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Abstract

Thiswork re-searches the stability of cylindrical and conical thin-walled tank shellsfrom the basic
level in view of both analysis and previous test results. Detailed discussions on failure modes, nu-
merical simulations and re-investigation of test results have been made. The axisymmetric elastic-
plastic buckling phenomena, buckling modes and strengths of meridionally compressed and inter-
nally pressurized perfect and imperfect cylindrical and conical shells have been investigated in de-
tail. The effects of imperfection wavelength, location along the meridian, orientation, and
amplitude of sinusoidal & loca imperfections have been thoroughly studied. The worst possible
combined effect of an edge restraint and an imperfection in destabilizing such shells has also been
discussed. All results are represented and interpreted in such away that they can easily be under-
stood and used for design purposes. Simplified expressions are obtained for the prediction of axi-
symmetric elastic-plastic buckling strength of general thin-walled cylindrical and conical shells
under the mentioned loading situations. Design recommendations have been proposed. Compari-
sons with and critical review of few previous research works have as well been thoroughly carried
out.

Detailed investigation of the numerous Gent laboratory test results (obtained about 30 years ago at
the Laboratory of Model Testing at Gent University, Belgium) on liquid-filled conical shells,
shortly called LFC, that have been made in response to a structural disaster in Belgium along with
detailed discussions, explanations, and conclusions have been done. Previous LFC-related
research works on nonlinear ssmulation of liquid-filled conical shells with and without geometric
imperfections have as well been discussed and few cases have been re-examined for confirmation
and further studying purposes. Relevant explanations and conclusions have been given to the
outcomes of those works. Moreover, the Belgium (1972) and Canada (1990) steel water tower
failure cases have been carefully examined to check and compare their elastic buckling strengths
with the applied loads during failure; and to check for any possiblerolesplayed by plasticity effects
during the collapse. Previous research works related to the collapse of the water towers have aso
been discussed. The notion of a“corresponding cylinder” of aliquid-filled conical shell has been
introduced which behaves in exactly the same way as the LFC. Detailed and comprehensive
investigation of this “corresponding cylinder” was then made with the ssmple outcome that the
liquid-filled cone behaves like a “wet cylinder”, i.e. with respect to its axisymmetric deformation
and buckling behavior.
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Notation

Notation

Cylindrical shells:

R
t
R/t

radius

shell wall thickness

shell slendernessratio

meridional length of the shell

running length parameter starting from bottom of shell, in axial direction
arc length in meridian direction

normalized meridional length parameter

meridional direction

circumferential direction

running radius of shell middle surface, perpendicular to the axis of rotation
radius of curvature in meridional direction, located on the shell normal
radius of curvature in circumferential direction, located on the shell normal
meridional deformation

radial deformation

meridional rotation

meridional normal membrane stress

circumferential normal membrane stress

meridional normal section force

circumferential normal section force

transverse shear section force

meridional bending section moment

circumferential bending section moment

normalized meridional section force (= N,/Ny)

normalized circumferential section force (= Ng/Ny)




Notation

Ox,Rer

normalized meridional section moment (= M,/M)

normalized circumferential section moment (= Mg/M,)

principal normal section force in “1”-direction

principal normal section force in “2”-direction

principal section moment in “1”-direction

principal section moment in “2”-direction

normalized principal section forcein “1”-direction (= N1/Ny)
normalized principal section forcein “2”-direction (= N»/Ny)
normalized principal section moment in “1”-direction (= M1/M)
normalized principal section moment in “2”"-direction (= M,/M)
modulus of elasticity

yield strength

Poisson’ sratio

shear modulus

internal pressure

meridional normal membrane stress at bottom support
circumferential normal membrane stress at bottom support

elastic critical buckling stress of an axially compressed cylinder (0.605 Et/R)




C Notation

Conical shells:

h’ height of liquid surface level above base level "1’

h height of cone above base level ' 1’

L meridional length of the cone

r running radius of cone middle surface, perpendicular to the axis of rotation
ry small radius at the base of the cone

ro large radius at the upper end of cone

rs large radius at the liquid surface level

t wall thickness of the conical shell

B apex half angle of the cone

Y specific weight of the liquid filling

z running height parameter above the base level * 1’

¢ running geometry parameter, (z.tanf/r4)

g geometry parameter, (h'.tanf3/r;)

P running nondimensional coordinate parameter, (r/r)

P nondimensional coordinate parameter at the liquid surface level, (r'5/rq)
Oy 1 meridional normal membrane stress at the cone support

Gp.1 circumferential normal membrane stress at the cone support

Oy Rr elastic critical buckling stress of an axially compressed conical shell (0.605.Etcosp/r4)

internal pressure parameter (G 1/0x Rer)

p
W ratio of meridonal to circumferential membrane stress at the cone support
R radius of an equivalent cone at cone-base (r,/cosp)

p

pressure at cone-base (y'h’)




Notation

General & EN 1993-1-6:

<| & ol

Q
x

Oxpe

Olxpp
FEM

>
o

3 T X

critical-stress-related internal pressure parameter (= og 1/0y Rer)
yield-related internal pressure parameter ( = o ;/fy)

ratio of meridional to circumferential membrane stress at the bottom support
unpressurized el astic imperfection reduction factor of EN 1993-1-6, Annex-D
pressurized el astic imperfection reduction factor of EN 1993-1-6, Annex-D
pressurized plastic imperfection reduction factor

finite element method using ABAQUS Version 6.7-1 (2007)

Linear Analysis

Linear Buckling

Linear Buckling Analysis

Materialy Nonlinear

Material Nonlinear Analysis

Geometrically and Materially Nonlinear

Geometrically and Materially Nonlinear Analysis

Geometrically and Materially Nonlinear with Imperfections

Geometrically and Materially Nonlinear Analysis with Imperfections
Buckle length

effective length

effective area

elastic buckling stress

characteristic buckling stress

relative buckling slenderness parameter

relative buckling slenderness parameter

relative buckling slenderness parameter

buckling reduction factor

plastic range factor

elastic-plastic buckling interaction exponent
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2 Chap. 1 Introduction and state-of-the-art

1.1 Motivation

Cylindrical and conical shells have awide range of applicationsin engineering, in general, and in
structural engineering, in particular. To mention some, these shells are used as pressure vessels,
pipes, tanks, silos, roof structures. In many of these practical engineering applications, cylindrical
and conica shells are subjected to axisymmetric type of loading such as gravity (self-weight,
snow), hydrostatic pressure, internal or external gas pressure. More specifically pipes, tanks and
silo structures are mainly subjected to the simultaneous effects of meridional compression and
internal pressurization coming from the contained material. Such types of loading cause bi-axial
stress state: meridional membrane compression and circumferential (hoop) membrane tension.

The appropriate functioning of such structures requires a proper design that takes all possible
failure conditionsin to account. One of such possible and most dominant failure conditionsfor thin
shellsis failure by buckling (stability considerations). There have been buckling failure cases of
civil engineering thin-walled metal cylindrical and conical shells under axial compressive loads
with co-existent internal pressure. Many of the buckling failures in cylindrical shells happened
forming outward bulges near the supported edge (elephant’ s-foot buckling phenomenon) resulting
from earthquake induced effects. Figure 1.1 to Figure 1.4 show pictures of few of such failure
Cases.

The elephant’ s-foot type buckling phenomenon may generally occur in cylindrical and conical
shells so long asthey are subjected to meridional compression and circumferential tension near the
boundary. More specifically, axisymmetric elastic-plastic buckling near a boundary may happen
in thin-walled cylindrical and conical shells with constant/varying meridional compression and
hydrostatic internal pressure. Since a liquid-filled conical shell falls into such aloading category,
an axisymmetric elastic-plastic buckling near the boundary is possible and hence the buckling
strength of conical shells associated to an elephant’ s-foot buckling phenomenon needs to be
investigated in detail. Besides, there have been buckling failure cases of conical shells as in the
cases of the Belgium water tower in 1972 and Canadawater tower in 1991 for which thereal causes
need to be invetigated.

There, as well, have been a lot of research attempts, both theoretically and experimentaly, to
determine the exact buckling capacity of cylindrical and conical shells under axial compressive
loads with co-existent internal pressure. Despite the number of research attempts so far, their
prediction of the buckling strengths do have serious insupportable problems.

This work will mainly address the axisymmetric eastic-plastic buckling strength of isotropic
unstiffened cylindrical and conical shells and re-investigates the numerous experimental results
performed in Gent on the elastic and elastic-plastic buckling of conical shells.
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Figure 1.2 Elephant’s foot buckling (JM Rotter)
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Figure 1.3 Elephant’s foot buckling (Gould)

Figure 1.4 Elephant’s foot buckling above a column support (Guggenberger)
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1.2 Overview

The genera behaviour of cylindrical & conical shells under meridional compression and
circumferential tension will be analyzed using analytical and numerical linear analysis techniques
from which the pure membrane and edge-bending effects can be separately seen. These effectswill
later be used in reasoning out special buckling phenomenon. The results will be compared with a
finite element linear analysis results for verification purposes. The small displacement linear
buckling strengths of these shell types will then be computed approximately and investigated
numerically. This strength will later be used as a reference to express other buckling strengths
according to the frame work of EN 1993-1-6.

The effects of imperfections on the elastic buckling strength of thin-walled cylindrical and conical
shells will be discussed in detail for different fabrication quality classes as recommended in EN
1993-1-6 and comparisons between the cylinder and cone will be made. Explanationswill be given
about the L FC-specific buckling phenomenon and corresponding strengths. Simplified expressions
for the prediction of linear buckling strengths of liquid-filled general cones with pinned and fixed
bottom boundary conditions will be obtained. In doing so, the numerous laboratory experiments
made on liquid-filled conical shellswill be re-examined. Comparisons of the perfect and imperfect
linear buckling strengths of cylindrical and conical shellswill be made.

Nonlinear buckling and plastic strengths of cylindrical and conical shells will be computed
approximately using analytical models with second order effectsincluded and numerically using a
finite element package (ABAQUS). The pure plastic limit strengths of the shellswill be computed
approximately using von Mises membrane yield criterion taking the membrane stresses at the
shell-base as references; and using stress resultant oriented approximate yield criteria. The effects
of material nonlinearity, geometric nonlinearity and imperfections will be numerically
investigated. Comparisons of the results obtained using the analytical model and numerical
analysis will be made. Detailed comments and explanations on the results will be given.

The numerical simulation results will be used to derive a set of basic data that can be used in a
straight forward buckling design by hand calculations in-line with the underlying structure of the
European standard EN1993-1.6. Design recommendations will finally be proposed which will be
compared with previous research results and code recommendations. Additional comments and
explanations concerning the results will also be included.

Detailed investigation of Gent mercury test results along with detailed discussions, explanations,
and conclusions will be done. Previous LFC-related research works on nonlinear smulation of
liquid-filled conical shells with/out geometric imperfections will as well be discussed and few
cases will be re-examined for confirmation and further studying purposes. Relevant explanations
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and conclusions will be given to the outcomes of those works.

Moreover, the Belgium and Canada steel water tower failure cases will be re-examined to check
for any possible roles played by plasticity effects during the collapse. Previous research works
related to the collapse of the water towers will also be discussed.

A “corresponding” cylinder of a liquid-filled conical shell will be introduced which behaves in
exactly the same way as the LFC. Detailed invetigation of the “corresponding” cylinder will then
be made which will turn out to be that the liquid-filled cone is nothing but a “wet-cylinder”.
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1.3 State-of-the-art

Many shell stability related research works have been done so far. The results of such research
works have been included in design standards. The latest design standard which is believed to
include many of the research resultsis discussed below. For this reason, in the discussions of the
current study, references to and comparisons with this standard will be made.

In the buckling strength assessment of thin-walled general metal shells-of-revolution, the
European Standard EN1993-1-6 recommends to use three different approaches (methods) which
apply to al geometries, al loading conditions, and all material conditions. The hierarchy of these
general buckling design procedures are summarized as follows:

method-1: buckling stress design or L A-based buckling design approach
method-2: LBA/MNA-based buckling design approach using simplified global numerical analysis
method-3: GMNIA-based buckling design approach using advanced global numerical analysis

The buckling stress design approach is based on a membrane theory or linear bending theory
analysis. The élastic critical buckling stress is computed/estimated based on linear analysis. Thus,
buckling stress design is usually performed by “hand calculation” using formulas and/or diagrams
prepared for this purpose. In thismethod, the linear elastic stressfield (meridional, circumferential,
and shear) are computed at every point of the midsurface of the shell. The elastic critical buckling
stresses of the perfect shell for each stress component are then determined on which imperfection
reduction factors are applied to obtain the elastic buckling stresses of theimperfect shell. Using the
elastic critical buckling stresses of the perfect shell and the uni-axia yield stress of the material,
relative buckling slenderness parameters are computed for each stress component upon which the
buckling strength reduction factors depend. These buckling strength reduction factors which
account for plasticity effects are then each applied to the uni-axia yield stress to obtain the
respective characteristic buckling stresses. Interaction formulas are used to account for any
possible interaction between the effects of the different stress components. The design value of the
buckling stress components are then computed by applying partial safety factors on the
characteristic strengths.

Buckling strength assessment using design by global numerical LBA/MNA procedure,
according to EN1993-1-6, is also a reduction factor approach. The steps involved in the LBA/
MNA procedure to predict the buckling strength of the shell have a similar format to those of the
buckling stress design aproach. In the LBA/MNA approach, however, the elastic critical buckling
stress and plastic collapse strength are evaluated accurately using the more rigorous global
numerical analysis methods.
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The GMNIA procedure, on the other hand, uses advanced global (geometrically and materially
nonlinear) numerical analysis with the consideration of possible imperfections to accurately

simulate the buckling strength of real shells and to directly obtain the characteristic elastic-plastic
buckling strength of a practical shell.
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2.1 Problem statement

It has been repeatedly reported in many literaturesthat thin-walled cylindrical shellsusually buckle
elastically under pure axial compression. The respective buckling strength for such axially loaded
cylindrical shellsisusually lower than the theoretical elastic critical stress, the difference account-
ing for the decrease in buckling strength caused by the presence of various imperfections and geo-
metric nonlinearity. The presence of an accompanying internal pressure, however, reduces this
strength-weakening effect of the imperfections there by increasing the buckling strength of the
shell. However, when the intensity of the internal pressure exceeds a certain value, the circumfer-
ential membrane stress becomes significant causing bi-axiality effect to come into play.

An unpressurized cylindrical shell under pure axial compressive load tends to radially expand due
to Poisson’s effect. An internally pressurized cylindrical shell under axial compressive load tends
to radially expand due to the combined effects of both the internal pressurization and Poisson’ s ef-
fect. The presence of boundary conditions, however, constricts this expansion causing local bend-
ing under the action of the axial compressive load. Similar local bending effects may occur at
locations of change in wall thicklness, ring stiffeners, or local axisymmetric imperfections causing
immature buckling under asmall meridional compression. Thus, the presence of significant inter-
nal pressure will have a destabilizing effect there by reducing the buckling strength of the shell.
Such a buckling type, caused by local bending adjacent to the boundary, is termed as an “ele-
phant’ s-foot” type buckling and the corresponding strength as elephant-foot buckling strength.
Moreover, when combined with ill-natured axisymmetric imperfections, the weakening effect of
the significant internal pressure along with the edge constriction effect, will be more pronounced
that the cylinder buckles at avery low axia compressive |load.

However, a question which still remains unanswered in many of the researches and studies done
so far isthe physically possible critical (worst) imperfection shape, wavelength, amplitude, orien-
tation, and location along the meridian, each of which has an influence on the buckling behavior
and buckling strength of the shell.

On the other hand, the meridional membrane section force distribution in liquid-filled conical
shells is maximum at the lower supported edge and decreases nonlinearly and rapidly up the me-
ridian. Such adistribution of the meridional compressive section force superimposed with the edge
constriction effects of the bottom boundary conditionswill restrict the el astic-plastic buckling phe-
nomenon to aregion very closeto the supported lower edge causing €l ephant’ s-foot type buckling.
Despite this fact, not much has been done to investigate the possible elephant’s-foot buckling
strength of conical shells. Such type of buckling in liquid-filled conical shells, may specially hap-
pen when there exist a global bending effect which may result, say, from geometric eccentricity
(global tilting) of the cone. This geometric eccentricity, even upon filling may result in global
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bending effect which shortens the life span of the structure with the formation of a possible ele-
phant’ s-foot type buckling phenomenon. Apart from this, a perfect liquid-filled conical shell may
buckle in such an axisymmetric elastic-plastic buckling mode near the supported edge so long as
abi-axial state of stress, similar to that of the cylindrical shell, exists.
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2.2 Goal of the work

The true nature of buckling in real-world thin-walled shell structuresis at most simulated, at |east
numerically, by analysis models that take the effect of geometric and material nonlinearity into ac-
count. For thisreason, it is believed and has been applied in the buckling strength determination of
thin-walled shellsthat the geometrically and materially nonlinear finite element analysis (GMNA)
with physically possible imperfections (GMNIA) predicts closer results to the buckling strength of
real-world thin-walled shells.

Itis, therefore, the ultimate goal of thiswork to numerically ssmulate cylindrical and conical shell
axisymmetric buckling and finally come up with a set of basic data that can be used in a straight
forward buckling design by hand calculations. Thiswork also amsto investigate the effects of ax-
isymmetric imperfection shapes on the elastic-plastic buckling strengths of axisymmetric shells
and finally recommend a physically possible worst axisymmetric local imperfection.

It is aso the goa of this study to re-investigate the numerous laboratory tests performed in Gent
using liquid-filled conical shells and propose a recommendation for future works and design pur-
pOSES.

A comparison of theresultswith the previous research works and existing design recommendation,
EN1993-1-6, will then be made.
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2.3 Solution methods

In the course of investigating the axisymmetric elastic-plastic buckling phenomena and corre-
sponding buckling strengths of thin-walled cylindrical and conical shells, a combination of both
analytical and numerical (using finite element program) analysis methodswill be used to assessthe
applied loads, depending on the nature and complexity of the problem type under consideration.
For this reason, the mentioned shellswill be analysed using membrane theory, linear shell bending
theory (LA), linear buckling analysis (LBA), small displacement materially nonlinear analysis
(MNA), perfect geometrically and materially nonlinear analysis (GMNA), and geometrically and
materially nonlinear analysis with imperfections (GMNIA).

In all the analyses, no hardening of any kind (material or geometric) will be considered. The buck-
ling failure criteriawill be interpreted, more generally, relative to each analysis result but mainly,
in-line with the underlying structure of the European standard EN1993-1.6, relative to the two ref-
erence strengths. small displacement linear buckling analysis (LBA) and small displacement ma-
terially nonlinear analysis (MNA).

The numerical study will be done computationally using the program ABAQUS, which is proven
to be ableto follow the post-buckling response of the compl ete phenomenon of shell buckling. The
3-node general-purpose axisymmetric shell element with axisymmetric deformation, SAX2, will
be used throughout the study. Comprehensive parametric studies will be carried out for different
shell slenderness ratios, shell lower bundary conditions, and the intensity of the internal pressur-
ization. Linear and nonlinear numerical analyses will be made for different shell slenderness (R/t
for the cylinder & r4/tcosp for the cone) values which span from 100 to 1500 representing the prac-
tical range of cylindrical shellsin civil engineering constructions. The lengths of the cylinderswill
be taken in such away that no boundary-effect interactions are possi bl e between the top and bottom
boundary condtions. The material considered throughout the study will be mild steel with an ideal
elastic-plastic von Mises yield criterion and ayield stress f, = 240 MPa, elastic modulus E = 210
GPa, and Poisson’sratio v = 0.3. Theresultswill all be expressed interms of non-dimensional vari-
ables and hence can be used to address other practical sets of conditions as well.
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2.4 Scope of the work

This work is mainly concerned with the axisymmetric elastic-plastic buckling of thin-walled cy-
lindrical and conical metal shells. Detailed re-investigation of the numerous Gent laboratory test
results of liquid-filled conical shells was the other concern of this study. A brief discussion on the
general scope of the work is given below:

Chapter 3 - Axisymmetric elastic-plastic buckling of cylindrical shellsunder
axial compression & internal pressure

3.1 - Introduction

A brief introduction about thin-walled cylindrical shells, the load types that they are usually sub-
jected to, the resulting stresses and what this study is generally going to address.

3.2 - Problem statement

A brief discussion of the problem statement specific to thin-walled cylindrical shells will be dis-
cussed. Besides, the solution method that will be used to address the problem will be discussed
along with the way how the results will be represented.

3.3- Linear shell analysis(LA)

The pure membrane behavior and edge bending effects of meridionally compressed and internally
pressurized cylindrical shells will be computed using considerations of static equilibrium for the
pure membrane situation and using an effective-ring model analogy for the edge bending effects.
Thetotal results (membrane + edge bending) will be compared with the finite element linear anal-
ysis results for verification purposes.

3.4 - Linear elastic buckling strength of an ideally perfect cylinder

The linear buckling strengths of meridionally compressed and internally pressurized perfect cylin-
drical shellswill be computed approximately and investigated numerically. An analytical model of
a beam on an elastic foundation will aso be used to simulate the elastic buckling behavior and
strength of cylindrical shells.

3.5 - Elastic buckling strength of an imperfect cylinder

The effects of imperfections on the elastic buckling strength of cylindrical shells under meridional
compression with/out internal pressurization will be discussed. The history about the treatment of
imperfections in design considerations will be summarized. The effect of different imperfection
amplitudes depending on the fabrication quality classes as recommended in EN 1993-1-6 will also
be discussed.
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3.6 - Pureplastic strength of cylindrical shells

The pure plastic limit strengths of meridionally compressed and internally pressurized cylindrical
shells will be computed approximately using von Mises membrane yield criterion taking the pure
membrane stresses. The plastic strength using stress resultant oriented approximate yield criteria
will also be discussed. Moreover, small displacement materially nonlinear numerical simulations
will be done to compute the exact plastic capacity of meridionally compressed and internally pres-
surized cylindrical shells.

3.7 - Elastic-plastic buckling phenomena, analysis, and strength

In this chapter, the general buckling phenomena of meridionally compressed with/out internally
pressurized cylindrical shells will be discussed. The effects of plasticity and edge constriction on
buckling strengths will also be discussed.

3.8 - Axisymmetric elastic-plastic buckling of imperfect cylindrical shells

The elephant’ s-foot buckling strengths of meridionally compressed and internally pressurized
perfect cylinderswill also beinvestigated in detail after which simplified expressions are obtained
for the prediction of the axisymmetric elastic-plastic buckling strength of general thin-walled
cylinders under such loading. Axisymmetric sinusoidal and local imperfectionswill be investigat-
edindetail. A practically possible worst local imperfection will aso be studied and explained. Dif-
ferent buckling modes and corresponding buckling strengths will be discussed and will be
compared one another.

3.9 - New buckling design recommendation

This chapter discusses about a design recommendation which will be proposed for design purposes
and future research works. Different possibilities for representing and interpreting the results will
also be shown. Detailed explanations will as well be included.

3.10 - Comparison of the new buckling design recommendation with
EN 1993-1-6 buckling design regulation

The new design recommendation obtained from the current work will be compared with the exist-
ing design regulation and other related research work results.

3.11 - Summary and conclusions

A brief summary of what has been done in the chapters and general conclusion of the results ob-
tained will be given.
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Chapter 4 - Axisymmetric elastic-plastic buckling of liquid-filled conical shells (LFC)

4.1 - Introduction

A brief introduction about thin-walled liquid-filled conical shells, the resulting stresses & distribu-
tions and how the elastic-plastic buckling investigation is addressed in this study.

4.2 - Problem statement

A brief discussion of the problem statement specific to the thin-walled liquid-filled conical shells
will be discussed. Besides, the solution methods that will be used to address the problem will be
discussed along with the way how the results will be represented.

4.3 - Linear shell analysis(LA)

The pure membrane behavior and edge bending effects of liquid-filled conical shellswill be com-
puted using considerations of static equilibrium for the pure membrane situation and using an ef-
fective-ring model analogy for the edge bending effects. The total results (membrane + edge
bending) will be compared with the finite element linear analysis results for verification purposes.

4.4 - Loading procedurefor numerical analysis purposes

The possible loading procedures in dealing with liquid-filled conical shellswill be discussed. Be-
sides, which loading procedure should be used in what circumstances and for what purposes will
be pointed out.

4.5 - Linear buckling strength of an ideally perfect liquid-filled cone

The linear buckling strengths of liquid-filled perfect cones will be computed approximately and
investigated numerically. Explanations will be given about the L FC-specific buckling phenome-
non and corresponding strengths. Simplified expressions for the prediction of linear buckling
strengths of liquid-filled general cones with pinned and fixed bottom boundary conditions will be
obtained.

4.6 - Elastic buckling strength of an imperfect liquid-filled cone

The effects of imperfections on the elastic buckling strength of conical shells under meridional
compression with/out internal pressurization will be discussed. The effect of different imperfection
amplitudes depending on the fabrication quality classes as recommended in EN 1993-1-6 will also
be discussed.

4.7 - Pure plastic strength of liquid-filled conical shells

The pure plastic limit strengths of liquid-filled conical shellswill be computed approximately us-
ing von Mises membrane yield criterion taking the membrane stresses at the cone-base asreferenc-
es. The plastic strength using stress resultant oriented approximate yield criteria will also be
discussed. Moreover, small displacement materially nonlinear numerical smulationswill be done
to compute the exact plastic capacity of liquid-filled cones. Simplified expressions aong with de-
tailed explanations will be obtained to predict the materially nonlinear limit strength of both pinned
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and fixed bottom liquid-filled general cones.

4.8 - Elastic-plastic buckling phenomena, analysis and strength

The consideration of the effect of plasticity on elastic buckling with non-axisymmetric buckling
failure mode will be discussed. The el ephant’ s-foot buckling strengths of perfect cones dueto lig-
uid-loading will also be investigated in detail after which simplified expressions are obtained for
the prediction of the axisymmetric elastic-plastic buckling strength of general thin-walled liquid-
filled cones.

4.9 - Buckling design recommendation

This chapter discusses about a design recommendation which will be proposed for design purposes
and future research works.

4.10 - Summary and conclusions

A brief summary of what has been done in the chapters and conclusion of the results obtained will
will be given.

Chapter 5 - Re-investigation of Gent test results: Elastic buckling of liquid-filled cones

In this whole chapter, a detailed re-investigation and re-examination of the numerous laboratory
tests performed using liquid-filled cones in Gent for more than a decade will be made. Detailed
comparisons of results, representations and interpretations will be made. An overview of this par-
ticular chapter is given asfollows:

5.1 - Introduction

A brief introduction about steel tower failure cases and Gent |aboratory tests on buckling of liquid-
filled conical shells.

5.2 - Problem statement

This chapter discusses how the test results were analyzed and interpreted. It also discusses the de-
sign proposal given by Vandepitte et. al. and what was missing whileinterpreting and what should
have been included.

5.3 - Liquid-filled conical shell parametersand representation

The basic parameters which play the major role in interpreting and representing analysis and test
results of liquid-filled conical shellswill be listed.

5.4 - Fluid-filled conical shells: comparison of gas-filled vs. liquid-filled conical shells

This chapter discusses the differencein the stress distribution of a gas-filled cone and liquid-filled
cone. The overall relative buckling strengths of a cone under the two loading situations will be dis-
cussed. The strength gains due to internal pressurization under the same state of meridional mem-
brane compression at the cone-base will also be discussed in detail.




18 Chap. 2 Problem statement, goal & scope of the work

5.5 - Test resultsand Gent University design proposal
Thischapter givesadetailed overview of thetest set up. Theliquid types used, boundary conditions
and the overall procedure for datarecording, analyzing and interpreting will be discussed. Besides,
an overall tabular summary of the test data will be given.

5.6 - Comparison of parameter choices and representations

A comparative study of the LFC basic parameters of this study and Gent’s basic parameters will
be made. Both mathematical and graphical detailed comparisons of the corresponding representa-
tions will also be made.

5.7 - Detail re-investigation of test results

This chapter discusses a detailed re-investigation of the Gent laboratory test results by taking the
shell slenderness ration in to account. Separation of the datainto different groups will be made de-
pending on their slenderness ratio, material type, bottom boundary conditions etc.

5.8 - Detailed comparison based on the L FC-elastic buckling limits

This chapter discussesthe linear buckling behavior of perfect liquid-filled conical shellsand com-
pares the test results with the elastic buckling strengths of liquid-filled conical shells.

5.9 - LFC-imperfection reduction factor

This chapter confirms the imperfection reduction factor of cylindrical and conical shellsto be sim-
ilar and examines the Belgium and Canada steel water tower failure cases. Corresponding com-
ments and conclusions will aso be made.

5.10 - Summary and Conclusion

A brief summary of the worksthat have been donein the whole chapter will be given. Conclusions
will aso beincluded.

Chapter 6 - Re-investigation of Gent test results: Mercury-filled steel cones

Detailed investigation of Gent mercury test results along with detailed discussions, explanations,
and conclusionswill be made. Previous L FC-related research works on nonlinear ssmulation of lig-
uid-filled conical shellswith/out geometric imperfections will as well be discussed and few cases
will be re-examined for confirmation and further studying purposes. Relevant explanations and
conclusions will be given to the outcomes of those works.

Chapter 7 - Re-examination of two tank failure cases

In this chapter, the Belgium and Canada steel water tower failure cases will be re-examined to
check for any possible roles played by plasticity effects during the collapse. Previous research
works related to the collapse of the water towers will also be discussed.
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Chapter 8 - Thenotion of the “ corresponding” cylinder

A “corresponding cylinder” of aliquid-filled conical shell will be introduced which behavesin ex-
actly the same way asthe LFC. Detailed investigation of the “corresponding cylinder” will then be
made which will turn out to be that the liquid-filled cone is nothing but a “wet-cylinder”.

Chapter 9 - General summary & conclusion

In this chapter, the general summary of the whole work and accompanying conclusionswill be giv-
en. An outlook and possible future work will be proposed. Besides, modifications on the European
Standard EN 1993-1-6 will be proposed.

Annex A - llyushin yield criterion and related approximations

This chapter discusses Ilyushin’s stress resultant oriented yield criterion and the approximations
made to simplify the expression for Ilyushin’s yield surface. Different approximate yield criteria
will be discussed and comparisons of one another will be made using illustrative meridionally
compressed & internally pressurized cylindrical and conical shells. Comparisons of these stressre-
sultant oriented approximate yield criteriawill also be made with that of the pure membrane Mises
yield criterion.

Annex B - Axisymmetricrigid plastic plate & shell analysis

In thischapter, Ilyushinsyield criterion and the rel ated approximations will be used to compute the
rigid plastic strength of circular and annular platesuniform or ring lateral loads. Besides, the plastic
strength of cylindrical shells under radial ring loads with and without axial loading and internal
pressurization will be computed.

Annex C - Analytical elastic buckling analysis of cylindrical shells

In this chapter, the elastic buckling behaviour and strength of cylindrical shells will be computed
analytically. Moreover, the analytical model along with the stress resultant oriented yield criteria
awill be used to assess the approximate geometrically and materially nonlinear buckling strengths
of cylindrical shells.
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3.1 Introduction

Cylindrical shells have a wide range of applications in engineering, in general, and in structural
engineering, in particular. To mention some, cylindrical shells are used as pressure vessels, pipes,
tanks, silos, roof structures. In many of these practical engineering applications, cylindrical shells
are subjected to axisymmetric type of loading such as gravity (self-weight, snow), hydrostatic
pressure, internal or external gas pressure. More specifically pipes, tanks and silo structures are
mainly subjected to meridional compression simultaneously with internal pressure coming from
the contained material. Such types of loading cause bi-axial stress state: meridional membrane
compression and circumferential (hoop) membrane tension.

The appropriate functioning of such structures requires a proper design that takes al possible
failure conditionsin to account. One of such possible and most dominant failure conditionsfor thin
shellsisfailure by buckling (stability considerations) and hence this work is much concerned with
the considerations of failure by buckling. In the buckling strength assessment of thin-walled
general metal shells-of-revolution, the European Standard EN1993-1-6 recommends to use three
different approaches (methods) which apply to all geometries, all loading conditions, and all
material conditions. The hierarchy of these general buckling design procedures have been summarized
in the discussion on the state-of-the-art.

This study is concerned with thin-walled metal cylindrical shell structures with pinned or fixed
bottom boundary conditions under the action of axisymmetric meridional compressive ring load
and uniform internal pressure, Figure 3.1. The cylindrical shell will be analysed using membrane
theory, linear shell bending theory (LA), linear bifurcation analysis (LBA), small displacement
materialy nonlinear analysis (MNA), perfect geometrically and materially nonlinear analysis
(GMNA), and geometrically and materially nonlinear analysis with imperfections (GMNIA). A
combination of both analytical and numerical (using finite element program) analysis methodswill
be used depending on the nature and complexity of the problem type in consideration. In al the
analyses, no hardening of any kind (material or geometric) is considered. The buckling failure
criteriawill be interpreted, more generaly, relative to each analysis result but mainly, in-line with
the underlying structure of the European standard EN1993-1.6, relative to the two reference
strengths: small displacement linear bifurcation analysis (LBA) and small displacement materially
nonlinear analysis (MNA).
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Figure 3.1 Geometry, loading, and boundary conditions
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3.2 Problem statement

There have been buckling failure cases of civil engineering thin-walled metal cylindrical shells
under axial compressive loadswith co-existent internal pressure, many of which happened forming
outward bulges near the supported edge (elephant’ s-foot buckling phenomenon) resulting from
earthquake induced effects. There, as well, have been alot of research attempts, both theoretically
and experimentally, to determine the exact elastic-plastic buckling capacity of cylindrical shells
under axial compressive loads with co-existent internal pressure. Despite the number of research
attempts so far, their prediction of the eastic-plastic buckling strengths do have serious
insupportable problems. Thiswork addresses the axisymmetric el astic-plastic buckling strength of
isotropic unstiffened cylindrical shells using numerical parametric simulations, with the ultimate
goal of deriving a set of basic data that can be used in a straight forward buckling design by hand
calculations. A comparison with the previous research works and existing design recommendation,
EN1993-1-6, will then be made. Eventhough the effects of possible axisymmetric imperfections
areinvestigated in detail, the design recommendation resulting from this work will be made based
on the GMNA (perfect elephant’ sfoot) numerical results of the perfect shell. Thisisbecause of the
simple fact that there is no common agreement between the researchers about the “practical and
worst” imperfection type and nature.

The study was done computationally using the program ABAQUS, which is proven to be able to
follow the post-buckling response of the complete phenomenon of shell buckling. The 3-node
general-purpose axisymmetric shell element with axisymmetric deformation, SAX2, is used
throughout the study. Linear and nonlinear numerical analyses were made for different shell
slenderness (R/t) values which span from 100 to 1500 representing the practical range of
cylindrical shellsin civil engineering constructions. The lengths of the cylinders are taken in such
a way that no boundary-effect interactions are possible between the top and bottom boundary
condtions. The material considered throughout the study is mild steel with an ideal elastic-plastic
von Mises yield criterion and a yield stress f, = 240 MPa, elastic modulus E = 210 GPa, and
Poisson’s ratio v = 0.3. The results are all expressed interms of non-dimensional variables and
hence can be used to address other practical sets of conditions. In many of the upcoming
discussions, a cylindrical shell with the following set of conditions will be used for illustration
puUrposes.

Geometry: R/t=500;t=1.0cm;L/R=1.0
Boundary conditions: pinned or fixed bottom and rotational restaraint at top
L oading: meridional ring tip-loading and uniform internal pressure p

Material properties: E = 21000 kN/cm?; v = 0.3; fy=24.0 kN/cm?
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3.3 Linear shell analysis (LA)

The basic problem of linear shell theory for general shells of revolution with symmetric conditions
can be split into two effects: the axisymmetric membrane and axisymmetric edge-bending
effects as shown below.

MEMBRANE SOLUTION
GENERAL —
SOLUTION

PARTICULAR| "o -+ |HOMOGENEOUS

Figure 3.2 Decomposition of the general solution into particular and homogeneous
parts
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331 Pure membrane behavior

For Axisymmetric type of shells, with al axisymmetric conditions, the cross-sectional stress state of
ashell ssgment isprimarily governed by membrane action dueto the continuously distributed |oads
which the shell is subjected to.

A A

¥
IniTrTIIY
TETITETT
v

€ (b)

Figure 3.3 Loading and geometry: (a) vertical ring load; (b) internal uniform pressure

The pure membrane behavior can easily be computed and isgiven, interms of the deformations and
section forces, as

Axial Ring (tip) load case:

N, = q = —o, - t = const

... membrane section forces (Eqg. 3.2)
Ng=0
eo o Qo Ox o
"EovERREvVvER=const o embrane deformations (Eq. 3.2)
By=0
Uniform Internal pressure case:
N, =0 .
... membrane section forces (Eq. 3.3)

Ng = p- R = const
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E.t . . . membrane deformations (Eq. 3.4)
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332 Edge-bending effects

Even though, the primary stresses are pure membrane stresses, additional secondary bending
effects occur at shell discontinuities due to compatibility requirements. Shell discontinuity
includes stepped wall thickness, cylinder-cone transition junction, heavy T-bar ring stiffener, |ap-
jointed bolted wall connection, and boundary supports, Guggenberger (20043a).

A generd linear elastic stress analysis approach to analyze axisymmetric stress states at arbitrary
shell junctions of thin-walled axisymmetric shell structures is presented by Linder (2001). This
analysis method is based on anewly developed effective-ring analogy model and it is used, in this
work, to compute the edge bending effects due to different support conditions. The basic edge
bending solution-functions, Figure 3.4, used by the effective-ring analogy model are given by:

f, = e sinyg (Eq. 3.5)
f2 = e_x&" . COS)_(E
fy = f,—f, = e **(cosy& — sinx&) (Eq. 3.6)
fy=f +f,= e_’_‘a(cos;_gé +siny&)
Where
_ L / 2 1
X:L_:/\/ 3(1—V )t_RL
ff . (Eq. 3.7)
L
=—— ..forv=03
0.778./R-t
= _ X
=
(Eq. 3.8)
XE =
I—eff

R-t
Ly = |——t—
f ,3(1—V2) (Eq 39)

=0.778JR-t ..forv=03




Chap. 3 Axisymmetric elastic-plastic buckling of cylindrical shells under axial compression & internal pressur

X/L

eff

0 \ r \ \
-04 -02 0.0 0.2 04 0.6

Figure 3.4 Basic solution functions of the ring model analogy
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These basic solution functions and their linear combinations are used throughout the solution of
the edge bending problem. Condensed mathematical expressions are also presented by Linder
(2001) for the overall (membrane and edge bending) analysis of shell problems.

The stiffness of the equivalent ring model of the cylindrical shell for edge bending effectsis given
by:

EAeff ]

2

K:
- 2R —

2

2 -L
eff (Eg. 3.10)
I-eff I-eff

For edge displacement disturbances w* 5 and B, o at the bottom edge "A” of the shell, the
restraining edge forces can be computed using the stiffness of the ring model as

Ry, A -
Ry, A
For a cylindrical shell, the total deformation and section forces (edge bending effects included)
according to the effective-ring analogy model are genrally computed as follows. The actual

ditributions along the meridian of the shell will depend on the type of bottom boundary condition
considered.

XK -
- 2R |-

WA*] I [2 _Leff] . [WA*] (Eq. 3.11)

2 2
BX, A Leff Leff BX, A

Deformations:

£t L -f
[w*] i (T, +13) Lot 11 { Wy
= 21:1 . —_
Bx . (fz_fl) BX,A
Leff

!WA*] J + [W*] (Eq. 3.12)
BX,A part By part

Section forces;

R
Q= [(fz—fl) -Lz-fl} [ ”’A] (Eq. 3.13)

eff| |Rw.a

Ny = Ny part (Eq. 3.14)

E * *
ot
X, A

J + N, part (Eq. 3.15)
% Al par
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— RH, A
M, = —[Leff o (f fz)] - [R ] (Eq. 3.16)
M, A

Mg =v-M, (Eq. 3.17)

The section moments are assumed positive when outer side of the shell is under compression.

For the particular shell and loading cases of this study, the total deformation and section forces
according to this method are given as follows

Deformations:

W*:_E R h(v-cx-t+p-R)- (f,—1)-h for pinned bottom
-t (f,+f,—1)-h forfixed bottom
(Eqg. 3.18)
Bx:_E I? h(v.cxot+p-R)- fy +f1, for pinned bottom
o 2f, for fixed bottom
Section forces:.
Ny = Ny membrane = —Ox  t for both pinned and fixed bottoms
Ng=p-R—(v- 0, t+p-R)- f, for pinned bottom
fy+f, for fixed bottom
(Eg. 3.19)
0.5(f, -f,) for pinned bottom

_ Meff
QX_R_,t(V'Gx't+p'R)' h
(1——L )(fl—fz) for fixed bottom

ef

Section moments:
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A f for pinned bottom
M :_—eﬁh(\/.g.t+p.R). 1 p
* 2Rt " f,—t, for fixed bottom (Eq. 3.20)
Mg =v-M, for both pinned and fixed bottoms
Where
Aett = Legr - t (Eq. 3.21)

For illustration purposes, consider the cylindrical shell stated above |oaded with atip-compressive
ring load equal to the classical buckling stress 6, g, and auniforminternal pressure p of magnitude
0.5py (half of the pressure which causes uni-axia yielding in the circumferential direction), i.e.

= 0.605EL

Gx = O'chr R

(Eq. 3.22)
- - t
p= O.5py = O.5fyR
The deformations and section force results from the linear shell analysis method discussed above
would then be as shown on the plots, Figure 3.5 to Figure 3.9. The normal section force and
bending moments shown in these plots are normalized with respect to the corresponding un-axial
yield section force, N = t.fy, and section moment, My = tz.fy/4, respectively. The meridional
section force N, and the circumferential bending moment Mg, distributions along the meridian are
not included as the first is constant through out the meridian and the later is the product of the
poison’sratio v and the meridional bending moment M.

333 Numerical finite element linear analysis (LA)

Numerical finite element small displacement linear analyses of the illustrative cylindrical shell
under the aforementioned meridional tip-compressive ring loading with uniform internal pressure
were made for verification purposes. The deformation and section force results obtained from
ABAQUS finite element linear analysis are exactly the same as those obtained using the effective-

ring-model analogy, Figure 3.5 to Figure 3.9.
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3.4 Linear elastic buckling strength of an ideally
perfect cylinder

In elastic buckling design assessments according to EN1993-1-6, the characterstic buckling
strength of an imperfect elastic shell, o, is related to the elastic critical buckling stress of the
perfect shell, o, using an elastic imperfection reduction (knock-down) factor o which quanitifies
the combined effect of geometric nonlinearity and all types of possible imperfections. The
relationship is generally given by

O = O.- O (Eq. 3.23)

Sincethe effect of geometric nonlinearities are included in the imperfection reduction factor o, the
elastic critical buckling stress of the perfect shell, o, represents the small displacement linear
elastic bifurcation stress of the perfect shell and not the snap-through buckling stress which is
associated with geometric nonlinearity.

In line with the “stress-design” (LA-stress-based) approach, the elastic critical buckling stress of
the perfect shell, o, is computed using linear elastic shell analysis. This stress will then be
compared with the buckling stress from FE-based LBA only for verification purposes.

The pure elastic buckling strength of the perfect shell will later be used as areference strength in
evaluating the shell buckling relative slenderness parameter A,.
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34.1 Approximate linear buckling analysisbased on linear shell analysis

In the general LBA sense, a shell subjected to an axia loading (no matter where the axial loading
and related section forces come from) buckles at a section located a meridional distance “x” from
the supported base, when the membrane meridional section stress c,(x) due to the applied axial
loading reaches the section’s limiting value for elastic buckling, c,(X), which is given by

1 E-t(¥)

3(1_\)2) r(x)

Oyer(X) = (Eq. 3.24)

Generadly speaking, even though the stress at the supported base reaches its buckling limiting
value, buckling will not take place at the base. Instead, it occurs at a small distance away from the
base (along the meridian). This is because of the two facts that (i) it is restrained and (ii) there is
no enough space for buckling to occur.

Buckling practically occurs when the stress at the location for the “center of buckle” reaches the
critical stressfor that particular section. In other words, the stress distribution should be increased,
after reaching the critical stress at the base, by aload factor so that the stress at the center of buckle
reaches its limiting value for buckling, thereby producing buckling.

The above discussion, however, will be more clear and applicable for elastic buckling of conical
shells than the cylindrical shells. Hence, the same discussion would be repeated later when
investigating the approximate elastic buckling strength of perfect conical shells.

For acylindrical shell of constant thickness, the elastic critical section force is constant, since t(x)
and r(x) are constant, throughout the height of the shell. Besides, the meridional stress at any point
along the meridian is equal to the membrane meridional compression resulting from the applied
tip-compressive loading. As a result, the approximate elastic buckling stress is equal to the
theoretical elastic buckling stress given by

6, () = — ’EF'Qt
J3(1-v% (Eq. 3.25)

- 0.605%t for v =03
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34.2 Linear buckling analysis using an analytical model based on theory
of second order

The linear elastic buckling load and the corresponding buckling mode of an axialy ring-
compressed cylindrical shell (which is independent of the internal pressure) can be analytically
obtained using a stability analysis (Theory of second order) of an equivalent beam on an elastic
foundation. The foundation modulus of the elastic beam will be obtained from the consideration of
stiffness of the shell in the radial direction and is given by

C, = (E-t)/R° (Eq. 3.26)
See Annex-C for the full discussion.

34.3 Numerical finite element linear buckling analysis (LBA)

Only for verification purposes, numerical finite element linear buckling analyses (LBA) of
cylindrical shellswith areference axial tip-compressivering loading equal to thetheoretical elastic
critical buckling stress and varying the intensity of a uniform internal pressure were made. In this
case, the critical load factor istaken as the lowest buckling load. The combined effect of the shell
slenderness, bottom boundary conditions, and the intensity of internal pressurization isvery small
and hence is generally neglected. It should, however, be clear here that a high internal
pressurization means a relatively bigger contribution to the axial compression due to poisson’s
effect. Thisfact can be observed from the somehow declining buckling load results as the internal
pressurization increases. The results are plotted in the LBA/Rcr vs. u representation as shown in
Figure 3.10 and Figure 3.11 for fixed and pinned bottom boundary conditions, respectively.

The maximum deviation being for the relatively thick shell, 0.98% for the fixed bottom cylindrical
shell and 0.2% for the pinned bottom case, one can see that the approximate linear buckling
analysis result predicts well the FE LBA result. As a result, the LBA_approximate will be used
instead of the FE LBA in the upcoming computations and discussions.




Chap. 3 Axisymmetric elastic-plastic buckling of cylindrical shells under axial compression & internal pressur

39

1.010
N—.\.\'—.\.\.\._.-\“—.\—.——.—Q—ﬂl
1005 4, .
1 M T A AE SRS ARER 2t A 2 L
||—‘_.4_[_ﬁ*_"7;‘+“‘+7777[“¥7'
t) .o 4 R TT TR -8 — 88— 3 aam
) GEED GED GEl T T e —— e .
S 1000 ] ST tn SR S SE S S e S S S0 S
m
—
0595 ——e— RIL_100
. v R/t_250
———a—— R/t_500
— —e— R/t_1000
— —+—  R/t_1500
0.990 \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0
u—pR/tfv
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3.5 Elastic buckling strength of an imperfect
cylinder

351 Elastic buckling strength: history

The éastic buckling load of cylindrical shells predicted by the classical stability theory is
applicable only to an idealized mathematical model of the structure. The actual shell structure,
however, is far from the perfect idealized model asit usually hasinitial imperfections of any type
(geometric, loading, boundary conditions, and material.). Thisfact hasbeen asecret for along time
during the past when buckling loads measured in experiments often were as small as a quarter
(even smaller) of the theoretical critical buckling load showing high imperfection sensitivity.

Following a large number of laboratory experimental investigations on buckling loads,
specifications concerning design loads with respect to stability were proposed for thin-walled
cylindrical shells under simple types of loads and imperfections not exceeding certain limits. The
experimental investigations made on axialy loaded cylindrical shells included pure meridional
compression (with no internal pressure) and combined loading of meridional compression and
internal pressure. It has been shown that the elastic buckling strength of an axially compressed
imperfect thin-walled cylindrical shell with co-existent internal pressure increases with internal
pressurization as the circumferential membrane tensile stress smooths out the imperfections
thereby reducing their negative effect. The specifications introduced an elastic buckling reduction
factor o which is equal to the ratio of the experimental elastic buckling load to the theoretical
critical buckling load of the perfect idealized shell and hence always less than unity. The
magnitude of the reduction factor depends on the imperfection type & amplitude, internal pressure
intensity, shell slenderness ratio R/t, and the type of loading.

In 1976, a task group of the European Convention for Constructional Steelwork (ECCS 1976)
recomended to use imperfection reduction factors (obtained from lower bounds of scatter bands of
numerous |aboratory test results) for both unpressurized (o,g) and pressurized (o) given by (Eq.
3.28) and (Eq. 3.29), respectively. Thisrecommendation was limited to medium height cylindrical
shellswith imperfection amplitude, w, not exceeding 0.01, (Eq. 3.27) measured from astraight rod
of length |, = 4./Rt held anywhere against any meridian of the shell. It apparently prohibitsshells
with larger imperfection amplitudes. Moreover, nothing has been reported with respect to the
nature of the imperfections of the laboratory tests on which the specification was based. Thus, it
predicts a buckling strength of a shell irrespective of the fabrication methods used and resulting
imperfection nature. The imperfections might, however, be random (therefore non-axisymmetric)
as laboratory model cylinders are commonly fabricated by wrapping a single sheet of material
around a form and making alongitudinal (meridional) joint, Teng & Rotter (1992). On the other
hand, the same recommendation shows the enormous influence of a small axisymmetric
initial imperfection on the buckling strength of an axially loaded cylindrical shell. It,
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however, does not recommend to consider such imper fections believing that initial defectsin
real shell structuresare not axisymmetric but randomly distributed.

W= 0.011 = 0.04./Rt == Tx7 (Eq. 3.27)
0.83
—_— for R/t <212
0y = ~1+0.01R/t (Eq. 3.28)
0.70 for R/t > 212
+/0.1+ 0.01R/t
= o) —P
o, = agt (1 oco)ijo.007 (Eq. 3.29)
where
:@F:O-G‘E'_ Eq. 3.30
p=BR (Eq. 3.31)
L O

In 1984, the task group of the European Convention for Constructional Steelwork (ECCS 1984)
recomended to use the same imperfection reduction factors as ECCS 1976. This recommendation,
like ECCS-1976, was limited to medium height cylindrical shellswith imperfection amplitudes not
exceeding 0.0L,. Besides, it recommendsto consider half of theimperfection reduction factors (o
2 for buckling under pure axial load and ay/2 for buckling under axial load with internal pressure)
when the imperfection amplitude is equal to 0.02 and to linearly interpolate for values of
amplitudes lying in between. The imperfection amplitudes according to this recommendation are
measured from a straight rod and a circular template of length |, = 4.J/Rt held anywhere against
any meridian, Figure 3.12a, and against any parallel circle along the circumference, Figure 3.12b,
respectively. In case of circular welds, the specification recommends to use a rod of length
|, = 25t, Figure 3.12c, for imperfection amplitude mesurements.

In the relatively latest recommendation, ECCS 1988, nothing has been changed from ECCS 1984
with respect to imperfection amplitude measurement, shell length limitation, imperfection
amplitude restriction, and the strength prediction for buckling under axial loading with or without
accompanying internal pressure.
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Figure 3.12 Measurements of imperfection amplitude W according to ECCS 1976, 1984,
1988
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Figure 3.14 Pressurized elastic buckling imperfection reduction factor: R/t = 1000
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On the other hand, Hutchinson (1965), after mathematically investigating the imperfection
sengitivity of axially compressed and internally pressurized cylindrical shells by considering
axisymmetric, non-axisymmetric, and mixed imperfection modesindicated that different modes of
initial geometric imperfections not only produce different unpressurized buckling strengths but are
also affected differently by internal pressure. The buckling strength of an unpressurized cylindrical
shell with pure axisymmetric imperfection isfound to be lower and gains|ess strength with internal
pressurization than that of a cylinder with pure non-axisymmetric or mixed modes of
imperfections. The pressurized elastic imperfection reduction factor of acylindrical shell with pure
axisymmetric sinusoidal imperfection according to the mathematical model of Hutchinson is
computed using (Eg. 3.32) for known values of the internal pressure parameter, p, and the
imperfection amplitude to shell thickness ratio, dg/t. The unpressurized elastic imperfection
reduction factor is also computed from the same expression by setting p = 0 (Eq. 3.33). An
imperfection which has mixed modes of both axisymmetric and non-axisymmetric imperfections
gives a strength higher than the pure axisymmetric but lower than the pure non-axisymmetric
imperfections. In addition, Hutchinson compared his results with the lower bound result of the
laboratory tests on which the aforementioned specifications were based and found out that the
imperfections of the laboratory tests were close to his results of the non-axisymmetric type
imperfections and hence confirmed the argument given above by Teng & Rotter (1992).

4(1 + p - Ocxpe)(l - O(‘xpe) N 3(1 _Vz)(z + chpe)s_to =0 (Eq 332)

A(1-0yp)° —3(1-v)(2+ ocxpe)%) =0 (Eq. 3.33)
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Later, Rotter & Teng (1989), Teng & Rotter (1992) opposed the idea which says that initial
defects in real shell structures are not axisymmetric but randomly distributed. They genuinely
argued that civil engineering shell structures can have axisymmetric depresions resulting from
circumferential welding and recommended the consideration of the effects of axisymmetric
imperfections on buckling strength predictions of cylindrical shells. They studied the elastic
buckling of thin-walled unstiffened cylindrical shells under axial load and internal pressure with
sinusoidal, local inward, and local outward axisymmetric imperfections. Their results were
compared with that of Hutchinson’s sinusoidal imperfection and ECCS recommendation. Here it
hasto benoted, however, that Teng & Rotter (1992) used an incorrect Hutchinson’sstrength
curve when comparing their results with and led them to incorrect conclusions. In the
comparison, they took Hutchinson’sbuckling strength curvewith an imperfection amplitude
equal to half of thewall thickness (instead of one wall thickness, Figure 3.15) and compar ed
it with their results where the imperfection amplitude was equal to one wall thickness. The
corrected comparison of theresultsisshown in Figure 3.21. Eventhough all such imperfections
were found to beworst in the sense that they lead to lower resultsthan the ECCS recommendations,
the sinusoidal and outward local axisymmetric imperfections were then dropped as they are not
practically relevant. Theinward local axisymmetric weld depression was then considered practical
and further studies has been done to determine the worst possible shape of weld depressions, Rotter
& Teng (1989). The introduction of the effects of these axisymmetric weld depressions into the
specifications was then recommended. Besides, the elastic imperfection reduction factors for both
unpressurized and pressurized buckling are recommended to be modified in such away that they
take care of different fabrication qualities. These recommendations are included in EN1993-1-6.

According to EN1993-1-6, the elastic pressurized buckling strength of cylindrical shellsis given
interms of elastic pressurized imperfection reduction factor which depends on the shell slender-
ness, loading condition, and imperfection amplitude which in turn depends on the fabrication qual -
ity class. The imperfection amplitudes are measured at every position in both the meridional and
circumferential directions using the same guages asin ECCS 1988. In addition, this specification
recommends to use guages of lengths |, = 4Rt and lgw = 25t < 500mm separately across
welds, Figure 3.17. The expression for computing the imperfection reduction factor as given in
EN1993-1-6, (Eq. 3.34) to (Eqg. 3.37), will be used throughout the upcoming discussions.

A comparison of both the unpressurized and pressurized imperfection reduction factors according
to the different recommendations and study results discussed above have been made in the current
work. Figure 3.18 shows a comparative plot of the unpresssurized elastic buckling imperfection
reduction factors according to the different specifications versus the shell slendernessratio, R/t.
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Figure 3.21 Pressurized elastic buckling imperfection reduction factors: R/t = 1000




50 Chap. 3 Axisymmetric elastic-plastic buckling of cylindrical shells un-

35.2 Elastic imperfection reduction factor, EN1993-1-6

In accordance to the frame work of the European standard EN1993-1-6, the elastic imperfection
reduction factor is a factor applied to the small displacement linear bifurcation buckling strength
of a perfect shell, Figure 3.24, to account for geometric imperfections and the effect of geometric
nonlinearity, Figure 3.25. It depends on the shell geometry, loading condition, and imperfection
amplitude. The linear bifurcation buckling strength of a perfect cylindrical shell isindependent of
theinternal pressureintensity. The elastic imperfection reduction factor of cylindrical (and conical
shells, for that matter) subjected to meridional compression with/without co-existent internal pres-
sureisgiven asfollows:

» ¢easticimperfection reduction for pressurized cases

= o+ (1— o) —E—— (Eq. 3.34)

p+0.3/ Jo,

» elasticimperfection reduction for unpressurized cases

Oype

o, = 0.62 (Eq. 3.35)

1+1.91(Aw,/t)"*

with the characteristic imperfection amplitude parameter, Aw, given as

1 R
A = =. /=-t Ea. 3.36
where
(0} _

Gchr Gchr

Q is fabrication quality parameter and should be taken, depending on the fabrication tolerance
quality class, from

Fabricati on tolerance Description 0
quality class
ClassA Excellent 40
ClassB High 25
ClassC Normal 16

Table 3.1 Values of fabrication quality parameter Q
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3.6 Pure plastic strength of cylindrical shells

The pure plastic (yield) strength represents the load (stress) which, with no stability phenomena
intervening, causes an unacceptably large plastic deformation. The plastic strength of shells can be
computed using membrane stresses approximately, using finite element small displacement theory
(MNA) analysis, or using yield functions based on stress resultants which will be discussed later
in detail.

3.6.1 Plastic strength according to von Mises membrane criteria

For axisymmetric shells under axisymmetric loading and boundary conditions where 2D principal
membrane stresses exist, the von Mises membrane yield criteriais given by

0)2( + Gg —0,0p < ff, (Eq. 3.38)

with an upper limiting (yield) curve given by

0)2( + Gg —0,0p = ff, (Eq. 3.39)
For a cylindrical shell under the actions of uniform axial compression with co-existent uniform
internal pressure, the limiting plasticity curve can be obtained using the following two different
ways depending on the load aplication procedure. Different loading parameters are used to
represent the two procedures. This separation will be more useful later in the finite element
numerical analysis.

1 Pre-specified pressure load: For a specified intensity of internal pressure (Eq. 3.40), com-

pute the meridional membrane stress (Eq. 3.41) which will cause yielding and the corre-
sponding plastic load factor (Eq. 3.42).

(o) .
w = P =9 LR (Eq. 3.40)
pyield fy t'fy
4-3p°—
O pl = —2“—H.fy (Eq. 3.41)
o J4—3u°—u ~2
Apises = T2 = R (Eq. 3.42)
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2 Proportional load increase: For a specified ratio of the two membrane section forces/
stresses (Eq. 3.43), compute the meridional membrane stress (Eqg. 3.45) which will cause
yielding and the corresponding plastic load factor (Eq. 3.46).

v o= N O Eq. 3.43
G, = —b—— .f (Eq. 3.44)

(@) | I/ =2
Apises = == L4 - Ax (Eq. 3.45)

where
- f
Ay = /G—L relative buckling slenderness parameter (Eqg. 3.46)
XRcr

Whichever way is used the plastic strength is same and is represented by the curvein Figure 3.28.

3.6.2 Sressresultant oriented approximateyield criteria

The plastic capacity of cylindrical shells can be estimated approximately using the section forces
(membrane & edge bending effects) obtained from linear analysis (LA). In the current study, the
section forces (stress resultants) computed using the effective ring model analogy, Chapter 3.3,
along with the different approximate yield criteria, Annex-A, will be used to estimate the plastic
strength of axially loaded and internally pressurized cylinders.

For an illustrative cylindrical shell with R/t = 500, t = 1.0 cm, E = 21000 kN/cm?, fy =24.0 kN/
cm? and v = 0.3, the estimated plastic capacity according to the different yield criteriafor afixed
and pinned boundary conditions are plotted in a pressure representation as shown in Figure 3.26
and Figure 3.27, respectively. Comparison of the plastic strengths according to the stress resultant
oriented yield criteriawith that of membrane Misesyield criterion can be made from these strength
plots.

The plastic load factors estimated using all the approximateyield criteriaare generally smaller than
the load factors obtained using membrane Mises yield criterion because of the edge bending
effects, i.e. the edge bending effects result in an increased circumferential section force and
additional bending moments (both meridional and circumferential) at a meridional location that
result in the fulfilment of the stressresultant oriented yield criteriaat arelatively smaller load factor
than the membrane Mises.
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Figure 3.26 Approximate yield criteria R/t = 500: fixed bottom
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3.6.3 Small displacement materially nonlinear finite element analysis
(MNA)

Numerical finite element small displacement materially non-linear analyses of cylindrical shells
with a reference meridional tip-compressive ring loading equal to theoretical elastic critical
buckling stress and varying the intesnisty of the internal uniform pressure were made. The results
are plotted in the pressure representation (MNA/f, vs. u) representation as shown Figure 3.28.

It can be seen from the results that there is no difference between the materially nonlinear finite
element analysis results and the results according to Von Mises pure membrane yield criterion.
Hence, the results from the membrane Mises yield criterion will be used instead of the small
displacement FE MNA results in the upcoming computations and discussions.

The fact that the finite element LBA and MNA for the cylindrical shell under consideration are
equal with the membrane-based approximateb-LBA and Mises yield condition, respectively,
makes the upcoming numerical analysis studies adaptabl e to the simple and straight forward stress
design procedure as outlined in EN1993-1-6.
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Figure 3.28 FE MNA for both fixed & pinned bottom; and bi-axial membrane Mises yield
strength
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3.7 Elastic-plastic buckling phenomena, analysis
and strength

3.7.1 General concept of buckling phenomena

It has been repeatedly reported in many literaturesthat thin-walled cylindrical shellsusually buckle
elastically under pure axial compression. The respective buckling strength for such axially loaded
cylindrical shells is usually lower than the theoretical elastic critical stress, the difference
accounting for the decrease in buckling strength caused by the presence of various imperfections
and geometric nonlinearity. The presence of an accompanying internal pressure, however, reduces
this strength-weakening effect of the imperfectionsthere by increasing the buckling strength of the
shell. However, when the intensity of the internal pressure exceeds a certain vaue, the
circumferential membrane stress becomes significant causing bi-axiality effect to come into play.

An unpressurized thin-walled cylindrical shell under an axial load buckles elastically forming a
diamond type buckling mode, Esslinger & Geier (1975). Generally speaking, the diamond type
elastic buckling phenomenon of an unpressurized cylindrical shell happens at locations of
geometric imperfections in the shell interior (where there exist no edge constriction effects)
forming two or three layers of buckles, Figure 3.29a.

Astheinternal pressurization increases, the weakening effect of the geometric imperfections will
be reduced due to the stretching (strengthening effect) resulting from internal pressurization; and
at the same time, the edge constriction (boundary condition) effects become stronger when
compared with the unpressurized cylinder case. This edge constriction effect produces a decaying
wave type prebuckling radial deformation leading to buckling phenomenon in aregion closeto the
boundary. For this reason, at low internal pressure levels, the elastcic buckling mode will have a
tendency of shifting towards the boundary condition resulting in an intermediate zigzag type
buckling mode, Figure 3.29b. At medium internal pressure levels, the effect of imperfections is
highly weakend and the effect of boundary condition becomes responsible for buckling, restricting
the el astic buckling phenomenon to happen in aregion close to the boundary, Figure 3.29c. On the
other hand, as the internal pressurization further increases the buckles will become shorter in the
meridonal direction and longer in the circumferential direction thereby producing localized buckle
mode.

At very high internal pressure level, the localized prebuckling radial deformation which results
from the very high edge constriction effect may suffer local yielding due to bending leading to
elastic-plastic buckling near the boundary condition under very small axial load. This type of
elastic-plastic buckling is known as elephant’s foot type buckling. Figure 3.30 shows buckling
modes at different internal pressure levels and the evolution (as the intensity of the internal
pressure increases) and happening of the elephant’s foot type buckling phenomenon under the
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action of avery high internal pressure and bending moment.
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(a) zero pressure (b) low pressure (c) medium pressure

Figure 3.29 Elastic buckling modes (Esslinger): axial load and internal pressure

e D - 100 mbars P = 700mbars

P =1100mbars = 1300mbars

Figure 3.30 Elastic-plastic buckling mode evolution (INSA Lyon): bending and internal
pressure
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3.7.2 Elastic buckling strength

The pure elastic pressurized buckling strength of a cylindrical shell, computed using oype, are
plotted in the pressure representation (), vsu plot), Figure 3.31, for different shell slenderness, R/
t, values of 250, 500, 750, 1000, and 1500 for fabrication tolerance quality class-A and for interna
pressureintensity, u = 0to 1. The buckling strength for relatively thick shells are much greater than
the uni-axial yield strength, f,,, and can not be seen in this plot where amaximum buckling strength
equal tof, is plotted. The strength values corresponding to the intersections of each of those curves
and the ordinate of the graph represent the elastic-unpressurized buckling strengths of the respec-
tive clyinders. The bi-axial membrane Mises plasticity is also shown with uni-axial yield strengths
at u values of 0 and 1 corresponding to uni-axial meridional and uni-axial circumferential yielding,
respectively. At other values of u bi-axial membrane plasticity takes place. The same information
is shown, Figure 3.32, in the capacity representation (y, vs A, plot) for different values of the
internal pressure parameter u. Both the pressure and capacity representations are combined to give
the 3D plot, Figure 3.33, of the pure elastic imperfect characterstic buckling strength.

When there exist no elastic-plastic buckling interaction, the ultimate strength of the cylinder will
be governed either by pure elastic imperfect buckling or pure plastic collapse depending on the
internal pressure level and shell slenderness ratio. The envelope of these two strengthsis shown in
Figure 3.34.
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Figure 3.33 Imperfect elastic buckling strength for quality class-C (depends on pres-
sure, shell slenderness ratio, and fabrication quality class)
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Figure 3.34 Envelope of imperfect elastic buckling strength and perfect bi-axial mem-
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3.7.3 Elastic-plastic buckling in the free shell interior

For relatively big shell endernessvalues (thin shells) and low internal pressure cases, pure elastic
buckling behaviour governs causing diamond-shaped buckles to form. As the internal pressure
increases, the corresponding circumferential membrane stress becomes significant implying that
the effect of biaxiality comes into play and an interaction between the elastic buckling and
plasticity begins. At relatively very high internal pressure levels where the uni-axial
circumferential yield condition is approached and if there is no edge bending disturbance, the
failure will be governed by pure plastic collapse. This condition is represented by the plastic-
plateau in the capacity representation.

The existence of two dimensional state of stress shows that yielding is represented by the von
Mises plasticity criterion. As a result any possible elastic-plastic buckling phenomena will be
governed by this yield criterion and not the uni-axial yield condition. This elastic-plastic
interaction with membrane Mises plasticity guarantees that no el astic-plastic buckling strength will
exceed the plastic capacity for a given loading state.

The characterstic strengths (pure plastic collapse, eastic-plastic buckling, and pure elastic
buckling) of the shell, accounting for imperfections and bi-axial plasticity, in accordance with the
stress design principle of EN1993-1-6 is predicted from the elastic-membrane Mises plastic
interaction expressions (Eq. 3.47) to (Eq. 3.52) and is plotted in the capacity representation ()pises
VS Avised) Figure 3.36, depending on the value of the relative buckling slenderness parameter
Avises: Therelative buckling slenderness parameter Ay s implicitly includestheinternal pressure,
shell slenderness, modulus of elasticty, and yield stress values. The same curve is plotted in the
pressure representation (y, vs w), Figure 3.35, for different shell slenderness ratio values. A
combined 3D plot of both the pressure and capacity representations is shown in Figure 3.37. The
reduction in strength due to elstic-plastic buckling interaction is shown shaded in Figure 3.38.

1 for }_\Misess}_\to
XMises_Xo}n N T T
o 1-f | — for Ag<Amices<A
AMises = p = I_?k = P ( Ap—"Ro 0= Mises = /Ap (Eq. 3.47)
X, Mises
o — _
o= for Ap<Amises
}‘Mises
where

_ (9) .
Aises = | CXSL'SQS (Eq. 3.48)
XRcr




Chap. 3 Axisymmetric elastic-plastic buckling of cylindrical shells under axial compression & internal pressur 67

hp = |22 (Eq. 3.49)

the elastic-plastic buckling parametersm, A, and 8 are given as

Interaction exponent:

n = 1.0 (Eq. 3.50)
Squash limit relative slenderness.

ho = 0.2 (Eq. 3.51)
Plastic range factor:

B =06 (Eg. 3.52)

Since no geometrically and materially nonlinear analysis of imperfect cylindrical shells and tests
were undertaken to investigate the actual elastic-plastic buckling interaction in the free shell
interior of an axially compressed internally pressurized cylindrical shell, the plastic buckling
parameters of an axially compressed unpressurized cylinder are adopted in the elastic-plastic
interaction procedure to predict the elastic-plastic buckling strengths for buckling in the free shell
interior. Aswill be seen later in thiswork, however, few GMNLI analyses were made to check the
validity of the mentioned strength prediction procedure for imperfection-led elastic-plastic
buckling in the shell interior where no edge constiction exists. Despite these few geometrically and
materialy nonlinear analysis results for imperfection-led elastic-plastic buckling in the shell
interior, the af orementioned procedure with the basic plastic interaction parameterswill bereferred
to whenever buckling in the free shell interior is involved. This is because of the open question
about the choice of aworst possible imperfection nature.




68 Chap. 3 Axisymmetric elastic-plastic buckling of cylindrical shells un-

1.0

0.8

4y

RA=250 v

0.6

> . RS
E // -‘.. U
b:n / - D S —_
# RA=500 — L ' a7
0.4 4 — g o % SEy D
/ /"Rﬁ 750 oS Nl

---
/"l'?/t 1000 =

0.2 1

0.0 02 0.4 06 0.8 1.0
p= prlt'fy
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Figure 3.38 Comparison of elastic-plastic buckling interaction using basic plastic buck-
ling parameters with the envelope of imperfect elastic buckling strength & per-
fect bi-axial membrane Mises yield strength
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3.74 Axisymmetric elastic-plastic buckling of perfect cylindrical shells

3.74.1 Geometrically and materially nonlinear finite element analysis(GMNA)

As discussed in the previous section, an unpressurized cylindrical shell under pure axid
compressive load tends to radially expand due to Poisson’s effect. An internally pressurized
cylindrical shell under axial compressive load tendsto radially expand due to the combined effects
of both the internal pressurization and Poisson’s effect. The presence of boundary conditions,
however, constricts this expansion causing local bending under the action of the axial compressive
load. Similar local bending effects can be observed at locations of change in wall thicklness, ring
stiffeners, or local axisymmetric imperfections causing immature buckling under a small
meridional compression. Thus, the presence of significant internal pressure will have a
destabilizing effect there by reducing the buckling strength of the shell. Such a buckling type,
caused by local bending adjacent to the boundary, istermed as an “elephant’ s-foot” type buckling
and the corresponding strength as elephant-foot buckling strength. The main focus of the current
study is to investigate the elastic-plastic buckling phenomenon and corresponding buckling
strength close to the lower supported shell boundary where local edge bending disturbances play a
leading role.

Comprehensive parametric studies are carried out varying the shell slenderness, shell lower
bundary conditions, and the intensity of the internal pressurization. More specifically,
geometricaly and materialy nonlinear finite element analyses which resulted in localized
axisymmetric buckling modes were made on cylindrical shells with R/t = 100, 250, 500, 1000,
1500 by varying the internal pressure value from zero-pressure (pure axial loading case) to a
pressure value that produces circumferential uni-axial yielding, i.e. a circumferential membrane
stress equal to the yield stress of the material. Boundary conditions of PIN or FIX at bottom and
rotational restraint at top were examined for each R/t and varying theinternal pressure value. Small
displacement linear buckling analysis (LBA) and small displacement materially nonlinear analysis
(MNA) results are used for reference purposes. Those reference strengths are given (see discussion
above) by the classical elastic critical buckling stressand bi-axial membrane Misesyield condition,
respectively. All the results are plotted in both the pressure ( vs. u) and capacity curve (y vs. Xp|)
representations.
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Figure 3.41 Geometrically & materially nonlinear (elephant’s-foot) strength: pinned
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Figure 3.42 Geometrically & materially nonlinear (elephant’s-foot) strength: pinned
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The geometrically and materially nonlinear effects in the GMNA results are responsible for the
localized axisymmetric buckling at the pinned (or fixed) cylindrical shell boundaries and for the
lower capacity when compared with the geometrically linear but materially nonlinear MNA
counterpart. When the geometric nonlinearity effects are very small as in the case of relatively
thick-walled cylindrical shells, the GMNL buckling strengths will be closer (or atmost equal) to
the pure plastic strength of the shell. On the other hand, when both the geometric and material
nonlinearity effects are very small as in the case of relatively thin-walled cylindrical shells and
lower internal pressure values, the GMNL buckling strengthswill be closer (or atmost equal) to the
pure elastic buckling strength of the perfect shell. These facts can be observed from the plots of the
GMNA results shown in Figure 3.39 to Figure 3.42 for both the fixed and pinned bottom boundary
conditions.

It can be deduced from the above discussion (with the help of Figure 3.39 to Figure 3.42) that the
geometric and material nonlinear (GMNL) load carrying capacity, which is upper-bounded by the
fulfillment of either the membrane Mises yield condition or the elastic critical buckling stress
(whichever is smaller), can be put into direct relationship with the small displacement materially
nonlinear (MNL) counterpart which corresponds to the pure bi-axial membrane Mises load
carrying capacity. This relationship between the geometrically and materially nonlinear buckling
strength and pure plastic carrying capacity of the shell, accounting for the large displacement
(geometric nonlinearity) effects which is relevant for localized axisymmetric buckling at the pin-
ended or fix-ended cylindrical shell boundaries, depends on the shell slenderness ratio and can be
dealt with in two different ways depending on the curve fitting to be used and representation
procedure to be followed. These are:

» depending on both the shell denderness and the intensity of theinternal pressure
» depending on the shell senderness alone (i.e. independent of internal pressurization)

These two different ways are discussed in detail in the following section. It has to, however, be
emphasized that in both procedures the same GMNA numerical results are at the background. The
question, therefore, has to be put after the right choice of the reference parameters for non-
dimensional representation purposes and the best but suitable choice of fitting curve type.
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GMNA versus MNA strength: internal pressure dependent relationship

The effects of internal pressurization varation on the perfect elephant’ s-foot buckling strength can
be seen from the capacity representations. One way of expressing this strength with respect to the
pure plastic capacity of the shell isobtained using straight-linefitting of the GMNL strengths from
the capacity representation. The resulting linear relationship, for a given R/t, between the GMNL
to MNL strength ratio and the shell buckling senderness value, Ayjses results in a nonlinear
relationship of the strength ratio and the internal pressure parameter w.. This nonlinear relationship
iswritten as follows:

GMNA . 2
= 1—PBepoor = Ayar + K- Ax- N /4—3u°—p (Eq. 3.53)

Mises
( 175 )
0.2.e""F for pinned bottom
Ayar = . (Eq. 3.54)
( 2.75 )
03.e°°"" for fixed bottom
2 :
k=, 025-035p +0.11p for pinned bottom (Eq. 3.55)
0.1-0.25p + 0.08p2 for fixed bottom
_ R/t
P = 1005 (Eg. 3.56)

These approximate perfect el ephant’ s-foot strength according to the pressure-dependent reduction
of the plastic strength is plotted in the pressure representation, Figure 3.43 and Figure 3.44, for
fixed and pinned bottom boundary conditions, respectively, and for the different shell slenderness
ratio values, where the corresponding numerical GMNL strength results are also shown for
comparison purposes. There is a good fit between the approximate expression and the numerical
analyses results for the entire pressure range. At very low internal pressure levels, however, the
approximate expressions result in strength values somehow higher than the pure elastic buckling
strength of the perfect shell which should not generally be the case. In such cases the fitting curve
should always be cut-off by the pure elastic buckling strength of the perfect shell. However, the
elephant-foot type buckling, as previously discussed, is relevant only for very high internal
pressure values. For thisreason it is better to use a somewhat simpler expression to relate the two
strengths and at the same timefitting the numerical GMNA resultsin the high pressurerange where
the elephant’ s-foot buckling phenomenon governs failure.
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GMNA versus MNA strength: internal pressure independent relationship

In this case, the reduction in buckling strength due to geometric nonlinearity istaken to be constant
for agiven shell slenderness ratio independent of the internal pressure intensity in such away that
there will be a good conservative fit for relatively high internal pressure levels (u > 0.5 about)
where the elephant’ s-foot type buckling becomes deterministic.

For all the pressure levels, the geometric and material noninear buckling strength can be expressed
as aconstant reduction of the plastic (MNL or membrane Mises) strength. This constant reduction
of the plastic strength depends only on the shell slenderness, R/t, and fits well to the GMNL
strengths at relatively high interna pressure levels (> 0.5 about) for all R/t ratio, where the
elephant’ s-foot buckling becomes deterministic. Once again, for very low internal pressure levels,
the fitting curve results in strength values higher than the pure elastic buckling strength of the
perfect shell which should not be the case and therefore should always be cut-off by the later
strength curve. The constant reduction factor relating the perfect elephant’ s-foot buckling strength
with the pure bi-axial plastic strength is given by

GMNA
dc = 1_BEFoot = Mises (Eq. 3.57)
_ ~115p : !
Beroo = 0.8(1-e _075) for pinned-bottom (Eq. 3.58)
0.75(1—e ") for fixed-bottom
_ R/t
P = 1000 (Eq. 3.59)

The perfect elephant-foot strengths according to the pressure-independent constant reduction of the
plastic strength are plotted in the pressure representation, Figure 3.45 and Figure 3.46, for fixed
and pinned bottom boundary conditions respectively and for the different shell slenderness values,
where the GMNA results from finite element numerical analysis are also shown for comparison
purposes. It can be seen from the plotsthat thereisagood conservative fit between the approximate
expression and the numerical analysis results for the relatively high internal pressure intensity
range asit should be.
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3.74.2 Analytical model based on theory of second order with material nonlinear effects

The geometric and material nonlinear effects of a cylindrical shell can be analytically modelled
approximately using a combination of theory of second order (Th.2.0.) and the stress resultant
oriented approximate yield criteria. In doing so, the beam on an elastic foundation model of a
cylindrical shell has been used, see Annex.

In the analytical model, the elastic-plastic buckling loads are computed in an iterative manner as
discussed below. Once the second order effect due to an axial compression is considered in the
force equilibrium equation (in the transverse direction), atrial |oad factor is applied with which the
section force distributions along the meridian are computed. Using these section forces (stress
resultants), a check is made for possible yield at each point along the meridian using one of the
approximate yield criteria already discussed, Chapter 3.6. If yield criteriais not fulfilled, apply
another load factor depending on the result obtained, i.e. if the yield surface defined by the
approximate yield function is exceeded, apply a smaller load factor; if the result lies with in the
yield surface, apply alarger load factor. This procedure is repeatedly used until the yield criterion
is exactly fulfilled. The fulfilment of the yield criterion shows through-thickness yielding; and
therefore, when combined with Th.2.0, represents an approximate elastic-plastic buckling.

Such analysis using Ivanov’s approximate yield criterion has been made in the current study for
both fixed & pinned-bottom cylindrical shells of slenderness ratio R/t = 500 & 1000 witht = 1.0
cm, E = 21000 kN/cm?, f,, = 24.0 kN/cm? and v = 0.3. The results obtained from the analytical
model along with the geometrically and materialy nonlinear analysis results obtained using
ABAQUS are shown in Figure 3.47 & Figure 3.48 for R/t = 500; and Figure 3.49 & Figure 3.50
for R/t = 1000.

A second analysisusing the“first-yield” approximateyield criterion has been donefor the cylinder
with shell slenderness ratio R/t = 1000 and the results are shown in Figure 3.51 & Figure 3.52,
along with lvanov’'s yield criterion and ABAQUS results, for the fixed and pinned bottom
boundary conditions, respectively.

At very high internal pressure levels where the axial compression needed to cause elastic-plastic
buckling isvery small, the strength results from theory of second order are close to the approximate
plastic strength of the shell. Asit has been already discussed, at relatively high internal pressure
levels, the edge bending effects cause approximate yield at relatively low load factors. Apart from
this, an overall assessment of the results obtained from the analytical model tellsthat such analysis
gives relatively bigger load factors than the ABAQUS results when compared relative to the
corresponding plastic strengths. One possible reason for this effect can be the fact that in the case
of afinite element numerical analysis, the stiffness of the shell is updated at each load increment
thus any effects of plasticity are automatically applied thereby reducing the stiffness and hence,
needs a relatively smaller load factor to cause elastic-plastic buckling. Whereas in the combined
consideration of the Th.2.0. and approximate yield criterion, the shell remains elastic which is
relatively stiff and hence, needs arelatively higher load factor to fulfil approximate elastic-plastic
buckling.
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3.8 Axisymmetric elastic-plastic buckling of
imperfect cylindrical shells

3.8.1 Geometrically and materially nonlinear finite element analyses with
axisymmetric imperfections (GMNIA)

3811 | ntroduction

It is known that the major factor which plays a great role in the reduction of the buckling strength
of thin-walled shells is the presence of various types of imperfections such as loading, boundary
conditions, geometry, and material. Loading imperfections include non-uniformity of the load
distribution and load eccentricities. Boundary condition imperfections include non-uniformity of
support conditions, for example, causing unintended edge moments. Geometrical imperfections
include out-of-straightness, out-of-roundness (ovality), deviations from nominal thickness.
Material imperfections include material inhomogeneity and residual stresses. For structural
modelling and analysis purposes, all imperfections are equivalently expressed in terms of the
geometric imperfection with specific imperfection shape, imperfection wave length, imperfection
amplitude, imperfection orientation (inward or depression vs. outward or bulge), and imperfection
location along the meridian of the shell. Each of these properties of an equivalent geometric
imperfection has an influence on the buckling behavior and buckling strength of the shell. In order
to clearly show the influence of geometric imperfections on the axisymmetric elastic-plastic
buckling strength of shells, an imperfection sensitivity study using axisymmetric LBA eigenmode-
affine, nonlinear eigenmode-affine, and local imperfection shapes has been made numerically on
a cylindrical shell with the following set of geometry, boundary, loading, and shell material
conditions. Theresultswill all be expressed interms of dimensionless quanitities and therefore can
be interpreted in such away that they are applicable to other sets of conditions as well.

Geometry: shell slenderness ratio, R/t = 500; meridional length to radiusratio, L/R = 1.0
Boundary conditions. pinned or fixed (clamped) bottom and rotationally restrained top
Loading: uniform meridional (axial) tip compression with co-existent uniform internal pressure
Material properties:

Modulus of elasticity, E = 21000 kN/cm?;

Misesyield criterion with uni-axial yield strength, f, = 24 kN/cm?;

Poisson’sratio, v =0.3
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3.8.12 Linear elastic buckling (L B) eigenmode-affine imperfection

In cases where a different unfavourable imperfection pattern can not be justified, EN1993-1-6
recommendsto use alinear elastic critical eigenmode based on an LBA of the perfect shell. For the
illustrative fixed-bottom cylindrical shell discussed above, a typical LBA basic eigenmode is
shownin Figure 3.53. A typical LBA basic eigenmode of the pinned-bottom cylinder isalso shown
in Figure 3.55. Despite the fact that such imperfection shapes are very far from existing in real
shells, imperfection sensitivity studies have been done considering the LBA eigenmodes (first half-
wave oriented outward in both boundary conditions) as an imperfection shape and varying the
imperfection amplitude for both bottom boundary conditions. The materially and geometrically
nonlinear elastic-plastic buckling strength of the imperfect cylinder (GMNIA), normalized with re-
spect to the perfect (GMNA) shell strength, versus the imperfection amplitude for the fixed and
pinned bottom boundary condition are shown in Figure 3.54 & Figure 3.56, respectively, for
different values of meridional to circumferential membrane stresses ratio given by v = ¢,/0,
according to the proportional load increase procedure. The value of y isindirectly proportional to
theinternal pressurelevel, i.e. abigger value of y indicates asmaller internal pressurization. Thus,
the LBA eigenmode-affine imperfection led to very low buckling strengths.

It should, however, be noted here that if the cylinder isideally perfect or if the strength-reducing
effect of imperfections are negligible, the effect of edge constriction alone will be responsible for
instability resulting in abulge type buckling mode near the edge. If there exist aworst imperfection
at the same location as the edge constriction; or when both are closely located and able to interact,
it isclear that the two effects help each other in destabilizing the shell. On the other hand, in cases
when both exist on a shell but at different locations along the meridian with no interaction of any
kind among them, an imperfection-led buckling phenomenon may happen at the imperfection
location depending on the imperfection-nature.

An imperfection-led buckling phenomenon is what is exactly happening in the fixed-bottom
cylinder where the LBA eigenmode-affine imperfection considered hasiits peak value at the other
(top) end of the shell. With such imperfection shape but low internal pressure levels, the edge
constriction effect isrelatively small and hence an imperfection-led buckling will happen at the top
edge of the shell even for small amplitudes of the imperfection. For high internal pressure levels,
however, the edge constriction effect becomes larger and the cylinder buckles near the edge for
relatively small amplitudes of the LBA eigenmode-affine imperfection. As the imperfection
amplitude increases, irrespective of the internal peressure level, buckling happens at the top edge
of the cylinder where the LBA eigenmode has its peak value.

On the other hand, for a pinned-bottom cylinder wherethe LBA eigenmode has the same amplitude
at top-end of the shell and close to the bottom boundary, such an LBA eigenmode-affine
imperfection along with the edge-constriction effect will restrict the axisymmetric elastic-plastic
buckling phenomenon to happen close to the bottom boundary unless it is oriented in such a way
that it opposes the edge bending effect. In cases when the imperfection-orientation opposes the
edge-constriction effect, the shell may get strengthened at bottom and the buckling phenomenon
will be shifted up and happens somewhere along the meridian.
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3.8.1.3 Under standing axisymmetric elastic-plastic buckling phenomenon of thin-walled
shells

The true nature of buckling in real-world thin-walled shell structuresis at most simulated, at |east
numerically, by analysis models that take the effect of geometric and material nonlinearity into
account. For thisreason, it is believed and has been applied in the buckling strength determination
of thin-walled shells that the geometrically and materially nonlinear finite element analysis
(GMNA) with physically possible imperfections (GMNIA) predicts closer results to the buckling
strength of real-world thin-walled shells. The question which still remains unanswered in many of
the researches and studies done so far isthe physically possible critical (worst) imperfection shape,
wavelength, amplitude, orientation, and location along the meridian. The following discussion will
address the investigation made in the current work to asses a physically possible worst
imperfection resulting in reduced buckling strengths of cylindrical shells.

Small imperfection amplitudes

In this case, great attention and careful observation of the geometrically and materially nonlinear
perfect buckling behaviour under the action of the loads that the shell is subjected to, will be
needed. Imperfections with small amplitudes will have worst deteriorating effects on the buckling
strength of the shell when they are shaped, located, and oriented in such away that they follow the
increased nonlinear prebuckling radial deformations and thereby shortening the life span of the
buckling phenomenon and leading to a very low buckling load. The nonlinear prebuckling radial
deformation leads to the ultimate nonlinear (snap-through) buckling mode that the shell will finally
fail in. Thisisthe buckling eigenmode which representsthe actual incremental deformation pattern
between two equilibrium states (pre- and post-) in infinitessimal neighborhood of the critical
nonlinear load level, Guggenberger (2005a).

From the above discussion, one can conclude that the worst imperfection shape, location and
orientation can be well explained in terms of the nonlinear (snap-through) buckling mode. In this
regard, the snap-through type buckling mode of the perfect cylinder and the possible worst
imperfections will be investigated in this part of the study. Comparison of the results will be made
later with the results obtained using an LBA eigenmode-affine imperfection according to EN1993-
1-6 recommendations.

Theillustrative cylindrical shell loaded with auniform axial ring compressive load and a uniform
pre-specified internal pressure, p = 0.8p, = 0.8t - fy/ R was numericaly investigated using
ABAQUS and thoroughly examined. The reason for choosing a pressure value of 80% of theyield
pressure (for uni-axial circumferential yielding) is purely a matter of picking an illustrative value
on the range of pressure levels where elephant’ s-foot type buckling is prominent. The ratio of
meridional to circumferential membrane stresses, according to the proportional load increase
procedure, which resultsin an equal ultimate buckling load as the pre-specified pressure procedure
iswhen y = 0,/0, = 0.326.

Figure 3.57 and Figure 3.59 show the load-radial displacement of anode close to the boundary and
the nonlinear eigenmode, respectively, obtained from a perfect geometrically and materially
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nonlinear numerical analysis (GMNA) using the two different ways of load application, the
nonlinear eigenmode bieng exactly the same for both load application procedures. Figure 3.58
graphically explains the procedure used in getting the snap-through eigenmode of the perfect
structure, with w* representing the radial deformation. The two-step procedure (i.e. with pre-
specified internal pressure level) will be used in the remaining parts of this study.

A plot of the nonlinear eigenmode curvatureis shown in Figure 3.60. With the hel p of the nonlinear
eigenmode and its curvature, the nonlinear defomation and curvature tendency of the cylindrical
shell can be observed. The point now is, if the possibleimperfection shapesarein linewith this
tendency of nonlinear radial defor mation and curvature, ther eby increasing the prebuckling
nonlinear deformation and speeding up collapse, the ultimate buckling strength of the shell
decreases drastically. If, on the other hand, an imperfection exists but oriented opposite to the
nonlinear prebuckling deformation (some sort of “pre-cambering” effect), the buckling strength of
the shell may even increase as will be seen later.

Big Imperfection Amplitudes

For imperfections with big amplitudes, the above discussion on small imperfection amplitudes
may not apply for the clear reason that if the imperfection amplitude is big, no matter how the
imperfection shape looks like, it means that the imperfection is forcing the nonlinear buckling
phenomenon to happen in acompletely different manner depending on the imperfection nature. In
other words, the nonlinear buckling behaviour will be dictated by the imperfection, thereby, the
shell will have forced nonlinear deformation behaviour. In this case, the nonlinear buckling mode
and buckling strength may be difficult to predict. Such imperfection amplitudes may change the
complete shape and behaviour of the shell and may even be far from the behaviour of cylindrical
shells, which in this case needs different treatment depending on the shape. For this reason,
cylindrical shells with such imperfection amplitudes should either be discarded in practical shell
design and construction or treated as shells of another shape depending on the nature of the
imperfection involved. The effects of relatively big imperfection amplitudes on the buckling
phenomena and strength will be discussed in the following section.
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The snap-through eigenmode

To elaborate the above discussion, geometrically and materially nonlinear finite element analyses
with imperfections (GMNIA) have been made to compute the buckling strength of the thin-walled
cylindrical shell. First the nonlinear eigenmode has been used as an imperfection shape to study
the sensitivity of the cylindrical shell to this mode. It should be clear at this stage that a nonlinear
eigenmode-affine imperfection shapewill well bein-phase with the edge constriction effects (since
the shape resulted from the edge effect) leading to a very low buckling strength with an imperfect
elephant’s foot bulge near the edge. A graphical comparison of the buckling strengths resulting
from the LBA and snap-through buckling eigenmode-affine imperfections has been made, Figure
3.61. This comparison, however, shows only the buckling strengths (hence only numbers) and not
the buckling phenomena since each happen at different locations along the meridian and each
caused by different primary agents (imperfection shapes) as already discussed. For the relatively
larger imperfection amplitudes, an imperfection-led buckling phenomenon occurs (for the LBA
eigenmode-affine imperfection buckling will occur at the top-end of the shell) and therefore
comparative conclusions can not be drawn.

Eventhough the snap-through eigenmode affine imperfection leads to relatively lower buckling
strengths for small imperfection amplitudes than the LBA eigenmode-affine imperfection, a
guestion needs to be raised about the practicability of both imperfection shapes. Studies, Rotter &
Teng (1989), Teng & Rotter (1992), show that the most probabl e axisymmetric type imperfections
on civil engineering cylindrical shells being local-type shapes and not sinusoidal as in the
eigenmodes discussed previously. For this reason, the upcoming discussion is fully devoted to the
detailed investigation made on “ practically possible’ |ocal-type axisymmetric imperfection shapes
with the help of the snap-through buckling eigenmode discussed above. For common
understanding (see Figure 3.60), the bottom region is called the "bottom-inward-worst" zone; the
next upper region is called the "bottom-outward-worst" zone; the next upper region is called the
"second-inward-worst" zone; and it goes on like that. The approximate lengths of these regions are
obtained by subtracting the ordinate values of the plot in Figure 3.60.
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38.14 L ocal axisymmetric imperfection shapes near the boundary

Figure 3.62 shows half-wave local axisymmetric imperfection shapes expected in practice. For the
present study, however, the effects of the local shapes shown in (a) and (e) of Figure 3.62 will be
investigated. These shapes represent a general-type and a weld-type imperfections, respectively.
The*hinge” on the shapes only means a sharp edge (kink) on the shape. The effects of wavelength,
location aong the meridian, orientation, and amplitude of these imperfections are examined.

Effect of imperfection wavelength

Asalfirst step in the investigation of imperfection sensitivity of the cylindrical shell to the general -
type and weld-type local imperfections, the effect of imperfection wavel ength has been studied for
an imperfection amplitude equal to the wall thickness. The imperfection shapes start at the bottom
of the cylinder and stretches upwards depending on the wavelength, expressed as a constant
multiple of VR.t. Outward and inward-oriented imperfections are considered. The results obtained
are shown in Figure 3.63 and Figure 3.64 for imperfection shape types (a) and (e), respectively. In
both cases an outward-oriented imperfection with an imperfection wavelength of about 4.0VRt
resulted in the lowest buckling strength. The inward-oriented imperfection (in both imperfection
shape cases) leads to lower buckling strengths than the outward-oriented imperfections for all
wavelengths not exeeding 2.0VRt. Besides, an inward-oriented imperfection with about 2.0VRt
wavelength leads to the relative lowest buckling strength when compared to other wavel engths of
the same orientation. Thus, the results found are well in line with the snap-through eigenmode
concept discussed previously. For the larger wavel engths, no clear conclusion can be drawn asthey
include combinations of the inward-worst and outward-worst regions discussed in the snap-
through eigenmode. This ambguity will be cleared when the imperfections are shifted up along the
meridian leading to the upcoming study. Comparisons will then be made within the no-shift and
up-shifted imperfections.

Effect of imperfection location along the meridian

The next step in the investigation of imperfection sensitivity of the cylindrical shell to the general-
type & weld-typelocal imperfectionsisto pre-specify theimperfection wavelength & imperfection
amplitude and vary the location of the imperfection along the meridian. The vertical shifts of the
imperfections are expressed as a constant multiple of VRt. Following the results from the above
study on wavelength effects, general type imperfections with wavelengths of 4.0VRt and 2.0VRt
and a weld type imerfection with wavelength equal to 25t are investigated. The 4.0VRt and 25t
lengths are the EN1993-1-6 gauge-lengths for measuring amplitudes across general shape
deviations and welds, respectively. The imperfection amplitude is kept equal to the wall thickness
in al the cases. Figure 3.65 and Figure 3.67 show the effect of vertical shiftsfor the general type
imperfections with 4.0VRt and 2.0VRt wavelengths, respectively. Figure 3.69 shows asimilar plot
for the weld type imperfection with 25t wavelength. It can be seen from the plots that the lowest
buckling strengths result at vertical shifts of 0.5VRt and 1.5VRt for the 4.0VRt and 2.0VRt
wavelengths of the general type imperfection shapes, respectively. Those shifts bring the peak
point of the imperfection shapes considered close to the peak point of the outward-worst region of
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the nonlinear eigenmode. This fact leads to the investigation of imperfection shapes having
coinciding peak points as the snap-through eigenmode and will be discussed at the end of this
section. For the 4.0VRt wavelength imperfection, the outward-orientation leads to lower buckling
strengths for all the locations considered than the inward-orientation. The inward-oriented 2.0VRt
wavelength imperfection leads to lower buckling load only when there is no upward shift. A
similar observation on the weld imperfection shows an outward-oriented imperfection leads to the
lowest buckling load when it is located at about 1.2VRt. The inward-oriented weld imperfection
leads to lower results when the upward shift is not exeeding 0.6VRt . Once again, the results found
from thisinvestigation are al in line with the snap-through eigenmode concept already discussed.

Effect of imperfection amplitude

Imperfection amplitude-sensitivity of the aforementioned wavelengths and locations along the
meridian has been then made to verify the conclusions drawn so far. Figure 3.66 and Figure 3.68
show the effect of imperfection amplitudes for different imperfection locations of the general type
imperfections with 4.0VRt and 2.0VRt wavelengths, respectively. Figure 3.70 shows asimilar plot
for the weld type imperfection with 25t wavelength. All the results coincide with the snap-through
eigenmode concept.

Outward-oriented wor st local imperfection

As afinal step in the investigation, imperfection wavelengths were varied in such a way that the
peak points of the imperfection shapes remain at the peak point of the outward-worst region of the
nonlinear eigenmode. The imperfection amplitude was kept the same for all shapes and equal to
the wall thickness. The results are shown in Figure 3.71. Once again, one can see that the worst
imperfection orientation is outwards and its length is approximately 2.0VR.t which again is
approximately equal to the length of the outward-worst region, as expected. To further highlight
this behaviour, imperfection amplitude-sensitivity analyses were made for the 2.0VR.t and 4.0VR.t
wavelength general-type local imperfections and both outward and inward orientations. These
results along with the results obtained using the nonlinear eigenmode-affine imperfection are
shown in Figure 3.72.

The following question can be raised here: why did the outward-oriented local imperfections lead
to relatively lower buckling loads than the nonlinear eigenmode-affine imperfection? It is because
the nonlinear eigenmode-affine imperfection, even though it has the same curvature as the
nonlinear eigenmode itself, its shape-deviations are not exactly in-phase with the worst shape-
deviation discussed in the curvature of the nonlinear eigenmode, Figure 3.60.

Figure 3.73 to Figure 3.76 show the effects of imperfection orientations on the ultimate radial
deformations corresponding to the ultimate buckling load factors. Comparisons of these ultimate
buckling loads and their corresponding radial deformations for the perfect cylinder, imperfect
cylinder with outward-oriented imperfection, and imperfect cylinder with inward-oriented
imperfection can be easily made for the different imperfection shapes. These comparisons will
strengthen the concept of using the nonlinear eigenmode oriented local imperfections as the worst
possible imperfections. Besides, it contributes much to the basic understanding of worst
axisymmetric imperfections.
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3.8.15 L ocal axisymmetric imperfection in the free shell interior

As it has already been discussed, when the internal pressure level acting on a thin-walled
cylindrical shell is medium-to-high, it weakens the elastic-plastic buckling strength of the shell by
raising the circumferential membrane stress to such an extent where bi-axial plasticty effect leads
to buckling at a relatively low axial compressive load. Generally speaking, the elastic-plastic
buckling behavior and buckling strength of an axially compressed and internally pressurized thin-
walled metal cylindrical shells depend on the imperfection nature (shape, wavel ength, amplitude,
orientation, and location along the meridian), edge constriction effects, and resulting buckling
modes. For an ideally perfect cylinder or if the strength-reducing effect of imperfections are
negligible, the effect of edge constriction comesinto play resulting in a bulge type buckling mode
near the edge. The effect of pure edge constriction on the buckling phenomenon and buckling
strength of a perfect cylinder has aready been discussed. On the other hand, when combined with
ill-natured axisymmetric imperfections, the weakening effect of the medium-to-high internal
pressure, will be more pronounced that the cylinder buckles at avery low axial compressive load.
Such imperfection-led buckling phenomenon happens at the location of the imperfection. In cases
where there exist a worst imperfection at locations of edge constriction or when both are closely
located and ableto interact, it isclear that the two effects help each other in destabilizing the shell.
The worst possible combined effect of an edge constriction and an imperfection in destabilizing
the cylindrical shell has also been already discussed.

Itis, however, not clearly understood so far that when both exist on ashell but at different locations
along the meridian with no interaction of any kind among them, avery closer look and comparison
need to be made on the resulting buckling modes and buckling strengths. This study addresses an
imperfection-led axisymmetric elastic-plastic buckling caused by an axisymmetric local
imperfections. This will be done by applying alocal axisymmetric imperfection up the meridian
on alocation where there exist no edge constriction effects (free shell interior). To investigate this
type of buckling phenomenon and the corresponding buckling strength, materially and
geometricaly nonlinear analyses of the illustrative cylindrical shell with local axisymmetric
imperfection types (a) and (e), Figure 3.62, have been made with wavelengths of 4.0VRt and 25t,
respectively, and imperfection amplitudes allowed for fabrication quality classes A, B, and C as given in
EN1993-1-6. Both outward and inward orientations of the imperfections and their effects are considered in
the investigation.

The results of the GMNLI analyses and their comparisons with the buckling strengths obtained
from the elastic-plastic interaction using the basic plastic interaction parameters, pure effects of
edge constriction (perfect elephant’s-foot buckling strength), and combined effects of edge
constriction and imperfection (imperfect elephant’s-foot buckling strength) are discussed as
follows.

Surprisingly, an inward-oriented class-A general-type (type-(a)) loca axisymmetric imperfection
with wavelength of 4.0VRt in the free shell interior (no edge constriction effects) has the same re-
duction effect in the elastic-plastic buckling strength as the edge constriction of the perfect shell
(perfect elephant’ s-foot buckling), Figure 3.78. For thelower quality classes of the inward-oriented
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imperfection and all quality classes of the outward-oriented imperfection, an imperfection-led
buckling in the free shell interior governsthe buckling phenomenawhen compared to the edge con-
striction effect. Theresults obtained tell the that the effect of edge constrictionisnot asunfavorable
as one may think when compared with an imperfection-led buckling in the free shell interior. The
buckling strengths obtained from the elastic-plastic interaction using the basic plastic interaction
parameters are generally unconservative when compared with the GMNIA results obtained using
the aforementioned imperfection.

When a weld-type imperfection with wavelength of 25t is used, irrespective of the imperfection-
orientation and fabrication quality class, the effect of edge constriction governs the buckling phe-
nomena and the buckling strengths obtained from elastic-plastic interaction using the basic plastic
interaction parameters are generally conservative to use, Figure 3.79.

Moreover, theimperfection-led el astic-plastic buckling strengths were compared with the buckling
strength obtained using the combined effects of imperfection and edge constriction for the general-
type (type-(a)) imperfection with wavelength of 4.0VRt as shown in Figure 3.80. In the consider-
ation of the combined effects of imperfection and edge constriction, the imperfection was shifted
up by 0.5VRt where its relative effect is worst. The results obtained tell the fact that the effect of
edge constriction, once again, is not as unfavorable as one may think when compared with an im-
perfection-led buckling in the free shell interior.

It can be seen from the already investigated imperfection-led elastic-plastic buckling in the free
shell interior that the buckling strength depends on the shape, orientation, and amplitude of the
imperfection under consideration. Thus, there remains a challenge to decide on the form and
amplitude of the imperfection. For this reason, the buckling strengths obtained from elastic-plastic
interaction using the basic plastic interaction parameters are refered to, in the remaining discus-
sions, as the elastic-plastic buckling strengths in the free shell interior, Figure 3.77.
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3.9 New buckling design recommendation

39.1 General characteristic buckling strength

Figure 3.81 and Figure 3.82 (for fixed and pinned bottom boundary conditions, respectively) show
the combined plots of pure elastic imperfect buckling strength, shell interior elastic-plastic
imperfect buckling strength, and near boundary perfect elastic-plastic (perfect elephant-foot)
buckling strength in the pressure representation.

Figure 3.83 shows a 3D plot of the elastic-plastic buckling interaction using the basic plastic buckling
parameters and the elephan’s-foot buckling strength. Both modes are dominated and limited by the bi-
axial Mises membrane yield condition. The minimum strength (envelope) of the two strengthsis shown
in Figure 3.84. Figure 3.85 shows the reduction in strength due to edge constriction of a pinned bottom cyl-
inder causing elephant’s-foot buckling when compared with the elastic-plastic buckling in the free shell in-
terior as computed by using the basic plastic interaction parameters. This reduction is even smaller when
the bottom boundary condition of the cylinder is clamped (fixed). From this comparison, it turns out that
the boundary elastic-plastic buckling mode is not significantly more unfavourable than the related
free-shell-interior elastic-plastic buckling mode. This is in contrast to some of the existing
interpretations and explanations that compare the edge constriction effects with the small
displacment elastic and platic strengths as shown in Figure 3.86. The combined effects of
imperfection and edge bending disturbance in destablizing the shell have already been discussed
in the GMNIA investigation.

Explanatory plots of all characteristic buckling strengths corresponding to the different buckling
phenomena are shown in Figure 3.87 to Figure 3.90. For a clear understanding of the different
representations, the same characteritsic buckling strengths are shown in pressure representation
(Figure 3.87), capacity representation (Figure 3.88), membrane Mises-related interaction
representation (Figure 3.89), and perfect el ephant’ s-foot-related interaction representation (Figure
3.90). Basic understanding of these different representations will help in easy manipulation of the
buckling strength results and ultimately leading to the best representation where simple
expressions can be formulated that are able to accurately predict the characteristic buckling
strength of the cylinder.

It should again be noted that as far as elastic-plastic buckling of the imperfect cylindrical shellsis
concerned, there should be awell defined (at least for numerical simulation purposes), practically
possible (both from safety and economic considerations), and worst (in that it leads to lower
buckling strength of the shell) imperfection. Once such imperfections are known and agreed upon
by the research and practical engineers community, a unified and simplified design proposals can
be made. In spite of this fact, different possible proposals are discussed in the following section,
out of which the simplest yet best approach will be recommended for design and future researchs.
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3.9.2 Characteristic buckling strength prediction recommendation

Based on the results obtained so far for the different buckling phenomena and their corresponding
buckling strengths, five different methods can be applied in the prediction of the characterstic
buckling strength of thin-walled cylindrical shells under uniform axial compression and internal
pressure loading. In all the methods separation is made for the different types of bottom boundary
condtions (fixed versus pinned).

An overview of the five possible options for predicting the characterstic buckling strengths of
cylindrical shellsisgiven below. Detailed discussion on each approach will then follow.

Method -1. elastic-plastic interaction with the bi-axial membrane Mises to directly catch the
pure elastic, elastic-plastic buckling in the shell interior, and elephant’s-foot buckling
strengths using a new set of plastic buckling interaction parameters (see Figure 3.91).

Method - 2a. envelope of the pure elastic and elephant’s-foot strengths with no interaction of
any kind. This method results in somehow unconservative buckling strength predic-
tion when compared to the other methods. The left part in the envelope (see Figure
3.92) represents pure elastic buckling strength of the imperfect shell and the right part
for elastic-plastic buckling near the boundary of the perfect shell.

Method - 2b. envelope of the pure elastic, elastic-plastic interaction with bi-axial membrane
Mises using the basic plastic buckling parameters, and the perfect elephant’s foot
buckling strength. The first (left) part in the envelope (see Figure 3.93) represents
pure elastic buckling strength of the imperfect shell; the second (middle) part repre-
sents the elastic-plastic buckling strength in the free shell interior; and the third (right)
for elastic-plastic buckling near the boundary.

Method - 3. elastic-plastic buckling interaction of the pure elastic strength curve with the ele-
phant’s foot strength curve using the basic plastic buckling parameters 3 = 0.6; Ag =

0.2; and n = 1.0. This approach leads to very big interaction and too conservative
strength predictions (see Figure 3.94).

Method - 4. eastic-plastic buckling interaction of the pure elastic strength curve with the ele-
phant’s-foot strength curve using a completely new single buckling parameter
ABgroct- This method, depending on the value of ABgpqqt, Predicts the separate char-

acteristic buckling strengths: pure elastic, elephant’s-foot near the boundary, and a
possible interaction in between (see Figure 3.95 for ABggyor = 0.1). This method, asit

will be seen later, is the simplest, easy to understand, easy to apply, easy to modify,
straight forward, and yet accurate (specially when compared to method-1). Hence, it
is the best approach of al the methods discussed so far.

All the above procedures (except method-3) predict same or very close strength results in the pure
elastic (low pressure level) and elastic-plastic elephant’s-foot buckling near the boundary (high
pressure level). They, however, differ in the strength prediction of the elastic-plastic buckling in
the free shell interior. These differences are left open till test or GMNIA results are performed for
elastic-plastic buckling in thefree shell interior. Since the bi-axial membrane Misesyield condition
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is on the background, all the methods by default guarantee that no buckling strength exceeds the
pure plastic capacity. An illustrative comparison of the different methods (a combination of Figure
3.91 to Figure 3.95) has been done for a cylinder with fixed bottom boundary condition and shell
slendernessratio R/t = 1000 and is shown in the pressure representation, Figure 3.96. For very thin
shells the characteristic buckling strength prediction using method-1 is equal to that of method-2,
i.e the elastic-plastic buckling interaction according to method-1 diminishes as the shell gets
thinner.

A detailed discussion on the above methods is given below. Method-3 will be skipped in the
discussion asit predicts buckling strengths much too low when compared to the other methods. It
is upto the designer’s choice which one of the above procedures to use for the prediction of the
characterstic buckling strength. It should, however, be noted here that the elephant’ s-foot type
buckling near the bounadary for the imperfect cylinder is not included and hence that of a perfect
cylinder is used in all the methods as there is no common agreement on the “practical and worst”
imperfection shape, wavelength, amplitude, location along the meridian of the shell, and the
orientation of theimperfection in the inward-outward sense. Once acommon agreement isreached
on the imperfection type, the geometrically and materialy nonlinear analysis results of the
imperfect shell can directly be applied to method-2 (the envel ope method) and easily be adopted
to al other methods.
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Figure 3.91 Characteristic buckling strength prediction: R/t = 1000, method-1
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3921 Method-1: Elastic-plastic interaction using pressure dependent inter action
parametersin such away that EFoot strength isdirectly included

In this method the elastic-plastic interaction for the prediction of characteristic buckling strengths
using membrane Mises yield condition will be extended and made in such a way that it directly
includes the pure elastic buckling, elastic-plastic buckling in the free shell interior, and el ephant-
foot type buckling near boundary conditions. This will be achieved with the help of the
geometrically and materially nonlinear numerical analysis results (for both the fixed and pinned
bottom boundary conditions) using internal pressure dependent plastic buckling parameters
Ao(n), M), and B(w) instead of the basic constant values of an axially compressed and
internally unpressurized cylinder. These new set of plastic buckling parameters do have the same
values for unpressurized buckling conditions as those of the basic ones.

The pressurized el astic buckling strength of the imperfect thin-walled cylindrical shell, which have
already been discussed, will be used in the following discussion on the new elastic-plastic buckling
interaction formulation.

Plastic Buckling:

Pressure dependent plastic buckling parameters
I nteraction exponent:

n =Ny fo(w) (Eq. 3.60)
Squash limit relative slenderness:

Ao = oo fo(l) (Eq. 3.61)

Plastic range factor:

B = Bo + (BEFoot - Bo) ' (1 _fB(M)) (Eq 362)

wheren, A, o, and 3, are the basic plastic buckling parameters and stay valid for the unpressurized
cylinder condition.

N =M(u=0) =10 (Eq. 3.63)
hoo = Ao(n =0) = 0.2 (Eq. 3.64)
Bo = B(u=0) = 0.6 (Eq. 3.65)

and the Bgryot factor which takes care of the pressure-independent reduction in strength (when
compared with the pure plastic capacity of the perfect shell) due to geometric nonlinearity (large
deformation) effectsis repeated here as follows
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__115p .
Berog = 0.8(1-e _075) for pinned bottom (Eq, 3.66)
0.75(1—e Py for fixed bottom
inwhich
R/t

P = 1000 (Eq. 3.67)
2.a

fo() = (1-p") (Eq. 3.68)
1500

o) = (1-;; ' ) (Eq. 3.69)

The value of the exponent “a’ in the expressions for the fg and fg is equal to 4 for the fixed-bottom
cylinder and 8 for the pinned-bottom case. The variations of Bgryot @ a function of the shell
slenderness parameter p; and fo & fg for R/t = 1000 asafunction of theinternal pressure parameter
u are shown in Figure 3.97 and Figure 3.98, respectively, for both fixed and pinned bottom
boundary conditions.

The characterstic buckling strength plots accord