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Abstract

Multi-robot systems are built through expensive and complex physical artefacts. Simulat-

ing such systems in a real-world like virtual environment is thus very valuable to validate

operational procedures and control laws. This thesis develops mathematical models for

real world robots, in particular the quadrotor-helicopter UAVs used in the cDrones project.

The formalism of Lagrange is applied to find different dynamic models for simulation, con-

trol and parameter identification. Furthermore, the topic of aerodynamics is investigated.

Using flight data from the real UAV, the model parameters are identified and its validity

is verified within a certain range.

The major outcome of this work is software, which integrates these robot-models within

a virtual reality simulation environment. Emphasis is taken on the overall behavior of the

individual quadrotor-helicopters and sensory information. Being able to simulate multiple

instances of robots within the virtual environment will form the basis for further research

in the cDrones project, where the simulator and the interfaces developed within this thesis

will serve as testbed.

Keywords. multiple UAV simulation, unmanned areal vehicles, quadrotor-helicopter,

simulation, modeling
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Chapter 1

Introduction

Contents

1.1 Autonomous Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Distributed Autonomous Robots . . . . . . . . . . . . . . . . . . 2

1.3 Unmanned Aerial Vehicles . . . . . . . . . . . . . . . . . . . . . . 3

1.4 The Collaborative Microdrones Project . . . . . . . . . . . . . . 4

1.5 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Robotics has always been an interdisciplinary field of technology [SHV06]. Mechanical

engineering, electrical engineering and computer science are the main disciplines in robotics

research. Currently, it expands this interdisciplinarity further to new topics, and the

term robot is getting more and more important. Nowadays, robots are used in medicine,

production, entertainment, exploration, surveillance etc. As a part of the cDrones project,

this thesis is related to robots used in rescue missions.

1.1 Autonomous Robots

A very interesting and challenging topic is the field of autonomous robotics. Autonomy

means that a robot should be able to interact with the world without human guidance or

control. [Bek05] defines autonomy as follows: “Systems capable of operating in the real-

world environment without any form of external control for extended periods of time”.

In fact, a lot of problems arise with the goal of autonomy. Consider this short, fic-

titious example: If someone develops a helicopter that should be able to fly to a special

1



1.2. Distributed Autonomous Robots Chapter 1. Introduction

destination, two principal approaches come to mind:

1. The designer could steer the robot along the route once and store the control com-

mand sequence in the robots memory. The next time the route should be flown, the

robot simply uses these control commands.

2. The designer could build a robot that is able to detect the route by itself and

generates commands to follow this route to the destination.

It is obvious that the second approach is technically more challenging. In fact, there is no

guarantee that any of the approaches is technically feasible at all (with sufficient accuracy).

It is very unlikely that the first robot is able to fly exactly the same trajectory as in the

teaching scenario. Changes in environmental conditions etc. will avoid an accurate job.

Depending on its ability to operate independent of human instructions one could call the

second robot more or less autonomous.

Components of Autonomous Robot Systems. An autonomous robot as the second

helicopter needs to know a lot about its state and environment at any time (it has a

so-called world model). That knowledge must contain things like the current position,

orientation, the environment, etc. Hereunto, the robot could for example be equipped

with an image sensor, a GPS sensor and an IMU. The measurements from these sensors

must somehow be merged in order to achieve a sufficiently accurate position estimate

(sensor fusion) which is then used to update the world model. Depending on the current

state, the robot must then decide what to do next (expert system). If that decision is

e.g. to fly to a special way-point, it has to calculate a route (path planning) and generate

control commands for the motors (controller).

There is a special family of robots, where autonomy is inherently of interest, namely

unmanned aerial vehicles (UAVs). These are the main topic in this thesis.

1.2 Distributed Autonomous Robots

Another modern research topic in the field of robotics is the use of multiple robots that

collaborate somehow. Many research facilities work on projects with distributed ground

vehicles. The soccer-playing robots of the RoboCup are a further example of distributed

autonomous robots in up-to-date science. The use of unmanned aerial vehicles (UAV) for

research in distributed robotics is also very popular at this time [HRW+04], [QSB+08],

[Val07], ... .

2



1.3. Unmanned Aerial Vehicles Chapter 1. Introduction

The task of collaboration yields new problems and challenges in modeling and simu-

lation, as well as in wireless communication, distributed and networked control and many

more. Moreover, cooperative strategies find an interesting real-world application.

Due to the special properties of distributed autonomous robots, they demand models

for specific sensors, actuators and robot structures. Furthermore, the requirements on

simulation differ from the classical approach in robotics or control science, where usually

no environment is considered in simulation. These special needs for research in the field

of distributed autonomous robotics are tackled in this thesis.

1.3 Unmanned Aerial Vehicles

UAVs are special types of aircrafts, where a human who actively pilots is absent. The term

unmanned refers to the replacement of a on-board human pilot with a control system. Such

control functions could be either on-board or off-board (remote control). The term UAV,

or often called drone, does not specify the mechanical structure of the aircraft: It could

be a fixed-wing or rotary-wing vehicle, a helicopter or any other aerial vehicle structure

[Val07].

UAVs were first introduced by the US in the first world war. Since that time, it

was mainly military interests which facilitated further development. The ignition of a

completely different perception of UAVs were the terrorist attacks on 9/11/2001 in New

York. There, for the first time UAVs were shown and used in media and became a topic

to the public domain. A civil UAV market began to emerge, starting with government

organizations and media. The non-military interests in UAVs are basically in the segment

of vertical take-off and landing vehicles. Applications include pipeline and power-line

inspection and surveillance, border patrol, rescue missions, oil and natural gas search, fire

prevention, topography, natural disasters and agricultural uses (mostly in Japan) [Val07].

1.3.1 Microdrone MD4-200

The VTOL UAV used in the cDrones project is the MD4-200 produced by a German

company named Microdrones1. Fig. 1.1 shows a picture of the drone. The four rotors have

fixed pitch carbon fiber blades. Its frame is also made of carbon fiber and has a diameter

of approximately 60 centimeters. Actuators are brushless DC-motors with external rotors

(outrunners), which are directly connected (no gearbox) to the blades. Power is provided
1http://www.microdrones.com

3



1.4. The Collaborative Microdrones Project Chapter 1. Introduction

by a lithium-polymer battery pack, which enables the drone to fly for approximately 20

minutes. The MD-400 is equipped with sensors for navigation and control. Moreover,

controllers for flight via remote control and way-point-based flight are available. All data

processing on the drone is closed source. An on-board flight data recorder as well as a

radio down-link allow analysis from a base-station. For the cDrones project, the drone is

equipped with a compact-camera, which can be triggered and tilted via remote control.

A special script language facilitates camera control during way-point-based flight. Using

such a script, it is possible to write a program for a whole flight, including automatic

take-off and landing.

Figure 1.1: Microdrone MD4-2002

1.4 The Collaborative Microdrones Project

The project collaborative Microdrones (cDrones) [Lab08],[QSB+08] is operating in the

field introduced above of distributed autonomous robotics. Multiple small-scale UAVs

should fly in collaboration over a predefined area and deliver images from the ground.

The UAVs used in the project are commercial quad-rotor helicopters (Microdrones, see

sec. 1.3.1), that already support throttle, yaw, pitch, roll control, GPS-way-point based

flight and autonomous vertical take off and landing (VTOL). These Microdrones should

fly - on demand in formation - a route, that covers a predefined area of interest. At
2source: http://www.microdrones.com
3source: http://www.microdrones.com
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Figure 1.2: Microdrone MD4-200 base-station3

special waypoints, pictures are taken and stitched together to get a detailed image of the

area. One goal of the project is to demonstrate the use of UAVs in disaster management

applications. It is planned to use the drones to provide prior information about a disaster

area to human task forces. Scientific challenges in this project are found in the fields of:

• Flight formation and networked control

• Mission planning

• Cooperative aerial imaging

1.5 Tasks

This master’s thesis is part of the cDrones project and should provide the scientists with

a powerful tool for realistic simulation of multiple quad-rotor helicopters. The simulator

must be usable for experiments as well as for demonstration. An interface for simple

switching between simulator and prototype should be provided. Moreover, simulation of

• rigid bodies, which are subject to real-world like physical phenomena (gravity, colli-

sions, ...)

5
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• actuators and their dynamic models

• sensors and their associated models (noise, ...)

• controllers (as provided on the Microdrone)

• communication networks

• environmental influences onto any of the previous mentioned items

is demanded. Although the Unified System for Automation and Robot Simulation

(USARSim) principally comes with the possibility to simulate communication networks,

this was not considered in this thesis. A separate project is dedicated to this topic within

the cDrones project. Also environmental influences - like e.g. wind - are not taken into

account in this work. Nevertheless, the possibility to implement those issues at a later

date is maintained.

A dynamical model of quadrotor-helicopters should be developed and verified for the

Microdrone, providing the basis for control design and simulation. Furthermore, the pa-

rameters of this model should be identified. The overall goal should be a flexible and

powerful simulator, that is going to be a part of the testbed for the cDrones project.

1.6 Related Work

A lot of institutions worldwide do research in the field of UAVs. Here, I give a short

overview:

The Unmanned Autonomous Vehicles Group at the Université de Technologie

Compiègne deals with modeling and control of different vehicle structures, also includ-

ing the quadrocopter. Several publications, containing [CLD05], were made by their re-

searchers. They claim to have been the first who successfully applied real-time control to

a four-rotor rotor-craft.

Mesicopter was a project at Stanford university that developed a quadrotor-helicopter

with dimensions of about two and a half centimeters. Research focused on aerodynamics,

motor and power system design and meso scale fabrication methods.

6
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The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control

(STARMAC) project builds its own quad-rotor helicopters, which are currently in the

second generation. Dynamic models were developed using the Newton-Euler formulation.

Details of modeling, control and implementation for single drones were issued. Several of

their quadrocopters serve as a testbed for multi-agent control.

At the Autonomous Systems Lab at ETH Zurich, unmanned aerial vehicles are the

topic of various projects from the past as well as in current research. Several publications

deal with quad-rotor modeling, simulation and control.

The X4-Flyer project of the Robotics Engineering group at the Australian National

University aims at developing a quadrocopter from scratch and uses it as experimental

platform for visual servo control.

The Vision and Autonomous Systems Center at the Carnegie Mellon University

uses, among other robot types, UAVs for research. Publications were done in the field of

system identification, control, path planning and many more.

A Framework for Multi-UAV Simulation , especially for vehicles with rotary-wings,

is developed at the Università Politecnica delle Marche. It allows easy switching from sim-

ulated to real environments in single UAV-simulations as well as in cooperative missions.

The MultiUAV2 project of the US Air Force Research Labs/Wright-Patterson Air

Force Base developed software to simulate multiple UAVs which cooperate to accomplish

tactical missions. The simulator was based on MATLAB/Simulink and C++. It was

published in 2006.

Jinhyun Kim, Min-Sung Kang and Sangdeok Park present a mathematically ac-

curate model of the quadrotor-helicopter in [KKP09]. They use the formalism of Lagrange

and a Lagrange-like method to derive the equations of motion in a hybrid reference frame.

Furthermore, they propose a robust hovering controller.

Tommaso Bresciani wrote his master’s thesis on modeling, identification and control

of quadrotor-helicopters. He uses Newton-Euler formulation to derive the equations of

motion in a hybrid reference frame. For simulation, the dynamic model was implemented
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in Simulink. In his work, he describes the development of the whole control system of a

quadrotor-helicopter prototype from scratch.

1.7 Outline

Chapter 2 describes the principals of Navigation. First, reference frames that are used

throughout the whole text are introduced. Then, the NAVSTAR global positioning system

(GPS) as well as inertial navigation systems (INS) are explained. The accuracy of GPS

is considered and an error model for the inertial measurement unit (IMU) used in the

Microdrone is presented.

At the beginning of the chapter about modeling it is explained how quadrotor heli-

copters work. After that, these intuitive thoughts are formalized. Topics like kinematics

and dynamics are tackled, leading to the equations of motion of quadrotor helicopters in

different reference frames. Finally, a linearized version, suitable for parameter identifica-

tion, is presented.

The chapter about Parameter Identification is dedicated to the search for the param-

eters of the Microdrone. First, most of them are calculated using physical laws. Then, an

experimental parameter identification is used to prove the validity of these calculations,

the linearized model and delivers the missing parameters.

Chapter 5 is about real-world like simulation of multiple drones in a common envi-

ronment. At the beginning the demands on multi-UAV simulation are considered, which

deliver the basis for the selection of USARSim as simulation framework. The simulator

and its builtin UAV model are analyzed and modified to adjust the dynamical behavior

to the Microdrone. Finally, the development of software and interfaces to concurrently

simulate multiple UAVs in the high-fidelity simulator USARSim is documented.
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Navigation & Sensing
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Autonomous mobile robots always have to navigate somehow and hence need sensors

which deliver signals that are related to their position and orientation. Depending on

the environment, different sensors are used. In an outdoor environment, typically at least

position estimates from a GPS receiver and acceleration and orientation estimates from

an inertial navigation system (INS) are fused to achieve accurate navigation. Additional

sensors to measure height and yaw rotation are often employed especially for aerial vehicles

[HHWT07].

However, the Microdrones used in the cDrones project are able to navigate out- and

indoors supporting the following navigation modes [Mic07]:

• INS only

• Magnetometer and INS

• GPS and INS

• Way point
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2.1 Reference Frames

In most cases, the frame where a measurement takes place is a different one than the

frame of interest. Thus, several coordinate frames need to be defined. This is just a

short introduction into common reference frames, a more detailed version can be found

in [FB99], where this chapter is based on, or [HWWL03]. The transformations between

reference frames needed in this work are presented in the chapter on kinematics, sec. 3.2.

Inertial Frame is the reference frame for accelerometer and gyro measurements. It is a

frame where Newton’s laws of motions apply. In every non-inertial frame, additional terms

(fictitious forces such as Coriolis, centrifugal and Euler forces) will occur in the equations

of motion. Thus such an inertial reference frame is neither accelerating nor rotating, but

may be in linear motion. The origin and axes of the frame may be arbitrarily placed as long

as all three axes point in mutually perpendicular directions. Inertial measurement units

(IMUs) produce measurements relative to such an inertial frame placed at the instruments

sensitive axes.

Earth-Centered Earth-Fixed Frames have their origin in the center of the earth.

There are two types of ECEF-coordinate systems: The rectangular and the geodetic one.

In the rectangular system, the z-axis is coincident with the earth’s spin axis. The x-axis

points towards zero latitude and longitude, while the y-axis completes the right-handed

coordinate system passing through the equator and 90◦ latitude. The GPS-Sensor used

in the Microdrone delivers its position measurements relative to this frame. The geodetic

ECEF frame approximates the earth’s shape by an ellipsoid with its minor axis coincident

with the earth’s spin axis. The parameters of the ellipsoid are defined in the WGS-84

standard. Two ways of expressing coordinates relative to the ECEF frame are common:

The cartesian (x,y,z) and the elliptic (latitude, longitude, altitude). As the name implies,

the transformation between those two is nonlinear and can be found in e.g. [HWWL03].

Notice that ECEF coordinate frames are no inertial frames, because they rotate with the

earth around itself and the sun.

Local Geodetic Frame also referred to as local level frame, is the conventional refer-

ence frame for local navigation. Its z-axis is perpendicular to a plane, which is tangent to

the earth’s geoid in some arbitrary point. This point specifies the origin of the frame, no

matter if the system is moving or stationary. The z-axis is directed down, while the x and

10
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y axes point towards north and east, respectively.

The transformation from ECEF to local level frame coordinates follows the algorithm

presented in [FB99] and is implemented in the LabVIEW VI ECEF2NED.vi.

Body Frame is a coordinate system rigidly attached to the system of interest. Typically,

the origin is located at the center of mass or the measurements are transformed to that

point (Lever arm transformation, [Vik]). The x-axis points in the direction of linear

(forward) motion. z is pointing downwards and y completes the right-handed orthogonal

coordinate system pointing to the right (lateral motion direction, starboard).

2.2 Systems & Sensors

For navigation, the Microdrone MD4-200 is equipped with the following sensors:

• A GPS

• An INS

• An altitude- (air pressure based) and a temperature sensor

• A magnetometer

In the simulator (USARSim, see chap. 5.2), only GPS and INS sensors are modeled.

However, the possibility of also modeling the other sensors exists. If a detailed knowledge

about the sensor fusion implementation on the Microdrone would be available, this part

could also be simulated. As this is not the case here, another approach was chosen for

simulation, which is described in sec. 5.2.7.

2.2.1 NAVSTAR Global Positioning System

To understand the simplifications made in the existing simulation model of the GPS sensor

in USARSim, it was necessary to understand in principle how the sensor works in real-

world applications. However, the following section is an introduction and thus not broken

down into details. It is more or less a summary of [BC08], which was written by the

developers of the USARSim GPS sensor. Additional information on GPS is found in

[Vik].
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The NAVSTAR global positioning system is a satellite based radio navigation system,

that is managed and controlled by the United States Air Force. Several satellites (24-32),

that circle the planet in Medium Earth orbit, send signals containing precise information

about the current location and time of themselves. A receiver can calculate the difference

between that time and its own (synchronized) current time. As radio waves are known to

propagate with the speed of light, the receiver can calculate an estimate of its distance1 to

the satellite (trecv − tsent)c and must thus be located somewhere on a sphere around the

satellite’s location. If the receiver picks up messages of more than one satellite, it must

be located somewhere at the intersection of the spheres. Using data from 3 satellites, a

receiver is able to locate itself, because 3 spheres intersect in two points, where one of

them is not reasonable. However, a GPS receiver needs 4 satellites to give a good position

measurement, where the fourth satellite is used to correct the receiver clock error. Of

course, the signal from the satellites is subject to several kinds of distortions. Some of

them (atmospheric effects, relativistic effects, ...) can be mathematically modeled and

corrected by the receiver. Others are interpreted as perturbations (multi-path effect,

numerical errors, ...) [Vik].

In order to track a satellite, a model for path calculation was proposed by the three

governing North American aerospace institutions. This Simplified General Perturbations

Satellite Orbit Model 4 (SGP4) takes a so called Two-Line Element (TLE), date and time

as input and outputs the corresponding satellite location. Fig. 2.1 shows an example

of such a TLE, which contains the parameters to uniquely identify the orbit. They are

the Keplerian elements parameters, which are described in fig. 2.2. In the GPS case,

the gray disk corresponds to the equatorial plane, the celestial body is the satellite and

the yellow disk is the orbital plane. γ points towards the vernal equinox and, together

with the intersection of the planes, defines an earth-centered inertial reference frame. The

simulation of satellite movement in USARSim is based on this model [BC08].

The GPS receiver used in the Microdrone delivers signals at a sample time of ts,GPS =

250[ms]. The position information is given in [cm] relative to cartesian ECEF frame.

Also an accuracy signal is one of the sensor outputs. Data recorded in Experiment 1 (see

chap. C), where 8 to 9 satellites were reachable, was used to analyze the properties of the

measurements. Fig. 2.3 shows recordings from the GPS position accuracy signal (black,

[m]) and preprocessed position measurements pGPS where the drone was at rest. The
1This is usually called the pseudorange
2Source: http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/

/JavaSSOP/SSOP Help/tle def.html
3Source: http://en.wikipedia.org/wiki/Orbital elements
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Figure 2.1: Sample TLE File with Format Descriptions2

Figure 2.2: Keplerian elements3

position measurements were treated with the following operation

pGPS =
M∑
k=1

‖pGPS,k‖2 (2.1)

NGPS,k = 0.01 (‖pGPS,k‖2 − pGPS) (2.2)

where ‖ · ‖2 stands for the 2-norm. The value pGPS is the mean of the position

measurements and M refers to the number of samples that were recorded. NGPS is the

red signal shown in 2.3.

The calculations in (2.2) were done, because a comparison with a true value was not
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Figure 2.3: GPS accuracy (black) and NGPS (red) where the Microdrone is at rest

possible, since a true position value was not available. Furthermore, it was assumed that

for the resting quadrocopter, the position measurement is a stationary ergodic random

process, which motivates the following investigation:

An estimate of the standard deviation σGPS of ‖pGPS‖2 is

σGPS = 143.457[cm]

Fig. 2.4 shows the autocorrelation of the position noise. For the noise process to be

white, there should be a peak at zero shift and zero elsewhere. As very rough approxi-

mation, that is the case here and the noise of the GPS sensor is assumed to be white for

simplicity. Actually, the signal shown in fig. 2.3 and the autocorrelation function look

more like those of a Gauss-Markov process (band-limited white noise). A sophisticated

noise model for GPS receivers can be found in [Vik]. However, because [BC08] use white

noise, this model is used here, too.

2.2.2 Inertial Measurement Units & Inertial Navigation Systems

Inertial sensors measure acceleration and rotation rate relative to an inertial reference

frame. The sensors used for measuring acceleration are called accelerometers and those

for rotation rate measurement are gyroscopes. If at least three accelerometers and at least

three gyroscopes are mounted rigidly on a common base, the resulting device is called an

inertial sensor assembly (ISA). Together with a hardware interface and low level software

that performs e.g. downsampling, temperature calibration and vibration compensation it

forms an IMU. As the physical operation of the sensors is not a topic in this work and
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Figure 2.4: autocorrelation of NGPS

the simulation is not based on a physical sensor model, further description is omitted

here4. The interested reader is referred to [GWA07] or [Vik]. An Inertial Navigation

System (INS) consists of such an IMU and a navigation computer, which is responsible

for calculating attitude and position with respect to a certain (selected) frame5. An INS,

rigidly mounted on the vehicle of interest, is called a strap-down INS, and the process

of navigation computation is termed strap-down computation. A flowchart of such a

calculation is shown in fig. 2.5. The main steps in this procedure are:

1. Attitude computation

2. Specific force transformation (where specific force here means the accelerometer mea-

surements in the body frame)

3. Normal gravity vector computation

4. Coriolis force vector computation

5. 1st navigation equation integration

6. 2nd navigation equation integration

For further details refer to [WCA99] and [Vik].
4Their physical implementation in the Microdrone is not known, but most likely they are MEMS
5At least one external measurement of heigth is necessary for an INS to overcome the vertical channel

instability [Vik]
6Source: http://large.stanford.edu/courses/ph210/noriega1/
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Figure 2.5: Flowchart of the strap-down computation6

2.2.2.1 Errors and Sources

As the measurements from the IMU are also used for system identification, a common

error model for IMUs is presented here. At the calibration process of the Microdrone,

the parameters of this error model were determined and are available to us. The most

dominating parameters are usually biases, scale-factor errors and misalignment errors.

The output of the IMU can be modeled as7

ωimu = ∆(κ,α)ωbib − bg −w1

f imu = ∆(ε,β)f b − ba −w2

where the notation means that ωb
ib is the angular velocity of the body frame b (sub-

script 2) relative to an inertial frame i (subscript 1) expressed in the body frame (super-

script). ωimu is the angular velocity vector as it is delivered by the IMU. f b means the

specific force vector in the body frame, which still contains acceleration due to gravity.

Furthermore,

∆(s,ϑ) =


sx ϑxy ϑxz

ϑyx sy ϑyz

ϑzx ϑzy sz


Here,

7Typically this is done in a different way, see e.g. [GWA07]. In order to use the same values as delivered
from Microdrones GmbH., the model has been adopted.
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s =
[
sx, sy, sz

]T
are three scale factors and

ϑ =
[
ϑxy ϑxz ϑyx ϑyz ϑzx ϑzy

]T
are six small misalignment angles, which are assumed to be zero here. bg and ba rep-

resent gyro and accelerometer biases, respectively. Often, and especially when a Kalman

filter is used for sensor fusion, the bias is modeled as Gauss-Markov process and estimated

by the filter. The parameters of the process are typically determined by the manufacturer

of the IMU, as well as the scale factors. In our case, the following values were extracted

from the drone support software “mdCockpit”, provided by Microdrones GmbH.:

κ =
[
1.6523 1.6255 1.6526

]T
ε =

[
0.9492 0.9564 0.9469

]T
α = β = 0

bg =
[
−0.2910 0.2832 0.2588

]T
ba =

[
−0.0036 0.4396 −0.6913

]T
w1 and w2 are assumed to be stationary, zero mean, uncorrelated Gaussian white

noise processes.

As inertial navigation systems are very complex, there is a large variety of possible

errors. Typical ones are:

• Sensor noise. This is the major problem with INS: As accelerations are measured

and integrated twice, sensor noise affects the position in form of drift. Due to this

drift, such INS lose accuracy with increasing time.

• Errors in the sensing devices: bias, nonlinearity, scale factors, asymmetry, dead

zones, quantization, etc.

• Sensor misalignment. Could be compensated by using more than three accelerome-

ters and gyroscopes.

17



2.3. Sensor Fusion Chapter 2. Navigation & Sensing

• Numeric computation errors. The amount of calculations necessary in a strap-down

system is extensive. Hence, Integrals are approximated with finite-interval sums

(Attitude computation).

There are error models for inertial navigation systems, but they are too complex to

be treated here. USARSim uses a special model that is presented in chap. 5.2.7.3. For

detailed error models, refer to [Vik, chapter 2.4.2] and [GWA07, chapter 6.5].

Compared to GPS, the short-term accuracy of INS is much better. On the other hand,

GPS is drift-less and thus long-term accurate. It is the task of sensor fusion to unite the

advantages of both systems.

2.3 Sensor Fusion

A major issue in autonomous navigation is typically the sensor fusion. In many cases,

control algorithms are based on velocity measurements, as the reference inputs are often

velocities. But there exists no sensor for measuring velocity directly. An IMU on the one

hand outputs accelerations, which have to be integrated once for velocities and twice for

positions. Due to the double integration, noise in the acceleration appears as drift in the

position, which is an inherent property of INS. On the other hand, GPS measures position,

so a derivation is necessary to compute velocity. Furthermore, different other sensors -

like e.g. magnetometers and altimeters - measure position or one component of it, so that

there are many (most likely different) measurements of the same physical quantity. In the

fusion of these signals typically one or more Kalman filters are involved, although there

are several structures that could be thought of [GWA07], [Vik]. As this sensor fusion is not

topic in this thesis nor sufficient insight in the navigation computation of the Microdrone

could be achieved, it is not further considered here.

18



Chapter 3

Modeling

Contents

3.1 Quad-rotor Helicopter Characteristics . . . . . . . . . . . . . . . 21

3.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Inertial Frame Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Body-Frame Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

The process of developing a mathematical model of a real system is called modeling.

There are a lot of different types of models, and each of them is dedicated to a special

purpose and describes a special type of behavior. In control engineering, the typical model

type is a set of differential or difference equations which model physical behaviors. In fact,

these models are simplifications of the real system and thus valid in a dedicated range

only. If someone wants to model e.g. an electric drive, there exist multiple ways how such

a model could be developed. Two of them are considered here:

• The engineer discovers the physical effects and relations that happen inside the

system. In the electric drive, there will appear electric and magnetic effects on the

one hand and mechanical effects on the other hand. For those, laws are known (e.g.

law of inductance, Newton’s laws of motion etc.) and assumed to be sufficiently

precise. These laws are then assembled, so one equation emerges that describes the

behavior of the whole system. A graph based approach for this method are the

so-called bond-graphs [Hof05].

• Another method of modeling is termed Lagrange approach [Hof04], [SHV06]. It

is typically used to model mechanical dynamics where system variables (usually
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coordinates) are subject to constraints. These constraints delimit the degrees of

freedom of the system. As a first step, these constrained system variables are - if

possible - replaced by so-called generalized coordinates, which are all independent.

Then, the engineer forms the Lagrangian of the system, which is the difference

between kinetic and potential energy. As next step, the forces acting on the system

need to be expressed as generalized forces. By insertion of the Lagrangian and the

generalized forces into the Euler-Lagrange equation the model is obtained.

A lot of publications about modeling quad-rotor helicopters exist and were used in this

thesis ([KKP09], [HRW+04], [BNS04], [Bre08], [CLD05], [HHWT07], [PMC06], [McK04]).

The approach using the formalism of Lagrange was already applied to this structure by

many researchers1, but according to [KKP09] with lack of mathematical rigorousness.

[KKP09] write, that previously developed models are subject to dynamical inconsistencies

because they are expressed using two coordinate systems (body- and local frame) without

proper transformation. However, they present a solution to this problem, which is used as

a basis of the derivation of the equations of motion in this work. Therefore, the desired

equations are developed in both, the body-fixed and an inertial frame. The equations

describing the motion of the quadrocopter relative to an inertial frame can be obtained by

means of Lagrange’s equations. With the equations of motion relative to body frame it is

a bit more complicated: The orientation of the axes of the body-fixed frame relative to the

inertial frame is defined by a set of rotations about nonorthogonal axes (See chap. 3.2 for

details on that). Thus, it is better to work with angular velocities about the orthogonal

body-frame axes [Mei90]. In fact, this is the frame where these angular velocities are

measured. As a result of that, the equations of motion have to be derived in quasi-

coordinates. The term quasi-coordinates means, that the actual coordinates, where the

angular velocities are the derivative of, cannot be strictly defined. In other words, the

angular velocities cannot be integrated to obtain angular coordinates - hence they are

referred to as quasi-coordinates. Lagrange’s equations in terms of quasi coordinates are

presented in [Mei90] and the associated method of deriving equations of motion is called

the quasi-Lagrange method.

The following chapter describes the principal characteristics of quadrotor-helicopters.

It shows intuitively which movements are possible. Sec. 3.2 shows the quadrotor-helicopter

in the reference frames used for modeling. Also transformations between these frames are
1A list of some can be found in [KKP09]
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presented. The second section (3.3) uses the formalism of Lagrange to find the equations

of motion in an inertial frame. In Sec. 3.4 a quasi-Lagrange method is used to derive the

equations of motion in the body fixed frame. Finally, in sec. 3.5, a linearized model is

presented, which is suitable for parameter identification. The validity of this model in a

certain range is verified.

3.1 Quad-rotor Helicopter Characteristics

A quadrotor rotorcraft is characterized by its four rotors, which are typically aligned in

a square, so that all rotors rotate in one plane. The cross structure connecting the four

rotors with the base is typically thin and light. In the case of the Microdrone, it is part

of the chassis which is made of carbon. All the propeller axes are perpendicular to the

plane of the cross structure, so they are parallel and fixed. Each propeller is driven by

a brushless DC-motor with external rotor. The blades of the rotors have fixed pitch and

their air flows point downwards. Such quadrocopters have some advantages compared to

conventional helicopters: Their mechanical structure is much simpler and most of the parts

are rigid. In a conventional helicopter, there is a swashplate that is able to manipulate the

attitude of the axis of rotation of the main rotor. Furthermore, pitch hinges, scissor links,

teeter hinges, etc. make the rotor head of a conventional helicopter a complex mechanical

assembly. In a conventional helicopter, a separate actuator is needed to compensate the

yawing moment of the main rotor, namely the tail rotor. As the front and back propellers

rotate clockwise and the other two counter-clockwise, yawing moments cancel out at a

common angular velocity in the quadrotor-case.

Fig. 3.1 shows the quadrotor at hover. ΩF ,ΩR,ΩB,ΩL stand for the front, right,

back and left propeller angular velocities, respectively. For hovering, all those must be

equal to an angular velocity ΩH . At this angular velocity, the rotors produce the amount

of thrust that compensates the gravitational force. The straight red arrows mark the

airflow direction. Its size should principally show the amount of thrust created by a rotor.

b = {ebx, eby, ebz} is the body fixed frame.

The four basic movements of a quadrotor-helicopter are:

Throttle is a collective input variation. Change in throttle will cause all rotors to

change their rotational velocity by a similar amount. Within the operating range, higher

rotational velocity will create more thrust and thus accelerate the drone in −ebz direction.

Lower rotational velocity will create less thrust and not be able to compensate the whole
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eb
x

eb
z

eb
y

ΩF

ΩL

ΩR

ΩB

Figure 3.1: Schematic quadrotor at hover

gravitational force any more. As a result, the quadrotor will accelerate downwards. This

relation is shown in fig. 3.2, where ∆T > 0.

v̇z

ΩH −∆T

ΩH −∆T

ΩH −∆T

ΩH −∆T

Figure 3.2: Throttle movement

Rolling movement in positive roll-angle direction is achieved by increasing ΩL and de-

creasing ΩR. Again, the thrusts will be affected and create a torque around the body-frame

x-axis. The overall thrust keeps constant. See fig. 3.3 for a sketch. Note that with a posi-

tive roll angle the direction of the collective thrust will change. Hence, the component that

acts against the gravitational force will decrease, while a component in lateral direction

will emerge. As a result, the quadrotor will loose height and drift off in starboard-direction.

ΩH

ΩH + ∆R

ΩH −∆R

ΩH

ω̇x

Figure 3.3: Rolling movement
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Pitching movement is a result of differences in the angular velocity between the front

and back rotor. The principal effects are the same as in rolling movement, only the

direction is different. Fig. 3.4 sketches the pitch-command and its results.

ω̇y

ΩH −∆P

ΩH

ΩH

ΩH + ∆P

Figure 3.4: Pitching movement

Interesting to notice is, that the quadrotor principally has 6 DOF: 3 for the position

and 3 for the angles. But, as stated in the paragraph about rolling motion, the roll-input

always effects both, roll angle and starboard lateral motion. The same is valid for pitch

movement. 2

Yawing motion is a result of the collective drag torque of the rotors. Each rotor gen-

erates a drag-torque in counter direction to the propeller rotation. Thus, if you consider

rotation direction as shown in fig. 3.5, then the drag moment vector for the front/back

rotor pair will point downwards. Right and left rotor will thus create a drag torque in

the opposite direction, namely upwards. If the angular acceleration in the front/back pair

is bigger than in the left/right rotor pair, then the resultant moment vector will point

downwards, that is in positive body-frame z-direction. Hence, the angular velocity about

that axis will increase.

ω̇z

ΩH + ∆Y

ΩH −∆Y

ΩH −∆Y

ΩH + ∆Y

Figure 3.5: Yawing movement

2Obviously, the effect of pitch and roll on the altitude can be compensated by increasing the total
thrust.
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3.2 Kinematics

Figure 3.6: The quad-rotor in an inertial frame

Figure 3.6 shows a quadrotor rotorcraft in a right-handed inertial frame, which is

denoted by i = {eix, eiy, eiz}. The vector ξi = (xi, yi, zi) ∈ R3 points from the origin of the

inertial frame i to the origin of the body-fixed frame b = {ebx, eby, ebz}, which is placed at

the robot’s center of mass (COM). In all further derivation, it is assumed that the COM

lies in the same plane as the rotors rotation. ebx is oriented in forward direction, so it is

pointing from the COM to the front rotor. eby is the unit vector in a direction towards the

right (starboard) rotor. Together with ebz, which points down, these three vectors span the

right-handed body-fixed frame. ηi = (φi, θi, ψi) ∈ R3 represents the attitude of the rotor-

craft in a special case of Euler angles. There the orientation of the body frame with respect

to the inertial frame is given by the conventional sequence of rotations in aerodynamics

[Ste04]: The first one is the yaw (ψi) rotation about the vertical inertial axis (eiz) and

denoted as Rψ. This is followed by a pitch (θi) rotation about an intermediate span-wise

axis eiiy , which was rotated about the yaw angle in the first step. The roll (φi) rotation

is about the intermediate centerline axis eiiix . Notice, that, due to the rotation about

intermediate axes, the coordinate system spanned by the rotation axes is not orthogonal!

A rotation matrix has two meanings: For example, Rb
i is the inertial frame expressed

relative to the body frame. It’s second usage is to transform a point from the b-frame to
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the i-frame. This rotation matrix can be computed by

Rb
i = RψRθRφ

=


cψ −sψ 0

sψ cψ 0

0 0 1




cθ 0 sθ

0 1 0

−sθ 0 cθ




1 0 0

0 cφ −sφ
0 sφ cφ



=


cθcψ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ


where cθ stands for cos(θ) and sθ for sin(θ). As this rotation matrix belongs to the

Euclidean group of rotations in 3D (also written as R ∈ SO(3) ), it has some special

properties, where especially orthogonality is very helpful in our case:

• R−1 = RT

• RTR = I

where I is the (3× 3) identity matrix. So we can write down the inverse rotation matrix

Ri
b = Rb

i
T

=


cθcψ sψsθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ


Fig. 3.6 also shows body-frame angular rates. They are denoted by ωb

ib = (ωbx, ω
b
y, ω

b
z) and

are exactly those measured by the gyroscopes. As in the chapter on navigation & sensing,

the notation means that ωb
ib is the angular velocity of the body frame b (subscript 2)

relative to an inertial frame i (subscript 1) expressed in the body frame (superscript). For

the components of the vector, the subscript denotes the rotation axis. Hereby, x stands

for the ebx axis. So the angular velocities are measured about the orthogonal body-fixed

frame axes. νb = (vbx, v
b
y, v

b
z) is the 3-dimensional vector of body-frame velocities. Its time

derivative are the accelerations measured by the accelerometers of the IMU, except the

gravitational acceleration, which is included in the specific force measured by the IMU.

25



3.2. Kinematics Chapter 3. Modeling

In order to transform this velocity vector from the body to the inertial frame, the

rotation matrix Rb
i is applied:

ξ̇i = Rb
i ν

b

Hence, the matrix Rb
i can also be understood as Jacobian. To simplify matters, the index

specifying the reference frame of a variable is omitted from now on if the meaning of a

variable is clear. For the computation of the transformation from body-frame angular rates

to inertial angular velocities, some more steps are necessary. As the angular rates η̇ are

about non-orthogonal, previously called “intermediate axis”, the following transformation

needs to be done3:

ω =


φ̇

0

0

+ Rφ
T


0

θ̇

0

+ Rφ
TRθ

T


0

0

ψ̇



=


1 0 −sθ
0 cφ cθsφ

0 −sφ cθcφ

 η̇
= Ti

bη̇ (3.1)

The inverse of this transformation matrix is the sought after transformation of body-frame

angular rates to inertial ones.

η̇ = Tb
i ω (3.2)

with
3The same result is achieved by solving Ṙb

i Rb
i

T
= S(ω), where S(ω) means the skew-symmetric matrix

[SHV06]
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Tb
i = Ti

b
−1

=


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ


For small φ and θ both matrices are approximately equal to the unity matrix. Moreover,

notice that Tb
i and Ti

b are not orthogonal. But the situation is even worse: Tb
i is undefined

for a pitch angle of θ = ±90◦. The system approaches an uncontrollable state in this case

[KKP09]. Thus, such high pitch angles are not considered in this work. The fact, that

an uncontrollable state is where θ = ±90◦ can be understood in the following way: All

the forces created by the rotors point in a direction perpendicular to the direction of the

gravitational field. Hence, there is no possibility to influence the height any more, so the

altitude gets uncontrollable. Obviously, that does not mean that there is no maneuver

capable of passing through such a pitch angle: The roll and pitch command could be used

to rotate the throttle vector out of this state.

3.3 Inertial Frame Dynamics

As already mentioned, the rotor-crafts dynamics in inertial frame is obtained via the

formalism of Lagrange [Hof04], [SHV06].

Let the generalized coordinates be

q = (x, y, z, φ, θ, ψ) ∈ R6

Then, the translational kinetic energy of the quad-rotor is given by

KTrans =
m

2
νTν (3.3)

where m is the mass of the robot and ν are the velocities calculated according to relation

(3.1). The rotational kinetic energy is given by
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KRot =
1
2
ωTJω (3.4)

where the inertia tensor J is given by

J =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz


If the mass distribution of the robot body is symmetric with respect to the body frame,

all elements except the main diagonal of the inertia tensor in the body frame are equal to

zero. Furthermore, due to symmetries in ebx and eby direction4, the assumption Jxx = Jyy

leads to another simplification. Actually, even letting J be constant is a simplification.

That is, because when being accurate, also camera tilt influences inertia. However, this

work does not go that far into detail. Hence,

J =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (3.5)

If we assume the robot to be planar, one could still further simplify the inertia tensor

by using the perpendicular axis theorem. That leads to the following, very simple inertia

tensor. The values calculated e.g. in [Bre08] or [PMC06] show, that this assumption is

too rough (although these structures are not geometrically comparable to the Microdrone)

and the moments of inertia tensor defined in eq. (3.5) will be used for further progress.

J =


J 0 0

0 J 0

0 0 2J

 (3.6)

Now that we have defined the kinetic energy of the system, let us proceed with the potential

energy. The gravitational field causes an acceleration in inertial frame eiz direction. Thus,
4Or, in other words: the flyer’s body mass distribution is also symmetric about vertical planes at

ψ = ±45◦.
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V = −mgz (3.7)

where g is the gravitational acceleration, which is assumed to be constant. Then, the

Lagrangian is given by

L = KTrans +KRot − V
=

m

2
νTν +

1
2
ωTJω +mgz (3.8)

= L(q, q̇)

In order to proceed with the derivation of the equations of motion, the generalized forces

need to be defined. Formulating the thoughts from chap. 3.1 in a mathematical way, the

generalized forces and moments in the body-frame are

τ b =



0 0 0 0

0 0 0 0

−1 −1 −1 −1

0 −l 0 l

−l 0 l 0

−qF /tF qF /tF −qF /tF qF /tF




TF

TR

TB

TL


= E · t

=



0

0

uT

uR

uP

uY


(3.9)

where l is the lever arm length from the COM to the rotor center, qF is the torque or

drag factor and tF is the thrust factor. Note, that the gyroscopic torques created by the

propellers’ rotation are neglected here5. This is a quite common simplification, which most

5The gyroscopic torque of each propeller is τP = ω ×
[
0 0 JP Ωk

]T
where k = {F,R,B,L} and JP

is the propeller inertia
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of the referred publications made. The problem with these qyroscopic torques is, that they

depend on the propeller angular rate. Thus, the model would loose input-affinity! See e.g.

[Bou07] for a model where rotor gyroscopic torques are included.

Each thrust Tk with k = {F,R,B,L} is given by

Tk = tFΩ2
k

Details on that topic are given in the chapter about aerodynamics (4.2). In eq. (3.9),

uT , uR, uP , uY stand for the throttle, roll, pitch and yaw input, respectively. τ b is still

expressed in the body frame, so a transformation to inertial frame is necessary.

τ i =

[
Rb

i 0

0 Tb
i

]
τ b

here, 0 stands for the (3× 3) zero-matrix. Now that the Lagrangian and the generalized

forces are defined, we can use the Euler-Lagrange equation

d
dt
∂L
∂q̇
− ∂L
∂q

= τ i (3.10)

to derive the equations of motion in the inertial frame. In this project that was done using

a Maple-Script.

mẍ = (sψsφ + cψsθcφ)uT

mÿ = (−cψsφ + sψsθcφ)uT

m(z̈ − g) = cθcφuT

Mηη̈ +
1
2
Ṁηη̇ =


uR

cφuP − sφuY
−sθuR + cθsφuP + cθcφuY


with
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Mη =


Jxx 0 −Jxxsθ
0 Jyyc

2
φφ+ Jzzs

2
φ (Jyy − Jzz)cφcθsφ

−Jxxsθ (Jyy − Jzz)cφcθsφ Jxxs
2
θs

2
φ + Jzzc

2
θc

2
φ

 (3.11)

which is symmetric and positive definite. It is seen, that especially the translational

equations of motion are pretty simple in the inertial frame. The whole system can also

be written in the well-known matrix-vector form, where a computational efficient way of

computing the matrices is shown in [SHV06, chapter 7.3]:

M(q)q̈ + C(q̇, q)q̇ + g(q) = τ i(q) (3.12)

where the matrices M (inertia- or mass-matrix) and C (Coriolis and centrifugal matrix)

have some interesting properties [SHV06, chapter 7.5], which paves the way for many

control design procedures (e.g. [Kha02], [Bou07], [SHV06]). However, that is not further

investigated here as this is not a task in this project.

3.4 Body-Frame Dynamics

As afore mentioned, the body-fixed frame dynamics need to be treated by the quasi-

Lagrange method. The overall procedure is quite the same: First, kinetic and potential

energy in the body-frame are calculated. Then one can evaluate the Lagrangian and derive

the equations of motion by using a Lagrange’s equation in terms of quasi-coordinates.

As in the inertial frame-case, find the Lagrangian using eq. (3.3), (3.4), (3.7) and (3.8).

But now, see the Lagrangian as

L = L(ξ,ν,η,ω)

According to [Mei90, chapter 2.7], the equations of motion with body-frame derivatives

can be found using
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d
dt

(
∂L
∂ν

)
+ ω × ∂L

∂ν
−Ri

b

∂L
∂ξ

=


0

0

uT

 (3.13)

d
dt

(
∂L
∂ω

)
+ ω × ∂L

∂ω
+ ν × ∂L

∂ν
−Ti

b

∂L
∂η

=


uR

uP

uY

 (3.14)

Again, this was executed using a Maple Script, resulting in

m(v̇x + ωyvz − ωzvy + sθg) = 0

m(v̇y + ωzvx − ωxvz − cθsφg) = 0

m(v̇z + ωxvy − ωyvx − cθcφg) = uT

Jxxω̇x + (Jzz − Jyy)ωyωz = uR

Jyyω̇y + (Jxx − Jzz)ωzωx = uP

Jzzω̇z + (Jyy − Jxx)ωxωy = uY (3.15)

which are the equations of motion in the body frame. Especially the angular dynamics are

simpler here than in the inertial frame. Moreover, they depend on ω, which is measured

in this frame. Also the control forces show up directly in the right-hand sides.

For control design purposes, it is advantageous [KKP09], [Bre08], [Bou07], to express

the equations of motion in a hybrid reference frame. That is, the translational equations

are relative to the inertial frame, while the angular ones reference the body frame. Hence,

the equations of motion for control purposes of quad-rotor helicopters are:

mẍ = (sψsφ + cψsθcφ)uT

mÿ = (−cψsφ + sψsθcφ)uT

m(z̈ − g) = cθcφuT

Jxxω̇x + (Jzz − Jyy)ωyωz = uR

Jyyω̇y + (Jxx − Jzz)ωzωx = uP

Jzzω̇z + (Jyy − Jxx)ωxωy = uY (3.16)
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However, for simulation purposes a more detailed model might be desired. It will come

up, that not just simulation but also parameter identification will profit from a special

extension, namely friction. The type of friction that is acting on the quadrotor at flight is

drag, which is proportional to the squared velocity6. More precisely, that is

fd = cDA
ρA
2
v|v|

where A is the projected area, ρA is the air density (see 4.2), cD is the (shape-dependent)

drag coefficient and v is the velocity of the body relative to the air. Actually, this is the

same as wind would act onto the rotorcraft, but one must think of v being the velocity of

the wind relative to the body frame then. This force already occurred in this text in the

section on aerodynamics (4.2), where it was one of the sources of the rotor torque in blade

element theory7. There, the force was proportional to the squared tangential velocity of

a blade element. Since the tangential velocity is

vt = ω · r

and, in order to find the torque, a further multiplication with the radius is necessary

τd = cDA
ρA
2
ω|ω|r3

Introducing these drag-terms into the generalized force, the equations of motion in the

body frame are:
6The formulas shown are valid for the scalar case only.
7(4.8), the first term
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m(v̇x + ωyvz − ωzvy + sθg) = −cDAB,x
ρA
2
vx|vx|

m(v̇y + ωzvx − ωxvz − cθsφg) = −cDAB,y
ρA
2
vy|vy|

m(v̇z + ωxvy − ωyvx − cθcφg) = uT − cD(AB,z + nAP,z)
ρA
2
vz|vz|

Jxxω̇x + (Jzz − Jyy)ωyωz = uR − cD
n

2
AP,z

ρA
2
ωx|ωx|l3

Jyyω̇y + (Jxx − Jzz)ωzωx = uP − cD
n

2
AP,z

ρA
2
ωy|ωy|l3

Jzzω̇z + (Jyy − Jxx)ωxωy = uY − cD
n

2
Ap,x

ρA
2
ωz|ωz|l3 (3.17)

where n is the number of rotors, AP,z the rotor area, AB,x, AB,y and AB,z are the projected

areas of the base in direction of ebx, e
b
y, e

b
z, respectively.

For high-accuracy dynamics simulation, this model could still be further extended.

[Bou07] describes some possible extensions, such as

• those mentioned in the aerodynamics chapter about forward flight

• propeller gyro effect

• ...

However, the autonomous systems lab at ETH Zürich offers a detailed simulation model

implemented in Matlab/Simulink8.

3.5 Linearization

In order to provide a complete model of a quadrotor helicopter, also the parameters of the

model need to be known. Generally, there are two methods that come to mind:

• Computation by using physical laws. This was done in sec. 4.1 and 4.2.

• Experimental determination of the parameters. In control science, this is called

parameter identification which can be seen as a subdivision of system identification.

In system identification, many methods exist for linear time invariant systems. The

goal in this chapter is to find transfer functions of a linearization of the system equations of

motion (3.17), so that its parameters can be identified. Since the measurements from the
8http://asl.epfl.ch/research/projects/VtolIndoorFlying/documents/NewModel PUBLIC V1.1.zip
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IMU deliver linear accelerations and angular velocities in the body-frame, the following

transfer functions are of interest:

GT,1 : ūT 7→ v̇z

GR,1 : ūR 7→ v̇y

GR,2 : ūR 7→ ωx

GP,1 : ūP 7→ v̇x

GP,2 : ūP 7→ ωy

GY,1 : ūY 7→ ωz

where the inputs ūk with k = {T,R, P, Y } are

ū =


ūT

ūR

ūP

ūY

 (3.18)

=


−1 −1 −1 −1

0 −1 0 1

−1 0 1 0

−1 1 −1 1




Ω2
F

Ω2
R

Ω2
B

Ω2
L

 (3.19)

This is very similar to what is done in eq. (3.9). But, in order to also include the

aerodynamic parameters tF and qF in the identification process, the inputs need to be

defined as shown above. The relation between ūk and uk is given by
uT

uR

uP

uY

 = diag(tF , ltF , ltF , qF )ū

where diag is the (4 × 4) diagonal matrix with the values of the arguments in its main

diagonal. Notice that the inputs and outputs of the sought-after transfer functions ref-
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erence only the body frame. Because of that, it is sufficient to linearize the body frame

equations of motion (3.17) only. The state vector is chosen to be

x = (vx, vy, vz, φ, θ, ψ, ωx, ωy, ωz)T

Inertial frame positions ξ are omitted here, as they do not appear in (3.17) explicitly. In

the well-known form ẋ = f(x, ū) the equations are (see eq. (3.17) and (3.2)):

v̇x = −ωyvz + ωzvy + sθg −
cD AB,x ρA

2m
vx|vx|

v̇y = −ωzvx + ωxvz + cθsφg −
cD AB,y ρA

2m
vy|vy|

v̇z = −ωxvy + ωyvx + cθcφg +
ūT
m
− cD (AB,z + nAP,z) ρA

2m
vz|vz|

φ̇ = ωx + sφtθωy + cφtθωz

θ̇ = cφωy − sφωz
ψ̇ =

sφ
cθ
ωy +

cφ
cθ
ωz

ω̇x = −(Jzz − Jyy)ωyωz +
l tF ūR
Jxx

− cD n AP,z ρA
4Jxx

ωx|ωx|l3

ω̇y = −(Jxx − Jzz)ωzωx +
l tF ūP
Jyy

− cD n AP,z ρA
4Jyy

ωy|ωy|l3

ω̇z = −(Jyy − Jxx)ωxωy +
qF ūY
Jzz

− cD n AP,x ρA
4Jzz

ωz|ωz|l3 (3.20)

An equilibrium is found at9

xE = 0

ūE =
[
−mg 0 0 0

]T
What we are interested in now, is a linear model for small deviations out of this equilibrium,

at which all velocities are zero. Such a model is usually found by building the Jacobian of

(3.21) with respect to x. Since the absolute-operator occurs in f , it is not differentiable

at zero. Moreover, the squared speed drag model is not valid for small velocities. There,

the linear drag dominates, which is modeled by
9w.l.o.g it was assumed that ψE = 0
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fd = −bv

Hence, f simplifies to

v̇x = −ωyvz + ωzvy + sθg −
bx
m
vx

v̇y = −ωzvx + ωxvz + cθsφg −
by
m
vy

v̇z = −ωxvy + ωyvx + cθcφg +
ūT
m
− bz
m
vz

φ̇ = ωx + sφtθωy + cφtθωz

θ̇ = cφωy − sφωz
ψ̇ =

sφ
cθ
ωy +

cφ
cθ
ωz

ω̇x = −(Jzz − Jyy)ωyωz +
l tF ūR
Jxx

− bω
Jxx

ωxl
2

ω̇y = −(Jxx − Jzz)ωzωx +
l tF ūP
Jyy

− bω
Jyy

ωyl
2

ω̇z = −(Jyy − Jxx)ωxωy +
qF ūY
Jzz

− bω,z
Jzz

ωzl
2 (3.21)

The linearized system is then given by

˙̃x = Ax̃+ Bũ

ỹ = Cx̃+ Dũ

with

x = x̃+ xE = x

ū = ũ+ ūE

The system matrices A,B are determined by Taylor expansion and stopping after the

linear term:

A =
∂f(x, ū)
∂x

∣∣∣∣
x=xE
ū=ūE

B =
∂f(x, ū)
∂ū

∣∣∣∣
x=xE
ū=ūE
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A =



−bx 0 0 0 −g 0 0 0 0

0 −by 0 g 0 0 0 0 0

0 0 −bz 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 − bω
Jxx

0 0

0 0 0 0 0 0 0 − bω
Jyy

0

0 0 0 0 0 0 0 0 − bω,z

Jzz



B =



0 0 0 0

0 0 0 0

tF 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 tF l
Jxx

0 0

0 0 tF l
Jyy

0

0 0 0 qC
Jzz



Choosing y =
[
v̇x v̇y v̇z ωx ωy ωz

]T
leads to the following C and D matrices

C =



−bx 0 0 0 −g 0 0 0 0

0 −by 0 g 0 0 0 0 0

0 0 −bz 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


D =



0 0 0 0

0 0 0 0

tF 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Then, application of the Laplace transform and assuming x̃(0) = 0 leads to the well-known

formula
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G = C(sI−A)−1B + D (3.22)

=



0 0 − gtF l
(sJyy+bω)(s+bx ) 0

0 gtF l
(sJxx+bω)(s+by ) 0 0

tF s
s+bz

0 0 0

0 tF l
sJxx+bω

0 0

0 0 tF l
sJyy+bω

0

0 0 0 qF
sJzz+bω,z


(3.23)

where G is the sought-after transfer matrix, which will be used for parameter identification

in chap. 4.3.2.
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4.1 Inertia Calculation

Based on geometrical information about the Microdrone structure1 and rough weight

measurements, an estimate for the systems moments of inertia tensor is calculated. For

simplification, the flyer was divided into 4 simple structures. The inertias of these are

calculated and summed up to get the principal moments Jxx, Jyy, Jzz of the inertia tensor

J. The simple parts were chosen to be:

• Propeller

• Motor

• Arm from the base to a rotor

• Base (contains electronics, battery, ...)

The moments of inertia of each part are calculated about a coordinate system placed

in the part’s COM. Their displacement relative to the body-fixed frame is then treated

using Steiner’s theorem.
1Available at: http://www.microdrones.com/download/md4-200 technical drawing.pdf
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Strongly simplifying, a propeller is modeled as a cylindrical plate with decreasing mass

density [Bre08]. Its weight mP was measured to be 11 [g]. The radius RP = 180 [mm] was

extracted from the technical drawing, the height HP will not be needed for calculation.

Thus, its moment of inertia about a vertical rotation axis passing through its center of

mass is given by:

JP,z =
∫ ∫ ∫

(x2 + y2) ρ(x, y) dx dy dz

=

HP /2∫
−HP /2

RP∫
0

2π∫
0

(r2sin2(α) + r2cos2(α)) ρ(r) r dα dr dh

=
mP

π R2
PHP

HP /2∫
−HP /2

RP∫
0

2π∫
0

1
r

(r2sin2(α) + r2cos2(α)) r dα dr dh

=
mP

π R2
PHP

HP /2∫
−HP /2

RP∫
0

2r2π dr dh

=
2mP

R2
PHP

HP /2∫
−HP /2

R3
P

3
dh

= 2mP

(
RP
3

)
= 0.953 · 10−3 [kg m2]

In step two, a switch from cartesian to cylindric coordinates was performed. The

density was assumed to decrease reciprocal with the radius and π R2
P HP is the volume

of the plate:

ρ(r) =
mP

π R2
P HP r

Due to the perpendicular axis theorem,

JP,x = JP,y =
JP,z

2
= 0.477 · 10−3 [kg m2]
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The conditions for applying the theorem are assumed to be met, since RP � HP . For

all parts from now on, constant mass density ρ is assumed. Furthermore, m = ρV will be

used without being mentioned, where V is the volume of the body.

The motors are modeled as simple cylinders with radius RM = 30 [mm], height HM =

30 [mm] and mass mM = 25 [g]. The integration is shown once more, then it is omitted

since the procedure always remains the same.

JM,x =
∫ ∫ ∫

(y2 + z2) ρ dx dy dz

=

HM/2∫
−HM/2

RM∫
0

2π∫
0

(r2sin2(α) + h2) ρ r dα dr dh

= ρ

HM/2∫
−HM/2

RM∫
0

(r3π + h2 r 2π) dr dh

= ρ

(
HMR

4π

4
+
H3
M

12
R2
M

2
2π
)

= mM

(
R2
M

4
+
H3
M

12

)
= 7.5 · 10−6 [kg m2]

Because of symmetry, JM,y = JM,x. Similarly, the other moment of inertia for this

body can be calculated:

JM,z =
∫ ∫ ∫

(x2 + y2)ρ dx dy dz

= mM

(
R2
M

2

)
= 1.125 · 10−5 [kg m2]

Next, the base - which is also modeled as a cylinder - is tackled. The technical drawing

shows the cylinder radius RB = 82.5 [mm], the height HB = 100 [mm] and the mass was

measured mB = 780 [g]. Hence,
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JB,x = mB

(
R2
B

4
+
H3
B

12

)
= 1.977 · 10−3[kg m2]

JB,z = mB

(
R2
B

2

)
= 2.654 · 10−3 [kg m2]

Again, JB,y = JB,x As last part the arm is investigated. Its length LA = 160 [mm]

and radius RA = 10 [mm] were again taken from the technical drawing. With a mass of

mA = 20 [g] it is very light. In order to use the following values as moment of inertia

for the arm in all its orientations relative to the body frame, different values need to be

chosen for rotation about the ebx or eby axis. JA,z is the moment of inertia about the major

axis of the cylinder.

JA,x = mA

(
R2
A

4
+
L3
A

12

)
= 4.317 · 10−5[kg m2]

JA,z = mA

(
R2
A

2

)
= 1.0 · 10−6 [kg m2]

As for the other bodies, JA,y = JA,x.

Now, Steiner’s theorem will be used to move the parts where they belong relative to

the body-frame coordinate system. Summed up, they give the overall moments of inertia

of the quadrotor. First, the inertia about the ebz axis is taken into account. It consists of

the inertia of ...

• the base about its z-axis with a vertical offset from the origin of the body-frame

DB,z = 20 [mm]

• four times the arm rotating about its x-axis in distances DA,z and DA,r to the body-

frame origin. According to the technical drawing, the radial offset DA,r = 150 [mm]

and the vertical offset DA,z = 25 [mm].

• four times the motor rotating about its z-axis in distances DM,z = 15[mm] and

DM,r = 260 [mm].
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• four times the propeller at a radial offset similar to that one of the motor. There is

no vertical offset, since we assumed the overall COM, where the body-frame origin

is placed to coincide with the rotor plane.

Jzz = JB,z + 4(JA,x +mAD
2
A,r) + 4(JM,z +mMD

2
M,r) + 4(JP,z +mPD

2
M,r)

= 18.628 · 10−3 [kg m2]

Similarly, the moments of inertia about the other axes are computed. Remember that,

because of symmetry, Jyy = 2Jxx.

Jxx = JB,x + 2
[
JA,y +mA(D2

A,r +D2
A,z)

]
+ 2(JA,z +mAD

2
A,z) +

+2
[
JM,x +mM (D2

M,r +D2
M,z)

]
+ 2(JM,x +mMD

2
M,z) +

+2(JP,x +mPD
2
M,r) + 2JP,x

= 9.428 · 10−3 [kg m2]

Notice, that for the simplified structure of the Microdrone, Jzz ≈ Jxx. Thus, the use

of the perpendicular axis theorem is a good approximation in (3.6).

4.2 Aerodynamics

The basic idea of rotors is that they accelerate a mass of air so that the resultant thrust

is a reaction to that acceleration. This principle is utilized for actuation of quad-rotor

helicopters and rotary-wing aircrafts in general. This section intends to show how thrusts

and moments are created, so they can be used in the dynamical model of the quadrotor.

Mainly, the theory of vertical flight will be considered.

The goal of this chapters is to describe, which forces and torques are created by a

rotating propeller, and how. Here, especially two quantities are treated, namely thrust

and drag torque. Fig. 4.1 shows how they act on a propeller.

This chapter is based on [BDB01, chapter 2], but also [Wat04], [Fay01] and [Bre08].

In section 4.2.1, actuator disk theory will deliver general relations between thrust,

torque, pressure and velocities. Blade element theory in sec. 4.2.2 will be used to find for-

mulas to calculate thrust and drag coefficient. Finally, considerations concerning forward

flight are made.
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ΩP

Q

T

Figure 4.1: Thrust T and torque Q created by a propeller rotating with angular velocity
ΩP

4.2.1 Actuator Disk Theory

It is possible to conceive of an ideal hovering rotor as an actuator disk that accelerates

air downwards and creates thrust as a reaction. This idealization avoids consideration of

constructional details and makes the following assumptions:

• The thrust is uniformly distributed over the rotor, which is modeled as disk. At this

rotor disk, a sudden jump of pressure ∆p happens.

• No rotation or swirl is imparted to the flow.

• The slipstream of the rotor is a defined mass of moving air. Outside, the air is

undisturbed.

Nevertheless, it is very useful to deliver principal relations that are useful for modeling.

Fig. 4.2 shows this actuator concept. Vc is the climb velocity, p∞ is the static pressure

(atmosphere pressure), p is the pressure right above the rotor. As the air approaches the

rotor, it accelerates to Vc + vi at the rotor, where vi is called the induced velocity. The

airflow must be continuous. Hence also the velocity is continuous at the rotor, but there

is a sudden change of pressure ∆p, which is responsible for the rotor thrust

T = ∆pA (4.1)

where A = πR2
P is the rotor disk area. As the rotor of the Microdrone generates no

thrust at its center (where the motor is placed), this definition of the rotor area is a further

simplification. Bernoulli’s equation for unsteady flow is

p+
1
2
ρAq

2 + ρA
∂ϕ

∂t
= const. (4.2)
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p∞ Vc

Vcp∞

p

p + ∆p Vc + vi

R1

R

R2C
on

tr
ol

V
ol

u
m

e

Pressure

p2 Vc + v2

Figure 4.2: Actuator Disk Theory: Air stream passing through a tube (left) and pressure
(right). The horizontal dotted line shows the position of the rotor.

where p stands for the pressure, q is the local airflow velocity, ρA is the air density

and ϕ is the velocity potential2 of the airflow. In a far distance from the wake, q and ϕ

tend to zero, hence

p+
1
2
ρAq

2 + ρA
∂ϕ

∂t
= p∞

Since only the vertical component is important for the further investigations here, the

vector notation is omitted from now on.

If we apply Bernoulli’s equation to points above and below the rotor, respectively, then
2This potential describes an inherent order of a velocity field, namely that it is vorticity-free. So,

∇×ϕ = 0 and q = ∇ϕ. The usual symbol for that is φ, but in order to avoid conflicts with the roll angle,
ϕ was chosen.
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p∞ +
1
2
ρAV

2
c = p+

1
2
ρA(Vc + vi)2

p+ ∆p+
1
2
ρA(Vc + vi)2 = p∞ +

1
2
ρA(Vc + v2)2

If the first equation is subtracted from the second one and p2 = p∞ is assumed, then

∆p = ρA(Vc +
1
2
v2)v2 (4.3)

The velocity of the airflow leaving the control volume is higher than the undisturbed

velocity Vc. Thus, the mass per unit time leaving the control volume is higher than that

one entering. From that follows, that there must be a flux through the cylindrical sides of

the control surface, which is

Q̄ = πR2
2v2

The total mass entering and leaving the control surface are, respectively:

ρAπR
2
1Vc + ρAπR

2
2v2

ρAπ(R2
1 −R2

2)Vc + ρAπR
2
2(Vc + v2)

Thus, the rate of change of momentum in axial direction is

ρAπ(R2
1 −R2

2)V 2
c + ρAπR

2
2(Vc + v2)2 − ρAπR2

1V
2
c + ρAπR

2
2v2Vc

= ρAπR
2
2(Vc + v2)v2

According to Newtonian mechanics, this must be equal to the total force in axial

direction, which consists of the rotor thrust plus the pressure forces at the ends of the

cylinder:

T + πR2
1p∞ − π(R12 −R2

2)p∞ − πR2
2p2 = ρAπR

2
2(Vc + v2)v2
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Continuity of flow requires that the flow through the rotor plane and the control volume

bottom are equal

ρA(Vc + vi)A = ρA(Vc + v2)πR2
2

Using (4.1) and the previous two equations,

∆p = ρA(Vc + vi)v2 + (p2 − p∞)(Vc + vi)/(Vc + v2)

assuming p2 = p∞ and equating with (4.3) gives

vi =
1
2
v2

Using this equation, (4.3) and (4.1), the thrust is given by

T = 2ρAA(Vc + vi)vi (4.4)

At hover, the climb velocity Vc is zero and also the thrust is known to be TH = mg
4 ,

as four rotors have to carry the weight of the whole robot. Hence, the induced velocity at

hover can be calculated using

vi =
√

mg

8 ρA A

= 3.1109[ms−1]

The overall mass of the quadrotor is 0.964[kg], the propeller radius is RP = 180[mm],

and the (dry) air density ρA = 1.2[kg m−3], which is approximately the value at 20[◦C]

and 101.325[kPa]3.

4.2.2 Blade Element Theory

Actuator disk theory delivers relations between induced velocity and thrust. For this work,

the relation between rotational velocity Ω and thrust and torque are of special interest.

Blade element theory delivers such relations.

Fig. 4.3 shows a blade element and the associated forces. The blade element shown is

the profile of width dr of a blade at a radius r from the rotation axis. θP is the geometric
3According to International Standard Atmosphere (ISA)
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Ωr

V
c
+

v i

θP

φP

dT
dL

dD

φP

W

Figure 4.3: Force components on blade element

pitch angle relative to the rotation plane. The climbing velocity is denoted Vc again, and

the local induced velocity is vi. ΩP is the rotational velocity of the rotor. The direction of

the flow relative to the rotational plane spans an angle φP , which is usually called inflow

angle. Assuming small φP ,

φP ≈ tan(φP ) =
Vc + vi

ΩP r

The lift force of the blade element is

dL =
1
2
ρAW

2CLc dr

≈ 1
2
ρAΩ2

P r
2CLc dr

where W 2 ≈ Ω2
P r

2 due to small φP . CL is the lift coefficient and c the blade chord.

The lift coefficient is given by

CL = aαP = a(θP − φP )

For the lift slope a [BDB01] suggests a value of 5.7. Because of the small angle as-

sumption concerning φP , it follows that dT ≈ dL and the total thrust can be calculated

by integrating the thrust created by the blade elements over the whole radius and multi-

plication with the number of blades b:

T =
1
2
ρA a b Ω2

P

RP∫
0

r2(θP − φP ) c dr (4.5)

Defining λc = Vc/ΩP r, λi = vi/ΩP r and x = r/RP and further assuming constant
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chord, induced velocity and pitch along the whole radius, then (4.5) can be written as

T =
1
2
ρA a b Ω2

P R2
P

[
1
3
θP −

1
2

(λc + λi)
]

The thrust coefficient

tc =
T

ρA s A Ω2
P R2

P

(4.6)

where s = bc/πRP is called rotor solidity is thus given by

tc =
a

4

[
2θP

3
− (λc + λi)

]
=

a

4

[
2θP

3
− (Vc + vi)

ΩPRP

]
Observe in the second equation that the thrust coefficient decreases with increasing

climb speed and induced velocity.

At hover, the thrust coefficient is simply

tc =
a

4

[
2θP

3
− vi

ΩHRP

]
(4.7)

since the climb velocity is zero. ΩH stands for the angular rate of the propeller at

hover here. According to [BDB01], the above formulas are sufficiently accurate even if

there is linear twist and constant chord, which is approximately the case for the propellers

of the Microdrone.

At hovering, ΩH is known from experiments4 as shown in tbl. 4.1.

Experiment ΩH [s−1]
2 166.90
3 169.08
4 170.81

Table 4.1: Propeller rotational velocity ΩH at hover, Experimental results

Taking the mean, ΩH evaluates to ΩH = 168.93[s−1]. Propeller chord c = 35[mm],

and blade pitch θP = 20[◦] were extracted as mean values from the technical drawing.

The induced velocity at hover is known from the previous chapter. Hence we are able to
4See appendix C
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compute the thrust coefficient using (4.7):

tc = 0.18582

Equation (4.6) delivers the following result

tc = 0.16912

The difference between those two is assumed to originate from the inaccuracies in

measurements and simplifications made in the derivation of the formulas used, especially

the measurements of θP , c and the assumptions of a whole disk as rotor area. The effective

area of the rotor of the Microdrone is more like a circular ring. Furthermore, the blade

chord of a Microdrone rotor-blade is far from constant.

In order to find the thrust factor as used in the equations of motion of the drone, the

mean of these two values is used:

tF =
T

Ω2
P

= tcρA s A R2
P

= 8.694 · 10−5[kg m]

In a similar manner, the relations concerning the torque can be determined. Fig. 4.3

shows that the torque dQ of a blade blade element is

dQ = r(dD + φPdL)

=
1
2
ρA Ω2 r3 c(δ + φP

tc
6

) dr (4.8)

where δ is the local blade section drag coefficient. δ is assumed to be constant and

[BDB01] suggests a value of δ = 0.012. Eq. (4.8) can be integrated to find the rotor torque

Q =
1
2
ρAbcΩ2

PR
4
P

δ
4

+

RP∫
0

r3φP
tc
6
dr

 (4.9)

The torque coefficient is defined by
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qc =
Q

ρA s A Ω2
P R3

P

(4.10)

If constant induced velocity is assumed, then φP = (λc + λi)RP /r and (4.9) gives

qc =
δ

8
+
λc + λi
tc

which can be evaluated at hover

qc =
δ

8
+
λi
tc

= 0.578

Again, for the equations of motion a torque factor is needed, that is a relation in the

form

qF =
Q

Ω2
P

(4.11)

= qcρAsAR
3
P (4.12)

= 5.097 · 10−5[kg m2] (4.13)

4.2.3 Considerations Concerning Forward Flight

In forward flight, the thrust gets obviously dependent on forward speed. Moreover, the

angle of incidence of the rotor plane about an axis perpendicular to the rotor axis and

the forward speed vector influences the induced velocity and thus also the thrust. An

additional drag force, acting in rear direction, occurs which is called H-force. Also the

equations for the torque are affected. Although the structure of the equations for thrust

and torque coefficient principally remains the same, a further treatment here would go

too much into detail. According to many of the publications mentioned in the chapter

about dynamical modeling, the relations in vertical flight deliver sufficiently accurate re-

sults for control design. However, for simulation purposes the model should principally

be as accurate as possible. For highly accurate simulation, here is space for further im-

provements. [BDB01, chapter 3] delivers the theory and [Fay01] its application in the

mesicopter-project.
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4.3 Experimental Parameter Identification

In this work, the experimental parameter identification follows two goals: The first one

is the obvious one - namely to find parameters that were not calculated or could not be

calculated. The Microdrone is a commercial quadrotor helicopter and by far not all data of

the real device were known. For example the parameters of the motor were not considered

at all in the previous sections. Also the coefficients concerning drag were not topic until

now. In this chapter, system identification methods will be used to get estimates for these

values. The second goal is model verification. When all parameters of the model are fixed,

it is necessary to show, that these and the model itself are valid generally and not just

for the experiment which was used for parameter identification. However, this won’t be

possible for all the maneuvers that could be flown with a quadrotor helicopter. But at

least for the range, where the linearization done in chapter 3.5 is a good approximation.

LabVIEW VIs and the LabVIEW System Identification Toolbox were used for

identification[Nat04]. The sample time of all measurements was 100[Hz].

4.3.1 Brushless DC-Motor Model Parameters

The Microdrone is equipped with four brushless outrunner DC-motors that are directly

connected to the rotor (no gearbox). According to Microdrones GmbH., the angular

velocity stays below a maximum value of 2000[rpm]. The only known signals related to

the motor are a signal named PWM that is interpreted as input here, and an angular

velocity signal. Actually, the signal named PWM is no PWM-signal but a discrete signal

between 0 and 255. The angular velocity signal is in the same range, where 0 stands for

0[rpm] and 255 for 4250[rpm]. A first order transfer function from the PWM-signal to

angular velocity was sufficient to model the dynamics between these two signals:

GM (s) =
1.08

1 + 0.165s
(4.14)

Fig. 4.4 shows the input signal (PWM, black, [1]), the output signal (propeller angular

velocity, red, [s−1]) and the simulated response of the identified transfer function model

(4.14). The data from experiment 4b was used here.

Fig. 4.5 shows the same signals as the previous figure, but at a completely different

experiment and a different engine. According to the good match, the model is assumed

to be valid.
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Figure 4.4: input (PWM, black, [1]), output (propeller angular velocity, red, [s−1]) and
simulated output (propeller angular velocity, green, [s−1]) of the front motor
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Figure 4.5: input (PWM, black, [1]), output (propeller angular velocity, red, [s−1]) and
simulated output (propeller angular velocity, green, [s−1]) of the rear motor

4.3.2 Quad-Rotor Helicopter Model Parameters

The identification of the parameters of the quadrotor helicopter model was also done us-

ing the LabVIEW System Identification Toolbox. Several VIs were used for preprocessing,

identification and plotting. The principal procedure was the same for all of the identified

transfer functions: First, the input signals were computed according to (3.19). The mea-

surements from the IMU are subject to errors (see sec. 2.2.2.1), which are corrected in the

second step5. Then, the input and output (stimulus and response) signals were cut. This

was necessary to obtain a subset of the signals, where the linearization from chap. 3.5

is valid. Afterwards, these signals were filtered using a phase-lag free 6-th order lowpass

filter with its cutoff frequency at 40[Hz]. After these preprocessing tasks, the ultimate

system identification was executed.
5However, no correction of earth rotation was done for the gyros. Its influence on the identification

result was considered to low.
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Throttle Now, the transfer function from the throttle input ūT to the z-accelerometer

that measures v̇z is of interest. According to (3.23), this transfer function is

GT =
tF s

s+ bz

Fig. 4.6 shows a comparison of the measured and two simulated signals of v̇z. The

black signal is the measurement and the red signal is a simulation of the transfer function

GT,i as it was found by the identification algorithm, excited with the same stimulus6. In

green, a simulation of the transfer function GT,c can be seen. For tF , the value calculated

in the chapter on aerodynamics was used and bz was set to zero.

GT,c =
8.694 · 10−4s

s

GT,i =
−1.59837 · 10−4 + 8.34167 · 10−5s

2.77634 + s

In case of GT,c, the dynamics reduces to a memoryless gain between input and output.

Notice the disturbance between sample 1050 and 1200: Here, Experiment 3 was used and

this is exactly the time when the drone does the angular movement in yaw-direction. This

influence on the z-dynamics is not contained in the model.
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z-acceleration: measured (white), identified & simulated (red), calculated & simulated (green)

Figure 4.6: Throttle identification (accelerations in [m/s2], time in samples [1])

6The fact, that the system models were excited with the same stimulus as the real system is omitted
from now on.
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Roll According to the transfer matrix G (3.23), the transfer function from the roll input

ūR to the acceleration in y-direction v̇y is given by

GR =
gtF l

(sJxx + bω)(s+ by)

Since Jxx, by, bω > 0, the final value theorem of the Laplace transformation is applicable

and delivers

g∞ =
gtF l

bybω
(4.15)

for the static gain. The transfer function determined by the identification algorithm is

GR,i =
7.62631 · 10−5

1 + 0.24998s+ 1.11583 · 10−5s2

with a static gain of

g∞ = 7.62631 · 10−5

using calculated values and assuming by = bz the value of bω can be computed using

(4.15)

bω = 1.0473[kg/s]

Then, a transfer function involving the calculated values is given by

GR,c =
9.81 · 8.694 · 10−5 · 0.26

(9.428 · 10−3s+ 1.0473)(s+ 2.77634)

Fig. 4.7 shows a comparison of the measured and two simulated signals of v̇y. The

black signal is the measurement and the red signal is a simulation of the transfer function

GR,i as it was found by the identification algorithm. In green, you see a simulation of the

transfer function GR,c. The parameters of this transfer function were partly determined

through this identification process using data from experiment 4a. Hence, for model

verification this transfer function must also be compared with real-world data from a

different experiment. Fig. 4.8 shows this verification, using data from experiment 4.

Pitch The transfer function from the pitch input ūP to accelerations in x-direction v̇z is
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Figure 4.7: Roll identification (accelerations in [m/s2], time in samples [1])
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Figure 4.8: Roll verification (accelerations in [m/s2], time in samples [1])

GP = − gtF l

(sJyy + bω)(s+ bx)

Assuming Jyy = Jxx and bx = by, then this transfer function is, except for the sign,

equal to GR. Hence, the negative of GR,c can be used for verification

GP,c = −GR,c

Although not necessary, identification was executed and delivered the transfer function

GP,i =
−6.23695 · 10−5

1 + 0.111082s+ 6.67218 · 10−5s2
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A comparison of v̇z measured and the response of the two transfer functions GP,c and

GP,i is shown in fig. 4.9
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Figure 4.9: Pitch verification (accelerations in [m/s2], time in samples [1])

Yaw The transfer function from the yaw-input ūY to angular velocity around the body-

frame y axis ωz is

GY =
qF

Jzzs+ bω,z

Now, the same procedure as in the roll-case is used: Since Jzz, bω,z > 0, the final value

theorem of the Laplace transformation is again applicable and delivers

g∞ =
qF
bω,z

for the static gain. The transfer function determined by the identification algorithm is

GY,i =
5.4143 · 10−5

1 + 0.774194s

with a static gain of

g∞ = 5.4143 · 10−5

Because the drag factor qF is known, the friction coefficient bω,z can be calculated

bω,z = 0.94135[kg/s]
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Using this value, it is possible to form a transfer function involving calculated values

for Jzz and qF :

GY,c =
5.0967 · 10−5

0.018628s+ 0.94135

Fig. 4.10 shows a comparison of the computed transfer functions with measurements.
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Figure 4.10: Yaw identification (angular velocities in [s−1], time in samples [1])

The transfer function containing the calculated values shows no good accordance to

the measured signal. In the parameters of GY,i and GY,c, the biggest difference is noticed

in the gain of the denominator polynomials. Physically, that is corresponding to a higher

moment of inertia Jzz. In order to choose the proper value for the model parameter, a

second identification was carried out. The results are shown in fig. 4.11.
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Figure 4.11: Yaw verification (angular velocities in [s−1], time in samples [1])
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The response of the transfer function GY,i from the first identification process (green) is

quite similar to the response of the new identification result (blue). Again, the calculated

transfer function (red) shows low performance. In the end, the parameters from the first

identification were taken. It turned out, that the results presented in 4.11 are something

like a worst case and the overall accordance using the new parameter Jzz is good. To

prove that, another example is given in fig. 4.12.
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Figure 4.12: Yaw verification 2 (angular velocities in [s−1], time in samples [1])

Assuming that the identified value of bω,z is right, the new value for Jzz is

Jzz = 0.72879[kg m2]

which makes no sense if it is interpreted as moment of inertia7. But it might be a

result of another physical effect, which is not included in the model.

Finally, the parameters of the linearized model are summarized in tbl. 4.2:

7The value is 39.122-times higher than that one computed in chap. 4.1!
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Parameter Value [Unit] Method Comment
g 9.81 [m/s2] literature
l 2.6 · 10−3 [m] technical drawing = DM,r

tF 8.694 · 10−5 [1] calculated
qF 5.097 · 10−5 [1] calculated
Jxx 9.428 · 10−3 [kg m2] calculated = Jyy
Jzz 7.288 · 10−1 [kg m2] experiments
bx 2.776 [kg/s] experiments = by = bz
bω 1.0473 [kg/s] experiments
bω,z 0.94135 [kg/s] experiments

Table 4.2: Parameters of the linearized model
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Chapter 5

Simulation

5.1 Introduction

Simulation in the context of natural sciences means to virtually execute an experiment,

so that the output approximates a real-world result. At simulation, the experimental

set-up is replaced by a set of mathematical descriptions (models). The development of

such models is topic in section 3. As result, the process of modeling typically delivers a

set of differential equations. Simulation now means to solve these equations for special

input functions and initial values. In the case of virtual environment simulators, also the

environment must be modeled, and the equations describing a behavior must be solved.

Typically, the geometrics of the environment are defined in a world model. Especially

in game based simulators these are also often called maps. Everything in such a map is

subjected to virtual physical relations, where differential equations describing the behavior

of objects in such a virtual world are generated and solved by a physics engine. Altogether,

such a real-world like virtual environment simulator is a very complicated framework. This

chapter is dedicated to describe how that works.

5.1.1 Demands on Multiple UAV Simulation

The simulation of multiple UAVs is a challenging task. On the one hand, multiple dynam-

ical models need to be simulated concurrently in order to detect collisions and simulate

their dynamical effects. Moreover, a lot of sensors - including their models - need to be

simulated in a realistic manner. Furthermore, the possibility to interact (e.g. commu-

nicate) with a world model or among the UAVs are necessities for collaborative mission

simulation. If all these problems are solved, and a simulation is executed immediately
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another problem arises: If all the results are shown as single diagrams over time, it is

very difficult to understand what has happened. Thus, a 3D representation of the results

becomes important.

As simulation should provide easier use of experiments, it has no sense if it takes more

time and effort than the real-world experiment. So setup time and execution duration

should be as low as possible. Also a real-time presentation of the results is preferable in

the context of demonstration.

According to the cDrones project, the simulator should amongst others serve as envi-

ronment for experimentation with flight formation controllers. Thus, an easy way of code

portation from the simulator to the drone should be possible.

To summarize the demands on multiple UAV simulation, especially in the cDrones

project, they are listed here:

• Sufficiently accurate and stable dynamics simulation, including simulation of rigid-

body motion, collisions and sensing.

• The possibility to simulate communication.

• The possibility to add and modify models of sensors, robots and the world.

• 3D representation of the simulation results, favorably in real-time.

• Low execution time.

• Easy transfer of code used in a simulated controller to the real one.

5.1.2 Simulator selection

The above mentioned demands show the necessity of a so called high-fidelity simulator.

According to [BFL08], that is a simulator that is able to physically correctly simulate

the robot, its sensors, and all other objects in the simulation world. Most of the modern

high-fidelity robot simulators use a physics engine to compute the motion dynamics of

the simulated bodies. Famous representatives are Gazebo, USARSim, Webots and Mi-

crosoft Robotics Studio. Gazebo and Webots use the Open Dynamics Engine (ODE) for

physics simulation. USARSim and Microsoft Robotics Studio use engines that are also

used in computer games. USARSim bases on Unreal Tournament from EPIC Games

with KARMA as its physics engine. Microsoft Robotics Studio comes with the PhysX

engine from NVIDIA. All of them are based on rigid body models and support collision
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detection. Gazebo is the only simulator that is completely open-source. It is used for

example in RoboCup and in education, mostly in combination with Player (A server that

provides control and measurement information about the robot to the network). Webots

is a commercial product but uses the ODE. In USARSim, the physics engine and the Un-

real Tournament part of the simulator are commercial, but the part that defines robots,

sensors, worlds and so forth is open source. This is an interesting advantage: For the

graphical design of models, Unreal provides an easy to use editor. The definition of phys-

ical models and their parameters is done using a high-level script language called Unreal

Script. Microsoft Robotics Studio is entirely closed source, supports a lot of programming

languages and provides a whole framework for developing applications for robots. All

these 4 simulators are promising projects for the future and of course actively maintained.

As the robot model in this thesis is a quadrocopter UAV, it is obvious to think about

using flight simulators. A flight simulator has one major goal: To simulate the aerody-

namics and dynamics of an aircraft as accurate as possible. Thus, very high-developed

models exist and higher level simulation algorithms are used. For example, JSBSim is

an open-source flight dynamics model and simulation library, that is used e.g. in Flight-

Gear and OpenEaagles. As default, it uses a 3rd order Adams Bashforth algorithm for

integration. USARSim on the contrary uses an implicit Euler method. Mathengine, the

developers of the physics engine included in Unreal, argue this selection with the stability

of this method. However, in the Microdrones used in the cDrones project, the controller

for the UAVs already exists and is thus not the major research topic. Thus, highly accurate

dynamics simulation is less important. However, the possibility to do accurate simulation

is preserved by a special model, which will be presented later.

As a result of the above considerations, USARSim was chosen as simulator in this

thesis. It fulfills all requirements and already provides a quad-rotor helicopter UAV model

as well as models for the important sensors. In conjunction with some of the Unreal

mod-authoring tools it provides a framework for user-friendly editing of world-, robot-

and sensor models. It’s physics engine (KARMA) is said to provide high overall stability,

sufficient accuracy and real-time execution. Another reason for choosing USARSim is it’s

presence in up-to-date science publications and it’s use in RoboCup.

5.2 Unified System for Automation and Robot Simulation

From the abbreviation USARSim one might first think of urban search and rescue (USAR).

In fact, that is what it was originally developed for by Jijun Wang at University of Pitts-
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burgh: A high-fidelity robot and environment simulator for research in human- robot

interaction (HRI) and multi-robot coordination in USAR scenarios [WLHK05]. However,

USARSim is actually the short form of “Unified System for Automation and Robot Sim-

ulation”, since it meanwhile supports a lot of environments, robots and sensors. Example

applications include the DARPA urban challenge, robotic soccer, humanoids and many

more. Most of this chapter is based on [WB].

5.2.1 System Architecture

Figure 5.1: USARSim System Architecture

The system architecture of USARSim is shown in fig. 5.1. The light gray arrows mark

the propagation of Unreal Data, while the dark green illustrate control data. USARSim

consists of 3 main parts: The simulation server, which is the lower big box with round

corners. It executes simulations and provides network connections for clients. The second

part is called Gamebots, which translates the proprietary Unreal Data protocol so external

clients (such as controllers in the USARSim case) can communicate with the Unreal server.

The Unreal server, Gamebots and USARSim run as one application on one machine.

USARSim and Gamebots could be understood as a special game running on the Unreal

server, where Unreal clients are spectators and controllers are gamers.

The third main part is the client side, which for itself consists of two types of clients.
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One type is the Unreal client, that acts as nothing more than a spectator. It is able to

move through the 3D-environment of the map currently loaded on the server and watch

what happens there, e.g. UAVs flying. That client cannot influence the world at all, and

could be run separately on any machine that is connected to the server (via TCP/IP).

The second type of client is the controller, which is able to communicate with the server

via Gamebots over TCP/IP. Each robot in the world needs its controller. Obviously, the

number of Unreal clients can be different than the number of robots. At the controller

side, the user is completely independent. The only thing that is predefined by USARSim

is the communication protocol.

In addition to these components that are relevant for experimentation, there exist

others that are very helpful at designing own maps and developing own robots or sensors.

One of those is UnrealEd, a map editor that comes with the Unreal Computer game. By

cutting geometric shapes out of the world, that is preliminarily completely filled with mass,

one can build his own environment. By application of textures, surfaces can get a realistic

look, while static meshes can be used to illustrate complex shapes. Another very helpful

tool is WOTgreal, which is an integrated development environment for Unreal script. It

features Unreal class-tree view, code completion, step-wise debugging and much more.

There exist a lot of extensions at the client side as well, e.g. MOAST or Player, but

they were not used in this project.

5.2.2 Controller Interface

The server opens a TCP listener port1 at startup that is configurable in BotAPI.ini. At

maximum 16 clients can connect to the server per default, but this value is also changeable

via BotAPI.ini. Communication via this interface is coded in ASCII conforming the

Gamebots protocol. All the messages that are sent from the server and all commands

that can be sent from a controller to the server are listed and described in the USARSim

manual [WB].

5.2.3 Physics

As already introduced, parts of the physical modeling and simulation are done by a so

called physics engine. In the case of USARSim and the Unreal computer game, the physics

engine is called Karma and was developed by MathEngine [Mat02]. Publications about

USARSim physics validation are found in [PBS07] and [Wan].
1default: 3000
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Within this engine, a rigid body has three representations:

• The dynamics object.

• A collision object, which defines the geometric dimensions of the body. The volume

of the collision object is owned by this body only, no others are allowed to enter it.

• The render object. That is the graphical representation of the body in the pre-

sentation of the simulation. However, a physics simulation can evolve without any

graphical display.

If you consider the simulation of a ball dropping to the floor, this is done by KARMA

using the following steps: First of all consider an initial state, defined by the engineer

like that: Assume that there is a world model defined with a horizontal floor as collision

object. The only field, that is defined within this world is the gravitational one2. The ball

is placed somewhere above the floor, so that gravitational acceleration points downwards

in the direction of the floor. Furthermore, it is in equilibrium and its dynamics object is

well defined, containing definitions of drag, mass, etc. The radius of the spherical collision

object is smaller than the height above the floor. There are no constraints (joints or

contacts) acting on the ball. Such constraints could be of two types:

• Equality constraints are particular restrictions on one or more bodies. For example,

if you consider the ball mounted at one end of the rod of a pendulum, the length of

the rod maintains a constant distance between the joint and the ball.

• Inequality constraints: Consider the connection between the ball and the pendulum

joint as (non-rigid3) cord. The distance between joint and ball must be smaller or

equal to the length of the cord.

Now, as the initial state is defined, the engine proceeds with the following steps (also

called “The KARMA Pipeline” [Mat02, chapter , pp 8]), which are repeated for the whole

simulation time. This KARMA-Pipeline is shown in fig. 5.2

1. Farfield Collision Detection: Karma checks, whether pairs of objects are nearby.

2. Nearfield Tests: For the objects that are nearby another, it is determined whether

their collision object representation overlaps. If it does, the near field test chooses a

set of contact points that represents the intersection for contact force calculation.
2Any other field that can be modeled in KARMA could be included into simulation, too
3so the cord itself cannot be modeled in KARMA
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Figure 5.2: KARMA pipeline

3. Partitioning and Freezing: In partitioning, Karma builds groups of objects that

interact via constraints. Then for each of these groups it checks, whether it is in

perceptible motion or not. If it is not, the dynamics of the bodies in the group is

disabled and their associated collision models are frozen.

4. Basic Constraints Library (BCL): Converts the high-level representation of e.g. hinge

axes and joint positions to a mathematical representation.

5. Kea: Karma uses a Lagrange multiplier method to model constrained dynamics.

As the formalism of Lagrange was used in the chapter about modeling, it is very

interesting to notice that a very closely related method occurs here. The use case

of both methods are the same, namely modeling. But here, the constraints might
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change over time and the model is required to adapt so these constraints are met.

In the formalism of Lagrange (where the Lagrange equations of the second kind

are used), constraints are indirectly contained in the transformation to generalized

coordinates. The Lagrange multiplier method uses the Lagrange equations of the

first kind, where constraints are treated explicitly as extra equations [Hof04]. In

order to maintain these constraints, this method calculates constraint forces. When

these forces are applied, the constraints will be met at the end of a time-step. The

problem at calculating these forces is also referred to as linear complementarity

problem (LCP). The subprogram of Karma that solves such LCPs is called Kea.

6. Euler integrator: Since the constraint forces calculated in the previous step satisfy

the constraints at the end of the time-step, Karma can use an implicit Euler method

to integrate these forces, what makes it very stable. External forces, such as gravity

ore those set by a USARSim controller, are explicitly integrated.

After these steps, graphics are rendered and user interaction is engaged. Then, the cycle

restarts.

Robot models As described in the Karma pipeline, the equations of motion for a body

moving through a virtual world is calculated automatically. Thus, a robot model for

Karma consists of

• A geometric description of the collision objects of the parts of the robot

• Dynamic parameters of each part (mass, drag coefficients, moments of inertia tensor,

...)

• Constraints that model joints

Now it is probably clearer, why the parameters and its physical meaning were that im-

portant for this work. If the representation of the of the Microdrone was only a set of

identified transfer functions, there was no (meaningful) ability of implementing such a

model in USARSim.

Stability Considerations and Simulation Time-Scale The version of Karma used

in USARSim V3.1 does all these calculations in one thread4. Since we consider real-time

execution, the time-step ∆t is lower bounded by the time needed to execute one pipeline
4Newer versions are able to do that multi-threaded
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iteration on one CPU. On a slow computer, this time-step might be so big, that the

simulation gets unstable. This means, that the performance of the computer, where the

simulation is executed, influences the quality and stability of the simulation directly! Of

course, the possibility of running the simulation on a different time-scale than real-time is

possible. Therefore, one has to enter SLOMO x at the Unreal console5, where x is a scale

factor relative to real-time. A factor lower than 1 means, that the simulation is executed

slower.

5.2.4 Coordinate Frames, Units and Scale

Figure 5.3: Unreal and USARSim coordinate frames

Fig. 5.3 shows the two coordinate systems used within the simulator: The one of

Unreal is a left-handed system with its positive x-axis pointing forward, the y-axis to the

right and z upwards. The only difference in the USARSim system is that the positive z

axis is pointing downwards. Thus, it is similar to that one used for modeling in chap. 3.

Unreal uses its own units, called Unreal Units (UU) for length and angle. Conversion

to SI units is done by

1 [m] = 250 [UU ]

π [1] = 32768 [UU ]

USARSim always communicates in SI units with the controllers. All numbers sent by

USARSim are floating point with 4 digits precision. To cause perfect confusion, there is

also a length scale between Unreal and Karma:
5On a German keyboard, the console can be opened and closed with the key “ö”
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50 [UU ] = 1 [KarmaUU ]

More to scale can be found in [WB] and [Wan].

5.2.5 Unreal Script

Unreal Script is the script language of the Unreal engine and is used to create a game logic.

On basis of this language it is possible to build special games and game modifications

(mods) on top of the Unreal engine. USARSim can be understood as such a special

game, and its source code (which is open) is written in this language. Unreal Script is an

object-oriented high-level programming language with the following features6

• a pointerless environment with automatic garbage collection

• a simple single-inheritance class graph

• strong compile-time type checking

• a safe client-side execution ”sandbox”

• the familiar look and feel of C/C++/Java code.

The code is built using a compiler7 which is delivered with the Unreal computer game.

In USARSim, every robot model and every part of a robot is defined by a class. If we

consider a part, then all the dynamic parameters of the part are specified in the associated

class. Also the static mesh, which defines the graphical representation and the collision

object, is set there. All parts in USARSim are derived from the KDPart class, and all

robots from the KRobot class. These abstract classes provide several important methods.

A very important section in a robot class is the function ProcessCarInput(), which is

executed after every Karma pipeline run. There, new commands, that were sent from

a controller are available and can be further processed. This means, that the method

ProcessCarInput() uses the information from the control command to find forces and

torques that act onto the parts of the robot so that the command is executed. In a real-

world scenario, this would be the low-level controller, including actuators, energy storage,
6http://udn.epicgames.com/Two/UnrealScriptReference.html
7UCC.exe
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etc.. Also the sensors, the communication base station, and so forth are programmed in

Unreal script.

5.2.6 USARSim UAV model

USARSim already provides a model for a quad-rotor helicopter, namely the AirRobot8.

Fig. 5.4 shows its graphical representation.

Figure 5.4: Graphical model of the AirRobot in USARSim

As the model is strongly simplified and differs from the equations presented in 3, it is

analyzed here. Moreover this section should give a small insight into defining robot models

in USARSim. The dynamic parameters, geometry and the execution of commands from

the controller are all set in the appropriate Unreal script classes or its configuration files.

The AirRobot class9 itself is derived from several other classes. This hierarchy is shown

in fig. 5.5.

The AirRobot class defines the physical and graphical parameters of the UAV such

as e.g. the static mesh which is displayed, maximum speeds etc. View lst. 5.1 to see

how these parameters are set. In this listing, *** means an arbitrary number of arbitrary

signs. The max***Velocity values define the maximum velocity of the robot in the three

translational dimensions in [m/s] and the yaw rotation in [s−1]. Notice that due to this

definition, the maximal reachable velocity is
√

3 · 5 [m/s], since the velocity reaches its

maximum absolute value for ±5 [m/s] in any of the 3 directions. Dimensions defines
8http://www.airrobot.de/
9found in AirRobot.uc
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Figure 5.5: Derivation hierarchy of AirRobot class

Listing 5.1: AirRobot model parameter definition in AirRobot.uc
1 StaticMesh=StaticMesh ’USARSim_V *** _Meshes.AirRobot.AirRobotBody ’

3 maxAltitudeVelocity = 5;
maxLinearVelocity = 5;

5 maxLateralVelocity = 5;
maxRotationalVelocity = 1.5708;

7

Dimensions =(X=0.99968 ,Y=0.99934 ,Z=0.19382)
9

Begin Object Class=KarmaParamsRBFull Name=KParams0
11 ***

KFriction =0.5
13 KLinearDamping = 2.776

KAngularDamping = 0.94135
15 KCOMOffset =(X=0.0108 ,Y=0.0102 ,Z=0.5)

KInertiaTensor (0) =0.009428
17 KInertiaTensor (3) =0.009428

KInertiaTensor (5) =0.7288
19 ***

End Object
21 KParams=KarmaParamsRBFull ’USARBot.AirRobot.KParams0 ’

the dimensions of the robot. Since the graphical representation of the AirRobot was not

changed, its dimensions are also unchanged here. The other parameters are10:

• KFriction is a contact friction coefficient. It is multiplied pairwise to get contact

friction11

• KLinearDamping is the linear damping or drag coefficient

• KAngularDamping is the angular damping coefficient
10http://wiki.beyondunreal.com/UE2:KarmaParams %28UT2004%29
11http://wiki.beyondunreal.com/UE2:KarmaParamsCollision %28UT2004%29#KFriction
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Listing 5.2: AirRobot model configuration section in USARBot.ini
1 [USARBot.AirRobot]
Weight =1 Payload =0.02 ChassisMass =1

3 JointParts =( PartName =" Counter_Propeller_1", ...
JointParts =( PartName =" Counter_Propeller_2", ...

5 JointParts =( PartName =" Propeller_1", ...
JointParts =( PartName =" Propeller_2", ...

7 MisPkgs =( PkgName =" CameraPanTilt", ...
Cameras =( ItemClass=class ’USARBot.RobotCamera ’, ...

9 Sensors =( ItemClass=class ’USARBot.GroundTruth ’, ...
Sensors =( ItemClass=class ’USARBot.GPSSensor ’, ...

11 Sensors =( ItemClass=class ’USARBot.INSSensor ’, ...

• KCOMOffset is the offset of the center of mass from the origin of the robot

• KInertiaTensor is the moments of inertia tensor

The parameters shown in lst. 5.1 are already the parameters for the Microdrone.

Moreover, the AirRobot class specifies the configuration file for the class12. There (see

lst. 5.2), some other properties of the robot are defined. The advantage of parameters

defined in the ini-file is, that no recompilation of the associated class is necessary after

these values are changed.

Here, the parameters Weight and Payload do not influence the dynamical behavior

of the model at all, so they are dummy parameters. ChassisMass is the mass of the

whole robot model without propellers. The JointParts parameter is used to place the

Propellers13 relative to the Chassis, it gives the parts a name and sets the Unreal Script

class, that implements the part. MisPkgs and Cameras are not of interest here and the

parameter Sensors defines which sensors should be plugged where on the robot. Again,

also the implementing class is specified.

Model instantiation and control A model can be instantiated in an Unreal map in

the following way: First, the Unreal server must run with a map loaded. Then, a client can

connect to the server. After such a connection is established, the server sends a so-called

NFO-Message. A client should not send commands before receiving this message. The INIT

command is used to spawn a robot in the map:

INIT {ClassName USARBot.AirRobot} {Name R1} {Location -9.76,61.45,-0.7}

12which is USARBot.ini
13Those are defined in Propeller.uc
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{Rotation 0,0,0}

Here, the linefeed was only introduced for readability. Every command must, according

to the Gamebots protocol end with carriage return and linefeed symbols. The ClassName

tells USARSim which robot model to instantiate. Name is an arbitrary name, Location

and Rotation define the initial robot pose14 relative to the map origin in [m] and [rad],

respectively. Such spawning poses are typically delivered with the map or determined by

using the GETSTARTPOSES command.

A controller can fly the AirRobot model by sending DRIVE commands. Such a command

could look like this:

DRIVE {AltitudeVelocity 1.5} {LinearVelocity 0.1}

Given these velocities, the model must provide equations to calculate the forces and torques

and their point of application in order to achieve these velocities. In reality, a low-level

controller would adjust the angular velocity of the propellers, so that the forces created

by the rotors are able to reach and maintain the desired velocities. But in this case, the

complicated way of designing a controller was omitted. Instead, the model was designed

to represent a very simplified desired behavior only. For the cDrones project this situation

is preferable, because the real UAV (Microdrone) is already controlled as well and its

controller is unknown.

In this simplified model, a force and a torque, that act on the center of mass are

calculated. The implementation of this calculation is found in RotaryWingRobot.uc and

is done in the following way:

flin = 5.05 vLinear

flat = 5.05 vLateral

falt = 5.05 vAltitude + 49.02

where the values for v are those specified in the DRIVE command. Due to a forum entry

on the sourceforge-USARSim page15, the value 49.02 as all other constants in this model

are results of experiments and the original idea was to implement a lookup table, which

was never completed. These constants were written directly in the code (hard-coded, no
14A pose specifies the complete state of a robot.
15http://sourceforge.net/projects/usarsim/forums/forum/486389/topic/1741045?message=4326574
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variable name or anything helpful was given). From these equations, one can estimate

that 49.02 stands for the hover-thrust of the AirRobot. The forces in the above equations

are exposed a rotation about the yaw angle only, before they are applied to the COM of

the body by Karma.

The torques acting on the UAV are calculated in the following way: At first, set-point

pitch and roll angles are computed:

θset = 0.0872665 vLinear

φset = 0.0872665 vLateral

Then, the torques rotating the robot in pitch direction is given by

τProp =
falt
8

l

τθ =


0 if |θset − θactual| < 0.02

−τProp if θset > θactual

τProp else

where l is the distance between a rotor and the COM. Again, the constants are not

described. This torque is just something like a show, it does not influence the robots

translational dynamics at all. Its only use is to make the UAV model tilting to fake the

graphical impression of real dynamics. Identically, the torque around roll is computed and

applied. The yaw-torque is

τψ = 5.25 vRotational

where vRotational is the RotationalVelocity parameter of the DRIVE command.

However, the model shows good stability properties. If the parameters of the model

(which are in this case the hard-coded constants) are adjusted, then the behavior of the

real Microdrone could be approximated in a sufficiently accurate way. The situation turns

out to be even better: The weight of the AirRobot is approximated by 1[kg], so that

there is no need to change the hover-thrust. By the way, the value 49.02 is equal to the

gravitational force in [KarmaUU ]. Fig. 5.6 shows an experiment, where the USARSim
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AirRobot model is commanded to accelerate to 5 [m/s] (the ripple comes from numerical

derivation). As this figure proves, the value is reached and there is no need to change

the AirRobot model at all in order to match the specifications of the Microdrone. For

yaw-commands, the experiment delivers similar results. Pitch and roll angle were not

investigated, since they do not influence dynamics anyway. Obviously, the rotation of the

propellers has nothing to do with dynamics, too and is also done for graphics only.
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Figure 5.6: AirRobot model verification

5.2.7 USARSim Sensor Models

USARSim provides a lot of sensors, where only those used in this project are introduced

here. The problem of accurately simulating the whole navigation system was already

mentioned in sec. 2.2.

5.2.7.1 Ground Truth Sensor

This is a sensor, that delivers exactly those poses of the UAV that were calculated by

the simulator, that is where the robot actually is placed in the world. In real-world, this

sensor obviously does not exist.

5.2.7.2 GPS Sensor

The details to the GPS Sensor of USARSim are described in [BC08].
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Listing 5.3: GPS sensor configuration in USARBot.ini
1 maxNoise =5
minNoise =1

3 ScanInterval =0.25
...

Satellite positions Because of numerical problems with Unreal Script, the developers

were not able to use SGP4 for satellite tracking (see sec. 2.2.1). Instead, a look-up table

was generated containing satellite positions over time, which is stored in a configuration

file that is readable for Unreal script. For large time steps, this method does not reflect

realistic satellite positions, but reduces computational burden.

Signal and noise As introduced in sec. 2.2.1, real GPS receiver precision depends on

the number of satellites, their geometric arrangement (i.e. the dilution of precision) as

well as other influences (e.g. multi-path effect). Thus, as a first step, all satellites with

an elevation angle lower than 5 degrees are discarded. Secondly, ray tracing is applied to

eliminate more of the observed satellites. Depending on the number of satellite signals

received, a special amount of Gaussian noise is added to the position measurements. This

amount is configurable using the USARBot.ini-file. In section USARBot.GPSSensor, which

is shown in lst. 5.3, the values for maxNoise and minNoise can be configured16. These

specify the triple of the standard deviation used in the case with 4 and 12 satellites

respectively. If the number of satellites seen is somewhere in between, the sensor linearly

interpolates between these max and min values. The ScanInterval-parameter specifies

the sample time of the sensor in [s].

Flat earth assumption and position reference To reduce computational complexity,

the developers of the sensor assumed earth to be flat and a linear relation between longitude

(λ) and latitude (φ) angles and X and Y USARSim map-coordinates that is

X[m] = 111200 ϕ[deg]

Y [m] = 71670 λ[deg]

For this project, the absence of an altitude measurement is one of the major drawbacks
16The sensor including altitude measurement is configurable in cDrones.ini
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of this sensor, although the flat earth assumption holds. Thus, the sensor implementation

was extended by an altitude measurement17, which was implemented as ground thruth

height plus noise. For the mapping of a real-world location to the virtual one three

methods are possible. For the method done in this project, UnrealEd was used to place

a NavigationPoint (which is a special Unreal script object) somewhere in the map. Then,

the latitude and longitude of this point in the world were set. For the other methods and

more details, see sec. B and [WB].

5.2.7.3 Inertial Navigation System

Inertial sensors measure acceleration and rotation rate relative to an inertial reference

frame. But, what is simulated here is not just the IMU: It is the whole inertial navigation

system. As the error behavior of an INS was, because of complexity, not considered in chap.

2.2.2, that isn’t done here either. However, the procedure used to simulate the INS was

inspired by the way how a real INS calculates pose estimates (strapdown computation).

What follows is a short description about how poses are calculated in USARSim INS

Sensor [SMB07].

The simulated INS sensor from USARSim uses a Gaussian random number (Box-Muller

method) generator to add noise to ground truth measurements of angular rate and velocity.

That is a simplification, since white noise is a model of the noise in the acceleration. Thus,

drift should already occur in the velocity. Another interesting discovery was made in the

code of the INS Sensor: The sensor offers a mode where drifting is simulated, and one

where that is not done. In the drifting mode, the mean value for the random number

generator for the noise is shifted by a constant random number, which is generated at

initialization. Let me summarize the model as it exists in USARSim18:

Let
[
x̂k ŷk ẑk φ̂k θ̂k ψ̂k

]
be an initial pose estimate and[

xk yk zk φk θk ψk

]
the ground truth initial pose. Then the algorithm

computing a pose estimate update in the USARSim INS sensor is:

1. Compute angular velocities for current time step using ground truth19:
17This sensor is implemented in the class cDronesGPSSensor.uc.
18This algorithm is not implemented as described in [SMB07]! The true implementation is found in

INSSensor.uc
19Notice that, according to (3.1), this way of computing the body-frame angular velocities is wrong!
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φk
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2. Use a Gaussian noise model N (µ, σ) and ground truth angular rates to update the

orientation estimate:


φ̂k+1

θ̂k+1

ψ̂k+1

 =


φ̂k

θ̂k

ψ̂k

+


ωx,k+1

ωy,k+1

ωy,k+1

 ∆t+


ωx,k+1

ωy,k+1

ωy,k+1

 N (µr,k, σ) ∆t

3. Compute ground truth velocities:


vx,k

vy,k

vz,k

 =
1

∆t



xk+1

yk+1

zk+1

+


xk

yk

zk




4. Use ground truth information to compute the distance traveled during the last time

step:

d =
√

∆x2 + ∆y2 + ∆z2

5. Using the results from the previous steps, calculate the new position estimate:


x̂k+1

ŷk+1

ẑk+1

 =


x̂k

ŷk

ẑk

+ ∆t


vx,k

vy,k

vz,k

+ d N (µt,k, σ)

In the Gaussian noise model, µ and σ stand for mean and standard deviation, respec-

tively. These values can be influenced using a configuration file, which is shown in lst. 5.4.

There, Sigma defines σ in [m]. The value assigned to Noise has no effect. The boolean

parameter Drifting sets wheter the INS sensor simulates drift or not. In non drifting

mode, both values µt,k and µr,k are zero for all time. When Drifting is set to true, µt,k
and µr,k are calculated as follows:
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Listing 5.4: INS sensor configuration in USARBot.ini
Sigma =0.01

2 Noise =0.01
Precision =1000

4 Drifting=false
ScanInterval =0.01

6 ...

µt,k = µt,k−1
a

p

µr,k = µr,k−1
a

p2

where a is a random value in [−0.5, 0.5] and p is the Precision. The value for a is

only computed once when the INSSensor class is instantiated.

5.3 Simulator Middleware

Fig. 5.7 shows the system architecture of the simulator system coupled to the cDrones

software architecture, as it was defined by researchers at Lakeside Labs.

Figure 5.7: The simulator in the cDrones system architecture

The blocks denoted with MEXO are so called Mission Executors, where each of them
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is responsible for sending the appropriate commands to its assigned UAV. Such a UAV

could either be a real or a simulated one. These MEXOs are already part of the cDrones

software architecture and not topic in this thesis. They communicate with the simulator

middleware (SM) via a TCP session using a special protocol, which is defined in appendix

B.

The need for this middle-ware arose by the following reasons:

• Simulating multiple instances of a robot in USARSim.

• A unique interface between MEXO and simulator and MEXO and real UAV.

• Implementation of controllers for way-point-based flight.

• Expandability of the simulation.

• The data sent by the MEXO is a mission plan, that can contain a lot of way-points

and other information needed to execute a mission. Consecutive execution of these

commands is also maintained by the middle-ware.

• Sensor data preprocessing.

5.3.1 Simulator Middleware implementation details

During the progress of this work, two implementations for a middle-ware were developed.

The first one was written in Java, which was then replaced by a LabVIEW implementa-

tion. The choice for LabVIEW was based on its widespread distribution in the field of

robotics and control engineering. As the original intention was to develop a middle-ware

for simulating not just UAVs but also other types of robots, this section is kept a bit more

general.

From a networking point of view, this middle-ware must act as a server to the MEXOs

and as multiple clients to USARSim. Whenever a MEXO connects to this middle-ware

and sends a proper message, it has to open a connection to USARSim and create a UAV

there.

From a control point of view, the SM must select proper control algorithms and execute

them. If the command to be processed is “fly to a special waypoint”, then obviously

another controller is needed than for landing.

From a software development point of view, all of the controllers must be executed

concurrently. Sensor measurements, received via the connection to USARSim, must be
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processed immediately in order to provide the control algorithms with up-to-date data.

Commands must be sent to USARSim at a proper frequency.

To solve all these issues, LabVIEW-VIs were developed that are presented in Appendix

A.

5.3.2 An Alternative UAV Model

In sec. 5.2.6 it was explained, how a DRIVE command is processed to find forces and

torques that are applied to the UAV model using Karma. But if complex calculations

are done within the ProcessCarInput() method of a class, then the time-step of the

whole engine would increase and endanger overall stability. So, the complex computations

must be done outside of this critical thread. The solution is to simply send the 3 forces

and torques as parameters of the DRIVE command. Complex model computations and

control could then be executed in the simulation middleware . Therefore, a new robot

class (cDronesMicrodrone.uc) was created, that simply passed the forces specified in the

drive command on to Karma. Model parameters were set accoding to the parameters

identified in chap. 4. For the DRIVE command to support the new parameters, also the

class USARBotConnection.uc was slightly modified. What remains to be done for using

this model in the cDrones project is:

• validate the results of the simulation of this model

• identify the controller of the Microdrone and implement it in the simulation middle-

ware . Without being able to compute the input forces, this model is useless.

5.3.3 Configuration of the simulation middleware

All configuration parameters of the LabVIEW part of the simulation middleware are stored

in an XML file. An example is given here:

The first six properties are of the type float. ReferenceLatitude and ReferenceLongi-

tude are in degrees, the other four in meters. In order to argue the need of these parameters

let me describe the way how coordinates are used in USARSim and the simulation mid-

dleware (see also sec. 5.2.7.2):

The position information in the Mission Plan are true GPS positions, either in elliptical

or cartesian ECEF format. These positions correspond to real places, e.g. the corner of a

specific building at the lakeside campus. In a virtual USARSim map of the lakeside campus

exactly the same corner is measured relative to the maps origin, which is not comparable
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Listing 5.5: simulation middleware configuration
<?xml version="1.0" encoding="UTF -8"?> <Properties

2 xmlns="http: // pervasive.uni -klu.ac.at/cDrones/xml/cDrones">
<Property key="ReferenceLatitude">46.64305555 </Property > <

Property
4 key="ReferenceLongitude">14.3416666 </Property > <Property

key="ReferenceAltitude">460</Property > <Property
6 key="ReferenceX">772.789 </Property > <Property

key="ReferenceY">597.415 </Property > <Property
8 key="ReferenceZ">0</Property > <Property

key="PositionSensor">SEN.GT</Property > <Property
10 key="RobotModel">cDrones.cDronesMicrodrone </Property > <Property

key="SimulatorSampleTime">100</Property > <Property
12 key="LocalListenerPort">7015</Property > </Properties >

with our true GPS position. Thus a reference point is needed, from which we know the

true coordinates and its position in the map specific coordinate system. Given such a

reference point, one can transform points from one coordinate system into the other. In

fact, there are a few more issues that need to be taken into account in order to do a proper

transformation, e.g. scale, the geographic world model [HWWL03]. Therefore, USARSim

comes with an own definition of a geographic coordinate system, where the world (map)

is assumed to be planar (see sec. 5.2.7.2).

Please refer to [WB] for a documentation about how to place such a reference point

in USARSim. In fact, the values entered in USARSim must be the same as in this

configuration file.

The property PositionSensor defines, which sensor is used to

• measure the current pose that is sent to the Mission Executors by the POSE message

• measure the current pose for the control algorithms.

This property is an enumeration and possible choices are

• SEN.GT for the ground truth sensor,

• SEN.GPS for the GPS sensor,

• SEN.INS for the inertial navigation system.

The next property, RobotModel, defines which robot model should be used in USAR-

Sim. The first part (before the dot) specifies the package and the second one the model
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in the package. Especially for the cDrones project, the model cDronesMicrodrone in the

cDrones package is prepared. Another choice could be USARBot.AirRobot for the model

that comes with USARSim.

SimulatorSampleTime is a (32 bit unsigned integer) value for the desired sample time

the simulation middleware should run with. However, if the system’s performance is not

sufficient for running at this sample time a higher one is used instead. Thus, this value

can be understood as a lower bound.

The LocalListenerPort specifies the TCP listener port of the simulation middle-

ware that the Mission Executors use to connect to the simulation middleware . Hence,

this value should be a 16 bit unsigned integer higher than 1024.

USARSim configuration USARSim can be configured by using the configuration file

of the cDrones package, cDrones.ini , which is placed in the System directory of the Unreal

Tournament 2004 installation. In this file you can change properties of the

• cDronesMicrodrone model

• cDronesGPSSensor

For the robot model, these properties are e.g. Weight and batteryLife as specified in

sec. 5.2. The sensor has e.g. minNoise and maxNoise as properties. The parameters of

these models are the same as its equivalents in the USARBot package, so you can find

information about them again in [WB].

5.3.4 LabVIEW design patterns

Design patterns are guidelines for software architectures to solve software design problems

that often occur. In LabVIEW, such design patterns are often used (although probably

seldom termed design pattern). One of those is the immediate subVI, where the connector

pane is separated in the typical 4x2x2x4 pattern, error in and error out clusters provided

and an error case structure skips execution of the block diagram on errors. The dataflow

also follows the error wire. Another very often used design pattern is the functional global

variable. It consists of a while loop with an uninitialized shift register and a constant

at the conditional terminal of the loop. At every call, the loop is iterated once, and the

data in the shift register can be processed. If there is done more than just reading and

writing the value, this design pattern is sometimes referred to as action engine. There

are a good deal more design patterns, such as many different variations of state machines
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or whole application frameworks. Some of them are described in [Blu07], others on the

National Instruments web-page20. In the next few chapters some more or less special

design patterns used in this project are presented.

Producer/Consumer is used for communication between separate loops. The loops

could be in different VIs - the only thing they have to share is a reference to a queue or

its name. The producer loop generates data and enqueues it as element to this common

queue. As the name implies, the consumer dequeues the elements.

Figure 5.8: Producer/Consumer design model21

This design pattern is extensively used in this work. A scheme of the usage of the

Producer/Consumer pattern in this project is shown in fig. 5.9

To avoid overflows at the queues, it is necessary to ensure that the producer works

at a lower rate than the consumer is capable of. In LabVIEW, loops typically contain a

timing VI (otherwise they run at the highest frequency possible). According to the above

statement it was necessary to set a lower period in the consumer than in the producer.

But, in order to perform as high as possible, no timing VI was used in the Producer/Con-

sumer pattern loops. Instead, the timing was implicitly set using the built-in timeouts

of the Dequeue Element-VI and the TCP Read-VI that come with LabVIEW. Thus, if a

queue contains a lot of elements, the consumer operates at the highest frequency possible.

Otherwise, the consumer waits until timeout expires.
20http://www.ni.com
21Source: http://zone.ni.com/devzone/cda/tut/p/id/3023
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Figure 5.9: Producer/Consumer usage in simulation middleware

Queued Round Robin is a design pattern that I have not found neither in literature

nor the web (so the name evolved from the necessity to call it somehow). Maybe that

is because of a very popular paradigm having almost the same use case, namely object

oriented programming. This use case is the following: An arbitrary number of robots

should be simulated. This number should be dynamic, i.e. it should be possible to create

and destroy robots without stopping the simulation. All robots are for themselves of

similar structure, e.g. have the same sensors. The methods applied to the robots (e.g.

sensor measurements) are identical for all of them. In an object oriented language, a

programmer would have defined a robot class, which is instantiated when needed.

Maybe it would have been better to use LabVIEW object-oriented programming in-

stead of this Queued Round Robin design pattern. But, as experiments have shown, it

performs well and offers more flexibility.

Now to the pattern itself: A robot is represented as instance of a typedef, namely the

robot-cluster as described in sec. 5.3.1. It consists of a name, a starting configuration,

TCP session references to USARSim and MEXO and quite a lot of queue-references. One

queue reference for each queue shown in fig. 5.9, so every robot has its own unparsed
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messages queue, MEXO messages queue and so forth.

If there are multiple instances of such robots, then they need to be stored somewhere,

and that is - how could it be any different - a queue, which I will call robot queue from

now on.

Assume there are four robots in the queue, four MEXOs connected to the simula-

tion middleware and four UAVs flying in USARSim which provide sensor measurements

at USARSim’s four TCP sessions. Principally, there should be something that processes

the messages received from USARSim, one for each robot. That is what Queued Round

Robin is used for. E.g. the USARSim Server Message Receiver Loop-VI picks the first

robot, reads its TCP connection and enqueues the received data onto the unparsed mes-

sages queue of this first robot. Then, it goes on with the second robot and so forth, that’s

where round robin comes from. Fig. 5.10 shows the USARSim Send Command Loop-VI

as an example.

Figure 5.10: Queued Round Robin example

The leftmost subVI is the LabVIEW-built-in Get Queue Status-VI. A “true” constant

is wired to its “return elements” terminal. Thus, all robot clusters that are on the robot

queue are returned in an array. If there are robots in the queue, then the for-loop iterates

through them and applies the code inside of the loop to each of them. The “# elements

in queue”-terminal from the Get Queue Status-VI is used for two issues:

1. To skip further progressing if no robot is queued. In this case (not shown in fig.

5.10), a Wait Until Next Multiple-VI is used to define timing of the loop.

2. To calculate the timeout for the Dequeue Element-VI. This is done by dividing the
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simulator sample time through the number of robots, so that one loop cycle lasts

(a bit longer than) simulator sample time. Of course, the division should be done

outside of the for loop, but it wouldn’t fit on the paper then.

Using the timeout instead of an explicit timing VI has the advantage that, if there is a

command on the queue, it is sent immediately and the next robot is on turn without delay.

That introduces a very important condition for efficiency of this Queued Round Robin

pattern: The queues of the different robots need to be approximately equally filled. In

this case, all queues are processed at maximum speed. Otherwise, if the queue of a

robot contains many elements and all the others are empty, then this pattern would be

inefficient. Between the dequeue of two elements a bit (a factor of #nonemptyqueues
#emptyqueues ) less

than the simulator sample time expires.

In this project, all queues will be approximately equally filled. All of the sensors

in USARSim deliver readings at a constant rate, which is the same for all instances of

the UAV model. On the other side, the controllers will generate control commands at

a constant rate, which is again the same for all UAVs. Only the MEXO commands are

retrieved in a bulky way. But it can be expected, that a mission plan is uploaded to all

drones at once, and so Queued Round Robin is a good choice again. However, MEXO

command retrieval does not have so strict timing constraints anyway.

Single Element Queue is a well documented design pattern for creating a reference

object in LabVIEW. A very good explanation for its use and benchmarks can be found

on the web22. It is the best approach for accessing data by-reference in LabVIEW. The

principal structure of the pattern is very easy: For initialization, a queue is created and

one single element with an arbitrary datatype is enqueued. A good choice for a datatype

is a type-defined cluster, because it is flexible and easy to use. The Obtain Queue-VI has

an output port for a queue reference, which is now the desired reference to the data. The

main advantages of this pattern are:

• Thread-safety: If the Dequeue-VI and the Enqueue-VI are used for reading and

writing data, thread-safety is an inherent feature. If one thread is currently working

on the data, the other thread finds the empty queue. Important: Do not use the

Preview Queue Element-VI for the Single Element Queue!

• Performance: Accessing a single element queue is very fast and the data is not copied
22http://forums.ni.com/

89



5.3. Simulator Middleware Chapter 5. Simulation

on dequeue23.

In the new version LabVIEW (2009) was extended by a new feature called data value

reference. With this feature, there is no need for a single element queue any more. Unfor-

tunately, this version was not released before the end of this work.

In the simulation middleware, the single element queue was used to store state infor-

mation, thus it was called single element state queue. In the robot cluster, a reference

is designated to such a queue, so every robot has its own single element state queue. In

the USARSim Server Message Parser-VI, updated state information is extracted from the

USARSim messages and used to update the state element. All the controller-VIs use the

single element state queue to read the current state of the robot.

23http://forums.ni.com/ni/board/message?board.id=170&message.id=264865&query.id=72398#M264865?
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Chapter 6

Conclusions and Future Work

An autonomous unmanned aerial vehicle like the quadrotor helicopter addressed in this

work is not just a futuristic device. It is also interesting from the point of view of “older”

fields of science, like mechanical modeling and kinematics. The first part of this work is

dedicated to these topics, which seem to be well-known, especially in the range as applied

here. But it turns out to be different: A master student like me gets confronted with a real

vehicle and is eager to apply all the theoretical knowledge that he gained during his study.

After some research in publications, some implementations, some profitable discussions it

turned out that something was wrong. Many of the publications concerning quadrotor-

helicopter control were based on a model, that was derived with lack of mathematical care

[KKP09]. Another master student, who wrote his master’s thesis also about quadrotor

helicopters [Bre08] already derived the equations of motion in a consistent way, but using

a slightly different approach, namely the Newton-Euler formulation. In fact, the difference

between the “sloppy” models and the correct ones is small, especially when a small-angle

assumption concerning roll and pitch angles is made. So, for control design of course all

models were sufficiently accurate. In this work, I tried to follow a mathematically precise

and comprehensible way of deriving the equations of motion relative to all coordinate

frames that could possibly be considered for control design.

As going-to-be control engineer, thoughts concerning model analysis need to come

to mind immediately when a system of differential equations is espied. However, that

would have gone beyond the scope of this work, but might be a good point for future

work. Moreover, a validation of the nonlinear model in ranges where the nonlinearities

strongly influence dynamics was interesting. At this opportunity, also effects that were not

modeled until now could be considered. Possible model extensions reach from forward-
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flight aerodynamics over propeller gyroscopic effects to external influences like wind or

aerodynamic ground effects.

Figure 6.1: The quadrotor helicopter in a Robocup-Rescue environment

The use of the linearized model for parameter identification led to a complete model

description for the mechanical part of the Microdrone. The idea behind that was not just

model verification and finding reference values for the USARSim UAV model, but also

to build a more accurate drone model in USARSim. Such a model for the mechanical

part was developed within this work, but it is not usable in the cDrones testbed until

now, because there exists no controller to it. The plan was to also identify the controller

and implement it within the simulation middleware. Then a very accurate simulation of

the dynamics of the whole Microdrone could have been found. A further advantage of

this approach was, that aerodynamics, wind and disturbances could be simulated in the

simulation middleware. That would lead to a more detailed simulation without increasing

the computational burden for the Unreal engine.

However, the results achieved using the slightly modified model of the USARSim UAV

were really good either. The simulation middleware, which was the main implementational
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effort in this thesis provides the cDrones project with an easy-to-use and powerful interface

for real-world like simulation. The MEXO-protocol was designed so that the commands

and messages are equal for the real and the simulated drone. Using this protocol, the

researchers are able to automatically simulate multiple drones concurrently within USAR-

Sim. Furthermore, tools for manual flight and flight data analysis were provided. Using

the simulation middleware, disturbances like wind etc. could also be implemented as well

as communications simulation or other extensions. The flexibility of this whole structure

is tightly coupled to the cDrones software architecture and the power of LabVIEW.
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Appendix A

Simulator Middleware VI

descriptions

In the following chapters, the VIs implementing the simulator middleware are introduced.

At the beginning, the RobotCluster datastructure is shown as this will make future de-

scriptions easier.

A.1 RobotCluster

The RobotCluster is a LabVIEW cluster type-definition, that is capable of storing all

information about one particular robot. It’s contents are:

• A TCP session reference for the connection to USARSim

• A TCP session reference for the connection to its MEXO

• Several queues concerning the connection to USARSim:

– A queue for raw messages

– A queue for parsed messages

– A queue for commands to be sent

– A queue for sent commands

• Several queues concerning the connection to the MEXO:

– A queue for commands received from the MEXO

– A queue for messages to be sent to the MEXO
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• A cluster storing the start configuration of the robot

• A so called single element state queue

All queues except the single element state queue are part of a producer-consumer

LabVIEW design pattern. The single element state queue is part of another design pattern,

which will be introduced later.

A.2 SimServer-VI

is the main VI of the simulator. It starts USARSim and the simulation middleware . On

its front panel, there are five controls:

• A stop-button, which stops the execution of the whole simulation middleware but

not USARSim. As all connections to USARSim are closed, all robots will be removed

from the world there. All data that was not saved during execution is lost.

• A switch for turning manual control on or off. If switched on, the simulator middle-

ware ignores commands from the MEXO. A special VI (ManualDroneControl.vi)

can be used to control the UAV. When switched off, ManualDroneControl.vi doesn’t

work but MEXO commands are processed.

• A file path control, that specifies the path and filename of the configuration file for

the simulation middleware (see sec. 5.3.3).

• A String control which defines the path of the USARSim executable (including argu-

ments). It also possible to specify a windows-batch-file here that starts USARSim.

• Another file path control containing the working directory of the above specified

USARSim executable (or the batch file).

Furthermore, there is a LED on the front panel, that indicates whether an attempt to stop

the simulation middleware was initiated or not.

The SimServer-VI consists of two main sub-VIs, that are the MEXOCommunication-VI

and the USARSimServerCommunication-VI, shown in fig. A.1. The order of the following

descriptions of the subVIs is depth-first.
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Figure A.1: First Level of the VI-hierarchy of the SimServer-VI

A.3 SimServer Init-VI

reads configuration information from the XML configuration file (see sec. 5.3.3) and

writes it to global variables. Also the so-called robot-queue is initialized. That is a queue

containing instances of the above introduced robot-cluster, where each instance defines one

special robot. Because of their triviality, the sub-VIs of this VI are not further described.

Figure A.2: Icon of the SimServer Init-VI

A.4 MEXO Communication-VI

encapsulates all sub-VIs needed for communication with the MEXO-clients and the

USARSim-part of this middle-ware.

Figure A.3: Icon of the MEXO Communication-VI
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Figure A.4: VI-hierarchy of the MEXO Communication-VI
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A.5 MEXO Connector-VI

listens for connection attempts (which could e.g. be from MEXOs) at the specified listener

port. If a connection can be established, this VI listens for the POWER command at

all open connections. When such a command is received, it is parsed and immediately

executed, i.e. the SimServer-CreateRobot-VI is called. Answers with an ACK or an ERR

message (via the TCP-connection), depending on the success of the execution. Fig. A.5

shows a flowchart that describes the algorithm implemented in this VI.

Figure A.5: Flowchart of MEXO connection and UAV creation as it is implemented in the
MEXO Connector-VI
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Figure A.6: Icon of the MEXO Connector-VI

Figure A.7: VI-hierarchy of the MEXO Connector-VI

A.5.1 MEXO POWER Command Parser-VI

parses the MEXO POWER Command (see sec. B) to a start configuration, that can

be used to create a UAV in USARSim. Therefor, at first the input string is separated

into key-value pairs using the Gamebots Separate Key-Value Pairs-VI (also the MEXO

protocol follows the Gamebots syntax). Then, the values are converted to the proper

datatype and stored in a cluster. The StartingPose parameter must be transformed to

USARSim map coordinates, which is done using the Convert USARGLL 2 ned-VI, which

will be introduced later.

Figure A.8: Icon of the MEXO POWER Command Parser-VI
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A.5.2 Gamebots Separate Key-Value Pairs-VI

separates key-value pairs in a string that is formatted according to the Gamebots protocol.

Thereunto, regular expressions are used: Firstly, the input is matched against (\}\s+\{)

|([\{\}]) to retrieve the separated key-value pairs. Secondly, the pairs are matched

against a space to separate the key from the value(s).

Figure A.9: Icon of the GAMEBOTS Separate Key-Value Pairs-VI

A.5.3 Convert Pose String 2 Double-VI

reads the values from the string ”values”, where they are stored in the following format

(example): 1.000,1.01,1.000009 These values (without commas) are written into the input

array.

Example:

input: 0,0,0,0,0,0,0 offset: 1 values: "1.000 ,1.01 ,1.000009"

output:

2 0 ,1 ,1.01 ,1.000009 ,0 ,0 ,0

Figure A.10: Icon of the Convert Pose String 2 Double-VI

A.5.4 Convert USAR GLL 2 ned-VI

converts geographic latitude [deg], longitude [deg] and height [m] to local level coordinates

north, east, down. This conversion is done using the flat-earth assumption from sec. 5.2.7.2

and reference GPS-coordinates. Hence, the converted values are equal to USARSim map-
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coordinates (n = x [m], e = y [m], d = z [m]):

n = (φ− φref )111200− nref (A.1)

e = (λ− λref )71670− eref (A.2)

d = −h+ href − dref (A.3)

The variables denoted with ref refer to reference values as they are configured in the

simulation server configuration file (see sec. 5.3.3)

Figure A.11: Icon of the Convert USAR GLL 2 ned-VI

A.5.5 Error Stop-VI

is a global functional variable (FGV). It supports 3 modes: reset, read and write. If

an error is wired at error in, the mode is completely ignored and stopped is set to true.

Read is the default mode and simply reads the value of stopped. Write is used to write

the FGV. This does only work, if the value linked to the stop control is true. Otherwise

nothing happens. With this, overwriting a stop-value is prevented. Reset sets stopped

to false. In this project, the Error Stop-VI is used to stop the execution of the whole

simulation middleware . Thus, this sub-VI is found in a lot of other VIs.

Figure A.12: Icon of the Error Stop-VI

A.5.6 FGV Drone Candidates-VI

stores TCP-session references, that have connected to the server but not yet sent

a POWER-message. It supports the modes reset, add and remove (names are

self-explanatory).
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Figure A.13: Icon of the FGV drone candidates-VI

A.5.7 SimServer Create Robot-VI

creates a robot in the USARSim simulator (using the sub-VI that is introduced next),

initializes a Robot-Cluster and adds it to the robots-queue. Checks if the selected name

already exists and returns an error in this case.

Figure A.14: Icon of the SimServer Create Robot-VI

A.5.8 USARSim Create Robot-VI

creates a robot in the USARSim simulator. Therefor, an INIT-command is assembled.

Afterwards, the VI waits for a NFO-message from the USARSim server. If received, the

INIT-command is sent to the USARSim server. Otherwise, an error is created.

Figure A.15: Icon of the USARSim Create Robot-VI

A.5.9 Gamebots assemble INIT string-VI

creates a Gamebots INIT command by properly assembling and converting the values

from the start configuration.

Figure A.16: Icon of the Gamebots assemble INIT string-VI
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A.5.10 Convert Double Pose 2 String-VI

converts the pose data from the double array pose into a string, which is usable for the

Gamebots Protocol. Example result:

{Location -18.0,-18.0,19.8} {Rotation -1.57,0.0,0.0}

Figure A.17: Icon of the Convert Double Pose 2 String-VI

A.5.11 Check if Robot Name Exists-VI

returns an error if a robot with the same name as new robot name already exists.

Figure A.18: Icon of the Check if Robot Name Exists-VI
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A.6 MEXO Command Receiver Loop-VI

receives commands via the MEXO TCP connection, which are parsed and put onto the

MEXO command queue of the appropriate robot. Answers with an ACK or ERR message

on command retrieval. If the connection was closed by the MEXO, then the robot is

removed. Implements the queued round robin design pattern and acts as a producer to

the MEXO Command queue. A flowchart describing the algorithm implemented in this

VI is shown in fig. A.20.

Figure A.19: VI-hierarchy of the MEXO Command Receiver Loop-VI

A.6.1 Merge Errors Check and Stop-VI

is used to stop on errors. ”first error” is that error, which occurred first (in a dataflow

sense). If e.g. ”first error”’s status is true, then ”should stop” gets true and ”first error”

is mapped to ”error out” (”second error” is not taken into account at all in this case).

This procedure is faster than the standard MergeErrors-VI. Furthermore, this VI reads

the above introduced Error Stop-FGV and writes it, so all readers of the FGV know if

they should stop. As the SimServer is a server and should not stop or create an error due

to connection problems at client side, the errors shown in tbl. A.1 are deleted from the

first error port.

A.6.2 SimServer Remove Robot-VI

removes a robot from the simulation and sends a DEL message to the MEXO. Destroys

all information that belongs to the robot and closes the TCP connections (to the MEXO
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Figure A.20: Flowchart of the MEXO Command Receiver Loop-VI

Figure A.21: Icon of the MEXO Command Receiver Loop-VI

Error Description
1 an input parameter is invalid.

57 connection busy.
62 network connection to be aborted.

1122 Refnum became invalid while node waited for it.

Table A.1: Errors that are cleared by Merge Errors Check and Stop-VI

and to USARSim). The robot is removed from the USARSim world.
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Figure A.22: Icon of the Merge Errors Check and Stop-VI

Figure A.23: Icon of the SimServer Remove Robot-VI

A.6.3 MEXO Command Parser-VI

Parses commands received via a MEXO connection. Decides, whether a command must be

queued. Depending on the command type, a short check is done if enough parameters were

specified. The result of this check is provided at the success indicator. Main part of the

parser is a select structure, wherein all commands are treated separately. Key-value pair

separation is again done with the above introduced Gamebots Separate Key-Value Pairs-

VI. If command parameters need to be parsed as well, they are passed over to the SubVI

which is desribed next. If a command is not listed in the case-structure, it is forwarded

to USARSim using the TCP-session reference from the robot-cluster immediately. This is

especially useful for administrative commands like PAUSE or TRACE (see sec. B).

Figure A.24: Icon of the MEXO Command Parser-VI

A.6.4 MEXO Parse Command Parameters-VI

parses the parameters specified at a MEXO command. Does the transformation to US-

ARSim map coordinates (using Convert USAR GLL 2 ned-VI). The “values specified”

port is used to ensure that enough parameters were delivered with the command.

Figure A.25: Icon of the MEXO Parse Command Parameters-VI
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A.7 MEXO Message Send Loop-VI

sends the messages from the MEXO Message queue of each robot to it’s MEXO via the

appropriate TCP connection. Implements the queued round robin design pattern and acts

as a consumer to the MEXO Message queue. Fig. A.27 shows a flowchart explaining the

simple algorithm implemented in this VI.

Figure A.26: Icon of the MEXO Message Send Loop-VI

Figure A.27: Flowchart of the MEXO Message Send Loop-VI
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A.8 Process Command Loop-VI

dequeues commands from the MEXO Command queue of each robot. Calculates if times-

tamps have passed and delivers this information to a subVI that processes the commands

(Process Command-VI). Removes a robot if it’s shutdown signal is present (e.g. from

a SHUTDOWN-MEXO-command).Fig. A.30 shows a flowchart of the algorithm imple-

mented in this VI. Implements the queued round robin design pattern and acts as consumer

to the MEXO Commands queue.

Figure A.28: Icon of the Process Command Loop-VI

Figure A.29: VI-hierarchy of the Process Command Loop-VI

A.8.1 Check Time Passed-VI

checks if a time stamp has already passed by comparison with a reference time and a

LabVIEW Tick-Count VI. This VI is capable of dealing with overflows in the LabVIEW

tick-count.
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Figure A.30: Flowchart of the Process Command Loop-VI

Figure A.31: Icon of the Check Time Passed-VI
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A.8.2 Process Command-VI

dequeues the state cluster from the single element state queue to get uptodate state in-

formation. Heart of this VI is a case structure, that calls different controllers based on

the type of MEXO command. After a step of the appropriate control algorithm (subVI)

is executed, the state cluster is enqueued and the result of the control algorithm (which

is typically an USARSim command) is enqueued on the USARSim command queue.

Figure A.32: Icon of the Process Command-VI

A.8.3 Go to Waypoint Controller-VI

implements a P-controller that leads the drone to a given way-point. When that way-

point is reached, the heading of the drone is corrected (again with proportional control).

r is the reference variable and consists of local level frame coordinates and the heading

in degree (north,east,down,heading). PoseMeasurementCluster must be a current pose

measurement (e.g. from the single element state queue). u are the correcting variables,

which are velocities in the body fixed frame (vx,vy,vz,vyaw as needed for USARSim).

Gains of the controller can be adjusted on the front panel. A flowchart describing the

control algorithm implemented in this VI is shown in fig. A.34.

Comments to the controller structure: As the correcting variables are velocities and

the outputs are positions, the plant contains an integrator. Thus, stationary accuracy is

achieved assuming linearity of the plant. If one remembers the equations of motion of the

UAV (3.15), he might argue that linearity is not given in these equations. But the model

used in USARSim (see sec. 5.2.6) together with the motion dynamics derived by KARMA

are different.

Assume the left-hand side of eq. 3.15 is the same as modeled in KARMA (except drag,

which is modeled in KARMA indeed). The USARSim part of the UAV model ignores pitch

and roll displacement in the translational dynamics at all. Only yaw is taken into account

to adjust heading of the force acting on the center of mass. But in this control algorithm,

yaw is not influenced during translational correction and vice-versa. Hence, the right-hand

side of the equation of translational motion (generalized forces) is linear, namely (see also

sec. 5.2.6)
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5.05 · vLinear
5.05 · vLateral

5.05 · vAltitude + 49.02


KARMA models viscous drag only, so the model is linear.

Figure A.33: Icon of the Go to Way-point Controller-VI

Figure A.34: Flowchart of the Go to Way-point Controller-VI

A.8.4 Angle Difference-VI

Calculates the difference between desired and current angle, so that the difference is in

[−π, π].

Figure A.35: Icon of the Angle Difference-VI



A.8. Process Command Loop-VI 112

A.8.5 ned 2 xy-VI

converts a local level frame horizontal pose (n, e, ψ) to body frame horizontal coordinates

(x, y):

x = cos(ψ)n+ sin(ψ)e (A.4)

y = −sin(ψ)n+ cos(ψ)e (A.5)

Figure A.36: Icon of the ned 2 xy-VI

A.8.6 Land Controller-VI

reads the current z value from the robot status and remembers 10 of these values. If 10

measurements are available and the (first order backward) derivative of these 10 mea-

surements (z-velocity) is zero, then it is assumed that the drone has landed. Otherwise,

”downward velocity” is sent as actuating command in z direction in u.

Figure A.37: Icon of the Land Controller-VI

A.8.7 Stop Engines Controller-VI

stops the engine of a UAV by sending a special USARSim command, that sets the angular

rate of the rotors to zero.

Figure A.38: Icon of the Stop Engines Controller-VI
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A.8.8 Takeoff Controller-VI

implements a P-controller which leads a UAV to a specific height.

Figure A.39: Icon of the Takeoff Controller-VI

A.9 USARSim Server Communication-VI

receives messages from the USARSim server, parses them and updates the single element

state queue. Also sends commands from the USARSim command queue to the USARSim

server.

Figure A.40: VI-Hierarchy of the USARSim Server Communication-VI

Figure A.41: Icon of the USARSim Server Communication-VI

A.10 USARSim Finalize Robots-VI

removes all robots from the robot-queue, closes their TCP-connections to USARSim (so

that the robots are removed from USARSim as well) and releases all related queues.

Figure A.42: Icon of the USARSim Finalize Robots-VI
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A.11 USARSim Send Server Command Loop-VI

removes commands from each robot’s USARSim Command queue and sends them to

USARSim. Implements the queued round robin design pattern and acts as a consumer to

the MEXO Command queue. Fig. A.45 shows a flowchart of the very simple algorithm

implemented in this VI.

Figure A.43: Icon of the USARSim Send Server Command Loop-VI

Figure A.44: VI-Hierarchy of the USARSim Send Server Command Loop-VI

Figure A.45: Flowchart of the USARSim Send Server Command Loop-VI
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A.11.1 USARSim Send Command-VI

assembles a DRIVE command and sends it to USARSim via the proper TCP session.

Figure A.46: Icon of the USARSim Send Command-VI
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A.12 USARSim Server Message Receiver Loop-VI

retrieves new messages from the USARSim server and pushes it onto the unparsed mes-

sages queue. Furthermore this VI is responsible for detecting overflow in the tick counter.

Implements the queued round robin design pattern and acts as a producer to the unparsed

messages queue.

Figure A.47: Icon of the USARSim Server Message Receiver Loop-VI

Figure A.48: VI-Hierarchy of the USARSim Server Message Receiver Loop-VI

Figure A.49: Flowchart of the USARSim Server Message Receiver Loop-VI
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A.12.1 Detect Timer Overflow-VI

checks the LabVIEW Tick Counter-VI for overflows using an FGV. If an overflow is de-

tected, a global variable is incremented.

Figure A.50: Icon of the Detect Timer Overflow-VI

A.13 USARSim Server Message Parser Loop-VI

dequeues elements from the unparsed messages queue. Parses these messages and, if

necessary enqueues them onto the MEXO message queue and updates the single element

state queue. Removes a robot if a DIE message was received from USARSim.

Figure A.51: Icon of the USARSim Server Message Parser Loop-VI

A.13.1 USARSim Parse Message-VI

parses messages received from the USARSim server. Updates the single element state

queue. Generates and enqueues state messages for the MEXO.

As first step in the process of parsing the Gamebots Gamebots Separate Key-Value

Pairs-VI is called. Then, a separation into 4 different Types of messages is done using a

case structure:

• SEN messages: In the configuration file for the simulation middleware a position

sensor must be chosen (see sec. 5.3.3). This selection defines, whether a SEN

message (which is a USARSim sensor reading) is used to update the state element

and generate a MEXO message. If e.g. SEN.GT is chosen as sensor type in the

configuration file, then all messages retrieved from the USARSim ground truth sensor

are used to update the robot state (which is used by the controllers). Furthermore,

at each retrieval a message for the MEXO is generated and enqueued onto the

MEXO messages queue. Of course, only valid (flag) measurements are used. The
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Figure A.52: VI-Hierarchy of the USARSim Server Message Parser Loop-VI

only exception is the GPS sensor message: it’s availability state (GPSfix) is always

checked and updated.

• DIE messages: If retrieved, a DEL message for the MEXO is generated.

• STA messages: The battery value is extracted from the message and used to update

the state element. A STAT message for the MEXO is generated and enqueued.

• Other messages (default) are ignored. A message cluster of the type “Other” is

returned and only its time stamp is set.

A.13.2 MEXO Enqueue Message-VI

adds flight- and operation-time stamps to a prepared STAT or POSE message and en-

queues it onto the MEXO messages queue.
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Figure A.53: Flowchart of the USARSim Server Message Parser Loop-VI

Figure A.54: Icon of the USARSim Server Message Parser-VI

Figure A.55: Icon of the MEXO Enqueue Message-VI

A.13.3 Calculate Time Difference-VI

Calculates the difference (time measured - start time). Takes tick count overflows into

account.
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Figure A.56: Icon of the Calculate Time Difference-VI

A.13.4 Update GPS Available-VI

adds the GPSfix Parameter to a MEXO message and updates the single element state

queue. An extra VI was necessary because of the following reasons:

• If, according to simulation middleware configuration another sensor than GPS is

used for state update, then the Update Robot State-VI would not be called on GPS

sensor messages.

• Independently from the selected state update-sensor, an information about the state

of GPS positioning should be reported to the MEXOs (see sec. B).

Thus, this VI is needed to add GPS state information to MEXO pose messages.

Figure A.57: Icon of the Update GPS Available-VI

A.13.5 Update Robot State-VI

updates the state element from the single element queue with the information provided.

Supports two modes: One is the pose-update mode which updates pose information only.

The other mode can be used to update the battery state.

Figure A.58: Icon of the Update Robot State-VI
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A.13.6 Message Array 2 Pose-VI

converts pose values, that are stored in an array to a pose cluster.

Figure A.59: Icon of the Message Array 2 Pose-VI

A.13.7 USARSim Parse Values-VI

parses the content of a message from the USARSim server (Gamebots protocol) to bring

it to a desired message format, which depends on the messages type. Also MEXO message

strings are generated. The message content as cluster-input is an array of key-value pairs.

The following message types are supported:

• SEN.GPS: A measurement from the USARSim GPS sensor can contain the following

keys: time, latitude, longitude, altitude and satellites. All of them are written into

the array of the Message Cluster in exactly this order. Latitude and longitude are

transformed to local level coordinates for further calculation. The MEXO message

is generated directly from latitude and longitude

• SEN.INS: Contains the keys: time, location and orientation. Location and orienta-

tion consist of 3 values each (which are local level coordinates and Euler-angles).

• SEN.GT: Same as in the SEN.INS case

The time value is that one delivered from USARSim relative to the “game”-start.

Figure A.60: Icon of the USARSim Parse Values-VI

A.13.8 MEXO Prepare POSE Message-VI

uses a pose array which is given as (time, north, east, down, roll, pitch, yaw) or (latitude,

longitude, altitude, number of satellites) in the GPS case to prepare a POSE message
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for the MEXO. In this message, all the coordinates should be transformed to latitude,

longitude and altitude.

Figure A.61: Icon of the MEXO Prepare POSE Message-VI

A.13.9 xy 2 USAR GLL-VI

does the above mention transformation from local level frame coordinates (or USARSim

map coordinates) to geographic longitude and latitude. It is the inverse transformation to

that one done in the Convert USAR GLL 2 ned-VI.

Figure A.62: Icon of the xy 2 USAR GLL-VI

A.13.10 USAR GLL 2 Double-VI

reads the geographic longitude or latitude values from the string values, where they are

stored in the following form (example): 40,30.12,N The first number represents the de-

grees, the second stands for minutes while the third specifies a geographic direction. These

values are converted to double-precision floating point in degree.

Figure A.63: Icon of the USAR GLL 2 Double-VI



Appendix B

MEXO protocol definition

This protocol is used for communication between a single Mission Executors and the sim-

ulator middleware. The design was sketched by researchers at Lakeside Labs. It consists

of commands and messages, where commands are sent from the Mission Executors to the

simulation middleware and messages follow the opposite direction. To all commands ex-

ists a response, which could either be an acknowledge or an error message. An ACK does

not mean, that a command was executed successfully, but that it could be parsed by the

simulation middleware . The syntax of this protocol is quite similar to the Gamebots

protocol. If a command is not known by the simulation middleware, it is forwarded to US-

ARSim. Thus all USARSim commands can be sent from the Mission Executors directly to

USARSim. That makes sense especially for some commands that influence the graphical

presentation of the simulation. As an example, the TRACE command is shown here:

TRACE {On true} {Interval 0.5} {Color 0}
This command, sent by the Mission Executors , is forwarded to USARSim directly and

causes the drone to leave red dots in the world every 0.5 seconds. Another useful example

is the PAUSE command:

PAUSE Delay 10

causes the simulation to be paused (for all robots), 10 seconds after USARSim retrieves

this command. To continue simulation, the PAUSE command has to be sent with a negative

delay.

A detailed description of all commands that can be sent to USARSim is given in [WB].

All received commands are processed in order of retrieval, except for USARSim commands,

STARTENGINE and CLEAR, which are executed immediately.
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B.1 Command Formatting

Commands are sent to the LabVIEW Simulation via TCP socket connections from the

Mission Executors , whereby the commands are formatted in following format:

RequestLine := COMMAND([t]{ParameterKey[t]Value(,Value)*})*[\n][\r]
The COMMAND is uppercase by convention, while the parameter key and value are not

case sensitive. All commands have to be placed in one line ending with carriage return and

line feed symbols. The LabVIEW server will answer on every line with an acknowledge or

a short error description.

ResponseLine := (ACK[\n][\r]|(ERR[t][0-9]*[t]ErrorMessage[\n][\r])

COMMAND := POWER|STARTENGINE|TAKEOFF|GOTOWAYPOINT|STOPENGINE
|SHUTDOWN|LAND|HOLD|TAKEPICTURE|FORMATION
ParameterKey := [A-Z][A-Z,a-z]*

Value := [0-9,a-z,A-Z][0-9,a-z,A-Z,t,’.’]*

ErrorMessage := [A-Z][0-9,a-z,A-Z,t]*

B.2 List and Description of Commands

B.2.1 Create a Drone in the Simulator

POWER {RobotName Name }
{StartingPose longitude,latitude,altitude,yaw,pitch,roll }
{USARSimServer address } {USARSimPort port }

The LabVIEW simulation middleware listens for clients at a specified port. If someone

(e.g. Mission Executors ) wants to create a drone, it has to connect to this port and send

the POWER-message via the established session. If the command was successfully received,

parsed and a drone was created in USARSim, the server sends an ACK, otherwise, an error

message will be the response. If you create a drone in the simulation, and the starting pose

was valid but somehow useless (e.g. the drone falls to the ground and breaks), then the

server will however first send an ACK. After the drone broke, simulation middleware will

send something similar to (see the associated message description below)

DEL {RobotName Name }
At the execution of the POWER command, operation time (Optime) recording is started.
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The simulation of the GPS synchronization and searching for satellites is initiated.

Parameter RobotName defines the name of the drone, which is used in USARSim and

the simulation middleware. As the process of drone creation is initiated by the estab-

lishment of a TCP session, the unique identifier of each drone for the server is this TCP

session reference. However, you will receive an error message if you give two drones the

same name.

Parameter StartingPose In USARSim, the drone is placed immediately after the sim-

ulation middleware receives the POWER message. Therefore, in order to specify the spawning

pose of the drone in the map, the starting pose has to be delivered with this command in

the simulation case. The position is defined in LLA format while the angles are given in

degree. Notice that for the simulation, some issues have to be considered before the use

of georeferenced coordinates is possible:

• A ReferenceGPSCoordinate object must be placed in the USARSim map [WB].

• The same reference point has to be specified in the simulation middleware configu-

ration file (used by LabVIEW).

• The starting pose must be valid (e.g. not below the ground or outside of the map).

• A GPS Sensor must be placed on the robot [WB].

• This GPS Sensor must be configured properly in cDrones.ini (which is the cDrones

configuration file for USARSim).

Parameters USARSimServer and USARSimPort (optional) USARSimServer and

USARSimPort are address and port of the USARSim Server. The address can be in IP

dot notation or a hostname. Thus, it is possible to use multiple USARSim servers from

one simulation middleware . However, the influence of one drone to another is not taken

into account when running on different USARSim servers.

Default Values If you do not specify a parameter, its default value is used. Notice that

the default values will be invalid in many cases, as e.g. the starting pose could be senseless

in your map. The default values are:

• RobotName: Drone1
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• StartingPose: 0,0,0,0,0,0

• USARSimServer: localhost

• USARSimPort: 3000

B.2.2 Start the Engines

STARTENGINE

starts the execution of previously received commands and/or enables the drone to

execute commands that are to be received. All TimeStamps given in other commands are

relative to the execution time of this command (in milliseconds). They define the earliest

execution time allowed for the specific command. The flight time is reset to zero and its

recording is started. If you send STARTENGINE although the engines are already started

the command is ignored.

B.2.3 Stop the Engines

STOPENGINE {TimeStamp relative time }
stops the engines of the drone. As all commands except for STARTENGINE are processed

in order, this command cannot be used to stop the engines during the execution of a plan.

If the previous command was successfully executed, the engines are stopped and the robot

drops to the ground. Recording of the flight time is stopped.

Parameter TimeStamp (optional) specifies the earliest execution allowed for this com-

mand in milliseconds (default: 0) relative to the last executed STARTENGINE command.

B.2.4 Stop simulation of a drone

SHUTDOWN {TimeStamp relative time }
stops simulation of the drone. It is removed from USARSim and all its data is deleted

from simulation middleware , thus also the TCP session is closed. You will receive a DEL

message. Note that, similar to STOPENGINE, this command cannot be used to stop the

simulation during the execution of a plan.

Parameter TimeStamp (optional) same as previous command
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B.2.5 Stop immediately and cancel commands

CLEAR

pauses the simulation and deletes all commands of a drone. To continue, send new

commands and invoke the PAUSE command with a negative delay (see above). If you

don’t send new commands, the drone continues to execute the last (USARSim) control

command it received from the simulation middleware .

B.2.6 Take Off From Ground

TAKEOFF {TimeStamp relative time } {DestinationHeight height }
commands the drone to lift off, until a special height is reached. A P-controller leads the

drone to the destination height. The command is assumed to be successfully executed if a

height measurement within a predefined tolerance window is received. The sensor used for

this measurement is defined in simulation middleware ’s XML configuration file. Gain and

tolerance of the P-controller are set in a LabVIEW-VI named “TAKEOFFController.vi”

(that implements the controller).

Parameter TimeStamp (optional) same as previous command

Parameter DestinationHeight specifies the destination altitude to be reached at take-

off in meters relative to the sea level. Hence, this value is depending on the reference

coordinates (q.v. POWER command).

B.2.7 Touch Down Safe

LAND {TimeStamp relative time }
Initiates an automatic landing procedure. This landing procedure works as follows:

A predefined downward velocity leads the drone down, while this downward velocity is

also calculated from sensor measurements. If the measured downward velocity is zero

for some time, although the regulating velocity is different from that, it is assumed that

the drone has landed. Downward velocity and zero-duration are set via LabVIEW-VI

“LANDController”. The sensor type is again defined in simulation middleware ’s XML

configuration file.

Parameter TimeStamp (optional) same as previous command
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B.2.8 Visit a Defined WayPoint

GOTOWAYPOINT {TimeStamp relative time }
{Pose latitude,longitude,altitude,heading }

leads the drone to a desired waypoint and corrects its heading. A P-controller first

regulates the drones position. After one position measurement is in a defined tolerance

window, the correction of the heading is initiated. Therefore, once more a P-controller is

used. The gains of the controllers, as well as the tolerances are set via the “GOTOWAY-

POINTCcontroller.vi” LabVIEW-VI.

Parameter Pose Using this Parameter you specify the target position of the drone. Re-

member, that the values for latitude, longitude and altitude depend on the GPS reference

point on the one hand, and on the special geographic referencing model of USARSim [WB]

on the other hand. Latitude and longitude need to be given in degree and the altitude in

meters above sea level. The heading is an angle in a range from 0◦ to 360◦, whereby 0◦

means north.

Parameter TimeStamp (optional) same as previous command

B.2.9 Holding a Position

HOLD {TimeStamp relative time }
Holds the position until the given time stamp is reached. The idea behind this com-

mand is to compensate delays or fix the position before taking pictures. In the simulation,

this command is simply ignored as the drone automatically holds its position after a suc-

cessful execution of a command. The possibility to implement a special controller for this

case in combination with a special sensor is given using the “HOLDController” VI.

Parameter TimeStamp (optional) same as previous command

B.2.10 Taking a Picture

TAKEPICTURE {TimeStamp relative time } {Tilt angle }
A picture is taken at a certain time stamp with the camera property of a given tilt angle.

A-priori the angle is set to 90◦ meaning vertical position. As simulation middleware is not

able to deliver images at this stage of implementation, this command is not realized yet.
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B.2.11 Execute Scenario

EXECUTETASKS

is a dummy command for the simulation middleware and has no effect to the simulation.

B.2.12 Formation Processing

FORMATION

is also not implemented, as that topic is not part of this work.

B.3 Message Formatting

Messages are sent from the simulation middleware to the Mission Executors via the same

TCP session as commands, whereby messages are formatted in following format:

MESSAGE([t]{ParameterKey[t]Value(,Value)*})*[\n][\r]

The Mission Executors must not respond to such a message.

MESSAGE := STAT|POSE|DEL
ParameterKey := [A-Z][A-Z,a-z]*

Value := [0-9,a-z,A-Z][0-9,a-z,A-Z,t,’.’]*

B.4 List and Description of Messages

B.4.1 Status message

STAT {Batt remaining seconds to live }
{FlightTime milliseconds since last startengines }
{OpTime milliseconds since power }

Parameter Batt defines the time until the robot’s battery is empty in seconds. When

this value reaches zero, the robot is frozen in the simulation (Location and Orientation

are held constant). The start value for this parameter is defined in the cDrones package

configuration file of USARSim (cDrones.ini).
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Parameter FlightTime is the time difference to the last execution of a STARTENGINES

command in milliseconds. The engines must be started, otherwise this parameter is omit-

ted or delivers an invalid value.

Parameter OpTime is the time difference to the creation of the drone (POWER command)

in milliseconds.

B.4.2 Pose message

POSE {Location latitude,longitude,altitude } {Orientation roll,pitch,yaw }
{GPSfix GPS available } {FlightTime milliseconds since last startengines }
{OpTime milliseconds since power }

Parameter Location delivers latitude, longitude in degrees and altitude in meters.

Note that these values are again depending on the configuration of the GPS reference

point.

Parameter Orientation delivers the current attitude of the drone in roll, pitch and

yaw in degrees. Definition and sequence of the rotations are conforming the aeronautic

standards [Ste04].

Parameter GPSfix is 1, if the GPS sensor is able to determine a position and zero

otherwise. To measure a position, the sensor needs line-of-sight connection to at least four

satellites.

Parameter FlightTime gives the time difference between the last execution of a

STARTENGINES command and the pose measurement delivered in this message. If the

engines are not running, this parameter is omitted.

Parameter OpTime same as previous message.

B.4.3 Robot deleted message

DEL {Robotname name }
tells the Mission Executors that the robot has been deleted in the simulator.
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B.5 Error Messages

The LabVIEW standard error codes are extended by these five error codes:

Error
code

message description source VI

5001 Robot name al-
ready exists

Occurs when you try to add a robot,
although a robot with the same
name already exists. The robot is
not created.

checkIfRobotNameExists.vi

5002 Didn’t receive
NFO message
from USARSim
server

Occurs when you try to add a
robot. After an INIT command (the
instantiation of a robot model in
USARSim) the simulation middle-
ware has to wait for the NFO mes-
sage from the USARSim server. If
this message is not received after a
specific timeout, this error message
is sent. The robot is not created.

USARSimCreateRobot.vi

5003 Not enough Pa-
rameters specified
for MEXO com-
mand

Occurs, if you send a command to
the simulation middleware and not
enough parameters (see above) were
specified. The command is not fur-
ther processed.

MEXOCommandParser.vi

5004 Robot broke Occurs, if e.g. at robot creation
the starting position is invalid or
the robot was physically damaged in
USARSim.

USARSimParseMessage.vi

5005 Zero sample time Occurs at velocity calculation. Pose2Velocity.vi

Table B.1: Error codes of the simulation middleware at the Mission Executors interface



Appendix C

Description of Flight Experiments

In order to analyze the dynamics of the Microdrone, as well as for model verification and

sensor analysis some experiments were executed by the Lakeside Labs. Using a program

from another project within cDrones, the flight data recordings from the Microdrone were

written into CSV-files, where they were further processed with LabVIEW. Here, a short

description is given how these experiments looked like. All of them were executed twice,

once with GPS and once with INS navigation only. The description here refers to the case

with GPS. The principle of an experiment was kept the same in the INS case, but the

values vary. To find appropriate data for system identification, where the linear model was

used, it was necessary to excite the rotorcraft in a range where it behaves almost linear.

Thus, it was necessary to avoid two commands at the same time (e.g. not rolling and

yawing without having the drone in rest in between). As can be seen in the equations of

motion, nonlinearities arise from couplings and high amplitudes. At analyzing the flight

data it turned out, that the experiments with GPS fulfilled these conditions better than

the INS ones (although that has nothing to do with the navigation mode, but more with

the person running the experiments). The diagrams in the text always only show the

interesting part of a whole signal.

Experiment 1 The Microdrone stood in rest on an arbitrary place and recorded mea-

surements for ca. 10 minutes.

Experiment 2 Start-point and target were ca. 10[m] apart. The drone was steered

with the remote control to fly to the target.
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Experiment 3 The drone took off to an arbitrary height. Then, the position was kept

for a notable time. Via the remote control, the Microdrone was rotated in yaw-direction

about ca. 180[deg]. After that, the position was held again, before a landing maneuver

was flown.

Experiment 4 The Microdrone took off again to approx. 7[m] height. Then, the

position was held for some time, before a pitching motion was executed. After holding the

position for some time again, a rolling motion was added. The drone was left at rest a few

seconds before it was landed. This experiment was run twice with GPS and the results

were called 4a and 4b, respectively.
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