
Signal Processing and Speech Communication
Laboratory

Graz University of Technology

Real-Time Enhancement of E-Larynx
Speech Signals

Master Thesis

at

Graz University of Technology

submitted by

Thomas Noisternig

Signal Processing and Speech Communication Laboratory
Inffeldgasse 12, A-8010 Graz, Austria

November 26, 2009

c© Copyright 2009 by Thomas Noisternig

Advisor: Univ-Prof. DI Dr. Gernot Kubin
Co-Advisor: DI Dr. Martin Hagmüller

2

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

4

Abstract

People who have lost their larynx (e.g. due to cancer) have no natural possibility to speak
any more, because the vocal folds are not longer available to generate the necessary sound
source. A solution to this problem is a mechanical device, which substitutes the missing
body part - the so-called electrolarynx. Unfortunately, speaking with an electrolarynx suffers
from high background noise caused by the sound of the device itself as well as low intelli-
gibility because of the monotonic frequency the electrolarynx device produces. This work
aims to reduce these drawbacks by increasing the quality of the electrolarynx speech signal
in real-time using a Texas Instruments TMS320C6713B floating-point digital signal processor
(DSP). The implemented quality enhancement targets on increasing the speech quality with
two approaches: First, the directly-radiated electrolarynx noise (DREL) component is reduced.
Therefore the DSP utilises spectrum-based modulation filtering methods for detecting the sig-
nal’s DREL component and removing it from the signal. The separation of signal and noise is
hereby achieved via detecting constant spectral components - the electrolarynx generates it’s
vibrations at a constant frequency. The second enhancement approach intends to adjust this
constant frequency, which otherwise results in an artificial sounding voice with furthermore
missing prosodic information. The enhancement algorithm is in such cases able to detect voice
variations and apply them to the original, monotonic speech signal. This is done by utilising
the speech’s formant contour, as detected by the implemented linear predictive coding (LPC)
based formant tracker, to control the electrolarynx in order to generate an analogous pitch
contour for the sake of making it sound more natural and understandable. To comply with
arising requirements towards real-time ability the implementation process was accompanied
with various speed optimisation procedures. Primarily these procedures consisted of finding
optimal trade-off settings between accuracy and complexity as well as hard-coding constant
coefficients, pre-calculating parameters during initialisation, re-arranging data structures and
reducing redundancies.

i

ii

Kurzfassung

Personen, die (beispielsweise durch eine Krebserkrankung) ihren Kehlkopf verloren haben,
fehlt die natürliche Möglichkeit zu sprechen, da der Sprechapparat nicht länger in der Lage ist,
das Anregungssignal zu erzeugen. Eine Lösung dieses Problems stellt ein mechanisches Gerät
dar, das diese Funktion des fehlenden Körperteils ersetzt - der Elektrolarynx. Das Sprechen
mit einem Elektrolarynx leidet unter einem hohem Hintergrundgeräusch, hervorgerufen durch
die Vibrationen des Geräts selbst sowie einer niedrigen Verständlichkeit, unter anderem auf-
grund der monotonen Grundfrequenz, die der Elektrolarynx erzeugt. Die vorliegende Arbeit
zielt darauf ab, diese Schwächen zu reduzieren, indem eine Verbesserung der Qualität des
Elektrolarynx-Sprachsignals mittels einem Texas Instruments TMS320C6713B floating-point
Signalprozessor (DSP) in Echtzeit geschieht. Die durchgeführten Qualitätsverbesserungen zie-
len darauf ab, die Spachqualität mittels zwei Ansätzen zu erhöhen: Einerseits wird das direkt
abgestrahlte Elektrolarynx Störgeräusch (DREL) reduziert. Dazu wird ein Ansatz verwendet,
der mit einem Modulationsspektrumsfilter die DREL Komponente vom Signal entfernt. Die
Trennung von Signal und Störung erfolgt dabei durch die Detektion von zeit-invarianten Spek-
tralkomponenten - der Elektrolarynx schwingt auf konstanter Frequenz. Der zweite Ansatz zielt
auf eine Variation dieser Frequenz ab, da sie ansonsten zu einer künstlich klingenden Stimme
wegen fehlender prosodischer Information führt. Der Verbesserungsalgorithmus analysiert
Sprachvariationen und erzeugt damit eine künstliche Grundfrequenzkontur. Erreicht wird dies
durch die Verwendung der Formanten, die mittels Linear Predictive Coding (LPC) basierten
Formanttracker geschätzt werden. Die künstliche Grundfrequenzkontur wird zur Steuerung
des Elektrolarynx verwendet, um eine entsprechende Kontur der Tonhöhe zu generieren um
dadurch die Sprache natürlicher und besser verständlich klingen zu lassen. Um die Anforderung
der Echtzeitfähigkeit zu erfüllen, wurde der Implementationsprozess von verschiedenen Tech-
niken zur Geschwindigkeitsoptimierung begleitet. Primär bestanden ebendiese aus der Suche
nach optimalen Einstellungen bezüglich eines Kompromisses zwischen Genauigkeit und Kom-
plexität sowie dem Hard-Coding von konstanten Koeffizienten, vorausberechnen von Param-
etern während der Initialisierung, restrukturieren von Datenstrukturen und reduzieren von
Redundanzen.

iii

iv

Contents

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1

2 Background 5
2.1 Speech and Phonetics Theory . 5

2.1.1 Biological Fundamentals . 5
2.1.2 Speech Theory . 6
2.1.3 Speech Description Parameters . 7
2.1.4 Artificial Larynges . 9

2.2 Speech Signal Processing Techniques . 11
2.2.1 Block Processing . 11
2.2.2 Linear Predictive Coding . 12
2.2.3 Pitch-Synchronous Overlap-Add . 13
2.2.4 Pitch-Marking . 14
2.2.5 Pitch Tracking . 15
2.2.6 Formant Tracking . 15

2.3 DSK6713 Overview . 16
2.3.1 Introduction . 16
2.3.2 Digital Signal Processor . 16
2.3.3 Audio Codec . 18
2.3.4 Memory Management . 18
2.3.5 Programming the DSP Starter Kit . 19

3 Design 23
3.1 Multipath Separation . 23

3.1.1 Modulation Spectral Filtering . 24
3.1.2 Spectral Subtraction . 25

3.2 Pitch Contour Generation . 26

4 Implementation 29
4.1 Experimental Setup . 29
4.2 Block Processing Framework . 30
4.3 Hardware Setup . 31

4.3.1 Audio Codec . 31
4.3.2 Memory Management . 32

4.4 Modules . 34
4.4.1 Fast Fourier Transform . 34
4.4.2 Finite Impulse Response Filter . 37

v

4.4.3 Infinite Impulse Response Filter . 38
4.4.4 Windowing . 39
4.4.5 Linear Predictive Coding . 39
4.4.6 Voice Activity Detection . 40
4.4.7 Voiced/Unvoiced Detection . 40
4.4.8 Pitch Tracking . 40
4.4.9 Pitch-Marking . 43
4.4.10 Formant Tracking . 44
4.4.11 Formant Smoothing . 49
4.4.12 Pitch-Synchronous Overlap-Add . 50
4.4.13 Multipath Separation . 52
4.4.14 Pulse Generation . 55

4.5 Real-Time Related Aspects . 56
4.5.1 Online/Offline Data Processing Discrepancies . 56
4.5.2 Timing Considerations . 58
4.5.3 Real-Time Effecting Parameters . 60

5 Results 67
5.1 Measurement and Calculation . 67

5.1.1 System Delay . 67
5.1.2 Multipath Separation Modules . 73
5.1.3 Pitch Contour Generation Modules . 77

5.2 Results Comparison with Different Setups . 85
5.2.1 Block Size and Fast Fourier Transform Point Size 85
5.2.2 Smoothing Filter Size . 85
5.2.3 Filter Type in the Multipath Separation Module 87

6 Conclusion and Outlook 89

Bibliography 91

A Appendix 95
A.1 Matlab Code . 95

A.1.1 Filter Design . 95
A.1.2 Window Design . 99

A.2 External Code . 100
A.2.1 Block Processing Framework . 100
A.2.2 KISS Fast Fourier Transform . 100
A.2.3 Polynomial Roots Calculation . 101

A.3 Praat . 103
A.4 Apparatus Usage and Operation Modes . 104
A.5 Used Devices . 105

A.5.1 Description . 105

vi

List of Figures

1.1 Simple block diagram of the system’s processing chain 3

2.1 Vocal tract organs taking part in the speech generation 6
2.2 Glottal transfer function of a speech signal . 8
2.3 Artificial voice boxes . 10
2.4 TD-PSOLA working principle . 13
2.5 Random signal and it’s corresponding pitch-marks . 14
2.6 Internal structure of the TMS320C6713B DSP . 17

3.1 Signal examples with constant and varying temporal envelope 24
3.2 Multipath separation based on MSF, principle block diagram 25
3.3 Pitch contour generation block diagram, processed signal output 27
3.4 Pitch contour generation block diagram, driving pulses output 28

4.1 Experimental setup of the enhancement framework . 29
4.2 Block processing workflow . 31
4.3 Hermitian property of the DFT . 35
4.4 FIR filter blocks . 37
4.5 Biquad structure in DF1 . 38
4.6 The autocorrelation-based pitch detector’s window effect cancellation 41
4.7 Working principle of the zero-crossing pitch detector . 42
4.8 Implemented data structures used for pitch-marking . 44
4.9 Comparison of index- and expectation-based formant tracking 45
4.10 Multipath separation based on MSF, detailed block diagram 53
4.11 MSF filtering of a certain spectral component . 53
4.12 Optimal excitation pulse . 55
4.13 Convolution operation to generate the shaker driving signal 56
4.14 Averaging problems at the calculation procedure’s beginning 57
4.15 Declination cancelling effect with adaptive mean calculation 58
4.16 The pitch contour generator’s processing line . 63
4.17 Performance of the implemented sorting algorithms with ten test runs 65

5.1 Processing delay measurement signals, speech input . 71
5.2 Processing delay measurement signal, pulse input . 72
5.3 Performance of the MSF-based multipath separation . 74
5.4 Loudness discrepancy when using the MSF filter . 75
5.5 Comparison of the implemented MS methods . 76
5.6 VAD performance example . 78
5.7 Run-time comparison between LPC and IFC trackers . 80
5.8 Formant detection quality comparison between both implemented trackers 81
5.9 Example result of the formant tracker . 82
5.10 Example result of the PSOLA module . 84
5.11 Smoothing performance comparison using different filter sizes 86

vii

A.1 Frequency response of the AKG HD171 . 97
A.2 Final frequency responses of the inverse microphone filters 98
A.3 Hann window coefficients for a window size of 256 . 99
A.4 Devices used in the framework . 106
A.5 Utility devices used for measurement and amplification 107

viii

List of Tables

2.1 Consonant type and appropriate vocal tract setup . 7
2.2 Reference values indicating the DSP’s operating speed 18
2.3 Audio codec specifications . 18
2.4 Data regions available for the compiler’s memory mapping 19

4.1 Matrix in Toeplitz structure . 39
4.2 Example results for the pitch-marks list size in COMP mode 44
4.3 Optimal filter bandwidths Bx for IFC-based formant tracking 48
4.4 Smoothing algorithm example . 50
4.5 BLKSZ examples and frame durations, amount of CPU cycles resulting from it 61
4.6 Example values for the LPC approximator order . 62
4.7 Example exit condition setups for the polynomial roots calculator 62

5.1 Latency of various VoIP systems . 68
5.2 DSP framework setup for the latency measurement . 70
5.3 Processing blocks of LPC and IFC tracker . 80
5.4 Formant tracker configuration used for the discussed example 83

A.1 Structure of the coefficients array returned by tf2sos() 96
A.2 Structure of the coefficients array needed by biquad() 96
A.3 Optimal filter parameters for designing the inverse microphone filter 98
A.4 Functional DIP switch assignment . 104
A.5 LED assignment . 104
A.6 List of devices used in the framework . 108
A.7 List of used utility devices . 109

ix

x

Abbrevations

A/D Analog-To-Digital
ADC Analog-To-Digital Converter
AD/DA Analog-To-Digital / Digital-To-Analog
ALU Arithmetical and Logical Unit
API Application Programmable Interface
AWGN Additive White Gaussian Noise
BP Band-Pass
BLKSZ Block Size
BSL Board Support Library
CCS Code Composer Studio
CPU Central Processing Unit
CSL Chip Support Library
D/A Digital-To-Analog
DAC Digital-To-Analog Converter
DIP Dual Inline Package
DRAM Dynamic Random Access Memory
DREL Direct-Radiated Electrolarynx Noise
DF1 Direct Form 1
DF2 Direct Form 2
DFT Discrete Fourier Transform
DMA Direct Memory Access
DSP Digital Signal Processor
DSPLib Digital Signal Processor Library
DSK Digital Signal Processor Starter Kit
(E)DMA (Enhanced) Direct Memory Access
EMIF External Memory Interface
EQ Equalizer
F0 Fundamental Frequency
F1 Formant 1
F2 Formant 2
F3 Formant 3
Fx Formant x
fs Sampling Rate
F0gen Pitch Contour Generation
FIR Finite Impulse Response
FDATool Filter Design and Analysis Tool
FFT Fast Fourier Transform
GUI Graphical User Interface
HGS Hanquinet, Grenez, Schoentgen
HP High-Pass
HPV Human Papilloma Virus
IIR Infinite Impulse Response
IF Inverse Filter
IFC Inverse Filter Control

xi

IFFT Inverse Fast Fourier Transform
ITU-T International Telecommunication Union - Telecommunication Standardization Sector
I/O Input / Output
L1 Level 1
L2 Level 2
LED Light Emitting Diode
LPC Linear Predictive Coding
MAC Multiply-Accumulate
MFLOPS Million Floating-Point Operations per Second
MIPS Million Instructions per Second
ML Machine Learning
MMACS Million Multiply-Accumulate Cycles per Second
MMSE Minimum Mean Squared Error
MS Multipath Separation
MSF Modulation Spectral Filter
OLA Overlap-Add
PC Personal Computer
PSOLA Pitch-Synchronous Overlap-Add
PSL Peripheral Support Library
RAM Random Access Memory
RMS Root Mean Square
R/W Read / Write
SS Spectral Subtraction
SNR Signal-To-Noise Ratio
STFT Short Term Fourier Transform
TCP Transmission Control Protocol
TD-PSOLA Time Domain - Pitch-Synchronous Overlap-Add
TEP Transoesophageal Puncture
THD Total Harmonic Distortion
THDN Total Harmonic Distortion and Noise
UDP User Datagram Protocol
USB Universal Serial Bus
VAD Voice Activity Detection
VLIW Very Long Instruction Word
VoIP Voice Over IP
V/UV Voiced / Unvoiced

xii

Chapter 1

Introduction

Worldwide there are about 600000 laryngectomees, lots of them make use of electrolarynx
devices to acoustically communicate with their surrounding ([25]). Being able to do so
is a fundamental need of people as well as of high importance for handling every day’s
work. Therefore electrolarynx users are frequently confronted with having to use this aid -
convenience, ease in usage and good acceptance from conversation partners play a big role in
supporting them as a good as possible. Manufacturers have been spending money, time and
effort in developing smaller, easier and more effective devices to offer the best possible comfort
to the user. Nevertheless the ease of operation is mainly focusing on the speaker side when
talking about electrolarynx conversations. The mentioned acceptance by conversation partners
represents the other side. Obviously, this acceptance comes along with the intelligibility -
people prefer taking part in conversations when it is easy to follow the conversation partner.
Unfortunately despite the experience in manufacturing electrolarynx devices, the resulting
speech is still quite hard to understand. Due to this fact, it is very hard for a handicapped
person to talk with others: Either people are daunted by the strange sounding voice (the
steady pitch generated by the electrolarynx leads to an artificial sounding voice) or they
simply have difficulties understanding electrolarynx spoken words what constrains simple and
flawless conversations.

This is where this work focuses on: The approach of increasing the sound quality to
make conversations with electrolarynx speakers easier. To do so the sound enhancement
intends to reduce two main drawbacks.
At first the sound of the device itself, originating from the necessary vibrations the elec-
trolarynx has to produce, is rather loud. It might even predominate the voice of the
speaker, especially when they are not experienced in using the electrolarynx optimally. This
sound, the directly-radiated component of the electrolarynx device, can be suppressed using
different signal processing approaches that were initially developed and discussed in [20]. The
purpose of this work is to implement these techniques in a real-time environment so that
electrolarynx users can actually benefit from the enhancement as they speak. At a glance
the sound produced by the electrolarynx is split into two parts: The (wanted) speaker’s
voice and the (unwanted) Direct-Radiated Electrolarynx Noise (DREL) component. To be
able to suppress the unwanted component without effecting the wanted component these
two signals have to be separated as strict as possible. Therefore a method working in the
modulation spectrum domain which is described in chapter 3.1.1 is used. This approach filters
temporal trajectories of a signal’s spectral components and dampens the ones which have a
time-invariant trajectory. Speech signals themselves are modulated with at least 2Hz by the

1

movement of the speaker’s mouth and tongue ([6, p.7]). With the DREL component this is
not the case. The electrolarynx device vibrates at a constant frequency. So a separation of
both signal components is possible by using this property to categorise and afterwards process
the signal’s components. At a glance, the processing chain consists of:

1. Capturing and pre-processing the input signal

2. Performing a Fourier transform

3. Applying the Modulation Spectral Filter (MSF)

4. Performing an inverse Fourier transform

5. Outputting the signal

The second drawback the developed speech enhancement framework copes with is the constant
pitch of the speaker’s voice. As mentioned state-of-the-art electrolarynx devices are not able to
adapt their vibration frequency to the words the user is currently speaking. In healthy voices
voice’s pitch might contain additional information about the meaning of a phrase or sentence
that can not be figured out just by analysing the word and sentence structure itself - accents,
questions, ironic statements for example make intense usage of this possibility. Electrolarynx
users are lacking this possibility. This framework uses the available formant information to
equip the pitch with a varying contour. Certainly, this method is not able to reproduce meta-
information like irony or speaker boredom but is still able to make the artificial voice sound
more natural and transport prosodic information that alters the formant. Accents, for example,
are able to do so when pronounced clearly enough. The processing pipeline for performing these
tasks looks like follows:

1. The input speech is captured and pre-processed

2. The pre-processed speech is analysed to gather speech activity, voicing and formant
information

3. The obtained information is post-processed (smoothing, limiting)

4. The final data stream of meta-information is used to alter the pitch accordingly

5. The result is passed to the output

The implementation used for performing these procedures operates on a Digital Signal
Processor Starter Kit (DSK) board equipped with a high-performance Digital Signal
Processor (DSP) and a audio codec. The starter kit is a TMS320C6713 DSK, it is equipped
with a 225MHz floating-point DSP, the audio codec is a 16 bit stereo audio codec. The codec
is able to capture the analog audio signal, convert and pass it to the DSP and return the
enhanced signal to the analog output. For audio input and monitoring a studio headset is
used. At a glance these four components (headset microphone, audio codec, DSK and headset
headphone), as pictured in figure 1.1, complete the real-time audio processing chain.

This paper is partitioned into four main chapters: Chapter 2 discusses the theoretical
fundamentals the developed framework is based on. In chapter 3 the focus is on the processing
algorithm’s basic design whereas chapter 4 takes a more detailed view by explaining the

2

Figure 1.1: Simple block diagram of the system’s processing chain showing the major components
and their usage. In principle the microphone captures an analog sound signal and passes it to the
audio codec for A/D conversion. The digital signal is enhanced by the DSP and returned to the
audio playback device.

single module’s implementation. Finally the achieved enhancement is presented in chapter 5
and analysed in terms of results quality and implementation efficiency. Additionally, several
configuration setups are investigated and used to recommend an optimal set of parameters to
run this framework as well as comparable other ones.

3

4

Chapter 2

Background

2.1 Speech and Phonetics Theory

2.1.1 Biological Fundamentals

Generally speaking, sound is the variation of air pressure captured by the ear. In order to
produce sound, the body has to have the ability to produce these variations. At a glance the
main body parts taking part in acoustic speech production are the excitation organs like

• lungs

• trachea

• glottis

• larynx

and the articulation organs or vocal tract parts

• lower jaw

• tongue

• lips

• velum (soft palate)

as shown in figure 2.1.

The excitation organs form the initial oscillations in the air pressure which is generated by the
lungs. In particular this is the job of the vocal folds in the larynx which are capable of varying
the inner volume of the air channel. If air is pressed from the lungs through the air channel to
the mouth these volume variations result in a pressure change of the air stream that leaves the
mouth. With adapting the larynx’ behaviour in generating vibration the speech parameters
pitch, loudness, voice quality and several other speech determining patterns can be set.
Before the air stream is processed by the articulation organs it has to be generated first. This
process of generating the air flow that reaches the vocal tract parts is called initiation. The
most obvious way is the one explained before: The air pressure is generated by the lungs
and reaches the articulation organs through the air channel. This process is called pulmonic

5

(a) Full view (b) Zoomed view

Figure 2.1: Human vocal tract organs taking part in the natural speech generation (source: [14]).

initiation and takes place for example when speaking vowels. Nevertheless there are two other
ways to generate phones. Generated by the larynx with raising and lowering it the initiation
is called glottalic. The /g/ consonant is for example produced this way. In the process of
speaking out stops (Sect. 2.1.2) the sound is generated at the velum by using the tongue, it is
referred to as velaric initiation.

The excited air stream still does not contain any speaking information. This informa-
tion is added with the speaker’s forming of lower jaw, lips, tongue and velum as the air passes
the mouth. So the phonemes are (a) formed by the vocal tract with filtering the air stream
and (b) resonated in the mouth dependent on the setting of the articulation organs. Several
unvoiced phones are also generated by specific vocal part patterns. For example the tongue
position mainly influences the phone height and fronting, the lip posture determines the
spread, nasalisation thus the air flow through the noise channel is utilised for specific speech
patterns and of course the duration determines the resulting sound. For detailed information
about biological aspects related to speech processing please refer to the proper literature.
Good choices for example are [26] and [6].

2.1.2 Speech Theory

A main differentiation between phones is categorising them as one of the following two groups:

1. Consonants: /f/, /s/, /h/, /t/, /w/, /l/, . . .

2. Vowels: /a/, /e/, /i/, /o/, /u/

6

[27] differs vowels and consonants by the way they are produced: Vowels are free and open
sounds whereas consonants are always accompanied by noise. So vowels are always voiced
sounds (Sect.2.1.3), they in general have higher amplitudes than consonants for this reason.
However consonants might be voiced or unvoiced, dependent on the stricture of the glottis.
The exact setting determines the consonant type:

Slightly open: Fricatives are spoken out this way

Particularly open: Results in a consonant of approximant type

Closed: Produces stops

This setting along with laterality (airflow besides or centered over the tongue) and nasality
(airflow is channeled through the nose or orally) is called the manner of articulation. A possible
sub-type is determined by the position of articulation thus if the consonant is generated in the
front or back of the mouth. Table 2.1 includes an example list showing common consonants
and their vocal tract setting.

Type Sub-Type Example Vocal Tract Setting
Stricture Nasality Laterality Position

approximant
semi-vowel /w/,/j/ slightly open oral cental

liquid /l/ slightly open oral lateral

fricative
/f/,/s/ partially open oral cental front
/h/ partially open oral cental back

stop
oral stop

/t/,/p/ closed oral cental front
/g/,/k/ closed oral cental back

nasal stop /n/,/m/ closed nasal cental
thrill /r/ special setting with rolled-back tongue and

vibrating sound in the mouth

Table 2.1: Vocal tract setup and consonant types and sub-types resulting from it.

2.1.3 Speech Description Parameters

Pitch

The pitch of a speaker’s voice determines the subjective voice ”height” and therefore is the
characteristic that makes a voice ”low” or ”high” for the listener. In general the pitch of a male
speaker is lower than a woman’s with, according to [34], a value of about 120Hz compared
to 210Hz. The pitch of a child is even higher than a woman’s with being located around 350Hz.

From a technical point of view the pitch is the perceived speech frequency that cor-
responds with the fundamental frequency the air oscillates with. Often the pitch and
fundamental frequency are confused of being the same. In fact, this might be the case for most
cases but nevertheless in some situations it does not apply due to psychoacoustic reasons.

7

Formants

Formants are a very important characteristic in speech processing. They are those frequencies
in the vocal tract impulse response that are resonated and therefore lead to a peak in the vocal
tract transfer function (Fig. 2.2). In most cases four to six of these frequencies are found in
the speech spectrum which are located in the appropriate kHz area thus Formant 1 (F1) is -
roughly - about 1kHz, formant two about 2kHz and so on. Nevertheless the actual value of a
specific formant fluctuates in time and is determined by the spoken phoneme for the first two
formants F1 and Formant 2 (F2) (e.g. the vocal /u/ results in the lowest formant frequency
and /i/ in the highest frequency respectively). Higher formants are independent from what is
spoken, they rather relate on who is speaking.
From this follows that for creating a speech-dependent pitch contour information from either
formant F1 or F2 has to be taken into consideration. Formants Formant 3 (F3) and upwards
would cause the contour to be speaker-dependent, for the sake of providing a universally valid
application using those formants were avoided when inventing this work.

Figure 2.2: Typical vocal tract transfer function of a speech signal with 4 formants.

Voiced/Unvoiced Phones

One categorisation of phones is their habit of being voiced or unvoiced. Voiced phones (like
e.g. the vocal /a/) are generated with filtering the oscillations generated by the larynx like
described in section 2.1.1. They therefore consist of a clear fundamental frequency with added
phone-dependent harmonics.

Unvoiced phones on the other hand can be treated simply as noise from a signal pro-
cessing point of view. Phones like /t/ or /s/ are not produced with filtering the oscillating air
stream but by forming sounds on the non-oscillating exhaled air using the vocal tract organs
- for example by clicking with the tongue. These facts result in an unvoiced phone having
higher-energetic spectral components in the upper frequency spectrum than voiced phones.
This property is often used for Voiced / Unvoiced (V/UV) categorisation.

8

2.1.4 Artificial Larynges

It can have lots of reasons why the body is not capable of producing (intelligible) sound.
This starts with birth defects but can also be due to diseases like cancer where the larynx has
to be removed surgically or accidents that hurt body parts needed for a clear voiced production.

In the year 2002 there were approximately 140000 people worldwide suffering from la-
ryngeal cancer ([30]), many of them can be helped with artificial larynges. According to [18]
there are about four to eight incidences in central Europe per 100000 inhabitants, in Austria
about five per 100000 ([19]). Men are nearly 10 times more at risk than as women.

Typical risk factors are (partially taken from [13]):

Smoking: With over 95% of all laryngeal cancer patients being smokers, smoking is the highest
risk factor that may lead to this type of cancer. This is reasoned with smoking causing
genetic alterations and the permanent non-clearance of the respiratory tract.

Alcohol: Alcohol is said to increase the negative effects of smoking so the combination of high
alcohol consumption in combination with smoking additionally increases the possibility
of coming down with voice box cancer.

Viruses: Certain viruses, such as Human Papilloma Virus (HPV) or acid reflux also affect
the respiratory tract, people suffering from one of these viruses are more likely to suffer
from laryngeal cancer for this reason.

Poison exposure: Occupational exposure to chemicals again attacking the respiratory tract,
for example coal dust, diesel fumes, nickel, . . . also increases the danger of coming down
with laryngeal cancer.

To still be able to produce voice without a larynx the missing or malfunctioning vocal organ
has to be substituted. In principle these methods are categorised in two groups: Alternative
speech methods that bypass the defective organs and artificial substitutes. One common
alternative speech method is known as esophageal speech. With it one is possible of producing
speech without being dependent on the oscillations in the vocal folds. These - necessary -
oscillations are produced by pushing previously swallowed air through the esophagus what
causes vibrations in the pharynx (muscles of the throat). By forming lips and mouth as usual
the vibrations are again filtered like with common speech and produce an utterance. The
method referred to as Transoesophageal Puncture (TEP) also belongs this family. With it
one surgically gets a connection between wind pipe (stoma) and food pipe (esophagus) which
is equipped with a one-way valve, the voice prosthesis. When wanting to speak the stoma is
covered with the fingers as shown in figure 2.3a. This, when breathing out, redirects the air
stream to the gullet and finally to the mouth. The forming of words is again done the common
way with filtering the leaving air stream with forming mouth and lips. Generally speaking
these methods have the advantage of sounding more natural than artificial substitutes like the
electrolarynx, however suffering from a lower pitch than the original voice. The electrolarynx
device which’s sound is supposed to be enhanced with the framework invented here is dealt
with separately and more detailed in section 2.1.4.

9

(a) The TEP device works with surgically con-
necting stoma and esophagus through a pipe in
order to redirect the air stream to the mouth
(source: http: // www. cancerhelp. org. uk).

(b) Electrolarynx devices are placed on the
throat, the vibrations the device generates are
forwarded to the air channel and finally the
mouth (source: http: // www. maxiaids. com).

Figure 2.3: Examples of common artificial voice boxes that are currently available on the market.

Electrolarynx

One wide spread aid is the electrolarynx or simply e-larynx device as shown in figure 2.3b. It
is used for replacing the functionality of the larynx in case of a defective or missing natural
one. As discussed in section 2.1.1 a function of the larynx is to generate the necessary
vibrations in the air channel. When replacing the larynx with an artificial adequate this
device must provide a similar functionality. The electrolarynx does so with controlling an
electric motor to vibrate at a constant frequency when running freely. Some models include
a method of letting the user adapt this frequency with a wheel (continuous alteration) or
additional buttons (discrete alteration through button-dependent, pre-defined frequencies).
Anyway, a proper coordination gets even more difficult then, some users therefore tend to
not make use of this functionality. If the patient now presses the electrolarynx device to
his/her throat these vibrations are transmitted to the vocal tract to generate the fluctua-
tions in the passing air stream’s pressure. Controlling the device’s activity periods can be
done with a push button on the electrolarynx. As alternative there are also electrolarynx
derivatives on the market that directly alter the air pressure in the air channel. To do so
the device uses a small tube which is fit into the corner of the mouth. Through this tube
air bursts can directly be injected in the air channel without having to alter it’s internal volume.

A proper usage of an external electrolarynx can be tricky because the user has to find
a location at the throat that optimally forwards the vibrations. This place is referred to as

10

http://www.cancerhelp.org.uk
http://www.maxiaids.com

sweep spot. Of course this spot should also be comfortable for the user to reach at first to
place the electrolarynx on and it at second should not start hurting after a longer period of
usage. The coordination between spoken words and switching the electrolarynx on and off is
also rather difficult at the beginning and needs some training to work fluidly. Same is the case
for accenting which can be achieved through varying the device’s loudness and frequency as
mentioned above if available for the used model.

The overall resulting speech will sound more or less the same independent of the used
electrolarynx type. The vibration frequency is constant, leading to a constant pitch of the
resulting voice. This sounds somehow artificial because the naturally produced pitch contour
slightly varies in time depending on the spoken phoneme. The electrolarynx voice therefore
produces a sounding often referred to as ”mechanic” or ”robotic”.

2.2 Speech Signal Processing Techniques

Speech signal processing techniques are tools based on mathematical principles used to analyse,
process and alter speech signals. A good overview about this topic can be found in [29]. This
book focuses on the discrete-time sub-family of signal processing techniques which is also dealt
with in this work. In fact every Digital Signal Processor (DSP) application just works with
discrete-time data samples due to the digital nature of the signal processor - continuous data
as produced by most sensors observing effects in nature is converted by the DSP’s Analog-To-
Digital (A/D) converter. The DSK6713’s Analog-To-Digital Converter (ADC) is the AIC23
audio codec which is discussed in chapter 2.3.3.

2.2.1 Block Processing

In principle the block processing or framing paradigm can be described as temporal seg-
mentation of the Input / Output (I/O) data stream in blocks or frames. This process is
helpful in the following processing steps to operate on both definite segments and pieces of
data where all included data values are available at the same time. If so the data values
can be operated on in one cycle with also having access to their temporal evolution despite
of executing the processing step at a single time instance. This is a fundamental need in
lots of signal processing applications because signals do not just contain information in the
actual data value but also in the developing of the overall signal defined by subsequent samples.

Anyway, this principle comes with the drawback of artificially delaying the processing
of samples. Because they all are concentrated and handled at once a single sample can never
immediately pass through the processing chain. Actually the first sample in the frame has been
captured BLKSZ−1 time slots before the frame is processed, the second sample BLKSZ−2
times, . . . This leads to an occuring delay for single samples of between the maximum as given
in equation (2.1) for the first sample in the frame and 0.0s for the last sample.

tdelay,max = (BLKSZ − 1) ∗ 1
fs

(2.1)

To provide a smooth transition between blocks, neighbouring ones are usually overlapped along
a definite length, the overlapping factor which is given in percent. Overlapping data segments

11

are summed up value by value, the resulting value then represents the actual input data value
for the given time instance. Figure 4.2 shows an example of three sequenced blocks overlapped
by a factor of 50%. All data values in one block are applied with a ”focusing factor” defining
the importance of a certain sample in the current block. In grouping all of these factors used
in a single frame together one gets the so-called window function. Typical window functions
are Hamming, Hann or Triangle windows ([29]). If the window function and overlapping
factor are chosen properly all overlapping, summed-up values at any time instance result
in a windowing factor of 1.0 - every overlapped data values’ sum equals the original input value.

Let’s have a closer look at this problem using an example: The overall signal x[t] con-
sists of 20 samples x[0] . . . x[19]. Choosing a block size of four with 50% overlapping this
results in nine complete block ({ 1 . . . 4], [3 . . . 6], . . . [17 . . . 19}). The window function is
chosen to be a triangular-like one, thus

• the 1st value of every block is applied with factor w1 = 0.25,

• the 2nd sample with w2 = 0.75,

• the 3rd sample with w3 = 0.75 and

• the 4th sample with w4 = 0.25.

So when for example the data value x[14] at time instance 14 has to be reconstructed it can be
seen that two blocks exist at this specific time - block b7 containing samples {x[11]7 . . . x[14]7}
and b8 containing {x[13]8 . . . x[16]8}. Sample x[14] is now reconstructed with adding both
overlapping samples which are applied with their appropriate window function as shown in
equation 2.2.

x[14] = x[14]7 + x[14]8 = w4 ∗ x[14] + w2 ∗ x[14]
= 0.25 ∗ x[14] + 0.75 ∗ x[14] = 1.0 ∗ x[14]
= x[14]

(2.2)

2.2.2 Linear Predictive Coding

Linear Predictive Coding (LPC) is a technique that tries to predict future data samples
through processing past ones. The amount of past samples taken into consideration for
the calculation is called the LPC’s degree or order. The predictor itself is mathematically
described as shown in equation (2.3), here for an order of three. The fact that the predictor is
purely linear can also be seen clearly in this equation - past data samples (x[n−1], x[n−2], . . .)
only appear as first order factors.

One widely spread algorithm is based on calculating the autocorrelation of the input
signal and using it to determine the coefficients of a chosen model, the wanted polynomial,
using Minimum Mean Squared Error (MMSE) approximation. The gathered result - some-
thing that all LPC implementations have in common - are the coefficient values aα. Inserted
in equation (2.3) these values can now be used to predict future data (x[n + 1], x[n + 2], . . .)
based in the processing of previous samples.

x[n] = a1 ∗ x[n− 1] + a2 ∗ x[n− 2] + a3 ∗ x[n− 3] (2.3)

12

2.2.3 Pitch-Synchronous Overlap-Add

The Pitch-Synchronous Overlap-Add (PSOLA) technique offers the possibility to alter a sig-
nal’s pitch without actually changing the duration. The original algorithm, nowadays referred
to as time-domain or Time Domain - Pitch-Synchronous Overlap-Add (TD-PSOLA) was
first invented by the French Telecom. It is based on working with fragments which are small,
overlapping parts of a signal. The TD-PSOLA technique now consists of three main steps:

1. Identifying and shaping the fragments based on the pitch-synchronous marks

2. Generating the new pitch-marks based on the target frequency

3. Placing the fragments at the new pitch-marks using Overlap-Add (OLA)

Figure 2.4: Working principle of the TD-PSOLA algorithm that uses overlapping of windowed
fragments in order to (b) increase or (d) decrease the signal’s pitch. For raising it the space between
fragments is decreased, otherwise increased (source: [24]).

Pitch-marks are placed along the input signal spaced by the signal’s original pitch (therefore
the term pitch synchronous). These pitch-marks identify the center of a fragment, the length
lfrag is dependent on the degree of overlapping. Usually 50% overlapping is used. The
fragment length lfrag is therefore 2∗ (tfragn−1

− tfragn
) with tfragn

indicating the time instance
of the fragment number n at the new pitch position. This results in 50% overlapping of
neighbouring fragments similar as in block processing (Sect. 2.2.1). To shape the fragments
they are applied with a window function, usually a triangle or Hamming window.

13

The new pitch-marks are calculated by placing marks spaced by the new pitch period 1
fnew

along the signal. The - now shaped - fragments are again placed at the center of these marks.
Due to lfrag being twice the space between two new pitch-marks they exactly overlap by one
half.
With shaping the fragments, now spaced by the original pitch, according to the new pitch
it may happen that some information at the fragment border is lost due to the signal being
zeroed there. This may happen if the window coefficient reaches 0.0 but is no problem and
actually wanted: With overlap-adding the segments, again spaced by the new pitch, the
fragments come closer together without artefacts in between - what makes the pitch increase
as wanted. On the other hand it might be that the fragments are shaped with a hull curve
that is larger than the actual space between the pitch-marks. This makes areas of the signal
belong to more than one fragment. But the same way as with shorter windows when again
overlap-adding the phonemes at the new pitch-marks there are no artefacts between the newly
positioned fragments because of the windowing - this leads to the fragments drift away from
each other without resulting artefacts in between the neighbours. The pitch decreases.

A visual representation of the algorithm is shown in figure 2.4.

2.2.4 Pitch-Marking

Figure 2.5: Example of a random signal and it’s corresponding pitch-marks that are spaced accord-
ing to the signal’s pitch. The markers themselves are located at the source signal’s peak positions.

14

Pitch-marking simply refers to the technique of applying timestamps to a signal that are
spaced by the signal’s pitch. Pitch-marking itself does not process a signal in any way but
just adds meta-information to the data stream. This is why pitch-marking is primary used
as a pre-processing step to further signal processing techniques such as PSOLA (Sect. 2.2.3).
Figure 2.5 shows an example of some input signal and it’s corresponding pitch-marks located
at the signal peaks and spaced by it’s pitch.

2.2.5 Pitch Tracking

A signal’s pitch is - maybe besides the loudness of the signal - it’s main and most obvious
property. Therefore this parameter has been under inspection for over a century meanwhile
resulting in a huge amount of possibilities to detect, process and alter it. A lot of those
techniques are still valid and commonly used nowadays. An interesting approach when taking
about pitch analysis is pitch tracking which is a way to detect the time developing of a signal’s
pitch. Usually this is done by short-time analysis of the signal’s spectrum. A trivial example
of a pitch tracking algorithm is peak detection in the frequency domain. Anyway this technique
is not very exact due to the high peak of the harmonics caused by the framing procedure. This
may create harmonics with higher energy than the pitch itself leading to a misinterpretation
of harmonics as the signal’s actual pitch.
Especially real-time applications, due to their limited processing power, frequently use the
zero-crossing detection for this reason. One does not have to calculate the signal spectrum
and can directly determine the pitch through analysis in the time domain. With zero-crossing
detection a signal’s pitch is detected by normalising the signal data of every frame (to remove
the bias) and count the zero-crossings in the current frame. Knowing the crossing amount
ncrossings, frame length BLKSZ and sampling rate fs it is easy to calculate the pitch F0 with
this information (Equ. (2.4)).

F0 =
fs

BLKSZ
∗ ncrossings (2.4)

For applications that depend on high accuracy pitch values zero-crossing might be to inaccurate
- small variations around zero are very common due to noise and might cause double-counts.
Therefore nowadays many pitch detectors are based on autocorrelation methods. Purely peri-
odic signals result in the autocorrelation peak at shift zero and (dependent on the used frame
size) slightly smaller peaks spaced by the signal period. So finding the highest peak is a
well-working approach to detect the signal’s pitch even in noisy signals.

2.2.6 Formant Tracking

The principle idea of formant tracking is the same as for pitch tracking - the trajectory of the
appropriate signal parameter, in this case the formant, is determined. The basic idea of the
algorithms for formant tracking and pitch tracking are the same therefore, only differing by
the way the parameter under investigation is calculated. However the short-time analysis and
time-domain investigation of the found parameter values remains the same.

To calculate a signal’s formant frequencies it can be chosen between several algorithms
that are available nowadays. A famous because easy yet accurate one works by finding the
local maxima in the transfer function approximated by a LPC analysis ([7]). This approach
advances a simple Fast Fourier Transform (FFT) because of the possibility to choose the

15

accuracy via LPC order. Besides a LPC analysis is by nature most accurate at the peaks
which are the sections of interest for formant detection anyway. These peaks indicate the
positions of resonant frequencies in the transfer function, thus the formants of the signal
under investigation. The LPC approach also produces smoother results than the FFT
approach. Nevertheless implementing a formant detector for real-time applications based on
LPC approximation might be too slow for the time critical audio signal processing sector.
Especially the polynomial roots calculation is very slow and therefore might be leading to
timing issues. An interesting alternative capable of dealing with these drawbacks is the
Inverse Filter Control (IFC) based formant tracking introduced by [47] and [45]. By using
inverse filters it is possible to suppress specific signal components from the input to analyse
dedicated signal parts separately. The IFC method makes heavy usage of this fact by mutual
suppression of specific resonant components to find other ones. For example the inverse filter
is used to suppress the frequencies surrounding the first formant to detect the peak at the
second. By recursively calculating the found formants and damping them to find neighbouring
formants it is possible to very accurately determine the searched formants’ frequencies by
simple time-domain filtering methods. The formant frequency estimation itself does not
have to be time intense because, due to the recursive calculation, the values gets more and
more accurate with every iteration even when using simple resonant frequency detectors like
zero-crossings and peak detectors.

2.3 DSK6713 Overview

2.3.1 Introduction

The DSK6713 is a digital signal processing board, manufactured by Spectrum Digital, using
the Texas Instruments TMS320C6713B floating-point signal processor. It is equipped with
a 16bit audio codec supporting sampling rates from 8kHz to 96kHz making the kit very
suitable for audio processing applications. Further components are internal 512kB non-volatile
flash memory as well as 16MByte Random Access Memory (RAM) memory, four Light
Emitting Diode (LED)’s and Dual Inline Package (DIP) switches for simple controlling tasks
and an Universal Serial Bus (USB) interface for programming the DSP via connected Personal
Computer (PC). For internal data exchange the Digital Signal Processor Starter Kit (DSK)
features an interrupt-based signalling system with Direct Memory Access (DMA) support.
The programming environment is a Microsoft Windows based software called Code Composer
Studio (CCS) and will be focused on in section 2.3.5. The CCS offers the possibility to program
and debug the DSP board using the programming language C via USB interface.

2.3.2 Digital Signal Processor

The DSP, responsible for all data processing tasks, is a TMS320C6713B floating-point signal
processor. It works at an operating frequency fCPU of 225MHz - this property plays an
important role in the development process of this framework because it determines the
computing speed, the one property determining the real-time ability of the final application.
This can be explained by the clock rate directly affecting the amount of operations that
are available in a certain time span, in this case the duration of one frame. Please refer to
table 2.2 for exact values.
The internal Central Processing Unit (CPU) architecture is Very Long Instruction
Word (VLIW)-based making it possible for the programmer to access all of it’s eight

16

functional units manually and at once via appropriate assembler command calls. This can -
at least theoretically - lead to a speed-up of eight at maximum if all functional units operate
completely parallel. In practice is a 100% load all functional units simultaneously over a long
period not possible due to data dependencies (proper partitioning is not possible) and the
inability of a single functional unit to perform all accumulated operations1. As alternative to
manually restructuring assembly code, the compiler can be utilised for optimising the source
code to use the processing pipelines as parallel as possible. More on writing source code for
optimal CPU load is found in [44]. The internal structure, including the eight functional units
L1, M1, S1, D1 and L2, M2, S2 and D2, are portrayed in figure 2.6.

Further information about the TMS320C6713B can be found in the appropriate data
sheet [40].

Figure 2.6: Internal structure of the TMS320C6713B DSP showing the eight functional units
of the C6713 CPU. Those units can be utilised for performing calculations simultaneously
(source: [40]).

1The functional units are organised in pairs with every pair being of the same type and therefore capable
of performing the same set of operations: Lx units work as ALU’s, Mx units are used for MAC operations, Sx
units perform branching and bit manipulation, Dx units execute fixed-point operations ([12, p.76]).

17

Measurement Value
Floating-Point Operations 1350 MFLOPS

Instructions 1800 MIPS
Multiply-Accumulate Operations 450 MMACS

Table 2.2: Reference values indicating the DSP’s operating speed.

2.3.3 Audio Codec

The audio codec used in the DSK6713 is a TLV320AIC23. It is used for audio data I/O and
therefore features an Analog-To-Digital / Digital-To-Analog (AD/DA) converter which is
based on the sigma-delta working principle. The connection interface is realised using 3.5mm
audio jacks whereas input devices may be connected to the line or microphone input, line or
headphone plugs are used for output. When wiring these interfaces is has to be kept in mind
that at the same time only one of the two input and output plugs can be used. Accessing
both interfaces leads to the automatic deactivation of one interface.

An overview about the codec’s technical specifications is given in table 2.3. The pro-
vided values are taken from [37]. This manual also specifies the communication protocol and
electrical characteristics that will not be discussed in this paper.

Overall Characteristics
Type high performance stereo codec
Internal System Clock 12MHz
Nominal I/O Level 1VRMS

Cut-Off Frequency (-3dB) 3.7Hz (44.1kHz), 4.0Hz (48kHz)
A/D Converter Characteristics

Sampling Rate 8kHz to 96kHz
Input Impedance (Typical) 35kΩ (line), 14kΩ (microphone)
SNR 90dB maximum

D/A Converter Characteristics
Amplitude Resolution 8, 10, 12 or 16 bit
Output Impedance (Minimal) 10kΩ (line), 16/32Ω (headphone)
SNR 100dB maximum

Table 2.3: Specifications of the DSK’s AIC23 audio codec.

2.3.4 Memory Management

The complete DSK consists of three levels of memory:

1. CPU cache

2. External flash memory

3. External Dynamic Random Access Memory (DRAM)

18

The smallest but fastest CPU cache is included directly in the DSP chip. It includes 8kB of
L1 cache (4kB program and 4kB data) as well as 256kB L2 cache. More interesting for the
programmer are the external memory components: The 512kB flash and 16MB DRAM can
be directly used for storing program data such as sine tables. In this framework, coefficients
of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters as well as
the window and excitation pulse data and FFT twiddle factor tables are stored in this memory.

Texas Instruments provides the possibility of mapping different types of data to differ-
ent memory modules for it’s DSP processors. This feature can be used for speed optimisation:
The programmer is usually aware of the used data block’s access frequency. The more
intense the Read / Write (R/W) operations on this data block are the better it would be
to place the block in a memory module that is accessible in the fastest possible way. Besides
speed optimisation the memory region size is a major role-playing factor when performing
the memory mapping. Regions with high memory demands have to be placed in large
modules for being able to provide the needed amount of memory - a wrong mapping leads to
non-executable programs because either the allocation of variables can not be completed or
the CCS is not even able to transfer all parts of the developed program to the DSP.

Table 2.4 contains a list of available memory regions that can be mapped to the appropriate
memory modules. The mapping used in this framework is explained in section 4.3.2.

Shortcut Memory Region
.vec interrupt vectors
.text executable program code
.data data from Assembler programs
.cinit tables for initialising variables and constants
.stack stack for local variables
.const initialised constants
.bss global and static variables
.sysmem dynamically allocated data
.far global and static variables declared far
.switch tables for switch instructions
.tables other table data
.cio needed as buffer for C I/O functions

Table 2.4: List of data regions that can freely be mapped to the available DSP memory modules
like flash and DRAM.

2.3.5 Programming the DSP Starter Kit

Development Environment

The preferred tool for developing DSP software is the Code Composer Studio (CCS)
development environment, provided by Texas Instruments. It is an all-in-one solution offering
the possibility to code, build and transfer programs to various types of Texas Instrument’s
processors. The internal compiler is already enhanced with several levels of code optimisation
routines to achieve low memory demand as well as high performance (see [44]). The coding is
done using either the low-level Assembler or high-level C programming language. If needed, a

19

mix of both languages is possible for example with calling Assembler functions within the C
code. This approach is a good choice when frequently called or calculational intense functions
have to be hand-optimised in Assembler but used within a C environment.

An elaborate overview about the possibilities and usage of the development environ-
ment is given in [42], this section focuses on functionality mainly.

Similar to comparable solutions like Microsoft’s Visual Studio Texas Instruments’ Code
Composer studio offers various possibilities to debug developed code. The debugging func-
tionality can even be accessed in real-time thus during the code is executed on the DSP. This
is a quite convenient when processing I/O data like data samples read by the audio codec.
The debugging itself is done with setting break and probe points and checking the current
register and variable contents. Break points are already well-known throughout the software
development sector but probe points might not be. They slightly differ from break points
targeting on meeting up with demands that arise in real-time coding. With probe points the
code execution does not stop when passing the marked line - only a snapshot of the current
state is given. So every time the execution passes a probe point the development environment
updates the variables linked with this probe in the Graphical User Interface (GUI) and
continues execution. An additional advantage especially for signal processing applications is
that besides simply printing variable contents, it is also possible to plot array contents in
form of two-dimensional diagrams. This simplifies the process of following signal changes
throughout the processing chain. The method of counting CPU cycles for certain intervals -
defined by the break points that are passed in the execution process - is yet another additional
tool with special focus on creating DSP applications. CPU cycle counting might be used as a
tool to exactly analyse the calculational complexity of program sections. In building real-time
applications this can be an approach to find and reduce bottlenecks.

C67xx Function Libraries

When developing applications for hardware devices it is the common case for manufacturers
to ship the hardware together with some kind of software Application Programmable
Interface (API). This eases up work by not having to implement communication protocols
and other low-level routines when accessing hardware modules. The DSK6713 includes such an
API as well, called Chip Support Library (CSL). An abstraction of several CSL routines with
focus on board-level routines is the Board Support Library (BSL). This library simplifies the
access to several higher-level DSP board functionality by utilising the CSL. Finally the Digital
Signal Processor Library (DSPLib) can be integrated in software projects. The DSPLib
includes common signal processing functionality using processor-optimised calculation routines.

The mentioned libraries are available in form of pre-compiled *.lib files that can be
included in CCS projects using the appropriate project configuration setup.

Peripheral Support Language Peripheral Support Library (PSL) is a term combining
both Chip Support Library (CSL) and Board Support Library (BSL). As mentioned before
the CSL is a software API written in C for accessing low-level routines to control on-chip
peripherals. These peripherals include:

20

• External Memory Interface (EMIF)

• Cache

• Interrupts

• (Enhanced) Direct Memory Access ((E)DMA)

• Power logic

• Timers

• . . .

A complete list of controllable modules as well as included functions and their usage is given
in [39].

Equal to the CSL, the BSL API implements functions for abstracting hardware func-
tionality written in C. Contrary to CSL functions BSL functions are used to control
board-level peripherals ([38]). The BSL builds up upon the CSL, it can for this reason be
considered to be a higher-level of abstraction. BSL functions might be used to

• perform board initialisation and reset,

• access the flash memory,

• control LED states,

• read DIP settings and

• control the audio codec.

Digital Signal Processor Library The Digital Signal Processor Library (DSPLib) is a
function library including target-optimised general purpose signal processing functions. The
target optimisation is done at assembly level, the functions themselves are C callable. Due to
the target-DSP optimisation there are several versions of the DSPLib available, one for each
supported processor. The library’s functions are run-time and memory optimised.

Implemented in the library are:

• Correlation

• Fourier transform

• Filtering and convolution

• Adaptive filtering

• Mathematical routines (vector sum, scalar product, . . .)

• Matrix based routines (matrix multiplication, transposing, . . .)

• Utilities (memory swapping, format conversions, . . .)

Because the TMS320C6713 is a floating-point processor it’s DSPLib includes a single-precision
and double-precision version for most of these functions. Additionally, for a full list of available
functions and their usage please refer to [41].

21

22

Chapter 3

Design

With knowing the introduced basics it is now possible to design the enhancement routines. At
a glance two different approaches are needed whereas either one intends to handle on of the
two drawbacks which were discussed in chapter 1: The suppression of the Direct-Radiated
Electrolarynx Noise (DREL) component and the new contour generation for the signal’s pitch.
DREL suppression is going to be realised using a multipath separation approach. Using this
technique the two signal paths speech signal and DREL noise can be parted and the noise
component dampened. This might be done with either operating in the time domain (modu-
lation spectral filtering) or in the frequency domain (spectral subtraction). The pitch contour
generation module uses several analysis routines to determine necessary signal properties for
generating a new contour and utilises them to properly synthesise the output.

3.1 Multipath Separation

Multipath Separation (MS) refers to the technique of separating various signals or signal
parts from a data stream consisting of a combination of these signals. This usually happens
when a signal is generated by components from different sources that add up to a single data
stream before reaching the receiver. One application making heavy use of those algorithms is
noise suppression: Every real-world system is affected by the presence of noise so the transport
of analog information between sender and receiver is always corrupted by an additional noise
component. With digital data the noise component might be present in the signal as well but
does not necessarily affect the transported information due to discretisation.
Communication channels showing the behaviour of being Additive White Gaussian
Noise (AWGN) channels are characterised by an additive noise component n(t) which is
added to the original signal s(t) and results in the final signal x(t) arriving at the receiver
(Equ. (3.1)). MS techniques can now be utilised to identify signal components of either being
signal or noise components (thus signal and noise are separated). With finally damping the
identified noise components the receiver is able to estimate the data signal ŝ(t) out of the
received signal x(t).

With applying the MS technique to the current application the data signal x(t) is equal to the
speech signal (fine-dotted line in figure 3.2) and the (to be suppressed) noise component n(t)
is the DREL component. Both signals originate from a different source - the speech signal
from the speaker, the DREL signal from the electrolarynx device - but are spread through
the same communication channel, the air between speaker and listener. This makes the two

23

components overlap and be recognised as single signal at the listener’s ear. Unfortunately in
doing so the additive DREL component corrupts the speech signal and therefore decreases the
intelligibility. With using one of the two multipath separation approaches mentioned below
it is possible to again suppress the DREL component at the receiver in order to support the
listener in understanding the words spoken by his/her conversation partner, the electrolarynx
user.

x(t) = s(t) + n(t) (3.1)

3.1.1 Modulation Spectral Filtering

Modulation Spectral Filter (MSF) is a signal processing technique that analyses and utilises
the temporal evolution of a signal’s spectral components. MSF performs the processing of
specific spectral components by applying a filter to their temporal developing that accordingly
alters the components. In order to dampen temporally constant spectral components as
needed in this application (the DREL component has this behaviour) this filter must show
a high-pass behaviour. Filters working that way result in a suppression of frequencies that
are constant in time or at least very low. This can be thought of as a filter that suppresses a
constant tone like when blowing a whistle but let’s pass an altering signal like a siren without
taking influence. See figure 3.1 for a comparison between signals with constant and varying
trajectory.

Figure 3.1: Signal components showing a temporal envelope that is constant in time (upper pic-
ture) as well as a varying one (lower picture). The signals themselves are printed in blue, their
envelopes in red.

24

Due to their behaviour modulation spectral filters may be used to suppress DREL noise. The
main property of DREL noise is it’s constant-in-time energy so filtering a DREL affected
signal with a MSF results in a signal with suppressed DREL component. Nevertheless this
approach cannot be applied to signals other than speech because e.g. music consists of
various sound sources that might also show signal components with time-invariant character.
Those sounds would be heavily affected by the filter - the noise suppression filter would
also take influence on the clean signal and not just the noise! With speech input this is not
the case: The typical speech signal does not consist of components with a lower frequency
than about 2Hz. So when adjusting the filter in a way that it just mutes components with
higher frequencies the clean speech signal will just be minimally altered by the modulation
spectral filter with removing (mainly loudness-related) constant parts but keeping the ac-
tual speech information. The loudness discrepancy effect will also be focused on in section 5.1.2.

For further information about the process of suppressing DREL noise please refer to
[20]. Detailed information about the processing algorithm and implementation can be found
in chapter 4, the principle block diagram is shown in figure 3.2.

Figure 3.2: Principle block diagram of the MSF-based MS method. The speech signal is generated
in the sound source block by filtering the e-larynx speaker’s spoken words with the basic oscilla-
tions produced by e-larynx. This signal is afterwards enhanced by the sound processing block with
suppressing it’s DREL component and forwarded to the sink.

3.1.2 Spectral Subtraction

Spectral Subtraction (SS) (see [26]) is a signal processing method, utilisable by the MS ap-
proach, that works in the frequency domain. It describes an algorithm that suppresses specific
spectral components without touching the remaining components. In terms of noise suppres-
sion the frequency pins to be dampened are determined with estimating the noise spectrum.
Obviously signal and noise are not allowed to be correlated for being able to exactly part
the pins. So SS is mainly used to remove noise components from a signal that are located
at definite frequencies. Problems might occur when the clean signal also consists of spectral
components in this band because they are suppressed as well. The noise estimation would not
work properly in such a situation.

25

In [9] this method for reducing noise within speech applications was first introduced. The
article gives the following description of SS: In spectral subtraction, an estimate of the average
noise magnitude spectrum is subtracted from the short-time speech-plus-noise spectrum to give
an improved estimate of the speech signal. This approach explicitly works with the spectral
pin’s magnitudes - the phase will be kept untouched. See equation 3.2 for a mathematical
description with S(ω) standing for the approximated speech signal, N(ω) the noise estimate
and X(ω) the noisy input.

S(ω) =
√
|X(ω)|2 − |N(ω)|2 ∗ ej∗arg(X(ω)) (3.2)

Again detailed information about the processing algorithm and implementation can be found
in chapter 4.

3.2 Pitch Contour Generation

Pitch Contour Generation (F0gen) is an approach to enhance the quality of electrolarynx
speech with avoiding the strange-sounding constant speech’s pitch. The idea was first
published by [20] and makes use of the relation between formant and pitch in the speech
prosody.

The principle workflow consists of analysing the input signal to parse out the formant
information, post-process it and finally alter the (constant) pitch according to the resulting
formant contour. This alteration can either be done by direct appliance it to the captured
speech via Pitch-Synchronous Overlap-Add (PSOLA) methods (Sect. 2.2.3) or by creating a
feedback loop by controlling the electrolarynx vibration frequency by generating pitch contour
dependent driving pulses for the electrolarynx device. When directly altering the speech signal
it is also necessary to somehow output the generated signal - this is either done via loudspeaker
or by replacing the original with the enhanced signal when using an alternative communication
channel like a telephone et cetera. In fact this might even be the preferred method because
a direct output with loudspeakers would interfere with the original signal and lead to a
degrading intelligibility. This problem does not occur when using the framework to control the
electrolarynx operating frequency because the feedback affects the speech signal immediately.
Figures 3.3 and 3.4 illustrate the difference between the two operating modes. The men-
tioned post-processing consists of contour smoothing, outliner detection and scaling operations.

Detailed information about the processing algorithm and implementation can be found in
chapter 4 as well.

26

Figure 3.3: Principle block diagram of the pitch contour generator operating in ”processed signal
output” mode. The speech signal is generated in the sound source block, enhanced through DREL
suppression (MS block) and equipped with a suitable pitch contour (F0gen blocks) in the sound
processing unit and finally passed to the sound sink.

27

Figure 3.4: Principle block diagram of the pitch contour generator operating in ”driving pulses
output” mode. The speech signal is generated in the sound source block with the appropriate
F0 driving the shaker whereas the F0 calculation and pulse generation are executed in the sound
processing block. The contour-equipped e-larynx speech signal works as final output as perceived by
the conversation partner as well as input for the sound processing block in order to perform the
enhancement continuously.

28

Chapter 4

Implementation

The implementation chapter shall give a deeper and more detailed view about the final real-
isation of the Digital Signal Processor (DSP) framework. The main focus lies on the imple-
mentation of the different processing algorithms, their operating principles, setup and usage.
The configuration of the used hardware - the DSK - will also be discussed in terms of AIC23
data exchange and memory management. Additionally relevant factors caused by the effects
of real-time processing that influence the development will be presented as well as approaches
to handle them properly.

4.1 Experimental Setup

Figure 4.1: Experimental setup of the enhancement framework: Black blocks indicate the common
signal flow between electrolarynx and headphone and red the one used for controlling the shaker in
driving pulse output mode. The green path shows the signal flow between signal generator and
oscilloscope that was used in several debugging situations.

29

The component’s wiring as used during the development is shown in figure 4.1. Hereby the
typical signal paths for different operation modes are shown in different colours: The black
path is the default one between electrolarynx voice input and headphones used for monitoring
the result. In case the pitch contour generation is switched on and operating in driving pulses
output mode (indicated by the signal path displayed in red) the shaker produces the contour-
equipped electrolarynx voice, the generated control pulse signal is returned back from DSP
output to the shaker after being amplified in the power amplifier. Finally the green signal
path pictures the flow between signal generator which feeds the framework with a dedicated
input and the oscilloscope that captures the DSP altered, consequential output. This method
was mainly used for debugging procedures where a well-defined input was needed to analyse
the application’s input-output behaviour.

4.2 Block Processing Framework

Due to the implemented speech enhancement algorithms making intense usage of block filters
(Finite Impulse Response (FIR)/Infinite Impulse Response (IIR), Modulation Spectral
Filter (MSF), . . .) and block transforms (Fast Fourier Transform (FFT)) which based on
the principle explained in section 2.2.1, a block processing environment had to be realised.
The skeletal structure is provided by [16] as discussed in section A.2.1 and provides all needed
functionality: Framing with interrupt-driven Input / Output (I/O), frame overlapping and
the possibility to overlap-add frames can be integrated in external source code very easily.
The block processing framework features a high modularity and a central configuration file
to allow easy setup and handling. Detailed implementation and configuration topics are
discussed in [16] and can be referred to if required.

The current implementation performs the framing procedure using a block size of 256
(32ms for fs=8kHz). The reasons for choosing this exact value are discussed in section 4.5.3.
At a glance 256 turns out to be the best trade-off between quality and operating speed.
Furthermore overlapping was performed, operating with an overlapping factor of two (50%
overlapping). With applying a Hann window (Sect. A.1.2) to the overlapping frames in
combination with overlap-adding them occurring artefacts on the frame transitions are
minimised. The overall processing workflow is presented in figure 4.2.

The sampling rate had to be kept to a minimum in order to provide the DSP enough
time for performing the enhancement calculations in real-time. The AIC23 codec, as described
in section 2.3.3, is capable of sampling with 8kHz at minimum. According to Nyquist this
results in a maximal signal frequency of fin < fs

2 ⇒ fin < 4kHz which is sufficient for
speech processing applications. Speech signals are made up from low-frequency components
compared to for example music. The pitch is located around 150Hz, spectral components
higher than 4kHz are certainly existent but mainly caused by noise-like sound which does not
affect the overall intelligibility of the speech signal that much.

30

Figure 4.2: Temporal workflow of the captured audio data as processed by the block processing
framework. The input samples are concentrated to sub-blocks that are directly exchanged with the
codec. Internally sub-blocks are again reorganised into overlapping blocks. The amount of sub-blocks
in one block is determined by the overlapping factor, the transition between blocks is smoothed using
OLA of the overlapping block parts after applying an appropriate window.

4.3 Hardware Setup

4.3.1 Audio Codec

Accessing the codec functionality was done using the Board Support Library
(BSL). The library provides functionality for setting up as well as Read /
Write (R/W) data from/to the AIC23 by implementing the codec’s communi-
cation protocol and sending the needed commands. Especially this functional-
ity is included in functions DSK6713 AIC23 openCodec(), DSK6713 AIC23 closeCodec(),
DSK6713 AIC23 config(), DSK6713 AIC23 setFreq() for the setup and configuration proce-
dure and DSK6713 AIC23 read() as well as DSK6713 AIC23 write() for data exchange pur-
poses. The sampling data is transported in pairs with one pair including the I/O samples of
left and right channel. In practice this leads to every data value being a 32bit sample con-
sisting of the upper 16bits for the left channel and the lower 16bits for the right one. The
initial configuration procedure includes the possibility to set up behaviour like the volume of
the channels as well as the sampling frequency.

31

The actual data exchange may be done using either polling or an interrupt-driven approach.
Due to the high demand towards operating speed the interrupt mode was chosen to be im-
plemented - polling wastes way too much effort in periodically checking for new data. To
implement the data exchange routines using interrupts, the data handling routine has to be
linked to the desired interrupt. The interrupt vector table is the correct way to do so - the
wanted interrupt simply includes a branch command to the data exchange routine. The alter-
ation of the interrupt vector table is done via adapting the vector file vectors.asm. This file
is included in every Code Composer Studio (CCS) project and tells the development environ-
ment how to set up the interrupt table when programming the DSP. Finally the interrupt itself
has to be activated and linked to the audio codec during the initialisation. The BSL functions
IRQ enable(), IRQ nmiEnable() and IRQ globalEnable() perform these operations.

INT8:
b edma isr
NOP
NOP
NOP
NOP
NOP
NOP
NOP

The above section shows the used implementation in the interrupt vector table: Interrupt 8
branches to the edma isr() routine that includes the data exchange routines with the audio
codec. With linking interrupt 8 to the AIC23 using IRQ enable() the audio codec will raise
the appropriate interrupt every time new data arrives.

4.3.2 Memory Management

The memory setup is configured similar to the interrupt vector table as discussed in sec-
tion 4.3.1: The CCS expects a special configuration file it utilises for setting up the compiler.
In case of memory management this is the linker command file. It’s name can be chosen freely,
the identification is done via it’s *.cmd extension. This file contains information about size
and assignment of memory sections. Important sections will be discussed in the following lines:

-stack 0x900
-heap 0x2F0000

This section informs the compiler about the size of heap and stack. The heap contains the
program’s dynamically allocated memory whereas the stack is used for saving return addresses
and parameters when calling subroutines. The stack can be kept rather small, it usually takes
high values using recursive calls but those should be avoided due to large management overhead
in DSP applications anyway. The heap on the other hand has to be of a larger size because this
framework makes heavy use of dynamically allocated arrays to save input and delayed frame
data, results of spectral analysis, et cetera.

32

vecs: o = 00000000h l = 200h
IRAM: o = 00000200h l = 0003fe00h
CE0: o = 80000000h l = 01000000h

The above lines set up the memory regions used in the linker command file whereas the first
parameter specifies the name of the region, the o parameter the origin (the start address) and
l the region length. In this example IRAM defines the flash memory starting right after the
interrupt vectors vect with a length of 256kB. The start address of the Dynamic Random
Access Memory (DRAM) is 0x80000000, CE0 therefore defines a memory segment in the
DRAM with length 16MB, the complete DRAM memory.

.vec > vecs

.text > IRAM

.data > IRAM

.cinit > IRAM

.stack > IRAM

.const > CE0

.bss > CE0

.sysmem > CE0

.far > IRAM

.switch > IRAM

.tables > IRAM

.cio > IRAM

Finally the specific data segments are mapped the the memory regions defined above. This
example is the final mapping used by the sound enhancement framework. It defines that all data
except .const, .bss and .sysmem are stored in the flash memory, the mentioned sections are
stored in the DRAM. For a better understanding table 2.4 explains the existing data segments
and their shortcuts (a full list of sections can be found in [43]). Using this information it can be
seen that the DRAM holds constants, global variables and dynamically allocated data. This
is necessary due to the high memory requirement of these regions - constants are stored as
floating-point values so every single value requires four bytes of memory. With the high amount
of data values the overall memory requirement is too high for the flash memory. In the global
area high amounts of logging data are stored (mainly floats as well), dynamically allocated
data is used for most arrays and matrices in the enhancement procedure. Nevertheless the
flash memory should be preferred over the DRAM, access to this module is faster.

33

4.4 Modules

The speech enhancement methods were implemented using a module-based structure. Every
component forms it’s own module that interacts with others through sharing either the same
data or meta-information. In most cases this shared data is the input frame which exchanged
between modules via main() method which is called on every occurring interrupt. Meta data
like formant or spectral information is held by the module that calculated it, the transfer
between modules is again done by the main() method with reading the calculated data from
one and passing it to the other module.

The following section describes the working principle of the various modules, their in-
teraction with each other sticks to the principles explained in chapter 3, the main() method’s
supply with frame data is based on the block processing principles as shown in section 4.2.

4.4.1 Fast Fourier Transform

There are two possibilities to perform a FFT dependent on the block/frame length which
equals the FFT point size: For lengths being a multiple of two the Digital Signal Processor
Library (DSPLib) function DSPF sp cfftr2 dit() can be used. This pre-compiled and
processor optimised routine optimally loads the processor’s functional pipelines what makes
it the fastest and most effective method of performing a Fourier transform. The drawback
when choosing this method is a limitation to input data lengths being a power of two because
DSPF sp cfftr2 dit() is based on the radix-2 FFT implementation.

The DSPF sp cfftr2 dit() is called with parameters x, w and n whereas x is utilised
as input and output as well. Input data is the time domain signal, output data is the resulting
spectrum. The data values for both input and output have to be complex in form of the input
array consisting of the real value parts stored at even array indices and the imaginary parts in
the subsequent odd ones like shown in equation (4.1). The data signal captured by the audio
codec is purely real, it therefore has to be expanded with imaginary parts that are set to zero.
The w parameter is the twiddle factor, the complex coefficients used by the FFT and finally
n describes the input data length (which is equal to the FFT point size). See equation (4.2)
for the exact prototype.

complex = [Re(x1), Im(x1), Re(x2), Im(x2), ..., Re(xn), Im(xn)]
real = [Re(x1), 0, Re(x2), 0, ..., Re(xn), 0] (4.1)

void DSPF sp cfftr2 dit(float* x, float* w, int n) (4.2)

In the process of finding the best performing value for the block size also other, rather common
block sizes like 160, 192, 320 et ectera, were utilised in the development process. To perform
transforms with these block sizes an external FFT implementation had to be used. Please
refer to section A.2.2 for details.

34

The mentioned implementation already includes the possibility to limit the spectral
transform to purely real input signals what is a great benefit for the framework. The FFT’s
input data is provided by the audio codec, therefore the Fourier transform is always applied
to purely real input data. In contrast to complex signals real ones always result in a spectrum
where all spectral components satisfy the symmetry property Xk = X∗

N−k of the Discrete
Fourier Transform (DFT) as explained in [29, p.568]. This property, called Hermitian
symmetry, explains that every spectral pin above N

2 is a complex conjugate of the mirrored pin
in the lower spectrum half. This can be seen in figure 4.3: The mirrored magnitude component
pairs are equal, their phases antisymmetric. This property can be used for speeding up the
MSF: Just one half of the spectrum has to be processed, the other half can be mirrored.
The DSPLib does not provide a FFT function for calculating purely real input. The
utilisation has to be done manually with just using one half of the gathered spectrum for
further calculations and mirroring the missing half before performing the Inverse Fast Fourier
Transform (IFFT).

Figure 4.3: Purely real input signal (upper picture) and it’s amplitude (center picture) and phase
(lower picture) response. The Hermitian symmetry of DFT transformed, purely real input signals is
indicated by the mirrored frequency components’ magnitudes their mirrored, antisymmetric phase.

To accomplish even further speed enhancement the forward Fourier transform was also
tested using even/odd decomposition. This technique, as covered in [35], can be applied to
real-valued input signals and is capable of transforming a signal of length BLKSZ using a

35

BLKSZ
2 point transform instead of BLKSZ. The algorithm utilises the Fourier transform’s

Hermitian symmetry property by mapping the real-valued input to real (even elements) and
”fake” imaginary (odd elements) components as shown in equation (4.3).

real input = [Re(x1), Re(x2), Re(x3), Re(x4), ..., Re(xn)]
′′complex′′ input = [Re(x1), Im(x2), Re(x3), Im(x4), ..., Im(xn)] (4.3)

The accordingly arranged input array is then converted using the complex FFT and post-
processed to recombine the transforms of even and odd components into a single result for the
actual input signal. The listing below explains the rough processing steps using the algorithm
from [35].

01. //1. pre-processing
02. re-arrange input array x[] to xe/o[]
03. //2. Fourier transform
04. Xe/o = F{xe/o[n]} with resolution BLKSZ

2
05. //3. post-processing
06. parse Xeven = F{xe[]} from Xe/o

07. parse Xodd = F{xo[]} from Xe/o

08. combine Xeven and Xodd to X = F{x[]}

Nevertheless the tested implementation performed even worse than the method using
nulled imaginary components in terms of calculational complexity. Without using even/odd
decomposition the forward FFT could be executed in 436k CPU cycles compared to 494k
when using it. This numbers result in a loss of complexity equal to 11%. Several studies,
including [35], name a gain of about 40% in average - the high discrepancy occuring here is
caused by the inefficient post-processing that additionally has to be performed when using
even/odd decomposition: The calculational effort of manual post-processing (no assembly-level
optimisation) is much higher than the last butterfly stage in a BLKSZ point FFT (optimised
if using the DSPLib version) that would be spared otherwise.

The IFFT is performed more or less similar to the forward Fourier transform by using
the DSPLib quoted in equation (4.4). Parameters are equal to the forward FFT except of
the input being the frequency-domain spectrum instead of time-domain signal. Internally the
IFFT implements a decimation-in-frequency algorithm (hinted by the function name’s ending)
instead of the decimation-in-time the forward FFT uses. Nevertheless this does not affect the
way of calling the function or preparing the input data. For more information about FFT
algorithms please refer to [29, p.635].

void DSPF sp icfftr2 dif(float* X, float* w, int n) (4.4)

36

4.4.2 Finite Impulse Response Filter

FIR filters are digital filters with a finite response length - it is zero outside the operating length
of the filter. This is explained by the missing feedback compared to IIR filters. The response of
a FIR filter is calculated with equation (4.6) where x[t] stands for the input sample at time slot
t, y[t] for the appropriate output sample and ci is the ith coefficient, the amount of coefficients
cN determines the filter size N . This equation, formally a convolution of signal x[t] and FIR
coefficients c[i], can also be expressed in summation notation as shown in equation (4.7). The
convolution functionality is provided by the DSPLib function DSPF sp fir gen() and should
again be preferred over self-coded implementations due to it’s optimisation for the DSP’s
Central Processing Unit (CPU).
DSPF sp fir gen() (see equation (4.5) and figure 4.4) is called with parameters x, h, y, nh
and ny. Parameter x is the input signal, y the output and h the coefficient array pointer. nh
and ny specify the parameter lengths with nh indicating the coefficient array length and ny
the output data length. The input data length has to be of length nh + ny − 1 caused by the
internal convolution.

void DSPF sp fir gen(float* x, float* h, float* y, int nh, int ny) (4.5)

y[t] = a0 ∗ x[t] + a1 ∗ x[t− 1] + · · ·+ aN ∗ x[t−N] (4.6)

y[t] =
N∑
i=0

ai ∗ x[t− i] (4.7)

Figure 4.4: Processing blocks of a - in this case - 2rd order FIR filter with z−1 being the 1st order
time delay elements and ax the coefficients of the gain blocks.

The primary purpose of FIR filters in this framework is to perform pre-emphasis calculations
and inverse filtering the microphone’s frequency response. The pre-emphasis is a 1 − z−1 fil-
ter and therefore a FIR filter with N = 2 and c0 = 1, c1 = −1. It is used in the Inverse
Filter Control (IFC)-based formant detection approach (Sect. 4.4.10) as part of the signal
pre-processing. The inverse filtering of the microphone’s frequency response is a countermea-
sure against the distinctive near-field effect of the used microphone. Figure A.1 shows the
frequency response of the used headset microphone. The 10dB increase of low frequency signal
components between 0Hz and about 300Hz at small distances to the microphone (30mm in

37

the figure) can be clearly seen. To linearise the frequency response a inverse filter was imple-
mented as part of the overall pre-processing routine. It targets on cancelling this gain using a
FIR filter designed in Matlab. The filter design is discussed in section A.1.1.
Additionally an implementation of the MSF was done using FIR filters instead of IIR’s. It’s
purpose was to compare the filter results dependent on the used filter type. Section 5.2.3
analyses the gathered results.

4.4.3 Infinite Impulse Response Filter

The implementation of IIR filters is based on the biquad structure described in [29, p.356].
Biquads are 2nd order IIR filters, with chaining them arbitrary filter orders can be reached. A
typical biquad block, as shown in figure 4.5, is described by it’s five parameters a1, a2, b0, b1
and b2 with the a components being the feedback gain or denominator (these components are
located in the filter impulse responses denominator) and the b components being the forward
gain or numerator respectively. The IIR behaviour is caused by the internal feedback which
is the main difference compared to FIR filters. The feedback behaviour is determined by the
a parameters as seen in figure 4.5 as well as in equation (4.8).

y[t] = b0 ∗ x[t] + b1 ∗ x[t− 1] + b2 ∗ x[t− 2]− a1 ∗ y[t− 1]− a2 ∗ y[t− 2] (4.8)

Figure 4.5: Structure of a biquad IIR filter in DF1 with forward (bx) and feedback (ax) coefficients
as well as 1st order time delay elements z−1.

Knowing these coefficients IIR filtering is performed using the biquad() function provided by
the DSPLib framework. As shown in equation (4.9) It is provided with parameters x and n
being the input data sample and biquad order, c are the filter coefficients b and a in a specially
aligned form as shown in table A.1. Worth mentioning is that parameter b0 is assumed to be
1.0. Eventually the other b parameters have to be scaled to fulfill this requirement. Return
value of the function is the current output sample y[t]. Finally the z parameter contains the
current internal delay state of the filter structure. To apply the filter to a complete frame, the
method has to be called in a loop.

float biquad(int n, float* c, float* z, float* x) (4.9)

The parameter calculation is discussed in section A.1.1.

38

4.4.4 Windowing

The windowing functionality was a straight-forward implementation: Dependent on the length
of the input frame the window coefficients are calculated as shown in section A.1.2. Every
frame sample is then multiplied with the appropriate coefficient. Worth mentioning here is
that the coefficients for frequently used frames and therefore window sizes are pre-calculated
to save calculation time.

4.4.5 Linear Predictive Coding

The Linear Predictive Coding (LPC) algorithm used for the implementation is based on three
fundamental steps:

1. Build the autocorrelation matrix of the system: To get the entries for the matrix an
autocorrelation is performed for every delayed signal sample in order to determine the
coefficients ass[i] of the matrix. Index i stands for the delay of the autocorrelation value.
The resulting matrix possesses a Toeplitz structure which looks like shown in table (4.1)
for a size of N with N being the LPC order. A Toeplitz matrix therefore has equal
diagonal elements, in this case it is symmetric as well.

2. Find the system solution: To get the wanted coefficients the system, described by a
Toeplitz matrix, has to be solved. This is done using the Levinson-Durbin algorithm,
an iterative approach to solve a system being described by a Toeplitz-form matrix. The
necessary steps are shown in equation (4.10) with Ass being the Toeplitz matrix elements.
The algorithm is a slightly altered version of [23].

3. Store the system coefficients: The wanted coefficients can be obtained after performing
the Levinson-Durbin algorithm, they are contained in the α matrix as row vector at
position N − 1, thus α[∗][N − 1].

[ass[0] ass[1] ass[2] . . . ass[N − 1]
ass[1] ass[0] ass[1] . . . ass[N − 2]
...

.
...

ass[N − 1] ass[N − 2] . . . ass[1] ass[0]]

Table 4.1: Matrix in Toeplitz structure: The elements in the diagonals are equal and mirrored
along the main diagonal.

0. αx,y = 0 . . . 0 < x < N − 1 , 0 < y < N − 1
kx = 0 . . . 0 < x < N − 1
ex = 0 . . . 1 < x < N − 1
e0 = Ass[0]

for i = 0 to N-1

1. ki = 1
ei
∗ (Ass[i+ 1]−

∑i−1
i=0 αj,i−1 ∗Ass[|i− j|])

2. αj,i = αj,i−1 − ki ∗ αi−1−j,i−1

αi,i = ki

3. ei+1 = ei ∗ (1− k2
i)

(4.10)

39

4.4.6 Voice Activity Detection

The decision whether a frame includes speech data or just background noise is made us-
ing an energy threshold. If the overall frame data’s energy Eabs or Edb if given in dB ex-
ceeds a certain threshold it is considered to be ACTIVE. This approach has the advantage
of performing very well despite of being computational cheap. The frame energy is calcu-
lated using equation (4.11): It simply consists of N =BLKSZ additions for calculating the
sum and N square operations for getting the data sample’s power x[i]2. The maximal possi-
ble energy Emax, occurring if all data samples would have the maximal value possible xmax,
just has to be pre-calculated once in the initialisation procedure. The value a data sample
can have at maximum is determined by the audio codec’s amplitude resolution. The BSL
function DSK6713 AIC23 read() converts samples to pairs of 16bit values so xmax results in
±216 = ±32767.

Emax =
∑N−1

i=0 x2
max =

∑N−1
i=0 327672 = N ∗ 327672

Eabs =
∑N−1

i=0 x[i]2

Edb = 10 ∗ log10(Eabs
Emax

)

(4.11)

4.4.7 Voiced/Unvoiced Detection

The principle the Voiced / Unvoiced (V/UV) detector is based on is the different spectral
behaviour of voiced and unvoiced sounds in the high-frequency region. In voiced speech seg-
ments the energy majority is located within the fundamental frequency and first few harmonics
because of the high periodicity of voiced phones. On the other hand unvoiced phones can be
considered to be noise from a signal processing point of view. There is no dominant periodic
part to claim the energy majority for it’s spectral component. The energy fragmentation is
more consistent in this case, the relation between energy of high- and low-frequency spectral
components is more constant therefore.
This property can be utilised using a threshold decision for the spectrum’s energy centroid.
Due to the higher energy of spectral pins in the upper part of the spectrum the centroid is
shifted towards higher frequencies in unvoiced frames. This is why frequency thresholding of
the calculated centroid can be used for the V/UV decision: Voiced frames lead to centroids
below the frequency threshold, unvoiced frames vice versa. See equation (4.12) for an algebraic
description.

fcentroid =
1
N
∗

N∑
i=1

i ∗X[i]2 ⇒

{
V fcentroid ≤ fth
UV fcentroid > fth

(4.12)

This algorithm was also investigated by [28].

4.4.8 Pitch Tracking

To perform pitch tracking two fundamental different approaches were implemented. The goal
was to determine both algorithms’ performance in terms of speed and accuracy for selecting
the overall better performing one.

40

Autocorrelation Method

The pitch extraction procedure is an implementation of the proposal by [8]. This algorithm is
also used in Praat ([31]) and therefore already tested in it’s robustness and accuracy. In it’s
basics this approach already exists for over 40 years. It uses a detection of local peaks in the
signal’s autocorrelation to determine the periodicity. The distance between two autocorrela-
tion peaks is identified to calculate the period of the analysed signal.
The improvement [8] proposes targets on including the framing effects of short-time processed
signals in the detection procedure. This is done via dividing the autocorrelation result ra(τ) of
the frame under investigation by the autocorrelation of the used window rw(τ). This procedure
reverses the multiplication of the input signal x(t) with the window w(t) in the time domain
to make ra(τ) window-independent in the autocorrelation domain. An example is given in
figure 4.6 showing the different results of the autocorrelation procedure with (rx(τ)) and with-
out (a(t)) cancelling the window effects. It can be seen that the enhanced result rx(τ) fits
the true autocorrelation result of x(t) way better than ra(τ). The algorithm also introduces a
method for smoothing the values of sequential results, this calculation is referred to as global
pathfinder. It works with applying additional cost to octave and V/UV jumps and finding an
optimal path throughout the pitch contour.

Figure 4.6: The autocorrelation-based pitch detector’s window effect cancellation with the up-
per pictures being the input signal x(t), window function w(t) and windowed input a(t). The
lower pictures represent the appropriate autocorrelations with ra(τ) being the original and rx(τ)
the window-effect cancelled signals, rw(τ) is the autocorrelation of the window function (source:
[8]).

The actual implementation is based on the calculation steps proposed by [8] including some
adaptions: Instead of calculating the autocorrelation using a FFT and squaring the spectral
components the autocorrelation procedure is performed directly. This approach advances the
original one in terms of calculational speed because of being able to use the speed-optimised

41

function provided by the DSPLib instead of choosing the detour via the Fourier transform.
Furthermore, the recommended pre-processing steps are performed already by several pre-
processing routines of other analysis modules before even arriving at the pitch detector.

Zero-Crossing Method

As alternative to the autocorrelation method the - faster but less accurate - zero-crossing
method was integrated in the enhancement framework. The choice of this approach is reasoned
by the actual usage of this application: The signal processing is performed on electrolarynx
speech signals. Those signals produce an as good as constant pitch anyway so detection
accuracy is secondary. This lead to designing the pitch detector with focus on operating
speed for saving calculation time rather than accuracy. The formant tracker benefits from the
additional time and it’s results exhibit a significantly higher effect on the enhancement result.

Figure 4.7: Working principle of the zero-crossing pitch detector: The pitch is calculated by
counting zero-crossings in a certain analysis interval and converting their average spacing to a
frequency value. The tolerance interval minimises miscalculations caused by noise - internal zero-
crossing fluctuations in this area are not counted.

The operating principle of the zero-crossing pitch detector, as illustrated in figure 4.7, works
with counting the amount of sign changes in a given time interval. When applying this method
to a mean-free signal the average distance between zero-crossings corresponds to the signal’s
pitch. In order to reduce the effects of noise on the gathered result the input is pre-processed
using a low-pass filter. Additionally a tolerance threshold (of 0.05 for normalised input) is
considered when counting the sign changes. These techniques avoid the effect of counting

42

small fluctuations around the zero value caused by noise. Using equation (2.4) and assuming
a sampling rate fs= 8kHz the signal’s pitch is calculated to F0 = 8000

340 ∗ 10 = 235.3Hz. The
actually implemented algorithm, using fs= 8kHz and BLKSZ= 256 leads to an approximate
amount of b 100

8000 ∗ 256c = 3 zero-crossings per frame considering an expected pitch F0 of
approximately 100Hz. Considering this data the used configuration seems to be a good choice
in terms of detection accuracy.

4.4.9 Pitch-Marking

The pitch-marking procedure is implemented using an additional array that holds the positions
of the marks in the current frame. The pitch-mark positions itself are calculated using the
sampling rate and resulting pitch value to calculate the amount of samples nper that one signal
period lasts. After every nper a marker is placed for as long as the calculated pitch value is
valid (which is the current frame). The period in samples is calculated with equations (4.13)
and (4.14).
The data structure holding the pitch-mark positions is a - one-dimensional - array. In the
process of experimenting with gaining run-time reserve two different designs for this array
were compared:

FULL: This implementation uses an array with a length equal to Block Size (BLKSZ) which
holds a MARK value at every pitch-mark position, other ones are set to NOMARK. This design
comes with the disadvantage of high memory usage and the need to traverse the array in
order to find neighbouring marks. On the other hand it is easier to access the pitch-mark
position in the array when just knowing the position in the frame because they are equal
(Fig. 4.8a).

COMP: Different to FULL mode COMP uses an array with just consisting of as much elements
as there are pitch-marks in the current frame. Every array entry holds the pitch-mark
position as it’s value. This method saves memory and neighbouring marks are found eas-
ily with increasing/decreasing the array index by one. Nevertheless it lacks in accessing
pitch-mark entries when just knowing their position in the frame - the array has to be
traversed to find the appropriate array entry (Fig. 4.8b).

nper = b BLKSZ

PITCHMARKSSZ
c = bfs

f0
c (4.13)

The actual length of the pitch-marks array in COMP mode is dependent on the used sampling
rate and block size. Using equation (4.14) leads to the example results listed in table 4.2. When
taking a closer look at these values it can be observed that in some setups the list size even falls
below one. This is the case for high sampling rates: With increasing Sampling Rate (fs) the
temporal duration represented by one sample decreases, one pitch period has to include more
samples. If BLKSZ remains fixed at a certain value the amount of samples belonging to one
pitch period might exceed BLKSZ and therefore the current block. In such situations a pitch-
mark is just include in every few blocks. For example when using BLKSZ= 128 and fs= 16kHz
equation (4.14) results in an exact value 0.8 for the pitch-marks list size PITCHMARKSSZ - an
additional pitch-mark occurs in every fourth frame.

PITCHMARKSSZ = bTblk
T0
c = b

BLKSZ
fs

1
f0

c = bBLKSZ ∗ f0

fs
c (4.14)

43

(a) Pitch-marking mode FULL featuring an array
of length BLKSZ that holds MARK and NOMARK en-
tries at the appropriate positions.

(b) Pitch-marking mode COMP featuring an ar-
ray of adaptive length that only holds MARK en-
tries, their positions in the corresponding frame
are given by the entries values.

Figure 4.8: Implemented data structures used internally in the pitch-marking procedure.

BLKSZ fs [Hz] PITCHMARKSSZ
128

8k

1
256 3
512 4
128

16k

0
256 1
512 3

Table 4.2: Example results for the pitch-marks list size in COMP mode with varying BLKSZ and
fs. The space between pitch-marks is determined by the signal’s pitch, 100Hz in these examples.

4.4.10 Formant Tracking

The formant tracker is the most important module in the pitch contour generation process.
The final contour is a direct derivative of the formant data provided by this module, therefore
a detection as accurate as possible is crucial for the overall quality. Unfortunately the formant
tracker is also the most time-intense module in the framework caused by the polynomial root
calculator and LPC analysis that take part in the formant detection process. Despite of
this issue with wisely setting the tracker’s configuration parameters (especially the LPC order
because it directly affects the LPC complexity and amount of input data for the polynomial root
detector as well, see section 4.5.3) the tracker produces satisfying results within an acceptable
duration.
Nevertheless it was also experimented with an alternative formant detector approach based
on inverse filtering. This method, introduced by [45], was specially designed to meet up with
the expectations towards complexity and speed that arise when performing tracking in DSP

44

applications. However the tested implementation exceeded the available temporal window the
formant detector was allowed to last to finish it’s calculations in nearly every calculation cycle.
The paper’s authors also had to face this problem but solved it by optimising the code using
different approaches. The most effective one - manually rearranging the code on assembly level -
could not be taken into consideration for this implementation. The effort was not in proportion
to the expense: Assembly-level optimisation is a complex and long-lasting procedure and the
LPC-based tracker performed well anyway.

Figure 4.9: Comparison of index- and expectation-based formant tracking: Index-based formant
selection (based on the entries position in the sorted candidates array) results in accurate contours
with possible outliners, expectation-based selection (based on the absolute difference between default
and detected formant value) prevents outliners but also smoothens the contour unnecessarily.

A question arising for both algorithms was the choice of the final formant value from the
candidates list. This list contains those ncandidates frequencies with the highest gain in the
transfer function. In theory those are the ncandidates lowest formants because the gain decreases
with increasing formant number (Fig. 2.2). So setting the candidates list size ncandidates to the
highest wanted formant number plus one is a good choice, for example ncandidates = 3 + 1 = 4
to detect formants up to Formant 3 (F3). With very accurate formant trackers it may even
be sufficient to set the list size to the exact wanted formant number but in most applications
it is better to add some tolerance. When sorting the candidates array by frequency the entries
positions correspond to the formant number, index i = 0 contains Formant 1 (F1), i = 1
Formant 2 (F2), et cetera. Picking the formant based on the index number turns out to be an
obvious yet effective approach. Problems might occur if the formant tracker fails to detect one
formant, this shifts all formants following the missing one position left - the index approach fails
in this case. The next approach is based on the expected frequency value. Roughly formants
are located near the appropriate kHz value, thus F1 ≈ 1kHz, F2 ≈ 2kHz, . . . Traversing the

45

candidates array and finding the formant with the minimum distance to the expected frequency
yields the candidate with the highest probability of being the expected one. Unfortunately this
approach also turns out to not be optimal. The formant frequencies are highly fluctuating. For
example the average F2 frequency of vowel a is according to [49] located at about 1400Hz. The
above algorithm would treat this formant of being F1 if F1 itself is farther away from 1kHz
than 1400Hz − 1000Hz = 400Hz. The most accurate approach is implementing a global
pathfinder algorithm. However for online processing this can be problematic due to increasing
the overall system’s input-output delay. Refer to section 5.1.3 for detailed information.
After testing both, the index-based and expectation-based approach, it was decided to pick
the index-based method. It might lead to rare outliners but their occurrence can be decreased
by increasing the formant tracker’s accuracy. The expectation-based method produces very
smooth contours what works against the pitch contour generator’s principle of creating a
distinct and audible pitch contour - see figure 4.9 for a contour example of both approaches.

Linear Predictive Coding Based

As mentioned in sections 2.1.3 and 2.2.6 the formant frequencies are the local maxima of
the vocal tract transfer function and can therefore be determined with performing a Linear
Predictive Coding (LPC) analysis of the input signal. The LPC approximates a signal’s
transfer function with a polynomial of given order thus accuracy. This operation helps in
finding the the local maxima of the transfer function (it’s poles) through the approximation
polynomial: The polynomial’s roots are equal to the transfer function’s poles. So performing
a polynomial root analysis of the LPC polynomial leads to determining the high-gain sections
of the transfer function - the closer a polynomial root is to the unit circle the higher is the gain
linked to it. So the combination of LPC analysis and subsequent polynomial root detection
can be used to determine these local maxima. At a glance the necessary processing steps are:

1. Calculate the LPC polynomial that approximates the transfer function of the input frame

2. Calculate the polynomial roots of the LPC polynomial to determine it’s maxima

3. Calculate the formant frequencies using the LPC polynomial’s maxima positions and
used sampling rate

The functionality of LPC analysis and polynomial root detector are already treated in the
appropriate sections (4.4.5 and A.2.3). Formant calculation simply consists of combining and
interpreting these results. The processing chain consists of at first providing LPC module with
the frame data. Secondly the calculated LPC coefficients that form the polynomial are directly
inputted to the polynomial roots detector. The output the polynomial roots detector produces
are the polynomial’s complex root values that correspond with the formant frequencies. Those
are in a final step calculated using the formula given in equation (4.15) with fs being the
sampling rate, ϕx the angle of the complex polynomial root number x and Fx being the
formant belonging to this polynomial root.

Fx =
fs

2 ∗ π
∗ ϕx (4.15)

The LPC order determines the accuracy of the formant tracker. An LPC analysis of order
p results in an approximation polynomial of the same order. Polynomials of order p also
consist of p polynomial roots (with some roots being complex conjugate pairs) what in sum

46

leads to p candidates for a formant. A high number of formant candidates finally minimises
the chance of missing the formant to be determined. Section 4.5.3 deals with this topic in detail.

The choice whether a candidate is a formant or not is answered with cross-checking
the formant data with the facts listed below.

• The formant frequency has to be higher than the fundamental frequency

• The pole’s absolute value must exceed a certain threshold (the higher the pole’s absolute
value the higher the transfer function’s gain)

• For complex results (which are all complex conjugate pairs) just the value in quadrant
one or two has to be taken into consideration

Inverse Filter Control Based

The IFC based approach, as introduced in section 2.1.3, uses a completely different approach
to perform formant tracking. In principle it utilises the mutual suppression of spectral
components surrounding one formant frequency to perform a FFT-peak based formant
calculation on the other formant. This procedure is recursively executed until convergence
using neighbouring pairs of formants. Signal parts outside the interesting frequency interval
are filtered in a pre-processing stage, parts being located around another formant (none of the
two ones currently under investigation) in the interval are temporary suppressed with using
the mentioned Inverse Filter (IF).

Implementing this algorithm can be concentrated to three main processing blocks:

1. Overall pre-processing: This step performs the filtering of unwanted spectral compo-
nents (below the lowest allowed formant frequency and above the highest one) and a
pre-emphasis for amplifying higher frequencies.

2. Sub-block level pre-processing: Formants are determined by pair-wise mutual conver-
gence approaching. To do so pairs of neighbouring formants have to be chosen and other
ones suppressed before starting the current calculation procedure.

3. Formant approaching: The two formants currently under investigation are approached
with mutually applying an inverse filter to one and calculating the other formant.

Calculation steps 2. and 3. are performed in a loop to reach convergence. The mutual
calculation is optimally repeated three times for each formant pair, the calculation process
for all formant pairs again has to be repeated three times as well. This leads to two nested
loops with each repeating three times - one cycle of the outer loop calls the inner loop with all
possible formant pairs combinations, one cycle of the inner loop performs one approaching for
each of the two formants. For a better understanding the processing chain is explained using
simplified pseudo-code:

47

01. //1. overall pre-processing
02. perform pre-emphasis
03. perform bandpass-filtering
04. //2. sub-block level pre-processing
05. FOR i = 1 TO 3
06. pick formant pair
07. perform inverse filter on other formants
08. //3. formant approaching
09. FOR i = 1 TO 3
10. perform inverse filter around formant X
11. calculate formant Y
12. perform inverse filter around formant Y
13. calculate formant X
14. ENDFOR
15. ENDFOR

The formant calculation itself (lines 11 and 13) is done using spectral peak detection. There-
fore a FFT has to be applied to the prepared signal ((2mutual ∗ 3)innerloop ∗ 3)outerloop = 18
times. This huge effort is impossible to be performed in time. [45] proposes to use a rough
spectrum based approximation just for the first pass of the loop, combined with a more
accurate weighted zero-detection for later loop cycles. In doing so the strongest spectral
component of the current signal can be determined. This component is the wanted formant
frequency - all other formants are suppressed by inverse filters, the fundamental frequency
was already filtered in the pre-processing.

The used inverse filters are band-stop filters with a rather high bandwidth in the stop-
band. This leads to their impulse response being more flat and suppressing spectra along
a larger frequency interval around the center frequency. A mathematical description of
the impulse response is given in equation (4.16) with H(z) being the impulse response in
the z domain, parameters are α, β and γ. The center frequency fc = wc

2∗π is converging to
the appropriate formant frequency Fx, Bx is the bandwidth linked with the formant under
investigation. [45] proposes the bandwidth values given in table 4.3 for a good performance.

H(z) = γ ∗ (1 + β ∗ z−1 + α ∗ z−2)
α = e2∗π∗Bx

β = 2 ∗ eπ∗Bx ∗ cos(wc)
γ = 1

1+α+β

(4.16)

Formant Number Proposed Bandwidth [Hz]
1 50
2 70
3 90
4 130

Table 4.3: Optimal IF filter bandwidths Bx as to be used in the IFC-based formant tracker. The
bandwidth Bx is dependent on formant Fx that is suppressed with this filter.

48

Implementation Details The configuration settings and changes to the original suggestions
are targeting purely on minimising the calculation speed issues. So the highest formant to
be calculated is set to three, this reduces the number of possible formant pairs from four
([1,2] ; [2,3] ; [3,4] ; [4,5]) to two ([1,2] ; [2,3]). Nevertheless the algorithm is
implemented to let the developer choose the highest formant freely between two and four.
Furthermore the weighting algorithm used by the zero-crossing detector is skipped completely.
This might lead to a higher formant tracker accuracy but the detector is accurate enough
without this routine anyway. An implementation would just cause additional calculational
overhead without bringing an additional increase in performance.

4.4.11 Formant Smoothing

The formant smoothing process is needed to create a consistent formant contour. Without
smoothing the formant values are highly dynamic and do not yield an evolution which can be
processed furthermore. The smoothing procedure itself consists of three stages with every one
holding a certain algorithm that processes the data results from the previous stage:

1. Outliner cancellation: Analyses neighbouring values and replaces highly differing com-
ponents by a linear interpolation

2. Median filter: Replaces the component to be smoothed with the median of those values
surrounding it

3. Linear smoothing filter: Replaces the component to be smoothed with the linear average
of those values surrounding it

Outliner Cancellation

This type of smoothing algorithm traverses the formant data array with always comparing the
current value with it’s successor. If both data values differ by more than a certain threshold, a
linear interpolation is done between the current element’s left and right neighbour, the center
value is set to the interpolation result. For the current implementation a threshold of 500 was
chosen, thus formant frequency jumps above 500Hz are cancelled.
Multiple bordering outlines are concentrated - the interpolation procedure is done for a longer
interval in such cases, see table 4.4 for an example.

Median Filter

Median filters are common in signal processing applications. This realisation does not differ
from those examples in it’s basics: The data values list is traversed and every value in the
list is replaced by the median of the samples surrounding it. The amount of samples to be
considered is determined by the filter size which is focused on in detail in sections 4.5.3 and
5.2.2. Table 4.4 holds an example for this filter type as well.

One particularity about this filter are the implemented operating modes. To deal with
bordering effects (at the frame edges the smoothing values sink due to filling the missing array
entries with zeros) three operating modes were tested:

49

Null mode: Missing data samples are replaced by zeros (default implementation)

Skip mode: Missing data samples lead to an adaptive shrinking of the filter size

Expand mode: Missing data samples are replaced by the last available value at the array
edge

Linear Smoothing Filter

The linear smoothing filter works the same way the median filter does. Only difference is the
way the new value is being calculated: Instead of the median a linear average calculation is
performed. Again refer to table 4.4 for a simple example using the parameters thoutliner = 300,
lenmedfilt = lenlinsmthfilt = 3.

Algorithm Data Values [Hz]
Original 1500 1670 1800 1300 900 950 950
Outliner Cancellation 1500 1670 1800 1516.7 1233.3 950 950
Median (Skip Mode) 1670 1670 1670 1516.7 1233.3 950 950
Linear Smoothing (Expand Mode) 1670 1670 1618.9 1473.3 1233.3 1044.4 950

Table 4.4: Smoothing procedure showing the different algorithm’s working principles by applying
them to an example data array. The red numbers indicate changes to the previous processing stage.

4.4.12 Pitch-Synchronous Overlap-Add

The Pitch-Synchronous Overlap-Add (PSOLA) algorithm must be provided with three input
parameters:

• The input frame

• The pitch-marks array holding the original pitch-marks

• The pitch-marks array holding the new pitch-marks

Being called with these parameters there is enough information available to generate the new
signal according to the pitch contour provided by the pitch-mark arrays. In principle the
PSOLA algorithm traverse the new pitch-marks array and places a windowed version of the
appropriate input frame region on this marker using an Overlap-Add (OLA) procedure. The
exact workflow is best explained using the pseudo-code listed below:

50

01. //0. pre-processing
02. clear output frame
03. //1. determine frame type
04. IF frame == VOICED
05. //1.1 traverse new pitch-marks array
06. FOR i = 1 TO length(newPitchMarksArray)
07. get new pitch-mark pmn,i at array position i
08. get nearest original pitch-mark pmo,i

09. //1.2 create sub-window
10. get new pitch-mark pmn,j closest to pmn,i

11. calculate window with size nwnd = 2 ∗ (pmn,j - pmn,i) + 1
12. //1.3 get appropriate frame input, apply window, place on new pitch-mark
13. get subframe (start:pmo,i − nwnd

2 , length:nwnd)
14. apply window to sub-frame
15. perform OLA with sub-frame and output frame (start:pmn,i − nwnd

2 , length:nwnd)
16. ENDFOR
17. ELSE
18. //2.1 unvoiced frames cannot be pitch-altered (they are unpitched)
19. copy complete input to output frame
20. ENDIF

The algorithm performance primarily depends on the search algorithms of the pitch-mark
arrays. Searching certain pitch-marks has to be done three times for every frame: To find the
next pitch-mark (line 07) in the contour generated pitch-marks array, the nearest pitch-mark
to the found one in the original pitch-marks array(line 08) and the nearest neighbour to
pitch-mark pmn,i (line 10) for being able to set the window size properly. Implementing
these steps is done as part of the pitch-marks module as described in section 4.4.9 in two
different days, namely the two operating modes FULL and COMP. By simply considering the
search algorithm implementation both operating modes seem to perform approximately
equal. The operations to be done in COMP mode consist of the two steps (a) looking for
the current pitch-marks entry (PSOLA does not know the array index, just the frame
position) and (b) the the trivial step of increasing/decreasing the array index by one and
returning it’s content. Using FULL mode the frame and array positions match, searching is not
necessary. However the array has to be traversed to find the next/neighbouring pitch-mark,
increasing/decreasing the counter by one would return a NOMARK entry. So the amount of
operations to be performed is roughly the same. Despite of this fact COMP performs better
overall because the array to be traversed is much shorter, it just contains MARK entries (Fig. 4.8).

The actual pitch frequency also affects PSOLA’s run-time. With increasing frequency
more pitch-marks fit into one frame and have to be dealt with. Anyway the developer has no
influence on the resulting Fundamental Frequency (F0) except of restricting it via setting an
upper limit.

Implementation Details A specialty that differs online from offline calculation is the
overlap-adding of sub-frames. Pitch-marks being located near the frame borders lead to sub-
frames that exceed the current frame. When not considering the overhanging part in the
adjacent frames’ OLA operations some sort of disturbance comes into existence - the resulting
signal at the frame’s left and right border periodically decreases due to the skipped parts. To
avoid this problem the algorithm has to additionally add the overhanging parts from neigh-

51

bours to the current frame. This is done via checking if one of the current frame’s sub-frames
overhangs. If so there is also sub-frame data of the counterpart reaching into this one. The
overhanging part has to be calculated and additionally overlap-added with the sub-frame of the
current frame. A simple carry-over from previous to current frame does not solve the problem
even though it would save calculation time. The overhanging can also occur between current
and next frame so the subsequent, future frame affects the current. An additional delay would
have to be integrated in the processing chain. However there is already a delay caused by
the smoothing operation - both delays would add up and lead to a disturbing input-to-output
discrepancy. Utilising the smoothing-caused delay is also not possible because PSOLA needs
the smoothed pitch value as input data.

4.4.13 Multipath Separation

Modulation Spectral Filtering

The Multipath Separation (MS) method using modulation spectral filtering consists of the
seven fundamental steps listed below which are also visually represented in figure 4.10:

1. Pre-processing

2. Determine spectrum via FFT

3. Compress magnitudes

4. Apply High-Pass (HP) filter to spectral pins using delay states from previous calculations
to include the temporal developing

5. Decompress magnitudes

6. Retransform filtered signal into time domain via IFFT

7. Post-processing

Figure 4.11 shows a filtering example as mentioned in step 4: The upper picture contains
the overall spectrum of the current frame, the two pictures below the spectral component
at 260Hz whereas the lower left one shows the pin’s unfiltered temporal developing and the
lower right the developing after applied MSF.

Pre- and post-processing is done with applying a 80Hz high-pass filter to the time-
domain signal in order to suppress humming and other non-speech related noise. The Fourier
transform and it’s inverse are executed using the DSPLib functions discussed in section 4.4.1.
For filtering the spectral pins it is important to save the internal delay state of every spectral
pin to access it in the subsequent filtering operation of the same pin (see sections 4.4.2 and
4.4.3 for details about internal filter delays). Two approaches turn out to be possible for a
realisation: Either (a) instancing a filter object holding the appropriate delay states for every
spectral pin or (b) using one filter instance and exchanging the delay states as needed by
using an external array for saving them. Obviously method (a) leads to unnecessary overhead,
method (b) should be preferred therefore. The applied dynamic range compressor additionally
enhances the subsequent MSF’s operating performance because of reducing the frequency
pin’s dynamic before applying the filter.

52

Figure 4.10: Detailed block diagram
of the MSF-based MS algorithm. The
input data is transformed to the fre-
quency domain in the STFT block and
processed separately for every frequency
pin. These pins are demodulated to
magnitude and phase components, the
magnitude compressed, filtered, decom-
pressed and again remodulated with the
untouched phase. The resulting spectrum
is transformed back into the time domain
and post-processed using a dynamic
range compression filter (source: [20]).

Figure 4.11: MSF filtering of a certain spectral component in the DSP: The upper picture shows
the overall signal spectrum and chosen spectral component, the lower pictures represent unfiltered
(left) and filtered (right) temporal developing of the appropriate pin.

53

The MSF-based method was tested using FIR as well as IIR filters in order to com-
pare operation efficiency and resulting quality. The test results and concluding final
implementation are focused on in section 5.2.3.

Spectral Subtraction

The principle processing chain when using Spectral Subtraction (SS) is about the same
as the one used by the MSF method. Both use pre- and post-filtering high-passes as well
as the FFT and IFFT because either one operates using frequency domain information.
Nevertheless the spectral subtraction works with estimating the noise components in the
signal’s spectrum based on statistics, more detailed the percentile of the frequency pin’s
magnitudes over time, using a certain amount nsamples of recently passed values. nsamples is
implemented as user-definable parameter which indirectly controls the filter’s accuracy and
run-time respectively. Increasing nsamples enhances the accuracy because the percentile value
is based on larger statistics, on the other hand will the filter’s run-time be reduced when
decreasing the value. This is because of the sinking amount of values the calculation has to be
based on. After all, the buffer size is a trade-off between both requirements - refer to sections
4.5.3 and 5.1.2 for a detailed analysis regarding this topic.

The actual filtering algorithm works with reducing the energy of the frequency pin cur-
rently under investigation by a percentile-dependent value. The exact formula is shown in
equation (4.17). It shows that the current spectral component’s energy E(f, t) is reduced by
twice the 10% percentile (for components in the higher frequency spectrum) or 20% percentile
(for lower frequency components, they are of more importance for speech applications) of it’s
previous samples. This operation results in a higher-gain damping for spectral components
with high percentile values what exactly meets up with the requirement of suppressing
Direct-Radiated Electrolarynx Noise (DREL) noise: The energy of the pin affected by DREL
noise is constant over time, it’s percentile converges to this constant value and leads to a
complete elimination of the frequency pin after applying the subtraction. Other spectral
components show more alteration in their energy developing, the centroid value keeps a lower
value, the subtraction is performed with a smaller value and is less effective.

E(f, t) = E(f, t)− 2 ∗ percentile20(E(f, t− i))|nsamples

i=0 . . . f < ffocus

E(f, t) = E(f, t)− 2 ∗ percentile10(E(f, t− i))|nsamples

i=0 . . . f ≥ ffocus
(4.17)

The threshold frequency ffocus determines the spectral components for performing the 20%
percentile operation. Components with frequencies lower than ffocus are altered this way,
components above the threshold are processed using the 10% percentile. Through using
different percentiles it is possible to control the suppression intensity. A percentile with
lower percentage value leads to an overall smaller value of the percentile itself so applied
on a frequency pin the energy reduction will be less intense. In the current implemen-
tation the 18th spectral pin was chosen as threshold. This leads to a threshold frequency
ffocus = fs

BLKSZ
∗ nfocuspin = 8000

256 ∗ 18 = 562.5Hz valid for the default implementation using
fs= 8kHz and BLKSZ= 256.

54

4.4.14 Pulse Generation

The pulse generation procedure is used to generate the driving signal for the shaker. The
shaker’s operation can be controlled by supplying it with an analog signal. This signal provides
information about the cam intensity as well as the operating frequency: The cam is controlled
via the pulse amplitude and shape, the vibration frequency with the pulse interval.

Figure 4.12: Optimal excitation pulse as used by the F0gen in ”driving pulses output” mode, the
pulse itself is a HGS-model pulse as proposed by [22].

Pulse interval generation is a straight-forward operation. A simple convolution of pulse and
pitch-marks generates the correctly spaced pulses (Fig. 4.13). The pitch-marks are represented
as array that holds pulses spaced by the calculated output frequency. So convolving pulse
and pitch-marks generates a signal with the pulses at the pitch-mark positions. The pulse
amplitude controls the shaker’s cam range thus the motion level of the vibrating metal bolt.
The amplitude-cam relation is proportional thus a higher amplitude results in a higher cam
range. The optimal amplitude value causes a cam that leads to well audible sound with
at the same time still being convenient for the electrolarynx user even after long periods of
usage. Finally, an appropriate pulse shape has to be chosen. This parameter heavy influences
the subjective impression of the resulting electrolarynx voice. At a glance, sharp pulses like
rectangles and saw-teeth can be considered to produce a sharp tone whereas smooth pulses
like Hann pulses produce a very soft tone. The optimal choice - the pulse producing the
highest intelligible signal - can be found in between these shapes. Using the research in [22]
combined with own listening tests the best choice turned out to be a Hanquinet, Grenez,
Schoentgen (HGS)-model pulse1 having a shape as shown in figure 4.12.

1This is a phonatory excitation model for speech signals particularly suitable for the synthesis of disordered
speech.

55

Figure 4.13: Convolution operation to generate the shaker driving signal: The excitation pulse is
convolved with the pitch-marks to create an analog signal with optimally spaced driving pulses.

4.5 Real-Time Related Aspects

4.5.1 Online/Offline Data Processing Discrepancies

The pitch contour generation module makes heavy usage of the signal’s statistical behaviour -
mean cancellation, variance adaptation et cetera play an important role in this process. In fact
a hundred percent correct calculation of these values is impossible in online data processing
reasoned by not knowing future values. Every calculated mean value can at best (if there
is enough memory available for storing all past values) represent the mean until this time
instance. This might not be a big problem after enough data is collected anyway but right
after starting the calculation process statistical values are more or less useless. Figure 4.14
shows an example of a processed nine second long input speech signal. It can be seen that
the transition from formant contour (middle window) to new pitch contour (below window)
is completely wrong at the beginning but starts getting accurate after a short time period.
This effect is the result of failing statistical calculations: The processing pipeline consists of
calculating the formant signal’s mean value and deriving contour changes in relation to this
value. These changes are applied to the final pitch. Due to neither the mean nor the variance
of the formant contour being correct during this time period, caused by missing input data,
the pitch contour is not showing the same developing as the formant contour for the first few
frames.

The time duration after startup wherein these effects occur lies at about the first 60 to 90
samples, being mainly dependent on the used sampling rate. For example with a sampling
rate of 8kHz this would be the first 7.5ms to 11.25ms. The fact that with increasing fs the
same time range shows an equal statistical behaviour for captured data samples (minimal,

56

Figure 4.14: Averaging problems at the calculation procedure’s beginning: The upper picture
shows the original formant contour as captured, after smoothing (center picture) it is converted
to an adequate pitch contour (lower picture). Due to failing statistical calculations caused by the
lack of input data right after starting the framework the contour is not correctly converted to the
appropriate pitch contour.

maximal and average values do not change when sampling faster) and should therefore also
cause the same problems is not true because with higher sampling rates the data arrives
faster in the processing pipeline - the effect of single values on the overall result decreases
and initial fluctuations smoothen out faster. In fact, for an increasing sampling rate the time
range decreases to 1.25ms to 1.88ms when sampling with 48kHz.

Another highly interesting effect that occurred was the cancelling of the declination ef-
fect when using adaptive mean calculation. With switched-on declination the pitch slowly
decays with time during an ACTIVE period. However when using adaptive mean calculation the
sinking pitch value is recognised by the mean calculator and therefore affecting the resulting
mean value. Due to the removal of the mean from the currently analysed pitch value in the
contour parsing process the continuously decreasing mean causes continuously increasing
results (can be explained by the subtraction: xnew = xin − xmean ⇒ xmean ↓⇒ xnew ↑).
Increasing new pitch and sinking contour then simply cancel each other. This effect especially
occurs at the beginning of the calculation process when just few values can be taken into
consideration for the mean calculation and a single new input values still has a high effect on

57

the result. Figure 4.15 shows this effect: The final pitch contour shows nearly no declination
during the two ACTIVE periods despite switched-on declination.

Figure 4.15: Declination cancelling effect with adaptive mean calculation: When using an adap-
tive calculation of the pitch’s mean the applied declination is cancelled by the framework due to the
mean adapting to the declination effect.

In some cases the calculation algorithms themselves also slightly differ between online and
offline calculation. Offline calculation can be performed on the overall data stream at once,
bordering effects due to block-wise calculation do not occur. This is even the case if the offline
calculator works block-wise because carry-overs between frames can directly be taken into
consideration when traversing the frames. The implemented PSOLA algorithm for example
must be able to handle these carry-overs, both exact problem and solution are explained in
section 4.4.12.

4.5.2 Timing Considerations

The biggest problem in the whole development process was handling the framework’s real-time
ability. To guarantee this property the overall calculation process for analysing the current
input and outputting the result must be finished before new data arrives. In fact proving
this ability in a mathematical manner is an immense effort, in most cases an approximation
is sufficient and preferred therefore. Nevertheless the processing time does not fluctuate
very much when the system operates using the same configuration. Crucial parameters,
thus framework settings having a high influence on the overall run-time, are focused on
in section 4.5.3. When keeping those parameters constant during analysing the overall
calculation time the result is not going to alter much - checking the real-time ability with
several examples should be sufficient to guarantee a certain run-time within a small tolerance.

Algorithm complexity and the computational cost resulting from it are crucial for most
DSP applications. DSP’s are optimised for mobility and energy efficiency rather than
operating speed because of their operating area, mostly mobile and embedded systems. For
the sake of offering an appropriate tool to cope with these problems the used development

58

environment (Texas Instrument’s Code Composer Studio, see section 2.3.5) is able to let the
developer investigate the algorithm complexity very detailed. This is done via counting CPU
clock cycles and transferring the gathered data into timing values using the CPU clock speed.
More on this topic, including exact calculation examples, can be found in the following sections.

The initial straight-forward implementation of the framework’s algorithms was not able
to finish it’s calculations in time as demanded. Besides clock cycle analysis this could even be
heard in the resulting audio: When already starting a new calculation process before finishing
the previous it might happen that data samples are overwritten internally, mixed up between
frames or skipped. The Digital Signal Processor Starter Kit (DSK) output therefore

Sounds noisy: Due to overwritten or mixed up data samples and therefore invalid calculation
results

Sounds choppy: If the (periodically called) interrupt routine does not have a yet completely
filled output buffer

Shows random artefacts: Caused by miscalculations and erroneous data

Shows periodic artefacts: The calculation period stays more or less constant what leads
to the framework constantly skipping the same procedures; this periodicity causes some
sort of musical noise

To overcome these shortcomings the first approach was to reduce redundant calculations. A
clean programming style usually demands a high amount of modularity for the sake of being
reusable, concisely and easily maintainable. This modularity had to be cut back slightly to
efficiently make use of results from previous calculations and get rid of avoidable data copying
procedures. In a second stage some internal data structures were rearranged. This might have
led to a growing memory requirement but made search algorithms more efficient or even unnec-
essary and several processing loops shorter. For example the array containing the pitch-marks
was initially realised as additional array of the same size as the frame’s input sample array.
It had either a MARKED or NOT MARKED flag at the appropriate sample position - calculating
the PSOLA sub-window size and similar operations therefore had to traverse the array to find
neighbouring MARKED entries. After rearrangement the array now only contains a single entry
for every MARKED element containing the appropriate index - searching neighbour markers is
unnecessary because they are on the adjacent positions in the array as well.
Besides high-level source code optimisations Assembler code can be rearranged to achieve the
highest-possible degree of parallelisation. This is done via loading the eight functional units
in the CPU (Sect. 2.3.2) as equal as possible. Certainly, rewriting complex algorithms in
Assembler is a huge effort, optimising this code even more so. Therefore, in this work, a trade-
off between speed and implementation effort was chosen by using the already pre-compiled
and assembly-level optimised DSPLib functions (Sect. 2.3.5) as much as possible without im-
plementing own low-level code. Furthermore, the CCS compiler provides the possibility to
optimise high-level source code on it’s own. This can be done by accordingly setting the com-
piler’s options. Still it has to be considered that this type of optimisation is just available in
release but not in debug mode - the compiler skips and combines commands from the high-
level code so C and Assembler source simply differ too much for being able to guarantee proper
debugging anymore. For more information about code optimisation please refer to [44].

59

4.5.3 Real-Time Effecting Parameters

The capability of processing data in real-time is determined by the amount of operations the
CPU must execute during one data frame. This value can be altered by adapting the detail of
operation for the executed tasks. The following section focuses on parameters having a high
influence on this amount.

Block Size

The BLKSZ determines the temporal resolution of the framework hence choosing a smaller
value causes the system to update captured data in shorter intervals. An application based on
the block processing principle operates blockwise so the actual update interval is determined
by needed time to completely fill an operating block with samples. With samples arriving every
1
fs

seconds the duration an input block/frame needs to be filled is calculated with BLKSZ∗ 1
fs

, if
overlapping is used this time is reduced by the overlapping factor (or update rate) and finally
results in an overall needed interval as calculated in equation (4.18) again using the system’s
default setup.

tupdate = BLKSZ ∗ 1
fs
∗ noverlap = 256 ∗ 1

8000
∗ 0.5 = 16ms (4.18)

The optimal temporal resolution is dependent on the application’s purpose: The higher the
dynamic of the signal to be analysed the shorter is the optimal block size. With speech signals
the optimal update interval tupdate lies at roughly 10ms . . . 20ms leading to a block size of
≈ 160 . . . 320, with higher fs the block size increases accordingly.

From an implementation point of view the system’s ability to cope with the accruing
amount of input data determines the block size: Shorter frame/block sizes are in general less
effectively processed than larger ones due to the sinking possibility of parallelising the handling
of input data. Parallelisation is possible because most modern processors consist of more than
one data processing unit that can partition - independent - parts of data for simultaneous
calculation. The processor used in this project consists of eight floating-point units capable
of being utilised for parallelisation (further information is available in chapter 2.3.2 and
the DSK manual [40]). On the other hand the growing amount of input data for larger
block sizes has to be considered. Especially the FFT point size which is directly derived
from the block size has an high effect on the calculation time. Additionally significantly
increasing the block size can lead to memory management problems in the DSP: Some
algorithms in the processing pipeline are dependent on the last few input data frames. So
they have to be stored in a ring buffer memory whereas one entry of the ring buffer contains
the data samples of one captured frame. With increasing BLKSZ the amount of needed
memory obviously grows proportionally. Finding a well-suited trade-off value is therefore
crucial for the overall framework’s performance quality. It is discussed in chapter 5.2.1 in detail.

When knowing the block size it is possible to directly calculate the allowed maximal
duration of one frame using equation 4.19.

Tframe = Tsample ∗ BLKSZ =
1
fs
∗ BLKSZ (4.19)

60

Using Tframe and the CPU clock rate of the DSP kit the amount of CPU cycles that fit into
one frame can be determined - this value is the upper limit the program is allowed to last to
produce real-time results of the enhanced audio data. The formula for calculating the amount
of allowed cycles ncycles is given in equation (4.20). The resulting value can now be used for
cross-checking it with the implementation’s actual one using CCS. The update parameter
used in this equation is the update rate of the framework. This rate indicates the interval in
which the program sends finished calculation results via interrupt to the audio codec. This
implementation used an update rate update = 2 (originates from the 50% overlapping factor
which is described in section 4.2) what leads to the framework always passing data to the audio
codec when half a frame has been calculated completely - so two updates occur in one frame.

ncycles =
Tframe

update

tCPU
=

1
fs
∗BLKSZ
update

1
fCPU

(4.20)

Examples for block sizes as well as allowed frame durations and CPU operations, consid-
ering the default sampling rate fs= 8kHz and a CPU clock rate fCPU = 225MHz (the
TMS320C6713 standard clock rate), can be found in table 4.5. When increasing sampling rate
the frame duration and CPU cycle parameters decrease proportionally. So increasing the input
data accuracy negatively affects the framework’s run-time.

Block Size [pt] Frame Duration [s] CPU Cycles
64 8m 0.90M
128 16m 1.80M
160 20m 2.25M
192 24m 2.70M
256 32m 3.60M
320 40m 4.50M
512 64m 7.20M

Table 4.5: Maximal allowed frame duration and amount of CPU cycles dependent on the used
BLKSZ in order to guarantee real-time processing.

Linear Predictive Coding Order

Altering the LPC order (p) influences the accuracy of the formant calculation. This behaviour
can be reasoned with the consideration of more past samples x[n − α] to predict the current
one x[n]. Formants are calculated through the roots of the polynomial that is described by
the LPC’s coefficients: a3 ∗ x3 + a2 ∗ x2 + a1 ∗ x+ a0 is the polynomial with aα being the LPC
coefficients. In general it is the case that with increasing the LPC order the approximation
of the predictor with the actual input signal gets more accurate. Anyway if chosen way
too high this can negatively influencing the approximation, the approximator starts getting
affected by signal details rather than the overall developing. This also leads to a depency
between sampling rate and optimal LPC order - a well-known rule of thumb claims the
optimal order of being roughly p ≈ fs

1000 + 2. Besides the aspect of approximation quality
the implementation complexity also has to be taken care of. More coefficients have to be
calculated when increasing the LPC’s order (as explained in chapter 2.2.2) and this is again
effecting the calculational complexity and temporal effort. So it can be seen that the actually

61

implemented order has to be chosen carefully - choosing a too low order might even lead to
undetected formants. This happens when the approximation produces polynomial roots that
are located below the threshold of the formant tracker.

The majority of papers focusing on LPC-based formant tracking propose an order p = 12,
the ones with focus on detail rather than computational effectivity even 15 or 20. This
implementation in fact performed best using an order of 10. This value also exactly matches
with the previously mentioned rule of thumb: p ≈ fs

1000 + 2 = 8000
1000 + 2 = 10. Tests with

p = 9 also resulted in relatively good values, the same was true for p = 11. Nevertheless
choosing an order of below 9 the enhancement application started skipping formants and
led to incorrect formant developings, when using orders of above 11 the possibility of not
finishing the calculation in time already becomes too high. These values are also summarised
in table 4.6.

Proposed Value Used Value
LPC Order 12 . . . 20 9 . . . 11

Table 4.6: Example values for the LPC approximator order as used in common applications as
well as in this framework.

Exit Conditions for the Polynomial Roots Calculation

As with the LPC order, discussed in chapter 4.5.3, the polynomial root calculator’s accuracy
directly determines the quality of the formant tracker. Polynomial root calculation is very
problematic in DSP processing environments because of it’s intense computational effort. This
effort is caused by the iterative approximation technique used for numerical solutions, the root
values are repeatedly calculated until convergence. In order to reach a certain level of accuracy
eventually huge amounts of iterations have to be executed. Practical algorithms therefore
include several exit conditions to keep the run-time within boundaries. These exit conditions
are:

• The maximal accuracy of the result (fluctuating just occurs within a small data range
any more)

• The maximal number of iterations (the total amount of repeated calculation steps)

Range Used Value
Value Accuracy 10−5 . . . 10−15 10−6

Amount of Iterations 100 . . . 500 90

Table 4.7: Example exit condition setups for the iteratively working polynomial roots calculator.

A bad choice of these parameters leads to the violation of the system’s real-time ability. If
too high the processing pipeline wastes all of it’s available calculation time determining the
polynomial roots. Too low values cause outliners in the formant contour because the polynomial
roots for identifying the formant have not been converging yet and are inaccurate. Example
configurations used in other practical applications as well as the values that turned out to
perform best in this framework are provided in table 4.7.

62

Sorting Array Sizes

Two calculation routines in the enhancement framework are dependent on sorted input data
arrays. Sorting is a calculational expensive procedure due to the usually high amount of loop
cycles especially with large data arrays. In order to keep the sorting process short these arrays
should be kept as short as possible with not negatively affecting the routine’s quality at the
same time due to too little input data. The following paragraphs therefore investigate these
calculation routines, the formant smoothing and spectral subtraction’s percentile calculation,
trying to determine optimal trade-off values for their input array lengths as well as the best
fitting implementation for the sorting algorithm itself.

Formant Smoothing Filter Size The same as with several other parameters in this frame-
work the smoothing filter size’s upper limit is not determined by the resulting speech intelli-
gibility but the calculational effort. Mainly this is the median filter’s responsibility. A median
calculation always depends on a sorted array of values (with length filter size) - a sorting
procedure has to be performed for every resulting median value. In sum this results in an
amount of sorting processes dependent on the overall length of the data values array and the
smoothing filter size.

Figure 4.16: The pitch contour generators processing line using a delay of 3 frames. A block
delay of 3 means a difference of 3 frames between current input and output, ”future” frames are
frames that are already captured and processed but not yet outputted, past frames are just stored to
provide their formant data to the smoothing algorithm.

The mentioned data values array is the one holding the list of formants from previously cap-
tured frames. It’s size is determined by either system latency (in delayed frames) or smoothing
filter size - whatever demands a longer memory of past frames determines the it’s length. With
common applications this will always be the smoothing filter size: The option to delay frames
(the actual number is determined by the counting the difference between currently captured
input and outputted frame as shown in figure 4.16) only had to be implemented to be able to

63

perform smoothing after all2 and should be kept as small as possible. So the smoothing filter
size is mainly responsible for causing this delay and will always be the upper bound for the
discussed array therefore. It’s size lies in the area of several frames and additionally adds up
with the anyway present delay due to block processing as treated in section 2.2.1. Without
smoothing there is even the possibility to not delay frames at all3 - in this case the single input
samples are only delayed by the always existing block processing delay. Figure 4.16 shows the
explained processing chain for a block delay size of ndelay = 3 frames what leads to a maximal
smoothing filter size of 2 ∗ ndelay + 1 = 2 ∗ 3 + 1 = 7.
Considering this facts leads to equation (4.21) for calculating the resulting amount of sorting
operations. It can be seen that the smoothing complexity is only determined by the smoothing
filter size, Osorting() indicates the algorithmic complexity of the sorting algorithm itself.

nsortings = lendatavalueslist ∗Osorting(nfiltersz)
=̂lenfiltersz ∗Osorting(nfiltersz)
∝ nfiltersz

(4.21)

Spectral Subtraction’s Percentile Buffer Size As with median calculations in the
smoothing filter the percentile calculation used by the spectral subtraction module depends
on sorted data arrays. In fact every sorting procedure on the nsamples long data array holding
the past energy values has to be performed once for every spectral component. This number,
as calculated in equation (4.22), is again defined by the used BLKSZ value when considering
that the amount of spectral components is only defined by the frequency resolution (equal to
BLKSZ) and the fact that the spectrum is Hermitian symmetric (Sect. 4.4.1).
This results in 129 sorting procedures of nsamples long data arrays when using the default block
size of 256.

nsortings = bBLKSZ
2
c+ 1 = b256

2
c+ 1 (4.22)

With additionally setting nsamples to a value of 10 (the percentile is calculated from the last 10
spectral pin’s magnitude values) the spectral subtraction algorithm achieved the best possible
DREL suppression - the percentile is calculated using the largest possible statistics - with at
the same time still being capable to execute the complete enhancement framework’s processing
chain in real-time.

Sorting Algorithm For picking an appropriate sorting algorithm the results gathered by
[48] were used. This paper investigates the performance of sorting algorithms with small
input data sizes (below 80). As mentioned above the implemented routines in this framework
also only handles small amounts of input data to be sorted. This leads to the optimal sorting
algorithm for this application being one that (a) performs well on small input arrays and (b)
shows as little overhead as possible. [48] proposes insertion sort for input sizes of four to six,
therefore this algorithm has been implemented. Nevertheless the first version of the sorting
algorithm was realised using bubble sort. Due to it’s ease of implementation bubble sort was
a good candidate for initially testing the functionality.

2Without delaying complete frames the formant data of ones subsequent to the currently processed would
not be available, smoothing could just be performed on past elements and the current. This would make
the smoothing filter - that prepares the frame that is about to be passed to the output - unable to adapt to
immediately following fluctuations even when being extreme!

3This is not completely true because the formant tracker’s global path finder would also cause a delay but
there is none implemented anyway.

64

Having both algorithms available it was possible to run a performance comparison on
our own. As to be seen in figure 4.17, using the formant smoothing block for the comparison,
the preference of insertion sort over bubble sort could be reproduced and matched with the
results of [48]: The average amount of CPU cycles for median smoothing that utilises the
sorting algorithm was less with insertion sort, namely an average saving of 6159 CPU cycles
or 10.15% for the ten performed tests.

Figure 4.17: Performance measurement of the implemented sorting algorithms insertion and
bubble sort. The metric used for comparison are CPU cycles needed by the appropriate algorithm
to completely execute the medianfilter() function with a smoothing filter size of 7.

Speedup Through Retaining Array Order To additionally speed up the sorting process
it was experimented with retaining the array order between subsequent sorting procedures of
the same data set. Both algorithms that are dependent on sorted input, formant smoothing
and spectral subtraction, work iteratively - the array to be sorted only changes by two
values with every call: (1) the oldest element is removed and (2) a new one is added to
the data set. The idea was therefore to keep the array order to only have to insert the
new value into the already sorted data set. Unfortunately this is not possible for either
algorithm: The median filter in the formant smoothing block which needes sorted input is
surrounded by the outliner cancellation and linear smoothing filters. These filters change
the array’s values between subsequent calls of medianfilter() causing it to be unsorted again.

For the spectral subtraction block a comparable problem occurs: Here the entries order
in the data set is an integral part of the subtraction algorithm. Spectral subtraction makes
use of the single spectral pin’s trajectories. The necessary time information is again included
in the data value’s position in the buffer array - the lower the entry’s index the older it
is. If this order is scrambled due to sorting the temporal information becomes invalid. A

65

workaround could be an additional array containing this temporal information for every entry.
Nevertheless if doing so the oldest entry which has to be replaced by the new value always has
to be searched for because it’s position is unknown after sorting. Additionally the complete
buffer array’s time data has to be adapted because with replacing the oldest value by the
newest all other entries automatically grow older as well. Without overhead the usage of
pre-sorted array brings an advantage of about 20% in average, the spectral subtraction block
is calculated in 2.05 ∗ 106 CPU cycles compared to 2.5 ∗ 106 cycles without pre-sorting. So
with additional overhead this approach is nearly as time consuming as retaining the order
based on time and newly sorting by value whenever needed in the first place.

66

Chapter 5

Results

5.1 Measurement and Calculation

5.1.1 System Delay

To determine the maximal delay of the framework two side conditions have to be taken into
consideration:

1. Practical limitation: The user acceptance regarding the unfamiliar delay effect

2. Technical limitation: The amount of available system memory

When implementing the delay line with respect to these aspects the practical limitation soon
turned out to be the crucial one. In fact the final application’s implementation is showing
just a small system delay resulting from (a) the processing delay which is mandatory to prop-
erly perform smoothing and the Pitch-Synchronous Overlap-Add (PSOLA) routine and (b)
the block processing caused delay. The block processing delay is mainly dependent on the
overlapping factor (see [16]) whereas the processing delay can be set manually and may range
from two frames upwards. It’s upper limit is from a technical point of view just determined
by the available amount of memory, practically by speech intelligibility and smoothness of the
conversion flow. These factors are defined by ([46]):

1. Difficulty in listening to one-way speech

2. Difficulty in talking

3. Difficulty in conversing during turn-taking

Practical Limitation

There have already been several researches regarding the upper latency threshold for guaran-
teeing a flawless and perceptual conversation quality. Nevertheless the resulting limit varies
a lot between the studies, lying roughly between 100ms and 600ms ([17]). However, an
official recommendation by the International Telecommunication Union - Telecommunication
Standardization Sector (ITU-T) defines the one-way or mouth-to-ear delay to be optimal
for highly interactive applications below 100ms, acceptable below 150ms and still tolerable
between 150ms and 400ms ([10]).

67

Soft-Phone System Average Delay [ms]
Ekiga 213

MSN Messenger 88
Skype 142

Yahoo Messenger 138
∅ 145

Table 5.1: Mouth-to-ear delay of several state-of-the-art soft-phones using VoIP (source: [1]).

Dependent on the used sampling rate, block size (Equ. (4.19)) and overlapping factor,
the system’s processing delay results in for example 32ms using the default settings
fs= 8kHz, BLKSZ= 256, 50% overlapping and a lag of two frames. Therefore, the latency
caused by the enhancement routine is located in an area that seems to be sufficient for inter-
active applications. Considering an upper limit of around 150ms leads to a maximal number
of seven delayed frames for the processing delay again with the same configuration which adds
up with the always present block processing caused delay of one frame at maximum. However
when talking about the maximal delay to be allowed another fact also has to be considered:
When the framework is configured to produce an enhanced signal as output (Sec. 3.2) this
signal will probably just be used as input for the actual communication system - so the speech
enhancement framework serves as some kind of pre-processing for the distracted electrolarynx
speech signal before actually being transmitted. The used communication system could be for
example a telephone, mobile or Voice Over IP (VoIP) device. Especially with current VoIP
systems, due to the packet switching paradigm of it’s communication channel, the Internet,
there is an additional delay that adds up with the delay of the enhancement framework.
State-of-the-art applications show a one-way delay of around 145ms as shown in table 5.1.
The mentioned values of course vary dependent on used transport protocol (TCP, UDP),
communication protocol (Speex, G.711, . . .) as well as the geographic location of sender and
receiver. To still stay below the tolerable delay threshold as suggested by the ITU-T, this
results in an allowed delay of 400ms− 145ms = 255ms for our system.

Technical Limitation

The practically caused delay is distinctly below the technically caused one, which is generated
by memory limitations. For every additional delayed frame, two more frames have to be stored
because the currently processed frame must be center-aligned when applying the formant
contour smoothing (Fig. 4.16). Otherwise the smoothing result would not be very accurate
because of ignoring neighbouring values from one side. Increasing the processing delay by one,
therefore, automatically increases the number of ”future” frames: The addition of one more
frame on the right side (relative to the currently processed frame as shown in the figure) must
be balanced with an additional frame on the left in order to keep the balance both sides.
Storing one frame’s data needs at maximum 1556 bytes of additional memory as calculated in
(5.1) considering the structure of the marker list entries as listed below. Therefore increasing
the delay size by one leads to 2 ∗ 1556 = 3112 bytes of additional memory.

68

typedef struct
{

float f0, fx;
float declin;
float timestamp;

unsigned char vuv, vad;

unsigned short* pitchmarks;
unsigned short pitchmarkssz;

float* sigbuf;
}

The PITCHMARKSSZ referred to in (5.1) depends on the used pitch-marking mode (Sect. 4.4.9)
and can either be equal to BLKSZ in FULL mode or about bBLKSZ ∗ F0

fs
c as calculated in

equation (4.14) in COMP mode. In case of calculating the maximal memory usage the mode
with higher memory usage has to be picked for further calculations - as hinted by it’s name
this is the FULL mode because it marks every sample and not just the ones having a MARK entry.
The final memory demand of one marker list entry is therefore calculated with equation (5.1)’s
last three lines. When switching off all possible debugging routines (they occupy much memory
due to logging a high number of data values) the largest possible processing delay size is equal
to 467 frames featuring a memory demand of (2 ∗ 467) ∗ 1556 = 1.45MB. In fact this value
is high enough for not having to consider the technically caused system delay limitation at
all - an output delay of 467 in the enhancement routine means having an overall time lag of
(467 + 1) ∗Tframe = 14.98s (including the block processing delay of one frame and again using
the default configuration, see equation (4.19)). This duration is far beyond being a usable
value.

memtotal = memf0 +memfx +memdeclin +memvuv +memvad +memtimestamp + . . .
mempitchmarks +mempitchmarkssz +memsigbuf =

= 4 ∗memfloat + 2 ∗memchar + 1 ∗memshort + . . .
PITCHMARKSSZ ∗memshort + BLKSZ ∗memfloat

= 4 ∗memfloat + 2 ∗memchar + 1 ∗memshort + BLKSZ ∗memshort + BLKSZ ∗memfloat =
4 ∗ 4 + 2 ∗ 1 + 1 ∗ 2 + BLKSZ ∗ 2 + BLKSZ ∗ 4 =
1556 bytesBLKSZ=256 (default)

(5.1)

Delay Measurement

To verify the calculated delay the real-time generated output signal produced by the framework
was measured and analysed. Therefore a specially designed input signal was created. This
signal consisted of two sync pulses preceding the actual speech signal, the electrolarynx spoken
sentence ”Die Oma trinkt einen Kaffee.”. The generated signal was stored as audio file for later
comparisons with the captured result (both is found in figure 5.1) and passed to the Digital
Signal Processor (DSP) enhancement framework during the measurement. The measurement
procedure itself consisted of the following steps:

69

01. //1. pre-processing
02. //1.1 correctly wire components
03. connect source computer (contains input audio file) to framework input
04. connect framework output to sink computer (captures resulting output)
05. //1.2 start environment
06. start DSP in bypass mode
07. line-up environment
08. start capturing
09. //2. measurement
10. play input until sync pulses are passed
11. switch on F0gen during silent phase between sync pulses and speech signal
12. wait until finished ...
13. //3. post-processing
14. stop capturing and save result
15. post-process input and captured file by synchronising them using the sync pulses
16. measure latency between input and resulting speech signal

Some notes regarding the measurement:

• Capturing was performed using the Wavesurfer1 software

• The audio file was played back using Wavosaur2 software

• The sync pulses passed the DSP in bypass mode and are not delayed by the enhancement
processing pipeline therefore - this enables the synchronisation in the first place

Parameter Value
delay 3 frames

BLKSZ 256
fs 8kHz

overlapping 50% (=̂ update factor 2)

Table 5.2: DSP framework setup as used in the processing latency measurement.

The post-processing measurement was done twice: Once with Wavosaur and once with Mat-
lab. To measure the actual latency the difference between sync pulse and speech signal start
as well as sync pulse and speech signal peak value (occurs during the word ”. . . einen . . . ” in
the sentence) was quantified for both input and output signal. The analysis using Wavosaur
resulted in a measured processing delay of 5.190s − 5.238s = −48ms, the delay when deter-
mined using Matlab turned out to be 386 samples or ndelay

fs
= 386

8000 = 0.04825 = 48.25ms
(using equation (4.19)). Both results corresponded with the calculated value in equation (5.2)
considering the framework’s setup as shown in table 5.2.

tdelay = nframes ∗
1

update
∗ BLKSZ1

fs

= 3 ∗ 1
2
∗ 256

1
8000

= 0.048s = 48ms (5.2)

1http://www.speech.kth.se/wavesurfer/
2http://www.wavosaur.com/

70

http://www.speech.kth.se/wavesurfer/
http://www.wavosaur.com/

(a) Full view of the processing delay measurement signals, the long period between
sync pulses and speech signal is necessary to have enough time for switching on the
F0gen module during the measurement. The marked regions indicate the location of
the zoomed-in in the overall signal as shown in the below figure.

(b) Zoomed view of the processing delay measurement signals, already equipped with
the delay measurement markers. Their difference indicates the lag between speech
signal start of the original and processed signal and therefore the processing delay.

Figure 5.1: Input and output signals used in the processing delay measurement process. The two
sync peaks at the beginning of both signals as well as the MSF caused loudness decrease can be
clearly seen here.

71

For the sake of accuracy this measurement was also performed using a pulse instead the
above used valid speech signal. The sharp-edged pulse simplifies identifying the beginning
of the delayed signal and therefore leads to a more exact location of the reference sample
for determining the latency. The hereby utilised signal is shown in figure 5.2, the executed
procedure was the same as above. With a resulting processing latency of 47.12ms or
377 samples the obtained delay also nearly matched with the previously determined what
indicates the correct measurement in both cases. A completely exact match is nearly not
possible to achieve because the pulse gets distorted during transmission (cable capacities,
Analog-To-Digital / Digital-To-Analog (AD/DA) conversion, et cetera) and therefore always
looks different in the captured result - what makes it hard to find the reference sample.

Worth mentioning for this measurement process is that the detected processing delay
does not represent the actual mouth-to-ear latency of the complete framework. The sync
pulses used for aligning input and output are also delayed by the block processing framework
even when passing it in bypass mode. So the determined value of about 48ms only indicates
the delay caused by the interrupt-service routine where the enhancement procedures are
executed - as mentioned before there is an additional latency of BLKSZ samples caused
by framing with 50% overlapping (refer to [16] for more about this topic). So the overall
mouth-to-ear delay turns out to be 48ms+ 32ms = 80ms.

Figure 5.2: Alternative signals used in the processing delay measurement process. The two peaks
at the beginning are again used for synchronising input and output, the delayed and investigated
signal is a pulse here as well. This simplifies determining the reference sample at the beginning of
the 3rd pulse and increases the accuracy.

72

5.1.2 Multipath Separation Modules

Modulation Spectral Filtering

In the process of analysing the Multipath Separation (MS) results via informal tests the
achieved intelligibility of the Modulation Spectral Filter (MSF) algorithm turned out to be
higher than the one obtained by the alternative Spectral Subtraction (SS). Figure 5.3 as
well as another example in figure 5.5 show the original and MSF filtered signal’s spectrum
for electrolarynx speech with Direct-Radiated Electrolarynx Noise (DREL) component. One
can clearly see the suppressed constant component in the processed spectrogram. In the
unprocessed one the DREL component is identified as horizontal line at about 110Hz and
it’s harmonics in figure 5.5a and approximately 230Hz in figure 5.3a respectively. Figure 5.5b
shows the MSF filtered speech signal of the sentence ”Ich will ihn nicht umfahren sondern
umfahren!”, figure 5.3b ”Eins, zwei, drei, vier, fünf, sechs, sieben, acht, neun, zehn.”.

Nevertheless there are two drawbacks when directly comparing MSF generated results
with the ones achieved via SS:

• Lower degree of DREL suppression

The first and more significant disadvantage of modulation spectral filtering over
the spectral subtraction method is the lower degree of DREL suppression. Figure 5.5
clearly show this problem - the constant component as shown in the signal’s spectra
is still (slightly) visible in the MSF output. This is not the case in the SS’s output
spectrum. An explanation of this phenomenon is the MSF filter’s higher sensibility
towards the constant component’s dynamics. Due to the energy of the DREL’s spectral
component being not completely constant but slightly altering the SS algorithm is
more suitable to adapt to these fluctuations. It is based on a statistical approach,
the percentile, to perform filtering. Operations based on statistics are in general less
vulnerable to small changes of the observed parameter.

• Decreased output signal loudness

The second drawback is the decreasing loudness of the resulting signal. The loss
of loudness can be reasoned with the working principle of modulation spectral filters.
They operate on every frequency pin independent of whether the spectral component
is part of the speech or noise signal. This leads to suppressing constant components of
the speech signal spectral as well - it decreases in it’s amplitude. A comparison between
the resulting signal amplitudes is given in figure 5.4. The left plot shows the signal with
adapted gain, thus the loudness it should have, the right plot contains the actual signal
with the dampened amplitude.

73

(a) Spectrogram of the original signal which is heavily affected by the DREL component,
the horizontal line at about 230Hz and it’s harmonics.

(b) Spectrogram of the MSF enhanced signal showing just a weak remaining DREL
component.

Figure 5.3: Performance of the MSF-based multipath separation when being applied to the 8.2s
long electrolarynx speech signal ”Eins, zwei, drei, vier, fünf, sechs, sieben, acht, neun, zehn.”.

74

Figure 5.4: Loudness discrepancy when using the MSF filter: Because the MSF filter does not
differ between signal and noise frequency components the (desired) signal’s constant components
are suppressed as well. This leads to an overall decreasing loudness of the MSF enhanced signal.

Spectral Subtraction

When directly comparing the SS and MSF algorithm’s result the SS approach did not produce
an as intelligible output signal as it’s alternative. This was mainly caused by the existence
of clearly perceivable artefacts in form of musical noise. The MSF-based implementation did
not show this behaviour. This is why, in terms of intelligibility, the modulation spectral fil-
ter enhancement method should be preferred over spectral subtraction even though the MSF
method produces an overall quieter signal. This can be avoided using a simple volume control.
From the calculational efficiency point of view the spectral subtraction method’s run-time
turned out to be much higher than the MSF alternative caused by the heavy usage of sort-
ing in order to calculate the percentile. Therefore a trade-off between calculation speed and
considered past data samples had to be done. The SS algorithm as described in section 4.4.13
uses a percentile-derived cancellation factor for every spectral pin. With growing amount of
memorised data samples for the percentile calculation the input data array length for the sort-
ing procedures increases (Equ. (5.3)). To keep the framework’s real-time ability this number
had to be cut short even though a reduction leads to a decreasing accuracy of the resulting
percentile. The decreasing accuracy again reduces the algorithm’s ability to optimally cancel
the DREL component.

Oinsertionsort = Obubblesort = O(nsamples
2)

nsortings = npercentiles = nfreqpins = BLKSZ
Osortings = nsortings ∗Oxxxsort = BLKSZ ∗O(nsamples

2)
(5.3)

The maximal possible amount of memorised past data samples (nsamples in equation (5.3))
turned out to be eleven. This is the maximal number of data that can be sorted within the
available time period in one frame besides all other mandatory calculations like pre-processing
filters, Fourier transform, pitch contour generation, et cetera. Obviously this threshold can be
increased when performing the multipath separation only because of the spared time otherwise
needed for the pitch contour generation.

75

(a) Spectrogram of the original signal which is heavily af-
fected by the DREL component, the horizontal line at about
110Hz and it’s harmonics.

(b) Spectrogram of the MSF enhanced signal showing just a
weak remaining DREL component.

(c) Spectrogram of the SS enhanced signal showing nearly
no remaining DREL component.

Figure 5.5: Comparison of the implemented MS methods by applying them to the 8.0s long
electrolarynx speech signal ”Ich will ihn nicht umfahren sondern umfahren!”.

76

Direct Comparison

At a glance the performed MS, thus the reduction of DREL noise, was set up to use the
MSF approach in it’s default configuration, mainly because of the important requirements
towards intelligibility and run-time performance. In fact the SS approach needed so much
CPU cycles for execution that it could not be used in the pitch contour generation’s pre-
processing stage - the combined temporal demand of Pitch Contour Generation (F0gen) and SS
exceeded the limits for real-time calculation. A stand-alone execution (configured as shown in
chapter A.4) is anyway possible within the system’s update interval and therefore in real-time.
A direct comparison between the results of both implemented MS methods is given in figure 5.5.
Especially the better DREL suppression can be observed when comparing figures 5.5b and 5.5c,
the constant component at 110Hz is nearly not present in the spectral subtraction enhanced
result any more contrary to the (weak) remaining component when using the modulation
spectral filter.

5.1.3 Pitch Contour Generation Modules

Voice Activity Detection

The implemented Voice Activity Detection (VAD)’s working principle is based on a rather
simple but robust calculation method. One crucial parameter hereby is the energy threshold.
This parameter, as described in section 4.4.6, determines the minimum amount of signal energy
a frame has to hold to be marked as ACTIVE. Obviously, the actual threshold value is dependent
on the environment, especially the following factors that are directly involved in the processing
chain. For a better understanding of the refered to components effect on the processing chain
and their interaction section 4.1 describes the device’s wiring as used by the application during
the development process.

• The mixer’s gain setup

• The used microphone’s internal amplification

• Specifications of the used Input / Output (I/O) interfaces

• Volume control positions when using additional amplifiers

In fact the threshold is already set to the best performing value in the current framework
version by default. Anyway this value is just valid if the audio input level of the Analog-To-
Digital Converter (ADC) is set correctly, thus close to full-scale but without occuring clipping.
This is a condition to be aspired to anyway because it reduces the occuring Signal-To-Noise
Ratio (SNR) to a minimum. If this condition is met, the optimal threshold is located at a
relative level Edb ≈ −55dB (Equ. (4.11)).

An example of the VAD’s performance, using the sentence ”Knapp 40 Jahre nach der
Trennung der berühmtesten Band der Welt erscheinen jetzt die Alben.” spoken with an
electrolarynx, is given in figure 5.6. SILENT regions are hereby indicated by an invalid formant
value entry (-1). Those blocks are, as desired, exactly located at time intervals where the
speaker makes a pause.

77

(a) Waveform of the 15.5s long input signal, SILENT regions are identified as sections of the signal with
small amplitude values.

(b) Formant contour determined by the DSP framework’s formant tracker, the regions marked as SILENT
are indicated by invalid formant values (-1). During ACTIVE regions the tracker produces frequency values
matching the found formant value.

Figure 5.6: Example for analysing the VAD’s performance, indicated by the correlation of ACTIVE
and SILENT regions between input waveform and DSP mapping, using the electrolarynx speech signal
”Knapp 40 Jahre nach der Trennung der berühmtesten Band der Welt erscheinen jetzt die Alben.”
as input.

When speaking about electrolarynx input signals the processing even gets easier compared to
natural voice: The voice ACTIVE and SILENT regions can be clearly separated by aVAD - the
electrolarynx produced, rather loud DREL noise is permanently present when the user speaks
and causes high energy in frames containing voice. During periods of silence there is no need
for the user to switch on the device - DREL noise is absent in those frames leading to a definite
energy discrepancy between SILENT and ACTIVE frames. This observation might be the reason
the VAD detector is performing so well despite of being implemented using a simple analysis
algorithm. Nevertheless this behaviour inures to the benefit of the multipath separation and
formant tracking algorithms because due to the spared complexity the VAD saves calculation
time that can be drawn on by these modules.

78

Voiced/Unvoiced Detection

When identifying the best-performing spectral centroid value for Voiced / Unvoiced (V/UV)
thresholding the used sampling rate must also be taken into consideration in the decision
process. The reason is explained easily: The centroid value represents the center of gravity
over all existing frequency pins. It is therefore altered by the overall frequency interval - which
again is set by the used sampling rate due to Shannon’s theorem. So when reducing Sampling
Rate (fs) the overall frequency interval is also reduced with cutting spectral components
between fs,new

2 and fs,old

2 . This leads to the centroid being shifted towards smaller frequencies
although the analysed signal has never been touched in any way.

This problematic was not covered by the theoretic concept discussed in section 4.4.7.
The decision process for picking an appropriate centroid value to be used for implementing
this module consisted of two steps:

1. At first implementations using the same V/UV algorithm were studied. The majority of
these studies proposed a threshold of about 3kHz using sampling frequencies of 12kHz
to 16kHz.

2. As second step the found configurations were applied to this framework with adapting
the centroid / sampling frequency setting to match the used sampling frequency of 8kHz.
Therefore the centroid threshold of 3kHz had to be shifted to a slightly lower frequency
in order to adapt to the reduced frequency interval. Tests were performed at first with
focusing on the 1.5kHz . . . 2.5kHz area - nevertheless this threshold did not produce good
results: Too much frames were marked UNVOICED. So the decision value was increased
and cross-checked with the resulting data in several test trials. All of these trials were
performed in an interval of 2kHz . . . 3kHz. In doing so a final V/UV decision threshold of
fcentroid,new = 2750Hz turned out to perform best. Most likely this value is caused by the
sinking energy for higher frequency pins. They do not weight as much as lower frequency
components when calculating the centroid, it’s value therefore does not decrease as fast
as the sampling frequency is reduced.

Formant Tracker

It can be concluded that the formant tracker operated within an acceptable tolerance, meaning
that eventually occuring outliners were short and rare enough to not be perceivable in the final
pitch contour as such - a comparison between the formant contour calculated by Praat and the
DSP framework is printed in figure 5.9. This example analyses a sentence about nine seconds
long, spoken with an electrolarynx ”Ich will ihn nicht umfahren sondern umfahren!” with
having accented syllables underlined. Both evolutions of the chosen F2 formant match, the
average frequency is nearly equal. However, there are several areas in the DSP contour with
obvious mismatches. This can not be explained by the DSP tracker’s working principle, either
of them (Praat’s implementation and the Linear Predictive Coding (LPC)-based tracker) are
implemented using the same algorithm. Therefore the issues have to be traced back to certain
implementation details. These discrepancies originate from cutting back calculation detail in
the DSP implementation to save calculation time. As discussed in section 4.5, several trade-
offs had to be made in order to keep the real-time ability of the system. Reducing the LPC
order, interrupting the polynomial root calculation and not implementing a global pathfinder
algorithm effects the formant tracking quality.

79

Run-Time As mentioned, the Inverse Filter Control (IFC)-based formant tracker was not
able to produce it’s results in time and therefore violated the real-time criterion. This is why
the final version of the application makes use of the LPC-based algorithm. The problematic
operation blocks concerning calculational effort are identified when directly comparing the
needed CPU cycles for all executed blocks (listed in table 5.3). Figure 5.7 graphically presents
the gathered results: Until the second block the IFC tracker is slightly faster because it does
only calculate pre-emphasis and band-pass filtering (block 1) as well as an IFC filtering with
fixed frequency (block 2). The LPC tracker on the other hand needs to execute LPC analysis
(block 1) and polynomial root detection (block 2). However after the second block the LPC
tracker is almost finished, in block 3 there is just the missing formant value calculation
and insertion into the sorted candidates list to be done. The IFC tracker just starts it’s
intense operations after block 2 : Block 3 performs the mutual formant calculation using
IFC filtering, block 4 is the formant frequency value extraction from the filtered signal.
This block is based on a Fast Fourier Transform (FFT) calculation with following peak
detection. These operations are called 16 times: Block 4 consists of three encapsulated
loops, more detailed two main loop cycles, two large loop cycles for both formants F1 and
F2 and two small loop cycles for reaching convergence. So the overall 16 calls originate from
2main ∗ (2largeloop ∗ 2F1,F2) ∗ 2smallloop loop cycles.

This problem did not just occur in the DSP implementation but could also be recon-
structed using a Matlab simulation of both algorithms which was analysed using the
Matlab-internal profiler. Profiling resulted in an overall calculation time of 0.432s (LPC type)
compared to 1.391s (IFC type) with the LPC tracker even calculating five formants instead
of three.

The proposed alternative approach of using a zero-crossing detector instead of a spectral-peak
based also did not solve the problem. A straight-forward implementation does not bring very
good results, the approach of weighting the zero-crossing results again adds much complexity.

Figure 5.7: Run-time comparison between LPC
and IFC based formant trackers by counting the
amount of consumed CPU cycles per block.

Block Module

LPC

1 LPC analysis
2 polynomial root calculation
3 formant value calculation
4 -

IFC

1 pre-emphasis and BP filter
2 IFC pre-filtering
3 mutual formant calculation
4 formant frequency extraction

Table 5.3: Sequentially pro-
cessed blocks of the LPC and
IFC formant tracker.

80

Detection Quality Directly comparing the tracking results of LPC and IFC tracker is not
possible with the DSP implementation because the IFC tracker misses input data frames due
to it’s run-time problems. Therefore a comparison was performed using a Matlab simulation of
both approaches which resulted in the formant contours as shown in figure 5.8. It can be seen
that the resulting formant contours more or less match, the IFC tracker just performs slightly
worse due to it’s run-time trade-off configuration (the formant frequency calculation is done
via FFT peak detection only instead of mixing weighted zero-crossing and FFT peaking).

(a) Formant contour of the first 3 formants as
parsed by the IFC-based tracker using a Matlab
implementation of the algorithm. It was config-
ured to use a LPC order of 3 and a detection
threshold of 0.3.

(b) Formant contour of the first 5 formants as
parsed by the LPC-based tracker using a Matlab
implementation of the algorithm. It was config-
ured to use a 2 iterations for both loops (inner
and outer).

Figure 5.8: Formant detection quality comparison between both implemented trackers by analysing
the word ”Hello”, spoken by a female person. The detector hereby used a block size of 128 and a
sampling rate of 8kHz.

Implementing a global pathfinder algorithm, as mentioned above, would not just add much
computational effort to the framework but also lead to a higher input-output delay: The
pathfinder’s quality depends on the amount of samples surrounding the currently processed to
have enough data for an accurate path-finding calculation. In order to have enough samples
in both directions, thus past and ”future” samples it would be necessary to delay the output
process to get the needed formant data from future samples (the term ”future” just expresses
the future output of already captured frames relatively to the currently outputted) as well.
Concerning the reduced detail of tracker parameters the LPC order is the one having the
most influence on the result. Changing this value determines the amount of candidates
available for the formant detection. It might even be the case that a too low degree of the
LPC polynomial leads to skipped formants. Tests showed that an order of below nine tends
to do so. A reduction in detail when determining the polynomial roots mainly leads to single
outliners. They originate from interrupting the not-yet-finished convergence calculation when
approximating the root’s value, refer to section 4.5.3 for further information.

An example of the overall tracking result using the LPC-based formant detector is
given in figure 5.9 showing the tracked second formant contour of the sentence ”Ich will
ihn nicht umfahren sondern umfahren!”, spoken with using an electrolarynx. The system’s
configuration looked like mentioned in table 5.4.

81

(a) F2 formant contour determined by Praat. The chosen formant is highlighted, the voice inactive periods
are noticeable by highly fluctuating formant values.

(b) F2 formant contour determined by the DSP framework using the LPC-based tracker with default
configuration. Voice inactive periods are noticeable by an invalid formant value (-1).

(c) F0 contour determined by the DSP framework. The default pitch is set to 100Hz, declination
is switched on. Again voice inactive periods are noticeable by an invalid marker (-1), in this case
applied to the pitch’s frequency value.

Figure 5.9: Formant tracking result using the LPC-based tracker to analyse the 9.1s long electro-
larynx speech sample ”Ich will ihn nicht umfahren sondern umfahren!”. Voice inactive periods are
located at time instances 0.0s . . . 0.5s, 5.0s . . . 5.5s and 9.0s . . . 9.112s.

In the process of analysing the tracking result it could be observed that the contour determined
by Praat (Fig. 5.9a, the highlighted second curve is the tracked second formant) matches
the DSP-generated result (Fig. 5.9b) leading to the final pitch contour in figure 5.9c. The
three regions at about 0.0s . . . 0.5s, 5.0s . . . 5.5s and 9.0s . . . 9.112s are SILENT regions thus the
speaker made a pause during these time intervals. Praat still tries to detect a formant value in

82

the mentioned regions, this is why the tracking result highly fluctuates there. Nevertheless the
DSP’s formant tracker correctly detects inactive VAD regions and sets the formant value to
an invalid value (-1). Despite of the good overall result there is an outliner in the DSP-based
tracking result at frame 302 displayed by a single peak of 2972Hz.

Tracker Setup Other Setup
Tracked Formant F2 Declination Active
LPC Order 10 Smoothing Active
Formant Decision index-based Smoothing Filter Size 5
Formant Detection Threshold 0.25

Table 5.4: Used formant tracker configuration that produced the example result discussed in this
section.

Pitch-Synchronous Overlap-Add

The PSOLA algorithm is responsible for transforming the data stream containing the pitch
contour frequency values (meta-information about the signal) into the final pitch contour of
the signal itself. When trying to discuss this module’s quality there are always questions
regarding algorithm correctness and run-time to be answered. Nevertheless there is no further
characteristic that could be taken into consideration: Every parameter that effects the final
speech signal’s quality (pitch contour values, pitch-markers, VAD and V/UV regions) is
generated by external modules, PSOLA’s quality is therefore directly determined by the
modules it gets the input data from without affecting quality itself. However to check
the correct implementation of the PSOLA algorithm a cross-checking between the array
containing the calculated pitch contour values and the actual contour of the output signal can
be performed.

If for example the resulting pitch contour as calculated by the formant tracker, smoothing
algorithm and formant-to-pitch contour conversion looks like

[115.0 113.5 102.3 95.4 99.8]

the outputted speech signal must show a pitch value of

• 115.0 for the signal in the 5th-last frame,

• 113.5 for the signal in the 4th-last frame,

• . . .

In order to perform the mentioned cross-checking the sentence ”Knapp 40 Jahre nach der
Trennung der berühmtesten Band der Welt erscheinen jetzt die Alben.”, spoken with an elec-
trolarynx, was analysed. The gathered pitch contour array as calculated by the DSP is shown
in figure 5.10a, the captured signal with accordingly altered pitch contour is displayed in figures
5.10b and 5.10c whereas the first one shows the signal’s spectrum and the second the pitch
contour as parsed by Praat. Comparing those three pictures the match between to-be-applied
pitch values and resulting pitch-altered signal can be clearly seen.

83

(a) Pitch contour determined by the DSP framework through tracking F2 and converting the
gathered developing to an adequate pitch contour.

(b) Resulting spectrum of the captured output signal. The audio data was analysed using Matlab, the
captured signal’s pitch contour matches the one calculated by the DSP.

(c) Pitch contour determined by Praat. The captured audio data was analysed using Praat to deter-
mine the signal’s pitch, the contour again matches the one calculated by the DSP.

Figure 5.10: Example result of the PSOLA module: With cross-checking the array holding the
pitch contour values as calculated by the framework (upper picture) and the actual pitch contour of
the output signal (lower picture) the functionality of the PSOLA algorithm can be determined - in
a correct implementation the formant-derived pitch contour frequency values and the appropriate
output signal’s pitch match.

84

5.2 Results Comparison with Different Setups

5.2.1 Block Size and Fast Fourier Transform Point Size

Varying the Block Size (BLKSZ) directly affects the time resolution of the overall system -
the smaller the block size the finer the resolution in the time domain and vice versa. The same
is valid for the resolution in the frequency domain, just the opposite way due to the f = 1

T
relation. It is therefore necessary to find an appropriate trade-off for the used block size.
Usually when considering the dynamic characteristics of the human voice a value around 160
to 320 points seems to be a good choice because the spectral resolution is of less importance
than the temporal (see also section 4.5.3). This quite low value originates from the high
temporal dynamics of voice due to articulatory movements. Common telephony systems
just use a frequency range of 300Hz up to 3400Hz to transmit vocal information. In DSP
applications there is also the computational cost to be kept in mind. Data processing has
to be finished in real-time to provide smooth and more importantly correct output. Further
information about this topic is found in chapter 4.5.3.

Several test runs resulted in an optimal BLKSZ of 256 for this implementation. De-
creasing this value still produces good results down to 192 points. Below this value it can
not be guaranteed to calculate the data in time thus until the next data frame reaches
(Equ. (4.19)). For higher block sizes the framework still produced good results unit passing
384 samples per frame. With even longer frames the quality again sinks due to a combination
of memory management issues as well as a too high amount of input data to be processed at
once - the proportion between BLKSZ and amount of accruing data is not completely linear
(because of nested loops and similar). The optimal BLKSZ value of 256 is a combination of
quality aspects based on the above mentioned facts. So the block size has to be chosen to
fit the dynamic behaviour of the input signal, the human voice, with still being able to be
calculated in real-time. If not treated correctly the framework can not provide the processing
results in time and the resulting output sounds either noisy - the output contains invalid
data values because the correct data values have not been written to the output memory
punctually - or choppy. This effect occurs if the processor is stuck in a calculation procedure
and therefore fails to raise the output interrupt.

5.2.2 Smoothing Filter Size

Smoothing filters are used in the framework to avoid extreme pitch fluctuations in the pitch
contour generation module by smoothing the formant developing which is again used as source
for the pitch contour generation. So varying the smoothing filter size just affects this module,
the multipath separation module is independent from this parameter.

The chosen value is mainly determined by two factors:

1. Needed calculation time

Again the computational cost has to be considered when choosing a suitable value
for this parameter: The higher the filter size the more data has to be handled by the
processor. Appropriate smoothing filter sizes range from 3 (the minimum size) up to
about 11. 3 is the minimal value because the filter size obviously has to be larger than
one and odd, the upper limit of 11 is determined by the framework’s real-time ability.

85

It might be possible to additionally increase the smoothing filter size further without
violating the run-time boundaries when cutting back on other calculations. However
this is not recommended because on the one hand a too high smoothing filter size again
reduces the speech quality and on the other hand LPC approximation, formant tracking
and similar are of more importance to the quality.

2. Block size

As mentioned in chapter 4.5.3 the block size directly influences the temporal res-
olution of the signal. Therefore the smoothing has an even higher effect on the signal
when dealing with large block sizes because the samples are already spaced by a larger
interval before being passed to the smoothing filter.

(a) Formant contour without smoothing, hence filter size 0.

(b) Formant contour with smoothing, using a filter size of 5.

(c) Formant contour with smoothing, using a filter size of 9.

Figure 5.11: Smoothing performance comparison with different filter sizes on an example formant
2 developing as tracked by the DSP’s formant detector. The used algorithms were outliner cancella-
tion, median filtering and linear smoothing filtering, performed consecutively in this order. As input
signal the sentence ”Ich will ihn nicht umfahren sondern umfahren!” spoken by an elecrolarynx user
was chosen.

Considering these facts led to the current implementation using a filter size of five. This
value smooths intervals of length 32ms ∗ 5 = 160ms if using the default configuration with
with BLKSZ=256 and fs=8kHz, see table 4.5. A value of 160ms is a good trade-off between
cancelling extreme fluctuations in the pitch contour and still having a high dynamic that is
perceived by the listener. Smoothing over longer intervals should just be performed when
using high sampling rates or small block sizes because they lead to short frame durations.
This guarantees the retaining speech dynamics.

86

In figure 5.11 a comparison of the formant contour is shown when using various smoothing
filter sizes. Figure 5.11a uses no smoothing at all whereas in figure 5.11b a filter with size
five and in figure 5.11c one with size nine for both the median and linear smoothing filter is
applied.

5.2.3 Filter Type in the Multipath Separation Module

Again the primary factor determining the choice of the filter used by the multipath separation
module is the time factor. Due to Infinite Impulse Response (IIR) filters working in a recursive
way they are able to achieve the same filtering effect as Finite Impulse Response (FIR) filters
with a significantly less amount of factors. Most filtering in this framework was done using
filter orders of either one or three, resulting in a rather small amount of IIR coefficients and
therefore multiplication and addition operations necessary. This is why IIR filters perform
better in terms of calculation effectiveness than FIR filters.

The MS module made use of first order Butterworth filters operating at a cut-off fre-
quency fc = 1Hz (to only suppress constant - thus 0Hz - components). This leads to a
coefficient size of eight for the IIR filter (results from equation (5.4), see also figure 4.5).
The adequate FIR filter was calculated using the Matlab impz() function (Ch. A.1.1) with
an adaptive size parameter to calculate it’s coefficients. The FIR’s coefficients for this filter
type show the behaviour of converging towards 0.0 with increasing index. The size parameter
was therefore chosen in a way that the last calculated filter coefficient cN - the one with the
highest index N - had to be the first with value 0.0. Doing so a loss of detail when applying
the filter can be avoided because no non-zero coefficients are skipped. At the same time the
filter size N is kept to a minimum. Obviously cN depends on the amount of decimals displayed
by Matlab when calculating the coefficient’s values. In ”high resolution” format this value is
set to 15. This format is activated using the Matlab command format long. Dependent on
the sampling rate this leads to a coefficient size of ≈ 400 in average. Increasing the sampling
rate leads to even bigger sizes due to the need of providing one coefficient per sampling value
with an increasing amount of sampling values.

2 ∗ nbiquad ← nbiquad = 2 ∗ nnumerator + 2 ∗ ndenominator (5.4)

Comparing these values - eight for IIR filters and ≈ 400 for FIR filters - the significant ad-
vantage when using IIR filters to save calculation time can easily be imagined. Several trials
resulted in a maximal FIR filter size of less than 100 to still be able to provide the real-time
ability of the framework - a value much too small for still producing acceptable filtering results.

87

88

Chapter 6

Conclusion and Outlook

In sum the overall speech enhancement framework produced a distinctively less noise cor-
rupted, natural sounding voice. The Multipath Separation (MS) produces the same results
as the non-real-time implementation showing an effective suppression of the electrolarynx
signal’s Direct-Radiated Electrolarynx Noise (DREL) component. Whether the resulting
speech causes a higher acceptance among electrolarynx users as well as their conversation
partners or not is a matter of personal taste: the DREL suppression is achieved at the price
of higher artefacts in the signal - either one appreciates the multipath separated result or is
disturbed by these artefacts. The Pitch Contour Generation (F0gen) on the other hand does
not have this kind of trade-off. The only question here is if the formant tracker performs
well enough to lead to a natural sounding pitch contour. This is again determined by the
accuracy of the tracker which is just limited by it’s calculational effort. As shown in chapter 5,
this is the case with the tracker based on the Linear Predictive Coding (LPC) implementation.

The biggest problem during the whole implementation process was to meet up with
the run-time restrictions for the sake of producing the results in real-time with still keeping a
high level of accuracy. There certainly were several trade-offs to be complied with, realising
faster performing algorithms could definitely increase the speech enhancement quality further.
An approach in this direction would be the assembly-level optimisation of frequently called
calculation routines. This has not been not done at the current level of implementation
simply because this approach is very time intense and with the framework performing rather
well anyway there was no immediate need to do so. Anyway an approach optimally utilising
the Digital Signal Processor (DSP) could lead to a speed-up of (the more or less unlikely
maximal value) of eight times at best (Sect. 2.3.2) - the hereby gathered time reserve could
be used to noticeably increase the enhancement framework’s detail and accuracy. Besides
the obvious raise of parameters immediately enhancing the calculation quality (LPC order,
used Finite Impulse Response (FIR) filter lengths, . . .) the additional buffer in time
also offers the possibility to furthermore experiment with the complete framework setup.
The tight time flow at the moment nearly makes it impossible to tune parameters like
block size and sampling rate, they have to be kept to a minimum or at least in an area
close to it. An additional buffer could be used to increase the system’s temporal resolution
with the result of achieving a more dynamic/adaptive formant and consequential pitch contour.

Besides enhancing the framework from the implementation side there is also the possibility to
approach from the algorithm side. The Modulation Spectral Filter (MSF) implementation
currently lacks in keeping the original signal’s loudness as discussed in section 5.1.2. Adapting

89

the algorithm to get rid of this drawback would make the - currently mandatory - usage of
a volume control needless. This would increase the achievable Signal-To-Noise Ratio (SNR)
because with gaining the overall output the noise components are also amplified, having a
better fitted filter would keep the SNR low with suppressing noise and keeping the signal
untouched. A completely different approach could also be to implement some sort of pattern
matching between electrolarynx and healthy voice to reconstruct a pitch contour. This
would replace the currently active formant tracker and might lead to promising results as
well: Machine learning algorithms can take much more speech features into consideration to
evaluate a pitch contour than simply the formant. In order to not violate the existing real-time
constraints an algorithm would have to be chosen where the calculational expensive training
can be done offline. The actual mapping, the Machine Learning (ML)’s testing procedure,
shows a complexity that is distinctively lower than training, with having access to an al-
ready pre-configured neural net it might again be executed on the DSP application in real-time.

Determining the achieved intelligibility enhancement via subjective tests is a task that
was already planned to be done in the course of this work. Unfortunately time constraints
prevented me from doing so. Getting people’s subjective impression towards the resulting
speech signal can not be replaced by purely objective, technical measurement because every
person reacts unique to the perceived sound. And after all achieving the best possible
intelligibility, regardless of measurement method or listener, allows to finally come closer to
the real purpose of this work: Supporting electrolarynx dependent speakers the best possible
way with providing tools that help them to have smooth and flawless conversations...

90

Bibliography

[1] Agastya Chitra, Mechanic Dan, Kothari Neha. Factors Affecting Call Quality in Popular
VoIP Clients. Technical report, Columbia University, 2008. 68

[2] Agilent Technologies, Colorado Springs. Oszilloskope Agilent 54621A/22A/24A und
Mixed-Signal-Oszilloscope Agilent 54621D/22D Benutzerhandbuch, 2000. 109

[3] AKG Acoustics, Vienna. HSC 171/271, HSD 171/271/Single User Instructions. 108

[4] APart. APart PA4060 Amplifier. 109

[5] Behringer, Willich-Münchheide II. Eurorack MX602A Bedienungsanleitung, 1.2 edition,
2001. 108

[6] Benesty Jacob, Sondhi Mohan M., Huang Yiteng. Handbook of Speech Processing.
Springer, Heidelberg, 2008. 2, 6

[7] Bőehm Tamás, Németh Géza. Algorithm for Formant Tracking, Modification and Syn-
thesis. In Hı́radástechnika Journal, volume 62, pages 15 – 20, Budapest, 2007. Scientific
Association for Infocommunications. 15

[8] Boersma Paul. Accurate Short-Term Analysis of the Fundamental Frequency and the
Harmonics-to-Noise Ratio of Sampled Sound. In IFA Proceedings 17, pages 97 – 110,
Amsterdam, 1993. University of Amsterdam. 41

[9] Boll Steven. Suppression of Acoustic Noise in Speech Using Spectral Subtraction. In
IEEE Transactions on Speech and Audio Processing, volume 27, pages 113 – 120, Salt
Lake City, 1979. University of Utah. 26

[10] Boutremans Catherine. Delay Aspects in Internet Telephony. PhD thesis, École Polytech-
nique Fédérale de Lausanne, Lausanne, 2009. 67

[11] Brüel & Kjær, Nærum. Schwingerreger Typ 4810 Technische Dokumentation, 1990. 108

[12] Chassaing Rulph. Digital Signal Processing and Applications with the C6713 and C6416
DSK. John Wiley & Sons, New Jersey, 2005. 17

[13] Laryngeal Cancer, October 2009. http://www.commonwealthent.com/Laryngeal_
Voice_Box_Cancer.htm. 9

[14] Denes Peter, Pinson Elliot. The Speech Chain: The Physics and Biology of Spoken Lan-
guage. Worth Publishers, 2. edition, 1993. 6

[15] Ellenberger Kenneth W. Algorithm 30: numerical solution of the polynomial equation.
Commun. ACM, 3(12):643, 1960. 102

91

http://www.commonwealthent.com/Laryngeal_Voice_Box_Cancer.htm
http://www.commonwealthent.com/Laryngeal_Voice_Box_Cancer.htm

[16] Feldbauer Christian. Real-Time Block Processing Environment. Technical report, Graz
University of Technology, Graz, 2005. 30, 67, 72, 100

[17] Geelhoed Erik, Parker Aaron, Williams Damien J., Groen Martin. Speech Processing:
Theory of LPC Analysis and Synthesis. Technical report, Hewlett-Packard, 2009. 67

[18] Friedrich Gerhard. Kehlkopfkrebs (Larynxkarzinom), October 2009. http://www.
netdoktor.at/krankheiten/fakta/kehlkopfkrebs.htm. 9

[19] Kehlkopfkrebs, October 2009. http://gin.uibk.ac.at/thema/krebs/kehlkopfkrebs.
html. 9

[20] Hagmüller Martin. Speech Enhancement for Disordered and Substitution Voices. PhD
thesis, Graz University of Technology, Graz, 2009. 1, 25, 26, 53

[21] Hewlett-Packard, Loveland. Agilent 33120A Function Generator / Arbitrary Waveform
Generator User’s Guide, 6. edition, 2000. 109

[22] Jochum Christian, Reiner Peter. Comparison of Excitation Signals for an Electronic
Larynx. Master’s thesis, Graz University of Technology, Graz, 2008. 55

[23] Jones Douglas L.,Swaroop Appadwedula, Berry Matthew, Haun Mark, Janovetz Jake,
Kramer Michael, Moussa Dima, Sachs Daniel, Wade Brian. Effects of Latency on Telep-
resence. Technical report, Connexions Project, 2004. 39

[24] Lemmetty Sami. Review of Speech Synthesis Technology. Technical report, Helsinki
University of Technology, Helsinki, 1999. 13

[25] Liu Hanjun, Ng Manwa L. Electrolarynx in Voice Rehabilitation. In Aurus Nasus Larynx,
volume 34, pages 327 – 332, Evanston, Hong Kong, 2007. Elsevier. 1

[26] Loizou Philipos C. Speech Enhancement: Theory and Practice. CRC Press, Dallas, 1.
edition, 2007. 6, 25

[27] Mills Wesley. Voice Production in Singing and Speaking. BiblioBazaar, 4. edition, 2008.
7

[28] Nishiguchi Masayuki, Matsumoto Jun, Shinobu Ono. Voiced/Unvoiced Decision Based on
Frequency Band Ratio. Technical report, Sony Corporation, Tokyo, 1997. 40

[29] Oppenheim Alan V., Schafer Ronald W., Buck John R. Discrete-time Signal Processing.
Prentice Hall, New Jersey, 2. edition, 1999. 11, 12, 35, 36, 38, 99

[30] Parkin Max D., Bray Freddie, Ferlay J., Pisani Paola. Global cancer statistics, 2002. In
A Cancer Journal for Clinicians, volume 55, pages 73 – 108, Atlanta, 2005. American
Cancer Society. 9

[31] Boersma Paul. Sound: To Pitch (ac), October 2009. http://www.fon.hum.uva.nl/
praat/manual/Sound__To_Pitch__ac____.html. 41

[32] Realtec Semiconductors, Hsinchu. ALC260/ALC260D Series 2 Channel High Definition
Audio Codec Datasheet, 1.4 edition, 2005. 109

[33] Servona, Troisdorf. Servox Digital Instruction Manual. 108

92

http://www.netdoktor.at/krankheiten/fakta/kehlkopfkrebs.htm
http://www.netdoktor.at/krankheiten/fakta/kehlkopfkrebs.htm
http://gin.uibk.ac.at/thema/krebs/kehlkopfkrebs.html
http://gin.uibk.ac.at/thema/krebs/kehlkopfkrebs.html
http://www.fon.hum.uva.nl/praat/manual/Sound__To_Pitch__ac____.html
http://www.fon.hum.uva.nl/praat/manual/Sound__To_Pitch__ac____.html

[34] Skandera Paul, Burleigh Peter. A Manual of English Phonetics and Phonology. Narr,
Tübingen, 1. edition, 2005. 7

[35] Sorensen Henrik V., Jones Douglas L., Heideman Michael T., Burrus Sidney C. Real-
Valued Fast Fourier Transform Algorithms. In IEEE Transactions on Acoustics, Speech
and Signal Processing, volume 35, pages 849 – 863, Houston, 1987. Rice University. 35,
36

[36] Spectrum Digital, Stafford. TMS320C6713 DSK Technical Reference, b. edition, 2004.
108

[37] Texas Instruments, Dallas. TLV320AIC23 Stereo Audio Codec Data Manual, 2001. 18

[38] Texas Instruments, Houston. TMS320C6000 DSK Board Support Library API User’s
Guide, 2001. 21

[39] Texas Instruments, Houston. TMS320C6000 Chip Support Library API User’s Guide,
2004. 21

[40] Texas Instruments, Houston. TMS320C6713B Floating Point Digital Signal Processor, b.
edition, 2006. 17, 60

[41] Texas Instruments, Dallas. TMS320C67x DSP Library Programmer’s Reference Guide, b.
edition, 2006. 21, 100

[42] Texas Instruments, Houston. Code Composer Studio Development Tools Getting Started
Guide, 3.3 edition, 2008. 20

[43] Texas Instruments, Houston. TMS320C6000 Assembly Language Tools User’s Guide, 6.1
edition, 2008. 33

[44] Texas Instruments, Houston. TMS320C6000 Optimizing Compiler User’s Guide, 6.1 edi-
tion, 2008. 17, 19, 59

[45] Ueda Yuichi, Hamakawa Tomoya, Sakata Tadashi, Hario Syota, Watanabe Akira. A Real-
Time Formant Tracker Based on the Inverse Filter Control Method. In Acoustic Society
of Japan, volume 28, pages 271 – 274, Kumamoto, 2007. Kumamoto University. 16, 44,
48

[46] Wah Benjamin W., Sat Batu. The design of voip systems with high perceptual conversa-
tional quality. In Journal of Multimedia, volume 4, pages 49 – 62, Illinois, 2009. University
of Illinois. 67

[47] Watanabe Akira. Formant Estimation Method using Inverse-Filter Control. In IEEE
Transactions on Speech and Audio Processing, volume 9, pages 317 – 326, Kumamoto,
2001. Kumamoto University. 16

[48] Werneck Renato, Ribeiro Celso. Sorting Methods For Small Arrays. Technical report,
Pontif́ıcia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2000. 64, 65

[49] Formant, September 2009. http://en.wikipedia.org/wiki/Formant. 46

93

http://en.wikipedia.org/wiki/Formant

94

Appendix A

Appendix

A.1 Matlab Code

The main usage of the Matlab software package during this project was to generate the co-
efficients needed in filter and window design. Due to Matlab’s very good signal processing
support it was also used to test various routines and algorithms before implementing in the
DSP framework as well as to verify results produced by the real-time environment. Never-
theless these test implementations had no direct influence on the actual speech enhancement
application and will not be discussed in this thesis therefore.

A.1.1 Filter Design

As discussed in chapter 4.4 the signal processing framework uses several FIR and Infinite
Impulse Response (IIR) filters during it’s calculations. Every of those filters was a Butterworth
filter either of low- or high-pass type with an order between one (the MSF envelope High-
Pass (HP) filter) and three (e.g. the pre- and post-processing HP filters in the multipath
separation and F0gen routines). Filters of higher order were firstly not necessary and would
secondly lead to higher calculation times because of the increasing amount of coefficients with
every degree of order.

Infinite Impulse Response Filter Design

The IIR filter coefficients were initially calculated with the butter() function as shown in
equation (A.1). This function calculates the numerator a and denominator b values for a
Direct Form 2 (DF2) filter in array form dependent on the parameters order p, normalised
center frequency fc,n and filter type T which can either be high for a high-pass or low for a
low-pass.

[b,a] = butter(p,fc,n,T) (A.1)

The normalised frequency fc,n is calculated with dividing the desired frequency fc by the
sampling rate fs as shown in equation (A.2).

fc,n =
fc
fs

2

(A.2)

95

The calculated numerator and denominator values can not be used in the source code directly
because IIR filter calculations are performed on biquad modules with the run-time optimised
Assembler function biquad() (Equ. (4.9)) and therefore have to be converted to this filter form.
Matlab provides the tf2sos() function for these purposes. It is called with the numerator a
and denominator b as parameters and returns the biquad coefficients c and gain g for every
biquad stage (Equ. (A.3)).

[c,g] = tf2sos(b,a) (A.3)

The remaining processing stage before being able to use these values in the source code is a
conversion of the parameter format. The coefficients returned by tf2sos() are in a mathe-
matically correct representation (having the correct sign and the first denumerator a0 is 1.0,
see table A.1) but are needed to be in a form like shown in table A.2 to save calculation speed
with already negating the denominator values (they are the factor in the subtraction term)
and skipping the redundant a0 value. The single stage gain values are also converted to an
overall system gain by simply multiplying them - this saves calculation time because the filter
calculation just needs a single multiplication for applying the gain instead of N .

[b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

...
b0N b1N b2N 1 a1N a2N]

Table A.1: Structure of the IIR coefficients array as returned by Matlab’s tf2sos() function.

[-a11 -a21 b11 b21
-a12 -a22 b12 b22

...
-a1N -a2N b1N b2N]

Table A.2: Structure of the IIR coefficients array as needed by the DSPLib function biquad().

Finite Impulse Response Filter Design

FIR filter coefficients are calculated in a similar way as the IIR parameters with calculating
numerator a using equations (A.1) and (A.2). The denominator b can be set to 1.0 because
FIR filters do not use recursions per definition. The FIR filter factors for every delay line
x[t− i] as shown in equation 4.7 are determined using the numerator b and filter length N as
input for the Matlab impz() function which returns these filter factors c in array form when
calling the function as shown in equation (A.4).

[c] = impz(b,a,N) (A.4)

96

Inverse Microphone Filter Besides realising common high- and low-passes an Inverse
Filter (IF) had to be designed to counterfeit the distinctive near-field behaviour of the used
microphone as shown in figure A.1. The specification was to dampen low frequencies between
0Hz and 350Hz with 10dB, between 350Hz and 1kHz the suppression should slowly converge
towards 0dB.

Figure A.1: Frequency response of the used AKG HD171 microphone for different speaker dis-
tances. The green curve indicates the near-field behaviour, the red curve the far-field behaviour and
the dashed red one the far-field behaviour using a non-direct speaker angle (source: AKG).

In order to design the inverse filter Matlab’s Filter Design and Analysis Tool (FDATool)
was used. Due to the specific behaviour within given bandwidths the multi-band filter type
was chosen. With adapting the wanted parameters and cross-checking them with the re-
sulting frequency response the least-squares approach for coefficient calculation performed best.

Nevertheless the results were not optimal due to filter order limitations caused by run-
time constraints: An increasing order might lead to an accurate frequency response but
causes more coefficients and therefore a higher calculation time - especially when designing
for higher sampling rates (32kHz and above). A trade-off between wanted attenuation in the
low frequency region and unwanted in higher frequency regions, mainly between 1kHz and
2kHz, had to be performed.

The discussed approach finally resulted in the parameter values presented in table A.3
leading to the FIR’s frequency responses as shown in figure A.2. The mentioned weight
parameter is a ratio indicating the importance of accuracy for the bands among each other.

97

Parameter Desired Tendency Used Value

frequency bands accurate
0Hz . . . 300Hz
500Hz . . . fs

2 Hz

filter order minimal

6 (fs= 8kHz)
8 (fs= 16kHz)
10 (fs= 32kHz)
12 (fs= 44.1kHz)
14 (fs= 48kHz)

weight optimal

8:1 (fs= 8kHz)
4:1 (fs= 16kHz)
6:1 (fs= 32kHz)
8:1 (fs= 44.1kHz)
7:1 (fs= 48kHz)

Table A.3: Optimal parameters of the multi-band FIR filter as used in Matlab’s FDATool in order
to design the inverse microphone filter for different sampling rates.

Figure A.2: Final frequency responses of the designed inverse microphone filters dependent on the
target sampling rate. The optimal filter shall dampen the frequency band 0Hz . . . 300Hz by 10dB
with leaving other bands untouched.

98

A.1.2 Window Design

Windowing is a necessity when performing short-time operations on continuous input data for
the sake of avoiding artefacts on frame borders in the overlap-adding process. This is done via
weighting the current frame data and overlap-adding it with parts of the previous. The choice
of a weighting function plays an important role in this process - it determines the importance
of the specific overlapping data values in the frame that holds them. When equipping those
samples with strictly linear decreasing weighting factors in frame border direction, the most
simple window form, this is called a triangular window.

Figure A.3: Hann window coefficients for a window size of 256.

This framework primarily used the so-called Hann windows which are created using equation
(A.5) to calculate the single coefficients. Variables in this equation are the coefficient index i
indicating the coefficient’s position in the block and the window length N which is determined
by the Block Size (BLKSZ). The Hann coefficients for BLKSZ= 256 are shown in figure A.3,
further information about this type of window as well as alternatives can be found in [29].

h[i] = 0.5 ∗ (1.0− cos(i ∗ 2 ∗ π
N − 1

)) (A.5)

Matlab provides several built-in functions to perform window coefficient calculation. The men-
tioned Hann window coefficients are calculated using the hann() function, called like demon-
strated in equation (A.6). Function parameter is the window size N . The returned value h is
an array of size N consisting of the calculated coefficients at their appropriate frame positions.

[h] = hann(N) (A.6)

99

A.2 External Code

A.2.1 Block Processing Framework

Data exchange between audio Input / Output (I/O) device and signal processing unit is based
on block processing or framing as explained in section 4.2 in detail. The skeletal structure
providing this functionality was originally implemented by a colleague at the laboratory for
being used in his classes ([16]).

A.2.2 KISS Fast Fourier Transform

As discussed in section 4.4.1 and more detailed in [41] the Fast Fourier Transform (FFT)
functions provided by the Digital Signal Processor Library (DSPLib) are limited to a definite
group of input parameters for the sake of being able to optimise their calculation time in the
best possible way. Especially the restriction to always have to have input data lengths being a
power of two (primarily 64, 128, 256, 512 and 1024), necessary for the radix-2 character of the
processing algorithm, was problematic. During testing the output quality several trials were
done with different frequency resolutions in order to find an optimal value. Unfortunately
the input length restriction caused a very small pool of allowed testing resolutions - FFT
calculations below 64pt resulted in a way too bad quality, resolutions above 256pt were
problematic due to increasing calculation times for a single frame which made real-time
processing impossible.

Therefore the KISS FFT framework was used for Fourier transforms with non-power-of-two
frequency resolutions like 160pt and 192pt as frequently used in comparable applications. It
is important to mention here that a complete migration to the KISS FFT framework is not
advisable. Therefore the power-of-two Fourier transforms are still calculated with the DSPLib
provided function because of their calculation speed optimisation for the used signal processor.

Usage

The Kiss FFT framework was designed to be simple and without unnecessary overhead - as
hinted by the framework’s name: KISS stands for Keep It Simple, Stupid. Basically it can
be differed between using the routines handling purely real input data (processed in routines
labelled with fftr at the beginning) and complex input (routines whose name start with fft).
For further information please refer to http://sourceforge.net/projects/kissfft/.

Copyright

The KISS FFT source code can be used freely when including the copyright notice written by
the author as mentioned in the code listing below.

100

http://sourceforge.net/projects/kissfft/

/*
Copyright (c) 2003-2004, Mark Borgerding

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse
or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ’’AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/

A.2.3 Polynomial Roots Calculation

To calculate the roots of polynomials, needed by the formant tracking algorithm described
in chapter 4.4.10, external parts of code were used. Because the computational effort of
root-finding algorithms is very high it was experimented with several implementations. Finally
the implementation by C. Bond which is discussed in chapter A.2.3 turned out to be the
better choice. The Speex implementation (Sect. A.2.3) stuck in an infinite loop that froze the
complete framework sometimes.

Both implementations use the Bairstow algorithm to determine the polynomial roots.
The Bairstow algorithm is an approach, based on numerical analysis, to determine the roots
of a polynomial by using the Newton method for splitting a polynomial of arbitrary degree in
polynomials of second order. These polynomials can then simply be solved using the quadratic
formula as given in equation (A.7).

a ∗ x2 + b ∗ x+ c = 0→ x1,2 =
−b±

√
b2 − 4 ∗ a ∗ c
2 ∗ a

(A.7)

101

Speex Implementation

Speex1 is an audio compression format optimised for speech signals. It is being developed
as open-source project and completely license-free. Therefore the code for the polynomial
root-finding algorithm can be used without any problems. The realisation itself is based on
the ACM algorithm #30 implementation of the Bairstow algorithm that was introduced by
[15] in 1960.

Copyright

/* Copyright (C) 1981-1999 Ken Turkowski. <turk@computer.org>
*
* All rights reserved.
*
* Warranty Information
* Even though I have reviewed this software, I make no warranty
* or representation, either express or implied, with respect to this
* software, its quality, accuracy, merchantability, or fitness for a
* particular purpose. As a result, this software is provided "as is,"
* and you, its user, are assuming the entire risk as to its quality
* and accuracy.
*
* This code may be used and freely distributed as long as it includes
* this copyright notice and the above warranty information.

Code slightly modified by Jean-Marc Valin (2002)

Speex License:

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

1http://speex.org/

102

http://speex.org/

C. Bond’s Implementation

The implementation by C. Bond also uses the Bairstow algorithm to determine polynomial’s
second order coefficients. Those coefficients can simply be converted to the polynomial roots
with using the quadratic formula (Equ. (A.7)). The code itself is ”offered freely and without
restriction”2.

Copyright

/* bairstow.c -- Bairstow’s complex root finder
*
* (C) 1991, C. Bond
*
* Finds all real and complex roots of polynomials
* with real coefficients.
*
* Features:
* o Global, self-starting method,
* o Does not require initial estimates,
* o Finds all roots and quadratic factors,
*
* Caveats:
* All polynomial root finders have problems
* maintaining accuracy in the presence of
* repeated roots.
* This is no exception!
*/

A.3 Praat

Praat3 is a free acoustic signal processing software with special focus on speech signals. Because
of it’s big functional range and high accuracy it is wide spread among speech processing
developers. Praat offers possibilities including:

Sound I/O: Recording or importing of sound files, export / synthesis / data manipulation

Speech analysis: Pitch detection, formant detection, spectral analysis, jitter analysis

Speech synthesis: Source-filter based synthesis (reproduced by the glottal impulse response),
articulatory synthesis

Speech manipulation: Pitch alteration, filtering

Speech labelling and segmentation: Phonetic alphabet based segmentation and labelling,
appliance of feature based grids (pitch / formant / amplitude / intensity / duration)

Statistics: Discriminant analysis, multidimensional scaling, principal component analysis

ML: Neural network analysis, optimal theory analysis

In the process of developing this framework mainly the speech analysis functionality was used,
primarily as a reference for the self-implemented pitch and formant trackers.

2http://www.crbond.com/
3http://www.fon.hum.uva.nl/praat/

103

http://www.crbond.com/
http://www.fon.hum.uva.nl/praat/

A.4 Apparatus Usage and Operation Modes

In principle, the complete framework needs no user interaction for a proper usage. The speech
enhancement is performed automatically, all configuration parameters are optimised and al-
ready set to guarantee the best possible enhancement result. Nevertheless the four Dual Inline
Package (DIP) switches on the DSP board provide a simple user interface for altering the in-
ternal processing line. These changes include activating and deactivating components as well
as changing to alternative calculation algorithms for some internal routines. Table A.4 shows
the exact switch assignment.

DIP Switch Mode Functionality

1 -
on speech enhancement active
off signal bypass

2 -
on MS active
off MS inactive

3 -
on F0gen active
off F0gen inactive

4
MS on, F0gen off

on MSF
off SS

MS off, F0gen on
on enhanced signal output
off pulse generator output

MS on, F0gen on
on enhanced signal output
off pulse generator output

Table A.4: Functional assignment of the DSK’s four available DIP switches in order to interac-
tively control the system behaviour.

Worth mentioning is also the default configuration of the MS module: In case of mode MS on,
F0gen on there is no possibility to choose the filtering mode (DIP 4 is used to configure the
pitch contour generation module in this case). The MS module always uses the MSF in this
mode. This is reasoned with the better performance of this filter (Sect. 5.1.2).

LED Mode Indication
1 - speech enhancement activity
2 - multipath separation activity
3 - pitch contour generation activity

4
enhanced signal output enhanced signal output is active

pulse generator output
voice activity (current VAD state)
V/UV property (current V/UV state)

Table A.5: Indicated functionality of the DSK’s four available LED’s dependent on the system’s
operating mode.

The four on-board Light Emitting Diode (LED)’s are primarily used to indicate the operating
mode chosen by the DIP switch setup. So LED 1 is active if DIP 1 is active et cetera. The
only exception occurs with activated pulse generator output: In this case the LED’s 3 and 4
indicate the voice activity and voiced/unvoiced behaviour. This simple user feedback makes

104

it more convenient for the user to adjust the input level to guarantee a proper Voice Activity
Detection (VAD) functionality (refer to section 4.4.6 for more information about this topic).
In table A.5 a detailed list of LED indication modes is given.

A.5 Used Devices

A.5.1 Description

A list of used devices and their most important technical specifications can be found in tables
A.6 and A.7. These are at first the Servox digital electrolarynx and Brüel & Kjær shaker
devices4 5 that are used as testing devices for the production of electrolarynx voice input.
The Servox digital is a commercial electrolarynx device featuring high mobility and comfort.
The Brüel & Kær device however is not intended to be used by the common user. It is far
more expensive and heavy than the Servox digital and targets on being used in scientific
applications. Therefore it is very accurate and more importantly offers the possibility to
control the vibration frequency - a necessary feature in the pitch contour generation process.
The Servox digital does not provide this functionality. It’s vibration frequency is fixed at a
user-defined value, dependent on the pressed button one the two pre-defined frequencies can
be chosen. The main component in the processing chain, the Spectrum Digital DSP board
TMS320C6713 6, used for signal processing, is discussed in section 2.3 in detail and will not be
discussed here furthermore. For mixing and routing various signals a Eurorack MX602A7 was
employed. Finally voice capturing and monitoring was carried out using a AKG HSD171D
headset8. All of the above devices are directly taking part in the signal flow and are essential
for the proper functionality of the framework therefore. Pictures of these devices can be found
on page 106.

For amplification, measurement and verification purposes a waveform generator, oscillo-
scope and power amplifier were used. The waveform generator, a Agilent 33120A9 was
primarily needed to generate well-defined input signals for debugging purposes. The Agilent
54622D oscilloscope10 was needed in such debugging situations as well - when being aware
of the exact input and output accurate conclusions could be made about the internal func-
tionality of the developed DSP program. At last the power amplifier, a APart PA4060 11, was
necessary to amplify the generated pitch contour pulses for controlling the shaker. The rather
low-energy output generated by the Digital Signal Processor Starter Kit (DSK) was not able
to power the shaker’s electric motor on it’s own. Additionally a Personal Computer (PC)
was utilised to calculate spectrograms by capturing the enhanced audio data. In order to do
so the contour-equipped electrolarynx speech signals were recorded via headset microphone
and captured by the computer’s sound card, namely a Realtec ALC260 12. Pictures of these
devices can be found on page 107.

4Manual: http://www.servona.com/picture/pdf/GBA_SERVOXdigital_0705.pdf
5Manual: http://www.bksv.com/doc/bp0232.pdf
6Manual: http://c6000.spectrumdigital.com/dsk6713/V2/docs/dsk6713_TechRef.pdf
7Manual: www.behringerdownload.de/MX602A/MX602A_ENG_Rev_F.pdf
8Manual: http://www.akg.com/mediendatenbank2/psfile/datei/3/hsc_hsd_17430d5f588a7cf.pdf
9Manual: http://cp.literature.agilent.com/litweb/pdf/5968-0125EN.pdf

10Manual: http://cp.literature.agilent.com/litweb/pdf/54622-97036.pdf
11Manual: http://www.apart-audio.com/uploaded_files/productFiles/PA4060/PA4060-TS.pdf
12Manual: ftp://Webser:Ds8MtJ3@152.104.238.19/pc/audio/ALC260(D)_DataSheet_1.4.pdf

105

http://www.servona.com/picture/pdf/GBA_SERVOXdigital_0705.pdf
http://www.bksv.com/doc/bp0232.pdf
http://c6000.spectrumdigital.com/dsk6713/V2/docs/dsk6713_TechRef.pdf
www.behringerdownload.de/MX602A/MX602A_ENG_Rev_F.pdf
http://www.akg.com/mediendatenbank2/psfile/datei/3/hsc_hsd_17430d5f588a7cf.pdf
http://cp.literature.agilent.com/litweb/pdf/5968-0125EN.pdf
http://cp.literature.agilent.com/litweb/pdf/54622-97036.pdf
http://www.apart-audio.com/uploaded_files/productFiles/PA4060/PA4060-TS.pdf
ftp://Webser:Ds8MtJ3@152.104.238.19/pc/audio/ALC260(D)_DataSheet_1.4.pdf

(a) Electrolarynx, c© http: // www.

luminaud. com

(b) Shaker, c© http: // eolsurplus. com

(c) DSP board, c© http: // www. roinos.

com

(d) Mixer board, c© http: // www.

behringer. com

(e) Headset, c© http: // uk. shopping. com

Figure A.4: Devices that are an integral part of the framework because of being directly involved
in the framework’s signal processing chain.

106

http://www.luminaud.com
http://www.luminaud.com
http://eolsurplus.com
http://www.roinos.com
http://www.roinos.com
http://www.behringer.com
http://www.behringer.com
http://uk.shopping.com

(a) Waveform generator, c© http: // www.

testequity. com

(b) Oscilloscope, c© http: // www.

daytona-sensors. com

(c) Power amplifier, c© http: // www.

fullwave. be

(d) Sound card, c© http: // tech. 163. com

Figure A.5: Devices being used for utility purposes like measurement tasks and signal amplification
that are not directly involved in the processing chain.

107

http://www.testequity.com
http://www.testequity.com
http://www.daytona-sensors.com
http://www.daytona-sensors.com
http://www.fullwave.be
http://www.fullwave.be
http://tech.163.com

D
ev

ic
e

T
y
p

e
P

ro
d

u
ct

N
am

e
C

h
ar

ac
te

ri
st

ic
s

E
le

ct
ro

la
ry

nx
Se

rv
ox

di
gi

ta
l

P
it

ch
:
≈

10
0H

z
(B

u
tt

on
A

),
25

0H
z

(B
u

tt
on

B
)1

3

(s
ou

rc
e:

[3
3]

)
W

ei
gh

t:
11

0g
d

ev
ic

e
+

60
g

b
at

te
ry

Sh
ak

er
B

rü
el

&
K

jæ
r

T
yp

e
48

10
Fr

eq
ue

nc
y

ra
ng

e:
0H

z
..

.1
8k

H
z

(s
ou

rc
e:

[1
1]

)
E

ne
rg

is
in

g
cu

rr
en

t:
1.

8A
e
ff

W
ei

gh
t:

1.
1k

g

D
SP

bo
ar

d
Sp

ec
tr

um
D

ig
it

al
T

M
S3

20
C

67
13

D
SK

D
SP

op
er

at
in

g
fr

eq
ue

nc
y:

22
5M

H
z

(s
ou

rc
e:

[3
6]

)
C

od
ec

ty
pe

:
st

er
eo

M
em

or
y:

R
A

M
16

M
B

S
D

R
A

M
,

no
n-

vo
la

ti
le

fla
sh

51
2k

B
U

se
r

I/
O

:
4

L
E

D
’s

,
4

D
IP

’s
D

at
a

I/
O

:
M

ic
/l

in
e

in
p

u
t,

h
ea

d
p

h
on

e/
li

n
e

ou
tp

u
t

(3
.5

m
m

au
d

io
ja

ck
s)

M
ix

er
bo

ar
d

E
ur

or
ac

k
M

X
60

2A
C

ha
nn

el
s:

6
(s

ou
rc

e:
[5

])
In

pu
t:

2
m

on
o

(6
.5

m
m

au
d

io
ja

ck
or

X
L

R
),

2
st

er
eo

(6
.5

m
m

au
d

io
ja

ck
)

E
Q

:
3

c
h
a
n
n
e
l

(8
0H

z,
2.

5k
H

z,
12

k
H

z)
Fr

eq
ue

nc
y

re
sp

on
se

:
10

H
z

..
.6

0k
H

z
(m

on
o

ch
an

n
el

)
/

55
k
H

z
(s

te
re

o
ch

an
n

el
)

Fr
eq

ue
nc

y
ra

ng
e,

m
ic

in
pu

t:
22

H
z

..
.2

0k
H

z
O

ut
pu

t
le

ve
l:

+
22

d
B

u
(m

ai
n

m
ix

)
/

+
22

d
B

u
(c

on
tr

ol
ro

om
)

N
oi

se
ab

so
lu

te
:

-9
0d

B
u

SN
R

:
11

3.
6d

B
(i

n
te

rn
al

)
/

11
2d

B
(m

ai
n

m
ix

ou
tp

u
t)

T
H

D
N

:
0.

00
7%

H
ea

ds
et

A
K

G
H

SD
17

1
M

ic
ro

ph
on

e
ty

pe
:

d
y
n

am
ic

(s
ou

rc
e:

[3
])

H
ea

dp
ho

ne
s

ty
pe

:
cl

os
ed

-b
ac

k
,

su
p

ra
au

ra
l,

d
y
n

am
ic

M
ic

ro
ph

on
e

fr
eq

ue
nc

y
ra

ng
e:

60
H

z
..

.1
7k

H
z

H
ea

dp
ho

ne
s

fr
eq

ue
nc

y
ra

ng
e:

18
H

z
..

.2
6k

H
z

M
ic

ro
ph

on
e

po
la

r
pa

tt
er

n:
h
y
p

er
ca

rd
io

id
H

ea
dp

ho
ne

s
T

H
D

:
<

0.
4%

T
a
b
le

A
.6

:
L

is
t

of
al

l
us

ed
de

vi
ce

s
be

in
g

a
pa

rt
of

th
e

sy
st

em
’s

pr
oc

es
si

ng
ch

ai
n

an
d

th
ei

r
te

ch
ni

ca
l

sp
ec

ifi
ca

ti
on

s.

108

D
ev

ic
e

T
y
p

e
P

ro
d

u
ct

N
am

e
C

h
ar

ac
te

ri
st

ic
s

W
av

ef
or

m
ge

ne
ra

to
r

A
gl

ie
nt

33
12

0A
(s

ou
rc

e:
[2

1]
)

W
av

ef
or

m
s

av
ai

la
bl

e:
10

Sa
m

pl
e

ra
te

:
40

M
s
a
m

p
le

s
s

R
es

ol
ut

io
n:

A
m

pl
it

ud
e

12
b

it
,

fr
eq

ue
nc

y
10
µ
H

z
B

an
dw

id
th

:
10

0µ
H

z
..
.1

5M
H

z
(s

in
e,

sq
u

ar
e)

/
10

0k
H

z
(t

ri
an

gl
e,

ra
m

p
)

O
ut

pu
t:

A
m

pl
it

ud
e

50
m

V
p
p
..
.1

0V
p
p
,

im
pe

da
nc

e
50

Ω

O
sc

ill
os

co
pe

A
gl

ie
nt

54
62

2D
T

yp
e:

an
al

og
(s

ou
rc

e:
[2

])
C

ha
nn

el
s:

2
Sa

m
pl

in
g

ra
te

:
20

0M
s
a
m

p
le

s
s

R
es

ol
ut

io
n:

A
m

pl
it

ud
e

8b
it

,
ti

m
e

40
p

s
B

an
dw

id
th

:
0H

z
..

.1
00

M
H

z

P
ow

er
am

pl
ifi

er
A

P
ar

t
PA

40
60

C
ha

nn
el

s:
4

(s
ou

rc
e:

[4
])

In
pu

t:
C

in
ch

,
u

n
b

al
an

ce
d

In
pu

t
re

si
st

an
ce

:
10

k
Ω

O
ut

pu
t:

50
W

/
60

W
(R

M
S

m
o
d

e)
,

m
ax

im
u

m
70

W
/

90
W

(R
M

S
m

o
d

e)
O

ut
pu

t
re

si
st

an
ce

:
8Ω

/4
Ω

(R
M

S
m

od
e)

B
an

dw
id

th
:

15
H

z
..

.3
0k

H
z

D
is

to
rt

io
n:
<

0.
03

%

So
un

d
ca

rd
A

L
C

26
0

T
yp

e:
on

-b
oa

rd
ch

ip
(s

ou
rc

e:
[3

2]
)

C
ha

nn
el

s:
2

D
at

a
I/

O
:

M
ic

/l
in

e
in

p
u

t,
h

ea
d

p
h

on
e/

li
n

e
ou

tp
u

t
A

m
pl

it
ud

e
re

so
lu

ti
on

:
16

/2
0/

24
b

it
D

A
C

,
16

/2
0b

it
A

D
C

Sa
m

pl
in

g
ra

te
:

44
.1
/4

8/
96
/
19

2k
H

z
B

an
dw

id
th

:
0H

z
..

.1
9.

2k
H

z
SN

R
:

95
d

B

T
a
b
le

A
.7

:
L

is
t

of
al

l
de

vi
ce

s
us

ed
fo

r
ut

ili
ty

pu
rp

os
es

an
d

th
ei

r
te

ch
ni

ca
l

sp
ec

ifi
ca

ti
on

s.

109

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	Speech and Phonetics Theory
	Biological Fundamentals
	Speech Theory
	Speech Description Parameters
	Artificial Larynges

	Speech Signal Processing Techniques
	Block Processing
	Linear Predictive Coding
	Pitch-Synchronous Overlap-Add
	Pitch-Marking
	Pitch Tracking
	Formant Tracking

	DSK6713 Overview
	Introduction
	Digital Signal Processor
	Audio Codec
	Memory Management
	Programming the DSP Starter Kit

	Design
	Multipath Separation
	Modulation Spectral Filtering
	Spectral Subtraction

	Pitch Contour Generation

	Implementation
	Experimental Setup
	Block Processing Framework
	Hardware Setup
	Audio Codec
	Memory Management

	Modules
	Fast Fourier Transform
	Finite Impulse Response Filter
	Infinite Impulse Response Filter
	Windowing
	Linear Predictive Coding
	Voice Activity Detection
	Voiced/Unvoiced Detection
	Pitch Tracking
	Pitch-Marking
	Formant Tracking
	Formant Smoothing
	Pitch-Synchronous Overlap-Add
	Multipath Separation
	Pulse Generation

	Real-Time Related Aspects
	Online/Offline Data Processing Discrepancies
	Timing Considerations
	Real-Time Effecting Parameters

	Results
	Measurement and Calculation
	System Delay
	Multipath Separation Modules
	Pitch Contour Generation Modules

	Results Comparison with Different Setups
	Block Size and Fast Fourier Transform Point Size
	Smoothing Filter Size
	Filter Type in the Multipath Separation Module

	Conclusion and Outlook
	Bibliography
	Appendix
	Matlab Code
	Filter Design
	Window Design

	External Code
	Block Processing Framework
	KISS Fast Fourier Transform
	Polynomial Roots Calculation

	Praat
	Apparatus Usage and Operation Modes
	Used Devices
	Description

