, or a scalar, in for instance potential fields, depending on the situation. For static problems, to
which this thesis is limited, this source term is equal zero, f(x) ≡ 0. L is a linear differential oper-
ator with constant coefficients through Ω. As an example, assuming L = −∆ will lead to Poisson’s
equation for electrostatic fields

−∆ u(x) = f(x) (3.4.3)

When setting f(x) to zero the remaining equation is the so-called Laplace equation. A trace operator
Tr will now be introduced to describe boundary traces uΓ in terms of u [Rüberg, 2008; Schwab, 2004]

uΓ(y) = Tru(x) = lim
x∈Ω→y∈Γ

u(x) (3.4.4)

and respectively, for surface forces and fluxes a traction operator Tt will be introduced in order to
prescribe boundary tractions in terms of u

pΓ(y) = Ttu(x) = lim
x∈Ω→y∈Γ

p(x) (3.4.5)

3.4.1 Dirichlet boundary value problems

The previously defined uΓ describes the displacement or pressure value on the surface Γ. Assuming
uΓ is known, described by a function ū, contrary to the unknown pΓ, for a closed surface ΓN = Γ,
then a Dirichlet boundary value problem is posed (Figure 3.2). This condition is also called Dirichlet
boundary condition or essential boundary condition.

Lu(x) = f(x) x ∈ Ω
uΓ(y) = ū(y) y ∈ Γ

ΓD = Γ

3.4.2 Neumann boundary value problems

Defining stresses or fluxes respectively as a condition on the whole closed surface ΓN = Γ a Neumann
boundary value problem is given (Figure 3.3). This condition is called Neumann boundary condition
or natural boundary condition. The known value pΓ is prescribed by the function p̄.

Lu(x) = f(x) x ∈ Ω
pΓ(y) = p̄(y) y ∈ Γ

ΓN = Γ
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

21

 p=1∪2

u=∅

Figure 3.2: Dirichlet boundary value problem



21

u=1∪2

 p=∅

Figure 3.3: Neumann boundary value problem
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3.4.3 Mixed boundary value problems

For the most commonly given situation, the mixed boundary value problem, it is assumed, that the
surface Γ is split into two non-overlapping parts, a Dirichlet surface ΓD and a Neumann surface
ΓN . On ΓD a Dirichlet boundary condition and on ΓN a Neumann boundary condition is applied,
respectively (Figure 3.4). This problem, a so-called Mixed boundary value problem, is of the form



21

 p=1

u=2

u∩ p=∅

Figure 3.4: Mixed boundary value problem

Lu(x) = f(x) x ∈ Ω
uΓ(y) = ū(y) y ∈ ΓD
pΓ(y) = p̄(y) y ∈ ΓN

ΓD ∪ ΓN = Γ
ΓD ∩ ΓN = ∅

Note, due to ΓD ∩ΓN = ∅ it is impossible to apply both, a Dirichlet and a Neumann condition, on an
arbitrary surface point. Again, Γ is a closed surface.

3.5 Inverse formulation of differential equations

Consider the governing differential operator L weighted by a weight function w for a domain Ω is
given ∫

Ω

L(u)wdΩ = 0 (3.5.1)

Integration by parts, recall ∫
Ω

f ′gdΩ =
∫
Ω

(fg)′dΩ−
∫
Ω

fg′dΩ (3.5.2)

yields by definition of X (u) =
∫
L(u)∫

Ω

L(u)wdΩ =
∫
Ω

(X (u)w)′dΩ−
∫
Ω

X (u)w′dΩ (3.5.3)
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Applying Gauss’s divergence theorem 3.3.1 for the first integral on the right hand side leads to∫
Ω

L(u)wdΩ =
∫
Γ

X (u)wndΓ−
∫
Ω

X (u)w′dΩ (3.5.4)

As long as the order of X > 0 or in other words as long as X (u) contains derivations of u, integration
by parts and Gauss’s theorem have to be applied again. Equation (3.5.1), according to the order of L
and under consideration of all derivatives of u have be eliminated in the domain integral, yielding in
general [Brebbia, 1979]∫

Ω

L(u)wdΩ =
∫
Ω

uL∗(w)dΩ +
∫
Γ

G(u)S∗(w)− S(u)G∗(w)dΓ (3.5.5)

Equation (3.5.1) has been transformed, as a result of integration by parts, to a series of integrations
on the boundary. L∗ is the so-called adjoint of L. For the case that L∗ = L the operator is called
self-adjoint. By the way, when the self-adjointness occurs, then it also holds for S∗ = S and G∗ = G.
The operator S prescribes, again, the essential boundary conditions and operator G prescribes the
natural boundary conditions, respectively. The superscript ∗ denotes association with the w-terms, in
contrast to the association with the u-terms without such a superscript. If operator L is assumed as
self-adjoint, then equation (3.5.5) can be rewritten in the terms of Tr and Tt introduced in section 3.4
[Rüberg, 2008]. ∫

Ω

L(u)wdΩ +
∫
Γ

pΓTr(w)dΓ =
∫
Ω

uL(w)dΩ +
∫
Γ

uΓTt(w)dΓ (3.5.6)

As an example consider the Laplace operator L = ∆. Following the steps described above equation
(3.5.5) yields ∫

Ω

∆(u)wdΩ =
∫
Ω

u∆(w)dΩ +
∫
Γ

[∇(u)w − u∇(w)] · n dΓ (3.5.7)

Due to the self-adjointness of the operator L the operators L∗ = L, Tr = S = S∗ and Tt = G = G∗
can be determined following equation (3.5.6) as

L∗(u) = ∆u
Tr(u) = u (3.5.8)

Tt(u) = ∇u · n

3.6 Fundamental solutions

Each differential operator is subjected to a fundamental solution. Solving the equation means this
fundamental solution u∗ has to be found. One possibility to obtain the fundamental solution is solving
the equation with a singularity of Lu(x) at ξ

Lu∗(x) = −δ(ξ − x) =
{
−∞ (x = ξ)

0 (x 6= ξ)
(3.6.1)

by integration. δ(x) is the so-called Dirac impulse (Appendix B). The solution of equation 3.6.1 is
assumed to be symmetric around the point ξ.
As an example consider the Laplace equation in three dimensions

Lu(x) = ∆u(x) =
∂2u(x)
∂x2

x

+
∂2u(x)
∂x2

y

+
∂2u(x)
∂x2

z

(3.6.2)
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A fundamental solution can be obtained by solving equation

∂2u∗(x)
∂x2

x

+
∂2u∗(x)
∂x2

y

+
∂2u∗(x)
∂x2

z

+ δ(ξx − xx, ξy − xy, ξz − xz) = 0 (3.6.3)

As long as this function is symmetric around ξ the solution is also expected to be symmetric. A
transformation to the polar coordinate system where

xx = r cos(ϕ) sin(ϑ)
xy = r sin(ϕ) sin(ϑ)
xz = r cos(ϑ)

yields, since δ(ξx − xx, ξy − xy, ξz − xz) = 0 due to r > 0,

∆u∗(r, ϕ, ϑ) =
1
r2

∂

∂r

(
r2∂u

∗

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sinϑ

∂u∗

∂ϑ

)
+

1
r2 sin2 ϑ

∂2u

∂ϕ2
(3.6.4)

The solution is assumed to be symmetric and therefore the second and the third term have to be zero
and the solution depends on r only. It can be written as

∆u∗(r) =
1
r2

∂

∂r

(
r2∂u

∗

∂r

)
=

2u∗(r) + 4ru∗′(r) + r2u∗′′(r)
r2

= 0 (3.6.5)

The solution of the differential equation 3.6.5 can be obtained by integration and has the form

u∗(r) =
C1

r
+
C2

r2
(3.6.6)

The constants C1 and C2 can be calculated using equation (2.1.1) and equation (3.6.3), which yields∫
Ω

∆u∗(r)dΩ(r) = −
∫
Ω

δ(r)dΩ(r) = −1 (3.6.7)

Ω is the volume and must contain the singularity point ξ at r = 0. Using a sphere as domain Ω with
the radius ε → 0 around ξ and applying Gauss’s divergence theorem 3.3.1 the constant C1 can be
determined ∫

Ω

∆u∗(r)dΩ(r) =
∫
∂Ω

∂u∗

∂n
dΓ(r)

=
∫
∂Ω

∂u∗

∂r
dΓ(r)

=
∫
∂Ω

(
−2C2

r3
− C1

r2

)
dΓ(r)

= lim
ε→0

(
−2C2

ε3
− C1

ε2

)
4πε2

−1 = −4πC1

C1 =
1

4π

By now equation 3.6.6 and equation 3.6.7 yields the solution of equation 3.6.3

u∗(x, ξ) =
1

4π||ξ − x||
(3.6.8)
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3.7 Representation formula

Introduced in the previous section a function u∗(x, ξ) can be defined, so that

L(u∗(x, ξ)) = L∗(u∗(x, ξ)) = −δ(ξ − x) (3.7.1)

L is assumed as self-adjoint. Remember equation (3.5.6), the first domain integral, the first integral
on the left hand side, becomes zero due to equation (3.5.1). For the second domain integral, the
first integral on the right hand side, the achieved fundamental solution is used as the weight function
w = u∗(x, ξ) and can be rewritten as∫

Ω

L(w)udΩ =
∫
Ω

L(u∗(x, ξ))u(x)dΩ

= −
∫
Ω

δ(ξ − x)u(x)dΩ (3.7.2)

∫
Ω

L(w)udΩ = −u(ξ) (3.7.3)

Substituting w = u∗(x, ξ) in equation (3.5.6) and using equations (3.5.1) and (3.7.3) yields

u(ξ) =
∫
Γ

pΓTr(u∗(x, ξ))dΓ−
∫
Γ

uΓTt(u∗(x, ξ))dΓ (3.7.4)

This is the so-called representation formula and holds for 2D and 3D problems. This equation makes
it possible to determine unknown values u(ξ) inside the domain ξ ∈ Ω/Γ when the boundary values,
displacements and stresses, are known.

Example: As example consider again the Laplace equation. Under consideration of the results from
(3.5.8), (3.4.4) and (3.4.5) equation (3.7.4) results in

u(ξ) =
∫
Γ

p(x)u∗(x, ξ)dΓ−
∫
Γ

u(x)p∗(x, ξ)dΓ (3.7.5)

where p∗ = ∇u∗ ·n is the fundamental solution for the flux throughout the boundary Γ. This equation
in its special case is the so-called Green’s representation formula for boundary value problems and
holds for 2D and 3D value problems in the full domain Ω.

3.8 Boundary integral equation

Consider equation (3.7.4), for all ξ ∈ Ω∗, where Ω∗ = Rd/Ω is the complement of Ω, u(ξ) yields
zero since equation (3.7.2) yields zero. If ξ is located on the boundary Γ, then u(ξ) is undefined for
the moment. A evaluation can be found in Gaul et al. [2003]. For further evaluation the so-called
jump term or free term c(ξ) will be introduced here and u(ξ) will be replaced by c(ξ)u(ξ) where

c(ξ) =


1 ξ ∈ Ω/Γ

∈ (0, 1) ξ ∈ Γ
0 ξ ∈ Ω∗

(3.8.1)



3.9. WEAK AND STRONG SINGULAR INTEGRALS 23

assuming Γ ⊂ Ω. c(ξ) can be interpreted as the fraction of u(ξ), which lies inside of Ω. For smooth
surfaces c(ξ ∈ Γ) ∼= 1

2 . Including equation (3.4.4) and (3.4.5), and allowing that x lies now on the
boundary Γ, leads to the boundary integral equation∫

Γ

p(x)Tr(u∗(x, ξ))dΓ = c(ξ)u(ξ) +
∫
Γ

u(x)Tt(u∗(x, ξ))dΓ (3.8.2)

which is valid in Rd. Again, the boundary element method describes the relations of physical values
like stresses, strains, pressures, fluxes and others depending on a position value. The idea is now
to express the boundary values by a function depending on constant parameters which fulfills the
boundary conditions defined. Boundary integral equations are commonly written as follows

(Gu)(ξ) = (Cu+Hp)(ξ) (3.8.3)

with

Gu(ξ) =
∫
Γ

p(x)Tr(u∗(x, ξ))dΓ(x) (3.8.4)

Hp(ξ) =
∫
Γ

u(x)Tt(u∗(x, ξ))dΓ(x) (3.8.5)

Cu(ξ) = c(ξ)u(ξ) (3.8.6)

where G is the so-called single layer potential operator with u as the single layer potential value and
H as the double layer potential operator with p as the double layer potential value, respectively. C
is denoted as the jump term operator [Gaul et al., 2003] or free term operator [Rüberg, 2008]. Tr is
the trace operator, and Tt the traction operator. The Evaluation of them is shown in section 3.5. x
refers to the position vector. At special boundary positions those relations are obvious and boundary
conditions can be measured and defined there.

Gu0 = uΓ = ḡ essentials on ΓD
Hp0 = pΓ = p̄ naturals on ΓN

u0 and p0 represent the exact solution of the differential equation. Evaluation of Tr and Tt, which is
shown in section 3.5, holds for most boundary element value problems. Therefore it can be written
u∗ = Tru∗ and p∗ = Ttu∗and results finally in∫

Γ

p(x)u∗(x, ξ)dΓ(x) = c(ξ)u(ξ) +
∫
Γ

u(x)p∗(x, ξ)dΓ(x) (3.8.7)

3.9 Weak and strong singular integrals

For 2D and 3D boundary value problems the fundamental solutions carry a singularity at x = ξ. An
integration over this function causes problems, since it is necessary to determine the existence of the
integral at the singularity point. These integrations can be classified as weak singular integrals if the
integrated function has a limit at the singularity point and strong singular integrals if the integrated
function has no limit at the singularity. This integral remains then as so-called Cauchy principle value
integral, a definition of improper integration. For a 2D or 3D boundary value problem remember the
fundamental solutions of, for instance, the Poisson equation. For 2D problems, a weak singular
integral, for instance, over the fundamental solution u∗ which often contains the singularity term
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x ln x - x

ln x

0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

Figure 3.5: 1-D weak singular function ln(x) and its integral

f2(r) = ln r, exists (Figure 3.5)

f2(r) = ln r (3.9.1)

f2(x) = lnx (3.9.2)

F2(x) =

1∫
0

lnxdx (3.9.3)

= [x lnx− x]
1

0
(3.9.4)

= −1 (3.9.5)

since the rule of l’Hospital applied twice yields

lim
x→0

x lnx = lim
x→0

lnx
1
x

= lim
x→0

1
x

− 1
x2

= 0 (3.9.6)

For 3D problems the fundamental solution u∗ usually contains the term f3(r) = 1/r. However, this
leads also to a weak singular integral in 3D since

f3(r) =
1
r

(3.9.7)

f3(x, y) =
1√

x2 + y2
(3.9.8)

F3(x, y) =

1∫
0

1∫
0

1√
x2 + y2

dydx (3.9.9)

=

1∫
0

[
ln
(
y +

√
x2 + y2

)]1

0
dx (3.9.10)

=

1∫
0

(
ln
(

1 +
√

1 + x2
)
− lnx

)
dx (3.9.11)

The first part in the remaining 1D integral is a regular one, since 1 +
√

1 + x2 > 0|{∀x ≥ 0} and
therefore the logarithm exists. The second part, lnx, remains as a weak singular integral whose
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Figure 3.6: 2-D weak singular function 1√
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Figure 3.7: Integral of 2-D weak singular function 1√
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ln x
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Figure 3.8: 1-D strong singular function 1/x and its integral

evaluation is explained above. The function and its integral are plotted in Figure 3.6 and Figure 3.7
Finally the integral can be written as∫ ∫

1√
x2 + y2

dydx = y ln
[
2
(
x+

√
x2 + y2

)]
+ x ln

[
2
(
y +

√
x2 + y2

)]
− x (3.9.12)

For a strong singular integral, with an integrand for instance g2(r) = 1/r in 2-D or g3(r) = 1/r2 in
3-D problems, which occurs in the double potential layer integral, it can be rewritten as

g2(r) =
1
r

(3.9.13)

g2(x) =
1
x

(3.9.14)

G2(x) =

b>0∫
a<0

1
x

dr (3.9.15)

= lim
ε→0

 −ε∫
a

1
x

dx+

b∫
ε

1
x

dx

 (3.9.16)

= C

b∫
a

1
x

dx (3.9.17)

where a < ε < b. Figure 3.8 shows the strong singular function f2(x) = 1/x and its integral. It can be
observed, that the integrated function contains also a singularity at x = 0. This is a so-called Cauchy
principle value integral. For some of these functions an integral can be calculated for x ≥ 0 under
special conditions. Computation of those integrals can be found in Gaul et al. [2003]. Fortunately, for
boundary element value problems the evaluation can be done indirectly when rigid body movement
is assumed. This means the boundary conditions are Neumann ones, the forces are known and the
displacements are unknown for each element, and the whole body is moved due to acting forces.

3.10 Discretization of the boundary surface

After all those mathematical aspects of the boundary element method a practical numerical imple-
mentation of the discussed equations is needed. Therefore, the domain’s boundary will be subdivided
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into a finite number of parts, the so-called boundary elements (Figure 3.9). The subscript index j

Figure 3.9: Distretized surface using triangle patches

denotes a single boundary element [Gaul et al., 2003].

Γ =
E⋃
j=1

Γj (3.10.1)

Remember the boundary integral equation (3.8.7) will transform after discretization to

∑
j

∫
Γj

p(x)u∗(x, ξ)dΓj(x) = c(ξ)u(ξ) +
∑
j

∫
Γj

u(x)p∗(x, ξ)dΓj(x) (3.10.2)

In addition the functions of the boundary values u and p have to be discretized too, since the boundary
elements are now only represented by their vertices. Therefore, it is necessary to define interpolation
functions between those vertices to gain values inside the element for integration. This will be ex-
plained in the next section. The dimension of the boundary is one dimension less than the domain’s
dimension, since the boundary is a manifold of the volume.

3.11 Interpolation and shape functions

After discretization, the boundary of an object is defined by lines in 2D and by triangles or quadrangles
in 3D which represent the boundary elements. Consider one boundary element and its integral∫

Γj

u(x)p∗(x, ξ)dΓj(x) (3.11.1)

There is no interest to evaluate u at an arbitrary position on Γj , but instead at elected positions, so-
called nodes on which, for instance, stresses and displacements can be applied. By the definition
of interpolation functions the influence of an arbitrary position with respect to this nodes can be
evaluated. An interpolation function can be supposed to be constant, linear or higher ordered enabling
the influence of the element to be assigned to the nodes.
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3.11.1 Order of interpolation functions

As already mentioned there are different types of how to interpolate the influence of a boundary
element to the nodes. According to the interpolation function each element needs several numbers of
nodes to interpolate the function finally. The number of nodes are denoted as κ for later usage. These
types will be shown in the next subsections and examples are drawn in Figure 3.10, where constant
interpolation for 1-D line boundary elements, constant interpolation for 2-D quadrilateral boundary
elements and linear interpolation for 2-D triangular boundary elements, in this order, are shown.

Figure 3.10: Examples for boundary nodes

Constant case

For constant boundary elements the boundary values are represented by one node located in the center
of each surface element. Each element interacts with only one node, and therefore no boundary ele-
ment sharing with neighboring boundary elment’s nodes is needed to be considered which simplifies
this case.

Linear case

For interpolations over the boundary elements in an linear way the nodes are located in each corner of
each surface element. Those corners are shared by other boundary elements and needed to be taken
into account. The interpolation occurs linearly between these nodes.

Quadratic case

With each level of degree in the interpolation functions the calculation becomes more an more com-
plex, but the final result is therefore more accurate with the same number of nodes compared to cases
with an lower degree.

Cubic case

For the cubic interpolation more fixed points are needed and the accuracy increases again compared
to the quadratic case. However this accuracy is only needed for elements which are close to an
singularity, since the boundary element values at these nodes might be strongly different.



3.11. INTERPOLATION AND SHAPE FUNCTIONS 29

3.11.2 Evaluation of the interpolation functions

Line boundary elements (1-D)

The following parts show how the interpolation function can be determined for 1-D boundary ele-
ments. The element will be transformed into homogeneous coordinates η where η ∈ [−1, 1].

Constant case κ = 1 (Figure 3.11)

1

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Figure 3.11: 1-D constant interpolation

ϕ = 1 (3.11.2)

Linear case κ = 2 (Figure 3.12)

1

2

-1.0 -0.5 0.5 1.0
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1.0

Figure 3.12: 1-D linear interpolation

ϕ =
(

1
2(1− η)
1
2(1 + η)

)
(3.11.3)

Quadratic case κ = 3 (Figure 3.13)
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1

23
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Figure 3.13: 1-D quadratic interpolation

ϕ =

 1
2η(η − 1)
1
2η(η + 1)

(1 + η)(1− η)

 (3.11.4)

Cubic case κ = 4 (Figure 3.14)
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Figure 3.14: 1-D cubic interpolation

ϕ =


1
16(1− η)(1− 9η2)
1
16(1 + η)(1− 9η2)
9
16(1− η2)(1− 3η)
9
16(1− η2)(1 + 3η)

 (3.11.5)

Quadrilateral boundary elements (2-D)

Here it is shown how to apply the interpolation functions for 2-D quadrilateral boundary elements.
The homogeneous coordinate system for [η1, η2] ranges inside the square [η1, η2] ∈ [[−1, 1], [−1, 1]].

Constant case κ = 1 (Figure 3.15)

ϕ = 1 (3.11.6)
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1

Figure 3.15: 2-D quadrilateral constant interpolation

Linear case κ = 4 (Figure 3.16)

ϕ =


1
4(1− η1)(1− η2)
1
4(1− η1)(1 + η2)
1
4(1 + η1)(1 + η2)
1
4(1 + η1)(1− η2)

 (3.11.7)

Quadratic case κ = 9 (Figure 3.17)

ϕ =



1
4η1η2(1− η1)(1− η2)
1
4η1η2(1− η1)(1 + η2)
1
4η1η2(1 + η1)(1 + η2)
1
4η1η2(1 + η1)(1− η2)

1
2η2(η2 − 1)(1− η2

1)
1
2η2(η2 + 1)(1− η2

1)
1
2η1(η1 − 1)(1− η2

2)
1
2η1(η1 + 1)(1− η2

2)
(1− η2

1)(1− η2
2)


(3.11.8)

Cubic case κ = 16 (Figure 3.18)

ϕ =


1

256(1± η1)(1± η2)(1− 9η2
1)(1− 9η2

2)
−9
256(1− 9η2

1)(1± η1)(1− η2
2)(1± 3η2)

−9
256(1− η2

1)(1± 3η1)(1− 9η2
2)(1± η2)

81
256(1− η2

1)(1− η2
2)(1± 3η1)(1± 3η2)

 (3.11.9)

Triangular boundary elements (2-D)

Finally, for triangular elements the following prescribes the interpolation functions where the ho-
mogeneous coordinate system is represented by its barycentric coordinates [λ1, λ2, λ3], which are
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1
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Figure 3.16: 2-D quadrilateral linear interpolation
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Figure 3.17: 2-D quadrilateral quadratic interpolation
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Figure 3.18: 2-D quadrilateral cubic interpolation

explained in the Appendix C of this paper

Constant case κ = 1 (Figure 3.19)

ϕ = 1 (3.11.10)

Linear case κ = 3 (Figure 3.20)

ϕ =

 η1

η2

η3

 (3.11.11)

Quadratic case κ = 6 (Figure 3.21)

ϕ =



(2η1 − 1)η1

(2η2 − 1)η2

(2η3 − 1)η3

4η1η2

4η1η3

4η2η3

 (3.11.12)

Cubic case κ = 10 (Figure 3.22)
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1

Figure 3.19: 2-D triangular constant interpolation

1

2

3

Figure 3.20: 2-D triangular linear interpolation
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Figure 3.21: 2-D triangular quadratic interpolation
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Figure 3.22: 2-D triangular cubic interpolation
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

−1 10x1

2x2 

1 

Figure 3.23: Line transformation into homogeneous coordinates

ϕ =



1
2η1(3η1 − 2)(3η1 − 1)
1
2η2(3η2 − 2)(3η2 − 1)
1
2η3(3η3 − 2)(3η3 − 1)

9
2η1η2(3η1 − 1)
9
2η1η2(3η2 − 1)
9
2η1η3(3η1 − 1)
9
2η1η3(3η3 − 1)
9
2η2η3(3η2 − 1)
9
2η2η3(3η3 − 1)

27η1η2η3


(3.11.13)

3.11.3 Transformation into homogeneous coordinates system

1D line elements

A surface point on the boundary element can be expressed in terms of η by

x =
1− η

2
x(1) +

1 + η

2
x(2) (3.11.14)

The local homogeneous coordinate η can be expressed by

η =
2(x(1) − x(2)) · (x(1) − x)

||x(1) − x(2)||2
− 1 (3.11.15)

where x is the global coordinate and x(i) the corners of the line element. (Figure 3.23)

2D quadrilateral elements

For 2D quadrilateral boundary elements a transformation to homogeneous coordinates η can be ap-
proximated by solving

x = a1 + a2η1 + a3η2 + a4η1η2 (3.11.16)

for the known corner values

η(x(1)) = (−1,−1)T

η(x(2)) = (−1, 1)T

η(x(3)) = (1,−1)T

η(x(4)) = (1, 1)T
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s x

s ys y

Figure 3.24: Quad transformation into homogeneous coordinates

which results in

a1 =
1
4

(x(1) + x(2) + x(3) + x(4))

a2 =
1
4

(−x(1) − x(2) + x(3) + x(4))

a3 =
1
4

(−x(1) + x(2) − x(3) + x(4))

a4 =
1
4

(x(1) − x(2) − x(3) + x(4))

2D triangular elements

Any point on a triangle can be expressed in the global coordinate system by its barycentric coordinates
(Appendix C) using

x = λ1x
(1) + λ2x

(2) + λ3x
(3) (3.11.17)

where x(i) denotes the coordinates of the ith corner. Choosing the commonly used local corner values
λ(1) = (1, 0, 0), λ(2) = (0, 1, 0) and λ(3) = (0, 0, 1) λ can be expressed by

λ =
1
||n||2

 (x(3) − x) · v(1)

(x(1) − x) · v(2)

(x(2) − x) · v(3)

 (3.11.18)

with the normal vector n and the additional help vectors v(i)

n = (x(2) − x(3))× (x(3) − x(1)) (3.11.19)

v(1) = n× (x(2) − x(3)) (3.11.20)

v(2) = n× (x(3) − x(1)) (3.11.21)

v(3) = n× (x(1) − x(2)) (3.11.22)
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Figure 3.25: Triangle transformation into homogeneous coordinates

3.11.4 Boundary integral equation and interpolation functions

In Section 3.8 the boundary integral equation was introduced as∫
Γ

p(x)u∗(x, ξ)dΓ(x) = c(ξ)u(ξ) +
∫
Γ

u(x)p∗(x, ξ)dΓ(x) (3.11.23)

The nodal values u and p can be interpolated over the boundary elements by using the interpolation
functions as

u = ΦTun (3.11.24)

p = ΦT pn (3.11.25)

where un and pn denotes the nodal displacement and tractions of the surface mesh. The equation
(3.11.23) can now be discretized by using this interpolation functions and can be written as

∑
j

∫
Γj

u∗(x, ξ)ΦT
j dΓjpn = c(ξ)u(ξ) +

∑
j

∫
Γj

p∗(x, ξ)ΦT
j dΓjun (3.11.26)

The sum goes over all surface elements Γj and the equation is usually solved by numerical iterative
solvers. Φ is expressed in one of the previously introduced homogenous coordinates systems of the
surface element j.
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3.12 Numerical evaluation of coefficient integrals

3.12.1 Gauss quadrature formula

The Gauss quadrature formula describes an algorithm for solving integral equations numerically by
estimating the integrand with a polynomial function.

I =
∫
f(x)dx ∼=

∫ n∑
i=1

cix
idx (3.12.1)

Compared to the Simpson rule for numeric integration [Kreyszig, 2005] it will be shown, that less
fixed-points are necessary to estimate the integrand. Using Simpson’s rule, for a n-ordered polyno-
mial n fixed-points are needed to approximate the function exactly. Fixing the integration domain
and adding weight factors will lead to Gauss quadrature rule

I =

1∫
−1

f(s)ds ∼=
n∑
i=1

f(si)wi (3.12.2)

xi are the so-called Gauss points and wi are the corresponding weight factors. For an arbitrary
interval [a, b] the integration boundaries have to be transformed first to the reference interval [−1, 1].
The Gauss points and weight factors can be evaluated by setting up, depending on the degree of
accuracy n, 2n numbers of equations f(xj)|j ∈ N ∧ j < 2n. For example, this yields for n = 2

f(x)|x = 1, s, s2, s3 (3.12.3)

1∫
−1

ds = 2 = w1 + w2

1∫
−1

sds = 0 = w1s1 + w2s2

1∫
−1

s2ds = 2
3 = w1s

2
1 + w2s

2
2

1∫
−1

s3ds = 0 = w1s
3
1 + w2s

3
2

Solving this system of non-linear equations gives

s1,2 = ± 1√
3

and w1,2 = 1 (3.12.4)

The values for the Gauss points and their weights are listed in table 3.1 for an order N ≤ 5. For two
or more dimensional integrations, this formula can be applied analogously, finding Gauss points ξi
and ηj and corresponding weight factors wi and wj , so that [Gaul et al., 2003]

I =

1∫
−1

1∫
−1

f(ξ, η)dξdη =
n1∑
i=1

n2∑
j=1

f(ξi, ηj)wiwj (3.12.5)
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N si wi
2 ±0.57735 1.0
3 0.0 0.888889
±0.774597 0.555556

4 ±0.861136 0.347855
±0.339981 0.652145

5 0.0 0.568889
±0.538469 0.478629
±0.90618 0.236927

Table 3.1: Gauss points and weights values

3.12.2 Integration over boundary elements

After discretization of the surface into discrete boundary elements, which was explained in section
3.10, each element domain has to be transformed into its reference (square) coordinate system [−1, 1]
([[−1, 1], [−1, 1]]) before applying the Gauss quadrature formula.

Boundary elements with weak singular integrals

One point needs further attention. A problem occurs if the Gauss integration algorithm for the weak
and strong singular integrals is used, because it is very crude to estimate a polynomial function for
functions containing a singularity. For 1-D boundaries the Gauss rule can be adapted to evaluate weak
singular integrals. Consider Gaul et al. [2003] then

1∫
0

g(s)ϕ(s)ds ≈
n∑
i=1

g(si)wi (3.12.6)

takes already the singularity into account at x = 0 by choosing ϕ(x) = ln(x). Evaluation of the
Gauss points works analogously to equation (3.12.3) and yields for n = 2

s1,2 =
15±

√
106

42
and w1,2 =

−212± 9
√

106
424

. (3.12.7)

For 2D boundary elements the evaluation of surfaces containing a weak singularity can be achieved
by an additional special regularizing transformation into polar coordinates, which results in a degen-
eration of the singularity.

x = r cosϑ, y = r sinϑ, (3.12.8)

r =
√
x2 + y2, J =

∣∣∣∣∂(x, y)
∂(r, ϑ)

∣∣∣∣ = r (3.12.9)

The Jacobian determinant assigns by this transformation to J = r and vanishes therefore at the point
of singularity due to lim

r→0
J = 0. The integral reduces to∫∫

f(x, y)
r

dxdy =
∫∫

f(r, ϑ)drdϑ (3.12.10)

Figure 3.26 shows this transformation. Another solution can be found by the Lachat-Watson Trans-
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0

Figure 3.26: Regularization with polar coordinates

formation which regularizing transformation follows Gaul et al. [2003] using

x = 1− u, y = uv (3.12.11)

with the Jacobi determinant

J =
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ =
1
2

(1− u) (3.12.12)

Now, by placing the singularity point at λ(1) the Jacobi determinant disappears at u = 1 ⇔ x = 0
and will regularize the singularity and the Gauss quadrature formula can be applied normally. Figure
3.27 shows this regularization.

Integral domain adaptation for triangular elements

This section shows how an adaptation for triangular boundary elements can be obtained, whose in-
tegration domain is not the reference square coordinate system. For triangular elements the homo-
geneous coordinate system is defined by the barycentric coordinate system, which differs from the
needed reference square coordinate system. Before applying the the Gauss quadrature rule this do-
main has to be corrected and an integral expression adaptation to the reference square coordinate
system is needed. Commonly an integration over a triangular surface can be expressed as

∫
Γ

f(x)dΓ =

1∫
0

1−λ2∫
0

f [x(λ1, λ2)]
∣∣∣∣ ∂x∂λ1

× ∂x

∂λ2

∣∣∣∣ dλ1dλ2 (3.12.13)

A transformation of the integral boundaries to the correct reference square coordinate system can be
achieved by a variation of the Lachat-Watson transformation explained above [Rathod et al., 2004],

∫
Γ

f(x)dΓ =

1∫
−1

1∫
−1

f [x(η1, η2)]
∣∣∣∣∂λ∂η

∣∣∣∣ ∣∣∣∣ ∂x∂λ1
× ∂x

∂λ2

∣∣∣∣dη1dη2 (3.12.14)
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Figure 3.27: Regularization with the Lachat-Watson transformation

where

η =
(

1 + λ1

2
,
(1− λ1)(1 + λ2)

4

)T

(3.12.15)∣∣∣∣∂λ∂η
∣∣∣∣ =

1− λ1

8
(3.12.16)

As mentioned above this transformation degenerates a singularity at x(1). Figure 3.28 shows the
changed Lachat-Watson transformation.

3.13 Collocation method and matrix assembly

Remember equation (3.11.26), the discretized form of the boundary integral equation. The inner
integrals relates the node k with the element j. x[k] denotes the nodal position of the globally indexed
node k, the source point, and x[l] denotes the nodal position of the globally indexed node l, the load
point, respectively. These integrals will now be denoted as

E∑
j

∫
Γj

u∗(x[k], x[l])ΦT
j dΓj = Gkl (3.13.1)

E∑
j

∫
Γj

p∗(x[k], x[l])ΦT
j dΓj = Ĥkl (3.13.2)

and the discretized boundary integral equation can be rewritten as
N∑
k

Gklp
[k] = c[l]u[l] +

N∑
k

Ĥklu
[k] (3.13.3)

and, furthermore, by adding the jump term to Ĥkl

Hkl =
{
Ĥkl k 6= l

Ĥkl + c[l] k = l
(3.13.4)
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Figure 3.28: Regularization with the Lachat-Watson transformation into the reference square
coordinate system

will finally lead to
N∑
i

Gklp
[k] =

N∑
i

Hklu
[k] (3.13.5)

A representation in matrix form will be expressed as

Gp = Hu (3.13.6)

The diagonals of these both matrices contains the self interaction influence values and therefore the
singular integral values, which can be calculated for Gii containing the weak singular integrals as
shown in section 3.9. The strong singular integral, stored in Hii, can be determined indirectly when
a rigid body movement of a bounded body, which is finally a special case of the Neumann boundary
value problem, is assumed. To show this, a unit linear displacement in the same arbitrary direction
for all nodes is assumed and equation (3.13.6) then becomes

GIl = H∅ (3.13.7)

where Il denotes a common displacement vector of all nodes in direction of l. To satisfy this equation
it is clear, that for the still unknown diagonal terms, Ĥkk + c[k],

Hkk = −
∑
k 6=l

Hkl (3.13.8)

must be valid. Since Hkk = Ĥkk + ck, the strong singular integral and the jump term have been
determined as one value. There is no need to calculate the jump term or the strong singular integral
exactly.
Again equation (3.13.6), this matrix equation contains N unknowns and due to the boundary condi-
tions, recall section 3.4.3, u and p consists of Nu and Np unknowns where N = Nu + Np. This
matrix system can be reordered, with the unknowns stored in vector y left hand side, and the knows
stored in vector z right hand side, which leads to

Ay = Bz = F (3.13.9)

This linear equation system, with the fully populated N × N matrix A, can be solved directly or
iteratively. Iterative solvers for such linear equation systems are shown in Chapter 7.
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Chapter 4

Elastostatics

4.1 Introduction

Elastostatics describes deformations, relations of stress and displacements, on linear elastic bodies
under consideration that all forces on the body sum up to zero and the body is at equilibrium. More
important compared to the elastodynamics is the time independent view of the situated problem,
where displacement and stresses are not a function of time. This chapter will guide through definitions
of stresses and strains inside a body and common representations of relations between acting forces
on the boundary to resulting deformations and displacements. These terms for the definitions are
written in the Cartesian tensor notation explained in Appendix A. Most related work of this chapter
can be found in the books of Aliabadi [2002], Gaul et al. [2003] and Brebbia [1979].

4.2 Hook’s law

Hook’s law prescribes relations of an object under deformation. Figure 4.2 shows the deformation as
a function of the stress over the strain for a rod under an axial load (Figure 4.1). It can be observed,
that in the beginning of deformation, strain and stress have a linear relation. As long as there is a linear
relation elastic deformation occurs and the rod will return back into its initial position if it is released
again. This is the region to which elastostatics is limited to and repetitions will cause no remaining
damage to the rod. Respectively, if the stress becomes to high, the rod’s deformation will reach the
plastic region and as a result the deformation will not return back to zero if the rod is released. As a
measurement to define the ending of elastic and the beginning of plastic deformation the value Re is
used and stands for Resistance elastic. For this simple 1-D example the relation of stress and strain,

l=L l

F

 l

Figure 4.1: Axial loaded rod

45
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Material breaks



plastic defomation
Re ≠k 

elastic deformation
Re =k 

R eborder of elasticity

Figure 4.2: Hook’s law

assuming elastic deformation, is defined as

σ = Eε (4.2.1)

where σ is an averaged stress over the cross-section of the rod

σ =
F

A
(4.2.2)

and ε stands for the strain which is defined as

ε =
l − L
L

(4.2.3)

where l assigns the length of the rod in tension and L its initial length before deformation starts. The
scaling factor E is a material constant, the so-called elasticity factor or stiffness factor. Furthermore,
to define Hook’s law for higher dimensions the next sections will first define some definitions to
finally prescribe Hook’s law in those higher dimensions.

4.3 Definition of displacement

The displacement of a particle inside a body is the difference of its initial state and its final state
defined as the displacement vector u

ui = xi −Xi (4.3.1)

where x is its actual position andX its initial position.

4.4 Definition of strain

As mentioned already above, elastostatics follows Hook’s law for linear elasticity. For higher ordered
dimensions two types of strains must be considered, first the normal strain or direct strain where the
strain and the displacement points towards the same direction and the shear strain where the strain is
evaluated in an orthogonal direction of the displacement’s direction (Figure 4.3). The shear strain
can be seen as the difference of the angle between two originally orthogonal vicinal particles of x
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shear strainnormal strain

Figure 4.3: Simplified view of normal and shear strain

u
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∂ x2
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dx2



Figure 4.4: Deformation of an infinitesimal particle
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x3
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p1x1

Figure 4.5: Traction p on a surface

(Figure 4.4), namely ∂(x+dx)
∂xi

and ∂(x+dx)
∂xj

. The Cauchy symmetric linear strain tensor εij is defined,
under consideration of small displacements u� 1 (!), as

εij = α+ β ≈ 1
2

(ui,j + uj,i) (4.4.1)

εij = εji (4.4.2)

ε =

ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 ≈ 1
2

 2∂u1
∂x1

∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x3

+ ∂u3
∂x1

∂u2
∂x1

+ ∂u1
∂x2

2∂u2
∂x2

∂u2
∂x3

+ ∂u3
∂x2

∂u3
∂x1

+ ∂u1
∂x3

∂u3
∂x2

+ ∂u2
∂x3

2∂u3
∂x3

 (4.4.3)

Since this is a definition in higher dimensions the strain is no longer a single value, more than a
second-ordered tensor.
Primely the strain is defined as above in equation (4.2.3) which becomes for the Cauchy strain tensor
to

ε = lim
L→∅

∆l
L

(4.4.4)

For the shear strain it is clear, that it vanishes in an 1-D case, but for higher dimensions it might be
unequal zero. Additionally, it can be seen, that in the case of a rigid body motion this strain tensor
yields zero, which is desired, since no deformation should occur as long the whole body is moved.

4.5 Definition of stress

Stress according to the mechanics of materials is defined as the force F acting on an areaA, the stress
vector

p =
F · nA
||A||

(4.5.1)

with nA as the outwards pointing normalized normal vector of A (Figure 4.5). Since the vector
depends on the orientation of the surface, this representation of the stress vector for a material point,
which is given by the pair F and A is not suited. By introducing the second-ordered Cauchy stress
tensor σij the state of stress for a material point is represented by the three orthogonal planes ei, ej , ek
(Figure 4.6). The Cauchy stress principle states, that the stress due to the force F acting on an area
A becomes

p = lim
∆A→∅

∆F
||∆A||

nA =
dF
dA

nA (4.5.2)
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Figure 4.6: Internal stress representation on an infinitesimal particle

while ||A|| tends to zero, and it can be written instead

pi = σijnj (4.5.3)

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (4.5.4)

where n represents the surface’s normal. Similar to the strain stress can be classified into to different
types, the normal stress, where the force points in the same direction as the surface normal and shear
stress, where the force points in an orthogonal direction of the surface normal. Of course is normal
strain caused by normal stress and shear strain caused by shear stress.

4.6 Constitutive equation

For elastic materials the state variables, the stress tensor σij and the strain tensor εkl, depend both
on material properties and therefore depends the stress on the strain and vice verse. Now under
assumption, that the strain tensor is the state independent one, and the stress tensor depends on the
strain, the generalized Hooke’s law, which represents the material behavior and describes the stress
as a function of the strain, can be formulated as

σij = Cijklεkl (4.6.1)

The so-called elasticity tensor or stiffness tensor Cijkl is a fourth-order tensor, a (3×3×3×3) hyper-
cube, containing 43 = 81 material constants and prescribes the material behavior for an anisotropic,
linear-elastic material. Fortunately, due to symmetries, assumption of isotropy, and independence of
direction [Gaul et al., 2003], the elasticity tensor can be reduced to its simplest form for a homoge-
neous and isotropic material depending further more only on two independent constants, the Lamé’s
moduli λ and µ

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (4.6.2)
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Figure 4.7: Internal body forces on an infinitesimal particle

The generalized Hook’s law yields for this elasticity tensor

σij = λδijεkk + 2µεij . (4.6.3)

Other representation formulas using the the more common material constants E (Young’s modulus),
G (Shear modulus) and ν (Poisson’s ratio), which can be calculated out of λ and µ

E =
µ(3λ+ 2µ)
λ+ µ

G = µ

ν =
λ

2(λ+ µ)

4.7 Equilibrium equations

If the body is in equilibrium it follows
σij,j + fi = 0 (4.7.1)

where fi denotes internal body forces (Figure 4.7). This are two (three) equations with four (six)
unknowns for two (three) dimensional plane strain problems. Furthermore, if no body moments are
applied this equation leads also to

σij = σji (4.7.2)

4.8 Boundary integral equation

Recall, the boundary conditions for mixed boundary value problems, introduced in Section 3.4.3, are
u = ū on ΓD and p = p̄ on ΓN . Applying the steps explained in the previous chapter in Section 3.5
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and 3.7 the weighted residual integral can be rewritten, by choosing a weighting function that follows

σ∗ij,j + eiδ(x− ξ) = 0, (4.8.1)

as ∫
Ω

u∗ij(σ
∗
ij,j + fi)dΩ =

∫
Γ

p∗ijuidΓ +
∫
Γ

u∗ijpidΓ (4.8.2)

where u∗ij(ξ, x) and p∗ij(ξ, x) are the displacements and tractions to the weighting field with p∗ij =
σ∗ijnj according to equation (4.5.3).

4.9 Fundamental solutions

The fundamental solutions, u∗ij and p∗ij , of equation (4.8.2) for linear elasticity are also known as
Kelvin’s fundamental solutions and are given by [Brebbia, 1979; Hunter and Pullan, 2001]

u∗ij(ξ, x) =
−1

8π(1− ν)G
[(3− 4ν) ln(||r||)δij + r,ir,j ] (4.9.1)

p∗ij(ξ, x) =
−1

4π(1− ν)||r||

{
[(1− 2ν)δij + 2r,ir,j ]

∂r

∂n
− (1− 2ν)(r,inj − r,jni)

}
(4.9.2)

for two dimensional and

u∗ij(ξ, x) =
1

16π(1− ν)G||r||
[(3− 4ν)δij + r,ir,j ] (4.9.3)

p∗ij(ξ, x) =
−1

8π(1− ν)||r||2

{
[(1− 2ν)δij + 3r,ir,j ]

∂||r||
∂n

− (1− 2ν)(r,inj − r,jni)
}

(4.9.4)

for three dimensional plane strain problems. r = r(ξ, x) = x− ξ represents the distance between the
field point x and the source point ξ as a vector. n is the outward pointing normal vector of Γ at the
specified boundary position x and yields for [James and Pai, 1999]

∂||r||
∂n

=
r · n
||r||

(4.9.5)



52 CHAPTER 4. ELASTOSTATICS



Chapter 5

3-D multiresolution surface

5.1 Introduction

This chapter will give a short preview of subdivision methods for 3D meshes and multiresolution
surface representation. Subdivision of a surface means splitting the surface elements into smaller
parts, called child elements or child faces, to approximate a smoother surface in a recursive way
[Peters and Reif, 2008; Akenine-Moller and Haines, 2002]. Based on the positions of nearby known
vertices a refinement scheme computes new vertices for new child faces which finally gives rise to
a denser mesh. This process can be applied again on the subdivided surface elements to recursively
improve the final result which will lead to a hierarchical representation of the mesh. In the case of the
boundary element method this subdivision algorithms are used to gain more nodal points for a more
accurate solution. However the computing time increases dramatically with the number of nodes.
Therefore, an intelligent representation for the surface is required. Commonly a surface consists of
triangular elements, quadrilateral elements or both.

5.2 Recursive refinement schemes

Refinement schemes can be differentiated into interpolating or approximating techniques. Interpo-
lating schemes require the original vertices positions being part of the new subdivided mesh, which
means that they must not be displaced. They commonly converge to a similar size compared with the
original mesh. These schemes are implemented in the Butterfly or Kobbelt subdivision algorithm. In
contrast, approximating schemes allow to adjust the original mesh vertices as needed to approximate
a smooth surface. Representatives for interpolating schemes are the Loop, Catmull-Clark or Doo-
Sabin subdivision algorithm. The subdivided mesh is then often smaller than before. Some important
terms in the context of subdivision algorithms are [Pharr and Fernando, 2005; Akenine-Moller and
Haines, 2002]:

• Limit surface: the theoretical surface computed after an infinite number of subdivision steps.

• Valence (of a vertex): the number of edges connected to a vertex.

• Extraordinary point: a vertex with a valence differing from the algorithm’s predicted valence
(Triangular six, Quadrilateral four)

• Corner: the number of faces connected to a vertex with different surface normals at this vertex.
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Figure 5.1: Triangular subdivision

5.3 3D surface subdivision methods

This section gives a short overview of common subdivision methods for 3-D meshes. It focuses
primarily on how this algorithm refines a mesh, rather than on an analysis of the convergence rate to
the limit surface, on convex hulls or on other topics in this context.

5.3.1 Triangular elements

Triangles are the simplest and most frequently used face type for surface elements in the context of
3D meshes. Triangles are the sole polygons which are always planar.

1-to-4 subdivision

This algorithm subdivides one triangular surface patch into four parts by creating new vertices in
the middle of each edge and connect them to a new triangle as shown in Figure 5.1 where black
dots represent still existing vertices from the original mesh before subdivision and white dots stand
for newly added vertices. The dashed lines represent newly added edges. This subdivision does not
smooth the surface, which means each edge of the original mesh is viewed as a crease and is normally
used if a higher mesh density is needed.

Loop subdivision

Loop [1987] first prescribed this subdivision algorithm in 1987. It is a very common algorithm for
triangular surface subdivision. In a first step the triangle is subdivided by the 1-to-4 subdivision al-
gorithm explained in the previous subsection. In a second step the Loop subdivision applies weight
masks as depicted in Figure 5.2 on the vertices resulting from bi-cubic uniformed B-splines, to guar-
antee that new vertices have C2 continuity, and recalculates positions of new and old vertices. For
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Figure 5.2: Weight masks for Loop subdivision (Valence 6)

extraordinary vertices this weight masks must be adapted, as shown in Figure 5.3, where

β =
1
n

(
5
8
− 3

8
(
1
4

+ cos
2π
n

)2) (5.3.1)

if the Original loop is used while

β =
{

3
8n n > 3
3
16 n = 3

(5.3.2)

if the Warren refinement method is used.
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Figure 5.3: Weight masks for Loop subdivision (Valence k)

√
3 subdivision

This subdivision method for triangular surface patches introduced by Kobbelt [2000] generates sub-
divided meshes, where the number of triangles increases by a factor of 3 instead of 4 for each sub-
division step. First, this method adds a new vertex in the center of each triangle and connects this
new vertex to the corners of the triangle. Afterwards the old edges are flipped to avoid degenerated
triangles. This is explained in Figure 5.4.
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Figure 5.4:
√

3 subdivision method

Butterfly subdivision

This method is an interpolating subdivision scheme for triangles and was introduced by Dyn et al.
[1990]. The algorithm inserts vertices for each edge following the rule

P k+1 =
1
16

[8(P k1 + P k2 ) + 2(P k3 + P k4 )− (P k5 + P k6 + P k7 + P k8 )] (5.3.3)

as shown in Figure 5.5. As required for interpolating schemes, this subdivision method keeps the
original vertices in place.

P2
kPk1

P1
k

P4
k

P5
k P6

k

P7
k P8

k

P3
k

Figure 5.5: Butterfly subdivision scheme

5.3.2 Quadrilateral elements

Quadrilaterals, a second often used surface element, have also an important relevance in the context
of subdivision schemes and figure commonly as the opposites to the triangles while quadrilateral
elements are not always planar.
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1-to-4 subdivision

This algorithm splits each face into four parts by adding new vertices in the center of each face and
edge. This algorithm does not smooth the surface anyway, but it can be used if a higher resolution is
needed (Figure 5.6).

Figure 5.6: Simple 1-to-4 subdivision

Midpoint subdivision

The midpoint algorithm represents the simplest subdivision method to create smoother surfaces. It
creates new vertices in the middle of each edge and connects tbe new middle points of the edges
enclosing one patch. This algorithm smooths a surface in a straightforward way (Figure 5.7).

Figure 5.7: Midpoint subdivision algorithm

Catmull-Clark subdivision

This subdivision algorithm was introduced by Edwin Catmull and Jim Clark in 1978 [Catmull and
Clark, 1978]. The Catmull-Clark technique uses bi-cubic uniformed B-splines to guarantee a smooth
surface after the refinement step with C1 continuity at the original mesh vertices and C2 continuity
elsewhere. This refinement works in a recursive manner and for different types of meshes but yields
best results for quad meshes. The use of the Catmull-Clark algorithm to subdivide a control mesh
consisting only of quad meshes is straightforward. First, each face has to be split into four faces by
adding a new vertex in the center of the face and in the middle of each edge. So-called weight masks
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Figure 5.8: Catmull Clark subdivision of a cube

are used to recompute the positions of these new vertices and the new positions of the original vertices
from the control mesh. These weight masks for a valence of 3, 4 and 5 are shown in Figure 5.9 and
for a valence of k in Figure 5.10.
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Figure 5.9: Catmull-Clark weight masks for a valence of 3, 4 and 5 [Pharr and Fernando, 2005]

Doo-Sabin subdivision

Similarly to the idea of Catmull-Clark, this subdivision method devised in 1978 by Doo [1978] and
improved by Doo and Sabin [1978] uses bi-quadratic uniformed B-splines to guarantee a smooth
surface. It shrinks each face by a percentage value and connects the corners of the shrunken faces to
create new faces (Figure 5.11).
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Figure 5.10: Catmull-Clark weight masks for a valence of k [Pharr and Fernando, 2005]

Figure 5.11: Doo-Sabin subdivision on a cube
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5.4 Wavelet representation for multiresolution surfaces

This section shows the representation for 3-D multiresolution surfaces using the technique of wavelets.
Similar to the Fourier transformation, where an arbitrary signal is reconstructed by the sum of dif-
ferent sinus and cosines functions transforming the signal into the time domain, the signal is re-
constructed by a sum of scaled and translated copies of one so-called mother wavelets transforming
the signal into the wavelet domain. Mallat [1989], Daubechies [1992] and Chui [1992] introduced
wavelets theoretically and used them from a signal processing point of view. The great benefit of
wavelets lies in the fact that only a small number of coefficients are required to represent general
functions or large datasets accurately. It results in a compression of the used data and in more effi-
cient computations. As a simple example of wavelets construction the Haar wavelet will be introduced
next.

5.4.1 Haar wavelet

The Haar wavelet, as show in Figure 5.12, is the simplest mother wavelet for wavelet transformations
and was proposed in 1909 by Alfréd Haar [Daubechies, 1992]. For an arbitrary discretized signal

Figure 5.12: Haar wavelet

x, one can assume that two neighboring samples of the signal have a high correlation. The Haar
wavelet tries to take a benefit from this and transforms any two neighboring samples into the average
and the difference of both, thus generating two new sequences. A given sequence of data x can be
transformed to v and w, namely

vi =
x2i + x2i+1

2
(5.4.4)

wi = x2i+1 − vi =
x2i+1 − x2i

2
(5.4.5)

where v denotes the average values and w represents the differences. If the neighboring samples are
highly correlated the difference value will yield to zero and this will save storage memory. For this
case the function prescribed by the average values vi is very close to the original signal. The average
values can be viewed as a coarser representation of the original signal containing the low frequen-
cies. Likewise, the difference values represent the details and are the so-called wavelet coefficients
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containing the high frequencies. The procedure can be reversed to restore the original signal

x2i = xi − zi (5.4.6)

x2i+1 = xi + zi (5.4.7)

After a second wavelet transformation, applying equations (5.4.4) and (5.4.5) once again, and using
the coarse signal v as the new input signal the wavelet coefficients for the next level can be computed.
This can be repeated until only one value remains, which is the average of a continuous signals.

5.4.2 Wavelets for multiresolution surfaces

The idea of wavelets, like the Haar wavelet, processed on 1-D signals can also be applied to subdi-
vided surfaces to generate multiresolution surfaces using wavelets in 3 dimensions as first introduced
by Lounsbery et al. [1997] and Stollnitz et al. [1996]. After subdividing the surface with a subdivi-
sion algorithm, the surface can be transformed into wavelets using proper mother wavelets. For each
subdivision transformation level the wavelet coefficients are computed (Figure 5.13). Bertram et al.
[2004] present in their paper general B-spline subdivision-surface wavelets for geometry compres-
sion. For an arbitrary model the surface mesh points must be re-sampled to gain sub-connectivity as
shown in the article of Eck et al. [1995].

Figure 5.13: Multiresolution surface representation [Stollnitz et al., 1996]
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Chapter 6

Matrix representations and storage

6.1 Introduction

Matrices are used to store the nodes-to-nodes interaction values. Their size increases normally by
four for each level of depth added and in addition also by the number of nodes needed according
to the interpolation function. The size of the matrix and due to this the computing time may rise
dramatically. Wavelets technique helps to reduce this expense.

6.2 Dense matrix representation

Dense matrices store all values in the matrix - the non-zero values and the zero entries as well. The
data are stored in a two dimensional array, for example as vectors of vectors and requires for a n×m
matrix a memory allocation of

B = n ·m · α; (6.2.1)

bytes, where α denotes the number of bytes needed to represent one matrix entry, for instance, four
bytes for a float value. This will explode for large systems since the memory requirements increasing
linear ton ×m. However, if the matrix is sparse, other representation types will save memory, since
zero entries will not be saved.

6.3 Sparse matrix representation

More interesting are matrix representations which take into account the large number of zero entries
in a sparse matrix. A matrix is known as sparse, if just a fraction are non-zero values compared to
the whole number of entries. There are several techniques and formats to store sparse matrices for
iterative methods. The memory requirements for these matrix representations depend mainly on the
number of non-zero entries. The following representation types are mainly taken from the book of
[Saad, 2003, Chapter 3.4].

63



64 CHAPTER 6. MATRIX REPRESENTATIONS AND STORAGE

6.3.1 Coordinate format (COO)

[Saad, 2003, ch. 15] This is the simplest format, which stores three values for each matrix entry, the
row-index, the column-index and the matrix entry value itself in an arbitrary order.

A =



11 12 0 14 0 0
0 22 23 0 0 0
31 0 33 34 0 0
0 42 0 44 45 46
0 0 0 0 55 56
0 0 0 0 65 66

 (6.3.2)

will be stored as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 65 66 55 56 42 44 45 46 11 12 14 22 23 31 33 34
row-index 5 5 4 4 3 3 3 3 0 0 0 1 1 2 2 2
column-index 4 5 4 5 1 3 4 5 0 1 3 1 2 0 2 3

A benefit of this storage type is that additional matrix entries can be easily added at the end of the
arrays. However, this matrix storage format requires quite a large amount of memory, since two
additional arrays must be stored, and therefore it is seldom used.

6.3.2 Modified COO format (MCOO)

Modified COO uses instead of the two index arrays, row-index and column-index, only one index
array to store the values i ·n+ j, where i represents the row-index and j the column-index. n denotes
the number of columns. This index representation is unique. The matrix (6.3.2) will be stored with
the modified COO format as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 65 66 55 56 42 44 45 46 11 12 14 22 23 31 33 34
index 34 35 28 29 19 21 22 23 0 1 3 7 8 12 14 15

This modification needs only one index vector, but is only usable for smaller matrices, since the
bits needed to store an index value increases with the matrix size by the power of two. For matrices
larger than 256× 256 more than 16 bits are needed to store a index value and the algorithm becomes
inefficient. Another disadvantage are the additional calculation steps which are needed to express the
index value.

6.3.3 Compressed row storage format (CRS)

In this storage format the values are ordered in an ascending direction and the row-index vector is
used to store the start index in the column-index vector where the row starts, as shown below. The
row-index of a value itself is stored by the index of the row-index vector.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 11 12 14 22 23 31 33 34 42 44 45 46 55 56 65 66
column-index 0 1 3 1 2 0 2 3 1 3 4 5 4 5 4 5

0 1 2 3 4 5

row-index 0 3 5 8 12 14
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As an example an access at index (row = 3, column = 4) is considered. In this case, the row-
index vector at index 3 tells that the row starts at index 8 in the column-index vector, and will end at
11, since the next row starts at 12. The next step is to search for the column-index 4 between indexes
8 and 11. Once the corresponding value of the value vector at this column-index is found, it will be
returned otherwise it will be 0.
This format needs less memory than the COO-format, since the row-indexes are collected now. How-
ever, to access an arbitrary index it might be needed to check the whole row to figure out that the
index even does not exist and therefore the return value yields zero. For normal matrix-vector multi-
plications (MVs) this is not a drawback, since each element inside a row must be accessed anyway.
Note, however, that pure column accesses necessary to access the transposed matrix are not possi-
ble anymore. To do so, another storage format is needed or the matrix has to be stored twice in the
memory, which is only useful as long the matrix is not too large. Nevertheless the algorithm can be
reordered to collect the columns and to gain pure column access at the expense of the row accesses.

6.3.4 Modified CRS Format (MRS)

This format is similar to the CRS format and assumes that the main diagonal of the matrix includes
values unequal zero, which becomes true for most matrices. Instead of using a separate row-index
vector, this algorithm stores at first the main diagonal entries into the value vector and then uses the
column-index vector as the row-index vector. For the first diagonal entries its not needed to store a
column-index separately, since it is clear that the first entry in the diagonal vector is in the first row
and the first column of the matrix, the second in the second row and the second column and so on.
The values of matrix (6.3.2) will be stored as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 11 22 33 44 55 66 12 14 23 31 34 42 45 46 56 65
row/column 6 8 9 11 14 15 1 3 2 0 3 1 4 5 5 4

The advantages and disadvantages are similar to the ones in the CSR format, while less memory
is needed. This format is very common.
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Chapter 7

Iterative numerical solver for linear
equation systems

7.1 Introduction

A linear equation system is commonly expressed by a matrix A, a solution vector x and a non-zero
right hand vector b. x∗ expresses the exact solution.

Ax∗ = b (7.1.1)

x∗ = A−1b (7.1.2)

Solving a huge linear system by computing the inversion of A takes a long time. Iterative solvers
estimate a solution and try to improve this solution with each step by evaluating a cost-function to
find a minimum for the residual of the current solution which is defined as

rn = b−Axn (7.1.3)

For the exact solution x∗ the residual is ∅. If the algorithm converges, an acceptable solution is
calculated after a finite number of steps. An iterative algorithm starts with an initial solution x0,
typically choosing x0 = ∅, and calculates new solution vectors xn|n > 0 iteratively. The next
sections introduce iterative algorithms to calculate such solutions.

7.2 Preconditioners

Before beginning with iterative solver, preconditioners and their usage will be explained. First of all,
preconditioners may help to find an acceptable solution faster. A matrix with a high condition number
needs more steps to find an appropriate solution, since the incremental steps to the direction of the
exact solution are small. The condition number of a matrix can be measured by its minimum and
maximum singular value

κ(A) =
σmax

σmin
(7.2.4)

and a preconditioner will change these singular values. Applying preconditioners will change a linear
equation system to

(CLA)x = CLb left preconditioning
(ACR)(C−1

R x) = b right preconditioning
(CLACR)(C−1

R x) = CLb left and right preconditioning
(7.2.5)
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This has no influence on the final solution of x. Generally, good preconditioners are good estimators
of the inverse matrix ofA, where

C ≈ A−1 (7.2.6)

7.3 Error vectors and residuals

The error vectors and residuals are essential values in the estimating process for accurate solutions of
a linear equation system in an iterative way. They are the measurement for an evaluation of computed
solutions. In a first approach an error vector, representing the exactness of the actual solution, is
defined as

dn = xn −A−1b = xn − x∗ (7.3.7)

but not determinable because the actual solution x∗ is normally unknown while solving. However,
a convergence can be estimated from the residual vector or from the residual of an actual solution
which is defined as

rn = b−Axn (7.3.8)

‖r‖ = 〈r, r〉 =
√
rTr (7.3.9)

and converges to ∅, if xn converges to x∗.

7.4 Inner products and vector norms

Inner products of vector pairs and vector norms of vectors can be computed in several ways and find
a large usage in the algorithms of iterative solvers. First of all, an inner product of a vector pair is
defined as

〈v,w〉 ≡ wHv =
∑
i

viwi {vi, wi|∀i ∈ C}〈v,w〉 ≡ wTv =
∑
i

viwi {vi, wi|∀i ∈ R} (7.4.10)

wi denotes the conjugate complex of wi and the superscript wH denotes the Hermitian of w, the
conjugate complex transposed. From here on, only real matrix and vector entries are assumed. Vector
norms are functions that assign strictly positive values to a vector except to the zero vector. There are
several types of vector norms, for example [Saad, 2003]:

||v||1 =
∑
i

|vi| (7.4.11)

||v||2 =
√∑

i

|vi|2 (7.4.12)

||v||p = p

√∑
i

|vi|p (7.4.13)

||v||∞ = max
i
|vi| (7.4.14)

The most common norm is the 2-norm, || · ||2, also known as the Euclidean norm, representing the
length of the vector. From here on, if not denoted separately, the norm || · || without any subscript is
always meant as the 2-norm || · ||2. The euclidean norm can be written as an inner product

||v|| =
√
〈v,v〉 (7.4.15)
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instead. Furthermore, the norm over the matrix-vector product Gv is also defined as a vector norm,
the so calledGTG-norm, and one can say

||v||GTG = ||Gv|| =
√
〈Gv,Gv〉 =

√
〈v,GTGv〉 (7.4.16)

The last type of vector norm which is to be mentioned here is the so-called energy norm or A-norm,
where compared to theGTG-norm,GTG can be thought asA, finally written as

||v||A =
√
〈v,Av〉 (7.4.17)

7.5 Orthogonality

The next term is the so-called orthogonality of two vectors and is an important term in the sense of
iterative solver since most algorithms use projections onto the previously computed solution space.
Two vectors v and w are defined to be orthogonal if their inner product yields zero

v ⊥ w ⇐⇒ 〈v,w〉 = 0 (7.5.18)

Orthogonal vectors are normal to each other and additionally, if the 2-norm of both vectors satisfies
||v|| = ||w|| = 1 they are also defined as orthonormal. The inner product of two vectors can also be
viewed as a projection onto each other. Actually an inner product can also be computed by

〈v,w〉 = ||v|| ||w|| cosα (7.5.19)

where α represents the angle included between the vectors v and w, with cosα = 0 if v is normal
onto w. A projection of the vector v onto the vector w can be computed by normalizing the vector
w to ew = w/||w|| before building the inner product (Figure 7.1).

vw = 〈v, ew〉ew =
〈v,w〉
||w||2

w =
〈v,w〉
〈w,w〉

w (7.5.20)

Subtracting the projected vector vw from v yields a vector u which is orthogonal to w and satisfies

〈u,w〉 = 〈v − vw,w〉 = 0 (7.5.21)

A set of orthonormal vectors {u1, . . . ,un} can be constructed out of a set of linear independent
vectors {v1, . . . ,vn} by applying the Gram-Schmidt algorithm such that

span{u1, . . . ,un} = span{v1, . . . ,vn} (7.5.22)

A matrix consisting of orthonormal column vectorsQ = (q1, . . . , qn) is called orthogonal matrix.
Analogously, the vectors are said to beA-orthogonal to each other if 〈v,Aw〉 = 0. TheA-projection
of two vectors can be obtained similarly by

vw =
〈v,Aw〉
||w||2A

w =
〈v,Aw〉
〈w,Aw〉

w (7.5.23)
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Figure 7.1: Vector projection of v onto w

7.6 The projection technique

The projection technique attempts to find a solution for a given linear set of equations as a part of
a search subspace [Saad, 2003] Km, where m denotes the dimension of this space. To constrict
the exact solution, a set of constraints must be imposed and conditions must be hold. Commonly
used techniques try to find a set of m orthogonal conditions, more precisely a set of m linearly
independent vectors, which span a new subspace L. This subspace is commonly called subspace of
constraints or left subspace [Saad, 2003]. Techniques using the left subspaceL as the search subspace
K are called orthogonal projection techniques. Those techniques, where L differs from K are called
oblique projection methods. For most techniques the residual vector r = b − Ax is used to form
the left subspace L, being orthogonal to a set of m linearly independent vectors. If a n × n matrix
A, as a part of the linear equation system Ax = b, and two m-dimensional subspaces K and L are
considered, then the projection techniques finds an approximated solution x̃ = x0 +δ, which belongs
to the affine subspace x0 +K and whose residual vector is orthogonal to the subspace L. x0 defines
the initial guess (Figure 7.2). One can say

b−Ax̃ ⊥ L ⇐⇒ r0 −Aδ ⊥ L (7.6.24)

where δ belongs to K. Each vector w as part of L satisfies the relation

〈r0 −Aδ,w〉 = 〈r̃,w〉 = 0 (7.6.25)

The update of the approximated solution xj+1 and the residual rj+1 can be formulated as

xj+1 = xj + δ (7.6.26)

rj+1 = rj −Aδ (7.6.27)
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r0A

r

Figure 7.2: Orthogonal projection condition [Saad, 2003]

7.7 Krylov subspace methods

For an estimated solution x0 of a linear equation system the residual r0 = b−Ax0 spans the so-called
Krylov (sub)space for a matrixA with the base r0, given by

Km(A, r0) = span{r0,Ar0,A
2r0, . . . ,A

m−1r0} = φm−1(A)r0 (7.7.28)

where φm denotes a certain polynomial of degree m. An improved solution xm for the initial guess
x0 can be obtained as a part of the set x0 +Km(A, r0)

xm ∈ x0 +Km(A, r0) = x0 +
m−1∑
i=0

Air0 (7.7.29)

when the so-called Galerkin condition ensures that the m-residual, rm = Amr0, is an orthogonal
projection onto all vectors in the left subspace Lm (Figure 7.2).

rm ⊥ Lm (7.7.30)

After each step, xm gets closer to the exact solution x∗ for a concrete chosen subspace Km. From
this idea several methods have been born out to approach the exact solution iteratively. Very common
methods, using the Krylov subspace, will be shown in the next sections.

7.7.1 Jacobi iteration method

One of the simplest iterative solver is the Jacobi iteration solver, which is a diagonal preconditioned
fixed point iteration, trying to approach a fixed point, here the final solution of the matrix system,
by an iterative function. An equation system given as (7.1.2) can be transformed, as explained by
Gutknecht [2007], to

x = B̂x+ b̂ (7.7.31)



72 CHAPTER 7. ITERATIVE NUMERICAL SOLVER FOR LINEAR EQUATION SYSTEMS

where

B̂ = I −D−1A

b̂ = D−1b

and D is the diagonal matrix of A. The fixed point iteration xn+1 = B̂xn + b̂ will converge to
the exact solution, x∗ = A−1b, for each start vector x0 chosen, as long as ρ(B̂) < 1, which is the
spectral radius of B̂ and is defined as

ρ(B̂) = max{|λ| | λ eigenvalue of B̂} (7.7.32)

7.7.2 One-dimensional projection processes

In general one-dimensional projection processes are given if the update of the approximated solution
is done with respect to only one dimension. In other words an update is of the form

xj+1 = xj + αjvj (7.7.33)

where the vectors vi form the base of the search subspace Km = span{v0, . . . ,vm−1}. The left
subspace is spanned by the vectors wi, Lm = span{w0, . . . ,wm−1}, respectively. The Petrov-
Galerkin condition, where

r −Aδ ⊥ L ⇐⇒ rj −Aδj ⊥ wj ⇐⇒ rj − αAvj ⊥ wj , (7.7.34)

yields the optimal value for the scalar value α,

α =
〈rj ,wj〉
〈Avj ,wj〉

(7.7.35)

The reoccurrence of rj+1 can be expressed by

rj+1 = b−Axj+1 (7.7.36)

= b−A(xj + αjvj) (7.7.37)

= b−Axj − αjAvj (7.7.38)

= rj − αjAvj (7.7.39)

Steepest descent method

This orthogonal projection method, one of the one-dimensional projection processes, using v = w =
r, tries to improve a foregoing solution by

xj+1 = xj + αjvj = xj + αjrj (7.7.40)

where αj denotes a new parameter which needs to be found for the best improvement. The residual
for this approach can be computed by

rj+1 = rj − αjArj (7.7.41)

For an optimal step size αj the 2-norm of rj+1 has to be minimized. For symmetric positive definite
matrices rj+1 can be minimized by minimizing theA-norm of the error vector ||dj+1||A = ||xj+1−
x∗||A and the optimal value for αj can be obtained by

αj =
〈rj , rj〉
〈rj ,Arj〉

(7.7.42)
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More illustrative is a graphical representation of this algorithm (Figure 7.3), where in this case for
convenience a 2× 2-dimensional equation system given by

(
7 −2
−2 6

)
x =

(
6
2

)
and x0 =

(
0
0

)
(7.7.43)

is solved.
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Figure 7.3: Steepest descent algorithm

By simplification of a N ×N matrix to a 2× 2 matrix it is easily seen how this algorithm works. For
matrices of sizeN = 2, the length of the residual is building concentric ellipses, concentric ellipsoids
for N = 3 and higher dimensional objects for larger N .

MINRES Iteration

Similar to the steepest descent, this one-dimensional projection process uses v = r and w = Ar.
This method is also commonly called Orthomin(1) and relaxes the symmetric property assumption of
the matrix needed by the steepest descent. However, the matrix has to be positive definite. The scalar
value α is minimized in the sense of the A-norm of the residual ||rj+1||A = ||b −Axj+1||A in the
direction of the rj+1 and one gets

αj =
〈rj ,Arj〉
〈Arj ,Arj〉

(7.7.44)
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Figure 7.4: MR Iteration algorithm

Residual norm steepest descent method

This is the last introduced one-dimensional projection method, where the vectors are defined as v =
ATr and w = AATr. This method is the same as the MINRES iteration method, using a left
preconditioner CL = AT which reformulates the equation system to

ATAx = ATb (7.7.45)

The matrix productATA results in a positive definite matrix for each non-singular matrixA. So the
need thatA is positive definite will be relaxed by this approach. The value α yields

αj =
〈rj ,AATrj〉

〈AATrj ,AATrj〉
=

〈ATrj ,A
Trj〉

〈AATrj ,AATrj〉
(7.7.46)

7.7.3 Conjugate gradient method (CG)

This method is an improvement of the steepest descent algorithm, which develops steps in a more
accurate direction towards the final solution. A restriction is that this method works only for symmet-
ric positive definite (spd) or hermitian positive definite (hpd) matrices. Compared to the method of
the steepest descent, where an improvement of an actual solution xj depends on the actual residual
(7.7.40), this algorithm introduces direction vectors pj instead to improve the solution. The reoccur-
rence of the solution is defined as

xj+1 = xj − αjpj (7.7.47)
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Figure 7.5: Residual norm steepest descent algorithm

which would be the same as the steepest descent if p = r. The actual residual can then be expressed
as

rj+1 = rj − αjApj (7.7.48)

For a 2 × 2 matrix, compared to the algorithm of the steepest descent, it is easy to see that a faster
and stabler solution algorithm can be obtained by adding a second direction vector conjugate or A-
orthogonal to the first. So only two steps are needed to calculate the final result as shown in figure
7.6.
Expanding this situation back to matrices of arbitrary size N , direction vectors pj are chosen which
are conjugate to each other. The conjugate direction vectors follow

〈pj ,Api〉 = 0 | i 6= j (7.7.49)

αj defines the size of the optimal step length into the direction of pj and it minimizes theA-norm of
the error vector over a two-dimensional affine space when

αj =
〈rj , rj〉
〈pj ,Apj〉

(7.7.50)

For the conjugate gradient method the direction vectors pj are then determined by the Krylov space
Kj+1(A, r0).

span{p0,p1,p2, . . . ,pn} = span{r0,Ar0,A
2r0, . . . ,A

nr0} = Kn+1(A, r0) (7.7.51)

Similar to the method of the steepest descent, an update of the direction vector pj+1 can be achieved
by subtracting theA-projection of the error onto the affine subspace of rj+1 in the direction of pj

pj+1 = rj+1 −
〈rj+1,Apk〉
〈pj ,Apj〉

(7.7.52)

This ensures, that the direction vectors are conjugate to each other in the sense of equation (7.7.49).



76 CHAPTER 7. ITERATIVE NUMERICAL SOLVER FOR LINEAR EQUATION SYSTEMS

-0.5 0.0 0.5 1.0 1.5

-0.5

0.0

0.5

1.0

1.5

Figure 7.6: Conjugate gradient algorithm

7.7.4 Biconjugate gradient method (BiCG)

The bi-conjugate gradient method uses, in contrast to the conjugate gradient method, a second set
of residuals, the so-called shadow residuals r̃n to approach the final solution from two sides. This
method is also usable for non-symmetric matrices, but needs, compared to the CG algorithm, two
matrix-vector multiplications to extend the Krylov spaces Kn and K̃n.

rj = Ajr0 (7.7.53)

r̃j = (AT )j r̃0 (7.7.54)

For the Krylov spaces and the shadowed Krylov spaces, one gives

span{r0,Ar0,A
2r0, . . . ,A

nr0} = Kn+1(A, r0) (7.7.55)

span{r̃0,A
T r̃0, (AT )2r̃0, . . . , (AT )nr̃0} = Kn+1(AT , r̃0) = K̃n+1(A, r̃0) (7.7.56)

where r̃0 can be chosen freely providing 〈r0, r̃0〉 6= 0 . The residuals r and r̃ and the search directions
p and p̃ form bi-orthogonal bases of the Krylov spaces K and K̃.

〈r̃i, rj〉 = 0 | i 6= j (7.7.57)

〈p̃i,Apj〉 = 0 | i 6= j (7.7.58)

Again, the actual residual rj represents the accuracy of the actual solutionxj . Similar to the conjugate
gradient method the conjugate direction vectors follow

〈piApj〉 = 0 | i 6= j (7.7.59)

〈p̃iATp̃j〉 = 0 | i 6= j (7.7.60)

(7.7.61)
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and the improvement of an actual solution xj can be calculated by

xj+1 = xj + pjαj (7.7.62)

αj defines the size of the optimal step length into the direction of pj and is computable by

αj =
〈rj , r̃j〉
〈Apj , p̃j〉

(7.7.63)

7.8 Transpose-free variants

7.8.1 Conjugate gradient squared method (CGS)

A transpose-free variant of the biconjugate gradient method is the conjugate gradient squared method
once developed by Sonneveld in 1984 [Sonneveld, 1989]. The main goal was to avoid the multipli-
cation by the transpose of A which occurs in the BiCG algorithm, without incurring additional cost.
From BiCG it is known that the residuals and the direction vectors can be expressed by two certain
polynomials φj and πj of degree j

rj = φj(A)r0 (7.8.64)

pj = πj(A)r0 (7.8.65)

as well as for the shadowed residuals and the direction vectors

r̃j = φj(AT)r̃0 (7.8.66)

p̃j = πj(AT)r̃0 (7.8.67)

The step size, introduced in the BiCG method in equation (7.7.63), can now be rewritten as

αj =
〈rj , r̃j〉
〈Apj , p̃j〉

(7.8.68)

=
〈φj(A)r0, φj(AT)r̃0〉
〈Aπj(A)r0, πj(AT)r̃0〉

(7.8.69)

=
〈φ2
j (A)r0, r̃0〉

〈Aπ2
j (A)r0, r̃0〉

(7.8.70)

For a better reading one defines

rS
j+1 = φ2

j+1(A)r0 (7.8.71)

pS
j+1 = π2

j+1(A)r0 (7.8.72)

qS
j+1 = φj+1(A)πj(A)r0 (7.8.73)

The CGS method finds an iteration sequence for the residual and the direction vectors which satisfies

rS
j+1 = rS

j − 2αjA(rS
j + βjq

S
j ) + α2

jA
2pS

j (7.8.74)

pS
j+1 = rS

j+1 + 2βj+1q
S
j+1 + β2

j+1p
S
j (7.8.75)

qS
j+1 = rS

j + βjq
S
j − αjApS

j (7.8.76)

For many cases this method works quite well as long as rounding errors do not too much damage the
algorithm. More details about irregular convergence of the residual can be found in the book of der
Vorst [2003] and Saad [2003].
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7.8.2 Biconjugate gradient stabilized method (BiCGStab)

A stabilized variant of the CGS method is the biconjugate gradient stabilized method. The residuals
and direction vectors produced in this method are using the approach

rj = ψj(A)φj(A)r0 (7.8.77)

pj = ψj(A)πj(A)r0 (7.8.78)

ψj(A) is a new recursively defined polynomial which is used to smooth and stabilize the convergence
behavior of the BiCG algorithm and is defined by the recurrence rule

ψj+1(A) = (I − ωjA)ψj(A) (7.8.79)

From the BiCG method the update rules for the residual rj and the direction vector pj are known as

rj+1 = rj − αjApj (7.8.80)

pj+1 = rj + βjpj (7.8.81)

Including the new polynomial ψj(A) for this stabilized approach, the residual rj+1 can then be
written as

rj+1 = ψj+1(A)φj+1(A)r0

= (I − ωjA)ψj(A)φj+1(A)r0 (7.8.82)

= (I − ωjA)(ψj(A)φj(A)− αjAψj(A)πj(A))r0

= (I − ωjA)(rj − αjApj) (7.8.83)

= (I − ωjA)sj
= sj − ωjAsj (7.8.84)

where sj is used as a temporary vector for later usage and is defined as

sj ≡ rj − αjApj (7.8.85)

Adapting the equation (7.8.81) for the new approach yields, for the direction vectors

pj+1 = ψj+1(A)πj+1(A)r0

= ψj+1(A)(φj+1 + βjπj(A))r0

= (ψj+1(A)φj+1(A) + βjψj+1(A)πj(A))r0

= (ψj+1(A)φj+1(A) + βj(I − ωjA)ψj(A)πj(A))r0

= rj+1 + βj(I − ωjA)pj (7.8.86)

The scalar αj representing the step size into the direction pj can be expressed as [Saad, 2003]

αj =
〈rj , r̃0〉
〈Apj , r̃0〉

(7.8.87)

βj can be computed by

βj =
〈rj+1, r̃0〉
〈rj , r̃0〉

× αj
ωj

(7.8.88)

The last scalar value ωj can be viewed as a new additional parameter being also responsible to achieve
a steepest descent in the direction of the residual. In the book of Saad [2003] the parameter is chosen
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to minimize the norm of the vector rj+1 defined by equation (7.8.82). The value for the optimal step
ωj is given by

ωj =
〈Asj , sj〉
〈Asj ,Asj〉

(7.8.89)

The update rule for the residual rj+1 from equation (7.8.84) to the next iteration step can also be
written as

rj+1 = sj − ωjAsj = rj − αjApj − ωjAsj (7.8.90)

which results finally for the improved solution xj+1 in

xj+1 = xj + αjpj + ωjsj (7.8.91)
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Chapter 8

Haptic device

8.1 Introduction

The word haptic, which might come from the Greek word haptesthai, means to grasp or to touch
or the other Greek word haptikos, which can be translated as being able to come into contact with
[Dontschewa et al., 2004]. The touch sense of a human being is often understood as a haptic sense.
The touch sense is the first sense developed in the fetus and is nearly as important as the visual sense
for a human being, and has been therefore the target of much research in this topic. Physiologically,
the haptic sense is an interpretation of a perceptual channel based input from the skin by which an
individual gets information about its environment and its body. Generally, a haptic system can be
defined as a combination of tactile and kinesthetic senses used in a mechanical interaction with the
environment. The haptic device is an apparatus to produce such tactile and kinesthetic senses for an
user by rendering forces for a target to give an intuitive and better feeling while working in virtual or
augmented reality. The device sends its position and orientation to the augmented reality application
which reacts with information about forces rendered by the device. However, such haptic devices
have limitations in their workspace, caused by necessary hardware links and joints. The costs for
those devices are widely ranged from 2.000C up to 50.000C. However, haptic feedback is gaining
widespread acceptance as an important part for virtual and augmented reality systems, by adding the
possibility of feeling objects next to the visual aspects of information transport from the system to the
user. It opens a new way to gain 3-D impressions of a virtual system, which is partly already done by
using the stereo property for the visual feedback by shutter glasses or glasses with polarization filters.
The user can feel 3-D virtual objects like a blind man does and his brain automatically generates a 3-D
impression of the surrounding environment. In human-computer interaction, haptic feedback means
both tactile and force feedback. Tactile, or touch feedback, is the term applied to sensations felt by
the skin. Tactile feedback allows users to feel things such as the texture of surfaces, temperatures
and vibration. Force feedback reproduces directional forces that can result from solid boundaries, the
weight of grasped virtual objects, mechanical compliance of an object and inertia [Berkley, 2003].
The human sense of touch involves a closed loop system of receptors sensing and transmitting mes-
sages to and from the brain, thinking and manipulating. Haptic interfaces require a similar system,
but one that is electromechanical and computer-based.

8.2 SensAble™

A company which should be acknowledged here is the American company SensAble™. They de-
veloped some different types of haptic devices and software drivers. Last but not least, because the
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Figure 8.1: Interaction loop between human and machine

device used in this paper was developed by SensAble™. SensAble™ Technologies is a privately-
owned company based in Woburn, Massachusetts, USA which provides software and devices that
add the sense of touch to the digital world, including 3D touch-enabled modeling systems and the
PHANTOM® line of haptic devices and the OpenHaptics™ toolkit.
SensAble™ modeling systems are used for product design, medical and dental modeling, digital con-
tent creation, and fine arts. The PHANTOM® force-feedback devices, which enable users to touch and
manipulate virtual objects, and the developer toolkit, are used for simulation and training, robotics,
and third-party development. The first PHANTOM® haptic device was designed and built in the early
1990s and SensAble™ was formally incorporated in 1993.

8.3 Haptic feedback devices

A lot of force feedback devices are found in the computer gaming industry. A few of them are listed
below. Some low-end haptic devices are already commonly available. Some joysticks and game con-
trollers provide haptic feedback, commonly marketed as force feedback. The simplest form is the
Rumble Pak, which is simply an attachment which vibrates upon command from the software.
Force feedback wheels attempt to recreate the force felt by drivers in real cars. They are used on com-
puter and console racing simulators. These wheels vary in quality and realism and are manufactured
by Logitech and other companies. It allows players to feel the road, all the bumps, car handling and
crashes, thus making the game more realistic. The ability to change the temperature of a controlling
device could also be used. However, the technology may be cost prohibitive in terms of how much
power it would need to operate properly.
When the PlayStation 2 computer entertainment system was introduced, the controller included was
manufactured with two additional vibration levels, was considerably lighter and most of the buttons
were pressure sensitive.

8.4 PHANTOM® devices

In comparison to the game controllers, the haptic devices like the PHANTOM® Omni™ are used
more in research areas, like medicine, construction and planning. The SensAble Technologies PHANTOM®

product line of haptic devices makes it possible for users to touch and manipulate virtual objects. The
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PHANTOM® Omni™ model is the most cost-effective haptic device available today. Portable design,
compact footprint, and IEEE-1394, a FireWire port interface, ensure quick installation and ease-of-
use (Figure 8.2). Technical information about the PHANToM® Omni™ can be found in Table 8.1.
To compare these property values, a second and better version of a Phantom from SensAble is listed
here. The PHANTOM® 3.0/6DOF (Figure 8.3) device allows users to explore application areas that
require force feedback in six degrees of freedom (6DOF). Simulating torque force feedback makes it
possible to feel the collision and reaction forces and torques. Its technical data are listed in Table 8.2.
Other haptic devices are shown in Figure 8.4.
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Figure 8.2: Phantom® Omni™

Force feedback workspace 160 W x 120 H x 70 D mm
Weight (device only) 2.8 kg
Range of motion Hand movement pivoting at wrist
Nominal position resolution 0.055 mm.
Maximum exertable force at nominal posi-
tion

3.3 N

Continuous exertable force 0.88 N
Stiffness X axis 1.26 N/mm

Y axis 2.31 N/mm
Z axis 1.02 N/mm

Inertia (apparent mass at tip) 45 g
Force feedback x, y, z
Position sensing x, y, z, yaw, pitch, roll
Interface IEEE-1394 FireWire port
Supported platforms Intel-based PCs

Table 8.1: PHANTOM® Omni™ technical specification
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Figure 8.3: Force feedback PHANTOM® 3.0/6DOF

Force feedback workspace Translational [mm] (WxHxD) 160x120x70
Rotational [°] (Y/P/R) 297/260/335

Weight (device only) Detachable portion 7.5 kg
Electronics console 24.0 kg

Range of motion Full arm movement pivoting at shoulder
Nominal position resolution Translational [mm] 0.02

Rotational [°] (Y/P/R) 0.0023/0.0023/0.0080
Maximum exertable force and Translational 22N
torque at nominal position Rotational [mNm] (Y/P/R) 515/515/170
Continuous exertable force and Translational 3N
torque at nominal position Rotational [mNm] (Y/P/R) 188/188/48
Stiffness 1 N/mm
Force feedback x, y, z, yaw, pitch, roll
Position sensing x, y, z, yaw, pitch, roll
Interface Parallel port
Supported platforms Intel-based PCs

Table 8.2: PHANTOM® 3.0/6DOF technical specification
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(a) Phantom® Desktop

(b) Novint Falcon

Figure 8.4: Other haptic feedback devices



Part III

Contribution

87





Chapter 9

Extension to the boundary element
method

This section gives an 1-D example for the boundary element method and explains the needed refor-
mulation of the boundary integral equation, since this equation is written in a way being not well
suited for an implementation of the linear case approach. Further it explains how the collocation
method must be adapted for the reformulated integral equation.

9.1 Elastostatic example

For this example it must be said, that the term boundary element method is not really adequate, since
the boundary in a 1-D example is represented by only two points, which further also simplifies the
integration over the boundary elements, i.e. over these points. In this example a rod will be loaded
with a force as shown in Figure 9.1. Furthermore, linear-elastic deformations, which means the
material returns to its initial state after deforming, are assumed. The bending line or elastic curve
follows the beam-type differential equation

− EIzw′′′′(x) = 0 (9.1.1)

−EIzw′′′(x) = Q(x)
−EIzw′′(x) = M(x)
−w′(x) = tanα(x)

x

2

F

l
w(x)1

Figure 9.1: Rod loaded with a force
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with w(x) as displacement, Mz(x) as momentum function around z and Q(x) as normal load force
situated in y-direction. α(x) can be seen as the bending angle at x. E indicates the Young’s modulus
and is a material constant. Iz is denoted as the geometrical moment of inertia against moments around
z and depends on the geometry cross section in x-direction. The boundary conditions for this example
are obvious and are set to

w(0) = 0
tanα(0) = 0

M(l) = 0
Q(l) = F

An analytical solution can be found after integrating equation (9.1.1) three times

−EIzw(x) =
∫∫∫

Q(x)d3x

=
Qx3

6
+ C1

x2

2
+ C2x+ C3

and applying the boundary conditions to determine the integration constants C1, C2 and C3 which
finally results in

w(x) =
Flx2

2EIz
− Fx3

6EIz
(9.1.2)

Before one can apply the boundary element method it is necessary to calculate the fundamental solu-
tion w∗(ξ, x) of the situated problem. Recall section 3.6, this can be done by solving the governing
differential equation of the beam-type as follows

−EIzw′′′′∗ (x, ξ) = δ(x− ξ)

−EIzw′′′∗ (x, ξ) = −H(x− ξ) + C1 (C1 =
1
2

)

−EIzw′′∗(x, ξ) =
x

2
− (x− ξ)H(x− ξ) + C2 (C2 = −ξ

2
)

−EIzw′∗(x, ξ) =
x2 + 2xξ

4
− (x− ξ)2

2
H(x− ξ) + C3 (C3 =

ξ2

4
)

−EIzw∗(x, ξ) =
(x− ξ)3

12
− (x− ξ)3

6
H(x− ξ) + C4 (C4 = 0)

w∗(x, ξ) =
(x− ξ)3

6EIz
H(x− ξ)− (x− ξ)3

12EIz

H(x) denotes the Heaviside function (Appendix B). The fundamental solutions ofQ∗,M∗x and tanα∗

can be calculated out of w∗(x, ξ) following the equations above and results in

Q∗(x, ξ) = −EIz ∂
3

∂ξ3
w∗(x, ξ) = H(x− ξ)− 1

2

M∗(x, ξ) = −EIz ∂
2

∂ξ2
w∗(x, ξ) = (x− ξ)H(x− ξ)− x− ξ

2

tanα∗(x, ξ) = − ∂
∂ξw

∗(x, ξ) =
(x− ξ)2

2
H(x− ξ)− (x− ξ)2

4

Evaluation of the beam-type operator ∂
4()
∂x4 following Section 3.5 will lead to a representation formula

of the type

w(x) = [w∗(x, ξ)Q(ξ)− tanα∗(x, ξ)M(ξ) +M∗(x, ξ) tanα(ξ)−Q∗(x, ξ)w(ξ)]lξ=0 (9.1.3)
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After inserting the defined boundary values this leads to two equations for the boundary, x = 0
and x = l, with four unknown variables, namely Q(0), M(0), tanα(l) and w(l). To solve it two
additional equations are needed. They can be found by solving

M ′′(x) = 0
M ′(x) = Q(x)

as a part of the beam-type and leads to its representation formula

M(x) = [M∗(x, ξ)Q(ξ)−Q∗(x, ξ)M(ξ)]lξ=0 (9.1.4)

Now four equations with four unknown variables are given for the boundary x = 0 and x = l(
w(0)
w(l)

)
=

(
0 l3

12EIz

− l3

12EIz
0

)(
Q(0)
Q(l)

)
−

(
0 l2

4EIz
l2

4EIz
0

)(
M(0)
M(l)

)
+(

0 l
2

− l
2 0

)(
tanα(0)
tanα(l)

)
+
(

1
2

1
2

1
2

1
2

)(
w(0)
w(l)

)
from equation (9.1.3) and(

M(0)
M(l)

)
=
(

0 l
2

− l
2 0

)(
Q(0)
Q(l)

)
+
(

1
2

1
2

1
2

1
2

)(
M(0)
M(l)

)
from equation (9.1.4). Here it needs to be mentioned, that the Heaviside function in Q∗(x, ξ) has to
be taken from the correct side, the side from where x reaches ξ, of the discontinuity (Appendix B).
This equations can be rearranged and combined to

1
12


0 − l3

EIz
0 3l2

EIz
l3

EIz
0 3l2

EIz
0

0 6l −6 6
−6l 0 6 −6



Q(0)
Q(l)
M(0)
M(l)

 =
1
2


0 l −1 1
−l 0 1 −1
0 0 0 0
0 0 0 0




tanα(0)
tanα(l)
w(0)
w(l)

 (9.1.5)

This equation represents now the interaction of the nodal boundary values, normal load force, mo-
mentum, bending angle and bending. For each node, 1 and 2, the boundary condition can be defined
and the values can be set. The known boundary values for this example are defined above. After
application the system can be rearranged again, putting known values on the right hand side and un-
known values on the left hand side and can be solved in a straightforward manner for the unknown
values.

1
12


0 −6l 0 −6
l3

EIz
0 3l2

EIz
6

0 0 −6 0
−6l 0 6 0




Q(0)
tanα(l)
M(0)
w(l)

 =
1
12


0 l3

EIz
−6 − 3l2

EIz
6l 0 6 0
0 −6l 0 −6
0 0 0 6




tanα(0)
Q(l)
w(0)
M(l)



=
1
12


0 l3

EIz
−6 − 3l2

EIz
6l 0 6 0
0 −6l 0 −6
0 0 0 6




0
F
0
0



=


Fl3

12EIz
0
−Fl

2
0


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The solution found for this linear equation system is given by
Q(0)

tanα(l)
M(0)
w(l)

 =


F

− Fl2

2EIz
−Fl
2l3F
6EIz

 (9.1.6)

This example has shown in an easy way how the boundary element method works. For higher di-
mensional purposes the principle works similarly with a higher number of nodes and the fundamental
solutions are much more complex. Consider for instance Lord Kelvin’s fundamental solution of 2-D
or 3-D cases, which are shown in section 4.9 in the next chapter.

9.2 Reformulation of the boundary integral equation

Recall the discretized boundary integral equation formulated in Section 3.8.∑
j

∫
Γj

u∗(x, ξ)ΦT
j dΓjpn = c(ξ)u(ξ) +

∑
j

∫
Γj

p∗(x, ξ)ΦT
j dΓjun (9.2.7)

The construction of the nodal vectors un and un as well as the construction of the interpolation matrix
Φj will be explained here. First, a nodal dependent value vector for a boundary Γj is introduced,
which is defined as

V̆j =
(
v(1), v(2), ..., v(κ)

)T
(9.2.8)

where v(i) denotes the nodal value or function v for local node i. However, each local node has a
unique location on the global boundary where it is referenced as n[k]. The boundary values denoted
now as functions of η can be written as

u(η) = ϕ(1)u(1) + ϕ(2)u(2) + ...+ ϕ(κ)u(κ) = Φ̆T
j Ŭj (9.2.9)

p(η) = ϕ(1)p(1) + ϕ(2)p(2) + ...+ ϕ(κ)p(κ) = Φ̆T
j P̆j (9.2.10)

ϕ(i) is the interpolation function (Section 3.11) for the local node i with the properties
κ∑
i

ϕ(i)(η) = 1 |η| ≤ 1 (9.2.11)

ϕ(i)(η) =
{

1 η = η(i)

0 η = η(j) ∧ i 6= j
(9.2.12)

η(i) reflects the local coordinates η of the local node i corresponding to the boundary element. To
apply the interpolation function, the integral equation is extended by the weight Φ̆j . Since Ŭj is
constant compared to the integral over Γj , it can be put outside of the integral. Thus, the boundary
integral equation reads∑

j

∫
Γj

u∗(x, ξ)Φ̆T
j dΓjP̆j = c(ξ)u(ξ) +

∑
j

∫
Γj

p∗(x, ξ)Φ̆T
j dΓjŬj (9.2.13)

In case of linearity or higher orders nodes are shared by other boundary elements. Their influence
values have to be added. Expanding equation (9.2.13) using equations (9.2.9) and (9.2.10) yields

E∑
j

κ∑
i

∫
Γj

u∗(x, ξ)ϕ(i)
j

T
dΓjp

(i)
j = c(ξ)u(ξ) +

E∑
j

κ∑
i

∫
Γj

p∗(x, ξ)ϕ(i)
j

T
dΓju

(i)
j (9.2.14)
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This is from the point of view of the elements, since the first sum spans over the entire elements. A
rearrangement of the equation, to build the sum over the entire nodes, leads to

N∑
k

 E∑
j

γjk

∫
Γj

u∗(x, ξ)ϕ(αjk)
j

T
dΓj

 p[k] = c(ξ)u(ξ)+
N∑
k

 E∑
j

γjk

∫
Γj

p∗(x, ξ)ϕ(αjk)
j

T
dΓj

u[k]

(9.2.15)
γjk denotes the dependency of Node k and Element j with the following property

γjk =
{

1 x[k] ∈ X̆j

0 x[k] /∈ X̆j
(9.2.16)

αjk can be seen as a function returning for a global node index k its local index corresponding to the
boundary element j. From equation (9.2.15) it can be seen, that αjk is only needed when γjk = 1.
Otherwise αjk is not defined at all.

9.3 Collocation method

After reformulating the discretized boundary integral equation, the collocation method needs to be
adapted. Remember equation (9.2.15), the discretized form of the boundary integral equation. The
inner integrals relate the node k to the element j. Node l is the load point and its position, x[l], was
previously denoted as ξ. These integrals will now be denoted as

E∑
j

γjk

∫
Γj

u∗(x[k], x[l])ϕ(αjk)
j

T
dΓj = Gkl (9.3.17)

E∑
j

γjk

∫
Γj

p∗(x[k], x[l])ϕ(αjk)
j

T
dΓj = Ĥkl (9.3.18)

and the discretized boundary integral equation can be rewritten as

N∑
k

Gklp
[k] = c[l]u[l] +

N∑
k

Ĥklu
[k] (9.3.19)

The rest of the collocation method follows the same steps as already explaind in Section 3.13.
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Chapter 10

Wavelets

10.1 Introduction

Section 5.4.2 shows the usage of wavelets for a hierarchical multiresolution surface representation.
However, wavelets can be applied for the boundary element values too which will be shown in this
section. Since the boundary element values are represented on the discretized surface through nodes,
a wavelet hierarchy for these nodes can be defined. Sub-connectivity of the surface is needed to
create this wavelet hierarchy over the boundary element values. This subdivision connectivity can be
achieved by surface subdivision methods explained in Chapter 5 or through a resampling of the mesh
as presented in the paper of Eck et al. [1995]. The system of equations, introduced in Section 3.13,
can be transformed without committing an error by

Gu = Hp (10.1.1)

ΨGΨ−1︸ ︷︷ ︸
G′

Ψu︸︷︷︸
u′

= ΨHΨ−1︸ ︷︷ ︸
H′

Ψp︸︷︷︸
p′

(10.1.2)

The mother wavelet function is similar to the interpolation function used for the boundary element
method introduced in Section 3.11. After this transformation, low valued coefficient entries (repre-
senting wavelets) of the interaction matricesG′ andH ′ between two nodes may be tilted by accepting
the resulting error, which is expected to be very small. The different types of interpolation functions
for the boundary element values on the surface should come along with the wavelet transforma-
tion. Figures 10.1 shows a logarithmic function represented by using a constant, linear and quadratic
mother wavelet function. All those wavelets are using the same number of nodes. The nodes are
located at the integers on the x-axis. It can be observed that the error becomes smaller if a higher
degree of interpolation is chosen. For evaluation, an error

e =

3∫
−3

(f(x)− w(x))2dx (10.1.3)

has been calculated. The subdivided surface meshes are defined as M i where i denotes the level of
subdivision depth. Wavelet representation requires that nodes included in mesh M i are also included
in M i+1 as shown in Figure 10.2. One can say

M0 ⊂M1 ⊂M2 ⊂ . . .

This is obviously valid for the Loop, Catmull-Clark, 1-to-4 and Butterfly subdivision algorithms.
Doo-Sabin and

√
3-subdivision create faces which partly overlap a face in the parent level. Therefore,

these methods are not well suited for a wavelet representation.
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(a) Constant wavelets interpolation (e = 0.771309)
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(b) Linear wavelets interpolation (e = 0.339815)
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(c) Quadratic wavelets interpolation (e = 0.0226218)

Figure 10.1: Wavelets interpolations on a logarithmic function



10.2. WAVELETS FOR CONSTANT BOUNDARY ELEMENTS 97

M 1 M 2M 0

Figure 10.2: Subdivided meshes

Figure 10.3: Constant 3-D wavelet

10.2 Wavelets for constant boundary elements

For constant boundary elements the boundary values are represented by nodes located in the center
of each surface element (Figure 10.4). A constant wavelet in 3-D is shown in Figure 10.3. Constant
interpolation defines a wavelet for a node as the difference of itself to another node. This is similar
to the Haar wavelet. Figure 10.4 shows a triangle subdivided into four parts, which on their part
are subdivided again and finally consists of 16 triangle patches. A constant interpolation without
averaging is defined on M1 as

v(1) = x(1) (10.2.4)

w(2) = x(2) − x(1) (10.2.5)

w(3) = x(3) − x(1) (10.2.6)

w(4) = x(4) − x(1) (10.2.7)
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1
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9
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11
12

13

14
15

16

6

Figure 10.4: Wavelet nodes for a constant boundary element

It is to be noted, that x(1) already exists on M0 and the wavelets for the child nodes 2-4 on M1 are
calculated. In a general matrix formA can be written as

v(a)

w(b)

w(c)

w(d)

 =


1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1




x(a)

x(b)

x(c)

x(d)

 (10.2.8)

(
v
w

)
= Ax (10.2.9)

where A defines the wavelet transformation matrix for one surface patch. A can also be written as a
block matrix as follows

A =


1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

 (10.2.10)

=
(
Av Bv

Aw Bw

)
(10.2.11)

=
(

I ∅
Aw I

)
(10.2.12)

Furthermore, an inverse wavelet transformation would redo the transformation and recalculates the
original node values. This can be achieved by the inverse of A

x = A−1

(
v
w

)
(10.2.13)

=
(

I ∅
−Aw I

)(
v
w

)
(10.2.14)
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10.3 Improved wavelets for constant elements

The improvement consists in defining the wavelets of the interaction matrices of the nodes as the
difference of the average of the child nodes resulting from the subdivision method, where the first
child node in the children array stores this average interaction matrix. In Figure 10.4, node n(1) is
designed to be the first child in this array. It stores the average value which can be obtained by

v(1) =
∑4

i=1 x
(i)

4
(10.3.15)

The wavelets for the remaining nodes, n(2) until n(4), can be calculated by

w(i) = x(i) − v(1) = x(i) −
∑4

j=1 x
(j)

4
(i > 1) (10.3.16)

This can also be written in matrix notation

w = Ax (10.3.17)
v(1)

w(2)

w(3)

w(4)

 =
1
4


1 1 1 1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3




x(1)

x(2)

x(3)

x(4)

 (10.3.18)

This follows exactly the Haar wavelet function. The reverse transformation, used to gain the original
data again, is given by

x(1) = v(1) −
4∑
i=2

w(i) (10.3.19)

x(i) = v(1) + w(i) (i > 1) (10.3.20)

in matrix notation

x = A−1

(
v
w

)
(10.3.21)

x(1)

x(2)

x(3)

x(4)

 =


1 −1 −1 −1
1 1 0 0
1 0 1 0
1 0 0 1




v(1)

w(2)

w(3)

w(4)

 (10.3.22)

10.4 Wavelets for linear boundary elements

For linear boundary elements, the nodes are located at the corner of each surface element (Figure
10.6). A linear wavelet in 3-D is shown in Figure 10.5. In this case a wavelet representation for
the interaction matrices of the nodes located on the edges of the parent surface element is defined
as the difference to the mean value of the interaction matrices of those nodes forming the edge. In
Figure 10.6, node n(1) and n(2) form an edge, and the difference of node n(4) lying on this edge, to
the average value (n(1) +n(2))/2 defines the wavelet value for node n(4). Furthermore, as introduced
in Section 3.11.2, a linear interpolation for a triangle is given by its barycentric coordinates as

ϕ(λ1, λ2, λ3) =

 λ1

λ2

λ3

(x(1), x(2), x(3)
)

(10.4.23)
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Figure 10.5: Linear 3-D wavelet
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Figure 10.6: Wavelet nodes for a linear boundary element
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In general the wavelets for a linear interpolation are defined as

v(1) = x(1) (10.4.24)

v(2) = x(2) (10.4.25)

v(3) = x(3) (10.4.26)

w(4) = x(5) − ϕ(λ(4)) = x(4) − x(1) + x(2)

2
(10.4.27)

w(5) = x(5) − ϕ(λ(5)) = x(4) − x(2) + x(3)

2
(10.4.28)

w(6) = x(6) − ϕ(λ(6)) = x(4) − x(3) + x(1)

2
(10.4.29)

or in matrix notation (
v
w

)
=

(
I ∅
Aw I

)
x (10.4.30)

= Ax (10.4.31)

with

Aw =
1
2

 −1 −1 .
. −1 −1
−1 . −1

 (10.4.32)

The reverse transformation of the linear wavelets is defined as

x(1) = v(1) (10.4.33)

x(2) = v(2) (10.4.34)

x(3) = v(3) (10.4.35)

x(4) = w(4) + ϕ(λ(4)) = w(4) +
v(1) + v(2)

2
(10.4.36)

x(5) = w(5) + ϕ(λ(5)) = w(5) +
v(2) + v(2)

2
(10.4.37)

x(6) = w(6) + ϕ(λ(6)) = w(6) +
v(3) + v(2)

2
(10.4.38)

which can be expressed also in matrix form as

x = A−1

(
v
w

)
(10.4.39)

=
(

I ∅
−Aw I

)(
v
w

)
(10.4.40)

10.5 Wavelets for quadratic boundary elements

In this case the nodes are placed on several points on the surface element as shown in Figure 10.8.
A quadratic wavelet in 3-D is shown in Figure 10.7. The wavelets determination works similarly to
the linear interpolation, but using a quadratic function instead. Each triangle contains six nodes, 1-6,
which stores the boundary values, displacement and traction, needed for the quadratic shape function.
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Figure 10.7: Quadratic 3-D wavelet
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Figure 10.8: Wavelet nodes for a quadratic boundary element
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Next a quadratic interpolation of the interaction matrices over a 2-D triangle boundary element is
applied. A quadratic interpolation on a triangle is defined in its barycentric coordinates as

ϕ(λ1, λ2, λ3) =



(2λ1 − 1)λ1

(2λ2 − 1)λ2

(2λ3 − 1)λ3

4λ1λ2

4λ2λ3

4λ3λ1


(
x(1), x(2), x(3), x(4), x(5), x(6)

)
(10.5.41)

An example for some arbitrary node values x(i)|1 ≤ i ≤ 6 = (0.2, 0.2, 1.1, 0.3, 0.5, 0.5)T is shown
in Figure 10.9 Analogous to the linear wavelets it can be written

0.0

0.5

1.0

0.0

0.5

1.0

0.2

0.4

0.6

0.8

1.0

Figure 10.9: Quadratic interpolation of six values over a triangular surface

v(i) = x(i) 1 ≤ i ≤ 6 (10.5.42)

w(j) = x(j) − ϕ(λ(j)) 7 ≤ j ≤ 15 (10.5.43)

For completeness this is also shown in matrix notation(
v
w

)
=

(
I ∅
Aw I

)
x (10.5.44)

= Ax (10.5.45)

Aw =
1
8



−1 . 3 . . 7
. −1 3 . 7 .
. 3 −1 . 7 .
−1 3 7 . .
3 −1 . 7 . .
3 . −1 . . 7
−1 −1 . 2 4 4
−1 . −1 4 4 2
. −1 −1 4 2 4


(10.5.46)

Av is once again an identity matrix of dimension 6 andBw an identity matrix of size 9.
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10.6 Higher order boundary elements

For higher ordered boundary elements a higher ordered wavelet interpolation can be used. The algo-
rithm works the same way as shown above. Interpolation functions for cubic interpolation are shown
in Section 3.11.

10.7 Assembly of wavelet matrices

As already explained, there are wavelets of different types (constant, linear, etc.) to transform patches
locally. This section will guide through a technique how those wavelets can be assembled into one
large matrix for a wavelet transformation of the whole mesh. The wavelet matrices (Aw)ij , introduced
in the sections above, can be assembled at the ith level of depth following

(Aw)i = D(α)
s(M i)∑
j=1

(Aw)ij (10.7.47)

where j denotes the jth surface patch on meshM i and s(M i) the number of surface patches on Mesh
M i. The involved nodes and their indices must be taken into account. D(α) is a diagonal matrix of
size n(M i)−n(M i−1) with the scaling vector α as the main diagonal, which depends on the type of
interpolation used, since a node might be shared with other surface patches. αk assigns 1

2 if n(k) lies
on an edge and 1 if n(k) lies inside the surface patch. n(M i) reflects the number of nodes counted in
Mesh M i. As an example, the linear wavelet transformation whose matrix (Aw)1

1 on level 1, can be
computed out of nodes 1, 4, 6, 7, 12 and 13 (Figure 10.10), is given by

w(7)

...
w(12)

w(13)

...
w(16)


=



x(7)

...
x(12)

x(13)

...
x(16)


− 1

2



1 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 1
1 · · · 0 · · · 1
...

. . .
...

. . .
...

0 · · · 0 · · · 0


︸ ︷︷ ︸

(Aw)11


x(1)

...
x(4)

...
x(6)

 (10.7.48)

Each other value will be zero. This results in a block matrix of type

Ai =
(

I ∅
(Aw)i I

)
(10.7.49)

The same holds for the inverse transformation matrix where

(Pw)i = −
s(M i)∑
j=0

(Aw)ij = −(Aw)i (10.7.50)

P i =
(

I ∅
(Pw)i I

)
=
(

I ∅
−(Aw)i I

)
(10.7.51)

In order to gain a total transformation over all level of depth, the matricesAi andP i can be combined
to the newly introduced matrices Ψ and Ψ−1 where

Ψ = Â0Â1 . . . Ân (10.7.52)

Ψ−1 = P̂ nP̂ n−1 . . . P̂ 0 (10.7.53)
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Figure 10.10: Matrix assembly example

Since matrices at different levels of depth have different sizes, the matrices at higher levels (i → 0)
must be stretched before they can be multiplied. This can be done by filling the missing parts as
follows

Âi =
(
Ai ∅
∅ I

)
(10.7.54)

P̂ i =
(
P i ∅
∅ I

)
(10.7.55)
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Chapter 11

Application

The thesis’ implementation was developed under Linux Debian, Suse and Ubuntu. For the prepara-
tion, a standard installation of Linux was set up with a Firewire interface assumed. This interface is
required to act with the Phantom Omni device from SensAble. An installation of the application can
be found in the Appendix D. This chapter will show some implementation details of the software and
how different problems have been solved.

11.1 CPU specific implementations

11.1.1 Template based boundary element classes

The boundary elements differ on the one hand in their types of surfaces, triangular, quadrilateral
and so on, and on the other hand in their types of interpolation of the fundamental solution for the
integration. So it is a good attempt to implement the boundary element class as a template class
having surface and node classes as template parameters. These template parameter classes have
defined interface functions returning necessary data about them. For instance, the template parameter
class may have a function called area returning the size of the surface element. The implementation
of the boundary element template class is done as follows:

1 t emplate <c l a s s S u r f a c e , c l a s s Node>
2 c l a s s BoundaryElement : p u b l i c S u r f a c e {}

Here the class Surface contains information about the surface and the class Node contains data about
the nodes differing at the interpolation type. This can be easily seen when comparing nodes for the
constant element case in contrast to the linear element case. In the constant interpolation case each
node has one predecessor and four successors while in the linear interpolation case each node has two
predecessors and n, the valence of the vertex, successors. More details about the number of nodes
per element and their relation to the elements is explained in-depth in Chapter 10. The great benefit
of templates is that needed dependencies and relations are checked at compile-time and no further
if-conditions are needed resulting in a more efficient machine code and in a better readable source
code. Concrete implementations for different surfaces and interpolation types are done in the derived
classes.

1 t empla te <c l a s s S u r f a c e>
2 c l a s s Cons t an tBounda ryE lemen t : p u b l i c BoundaryElement<T r i a n g l e ,

Tr i ang leNode>

and

107
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C3
C2

C1

231

Figure 11.1: Arising error due to linear interpolation

1 t empla te <c l a s s S u r f a c e>
2 c l a s s Linea rBounda ryE lemen t : p u b l i c BoundaryElement<T r i a n g l e ,

VertexNode>

11.1.2 Accuracy dependent integration over boundary elements

First, it is recommended to read Chapter 3 explaining the boundary element method for a better
understanding. Calculations of matrix coefficients are computationally expensive, since an integration
of a complex function over each triangle is required. The function is strictly increasing from the
source point towards the load point. In other words, the farther the source point is away from the load
point the more constant becomes the function to integrate. This can be used to save computation time
since the integration of a nearly constant function over an area can be approximated very well by the
size of the area times an averaged function value for this area.∫

A

f(x)dx ≈ avg(f(x))A (11.1.1)

Including the idea of wavelets to represent the boundary element values will not affect the final result.
As already mentioned in section 10.1 the equation system

Hp = Gu (11.1.2)

will be transformed using the wavelets transformation matrix Ψ to

ΨHΨ−1Ψp = ΨGΨ−1Ψu (11.1.3)

However, since a swapping of the matrix columns of H and G is needed, depending on the bound-
ary conditions, the reverse transformation (multiplication with Ψ−1), will be ignored. The finally
resulting equation system is of the type

ΨHp = ΨGu (11.1.4)

The arising error using lazy wavelets (Section 10.4) for the linear case is computed as

error =
1
2

(C1 + C2)− C3 (11.1.5)

This is shown in Figure 11.1. If this error is small enough, C3 will be set to the average value of C1

and C2 which is exactly the same like setting the wavelet value for C3 to zero. The application marks
this node to be computed if the error is not small enough.
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11.1.3 Subdivided mesh storage in a hierarchical representation

First of all, the mesh of the deformable object consists of triangles only. These triangles are being
subdivided to generate a denser mesh having more boundary nodes. In the case of a linear interpo-
lation (Section 3.11), these nodes are the vertices of the triangles. The triangles of the original mesh
are the roots of a quad-tree structure where each triangle knows its parent, children and neighbors.
Additionally, the original mesh is collected in an n-tree structure with a pseudo root entry. Figure 11.2
shows the structure for a twice subdivided cube consisting of twelve triangular surface elements in
its original mesh. The elements inside the tree are the boundary elements storing more than only the

B C

10

D

12111 32 ......

A

b c da b c da b c dab c da

Figure 11.2: Subdivision hierarchy of a cube

geometric definition of the triangle. They also store the local positions of the nodes inside the surface
patch, which are needed for the boundary integration. Functions called on the root of this tree will
be applied on each element and might change attributes of the elements depending on the function
called.

11.1.4 Wavelet transformation matrix construction

The wavelet transformation matrices are constructed in a recursive way, bottom-up for the forward
and reverse transformation matrix. The following pseudo code explains the algorithm to construct
linear wavelets.

1 f u n c t i o n c o n s t r u c t W a v e l e t s ( node ) {
2 i f node i s not p a r t o f t h e base mesh {
3 p1 = l e f t p a r e n t o f node
4 p2 = r i g h t p a r e n t o f node
5 i f p1 i s not c o n s t r u c t e d
6 c o n s t r u c t W a v e l e t s ( p1 )
7 i f p2 i s not c o n s t r u c t e d
8 c o n s t r u c t W a v e l e t s ( p2 )
9 f o r a l l nodes {

10 m a t r i x r e v e r s e [ node , nodes ] += m a t r i x r e v e r s e [ p1 , nodes ] / 2
11 m a t r i x r e v e r s e [ node , nodes ] += m a t r i x r e v e r s e [ p2 , nodes ] / 2
12 }
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13 m a t r i x f o r w a r d [ node , p1 ] = −0.5;
14 m a t r i x f o r w a r d [ node , p2 ] = −0.5;
15 }
16 m a t r i x f o r w a r d [ node , node ] = 1 . 0 ;
17 m a t r i x r e v e r s e [ node , node ] = 1 . 0 ;
18 }

This algorithm computes the reverse transformation entries at the leafs nodes and propagates the
wavelet values up to the root nodes.

11.2 GPU specific implementations (CUDA)

First, a short overview of CUDA will be given. CUDA is a general-purpose parallel programming
API and, as already mentioned in the Chapter 2, nowadays GPUs contain up to 512 multi-cores,
consisting of CUDA cores or threads collected in several blocks. Each core has access to several
memories (Figure 11.3),

Figure 11.3: CUDA memory accesses [Liu et al., 2009]

• a local memory (only accessible for itself)

• a shared memory (accessible for all cores collected in the same block)
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• a global memory (accessible for all cores)

• a constant memory (only for reading, filled by the CPU)

• a texture memory

Each CUDA code is executed on each processor and invoked by a kernel, as shown in Figure 11.4,

Figure 11.4: CUDA code invokation by a kernel [Liu et al., 2009]

1 k e r n e l<<<g r i d d imens ion , b l o c k dimens ion>>>(p a r a m e t e r l i s t ) ;

A kernel is a function being called from the CPU and executed on the GPU. More details about kernel,
host and device functions are explained the CUDA programming guide [nVidia, 2008]. Developing
programs in CUDA has its benefits and drawbacks:

+ C++-like programmable parallel processors

+ Synchronized within a thread block (single instruction multiple data)

+ Fast access to shared memory for each thread inside its block

+ High portability, runs on different operation systems

– Code optimizations are more difficult

– runs only with nVidia hardware

To ensure parallel global memory accesses, it is inalienable to have neighboring threads accessing
neighboring memory spaces. This is called coalescing, and is an important term in context of CUDA
programming. Often it is necessary to rearrange the memory data to be processed to fulfill this con-
dition. The CUDA Profiler [nVidia, 2008] is an useful tool to check if coalescing has been achieved
or not. For debugging purposes the application can also be run in an CPU emulation mode, which
allows value dumps, but is a multiple slower than executed on the device.
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11.2.1 Sparse matrix-vector multiplication

The implementation of a multiplication of a sparse matrix and a vector (SpMV) is explained here.
The sparse matrix is stored in CRS format, being explained in Section 6.3.3. A multiplication with a
vector, y = Ax, will be calculated by the following source code

1 i n t row = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
2 i f ( row<N) {
3 i n t r o w s t a r t i n d e x = r o w s t a r t i n d e x e s [ row ] ;
4 i n t r o w e n d i n d e x = r o w s t a r t i n d e x e s [ row + 1 ] ;
5 f o r ( i n t i d x p t r = r o w s t a r t i n d e x ; i d x p t r <r o w e n d i n d e x ; i d x p t r

++) {
6 i n t column = c o l u m n i n d e x e s [ i d x p t r ] ;
7 y [ row ] += A[ i d x p t r ]* x [ column ] ;
8 }
9 }

Each thread of the GPU, indexed by the thread index row, multiplies one row of the matrix by the
vector x and stores the result in y[row]. The if condition ensures, that no invalid row indices are
accessed. However, the listing above does not reflect coalesced memory access, since the data of the
matrix array A are accessed by the counter index idx ptr which differs from the thread index. The
listing below is improved and uses coalescing.

1 i n t row = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
2 i f ( row < N) {
3 i n t r o w s t a r t i n d e x = r o w s t a r t i n d e x e s [ row ] ;
4 i n t r o w e n d i n d e x = r o w s t a r t i n d e x e s [ row + 1 ] ;
5 i n t o f f s e t = 0 ;
6 f o r ( i n t i d x p t r = r o w s t a r t i n d e x ; i d x p t r <r o w e n d i n d e x ; i d x p t r

++) {
7 i n t column = c o l u m n i n d e x e s [ i d x p t r ] ;
8 i n t rows = r o w c o u n t e r [ i d x p t r −r o w s t a r t i n d e x ] ;
9 f l o a t x c o l = t e x 1 D f e t c h ( x a s t e x , column ) ;

10 y [ row ] += A[ row+ o f f s e t ]* x c o l ;
11 o f f s e t +=rows ;
12 }

For coalescing, it can be seen now, the matrix is accessed by the row index pointer, which is the same
as the thread index pointer and the matrix has been rearranged. Further, since the entire values of x
are read in an arbitrary order it is useful to bind the vector x to a texture for a faster read-only access
which has been implemented as well. xastex represents the texture where the vector x is bound to.
For the boundary element method in 3-D the values of the vectors x and y are 3-D vectors and the
coefficient entriesA[row + offset] are 3× 3 matrices.

11.2.2 BiCGStab solver

Most of the computing time lies in solving the equation system, which is implemented in CUDA to use
the parallel program capability of the GPU. In context of real-time, the duration of the iterative solver
is the bottleneck. The application computes by turns 20 iterative steps of the solver and visualizes
the solution. The iterative BiCGStab solver implementation in CUDA itself is a little bit tricky since
synchronizations over all blocks and threads are needed. A SpMV completely must be computed
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first before continuing, for instance, building an inner product of the result. CUDA 2.x supports
threads synchronizations but does not support blocks synchronizations at all. This might be a feature
of CUDA 3.0. To force synchronization, the solver, controlled by the CPU, calls stepwise CUDA
kernels invoking a computation on the GPU. When a kernel terminates, it is ensured, that all threads
in all blocks are finished. A succeeding implementation follows

1 k e r n e l : : b i c g s t a b s t e p 1 <<<GRID SIZE , BLOCK SIZE>>>(m n o d e l i s t ,
m s ize , m va lues ) ;

2 f o r ( i n t i =0 ; i <20; i ++) {
3 i f ( i ==0)
4 k e r n e l : : b i c g s t a b s t e p 2 a <<<GRID SIZE , BLOCK SIZE>>>(

m n o d e l i s t , m s ize , m va lues ) ;
5 e l s e
6 k e r n e l : : b i c g s t a b s t e p 2 b <<<GRID SIZE , BLOCK SIZE>>>(

m n o d e l i s t , m s ize , m va lues ) ;
7 k e r n e l : : b i c g s t a b s t e p 3 <<<GRID SIZE , BLOCK SIZE>>>(m n o d e l i s t ,

m s ize , m va lues ) ;
8 k e r n e l : : b i c g s t a b s t e p 4 <<<GRID SIZE , BLOCK SIZE>>>(m n o d e l i s t ,

m s ize , m values , i ) ;
9 }

10 k e r n e l : : b i c g s t a b s t e p 5 <<<GRID SIZE , BLOCK SIZE>>>(m n o d e l i s t ,
m s ize , m va lues ) ;

m nodelist contains the matrix and vectors needed by this solver. Each part needing a synchronization
afterwards is collected in an own kernel. A terminating kernel waits until all threads of all blocks are
terminated and so a synchronization over the blocks is achieved.

11.2.3 Inner vector products

Parallelization of the inner product can be done by striding the vector and calculating the inner prod-
ucts for each part. Afterwards, these partial results are summed up using a parallel reduction as shown
in Figure 11.5. This is repeated until only two partial results remain and finally summed up by one
processor, while the other ones must wait. However, this is the most efficient solution for computing
inner products on a parallel processor machine. The listing below shows how this can be implemented
in CUDA.

1 d e v i c e f l o a t sumInBlock [ GRID SIZE ] ;
2 s h a r e d f l o a t sumOverBlock [ BLOCK SIZE ] ;
3 d e v i c e unsigned i n t c o u n t e r =0;
4 s h a r e d bool i s L a s t B l o c k D o n e ;
5
6 d e v i c e void d o t ( f l o a t * x , f l o a t * y , f l o a t * r e s u l t , i n t N) {
7 i n t i d x = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
8 i f ( idx<N)
9 sumOverBlock [ t h r e a d I d x . x ] = x [ i d x ]* y [ i d x ] ;

10 e l s e
11 sumOverBlock [ t h r e a d I d x . x ] = 0 ;
12 f o r ( i n t i = BLOCK SIZE ; i /= 2 ; ) {
13 s y n c t h r e a d s ( ) ;
14 i f ( t h r e a d I d x . x < i )
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Figure 11.5: Parallelized inner product computation for one block

15 sumOverBlock [ t h r e a d I d x . x ] += sumOverBlock [ i + t h r e a d I d x . x ] ;
16 }
17 s y n c t h r e a d s ( ) ;
18 i f ( t h r e a d I d x . x ==0) {
19 sumInBlock [ b l o c k I d x . x ] = sumOverBlock [ 0 ] ;
20 t h r e a d f e n c e ( ) ;
21 unsigned i n t v a l u e = a t o m i c I n c ( c o u n t e r , gr idDim . x ) ;
22 i s L a s t B l o c k D o n e = ( v a l u e == ( gr idDim . x − 1) ) ;
23 }
24 s y n c t h r e a d s ( ) ;
25 i f ( i s L a s t B l o c k D o n e ) {
26 f l o a t t o t a l S u m ;
27 i f ( t h r e a d I d x . x == 0) {
28 t o t a l S u m = 0 ;
29 f o r ( i n t i =0 ; i<gridDim . x ; i ++)
30 t o t a l S u m += sumInBlock [ i ] ;
31 }
32 i f ( t h r e a d I d x . x == 0) {
33 r e s u l t [ 0 ] = t o t a l S u m ;
34 c o u n t e r s = 0 ;
35 }
36 }
37 }

Since the processors on the graphics card are collected in blocks, the sums of each block must be
added to compute the final inner vector product. In line 9 each thread multiplies two corresponding
vector entries, which are summed up in the current block to a partial result using parallel reduction
(line 12–16). The following nested if-block (line 18–23) checks which block finishes last and let it
sum up the partial results in the last nested if-block (line 25–36). The parallel reduction is done in
shared memory. Accesses to the shared memory are a multiple faster than to the global memory.
However, for a valid result the number of threads must be at least equal to the length of the vectors
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for the inner product.

11.2.4 OpenGL buffer registration for CUDA

As the computation of the deformation already happens on the GPU, it suggests itself to copy the
data directly from the CUDA global memory to the OpenGL render memory instead of copying the
results back to the CPU memory and then via OpenGL commands back to the graphics card. The
data transfer rate from CUDA memory to OpenGL memory via the GPU bus is a multiple faster than
from CUDA to the CPU memory. To handle this, a OpenGL vertex buffer object must be created and
registered from CUDA. Therefore, it is necessary to know how much memory must be allocated to
store the vertex data and their surface normals. However, once this buffer is registered, the OpenGL
buffer data can be accessed like normal CUDA memory and the results can be copied. Before and
after changing the OpenGL data by CUDA, commands are needed to synchronize read and write
command with the rendering pipeline. More details about registration of buffer objects by CUDA can
be found in the CUDA programming guide [nVidia, 2008].
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Chapter 12

Results

12.1 Wavelet approach

In this section the efficiency of the wavelet approach for the boundary element method will be eval-
uated. In Figure 12.1 a normal computed dense coefficient matrix is shown as it results form the
boundary element method. Black colored content stands for non-zero matrix entries while white con-
tent stands for close-to-zero entries. The wavelet approach transforms these matrix data entries into
wavelet coefficients whose numerical values are less then the original matrix data entries. The origi-
nal matrix is multiplied with the wavelet transformation matrix which is depicted for linear wavelets
in Figure 12.2. The resulting wavelet transformed matrix is shown in Figure 12.3.

Figure 12.1: Original dense coefficient matrix

117
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Figure 12.2: Wavelet transformation matrix using linear wavelets

Figure 12.3: Wavelet transformed coefficient matrix
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12.2 Test machines

The application has been tested on three different test platforms whose technical specifications are
listed in Table 12.1.

GPU NVIDIA GeForce 9800 GT OC+
GPU Memory 512Mb GDDR3 @ 900MHz (256-bit)
CUDA cores 112 @ 1500MHz

9800 GT CPU Intel(R) Core(TM)2 Duo E7300 @ 2.66GHz
CPU Memory 2x2GB DDR2-800
OS Ubuntu 9.04 (Linux 2.6.28-11 x86 64)
CUDA CUDA 2.2
Host Compiler GCC 4.3.3
GPU NVIDIA GeForce 280 GTX
GPU Memory 1GB GDDR3 @ 1107MHz (512-bit)
CUDA cores 240 @ 1296MHz

280 GTX CPU Intel(R) Core(TM)2 Duo E6400 @ 2.13GHz
CPU Memory 2x2GB DDR2-800
OS Suse 11.1 (Linux 2.6.27-37 x86 64)
CUDA CUDA 2.3
Host Compiler GCC 4.3.4
GPU NVIDIA GeForce 130M GT
GPU Memory 1Gb VDDR2 @ 500MHz (128-bit)
CUDA cores 32 @ 1500MHz

130M GT CPU Intel(R) Core(TM)2 Quad Q9000 @ 2.00GHz
CPU Memory xx
OS Ubuntu 8.10 (Linux 2.6.26-19 x86 64)
CUDA CUDA 2.3
Host Compiler GCC 4.3.3

Table 12.1: Test platform specifications

12.3 Duration for the iterative solver

An important measure in context of real-time is the duration for the calculation of the next frame.
Most of the time is needed to solve the equation system by the iterative BiCGStab solver. A great
attention was payed to the parallel computation capabilities of the GPU. In Table 12.2 durations for
computing one iteration step of the equation system solver by the CPU and GPU are compared using
the fully populated matrix resulting from the boundary element method. It can be observed, that the
GPU implementation of the iterative solver is up to 380 times faster than the CPU solution. The matrix
size is three times higher than the number of nodes, since the application computes deformations of
3-D models using three coordinates (x, y, z) for each node.
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depth #nodes matrix size CPU GPU Speedup
3 66 198 4.8 ms 0.18 ms ∼26
4 258 774 62.5 ms 0.3 ms ∼208
5 1026 3078 947 ms 2.5 ms ∼378

Table 12.2: CPU versus GPU duration (9800 GT)

Figure 12.4: Undeformed prism

12.4 Testmodels

12.4.1 Prism

As a test object a prism (Figure 12.4) was deformed using the error thresholds 0.0, 2.0 and 5.0.
The results are compared with respect to the population density of the matrix using different error
thresholds. Figure 12.5 shows a prism deformed at several level of depth and error thresholds. The
boundary condition of the left face is set to a displacement of zero, while one node on the opposite
face is moved outwards. The remaining nodes are set to zero traction and their displacement will be
computed. The solver aborts when the residual vector reaches a length of 10−6. It can be seen that the
deformation slightly varies between the different error thresholds. These errors are taken into account
to receive more sparse matrices resulting in a faster computation. The exact deformation, where the
error threshold is zero, and the approximated deformation at an error threshold of 2.0 are nearly the
same. An error threshold of 5.0 creates a more unnatural deformation since it seems that the prism’s
volume increases. Figure 12.6 shows color-coded images of the deformed prism at a subdivision level
of 5. The color represents the Hausdorff distance between two correlating vertices of the accurate and
approximated solutions, while red stands for the largest distance and blue for no distance [Aspert
et al., 2002]. The prism has an initial width of 1. How sparse the matrices become is shown in Figure
12.7. Black colored content represents the non-zero entries. The matrix is fully populated if the error
threshold is zero. Tables 12.3 and 12.4 shows some interesting results for the deformed prism. These
results are:

• the time to determine which nodes need be taken into account,

• the time needed for the integration of the boundary,

• the duration to compute one step of the BiCG iterative solver on different test platforms,

• the average number of iterations needed,
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(a) depth = 3 and threshold = 0.0 (b) depth = 3 and threshold = 2.0 (c) depth = 3 and threshold = 5.0

(d) depth = 4 and threshold = 0.0 (e) depth = 4 and threshold = 2.0 (f) depth = 4 and threshold = 5.0

(g) depth = 5 and threshold = 0.0 (h) depth = 5 and threshold = 2.0 (i) depth = 5 and threshold = 5.0

Figure 12.5: Deformed prism
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(a) threshold = 2.0, max. distance = 0.210 (b) threshold = 5.0, max. distance = 0.111

Figure 12.6: Color coded Hausdorff distances

• the number of non-zero entries as well as

• the amount of memory allocated on the GPU.

The number of available threads depends on the block and grid size of the CUDA implementation,
which can be computed by

available threads = block size · grid size

The table of results shows also the number of threads required for a successful sparse matrix vector
multiplication (SpMV). For a successful vector copy operation or inner vector product the required
number of available threads depends on the size of the matrix, since each thread handles one vector
entry. All test cases use the same block size containing 192 threads. The used grid sizes for copy
operation (copy) and for SpMV (mult) are listed in the tables as well. It can be seen for the prism
at a subdivision depth of 5, having 1026 nodes, that over 90% of the memory can be saved and the
duration of the solver decreases also at higher error thresholds due to the more sparse matrix. Table
12.4 shows the results of the deformation of the prism, where the error thresholds are set to 0.5, 1.0
and 2.0 since the computing time will be too high for an error threshold of 0.0. For a subdivision
level of 6, the amount of data allocated when accepting no error will be about 1.2Gb, lying outside
of the computation capabilities of the test platforms. Further, the time consumed to integrate over
the boundary will be also a multiple higher and will take about 1.5 hours. The GeForce 280 GTX
takes for one iteration step about 6ms to handle a data amount of 237Mb, resulting still in a real-time
computation. At a subdivision level of 7, the algorithm contains a huge coefficient matrix (about
50000 × 50000) and results will become incomputable since the memory needed to be allocated
exceeds the memory capabilities of the test platforms. Further, about 97% of the data are ignored
running into a strong approximation.

12.4.2 Tetrahedron

As a second test object a tetrahedron (Figure 12.8) was chosen, since a tetrahedron is the simplest
three dimensional object consisting of four faces only and contains an elementary base mesh for sub-
connectivity. Figure 12.9 depicts a deformation of a tetrahedron at several subdivision levels and error
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(a) depth = 3 and threshold = 2.0 (b) depth = 3 and threshold = 5.0

(c) depth = 4 and threshold = 2.0 (d) depth = 4 and threshold = 5.0

(e) depth = 5 and threshold = 2.0 (f) depth = 5 and threshold = 5.0

Figure 12.7: Coefficient matrices of the prism
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error threshold
depth #nodes result 0.0 2.0 5.0

Grid size (copy/mult) 2/6 2/4 2/2
Mark nodes 27ms 76ms 86ms

Boundary integration 1100ms 450ms 320ms
Solver duration (9800 GT) 0.3ms 0.2ms 0.2ms

3 66 (198) Solver duration (280 GTX) 0.2ms 0.2ms 0.2ms
Solver duration (130M GT) 0.4ms 0.3ms 0.3ms

avg. #iterations 8 8 10
#threads for SpMV 1056 648 376

% of non-zeros 100% 37.5% 25.3%
Allocated GPU memory 410kb 260kb 160kb

Grid size (copy/mult) 5/22 5/8 5/5
Mark nodes 550ms 1400ms 1500ms

Boundary integration 18s 3.5s 2.2s
Solver duration (9800 GT) 1.4ms 0.5ms 0.3ms

4 258 (774) Solver duration (280 GTX) 0.3ms 0.25ms 0.2ms
Solver duration (130M GT) 3.2ms 0.8ms 0.7ms

avg. #iterations 13 22 17
#threads for SpMV 4128 1428 812

% of non-zeros 100% 18.2% 10.9%
Allocated GPU memory 5.2Mb 1.8Mb 1.0Mb

Grid size (copy/mult) 17/86 17/15 17/9
Mark nodes 12s 25s 26s

Boundary integration 5m16s 26s 16s
Solver duration (9800 GT) 17ms 2.2ms 1.2ms

5 1026 (3078) Solver duration (280 GTX) 2.5ms 0.7ms 0.6ms
Solver duration (130M GT) 51ms 4.6ms 3.1ms

avg. #iterations 55 84 81
#threads for SpMV 16416 2847 1580

% of non-zeros 100% 7.88% 4.53%
Allocated GPU memory 76Mb 13.6Mb 7.7Mb

Table 12.3: Numerical results of a prism deformation (Part I)
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error threshold
depth #nodes result 0.5 1.0 2.0

Grid size (copy/mult) 65/67 65/44 65/31
Mark nodes 6m53s 6m54s 6m59s

Boundary integration 7m25s 4m52s 3m22s
Solver duration (9800 GT) 23ms 20ms 15ms

6 4098 (12294) Solver duration (280 GTX) 6.3ms 4.7ms 4.4ms
Solver duration (130M GT) 74ms 50ms 32ms

#threads for SpMV 12710 8265 5919
% of non-zeros 7.7% 5.0% 3.2%

Allocated GPU memory 237Mb 154Mb 111Mb
Mark nodes 1h52m 1h52m

Boundary integration 51min 38min
Solver duration (9800 GT) failed failed

7 16386 (49159) Solver duration (280 GTX) failed failed
Solver duration (130M GT) failed failed

% of non-zeros 3.1% 2.0%
Allocated GPU memory 1760Mb 1450Mb

Table 12.4: Numerical results of a prism deformation (Part II)

thresholds. The boundary displacements are set to zero for one face, while on an opposite face one
node is displaced outwards. For the remaining nodes the displacement is computed having a traction
of zero. Numerical results of the deformation can be found in Table 12.5.

Figure 12.8: Undeformed tetrahedron

12.4.3 Rod

As a more illustrative object for a deformation, a rod will be deformed. The original mesh of the rod
consists of 20 vertices forming 36 triangles and will be subdivided several times to gain a denser mesh
for a more accurate solution of the deformation. In Figure 12.10 a deformation of the rod at several
error thresholds and subdivision levels is shown. The solver aborts when a residual vector length of
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(a) depth = 3 and threshold = 0.0 (b) depth = 3 and threshold = 0.8 (c) depth = 3 and threshold = 2.0

(d) depth = 4 and threshold = 0.0 (e) depth = 4 and threshold = 0.8 (f) depth = 4 and threshold = 2.0

(g) depth = 5 and threshold = 0.0 (h) depth = 5 and threshold = 0.8 (i) depth = 5 and threshold = 2.0

Figure 12.9: Deformed tetrahedron
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error threshold
depth #nodes result 0.0 0.8 2.0 5.0

Grid size (copy/mult) 1/3 1/2 1/2 1/1
Mark nodes 6.8ms 15ms 19.2ms 21.8ms

Boundary integration 277ms 195ms 128ms 80ms
Solver duration (9800 GT) 0.2ms 0.2ms 0.2ms 0.2ms

3 34 (102) Solver duration (280 GTX) 0.2ms 0.2ms 0.2ms 0.2ms
Solver duration (130M GT) 0.2ms 0.2ms 0.2ms 0.2ms

avg. #iterations 7 7 8 14
#threads for SpMV 544 352 208 136

% of non-zeros 100% 63% 41.3% 24.7%
Allocated GPU memory 140kb 90kb 55kb 40kb

Grid size (copy/mult) 3/11 3/5 3/4 3/3
Mark nodes 136ms 322 364ms 383ms

Boundary integration 4560ms 1570ms 1060ms 680ms
Solver duration (9800 GT) 0.4ms 0.3ms 0.3ms 0.3ms

4 130 (390) Solver duration (280 GTX) 0.25ms 0.2ms 0.2ms
Solver duration (130M GT) 1.3ms 0.5ms 0.4ms 0.3ms

avg. #iterations 18 14 20 38
#threads for SpMV 2080 896 708 352

% of non-zeros 100% 32.4% 21.2% 13.3%
Allocated GPU memory 1.4Mb 630kb 500kb 270kb

Grid size (copy/mult) 9/43 9/11 9/5 9/5
Mark nodes 2.8s 6.1s 6.2s 6.3s

Boundary integration 1m16s 12s 6.4s 4.7ms
Solver duration (9800 GT) 4.5ms 0.9ms 0.6ms 0.6ms

5 514 (1542) Solver duration (280 GTX) 1ms 0.4ms 0.4ms 0.4ms
Solver duration (130M GT) 13ms 2.1ms 1.3ms 1.1ms

avg. #iterations 19 33 34 46
#threads for SpMV 8224 1955 928 831

% of non-zeros 100% 14% 7.9% 5.5%
Allocated GPU memory 19.9Mb 4.8Mb 2.3Mb 2.1Mb

Grid size (copy/mult) 33/171 33/19 33/14 33/13
Mark nodes 1m10s 1m41s 1m41s 1m44s

Boundary integration 21m47s 1m24s 51s 33s
Solver duration (9800 GT) failed 5.1ms 2.9ms 2.3ms

6 2050 (6150) Solver duration (280 GTX) 11ms 1.6ms 1.3ms 1.1ms
Solver duration (130M GT) 216ms 15ms 7.7ms 5.5ms

avg. #iterations 93 88 58 113
#threads for SpMV 32800 3491 2640 2367

% of non-zeros 100% 6.0% 3.4% 1.8%
Allocated GPU memory 307Mb 33Mb 25Mb 22Mb

Table 12.5: Numerical results of a tetrahedron deformation
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error threshold
depth #nodes result 0.0 0.4 1.0 2.0 5.0

Grid size (copy/mult) 5/25 5/14 5/7 5/6 5/4
Mark nodes 590ms 1.7s 1.6s 1.8s 1.9s

Boundary integration 24s 7.4s 4.7s 3.6s 2.8s
3 290 (870) Solver duration (9800 GT) 1.5ms 0.8ms 0.5ms 0.5ms 0.5ms

avg. #iterations 29 29 30 28 27
#threads for SpMV 4640 2604 1176 965 644

% of non-zeros 100% 30% 19% 14.9% 11.2%
Allocated GPU memory 6.5Mb 3.6Mb 1.7Mb 1.4Mb 950kb

Grid size (copy/mult) 19/97 19/23 19/13 19/10 19/8
Mark nodes 12s 30s 31s 32s 32s

Boundary integration 6m36s 55s 35s 24s 18s
4 1154 (3462) Solver duration (9800 GT) 17ms 3.5ms 2.2ms 1.9ms 1.7ms

avg. #iterations 82 98 82 82 82
#threads for SpMV 18464 4327 2466 1829 1508

% of non-zeros 100% 13% 8.0% 5.5% 3.8%
Allocated GPU memory 98Mb 23Mb 13Mb 9.9Mb 8.2Mb

Table 12.6: Numerical results of a rod deformation

10−6 is reached. The rod is fixed in its left ending and is pulled down at the right ending at the upper
two vertices. If the error threshold is too high, the iterative solver may not converge anymore or leads
to unnatural results as shown in Figure 12.11. Figure 12.12 depicts again the Hausdorff distance of
two corresponding vertices of the accurate and approximated solutions. Maximum distance means
the maximum vertex displacement from the accurate solution. The rod has an initial length of 4. Table
12.6 shows the corresponding numerical results.

12.5 Memory allocations

Since the data is stored in a sparse matrix format, it is complicated to calculate the amount of memory
needed to be allocated by the GPU. However, as an upper boundary, it is possible to calculate the
size of the coefficient matrices whose entries are computed by the CPU in an offline prestep. The
size of the matrices depends on the number of nodes used for the boundary element method. If a
triangulated 3-D model consisting of f0 triangular faces and v0 vertices is assumed, the number of
faces and vertices after j subdivision steps can be computed by

fj = f04j

vj = v0 +
3
2
f0

j∑
i=1

4i

= v0 + 2f0(4j − 1)

These equations assume, that the number of faces increases by a factor of 4 per step. For high n the
number of vertices increases by a factor of 2 compared to the number of faces. The number of nodes
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(a) depth = 3 and threshold = 0.0 (b) depth = 3 and threshold = 0.4 (c) depth = 3 and threshold = 1.0

(d) depth = 3 and threshold = 2.0 (e) depth = 3 and threshold = 5.0

(g) depth = 4 and threshold = 0.0 (h) depth = 4 and threshold = 0.4 (i) depth = 4 and threshold = 1.0

(j) depth = 4 and threshold = 2.0 (k) depth = 4 and threshold = 5.0

Figure 12.10: Deformed rod
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Figure 12.11: Unreal solution due to a too high threshold

(a) threshold = 0.4, max. distance 0.102 (b) threshold = 1.0, max. distance 0.138

(c) threshold = 2.0, max. distance 0.131 (d) threshold = 5.0, max. distance 0.194

Figure 12.12: Color coded Hausdorff distances of a deformed rod
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n varies by the used interpolation function and can be calculated by

constant nj = fj
linear nj = vj
quadratic nj = vj + 3

2fj
cubic nj = vj + 4fj

The dimension of the coefficient matrices H and G is 3nj × 3nj after j subdivision steps.

12.5.1 Prism

The number of non-zeros inside the coefficient matrix is the most important measure to describe the
efficiency of the achievement using the boundary element method with wavelets. Diagram 12.13
shows the percentage value of non-zeros over the error threshold for the previously deformed prism.
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Figure 12.13: Percentage values of non-zeros over the threshold (Prism)

12.5.2 Rod

Diagram 12.14 shows the percentage value of non-zeros inside the coefficient matrices over the
threshold of the error being accepted for the previously deformed rod.

12.6 Convergence behavior

Diagram 12.15 shows the convergence behavior of the BiCGStab iterative solver using a diagonal
preconditioner for different levels of subdivision and error thresholds. The algorithm terminates if the
residual norm is lower than 10−6. It can be observed that the residual norm does not decrease for each
iteration, but these peaks are typically in a solving process for non-symmetric matrices. However, it
can be said that the solver converges anyway, while the number of iterations increases for larger
matrices, resulting from the denser mesh through subdivision.
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Figure 12.14: Percentage values of non-zeros over the threshold (Rod)



12.6. CONVERGENCE BEHAVIOR 133

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

10E­13

10E­11

10E­09

10E­07

10E­05

10E­03

10E­01

10E+01

error 0,0

error 2,0

error 5,0

Iterations

R
es

id
ua

l n
or

m

(a) depth=3 with 66 nodes
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(b) depth=4 with 258 nodes
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(c) depth=5 with 1026 nodes

Figure 12.15: Convergence behavior of the iterative solver (Prism)
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Chapter 13

Conclusion and future work

13.1 Conclusion

In this thesis it has been shown how 3-D models can be deformed by the boundary element method
and how computation can be saved by linear wavelets. The iterative solver was implemented on the
graphics card using CUDA giving a great speedup compared to a CPU solution. The boundary el-
ement method computes accurate deformations of 3-D models, while the computing time is quite
high. However, the formulation of the fundamental solutions in elastostatics next to its evaluation is
very complex in 3-D and only a numerical integration of these fundamental solutions over all surface
patches is possible. For integration, the Gauss quadrature rule was extended and adapted for 2-D
surface triangles. Nodes defined on the surface are used to set displacements or tractions and bound-
ary conditions. The computed integration data is collected in nodes-to-nodes interaction matrices.
Different interpolations of these fundamental solutions take more or less nodes, placed on the bound-
ary element, into account and give more accurate or less accurate results. Higher interpolation types
give better results, however, at the expense of the computing time. Inclusion of wavelets to achieve
a reduction of this computing time has succeeded as well while a sub-connectivity representation of
the model is needed. Models consisting of few patches with subdivision connectivity are more suited
for the wavelet based boundary element method, since the simpler the base mesh of the model is all
the more computation time can be saved by the wavelets technique. Hair wavelets are required for
the constant interpolation type while lazy wavelets must be used for the linear interpolation type. A
high percentage of the computing time and of the memory needed to store the nodes-to-nodes inter-
action values in the matrices can be saved. A good and fast result for the deformation of an arbitrary
model can be achieved by a recalculation of the model surface elements to gain a model with high
sub-connectivity. Body deformations can be computed in real-time, if the models geometry is not too
complex and the number of nodes can be reduced by the wavelets approach. The equation system re-
sulting from the collocation method is solved iteratively by the BiCG solver. The inclusion of a haptic
force feedback device gives a better understanding of the model’s deformation since the application
also generates feedback forces which can be felt by the user and deformation becomes more intu-
itive. Haptic feedback devices have gained a widespread use in virtual and augmented reality, since
they increase the information transport from the system to the user. The boundary element method is
only valid for very small deformations and results computed for large deformations may look unreal.
Applications using the boundary element method for virtual deformations, or similar neighbor topics
– heat transfers and fluid flows –, are widely used and can be found, for instance, in medicine and
engineering.
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13.2 Future work

This thesis covers a solution for deformable objects using constant and linear wavelets for a transfor-
mation into the wavelet domain. One topic in future work may be a quadratic (k-disks) wavelet trans-
formation producing more accurate results with increasing computing time. In this case, the boundary
element values of the nodes are needed to be evaluated and calculated by quadratic interpolation func-
tions. This works similar as already shown for the linear case. However, the resulting solution of the
nodes needs to be visualized differently. In the quadratic case, a triangle of the boundary element
mesh contains six nodes which can be visualized by four triangles. In the cubic case nine triangles
can be drawn to visualize the boundary element displacements. Another topic in future work is the
integration of other mesh grid types, like quadrilateral and polygonal surface elements. It can also
be envisioned that the mesh consists of different and mixed surface element types. For quadrilateral
elements, their interpolation functions have been shown in this thesis. The wavelet transformations
will have to be adapted also for these newly incorporated surface element types. To ensure high-level
sub-connectivity of arbitrary 3-D models, the surface points and structure needs to be recomputed,
which was not covered by this thesis and is another topic in future work. Different types of models,
for instance, models containing holes, have to be considered. Last but not least, as a proof of concept,
an integration into the augmented reality framework Studierstube using OpenTracker can be assumed
[Gervautz et al., 1999]. OpenTracker already supports several tracking modules for different input
devices, to control the position of the pointer, as for example a tracking module for the Phantom
Omni haptic force feedback device from SensAble.



Appendix A

Cartesian tensor notation

The Cartesian tensor notation uses subscripts (1, 2, 3) to represent the coordinates (x, y, z). It also
represents summations, if a subscript occurs twice in a term, or derivation, if a subscript is separated
by a comma. The following shows these rules by choosing examples from of this thesis.

A.1 Tensor notation rules

Inner vector product
aibi = a1b1 + a2b2 + a3b3

Trace of a matrix
akk = a11 + a22 + a33

Matrix vector product
pi = σijnj = σi1n1 + σi2n2 + σi3n3

Fourth ordered tensor second ordered tensor product

σij = Cijklεkl =
3∑

k=1

3∑
l=1

Cijklεkl

Partial derivations

r,i =
∂r

∂xi
=

ri
||r||

εij =
1
2

(ui,j + uj,i) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)

σij,j + bi = 0 =
3∑
j=1

∂σij
∂xj

+ bi =


∂σ11
∂x1

+ ∂σ12
∂x2

+ ∂σ13
∂x3

∂σ21
∂x1

+ ∂σ22
∂x2

+ ∂σ23
∂x3

∂σ31
∂x1

+ ∂σ32
∂x2

+ ∂σ33
∂x3

+

b1b2
b3


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A.2 Kronecker delta

δij =
{

1 i = j
0 i 6= j



Appendix B

Dirac impulse and Heaviside function

B.1 Dirac impulse

δ(x) is the so-called Dirac impulse and satisfies

∞∫
−∞

δ(x)h(x)dx = h(0). (2.1.1)

The function can be constructed by
δ(x) = lim

n→∞
wn(x) (2.1.2)

with

wn(x) =
{

1
2n |x| < n
0 |x| > 0

(2.1.3)

Function wn(x) is plotted in Figure B.1 with n = {1/4, 1/2, 1, 2}. As a result of this δ(0) results∞

-2 -1 0 1 2
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1.0
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2.0

Figure B.1: δ(x) approximation by wn(x) with n←∞

and
∞∫
−∞

δ(x)dx = 1 =

∞∫
−∞

wn(x)dx (2.1.4)
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This can be written as an indefinite integral∫
δ(x)dx = H(x) (2.1.5)

using the Heaviside function explained in the next section. Furthermore for higher dimensions the
Dirac impulse is defined as

δ(x1, x2, ..., xn) =
n∏
i=1

δ(xi) (2.1.6)

For a closed domain Ω with a defined function u(x) over Ω equation (2.1.7) is valid if ξ ∈ Ω.∫
Ω

δ(x− ξ)u(x)dΩ = u(ξ) (2.1.7)

B.2 Heaviside function

H(x) is commonly known as the Heaviside function with the property

H(x) =
{

0 x < 0
1 x > 0

(2.2.1)

The value at x = 0 depends on the side from which the function is coming closer to x = 0 and is
defined there as

lim
x→0

H(x) =
{

0 x < 0
1 x > 0

(2.2.2)

A plot of this function is shown in Figure B.2.
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Figure B.2: Heaviside function H(x)



Appendix C

Barycentric coordinate system

The homogeneous coordinates for triangles are commonly the so-called barycentric coordinates and
are denoted as (λ1, λ2, λ3) where one coordinate depends on the other two. The third coordinate is
for convenience and the coordinates are defined as

λ =

 λ1

λ2

1− λ1 − λ2

 (3.0.1)

On the other hand one can say λ1 + λ2 ≤ 1 which forces each point to lie inside the convex hull for
the area spanned by λ1 and λ2. Figure C.1 gives an impression of this coordinate system.
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2
x 1

x 2 

x 3

0
0

0

Figure C.1: Barycentric coordinates of a triangle

143



144 APPENDIX C. BARYCENTRIC COORDINATE SYSTEM



Appendix D

Installation guides

D.1 Application

D.1.1 Installation

The application depends on several packages which have to be installed first to guarantee a successful
compilation. From the standard package mananger, aptitude for Debian (Ubuntu) and Yast for Suse
the following packages have to be installed

• C++ Compiler (cobj++)

• Qt4 (qt4-devel)

• Coin3D (coin-3.0.0-devel)

• SoQt (soqt-1.4.2-devel)

• cmake (cmake-2.6)

• CUDA (nVidia’s homepage)

• IcgCmakeModules (rpm.icg.tu-graz.ac.at)

Additionally to these packages the latest CUDA drivers™ and CUDA OpenToolkit™ has to be down-
loaded from the homepage of nVidia™. For this application the version 2.2 of CUDA was used. After
installing and/or updating these packages the application can be configured by cmake using the com-
mand ./configure in the root directory of the application. For the listed packages the corresponding
cmake file is needed to find the package’s libraries and includes. Nevertheless this might fail due
to wrong include and library path variables. A check for installation paths and adaption inside the
cmake configuration file CMakeLists.txt will fix the installation routine. Finally a make will compile
the program.

D.1.2 Execution parameters

The software can be executed afterwards typing deformation [file.iv] where file.iv stands for an Open-
Inventor file containing the geometric data of the mesh and several deformation parameters. This data
are collected in an own Inventor node called SoDeformation. As an example for a possible Inventor
file consider the following inventor file.
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1 SoDeformat ion {
2 o b j e c t S o S e p a r a t o r {
3 SoCube {}
4 }
5 d e p t h 3
6 e r r o r T h r e s h o l d 0 . 2
7 e l a s t i c i t y C o n s t a n t 80000
8 p o i s s i o n R a t i o 0 . 3
9 p o i n t e r D e v i c e PHANTOM

10 p o i n t e r S i z e 0 . 2
11 }

This example subdivides a cube’s triangular mesh three times for the required level of depth and in
the case of a pointer-object interaction the cube would be deformed. The parameters for the node are

object: This field of the type SoNodeField contains the definition of the mesh which
should be deformed. The node will be triangulated and stored for the internal
mesh representation.

depth: This defines how often the mesh’s triangles should be subdivided to generate
coarser or finer meshes for computation. The program subdivides each tri-
angle, depending on this level, into subtriangles using the 1-to-4 subdivision
method.

elasticityConstant: For the calculation of the deformation this value stores the shear elasticity
constant and is 80000N/mm2 for steel. More information can be found in
chapter 4.

possionRatio: This is also a material depended constant and is 0.31 (dimensionless) for steel
(Chapter 4).

pointerDevice: The device used for the interaction with the deformable object. It can be set
to PHANTOM if the PHANToM Omni force feedback device is connected or
MOUSE if the pointer should be controlled by the mouse.

pointerSize: The pointer is limited to a sphere and its radius can be defined via this param-
eter.

D.2 PHANToM device driver

D.2.1 Installation

To get a haptic feedback for the user, this application uses the Phantom Omni device from Sensable.
The device returns forces in the direction of the three spatial axes, however effects no torsions around
the limbs. Depending on the disk operation system, the phantom device driver can be installed using
the corresponding software package. The package can be downloaded from Sensable’s homepage in
the Internet (www.sensable.com), which however is not for free, and can be installed via the console
by typing

dpkg − i p h a n t o m d e v i c e d r i v e r . deb

for Debian and Ubuntu and by the command

rpm − i p h a n t o m d e v i c e d r i v e r . rpm
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for Suse operation system. It has to be taken care to use the correct software for 32-bit or 64-bit
systems. Additionally, at this point one has to mention, that SensAble at the moment only supports
drivers for Linux kernels lower than 2.6.26. If this would be a problem, the system needs to be
downgraded to such a kernel or lower. To do so an older kernel – the package is called linux-image-
version – needs to be installed with the package-manager of the used distribution. Test cases with
a 2.6.18 kernel have succeeded. In addition to the Phantom device driver, SensAble provides also
a so-called OpenHaptics™ software containing libraries for easier access to the device. It includes
functionality to configure, initialize and read and write values from and to the device. It can be
installed in the same manner as above.

dpkg − i o p e n h a p t i c s . deb

for debian and Ubuntu and

rpm − i o p e n h a p t i c s . rpm

for Suse. The PHANToM Omni uses the firewire interface for communication and therefore the
module raw1394 has to be loaded.

lsmod | g rep 1394

will help to figure out whether the module is loaded or not. For the case of a missing installation of
the module raw1394 superusers can install it from the package manager of by

ap t−g e t i n s t a l l l i b r a w 1 3 9 4
modprobe raw1394
chmod a+rw / dev / raw1394

and loading it afterwards. To gain access to the device for normal user the read and write rights have
to be set by the chmod command.

D.2.2 Configuation and Testing

After a successful installation, the functionality of the device can be configured with the program
PHANToMConfiguration (Figure D.1) and finally tested with the program PHANToMTest (Figure
D.2) both located under /usr/sbin/.

PHANToMConfiguration
PHANToMTest

In case that the position data of the limbs in PHANToMTest are distorted or wrong (Figure D.3, the
PHANToMConfiguration application might create bad files. These created files are located under
/etc/SensAble/PhantomDeviceDriver/ and of the type Phantomxx.ini. With a short look inside these
files it can be checked whether the floating point for the floats is a dot or a comma. Commas will
produce wrong results for the PhantomTest application. These files can be changed manually by
replacing those wrong commas by a dot. This replacement has to be done each time PHANToMCon-
figuration application is executed recreating these files. An automated python script which can be
executed afterwards to correct the files will look like this [Forsslund, 2009]

1 # −*− co d i ng : u t f −8 −*−
2 # Python
3
4 import s h u t i l
5
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Figure D.1: Application PHANToMConfiguration

Figure D.2: Application PHANToMTest with correct limb positions
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Figure D.3: Application PHANToMTest with wrong limb positions

6 p r i n t ’ ******************************************************* ’
7 p r i n t ’ * F i x i n g , −> . i n f l o a t i n g p o i n t numbers * ’
8 p r i n t ’ * i n / e t c / SensAble / PHANToMDeviceDrivers /PHANToM0 . i n i * ’
9 p r i n t ’ * ( backup f i l e c r e a t e d ) * ’

10 p r i n t ’ * usage : sudo py thon p h a n t o m f i x . py * ’
11 p r i n t ’ ******************************************************* ’
12
13 s h u t i l . c o p y f i l e ( ’ / e t c / SensAble / PHANToMDeviceDrivers /PHANToM0 . i n i ’ ,

’ / e t c / SensAble / PHANToMDeviceDrivers /PHANToM0 . i n i . bak ’ )
14 i n p u t = open ( ’ / e t c / SensAble / PHANToMDeviceDrivers /PHANToM0 . i n i . bak ’ )
15 o u t p u t = open ( ’ / e t c / SensAble / PHANToMDeviceDrivers /PHANToM0 . i n i ’ , ’w’

)
16
17 f o r s in i n p u t :
18 s = s . r e p l a c e ( ’ ,0 ’ , ’ . 0 ’ ) ;
19 s = s . r e p l a c e ( ’ ,1 ’ , ’ . 1 ’ ) ;
20 s = s . r e p l a c e ( ’ ,2 ’ , ’ . 2 ’ ) ;
21 s = s . r e p l a c e ( ’ ,3 ’ , ’ . 3 ’ ) ;
22 s = s . r e p l a c e ( ’ ,4 ’ , ’ . 4 ’ ) ;
23 s = s . r e p l a c e ( ’ ,5 ’ , ’ . 5 ’ ) ;
24 s = s . r e p l a c e ( ’ ,6 ’ , ’ . 6 ’ ) ;
25 s = s . r e p l a c e ( ’ ,7 ’ , ’ . 7 ’ ) ;
26 s = s . r e p l a c e ( ’ ,8 ’ , ’ . 8 ’ ) ;
27 s = s . r e p l a c e ( ’ ,9 ’ , ’ . 9 ’ ) ;
28 o u t p u t . w r i t e ( s )
29 o u t p u t . c l o s e ( )
30 i n p u t . c l o s e ( )

This software bug can also be avoided by changing the locale to en US. The actually defined locale
can be identified by the echo command and set to the American locale with set or export depending
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on the installed Linux distribution.

echo \$LANG
s e t LANG=en US
e x p o r t LANG=en US

Afterwards PHANToMConfiguration has to be executed again to generate correct configuration files.
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