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Abstract

Generation and recombination effects profoundly influence the performance of organic-
organic and organic-inorganic photovoltaic devices. The aim of this thesis is to ob-
tain a better understanding of these processes and their effects on the shape of the
current-voltage characteristic. Therefore, a two-dimensional approach via drift-diffusion
equations for electrons, holes and excitons has been chosen to model solar cells. The
corresponding equations, i.e. the Poisson equation and the current density equations
combined with the continuity equation, are solved self-consistently on a two-dimensional
grid. The influence of field-assisted particle generation, field-dependent mobilities and
bimolecular recombination in terms of a Langevin type form is studied. Morphology
effects are primarily excluded by assuming a flat interface between the donor and the
acceptor regions. The calculated electrostatic potential, electric field strength, particle
densities, generation and recombination profiles as well as current-voltage characteris-
tics finally allow interesting interpretations of the basic processes taking place within
the cell.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Entwicklung eines Modells zur Simulation von organisch-
organischen und organisch-anorganischen Solarzellen um in weiterer Folge Einfluss und
Auswirkungen von Ladungsträger Generations- und Rekombinationseffekten zu verste-
hen. Hierzu werden die Poisson Gleichung und die Kontinuitätsgleichungen für Elektro-
nen, Löcher und Excitonen auf einem zweidimensionalen Gitter selbstkonsistent gelöst.
Weiters werden feldabhängige Mobilitäten und Exciton-Dissoziationsraten, sowie bi-
molekulare Rekombinationseffekte nach Langevin und Koster berücksichtigt. Die dadurch
erhaltenen Ladungsträgerdichten sowie Potential-, Feld-, Generations- und Rekombina-
tionsprofile erlauben eine eingehende Untersuchung der Auswirkungen dieser Größen auf
die simulierten Strom-Spannungs-Kennlinien.
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Sol omnibus lucet.

(The sun shines for everyone)

Titus Petronius
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1 Introduction

I would like to begin this introductory chapter with three independent statements:

• Mankind is in need of alternative energy sources.

• Renewable energy sources are preferable.

• The earth receives about 1367 Wm−2 from the sun.

What could sound more attractive than to make use of this provided energy?
Solar technology is one of the most promising approaches on the route to alternative

and renewable energy sources and, moreover, takes advantage of the power of the sun
literally given to us. The big disadvantage of classical photovoltaic devices, i.e. mostly
silicon based solar cells, is the high production cost. Organic or organic-inorganic solar
cells address this disadvantage exactly by using alternative materials, i.e. thin plastic
substrates, which lowers the production cost enormously. But in contrast to classical
solar cells, efficiencies up to 20 % have not been reached yet, which is the biggest disad-
vantage of organic solar cells. The maximum efficiency reported is about 6 %, [1].

The aim of this thesis is to contribute to this important and rapidly proceeding de-
velopment by a theoretical approach. The effects of charge carrier generation and re-
combination are modeled and their influence on the shape of the I-V characteristic is
studied in detail. The main processes, i.e. exciton generation by an incoming photon
flux, exciton diffusion, exciton recombination, field-dependent exciton dissociation and
exciton separation at the organic-inorganic interface and the further diffusion and drift
processes of charge carriers, including recombination effects are considered in a repre-
sentative unit of the photovoltaic device. This is done by solving the Poisson equation
and the continuity equations on a two-dimensional mesh under periodic- and Dirichlet
boundary conditions. The equations are discretized with a finite difference approach,
using an implicit time step method for the temporal evolution of the particle densities.
Varying the input conditions gives us the possibility of simulating the whole I-V curve
as well as particle densities, electric field and potential profile, generation and recombi-
nation profiles at each point of the I-V characteristic. Therefore, a basic understanding

18



1 Introduction

of the interplay of the different processes taking place can be obtained. It must be
emphasized that primarily a planar interface was considered to exclude any kind of mor-
phological effects. A detailed study of morphological effects and their influence on the
characteristics can be found in [2].

The thesis consists of four main chapters. We start by introducing the basic prop-
erties and facts about organic photovoltaics. The following two chapters deal with the
theoretical aspects relevant for modeling a device and the numerical implementation of
these equations. Finally, simulation results are shown and discussed in detail.
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2 Nanoparticle - polymer solar cells

This introductory chapter is divided into three parts: first, general aspects concerning
solar cells, especially nanoparticle - polymer solar cells, second, the origin of solar energy
and the form of the solar spectrum relevant at our particular latitude, and, third, basic
concepts of conjugated polymers. The section gives only a short overview of the funda-
mental processes and concepts. For further and more detailed information the reader is
referred to several publications listed in the bibliography.

2.1 General aspects

In the first section we will give in three subsections, a short overview of general concepts
of solar cells, their operating mode including characteristic parameters, and nanoparticle
- polymer solar cells in particular.

2.1.1 Solar cells

A solar cell or photovoltaic cell is a device which converts light directly into electricity.
The cell consists of two electrodes separated by two semiconducting layers, an organic
and an inorganic region. In this particular case it is a polymer and a nanoparticle layer
(see Fig. 2.1).

20



2 Nanoparticle - polymer solar cells

Figure 2.1: Schematic configuration of a solar cell consisting of a polymer and a nanopar-
ticle layer.

Basically, incoming light (photons) provides the energy to generate an exciton, an
electron-hole pair, which can in the further process dissociate into a free electron and
hole. These charge carriers are now able to propagate to the corresponding electrode,
driven by diffusion and the electric field.

Thus the basic processes are [3]:

• Exciton generation,

• Exciton dissociation - charge carrier generation,

• Transport of charge carriers to the corresponding electrode.

Exciton generation, i.e. the energy conversion from light to an excited state, is only
possible if the energy of the photon is greater than or equal to the binding energy of an
exciton, which is lower than the bandgap between HOMO, the highest occupied molecu-
lar orbital, and LUMO, the lowest unoccupied molecular orbital, of the semiconducting
material:

Exb ≤ hν < ∆E = |EHOMO − ELUMO|. (2.1)

If the energy is lower, the photons just pass through the material. If it is higher, the
photon is absorbed and excitation to a higher state occurs. In the further process this
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state relaxes thermally to the S1 state, which relaxes to the excitonic state (Fig. 2.2).
Using semiconducting polymers limits the absorption to about 30 % [3]. A way to
improve light absorption is the use of low band gap polymers or using a second material
with a lower bandgap, i.e. inorganic nanoparticles [3].

Figure 2.2: Schematic illustration of the photon absorption and exciton generation pro-
cess. An absorbed photon excites the electron from the S0 to the S∗ states,
from where it relaxes to the first excited state S1. It generates an exciton
with the rate φ0, which can in the further process dissociate into free charge
carriers with the rate f .

The generated exciton can dissociate into free charge carriers if the electron-hole bind-
ing energy is provided. In inorganic semiconducting materials this binding energy is very
low and in the range of the thermal energy, about 25 meV. Thus, in inorganic solar cells
exciton dissociation is driven thermodynamically and occurs immediately. In organic
materials, the binding energy is very large (0.3 − 0.5 eV) [4] and the dissociation
process is not fully understood. There are approaches to regard the dissociation effect
as strongly field-dependent [5, 6, 7] but still no evidence has been found, verifying this
assumption. Another assumption is that exciton separation takes place at the intrinsic
interface between the two different materials used and, if it exists, within an inorganic
material.

However, in both cases exciton diffusion plays a crucial role in the performance of
organic photovoltaics. Besides separation into charge carriers, excitons may relax to
the groundstate or recombine to triplet excitons (Fig. 2.3), because they have a finite
lifetime (about 1 ms, [4], [5]).

Separated charge carriers, i.e. electrons and holes, moving to the electrodes can also
recombine and decrease the efficiency of the device. This bimolecular recombination
rate is highly concentration- and mobility-dependent. Because of the mobilities being
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Figure 2.3: Energy scheme of exciton generation and recombination and accordingly
charge carrier generation and recombination

field-dependent, the recombination rate also depends on the locally occurring electric
field strengths in the cell. The interplay of these effects, finally, profoundly influences
the performance of the device.

Furthermore, generated charge carriers move to the corresponding electrode under the
influence of the transport levels of the material, i.e. HOMO and LUMO levels, Fig. 2.4.

Figure 2.4: Bandgap profile of a typical solar cell based on the usage of two
different materials, A and B. EF indicates the Fermi-levels of the
electrodes. ◦ . . . h+, • . . . e−

2.1.2 Operating mode - Characteristic parameters

The basic regions for the operation of a solar cell can be regarded as reverse bias (negative
regime) and forward bias (positive regime). The characteristic points of a solar cell are
the short circuit condition and open circuit condition, also called flat-band condition [3],
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(a) (b)

(c) (d)

Figure 2.5: Different operation regimes of a solar cell consisting of two materials (Va is
the applied voltage): (a) reverse bias, Va < Vbi, (b) short circuit condition,
Va = 0 V, (c) open circuit condition, Va = Vbi, (d) forward bias, Va > Vbi.

Fig. 2.5. In the operating mode of the solar cell the gained power P = V I (negative)
reaches a maximum at the maximum power point, mpp.

At this point the voltage is positive (Fig. 2.6), but electrons still flow to the opposite
electrode because the energy of the electrons is not sufficient to cross the implemented
bandgap between organic and inorganic layer, resulting in negative, thus gained power
(Fig. 2.6, 2.5).
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Figure 2.6: Idealized I/V curve of a solar cell with operating modes. Units are left out
because the range depends on the particular materials used.

In inorganic solar cells, the built-in voltage, Vbi, of a solar cell is described as an upper
limit to the open circuit voltage, Voc. When considering ohmic contacts, it is identical
to the bandgap between the two materials used (for illustration see Fig. 4.2):

Vbi ≈ ∆Egap. (2.2)

Also in organic solar cells, the built-in voltage is related to the open circuit voltage, but
in a more sophisticated way. One approach was already published by Gregg [8]. The
exact behavior of the open circuit voltage and the relation to the built-in voltage will be
investigated in Sec. 5.1.2.

Nevertheless, narrowing the bandgap yields a smaller Vbi, thus smaller Voc and thus
limits the possible power gain. The open-circuit voltage Voc is the potential necessary
to compensate the internal load. The short-circuit current Isc is the external measured
current if no external voltage is applied (Fig.s 2.6, 2.5). Other important parameters
used to describe solar cells are the fill factor, given by

FF =
Pmax
IscVoc

=
min(V I)
IscVoc

, (2.3)
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and the energy conversion efficiency, given by

η =
Pm
EA

, (2.4)

where E denotes the input light irradiance under standard test conditions (STC) and A
the surface area. Using this definition, the fill factor can be expressed as

FF =
AEη

IscVoc
. (2.5)

2.1.3 Organic and organic-inorganic solar cells

The most important difference between inorganic photovoltaic devices and solar cells
based on organic materials is the photoconversion mechanism, i.e. the charge carrier
generation mechanism. In organic photovoltaic devices a strongly bound exciton is
formed which does not dissociate thermodynamically like in inorganic devices.

Organic or organic-inorganic solar cells consist of two different components which are
sandwiched between two metal electrodes. One of these electrodes must be transparent,
usually ITO (Indium Tin Oxide) [3, 9].

The most important types of these solar cells are characterised below according to [9].

• Organic solar cells are a mixture of two organic components on a nano-scopic
scale. Such bulk heterojunction cells consist of a polymer/polymer blend or a
polymer/organic molecule blend.

• Organic-inorganic solar cells are obtained if one phase of an organic solar cell is
replaced by inorganic nanoparticles.

• Dye-Sensitized solar cells (DSSCs) (Grätzel cells) are based on a network of oxide
particles (usually TiO2). These particles are covered by an organic dye (absorber);
the whole structure is immersed in a liquid electrolyte, which acts as hole conduc-
tor.

• Hybrid solar cells are obtained if the liquid electrolyte of a DSSC is replaced by
an organic solid hole conductor like a polymer.

• Dye sensitized heterojunctions (DSHs) result from the replacement of the liquid
electrolyte of DSSCs with an inorganic material.

• Extremely thin absorber cells (ETAs): In these cells the organic dye is replaced by
an inorganic solid state absorber.
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The scientific breakthrough of organic solar cells occurred in 1986, when Tang [10]
reported the achievement of efficiencies of about 1 %, after the investigation started
earlier with rather low efficiencies, using anthracene crystals as organic material [3, 11].
The most studied system nowadays is the P3HT / PCBM system, for which efficiencies
even up to 6 % have been reported recently, e.g. in [1].

2.2 Solar energy

The radiative zone of the sun, i.e. the photosphere, consists mainly of hydrogen and
helium and is only 300 − 400 km thick. An emitted photon, can be re-absorbed and
re-emitted and needs about 10.000 - 170.000 years to reach the surface of the sun and
leave the sun. After that it takes about 8 minutes to travel to earth.

The conversion from mass to energy is a very complicated process, but basically two
protons collide, fuse and form a Helium core. The mass difference is converted to energy
according to Einstein’s relation:

E = mc2. (2.6)

In the core of the sun about 564 106 t hydrogen fuse to 560 106 t helium per second by
a temperature of about 15.7 106 K, which is basically too small for proton fusion. The
main effect regarded as responsible for fusion is quantum mechanical tunneling. About
3.8 1026 W are released from the sun per second, from which 1376 Wm−2 reach the
atmosphere of the earth (solar constant), mainly consisting of IR (44 %), visible light
(52 %), UV-A (3.6 %) and UV-B (0.4 %). Further, the energy reaching the surface
of the earth is lowered by penetrating the atmosphere, containing larger molecules and
clouds, and by the impact angle (Fig. 2.7). Atmospheric scattering and light absorption
of clouds are the main reasons for lowered intensity. Therefore, a reduced sun spectrum
has to be considered, air mass 1.5 (AM 1.5) accounting for an angle of about 48◦ and
absorption due to scattering in the atmosphere (Fig. 2.8, [12]).
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Figure 2.7: Decrease of solar power by penetration of the atmosphere of the earth at two
different latitudes, (a) and (b), [13].

Figure 2.8: Solar spectral irradiance at air mass 1.5 [14].

2.3 Conjugated Polymers

In this section I will discuss briefly the main properties and classes of conjugated poly-
mers. Furthermore, the theoretical approaches to describe charge transport within this
type of polymers are introduced.
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2.3.1 Basics

Conductivity is an effect based on freely movable charges or charge defects and especially
in conjugated polymers it is referred to an extended π-electron system [3]. In classical
organic polymers, i.e. organic molecules linked to a chain by σ bonds without π orbital
delocalization, the property of freely movable charges is not fulfilled. In conjugated poly-
mers the backbone molecules have alternating π and σ bonds, like polyacetylene (Fig.
2.3.1), leading to a total conjugation of the system and thus to intrinsic conductivity.
In this particular polymer the conductivity is caused by sp2 hybridization of the atoms,
yielding free electrons in π orbitals. In contrast to polyacetylene there is no conduc-
tivity in polyethylene, because the atoms are sp3 hybridized and there are no π bonds
left. Polyphenylene could also be conductive, because of conjugated phenylene rings,
systems consisting of 6 linked π orbitals. But this is only partially true because, if in
the polymerchain two phenylene rings lie perpendicular to each other, i.e. the relative
orientation of the π orbitals is perpendicular, the overlap is zero. Best conductivity is
achieved if the orbitals are orientated perfectly parallel. Thus, in the polyphenylene
case, it would be necessary to additionally link, and therefore fix the single parts of the
polymer, which makes synthesis more difficult. These considerations are the reason for
the use of polyfluorenes and ladder-type polymers [15, 16].

Figure 2.9: Polyacetylene. The bonds between two units are single σ bonds, while in the
unit molecule it is a double bond, resulting in an alternating single-double-
bonded system.

One important class of conjugated polymers used today for organic photovoltaics are
based on thiophene rings, where sulfur provides additional electrons to the π system.
These systems are believed to possess a band-like electronic structure. It is characterized
by the LUMO level for the electron conduction band, which is in our case the empty π∗

band, and HOMO level for the electronic valence band, the filled π band. By energy
supply, e.g. photoinduction, an electron from the π band can be excited to the π∗ band
without breaking the chain, because it is held together by a σ bond. The HOMO and
LUMO levels are very sensitive to the structure of the molecule, thus they are subjected
to energetic disorder [5]. Therefore, in many cases the density of states, approximated
with a Gaussian distribution, is used instead of absolute HOMO-LUMO levels.
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The important factor leading to high conductivity σ is the charge carrier mobility µ.
These two quantities are linked via the charge carrier concentration n [17]:

σ ∝ nµ. (2.7)

Because of the large band gaps in organic polymers, n is very small, thus also the con-
ductivity in the neutral state of polymers. But it can be made conductive by oxidation
(p-doping) or reduction (n-doping) by chemical- or electrochemical means, which gener-
ates free charge carriers as described earlier in this section. This was demonstrated in
1977 by Shirakawa, MacDiarmid and Heeger [18] and in 2000 awarded with the Nobel
prize.

Another very important aspect is the photoinduced electron transfer from a conjugated
polymer onto an acceptor, called ”photodoping” [19], which leads to photoconductivity.

2.3.2 Classes of materials

There are various classes of well-investigated conjugated polymers so far, including
poly(acetylene)s, poly(thiophen)s, poly(pyrrol)s, polyanilines, poly(p-phenylene viny-
lene)s and poly(p-phenylene sulfide)s [20], Fig. 2.10).

(a) (b) (c)

(d)

Figure 2.10: Structures of various conductive polymers; polyacetylene (a),
polyphenylenevinylene (b), polyaniline (X=NH/N) and polypheny-
lene sulfide (X=S) (c), polythiophene (X=S) and polypyrrole (X=N)
(d)

Typical materials for organic solar cells or organic field effect transistors are poly(3-
alkyltiophenes), like P3HT or P3EBT (see 2.3.3). The motivation for using this type of
molecules can be found, on the one hand, in their property of generating excited states
under illumination in a region useful for solar technology, and on the other hand, in their
conductive behavior. For instance in [21]:
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”We shall consider a molecule consisting of two parts, a long chain called the ”spine”
in which electrons fill the various states and may or may not form a conducting system;
and secondly, a series of arms or side chains attached to the spine [...]. We will show
that by appropriate choice of the molecules which constitute the side chains, the virtual
oscillation of charge in these side chains can provide an interaction between the electrons
moving in the spine. This can be made a sufficiently attractive interaction so that the
superconducting state results.”
Naturally the superconducting state is never reached in organic solar cells, because of the
high temperature in the device. Nevertheless, this citation indicates that conductivity
can be tuned by choosing appropriate side chains.

2.3.3 Materials considered in this thesis

The three conjugated polymers considered in this thesis are P3HT (Poly(3-hexyltiophene-
2,5-diyl)), P3EBT (Poly[3-(ethyl-4-butanoate)thiophene-2,5-diyl) and F8T2 (Poly[9,9-
dioctylfluorenyl-2,7-diyl]-co-(bithiophene)]), (Fig. 2.11). As inorganic layer CIS (CuInS2)
is used. The motivation for using these materials can be found in the fact that they are
used for organic solar cell assembly in the group of Gregor Trimmel [22]. The HOMO-
LUMO levels of these materials used for the simulation are shown in table 2.1, as de-
termined by [22]. The mobilities are assumed to be 10−8 mV−1s−1 for the polymers as
well for electrons and holes, and 10−6 mV−1s−1 for CIS, also for electrons and holes.

(a) P3HT (b) P3EBT (c) F8T2

Figure 2.11: The three used polymers.

Table 2.1: HOMO LUMO levels of the materials used.

HOMO / eV LUMO / eV
P3HT 5.2 3.5

P3EBT 5.6 3.7
F8T2 5.4 2.5
CIS 5.6 4.1
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2.3.4 Transport of charge carriers in conjugated polymers

The description of transport of particles in organic polymers is quite similar to the
description in inorganic crystals which is based on the random walk diffusion equation. If
the particles are charge carriers, a field-dependent drift has to be considered additionally,
which resembles a biased random walk. The resulting balance equation, called the
Fokker-Planck equation (general form) reads

∂f(x, t)
∂t

= − ∂

∂x
[D1(x, t)f(x, t)] +

∂2

∂x2
[D2(x, t)f(x, t)] , (2.8)

where D1(x, t) denotes the drift and D2(x, t) the diffusion tensor, as a function of space,
x ∈ R, and time, t ∈ R+. This equation was first used to describe the Brownian motion
of a particle on a liquid surface [23]. The problem of this description is that it is based
on a random walk-like model, which implies that the probability of moving in a random
direction is always the same, independent of transport level effects or the particular
chain-like morphology of polymers.

However, charge transport mechanism in organic polymers is not yet fully understood.
As mentioned earlier, the HOMO and LUMO levels are subject to high disorder, mainly
because of the weak van der Waals bonding between the molecules, resulting in very
narrow valence and conduction bands with bandwidths of about 10 meV [17]. Further it
was discovered that mobility of charge carriers in a polymer rises with rising temperature
[24]. In contrast to inorganic crystalline materials, in which the mobility decreases with
increasing temperature. Because charge carriers have to overcome energy barriers to
propagate, this process is called hopping transport. As shown by Bässler, this mechanism
leads to field-dependent mobilities of the Poole-Frenkel form [25]

µ(E) = µ0 exp(γ
√
|E|), (2.9)

where γ denotes a constant, E the electric field and µ0 the charge carrier mobility at
zero field. There are also several alternative models for describing charge transport in
organic polymers. One of these is the so-called polaron transport. A polaron is a free
particle deforming the atoms in its vicinity and thus lowering the energy of the system.
This stabilization results in a potential well localizing the particle, which carries the
atomic deformation with it as it moves through the material. The resulting charge
carrier mobility is not only field- but also temperature-dependent. It is given by [26]

µ = µ0
2kBT
α|E|

exp
[
− 1

4kBT

(
Er +

(α|E|)2

Er

)]
sinh

(
α|E|
2kBT

)
, (2.10)
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where α denotes a constant, Er the intramolecular reorganization energy of the system,
T the temperature and kB Boltzmann’s constant.

33



3 Device Modeling

In this section all equations necessary for the simulation of the device are introduced. In
the first subsection we will start with the Poisson equation, which is used to determine the
electrostatic potential in order to evaluate the electric field strength. The time-evolution
of charge carrier density is described by the continuity equation combined with the
equation for the drift-diffusion current. The last one consists of a diffusional and a drift
term, which is a function of the electric field. Before summarizing these equations, the
generation and recombination terms for particles are discussed. A complete numerical
scheme for solving these equations is given in Sec. 4.

3.1 Poisson equation

The Poisson equation is a second order partial differential equation in space providing a
relation between a given charge distribution ρ(r) = q[p(r) − n(r)], with the elementary
charge q = 1.602 10−19C, the hole and electron density, p(r) and n(r), respectively, and
the potential ψ(r) as a function of space for a given permittivity ε(r) = ε0εr(r).

∇ · [ε(r)∇ψ(r)] = −ρ(r), (3.1)

with r ∈ R3.

3.2 Diffusion equation

The diffusion equation can be derived in numerous ways (for instance see [27]). Here the
derivation based on the random walk is preferred [23].

We consider a particle moving in one spatial dimension. Let us assume that at time
t ∈ R the particle is located at position x ∈ R. It moves in the next time step, ∆t, over
a distance ∆x with probability p in one direction and with probability q in the opposite
direction. It, therefore, remains at x with probability r = 1− p− q. These probabilities
are independent of the actual position of the particle and of the time. Hence, it is a
Markovian process. The probability P (x, t|p, q, r,B) of finding the particle at time t at
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position x, where B is the condition complex, can be expressed by

P (x, t|p, q, r,B) = P (x, t−∆t|p, q, r,B)r + P (x−∆x, t−∆t|p, q, r,B)p

+P (x+ ∆x, t−∆t|p, q, r,B)q (3.2)

= P (x, t−∆t|p, q, r,B)(1− p− q) + P (x−∆x, t−∆t|p, q, r,B)p

+P (x+ ∆x, t−∆t|p, q, r,B)q, (3.3)

i.e. the probability of being at point x at time t is the same as the probability of being
at time t−∆t at point x and remaining there, or being at point x−∆x and moving one
step to the right or being at x + ∆x and moving one step to the left. Expanding now
each term in a Taylor series up to order O(∆x2) and O(∆t) respectively, and simplifying
the notation by P (x, t) := P (x, t|p, q, r,B) yields

P (x, t) = (1− p− q)
[
P (x, t)−∆t

∂P (x, t)
∂t

]
+p
[
P (x, t)−∆t

∂P (x, t)
∂t

−∆x
∂P (x, t)
∂x

+
1
2

∆x2∂
2P (x, t)
∂x2

]
+q
[
P (x, t)−∆t

∂P (x, t)
∂t

+ ∆x
∂P (x, t)
∂x

+
1
2

∆x2∂
2P (x, t)
∂x2

]
. (3.4)

From Eq. (3.4) we obtain

∂P (x, t)
∂t

= −(p− q)∆x
∆t

∂P (x, t)
∂x

+
(p+ q)∆x2

2∆t
∂2P (x, t)
∂x2

. (3.5)

By defining the drift constant

D1 = lim
∆t→0
∆x→0

(p− q)
∆t

∆x, (3.6)

and the diffusion constant
D2 = lim

∆t→0
∆x→0

(p+ q)
2∆t

∆x2, (3.7)

the one-dimensional diffusion equation with drift term can be written as

∂P (x, t)
∂t

= −D1
∂P (x, t)
∂x

+D2
∂2P (x, t)
∂x2

. (3.8)

In Eq. (3.6) and (3.7) the ∆t and ∆x tend torwards zero simultaneously and, therefore,
cannot be regarded as a differential operator. If p = q the drift constant is zero, thus we
yield the classical diffusion equation.
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Considering the probabilities p, q, r as functions of location x and time t, p ≡
p(x, t), q ≡ q(x, t), r ≡ r(x, t) the Taylor expansion takes a slightly different form,
resulting in the Fokker-Planck equation

∂P (x, t)
∂t

= − ∂

∂x
[D1(x, t)P (x, t)] +

∂2

∂x2
[D2(x, t)P (x, t)] . (3.9)

3.3 Continuity equation

The continuity equations are local forms of global conservation laws. In their most
general form they read as

∂φ(r, t)
∂t

+∇ · f(r, t) = s(r, t), (3.10)

where φ(r, t) is a scalar quantity depending on the position r ∈ R3 and time t ∈ R,
f(r, t) denotes the flux of φ(r, t), i.e. the amount of φ(r, t) that flows through a unit
area per unit time [28], and s(r, t) describes the source and drain, respectively, of φ(r, t).
In our case, φ(r, t) is the particle density of electrons, holes or excitons, f(r, t) is the
corresponding current density and s(r, t) stands for the generation or the recombination
rate. It can be derived from Maxwell’s equation. The quantity H(r, t) denotes the
magnetic field, J(r, t) the electric current density, D(r, t) the electric flux density and
ρ(r, t) the charge density. In the following, arguments are left out for simplicity. Using
Maxwell’s extension of Ampere’s law

∇×H = J +
∂D
∂t

, (3.11)

and taking the divergence of both sides

∇ · [∇×H] = ∇ · J +
∂∇ ·D
∂t

, (3.12)

leads to

∇ · J +
∂∇ ·D
∂t

= 0, (3.13)

by taking into account that the divergence of a curl vanishes. Making use of Gauss’ law

∇ ·D = ρ, (3.14)
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one yields the continuity equation for the electromagnetic case,

∇ · J = −∂ρ
∂t
, (3.15)

with no source-drain term consideration. Including charge carrier generation and recom-
bination terms, summarized as Γ(r, t), and including arguments, the continuity equation
takes the form

∂ρ(r, t)
∂t

= −∇ · J(r, t) + Γ(r, t). (3.16)

3.4 Drift-diffusion equation

The drift-diffusion equation can be derived from Boltzmann’s equation, but this will not
be discussed in detail in this work (for details see e.g. [29]. Combing Eq. (3.16) with Eq.
(3.9), with the probability being a charge density and regarding the multi-dimensional
case, yields

∂ρ

∂t
= −∇ · (D1ρ) +∇2(D2ρ) + Γ (3.17)

= −∇ ·
{
D1ρ−∇(D2ρ)

}
+ Γ (3.18)

= −∇ · J + Γ (3.19)

with D1 the drift vector and D2 the diffusion tensor, in the general case and

J = D1ρ−∇(D2ρ), (3.20)

the corresponding current density. Further, we can make use of Einstein’s relation

D2 =
µkBT

q
. (3.21)

In this case D2 is considered to be a scalar with µ denoting the particle mobility, q the
elementary charge, kB Boltzmann’s constant and T the temperature. Now we have to
determine the drift vector D1: This term describes a drift motion. Therefore D1 must
be a velocity, generated by the occurring force which is in our case the electric field
strength, thus

D1 = v = µE. (3.22)
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Inserting Eq. (3.22) into Eq. (3.20) yields

J = µEρ− µkBT

q
∇ρ, (3.23)

the general drift-diffusion equation. In this equation, ρ is still the charge density but for
our purpose it is more useful to substitute the particle densities for the charge density.
Inserting the electron density n = −ρn

q and the hole density p = ρp

q into Eq. (3.16)
results in

∂n

∂t
=

1
q
∇ · Jn + Γn, (3.24)

∂p

∂t
= −1

q
∇ · Jp + Γp. (3.25)

The drift vector changes as well, because the force points in different directions for
electrons and holes. After adapting the drift vectors in the form

Dn
1 = −µnE and Dp

1 = µpE, (3.26)

where µ(n,p) denotes the particular mobility of the charge carriers, and substituting them
into Eq. (3.23), one yields the drift-diffusion equations for electrons and holes

Jn = qµnnE + µnkBT∇n, (3.27)

Jp = qµppE− µpkBT∇p. (3.28)

3.5 Source-drain term

The source-drain terms in Eq. (3.24) and Eq. (3.25) remained undefined. However,
in this particular case, when considering electrons, holes and excitons in a photovoltaic
device, one observes generation (source) and recombination (drain):

Γ(r, t) = G(r, t)−R(r, t). (3.29)

Primarily, generation occurs if q photon is absorbed, generating an exciton, which can
separate into free charge carriers. These charge carriers can, under particular circum-
stances, recombine to an exciton or directly relax to the ground state. In the following
subsections, the different processes will be discussed in more detail.
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3.5.1 Generation and recombination of particles

We will start by discussing the generation processes and then proceed to the recombina-
tion terms. It is reasonable to begin with the description of exciton generation because
charge carriers are generated by exciton dissociation. After discussing the mathemat-
ical description of excitonic separation in the following subsection, the recombination
processes are considered, beginning with the excitonic decay.

3.5.1.1 Exciton generation

The number of generated excitons at a certain position within the device, r, with the
distance d(r) from the surface (in direction of the incident light beam) is proportional
to the intensity of light at r. To describe this effect, Lambert-Beer’s law

Φ(r) =
∫ λmax

λmin

dλΦ0(λ) exp [−α(λ)d(r)] , (3.30)

is used, where λmax is the maximal occurring wavelength and represents the minimal
energy necessary to absorb a photon and excite an electron from the S0 to the S∗

state (Fig. 2.3); λmin is the minimal occurring wavelength, Φ0(λ) the unreduced flux of
incoming photons, as a function of the wavelength and α(λ) is the absorption coefficient,
also as a function of λ. The maximal and minimal wavelengths are determined by the
HOMO-LUMO gap of the materials used and thus might change within the device.
Given a particular solar spectrum (in our case AM1.5, see Sec. 2.2), the spectral power
density as a function of the wavelength, W (λ), is known and can therefore be converted
to a photon flux by

Φ0(λ) =
W (λ)
hν

=
W (λ)λ
hc

, (3.31)

with h Planck’s constant and c the velocity of light.
Additionally, excitons can be generated by electron-hole recombination (Sec. 3.5.1.4).

Approximately, only 25 % of electrons and holes recombine to singlet excitons [4]. Com-
bining these rates, the total exciton generation rate is given by

Gx(r,E) = Φ(r) +
1
4
R(n,p)(r,E), (3.32)

where R(n,p)(r,E) stands for the recombination rate of charge carriers.
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3.5.1.2 Charge carrier generation

Dissociation of excitons yields free charge carriers. This effect can be considered by
introducing a charge carrier dissociation rate, kdiss(r, T,E), as described by Onsager,
[7]. The model supposed by Onsager states that

kdiss(r, T,E)
kdiss(r, T, 0)

=
1√
−2b

J1(2
√
−2b), (3.33)

where r denotes the position, T the temperature, E the occurring field strength and
J1(x) the Bessel function of the first kind, given by [30]

Jα(x) =
∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2m+α
(3.34)

with the Gamma function Γ(x). An alternative representation for integer values n reads

Jn(x) =
1

2π

∫ π

−π
dτ e−i(nτ−x sin τ). (3.35)

The factor b in Eq. (3.33) is given by

b =
q3|E|

8πε(kBT )2
. (3.36)

Further, the equilibrium constant at zero field K(0) is given by [6]

K(0) =
kdiss(r, T, 0)

kr
=

3
4πa3

e
− Eb

kBT (3.37)

with the recombination rate constant

kr =
q

ε
(µn + µp), (3.38)

which will be discussed in detail in Sec. 3.5.1.4. The exciton binding length is denoted
by a, the exciton binding energy by Eb and µn and µp stand for the mobility of electrons
and holes, respectively. Combining Eq. (3.33) and Eq. (3.37) yields the final expression
for the dissociation rate constant as a function of space, temperature and electric field
strength:

kdiss(r, T,E) =
3kr

4πa3
e
− Eb

kBT
1√
−2b

J1(2
√
−2b). (3.39)

There are two distinct approaches to describe the probability of an exciton dissociat-
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Figure 3.1: Sketch of charge transfer state dissociation kinetics assumed in Braun’s
model. An exciton, x in state S1 can decay to the ground state S0 or disso-
ciate to unbound charge carriers, e− + h+.

ing at a given rate constant. The simplest consideration is to regard it as a chemical
equilibrium reaction, as done by Buxton [4]. In this approach, the generation rate for
electrons and holes is given by

G(n,p)(r, T,E) = kdiss(r, T,E)x(r, t). (3.40)

Here, x(r, t) denotes the exciton density. A more sophisticated approach is based on
evaluating the probability for an exciton dissociating immediately to charge carriers as
given by Braun [6]:

P (r, T,E) =
kdiss(r, T,E)

kdiss(r, T,E) + kf
, (3.41)

where kf stands for the rate constant for the decay of an exciton into the ground state,
see Fig. 3.1.

Fig. 3.2 shows the dissociation probability at a default set of parameters (see Sec. 4)
given by Braun’s model as a function of the electric field strength.

The charge carrier generation rate reads

G(n,p)(r, T,E) = P (r, T,E)Φ(r) (3.42)

where Φ(r) denotes the exciton generation rate according to Lambert-Beer’s law (Sec.
3.5.1.1). It has to be emphasized that this approach assumes that an exciton can only
dissociate field-assisted immediately after being generated to unbound charge carriers.
Thus, the destiny of an exciton is determined a priori.
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Figure 3.2: The exciton dissociation probability P (r, T,E) given by Braun’s model as a
function of the electric field, |E|. The parameters used are listed in Tab. 4.1
(P3EBT).

3.5.1.3 Decay of excitons

Excitons can decay without emission of a photon from the bound state to the ground
state, with a decay rate kf usually taken to be kf = 1

τx
with τx the average lifetime of an

exciton, which is about τx = 10−6 s [4]. Thus, the exciton recombination rate is given
by

Rx(r, t) = kfx(r, t) =
x(r, t)
τx

. (3.43)

where x(r, t) denotes the exciton density at position r and time t.

3.5.1.4 Charge carrier recombination

Bimolecular recombination of free charge carriers is a second order reaction and there-
fore proportional to the product of the electron and hole density. Consequently, the
recombination rate reads

R(n,p)(r,E) = kr(r,E)n(r, t)p(r, t) (3.44)
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by using the recombination rate constant in a Langevin form [5]

kr(r,E) =
q

ε(r)
[µn(r,E) + µp(r,E)] , (3.45)

as used in Sec. 3.5.1.2. Here, q denotes the elementary charge, ε(r) = ε0εr(r) the dielec-
tric constant and µ(n,p)(r,E) the electron and hole mobility, respectively. An approach
proposed by Koster [5] approximates the recombination rate constant in the organic
material by

kr(r,E) =
q

ε(r)
min [µn(r,E), µp(r,E)] . (3.46)

The justification for this assumption is that particles can only recombine, if they are
at the same position. Thus, the rate has to be a function of the mobility of the slower
particle.

3.5.2 Complete source-drain term

Combining the rates introduced in Sec. 3.5.1 (model introduced by Braun [6]) and
leaving arguments for simplicity, the source drain terms for electrons, holes and excitons
can be written as

Γ(n,p) = G(n,p) −R(n,p) =
kdiss

kdiss + kf
Φ− q

ε
(µn + µp)np, (3.47)

Γx = Gx −Rx =
(

1− kdiss
kdiss + kf

)
Φ +

1
4
q

ε
(µn + µp)np−

x

τx
. (3.48)

3.6 Summary - Complete set of equations

Combining all equations previously discussed leads to the following set of equations,
which must be solved.

First, the Poisson equation

∇ · [ε(r)∇ψ(r)] = −ρ(r), (3.49)

provides us with the potential and the electric field strength. And second, the continuity
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equations for for electrons, holes and excitons:

∂n(r, t)
∂t

=
1
q
∇ · Jn(r, t) + Γn(r),

∂p(r, t)
∂t

= −1
q
∇ · Jp(r, t) + Γp(r), (3.50)

∂x(r, t)
∂t

= −1
q
∇ · Jx(r, t) + Γx(r),

with

Jn(r, t) = qµn(r,E)n(r, t)E(r) + µn(r,E)kBT∇n(r, t),

Jp(r, t) = qµp(r,E)p(r, t)E(r)− µp(r,E)kBT∇p(r, t), (3.51)

Jx(r, t) = −µx(r)kBT∇x(r, t),

govern the temporal evolution of the electron, hole and exciton density.
The boundary conditions for this set of equations are explicitly given in Sec. 4.4.

Basically, we apply Dirichlet boundary conditions at the contacts and periodic boundary
conditions on the border (see Fig. 4.1). The numeric scheme for solving this set of
equations is given in Sec. 4 in detail.
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In this section the numerical schemes used are explained in detail. First of all, the Poisson
equation must be solved to gain the electric potential as a function of position and time
caused by the charge carrier density and the applied voltage. The obtained potential
is used to calculate the electric field, which is needed to determine field-dependent mo-
bilities and charge carrier generation. Furthermore, the potential enters the continuity
equations for electrons, holes and excitons, which are solved with a Scharfetter-Gummel
algorithm. After solving the Poisson and continuity equations self-consistently, the next
time step is evaluated in the same manner until a steady state is reached, i.e. the relative
change of the charge carrier densities and exciton densities is negligible. Additionally,
the current distribution change is considered, to ensure that a steady state has been
reached.

The device is assumed to be invariant in the third dimension. Thus, only a two-
dimensional cut through the anode and cathode is considered as a representative unit.
This area is discretized by a grid, in order to give every position unambiguous coordinates
of the form

Pi,j = (xi, yj)

with i = 0, 1, . . . , imax and j = 0, 1, . . . , jmax. The grid-points are defined by x0 = y0 = 0
and

xi+1 = xi + ∆xi, i = 0, 1, . . . , imax−1

yj+1 = yj + ∆yj , j = 0, 1, . . . , jmax−1.

On this grid we define the necessary functions and solve the corresponding equations
based on a certain discretization scheme to sets of linear algebraic equations. These
linear systems of equations are solved iteratively.

In principle, we consider a matrix A ∈ Cn×n which describes our set of equations with
the right side b ∈ Cn and the vector of unknowns z ∈ Cn in the form

Az = b (4.1)
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Now, we introduce an invertible matrix B ∈ Cn×n. Substituting it into Eq. (4.1) yields

[B + (A−B)] z = b. (4.2)

By multiplying both sites with B−1, we get the fixed point equation

z = B−1 (B−A) z + B−1b. (4.3)

Defining M := I−B−1A, with the identity matrix I, and choosing the starting value as
z0, we can evaluate the solution vector iteratively by

zk+1 = Mzk + B−1b. (4.4)

The solution is regarded as converged, if |zk+1−zk| < η, where η denotes a chosen limit.
We chose B = I for simplicity.

Another way to solve the equation is to express every zi, i = 1, . . . , N as function of
the remaining components of the vector of unknowns, zj , j = 1, . . . , i − 1, i + 1, . . . , N ,
with z = {zi}i=1,N . To illustrate this method, we rewrite Eq. (4.4) in terms of the
components:

zi =
N∑
j=1

mijzj + bi. i = 1, . . . , N (4.5)

Here, mij and bi denote the elements of M and b, respectively. Expressing zi from Eq.
(4.5) yields

zi =
1

1−mii

 N∑
j=1
j 6=i

mijxj + bi

 . (4.6)

Inserting the definition of the matrix M (with B = I, i.e. mij = δij − aij , where aij
denote the components of A and δi,j Kronecker’s delta, we obtain

zi =
1
aii

bi − N∑
j=1
j 6=i

aijzj

 . (4.7)

This equation is the basis of the well-known Gauss-Seidel algorithm for equations with
aii 6= 0, ∀i. Including the iteration index k and replacing all elements zkj = zk+1

j for
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j ≤ i yields

zk+1
i =

1
aii

bi − i−1∑
j=1

aijz
k+1
j −

N∑
j=i+1

aijz
k
j

 . (4.8)

4.1 Poisson equation

The Poisson equation
∇ · [ε(r)∇ψ(r)] = −ρ(r), (4.9)

is a second-order partial differential equation with the dielectric constant ε(r) = ε0εr(r),
the electric potential ψ(r) and the charge density ρ(r) = q (p(r)− n(r)). All these
quantities are regarded as functions of r ∈ R2.
This equation is numerically treated with a finite difference approach. The procedure is
based on approximating the divergence of a vector field f(r) = (fx(r), fy(r)) by

∇ · f(r)
∣∣∣
r=(xi,yj)

≈
fx(xi + 1

2∆xi, yj)− fx(xi − 1
2∆xi−1, yj)

∆xi+∆xi−1

2

+
fy(xi, yj + 1

2∆yj)− fy(xi, yj − 1
2∆yj−1)

∆yj+∆yj−1

2

, (4.10)

at position r = (xi, yj). In the following, we use abbreviations of the form fi,j = f(xi, yj)
and fi+ 1

2
,j = f(xi+ 1

2
, yj) = f(xi + 1

2∆xi, yj). Based on Eq. 4.10, Eq. (4.9) can be
approximated as

∇ · [ε(r)∇ψ(r)]
∣∣∣
r=(xi,yj)

≈
[ε(∇ψ)x]i+ 1

2
,j − [ε(∇ψ)x]i− 1

2
,j

∆xi+∆xi−1

2

+
[ε(∇ψ)y]i,j+ 1

2
− [ε(∇ψ)y]i,j− 1

2

∆yj+∆yj−1

2

. (4.11)

Repeating this discretization and using

[f(x)g(x)]i,j = fi,jgi,j , (4.12)

as well as
[(∇f)x]i+ 1

2
,j ≈

fi+1,j − fi,j
∆xi

(4.13)
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yields

[ε(∇ψ)x]i+ 1
2
,j − [ε(∇ψ)x]i− 1

2
,j

∆xi+∆xi−1

2

+
[ε(∇ψ)y]i,j+ 1

2
− [ε(∇ψ)y]i,j− 1

2

∆yj+∆yj−1

2

≈

εi+ 1
2
,j(

ψi+1,j−ψi,j

∆xi
)− εi− 1

2
,j(

ψi,j−ψi−1,j

∆xi−1
)

∆xi+∆xi−1

2

+
εi,j+ 1

2
(ψi,j+1−ψi,j

∆yj
)− εi,j− 1

2
(ψi,j−ψi,j−1

∆yj−1
)

∆yj+∆yj−1

2

. (4.14)

Assuming equal grid spacing, i.e. ∆xi = ∆xi−1 = hx and ∆yj = ∆yj−1 = hy yields the
descretized Poisson equation as a coupled system of linear equations.

1
h2
x

[εi+ 1
2
,jψi+1,j − (εi+ 1

2
,j + εi− 1

2
,j)ψi,j + εi− 1

2
,jψi−1,j ]

+
1
h2
y

[εi,j+ 1
2
ψi,j+1 − (εi,j+ 1

2
+ εi,j− 1

2
)ψi,j + εi,j− 1

2
ψi,j−1] = −ρi,j . (4.15)

Expressing ψi,j by this equation gives a way to calculate the potential at a particular
grid point as a function of the value at the neighboring grid points and, hence, solving
the system of N linear equations, for i = 1, . . . , N , iteratively:

ψn+1
i,j =

ρi,jh
2
xh

2
y + h2

y(εi+ 1
2
,jψ

n
i+1,j + εi− 1

2
,jψ

n
i−1,j) + h2

x(εi,j+ 1
2
ψni,j+1 + εi,j− 1

2
ψni,j−1)

h2
y(εi+ 1

2
,j + εi− 1

2
,j) + h2

x(εi,j+ 1
2

+ εi,j− 1
2
)

, (4.16)

where n denotes the iteration index. In our particular case, the dielectric constant is
assumed to be linear between grid points, thus

εi+ 1
2
,j =

εi+1,j + εi,j
2

. (4.17)

The solution is regarded as converged if the absolute error is less than a given threshold
value η, i.e.

∆ψ =
∑
i,j

|ψn+1
i,j − ψ

n
i,j | ≤ η. (4.18)

4.2 Continuity equation - Scharfetter-Gummel algorithm

The so-called Scharfetter-Gummel scheme [31] considers the drift-diffusion current equa-
tion (3.51) approximately by assuming the current to be constant between two neigh-
boring grid points. Therefore, the current is always calculated between two grid points
as a function of the neighboring charge carrier densities.
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To demonstrate this approach we will, at first, for simplicity, only consider the drift-
diffusion equation for electrons in one dimension:

Jn = qµnEn(x) + kBTµn
∂n(x)
∂x

= const, ∀x ∈ [xi, xi+1], (4.19)

where we regard the electron density as a function of space, independent of time. The
solution of Eq. (4.19) is given by

n(x) = C̃1 exp
(
− qE

kBT
x

)
+

Jn
qµnE

. (4.20)

Here, C̃1 denotes an arbitrary constant. First, we chose

C̃1 = C1 exp
(
qE

kBT
xi

)
, (4.21)

with another constant C1. Inserting Eq. (4.21) into Eq. (4.20) yields

n(x) = C1 exp
(
− qE

kBT
(x− xi)

)
+

Jn
qµnE

. ∀x ∈ [xi, xi+1] (4.22)

Inserting x = xi and solving Eq. (4.22) for C1 gives

C1 = ni −
Jn

qµnE
. (4.23)

Using this expression for C1 and inserting x = xi+1 into Eq. (4.22), leads to

ni+1 =
(
ni −

Jn
qµnE

)
exp

(
− qE

kBT
∆xi

)
+

Jn
qµnE

, (4.24)

Finally, solving for Jn gives

Jn = qµnE
ni+1 − ni exp (− qE

kBT
∆xi)

1− exp (− qE
kBT

∆xi)
. (4.25)

Thus, we yield an expression, which unambiguously determines the current within a
given interval under the assumption that in this interval Eq. (4.19) is valid and the
neighboring charge carrier densities are known.

Approximating the electric field E by

Ei ≈ −
ψi+1 − ψi

∆xi
, (4.26)
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and expressing Eq. (4.25) in terms of the Bernoulli function

B(x) =
x

exp(x)− 1
, (4.27)

yields the current density between two grid points as

J
i+ 1

2
n =

µ
i+ 1

2
n Vtq

∆xi

[
ni+1B

(
ψi+1 − ψi

Vt

)
− niB

(
−ψi+1 − ψi

Vt

)]
, (4.28)

with the thermal voltage Vt = kBT
q and

µ
i+ 1

2
n =

µin + µi+1
n

2
, (4.29)

Now, we introduce the generalized potential

Ψ(n,p)
i,j := ψi,j −

Θ(n,p)
i,j

q
, (4.30)

with Θ(n,p)
i,j the relative height of the HOMO and LUMO levels, respectively. The effective

potential is different for electrons and holes and dominates their movement within the
device. Extending Eq. (4.28) to the multi-dimension case and using (4.30), finally, leads
to the Scharfetter-Gummel current equations:

xJ
i+ 1

2
,j

n =
µ
i+ 1

2
,j

n Vtq

∆xi

[
ni+1,jB

(Ψn
i+1,j −Ψn

i,j

Vt

)
− ni,jB

(
−

Ψn
i+1,j −Ψn

i,j

Vt

)]
, (4.31)

yJ
i,j+ 1

2
n =

µ
i,j+ 1

2
n Vtq

∆yj

[
ni,j+1B

(Ψn
i,j+1 −Ψn

i,j

Vt

)
− ni,jB

(
−

Ψn
i,j+1 −Ψn

i,j

Vt

)]
, (4.32)

xJ
i+ 1

2
,j

p =
µ
i+ 1

2
,j

p Vtq

∆xi

[
pi,jB

(
Ψp
i+1,j −Ψp

i,j

Vt

)
− pi+1,jB

(
−

Ψp
i+1,j −Ψp

i,j

Vt

)]
, (4.33)

yJ
i,j+ 1

2
p =

µ
i,j+ 1

2
p Vtq

∆yj

[
pi,jB

(
Ψp
i,j+1 −Ψp

i,j

Vt

)
− pi,j+1B

(
−

Ψp
i,j+1 −Ψp

i,j

Vt

)]
. (4.34)

Now, the continuity equations, Eq. (3.50), are discretized and then Eq. (4.31) - (4.34)
are inserted into the resulting equations.

The time derivative of the particle densities and the space derivative of the current-
densities are approximated with a first order finite difference scheme. The continuity
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equation (3.50) for electrons at a position r = (xi, yj) reads

nt+∆t
i,j − nti,j

∆t
=

1
q

x
nJ

t+∆t
i+ 1

2
j
− x
nJ

t+∆t
i− 1

2
,j

∆xi+∆xi−1

2

+

y
nJ

t+∆t
i,j+ 1

2

− y
nJ

t+∆t
i,j− 1

2

∆yj+∆yj−1

2

+ nΓt+∆t
i,j , (4.35)

where we used an implicit time step method and the discretization described in Eq.
(4.10). Here, Γ(n,p)(r, t)|r=(xi,yj) = (n,p)Γti,j denotes the source-drain term at a particular
position. Inserting Eq. (4.31) and (4.32) into Eq. (4.35) and replacing µi,jn Vt = Di,j

n

yields

nt+∆t
i,j − nti,j

∆t
=

1
q

{
1

∆xi+∆xi−1

2

[
D
i+ 1

2
,j

n q

∆xi

(
nt+∆t
i+1,jB

(
nΨt+∆t

i+1,j − nΨt+∆t
i,j

Vt

)
− nt+∆t

i,j B

(
−
nΨt+∆t

i+1,j − nΨt+∆t
i,j

Vt

))

−D
i− 1

2
,j

n q

∆xi−1

(
nt+∆t
i,j B

(
nΨt+∆t

i,j − nΨt+∆t
i−1,j

Vt

)
− nt+∆t

i−1,jB

(
−
nΨt+∆t

i,j − nΨt+∆t
i−1,j

Vt

))]

+
1

∆yj+∆yj−1

2

[
D
i,j+ 1

2
n q

∆yj

(
nt+∆t
i,j+1B

(
nΨt+∆t

i,j+1 − nΨt+∆t
i,j

Vt

)
− nt+∆t

i,j B

(
−
nΨt+∆t

i,j+1 − nΨt+∆t
i,j

Vt

))

−D
i,j− 1

2
n q

∆yj−1

(
nt+∆t
i,j B

(
nΨt+∆t

i,j − nΨt+∆t
i,j−1

Vt

)
− nt+∆t

i,j−1B

(
−
nΨt+∆t

i,j − nΨt+∆t
i,j−1

Vt

))]}
+nΓt+∆t

i,j . (4.36)
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Solving Eq. (4.36) for nt+∆t
i,j yields

nt+∆t
i,j =

[(
nΓt+∆t

i,j +
nti,j
∆t

)
∆xi + ∆xi−1

2
∆yj + ∆yj−1

2

+nt+∆t
i+1,jD

i+ 1
2
,j

n B

(
nΨt+∆t

i+1,j − nΨt+∆t
i,j

Vt

)
∆yj + ∆yj−1

2∆xi

+nt+∆t
i,j+1D

i,j+ 1
2

n B

(
nΨt+∆t

i,j+1 − nΨt+∆t
i,j

Vt

)
∆xi + ∆xi−1

2∆yj

+nt+∆t
i−1,jD

i− 1
2
,j

n B

(
nΨt+∆t

i−1,j − nΨt+∆t
i,j

Vt

)
∆yj + ∆yj−1

2∆xi−1

+nt+∆t
i,j−1D

i,j− 1
2

n B

(
nΨt+∆t

i,j−1 − nΨt+∆t
i,j

Vt

)
∆xi + ∆xi−1

2∆yj−1

]
[
D
i+ 1

2
,j

n B

(
nΨt+∆t

i,j − nΨt+∆t
i+1,j

Vt

)
∆yj + ∆yj−1

2∆xi

+D
i,j+ 1

2
n B

(
nΨt+∆t

i,j − nΨt+∆t
i,j+1

Vt

)
∆xi + ∆xi−1

2∆yj

+D
i− 1

2
,j

n B

(
nΨt+∆t

i,j − nΨt+∆t
i−1,j

Vt

)
∆yj + ∆yj−1

2∆xi−1

+D
i,j− 1

2
n B

(
nΨt+∆t

i,j − nΨt+∆t
i,j−1

Vt

)
∆xi + ∆xi−1

2∆yj−1

+
1

∆t
∆xi + ∆xi−1

2
∆yj + ∆yj−1

2

]−1

. (4.37)

By applying the same procedure on the continuity equations (3.50) and drift-diffusion
current equations (3.51) for holes and excitons, one gets the corresponding discretized
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drift-diffusion equations:
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Note that there is no drift term in the transport equations for excitons (see Eq. 3.51).

4.3 Additional steps

Before starting the iterative cycle the exciton generation rate is calculated by using an
experimental sun spectrum and, if Lambert-Beer’s law is considered, Eq. (3.30), an
experimental absorption coefficient α is taken into account.

After solving the Poisson equation and before evaluating the continuity equations, the
mobilities, the recombination rate constant and the exciton dissociation rate constant
must be updated, following Eq. (2.9), Eq. (3.38) and (3.39), respectively. Therefore,
the gained potential is used to calculate the local occurring field strength E = (Ex, Ey)
by

Ex(r)
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and therefore
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. (4.42)

Hence, the mobility is given by

µi,j(n,p) = 0µi,j(n,p) exp (γ|Ei,j |), (4.43)
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where 0µi,j(n,p) denotes the mobility at zero field, according to Eq. (2.9). The exciton
dissociation rate constant kdiss and the recombination rate constant kr are updated
following Eqs. (3.39) and (3.38).

The charge carrier generation, Eq. (3.42), and the particle recombination rates, Eq.
(3.44) and (3.43), are updated in the drift-diffusion cycle after every iteration step be-
cause of their dependence on the local charge carrier densities.

4.4 Simulating the charge transport in organic solar cells

Figure 4.1: Discretization scheme for the simulation. Anode, cathode, active layer and
ghost points are indicated with red, yellow, green an grey, respectively.

The device is partitioned into four different parts: anode, cathode, active layer, which
consist of an organic and an inorganic part, and ghost points (Fig. 4.1). On anode
and cathode the intrinsic particle densities and the potential, depending on the applied
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voltage, are set constant,

nAnode = 0 m−3, nCathode = 1022 m−3

pAnode = 1022 m−3, pCathode = 0 m−3

xAnode = 0 m−3, xCathode = 0 m−3

ψAnode =
Va − Egap

2
, ψCathode = −Va − Egap

2
,

with the applied voltage Va and the band gap difference between organic and inorganic
layers resulting from the assumption of ohmic contacts and the used materials, Egap,
(Fig. 4.2). Furthermore, the mobilities are set constant:

Figure 4.2: Illustration of the definition of Egap.

µ
(n,p)
Anode = µ

(n,p)
Cathode = 10−6m2V−1s−1

µxAnode = µxCathode = 0 m2V−1s−1
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The additional ghost points are used to implement periodic boundary conditions, which
is done by setting

ψi,0 = ψi,jmax , ψi,jmax+1 = ψi,1,

ni,0 = ni,jmax , ni,jmax+1 = ni,1,

pi,0 = pi,jmax , pi,jmax+1 = pi,1, (4.44)

xi,0 = xi,jmax , xi,jmax+1 = xi,1,

Di,0
(n,p,x) = Di,jmax

(n,p,x), D
i,jmax+1

(n,p,x) = Di,1
(n,p,x),

for i = 1, . . . , imax. Within the active layer the corresponding equations are solved
iteratively. The input parameters are the mobilities at zero field, 0µi,j(n,p), the HOMO
and LUMO levels, the dielectric constant εi,j , the absorption coefficient α, the exciton
binding energy Eb, the exciton binding length a, the average exciton lifetime τx, the
temperature T and the solar spectrum AM1.5. The input parameters are summarized
in Tab. 4.1.

Table 4.1: Default input parameters for the active layers: organic donor layer (D), inor-
ganic acceptor layer (A).

P3EBT (D) P3HT (D) F8T2 (D) CIS (A)
HOMO / eV -5.6 -5.2 -5.4 -5.6
LUMO / eV -3.7 -3.5 -2.5 -4.1

0µn / m2V−1s−1 10−8 10−8 10−8 10−6

0µp / m2V−1s−1 10−8 10−8 10−8 10−6

µx / m2V−1s−1 3.86 · 10−9 3.86 · 10−9 3.86 · 10−9 -
εr 1 1 1 10

α / m−1 2 · 107 2 · 107 2 · 107 2 · 107

Eb / eV 0.5 0.5 0.5 0.5
a / nm 1.3 1.3 1.3 1.3
τx / s 10−6 10−6 10−6 -
T / K 298.15 298.15 298.15 298.15

Excitons are assumed to exist only in the organic layer, i.e., every exciton reaching
the inorganic layer or being generated in the inorganic layer separates directly into
an electron and a hole. To distinguish between organic (D: Donor) and inorganic (A:
Acceptor) parts in the active layer, a matrix, mask, is defined as input parameter with

maski,j =

0, (i, j) ∈ D

1, (i, j) ∈ A
(4.45)
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Furthermore, several switches are implemented to control the different processes taking
place within the active layer and to extract their effects in a detailed manner:

• switchlight: Turn on/off light illumination.

• switchlambertbeer: Turn on/off Lambert-Beer’s law.

• switchre: Turn on/off recombination.

• switchmob: Turn on/off field-dependent mobilities.

• switchex: Turn on/off exciton consideration.

• switchbraun: Turn on/off Braun’s exciton dissociation model.

• switchrandom: Turn on/off random levels for inorganic material.

Fig. 4.3 gives a short overview of the functionality of the different switches, showing the
different treatment of particular quantities.
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Switches
switchlight = 0 switchlight = 1

Φi,j = 0 Φi,j 6= 0
xi,j = 0 xi,j 6= 0

switchlambertbeer = 0 switchlambertbeer = 1

Φi,j =
∫ λmax

λmin
dλΦ0

i,j(λ) Φi,j =
∫ λmax

λmin
dλΦ0

i,j(λ) exp[−α(λ)xi]

switchre = 0 switchre = 1

R
(n,p,x)
i,j = 0 R

(n,p)
i,j = ki,jr ni,jpi,j
Rxi,j = xi,j

τx

switchmob = 0 switchmob = 1

µ
(n,p)
i,j = 0µ

(n,p)
i,j µ

(n,p)
i,j = 0µ

(n,p)
i,j exp (γ|Ei,j |)

switchex = 0 switchex = 1

xi,j = 0 xi,j 6= 0 ∀i, j : maski,j = 0
G

(n,p)
i,j = Φi,j ∀i, j : maski,j = 1 G

(n,p)
i,j = G

(n,p)
i,j (Φi,j , xi−1,j , ...) ∀i, j : maski,j = 1

G
(n,p)
i,j = 0 ∀i, j : maski,j = 0 G

(n,p)
i,j = G

(n,p)
i,j (ki,jdiss) ∀i, j : maski,j = 0

switchbraun = 0 switchbraun = 1

G
(n,p)
i,j = xi,jk

i,j
diss G

(n,p)
i,j = Pi,j(k

i,j
diss, Ei,j)Φi,j

switchrandom = 0 switchrandom = 1

Θ(n,p)
i,j = const. ∀i, j Θ(n,p)

i,j = const. ∀i, j : maski,j = 0
Θ(n,p)
i,j = const.+ 0.05× rand−1,1 ∀i, j : maski,j = 1

Figure 4.3: Functionality of the different switches. The quantity rand−1,1 denotes uni-
form distributed random numbers taken from the interval [−1, 1].
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Figure 4.4: Iteration flowchart for solving the complete algorithm.
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Figure 4.5: Flowchart displaying the interplay of the used switches. Summary of the
icon labeled Switches in Fig. 4.4

From Fig. 4.3 it can be seen that some switches are only relevant if others are turned
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on, for instance, if switchlight = 0, switchex does not play any role because Φi,j = 0
anyway. This interplay of switches shown in Fig. 4.5, refers the the icon Switches in
Fig. 4.4.

The complete iteration scheme, schematically shown in Fig. 4.4, mainly consists of two
iterative cycles. After reading-in the input parameters and checking the setting of the
switches, the Poisson equation is solved iteratively. We continue by updating the field-
dependent variables, i.e., the mobilities, and therefore kr, and the exciton dissociation
rate constant, and then we also solve the set of continuity equations iteratively. If the
solutions of the Poisson equation and the drift-diffusion equations are self consistent, the
next time step is performed. Otherwise, the whole set consisting of the Poisson equation
and the drift-diffusion equations is solved again, until self-consistency is reached. This
inner part of the whole iteration cycle is surrounded by a dashed line in Fig. 4.4. After
a particular number of performed time steps, the solution will reach the steady state,
and the relevant output data (particle densities, current densities, generation profiles,
mobility profiles, potential distribution and electric-field) are saved. Now the whole
process can be started again with different input data, for instance with different applied
voltages Va, to finally gain an I-V curve.
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This chapter is separated into three parts: First we investigate the influence of differ-
ent effects on the shape of the I-V characteristic by studying a flat interface structure
to exclude morphological effects. Based on the knowledge gained, we study the influ-
ence of a comb-like structure on the I-V characteristic and additionally briefly discuss
photocurrent characteristics for the P3HT / PCBM-C61 system, which represents an
organic-organic solar cell. In the last section we will discuss the different generation
profiles in detail, obtained by the simulations presented before.

5.1 Flat interface

First, we investigate which effects determine the particular shape of the I-V curve. For
this purpose, we make use of the different switches introduced in Sec. 4.4 and turn
them on one after another to see the outcome of these effects. A flat interface (Fig.
5.1) was chosen to reduce the system to the simplest morphological case. For a detailed
study on morphological effects on the I-V characteristic see [2]. As sample polymer
P3EBT was chosen with the material parameters listed in Tab. 4.1. The different
switch configurations are summarized in Sec. 5.1.1.

The second part of the flat interface study, Sec. 5.1.2, deals with the use of the three
different polymers introduced in Sec. 2.3.3, i.e. P3HT, P3EBT and F8T2.
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Figure 5.1: Morphology of the active layer for the flat interface structure consisting of
an acceptor (blue) and a donor (green).
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5.1.1 Switch settings

Every subsection will begin with a table demonstrating the switch settings used, as
introduced in Fig. 4.3. The input data is in the default configuration for P3EBT and
CIS, with the already introduced parameters summarized in Sec. 4.4, if not mentioned
otherwise. Further, the corresponding I-V characteristic is shown and discussed.

5.1.1.1 Switch setting 1

Table 5.1: Switch setting 1.
switch status

switchlight 0
switchlambertbeer 0

switchre 0
switchmob 0
switchex 0

switchbraun 0
switchrandom 0

Figure 5.2: I-V characteristic with default settings and switch configuration shown in
Tab.5.1.

Because of the switchlight = 0 setting, the I-V curve in Fig. 5.2 represents the dark
case. No generation of particles takes place in the whole operating mode, thus the
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current for voltages significantly lower than the built-in voltage (Vbi = Egap = 1.5 eV for
P3EBT/CIS), equals zero. The reason for the current rising slightly before reaching the
built-in voltage is due to diffusional processes, which means that some electrons have
enough energy to overcome the band gap barrier.

5.1.1.2 Switch setting 2

Table 5.2: Switch setting 2.
switch status

switchlight 1
switchlambertbeer 0

switchre 0
switchmob 0
switchex 0

switchbraun 0
switchrandom 0

Figure 5.3: I-V characteristic with modified settings (Eq. (5.2)) and switch configuration
shown in Tab. 5.2 (red line). The blue curve represents the dark case, i.e.
switchlight = 0.

The red curve in Fig. 5.3 displays the I-V characteristic for the illuminated case. The
results are based on the switch setting given in Tab. 5.2, but with a modification of
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switchex = 0 from

xi,j = 0

G
(n,p)
i,j = Φi,j ∀i, j : maski,j = 1 (5.1)

G
(n,p)
i,j = 0 ∀i, j : maski,j = 0,

to

xi,j = 0

G
(n,p)
i,j = Φi,j ∀i, j. (5.2)

Thus, electrons and holes are generated in the whole device.
The I-V characteristic of the illuminated case saturates for negative applied voltages

to a constant current value. It rises earlier than the dark current since there are more
electrons and holes within the device. Because of the higher electron and hole densities,
the diffusional current also sets on earlier. The region with a maximum slope observed
in the illuminated characteristic is due to a rapid increase of the current in the region
of the open circuit voltage. At a particular voltage electrons can overcome the energetic
LUMO barrier. At higher voltages, the slope decreases, because the energy of electrons
is sufficiently high, that they do not actually feel the barrier.

5.1.1.3 Switch setting 3

Table 5.3: Switch setting 3.
switch status

switchlight 1
switchlambertbeer 1

switchre 0
switchmob 0
switchex 0

switchbraun 0
switchrandom 0
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Figure 5.4: I-V characteristic with modified settings (Eq. (5.2)) and switch configuration
shown in Tab.5.3 as well as switch configuration shown in Tab. 5.2. The third
curve represents the dark case, i.e. switchlight = 0.

By introducing Lambert-Beer’s law, i.e. switchlambertbeer = 1, we observe some in-
teresting effects. The difference in the I-V curve (Fig. 5.4) resulting from including
Lambert-Beer’s law can be explained by considering that the generation profile decays
exponentially to the cathode. Thus, there are fewer particles generated generally and,
there are fewer particles generated in the inorganic layer, which is situated next to the
cathode. At negative voltages the cathode is charged negative but there are fewer par-
ticles to provide current. At higher positive voltages, the current also rises less steeply
than without considering Lambert-Beer’s law, because there are fewer particles at the
interface contributing to diffusion. At voltages Va > Vbi (forward bias) the current is
slightly higher because of the same reason reversed: There are fewer particles diffusing
back at the interface. It should be noted that there is only a bandgap difference for
electrons when using P3EBT. Therefore, these considerations can be reduced to elec-
trons, in the case of P3EBT only, because for holes the generalized potential equals the
electrostatic potential, i.e.

pΨi,j
!= ψi,j or Θp

i,j
!= 0 ∀i, j.

A very interesting effect is the later on-set of the increase of the illuminated curve than
in the switchlambertbeer = 0 case. This can be explained by the fact that there are
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more holes next to the anode than there would be by assuming that the absorption is
constant over the device (see Fig. 5.5).

Figure 5.5: Illumination profile for switchlambertbeer = 0 and switchlambertbeer = 1.

Another interesting question might be, if this on-set is tunable by changing the
εinorganicr : εorganicr ratio. The current rises with the electric field strength. Thus, if
εinorganicr � εorganicr , it follows that |Eorganic| � |Einorganic| because of the relation
ε1E1 = ε2E2.
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Figure 5.6: Dependence of the shape of the I-V curve on the ratio of εinorganicr : εorganicr

with switchex = 0 condition modified according to Eq. (5.2).

In Fig. 5.6 it can be seen that at higher εinorganicr : εorganicr ratios the current in the
negative regime is lower. This can be explained by the fact that the electric field in the
inorganic layer is smaller and therefore more holes are diffusing to the cathode, lowering
the current. In the positive regime the current is slightly increased, because now the
barrier can be overcome and the field is higher in the organic region. Therefore, also the
onset-voltage decreases with rising ε ratios and therefore also the gradient, i.e. the slope
of the I-V curve, decreases.

Now taking the default switchex = 0 condition, i.e. particles are only generated in
the inorganic material, the resulting curves, as a function of εr, change significantly.
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Figure 5.7: Dependence of the shape of the I-V curve on the ratio of εinorganicr : εorganicr

with default switchex = 0 condition.

First of all, the current is much lower. This can be explained by the fact that there
are fewer particles within the device due to the default switchex = 0 setting. Second,
the current is not rising steadily, there is a saturation observed at Va ≈ Vbi. At this
point almost the same number of electrons is diffusing back to the cathode as holes are
drifting towards the cathode, thus these contributions to the complete current cancel
out1. However, there are almost no electrons in the organic layer, therefore no remark-
able electronic current contribution in this direction is observed, which would give the
I-V curve the characteristic form seen in Fig. 5.6. The dependence on the εr ratio is the
same as discussed previously.

1This effect was also experimentally observed by Uhrich et al. [32] and will also be discussed in Sec.
5.1.2.1.
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Figure 5.8: Influence of the inorganic mobility µinorganic0 on the shape of the I-V curve for
three different mobilities with setting shown in Tab. 5.3 and switchex = 0
setting modified according to Eq. (5.2).

Figure 5.9: Influence of the inorganic mobility µinorganic0 on the shape of the I-V curve
for three different mobilities with setting shown in Tab. 5.3 and default
switchex = 0 setting.
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All curves discussed so far were calculated under the assumption that the mobilities
of electrons and holes are higher by a factor 100 in the inorganic material than in
the organic layer. This assumption seems plausible because generally inorganic charge
carrier mobilities are much higher than the organic mobilities. Now we will investigate
the influence of changing the mobility in the inorganic layer on the I-V characteristic
under the assumption that the inorganic mobility can not be smaller than the organic
one (Fig. 5.8 and Fig. 5.9).

For the modified switchex = 0 setting, the current increases in the positive regime
with higher inorganic mobility. However, the maximum power point and the current in
the negative regime is higher for smaller mobilities. This can be explained by considering
that for applied voltages lower than the built-in voltage, the cathode is charged positive
and electrons are drawn to the cathode and holes to the anode. However, the mobility in
the inorganic layer is much higher than in the organic layer and therefore particles diffuse
preferably in the inorganic layer, where they propagate with a velocity by a factor 100 or
even 10000 faster than in the other region. Therefore, there are significantly more holes
diffusing in the same direction as the electrons and, therefore, lowering the current. If the
mobilities do not differ in the different regions, there is no primarily-preferred diffusion
direction and the motion of the particles is, basically, dominated by the drift term. Of
course a local preference for a particular direction can occur due to a gradient in the
particle densities but there are no different intrinsic conditions a priori.

From Fig. 5.9 one can see that with higher inorganic mobilities, the plateau con-
taining the plateau observed in Fig. 5.7 gets broader, while it even disappears for the
case µinorganic0 = µorganic0 . The interpretation of this behavior of the characteristics is
the same as above: A mobility change at the interface generates a preferred diffusion
direction. This happens in various steps, first, particles reaching the interface accelerate
immediately and are, thus, drawn off the interface. The lack of particles at the interface
induces a gradient in the density leading to diffusion. Furthermore, particles near the
inorganic layer already feel the higher mobility, and prefer this direction, which is quite
obvious because in our model we take the mobilities µi+ 1

2
,j to simulate the drift as well

as the diffusional transport, Eqs. (4.31)-(4.34)).
The only major difference between the curves shown in Fig. 5.8 and Fig. 5.9 is that

for the second case the plateaus are shifted to zero current. This is due to band gap
diffusion effect discussed above for different εr ratios at default switchex = 0 setting
(Fig. 5.7).
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5.1.1.4 Switch setting 4

Table 5.4: Switch setting 4.
switch status

switchlight 1
switchlambertbeer 0

switchre 1
switchmob 0
switchex 0

switchbraun 0
switchrandom 0

Figure 5.10: I-V characteristic with modified settings (5.1.1.2) and switch configuration
shown in Tab.5.4 as well as switch configuration shown in Tab. 5.2. The
third curve represents the dark case, i.e. switchlight = 0.

Considering recombination processes of electrons and holes (excitons do not exist due to
switchex = 0) has the expected effect of slightly reducing the current all over the voltage
regime. Particle densities are reduced by the bimolecular recombination process and,
hence, there are fewer particles available contributing to the current. One interesting
detail, which has to be highlighted at this point, is that because of equal loss of both
kinds of charged particles the kink in the illuminated I-V characteristic, as seen in all
calculations before, vanishes.
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One question arising is, why the increase of the illuminated current sets on earlier
than in Sec. 5.1.1.3. The reason is that in this case we lose particles equally distributed
over the device, while in the case of switchlambertbeer = 0 the generation rate de-
creases exponentially, being highest at the anode and being there higher than in the
switchlambertbeer = 0 case (Fig. 5.5). Thus there are more particles generated next to
the anode, moving in the corresponding direction.

Figure 5.11: Influence of the mobility ratio µinorganic0 : µorganic0 on the shape of the I-
V curve. The switch configuration is shown in Tab. 5.4 and modified
switchex = 0 settings according to Eq. (5.2) are used.
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Figure 5.12: Influence of the mobility ratio µinorganic0 : µorganic0 on the average generation
rate. Settings as in Fig. 5.11

One interesting topic is the influence of the mobility on the I-V curve (Fig. 5.11) be-
cause the recombination rate is directly proportional to the sum of the mobilities, see Sec.
3.5.1.4 . It has to be emphasized at this point that the result we get is quite remarkable,
because we observe an increase of the short circuit voltage with decreasing µinorganic0 val-
ues. This is in contrast to the result obtained in Sec. 5.1.1.3. The recombination effect,
being proportional to the mobility, lowers the short circuit current for lower mobilities
because the recombination loss of particles is larger in the case of equal mobilities in
the whole device (Fig. 5.12 shows the average generation rate, Γn = 1

N

∑
i,j Γi,j , where

N denotes the total number of grid-points). This means that the net-generation rate is
smaller, because charge carriers remain longer in the device. There is also no preferred
diffusion direction, and, therefore, there are fewer particles within the device contribut-
ing to the current. However, after passing the built-in voltage, the recombination rate
gets larger for the higher µinorganic case because at this voltage more particles cross the
barrier and the diffusional advantage is negligible.
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5.1.1.5 Switch setting 5

Table 5.5: Switch setting 5.
switch status

switchlight 1
switchlambertbeer 0

switchre 0
switchmob 1
switchex 0

switchbraun 0
switchrandom 0

Figure 5.13: I-V characteristic with modified settings (5.1.1.2) and switch configuration
shown in Tab.5.5 as well as switch configuration shown in Tab. 5.2. The
third curve represents the dark case, i.e. switchlight = 0.

The first quite obvious changes in the curve are, that, as in Sec. 5.1.1.4 the kink in the
illuminated I-V curve is not observed again, and the current, dark as well as illuminated,
rises much faster than before. This can be explained by the fact that with higher positive
voltages, the locally occurring field strengths and, therefore, the mobilities, which are
proportional to the current density, increase. Also in the negative regime the current is
slightly larger than in the calculation without consideration of field-dependent mobilities.
This can be explained by the fact that the current is limited by the charge carrier
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extraction from the contacts.

5.1.1.6 Switch setting 6

Table 5.6: Switch setting 6.
switch status

switchlight 1
switchlambertbeer 0

switchre 0
switchmob 0
switchex 0

switchbraun 0
switchrandom 1

Figure 5.14: I-V characteristic with modified settings (5.1.1.2) and switch configuration
shown in Tab.5.6 as well as switch configuration shown in Tab. 5.2. The
blue curve represents the dark case, i.e. switchlight = 0.

In this case, the HOMO/LUMO levels of the inorganic material are randomly distributed
around the exact value of 0.05 eV (Fig. 5.15):

Θ(n,p)
i,j =

Θ(n,p)
i,j if maski,j = 0

Θ(n,p)
i,j + 0.05rand−1,1 if maski,j = 1.

(5.3)
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Figure 5.15: Illustration of the transport level distribution for electrons, Θn, for random
distributed transport levels.

The motivation for this consideration is that experimentally the inorganic layer, CIS, is
actually not continuous, but consists of CIS nanoparticles [22]. However, it is very dense,
so that it is justified to regard it as a continuous layer in the theoretical model, but to
account for the problem of continuous HOMO/LUMO levels, this approach can be chosen
as well. Nevertheless, this effect does not change the characteristic curve significantly.
In contrast to the characteristic, the electron and hole density profiles change, Fig. 5.16,
because the randomly distributed deviations from the smooth transport levels act as
traps.
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Figure 5.16: Potential (upper left panel), electron density (upper right panel) and hole
density (lower left panel) corresponding to Va = 1.125 V and I-V curve
(lower right panel) resulting from the switch configuration shown in Tab.
5.6.

The deviations from the regular transport levels are the same for electrons and holes,
Fig. 5.15. Nevertheless, in Fig. 5.16 it can be seen that at this particular voltage,
i.e Va = 1.125 V, holes are slightly better trapped than electrons. This effect occurs
due to the high applied voltage which pushes electrons to the cathode and holes to the
anode. The mobility in the inorganic layer (blue in Fig. 5.16) is much higher than in
the organic region and therefore, holes trapped in the inorganic layer have to overcome
the energetic barrier (in form of deviations of the default Θ(n,p) values) as well as the
’diffusional barrier’ to the organic region (given by the mobility difference as discussed
in Sec. 5.1.1.3).

The loss of electrons at the interface, seen in Fig. 5.16 (upper right panel), is not
due to recombination effects, because these were not considered in this calculation. It
is solely due to higher mobilities at the neighboring points (inorganic layer) and the
bandgap off-set. Thus, electrons move immediately in the inorganic layer as soon as
they come close to it, driven by diffusion, the electric field and the particular material
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intrinsic HOMO/LUMO levels.

5.1.1.7 Switch setting 7

Table 5.7: Switch setting 7.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 0

switchbraun 0
switchrandom 0

Figure 5.17: I-V characteristic with modified settings (Sec. 5.1.1.2) and switch config-
uration shown in Tab.5.7. The blue curve represents the dark case, i.e.
switchlight = 0.

Setting all switches discussed in the previous sections to 1, except switchrandom, yields,
as expected, a combination of these effects. There is no kink in the illuminated curve
observed, and the dark as well as the illuminated curve rise quite rapidly with increasing
voltages. The processes explaining the particular form of the I-V characteristic are
discussed in Sec. 5.1.1.1 - Sec. 5.1.1.6.
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5.1.1.8 Switch setting 8

Table 5.8: Switch setting 8.
switch status

switchlight 1
switchlambertbeer 0

switchre 0
switchmob 0
switchex 1

switchbraun 0
switchrandom 0

Figure 5.18: I-V characteristic with switch configuration shown in Tab.5.8 as well as
switch configuration shown in Tab. 5.2 with default switchex = 0.

In this study we consider exciton diffusion as well as field-dependent charge carrier gen-
eration rates according to Onsager, [7], and Buxton, [4]. The rate expression of [4], given
by Eq. (3.40), corresponds to a process solely described by the dissociation constant, a
treatment commonly employed in chemical kinetics. Comparing the gained I-V charac-
teristic with the corresponding curve without consideration of excitonic processes, Fig.
5.18, one observes, first that the current for the negative regime is much lower for the
latter case. The reason for this effect is that at low, i.e. high negative, voltages, the
electric field strength is sufficiently high to separate excitons to electrons and holes in
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the organic region, although there is also only a steady charge carrier generation in the
inorganic region. Therefore, this part of the curve is comparable to the curves obtained
with switchex = 0 settings modified according to Eq. (5.2). With voltages approaching
the built-in voltage, the occurring field strength decreases and therefore also the amount
of generated charge carriers. In this part of the I-V curve (Fig. 5.18) we obtain the same
situation as already seen in the curves for default switchex = 0 settings. Moreover,
electrons and holes move in the same direction and, hence, the separate parts of the
electron- and hole-current cancel out. Increasing the voltage, increases the field strength
further and thus also the efficiency of exciton separation rises.

To see this effect of field-dependent generation of charge carriers in a more detailed
way, a calculation was performed without an inorganic region, i.e. the whole solar cell
consists of P3EBT,

maski,j = 0 ∀ i, j,

across which excitons are assumed to dissociate field-assisted. Nevertheless, an Egap of
1.5 eV was assumed 2.

To see the sole effect of a change of the εr-ratio on the field-dependent generation
rate another calculation was performed. In this calculation it was assumed that there is,
although without an inorganic region, i.e. no transport level difference and no mobility
difference, a difference in εr as in the default inorganic case. Of course, this scenario
is not very realistic; however, it allows us to study the direct influence of εr-dependent
change of the electric field on the charge carrier generation rate (Fig. 5.19), because
there is no constant contribution to the generation rates (no inorganic part).

2This approached can be regarded as an effective medium approach as also performed by, for instance,
Koster [5], Deibel [33] et al..
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Figure 5.19: I-V curve for the switch configuration shown in Tab. 5.8 and the εr ratios
1 : 1 and 10 : 1. The inorganic region was not considered in this case. A
detailed description of the εr consideration can be found in the text.

Figure 5.20: Average generation rate for switch configuration shown in Tab. 5.8 and the
εr ratios 1 : 1 and 10 : 1. The inorganic region was not considered in this
case. A detailed description of the εr consideration can be found in the
text.
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Figure 5.21: Average field strength for switch configuration shown in Tab. 5.8 and the εr
ratios 1 : 1 and 10 : 1. The inorganic region was not considered in this case.
A detailed description of the εr consideration can be found in the text.

Figure 5.22: Average exciton density for switch configuration shown in Tab. 5.8 and the
εr ratios 1 : 1 and 10 : 1. The inorganic region was not considered in this
case. A detailed description of the εr consideration can be found in the
text.
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From Fig. 5.19 it is obvious that the current reaches a plateau in the region of the
built-in voltage. This plateau is unambiguously caused by the minimal field strength and
therefore minimal generation rate (compare Figs. 5.19-5.22). This is also the reason for
the occurrence of a maximum in the average exciton density, Fig. 5.22. Furthermore,
the plateau associated with the saddle point is much narrower for the case with an
εr = 10 region, Fig. 5.19, because also smaller changes in the applied voltage induce a
large electric field, due to the continuity condition ε1E1 = ε2E2. Of course, the average
electric field strength, E = 1

N

∑
i,j Ei,j with N denoting the number of grid points,

observed at a particular applied voltage is for both cases almost the same (Fig. 5.21).
A remarkable fact is that the average field is even at Va = Vbi not equal to zero and
that it differs slightly for the two different cases. This is due to a potential induced by
charge carrier densities being not equal zero at this point. At higher applied voltages the
average electric field strength is in a range in which local occurring particle densities do
not have such a strong influence on the potential surface. The deviations of the average
field distributions in the scale of |Va − Vbi| / 0.3 V are due to the different particle
densities induced by different εr values.

Another interesting effect is that the generation rate for very small values of applied
voltages is profoundly smaller for the continuous ε case, Fig. 5.20, although the average
field strength is approximately the same for both cases at these voltages. To reach high
generation rates at these voltages, a continuous field distribution is desirable because,
in the other case, the high field domain is in a region in which almost all excitons are
separated. Thus, increasing the field has only a marginal effect, while in the low-field
region the field is too small, and increases too slowly. In the ε1r : ε2r = 1 : 1 case there
are more particles generated. This effect can be estimated mathematically by

E ≈ ∆ψ
l
, (5.4)

where E denotes the average field strength, ∆ψ the potential difference between cathode
and anode, and l the device length. Using the relation

ε1E1 = ε2E2 (5.5)

and assuming that the average field is given by

E =
E1 + E2

2
, (5.6)
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i.e. both regions have exactly the same extensions. Now we can conclude that

∆ψ
l
≈ E1

2

(
1 +

ε1
ε2

)
, (5.7)

or by solving for E1

E1 ≈
2∆ψ

l
(

1 + ε1
ε2

) . (5.8)

Inserting ε1
ε2

= 10 into the obtained expression gives

E1 ≈
2
11
E. (5.9)

Note that E is also the value we get for the field strength of the continuous ε case. For
instance, if we assume ∆ψ = 2 V and l = 1µm, which is one of the outermost points of
the calculated voltage region, we get

E ≈ 2 · 106 Vm−1,

E1 ≈ 3.6 · 105 Vm−1,

E2 ≈ 3.6 · 106 Vm−1.

So in this case we are in a region, in which the exciton dissociation rate is rather high in
the continuous ε case and in the layer with the lower ε value for the second case, while
it is very low for the other layer (see Fig. 3.2). Hence, there are more charge carriers
generated in the first scenario (1 : 1) at this voltage.

Summarizing, it is possible to conclude that the plateau produced by the excitonic
separation behavior is for small εinorganicr values much broader than the plateau produced
by the band-gap diffusion phenomenon, described in Sec. 5.1.1.3, at the same conditions.
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5.1.1.9 Switch setting 9

Table 5.9: Switch setting 9.
switch status

switchlight 1
switchlambertbeer 0

switchre 0
switchmob 0
switchex 1

switchbraun 1
switchrandom 0

Figure 5.23: I-V characteristic with switch configuration shown in Tab.5.9 as well as
switch configuration shown in Tab. 5.8.

Considering Braun’s model of exciton dissociation results in a slight difference of the
slope of the I-V characteristic compared to treating dissociation solely with the disso-
ciation rate constant, Fig. 5.23. The deviations predicted by Braun’s model can be
understood by a closer inspection of Eq. (3.42). As a consequence of assuming a dis-
sociation probability, excitons only dissociate to charge carriers immediately after being
generated and thus more excitons are subjected to decay according to the exciton recom-
bination rate, Eq. (3.43). In the other generation model, Eq. (3.40), no consideration
of immediate dissociation is made primarily, because the rate only indicates the velocity
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in which the process happens. Thus the future of the excitons, which do not dissociate
immediately, is not determined a priori and remains insecure.

5.1.1.10 Switch setting 10

Table 5.10: Switch setting 10.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 1

switchbraun 1
switchrandom 0

Figure 5.24: I-V characteristic with switch configuration shown in Tab.5.10, for illumi-
nated as well as for the dark case, and switch configuration shown in Tab.
5.9.

Switching on all types of recombination and generation effects implemented results in
an I-V characteristic, which can be understood in terms of all influences on the shape
discussed in Sec. 5.1.1.1 - 5.1.1.9, Fig. 5.24. The rising current saturates at applied
voltages Va ≈ Vbi because of two different effects which overlap: First, electrons are
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diffusing in the same direction as the holes. Thus the current cancels out, as discussed
in Sec. 5.1.1.3. Second, by approaching the built-in voltage, the occurring electric
field strength decreases and therefore also the number of generated charge carriers, as
discussed in Sec. 5.1.1.8. In comparison to the curve given in Sec. 5.1.1.9, Fig. 5.23, the
current increases much faster in the positive regime, because of field-dependent mobilities
(see Sec. 5.1.1.5) while in the negative regime it is lower due to Lambert Beer’s law and
recombination effects (see Sec. 5.1.1.3 and Sec. 5.1.1.4). Furthermore, it is remarkable
that there is almost no difference between illuminated and dark current in the positive
regime, as already seen in Sec. 5.1.1.3 and Sec. 5.1.1.7.

An interesting question is the influence of change of the εinorganicr : εorganicr ratio on
the shape of the curve because both effects responsible for the plateau are sensitive on
the εr-ratio, as shown in Sec. 5.1.1.3 and 5.1.1.8, respectively.

Figure 5.25: I-V characteristic with switch configuration shown in Tab.5.10, for different
εr ratios.
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Figure 5.26: I-V characteristic with switch configuration shown in Tab.5.10, for different
εr ratios with maximum power points indicated by an asterisk; closer view.

The band-gap diffusion process, see Sec. 5.1.1.3, shifts the on-set of the current-
increase with higher εr ratios to higher negative voltages, while the exciton dissociation
process shifts the onset to lower voltages, see Sec. 5.1.1.8. In Fig. 5.25 and Fig. 5.26
the overlap of both effects is shown. The exciton dissociation effect dominates and thus
forces the curve with εinorganicr : εorganicr = 1 : 1 to rise first and the curve εinorganicr :
εorganicr = 100 : 1 last. Note that there is almost no difference observable between the
characteristics with εinorganicr : εorganicr = 100 : 1 and εinorganicr : εorganicr = 15 : 1. Then,
at Va ' 0 V an interesting effect is observed: the curves with εinorganicr : εorganicr = 1 : 1
and εinorganicr : εorganicr = 2 : 1 reach a first plateau. This plateau is caused by the fact
that, although there are almost no particles generated in the organic material in this
voltage region, the electrons can propagate better than in the cases with higher εr ratios
due to the particular slope of the potential surface. Thus, in this region, the two different
effects coincide and force the I-V characteristic in a first plateau which is not observed
for higher ratios. The second plateau, at Va ' 1.2 V is due to low charge carrier densities
within the device because of field-dependent exciton dissociation rates. In the positive
regime, at voltages above 1.5 V the current grows as usual.

Unsurprisingly, the occurrence of a second plateau for low εr ratios profoundly influ-
ences the values assigned to the maximum power point and the fill factor. Tab. 5.11
summarizes the calculated maximum power points and fill factors for the characteristics
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shown in Fig. 5.26.

Table 5.11: Calculated values for maximum power point, Pmpp, fill factor, FF , open
circuit voltage, Voc and short circuit current, Isc, for curves in Fig. 5.26.

εinorganicr : εorganicr Pmpp / W FF Voc / V Isc / mAcm−2

1 : 1 −38.79 0.379 1.325 −7.706
2 : 1 −37.11 0.256 1.358 −10.679
5 : 1 −44.56 0.279 1.374 −11.621
10 : 1 −47.36 0.295 1.389 −11.538
15 : 1 −47.39 0.298 1.406 −11.322
100 : 1 −47.47 0.319 1.422 −10.471

From Tab. 5.11 it is obvious that the open circuit voltage increases with the εr ratio
while it remains hard to predict the short circuit current. From Sec. 5.1.1.3 we already
know that basically the short circuit current decreases, i.e. becomes less negative, with
higher ratios due to diffusional processes (Fig. 5.7). However, in Sec. 5.1.1.8 we ob-
served that it increases, i.e. becomes more negative, with rising εr ratios (Fig. 5.19) due
to the excitonic dissociation process. Therefore, it is reasonable to conclude from Tab.
5.11 and Fig. 5.26 that up to an εr ratio of about 1 : 5 the curves are dominated by
the excitonic effect, while for higher ratios the effect of the diffusional process is stronger.
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Figure 5.27: I-V characteristic with switch configuration shown in Tab.5.10, for different
µ0 ratios.

Figure 5.28: I-V characteristic with switch configuration shown in Tab.5.10, for different
µ0 ratios with maximum power points indicated by an asterisk; closer view.

As done already in Sec. 5.1.1.3, we will continue discussing the effect of the mobility
change in the inorganic layer, for reasonable ratios, on the I-V curve. Basically, in Fig.
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5.27 and Fig. 5.28 we see the same effects as in Fig. 5.8 and Fig. 5.9 combined with
the effects already demonstrated for exciton dissociation processes. A remarkable detail
is that for µinorganic0 : µorganic0 = 1 : 1 the plateau does not correspond to a negligible
current. This is due to the mobility effect discussed in Sec. 5.1.1.3, i.e. there is no
preferred diffusion direction a priori.

Table 5.12: Summary of the calculated values for maximum power point, Pmpp, the fill
factor, FF , open circuit voltage, Voc, and short circuit current, Isc, for the
curves shown in Fig. 5.28.

µinorganic0 : µorganic0 Pmpp / W FF Voc/ V Isc / mAcm−2

1 : 1 −45.33 0.272 1.503 −11.091
10 : 1 −47.79 0.188 1.455 −11.396
100 : 1 −47.36 0.295 1.389 −11.538
1000 : 1 −41.13 0.268 1.341 −11.4253
10000 : 1 −33.26 0.244 1.309 −11.414

The open circuit voltages increase with decreasing mobility. However, there is no clear
trend in the short circuit current anymore. Therefore, there is also no unambiguous
trend in the maximum power points and fill factors, Tab. 5.12, as a function of the
mobility in the inorganic layer. This is again due to two different overlapping effects.
First, the increase of the absolute short circuit current with increasing mobility due to
recombination effects (Sec. 5.1.1.4) and second, the decrease of the absolute short circuit
current because of the diffusional effect, discussed in Sec. 5.1.1.3.

5.1.2 Different polymers

In this subsection we will discuss two different calculations for the three different poly-
mers introduced in Sec. 2.3.3, Fig. 2.11. The detailed parameters for these materials
are shown in Tab. 4.1. Switch configurations used are as discussed in Sec. 5.1.1.7 and
in Sec. 5.1.1.10.
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5.1.2.1 Switch setting 7

Table 5.13: Switch setting 7.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 0

switchbraun 0
switchrandom 0

Figure 5.29: I-V characteristic, illuminated case, with switch configuration shown in
Tab.5.13 for three different polymers.

The interesting fact, considering these characteristics, is that, although the built-in
voltages are not the same for the three different polymers, the open circuit voltage is
almost the same for P3HT and F8T2. Thus, the open circuit voltage is not mandatorily
almost equal to the built-in voltage. In Tab. 5.14 the built-in voltages, as defined in
Fig. 4.2, for the three polymers are summarized.
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Table 5.14: Built-in voltages, HOMO and LUMO band off-sets for the P3HT/CIS,
P3EBT/CIS and F8T2/CIS systems.

Vbi / eV ∆EHOMO / eV ∆ELUMO / eV
P3HT / CIS 1.1 0.4 0.6

P3EBT / CIS 1.5 0.0 0.4
F8T2 / CIS 1.3 0.2 1.6

To comprehend the apparent lack of a systematic offset between Vbi and Voc, both the
dark (Fig. 5.30) and the illuminated (Fig. 5.29) I-V curve as well as the HOMO/LUMO
levels (Tab. 4.1 and Tab. 5.14) require a closer inspection.

Figure 5.30: I-V characteristic, dark case, with switch configuration shown in Tab.5.13
for three different polymers; dark case.

For the P3EBT / CIS system the open circuit voltage corresponds to the built-in
voltage. Actually, the current rises slightly before the built-in voltage due to the diffusion
of holes, because of a vanishing HOMO offset between P3EBT and CIS. This effect is
also responsible for the plateau discussed in Sec. 5.1.1.3 and was already observed
experimentally by Uhrich et al. [32]. They measured I-V curves for materials including
an energetic barrier for holes in the HOMO level and without this barrier. Uhrich et al.
detected a plateau in the illuminated curves for vanishing offsets, as predicted by the
calculation shown previously (Sec. 5.1.1.3).
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For F8T2, the band off-set in the HOMO level is much lower than the one in the
LUMO level. In P3HT, the two offsets differ only by 0.2 eV. In all cases, the dark
current starts to rise approximately one Volt before the applied voltage is equal to the
built-in voltage. For the F8T2 / CIS system it rises shortly before Va = 1.4 V, for P3HT
/ CIS also shortly before Va = 1.4 V and for P3EBT / CIS shortly after Va = 1.4 V, Fig.
5.30. Thus, the open circuit voltage is approximately equal to the built-in voltage plus
the lowest band off-set in the material, because at this point one kind of charge carriers
can overcome the barrier.

Voc ≈
1
q

[Vbi + min (∆EHOMO,∆ELUMO)] (5.10)

Among the materials chosen in this work, it is always the holes, which can overcome
the barrier first. For F8T2 / CIS the band off-set is 0.2 eV and for P3HT it is 0.4 eV,
therefore the dark and illuminated I-V curves start to increase at the same voltage
although the built-in voltage is not the same. For P3EBT / CIS the HOMO band off-set
is 0.0 eV and therefore the built-in voltage more or less equals the open-circuit voltage.

5.1.2.2 Switch setting 10

Table 5.15: Switch setting 10.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 1

switchbraun 1
switchrandom 0
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Figure 5.31: I-V characteristic with switch configuration shown in Tab.5.15 for three
different polymers.

In Fig. 5.31 one can see the I-V curves for the illuminated case for the three different
systems already discussed in the previous subsection but with consideration of exciton
motion and field-dependent dissociation rates according to Braun’s theory, Eq. (3.42).
The interesting fact is that for P3HT / CIS and F8T2 / CIS a current can be ob-
served although the electric field strength reaches a minimum (see Fig. 5.21), while for
P3EBT / CIS there is no current. The explanation can be found again in the different
HOMO/LUMO off-sets, see Tab. 5.14. For these polymers the HOMO off-set is not
zero, thus the holes cannot move freely to the corresponding electrode and there is still
a negative current observed. The reason for nearly equivalent open circuit voltages was
already discussed in Sec. 5.1.2.1.

5.2 Comb-like interface

In this section we discuss the effects of an interface change, Fig. 5.32, on the generation
rates for charge carriers. A detailed study of morphological influences on the I-V char-
acteristic can be found in [2]. Once more, we use the switch settings defined in Sec. 4 as
an orientational tool. Also in this section we use the P3EBT / CIS system as the default
material configuration. In the third subsection we introduce a new system, i.e. P3HT /
PCBM-C61, to study some experimentally obtained photocurrent characteristics.
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Figure 5.32: Morphology of the active layer for the comb-like interface structure consist-
ing of an acceptor (blue) and a donor (green).

5.2.1 Switch setting 7

Table 5.16: Switch setting 7.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 0

switchbraun 0
switchrandom 0
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Figure 5.33: I-V characteristic for a comb-like interface structure and switch configu-
ration shown in Tab.5.16. The green curve represents the dark case, i.e.
switchlight = 0.

Basically, there is not much difference to the I-V curves with a flat interface structure,
because the total inorganic area remained the same and we do not have a specific exciton
dissociation rate due to the switchex = 0 setting. Nevertheless, this example was chosen
to study recombination effects. The following three pictures will give an overview on the
distribution of potential, electron density, hole density, generation rate and electric field
strength at a particular voltage.

Now we will discuss the different profiles given in Fig. 5.34 - 5.36. The electron and
hole densities behave perfectly as expected. For a voltage significantly lower than the
open circuit voltage (Fig. 5.34), most electrons are in the inorganic region because they
cannot move freely due to the LUMO gap between P3EBT and CIS. The holes do not feel
a band gap, therefore they are more equally distributed than the electrons. Nevertheless,
there are more holes located in the inorganic material because the space charge of the
electron attracts them. The higher the applied voltage gets (Fig. 5.35 and Fig. 5.36),
the more electrons are attracted by the ITO anode and have the energy to overcome the
barrier; thus more electrons can be found in the organic layer. The same holds for holes
by neglecting the barrier: the higher the voltage gets the more holes we can find in the
inorganic region because they are more attracted to the aluminum cathode. The change
of the electric field strength observed from Fig. 5.34 - Fig. 5.36 is due to the potential
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Figure 5.34: Potential, electron density, hole density, generation rate, electric field
strength at an applied voltage of Va = 0.625 V indicated in the I-V curve
(clockwise).
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Figure 5.35: Potential, electron density, hole density, generation rate, electric field
strength at an applied voltage of Va = 1.375 V indicated in the I-V curve
(clockwise).
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Figure 5.36: Potential, electron density, hole density, generation rate, electric field
strength at an applied voltage of Va = 1.625 V indicated in the I-V curve
(clockwise).
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and charge carrier density change. More interesting is the net generation rate, i.e. Γn
as defined in Eq. (3.47), see lower left panel in Figs. 5.34 - 5.36. For an applied voltage
of Va = 0.625 V, the generation rate is directly related to Lambert-Beer’s law, because
of the switchex = 0 condition. Correspondingly, there are no recombination processes
of significant magnitude. By approaching the open circuit voltage, however, we obtain
more charge carriers and therefore also the recombination rate increases and deforms
the net-generation profile (Fig. 5.35). Finally charge carrier recombination is dominant
in comparison to charge carrier generation (Fig. 5.36).

5.2.2 Switch setting 10

Table 5.17: Switch setting 10.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 1

switchbraun 1
switchrandom 0
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Figure 5.37: I-V characteristic for comb-like interface structure and switch configura-
tion shown in Tab.5.17. The green curve represents the dark case, i.e.
switchlight = 0.

First of all it has to be mentioned that the difference of the absolute values for the
current densities in the negative regime (reverse bias) in comparison to [2] result from
the different set of parameters used. Although the HOMO/LUMO levels are set at the
same values, there are a couple of assumptions chosen differently, i.e. different mobilities
at the contacts, different εr values and different mobilities for the inorganic region.
Furthermore, field-assisted dissociation rates, recombination rates and field-dependent
mobilities are considered.

As in the case of the flat interface, it is apparent that at applied voltages in the vicinity
of the built-in voltage, i.e. Va ≈ Vbi, there is a plateau in the I-V characteristic (Fig.
5.37) due to generational and diffusional effects, discussed in previous sections. The
interesting details are the investigation of the generation rates in combination with the
electric field strength in comparison to the case of a flat hetero-junction. This will be
done in detail in Sec. 5.3. At this point we will have a closer view on the coherence of the
average netto generation rate, i.e. Γn = 1

N

∑
i,j Γni,j with N denoting the number of grid

points, and the I-V curve for the photocurrent, i.e. the difference between illuminated
and dark current density, Iph = Iill − Idark, Fig. 5.38.
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Figure 5.38: Photocurrent for a comb-like interface and switch setting listed in Tab. 5.17.

Figure 5.39: Average netto generation rate, Γn for a comb-like interface and switch set-
ting listed in Tab. 5.17.

For negative and positive voltages, the current converges to a constant value. By
looking at the generation profile as a function of the applied voltage displayed in Fig.
5.39, one can see that for positive voltages the photo current converges, because the re-
combination rate dominates the whole generation process. Thus the illuminated current
cannot rise faster than the dark current. For the negative regime, the generation reaches
a maximum value, thus, there cannot be more current produced by photoinduction. The
plateau in the photo current characteristic can be explained by the back diffusion process
at the interface and the lower generation rate because of the field-dependence, as already
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discussed in Sec. 5.1.
Reducing the plateau to the back diffusion process, i.e. taking the I-V characteristics

gained by using the switch-setting of Tab. 5.16 yields the results depicted in Fig. 5.40
and Fig. 5.41.

Figure 5.40: Photocurrent for a comb-like interface and switch setting listed in Tab. 5.16.

Figure 5.41: Average netto generation rate, Γn for a comb-like interface and switch set-
ting listed in Tab. 5.16.

Comparing the two different theoretically obtained photocurrent characteristics in the
Figs. 5.38 and 5.40, i.e. by considering field-assisted exciton dissociation and neglecting
it, respectively, could be used as a tool to determine if field-dependent exciton dissocia-
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tion rates describe the devices sufficiently well. Of course, it has to be emphasized that
results obtained by this procedure have to be treated with exceptional care because, as
seen in previous sections, there are a lot of different processes profoundly influencing the
shape of the I-V curve, and therefore also the characteristic of the photocurrent.

5.2.3 P3HT / PCBM-C61 solar cell - Flat interface

There are experimentally obtained I-V curves and photocurrent characteristics published
by Ooi et al. [34] for the P3HT / PCBM-C61 system, which are assumed to form a
planar interface. These curves could already be reproduced by M. Gruber [2]. The
author considered a comb-like interface, exciton separation at the interface as well as
non-ohmic contacts. In our case, we only consider ohmic contacts and primarily a flat-
interface configuration to work out effects solely based on generational processes. Several
parameters have to be changed, because we switch from an organic/inorganic system to
an organic/organic system. They are used as listed below:

• µAn = µDn = µDp = µAp = 10−8 m2V−1s−1

• PCBM-C61: HOMO/LUMO: −6.10 eV / − 3.74 eV

• P3HT: HOMO/LUMO: −5.20 eV / − 3.5 eV

• εAr = εDr = 1

All additional input parameters are set as in the organic/inorganic solar cell calculations
(see Tab. 4.1). In the present case, charge carriers are basically generated only field-
dependent, whether in the bulk or at the interface, or by exciton diffusion to the interface.

For the first calculated I-V curve (Fig. 5.42 (a)), field-assisted separation of excitons
is not considered, i.e. electrons and holes are only produced at the interface by excitons
reaching it within their lifetime. The second curve (Fig. 5.42 (b)) represents the char-
acteristic gained by consideration of field-dependent particle generation. Fig. 5.42 (c)
shows the experimentally obtained I-V curve published by Ooi et al., [34].
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(a) Simulated photocurrent characteristic for the
P3HT / PCBM-C61 system by assuming that
charge carriers only separate at the interface.

(b) Simulated photocurrent characteristic for the
P3HT / PCBM-C61 system by assuming that
charge carrier generation is field-dependent.

(c) Experimentally obtained I-V curve for P3HT / PCBM-
C61 system published by Ooi et al. in [34].

Figure 5.42: Study of different photocurrent characteristics, (a) and (b) were simulated
and (c) was experimentally obtained.

As already highlighted, the comparison of experimentally obtained and simulated re-
sults has to be treated with exceptional care and without considering non-ohmic contacts.
They are responsible for a change of the built-in voltage, which shift the entire charac-
teristic towards lower voltages [2]. However, in the case of Fig. 5.42 there are a couple
of remarkable facts which we want to discuss in detail. First, the maximum current
observed in the negative regime in Fig. 5.42 (b) is of the same magnitude as the current
observed experimentally, Fig. 5.42 (c). In this case almost all excitons dissociate into
charge carriers because of the electric field strength induced by the applied voltage. In
the case of Fig. 5.42 (a), the current is much lower, because most of the excitons are not
able to reach the interface within their lifetime and thus there are fewer charge carriers
available for contributing to the current. This indicates that in the experiment almost all
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excitons are separated to charge carriers. Nevertheless, it is not clear whether the char-
acteristic plateau in Fig. 5.42 (b) is observed experimentally, because the plotted range
around the built-in voltage is not sufficiently large. It could be assumed that there is no
plateau because otherwise the absolute value of the current would be lower. Additionally,
the experimental current in the positive regime is also in the range of Fig. 5.42 (b) and
not in the range of Fig. 5.42 (a). It can be concluded cautiously that in the experiment
almost all excitons separate to charge carriers, by comparison with the given current
densities in this particular range. Basically there is no significant evidence indicating
that charge carrier separation is field-dependent because the separation of excitons can
also be tuned by optimizing the interface structure, as shown in [2]. Nevertheless, there
is also no evidence indicating that charge carrier separation is not field-dependent at all,
because if it is due to the interface no conclusion regarding this point can be made. But
it is possible to conclude that charge carrier generation is definitely not dominated by
the field-assisted dissociation for a flat interface. Although, interfacial studies can be
found in more detail in [2], Fig. 5.43 shows the influence of a comb-like structure on the
photocurrent characteristic with consideration of field-assisted dissociation. This addi-
tionally substantiates the suspicion that the interface structure of the experimentally
measured solar cell is not simply planar.

Figure 5.43: Photocurrent characteristic for a P3HT / PCBM-C61 solar cell under con-
sideration of a comb-like structure with a comb-width of 10 nm and field-
assisted exciton dissociation rates.
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5.3 Generation profiles

In this section we will have a closer look on the generation profiles obtained by the
different simulations, for the flat interface as well as for the comb-like structure.

We will begin with generation profiles for the P3EBT/CIS flat system without consid-
eration of field-dependent exciton dissociation to see the impact of recombination effects
on a constant generation rate. This was done for field-independent and field-dependent
mobilities, because the mobilities influence the recombination rate constant. We will
proceed by taking the field-assisted dissociation rate into account and finally conclude
by discussing this scenario for a comb-like interface structure. The switch settings once
more provide orientation.

5.3.1 Switch Setting 4 - Flat interface

Table 5.18: Switch setting 4.
switch status

switchlight 1
switchlambertbeer 0

switchre 1
switchmob 0
switchex 0

switchbraun 0
switchrandom 0

These calculations were done with the modified switchex = 0 setting as described in Sec.
5.1. At Va = −0.5 V we see a constant generation rate only slightly lowered because of
recombination rates, Fig. 5.44 (a). At higher voltages, i.e. Va = 1.25 V, recombination
is the dominating process. The generation rate is still large at the interface because
there are almost no charge carriers. They move into the inorganic region as soon as they
come close to it because of the diffusional effect. Furthermore, it can be seen that the
recombination rate is higher in the inorganic region due to higher mobilities, Fig. 5.44
(b). In the positive regime, the recombination dominates the inorganic layer because
electrons are collected at the interface and generated holes have to pass the interface on
their way to the electrode, Fig. 5.44 (c).
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(a) Va = −0.5V (b) Va = 1.375 V

(c) Va = 2.0 V

Figure 5.44: Generation profiles at different applied voltages for the switch setting listed
in Tab. 5.4 and modified switchex = 0 condition, Sec. 5.1.1.2.

5.3.2 Switch setting 7 - Flat interface

Table 5.19: Switch setting 7.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 0

switchbraun 0
switchrandom 0
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(a) Va = −0.5 V (b) Va = 1.375 V

(c) Va = 2.0 V

Figure 5.45: Generation profiles at different applied voltages for the switch setting listed
in Tab. 5.7 and modified switchex = 0 condition, Sec. 5.1.1.2.

The basic features in these generation profiles were already discussed in the section
before. Again we discuss three different voltage points. In the first figure, Fig. 5.45
(a) the generation rate is dominated by Lambert Beer’s law and almost not influenced
by the recombination rate. In the second diagram, Fig. 5.45 (b), recombination effects
are responsible for negligible generation of particles in the inorganic layer. Again it is
slightly higher at the interface than in the adjacent bulk. At high positive voltages, Fig.
5.45 (c), the generation of particles is almost zero over the device. At the interface in
the inorganic region it is even negative, for the same reasons as discussed in the previous
section.
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5.3.3 Switch setting 9 - Flat interface

Table 5.20: Switch setting 9.
switch status

switchlight 1
switchlambertbeer 0

switchre 0
switchmob 0
switchex 1

switchbraun 1
switchrandom 0

(a) Va = −0.5 V (b) Va = 1.375 V

(c) Va = 2.0 V

Figure 5.46: Generation profiles at different applied voltages for the switch setting listed
in Tab. 5.9.
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In this scenario, we considered field-assisted exciton dissociation according to Braun’s
model. Furthermore, excitons reaching the organic-inorganic interface separate immedi-
ately and light absorbed in the inorganic part also generates electrons and holes directly.
However, we still exclude recombination effects to keep the interpretation simple. In the
first image we see that the field strength associated to an applied voltage of Va = 0.5 V
is sufficiently high to separate almost all excitons in the organic material directly to elec-
trons and holes (Lambert Beer’s law is not considered in this particular study). Those
excitons which are still intact and reach the interface within their lifetime, separate there,
Fig. 5.46 (a). At higher voltages, the field strength is not large enough to separate ex-
citons in the organic layer. Thus, almost all separation takes place at the interface, Fig.
5.46 (b) and (c), as already supposed in Sec. 5.1.1.8.

5.3.4 Switch setting 10 - Flat interface

Table 5.21: Switch setting 10.
switch status

switchlight 1
switchlambertbeer 1

switchre 1
switchmob 1
switchex 1

switchbraun 1
switchrandom 0
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(a) Va = −0.5 V (b) Va = 1.375 V

(c) Va = 2.0 V

Figure 5.47: Generation profiles at different applied voltages for the switch setting listed
in Tab. 5.10.

Considering field-assisted dissociation into charge carriers, bimolecular recombination,
field-dependent mobilities and immediate generation of charge carriers in the inorganic
layer gives generation profiles exactly as predicted by a combination of the different
cases discussed above. At low voltages the field strength is sufficiently high to separate
almost all excitons. Approaching the open-circuit voltages yields a generation profile
dominated by separation at the interface, while generation in the inorganic layer is
lowered by recombination effects. At high voltages the recombination at the interface
yields the dominating contribution, Fig. 5.47.
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5.3.5 Switch setting 10 - Comb-like interface

(a) Va = −0.5 V (b) Va = 1.375 V

(c) Va = 2.0 V

Figure 5.48: Generation profiles at different applied voltages for the switch setting listed
in Tab. 5.10.

A comb-like interface structure changes the generation profile significantly. At an applied
voltage of Va = −0.5 V most excitons are separated field-assisted. But because of
locally occurring field strengths and recombination effects, there are excitons left near
the interface, Fig. 5.48 (a). The excitons left can diffuse to the interface and dissociate
there immediately. At higher voltages, there is almost no field-assisted dissociation seen,
except at the points of the comb-like structure where |E| is still very large. The other
charge carriers generated at the interface are due to exciton diffusion. As seen in the
previous sections, at an applied voltage of Va = 2 V recombination effects dominate the
source-drain term. Again, most charge carriers recombine at the points of the comb
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because most particles are generated there and there too the mobilities are very large
(field-dependence).Therefore, the recombination rate constant is also very large.
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6 Conclusion

The aim of the thesis was to simulate and investigate the influence of exciton generation
and charge carrier recombination effects on the I-V characteristics of hetero-junction
photovoltaic devices. To achieve this goal, a program to simulate organic-inorganic solar
cells by using a two-dimensional drift-diffusion transport model was developed. The
model equations are based on field-assisted dissociation rates, Langevin- and Koster-
type recombination rates as well as field-dependent mobilities of the Poole-Frenkel form.
The main conclusion of this work is that, although it is still not clear whether excitons
dissociate field-dependently or not, there are several characteristic features in I-V curves
that have been identified and shown to arise from this property. It is expected that these
features will be able to be observed experimentally in the future.
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