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ABSTRACT
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Magnetic induction tomography (MIT) is an emerging imagingmodality
and aims to reconstruct the electrical tissue properties in theegion of interest.
The noncontact and noninvasive measurement characteristiasgether with the
fast scanning ability make the proposed modality attractive. tl promises to
facilitate diagnosis of several physiological disorders such@sdema or internal
hemorrhage and has the potential to be used for the continuonsonitoring of
pathological uid changes. This study focuses on improving thenage qual-
ity and the investigation of several fundamental issues that mudte tackled
in order to have the modality as a diagnostic tool alongside oical standard
imaging modalities. To this end, several alternative coil cogurations have
suggested and the resulting imaging quality was compared witlhat of cur-
rently existing systems. Furthermore an optimization approactior the opti-
mization of the coil design was developed. For this, the imagesggormance

measures are reviewed and a measure which favors the coil desigtth the



most independent information content is used to reach optimalesigns. Be-
sides the coil optimization, another important issue a ectingimage quality

Is the correction of patient positioning errors and movemerwartifacts in the

numeric models. These errors were analyzed in simulation stusliands sev-
eral solution strategies were proposed to compensate the artife. Lastly it

was investigated to what extent the anisotropic electrical dracteristics of the
tissues must be considered in the forward and inverse models so akeep
reconstruction errors small. An anisotropic inverse solver was \doped and
the results were compared with those of a conventional isotrapsolver. In
particular conductivity tensor images were reconstructed texplore the e ect

of surface-near muscle tissue.

Keywords: Magnetic induction tomography, optimal design, aboptimization,

image reconstruction, movement artifacts, tissue anisotropy
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CHAPTER 1

INTRODUCTION

1.1 Overview

Magnetic induction tomography (MIT) is an emerging modaliy for recon-
structing the electrical tissue properties in a region of inte&st of the human
body and has attracted considerable attention since the 1990$.promises to
facilitate diagnosis of several physiological disorders such @sdema or inter-
nal hemorrhage and has the potential to be used for continuousonitoring

of physiological uids. Several features of the device such aggh temporal
resolution, portability, noncontact and noninvasive measuraent characteris-
tics make the proposed modality attractive. To date, severalrptotype MIT

systems have been built and the viability of the method has beeawn rmed by
feasibility studies. However, despite the considerable progressat has been
made in the last decade, the imaging performance of the proymes is still
not su cient for clinical trials. This work addresses some of thedndamental
issues that must be tackled in order to have the modality as a diagstic tool

alongside the other standard imaging modalities.

1.2 History

Imaging the passive electrical properties of the human body &aained an
enormous interest among scientists to date [Holder, 1993, 1993However,
using electrode based measurements that use direct contactstwthe body

surface has some formidable drawbacks like the poor skin-etecte contact

1



[Boone and Holder, 1996a,b] and the reduced penetration ofanted currents
into certain regions due to insulating layers, such as bone [@en and lder,

1994]. In the early 1990s, instead of using electrodes, a coil lthseethod

based on Faraday's law of induction was proposed as an alterinat method to
obtain conductivity tomographies [Al-Zeibak and Saunders,903]. In the pro-
posed method, an eddy current density is induced within the huam body via
transmitter coils and the magnetic eld is measured using an aay of sensor
coils in a non-contact manner to reconstruct tomographies. Thmethod is to-
day widely accepted as magnetic induction tomography [Griths et al., 1999,
Korjenevsky and Cherepenin, 1997, 1999, Scharfetter et &001]. Addition-

ally, the non-contact nature of the method brings easiness tath-acquisition

by enabling to collect further measurements by simply shiftinghe coil arrays
[Gri ths, 2001].

The rst imaging attempts were carried out by a linear-backpojection
method to obtain tomographies from a set of measurement data Zkibak and
Saunders, 1993, Korjenevsky et al., 2000]. This image recomstion approach
has been found to be awed today [Scharfetter et al., 2002] drsubstituted by
more advanced methods that approximate the sensitivity distbution of the
measurements correctly [Hollaus et al., 2004b, Merwa et alQ@, Pham and
Peyton, 2008b, Rosell et al., 2001, Soleimani, 2006]. In thedadies, the sen-
sitivity maps were computed according to the reciprocity therem [Mortarelli,
1980]. To this end, the solution of Maxwell's equations [Malimuo and Plonsey,
1995] are required. It was reported that the quasi-stationargegime is compu-
tationally more convenient for low frequency application§Gercer et al., 1994,
Guarsoy, 2007]. However, in order to achieve accuracy at high&equencies,
the complete wave equations in a dielectric media must be salvgHollaus
et al., 2004a, Soleimani et al., 2006]. The nite element miedbd is usually the
method of choice [Gercer and Tek, 1999a,b, Ktistis et al., P8, Merwa et al.,
2003, Soleimani et al., 2006], however, nite di erences [Mris et al., 2001,
Gursoy, 2007] and boundary element methods [Pham and PeytoP008a] have

also been employed.



In MIT, the change in the magnetic eld due to the conductivity perturba-
tion is much weaker than the primary magnetic eld which lead to a narrow
dynamic range in the receiver channels [Gri ths, 2001]. Up to aw, much ef-
fort has been expended with the aim of reaching an e cient cbcon guration
to extend the dynamic range of the measured signal. For this ppose, ux
cancellation techniques like back o coils [Griths et al., 1999], specially ori-
ented sensors [Igney et al., 2005, Scharfetter et al., 2004, téémn et al., 2004,
2005], and gradiometers realized on printed circuit board®CB) [Merwa and
Scharfetter, 2008, Scharfetter et al., 2005] or as coils [Keyaz and Gercer,
2003, Riedel et al., 2004] have been extensively analyzed.r€sponding imag-
ing performance and detectability features have been anald based on the
point spread functions [Merwa and Scharfetter, 2007, Schatfter et al., 2006].

The frequency dependence of the electrical properties ofdues has been
known for years [McAdams and Jossinet, 1995, Osypka and Gersin@93].
The methodology, when applied at multiple frequencies [Bruner et al., 2006,
Scharfetter et al., 2003, Rosell et al., 2006], is speci calbttractive for mon-
itoring of several disorders in the human body such as oedema [Kat al.,
1991], hemorrhages or epileptic seizures which are correthtwith local uid
shifts. To date, the detectability of uid changes in the brainhas been in-
vestigated by numerous researchers for simple geometries [Hattal., 1988,
Netz et al., 1993, Xu et al., 2009] and for realistic head geomiets based on
MRI or CT scans [Merwa et al., 2004, Garsoy, 2007, Zolgharni etl., 2009a,b].
Although, the ongoing research supplies ample ndings to the tectability of
uid shifts, it also attracts attention to the advancements ne@ssary to achieve

a successful in vivo imaging modality.

1.3 Motivations and Objectives

1. Developing a fast numerical solvertmage reconstruction in MIT requires
consecutive solution of the forward problem for all sets of exation-
measurement pairs which is computationally demanding cormcéng com-

plex valued, large-scale problems. For low frequency applicms, it

3



was reported that the quasi-stationary approximation holds rad this ap-
proximation reduces the need for memory and computationaksources
substantially. Furthermore, some biological tissues show up antsapic
electrical properties which has not been modeled previousiynd it still
remains an open question whether the conventional modeling@oaches
used so far are appropriate or not for clinical applications. Térefore,
a numerical nite element model is aimed to be developed fohé com-
putation of quasi-static electromagnetic elds in an arbitray shaped,
inhomogeneous and anisotropic media nearby a transmitting icoAddi-
tionally, several preconditioning and solution techniques sitl be exper-
imented to investigate the convergence characteristics to @aerate the

solutions.

. System optimization: The experimental MIT systems that have so far
been built are designed with 16 measurement sensors that ena@rthe
region of interest. The imaging quality of possible other congrations
have not been explored in detail, though, the location and @mmtation
of the sensors considerably a ect the measurements and also the-pe
formance of the image reconstruction. Therefore, in this stydseveral
alternative con gurations shall be tested in terms of imagingjuality such
as spatial resolution and variance. Instead of using heuristic gariments,
the problem shall also be de ned as an optimization problem tonel up

with optimal designs in a feasible amount of time.

. Investigation of artifacts due to patient's movementin clinical usage,
the patient can move during the data acquisition and how muchhis
a ects the reconstructed images is an open question. Especyafor chest
applications this movement is inevitable unless a breath-hb protocol
during measurements is feasible. Therefore, the e ect of theapent's
movement during data acquisition to the reconstructed imageshall be
determined and some possible solutions shall be proposed to congate

this e ect.



1.4 Outline

This Chapter provides an overview and history of the eld and pesents the
rationale for the study. Chapter 2 mathematically describeshte forward rela-

tionship between the electrical tissue properties and the measments of the
modality. The electromagnetic formulation for an inhomogaeous, linear and
arbitrary shaped media is derived from Maxwell's equationsna corresponding
solution approaches are summarized. Chapter 3 reviews the Mifverse prob-
lem and addresses the corresponding solution strategies. Chapteiocuses on
system optimization and discusses the e ect of coil positioning dhe imaging

performance. It also provides a method to reach optimal desigin a feasible
amount of time. Chapter 5 discusses the modeling improvementsat must be

achieved for successful in vivo imaging. The importance of mddmrrection

to get rid of the artifacts due to the patient's movements ingle the tomograph
is underlined and some possible compensation techniques areposed. Be-
sides, the e ect of anisotropy on images and the feasibility of msor imaging
is investigated. The last Chapter summarizes the study and sets awrse for

those who wish to work on this eld and expand the study.



CHAPTER 2

FORWARD PROBLEM

2.1 Introduction

The forward problem of MIT is de ned as, given the electrical pperties of
the medium, nding the induced voltages in the receiver cotlue to the eddy-
currents evoked by the time-harmonic excitation. The corsgponding formula-
tion is based on the Maxwell's electromagnetic eld equatianwhich has been
reported in various studies. The well-known approach for the kdion is the

potential eld formulation that uses auxillary potentials, i.e. the magnetic
potential A and the electric potential , for the representation of the elds
[Bro, 1999]. This chapter will review the formulation of the forward problem

and possible solution strategies for the corresponding equatgon

2.2 Formulation

2.2.1 Maxwell's Equations

Let the solution domain consist of a conducting medium . and a surrounding
nonconducting region , such that = ¢ n. The forward problem is
de ned as, given the electrical properties of the medium,, nding the induced

voltages in the receiver coil due to the eddy-currents evakdyy an impressed
current density Js in a source region 5. Mathematically speaking, referring
to the constitutive relations for a linear and an isotropic magrial behaviour as

B = H,D = EandJ = E, the following Maxwell's equations describe

6



the time-harmonic electromagnetic elds in a dielectric maium:

r E = jwB (2.1)
rr-- H = E+Js (2.2)
r D = (2.3)
r B = 0; (2.4)

where E, H, B and D are the electric eld, magnetic eld, magnetic ux
density, electric displacement, respectively. The materialrpperties and

= + jw represent the electrical permeability and admittivity of the con-
ducting medium. The time-harmonic dependence is represedtaith angular

frequency! .

2.2.2 Potential Field Approach

Using (2.1) and (2.4),E and B can be described uniquely by use of the auxil-
lary potentials, i.e., the magnetic potentialA and the electric potential , as

follows,

B =r A (2.5)
E = r jWA: (2.6)

When the above equations are plugged into (2.2) and (2.3), élformulation of

the potential eld equations becomes complete with the belo equations,

ro ('r A (r JwA)

Js (2.7)
r (r jWA)

0: (2.8)

2.2.3 Gauge Fixing

Although, the auxilary potentials A and unigely describe the electromagnetic
elds E and B, the reverse is not true. For instance, by using a di erentiable
scalar function , in nitely many A and can be found in the form ofA +r

and jw  which satisfy (2.7) and (2.8). Coloumb's gauge is commonly the

7



method of choice considering inhomogenous domains and whemposed oA,

the following equations come out,

r2A+jw (r jwA)

1
(@
n

(2.9)

I
o

r r WA r (2.10)

2.2.4 Quasi-Stationary Approximations

For low frequency biomedical applications, the impressed cemt density Jg
in ¢ is much larger than induced eddy-currents in .. Therefore, the con-
tribution of the term jw  (r jw A) to the excitation eld is commonly
neglected [Gercer et al., 1994]. This results in the follomy quasi-static rep-
resentaion of (2.9),

r2Aa = Jg (2.11)
Therefore,A can be calculated from (2.11) and directly used as a source temmn
(2.10) for the computation of the scalar potential . By applying the boundary
condition that the normal component of the current density mst be zero on

<\ n, the relationship between and A is expressed as,

rr JWA r 2 ¢ (2.12)

w A n 2 .\ (2.13)

r n

where n is the normal vector pointing outward from the boundary of tle

conducting medium.

2.2.5 Measurements
2.2.5.1 Reciprocal Approach

According to the Rayleigh-Carson reciprocity theorem, timdrxarmonic current
densities and corresponding electromagnetic elds can be @nthanged under
certain circumstances. Referrindeg as the virtual electric eld due to a unity
reciprocal current density in the receiver coil, the inducedgoltage in that coll
can be written as, 7

V= E Egrdr; (2.14)



where the integration is taken over the conducting domain.. E denotes the
induced currents due to the transmitter excitation.

In a similar manner, the reciprocity theorem can as well be deed on the
domain  where the receiver coil is present. Considering an in nitelyhin

and circular coil, the induced voltages in that coil can be dhined as follows,
z

V= E Jrdr; (2.15)

r

wheredr denotes the in nitely small line elements. If the reciprocalarrent Jg

Is unity, then from Faraday's law of induction, (2.15) is eqivalent to (2.14).

2.2.5.2 Direct Approach

Once the electromagnetic elds in . are solved, the induced voltage in a

circular receiver coil can be obtained by,
Z

v= jw B nd’; (2.16)
S

where the integration is taken over the closed circular surfaof the coilS, and
n is the normal vector orthogonal to that plane. B represents the magnetic
eld due to the eddy-current density and is computed from the Bbt-Savart
law, 7

_ r 3.
B= .~ E o (2.17)

Cc

wherer represents the vector from source pointin. to the eld pointin S; and
r is the corresponding distance. This method requires a numaldntegration
over the coil area as described by (2.16) and becomes compigaally more

e cient over the reciprocal method when the receiver coilsr@ small.

2.3 Solution Strategies

2.3.1 Magnetic Vector Potential

The solution of (2.11) for the magnetic vector potentiaA at locationr in .

can be obtained from,

Z
_ 0 Js(r) 5 0 .
A(r) = 1 ir r‘]d r- r2 o (2.18)



where r° represents the source points in 5. This equation can simply be
solved either by numerical quadrature or by incorporating aaytical methods

and shall be explained in the appendix.

2.3.2 Electric Scalar Potential

Solution of (2.12) and (2.13) for the electric scalar poterdl in . is not trivial
for arbitrary shaped conducting domains and analytical methds are not avail-

able. Thus, it is essential to apply numerical methods for the egputation of

2.3.2.1 Finite Element Discretization

By using Galerkin's weighted residual method to discretisize éhpartial di er-
ential equation,
Z Z
Nir r d3 = NijwA r d°r; (2.19)

c c

where the subscripti denotes thei™ shape function. By using the appro-
priate vector identities and applying the Divergence the@m to the resultant

expressions, the equations become,
Z Z

rN; r d3= r (NjjwA)dr; (2.20)

c C

where the surface integral terms drops due to the conditiomr , = jw A,.
By applying again the Divergence theorem to the right hand s&lof (2.20), we

get, 7 ya

rN; r d3 = Nijw A d°r; (2.21)
c @ C
where,
Xk
r= r N j; (2.22)
j=1
where k represents the number of equations for each element. In thisudty,

tetrahedral elements of rst order were used for spatial discriation. Once
the element matrices have been formed, they are used to Il thenear set of

equations to form a matrix equation as given,

K =b: (2.23)
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2.3.2.2 Linear Solvers

Considering complex valued, large-scale problems as de ned (2.23), it is
more convenient to apply iterative methods for solving the ettric scalar poten-
tial . Knowing that the coe cient matrix K is sparse, symmetric and indef-
inite, quasi-minimual residual method was applied for the solion [Bollhefer
and Saad, 2006].

The solutions can further be accelerated by using an appropt&aprecon-
ditioner to (2.23). Mathematically speaking, applying a preonditioner can
be considered as transforming the linear system into an equivatlesystem of
which the convergence is achieved faster. In that manner, agmonditioner
to the linear system in (2.23) is represented by a matrii that satis es the
following,

MK =M !b: (2.24)

The desired preconditioner is the one that makes the conditionumber of
M !K as close to unity as possible and must be invertible e ciently.
Recently, an inverse-based multi-level ILU preconditioningcheme was pro-
posed for complex valued sparse matrices of general structureollBefer and
Saad, 2006] and was applied for preconditioning of the linegystem of equa-

tions as given in (2.23).
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CHAPTER 3

INVERSE PROBLEM

3.1 Introduction

The inverse problem of MIT is de ned as reconstructing the condttivity dis-
tribution of the human body from a set of measurement data. Lethte relation
between the measurements and the conductivity be expressed as; ( ),
where is a nonlinear function acting on a given conductivity, . The cor-
responding inverse problem, = Y(v), is severely ill-posed, namely, small
changes in measurements cause large changes in the solutione fost com-
monly used approach to address this problem is to imposega&ori information
and adopt regularization methods to overcome ill-posednesshd solutions are
obtained assuming linearity and solving for the small perturbabns around a
reference conductivity distribution. Thus, for a feasible remnstruction, the
awareness of the expected solution, in other words, a good ialtzation, is
essential to cope with the di culties related to nonlinearity. This chapter

presents the formulation and common solution strategies to thgroblem.

3.2 Problem De nition

The sensitivity of the data to the conductivity perturbations can be approxi-

mated from (2.16) as,
@; :
@y = 1 E E dr (3.1)
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or from (2.14) as follows,

@y jw z r
=V - 0 . 3 2.
@ 4 | C Ei _r3d rod; (3.2)

]

where denotes the conductivity deviations from a reference disbution.
Therefore, assuming admissible conductivity uctuations, by usig (3.1) or

(3.2), the following system of linear equations can be formed,
S = v (3.3)

where S is referred to as the sensitivity matrix. Each row correspondstone
transmit-receive coil pair and each column to one voxel. With the range of

linearity, a fairly convenient solution for can be obtained from,
=9 v; (3.4)

by de ning § as the generalized inverse &.

3.3 Solution Strategies

3.3.1 Regularized Gauss-Newton Method

Tikhonov regularization is widely used to increase the conddning of the sys-
tem of equations [Merwa et al., 2005, 2006, Scharfetter et,a2006, Ziolkowski
et al., 2009]. This type of regularization commonly causes spth solutions.
The regularized least-squares solution for can be obtained by minimizing
the L,-norm of the residuals between the estimated and measured data a

de ned by means of a minimization problem,
= argmin %kS vk? + S kR K (3.5)

where R is the regularization matrix and is the regularization parameter
that speci es the amount of applied regularization. It is poss&ile to chooseR
di erently. This study uses only the identity matrix as a regularization matrix,
however, several other regularization matrices such as neugiiing matrix and
matrices that minimize spatial variance have been reported@viously [Merwa
et al., 2004, Scharfetter et al., 2006].

13



3.3.1.1 Single Iteration

A single iteration of the Gauss-Newton algorithm gives a fairly anvenient
solution for and can be used for the solution of the minimization problem
given in (3.5). The corresponding solution can be obtained g

1

= STW'WS+ RTR ST v; (3.6)

where W is a weighting matrix, R and are the regularization matrix and
regularization parameter, respectively, as described in thgrevious section.
Note that assumingW "W as an identity weighting matrix, STW TWS is an
approximation of the Hessian. In Bayesian theoryyV is chosen as the inverse
of the data covariance matrix and RTR is chosen as the inverse of the model
covariance matrix. In this study, assuming uncorrelated measaements,W is
assumed to be an identity matrix.

A proper choice of can be obtained e.g., according to the Morozov's
discrepancy principle criterion [Hansen, 1998]. According tdhis criterion,
the smallest is chosen as the regularization parameter which satis es the
following expression,

k() v & (3.7)

where denotes the dependence of the regularization parameteron the
reconstruction and , represents the standard deviation of the measure-

ments.

3.3.1.2 Subsequent Iterations

(3.6) can be interpreted as an iterative regime initiated aa reference distribu-
tion [ with the corresponding measurements,e; such that = ref

and v =V V. Although, the e ect of subsequent iterations is marginal,
the reconstructions can be slightly improved [Soleimani andianheart, 2006].

The solution for can be obtained using subsequent iterations as follows,
nt1 = nt n(SIWTWSn + nRIRn) 1SI(Vn Vref ); (3.8)

where the resultant solution can be obtained from = ;4 ef . Here, ,

denotes the step length. Computation of the sensitivity matrixat each iter-
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ation and nding proper step lengths and regularizations maés the iterative

methods computationally demanding.

3.3.2 Truncated Singular Value Decomposition

data and the model space, respectively, and is a diagonal mak, the diag-
onal entries of which are called the singular value§’ can be computed from
V YUT where VY is the pseudoinverse of with every nonzero entry replaced
by its reciprocal. Due to the ill-conditioning of S, a truncation by using only
the t column vectors ofU andV corresponding to thet largest singular values
is preferred to stabilize the inversion when the data are inacate. Therefore,

the solution can be computed from,
=V JUT v (3.9)

where the subscriptt de nes the truncation level that determines the stability
of the inversion by ignoring then { t number of small singular values in .

Let ; be the largest singular value and , as the k™ largest one, the
proper selection of the truncation levek, can be established by choosing the

maximum k that satis es the following equality [Golub and Loan, 1989],

SNR=20log,, —™  20log, - (3.10)
k

rms

where Vs and s are the root mean square of the perturbed voltage
signal and the noise signal, respectively. The left hand side ofethnequality
is de ned as the signal to noise ratio (SNR). If the noise is modeleas an
additive white Gaussian noise of zero mean,,s denotes the corresponding

standard deviation.
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CHAPTER 4

SYSTEM OPTIMIZATION

4.1 Introduction

The experimental MIT systems that have been built so far are desigd to
encircle the region of interest with xed 16 measurement chaets and the
imaging quality of those are analyzed previously in various sties. How-
ever, possible other con gurations have not been explored irethil so far and
whether the existing 16-channel MIT systems are optimal in the see of imag-
ing performance or not is still an open question. This chapterdaresses this
problem and tries to improve the imaging performance by ndig better de-
signs. To this end, the existing systems were compared with otheltexnative
system con gurations to conclude the in uence of coil orient@gons on the im-
age quality [Garsoy and Scharfetter, 2009c]. Furthermorea deterministic al-
gorithm was proposed to end up with optimal coil designs in a fedle amount
of time based on maximizing the independent information of gnmeasurements
[Gursoy and Scharfetter, 2009b].

4.2 E ect of Coil Orientations on Imaging

In MIT, the change in the magnetic eld due to the conductivity perturbation is
much weaker than the primary magnetic eld which leads to a naow dynamic
range in the receiver channels. Therefore, much e ort has beexpended
so far with the aim of reaching an e cient coil con guration to extend the

dynamic range of the measured signal. For this purpose, ux caeltation
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techniques have been extensively analyzed. However, the rteof di erent
sensor orientations on the imaging performance have not beendied in great
detail so far. Therefore, the aim is to |l the void of a systemat investigation
of the coil orientations on the reconstruction quality of thedesigns.

To this end, a number of alternative receiver array designs thi di erent
coil orientations were suggested and the evaluation of the dgss was per-
formed based on SVD assuming that the underlying model is linearThe
image resolution and variance measures were used to analyze pleeformance
on the radial and axial axes of a cylindrical phantom and a c& of quality
measures, the subclasses of which are linked to these measures, sgatial
resolution and image uncertainty, was used to assess the overadriprmance
of the designs. The detectability of three di erent local condctivity pertur-
bations in the phantom was investigated using the reconstruadeimages for

noisy and noise-free data.

4.2.1 Evaluation Criteria
4.2.1.1 Image Resolution and Uncertainty

From the linear inverse theory, it is possible to obtain the the@tical resolution
limits and the uncertainty of the reconstructions in terms ofthe sensitivity

matrix. By using (3.3) and (3.4), the resolution matrix is give as follows,
R =9S; (4.1)

of which the columns are called the point spread functions abay represent
the response of the system due to a point source. Ideally, when thesolution
is perfect,R is an identity matrix, however, due to the absent informatiorthat

lies in the kernel ofS, R is signi cantly di erent from an identity matrix.

A similar relation can be written to describe the uncertaintis in the model
parameters. The model covariance matrix provides an estimal®w the errors
will propagate from the data space into the model space and car lvritten
as,

Cm= S'C,'s *; (4.2)
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whereCy is the data covariance matrix.
Assuming that the data are uncorrelated and the data variancesenormal-

ized to unity, (4.1) and (4.2) can be expressed in terms of the S\idmponents,

R

\VARARVAl (4.3)

Cm \VARSRIVAL (4.4)

From (4.3) and (4.5), it is clear that the resolution is simplyWV T considering
only the singular vectors corresponding to the nonzero singulgalues and the
model covariance is the "weighted" version of the resolution atrix by the

square of the associated singular values.

4.2.1.2 Generalized Quality Measures

A generalized class of quality measures can be obtained using t8VD of
the sensitivity matrix to serve as a basis for the evaluation [Ctis, 1999].
It is also possible to quantify the previously explained image selution and
uncertainty by selecting particular subclasses of this measurdJsually, the
desired measure shall focus onto a region, e.g. a slice or a singhel; instead
of the whole conductive domain, and thus, the e ect of the sindar vectors

that span the parameters within that region must be computed. &t F =

desired region, denoted aB. The projection of the singular vectors ontd- is

written as,

j = (v; f)? j=1;2::5n (4.5)

vector denotes the e ective singular vectors foF. For computational conve-
nience, a natural and simple way to select the basis fér is using the unit
vectors oriented parallel to each of the model parameter axeand de ned as
follows, 8
<L ifi=
Fij = . o ) (46)
O ifi6]
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By imposing that the singular values apply a weighting to the assmated sin-

gular vectors, a set of quality measures for the regida can be de ned as,

8
< T ) ;
(SR o if 0
q:(:t)=: i :

X 4.7)
p" ! p; if <0

where can be thought as an arbitrary weighting parameter and is the

truncation index. The resolution and uncertainty measures arthe subset of
the measure given by (4.7), with taking values of 0 and -2, respectively.
In these two particular cases, the resolution and uncertainty nasures are
equivalent to summing the diagonal elements & and C,, respectively, which
corresponds to the voxels withir.

The selection of the parameter in (4.7) allows us to de ne a weighting
between the resolution and the variance of the reconstructismand serves a
useful base for design optimization. The value determines the e ect of
the singular values on the imaging performance. A positive value tends
to increase the e ect of the larger singular values than the smal ones so
that the inversion would be better constrained under low levelof SNR. Since
the number of the e ective singular vectors may be too little a compared to
the unknown parameters, a positive weighting is usually more ppopriate for
the current MIT systems so that the e ect of the smaller singular vaes are
comparably reduced and the importance of the larger ones igised.

Using (4.7), the e ect of the truncation level on the quality can be expressed

as,
k()

O (5t max)

where ¢ is de ned as the quality reduction in percentage due to the tm-

%) G(;t)=100 1 (4.8)

cation. Considering the designs in this papetm.x = 256 which denotes zero

truncation.

4.2.2 Simulation Setup

Six di erent designs with a xed number of coils were comparednd the goal

was to assess the characteristics of the receiver coil orientats in terms of
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Figure 4.1: The cylindrical phantom and the positioning of tle transmitter
coils. The left and the right diagrams correspond to the side weand the top
view. All units are given in millimetres.

Figure 4.2: Demonstration of the receiver coil designs: (&1, (b) D2, (c) D3,
(d) D4, (e) D5 and (f) D6.
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Figure 4.3: The logarithmic ratio between the rst and thek" singular value
as compared to the SNR.

the measures applied. For excitation, 16 identical solenoidansmit coils with
2.5 cm radius were used with their centers uniformly positiodeon a circular
ring of 14 cm radius (see, gure 4.1). 16 receiver coils with2.cm radius
were placed with their centers on an inner ring of 13 cm radiushe designs
di ered by the receiver coil orientations where the unit vetor along the coil
axis was allowed to point in one of the three standard cylindral coordinate
basis vectorsu , u- oru,. The designs are shown in gure 4.2 and are denoted
asD1 (u), D2 (u-), D3 (u;), D4 (u and u, alternating), D5 (u and u:

alternating) and D6 (u- and u, alternating).

A cylindrical phantom of 10 cm radius and 30 cm height with thee local
spherical inhomogeneities inside was used to test the imagingrfeemance of
the designs. The inhomogeneities had comparatively small raaif 1 cm so
as to re ect in the images approximately the point spread furtions at the
locations [-6, 0, 5], [6, O, O] and [-3, O, -7] cm.
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Table 4.1: Optimum truncation levels for the designs correspding to di erent
SNR levels. (-) means that no truncation is necessary.

Design 20dB 40dB 60dB 80dB 100 dB

D1 28 62 102 168 222
D2 37 105 155 215 253
D3 44 111 167 227
D4 51 111 177 236
D5 36 88 150 223
D6 56 129 198 253

4.2.3 Results

The sensitivity matrices of the designs were computed using a €mim con-
ductivity distribution within the phantom and the SVD was performed on
the matrices. To determine the truncation level needed for a a&ble image
reconstruction, the logarithmic ratios according to equatin 3.10 between the
rst and the remaining singular values as compared to the SNR lels were
examined as in gure 4.3. The obtained truncation levels fahe designs corre-
sponding to several SNR levels are given in table 4.1. The cun@@sponding
to D1 ascends more steeply than for all other designs, thus re ectingfaster
drop of the singular values. For instance, only 28 singular valsecan be ef-
fectively used for image reconstruction considering 20 dB SNRnQhe other
hand, the curve ofD6 ascended with a more gentle slope and the corresponding
truncation index was signi cantly higher considering the fesible SNR levels

of a typical MIT system.

For a detailed analysis, the phantom was divided into thin slieof 1 cm
thickness along the z-axis. The axial resolution and uncertainmeasures at
20 dB SNR level associated with each slice were computed based ai)(&y
substituting the  values as 0 and 2, respectively, and the associated curves
were plotted in gure 4.4. The truncation necessary for a stabl@version was
obtained from table 4.1. Since the curves are symmetric witlespect to the
central plane, only the curves corresponding to the positiveaxis were plotted.
The slices at 5 and 7 cm on the z-axis were marked as dotted ved lines to

highlight the locations of the perturbations. The curves ob4 and D6 showed
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Figure 4.4: The curves of the normalized resolution and vanae measures at
20 dB SNR level along the z-axis corresponding to the designs. Télees at
5 and 7 cm on the z-axis were marked as dotted vertical lines ghlight the
locations of the perturbations. On the y-axes, 0 and 1 indicatethe minimum
and the maximum, respectively.
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Figure 4.5: The curves of the normalized resolution and vanae measures at
20 dB SNR level along the radial-axis considering di erent sles. The radial

position at 6 cm was marked as a dotted vertical line on the ragl-axis to

highlight the locations of the perturbations. On the y-axes, @nd 1 indicates

the minimum and the maximum, respectively.
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Quality

30 60 90 120 150
z-axis (mm)

Figure 4.6: The normalized quality curves along the z-axis (= 1) corre-
sponding to the designs. The slices at 5 and 7 cm on the z-axis werarked
as dotted vertical lines to highlight the locations of the pdurbations. On the
y-axis, 0 and 1 indicates the minimum and the maximum, respeggly.

the largest resolution among all designs except at the origin wdh represents
the central slice. The peak of the curves dd1, D2 and D5 lie at the origin

and they decay along the z-axis. In the variance plot®3 and D6 showed the
worst performance among all andd1 was the most stable design with a low

image variance.

For a radial analysis, transversal slices, i.e. & =0 and at z=5 cm, were
divided into tiny rings of di erent radii from the origin to t he periphery of
the slice. The thickness of the rings was selected as 1 cm. Theresponding
curves of the resolution and variance measures at 20 dB SNR leaé#ng the
radial-axis for two di erent slice positions were given in gue 4.5. The radial
position at 6 cm was marked as a dotted vertical line on the raal-axis to label
the location of the perturbation. D3, D4 and D6 showed better resolution in
the o -central plane and considering the central plane, all @signs showed
comparably similar performances excedD3, the resolution of which was very
low. The plots for the slice atz = 7 cm showed similar curves ag = 5 cm

and, thus, were not presented.
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Figure 4.7: The e ect of SNR on the design qualities of the design = 1).
The slices at 5 and 7 cm on the z-axis were marked as dotted ved lines to
highlight the locations of the perturbation .

It is, in principle, not su cient to investigate only the image r esolution to
compare the designs. For instance, some designs may show better |tgem
performances but the corresponding images might be unstabléewn the data
are noisy. This shows the necessity of the overall performance asares as
given in (4.7). For the demonstration, a quality measure with ainity weight
( = 1) was considered and the curves were plotted in gure 4.6. Asoted
from the plots, the quality of D1, D2 and D5 was signi cantly weighted for the
central slice due to their low image varianceD3 showed a very poor quality
especially for the central slice and4 and D6 showed fairly good results.

Considering the slices beyond 2 cn)4 outperformed the other designs.

The e ect of the truncation on the design quality was analyzedccording
to eql3 and the plots for several SNR levels were given in gure74 With
60 dB and 80 dB SNRD1 has the largest reduction of quality compared to the

other designs. This is probably due to the large number of negted singular
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Figure 4.8: The images reconstructed from the correspondingsgigns using

noise-free data. From left column to the right column: (a) D1(b) D2, (c) D3,

(d) D4, (e) D5 and (f) D6, respectively.

()

vectors. However, there is not a signi cant quality reduction ©D3 and D6.
This scenario is dierent for low SNR levels. For 20 dB and 40 dB SNR
the qualities of D2 and D5, respectively, drop rapidly, whereasP1 shows a

moderate reduction for the associated SNR.

Reconstructed images of the designs from data without noise amdth
20 dB noise are depicted for all designs in gure 4.8 and gure 9. respec-
tively. The voltage data were simulated by changing the conditivity of the
perturbations from 0.1 S m?! to 0.2 S m ! assuming a constant background
conductivity of 0.1 S m 1. The three transversal images were chosen to cut
through the centers of the inhomogeneities. From the images$d perturbation
located at [-3, 0, -7] cm was hardly recognizable and the dépsensitivity was
found to be comparatively poor for all the designs. Perturbatins close to the
periphery appeared as bright spots but smeared out to large Ib® according
to their broad point spread functions. Due to the complete symntey of the

coil ring with respect to the median plane, the reconstructiomlgorithm could
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Figure 4.9: The images reconstructed from di erent designs ug noisy data
of 20 dB SNR. The truncation was applied according to table 2. rém left
column to the right column: (a) D1, (b) D2, (c) D3, (d) D4, (e) D5 and (f)
D6, respectively.

not distinguish between the perturbations which lie symmetriavith respect to
the symmetry plane. Thus, each perturbation o the median plae lead to an
arti cial mirror image in the opposite half space and the imagentensity was
reduced. The mirror artifacts completely cloak the deepestegpturbation in

all cases. The central slice was fairly well reconstructed in atrst all designs

exceptD 3, which has no sensitivity at all to the median plane.

4.2.4 Discussions

The complete resolution analysis, i.e. examining, charactemg and reporting
the PSF of each voxel, is very challenging due to the large nier of pa-
rameters. Usually, some measures to quantify the key features betPSFs are
desired for evaluation. A recently proposed measure was the spileof the PSF
guanti ed by the distance at which the function reaches a peentage of its

maximum value [Merwa and Scharfetter, 2007]. However, thigpproach is not

27



easily applicable for all locations due to the nonconvex andlatrarily shaped
PSFs of MIT. Thus, in this work, we suggest to use only the peak vads of the
PSFs for quanti cation. This showed results consistent with thepreviously
used evaluation of Merweet al [Merwa and Scharfetter, 2007], since the peak
value was found to be strictly dependent on the spread of the fation, i.e., a
high peak is an indicator of good resolution and low spread. Adutinally, this

measure is computationally much cheaper and robust.

The stability of the reconstructions, which addresses the possikéetifacts
arose from propagation of data errors into the imaging domajrhas not been
investigated much. In this work, the evaluation was carried @t by a mea-
sure which was computed from the variances of the reconstrumtis due to an
uncorrelated data noise. A clear trade-o between the resolign and the sta-
bility was noted. For instance, a decrease in the truncation Vel results in a
more stable inversion by removing the e ect of the smallest singad values,
however, leads to a poorer resolution due to the reduction oli¢ associated
singular vectors. Considering these facts, we used a quality measiay which
the resolution and the stability can be weighted accordinglyThe motivation
behind this weighting strategy can be inferred from gure 4.%&onsidering the
slice atz =5 cm. The designsD 4 and D 6 show similar characteristics in terms
of resolution, however, the variance curve dD6 shows larger uncertainty in
the image domain and, thus, the overall performance @6 was concluded to
be poorer thanD 4. This example shows the necessity of integrated approaches

to quantify the performance to be used in design optimization.

As discussed in earlier publications [Merwa and Scharfetter, @8, u, di-
rected coils (asD 3) have nearly the same characteristics as the vertically po-
sitioned (on end rings) planar gradiometers with their main as pointing to-
wards u . Similarly, it is also possible to construct analogous gradiorter
designs. For instance, considerin® 2, it is possible to build an analogous de-
sign by using horizontally positioned (side by side rings) planargdiometers
pointing in direction u . The simulations that were not shown in the paper

revealed that the zero- ow gradiometer receiver design sugded by Scharfet-
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ter et al [Scharfetter et al., 2005], does not resembI21, but produce similar
images likeD3. This is thought to be due to the comparatively larger size
of the gradiometers, since the voltage induced in the ring pled far from the
surface is considerably lower than the closer ring. Thereforéne designsD 2,
D3 and D6 can be fully implemented using planar gradiometers instead o
coils.

The reconstruction algorithm could not distinguish between tb conduc-
tivity perturbations which are placed symmetric with respectto the median
plane due to the complete symmetry of the coil rings. This causesti cial
mirror images in the opposite half space for the perturbations the median
plane. From gure 4.8, it was noted that the mirror artefactswere bound to
be positive for the design® 1, D2 and D5, the coil axes of which point along
the horizontal directions U and u- ) and negative forD 3 which is constructed
by u, oriented coils. Therefore, considering the desigii®4, D6, which have
both the vertically and horizontally oriented coils, the miror artefacts were

partly cancelled due to the di erent sign characteristics of lte artefacts.

4.3 Optimal Coil Positioning

The previous section mainly discussed the e ect of coil orientain on the
imaging performance of the system by comparing several altetinv& designs.
Although, this study provides intuitive justi cations on how t o design experi-
ments, it is not feasible to compare all possible con gurationsia reasonable
amount of time. Therefore, in this section, a fast and determistic optimal

design strategy is presented and the resultant designs are anagz

4.3.1 Optimization Algorithm

The design strategy used aims at maximizing the degree of the gqendence
between the rows of the sensitivity matrix in order to decreaséhé condition
number of the Hessian matrix. This could also be interpreted as mmizing

the degree of mutual information between the measurements éeappendix).
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Let the quality measure for a particular design be de ned in tens of the N-
dimensional angle between the rows of the sensitivity matrix agven below,

2
Sm_ Sn

mn = ks k ks k ; (4.9)
where s; corresponds to thei!" row of the sensitivity matrix. The values
are simply the square of the cosines of the angles between the scand are
de ned in [0;1]. When is closer to 1, then the row vectors are dependent.
Thus, (1 ) represents a quality measure. This relationship is sometimes
referred to as the normalized data resolution (or informati®) matrix [Jackson,
1972]. The more orthogonal the vectors are, the more indemlmt information
content they provide. Based on (4.9), a quality measure for a spe receiver
is given as follows,
1 XX +
Q=N 1 % : (4.10)

k=1 n=1

Here N is the possible number of independent measurements, namely, the
tal number of rows in the sensitivity matrix, and K is the number of di erent
transmitters which yield the di erent measurements in thek™ receiver. The
outer sum is over the values of for the particular receiverr that the trans-
mitters are coupled with it to form a transmit-receive pair. Q, re ects the
gain of information which each receiver contributes to thenformation of the
whole set.

Usually, the maximization of the spatial resolution in a particlar region
(e.g., a slice) is desired. This is possible by weighting the semngty matrix
before the optimization procedure by multiplying all the ctumns of the sensi-
tivity matrix with weights in such a way that columns corresporing to voxels
in the focus region are emphasized while the remaining oneg de-emphasized.
In the extreme case, all the columns of the sensitivity matrix fovoxels outside
the focus region are set to zero.

The applied algorithm works as follows: (1) Choose a set of reeei ge-
ometries that spans all feasible designs in a discrete manner) @mpute
the sensitivity of the whole set. If focusing to a specic region islesired,

use the weighted sensitivity matrix. (3) compute the angles beten all rows
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associated with independent transmit-receive combinations4) reduce the re-
ceiver which provides the least loss of information when beirrgmoved from
the remaining set. (5) Update the sensitivity matrix by deletingthe rows
corresponding to the discarded receiver. (6) Continue loomrthrough these
steps (2-5) until a stopping criterion is reached. In this studythe algorithm
was stopped when a desired number of receivers, i.e., 16 or 32 weched.
Of course other criteria are possible, i.e., until the achievébdresolution in a
certain region passes a certain threshold or the algorithm calublso stop if
the derivative of the overall quality measure calculated atach step exceeds a

certain threshold.

4.3.2 Simulation Setup

A cylindrical phantom (0.1 S m ) which has 3 local spherical inhomogeneities
(0.2 S m ') was used for simulations (see, gure 4.10). The phantom had
a radius of 10 cm and a height of 30 cm. Each inhomogeneity hadadius
of 1 cm and was positioned at [60; 5], [ 6; 0; 0] and [3 O; 7] cm.
The measurement data were simulated by changing the condudti of the

perturbations from 0.1 Sm!t0 0.2 S m 1.

Two di erent transmitter coil arrangements were selected fothe simula-
tions (see, gure 4.10). For convenience they will be refedeto as T1 and
T2. In T1, 8 uniformly positioned identical and radially oriented transmitters
of 4 cm radius encircle the phantom, whereas, in T2, the numbef circular
transmitters was doubled and they were positioned in a zigzaggern. The
excitation current was 1 A for each transmitter and the excitaon frequency

was chosen as 200 kHz.

The full starting set of all feasible receiver positions is giveim gure 4.11.
The radius of the receiver coils was chosen as 2 cm and they etlei the
phantom in 16 equidistant locations on 7 rings. A total of 112 mtular receiver

coils was used to initialize the design algorithm.
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(a) (b)
Figure 4.10: Transmitter arrangements around the cylindrial phantom
(0.1 S m 1) which has 3 local spherical inhomogeneities (0.2 S #). (a) 8
at transmitter coil geometries [T1] and (b) 16 crosswise transntiier coil ge-
ometries [T2] were used for excitation. Upper diagrams are thiep views and

lower ones are the side views of the simulation arrangements. Alistance
units are in cm.
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Figure 4.11: The possible receiver locations selected for thtialization of
the design optimization. (a) side view and (b) top view.

4.3.3 Results

Three di erent optimization designs were realized for both T and T2 accord-
ing to the desired improvement of the image resolution at di e¥nt regions
of the phantom. The rst design should increase the resolution inhie whole
phantom and will be referred to as R1. In this case no weightingas applied
to the sensitivity matrix. The other two designs should increasehe resolution
in the transversal slices of 3 cm thickness placed at 5 and 0 cm Hwign the
z-axis and will be referred to as R2 and R3, respectively. In#lse designs, for
proper focusing, all the columns of the sensitivity matrix for gxels outside the
focus region are set to zero, whereas, the focused ones were hahged. The
resulting optimum designs for the T1 and T2 excitations are gen in Figure
4.12 and 4.14 respectively. In the gure, the dashed area at édaphantom
represents the region of which the information content was manized. In R1,
the optimum set of receiver coils forms two rings which are wgally 24 cm
apart from each other. However, when a regional focusing wassaed, the
optimum set of receiver coils encircles a speci c region of tlselected slice in

a single plane. In a second run the same strategy was applied witl2 &s the
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120 A4 120 A4

Figure 4.12: Optimum receiver designs for T1. The dashed arebemch phan-
tom represents the region of which the information content immaximized. (a)
the design [R1] without focusing. (b) The design [R2] obtainedybfocusing
to the the slice at z =5 cm. (c) The design [R3] obtained by focusinto the
central slice.

transmit con guration. Similar to R1, R2 and R3, the corresponing designs
will be referred to as Ra, Rb, and Rc respectively, dependinghdhe focus

region.

When focusing onto a certain region the resolution of the imageclearly
increased when compared to the unfocused case (see, gure 4.18 4115 by
visual perception and table 4.2 quantitatively). However, tis local gain of
resolution was achieved at the cost of a signi cant resolution $3 outside the
focus region. Consequently only in the unfocused versions (RhdaRa) all
three perturbations could be identi ed simultaneously, whi¢ all other designs
failed to do so. On the other hand, due to the lack of focusing, ¢hR1 and Ra
designs led to more blurry images. The reconstructions of theadiat z =5 cm
were best when using the designs R2 and Rb. However the lower hdlttce

phantom had poor resolution. In the design R3, a spurious mirramage of
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(a) (b) (c)

Figure 4.13: Reconstructions with the optimum receiver desig by using T1 as
excitation. (a) the reconstruction obtained using R1 withoufocusing. (b) The
reconstruction obtained using R2 which focuses to the the slice a=5 cm.
(c) The reconstruction obtained using R3 which focuses to the mieal slice.

35



>
>

z 120 A4 120 A4

V\J\/VV&

Y

(EICH I

Figure 4.14: Optimum receiver designs for T2. The dashed arebemch phan-
tom represents the region of which the information content immaximized. (a)
The design [Ra] without focusing. (b) The design [Rb] obtainedybfocusing
to the the slice at z =5 cm. (c¢) The design [Rc] obtained by focusinto the
central slice.

the upper perturbation appeared in the lower half of the cyfider, probably
because of the symmetry of the coil arrangement with respect thé median
plane. The lower perturbation was possibly cloaked by that mior artifact,

due to the comparatively low sensitivity at the respective dept. When the
focus should be on the central slice, the algorithm suggests tocaucle the
phantom with a uniform distribution of the receiver coils in he central plane
of the slice, as seen in R3. Similarly, vertically paired reaars are placed in

front of each transmitter coil, see the results for Rb.

The comparisons of the eigenvalues of the Hessian matrix obtaih&om
di erent transmitter and receiver designs are given in gure 46, 4.17, and
4.18. In gure 4.16, the eigenvalues of the Hessian matrices abited from T1
as the excitation con guration and R1, R2 and R3 as the optinzed receiver

designs. As expected, the design R1 tends to atten the eigenvalgpectrum
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(a) (b) (c)

Figure 4.15: Reconstructions with the optimum receiver desig by using T2 as
excitation. (a) the reconstruction obtained using Ra withoufocusing. (b) The
reconstruction obtained using Rb which focuses to the the slicé 2= 50 cm.

(c) The reconstruction obtained using Rc which focuses to the mteal slice.
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Figure 4.16: The corresponding eigenvalues of the Hessian megs obtained
from R1, R2 and R3 as receiver designs and T1 as the excitatiorheme.

by increasing the small eigenvalues and reducing the largeresn In gure 4.17,
the corresponding spectrum was obtained similarly except th#te Hessian was
calculated only from those columns of the sensitivity matrix tke voxels of which
correspond to the central slice. It was noticed that the design dRfocusing
onto the central slice provided the largest eigenvalues. Figri#.18 shows that
the design T2-Rc outperforms the design T1-R3 when comparingpecially
the smaller eigenvalues of the respective eigenvalue specffe quantitative

results of resolution analysis was given in table 4.2. The restbn of the

central slice is largest for T1-R3 and T2-Rc design compared the remaining
designs. Similarly T1-R2 and T2-Rb designs have the largest rastbn at the

slice positioned at z =5 cm.

4.3.4 Discussions

The forward operator of MIT was linearized around a given caluctivity distri-
bution and small variations between di erent conductivity states were recon-
structed according to the idea of di erence imaging. This ligarization renders

possible the use of a deterministic approach. The design strateggweloped
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Figure 4.17: The eigenvalues of the Hessian matrices obtainedni Ra, Rb
and Rc as receiver designs and T2 as the excitation scheme. Othlg coloumns
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Figure 4.18: The corresponding eigenvalues of the Hessian megs obtained
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For convenience, only the largest 128 of 512 eigenvalues al@tpd for T2-Rc
design.
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Table 4.2: Total resolution ¢r(S’S)) of (A) the central slice and (B) the slice
at z = 5 cm for the corresponding designs.

(A) (B)
Tl R1 0018 10° 0:109 10 °

Tl R2 (0170 10° 1210 10°
Tl R3 3730 10° 0:743 10°

T2 Ra 0106 10° 0:341 10°
T2 Rb 2691 10° 6:184 10°
T2 Rc 8071 10° 3425 10°

was based on the calculation of the sensitivity matrix. Therefe no voltage
data simulation or noise considerations were needed to obtaiptonal designs.
MIT designs which are currently used in existing hardware werevguated and
it was shown that better designs can be achieved for di erent ekation and

receiver patterns.

The solution of the inverse problem is a time consuming process. dfv
in the linearized case, the optimum experimental design ap@ohes requires
a vast number of forward problem solutions. Thus, it is essential toeduce
the possible set of solutions to a computationally feasible set. &hresulting
designs are, accordingly, assumed to be an optimum subset of thigiah set of
geometries. This method does not guarantee the global optimubecause of
the practical infeasibility of evaluating all possible combiations of the whole
set. However, the results showed that it is possible to nd an optimasetup

for some practical experiments.

The possibility of "regionally focused" MIT was demonstrated. This strat-
egy increases the image resolution in a particular region atehcost of other
regions' resolution. As to the knowledge of the authors, design$ieh focus on
a speci ¢ slice have not yet been described quantitatively in nuh detail. The
reason may be that intuition suggests to place the receivers omiag encircling
the body on a transverse plane as closely as possible to the sliceclwlghould
be investigated. This assumption is possibly the heritage of théd2EIT imag-

ing and was taken as a standard for MIT designs. Although it was pveously
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found that the resolution near the receivers is higher comped to far regions,
it is unclear whether the currently used designs focus on a pamlar region or
not.

When the increase in the resolution of the central slice is degiiethe opti-
mal receiver locations which were suggested by our algorithmeaintuitive in
that sense that they lead to a concentration of coils close to thdesired slice
of the body with a fairly equidistant spacing. However the morehte desired
slice is far away from the transmitter plane, the receiver lot@ns are not cho-
sen as the closest locations to that slice, but, a bit in opposite réction with
respect to transmitter plane (i.e., see, gure 4.12-b). In adtion, the results
also clearly emphasize the poor resolution in regions outsidestfocus volume.
It was also noted that the solutions with a fair overall resolubn cannot be

found unless the coils are also spread over a wider range in thdiection.

4.4 Conclusion

A number of receiver array designs with di erent coil orientdons were com-
pared with the existing con guration and SVD was used to serve aslasis for
the analysis. It was found that the proper choice of the coil ehtations sig-
ni cantly in uences the number of usable singular vectors; ths, the stability
of image reconstruction, although the e ect of increased stdiiy on the qual-
ity of the reconstructed images was not of paramount importaze due to the
reduced independent information content of the associated gwlar vectors.
Each design has its own merits and shortcomings for di erent iaging regions
and for di erent SNR levels, nevertheless, considering overalharacteristics,
D1, D2 and D5 found to be more focused to the median plane with high res-
olution and low image uncertainty. For the o -median regios, D4 was found
to be moderately better among others considering the practtnoise levels of
MIT, i.e., 20 to 40 dB.

Additionally, a deterministic algorithm was proposed to end upwith op-
timal coil designs. By examining the singular values of the resaht designs,

it was found that the algorithm tends to increase the smaller sgular values
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of the spectra in order to balance the amount of information ening from the
imaging domain. The algorithm provides a better conditiong relationship
between the model and data parameters considering the systenmavimg low
to moderate levels of SNR. However, the design suggested by theoalllpm is
not suitable for systems for those having extremely large SNR ldsgbecause,
in that case most of the smallest singular values are ignored andethargest

singular values gain importance over the smallest ones.
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CHAPTER 5

ARTIFACT REDUCTION

5.1 Introduction

As described in previous Chapters, MIT tries to image the elegtral properties
of a medium under investigation using noncontact measurementélthough

the idea has being successfully used for numerous industrial apgtions such
as for surveying the rocks surrounding a borehole [Kaufman arller, 1989,
Kaufman and Dashevsky, 2003, Wait, 1982], to detect aws in matials [Hel-
lier, 2001] or for crosssectional imaging of pipes in industry ¢iton et al.,
1996, Ma et al., 2006, 2008, Soleimani et al., 2008], the userfedical appli-
cations has just recently came under investigation [Al-Zeibaknd Saunders,
1993] and the characteristics of the device for clinical trig is not su cient

yet. This is presumably partly due to the modeling inaccuraes of the hu-
man body and this Chapter addresses some of the fundamental isslikes the

body movements during data acquisition [Gdrsoy and Scharfetr, 2009a] and
anisotropic modeling of the tissues [Garsoy and Scharfetter, smitted] that

must be tackled in order to have the modality as a successfull diaastic tool

to be used for medical applications.

5.2 Movement E ects

The imaging approaches so far have relied on stable models sulcattthe for-
ward and inverse models are placed at the same location. Howevarreal life

applications, the patient can move inside the tomograph due teespiration or
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due to other random factors. Thus, this section summarizes the isswof pa-
tient's movement during data acquisition in detail and propses some solutions
to compensate this e ect.

The same problem exists in electrical impedance tomographyl{B [Zhang
and Patterson, 2005]. In EIT, the sensors are attached to the sade and
this automatically roughly maintains the relative positionof the body to the
sensors. However, in MIT the e ect is found to be more dominant onhe
surface of the body because the sensors are usually xed in space arslight
shift of the body can cause a signi cant position change with respeto the
coils.

A simulation study was conducted to see the e ects of the movemisnin
a spectroscopic 16 channel MIT system [Scharfetter et al., 2008[o model
the movement e ects, the position and shape of the body was mo&d with
respect to a reference model and spherical inhomogeneitiesidgie the cylindri-
cal phantom were imaged for both state and frequency di ereial MIT. The
simulations were also conducted for 20 dB SNR level to test the silty of
the imaging. To overcome the movement e ect, possible pre-pressing and

post-processing solutions based on a ltering strategy were discudse

5.2.1 Simulation Setup

A cylindrical phantom (0.1 S m %) which has 4 spherical inhomogeneities
(0.2 S m ) was used for simulations and illustrated in gure 5.1. The phan
tom had a radius of 10 cm and a height of 20 cm. The inner pertuations
had a radius of 2 cm and were positioned at [6; O; 0], [6 O; 0], [0, 6; 0] and
[O; 6; 0] cm. The transmitter and receiver coil pairs encircle the @ntom
positioned in a zig-zag arrangement. The two coils in front ai transmitter
were connected in counterphase to form a gradiometer. The eednce data
were simulated with the conductivity of the spheres set to 0.1 S m, the same
as the background. The voltage data were simulated with the nductivity of
the spheres raised to 0.2 S m, as if the spheres were dispersive and that the

second voltage set had been gathered at a higher frequency.
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(a) (b)
Figure 5.1: Simulation arrangement for solving the inverse pblem and gen-

erating simulated voltage data: (a) transmitter setup, (b) reeiver setup. All
measures are in cm.
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Figure 5.2: Modelling of body movements. Shifts from the orilgal position
were chosen as 2 and 4 mm which corresponds to 10% and 20% chamdlee
distance between the surface of the phantom and the receivers| Alovements
are assumed to be on transversal plane

The body movement was simulated both as a shift (along -x diraon from
the reference position) to model the unexpected movementscaas a uniform
radial expansion to model the respiration artifacts and illugated in gure 5.2.
2 mm and 4 mm of shifts/expansions were chosen which correspondsl@®o
and 20% change in the distance between the surface of the phantand the
receivers. In state di erential simulations, the reference andoltage data were
assumed to be taken at di erent times, which may result in geomatral in-
consistencies between the states. Therefore, the referenceadatere simulated
from the original con guration and the voltage data were obained from the
geometrically distorted model. However, in frequency di emgial simulations,
the reference and voltage data were assumed to be taken simukansly, as a
snapshot. Thus, the reference data were also taken from the horeagus but
distorted model. The sensitivity matrix had been computed forhe original

state assuming a zero information about the movement/distortio.
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5.2.2 Evaluation Criteria

The image quality was quantitatively compared by calculatn of the Pearson
product-moment correction coe cient (PMCC) between the images with and
without the geometrical distorsion for di erent types of body movement to
indicate the strength of linear relationship between them. PI&C for the two

reconstructions 1 and 5 is de ned as,

P
XiYi nxXy

(n  1)ssy
where x and y are the sample means of ; and 2 , Sx and s, are the

PMCC ,. ,= (5.1)

sample standard deviations of ; and , and n is the number of voxels in

the inverse mesh.

5.2.3 Filtering Strategy

It was observed that the image obtained in the presence of movent is a linear
combination of the movement artifacts and the undistorted irage. Therefore,
if the geometrical distortions of the body surface is measured terms of ex-
pansion and shifts/rotation, the geometrical modelling errag can be ltered

out by subtracting the simulated data of the distorted uniform nodel from
the raw data before the image reconstruction process (pre-dting). It is also
possible to Iter out the e ects after the image reconstructionprocess (post-
Itering) similarly by subtracting the images obtained by using the simulated
data and real data, however, the latter one is more time consung and will

only be used for visualizing/understanding the Iter behaviowu. For practi-

cal purposes, pre- Itering is more suitable since it requires gnone inversion

instead of two inversions.

5.2.4 Results

The images were reconstructed for di erent types of movementusing the
simulation arrangement which is given in gure 5.1. State andrequency dif-
ferential MIT reconstructions for di erent degrees of shift h x-direction and

radial expansion were given on gure 5.3. The colorbar is the e for all
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Figure 5.3: Noise free reconstructions.

images andmax denotes the maximum conductivity value of the undistorted
reconstructions when no shift or expansion was present (uppemwp For the
state di erential images, strong positive and negative artifats arose at those
surface regions which experience the largest change of norrdetance with
respect to the coils. This artifact on the surface propagated wards the center
in an oscillatory manner. In frequency di erential images, tle perturbations
appear partly displaced and ghosts appear/shift especially nétowards the
central region. However, no considerable artifacts were ndten the images
of radially expanded models. While in the frequency di erenal images, the
perturbations can be identi ed even at comparatively strongdistorsions, this
Is hardly possible in the state di erential images.

The simulations with 20 dB noise added to the data are presented ig-
ure 5.4. With noisy data, excessive values of conductivity weobserved on the
surfaces of the phantom in the state di erential images and thartifacts propa-
gated towards the center in an oscillatory manner similarly. \Wile this artifact

heavily corrupted the state di erential images, the frequengdi erental images
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Figure 5.4: Reconstructions with 20 dB noise.

were more stable and the perturbations were identi ed clearl In addition, in
frequency di erential images, no unsymmetrycal artifacts de to the movement
were noticed.

The inversion reconstructs the geometrical distortions as wels the internal
inhomogeneities. However, the high reconstructed conductiyivalues near the
surface are dominating depending on the fact that the resolatn is getting low
in central regions. The oscillatory behaviour and ghosts in ingees are expected
and caused by thesinc like point spread functions [Merwa and Scharfetter,
2007].

The PMCC between the undistorted image and the images which ree
obtained with di erent types of movements during data acqusition are plot-
ted in gure 5.5. The frequency di erential images were signtantly higher
correlated than the state di erential images. A moderate almst linear de-
cay of PMCC for up to 6 mm of shifts (or change of shape) was obsedvim
the frequency di erential case. However, in the state di erentl case, there

Is a strong approximately exponential decay of the PMCC alrely at small
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Figure 5.5: PMCC between the undistorted image and the imagegich were
obtained with di erent types of movements during data acqusition.

distorsions.

It was observed that the image obtained in the presence of movent is
a linear combination of the movement artifacts and the undistrted image.
Therefore, if the exact position and the shape of the model dug data ac-
quisition is known, it may be possible to compensate the movemeattifacts
to some degree. By using the surface information, simulating thmovement
e ect using a uniform phantom and subtracting this from the reonstructed

image would remove the movement artifacts as demonstrated igure 5.6.

5.2.5 Discussions

In frequency di erential MIT, the data acquisition for di er ent states is done
simultaneously. This is accomplished by excitation of the bodwith two or
more di erent frequencies at the same time. On the other hanadhistate di er-
ential MIT, the measurements between di erent states are takeat di erent
times. Naturally, it is more probable to observe unwanted chamg of the

shape and position of the body between the states. Simulationsncaned
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Figure 5.6: lllustration of the Itering strategy used to remowe movement
artifacts.

LINEAR
SUBTRACTION

that in state di erential MIT, usually the reconstructed images are either very
poor or totally corrupted when body movement is present, hower, frequency
di erential MIT is more stable to body movement e ects.

In EIT, a similar discussion concerning movement e ects was dorghang
and Patterson, 2005]. However, because of the static nature oktheceivers, in
MIT, this movement e ect is expected to be much stronger than H and it is
presumably one of the major problems in MIT, speci cally for cast imaging.

Artifacts due to the movements can be Itered out if the surfacéoundary
is known during data acquisition. As demonstrated in gure 5.6a linear
subtraction in the image domain gives satisfactory images. Sikaily, one can
do the same process in the voltage data before reconstruction fybtracting
the simulated data from the actual data when the uniform pharam is moved.
To monitor the movement, one possibility is to use a camera systenoiking
synchronized with the data acquisition system. Similarly, chegeer solutions
like ultrasonic distance sensors may also be used.

The results indicate that frequency di erential MIT is more promising,
especially for chest applications. However, it should be remarkehat this

analysis is valid only for local inhomogeneities in a non-digpsive background.
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Figure 5.7: The frequency di erential images obtained by aggiing the (left)
same and (right) di erent conductivity values to the backgraind for seperate
states of data simulation.

Preliminary results with realistically simulated respirationdata, however, yield
comparatively poor images. The reason may be the fact that indquency dif-
ferential MIT the electrical properties of the background o change between
the states and the inversion algorithms so far developed havetrizeen tested
with data from object with a dispersive background. An illustraton of this
drawback is given in gure 5.7. The voltage data for both imags was simulated
by changing the conductivity of the spherical perturbationdrom 0.1 S m ! to
0.2 S m A constant background conductivity of 0.1 S m! was assigned to
the left phantom. In contrast, the right phantom was modelledo have a dis-
persive background (a conductivity change of the backgrourfdom 0.1 S m?
to 0.15 S m?! between states with the same change of the perturbations).
The resulting resonstructions show the incapability of the lingrized inversion

algorithm due to the dispersive medium and needs further anaig.

This study considers only the movement of the body as a whole andes
not consider the individual movements of interior inhomogegities. The latter
would be the case when the heart and lungs moved in di erent dictions and
their shape changed independently during respiration/hedbeat cycles. The
proposed solutions based on pre/post- Itering which rely on a nasurement
of the position of the surface of the body with respect to the cailstill cannot

solve the latter problem. Future work should aim at modeling ath simulating
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all these movements and search for possible solutions to reduce timage

artifacts.

5.3 Modeling Anisotropy

Another modeling issue that has not been investigated so far is theeect of

anisotropic tissues on the reconstructed images. The previous diess have all
relied on models having an isotropic distribution of conductity, although, the

human body has a highly heterogeneous structure with partigl anisotropic
properties [Rigaud et al., 1996]. The conductivity of the stetal muscle in
longitudinal direction is greater than the transverse compamnt. Similarly, the
chest muscles that cover the ribs show up anisotropy in the tangead direction

to the skin. Brain tissues, especially the white matter, exhibit maisotropy
because of their aligned ber structures. Furthermore, anisobpy may occur
in some pathological conditions, and thus, whether the convaahal modeling
approaches used so far are appropriate or not for clinical apgdtions is still

an open and interesting question.

To this end, we performed a simulation study to investigate (1)He feasi-
bility of imaging anisotropic targets within an isotropic medum and (2) the
in uence of anisotropic regions on the reconstruction of isabpic targets. The
rst case is important for imaging of the anomalies that have aisotropic char-
acteristics and the latter becomes particularly important ér imaging of the
physiological uidic changes in lungs considering anisotropimuscle tissues.
An anisotropic solver based on the singular value decomposition\(B) of
the sensitivity matrix was used to achieve conductivity tensormages and the

tensor images were compared with the images obtained from isagic solvers.

5.3.1 Anisotropy Tensor Imaging

At rst, the forward and inverse problems must be formulated cosidering

anisotropy within the conducting body. Representing the eléac anisotropic
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and nonmagnetic media as foIIows

0
XX 1 0 0
A=% " % %o 1 o§ = 0 (5.2)
XZ O O 1

where /4 ~and denotes the electrical conductivity, electrical permittity
and magnetic permeability of the domain . For simplicity, the body was
chosen as electric anisotropic by choosing the permittivity tesor as a diagonal
matrix. In this tensor notation, the forward relationships dened by the po-
tential eld equations, (2.12) and (2.13), remain unchangednless "= " + jw
acts only on the function at its right. By using a symmetric tensp matrix to
represent anisotropy, the parameters that we aim to reconstruare increased
at most six times. The sensitivities of the measurements to each &or com-
ponent were approximated for each voxel by using similarly fro (3.4) where
is now a tensor, the nonzero component of which denotes the dautivity
perturbation of a single tensor component from a reference diktution. As-
suming admissible conductivity deviations, a system of linear egtions can
again be formed and the solutions can be obtained using the metls that

were described previously.

5.3.2 Simulation Setup

The simulations were realized using the coil con guration offite Mk2 Graz 16
channel MIT system [Scharfetter et al., 2008]. A detailed illstration of the
system is given in gure 5.8. The transmitter and receiver coil @rs encircle
the phantom positioned in a zigzag arrangement. The radii ohe transmitters
and receiver coils are 4 cm and 2 cm, respectively. The two oih front of a
transmitter were connected in counterphase to form a gradiones.

Two cylindrical phantoms of radius 10 cm and height 25 cm withdi er-
ent anisotropic electrical properties were used as depicted iQure 5.9. The
rst phantom has an isotropic background conductivity with two di erent
anisotropic anomalies inside. The anomalies were modeled a® tspherical

inhomogeneties of 3 cm diameter located at [6, 0, 0] cm and @,0] cm. The
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Figure 5.8: Simulation setup.
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Figure 5.9: The cylindrical phantoms with di erent anisotrgpic electrical prop-
erties used in simulations.

Table 5.1: The conductivity values in S m?! of the simulation model shown in
gure 5.9.

XX Xy Xz yy yz zz
Object 1 1 0 0 2 0 1
Object 2 2 0 0 1 0 1
Background 1 0 0 1 0 1

model is shown in gure 5.9-(a) and the corresponding conduetty values were
given in table 5.1. The aim was to investigate the limitationsf solvers that
use an isotropic sensitivity matrix when the imaging target showanisotropic
properties and further investigate the possibility of anisotrpic conductivity
tensor imaging.

The second phantom was designed to see the e ect of anisotropic sule
tissues that cover the rib cage in chest tomographies. To do so, amisotropic
layer of 1 cm thickness was assumed in the outermost shell of the ptam
in order to re ect the muscle anisotropy (see, gure 5.9-(b)). Aghe target
object for the reconstruction, a spherical, isotropic inhomametity of 3 cm di-
ameter located at [5, 0, 0] cm was chosen. Knowing that the maaxis of the
anisotropic conductivity tensor resides on the transverse plante conductiv-

ity tensor associated with the voxels lying in the anisotropic ger was assigned
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Figure 5.10: (a) Conductivity reconstruction of the centralslice using an
isotropic solver. Reconstruction of di erent conductivity tensor components:
(b) x feconstruction, (c) yy reconstruction.

by de ning the tensor eigenvalues and the corresponding roiah matrix as

follows,

()=R eRT; (5.3)

wheree is the diagonal eigenvalue matrix, is the polar angle of the voxel on

the transverse plane andR is the rotation matrix as de ned below,

0 1
cof ) sin() O
R =%9m) coq ) o%: (5.4)
0 0 1

e was chosen as with the diagonal entries [1, 1.2, 1] S fassuming that
the conductivity ratio of the longitudinal direction to the transverse direction
along the muscle bersis 1.2:1 at 500 kHz operating frequendyifjaud et al.,
1996.

5.3.3 Results

There are essentially two di erent elements of anisotropy in = S v: (1)

The sensitivity matrix S and (2) the reference dataset,es When calculating
V=V, Ve,V denoting the perturbed voltage signal due to an anisotropic

body. Both can be calculated from either an isotropic (iso) or rasotropic

(aniso) model, so that we get four di erent combinations:
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i - QY
I isojiso — Siso Viso

, oy .
Il iso;aniso — Siso Vaniso
oy :
1. aniso;iso — Saniso Viso
iv soaniso = Siniso Ve
. aniso;aniso  — “aniso aniso

where (i) is the well-known isotropic implementation and (i) assumes an incor-
rect isotropic reference dataset for reconstruction. Similly (ii) and (iv) corre-
spond to real measurement conditions (i.e., di erence imagy) if anisotropy is
involved. The reconstructions (ii) and (iv) were rstly analyzed by construct-
ing a model as illustrated in gure 5.9-(a). A uniform backgraind conductivity
is assumed for the computation of the reference dataset and dience data is
used for imaging. The corresponding images were reconstrucigctordingly
using both the isotropic and anisotropic sensitivity matrices. Th isotropic
sensitivity matrix is capable of reconstructing only a scalar diribution. How-
ever, the anisotropic sensitivity matrix leads to the reconstretion of the tensor
components. As can be clearly recognized in gure 5.10, the isgpic recon-
struction yields poor results and the quality of the images isat su cient for
the diagnosis of anomalies. The peak value of the image is umated to the
anomaly locations and spurious artifacts were noted on the bodary. How-
ever, the anisotropic reconstruction of ,, and ,y yield better images and
the anomalies can now be clearly distinguished. It was observiidt the peak
values of the images are slightly shifted from the center of theonomalies to
the boundary and the reconstructions are blurred.

Various conductivity reconstructions of the central slice athe second phan-
tom are shown in gure 5.11. The images are obtained by applygndi erent
reference datasets and sensitivity maps, i.e. using anisotropiadaisotropic
models with di erent initializations. The images in the rst r ow were recon-
structed using an isotropic sensitivity map, and therefore the eshation is
just one value per voxel. However, the images of the last threews were
reconstructed using an anisotropic sensitivity map. Only the remstructed

diagonal components of the conductivity tensor are presentesince the other
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Figure 5.11: Various conductivity distribution reconstructons of the central

slice obtained by applying di erent initializations and sendivity maps.



components are negligibly small due to the nonexistent anisofic compo-
nents of the conductivity perturbation. The columns are diided into 2 groups
of 2 columns each. Each group corresponds to the images whére teference
data were simulated using the same model properties as for cditing the
associated sensitivity matrix. In other words, the reference datof the left
group were obtained using an isotropic model of uniform condingty distri-
bution, whereas the right group corresponds to the referenckata that were
simulated from an anisotropic model. The left column of each gup presents
the noise-free reconstructions and the right column shows theages obtained
by adding a Gaussian noise of 20 dB SNR level (the noise is de ned as3i10)
to the di erence voltage data. The colorbars of the images arscaled from the
minimum to the maximum value independently.

The perturbation is hardly recognizable and spurious artifets appeared,
particularly lying on the boundary of the images, by using thesotropic sen-
sitivity map and the isotropic reference data. However, betteaccuracy is
achieved using the anisotropic dataset together with the isotpac sensitivity
map. By looking at the corresponding tensor estimates, the isofa reference
data still gives poor results. The noise-freey, images are very blurred and
su er from poor localization. This is due to the low sensitivityof the system
to the region where the inhomogeneity is present. The,, reconstructions are
better localized compared to 4 in that region; however, they still show di use
characteristics. ,, reconstructions were the best among others. Under noise,
the reconstructed perturbation location is biased towards & positions where
the sensitivity is better, i.e., it is moved usually towards theborder, however,

for 4 the perturbation is split into 2 pieces and moved towards the drders.

5.3.4 Discussions

By simulations, the potential of anisotropic tensor imaging wademonstrated
using the reconstruction of anomalies that have anisotropic ahacteristics.
The conventional isotropic image reconstruction algorithmsre found to be

insu cient when the target is anisotrpoic. Additionally, the i mportance of
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having or simulating an accurate reference dataset was adressedrder to

reconstruct feasible and reliable images. In state di erentiabr frequency dif-
ferential variants of MIT this is naturally accomplished without any further

consideration, however, the absolute imaging methods and useittialized in-

version algorithms are found to yield very poor images even the existence
of a mild anisotropy. The selection of the sensitivity map, whetr isotropic
or anisotropic, did not notably in uence the results unless themaging targets
show anisotropic characteristics. Interestingly, the isotropiceconstructions
sometimes showed even better quality in images. This may be due the
strong e ect of the longitidunal tensor component which is alséhe most ac-
curate one.

Although di erent types of chest muscles that cover the ribs showp
anisotropy in various directions, the simulations were condted assuming a
transversal anisotropy only. This simpli cation may not adequéely re ect the
true characteristics of the human body, nevertheless it is a tier approxima-
tion of reality than using the previously used isotropic models. Ae future
work may include building more realistic models based on the atomy of the

chest gathered from di usion MRI-images.

5.4 Conclusion

The ultimate goal of MIT is to make the modality to be used for dagnostic
and monitoring purposes in clinics, hospitals and emergencyits1 Although,

several prototype experimental systems have been built [Korjevsky et al.,
2000, Scharfetter et al., 2008, Vauhkonen et al., 2008, Watset al., 2008],
there has been no system available for clinical use as yet. Thésgresumably
due to the issues arising from inaccurate modeling which yieldopr in vivo

characteristics. Recent studies have proposed several modelimprovements
such as building MRI-guided models that results in more realist geometries
[Zolgharni et al., 2009a,b]. Similarly, a part of this dissedtion serves for that
purpose and points out the importance of correcting the moddly obtaining

the patient positioning during data acquisition and investigées the e ects
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and consequences of anisotropic tissues in imaging and conctudeat the
anisotropic modeling works better for the reconstruction ofrasotropic targets.
Future work may include developing better movement trackig strategies and
improving the imaging quality by applying proper regulariation techniques

for the anisotropic inversion and consideration of anatomicaonstraints.
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CHAPTER 6

FUTURE DIRECTIONS

The following items summarize the possible and mostly essential g$eto be
concluded to improve the performance of the system and point bthe open

issues.

1. Physiologically realistic models The image reconstruction in MIT is
heavily dependent on the residuals between the estimated anceasured
guantities. Therefore, numerical models that closely mimiche human
physiology, in principle, help to reduce the artifacts due tanodeling
inconsistencies and lead to better reconstructions. To date, ¢he exist
several studies using realistical body geometries segmenting ttissue
regions from high resolution images obtained with an MRI or CTBe-
sides the realistical geometrical information, it may be equlg important
to construct models based on the anisotropy information that cabe ac-

quired from the di usion tensor images.

2. Patient speci ¢ models The use of MIT in ambulances or during the
rst intervention phase for the diagnosis of cerebral hemorrlge was pre-
viously proposed and there is an ongoing research on this. Howeuée
patient information is usually very limited in these cases. The&fore, it
is still not certain whether readily available and approximée sensitivity
maps works successfully or not, because of the di erent charaagtics of
the patients such as size, age, sex and tissue properties. To invgste

the robustness of the imaging performance for di erent patids, several
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tissue and geometry statistics must be collected and a conclusiorosid

be made based on the results.

. Optimal measurement frequencies All tissues have di erent electrical
properties over the -dispersion frequency region. Based on the appli-
cations, in order to increase contrast of the imaging target, ¢imal fre-
guencies for several prede ned applications such as head oeshmust
be determined. The research on hardware must be focused on thereo

sponding operating frequencies for di erent applications.

. Nonlinearity issues The relationship between the tissue electrical prop-
erties and measurements is highly nonlinear and the commonpapach is
to assume linearity and solve for small perturbations. Thereforehoos-
ing a good initialization for the inverse problem is not cledy investigated
for realistic models. For this, it is important to investigate the degree
of nonlinearity and explore the corresponding multi-modalnversion be-
havior in order to end up with better initializations and maintain the

stability of inversion.
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APPENDIX A

MAGNETIC VECTOR POTENTIAL

hTe azimuthal component of the magnetic vector potential ircylindrical co-
ordinates (; ;z ) of a circular coil with radius a and carrying a currentl can

be calculated from [Smythe, 1950],

1=2
| a 1 ek E (A1)

A = —
k 2

wherek? is de ned as,
k2=4a (a+ )’+2% (A.2)

and K and E are the complete elliptic integrals of the rst and second kind

as given below,

Z, {2 1=2
K(m) = . @ va mo dt; (A.3)
1 1 m2t? 1=2
0

where 0 m 1 andm = k2. K and E can be computed either by a
numerical quadrature or by using a polynomial approximatioras described in
[Abramowitz and Stegun, 1970].
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APPENDIX B

OPTIMIZATION MEASURE

In information theory, the mutual information of two random variables is a
guantity that measures the mutual dependence of the two vardes and will
provide a basis for the optimization. Letd = [d;;d,] be the data vector
consisting of two channels and have a multivariate normal distyution with

mean vector 4 and covariance matrixCy. If the covariance matrix of the

model parameters is assumed to be an identity matrix then,
2 3

4 (51 s1) (s1 S2) 5.

(51 82) (S2 S2)

Cd = SST = (Bl)

The mutual information between these two data [Cover and Thoas, 2006] is,

[ (dy;dy) = H(dy)+ H(dy) H(dy;dy) (B.2)
_ } (s1 52)2
= 29 s ) (B.3)

By noting that (s; $5)?=(s; s1)(sz S2) 2 [0; 1], minimizing the mutual infor-
mation between two data can be equivalently established by mamizing the

following function,
S1 S )
ksikksok

whereqg can be de ned as a quality measure between the two data. Let theebe

G2=1 (B.4)

N independent data andK di erent transmitters in uencing a single receiver,
then, the average quality for that receiver is written as,

— __iE__>6 X Gkn + Chk
KN 2

k=1 n=1

Qr (B.5)
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