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Abstract

The Austrian company Atronic is engaged in developing and manufacturing video-based

gaming machines and display systems for the world-wide casino market. Displaying graph-

ical content on these machines is performed via the company’s proprietary ”EGD” scene

graph framework; historically, the original design of this framework was strongly influ-

enced by the comparatively low GPU performance of the available hardware platform,

resulting in a necessarily CPU-bound 2D-only implementation. This thesis presents an

approach to augment the framework by GPU-accelerated real-time 3D rendering, suitable

for operation on Atronic’s upcoming next-generation hardware platforms.

Necessary goals and requirements were defined; during this process, it was decided

to aim for a hybrid approach that represents a novel way for seamless integration of 3D

functionality into the existing 2D system. Based on these drafts, a preliminary study was

carried out to ensure overall technical feasibility within the given hardware and software

limits. With respect to the results of this study, a concrete design was laid out that

eventually led to the implementation of a working prototype.

Corner test cases have been prepared to evaluate the hybrid prototype system with

regard to extensibility, stability and performance, yielding overall satisfactory results. Nev-

ertheless, certain inadequacies were revealed through this evaluation; most prominently,

the techniques used for parallelization of CPU-bound and GPU-bound tasks showed con-

siderable room for further optimization towards a technically mature product.
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Kurzfassung

Das österreichische Unternehmen Atronic befasst sich mit der Entwicklung und Produk-

tion von videobasierten Spielgeräten und Display-Systemen für den weltweiten Casino-

Markt. Die grafische Darstellung von Inhalten auf diesen Geräten erfolgt über das firme-

neigene proprietäre ”EGD” Szenengraphen-Framework; beeinflusst durch die vergleichs-

weise geringe GPU-Leistung der verfügbaren Hardware-Plattform wurde dieses Frame-

work gezwungenermaßen über einen ausschließlich CPU-basierten 2D-Ansatz konzipiert

und realisiert. Diese Arbeit präsentiert einen Ansatz zur Erweiterung des bestehenden

Frameworks um hardwarebeschleunigtes Echtzeit-3D-Rendering, geeignet für den Einsatz

auf zukünftigen Atronic Hardware-Plattform-Generationen.

Notwendige Ziele und Anforderungen wurden definiert; während dieses Vorgangs wur-

de die Entscheidung gefällt, einen Hybrid-Ansatz zu verfolgen der einen neuartigen Weg

zur nahtlosen Integration von 3D-Funktionalität in das bestehende 2D-System darstellt.

Basierend auf diesen Definitionen wurden Untersuchungen durchgeführt, die die grundsätz-

liche technische Machbarkeit innerhalb gegebener Hard- und Software-Grenzen sicherstel-

len. Die Resultate dieser Untersuchungen führten weiters zu einem konkreten Design und

schlussendlich zur Implementierung eines funktionierenden Prototypen.

Testfälle wurden definiert um das prototypische Hybrid-System hinsichtlich Erweiter-

barkeit, Stabilität und Leistungsvermögen im Grenzbereich zu evaluieren, mit insgesamt

zufrieden stellenden Resultaten. Nichtsdestoweniger wurden durch diese Evaluation gewis-

se Unzulänglichkeiten offenbart; die verwendeten Mechanismen zur Parallelisierung von

CPU- und GPU-lastigen Prozessen boten hierbei die markantesten Ansatzpunkte für wei-

tere Optimierungen in Richtung eines ausgereiften Produktes.
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Chapter 1

Introduction

1.1 Motivation

Being a well-established competitor in the casino market, the Austrian company Atronic∗

is known for its innovative portfolio covering a wide spectrum of individual casino-related

application areas. Holding regulatory licenses for operation in more than 200 individ-

ual jurisdictions world-wide, the company offers a broad range of casino products such

as stand-alone slot machines, linked gaming machines with large overhead presentation

displays or back-end accounting systems. See figure 1.1 for a typical setup.

As an active developer, manufacturer and vendor of electronic gaming machines

(EGMs), the company – not least due to persistent pressure from its competitors –

constantly strives to raise their product value by means of various individual actions;

one key factor particularly affecting the work of this thesis is the goal of impressing and

attracting new players through ever increasing quality of an EGM’s visual presentation.

Knowing the capabilities of modern desktop workstations and laptops in the field of

real-time 3D graphics, bringing this technology also into the casino market appears to

be an all-too-logical step in achieving the above mentioned goal; nevertheless, until the

present day, these efforts have been hindered by Atronic’s existing EGM hardware platform

and its tailor-made software base not supporting any of these features.

However, having a new generation of hardware platforms featuring increased CPU and

GPU capabilities ready for launch drastically changes this situation; the only remaining

obstacle is formed by the software framework being restricted to CPU-bound 2D rendering

only. Recognizing this situation, Atronic’s management decided to take the essential steps

∗http://www.atronic.com

1



1.2. Structure of this Thesis 2

Figure 1.1: A typical setup of a bank of six linked gaming machines up front and a large
overhead display on top.

to remedy this shortcoming; as a result, it was agreed to carry out all necessary prototype

work within the scope of this thesis, in order to provide the existing framework with

advanced real-time 3D features.

1.2 Structure of this Thesis

Following this introduction, chapter 2 gives an overview of related work. Initially pre-

senting a brief review of the general topic of scene graphs and a comparison of selected

products implementing this concept, the chapter concludes with a closer examination of

Atronic’s existing framework within this context.

Chapter 3 deals with the process of determining concrete goals and requirements nec-

essary to reach the overall goal of transforming the 2D-only framework into an efficient
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2D/3D hybrid. In consideration of the results from this process, chapter 4 gives a detailed

analysis of various target hardware platforms, operating systems and graphics drivers,

concluding with a statement about overall project feasibility and specific constraints.

Subsequently, chapters 5 and 6 cover in detail the actual steps taken in the course of

developing the hybrid prototype, guiding the reader on a path from initial concepts and

design details to the final implementation. Building on this foundation, chapters 7 and

8 briefly describe the actual content creation workflow and present selected application

examples, to demonstrate the prototype’s actual capabilities and to provide basic insight

into the functioning of the system.

Finally, chapters 9 and 10 conclude this thesis, presenting the results of a number of

real-world performance tests carried out on the final prototype. Whereas chapter 9 gives

a brief outline of possible future improvements, chapter 10 provides an overall summary.



Chapter 2

Related Work

During the evolution of 3D rendering hardware and algorithms towards the early 1990s, it

soon became apparent that, for developing interactive applications, it is not sufficient to

only concentrate on the rendering aspects of given 3D content. Specifically, the need for

advanced manipulation methods – either programmatically or via user input – was given,

which in turn demanded that existing content not only be represented by e.g. simple

display lists, but in fact by some sort of a higher-level description, preferably in a way

related to the physical equivalents of the objects it consists of. In this context, the following

sections give an introductory overview of an existing solution to these demands in general,

followed by an in-depth comparison of actually existing software products implementing

this concept.

2.1 Scene Graphs

In 1992, Strauss and Carey [16] addressed the needs described above in their paper, in

which they present an object-oriented toolkit written in C++ that is targeted towards

developers of interactive 3D graphics applications. Here, they introduce the notion of a

scene graph, which is essentially a tree or, more general, a directed acyclic graph [4] con-

taining abstract representations of 3D objects, so-called nodes. These nodes may carry

information about cameras, lights, geometries, materials or other properties used for de-

scribing a 3D scene, as well as information about dynamic behavior such as animation.

Figure 2.1 shows the hierarchy of a simple scene graph.

In this simple example, the scene graph is represented by a tree hierarchy; however,

Strauss and Carey state that a node may also be a child of more than one group node, which

4



2.1. Scene Graphs 5

Figure 2.1: A simple scene graph representing a colored cube and sphere, with an addi-
tional transformation applied to the sphere. From [15]

allows for re-using common parts of the scene graph. Commonly known as instancing [1,

p. 356], this technique can possibly reduce the overall complexity of a scene graph; for

example, a car wheel only needs to be defined once and may then be instanced four times.

Instancing requires the scene graph to be stored as a directed acyclic graph instead of

a tree; this can lead to ambiguities when referring to a multiply instanced object. As

a solution to this problem, they introduce the concept of a path object, which stores

information about the traversal from a given node to a different – possibly instanced –

node within its sub-graph. Figure 2.2 illustrates this technique.

In order to e.g. render the contents of a scene graph on screen or manipulate specific

nodes therein, the toolkit must provide a mechanism to support traversal of the graph.

For that reason, Strauss and Carey define a set of actions that can be applied to scene

graphs, such as rendering, event handling or bounding box computation. A common way

to carry out these actions is to traverse the scene graph starting at the root node and

recursively process all children from left to right, i.e. in a depth-first manner.

However, while Strauss and Carey actually coined the term scene graph in their original

paper, they do have a rather relaxed view about it in general; in fact, they do not even

provide an explicit definition. Today, numerous commercial as well as non-commercial

applications and frameworks exist that basically implement the hierarchical structure and

traversal concepts as described, all referring to the generic term scene graph. Moreover,

Akenine-Möller and Haines even go so far as to state:

”In a sense, every graphics application has some form of a scene graph, even

if the graph is just a root node with a set of children to display.” [1, p. 355]

In this sense, the scene graph concept is not necessarily restricted to only handling three-
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Figure 2.2: A section of a scene graph representing the front and rear wheels of a bicycle,
both referring to the same shape node. The path from the sub-graph’s local root to the
rear wheel’s shape is highlighted by the heavy line. From [15]

dimensional content; all the mechanisms described in [16] can also be applied to systems

that solely perform 2D rendering e.g. via the Painter’s Algorithm. In fact, two-dimensional

rendering may as well be regarded as just a special case of 3D, restricted to image plane-

aligned quadrilaterals rendered through an orthographic projection.

The following sections continue to deal with these important concepts by present-

ing a comparison of a number of actually available framework implementations. As a

counterpart to various existing general-purpose products, also the existing Atronic EGD

framework is taken into consideration, which forms the actual basis for this thesis.

2.2 Inventor

Based on Strauss’ and Carey’s original publication, Strauss introduced Silicon Graphics’

IRIS Inventor in 1993 [15], which represents the first actual implementation of the concepts

described above. He mentions two essential advantages of its object-oriented approach:

encapsulation and extensibility. Encapsulation provides a means to safely hide complex

graphical operations or algorithms from the user by creating objects designed for a specific

task. Extensibility is maintained through the very nature of the object-oriented paradigm;

developers are able to implement, by means of derivation, their own objects that seamlessly
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fit into the existing framework.

In Inventor, a scene graph is stored as a directed acyclic graph of nodes. Strauss defines

three basic types of such nodes:

• shapes represent geometric objects such as cubes, spheres or other primitives

• properties provide certain attributes to those shapes such as surface materials or

drawing styles, and

• groups can hold multiple child nodes and provide the basis for creating hierarchies.

However, nodes in general are not restricted to implement exactly one of these types;

Strauss explicitly notes the possibility of certain higher-level compound classes that may

incorporate any number of these characteristics at the same time.

Inventor provides the possibility to either build up a scene graph at run-time, i.e. by

directly creating and linking different types of node objects programmatically from within

some other piece of code, or by loading it from an ”.iv” file. See listings 2.1 and 2.2,

respectively.

1 SoSeparator *root , *sepl , *sep2;

2 SoBaseColor *bl , l b2;

3 SoSphere *sphere :

4 SoTransform *xf;

5

6 // Create the subgraph with the sphere

7 sep1 = new SoSeparator :

8 b1 = new SoBaseColor ;

9 b1->rgb.setValue (1.0, 0.2, 0.2);

10 xf = new SoTransform ;

11 xf-> translation .setValue (0.0, 3.0, 0.0):

12 sphere = new SoSphere :

13 sphere ->radius = 0.3;

14 sep1 -> addChild (b1);

15 sep1 -> addChild (xf);

16 sep1 -> addChild (sphere );

17

18 // Create the subgraph with the cube

19 sep2 = new SoSeparator :

20 b2 = new SoBaseColor ;

21 b2->rgb.setValue (0.2, 0.2, 1.0);

22 sep2 -> addChild (b2);

23 sep2 -> addChild (new SoCube );

24

25 // Put them together

26 root = new SoSeparator :

27 root ->ref ();

28 root -> addChild (sep1):
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29 root -> addChild (sep2);

Listing 2.1: A C++ code fragment for generating the scene graph depicted in Figure 2.1.
From [15].

1 #Inventor V2.0 ascii

2 Separator {

3 Separator {

4 BaseColor {

5 rgb 1 .2 .2

6 }

7 Transform {

8 translation 0 3 0

9 }

10 Sphere {

11 radius .3

12 }

13 }

14 Separator {

15 BaseColor {

16 rgb .2 .2 1

17 }

18 Cube {}

19 }

20 }

Listing 2.2: An Inventor ASCII file representing the scene graph depicted in Figure 2.1.
From [15].

Instancing of sub-graphs from within an IV scene graph description file is accomplished

through the use of the DEF and USE keywords [19]. Adding the DEF keyword followed

by a unique identifier in front of a node statement introduces a named instance to the

scene graph, consisting of the respective node and all of its children. This named instance

can later be referenced any number of times by simply writing the USE keyword, followed

by the given identifier anywhere in the IV file’s scene graph definition.

To implement the action concept, Strauss chose not to perform distinct method calls

on node objects; instead, an action is a separate object on its own. To apply a specific

type of action to a specific type of node, he introduced a multi-dispatch scheme that is

based on a two-dimensional table, with each row representing one specific action, each

column one specific node class, and each cell holding a pointer to a function designed for

applying the respective action to the respective node.

In order to provide a consistent, easy-to-use interface for setting and retrieving indi-

vidual node instance attributes, all such instance data are encapsulated in separate field

objects, each of which in turn contains one of various common data types such as e.g.

integers, floats, vectors or colors. Fields are one of Inventor’s key concepts; in addition to
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providing the application programmer with a straight-forward way to handle individual

properties of a node instance, it is also an effective way for reading and writing scene

graphs from/to a file, and it forms the basis for creating animation within a scene graph

by means of field connections and engines.

With the emergence of version 2.0, Silicon Graphics decided to change the product’s

name from ”IRIS Inventor” to ”Open Inventor”; after several years of licensing the source

code to third party companies, they eventually decided to release it to the Open Source

community in 2000. Yet, there are still a number of companies developing commercial

products based on that code, such as Kongsberg SIM (Coin3D)∗ or VSG†.

2.3 Performer

In 1994, also at Silicon Graphics, Rohlf and Helman introduced IRIS Performer [13] (today

known as OpenGL Performer), basically in an effort to remedy a few key problems still

in existence with other similar frameworks, including IRIS Inventor. As the name already

suggests, the focus during the development of this framework was put on maximum perfor-

mance; achieving this goal was primarily accomplished through the use of multiprocessing

and heavy optimization of rendering techniques and algorithms.

The Performer toolkit basically consists of two core libraries, named libpr and libpf,

which provide two different API layers to be utilized by an application programmer. Of

these two layers, libpr, written in C, encapsulates functionality for high-performance prim-

itive rendering, memory sharing and other basic low-level functions. The libpf library,

written in C++ and sitting on top of libpr, provides scene graph/scene database function-

ality, multiprocessing support and techniques for ensuring real-time behavior. See Figure

2.3.

Figure 2.3: Layering of IRIS Performer’s core libraries in conjunction with operating
system and application. From [13]

∗http://www.coin3d.org/
†http://www.vsg3d.com/vsg prod openinventor.php
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As stated above, Performer’s focus was put on optimal render performance, in contrast

to the ease-of-use goal pursued in the development of Inventor. Here, a key advantage

lies in Performer’s ability to natively support multiprocessing. The framework provides

efficient mechanisms for distributing its work load over multiple processes; usability is still

maintained by effectively hiding the implementation details of these mechanisms from the

user.

Another key feature of Performer is that it is designed as a real-time system; here,

the most important goal was to establish mechanisms that ensure a constant frame rate,

independent of the actual complexity of a scene’s visible as well as invisible parts. Striving

to produce a steady stream of individually rendered frames without hiccups or glitches, the

framework employs techniques for stress management to reduce visible scene complexity

through level-of-detail reduction, and overload management techniques for applying user-

defined behavior upon failure of the former techniques.

In contrast to Inventor’s extensible action concept, scene graph traversal in Performer is

restricted to three basic types: ISECT traversals allow detecting object collisions through

intersection requests, CULL traversals perform object culling, level-of-detail calculations,

geometry sorting and preparation of drawing lists, and DRAW traversals carry out the

actual rendering process. To allow for finer control over the individual traversal steps in

this scheme, the framework provides pre- and post-traversal callbacks for each traversal

type that may be installed for each node type, e.g. to support customized culling, rendering

or state management. In addition, traversal masks may be used to selectively inhibit

traversal for certain nodes, to allow for e.g. separate geometry for collision determination

and rendering.

In its core, Performer represents a runtime-only programming framework; the only way

to build a scene graph is by calling exposed API functions from custom code. However,

an additional utility library (pfuBuilder) is provided to facilitate construction; this library

provides individual loader modules for various geometry object and scene database file

formats.

2.4 Atronic EGD Framework

In 2001, Atronic introduced the ”Hi!bility” hardware platform as a basis for creating

high-quality casino games. Based on a customized PC mainboard equipped with an Intel

Celeron CPU running at 566 MHz and a specially developed ATI Rage Mobility graph-

ics card supporting a dual-screen configuration, this product by far outperformed the
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previous-generation Zilog Z80-based ”CashLine” platform on the presentation side. To

take advantage of the platform’s hardware capabilities from the software perspective, it

soon became apparent that – compared to the already existing software – also the need for

a more sophisticated approach for a game developer framework or SDK was given, with

the main goal of reducing content development time yet still increasing content quality.

For that reason, the company started the Easy Game Development (EGD) project in

2003. In the scope of this project, an important task was to do a complete re-design of

the presentation subsystem software in a more portable way, so that the majority of its

code base may be compiled for the target platform as well as a standard developer PC.

In addition, the existing code for the control and communications subsystems – each of

them running on its own separate Motorola 68k-based CPU board – also had to be ported

to the x86 architecture, in order to provide a full simulation of a real target machine

on a developer workstation. Figure 2.4 shows a block diagram of the affected software

components.

Figure 2.4: An overview of EGD’s software components and their inter-component re-
lationships. Platform-related components are shown in tan color, and individual game
content is highlighted in orange color.

Due to various requirements for casino market approval in certain jurisdictions, choos-

ing Windows CE as the target operating system was the only option at that time. How-
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ever, the major drawback of this decision was the lack of a Windows CE graphics driver

supporting proper hardware acceleration for the platform’s GPU; as a consequence, the

framework’s presentation subsystem – more precisely, the platform component known as

the ”Multimedia Base” – was conceived as a software-only 2D rendering system, with

all necessary low-level functionality such as image blitting or alpha blending written in

highly optimized assembly code, hereby utilizing x86-specific SIMD CPU features such as

the MMX and SSE instruction set extensions[12].

Influenced by the concepts introduced in Strauss and Carey’s original publication and

the actual implementation of various available scene graph frameworks, the presentation

subsystem was designed as a hierarchical 2D-only scene graph framework, employing vari-

ous concepts such as different traversal types, instancing and graph paths; however, certain

mechanisms were adapted or simplified to account for performance limits and specific needs

in the casino gaming market. See Figure 2.5 for a simplified overview of the ”Multimedia

Base” component as depicted in [9].

Figure 2.5: Block diagram of the EGD Multimedia base software. Low-level utility and
third-party libraries are omitted for clarity.

Binary resources in the form of images, animations, sounds or multi-language text

can be accessed via EGD’s built-in resource manager[18]. All such resources needed for

a specific content project must be specified within one or more resource definition (RD)
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files; the framework supports various individual loader modules for each type of resource,

such as PNG or BMP images, WAV and OGG sounds, and a number of proprietary

animation formats such as MPNG or DZY[7]. During the development it is possible to

directly load resources into the manager from their locations specified in given resource

definition files; upon delivery, each of these definition files containing individual resources

must be compiled into a corresponding resource package file that represents a one-to-one

mapping of these individual resource files’ system memory footprints. This compilation

process is carried out by means of the EGD Resource Packer, an external command line

tool that itself makes use of the resource loading scheme present in the EGD development

framework runtime.

Similar to Inventor, the EGD framework allows for building a scene (sub-)graph either

from a loadable scene file or via direct instancing from C++ code; reading and parsing

of scene files is facilitated through the use of XML. See Listings 2.3 and 2.4 for simple

examples.

1 <!-- ======== Definition of a content scene ======== -->

2 <BMC_Scene

3 name=" BASEGAME SCENE"

4 interface_id=" MMI_BaseObjectIds :: REELSLOT_SCENE"

5 >

6 <!-- ======== The physical screen where to display ======== -->

7 <MOB_Screen

8 name =" BASEGAME SCENE MAIN SCREEN "

9 device_id =" GFX_DeviceType:: MAIN"

10 >

11 <!-- ======== Instancing of a common object via a reference ======== -->

12 <MOB_ObjectReference

13 shared_object="\ SHARED_SCENE\ SHARED_SCREEN\ SAMPLE_OBJECT"

14 />

15 <!-- ======= Create a new sub -graph instance via an XML entity ======= -->

16 & BaseGameObjects;

17 <!-- ===== Display an animation loaded from the resource manager ===== -->

18 <MOB_AnimationSingle

19 x="0" y="0"

20 animation =" resource (’ sample_animation.dzy ’)"

21 />

22 </MOB_Screen >

23 </BMC_Scene >

Listing 2.3: An XML fragment representing a simple scene to be displayed by the EGD
framework

1 uint32 MOB_SimpleExample :: InitSelf ()

2 {

3 uint32 status = MOB_Object :: InitSelf ();

4 if (status & STATUS_ERROR)
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5 return STATUS_ERROR;

6

7 // Retrieve an animation asset from the resource manager

8 ASSET_Animation* anim_asset = RES_Manager :: GetInstance ()->GetAnimation(

9 L"sample_animation.dzy "));

10

11 // Create an animation node and assign the asset

12 MOB_Animation* anim_node = dynamic_cast < MOB_AnimationSingle *>(

13 BMC_Object :: Create (L" MOB_AnimationSingle "));

14 anim_node -> SetAnimation(anim_asset );

15

16 // Create a text object node and define its text

17 MOB_Text * text_node = dynamic_cast <MOB_Text *>(

18 BMC_Object :: Create (L"MOB_Text "));

19 text_node -> AddText (L"Sample Text");

20

21 // Create a container node , add the two nodes created as its children

22 // and add the container itself as a child of the current instance

23 MOB_Object * container_node = dynamic_cast <MOB_Object *>(

24 BMC_Object :: Create (L" MOB_Object "));

25 container_node ->AddChild ( anim_node );

26 container_node ->AddChild ( text_node );

27 this ->AddChild (container_node);

28

29 return status | STATUS_OK ;

30 }

Listing 2.4: A simple C++ example showing how to create scene graph nodes and link
them into a hierarchy.

Analogous to IRIS Performer, scene graph traversal in the EGD framework is restricted

to three basic traversal types due to performance reasons, carried out in the following order:

• UpdateContext traversals update the internal state of all nodes in the scene graph,

based on commands sent by the platform’s control subsystem via the Multimedia

Interface (MMI)[17] as well as user input via the touch screen attached to the pre-

sentation subsystem.

• UpdateAnimation traversals act only on currently active scene graph nodes; here,

nodes update their internal state according to given input values for current time

and time elapsed since the last iteration.

• Draw traversals perform compilation, sorting and rendering of a draw list for visible

nodes, thereby considering a set of modified drawing regions to update only necessary

screen portions.

Sorting the draw list is performed in a back-to-front order, rendering this list is carried

out by means of the Painter’s Algorithm. For that reason, despite being a 2D-only scene
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graph framework, coordinates in the EGD framework are internally represented as a three-

dimensional vector with its Z coordinate representing the actual drawing depth; objects

”closer” to the viewer are represented by higher Z values.

In contrast to Inventor’s mechanism for flexible manipulation of node instance prop-

erties via field objects and interconnections, the EGD framework implements a stricter

scheme also for performance reasons; programmatic node instance manipulation in the

EGD framework is performed via specialized controller object classes that can be attached

to graph nodes implementing a controller-specific class interface. The base implementation

provides a number of such controller classes for modifying various node instance proper-

ties, e.g. visibility, position, scale factor etc.; however, users are free to implement their

own controller classes and node interfaces for more specific purposes.

Eventually, at the time of the first EGD-based platform software and content release

in late 2006, the re-written presentation software had proven to be a reliable, extensible

and easy-to-use product; up to the current day, all further Atronic platform software

releases still build upon that foundation. Moreover, a specially adapted version of the

same code base also found its way into back-end casino display systems, hereby replacing

any previous solutions that – in direct comparison – suffered from by far inferior usability

and performance.



Chapter 3

Goals and Requirements

In mid-2008, Atronic’s Platform Development management team drew together a number

of key-persons, to form a group in charge of identifying and discussing possible future

improvements for Atronic’s well-established EGD software platform described in chapter

2. Consisting of representatives from a broad range of teams such as various members

of the System Architecture and Requirements (SAR), Software Architecture (SWA) and

Software Development (SWD) teams within the Platform Development department, and

members from Content Development responsible for game design, graphic design and

game implementation, this group soon realized, with the upcoming new gaming machine

hardware platform in mind, the importance of providing some kind of hardware-accelerated

real-time 3D graphics from a platform software perspective; based on this conclusion,

the company decided to actually start the project of extending the EGD framework in

that direction. However, with the field of real-time 3D graphics being virgin territory

for Atronic, the decision was made to carry out this project in form of an experimental

prototype within the scope of this thesis.

To obtain a clear view of the project’s goal, the first step in this work was to col-

lect all necessary requirements for further design and implementation, in collaboration

with the members of the platform improvements group as well as individual members of

the company’s design and development teams. The following two sections describe these

requirements in detail; with the first section handling user-level requirements mainly col-

lected via input from the actual users of the framework (i.e. Content Development mem-

bers), followed by a section listing system-level requirements that are chiefly influenced by

statements from the platform architecture and development teams.

16
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3.1 User-Level Requirements

3.1.1 SDK Extension

Analyzing the past and current situation regarding the use of the EGD framework as a basis

for content development, it quickly becomes clear that, for the time being, the framework’s

SDK is well understood and well established among in-house content developers; however,

this achievement was not attained easily after EGD was first introduced. Concerned about

any major changes within or new functionality added to the current EGD framework that

might lead to a similarly steep learning curve, the whole group agreed on requirements

to demand a minimum-invasive approach for any changes or additions to the framework

API:

• New functionality shall be provided to the user in a way similar to all existing func-

tionality. More specifically, newly introduced XML scripting nodes shall seamlessly

fit into existing scene graphs or easily replace certain parts of it, and the established

mechanism of creating higher-level nodes through derivation or encapsulation must

be preserved.

• Any necessary changes within existing node class interfaces or class hierarchy shall

be transparent to the user; i.e. any user-specific higher-level node classes derived

from such classes must be compatible to these changes.

On a more generalized scale, this demand also led to the definition of a fundamental

goal in the scope of this work. Contemplating the vast functionality already present in

the existing CPU-based 2D implementation for performing basic tasks (e.g. image decom-

pression, animation and video playback, font rendering, or more complex implementations

such as meter objects), it was decided to aim for a more integral approach instead of con-

sidering 3D extensions as an isolated entity:

• The 3D prototype shall make extensive and effective use of functionality already

existing in the EGD framework, hereby establishing a combined 2D/3D hybrid scene

graph framework.

Aside from the actual framework API, the EGD SDK also provides the user with

a number of individual tools to support e.g. image conversion, movie clip editing and

resource management and viewing; especially representatives of the latter, such as the

EGD Resource Editor and EGD Viewer, play an important role in the way a developer
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provides the framework’s central resource management system with any type of binary

resource. To take into account any possible new resource types that have to be introduced

in the course of developing the prototype, the following requirements were established:

• All new types of binary resource shall be integrated into the existing resource han-

dling mechanism; in addition, resource management tools shall be updated to also

incorporate these new resource types.

• The SDK shall provide necessary tools in form of exporters, converters etc. as part

of the existing SDK tool chain.

3.1.2 3D Content Representation

Currently, besides the traditional way of creating 2D graphics and animation via imaging

and animation tools such as Adobe Photoshop, graphic artists make heavy use of 3D

modeling applications to create (animated) content scenery, and to render this content in

an off-line step to create 2D resources for a specific game. With the artist department being

familiar with these applications, specifically Autodesk∗ 3D Studio Max and Autodesk

Maya, it is an agreed goal to also use them as a means for creating real-time capable 3D

content, not at least to avoid costly licensing or trainings. Discussing this goal led to

the definition of the following requirements, with additional considerations regarding the

actual implementation in EGD-based content:

• The prototype shall be able to handle 3D geometry (in the form of individual ob-

jects or whole scenes) exported from any of the modeling applications in use by the

Graphic Art department.

• It shall further be possible to also play back any animation stored within such ge-

ometry, hereby supporting key-frame animated hierarchical transformations as well

as key-frame animated mesh deformations.

• Controlling animation of such objects shall be possible via the framework’s already

existing animation controllers designed for two-dimensional animation resources.

Besides the existing possibility of creating dynamic 2D content by means of program-

matically playing back animation sequences, EGD as a scene graph framework also permits

∗http://usa.autodesk.com/
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manipulating individual properties such as node visibility, position, rotation etc. in a hi-

erarchical context. The following requirements were defined in order to permit analogous

operations also on 3D content, and to provide a common basis for related scene graph

controller classes:

• For arbitrary placement and orientation of 3D geometry in scene-space, the proto-

type shall provide scripting nodes that allow for translation, rotation and scaling of

encapsulated geometry objects.

• To allow for programmatic animation, these transformations shall be accessible via

the transformation controllers already in existence for moving, rotating and scaling

two-dimensional objects.

3.1.3 Coordinate System Alignment

By design, the EGD framework employs a left-handed coordinate system for display: The

two-dimensional point of origin is placed in the upper left corner of the screen with the

positive X and Y axes running to the right and down directions, respectively; an additional

Z axis represents an object’s ”depth” or painting order in the 2D environment, with its

origin in the background image plane and increasing values towards the viewer along a

virtual line perpendicular to the screen. To facilitate integration of 3D content into a 2D

scene, it is necessary to align the 3D subsystem’s coordinate system to that of the 2D

renderer.

3.2 System-Level Requirements

3.2.1 Platform Scope

On the system level, the hybrid framework is destined to operate on different hardware

platforms and in various fields of application. Taking the following configurations into

account, the prototype shall be designed and implemented in a way that allows it to be

operated on these platforms without feature restrictions:

• For stand-alone casino gaming machines, the Synergy hardware platform running

Linux shall be used; technologically, this platform represents the lowest-end target

configuration required.
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• Casino back-end display systems shall either use the Synergy platform or any other

suitable off-the-shelf embedded x86 system with same or higher performance, running

Windows XP.

• Standard desktop PCs or Laptops with same or higher performance running Win-

dows XP shall be used as developer workstations.

Older hardware platforms, or platforms that do not support hardware-accelerated 3D

rendering, need not be considered as a target for operation; nevertheless, on such platforms

the hybrid prototype must still be functional in principle, however without support for

any of the newly introduced features.

3.2.2 Performance

In direct comparison to off-the-shelf consumer desktop and laptop computers, the embed-

ded Synergy platform merely ranks at the lower end of the possible performance scale;

this makes it necessary to direct deliberate attention to any issues connected with various

aspects that are commonly covered by the umbrella term ”performance”. Here, one aspect

particularly important regarding the end-user – i.e. the casino player – is the system’s

ability to reliably update the screen contents within a given time interval to display smooth

animations without perceptible motion glitches:

• On the Synergy platform, the framework prototype shall be able to maintain a

constant frame rate of 60 fps during normal operation; this excludes corner cases

such as switching between scenes, or rendering scenes with a high load of text objects

rendered with high-quality fonts.

To account for the fact that the platform’s single CPU board must also run both

the control and communication subsystems in parallel to the presentation engine, and in

consideration of keeping a reasonable amount of resources in reserve for future extensions,

the following requirements were formulated:

• The load on a single CPU core shall not exceed the 50 percent mark; again consid-

ering the corner cases mentioned above.

• The prototype’s hybrid rendering system shall make optimal use of CPU and GPU

resources, effectively implementing a parallel CPU/GPU rendering scheme as far as

possible.
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3.2.3 System Integration

An important goal in developing the prototype is not only to smoothly fit in the extended

functionality into the framework’s API at the user level, but also to maintain the consis-

tency of the framework’s logical structure in terms of modularization and strictly defined

interfaces and dependencies between these modules on the system level:

• All of the newly introduced functionality dealing with hardware-accelerated render-

ing shall be encapsulated into a separate loadable module; as stated above, on any

platforms not supporting the mechanisms used therein, the hybrid prototype shall

still be able to function without loading that module.

Having successfully narrowed down the scope of the project to a manageable extent

as a result of this thorough definition of necessary requirements, the next step was to

ensure overall technical feasibility within that scope. The next chapter presents a brief

study on this topic, depicting preliminary performance measurement results for a number

of important corner cases; these results then form another key factor for further design

and implementation work.



Chapter 4

A Technical Feasibility Study

As stated in chapter 2, the EGD framework evolved from the need for a software base

suiting the more advanced capabilities of the then-new ”Hi!bility” hardware platform.

Before the EGD framework was available, the only way for developers to write software

for the platform was to run a cross-compiler on a PC, upload the compiled binaries to

a Windows CE target machine and execute them there. As this proved to be quite a

cumbersome and time-consuming process, it was decided to design the framework in such

a way that there is an easy possibility to develop and run a simulation of the ”real”

software on a Windows PC.

Having laid the foundation for portability by making this design decision, the frame-

work has actually been ported to several different other platforms, comprising various

hardware architectures and operating systems:

• The original ”Hi!bility” platform, with two 68k-based circuit boards for game control

and external communications running the OSE operating system, and a customized

PC mainboard for presentation runningWindows CE, equipped with an Intel Celeron

CPU running at 566MHz and an ATI Radeon Mobility M6 AGP graphics card.

• The ”Oxygen” platform, which is also based on a multi-board architecture, with two

PowerPC-based boards for game control and communications, and a custom pre-

sentation board based on the Intel i855GM chipset with integrated GPU, equipped

with a Pentium M CPU at 1.6GHz. All three boards use Linux as their operating

system.

• The ”Sensys” platform, which represents Atronic’s first platform based on a

single-board architecture; the custom all-purpose board is running under Linux

22
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and equipped with an Intel i915GM chipset with integrated GPU and an Intel

Core2Duo CPU at 2.2GHz.

• The ”Synergy” platform, being the direct successor of ”Sensys”, with the most no-

ticeable difference in the more modern i965GME chipset used.

• Any standard PC running Windows 2000 or Windows XP.

Whereas the first four platforms primarily operate in stand-alone casino gaming ma-

chines, the standard PC option is not only used for development purposes, but also the

choice for back-end systems driving large overhead displays for e.g. linked gaming or jack-

pot solutions [8]. Here, a broad range of off-the-shelf industrial or embedded x86 systems

is utilized, with different CPU and GPU configurations varying from low-cost to high-end.

For bringing graphical output on screen, the presentation engine of the existing frame-

work makes use of specific implementations for each operating system it is compiled to

be executed on; Windows 2000/XP versions make use of DirectDraw surfaces, whereas

the Linux implementation is based on accessing the Framebuffer Device native to the X

Window system.

Clearly, the goal of extending the EGD framework to support hardware-accelerated 3D

rendering primarily on the Synergy platform also demands a system-level API that does

support hardware acceleration on all operating systems in question. The fact that there are

actually only two candidates in existence that come into consideration for full support of

consumer-level hardware and operating systems – Direct3D as part of Microsoft’s DirectX,

and OpenGL – led to the inevitable decision to go with OpenGL , as DirectX is proprietary

to Microsoft operating systems, and OpenGL is a well-established, well-supported and

well-performing standard across all required operating systems.

The following section describes necessary pre-conditions that have to be met to allow

for efficient hardware-accelerated rendering in the given 2D/3D hybrid environment. Sec-

tion 4.2 gives an overview of certain limitations and problems of the given platforms and

OpenGL / graphics driver implementations that were encountered during the evaluation

phase, which may have impacts on overall performance. Finally, section 4.3 presents a

summary of preliminary performance measurements carried out on the ”Synergy” plat-

form and conclusions drawn from these results.
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4.1 Pre-Conditions

4.1.1 2D Surface Pixel Transfer

When displaying two-dimensional content made up of a fair number of animations, the

Atronic EGD framework with its software-only rendering system produces high amounts

of 32bpp RGBA pixel data in system memory for each successive display frame. In order

to achieve an acceptable display frame rate, the platform must provide a fast method for

transferring these amounts of system-memory surface data to GPU-accessible memory. In

the present implementation of the Atronic EGD framework, this task is accomplished by

transferring pixel data directly to the back buffer of the primary screen, using DirectDraw

surfaces under Windows and the Framebuffer Device under Linux. This functionality is

also provided by OpenGL, since version 1.2 direct RGBA frame buffer writes are supported

using the API function glDrawPixels().

For conventional 2D-only content, drawing pixel data directly to the frame buffer

proves to be fairly adequate. For hybrid content however, this may not be sufficient; once

the pixel data end up in the frame buffer, no spatial transforms can be applied anymore.

Considering possible visual effects such as zooming, tilting or otherwise manipulating the

software-rendered background surface – effectively making it a part of a three-dimensional

scene – requires the surface to first be loaded into texture memory and afterwards be

drawn to the frame buffer via a textured mesh object; using a screen-aligned quadrilateral

here yields the same effect as a direct frame buffer write. Since version 1.2, OpenGL has

allowed for the creation and update of two-dimensional RGBA textures, using the API

functions glTexImage2D() and glTexSubImage2D(), respectively.

In the attempt of reusing as many parts of the existing framework implementation

as possible also for rendering 3D content, it is an obvious technique for any 2D image

generated by a scene sub-graph to be used as a 2D texture applied to a 3D object, whether

it be a simple static image, a movie clip or a more complex animation made up of a

composition of objects. Whereas static images do not necessarily require highly optimized

data transfer to a video memory texture, this is an essential requirement for the latter two

examples due to their highly dynamic nature.

Since version 2.1, the OpenGL specification [10] has provided an additional mechanism

that may be used – depending on the actual graphics driver implementation – to speed

up data transfer to the GPU’s frame buffer or texture memory, commonly known as Pixel

Buffer Objects (PBO). This mechanism allows creating and allocating memory buffers
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directly in GPU-local video RAM; these buffers may then be temporarily mapped to client

memory for easy read/write access by the CPU, possibly taking advantage of hardware-

accelerated memory transfer (DMA-Blits).

4.1.2 Geometry Rendering

One crucial aspect of creating visually attractive output in a three-dimensional real-time

environment is the system’s capability of effectively handling high amounts of geometric

data, i.e. individual triangles or -strips, standard geometric shapes such as cubes or

spheres, or more complex geometry arranged in a mesh. In addition, it is also desirable

not to restrict rendering only to static geometry; the system should also be capable of

handling e.g. key-frame animated mesh objects. Traditionally, as stated by Strauss and

Carey [16] and observable from various existing scene graph frameworks, two approaches

to feeding geometry to the rendering pipeline exist:

• In Retained Mode frameworks, prior to rendering, each geometry object is compiled

into an internal data structure or buffer (such as a display list) that is kept in parallel

to the original geometry data in the underlying data base; this way, the rendering

subsystem may gain access to the data to be rendered in a way that allows for optimal

rendering performance. This approach works well for static geometry; on the other

hand however, highly dynamic data sets such as animated meshes require either a

high number of extra resources (e.g. one display list for each animation frame),

or the – very costly – effort of repeatedly re-creating or updating a single retained

buffer, at worst once per frame. The issue of having to manage an additional copy

of the geometry data, and having to keep those copies in sync, is also commonly

referred to as the Duplicate Database Problem.

• Immediate Mode implementations render geometry by submitting geometric prim-

itives (triangles, triangle strips or -fans) from the data base individually to the

pipeline. The nature of this approach makes it relatively easy to handle dynamic

data sets between individual display frames; as no internal copy of the geometry

is kept, possibly a high amount of resources can be saved for other purposes, and

there is no need to update a retained buffer prior to drawing. On the downside,

as the rendering subsystem usually has no direct access to the geometry data base,

this approach imposes a high workload on the CPU feeding individual primitives

and thus usually bypasses any advanced mechanisms present in the GPU for high-
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performance geometry rendering, resulting in the CPU having less resources to per-

form other (possibly also time-critical) tasks, and an all-to-low maximum polygon

count per frame.

From a performance perspective, taking into consideration the overall capabilities and

limitations of the target platforms in question, a retained mode approach appears to be the

lesser of those two evils in the design of the Atronic EGD framework extensions, despite

the drawbacks mentioned above.

Fortunately, as of version 1.5, OpenGL provides an additional means for performance-

critical geometry rendering; the concept of Vertex Buffer Objects (VBOs) – analogous to

Pixel Buffer Objects – introduces the possibility to manage data buffers to hold geometry

data in GPU-local memory, additionally offering a method to dynamically update previ-

ously created buffers with minimal overhead. Although making use of this concept does

not actually eliminate the duplicate database problem, it at least facilitates mitigating the

problems of a retained mode approach when dealing with dynamic geometry.

4.1.3 Offscreen Rendering

Based on the above described technique of using the output of a two-dimensional sub-

graph as a texture on a 3D object, it is also desirable to not restrict texture targets only

to software-rendered surfaces, but also to allow the hardware-accelerated renderer itself to

generate images to be used as textures, or possibly again a hybrid of both mechanisms.

For that purpose, it is necessary that the GPU is able to render its output to an off-screen

color buffer with attached depth buffer, which in turn gets uploaded into a texture object.

OpenGL versions prior to 3.0 do not directly provide an efficient platform-

independent way to handle such situations. However, there exists the widely implemented

GL EXT framebuffer object [14] extension, which introduces so-called Frame Buffer

Objects (FBOs) that serve as alternative off-screen targets. By binding a Render Buffer

to an FBO’s depth component and a texture object to its color component, this extension

allows to directly perform the desired off-screen rendering task.

4.1.4 Geometry Representation

The necessity of dealing with three-dimensional content designed in a modeling applica-

tion brings up the problem of exporting these data to a common file format, without

sacrificing essential features that are often also unique to a specific application. Based on
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the requirements defined in chapter 3, an adequate file format must support at least the

following features:

• The format shall allow to hierarchically store multiple geometric objects within one

file, to be able to either represent single objects or whole scenes.

• Material properties assigned to these objects at design-time shall be preserved, with

the possibility to uniquely identify each material and to group together identical

ones.

• The file format shall be able to store normal vectors as well as tangent vectors on

a per-vertex basis, to allow for state-of-the-art shading techniques such as DOT3

Bump Mapping.

• Animation shall be possible, allowing for key-framed parent-child transformations

as well as key-framed mesh deformation; for the latter, vertex coordinates, normal

vectors and tangent vectors must be considered.

Among the vast amount of available file formats for representing 3D content, the

two most promising candidates soon emerged during the analysis of the two modeling

applications mainly used at Atronic – 3D Studio Max and Maya – regarding their range

of supported export formats: VRML97 [3] and FBX [2].

Essentially based on Inventor’s original human-readable ASCII scene graph definition

syntax, VRML97 was conceived as a standard file format for describing 3D objects and

scenes with a publicly available specification; reading and parsing of these files is facilitated

through a number of freely available parsers that may easily be integrated into existing

software projects on the source code level. Offering a comprehensive set of features,

VRML97 fulfills almost all of the above mentioned requirements, with the exception of

storing tangent vectors. Due to the open and extensible nature of file format and parsers

though, this problem may be remedied by adding custom extensions to the file format;

however, the applications’ plug-ins are only available as compiled binaries and thus do not

allow for adding these extensions to the exporter side.

FBX in contrast was defined by Autodesk as a proprietary file format in an attempt to

unify and simplify the usage of 3D data exported from their aforementioned products; for

that purpose, the company offers a freely available suite of plug-ins for these applications

that allow for exporting scene and model data to FBX files. Although this file format in its

binary form is not publicly documented, reading and parsing of such files by a third-party
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application is rendered possible through the use of the associated FBX SDK, which is also

provided by Autodesk on a free basis in the form of pre-compiled binaries for Windows

and Linux operating systems. This format also fulfills all the requirements above except

tangent vector storage; here, due to the closed-source nature of the SDK and individual

plug-ins, it is nearly impossible to enhance the file format by this feature.

For both described file formats, the missing tangent vector storage possibility must

be considered in the prototype design, together with a number of other drawbacks that

manifest themselves in a practical environment despite the formats’ decent set of features:

• VRML97 files and ASCII FBX files may become inconveniently large, especially

considering complex geometry with detailed key-frame animation.

• Loading and parsing of these files may take a considerable amount of time, hereby

imposing noticeable delays when a player switches between individual games.

4.2 Graphics Driver Analysis

Naturally, when dealing with a number of different hardware platforms (incorporating

various different GPU brands and models) dedicated to run a certain software application

on a variety of operating systems, it is also necessary to take into account the availability

and suitability of graphics drivers supporting any of those hardware/OS combinations.

Here, especially in the light of an application in the field of embedded computing, such

drivers basically have to fulfill two essential requirements: stability and performance.

In addition, to allow for a common application code base and identical behavior on all

platforms, all of these drivers in question ought to have a common OpenGL API version

to rely on.

4.2.1 OpenGL API Versions

Regarding the plurality of available graphics drivers for the various hardware platforms

in question, the diversity of supported OpenGL API versions among these drivers poses a

significant issue. While the most recent driver versions for mid-range to high-end GPUs

such as the nVidia GeForce or ATI Radeon series provide – even under Linux – a fully

compliant OpenGL 2.1 interface to rely on, this situation becomes more complicated

when dealing with Intel chipsets with integrated GPUs such as the i915 or i965. Typically

built into low-end desktop workstations and laptops, these latter chipsets have seldom
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been noted for their 3D graphics capabilities, even though especially the i965 and its

successors do provide at least acceptable performance in that domain. Only recently, with

the increasing demand for hardware-accelerated 3D features also on operating system level

(e.g. Windows Aero∗ or Compiz Fusion† desktop effects), driver development has started

to catch up to support these chipsets’ features more thoroughly.

Despite these efforts, the drivers in question still have not reached the desired OpenGL

version level of 2.1 at the time of writing, even though certain essential API functions

mentioned in section 4.1 are at least available through OpenGL’s extension mechanism

on some of the drivers. As a consequence, a comprehensive design supporting all desired

platforms must provide sufficient abstraction between higher-level functionality, such as

texture handling or geometry rendering, and low-level OpenGL API calls; missing or

incomplete OpenGL functionality must either – transparent to the user – be emulated

using other algorithms or techniques or made unavailable on certain platforms.

4.2.2 OpenGL Performance

Looking at the OpenGL API documentation in theory, performing the operations men-

tioned in section 4.1 seems to be a straight-forward task. In practice however, there are a

number of issues to be dealt with, which may have more or less severe impacts on overall

performance. These issues may arise from incomplete or sub-optimal driver implemen-

tation as well as functionality not supported in the underlying graphics hardware being

emulated in software:

• The OpenGL API defines three distinct 32bpp RGBA modes with different byte

ordering: GL RGBA, GL BGRA EXT and GL ABGR EXT, with GL BGRA EXT matching the

pixel format native to the Atronic EGD framework. Choosing the ”wrong” OpenGL

pixel format during the analysis resulted in performance drops on various hardware

configurations; this indicates that the driver must carry out a per-pixel format con-

version during transfer. Fortunately, on all evaluated drivers, the framework’s native

format yields optimal results.

• Although all target platforms in question support fast direct memory access (DMA)

transfers from system memory to video memory via the AGP or PCIe interface,

not all drivers make use of this efficient mechanism. Instead, on these drivers, all

data transfers are done by the CPU, effectively preventing it – or at least one core

∗http://www.microsoft.com/
†http://www.compiz-fusion.org/
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if dealing with a multi-core CPU – from executing other tasks for a considerable

amount of time.

• Some driver implementations overcome this problem by allowing DMA-accelerated

access to OpenGL Pixel Buffer Objects (PBO), which get temporarily mapped to

client memory space so that the application may directly update a region in video

memory. In the attempt of efficiently using such a PBO as the source for an OpenGL

texture, the driver may choose to directly use this memory region as the actual

texture object without any data transfer; however (”zero-copy upload”), such a

scheme is generally prone to stalling the GPU pipeline when the CPU is trying to

update a buffer during rendering. Implementing a double-buffered scheme for PBO

texture updates solves this problem, however at the cost of doubled PBO memory

consumption.

• When updating an OpenGL texture, certain drivers show a significant performance

discrepancy between a call to glTexImage2D(), which always updates a texture as

a whole, and glTexSubImage2D(), which may be used to perform also a partial

update via a sub-rectangle within the texture surface area. Specifically, the latter

sometimes shows far worse performance on some drivers than the former due to a

CPU-intensive software fallback implementation.

Again, regarding the diverse behavior of the various GPU/driver setups, a comprehen-

sive design must provide a well-implemented abstraction layer to hide internal OpenGL

call details from the user; specific code paths for handling texture updates in an optimal

way – with or without PBOs, either using glTexImage2D() or glTexSubImage2D() – must

be considered depending on each driver’s capabilities.

4.2.3 Graphics Driver Evaluation

In practice, available graphics drivers for a specific hardware/OS combination often do not

only differ in their unique version history. Specifically regarding platforms equipped with

an Intel chipset with integrated graphics such as the i915 or i965, research on this topic

brought up a number of options among which the most suitable driver implementation had

to be chosen. Following below is a detailed record of all these drivers that were evaluated

with regard to OpenGL API version, performance and stability.
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4.2.3.1 nVidia driver for GeForce/Ion chipsets

As a vendor of GPUs in the highly competitive PC gamer market, which is primarily

defined by high-performance and high-quality 3D graphics, nVidia‡ is not only under

constant pressure to develop new leading-edge hardware products, but is also forced to

provide adequate drivers that support these products’ hardware capabilities in an optimal

way. With full support of OpenGL version 2.1, evaluation of the current version of the

driver on various supported GPU models has shown that it fulfills all necessary pre-

conditions listed in section 4.1; it also provides the stability and performance necessary

for unrestricted operation. In addition, due to the driver’s common closed-source code

base, the same driver quality is maintained over both operating systems, Windows and

Linux, with the Linux version being only one or two months behind in the release schedule.

4.2.3.2 ATI Catalyst driver for Radeon chipsets

Being the primary competing company to nVidia, AMD/ATI§ face the same situation.

Evaluation of the current driver for their ”Radeon” chipset family also yielded optimal

results regarding OpenGL support, stability and performance; both Windows and Linux

operating systems are supported through a common code base.

4.2.3.3 Intel GMA Driver

The Intel Graphics Media Accelerator Driver¶ is generally the first choice to operate off-

the-shelf desktop workstations and laptops equipped with an Intel-based GPU running

Windows XP or any of its successors. As stated earlier, 3D graphics applications on such

systems have somewhat been neglected in the past; in supporting only the OpenGL 1.4

API, the GMA driver more than slightly lags behind the most recent drivers from nVidia

or ATI, which commonly support OpenGL 2.1. Being at least able to support efficient

geometry rendering using VBOs through the OpenGL ARB vertex buffer extension, the

driver still lacks an efficient mechanism for pixel data transfer; texture upload perfor-

mance measurements via glTexImage2D() and glTexSubImage2D() showed sub-optimal

performance with a high CPU load, indicating that the driver does not make use of DMA

transfers. Being a well-tested and well-established product, the GMA driver provides good

long-term stability; however, it is only available on Microsoft Windows operating systems.

‡http://www.nvidia.com/
§http://ati.amd.com/
¶http://www.intel.com/support/graphics/
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4.2.3.4 Intel Embedded Graphics Driver (IEGD)

As an alternative to the Windows-only desktop driver, Intel offers a second closed-source

driver package for their GPU families especially for applications in the field of embed-

ded computing. Known as the Intel Embedded Graphics Driver (IEGD)‖, this driver

is available for a variety of different operating systems, such as Windows XP, Windows

XP Embedded, Windows CE and Linux. Being a particularly interesting option for the

”Synergy” platform running Linux, this platform/OS combination was the main focus

during the evaluation of this driver; however, several OpenGL-related drawbacks were

encountered throughout this evaluation:

• Although, for the platform’s i965 chipset, texture upload via glTexImage2D() and

glTexSubImage2D() shows acceptable transfer throughput from system memory to

the OpenGL subsystem, these operations impose a heavy load on the CPU and thus

appear to not make use of the chipset’s DMA feature. As the OpenGL support is

basically limited to API version 1.5, and there is no support for PBOs through an

OpenGL extension, there is also no further option to remedy this issue.

• The alternative fall-back mechanism of transferring a software-rendered surface di-

rectly to the primary screen’s back buffer via glDrawPixels() proved to be more

efficient; however, due to an obviously erroneous driver implementation, the driver

performs any other OpenGL rendering operations in parallel to the transfer opera-

tion, resulting in an overall corrupted output image. Furthermore, all attempts to

resolve this problem by systematically inserting glFlush() or glFinish() calls to

synchronize the rendering pipeline were unsuccessful.

• According to the specifications, using VBOs for rendering geometry objects is fully

supported. In practice however, the driver proved to be extremely unstable when

doing so; overloading the rendering pipeline with too many VBO drawing calls per

frame frequently resulted in crashes of the entire X Window system.

In addition to these severe defects, the underlying 2D driver also tends to lose synchro-

nization to the vertical blank interrupt, resulting in a rather jolting display appearance.

Altogether, this driver – in its current 9.1.1 version – does neither provide sufficient sta-

bility nor performance for undisturbed operation.

‖http://edc.intel.com/Software/Downloads/IEGD/



4.3. Preliminary Performance Measurements 33

4.2.3.5 Intel Open Source DRI drivers for Mesa3D

Starting out in 1993 as a software-only implementation of the OpenGL API, theMesa∗∗ 3D

graphics library emerged into an open-source cross-platform product that nowadays also

provides hardware-accelerated graphics for various GPU vendors and models, especially

through connection with the Direct Rendering Infrastructure (DRI)†† API that is natively

provided by Linux and other operating systems. Particularly after Intel has released the

full hardware documentation for their line of GPU products to the public, these chipsets

have been well supported in Mesa through specific driver module implementations.

Although Mesa – as of version 7.4.4 – fully implements the OpenGL 2.1 API using its

built-in software renderer, the availability of certain 2.1 features still depends on the actual

existing driver for a specific GPU. Regarding Intel’s i965 chipset, evaluation of this driver

has shown that it does support both the VBO and PBO mechanisms; however, it is nec-

essary to utilize a double-buffered scheme here to prevent the GPU pipeline from stalling

when updating such buffer objects. Texture updates via glTexImage2D() in conjunction

with PBOs perform well with sufficiently low CPU overhead; as a downside, partial up-

dates via glTexSubImage2D() have shown to be not hardware-accelerated at all, whether

PBOs are used or not. However, this drawback is somewhat mitigated by the fact that

the driver does support the use of non-power-of-two texture sizes on the API level.

Evaluation in terms of stability proved to be sufficient as well; a two-week duration

test on five target machines produced no crashes and no unexpected behavior.

4.3 Preliminary Performance Measurements

For the purpose of measuring pixel data transfer throughput, a small GLUT-based appli-

cation was developed for Windows and Linux that is able to repeatedly (once per display

frame) fill a system memory region with a changing color pattern and to update a previ-

ously generated 2D texture in video memory by sourcing this memory region. Transfers

were measured for both glTexImage2D() and glTexSubImage2D(); either function was

analyzed with respect to its performance depending on three different PBO configura-

tions:

• No PBO used: Texture transfers are carried out directly.

∗∗http://mesa3d.org/
††http://dri.freedesktop.org/wiki/
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• Single-buffered PBO: The PBO used for texture update is directly used for rendering

immediately after the transfer.

• Double-buffered PBOs: Texture update is performed in the back-buffer PBO; ren-

dering is also performed immediately after the transfer, however using the texture

object holding the transferred data from the previous frame now in the front-buffer

PBO. This way, the driver is granted extra time for e.g. performing a delayed transfer

of the actual data. Upon a frame buffer swap also these double PBOs are swapped.

It should be noted that, as this texture is also rendered on screen after its update, and

due to possible internal overhead in the graphics driver and/or windowing subsystem, the

results of these measurements do not directly reflect the maximum possible transfer rate;

instead, the resulting FPS number represents a fairly reasonable transfer speed indicator

in a practical environment.

Measurement results for a 32bpp RGBA texture at a resolution of 1024x1024 texels

displayed in a full-screen window at a resolution of 800x600 pixels can be seen in Figures 4.1

and 4.2; the former displays the maximum achievable frame rate for various graphics driver

configurations on the Synergy platform, whereas the latter shows the load percentage of

a single CPU core when clamping the frame rate to 60 FPS. The configurations shown

include all three relevant drivers for the i965 chipset; for comparative purposes, also the

results of the ATI Catalyst driver running on a Mobility Radeon HD 2600 PCIe laptop

graphics card are shown.

Figure 4.1: Texture update performance: Maximum achievable frame rate for various
driver configurations.
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Figure 4.2: Texture update performance: CPU load (single core) for various driver con-
figurations at a fixed frame rate of 60fps.

4.4 Conclusions

Evaluation and performance measurements of the various available graphics drivers showed

that the desired target platform/OS configurations more or less fulfill the necessary pre-

conditions from section 4.1, and thus it becomes feasible to design and implement an

efficient hybrid 2D/3D system on top of the EGD framework, following the requirements

from chapter 3. Nevertheless, due to the partly sub-optimal OpenGL support and certain

quirks especially in the graphics drivers available for Intel GPUs, such a system must be

designed to abstract away these matters:

• The OpenGL API version common to all evaluated drivers is 1.5; the system must

be able to detect and use all higher-level functionality via extensions.

• Pixel data transfer to an OpenGL texture must be considered to either operate

directly or by using a single-buffered or double-buffered PBO scheme, depending on

the available graphics driver detected at run-time

• Texture updates must also take into consideration the performance discrepancies

between the API functions glTexImage2D() and glTexSubImage2D(); again based

on a run-time driver detection

Considering the various target platforms supposed to run the extended EGD frame-

work, the following conclusions can be drawn from the driver evaluation results:
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• For the ”Sensys” and ”Synergy” platforms running Linux, the only feasible option

is the open-source Mesa 3D library together with its compatible i965 DRI driver.

• Developer workstations and overhead display controllers running under Windows

should be equipped with nVidia or ATI GPUs; Intel i965-based platforms with the

standard GMA driver currently available are bound to severe restrictions.



Chapter 5

Concepts and Prototype Design

Having laid the foundation for transforming EGD into an efficient hybrid 2D/3D scene

graph framework through the goals and requirements drafted in chapter 3 and the pre-

liminary results of the graphics driver performance and stability evaluation in chapter 4,

this chapter describes the necessary concept work and design decisions made, as a basis

for the actual implementation.

5.1 2D/3D Interaction

In the Atronic EGD framework, a scene graph basically consists of a tree of BMC Node

instances or nodes derived from that class. All visual parts of the scene graph must be

defined within the sub-graph of a MOB Screen instance, which restricts all its children

to be instances of the MOB Object class or any derivative. Through this restriction, a

number of architectural options emerged during the design process for how to integrate

three-dimensional content into such a graph.

The first approach that was taken into consideration was to keep the aforementioned

child restriction, and to satisfy it by deriving any OpenGL-related classes also from

MOB Object. Analyzing the influence of this approach on the overall architecture brought

up the problem that any of these derived classes would inherit all methods and members of

the MOB Object base class, among which a high number is not applicable to OpenGL-based

rendering, such as 2D object metrics and handling of modified regions on a 2D surface.

This would result in a significant undesired waste of resources given a high number of

OpenGL-related nodes in a scene graph, therefore this approach was discarded.

The second approach was to remove the restriction – or at least mitigate it by restricting

37
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to only a common base class, namely BMC Node – and thus allow a fully heterogeneous scene

graph in terms of mixing MOB nodes and OpenGL-related nodes. The downside of this

approach however would be that on the one hand the existing safety mechanism in effect

through that very restriction would be nulled, and on the other hand it would pose a

significant intrusion on the existing framework implementation. Being classified as too

risky, this approach was also discarded.

5.1.1 3D Renderer Areas

In the final approach, which is the basis for this work, the concept of a renderer area for ren-

dering 3D content has been developed (not to be confused with Inventor’s RenderArea[15]).

A renderer area in the Atronic EGD framework basically represents a ”window” or ”view-

port” to a three-dimensional scene – i.e. a sub-graph consisting of OpenGL-related nodes

– within the hierarchy of a two-dimensional scene graph built of distinct MOB Objects.

Unlike the traditional understanding of a viewport, which usually defines the area where a

scene is rendered from a windowing subsystem’s point of view, a MOB RendererArea exists

within the scene graph hierarchy and thus directly inherits various properties from its par-

ent, such as visibility, 2D position, drawing order etc. Generally speaking, a renderer area

represents some sort of a ”switcher node”, which allows switching from a 2D parent node

to a 3D sub-graph within an otherwise homogenous scene graph. The child restriction on

MOB Object instances remains intact; additionally, a similar restriction is enforced on any

newly introduced OpenGL-related classes to also ensure a homogenous sub-graph. See

Figure 5.1 for a simple example.

Figure 5.1: An exemplary fragment of a quasi-heterogeneous scene graph consisting mainly
of 2D nodes (tan color), with additional 3D nodes inserted (orange color) by means of a
switcher node (MOB GlRendererArea).
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Analogous to the existing hierarchy of scripting nodes, with all higher-level nodes

derived from the MOB Object base class, these newly introduced OpenGL-related node

classes are also derived from a common base class, MGL Object; all of its descendants

can be identified by their ”MGL” prefix. A specialized implementation of the abstract

MOB RendererArea class, MOB GlRendererArea provides the connection between ”MOB”

nodes and ”MGL” nodes in the MM OPENGL library.

5.1.2 Texture Targets

As can be seen in Figure 5.2, the switcher node concept can also be applied in the opposite

direction, i.e. switching back from 3D to 2D within the scene graph. One obvious field of

application for such a switcher node is a texture target, which is essentially an OpenGL-

related node encapsulating a reference to an OpenGL texture object that may be drawn

to using the existing framework’s 2D rendering engine. Making use of the framework’s

existing 2D rendering engine and its internal mechanism for handling modified surface

regions, this provides an easy way to not only load static image resources into a texture,

but also to perform a per-frame dynamic texture update for playing movie clips or for

rendering more complex two-dimensional sub-graphs that represent application- or user-

controlled animation.

Figure 5.2: A fragment of a quasi-homogenous 3D scene graph showing how to use
the 2D rendering engine for effectively generating dynamic textures by means of a
MGL TextureDefinition node.
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5.1.3 Renderer Engine

Unlike in e.g. a Binary Space Partitioning tree (BSP tree), a scene graph is not organized

in a way that allows to implicitly sort its geometry during traversal. In addition, traversal

of a scene graph in the Atronic EGD framework is generally done in a depth-first manner,

i.e. the root node is processed first, followed recursively by traversing its children from left

to right. As a result, when a scene graph’s affected MGL scripting nodes were rendered

directly upon traversal, it would not be possible to perform any sorting, grouping or

certain other pre-processing steps. Depth sorting, however, is required to maintain a

correct back-to-front drawing order for rendering (semi-)transparent objects with alpha

blending enabled; low-performance GPUs may also benefit from a front-to-back drawing

order for rendering opaque geometry in an attempt to minimize overdraw, or from grouping

together geometry sharing the same material to minimize internal state changes.

IRIS Performer overcomes this limitation by introducing a ”DRAW” traversal that

does not operate on the actual scene graph; instead, it processes a simple display list of

state changes and geometry objects that is generated by a preceding ”CULL” traversal,

where any culling, depth sorting and state sorting takes place. A similar approach was

chosen for extending the Atronic EGD framework: Here, MGL scripting nodes may con-

tain any number of internal renderer objects that are derived from a common base class

(OGL Object); upon drawing traversal, an MGL node’s internal objects are enqueued to

the respective renderer area for later processing. See Figure 5.3 for a simplified illustration.

A central role in creating, managing and destroying these internal renderer objects is

played by the OGL RendererEngine class; each physical GFX Device instance registers its

own individual renderer engine upon initialization. Through this design, all MOB Screen

instances in a given scene graph that share the same device also gain access to the same ren-

derer engine. The central renderer engine class also provides an interface for creation and

destruction of individual renderer areas defined within those screens; this inter-connection

makes it possible to share and reference renderer objects across multiple renderer areas.

In general, referencing of renderer areas and objects is accomplished through the use

of named instances. Creation of such a named instance can be performed in a scene graph

via an according definition node, which allows specifying a unique identifier for that node’s

underlying renderer object. A specific object may then be referenced via this unique ID

by specifying a reference node in the scene graph below.
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Figure 5.3: A scene graph fragment depicting the relationship between MGL scripting
nodes and their underlying renderer objects.

5.1.4 Parallelization

Although the 2D rendering process in the EGD framework’s drawing thread main loop with

its three subsequent scene graph traversals UpdateContext(), UpdateAnimation() and

Draw() essentially follows a single-threaded scheme, the actual screen update is performed

in a separate flip thread; this way a clean separation is established between the common

drawing thread in the MML library and specific flip thread implementations for each

available graphics device in the GFX DEVICE library. Synchronization between these

threads is performed via events; upon finishing the drawing of all relevant objects into

a system-memory surface, the drawing thread sends a DrawSceneDone notification to the

flip thread, which in turn sends back a FlipDone notification after the surface contents

have been transferred to video memory and made visible by flipping the front and back

buffers.

As described in the previous subsection, for each frame the renderer engine inside a

GFX Device instance receives all renderer objects to be drawn during the scene graph’s

Draw() traversal. The actual rendering process is then initiated by the GFX Device via its

active renderer areas after receiving a DrawSceneDone notification, prior to performing a

buffer swap. Figure 5.4 illustrates this interaction between the two threads.
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Figure 5.4: Sequence diagram showing the interaction between the common drawing
thread and the device-specific flip thread for two subsequent frames.

5.2 Materials

In the OpenGL specification, the ”material” term is referred to exclusively in conjunction

with specifying values for the ambient, diffuse, specular and emissive (self-illuminating)

color components and a single value for the specular exponent (referred to as ”shininess”)

used in lighting calculations. In contrast, commercial 3D modeling applications such as

Autodesk Maya or 3D Studio Max define materials on a higher level, which more closely

resembles the real-world notion of a material. Here, the complexity of such a material may

range from simple uniformly colored surfaces to a combination of multiple different texture

maps each affecting surface properties such as color, translucency, bumpiness, reflectivity,

etc. These modeling applications allow for creating and assigning different materials to

individual geometric objects or even parts of geometric objects on a per-triangle basis.

When applied, complex materials usually produce convincingly realistic output using

the modeling application’s built-in offline renderer. Ideally, extracting such a complex

material automatically from a given modeler file and rendering this material on a real-

time system would yield the same result as the output of the modeling application’s

renderer; in practice however, the differences are more or less noticeable, not least due to

the inherently different nature of the rendering methods used. Additionally, in the power

range of the required target hardware platforms, there exist a number of difficulties in

achieving such results without degrading overall performance:
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• Emulation of complex materials comprising a high number of map channels for in-

dividual surface properties in real-time requires the use of efficient shader code.

Writing a common shader that is able to handle all possible channel combinations

might suffer from a large overhead.

• The evaluated Intel GPU-based platforms do not allow for more than 8 simultaneous

texture channels; materials using more channels have to be rendered in more than

one pass.

• More complex lighting models (incorporating e.g. anisotropic reflectivity) might

require more complex shader code.

For these reasons, certain trade-offs have to be made when designing 3D models or

scenes for the given platforms; in general, simplicity is the key. Graphic artists should try

to keep overall material map channel counts low and aim for simpler lighting models.

5.2.1 Multi-Pass Materials

Even with high-end graphics hardware featuring a fair number of texture units and allowing

for complex shader programs there exist a number of different rendering techniques that

still require rendering in more than just a single pass. In general, this means that some

geometry must be rendered multiple times after another, with a different material state

set at each of these iterations.

5.2.2 GPU Shader Programs

As mentioned above, Shaders play a key role in producing a convincing appearance of

real-time rendered 3D content on state-of-the-art graphics hardware. Through the use of

the high-level GL Shading Language (GLSL), OpenGL provides access to GPU shader

execution functionality for both Vertex Shaders and Fragment Shaders; to actually enable

such shaders for rendering, OpenGL provides a means to create program objects to which

those shaders can be attached to.

Shader source code must be provided to OpenGL as a human-readable ASCII string;

the concept of run-time compilation by the driver allows to directly integrate shader

code as part of a scene graph via adequate scripting nodes. Directly mapping OpenGL’s

mechanism of handling shaders, the EGD framework extensions provide scripting nodes

for the definition of a shader program, which in turn accepts shader code nodes as direct

children.



5.3. Node Instancing and Referencing 44

To allow for parametrization of a shader – e.g. for supplying different parameter

values for each pass of a multi-pass material, or to define actual texture lookup channels –

OpenGL provides a mechanism to retrieve the locations of user-defined variables defined

in given shader code, and to set or query the actual values at these locations. The EGD

extensions encapsulate this mechanism into a program parameters scripting node, which

must be supplied in parallel to a material’s attached shader program.

5.3 Node Instancing and Referencing

As stated in chapter 2, node instancing is an important concept for sharing and re-using

parts of a scene graph to reduce memory consumption and increase manageability [15, 16].

Standard instancing in the extended EGD framework can be accomplished by simply defin-

ing one named MGL Geometry node and defining several MGL GeometryReference nodes

with the same identifier elsewhere in the scene graph. This way, the referencing node

inherits all properties of the node it refers to, such as visibility or internal state.

When dealing only with static geometry, there exists also a second possibility to per-

form instancing. As with all currently existing scripting nodes in the EGD framework, also

MGL Geometry nodes do not actually contain any renderable data. Analogous to existing

2D scripting nodes, MGL nodes always retrieve pointers to content via the framework’s re-

source manager, which holds collections of individual read-only binary resources (so-called

assets), such as 3D meshes, animation data or audio files. In the case when individual

MGL Geometry nodes refer to the same static geometry asset taken from the resource man-

ager, that asset only needs to allocate and fill its internal vertex and index buffers once,

and can pass this buffer directly back to the drawable object for rendering. Especially

for higher-level nodes derived from MGL Geometry, this method may be convenient as it

supports individual node properties at the same time as maintaining better performance

due to sharing a geometry asset’s internal buffers.

5.4 Geometry Resources

Resource management in the EGD framework, as described in chapter 2, is based on

the concept of resource definition and resource package (RP) files; each individual binary

resource – or asset – inside an RP file is stored in a way that allows it to be loaded into

system memory most efficiently, and to be used directly without the need for a complex

parsing or initialization process. Applying this concept also to the suitable geometry file
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formats evaluated in chapter 4 requires the design and implementation of additional loader

modules for each supported format; these modules are then responsible for loading and

parsing individual VRML97 or FBX files, and for creating a binary representation of these

files’ content in system memory.

Regarding both these file formats, the parsing process can become fairly

time-consuming when dealing with a large number of individual resource files; this may

have a direct impact on the content development time due to an extremely increased

application startup duration. In addition, the attempt to conceal the lack of per-vertex

tangent vector storage by performing tangent vector estimation after loading may

increase this duration even further.

These facts eventually led to the decision to introduce a new, EGD-specific binary

file format that accounts for data storage most efficient regarding the EGD framework’s

resource management, to be further known as the EGD 3D (E3D) file format. With the

respective requirement from chapter 3 coming into effect through this decision, it was

necessary to extend the present tool chain by providing a converting tool that fills the

gap between modeling applications and actual framework. E3D files were conceived to

directly represent a loaded geometry file’s actual footprint in system memory; in contrast

to the EGD Resource Packer generating complete resource packages from any number of

assets, the newly conceived EGD Convert3D application only writes out a single E3D file

from a geometry file loaded to system memory, however by making use of the identical

loader mechanism. As a result, for an E3D file inserted into a resource definition file,

the complexity of the specific E3D loader module is limited to loading a given input file

directly to memory and performing a simple sanity check on the file contents.



Chapter 6

Prototype Implementation

Based on the concepts and prototype design modeled in chapter 5, this chapter describes

the actual implementation of the framework extensions. More specifically, it deals with

how the extended functionality is actually integrated into the existing structure, followed

by a detailed description of data structures used, and newly introduced scripting node

classes and their related internals.

6.1 Framework Integration

All of the OpenGL functionality added to the Atronic EGD framework is encapsulated

in a separate loadable module (MM OPENGL), which sits on top of the already existing

Basic Functions Library (MM BFL), Multimedia Library (MM MML) and various other

shared libraries providing e.g. threading support, string conversion or common utility

functions as well as third-party components such as audio/video decoders or data com-

pression. This module is explicitly loaded via the newly introduced OpenGL graphics

device implementations residing in the MM GFX DEVICE library, one for each specific

hardware/operating system combination. Figure 6.1 shows a block diagram of the EGD

Multimedia application’s library components and their dependencies.

6.2 Geometry Resources

As described in the previous chapter, geometry resource files can be integrated into a

content project in the form of VRML97 and FBX files as well as files in the newly intro-

duced E3D format, by means of their respective loader modules. Internally preparing data

46
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Figure 6.1: Block diagram of the EGD Multimedia base software. Low-level utility and
third-party libraries are omitted for clarity; the newly added MM OPENGL library is
highlighted in orange color.

structures designed for efficient handling by the rendering system, both the VRML97 and

FBX hereby actually produce a system memory footprint equal to an E3D file on disk.

6.2.1 The E3D File Format

The E3D format itself was designed to be conformant to the RIFF standard [5] conceived

by Microsoft and IBM in 1991, consisting of a number of so-called data chunks each

identified by a specific 4-byte character code (”FOURCC”) holding individual pieces of

content data. An illustrated description of this concept can be found in [6]; following

below is a list of data chunks necessary to build up a valid E3D file.

6.2.1.1 Geometry Header Chunks

Global specifics of the geometry data in the file are stored in a Geometry Header

(”GEOM”) chunk, holding information about the file format version, number of
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animation frames, the desired playback frame rate and the size and location of the

geometry’s overall bounding box. A valid file must contain exactly one such chunk, and

it must be defined prior to any other chunks described below.

6.2.1.2 Material Chunks

Material (”MATL”) chunks simply consist of a unique integer ID and an assigned material

name; their specific purpose is to provide a mapping between internally used material IDs

and human-readable names. A valid file must contain exactly one material chunk for each

integer ID specified in a mesh object defined below.

6.2.1.3 Mesh Geometry Chunks

Mesh Geometry (”MESH”) chunks represent actual geometry for rendering, in the form

of a mesh consisting of either individual triangles or triangle strips. Each mesh chunk

holds its own unique integer ID; hierarchical representation is possible by specifying a

non-negative number in the chunk’s parent mesh ID field. Each mesh chunk may also

have a specific material assigned, if the chunk’s material ID field holds a non-negative

value. In addition, each chunk also holds an OpenGL-conformant model-view matrix to

allow for hierarchical transformations.

Geometry data in a mesh chunk are arranged in a way so that they may act directly as

a source for OpenGL vertex and index buffers for efficient rendering; each vertex entry in

the chunk’s data area must at least contain that vertex’s position, optionally also normal

vectors, tangent vectors, colors and up to eight individual texture coordinates may be

present on a per-vertex basis. If no actual vertex or triangle data are specified or no

material is assigned for a given chunk, the node represented by this chunk can act as a

transform-only node within a geometry’s hierarchy.

Key-frame animated transformations are stored with individual model-view matrices

for each animation frame; interpolation between two subsequent key frames is provided by

additional relative translation vectors and rotation quaternions for each transformation

key frame. Animated mesh deformations are supported through the use of individual

vertex position, normal vector and tangent vector fields for each key frame.

6.2.2 EGD Assets

Once loaded into the EGD framework, individual assets may be retrieved via the frame-

work’s resource manager; for the newly introduced geometry assets, the 3D prototype
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offers the OpenGL-specific ASSET GlGeometry type, which directly encapsulates an E3D

asset in system memory. Due to the efficient memory layout, the initialization effort for

these assets is greatly reduced; necessary steps merely consist of pointer list creation for

meshes and materials by skipping over individual file chunks.

After retrieving an ASSET GlGeometry object from the resource manager, the class

interface provides methods to retrieve pointers to individual ASSET GlMesh instances con-

tained therein, which directly map to corresponding mesh geometry chunks.

6.3 Scripting Nodes

The current implementation of the MML library already offers a mechanism to automat-

ically add user-defined scripting nodes derived from a common base class (BMC Node).

In fact, one preferred way to implement content for the framework is to derive from com-

mon script node base classes and export these specialized nodes so that they may be

instantiated via an XML scene graph file.

The OPENGL library also makes use of this mechanism to register its own, OpenGL-

related, nodes with the system. A new type of node was introduced, MGL Object, with

the ”MGL” prefix (short for Multimedia GL) in analogy to the 2D Multimedia Objects

(”MOB”); this class represents the base class for all OpenGL -related implementations in

the extended framework.

Additionally, an abstract base class was introduced to the MML library,

MOB RendererArea, which is the base for any – not restricted to OpenGL –

hardware-accelerated rendering area; a specialized MOB GlRendererArea that performs

OpenGL specific rendering is also provided. See Figure 6.2 for a simplified overview of

the extended framework’s class hierarchy.

As stated earlier, the actual MGL scripting nodes do not directly contain any OpenGL

function calls or state information; instead, an MGL node, depending on its specific func-

tion, holds pointers to one or more renderer objects, which are derived from a common base

class, OGL Object. The following sub-sections give an overview of the existing scripting

nodes and renderer object classes, and their specific purpose and interaction.

6.3.1 Renderer Areas

Derived from the abstract MOB RendererArea node class, the MOB GlRendererArea class

provides the front-end to the content developer through which OpenGL3D content in
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Figure 6.2: Class hierarchy of the newly introduced OpenGL-related scripting nodes, with
their connection to the existing base classes in the MML library.

the form of MGL scripting nodes can be inserted into a 2D MOB scene graph at any

point. By specifying a unique string identifier for the id attribute, it is possible to

create a named instance of a MOB GlRendererArea that may later be referenced via a

MOB GlRendererAreaReference instance carrying the same ID.

Internally, both of these scripting nodes hold a pointer to an OGL RendererArea in-

stance, which performs the actual work of OGL object creation and destruction, depth

sorting (to ensure a correct back-to-front drawing order for semi-transparent primitives)

and rendering of enqueued objects, and maintaining internal transformation and rendering

states. This class implements the newly introduced GFX RendererArea interface, which

provides implementation-independent method declarations related to renderer area han-

dling (see Figure 6.3).

Upon initialization and destruction, an MOB GlRendererArea creates and destroys

its encapsulated OGL RendererArea instance via the CreateRendererArea() and

DestroyRendererArea() methods of its associated MOB Screen, respectively; an

MOB GlRendererAreaReference retrieves its reference by passing the given identifier
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Figure 6.3: Renderer area class hierarchy.

when calling the GetRendererArea() method. All calls to these methods newly

introduced to the MOB Screen interface are routed to the GFX Device attached to that

screen, and in turn re-routed to the device’s underlying renderer engine.

For all MGL scripting nodes contained within a given renderer area, creation and de-

struction of internal ”OGL” renderer objects is performed upon their initialization and

deinitialization, respectively. For that reason, a reference to the OGL RendererArea corre-

sponding to the containing MOB GlRendererArea is passed to each individual node; calls

to the methods CreateRenderObject() and DestroyRenderObject() exhibited by its

interface are also relayed to the underlying OGL RendererEngine.

6.3.2 Geometric Transformations

The generic OGL Transform object encapsulates a 4x4 transformation matrix stored in

column-major order to directly reflect matrices in OpenGL. Specific operations such as

translation, rotation or scaling have no direct equivalent here; instead, these are presented

to the user via corresponding MGL scripting nodes that fill in the appropriate values

into their underlying OGL Transform objects. Upon traversing the scene graph, the MGL

nodes push and pop their transform objects to their assigned renderer area whenever

they are entered and left, respectively; any scripting nodes containing geometry objects

then enqueue their underlying drawables to the renderer area using the currently active

transformation in the area. Actual transformation states are managed by the renderer area

itself during the render process and loaded into OpenGL via glLoadMatrix() whenever

necessary.

To the user, the framework provides four specialized scripting nodes:

MGL FreeTransform, MGL Translate, MGL Rotate and MGL Scale. MGL FreeTransform

directly exposes the encapsulated general-purpose 4x4 matrix for arbitrary



6.3. Scripting Nodes 52

transformations, whereas the latter three each implement their respective transformation

interface from the MML library to perform translation, rotation and scaling, respectively

(see Figure 6.4). Rotations must be specified via a main rotation axis vector and an

angle scalar, following a right hand rule. Scale factors may be specified independently for

each axis; if done so however, the normalize mode attribute of the material used must

be set to either MGL NormalizeMode::STANDARD or MGL NormalizeMode::RESCALE to

preserve correct normal vectors for lighting calculations.

Figure 6.4: Class hierarchy of available transformation scripting nodes showing the con-
nections to their encapsulated renderer object.

The transformation interfaces themselves are also part of the work for the extended

framework; to allow for a common handling of 2D and 3D objects with regard to

transformations, the existing implementation of MOB Object, MOB RotatableObject

and MOB ScalableObject was modified by extracting the respective transformation

functionality from these nodes (translate, rotate and scale) and realizing these newly

created interfaces for these classes as well.

6.3.3 Cameras

From the renderer’s point of view, there is no such thing as an explicit camera object.

Instead, MGL camera script nodes (MGL OrthoCamera and MGL PerspectiveCamera) di-

rectly apply their respective projection matrix to the renderer area once per frame when

they are encountered during scene-graph traversal. Thus, the camera is set up in a way so

that the main viewing axis runs along the negative Z-axis; to account for camera moves

and rotations, it is up to the content developer to specify necessary transformations to

counter-rotate the whole sub-scene around the fixed camera. See Figure 6.5.

Camera nodes are closely tied to the renderer areas they are defined within. Every
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Figure 6.5: Camera-related class hierarchy.

MOB GlRendererArea can hold exactly one camera instance that must be defined as a

direct child of the area; if no camera is explicitly specified, an orthographic camera is used

with default settings.

6.3.4 Light Sources

Similar to the OGL Transform object, the OGL Light object acts as a generic container

for an OpenGL light source whose actual behavior is defined via its encapsulating MGL

scripting node. Here, MGL DirectionalLight provides a light source emitting parallel

light rays at infinite distance (comparable to a sunlight system), whereas MGL PointLight

radially emits light rays from a central point, similar to a naked light bulb. See Figure

6.6.

Figure 6.6: Light source-related class hierarchy.

By default, these specialized light source node classes point towards the negative Z

axis; orienting a light source in a different direction must be performed by specifying

an MGL Rotation parent that performs the necessary transformation. Analogous to its

orientation, the position of a light source must be specified via an MGL Translation parent;
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with the exception of MGL DirectionalLight, for which positioning has no effect.

6.3.5 Materials

Materials in the renderer are represented by instances of the OGL Material class, which

act as a compound for various individual properties. The mandatory OGL Surface child

object defines the material’s overall surface appearance; it encapsulates the actual OpenGL

material parameters such as ambient, diffuse, specular and emissive color components

and specular exponent, as well as other OpenGL parameters such as lighting behavior,

alpha blending functions and depth buffer access. Additionally, a material may carry an

optional OGL TextureSet containing references to up to 8 individual texture maps, and

an optional OGL Program together with an OGL ProgramParameters object that define a

specific vertex/fragment shader program and related parameters (see below). Materials

can also define a specific sorting order for the drawables they are bound to; setting the

alpha blending parameters so that any geometry rendered with this material appears semi-

transparent usually requires the sorting order to be set to ”back-to-front” instead of the

default ”don’t care” setting. See Figure 6.7.

Figure 6.7: Class hierarchy of material-related scripting nodes and relationship to internal
renderer objects.

Defining a standard single-pass material within the scene graph can be performed via

an MGL MaterialDefinition node, which exposes a number of attributes that define the

actual appearance:
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• ambient color, diffuse color, specular color and emissive color control the

individual material color parameters used in OpenGL’s lighting equations; each of

these values may be specified either as a string of comma-separated individual bright-

ness values for the alpha, red, green and blue color components, each in the range

from 0 to 255, or as a single hexadecimal string of the form ”0xAARRGGBB”.

• shininess defines the specular exponent used in OpenGL’s lighting model for the

specular color parameter, in the range from 0 to 128.

• z buffer usage defines OpenGL’s depth-buffer access policy; by specifying one

of the MGL ZBufferUsage enumeration’s four member values NONE, READ ONLY,

WRITE ONLY and READ AND WRITE, it is possible to individually enable depth buffer

comparisons and writes.

• visible faces controls culling of front-facing and back-facing primitives via

the MGL VisibleFaces enumeration; possible values are FRONT, BACK and

FRONT AND BACK.

• alpha blending, when set to MGL AlphaBlending::ON, allows to globally

enable blending in OpenGL; in this case, the additional src blend factor

and dst blend factor attributes specify the actual pixel arithmetic used

in the blending equation. Both of these attributes accept members of the

MGL BlendFactor enumeration; the symbolic constants here match those of

the OpenGL specification for glBlendFunc() without the ”GL ” prefix, e.g.

MGL BlendFactor::SRC ALPHA instead of GL SRC ALPHA.

• face lighting defines OpenGL’s polygon lighting behavior. Specifying the

MGL FaceLighting::OFF enumeration value completely disables all lighting

calculations for that material; using the ONE SIDE member considers only

front-facing polygons, whereas TWO SIDE performs lighting calculations on both

front- and back-facing ones.

• sorting specifies the sorting order for all geometries utilizing this material, with pos-

sible values of the accepted MGL Sorting enumeration are DONT CARE, BACK TO FRONT

and FRONT TO BACK.

Multi-pass materials can be defined via the MGL MultiPassMaterialDefinition con-

tainer class. Individual passes must then be specified as direct children of that container
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via multiple MGL MaterialPassDefinition instances; both of these classes inherit their

attributes from MGL MaterialDefinition. Setting the container’s attributes defines the

common behavior over all individual passes; these common values can then be overridden

by each individual pass.

Referencing a previously defined material is made possible through the use of an

MGL MaterialReference node; however, only named instances can be referenced. Spec-

ifying a unique string identifier for the id attribute of an MGL MaterialDefinition or

MGL MultiPassMaterialDefinition node creates such a named instance to be later ref-

erenced by a reference node with the same ID.

6.3.6 Textures

An individual texture object is represented by an OGL Texture instance, which is respon-

sible for creation, destruction and update of an underlying OpenGL texture object; if

available, it makes use of an OpenGL pixel buffer object to improve image data transfer

performance. Additionally, it is possible to specify the type of mapping to be performed,

either planar or spherical environment mapping. To apply one or more textures to a ma-

terial, an OGL TextureSet object is needed, which provides eight possible texture slots for

holding individual texture objects; these slots directly map to the corresponding texture

units in OpenGL. See Figure 6.8.

Figure 6.8: Class hierarchy of texture definition and reference nodes, together with encap-
sulated renderer objects.

Defining a texture container in the scene graph is made possible through the use of the

MGL TextureDefinition scripting node. To define the texture’s actual dimension, both

the w and h attributes must be specified; both of these values must be a power-of-two

integer number to account for restrictions in certain OpenGL implementations. By default,
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the texture is applied using planar mapping; using it as a spherical environment map is

permitted by setting the mapping type attribute to MGL MappingType::SPHERICAL.

Analogous to material nodes, referencing a previously defined texture container needs

a named instance of an MGL TextureDefinition node, and an MGL TextureReference

with the same ID. Both definition and reference nodes allow to independently set their

blending mode and texture slot, i.e. textures may be defined in a material using a specific

slot and later be referenced using a different slot. The unit attribute defines the slot to be

used, as a number between 0 and 7. The mode attribute accepts one of several members of

the MGL TextureMode enumeration whose members match the blending modes defined in

the OpenGL specification: REPLACE, MODULATE, DECAL, ADD, BLEND and COMBINE. Whereas

MGL TextureDefinition nodes may be defined anywhere within an MGL sub-graph, the

actual binding of a texture definition or reference to a specific material is accomplished

by defining the respective node as a direct child of a material node.

6.3.7 Shader Programs

As stated in chapter 5, OpenGL’s shader mechanism is directly wrapped by suitable

renderer objects internally; OpenGL vertex and fragment shader objects are encapsu-

lated by instances of the OGL Shader class and linked together into an OpenGL pro-

gram object held by an OGL Program instance. Creation of a shader program in the

scene graph is accomplished via an MGL ProgramDefinition node, as a direct child of

a specific MGL MaterialDefinition node for which the shader program is to be ap-

plied. Within this MGL ProgramDefinition node, individual MGL ShaderDefinition or

MGL ShaderReference nodes may be specified that define the actual code objects. To

specify the type of an MGL ShaderDefinition node, this class exports the type attribute

accepting either MGL ShaderType::FRAGMENT or MGL ShaderType::VERTEX as input; the

actual shader code is defined via the source attribute that directly accepts GLSL code.

Program and shader nodes employ the same definition/reference mechanism as material

and texture nodes; the node classes MGL ShaderDefinition and MGL ShaderReference

derived from MGL Shader, and MGL ProgramDefinition and MGL ProgramReference de-

rived from MGL Program serve these specific purposes. See Figure 6.9.

Accessing any custom input parameters defined in the GLSL shader code can be

performed via an MGL ProgramParameters node, which internally holds a pointer to

an OGL ProgramParameters object directly acting on the actual program object it is

bound to. MGL ProgramParameters must also be specified as a direct child of a spe-
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Figure 6.9: Class hierarchy of shader-related classes for scripting nodes and renderer
objects.

cific MGL MaterialDefinition node in the scene graph, as a sibling to the MGL Program

node it is supposed to act on; the actual parameters are specified via the params attribute

that accepts a string of individual semicolon-separated parameter assignment statements.

Such statements must be of the form ”〈data type〉 〈variable name〉 = 〈value〉;”,

where data type accepts any of the following native GLSL types: int, ivec2, ivec3,

ivec4, float, vec2, vec3, vec4, bool, bvec2, bvec3, bvec4, sampler1D, sampler2D,

sampler3D, sampler1DShadow, sampler2DShadow or samplerCube; variable name, to-

gether with data type must match the name and type of an attribute or uniform

variable declaration in the GLSL shader to attach to. For single-value data types such as

float or sampler2D, value simply accepts the desired value; vectorized data types must

be specified by their vector constructor form, e.g. ”vec2 myValue = vec2(1.0, 0.5);”.

6.3.8 Drawables

The OGL Drawable interface provides the base class for any geometrical objects to be

rendered; currently there are four classes that implement this interface.

OGL SimpleMesh provides a means for creating geometry by directly passing individual

arrays of vertices, normal vectors and texture coordinates together with corresponding

triangle index arrays. As the class name suggests, this should be used for rather simple (i.e.
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low triangle count and/or static) geometries; internally, an OpenGL display list is created

that is filled up with individual calls to glNormal(), glTexCoord() and glVertex() to

allow for independent index arrays for these attributes. To the user, this type of geometry

is available through the scripting node classes MGL Plane and MGL Cube. MGL Plane creates

a square plane in the global X/Y plane with a side length of one; if a textured material

is applied, it is possible to specify the texture coordinate range by setting the exported

coordinate attributes tx1, ty1, tx2 and ty2. MGL Cube provides a simple unit-length cube.

OGL Mesh on the other hand does not provide a means to programmatically create

geometry in a simple way; instead it is able to make efficient use of the framework’s re-

source management system by directly accepting ASSET GlMesh objects from the read-only

resource collections. For drawing performance reasons however, it is still necessary to al-

locate an OpenGL vertex buffer object for each mesh contained in the asset; an additional

system memory buffer is also needed when dealing with animated sets of vertices and nor-

mal vectors. This type of geometric object can be instanced via MGL Geometry scripting

nodes; each node instance must have exactly one ASSET GlGeometry resource specified

via the geometry attribute. Upon initialization, this resource object is parsed, and for

each individual ASSET GlMesh contained within, exactly one corresponding OGL Mesh ob-

ject is created. Analogous to the existing MOB Animation class, an optional animation

controller may be attached via the animation controller attribute to allow for play-

back of key-frame animation contained in the geometry resource specified. Analogous to

textures, materials and shaders, this geometry type may also be defined as a named in-

stance using the id attribute. Later referencing this named instance is accomplished via

an MGL GeometryReference node specifying the same identifier. See Figure 6.10.

In order to correctly display geometry objects, it is necessary to establish a

connection to one or more specific materials. For the above mentioned scripting

nodes, this is accomplished by specifying such a material (MGL MaterialDefinition or

MGL MaterialReference) as a child of a given geometry node; here, MGL Plane and

MGL Cube nodes are restricted to expect exactly one material child. MGL Geometry nodes

on the other hand may have a geometry resource attached that contains more than

one actual mesh; in this case, it is necessary to specify multiple material children. To

correctly identify and assign these materials to the meshes contained in the resource, the

user must specify the link attribute for each material node; the link identifier of each

material must then match the corresponding identifier stored in the ASSET GlGeometry

resource.
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Figure 6.10: Class hierarchy for geometry-related scripting nodes, renderer objects and
assets.

As all geometry-related scripting nodes implement the BMC Fadeable interface, it is

possible to individually specify an alpha value per node, either via setting the exported

alpha attribute or via the interface’s SetAlpha() method.



Chapter 7

Content Creation Workflow

To be able to actually make efficient use of the extended framework prototype from an

end-user’s perspective, it is necessary to provide additional means to support the content

creation workflow from graphic artist to developer; the following sections give a brief

insight into that workflow.

7.1 Geometry File Conversion

As already stated in chapter 5, the decision to define a proprietary geometry file format

makes it necessary to also extend the present tool chain; for that reason the EGD Convert

3D application was created that allows for importing given FBX scene files and converting

them to the newly introduced E3D format. A typical screen shot of this application is

presented in figure 7.1. As indicated by the depicted user interface, the application provides

additional functionality beyond the basic task of converting files:

• Imported geometry is presented in a preview window besides its complete hierarchi-

cal structure; it is possible to manipulate certain properties of each node – such as

visibility, transformation parameters, material assignment etc. – prior to the con-

version process. Key-frame animation within individual geometries can be inspected

via a time-line slider.

• Fine-tuning of material properties can be achieved via a simple material editor that

directly reflects the actual parameters that can be specified for an XML material

node.

• Simple image manipulation controls are provided for imported textures; it is possible
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to resize the texture and to individually adjust brightness and contrast of the image,

additionally the image may be distorted to create a suitable texture for applying

spherical environment mapping.

Figure 7.1: The main window of the EGD Convert 3D application, showing geometry and
materials imported from a given FBX file.

In addition to the possibility of manipulating imported materials, applying advanced

material effects is facilitated through a simple code editor for on-the-fly creation of GPU

shader programs written in GLSL. Vertex and fragment shader code can be typed or

copied into the respective tool window, clicking the ”Apply” button triggers the graphics

driver’s internal GLSL compiler to create an OpenGL GPU program object. Correct

functioning can then be verified via the compiler’s log output, and by assigning the shader

object to a specific material together with a user-defineable set of program parameters.

Figure 7.2 shows the preview of a DOT3 bump map shader in the converting application’s

environment.

When the actual conversion process is started by the user, each geometry root node

including all its child nodes is converted to a separate E3D file storing geometry, animation

and material bindings. Necessary textures are converted to individual PNG image files,

and a resource definition file is created that includes references to all these files. For the

actual definitions of texture objects, shader code and materials, individual XML scene
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Figure 7.2: Tool windows of the EGD Convert 3D application showing on-the-fly creation
of a DOT3 bump map shader material.

graph fragments are generated that can be directly included into a full graph by means of

XML entities.

By utilizing the Autodesk FBX SDK for importing files, and by actually integrating

the hybrid framework for the purpose of rendering material and geometry previews, it was

possible to greatly reduce the actual implementation effort for the converting application.

Additionally, the approach of directly using the framework for preview rendering offers

the particularly interesting possibility to actually view imported scenes as they would be

shown on an EGM, thus making it easier to spot possible deficiencies in any stage of the

workflow.

7.2 Tool Chain Extension

With the EGD Convert 3D application playing a central role in the content creation tool

chain, the actual flow can be most accurately summarized as follows:

• Creating three-dimensional objects or scenes is done via the available modeling ap-

plications, currently either 3D Studio Max or Maya, and saved in these applications’

respective native file format.
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• Exporting these objects or scenes to the FBX file format is then performed through

the use of the appropriate FBX exporter plug-in provided by the application vendor.

• In the next step, the FBX files are imported to the EGD Convert 3D application;

at this point it is possible to verify the proper appearance of the imported data

with the help of the available render preview windows before actually saving the

converted version to disk. On occasion, these first three steps may be carried out

repeatedly until satisfactory results are achieved, without the need to prematurely

integrate unfinished data into a specific content project for in situ verification.

• The converted data, comprising E3D geometry files, PNG texture images, resource

definition files and XML scene graph fragments, are then available for integration

into a content project; from this point on, handling these resources is accomplished

via the EGD SDK’s already existing set of tools (resource editor, resource packer

etc.).

Having such a set of converted 3D data at hand, a content developer is now ready to

construct his or her specific content project. With an acceptable set of available script-

ing nodes covering the full range of the hybrid prototype’s 3D capabilities, it is already

possible to create highly sophisticated content through the mere use of XML scene graph

description files. However, as was already observed during the use of the existing 2D-only

framework over the past few years, certain tasks require advanced node handling, which

may be accomplished more easily through the creation of specific higher-level C++ classes,

by means of derivation or encapsulation of existing scripting nodes.

Which one of these techniques to use is up to the content developer and must be

decided as the case arises; there is no universal rule for making such a decision. The next

chapter illustrates a number of selected application examples, with a brief glance at both

methods.



Chapter 8

Application Examples

To ensure correct operation of the hybrid prototype developed in the course of this thesis,

a number of test cases were prepared that cover various aspects of the implementation;

this chapter describes a carefully selected subset of these cases, with the additional goal

of demonstrating the actual usage of the extended features in a practical environment.

8.1 Progressive Meter

In casino EGMs, the term Progressive Meter refers to some sort of display that shows the

current amount of money that can be won by a player when he or she e.g. hits a jackpot.

Such a display is either present as a physical stand-alone device, or in virtual form shown

on an EGM’s video screen, possibly displaying visually nice animation effects to attract

players passing by. In the EGD framework there already exists a 2D implementation of

such a virtual progressive meter; here, the digits of the ever increasing money amount are

cycling in from right to left similar to a classic mechanical odometer known from a car’s

dashboard. See Figure 8.1 and Listing 8.1.

Figure 8.1: A rendering of the existing two-dimensional progressive meter with default
style.
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1 <!-- ======== Define a regular container object ======== -->

2 <MOB_Object w = "770" h = "98">

3 <!-- ======== The background image including frame ======== -->

4 <MOB_AnimationSingle

5 animation =" resource (’ bg_progressive_meter_frame .png ’)"/>

6 <!-- ======== The actual meter object ======== -->

7 <MOB_ProgressiveMeterDefault

8 x = "50" y = "10" z = "2"

9 w = "670" h = "79"

10 font = "resource (’ progressive_meter_display_big .font ’)"

11 font_size = "79"

12 controllers .1 = "MCO_ProgressiveAtakaProtocol ()"/>

13 </MOB_Object >

Listing 8.1: A code snippet of the existing progressive meter sub-graph.

The following example presents a way of re-using this meter object and encapsulating it

into a three-dimensional geometric object for additional visual effects; this implementation

was chosen for a number of reasons:

• Re-using of existing implementations: The current meter object is the result of

months (if not years) of development, fine-tuning and adaptation to ever evolving

game design needs; it is well tested and accepted and should therefore be left un-

changed.

• Dynamic texture generation: Spinning the digits of the money amount is internally

more complex than just playing a video file; here, the EGD framework’s mechanism

of re-drawing only modified parts of a 2D image comes into play.

• Sealed-off rendering area: Often, such a virtual In-Machine Display is not considered

part of a real content scene, but is simply overlaid over any other content present on

screen. This makes it a good candidate to demonstrate the use of separate renderer

areas in the 3D implementation.

• No side effects on existing games: The EGD framework provides an XML file defining

a sub-graph of the scene only containing a progressive meter object and image objects

that define a common appearance; a game may simply include this file to provide a

progressive meter with default style. Changing this sub-graph to show the meter in

3D effectively enables a three-dimensional progressive meter for all existing games

without any additional work to be done.

In addition, this example shows how to create 3D content by only using ”stock” node

classes; it does not require the developer to implement any derived classes in C++. Listing



8.1. Progressive Meter 67

8.2 shows how the 2D object may be embedded into a 3D sub-scene. Note the re-using

of the original implementation in lines 11 to 18, with only the background image being

replaced with a different one without a border frame. Figure 8.2 shows the visual output

of that code snippet.

1 <!-- ======== Define a separate renderer area ======== -->

2 <MOB_GlRendererArea id=" progressive_meter_context " w="800" h="200" >

3 <!-- ======== Setup camera ======== -->

4 <MGL_PerspectiveCamera center_x ="400" center_y ="100"/ >

5 <!-- ======== Setup lighting ======== -->

6 <MGL_Rotate axis_x ="0.5" axis_y ="1.0" axis_z ="0.0" angle ="60" >

7 <MGL_DirectionalLight/>

8 </MGL_Rotate >

9 <!-- ======== Textures ======== -->

10 <MGL_TextureDefinition id=" progressive_meter_odo " w="512" h="128" >

11 <!-- ======== The background image ======== -->

12 <MOB_AnimationSingle

13 animation =" resource (’ progressive_meter_background .png ’)"/>

14 <!-- ======== The actual meter object ======== -->

15 <MOB_ProgressiveMeterDefault

16 w="512" h="128"

17 font=" resource (’ progressive_meter_display_big .font ’)"

18 font_size ="79"

19 controllers .1=" MCO_ProgressiveAtakaProtocol ()"/>

20 </MGL_TextureDefinition >

21 <!-- ======== Geometry ======== -->

22 <MGL_Translate x="400" y="100" z="50" >

23 <MGL_Geometry geometry =" resource (’ progressive_meter.ase ’)">

24 <!-- ======== Implicitly define materials here ======== -->

25 <MGL_MaterialDefinition

26 link=" MatCase "

27 ambient_color="250 , 186, 13"

28 diffuse_color="250 , 186, 13"

29 specular_color="255 , 255, 255"

30 shininess ="127"

31 />

32 <MGL_MaterialDefinition

33 link=" MatOdometer "

34 ambient_color="255 , 255, 255"

35 diffuse_color="255 , 255, 255"

36 specular_color="0, 0, 0"

37 >

38 <!-- ======== Reference texture previously defined ======== -->

39 <MGL_TextureReference id=" progressive_meter_odo "/>

40 </MGL_MaterialDefinition >

41 </MGL_Geometry >

42 </MGL_Translate >

43 </MOB_GlRendererArea >

Listing 8.2: Example code for a 3D progressive meter using the existing 2D implementation
as the source for a dynamic texture.
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Figure 8.2: A rendering of a three-dimensional progressive meter using the existing 2D
implementation as the source for a dynamic texture.

8.2 Interactive Game Selection

One of Atronic’s future goals is to offer gaming machines with more than one game installed

simultaneously, and to let the player choose which one of them he or she wants to play.

Naturally, such a game selection screen shall be as visually attractive as possible and

also offer an intuitive user interface. Utilizing the possibility of the EGM’s built-in touch

screen, it was chosen to implement a simple selection menu that allows the player to leaf

through a set of title screens of available games, similar to the style of the ”Cover Flow”

known from Apple’s iPod. See figure 8.3.

Figure 8.3: A screen shot of the game selection menu screen.

This menu example actually consists of two separate node classes:

• The MOB ImageFlow class is derived from the MOB GlRendererArea class, with its

interface extended to allow the actual menu scroll position to be controlled externally.

• The MOB ImageFlowButton class is derived from a standard MOB Button, which is
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used to capture ”up”, ”down” and ”move” events from the touch screen. The derived

button is used to calculate the actual menu scroll position from these input events

and pass them on to the MOB ImageFlow node it is linked to.

Furthermore, the MOB ImageFlow class is designed to relieve the content developer

from defining all the transformation and geometry nodes necessary for bringing the menu

contents on screen. All he or she has to do is specify an MGL TextureDefinition child node

with a valid ID for each image that is supposed to appear in the menu; the initialization

routine of the MOB ImageFlow class then automatically adds all other objects necessary to

perform its task, as can be seen in Listing 8.3.

1 // Find all relevant textures containing a menu entry

2 for (uint32 i = 0; i < GetNumChildren(); i++)

3 {

4 BMC_ScriptObject* child = BMC_ScriptObject :: GetChild (i);

5 MGL_TextureDefinition * texture = dynamic_cast <MGL_TextureDefinition *>( child)

;

6 if (texture != 0)

7 {

8 m_image_ids .push_back (texture ->GetId ());

9 }

10 }

11

12 // Create necessary nodes for each entry

13 for (uint32 i = 0; i < m_image_ids .size(); i++)

14 {

15 MGL_TextureReference* texture =

16 dynamic_cast < MGL_TextureReference *>(

17 BMC_Object :: Create (L"MGL_TextureReference "));

18 texture ->SetId( m_image_ids [i]);

19

20 MGL_MaterialDefinition * material =

21 dynamic_cast < MGL_MaterialDefinition *>(

22 BMC_Object :: Create (L"MGL_MaterialDefinition "));

23 material -> SetSorting (

24 BMC_EnumBaseStrList :: GetValue (L"MGL_Sorting :: BACK_TO_FRONT", 0));

25 material -> SetAlphaBlending(

26 BMC_EnumBaseStrList :: GetValue (L"MGL_AlphaBlending ::ON", 0),

27 BMC_EnumBaseStrList :: GetValue (L"MGL_BlendFactor:: SRC_ALPHA ", 0),

28 BMC_EnumBaseStrList :: GetValue (L"MGL_BlendFactor:: ONE_MINUS_SRC_ALPHA", 0))

;

29 material -> AddChild (texture );

30

31 MGL_Plane * plane =

32 dynamic_cast <MGL_Plane *>(

33 BMC_Object :: Create (L"MGL_Plane "));

34 plane -> AddChild (material );

35

36 MGL_Scale * scale =

37 dynamic_cast <MGL_Scale *>(
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38 BMC_Object :: Create (L"MGL_Scale "));

39 scale -> SetScaleFactor (300.0 , 300.0 , 300.0) ;

40 scale -> AddChild (plane );

41

42 MGL_Rotate * rotate =

43 dynamic_cast <MGL_Rotate *>(

44 BMC_Object :: Create (L"MGL_Rotate "));

45 rotate ->SetRotationAxis (0.0, 1.0, 0.0);

46 rotate ->AddChild (scale);

47

48 MGL_Translate* translate =

49 dynamic_cast < MGL_Translate*>(

50 BMC_Object :: Create (L"MGL_Translate"));

51 translate ->SetPosition (-400.0, 300.0 , 50.0);

52 translate ->AddChild (rotate );

53

54 BMC_Node :: AddChild (translate );

55 }

Listing 8.3: A code fragment of the MOB ImageFlow initialization routine used for
programmatically creating a sub-graph depending on a given set of input textures.

8.3 Vertex and Fragment Shaders

The following example describes how GLSL vertex and fragment shaders can be directly

specified from the scene graph XML file. It further demonstrates the application of multi-

pass materials with varying parameters for each individual pass; an implementation of

Lengyel’s algorithm for rendering real-time hair [11] serves as a visually attractive example.

See Figure 8.4 and Listing 8.4.

Figure 8.4: A furry and a bump-mapped torus both rendered using vertex and fragment
shaders, with the furry one using a multi-pass material to render 16 distinct shells of fur.
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1 <!-- Shader Program Definition -->

2 <MGL_ProgramDefinition id=" fur_prog ">

3 <MGL_ShaderDefinition type =" MGL_ShaderType:: FRAGMENT "

4 source ="

5 uniform float lightness ;

6 uniform float distance ;

7 uniform float scale;

8 uniform sampler2D fur_texture ;

9 uniform sampler2D color_texture;

10 varying vec3 tangent1 , tangent2 , normal , lightDir , eyeVec ;

11

12 void main (void)

13 {

14 vec3 N = normalize (normal );

15 vec3 L = normalize (lightDir );

16 vec3 gravity = vec3(-1.0, 0.0, 0.0);

17 float dtu = dot (tangent2 , gravity );

18 float dtv = dot (tangent1 , gravity );

19 vec2 texcoord = gl_TexCoord [0].xy * 1.0;

20 texcoord .x += dtu * distance * distance * 0.00035;

21 texcoord .y += dtv * distance * distance * 0.00035;

22 vec4 tex_color = texture2D (fur_texture , texcoord );

23 tex_color .rgb *= texture2D (color_texture , texcoord ).rgb;

24 vec4 final_color =

25 ( gl_FrontLightModelProduct .sceneColor * gl_FrontMaterial.ambient

26 * tex_color ) +

27 ( gl_LightSource[0]. ambient * gl_FrontMaterial.ambient * tex_color );

28 float lambertTerm = dot(N,L);

29 if (lambertTerm > 0.0)

30 {

31 final_color += gl_LightSource [0]. diffuse *

32 gl_FrontMaterial.diffuse * tex_color *

33 lambertTerm ;

34 vec3 E = normalize (eyeVec );

35 vec3 R = reflect (-L, N);

36 float specular = pow( max(dot(R, E), 0.0),

37 gl_FrontMaterial. shininess );

38 final_color += gl_LightSource [0]. specular *

39 gl_FrontMaterial.specular *

40 specular ;

41 }

42 final_color .a = tex_color .a * (1.0 - (distance / 24.0));

43 final_color .rgb = final_color .rgb * lightness ;

44 gl_FragColor = final_color ;

45 }"/>

46 <MGL_ShaderDefinition type =" MGL_ShaderType:: VERTEX "

47 source ="

48 uniform float lightness ;

49 uniform float distance ;

50 uniform float scale;

51 varying vec3 tangent1 , tangent2 , normal , lightDir , eyeVec ;

52

53 void main()

54 {

55 normal = gl_NormalMatrix * gl_Normal ;
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56 tangent1 = gl_NormalMatrix * gl_MultiTexCoord7.xyz ;

57 tangent2 = cross(tangent1 , normal );

58 vec3 vVertex = vec3( gl_ModelViewMatrix * gl_Vertex );

59 lightDir = gl_LightSource [0]. position .xyz ;

60 eyeVec = -vVertex ;

61 vec4 n;

62 n.xyz = gl_Normal ;

63 n.w = 0.0;

64 gl_TexCoord [0] = gl_MultiTexCoord0;

65 gl_Position = gl_ModelViewProjectionMatrix *

66 (gl_Vertex + n * distance * scale);

67 }"/>

68 </MGL_ProgramDefinition >

69

70 <!-- Material Definition -->

71 <MGL_MultiPassMaterialDefinition

72 id=" mat_fur "

73 diffuse_color ="255 , 255, 255"

74 ambient_color ="255 , 255, 255"

75 specular_color="25, 25, 0"

76 shininess ="10"

77 multi_pass_type=" MGL_MultiPassType :: PER_OBJECT "

78 alpha_blending=" MGL_AlphaBlending ::ON"

79 sorting =" MGL_Sorting :: BACK_TO_FRONT"

80 >

81 <MGL_ProgramReference id=" fur_prog "/>

82 <MGL_TextureReference id=" map_fur " unit ="0"/ >

83 <MGL_TextureReference id=" map_leopard " unit ="1"/ >

84 <MGL_ProgramParameters

85 params =" sampler2D fur_texture = 0;

86 sampler2D color_texture = 1;

87 float scale = 0.4;

88 float lightness = 1.0;

89 float distance = 0.0;"/ >

90 <MGL_MaterialPassDefinition alpha_blending=" MGL_AlphaBlending ::OFF">

91 <MGL_ProgramParameters params =" float distance = 0.0;"/ >

92 </MGL_MaterialPassDefinition >

93 <MGL_MaterialPassDefinition >

94 <MGL_ProgramParameters params =" float distance = 1.0;"/ >

95 </MGL_MaterialPassDefinition >

96 <MGL_MaterialPassDefinition >

97 <MGL_ProgramParameters params =" float distance = 2.0;"/ >

98 </MGL_MaterialPassDefinition >

99 ...

100 <MGL_MaterialPassDefinition >

101 <MGL_ProgramParameters params =" float distance = 15.0;"/ >

102 </MGL_MaterialPassDefinition >

103 </ MGL_MultiPassMaterialDefinition >

Listing 8.4: An XML fragment describing the definition of a vertex/fragment shader pair
for rendering a single shell of fur followed by the definition of a multi-pass material applying
this shader program to 16 distinct shells.
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8.4 The Background as a Texture

Another interesting way of combining software-rendered 2D and OpenGLrendered 3D

content is to use the whole background surface as a texture on an arbitrary geomet-

ric object, e.g. for applying distortion effects on the background or virtually zooming

away. For this reason, a MOB Scene node now accepts an additional attribute named

disable background display that, when set to one, forces the renderer engine to sup-

press rendering of its screen-aligned background quad whenever that scene is active. It is

then up to that scene to fill the screen with 3D-only content. However, the background

surface and its underlying texture are still constantly updated, and can be accessed via

an MGL TextureReference with the predefined ID ”BACKGROUND TEXTURE”. The

example shows how this mechanism can be used to smooth-ly zoom out when switching

between two scenes; see Figure 8.5 and Listing 8.5.

Figure 8.5: An example illustrating the possibility of integrating the 2D surface as a
texture object on 3D geometry.

1 <!-- Scene definition -->

2 <BMC_Scene name=" FREEGAME SCENE">

3 <MOB_Screen name=" FREEGAME SCREEN "

4 device_id =" GFX_DeviceType:: MAIN"

5 disable_background_display ="1"

6 >

7 <MOB_Object name =" BOTTOM SCREEN " x="0" y="600" z="0" w="800" h="600" >

8 <MOB_AnimationSingle animation = "resource (’ screen_background.png ’)"/>
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9 <!-- Regular screen contents -->

10 ...

11 </MOB_Object >

12 <!-- 3D representation -->

13 <MOB_GlRendererArea id =" freegame_context" x="0" y="0" w ="800" h="1200" >

14 <!-- Materials -->

15 <MGL_MaterialDefinition id=" bg_mat "

16 ambient_color="255 , 255, 255"

17 diffuse_color="255 , 255, 255"

18 specular_color="255 , 255, 255"

19 face_lighting=" MGL_FaceLighting:: OFF"

20 >

21 <MGL_TextureReference id=" BACKGROUND TEXTURE "/>

22 </MGL_MaterialDefinition >

23 <!-- Geometry -->

24 <MGL_EffectLoop

25 name=" rotate_freegamescene_effectloop "

26 start_on_activate_screen ="1"

27 execution_behaviour = " EXECUTION_BEHAVIOUR :: SEQUENTIAL "

28 number_of_loops ="1"

29 controllers .1 = " MCO_EffectRotateObject (Object =../

translate_freegamescene / rotate_freegamescene ,AnimationTime=0,

ToAngle =0)"

30 controllers .2 = " MCO_EffectRotateObject (Object =../

translate_freegamescene / rotate_freegamescene ,AnimationTime=3000 ,

ToAngle =25)"

31 />

32 <MGL_EffectLoop

33 name=" translate_freegamescene_effectloop "

34 start_on_activate_screen ="1"

35 number_of_loops ="1"

36 controllers .1 = " MCO_EffectMoveObject(Object =../

translate_freegamescene , AnimationTime=3000 , FromX =400, ToX =260, FromY

=600, ToY =500, FromZ =0, ToZ = -180) "

37 />

38 <MGL_Translate name =" translate_freegamescene " x="400" y="600" z="0">

39 <MGL_Rotate

40 name =" rotate_freegamescene" angle ="0"

41 axis_x ="0.6" axis_y =" -1.0" axis_z ="0.0" >

42 <MGL_Scale x="800" y="1200" z="1">

43 <MGL_Plane tx1 ="0.0" ty1 ="0.0" tx2 ="0.78125" ty2 ="0.5859375" >

44 <MGL_MaterialReference id=" bg_mat "/>

45 </MGL_Plane >

46 </MGL_Scale >

47 </MGL_Rotate >

48 </MGL_Translate >

49 </MOB_GlRendererArea >

50 </MOB_Screen >

51 </BMC_Scene >

Listing 8.5: An XML fragment showing how to disable regular background rendering for
a given content scene and integrate it into custom 3D geometry.
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Results and Discussion

Having presented all the necessary steps – from initial considerations to the final imple-

mentation – for transforming the Atronic EGD framework into a hybrid 2D/3D rendering

system in the course of this thesis so far, this chapter concludes with an evaluation of

the developed prototype with respect to daily-use suitability, followed by a discussion

about possible future improvements to leave behind the prototype stage towards a mature

product.

9.1 Performance Measurements

Considering the actual primary field of operation for the hybrid EGD prototype, the fol-

lowing sub-sections describe the results of a number of performance measurements carried

out on the Synergy platform with the Mesa graphics driver under Linux; these measure-

ments were performed in a ”real-world” scenario running an already existing game, with

the EGD framework’s default screen resolution of 800x1200 pixels for 4:3 displays (800x600

pixels in a dual-screen configuration) and an extended wide-screen resolution of 960x1200

pixels for 16:10 displays.

9.1.1 Surface Transfer Performance

On the Synergy platform using the open-source Mesa DRI driver, as can be seen from

the preliminary performance measurements carried out in chapter 4, transfer of the back-

ground surface to video memory shows the best performance when performing a full update

of the target texture via glTexImage2D() utilizing a double-buffered PBO scheme.

Regarding the two target screen resolutions of 800x1200 pixels and 960x1200 pixels,
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the actual amount of pixel data to transfer is roughly of the same order of magnitude

as the preliminary test application’s 1024x1024 resolution. Figures 9.1 and 9.2 show a

comparison of maximum achievable frame rates and CPU load, respectively; for each of

the two resolutions, measurements were performed in ”idle mode” with no actual 2D

rendering taking place, and during ”reelspin” with roughly 30 percent of the whole screen

being constantly updated.

Figure 9.1: EGD texture update performance: Maximum achievable frame rate for differ-
ent screen resolutions and varying load.

Figure 9.2: EGD texture update performance: CPU load (single core) for different screen
resolutions and varying load, at a fixed frame rate of 60 fps.

As can be seen from these results, although the maximum achievable frame rate in idle

mode is almost equal for both screen resolutions, CPU load is almost 70 percent higher

at the 960x1200 resolution. During a deeper analysis of this somewhat odd behavior, it

was possible to identify a call to OpenGL’s glUnmapBuffer() function as the source of

the problem; subsequently decreasing the vertical size of the surface by one row remedied

this problem at a resolution of 960x1092 pixels. Looking up the source code of the driver

implementation revealed that the driver internally only operates on buffer objects of power-

of-two sizes; crossing the 4 MiB border at a resolution of 960x1093 pixels yields an internal

buffer rounded up to 8 MiB in size thus producing the observed overhead.

9.1.2 Rendering Performance

For the purpose of measuring actual 3D performance of the hybrid prototype, the bottom

half of the game’s 960x1200 main screen was overlaid with a configurable number of real-
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time rendered coin objects, each consisting of 66 individual vertices and 128 triangles.

Repeatedly falling down from the top of the screen, each of these coins is individually

rotated around a randomly chosen axis; a sample screen shot is shown in figure 9.3.

Figure 9.3: Screen shot of the ”coin flow” performance test, with 250 individually animated
coins rendered with a DOT3 bump mapping shader.

In addition to a varying number of individual coin instances, this test was also carried

out with respect to three materials differing in complexity: one cycle used a plainly colored

material with only lighting enabled, the second cycle additionally featured a single texture

applied to each coin, and the third cycle was performed using a DOT3 bump mapping

shader program with a color texture and a normal map enabled on two texture channels.

Figures 9.4 and 9.5 show a comparison of these measurements.

As expected, the resulting frame rate quickly drops to a crawl at a high number of

object instances. Nevertheless, an instance count of 100 still yields an acceptable frame

rate of around 60 fps at relatively low CPU utilization; sufficient CPU resources are

available for performing other tasks. Considering the overhead imposed by the continuous

update of the background surface, these values allow for an undisturbed operation in a

practical environment.
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Figure 9.4: Rendering performance: Maximum achievable frame rate for the ”coin flow”
test case, with varying instance count and three materials of varying complexity.

Figure 9.5: Rendering performance: Single core CPU load for the ”coin flow” test case,
with varying instance count and three materials of varying complexity, at a fixed frame
rate of 60 fps.

9.2 Future Improvements

9.2.1 Improved Parallelization

Through the analysis of the interaction between drawing thread and flip thread depicted in

figure 5.4, it becomes apparent that the (somewhat conservative) approach of integrating

the actual OpenGL-specific rendering process between the end of a Draw() traversal and

the actual frame buffer swap leaves open two essential gaps where both CPU and GPU

may be idle for some time, hindering optimal parallelization of 2D and 3D rendering. On

the one hand, the OpenGL subsystem cannot access the 2D surfaces it depends on before

the Draw() traversal is finished; on the other hand, the 2D renderer must not modify its

surfaces before OpenGL has finished transferring them to video memory.

Solving this problem might be accomplished by introducing additional double-buffer
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schemes for both the system memory background surface as well as all renderer objects

in use, and by enforcing the double-buffer PBO scheme for all regular textures. Through

such a mechanism it would be ensured that both the 2D and 3D rendering modules only

access any of their needed resources invisible to the other module. As a consequence,

synchronization between the two threads might be implemented more liberally, and idling

would only occur with unbalanced workload on both modules, and not out of an innate

habit.

From the actual implementation’s point of view, applying these changes is not an

overly complicated task; introducing a double buffer for the background surface is easily

accomplished, and double-buffered renderer objects can be created in a way transparent

to the user. However, the increased resource consumption of this approach regarding

vertex or pixel buffer objects in video memory might introduce new problems on low-end

platforms such as Synergy with only 256 MiB of dedicated video memory.

9.2.2 Higher-Level Node Classes

With the newly introduced OpenGL-related MGL scripting nodes forming the basis for

hardware-accelerated 3D rendering in the EGD framework, further extensions in the form

of higher-level classes can be seen as a logical consequence; the existing Multimedia Game

Base library with its various application-specific implementations atop the Multimedia

Base library already provides a good foundation in the field of 2D rendering. Future

3D-based higher-level node classes might exemplarily implement the following ideas or

concepts, based on the extensions making up the hybrid prototype:

• Replacement of the 2D ”reelslot” classes to allow for advanced visual effects in classic

casino slot machines;

• Real-time rendering of a 3D roulette bowl, possibly zooming in on the bowl or the

whole table;

• 3D jackpot meters as demonstrated in chapter 8; and

• A generic particle engine.

Through the open and extensible nature of the framework however, no restrictions are

imposed concerning any other design ideas yet to come: The sky’s the limit.
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Conclusion

This thesis, motivated by the venture of enhancing Atronic’s proprietary 2D-only Easy

Game Development framework with the capability of hardware-accelerated real-time 3D

rendering, presented the course of action during this challenge from initial thoughts to

a final prototype. Starting out by reviewing the notion of a scene graph and EGD’s

essential relationship to this concept in chapter 2, the thesis highlighted its resemblances

and differences to other scene graph frameworks and toolkits established in the market.

Having obtained an understanding of the project’s cornerstones from these initial com-

parisons as well as the following process of acquiring detailed requirements for the ultimate

goal of establishing a real-time capable 3D rendering framework, the project’s primary di-

rection began to manifest itself in the form of a hybrid system with the distinctive charac-

teristic of coexistence as well as mutual benefit between 2D and 3D subsystems. Resulting

from this process described in detail in chapter 3, the individually collected goals and

requirements can be summarized by three essential items:

• Seamless integration into the existing framework on the user level;

• optimal utilization of existing 2D implementations in the framework; and

• parallelization of CPU-based 2D rendering and GPU-based 3D rendering.

In order to guarantee a successful outcome of any efforts invested into this work in

the first place, an important role was played by a deeper analysis of the various required

target platforms comprising a number of different hardware architectures and operating

systems, in terms of overall performance, stability and feature completeness. As a positive

result of the observations and preliminary measurements made during this crucial analysis
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carried out in chapter 4, the initial project goal with all its drafted requirements showed

to be well within reach; the path was cleared for further work in the desired direction.

In the course of discussing overall prototype concepts in chapter 5, three particu-

lar approaches for augmenting the existing EGD scene graph hierarchy were presented;

subsequent elaboration on the idea of a semi-homogenous graph structure led to further

concretization towards a reliable and easy-to-use design. Depicting details of the actual

implementation regarding user-visible scripting extensions and their relationship to the

underlying internals in chapter 6 provides an additional means to obtain a clear under-

standing of object interaction and data flow in the developed prototype.

Concluding the work with the results from a variety of practical application examples

shown in chapter 8 and corner case performance measurements from chapter 9 to put the

resulting prototype through its paces, one can safely consider it not to be just ”a flash in

the pan”. Furthermore, after having merged the prototype code to Atronic’s main project

trunk, and having successfully piloted it past a thorough system testing phase under the

critical eyes of the in-house testing team, observing the final product’s overall smooth

operation in a genuinely practical environment at Casinos Austria certainly opens up a

promising perspective.
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