
Graz University of Technology

Doctoral Thesis

Auditory Inspired Methods for Multiple

Speaker Localization and Tracking Using

a Circular Microphone Array

Tania Habib

————————————–

Signal Processing and Speech Communication Laboratory

Graz University of Technology, Austria

First Examiner:

Prof.Dr.Gernot Kubin,

Graz University of Technology, Austria

Second Examiner:

Prof.Dr.Walter Kellermann,

University of Erlangen-Nuremberg, Germany

Co-Advisor:

Dr.Harald Romsdorfer

Graz University of Technology, Austria

Graz, July 2011





iii

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material

which has been quoted either literally or by content from the used sources.

................................. ........................................................

date (signature)



iv



v

Kurzfassung

Die vorliegende Dissertation beschreibt ein neues Verfahren für die Lokalisierung

und Verfolgung von mehreren akustischen Quellen mit Hilfe eines Mikrofon-Arrays.

Die Verwendung von Mikrofon-Arrays bietet eine Verbesserung des Sprachsig-

nals bei Aufnahmen in Besprechungs- und Büroräumen. Eine gebräuchliche Lösung

zur Sprachsignalverbesserung in realistischen Umgebungen mit Umgebungslärm und

Mehrwegeausbreitung ist die Verwendung sogenannter “Beamforming”-Techniken,

die Signale aus der gewünschten Richtung durch konstruktive Interferenz verstärken

und Signale aus anderen Richtungen durch destruktive Interferenz abschwächen.

Diese Beamforming-Algorithmen benötigen als Vorwissen die Position der Quelle.

Deswegen sind Algorithmen zur Lokalisierung und Verfolgung von akustischen

Quellen eine wesentliche Komponente eines solchen Systems. Konventionelle

Lokalisierungsalgorithmen verschlechtern sich jedoch in realen Aufnahmesituatio-

nen, sobald mehrere Sprecher gleichzeitig sprechen.

Im Gegensatz zu konventionellen Lokalisierungsalgorithmen verwendet der in

dieser Dissertation vorgestellte Algorithmus zusätzlich zur Positionsinformation die

Grundfrequenz bzw. Tonhöhe (auf Englisch “Pitch”) des Sprachsignals. Dieser soge-

nannte “Position-Pitch”-Algorithmus verwendet zur Vorverarbeitung der Sprachsig-

nale eine Multi-Band Gamma-Tone-Filterbank, die in ihrer Funktion vom men-

schlichen Gehör inspiriert ist. Die Funktion dieser Gamma-Tone-Filterbank wird im

Detail analysiert. Diese Methode verwendet unter anderem ein Frequenzselektion-

skriterium, welches beim menschlichen neuronalen System beobachtet wurde und

zu einer robusteren Lokalisierung mehrerer, gleichzeitiger Sprachquellen beiträgt.

Im Rahmen dieser Arbeit werden zwei Algorithmen zur Quellenverfolgung unter-

sucht, welche die Lokalisierung von mehreren Sprechern weiter verbessern: der

Erste basiert auf der Gruppierung von spektralen und temporalen Regionen, die

ähnliche Grundfrequenzcharakteristiken aufweisen. Der Zweite verwendet Partikel-

Filter (auch sequentielle Monte-Carlo-Methode genannt) basierend auf den Posi-

tionsschätzungen des “Position-Pitch”-Algorithmus. Abschließend wird ein neuer
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Partikel-Filter basierter Lokalisierungs- und Verfolgungsalgorithmus präsentiert und

es werden mehrere Lösungen für Probleme mit Partikel-Filter basierten Algorith-

men vorgestellt. Unter anderem eine Methode zur Verbesserung des Wahrschein-

lichkeitsmodels basierend auf Informationen über die Quellaktivität.

Alle in dieser Arbeit vorgestellten Lokalisierungs- und Verfolgungsalgorithmen

wurden anhand von Sprachaufnahmen mit einem zirkulären 24-kanaligen Mikrofon-

Array in verschiedenen realen, akustischen Umgebungen getestet. Die Sprachquellen

wurden dafür entweder direkt mit Sprechern bzw. mit über Lautsprechern abgespiel-

ten Orignalaufnahmen realisiert. Die in dieser Dissertation entwickelten Methoden

erzielen im Durchschnitt eine Verbesserung von etwa 20% gegenüber dem als Stand

der Technik geltenden SRP-PHAT Algorithmus.
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Abstract

This thesis presents a new approach to the problem of localizing and tracking

multiple acoustic sources using a microphone array.

The use of microphone arrays offers enhancements of speech signals recorded in

meeting rooms and office spaces. A common solution for speech enhancement in

realistic environments with ambient noise and multi-path propagation is the ap-

plication of so-called beamforming techniques, that enhance signals at the desired

angle, using constructive interference, while attenuating signals coming from other

directions, by destructive interference. Such beamforming algorithms require as

prior knowledge the source location. Therefore, source localization and tracking al-

gorithms are an integral part of such a system. However, conventional localization

algorithms deteriorate in realistic scenarios with multiple concurrent speakers.

In contrast to conventional localization algorithms, the localization algorithm pre-

sented in this thesis makes use of fundamental frequency or pitch information of

speech signals in addition to the location information. This “position-pitch”-based

algorithm pre-processes the speech signals by a multiband gammatone filterbank

that is inspired from the auditory model of the human inner ear. The role of this

gammatone filterbank is analyzed and discussed in details. For a robust localization

of multiple concurrent speakers, a frequency-selective criterion is explored that is

based on a study of the human neural system’s use of correlations between adja-

cent sub-band frequencies. This frequency-selective criterion leads to more robust

localization and pitch cues. In the following, two different kinds of tracking algo-

rithms that further improve localization accuracy of an arbitrary number of speak-

ers are presented: the first one is based on grouping of spectro-temporal regions

formed by fundamental frequency cues. The second one applies sequential Monte

Carlo methods or particle filters using the location cues provided by the multiband

position-pitch algorithm. Finally, a novel particle filter-based joint position and

pitch tracking algorithm is presented. Various solutions are proposed for the exist-

ing problems faced by the particle filter-based trackers, including an improvement

in the likelihood model on information of source activity.
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All proposed speaker localization and tracking algorithms are tested using real-

world recordings made with a 24-channel uniform circular microphone array using

loudspeakers and human speakers under various acoustic environments. The pro-

posed techniques give on average 20% more accurate results than the state-of-the-art

SRP-PHAT algorithm.
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Chapter 1
Introduction

In today’s world, hands-free communication has become an essential part of day-

to-day activities. It exists as an acoustic front end of telephony and speech dialog

systems to name a few. In practice, these systems are placed in adverse acoustic

environments with ambient noise. Moreover, the distance between the speaker and

microphones decreases the power level of recorded speech signal resulting in poor

quality signal acquisition.

The emergence of array signal processing techniques is offering improved system

performance for multiple input systems. A comprehensive overview about the field

can be found in [1, 2, 3]. The multi-channel system allows to solve problems, such as

source localization and tracking, which is difficult with single-channel systems. The

problem of source localization has been analyzed and various solutions are proposed

keeping different situations in mind in fields of radar, sonar, seismology, geophysics,

ultrasonics, and global positioning systems. These applications differ considerably

from the speech localization problem addressed here in many aspects. Primarily,

the time-delay estimates for the above mentioned fields are evaluated relative to an

absolute time-scale or a single reference sensor. This strategy is inappropriate be-

cause of the radiation pattern of speech signals is not ideal in realistic environments.

Moreover, the accurate estimation of Time Difference of Arrival (TDoA) relative to

a single reference sensor may not be possible due to signal incoherence among the

sensors. This is why speech source localization methods rely on pairwise Time Delay

Estimation (TDE), where the signals received at two (or more) spatially separated

microphones are compared for estimating the source location.

1



2 1. Introduction

This thesis focuses on the subject of time-delay estimation using a circular mi-

crophone array. The TDE task is possible with any given placement of sensors or

microphones but the strategic positioning of the microphones can yield optimal spa-

tial resolution. Furthermore, a microphone array system can enhance the desired

source signal or attenuate noise source signal coming from different directions by

using sources’ location information.

The problem of speech localization of multiple speakers using a microphone array

is depicted in Fig. 1.1. One of the main factors contributing to the complexity of the

problem is the acoustic environment where the array has been placed. In this case,

the microphones not only pick up the speech signals but the reverberated signals

together with the environmental noise. Therefore, the aim is to robustly localize

and track one or more concurrent speakers using only the data acquired by the

microphone array.

Figure 1.1: Illustration of the speech localization problem in a reverberant envi-
ronment. The microphones are placed on a uniform circular ring. The
positions of the microphones are fixed and known. With the given setup,
the aim is to localize and track one or more active sources using only
the data acquired from the microphone array.
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Recently, meeting rooms equipped with different kinds of sensors have become

popular. These are referred to as smart meeting rooms, where a microphone array is

used to record meetings with multiple participants. Such a setup facilitates remote

meetings. Furthermore, the recorded data can be used for automatic structuring

and indexing of the meetings. It is not limited to audio and speech processing

but it is also widely studied in computer vision, human computer interaction, and

information retrieval. An accurate detection, localization, and tracking of speakers

is also essential for media processing tasks: for steering a video camera towards

an active speaker [4], for conference telephony systems [5], for speech enhancement

of the active stream using the microphone array beamforming for distant speech

recognition [6], and to provide accumulated information for speaker identification.

All these tasks are crucial for increasing the interactive experience between the

participants of a meeting. The meeting room environment, however, poses a number

of challenges such as multiple concurrent speakers, short utterances, and background

noise sources. A number of recordings emulating some of the above mentioned

scenarios have been made to test the performance of the novel algorithms introduced

in this thesis.

In the next section, a review of selected relevant doctoral theses in the area of

acoustic source localization and tracking is presented. Moreover, a comparison with

their respective goals is carried out to highlight the different issues that this thesis

is addressing.

1.1 Review of the Selected Doctoral Theses

1.1.1 Summary of Main Goals and Results

A Framework for Speech Source Localization using Sensor

Arrays [7]

[7] presents the first few comprehensive works done for the problem of acoustic

source localization using multiple microphones. This thesis is authored by Michael

Shapiro Brandstein, at the Brown University, U.S.A. The key idea behind the work

is to provide a complete framework for speech source localization starting with the

theoretical foundation of the problem. The author introduced some error criteria for
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location estimates along with various source detection and estimate-error prediction

methods. Furthermore, the author presents a novel closed-form locator, named the

Linear Intersection (LI) method. In order to estimate the source position using

LI method, the concept of sensor-pair geometry is introduced, where, for a pair

of microphones, the candidate positions of the speakers are half-hyperboloids with

the center defined in the middle of the microphones. The hyperbola-to-cone ap-

proximation gives the source bearing lines. For multiple pairs, the intersection of

these bearing lines indicates the likely source position. A frequency-domain time-

delay estimator intended for the speech source environment was also proposed. This

method is based on the cross-power spectrum between a pair of microphones and

requires minimal computational resources to produce precise TDoA estimates. The

developed algorithms have been first tested on a pair of sensors, and later on data

recorded with a 10-element bilinear array system.

A High-Accuracy, Low-Latency Technique for Talker Localization

in Reverberant Environments Using Microphone Arrays [8]

Also the work by Joseph Hector Dibiase [8] was carried out at the Brown Uni-

versity. The basic idea behind this work is to improve the localization accuracy

by introducing a low-latency technique. The author analyzed the performance

of the conventional cross-correlation methods for speaker localization using real-

world recordings. The results show that these methods require longer segments

(∽ 200msec) to achieve high accuracy. The use of such long analysis lengths is

not permissible in real-time applications of source localization. Furthermore, the

conventional beam-steering method known as the Steered Response Power (SRP)

method is applied for the speaker localization. It is then combined with one of

the weighting functions of Generalized Cross-Correlation (GCC) methods known as

the PHAse Transform (PHAT) to create a new filter-and-sum technique called as

“SRP-PHAT” algorithm. The author proved that the summation of microphone

signals by exploiting microphone redundancy provides more accurate location esti-

mates in comparison to the combination of TDoA estimates. Furthermore, it was

shown in the thesis that for such methods, a segment length of 20msec can be used

to generate accurate position estimates. The performance of SRP-PHAT was com-

pared to SRP and GCC-PHAT in a set of experiments on data collected from both

small aperture and large aperture arrays. Moreover, a theoretical relationship is
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developed between SRP-PHAT and GCC-PHAT, where the author shows that the

SRP-PHAT response can be determined by summations of GCC-PHAT functions

over multiple microphones. Although SRP-PHAT is computationally expensive, it

provides accurate location estimates in realistic environments. There are a number

of solutions presented in the literature for the computational complexity problem.

A summary of those methods is presented later in Chapter 2.

Spatio-Temporal Analysis of Spontaneous Speech with

Microphone Arrays [9]

[9] presents the work by Guillaume Lathoud at EPFL Lausanne, Switzerland. The

underlying concept behind this work is to develop a robust and accurate post-

processing stage for the localization system. It combines the location cues with

spectral features to create the observation vectors used to solve the problem of

speaker identification. Besides the speaker identification task, the author also pro-

posed modifications to the source localization methods, i.e., a Phase Domain Metric

(PDM) which is used for detection and localization of multiple speaker in the the-

sis. For every assumed source location, the theoretical and observed phase values

are compared and the actual source position is determined by minimization of the

resulting PDM. For the two 8-channel circular microphone arrays, a sector wise

scheme for the microphone arrays is used for speaker detection. Furthermore, the

acoustic power in each sector is modeled using unsupervised probabilistic modeling

to perform the speaker detection-localization task.

The author proposed a short-term clustering scheme for speaker identification,

which performs Speech/Non-Speech (SNS) decisions for each cluster to remove non-

speech clusters. His short-term clustering method rejects the non-speech noise

sources and detects the beginning and end times of each speech utterance. To

address the question of who spoke a given utterance, he investigated how to deter-

mine the speaker identity of each speech utterance when using distant microphones.

The author used an agglomerative clustering method, where speech utterances from

the same speaker are progressively grouped together into a single long-term cluster.

Moreover, a distant microphones based speaker clustering scheme was proposed,

where, the Bayesian Information Criterion (BIC) was changed to combine features

such as Mel-Frequency Cepstral Coefficients (MFCCs) and location estimates.
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Particle Filtering Methods for Acoustic Source Localization and

Tracking [10]

One of the first successful applications of the particles filtering approach to the

problem of acoustic source localization and tracking was presented by Eric André

Lehmann in [10] at the Australian National University. The thesis presents a gen-

eral framework for acoustic source localization using Sequential Monte Carlo (SMC)

methods referred to as particle filters. The author proposed four different algorithms,

which combined the GCC and Steered Beamforming (SBF) methods with Gaussian

and pseudo-likelihood functions within the particle filtering framework. The pro-

posed methods are focused on the localization and tracking of a single source using

a frame length of 64msec. The concept of sequential importance sampling is used

to revise the acoustic source localization algorithms. With the use of importance

sampling, a valuable property of re-initialization is integrated at a low algorithm

level. Furthermore, the author showed that importance sampling based methods

are able to recover from complete track losses, to detect new targets entering the

acoustic scene, and to switch between alternating speakers. The author suggested

that the particle filters based on the importance sampling principle are better suited

for practical applications as compared to previously developed filters.

A distributed array setup of eight microphones was considered in the thesis. The

microphones were arranged in a pairwise manner on each wall of the enclosure. The

performance of the proposed methods was evaluated using both synthetic and real-

life samples of audio data. In order to avoid the unpredictable outcome of random

initializations, the particles were always initialized at the actual speaker positions.

Therefore, this thesis only demonstrates the tracking ability of the algorithms. The

proposed sequential estimation approaches are shown to outperform conventional

localization methods. In addition to that, the theoretical performance analysis of

the methods developed is carried out by deriving a modified version of the Cramér-

Rao bound.

Acoustic Source Tracking using Sequential Monte Carlo [11]

[11] presents the work carried out by Maurice Fallon at the University of Cambridge,

U.K. The thesis proposes several novel techniques to solve the acoustic source track-

ing problem. The algorithm uses the signal-to-signal correlation between a pair
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of microphones to determine speaker’s orientation. This concept is based on the

observation that the microphone pairs in front of the speaker will exhibit higher

correlation compared to those behind the speaker. The steered beamformer based

likelihood function proposed in [10] was modified for the “Track-Before-Detect”

framework. A discretization of the SBF surface was proposed to efficiently utilizes

the available computing power. This approach avoids the position measurements

assignment to a particular source and makes a simple extension of the algorithm to

track two or more concurrent sources. Moreover, the thesis presents an extension of

the multi-target tracking algorithm to track intermittent speakers. The developed

algorithm basically is a variable dimension particle filter which constantly moni-

tors the surveillance region for changes in activity to propose new source positions.

The likelihood weights of the particles are determined by an importance weighting

scheme. The proposed scheme probabilistically combined hypothesized prior be-

havioral information, the previous particle positions, and the current measurement

data to estimate particles’ weights. This particle distribution can then be used to

infer the number and location of the active speech sources. All the proposed algo-

rithms were tested using real audio data recorded using a distributed setup of 12

microphones.

1.1.2 Comparison with the Goals of the Selected Theses

In this section, the goals of this thesis are compared with the work summarized in the

previous section. This thesis focuses on the problem of “Acoustic Source Localization

and Tracking in Meeting Rooms/Office Space using a Circular Microphone Array”

(here the term acoustic source means the speech source). Therefore, the aim is

to develop robust and practical multi-source localization and tracking algorithms

performing well in realistic environments with various background noise and strong

reverberations. In this work, I explore an interesting and most often neglected area

in the context of the speech localization problem, which deals with combining a

speech related feature known as fundamental frequency or pitch with the time-delay

estimation task.

The work presented in [8, 7] uses the acoustic properties of the environment along

with a geometric placement of the sensors to localize the speakers. In the present

thesis, a GCC based joint position-pitch (PoPi) algorithm [12] is used as a baseline

algorithm. The PoPi method exploits the periodicity present in voiced speech by car-

rying out a parameterized sampling of the cross-correlation between two spatially
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separated microphones. The summation of a certain number of cross-correlation

peaks results in a 2D plane where one dimension represents the position of the

source, and the other represents the pitch values. Different modifications for the

PoPi algorithm will be presented in the present thesis, including some auditory in-

spired pre-processing techniques [13]. These auditory techniques make use of the

periodicity information, and help with the pre-grouping of cues for the location and

the pitch of different speakers. This pre-grouping then helps the joint position-pitch

decomposition in concurrent speaker scenarios. The proposed methods will be com-

pared with the SRP-PHAT method [8] on real-world recordings using a 24-channel

circular microphone array. The proposed methods show superior performance to

the SRP-PHAT under strong reverberant conditions with high levels of background

noise.

The work in [9] provides the spatio-temporal analysis of speech signals acquired

by a microphone array. The main goal of the work was to merge location cues with

spectral cues for the speaker identification task. To extract the location cues, the au-

thor used the traditional SRP-PHAT method with some modifications summarized

in Section 1.1.1. The speaker localization methods proposed in this thesis can offer

improved location accuracy over SRP-PHAT algorithm, especially for multiparty

speech, where short, fast-changing speaker turns are commonly occurring. Finding

solutions for the speaker identification task, however, would be beyond the scope of

this work.

In most practical scenarios, localization methods suffer from the increasing num-

ber of anomalies as the acoustic conditions become more challenging. The work in

[10] provides algorithms for successful tracking of a single source in realistic scenar-

ios. The problem of tracking multiple concurrent speakers, however, is not addressed

in [10]. Furthermore, the work in [10] lacks an elaborate statistical representation

of the speech signal in the observation model of the particle filter framework. The

inclusion of voice activity along with acoustic features like pitch into the observa-

tion variable can enhance the tracking performance. Contrary to the work in [10],

this thesis combines the fundamental frequency and auditory inspired pre-processing

techniques into a conventional particle filtering framework. The other main differ-

ence is the experimental setup. The authors in [10, 11] used a distributed microphone

array setup, where the microphones were fixed on the walls of the room. This thesis

presents results from experiments with a circular microphone array placed in the

center of the room to test the speaker tracking performance of the proposed algo-
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rithms. Moreover, the author in [11] proposed particle filtering based methods for

tracking more than one speaker using the track-before-detect methodology. This is

a good strategy to circumvent the data association problem in multi-target track-

ing. The methodology deviates from the main goal of the current work, which is to

provide robust speaker detection/localization algorithms. Therefore, this strategy is

not explored in this thesis. These methodologies require the actual speaker positions

to be known a priori. To avoid this condition, the author in [11] presented a variable

dimension particle filtering algorithm, where the birth/death rules for the particles

are defined heuristically. These rules are somewhat difficult to generalize for differ-

ent experimental setups. On the one hand, this thesis explores the Markov Chain

Monte Carlo (MCMC) sampling techniques within the particle filtering framework.

The importance sampling technique is combined with the basic bootstrapping ap-

proach to form a new sampling method with some easily tunable parameters. These

methods do not require the actual position of speakers to be known a priori for

particles’ initialization.

1.2 Outline of the Thesis

The formulation of auditory inspired cross-correlation-based methods for source lo-

calization and tracking using a circular microphone array requires some important

steps, which are presented in the following chapters.

Basics of the Acoustic Source Localization Problem

Chapter 2 presents the fundamental ideas, which are explored in this thesis starting

with the choice of the signal model, which is crucial for the underlying algorithms.

Hence, it needs to be selected carefully. An overview of the state-of-the-art methods

is presented. This overview highlights a lacking area of research in the context of

speech localization, where little effort has been made to extensively explore the use

of fundamental frequency for speech localization problem. Moreover, a summary

of the localization algorithms utilizing the periodicity in voiced speech (or pitch)

information is presented. In these methods, the pitch information is either combined

in, or aiding the process of source localization. Finally, the main hypothesis of the

current work is formulated.
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Corpus Building

The detailed analysis of the algorithms is only possible when a large database cov-

ering different realistic scenarios is used. Chapter 3 outlines some of the well-known

microphone array databases along with the reasons to create the new corpus. First,

the details of the experimental setup are presented starting with the multi-channel

system used for the recordings. Second, the design parameters of the in-house micro-

phone array are further discussed. Then, different speaker configurations recorded

for the corpus are outlined. Another important task for experimental evaluations

is the generation of ground truth values. The speech segmentation task used to

produce speaker activity label files is discussed in detail. The evaluation metrics for

different algorithm comparisons and a number of acoustic measurements made in

the recording room are also listed.

Auditory Inspired Cross-Correlation Methods for Source

Localization

Chapter 4 presents a detailed analysis of the joint position-pitch algorithm through

illustrative examples. Furthermore, the modifications to the PoPi algorithm are

outlined along with their respective limitations in different scenarios. An investiga-

tion of the human auditory system models (the interesting aspects of how humans

localize and segregate multiple speakers in complex environments) used in Com-

putational Auditory Scene Analysis (CASA) field lead to a new algorithm referred

to as Multiband Position Pitch (MPoPi) algorithm. This method uses the audi-

tory filterbank (which models the human cochlea) as a preprocessing step before

the PoPi decomposition. Moreover, different CASA techniques are used to group

the location and pitch cues which proves beneficial for concurrent speaker scenarios.

These techniques are combined at the low algorithm level. The resulting algorithms

are then combined for the multi-channel system and extensively evaluated over a

large database. The details of this corpus are presented in Chapter 3. The proposed

algorithms outperform the well-known SRP-PHAT algorithm in noisy conditions,

and concurrent speaker scenarios.

Tracking of Active Speakers using Particle Filters

In Chapter 5, the Acoustic Source Localization (ASL) methods proposed in Chap-

ter 4 are combined in the particle filtering framework. The reasons behind using a
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tracker are discussed and a summary of notable work done for the given problem

will be presented. A new likelihood function is proposed using the MPoPi method,

which also incorporates voice activity information. The CASA based methods pre-

sented in Chapter 4 are modified to be used as importance sampling functions. The

Markov Chain Monte Carlo (MCMC) sampling techniques are combined to present

novel particle filtering algorithms. Moreover, a novel position and pitch tracking

algorithm is developed for tracking multiple speakers. The Acoustic Source Local-

ization and Tracking (ASLT) algorithms introduced in the chapter are evaluated

repeating some of the experiments outlined in Chapter 4 and including new ex-

periments especially aimed for the tracking algorithms. The combination of CASA

and SMC techniques yield more robust results than traditional methods such as the

SRP-PHAT.

Discussion of the Results and Conclusions

Chapter 6 discusses the proposed approaches for the speaker localization and track-

ing task draws conclusions regarding the proposed methods. Moreover, the exper-

imental results of the doctoral theses presented in Section 1.1.1 will be compared

with the results of this thesis. The thesis closes with an outline of open issues and

interesting new directions for future research.

1.3 Work Contributions

The scientific contributions that appear in this thesis are extended versions of the

published work listed below:

In the beginning of work, the joint position-pitch algorithm was analyzed in detail

by extensive evaluations. The traditional approaches for pitch and time-delay esti-

mation were combined with the PoPi method and the results of these modifications

were presented at SAM’08 [14].

An auditory system modeling the human cochlea model was used as a pre-

processing step to the PoPi algorithm. The resulting method is referred as Multi-

band Position Pitch (MPoPi) algorithm. The underlying mechanism along with

experimental evaluation and comparison with the SRP-PHAT was presented at
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HSCMA’08 [15], and INTERSPEECH’08 [16]. Furthermore, the pitch informa-

tion was combined at low algorithm level to generate coherent spectro-temporal

regions for the multichannel system. The enhancement dubbed as MPoPi-STF al-

gorithm was tested on two concurrent speaker scenarios, and presented at INTER-

SPEECH’10 [17]

The proposed localization methods were combined with Sequential Monte-Carlo

(SMC) techniques known as particle filters. The speech-related information was also

combined in the likelihood models, which were further refined to deal with multiple

speakers tracking using multiple sensors. These methods were presented at DAFx’10

[18], and SAM’10 [19].

Moreover, the combination of the frequency-selective criterion with a new particle

filtering algorithm is accepted for publication at INTERSPEECH’11 [20].

At the moment, a journal paper consisting of new contributions made in this

thesis is being prepared for the EURASIP Journal on Advances in Signal Processing

(Special Issue: Sparse Signal Processing).



Chapter 2
Background

This chapter presents an overview of the fundamental ideas used for the work pre-

sented in this thesis. The first section presents an overview of different signal models

widely used in the literature to solve the problem of acoustic source localization. In

the next section, the problem of source localization is developed using a circular

array geometry. The advantage of this geometry is emphasized by exploring the

spatial diversity achievable by such a design. This is followed by an overview of

the existing localization methods. The performance of the outlined algorithms is in-

vestigated against the factors affecting the accuracy of source localization [21]: the

Signal to Noise Ratio (SNR), and the reverberation time RT60, which is defined as

the time taken by a sound to die away 60 dB below the signal initial power. Other

contributing factors taken into consideration are the number of sources, spatial di-

versity, source motion, signal statistics, number of sensors, and the array geometry.

In the last part of the chapter, a special class of algorithms is presented, which

exploit the periodicity present in voiced speech (also known as pitch) along with

time-delay estimation. This lays out the foundation of the main hypothesis tested

in this work, which is that making use of the quasi-periodicity of speech signals

improves the cross-correlation based time-delay estimation methods under low SNR

and reverberant conditions, and in particular for multiple speaker scenarios.

2.1 Signal Models

Consider M microphones placed inside a room with fixed dimensions, the medium in

the room is assumed to be homogeneous, non-dispersive and lossless. The Doppler

13
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effect is negligible as no matter how fast the speakers move, they cannot move faster

than the speed of sound in air (∽ 345 m/sec ). The signal xm(t) received at any

microphone is represented as

xm(t) = hm(t) ∗ s(t) + vm(t), (2.1)

where m ∈ {1, · · · ,M}, s(t) is the source signal, and hm(t) is the Room Impulse

Response (RIR) between the source and the microphone m. vm(t) is the measure-

ment noise recorded at the microphone, which is assumed to be uncorrelated with

the speech signal and other microphones.

The simplest signal model is the single source free space model, which assumes

no multipath propagation effects [22]. Furthermore, it considers a point source

emitting at far-field conditions, where the distance of the source is much larger

than the arrays’ dimensions or aperture. In such scenarios, the curvature of the

spherical wave is much smaller than the aperture size, thus justifying the planar

wave assumption for the impinging wave [22]. Therefore, the sound waves propagate

along a straight line from the source to the microphone. This is known as direction

of propagation. The direction opposite to that is defined as the Direction of Arrival

(DoA) [22]. The assumption simplifies (2.1), where only the direct path is taken

into account ignoring any multi-path propagations, and results in

xm(t) = ams(t− τm) + vm(t), (2.2)

where am is the attenuation parameter dependent on the distance between the source

and microphone, and τm is the propagation delay (relative time-delay) between the

source and the microphones. In general τm is unknown, but with the given geometry

of the array, the determination of the source direction is well defined mathematically.

Fig. 2.1 illustrates the far-field DoA estimation. A plane wave is impinging on a

pair of microphones at distance d with an incident angle θ (i.e., the normal to the

wave front). By taking one microphone as the reference, the signal needs to travel

an additional distance of d cos θ to reach the other microphone. Hence, the TDoA

between the two sensors is τ =
d cos θ

c
, where c is the speed of sound in air. There

is a unique relationship between DoA and TDoA in far-field, where measuring the

one is essentially the same as measuring the other.

Approaches have been developed in the literature which takes the multipath ef-

fects into account and which provide better modeling of real environments. If the
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impulse response between the source and the microphone is known, the localization

problem can be solved by combining two or more of the direct path components

of the responses. In these models, the impulse response hm(t) is approximated by

a Finite Impulse Response (FIR) filter. The overall situation can be modeled as a

Single Input Multiple Output (SIMO) system for single source localization as shown

in Fig. 2.2(a). In this scheme, adaptive filters are used to estimate the impulse

responses through a constrained Least Mean Square (LMS) algorithm [23]. This

technique is known as the Adaptive Eigenvalue Decomposition Algorithm (AEDA),

which is discussed in Section 2.6 of this chapter. The Multiple Inputs Multiple

Outputs (MIMO) system is used for multi-speaker localization, which is illustrated

for two sources in Fig. 2.2(b). The impulse responses in MIMO system are calcu-

lated using the Independent Component Analysis (ICA) technique [24]. The MIMO

system architecture has been exploited by Blind Source Separation (BSS) systems

proposed in [25, 26, 27] for multiple source localization. These BSS algorithms are

based on the ICA technique to estimate the impulse responses. The details of these

algorithms are discussed in Section 2.7 of this chapter.

In this thesis, the free space signal model is used to solve the problem of speaker

localization. The reason behind this decision is that the free space model is con-

ceptually simple. Moreover in common meeting rooms and office space scenarios,

the direct propagation paths are accessible to the microphone array to determine

the time-delay estimates. On top of that periodicity information combined with

Figure 2.1: Illustration of DoA estimation based on the free space signal model for
a pair of microphones. The source is placed at far-field and the resulting
planer waves are impinging at an incident angle θ normal to the wave
front, and d is the distance between the microphones (as defined in [3]).
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(a)

(b)

Figure 2.2: Sound source localization using a single source (a) SIMO system, and a
two source (b) MIMO system. In the SIMO systems, adaptive filters are
used to estimate the impulse responses through a constrained Least Mean
Square (LMS) algorithm. The impulse responses in MIMO system are
calculated using the Independent Component Analysis (ICA) technique.
Based on the given architecture, the direction estimates are determined
by combining two or more of the direct path components of the impulse
responses.

auditory inspired pre-processing and tracking techniques can yield robust location

estimates in real reverberant and noisy environments. The Direct to Reverberation

Ratio (DRR) of 1.51 dB was measured in the room, where the distance between

source and microphone was 2m, the details of the acoustic measurements are pre-

sented in Section 3.7.

2.2 Acoustic Source Localization

With the known geometry of an array and TDoA measurements, the localization

problem can be defined as in [28]. Let γm be the position of microphones in Cartesian
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coordinates forming a uniform circular ring as shown in Fig. 2.3 given as

γm = [xm ym zm]T , m = 1, · · · ,M. (2.3)

The center of the array is considered as a reference and positioned at the origin

of the coordinate system, γ0 = [0 0 0]T . The acoustic source is placed at γs =

[xs ys zs]
T . The distance between the source and the mth microphone is denoted

by

ηm , ‖γm − γs‖ =
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. (2.4)

The difference between the microphone m and j from the source is known as the

Figure 2.3: Illustration of the source localization problem using a uniform circular
array. γm denotes the position of the mth microphone. ηm is the distance
between the source and microphone m. For a pair of microphones m and
j, the range difference dmj = ηm−ηj is proportional to the relative time-
delay τmj . The azimuth DoA ϕs of the source is defined with respect to
the 0◦ reference direction which is axis of the circular array (as defined
by [28]).



18 2. Background

range difference dmj given by

dmj , ηm − ηj. (2.5)

Hence the range difference is proportional to the relative time-delay τmj between

microphone m and j is given as

dmj = c · τmj , (2.6)

where c is the speed of sound (in m/sec), which can be estimated from the air

temperature tair as c ≈ 331+0.610 · tair (tair in ◦C). In this thesis, the DoA is defined

with respect to the 0◦ reference direction which is the axis of the circular array.

Generally, the 0◦ reference direction can be assigned along any pair of the array. In

this thesis, for a 8-channel array, the reference pair is formed by microphones 1 and

5 (for 24-channel array, it will be microphones 1 and 13).

In [7], the author showed that for a pair of microphones the locus of potential

source positions corresponds to one-half of a hyperboloid of two sheets (for illustra-

tion, see [7, p.14]), where the microphone position is the foci. For multiple pairs of

microphones, the cross-sections of different hyperboloids are used to estimate source

position. In the far-field case, the hyperboloid-to-cone approximation presented in

[7] leads to simplification of the localization problem. Under such scenarios, the

range coordinates are ignored and only the DoA information is taken into account.

Fig. 2.4 presents the spatial locations (hyperbolae) related to TDoA values in

time samples using 4 pairs of microphones in a circular geometry. For the given

geometry only oppositely placed pairs are used. The range of the TDoA estimates is

constrained by the distance between the microphones (d = 0.55m) and the speed of

sound in the air (fixed at 345m/sec). In order to estimate the DoA of the source, the

hyperboloid-to-cone approximation for the far-field case should be applied for each

microphone pair. So that a unique relationship between the TDoA value and DoA

can be established (i.e., θ = cos−1( c·τ
d

)). Furthermore, the number of microphones

was restricted to 8 instead of 24 for the sake of clarity in the plot. Moreover,

it is shown in Section 4.5.1 that a minimum number of 4 pairs of microphones are

required to achieve good spatial resolution. In the actual array, 24 microphones form

a circular geometry, and 12 pairs of microphones are considered for the localization

task.

The methods to solve the acoustic source localization problem can be broadly clas-

sified into three categories, that is the ones based on TDoA information, methods
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based upon maximizing the output of the steered beamformer, and the techniques

using high-resolution spectral estimation concepts. A detailed analysis of the state-

of-the-art techniques were presented in [29] (parts of which will be used in this chap-

ter as well). The following sections will present a brief overview of these techniques.

In addition, the techniques based on different propagation models and analysis tools

closely associated with blind channel identification and source separation concepts

are also discussed.

2.3 Generalized Cross Correlation based Localization

Methods

The most common pairwise TDoA method is the Generalized Cross-Correlation

(GCC) algorithm and its variants [30]. A detailed overview these techniques can
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Figure 2.4: Illustration of the TDoA mapping into spatial coordinates. Spatial lo-
cations for a uniform circular array of 8 microphones with a diameter of
0.55m marked by “∗” is shown. The mapping provides the top-view of
the simulated room with dimensions of 1.69×1.69m along the horizontal
and vertical axes, whereas the scale in the plot represents the dimension
in cm. The colorbar of the plot shows the range of plotted TDoA values
starting from the smallest to the highest.



20 2. Background

be found in [30, 31, 32]. The GCC-based methods assume the single-source free

space model to estimate the TDoA of propagating waves between two microphones.

The TDoA estimates from multiple microphone pairs are then be used to estimate

the location of a sound source. The GCC function Rx1x2
(t, τ) at time instant t and

for a given time lag τ is calculated as the inverse Fourier transform of the received

signal cross-spectrum X1(t, ω)X∗
2(t, ω), where X1(t, ω) is the Fourier transform of

the windowed signal x1(t) and X∗
2 (t, ω) is the complex conjugate of the Fourier

transform of the windowed signal x2(t), which is weighted by a weighting function,

W (t, ω) defined at time instant t is given as

Rx1x2
(t, τ) =

1

2π

∫ ∞

−∞

W (t, ω)X1(t, ω)X∗
2(t, ω) exp(jωτ) dω. (2.7)

The type of filtering or weighting functions used with the GCC function is crucial

to the performance. Some of the well-known weighting functions proposed in the

literature are outlined below.

2.3.1 Maximum Likelihood Weighting

The Maximum Likelihood (ML) weighting function is derived from the magnitude-

squared response of the coherence function using signal and noise information. The

ML weighting emphasizes different frequencies according to signal to noise consid-

erations. In practice, the coherence function is not known a priori and needs to be

estimated from the given data. The approximated ML weighting ŴML(t, ω), which

is to be used in place of W (t, ω) in (4.2) for a frame of observed data is given as

ŴML(t, ω) =
|X1(t, ω)||X2(t, ω)|

|N1(t, ω)|2|X2(t, ω)|2 + |N2(t, ω)|2|X1(t, ω)|2 . (2.8)

Here X1(t, ω) and X2(t, ω) are the received microphone spectra, and N1(t, ω) and

N2(t, ω) represent the noise components that are assumed to be estimated over

silent periods. Although it is theoretically optimal for stationary scenarios when

there is single-path propagation in the presence of uncorrelated noise, this process

can become more difficult in presence of non-stationary signals.

2.3.2 Phase Transform Weighting

The combination of GCC as defined in (4.2) and PHAse Transform (PHAT) weight-

ing known as GCC-PHAT [30]. has been shown to perform well in realistic en-
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vironments [33]. The GCC-PHAT whitens the microphone signals, this results in

a cross-spectrum function retaining only the phase information. Hence, the phase

transform employing the weighting function WPHAT(t, ω) is given by

WPHAT(t, ω) = |X1(t, ω)X∗
2(t, ω)|−1. (2.9)

It eliminates the influence of the spectral magnitudes and produces a GCC func-

tion that depends entirely on the phase of the cross-spectrum.

2.3.3 Bandpass Weighting

The simplest weighting function is one that attenuates frequencies outside of the

band of interest. For speech, this band is typically 300Hz - 6 kHz. It is advanta-

geous to suppress frequency components below 300Hz because much of the power

in this range is from low-frequency noise. Furthermore, for the long wavelengths

of low-frequency propagating waves, it is difficult to determine their direction of

propagation using a small-aperture array. The bandpass weighting WBP(t, ω) can

be used with other weighting functions as its primary role is to emphasize the speech

signal energy band, which is given as

WBP(t, ω) =







1, 2π300 Hz ≤ ω ≤ 2π6000 Hz;

0, otherwise.
(2.10)

2.3.4 Cross Power Spectrum Phase

The frequency domain formulation of the GCC-PHAT principle was presented in

[34, 35, 36], which is known as the Cross-power Spectrum Phase (CSP) method. It

is based on the GCC method, where the weighting function is chosen such that the

resulting cross-power spectrum between the two sensors is normalized; thus keeping

only the phase difference information. Therefore, the normalized CSP S(t, ω) is

given as

S(t, ω) =
X1(t, ω)X∗

2(t, ω)

|X1(t, ω)||X∗
2(t, ω)| . (2.11)

The inverse Fourier transform of S(t, ω) results in the cross-correlation Rx1x2
(t, τ).

A visual representation referred to as Coherence Measure (CM) was proposed in [36].
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It is expected to have a prominent peak at the respective time-delay between the

two sensors. The CM corresponding to Rx1x2
(t, τ) is given as

C12(n, l) = Rx1x2
(n, l), (2.12)

where n indicates the time instant in samples, and l represents the number of sam-

ples corresponding to the lag τ and Rx1x2
(n, l) denotes the digital representation of

Rx1x2
(t, τ). The maximum lag estimate for time samples n (1 ≤ n ≤ N) can be

derived as

l̂12 = argmax
l

[

N
∑

n=1

C12(n, l)

]

. (2.13)

The CM can be calculated for every pair of microphones by determining the

maximum lag estimate of each pair. These delays can be combined depending on

the geometry of the array to determine the position of the source.

The cross-correlation based TDE techniques require longer segment lengths to

improve performance. The dynamic environments of various acoustic source local-

ization applications, however, require high update rates (which means short data

segments). There are various studies conducted to evaluate the performance of the

GCC techniques in realistic environments. The study in [37] evaluated the cross-

correlation based localization technique in simulated reverberant environment. The

authors reported that, when using a pair of microphones, the anomalies in time-

delay estimation jumped from 0 to 90 percent as the reflection coefficient increases

from 0.6 to 0.8. The source was placed at a distance of 4m from the microphones.

This outcome suggests that cross-correlation techniques should be further investi-

gated and whether the use of auditory-based methods inspired from psychoacoustics

domain can improve the location accuracy of cross-correlation-based methods. The

details of this study is presented in Chapter 4 of this thesis.

In addition to the contributions of the present work, there have been some promis-

ing methods utilizing the GCC-based approach to localize multiple speakers in rever-

berant environments. [38] presents the extension of GCC-based methods to localize

multiple speakers by a TDoA disambiguation scheme in reverberant environments.

To resolve the problem of TDoA ambiguity among multiple microphones, the au-

thors exploited the raster condition where the direct paths in cross-correlations can

be identified by combining the extremum positions of cross-correlations and the auto-

correlations. The other condition based on the redundancy of TDoAs was termed
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zero cyclic sum condition. In the first step, the echo path TDoAs are identified

in the cross-correlation and removed by using the raster matching with the corre-

sponding auto-correlations. To exploit the zero cyclic sum conditions, a concept of

consistent graphs was introduced in [38] where each node in the graph represents

a microphone and the edges represents the TDoA between two microphones. The

synthesis of consistent graphs rather than analysis lead to consistent triplet concept

where the sum of actual TDoAs in the consistent triplet must be equal to zero. An

efficient synthesis algorithm was developed in [38] to combine and extend the con-

sistent triplets to larger TDoA graphs using some simple rules. This scheme results

in consistent TDoA graphs each containing the TDoA estimates belonging to a sin-

gle speaker. The proposed scheme was tested for two speaker data recorded using

eight microphone placed at different locations in a room with reverberation time

of 300msec. The proposed algorithm outperformed the well-known SRP-PHAT by

yielding smaller TDoA errors and successfully localizing both speakers positions.

Another advantage of the TDoA disambiguation scheme is that it can be applied to

TDoA estimates derived using any localization algorithm.

2.4 Steered Response Power Methods

An array with multiple microphones can act as a beamformer [22]. To focus on a

signal coming from a particular direction, the steering parameters of the array are

adjusted, which makes the beamformer to steer towards the given direction. The

output power of a beamformer in such cases is known as the Steered Response Power

(SRP) expressed according to [8] as:

P(∆1 . . .∆M) =

∫ ∞

−∞

Y (ω,∆1 . . .∆M ) Y ∗(ω,∆1 . . .∆M)dω, (2.14)

where Y (ω,∆1 . . .∆M ) is the output of the filter-and-sum beamformer (for illus-

tration, see Fig.6.1, [8, p.76]) with a set of M steering delays ∆1 . . .∆M , and

Y ∗(ω,∆1 . . .∆M) is the complex conjugate of the output response. The methods

which estimate the source location by finding the maximum in the output power or

in the SRP of the beamformer are called direct methods. The SRP has a maximum

when the steering direction of the beamformer matches with the actual location

of the source. There is an extensive discussion in [8] regarding the usage of the

SRP method for source localization and beamforming. The author observed that
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the steering delays, ∆̂1 . . . ∆̂M which maximize (2.14) correspond to the TDoA esti-

mates among microphones [8]. This behavior is similar to the GCC function for two

microphones, which peaks when the time-delay τ corresponds to the TDoA of sound

waves between the two microphones. For the mth and nth microphone signals, the

TDoA τ̂mn will be the difference between delays that maximize the SRP given as

τ̂mn = ∆̂m − ∆̂n. (2.15)

These steering delays can be computed from the SRP by scanning over a a prede-

fined region and then using the estimated steering delays to steer the beamformer

[8]. The estimate of the source location is determined when the steered power peaks

or a global maximum is achieved for a specific spatial point. Hence, SRP is a func-

tion of the candidate location of the source γ. Therefore, (2.14) can be rewritten

as

P(γ) = P(∆1 . . .∆M), ∆m = τ0 −
|γm − γ|

c
. (2.16)

For the far-field assumption, the propagation delays can be expressed in terms of

the assumed direction of propagation, ζ0, as follows

∆m = −ζ0 · γm

c
. (2.17)

Here the negative sign shows that the look vector points in direction opposite to

the direction of propagation. It can be represented in terms of azimuth and elevation

angles θ and φ, respectively, which is given as

ζ0 =







cosφ sin θ

cos φ cos θ

sinφ






. (2.18)

Here the angles θ and φ represent the look direction, relative to the array’s origin.

The discussion above leads to defining SRP in terms of GCC [8], which can be

represented for a pair of microphones resulting in the mth and nth signals, as:

Rmn(t, τ) =
1

2π

∫ ∞

−∞

Wmn(t, ω) Xm(t, ω)X∗
n(t, ω) exp(jωτ)dω, (2.19)

where the time lag τ can be represented as ∆mn = ∆m − ∆n. Hence, the SRP

response for M number of microphones can be computed by summing all possible
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pairwise GCC crossings, which are time shifted by the differences in the steering

delays given as [8]:

P(∆1 . . .∆M ) = 2π
M

∑

k=1

M
∑

q=1

Rkq(∆q − ∆k). (2.20)

The Steered Response Power Phase Transform

[8] proposed a PHAT weighting from the GCC techniques to be used into the cross-

correlation function in (2.19), the resulting algorithm is known as Steered Response

Power Phase Transform (SRP-PHAT) [8]. In practice, the SRP-PHAT function

P̃PHAT
b (∆1 . . .∆M) is determined as

P̃b

PHAT
(∆1 . . .∆M) =

K
∑

κ=1

Ỹ PHAT
b (κ,∆1 . . .∆M)Ỹ ∗PHAT

b (κ,∆1 . . .∆M), (2.21)

where the SRP response using the PHAT weighted function Ỹ PHAT
b (κ,∆1 . . .∆M) is

determined as

Ỹ PHAT
b (κ,∆1 . . .∆M) =

M
∑

m=1

Xm,b(κ)

|Xm,b(κ)|
exp(−jω∆m), κ = 1, · · · ,K (2.22)

where Xm,b(κ) is the DFT of the bth block of the mth microphone signal and the

output is a function of the discrete temporal frequency κ and a set of m continuous

steering delays. The summation is taken over K discrete frequencies to obtain the

SRP.

The author showed in [8] that the accuracy of location estimation can be im-

proved by exploiting the microphone redundancy. This is achieved by combining

the microphones’ signals rather than by combining the multiple TDoA estimates.

The work presented in [8] focuses on highlighting the key issues in performance

degradation of various source localization algorithms such as reverberation, which

even in a mild case can severely impact the performance of short-time GCC-based

localization techniques. The performance of SRP-PHAT was reported to outperform

SRP and GCC-PHAT using real microphone array data that were collected in rooms

having 200 to 400msec of reverberation time [8]. Furthermore the author showed

that although SRP-PHAT requires much more computation, it can provide accu-

rate results using smaller data segments in comparison to GCC-based localization



26 2. Background

techniques such as GCC-PHAT, which makes SRP-PHAT more useful for moving

sources.

The SRP-PHAT algorithm generates an acoustical energy map in the search space

to find the position of the active source. The grid-based search approach makes

SRP-PHAT computationally expensive [8]. Another problem is the occurrence of

local maxima in SRP space, which makes the conventional search algorithms such as

simplex or a gradient based techniques unfeasible. Moreover, in SRP based methods,

the search space can be large (e.g., the whole room such as a meeting room). In

order to decreases the search space, the authors in [39] presented a Stochastic Region

Contraction (SRC) based SRP-PHAT algorithm, which decreases the computational

complexity by factor of three. There is no assurance, however, that the maximum

found by the algorithm belongs to the desired source because it can also be due

to a brief dominant noise peak caused by reverberation or non-speech source. The

authors later presented two enhanced SRP-PHAT methods for multiple concurrent

speakers. One technique consists of Gaussian Mixture Models (GMM) trained by

the Expectation Maximization (EM) algorithm to estimate clusters from the SRP-

PHAT function. The other technique is a Region Zeroing (RZ) method which applies

thresholding on the SRP-PHAT response to find the maximum points in the plane.

Then a 50 cm minimal distance rule between two speakers is applied to omit the

SRP-PHAT values around the maximum points. The remaining maximal points

are then clustered to estimate source location [40]. These techniques are promising,

but they are tested on a limited amount of data, which does not validate their true

significance.

In addition to optimization based techniques to reduce the search volume, an

approach is proposed in [41] that discretizes the search space into active volumes

or sectors and performs the localization only in those sectors. Another interesting

modification to SRP-PHAT is presented in [42], where an inverse mapping of the rel-

ative delays to possible source positions is presented. The proposed method reduces

the computational load while keeping the localization process accurate. Moreover,

the authors in [43] evaluated the use of interpolation functions to increase the time

resolution (hence increasing the spatial resolution which decreases the effects of spa-

tial quantization) of the cross-correlations used in the SRP-PHAT algorithm. Using

real data recorded in a concert hall, the authors showed the effectiveness of these

interpolation techniques.

A theoretic comparison of the baseline joint position-pitch method with the SRP-
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PHAT technique has been developed and presented in Appendix A. The performance

of the proposed methods presented in this thesis has been compared with the SRP-

PHAT method.

2.5 High-Resolution Spectral-Estimation Based

Localization Methods

The subspace methods were originally designed for narrowband signals in the fields

of radar and communications. Some of the well-known methods are MUSIC [44]

and ESPRIT [45] algorithms. One of the popular variants of the MUSIC algorithm

is Root-Music [46]. These approaches are “based on the eigen-decomposition of

the spatio-temporal covariance matrix of the microphone signals” [47, p.240]. The

covariance matrix can be decomposed into orthogonal eigenvectors. These eigenvec-

tors corresponding to the largest eigenvalues form an orthogonal basis of a subspace

known as signal subspace, the rest forms the noise subspace. One main advantage

of these techniques is that they can localize multiple sources. There have been

various efforts made to make these narrowband techniques useful for broadband

signals such as speech. One of the well-known modification for speech signal using

a circular microphone array was presented in [48], which is known as Eigen-Beam

ESPRIT (EB-ESPRIT) algorithm. The EB-ESPRIT algorithm utilizes wave-field

decomposition technique as a basis for ESPRIT algorithm. In practice, the covari-

ance matrix is generally unknown and needs to be estimated, which requires that

the sources should be fixed and that the signals should be stationary to perform

temporal averaging. This is hardly the case for speech signals and the acoustic envi-

ronments. Multi-path propagation still seems to be a problem with these methods,

since reverberations have to be modeled explicitly. Recently, a new technique us-

ing EB-ESPRIT method with spherical microphone array was proposed in [49] for

multiple speaker localization in reverberant environment.
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2.6 Adaptive Eigenvalue Decomposition Algorithm

The Adaptive Eigenvalue Decomposition Algorithm (AEDA) [23] is a well-known

localization method based on the SIMO system shown in Fig. 2.2(a). AEDA belongs

to a group of methods working under the principle that the relative time-delay be-

tween two microphone signals can be determined by the temporal difference between

the maxima of the room impulse responses. These maxima are associated with the

direct path between the source and the microphone. The effects of reverberations are

negligible on direct paths, as they appear later in the impulse response. This leads

to the blind estimation of impulse responses. The AEDA is based on the convolutive

reverberant model for sound propagation, which means that AEDA estimates the

direct delay path without assuming free space or delay only signal model. According

to the SIMO system presented in Fig. 2.2(a), the author in [23] showed that the two

recorded signals x1 and x2 of a single source s at time frame k can be combined with

their respective impulse responses h1 and h2 given as

x1 ∗ h2 = s ∗ h1 ∗ h2 = x2 ∗ h1, (2.23)

which in the noiseless case gives the equality

x1 ∗ h2 − x2 ∗ h1 = 0. (2.24)

This relationship is then used by the author in [23] to develop an LMS algorithm

which is adaptive and has the capability to jointly estimate the impulse responses by

using the signal covariance matrix. The underlying assumption is that the combined

impulse response is the eigenvector of the signal covariance matrix whose eigenvalue

equals 0. The AEDA outperforms the conventional localization algorithm as it takes

into account the effects of reverberations. However one limitation of AEDA is that

it requires the covariance matrix to be full rank. However, it was reported in [50]

that for periodic signals this condition is hardly met and harmonic signals have ill-

conditioned covariance matrices. For smaller data segments of around 20msec, there

might be only voiced or unvoiced speech in the segment but rarely a mixture of both.

Moreover, the AEDA gives a single TDoA estimate, whereas the cross-correlation-

based techniques provides a localization function [10]. It is difficult to form pseudo-

likelihood functions presented in Section 5.4 of this thesis with the AEDA as its

localization function is essentially a delta function. Therefore, a comparison with
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this algorithm is omitted in this thesis.

2.7 Blind Source Separation Based Time Delay

Estimation Methods

The extension of the SIMO model to multiple sources is known as blind MIMO chan-

nel identification [51]. The MIMO model for two sources is shown in Fig. 2.2(b).

This class of methods does not require geometrical knowledge of the microphone

array. These approaches were shown in [25, 26] to be closely linked to Blind Source

Separation (BSS) techniques. Thus, the solution of blind MIMO channel identifica-

tion problem results in determining the complete model of the meeting room, which

allows joint localization and separation of active sources in the acoustic scene. It

was reported in [21] that the broadband BSS can also be regarded as a general-

ized subspace approach based on the block-diagonalization of the signal correlation

matrix using second order statistics. Furthermore, it was illustrated in [21] that

the broadband MIMO filtering approach generalizes and unifies both the traditional

subspace methods and the Blind System Identification (BSI) methods. The BSS

method described in [51] referred to as TRINICON (TRIple-N Independent compo-

nent analysis for CONvolutive mixtures) framework is one of the most recent and

powerful TDoA estimation techniques, where the systematic incorporation of time

lags into the correlation matrix can handle room reverberation. To address various

issues of the BSS techniques such as the spatial ambiguity in case of multiple arrays,

localization of more than two sources, new methods and modifications are proposed

in [52, 53, 27].

2.8 Pitch Based Localization Algorithms

The localization methods discussed above only use geometry dependent features, for

example TDoAs, and do not exploit any speech related feature. One such feature

is the periodicity present in voiced speech, which is also known as pitch. The

pitch is one of the characteristics of human speech, created by the vocal chords

of a speaker during voiced portions of speech. It appears in time-domain speech

signals as a repeating waveform. The period between the adjacent peaks of the
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repeating waveform determines the pitch (for more details on speech production, see

Ch. 3 in [54]). The term pitch and fundamental frequency are interchangeably used

throughout this thesis. The work presented in this thesis hypothesizes that making

use of the quasi-periodicity of speech signals helps the cross-correlation based time-

delay estimation methods under low SNR conditions. The summary of the methods

presented in the literature using similar ideas is given below.

2.8.1 The Position-Pitch Algorithm

In [12], a two-channel based joint position and pitch extraction method known as

PoPi algorithm was presented. In the PoPi algorithm, the acoustic sources are il-

lustrated by their position and fundamental frequency in a 2D plane known as the

PoPi plane. The underlying concept of the method is based on two well-known

features of the cross-correlation. The first one is that the fundamental frequency

of the source is encoded in form of a lag between each correlation peak, which is

the inverse of the fundamental frequency. The second feature is the correlation lag

corresponding to the cross-channel delay (or time-delay), which is present in the

joint shift of all the cross-correlation peaks. The frequency domain formulation of

[12] is presented in [55], where the basic properties of the representation are fur-

ther explored and improvements are proposed by applying multiple microphones

with circular arrangement. Both techniques were tested on synthetic voiced signals

without any multipath propagation and background noise effects. Under these ideal

conditions, these methods show promising results but they fail to localize speech

sources in a realistic environment. The PoPi algorithm is used as a baseline method

for this thesis. In Chapter 4, the PoPi method is extended to a multichannel sys-

tem and new weighting and pre-processing techniques are presented to improve the

algorithm’s performance in realistic environments.

2.8.2 Joint Time-Delay and Pitch Based Maximum Likelihood

Estimator

The study conducted by [56] was the first one to propose a maximum likelihood

estimator to determine the time-delay and pitch of the speech signals assuming that

the signals are received at a pair of microphones. The authors [56] introduced a
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scoring function which depends on postulated pitch period P and time-delay D by

taking two microphones. A new signal is first computed by averaging a microphone

signal for each postulated period and its multiples. The theoretic time-delays from

the other microphones in the array are further added by circular shifting the signals

(modulo P ), and averaging over all the microphones. A second signal is constructed

in similar manner but averaged over the squared samples of the microphone signals.

Then the scoring function is formed by taking the difference between these two new

signals and finally a peak detector finds the delays and period where the maximum

score is attained.

Through the use of ML method, the authors showed that the proposed technique

for pitch estimation uses the data efficiently by taking into account 1
2
N(N − 1)

(N = ⌊T
P
⌋ is defined as number of complete periods contained in the data frame

T ) cross-correlations than the correlation method which uses only N − 1 cross-

correlation between adjacent length P data segments. Similarly, for the time-delay

estimation, the proposed method uses
(

M

2

)

·N2 cross-correlations between length P

data segments than correlation method which uses
(

M

2

)

·N combinations.

The experiments were conducted on a synthetic data by shifting the speech signal

by few samples to emulate the speech recorded at a second sensor. A white noise

was further added to the speech signals to test the algorithm for different SNR levels

ranging from -20 dB to 5 dB. The Root Mean Square Error (RMSE) is reported to

decrease by 25% in comparison to the correlation method at -15 dB SNR. This setup

is somewhat restrictive and does not validate the use of such scheme for real recorded

signals from a microphone array. The idea of the scoring function is similar to the

baseline PoPi method where instead of microphone signals; the cross-correlation

between a pair of microphones is used to determine the position-pitch relations. In

[56], one microphone is considered as a reference and to account for the delays of

other microphones, a circular shift is applied to the reference signal. In practice, the

other channels in the microphone array also contain effects of multi-path propagation

and background noise which cannot be compensated by a simple delay. Moreover,

the choice of a reference microphone channel is critical to the performance of the

method. The poor selection can lead to erroneous results. The PoPi algorithm does

not make that selection step rather different pairs of microphones are combined to

determine pitch and DoA estimates. All the pairs in the UCA sample the spatial

region differently. Hence the pairwise combination leads to robust location estimates

than a reference microphone-based technique.
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2.8.3 Subspace Algorithm for Joint Time-Delay and Frequency

Estimation of Multiple Sinusoids

The joint estimation of time-delay and frequency of sinusoidal signals has been re-

ported in [57]. According to this technique the source signal can be represented

as a sum of complex sinusoids with unknown amplitudes and distinct normalized

radian frequencies. The authors in [57] presented a subspace method to jointly es-

timate time-delay and frequency using covariance matrix of received signals. This

technique derives the frequencies from the eigenvectors. Moreover, the speech sig-

nal used for evaluation is simulated by using a complex sinusoidal model [58]. The

output at the second sensor is generated by shifting the original signal by a fixed

delay. The proposed method outperformed the GCC algorithm for different SNR

levels. The time-delay and frequency estimation is inferior to the Cramér Rao Lower

Bound (CRLB) by only a few dB. Here again the absence of real speech recorded in

a realistic acoustic condition is a problem, therefore one cannot guarantee similar

performance for real-world recordings. Even though the subspace approaches are

known to accommodate multiple speakers, they cannot handle multi-path propaga-

tions. Therefore, much effort is needed to make the given approach workable in real

environments.

2.8.4 State-space Approach for Joint Time-Delay and Pitch

Estimation for Speaker Localization

In [59], a method based on state-space realization of a subspace method [57] was pro-

posed. The frequencies of the constituent components are determined directly from

the eigenvalues of the state transition matrix, where the time-delay is determined

using the observation matrix and the pitch is calculated from a set of estimated

frequencies which are harmonically related. To demonstrate the performance of

the method, computer simulations were carried out for complex sinusoids, synthetic

speech, and real speech. For different SNR levels, the estimation performance of

the time-delay and the frequency is tested for different SNR levels. The proposed

method is reported to perform well for SNR ≥ −10 dB. There was no effort made to

record the signals with real microphones but an artificial time-delay was created be-

tween the two signals by shifting one signal by some samples to generate the second

signal.
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2.8.5 A Pitch-Based GCC Weighting Function

A technique using a pitch based GCC weighting function was tested for time-delay

estimation process on data recorded at a pair of microphones in [60]. It makes

use of the observation that segments of periodic speech will maintain a degree of

periodicity when subjected to the effects of noise and reverberation. This feature can

be incorporated in the GCC function in the form of an extended weighting function.

The author suggested that all source relevant DoA information is located at the

corresponding harmonics, as these can be assumed to be of considerably higher

energy than environmental noise and to be in general well separated from other

sources’ harmonics. The authors proposed to model the speech spectrum X(ω) as

a product of spectral envelope H(ω) and an excitation spectrum E(ω). An error

criterion is generated by dividing the spectrum into frequency bands centered around

the harmonics of the fundamental frequency, therefore the error εn associated with

the nth harmonic is given as

εn =
1

2π

∫ bn

an

|X(ω) − AnE(ω)|2dω, (2.25)

where the interval [an, bn] is centered around the nth harmonic and An is the cor-

responding complex spectral amplitude, which is calculated to minimize the error

function. All these error functions are summed to generate the error criterion for a

given fundamental frequency. As this process is exhaustive in terms of computation,

any traditional time-domain pitch estimation procedure can be used to determine a

coarse pitch estimate, which can be refined later by frequency-domain analysis. The

author proposed a normalized error En for each nth harmonic, which calculates the

degree of accuracy with which the periodic excitation matches the observed spectral

region given by

En =
εn

1
2π

∫ bn

an
|X(ω)|2dω

. (2.26)

This acts as a measure of harmonicity for every signal received from a pair of

microphones where a value close to 0 indicates strong harmonic interval and a value

close to 1 indicates noise of unvoiced interval. Hence, a new weighting function

WP (ω) for GCC is formulated by incorporating these harmonic voicing mixture

error for each microphone pair and is given by

WP (ω) =
(1 − max(En1, En2))

ς

|X1(ω)X∗
2(ω)| , ω ∈ [an, bn] (2.27)
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where the value of ς is selected between 1 and 2. This was shown to be an effec-

tive value based upon a limited number of experiments. The performance of the

method was compared with the Phase Transform estimator (Section 2.3.2) and the

ML weighted estimator (Section 2.3.1). The recordings at different positions were

simulated themselves by convolving speech signals with the impulse responses which

were simulated by the image method [61]. Furthermore, different acoustic conditions

were artificially created such as the room reverberation time varying from 0 to 0.3 sec

and artificial noise was added to the signals at different SNR levels ranging from 0

to 40 dB. For comparison among different weighting functions, statistical parame-

ters such as bias, variance, and RMSE were calculated. The pitch-based weighting

function outperformed the PHAT-weighting function under noisy conditions. It was

reported to be less vulnerable to the effects of reverberation in comparison to the ML

weighting function. Although it is speculated in [60] that the pitch-based weighting

can be advantageous for multiple source scenarios, the extension of the technique to

multiple speakers does not seem straightforward.

2.8.6 Excitation Source-Based Time-Delay Estimation

In [62], a speech enhancement method was proposed based on the observations that

the spectral processing techniques performance degrade in presence of other speech

sources, background noise and reverberations. It was further shown in [62] that

the impulse-like excitation present in voiced speech is robust in the sense that the

relative position of the peaks in the excitation signal or epochs remains unchanged

in the direct sound signals only shifted by a fixed delay due to spatial locations

of the microphones. The excitation signal was generated by applying Hilbert En-

velope (HE) to the Linear Prediction (LP) residual signal. The locations of the

estimated epochs were then used to determine the time-delay estimate between a

pair of microphones. The knowledge of time-delay was then used to enhance the

speech signal, which was done by aligning the HEs of the LP residual signals accord-

ing to the estimated time-delay and then exciting the modified LP residual signals

with a time-varying all-pole filter. The proposed time-delay estimation method for a

single speaker was compared with GCC method using a 50msec frame with 10msec

frame shift. The proposed method showed smaller sample deviation in comparison

to the GCC method for different pairs of microphones. Recently, in [63], similar idea

was used by the authors to estimate the instantaneous frequencies of two speakers
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from the mixed signal recorded with a pair of microphones in a reverberant envi-

ronment. In this scenario, the time-delays for both speakers are estimated using the

excitation source based TDE technique presented in [62]. In order to estimate the

instantaneous frequencies of the two speakers, a zero frequency filtering algorithm

was applied on the delay compensated HEs of the LP residual signals.

2.8.7 Joint Time Delay and Pitch Estimation Using a Neural

Network

The joint time-delay and fundamental frequency estimation in form of a neural net-

work was explored in [64]. The authors proposed an extension to Recurrent Timing

Neural Networks (RTNNs) and suggested its usage in estimating joint Interaural

Time Difference-Fundamental Frequency (ITD-F0) cues. This extension forms a 2D

RTNN by adding a second layer of coincidence detectors, which results in one axis of

RTNN representing F0 and the other ITD. The sources can be distinguished based on

their separation in ITD-F0 space. The grouping and the segregation are carried out

within individual frequency channels without recourse to across-channel estimates

of F0 and ITD. The system is evaluated on spatialized speech created using Head

Related Transfer Functions (HRTF) measured from a KEMAR artificial dummy

head [65] in an anechoic environment. To create concurrent speaker scenarios, the

speech signals were convolved with different measured HRTFs and then added at a

relative SNR of 0 dB. In this approach, no reverberation effects were considered and

the SNR of combined speakers was not varied in order to see the effects of loudness

mismatches. This method requires a complex setup of RTNN-layers and to ana-

lyze different ITD and pitch combinations. Moreover, the performance of proposed

RTNNs using real-world data is missing.

2.8.8 The Correlogram-Based Joint Time Delay and Pitch

Estimation

Another technique proposed in [66] makes use of joint ITD and F0 cues to local-

ize multiple speakers in reverberant environments. This method uses binaural data

recorded for different speaker configurations using a dummy head placed in a real

environment. The multi-speaker data are filtered through an overlapping bandpass
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filterbank known as “gammatone filterbank”, whose center frequencies are uniformly

spaced on an Equivalent Rectangular Bandwidth (ERB) scale (details presented in

(4.9)). The ITDs are estimated using the cross-correlation of each frequency band,

where the cross-correlations are determined between the filtered left and right ear

signals. The fundamental frequency is estimated from the auto-correlogram of the

averaged left and right ear signals. The method was tested by employing four

baseline systems: two incorporate the spectro-temporal extent of the speech seg-

ment and the other two are based on localization cues only. Evaluations using real

world recordings showed that the proposed technique allows robust location esti-

mates from a noisy cross-correlogram ITD cues by integrating the spectro-temporal

regions which are dominated by a single source. In [67], the method was further

extended by weighting each spectro-temporal fragment and using a weighted mean

to combine the fragments to gather location estimates. These weighting criteria are

based on models such as the perceptual precedence effect, the measure of interaural

coherence between the two ears’ signals, and the data driven approach trained in

matched acoustic conditions. This scheme has shown to perform reasonably well in

reverberant environments.

2.9 Summary

This chapter presented different signal models based on the physical properties of

wave signals and acoustic environments. The state-of-the-art localization methods

exploiting these signal models and signal characteristics are summarized. Further-

more, a group of algorithms exploring the advantage of combining a speech related

feature or namely the fundamental frequency, with the time-delay estimation task is

discussed. Based on similar lines, a recent technique first presented in [12] becomes

the main starting point of my work which is explored in detail in Chapter 4. The

shortcomings of the original algorithm are discussed in detail and modifications are

proposed to improve its performance in realistic environments.



Chapter 3
Data Acquisition and Corpus Building

This chapter gives an overview of existing microphone array databases, and out-

lines the reasons for building an in-house microphone array. Furthermore, the issues

related to various existing corpora are discussed, which motivates the recording of

an extensive multi-channel database addressing the outlined problems in existing

corpora. In the next section, the details of the recording setup including the spec-

ification of the microphone array are presented. The design characteristics of the

array are specified in the following section by using different specifications, such as

the spatial resolution of the array, the beam pattern, and the maximum operating

frequency. Then details about the speaker setup and reference speech database used

for the recordings are given. The process of speech segmentation and speaker la-

beling is discussed in detail through illustrative examples. In the last part of the

chapter, some basic acoustic measurements of the recording room are presented fol-

lowed by a discussion of the distortion metrics used for calculation of background

noise and reverberation levels.

3.1 Available Microphone Array Databases

During the last decade, the increase in multi-channel system applications for hands-

free speech acquisition and enhancement brought a number of corpora created by

different research groups all over the world. These databases are focused on differ-

ent microphone array applications. One of the largest and most notable corpus is

the Automatic Multi-Party Interaction (AMI) meeting corpus [68]. It is a multi-

modal database containing 100 hours of meeting recordings including close-talking

37
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microphones, microphone arrays, individual, and room-view cameras with electronic

output from a slide projector and whiteboard. Smart rooms equipped with all the

above mentioned sensors were designed at three different locations of the participat-

ing research groups. One of them was designed at Idiap, Switzerland; the other was

at the University of Edinburgh; and the third was at TNO Human Factors Research

Institute, The Netherlands. The design elements for all smart rooms prepared for

the recordings were slightly different at each location. My main interest was to ex-

plore only the microphone array data used in the corpus. Two kinds of geometries

were used in the corpus, a linear and a circular array. The diameter for the circular

array was kept at 0.2m diameter in all smart meeting rooms. A detailed annotation

of the recordings was made publicly available by the end of 2007 on the project

website [69].

Another well-known microphone array database was developed for the EU funded

Computers in the Human Interaction Loop (CHIL) project [70]. In this project,

a smart room was designed with a distributed microphone network in the form of

seven T-shaped arrays, each consisting of 4 microphones. The arrays were placed on

the walls of the room. The room was also equipped with a 64-channel NIST MARK

III [71] linear microphone array fixed on one of the walls. All arrays were used for

the multi-channel recordings.

A recent microphone array database was prepared for another EU funded project,

the Distant-talking Interfaces for Control of Interactive TV (DICIT) project [72].

The project aim was to develop and analyze advanced audio/speech techniques us-

ing multi-microphone devices, which were used as add-on features in interactive

TV systems. A 15 element nested linear microphone array was built to carry out

multi-channel tasks such as source localization, beamforming, acoustic echo cancel-

lation, and distant speech recognition. It is a special array consisting of four linear

sub-arrays, of which three consist of five microphones and the fourth consists of

seven microphones. The recordings have been recently made public on the project’s

website [72].

3.2 Reasons for a New Database

The above mentioned corpora show the increasing trend of publicly available micro-

phone array databases. This trend promotes the research of advanced techniques in
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multi-channel audio/speech processing for different kinds of real-world applications.

For this work, an effort has been made in a similar direction to build an in-house

microphone array, which is used in the meeting room (“cocktail party room”) of

the Signal Processing and Speech Communication (SPSC) Lab at Graz University

of Technology, Austria. There were multiple reasons to build an independent setup,

one of the reasons is the need for reference files, which are used as ground truth val-

ues for both localization and pitch estimation tasks. All corpora mentioned above

deal with a scenario where only a single speaker is active in one frame. The current

work explores the performance of the proposed algorithms for concurrent speaker

scenarios, where multiple speakers are assumed to be active at the same time. This

challenging task requires the playback files to be pre-processed before the multi-

speaker recordings, as the tasks of concurrent speakers’ Voice Activity Detection

(VAD) is itself subject of ongoing research. To the best of my knowledge, no robust

off-the-shelf VAD algorithm is available for automatic annotations of the recorded

multi-channel data for concurrent speaker scenarios. Therefore, a new process of

generating speech segmentation for concurrent speaker scenarios is presented later

in this chapter.

The other reason for the development of an intensive database is the control of

different acoustic environment parameters, which includes various background noise

conditions: electronic projector, environmental noise coming from open windows,

small events like opening or closing of the meeting room door, and a spatial noise

source. For this purpose, the cocktail party room is used to create and record these

specific, well-controlled acoustic conditions.

Fig. 3.1 presents the SPSC’s Uniform Circular Array (UCA). Even though the

current setup is immobile, it serves as a benchmark for smaller and portable arrays.

The flexibility of the array as shown in Fig. 3.1 gives an opportunity to try different

array diameters, which were absent in the corpora mentioned above. The analysis

of the proposed algorithms with different array configurations helps to understand

the effects of the number of sensors and the array diameter on the performance of

the algorithms.

3.3 Microphone Array Design

The SPSC’s UCA consists of 24 microphones positioned equidistantly with a max-

imum diameter of 0.55m on a circular ring. The specifications of the microphones
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Figure 3.1: SPSC microphone array in UCA shape consisting of 24 microphones with
variable diameter ranging from 0.2m to 0.55m. The microphones can be
placed in any of the boreholes of th planar fixture made out of plywood.

are as follows:

• Model No: Behringer ECM 8000 [73]

• Transducer Type: Electret condenser

• Frequency Response: 15Hz to 20 kHz

• Pick-up Pattern: Omnidirectional

• Sensitivity: up to - 60 dB

• Impedance: 600Ohms

The RME Fireface 800 audio interface [74] is used for multi-channel recordings.

The two ADAT digital I/O on the RME Fireface 800 allows to connect two external

converters. Two Behringer ADA 8000 [75] A/D and D/A converters are used with

the RME Fireface 800 to support recordings of up to 24 channels. The digitized

signals are passed to a laptop via a FireWire 400 cable. The specifications of the

RME Fireface 800 are as follows:

• 8 x Analog line I/O (used for recording of 8 of the 24 channels)

• 2 x ADAT Digital I/O (the two Behringer ADA 8000 connected to these two

ports were used to record the remaining 16 of the 24 channels)
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• Up to 192 kHz sampling rate

• Up to 24 bit sample resolution

• 2 Microphone/Line Inputs with Preamps (unused)

• 2 Instrument/Line Inputs (unused)

• 1 x stereo headphone output (unused)

• 2 x MIDI I/O (unused)

The multi-channel recordings were stored on an external hard-drive connected

to the laptop at a sampling rate of 48 kHz, and 16 bits amplitude resolution. The

reason to use 16 bits resolution was because the location accuracy of the proposed

algorithm did not improve by using 24 bits resolution [76]. One other concern was

the memory aspect, as the 24 bits wave-files require one-third more memory space

than the 16 bits wave-files.

The array has four different diameter rings as shown in Fig. 3.1 in the range

of d = [0.2, 0.3, 0.4, 0.55]m. These four rings allows the use of 24 microphones

plus two additional smaller rings allows the use of only 8 microphones. Using this

flexibility multiple data sets with different array diameters were recorded to test the

performance of the proposed algorithms. The number of microphone pairs used to

generate direction estimates is restricted to the pairs formed by oppositely placed

microphones. This results in 12 pairs in case of a 24-channel microphone array. This

arrangement simplifies the direction estimation process as all the microphone pairs

share a common center.

There are several physical specifications of the microphone array affecting the

source localization problem discussed in [7], e.g., the sampling frequency, the dis-

tance between the microphones d, and the speed of sound c. Therefore, it is im-

portant to illustrate the possible range of discrete time-delay values with the given

geometry. The DoA θ can be calculated from the delay τ by the relation cos θ = c·τ
Fs·d

.

Based on the physical design of the SPSC array (at d = 0.55m), and the speed of

sound given by c = 346.43m/sec (calculated for tair = 25◦C), the number of pos-

sible time-delays is in the range of [−76, 76] samples. Using the defined relation,

Table 3.1 shows the DoA θ calculated for all the positive time-delay τ values along

with the corresponding spatial quantization error ǫquantization. The results are sym-

metric for negative time-delay values. A best resolution of approximately 0.75◦ or

corresponding smallest quantization error of ±0.3760◦ is achieved for an angle of 0◦
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(“broadside”). This resolution is better than what was reported in [77], where the

main difference was the smaller distance between microphone pairs (in their case,

d = 0.3m), and Fs = 44.1 kHz. The error remains within a factor of 2 of the best

value within a range of 66 samples (60◦), whereas in [77], it stays small within a

range of 30 samples (51.5◦).

Some preliminary analysis of the array design is made by calculating the delay-

and-sum beam pattern in linear and polar coordinates. The bandwidth of interest

for speech signals lies in the range of 100Hz to 8000Hz and the signal is arriving

from φ = θ = π/4 or 45◦. Fig. 3.2 shows the delay-and-sum beam pattern for the

UCA of d = 0.55m diameter consisting of M = 24 microphones, which is calculated

using the following relation [78]:

B(k,kL) =
1

M

M
∑

m=0

exp

[

j
πd

λ

{

sin θ cos

(

φ− 2πm

M

)

− sin θL cos

(

φL − 2πm

M

)}]

, (3.1)

where k is the wavenumber, kL is the wavenumber of the plane wave source with

spherical coordinates (θL = π/4,φL = π/4), and λ denotes the wavelength of plane

wave. The beam pattern of circular array does not suffer from grating lobes promi-

nent in case of linear arrays; however, this plot is based on a simulation assuming

anechoic environment which does not validate similar performance in multi-path

environments. The beam pattern in polar coordinates at different frequencies are

shown in Fig. 3.3.

In theory, the design of the microphone array offers a limited range of frequencies

where it can localize speakers. The distance between the microphones has similar

effect in spatial-domain as the time distance has on the signal frequencies sampled

in the time-domain. This effect is called spatial aliasing [79]. To avoid the effects of

spatial aliasing, a relationship to calculate the maximum operating frequency fmax

for a given array configuration was presented in [79]:

fmax =
c

2 · dθ

, (3.2)

where c is the speed of sound in air and dtheta is the minimum distance of array.

For a M = 24 channels UCA of d = 0.55m diameter, where dθ = d · sin( π
M

) is

defined as the minimum distance of the array (this relationship was presented for
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Table 3.1: Quantization error for the SPSC microphone array in shape of a Uniform
Circular Array (UCA) consisting of 24 microphones with a diameter of
0.55m. τ is the time-delay in integer multiple of the sampling interval, θ is
the corresponding DoA angle in degrees, and ǫquantization is the maximum
quantization error in degrees.
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Figure 3.2: Delay-and-sum beam pattern of SPSC microphone array consisting of 24
microphones with diameter of 0.55m. The steering direction is fixed at
45◦ azimuth. The colorbar represents the amplitude of the beam pattern.
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Figure 3.3: Delay-and-sum beam pattern in polar coordinates at different frequencies
of the SPSC microphone array. The steering direction is fixed at 45◦.
The radial dimension show the amplitude of the beam pattern.
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Table 3.2: fmax values for different sensors’ spacing.

d [m] fmax [kHz]
0.55 2.4
0.4 3.8
0.3 4.38
0.2 6.57

circular array in [80, p.32]). The maximum frequency fmax below which the array

can localize the speech source is fmax = 2.4 kHz for c = 343m/sec. Following similar

calculations for the other three diameter configurations by keeping the number of

microphones and the speed of sound constant, the trend is shown in Table 3.2. It

is important to note that the given results are just approximations to give an idea

about the characteristics of the array. The upper limit for the frequency increases

with decreasing sensor spacing. On the other hand, the quantization error for the

location estimates will increase for a small aperture array. Hence, there is a tradeoff

between selection of physical parameters of the microphone array, which should be

chosen carefully according to the desired application in mind. In the present work,

the higher spatial resolution achieved by 0.55m diameter array is preferred over the

frequency range as most of the useful spectral information of speech signals such as

the first and second formants (for male, female and young children) are usually below

2.4 kHz. Furthermore, the distant speech recognition experiments carried out in [80]

were successfully conducted for a closer range of 2.24 kHz. Therefore, the current

setup not only improves location accuracy, it can be used for speech enhancement

algorithms such as beamforming.

3.4 Speech Database and Speaker Setup

The speakers or speech sources used for the recordings are taken from the Grid

corpus [81]. This database consists of single-channel high-quality recordings for 36

speakers with 500 sentences for each speaker. The duration of each sentence is 3 sec.

The Grid corpus provides the opportunity to generate large datasets using various

speaker combinations. For the playback, the wave-files of the Grid corpus were

sampled at 48 kHz. The resampled wave-files were played back through a Yamaha

MSP5A loudspeaker mounted on a stand at a fixed distance to the array in the

same horizontal plane. In all the recordings the distance of speakers remain fixed
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and only the directions are varied. Concurrent speaker scenarios were recorded

by simultaneously playing back the speech files by loudspeakers placed at different

positions. This procedure facilitates the repetition of experiments and generation of

speaker label files prior to the recordings.

Different speaker combinations are explored ranging from a single speaker to mul-

tiple speakers. In this thesis, a maximum number of four concurrent speakers is

considered. In all cases, different speakers from the Grid corpus were used to em-

ulate such scenarios. The details about the number of speaker combinations for

each scenario are listed in the Section 4.5.1. This part of the recorded database is

termed “Controlled Experiments”, as exact positions and voicing information of all

concurrent speakers are available for a minimum frame-size of 20msec. Another set

of experiments using human speakers was recorded in the cocktail-party room with

a group of four participants, two males and two females, who enacted two real-world

scenarios. One scenario recorded in the SPSC meeting room was a presentation sce-

nario, where one speaker was standing close to the white board or projector screen,

and the rest were the audience sitting in fixed positions. The other case was a

meeting scenario taking place among a group of participants sitting closely and/or

in front of each other. In both cases, the array was placed in the center of the room.

These recordings are termed “Real Speakers Experiments”, where manual labeling

is done by carrying out listening tests on one of the input channels of the array. The

annotation was further improved by examining the waveform and spectrogram of

the recorded speech file. A small subset of the multi-channel database was recorded

using human speakers enacting some moving speaker scenarios. These experiments

are termed “Mobile Speakers”, where either one or two speakers moved in a step-

wise manner creating different scenarios presented in Section 4.5.2. The speaker

segmentation and labeling of this task was most difficult, because there was no head

tracking system available in the meeting room. The annotations were done by video

recording a view of the scenarios, where the audio streams from the video and the

microphone array were synchronized and labeled manually.

3.5 Speech Database Reference Segmentation and

Labeling

The position-pitch speaker localization algorithm relies on voiced segments of speech,

as only these segments exhibit the necessary pitch information. Therefore, all source
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speech signals that were used for recording every single and multi-speaker scenario

throughout this thesis were segmented and annotated into voiced, unvoiced, and

silent segments. After recording, the appropriate time-delays for each microphone

input, latency of the recording software, delays due to playback were added to the

segment time stamps and the segments of all speakers were overlaid. The Pure

Data (PD) [82] software directly access the multi-channel soundcard so there are no

laptop operating system latency issues. This overlaid multi-speaker segmentation

and annotation was specified using a new label format.

Description of Label Format

The label format is based on the HTK label file format [83], which is illustrated by

an example later in the section. The label file was a text file which was assigned the

same base name as the audio file. The speech labels were defined as follows:

Speech Labels:

vcd: voiced

uvcd: unvoiced

sil: silence

To disambiguate multiple speakers, the speaker tags were assigned with every

voiced, unvoiced and silent label. These tags were based on the order number of the

speaker in the Grid Corpus, which has 36 speakers. In the given application, the

label files are used to evaluate the estimation accuracy of the localization algorithms.

Therefore, the speaker position in terms of DoA was also assigned to every speaker

tag and speech label. Moreover, the distance of the speaker from the array was

appended to each label as well. The list of assigned speaker labels is as follows

Speaker ID: <SPKR><Speech Labels><ANGL><DIST>

<SPKR>: sp01, sp02, sp03, sp04

<Speech Labels>: vcd, unvcd, sil

<ANGL>: integer value indicating speaker direction in degrees

relative to θ = 0◦

<DIST>: value indicating distance between speaker and array center

in meters up to two decimal points

Fig. 3.4 shows an example of a reference file for a two concurrent speakers scenario.

The first two columns show the start and end samples of the speech segments. The
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Example:
<start sample> <end sample> <segment information>

1200000 7320000 sp03-sil-142-2,00
1200000 5870000 sp04-sil-310-2,00
5870000 6180000 sp04-unvcd-310-2,00
6180000 7390000 sp04-vcd-310-2,00
7320000 9730000 sp03-vcd-142-2,00
7390000 8230000 sp04-unvcd-310-2,00
8230000 8650000 sp04-sil-310-2,00
8650000 8750000 sp04-unvcd-310-2,00
8750000 10090000 sp04-vcd-310-2,00
9730000 9840000 sp03-sil-142-2,00
9840000 12590000 sp03-vcd-142-2,00
10090000 10280000 sp04-unvcd-310-2,00
10280000 10640000 sp04-sil-310-2,00

...
...

...

Figure 3.4: An example of a reference file for the two concurrent speaker scenario.

third column corresponds to the segment information, where all the labels defined

above are combined for each speaker. This is the label file for a male and female

recording, where “sp03” was a male speaker file taken from the Grid corpus and was

reproduced at 142◦ during the recording. The “sp04” was a female speaker file taken

from the Grid corpus and reproduced at 310◦ during the recordings. Therefore the

segment labels append this information to the speech labels. The distance of both

speakers from the array was 2m. A small script was created to read this label file

and make the speaker activity table for every recording, where each column of the

table denotes the recorded speaker for the given scenario. The resulting table is

used as a reference to evaluate the proposed algorithms’ performance.

For the segmentation and annotation of voiced, unvoiced, and silent segments of

speech a tool provided by the SYNVO GmbH was employed, cf. [84]. This tool

is based on a two-stage neural network for classification into voiced, unvoiced, and

silent segments of speech. The first stage resembles a speaker-independent model for

estimation of voiced, unvoiced, and silent posteriors on an individual analysis frame

of the speech signal. The analysis frame has a length of 5msec and is shifted by

1msec. Given these posteriors, the second stage classifies the current speech frame

into voiced, unvoiced, or silent taking a context of 25 frames before and after the

current frame into consideration. Hence, this segmentation provides an accurate
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framewise speaker labels which aid the evaluation process.

Figure 3.5: SPSC cocktail party room layout.

3.6 Room Acoustics and Background Noise

A series of recording sessions consisting of the speaker setups discussed in Section 3.4

took place in the cocktail party room of the SPSC Lab. Fig. 3.5 presents the room

layout. This meeting room has the dimensions 6.02 × 5.32 × 3m and one of the

walls of the room has a large window partly covered by blinds that were set open

during the recordings. The floor is covered with standard carpet. No particular

effort was made to reduce the reverberation in the room. The room was divided
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into 72 sections, each measuring 0.5 × 0.5m2. The division supports an accurate

measurement of speaker positions relative to the array.

Furthermore, some basic acoustic measurements were carried out in the cocktail

party room, for example, the Room Impulse Response (RIR) was measured using a

Maximum Length Sequence (MLS). The measurement microphone was placed at a

distance of 2m from the loudspeaker. The impulse response can be described as a

sequence of delayed delta impulses. “The delays are associated with the geometrical

length of the related propagation paths. The amplitude of the impulse response

depends on the reflection coefficients of the boundaries and on the inverse path

lengths” [47, p.232]. The measured impulse response is shown in Fig. 3.6(a), where

a close-up of a 25-millisecond segment of the RIR is shown in Fig. 3.6(b). The

direct-path component and some strong reflected components are highlighted. To

calculate the reverberation time RT60, the Schroeder formula is used [85]. Fig. 3.7

shows the plot of the Schroeder function of the impulse response from Fig. 3.6(a).

A reverberation time RT60 ≈ 500msec was measured by linear extrapolation of the

curve from the level of −5 dB to −12 dB (for details about echo and reverberation

characteristics, see [6, p.48]).

The microphone array consists of 24 omnidirectional microphones placed in a

uniform circular ring with a diameter of 0.55m. The diameter of the array can be

varied to four different settings as shown in Fig. 3.1. All diameters were used for
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Figure 3.6: (a) Measured Room Impulse Response (RIR) using Maximum Length
Sequence (MLS), (b) A 25-millisecond segment showing the close-up of
the RIR including direct path and early reflections.
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Figure 3.7: The upper curve is the energy decay curve and the bottom curve shows
the impulse response envelope. The energy decay curve is estimated by
the Schroeder function using the RIR from Fig.3.6(a). The “dashed-dot-
line” is the linear regression curve used for extrapolation of the rever-
beration time RT60.

the recordings by keeping the number of microphones constant in all cases. The

recordings were carried out in two phases. In the first phase, 18 speakers: 8 males

and 10 females chosen from the Grid Corpus were played back through Yamaha

MSP5A loudspeakers at different positions relative to the array. The array was

placed in center of the room. The loudspeakers were positioned at a height of 1.39m

maintaining a constant distance of 2m from the array. A set of speech files containing

male and female utterances were mixed into longer segments modeling different

speaker interaction behaviors in a spatialized multi-speaker scenario. Furthermore,

different speaker combinations were played back simultaneously for up to 4 speakers.

The reference label files were generated as explained in Section 3.5, which allows

to carry out detailed performance analysis of all localization algorithms. In the

second phase, the real speaker scenarios introduced in Section 3.4 were recorded.

The annotations for real speakers were done manually. The playback and recording

process was controlled by a software on a single laptop, and the captured audio was

saved directly to the hard disk of the laptop with 16 bit resolution and a sampling

rate of 48 kHz. The playback and the recordings were controlled by a patch made

in PD software.
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3.7 Evaluation Metrics

All the localization algorithms are evaluated on a framewise basis, for which a metric,

denoted as ACC is used. This measure has also been used in [86] for the localization

estimates. The measure is based on the normalized number of frames where the

estimated localization angle ϕ̂n is close enough to the true angle ϕ0 given as

ACC =
1

N

N
∑

n=1

δ∗(ϕ0, ϕ̂n) × 100%, (3.3)

where N is the number of frames. δ∗ is defined as

δ∗(a, b) =







1 if |a− b| ≤ ∆

0 otherwise,
(3.4)

where ∆ is a grace boundary or error threshold around the true angle within which

the estimated angle ϕ̂n is considered to be correct. The true angle may belong

to any speaker. This evaluation metric is used throughout the thesis to compare

different algorithms. In addition to a fixed threshold, the accuracy results can be

plotted as a Cumulative Distribution Function (CDF) versus error threshold ∆.

This metric is used to emphasize and compare the estimation accuracy and variance

of the estimates for all the algorithms. In some cases, the value of grace boundary

was fixed at 5◦. This corresponds to the minimal inter-speaker distance of 35 cm in

2m distance from the array.

The database is recorded with the different acoustic conditions discussed in Sec-

tion 3.2. Therefore, it is important to introduce different distortion measures used

to evaluate the algorithms. A frequently used distortion measure for additive noise

is the SNR value, which can be defined as the ratio of the power of the desired signal

to the power of the noise in the distorted signal measured in the logarithmic decibel

scale given as [6]:

SNR , 10 log10

Psignal

Pnoise

, (3.5)

where P is the average power measured over the system bandwidth. Different kinds

of background noise present in a typical office or meeting room are considered in

this work. The kinds of noise against which all algorithms are tested are as follows:

• Beamer Noise
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• Environmental noise coming from an open window

• Opening and closing of door

• Machine Noise coming from a computer

Moreover, a special set of recordings was carried out, where a loudspeaker was

placed on the floor at the same distance from the array as the speech sources. A

white noise signal was played back through the loudspeaker, and the speech sources

were placed at different positions. The setup was recorded for scenarios with single

and two speech sources at SNR values ranging from −5 dB to 20 dB.

As the SNR does no account for the reverberation of the room, a channel based

measure known as the Direct to Reverberation Ratio (DRR) [87] is used, which is

defined as the ratio between the energy of the direct path (computed from the first

part of the impulse response, i.e., a few milliseconds around the dominant peak),

and the energy of the remaining reflection paths given as

DRR = 20 log10

( ||hd||2
||h− hd||2

)

dB. (3.6)

A DRR of 1.51 dB was measured in the cocktail party room, where the source was

placed 2m away from the array. A signal-based reverberant measure known as the

Signal to Reverberation Ratio (SRR) [87] is given as

SRR = 20 log10

( ||sd||2
||̂s− sd||2

)

dB, (3.7)

where s is the original speech signal, sd = hd
T s is the delayed and scaled version

of the speech signal without reflections, and ŝ is the reverberant signal. An SRR of

1.1 dB was measured with the same settings as defined above.

3.8 Summary

In this chapter, well-known microphone array corpora are summarized along with

the reasons to build a new microphone array and to record a large database. The

characteristics of the array are explored by theoretical measures such as the beam

pattern, and maximum operating frequencies achieved by different diameters of the

array. The details of the recorded corpus for different speaker setups are discussed.
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Furthermore, a detailed discussion of the speech segmentation and labeling process is

presented, which makes it possible to evaluate the algorithms for concurrent speaker

scenarios. Moreover, the details of the recording room are listed along with basic

room acoustic measurements. In the end, a list of evaluation metrics for measuring

the accuracy of the algorithms and acoustic conditions such as background noise

and reverberation is presented. All the illustrative examples and evaluations carried

out in Chapter 4, and Chapter 5 are based on this corpus.



Chapter 4
Joint Position-Pitch Estimation Based

Source Localization

This chapter presents various auditory inspired cross-correlation-based methods for

Acoustic Source Localization (ASL). These methods are based on the joint position-

pitch decomposition of the cross-correlation between a pair of microphones. The

baseline algorithm known as the Position Pitch (PoPi) algorithm is analyzed in

detail. This method is extended to a multi-channel system consisting of a 24-channel

UCA. The auditory inspired preprocessing is combined with the PoPi algorithm to

form a new algorithm known as the Multi-band Position Pitch (MPoPi) algorithm.

A new frequency-selective criterion is combined within the MPoPi algorithm, which

groups the frequency channels belonging to the same speaker. This algorithm is

referred to as MPoPi-FS. Moreover, the grouped channels are temporally linked by

using a pitch tracker to form extended spectro-temporal regions or fragments. These

spectro-temporal regions are combined within the MPoPi algorithm. The modified

algorithm is called MPoPi-STF. Finally, the proposed ASL algorithms are tested on

real-world recordings under various acoustic scenarios.

4.1 The Position Pitch Algorithm

The joint position and pitch extraction (PoPi) algorithm was summarized in Sec-

tion 2.8.1. The PoPi algorithm provides a feature set consisting of relevant cues

required for segmenting sources in multiple source scenarios.

55
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The PoPi algorithm performs a parameterized sampling process on the cross-

correlation function Rt at time instant t between a pair of microphone signals to

extract the common periodicities together with the corresponding DoA ϕ0 value

given by

ρt(ϕ0, F0) = b ·
K

∑

k=−K

Rt(⌊k · L(F0) +O(ϕ0)⌋), (4.1)

where ρt(ϕ0, F0) is the PoPi plane at time t and the cross-correlation function Rt(τ)

for a given time lag is calculated as the inverse Fourier transform of the received

signal cross-spectrum X1(t, ω)X∗
2(t, ω), where X1(t, ω) is the Fourier transform of

the windowed signal x1(t) and X∗
2 (t, ω) is the complex conjugate of the Fourier

transform of the windowed signal x2(t) given as

Rt(τ) =
1

2π

∫ ∞

−∞

X1(t, ω)X∗
2(t, ω) exp(jωτ) dω. (4.2)

In the formulation defined in (4.1), b denotes a normalization factor which is

discussed later in this section, K defines the cross-correlation interval used for sum-

mation of samples. L(F0) is the first time-lag, which depends on the pitch parameter

F0 according to the relation L(F0) = Fs

F0

, and Fs is the sampling frequency of the

recorded signals. The time-lag value is rounded using the floor function to convert

real numbers that can result for the time-lag values to close integers.

The normalization factor b can be set equal to 1 or can be set to the reciprocal of

the number of correlation peaks considered. The summation runs over a symmetric

interval from −K to K but it can also be ran from a specific correlation peak −K1

to K2. In this thesis, b is set to 1
2K+1

. The value of K is chosen to be 3 because

according to the range of F0 (from 80Hz to 400Hz) defined in Section 4.1.1 leads

to pitch periods at Fs = 48 kHz to be from 600 samples to 120 samples. For a

selected frame length of 2048 samples used for the evaluations of the experiments

in Section 4.5, only up to third harmonic of the maximum pitch period can be

evaluated. The sampling function ρt(ϕ0, F0) generates the DoA value ϕ0 using the

relation O(ϕ0) = d.cos(ϕ0).Fs

c
(ref. Fig. 2.1), where τ denotes the correlation lag

corresponding to the DoA of interest, d is the distance between the microphones,

and c is the speed of sound in air. Therefore, the main characteristic of this technique

is that it represent the speech signals received by two sensors in a two dimensional

Position-Pitch (PoPi) plane.

The upper summation line in Fig. 4.1 illustrates the relationship defined in (4.1),
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where the cross-correlation between a pair of microphones is presented. The main

peak of the cross-correlation is shifted by the number of samples, which encodes

the time-delay between the received signals by a pair of microphones. The position

of this peak is searched over a certain range depending upon the distance between

the two microphones and the sampling frequency Fs (the range for the SPSC UCA

with d = 0.55m and Fs = 48 kHz equals ±76 samples). The second feature, the

fundamental frequency, is related to the spacing L(F0) between the attenuated mul-

tiples of the main cross-correlation peak. The main peak is marked by “◦” and the

multiples by “�” exhibiting a uniform distance related to the pitch F0. The second

summation line will be discussed later in this section.

Figure 4.1: PoPi decomposition for a single female speaker at 115◦, F0 = 219Hz
using a pair of microphones. O(ϕ0) denotes the correlation lag corre-
sponding to the DoA of interest, and L(F0) denotes the correlation lag
corresponding to the fundamental frequency. The ρt(ϕ0, F0) is the aver-
aged summation of the cross-correlation values for a DoA and pitch pair
(ϕ0, F0). It is defined for any ρt(ϕ0, F0), even if these parameters are not
matched to the peaks.
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4.1.1 The PoPi Plane

The PoPi plane ρt(ϕ0, F0) is computed by scanning for the pitch F0 and DoA ϕ0

over a predefined range, and exhibits large peaks at indices that correspond to a

source present in the acoustic scene. This 2D representation, the so called PoPi plane

presents the DoA along the horizontal-axis and the fundamental frequency along the

vertical-axis, respectively. The PoPi plane is evaluated only for predefined values of

L(F0) and O(ϕ0), which are pre-calculated for the frequencies F0 = [80, . . . , 400]Hz

with a single lag-step defined in samples (which means pitch period ranging from

120 samples to 600 samples for the sampling frequency of Fs = 48 kHz), and DoA

candidates ϕ0 = [0◦, . . . , 180◦] with a stepsize of 1◦.

This decomposition acts like a “comb” filter, which is shifted along the predefined

values of DoA over the cross-correlation. For every position of the comb filter,

the width of the comb is adjusted according to the predefined pitch values. Thus

it defines the cross-correlation values summed up for every combination of pitch

and DoA. These values are stored in the ρt(ϕ0, F0) matrix, a peak in this matrix

indicates the likely DoA of the speech source with its respective pitch value. The

decomposition process is shown in Fig. 4.1, where the PoPi plane shows a maximum

when the DoA and pitch values are chosen such that the comb filter sums up the

main peak and the attenuated multiples of the pitch period. The cross-correlation

is computed from the signals received at microphone 1 and microphone 13 of the

24-channel UCA. The signals waveforms along with their corresponding amplitude

spectrums are shown in Figs. 4.2(a)-(d). There is a strong second harmonic present

along with the original fundamental frequency F0 = 219Hz. The higher magnitude

of second harmonic can be due to the presence of first formant frequency of the

speech segment.

Fig. 4.3 shows a PoPi plane using a single pair of microphones. The peaks at

multiple of the pitch period indicate the well-known problem of pitch multiplicity

in correlation based pitch estimation algorithms. The DoA in this case also suf-

fers from the cone of ambiguity, which is defined for a linear aperture: “signals

propagating from above, below, or to the side of the linear aperture cannot be dis-

tinguished” (cone of ambiguity; axis parallel to array) [22, p.66] . Therefore, a pair

of microphones fails to provide the front/back information about the source DoA.

A uniform circular array with multiple pair of microphones is capable of a complete

360◦ resolution. The multi-microphone extension of the PoPi algorithm is presented
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Figure 4.2: Time-waveform and amplitude spectrum of signals received at micro-
phones 1 and 13. These two microphones form the first pair of the
24-channel UCA. The time-waveform is shown for a segment length of
42.67msec. The amplitude of the signals is plotted along the vertical-
axis.

in the next section, where the same example is used to illustrate the 360◦ resolution

capability of the circular array. The similarities that the PoPi algorithm exhibits

with respect to the SRP-PHAT algorithm are presented in Appendix A.

4.1.2 Multi-Microphone Position Pitch Algorithm

The PoPi algorithm can be easily extended to a multi-microphone system, where the

PoPi plane can be calculated over different pairs of microphones and added together.

The PoPi algorithm for multiple pairs is extended as follows

ρt(ϕ0, F0) =

Mp
∑

mp=1

[

1

2K + 1
·

K
∑

k=−K

Rt,mp
(⌊k · L(F0) +O(ϕ0,mp

)⌋)
]

, (4.3)

whereMp is the total number of microphone pairs, mp is the pair index, and O(ϕ0,mp
)

are pair dependent steering delays which are predefined for each pair of microphones.

A PoPi plane resulting from the data recorded with the SPSC UCA of 24 micro-

phones forming 12 pairs of oppositely placed microphones is shown in Fig 4.4(a).
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Figure 4.3: PoPi plane for a single female speaker at 115◦, F0 = 219Hz using a pair
of microphones. The DoA is shown along the horizontal-axis and the
fundamental frequency F0 along the vertical-axis. The peaks in this 2D
representation indicate the likely DoA and the pitch of the active source.
The colorbar represents the amplitude of the PoPi plane. The speaker
was placed at a distance of 2m from the array, the estimated SNR for
the recordings was 33 dB.

The popi decomposition is made on time lag values corresponding to 0◦ − 360◦, the

shift in the time delays for every pair are defined in O(ϕ0,mp
).

By averaging over 12 pairs, the PoPi plane gets sharper, but it does not take care

of the pitch multiplicity problem seen in the single pair PoPi plane. This happens

when the multiple equidistant peaks in the cross-correlation are misinterpreted as

spurious pitch values. To mitigate this effect, the PoPi decomposition is modified

in such a way that the “comb” filter does not add up the cross-correlation values

located in the middle of “the comb teeth”.

The modified PoPi decomposition for multiple pairs is given as

ρt(ϕ0, F0) =

Mp
∑

mp=1

[

1

2K + 1
·

K
∑

k=−K

{

Rt,mp
(⌊k · L(F0) +O(ϕ0,mp

)⌋)

− β · Rt,mp
(⌊2k − 1

2
· L(F0) +O(ϕ0,mp

)⌋)
}]

. (4.4)
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The second term in the sum defines the position of values, which is subtracted

to suppress the unwanted pitch estimate. These values are attenuated by a factor

β (a value 0.5 was selected after several trials conducted over different speakers).

This modification is illustrated in the second summation line in Fig. 4.1, Fig 4.4(a)

and Fig. 4.4(b) show the original and modified PoPi planes respectively, each using

12 pairs of microphones. The new decomposition decreases the presence of pitch

multiples.
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Figure 4.4: PoPi-plane for a single female speaker at 115◦, F0 = 219Hz (a) Origi-
nal, (b) Modified, each using 12 pairs of microphones from a 24-channel
circular microphone array. The colorbar represents the amplitude of the
PoPi plane.
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4.1.3 Cepstrum Based Weighting Function†

The cross-correlation functions of periodic signals are also periodic. Therefore, when

there is a peak in the cross-correlation function at a lag τ , there will be multiple

peaks at lags equal to n · τ (where n = 1, 2, 3, · · · ). The PoPi decomposition as

defined in (4.1) is based on sampling of cross-correlation function to extract position-

pitch relations. Hence, this sampling translates in frequency domain in multiples

(including fractions) of the fundamental frequency. In Figs.4.4(a)-(b), these peaks

are prominent at F0 = 219Hz, 2
3
F0 = 146Hz, 1

2
F0 = 109.5Hz, and 2

5
F0 = 87.6Hz.

The modification proposed in (4.4) tries to resolves this problem but takes into

account only half pitch multiple at 109.5Hz, which get attenuated to a certain

degree but the other cross-terms remain unchanged. Therefore, a weighting function

is designed to suppress the cross-terms in the PoPi plane, which are the result of

the decomposition according to (4.1). The weighting function is derived from the

cepstral representation of the cross-correlation function given as

C(F0) = |IFFT(log10(FFT(R∗(τ)) + ǫ))|, (4.5)

where R∗(τ) is the half-wave rectified cross-correlation, ǫ is an offset fixed at 1×10−6,

and C(F0) is the cross-cepstrum sample corresponding to range of 80 to 400Hz.

Furthermore, the smoothing operator is applied to (4.5) with a sliding maximum in

order to make the peaks of C(F0) more consistent and less fluctuating, which results

in

W (F0) = max(C(F0 − 2), . . . , C(F0 + 2)). (4.6)

Fig. 4.5 shows the cross-cepstrum C(F0) derived from a voiced segment with

F0 = 211Hz and the resulting smoothed weighting function W (F0). To demon-

strate the power of the weighting function, first a PoPi plane for every microphone

pair is obtained through (4.1), and then each plane is weighted by its correspond-

ing weighting function according to (4.6). The resulting weighted PoPi plane is

calculated as follows

ρ̂(ϕn, F0) = W (F0) · ρ(ϕn, F0), (4.7)

for all DoA values and the pitch frequency is F0. Figs. 4.6(a)-(d) show the PoPi

decomposition using (4.4) of a single source placed at 169◦ with F0 = 211Hz. The

single speaker recordings were made in the SPSC cocktail party room where the

†This technique is an extended version of previously published paper in [14].



4.1. The Position Pitch Algorithm 63

speaker was located 2m from the 24 channel UCA with an SNR of 29 dB and DRR of

1.5 dB. The PoPi decomposition of an un-weighted single pair is shown in Fig. 4.6(a),

the weighted version of the same PoPi plane of Fig. 4.6(a) is shown in Fig. 4.6(b).

The cross-terms arising due to the periodicity of the cross-correlation along the pitch

axis have been successfully removed but the spread along the DoA axis needs to be

removed as well. To improve the performance along the DoA axis, the responses

of 12 pairs of microphones have been weighted and then summed up, resulting in

Fig. 4.6(d). For comparison, the result of summation of all unweighted PoPi planes

according to (4.4) is shown in Fig. 4.6(c). In case of the speaker localization, only

the positive energy of PoPi planes is of interest thus negative values will be discarded

for the later illustrative examples.
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Figure 4.5: The cepstrum based frequency domain weighting function for a source
with F0 = 211Hz. The frequency is plotted along the horizontal-axis
and the vertical-axis presents the magnitude of the weighting function.
The speaker was placed at 169◦, at distance of 2m from the array with
SNR of 29 dB.
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(a) (b)Unweighted PoPi decomposition; one mic. pair
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(c) (d)Unweighted PoPi decomposition; all mic. pairs
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Weighted PoPi decomposition; all mic. pairs
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Figure 4.6: The PoPi plane decomposition for a single female speaker placed at 169◦

using a 24-channel UCA. The speaker was placed at a distance of 2m
from the array with an SNR of 29 dB and DRR of 1.5 dB. (a) PoPi
decomposition of an un-weighted single pair, (b) PoPi decomposition of
the cepstrum weighted single pair, (c) Unweighted PoPi decomposition
of all pairs, (d) Cepstrum weighted PoPi decomposition of all pairs.

4.2 The Multiband Position-Pitch Algorithm†

In case of multiple concurrent speakers, the cepstrum weighting is however unable

to extract the pitch information for all active speakers and tends to show erroneous

results. Figs. 4.7(a)-(b) shows the PoPi decomposition of a voiced audio segment

from a recording of two concurrent speakers, one is male and the other one is fe-

male. This recording was made in the SPSC meeting room where both speakers

were placed at a distance of 2m from the array. This example demonstrates the

major shortcoming of the full-band PoPi estimation for the two concurrent speak-

ers. The full-band decomposition is unable to detect the female speaker at 142◦

at all. The male speaker position is correctly detected, but with an incorrect pitch

estimate of 211Hz as shown in Fig. 4.7(a). Even though the cepstrum-based weight-

†This technique is an extended version of previously published papers in [15, 16].
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ing introduced in Section 4.1.3 is able to remove cross-terms in the PoPi plane as

shown in Fig. 4.7(b), it is unable to detect the pitch estimates of the two concur-

rent speakers and give erroneous pitch estimate of the male speaker. Therefore, the

cepstrum weighting has been omitted from the algorithm and it is not used further

in illustrations and experimental results except if stated otherwise.

Therefore, a multiband extension to the PoPi algorithm is investigated for mul-

tiple speaker scenarios. Fig. 4.8 shows a complete scheme outlining the Multiband-

Position Pitch (MPoPi) algorithm. It is an extended version of the PoPi algorithm.

A set of preprocessing steps are taken into consideration before computing the PoPi

decomposition to overcome the inability of the PoPi algorithm in detecting more

than one concurrent speaker. The PoPi algorithm is used to extract the common

periodicities that are present in multi-channel audio in addition to the cross-channel

delays. This leads to the parameterized sampling of the cross-correlation. The re-

sulting position-pitch relations can be represented in a plane, the so-called PoPi

plane that reveals the peaks at locations that correspond to joint position-pitch es-

timates of the active sources in an acoustic scene. The description of each processing

step in the MPoPi algorithm is outlined below.

Gammatone Filterbank

The audio signals are first processed by a gammatone filterbank, which models part

of the auditory process of the inner ear also known as the cochlea. The gammatone

filterbank is widely used in Computational Auditory Scene Analysis (CASA) tech-

niques [13]. It impulse responses are the product of a gamma function and a tone

(hence “gammatone”), whose impulse response gFc
(t) is given as [13]:

gFc
(t) = tN−1 exp[−2πtb(Fc)] cos(2πFct+ φ) u(t), (4.8)

where N is the filter order, Fc is the filter center frequency (Hz), φ is the phase, and

u(t) is the unit step function. The function b(Fc) determines the bandwidth for a

given center frequency. The bandwidth of the gammatone filter is set according to

the ERB scale. The Equivalent Rectangular Bandwidth (ERB) of a filter is defined

as “the bandwidth of an ideal rectangular filter that has the same peak gain, and

which passes the same total power for a white noise input” [13, p.16]. For auditory
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Figure 4.7: Full-band PoPi decomposition of a speech segment with two concurrent
speakers (Spkr. 1 (Female): ϕ0 = 142◦, F0 = 215Hz; Spkr. 2 (Male):
ϕ0 = 310◦, F0 = 109Hz) using 24-channel circular microphone array.
Both speakers were placed at 2m from the array, (a) Original PoPi
decomposition, (b) Cepstrum weighted PoPi decompositions. Both un-
weighted and cepstrum-weighted full-band PoPi algorithms are only able
to detect one speaker with an incorrect fundamental frequency. The col-
orbar represents the amplitude of PoPi plane.
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Figure 4.8: Block diagram of the MPoPi algorithm for a single pair of microphones
with each signal passing through a gammatone filterbank and then the
GCC is calculated for every output channel of the filterbank for one of the
microphone signals with the corresponding filterbank output of the other
microphone signal. The GCC functions are then summed to generate a
“summary” cross-correlation. The PoPi decomposition is applied on the
“summary” cross-correlation. For a multi-microphone-pair system, all
the PoPi planes are added together to create the final position and pitch
estimates for the active sources in an acoustic scene.

filters, it is obtained from

ERB(f) = 24.7 + 0.108f, (4.9)

where ERB(f) and f are in Hz. The relationship between the filter center frequencies

and the corresponding bandwidth is defined as

b(f) = 1.019 ERB(f). (4.10)

A good approximation to the frequency response of the gammatone filter in (4.8) is

given as

GFc
(f) ≈ [1 +

j(f − Fc)

b(Fc)
]−N (0 < f <∞) (4.11)

It was found in [88] that N = 4 proves to fit the estimates of the human auditory

filter shapes. For the given application, an ERB scale between 50Hz and 8000Hz



68 4. Joint Position-Pitch Estimation Based Source Localization

0 1000 2000 3000 4000 5000 6000 7000 8000
−150

−100

−50

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 4.9: Magnitude response of 21 out of 64 gammatone filters.

and 64 overlapping bandpass gammatone filters are used. This number of filters

gives a good resolution for the source localization problem. For the experiments

presented here, these filters were implemented using the Auditory Toolbox [89].

The magnitude response of every third filter of the filterbank is shown in Fig. 4.9.

Multi-pitch tracking is one of the successful applications of these filters [90]. A

detailed discussion regarding the effects of the preprocessing on joint estimation of

pitch and DoA of an active source is presented at the end of this section illustrated

by an example.

Generalized Cross-Correlation

The cross-correlations are computed between all the corresponding bandpass filtered

signals of a microphone pair as follows

Rt(τ) =
1

2π

∫ π

−π

W (t, ω)X1(t, ω)X∗
2(t, ω) exp(jωτ)dω, (4.12)

where X1(t, ω) is the Fourier transform of the windowed signal x1(t) and X∗
2 (t, ω) is

the complex conjugate of the Fourier transform of the windowed signal x2(t), which

is weighted by a weighting function W (t, ω) and τ is the discrete time-lag. Different



4.2. The Multiband Position-Pitch Algorithm 69

weighting functions can be used with GCC depending on the acoustic conditions.

These will be presented in the following section.

Weighting Functions

The well-known weighting functions for the cross-correlation based localization

methods have been presented in Section 2.3. The PHAT weighting is particularly

advantageous for high SNR and reverberant scenarios. Whereas the maximum like-

lihood (ML) weighting can be used in cases where the noise statistics can be easily

measured or is known a priori. In case of PHAT, the magnitude information of

the cross-spectrum is removed by whitening the microphone signals. The cross-

correlation loses its periodicity, which holds information for the pitch estimation.

This makes it an unsuitable candidate for the PoPi algorithm, but PHAT can be

used by replacing the central part of the cross-correlation carrying the DoA informa-

tion with the central part of the GCC-PHAT, where the correlation lag τ corresponds

to 0◦ − 180◦.

W (t, ω, τ) =







1
|X1(ω)X∗

2
(ω)|

, if τ ǫ 〈τ0◦ , τ180◦〉
1, otherwise.

(4.13a)

R(τ) =
1

2π

∫ π

−π

W (ω, τ)X1(ω)X∗
2(ω) exp(jωτ)dω. (4.13b)

Fig. 4.10 shows the proposed modification, where the modified cross-correlation

includes the advantages of GCC-PHAT, while maintaining the periodicity. The

top plot shows the full-band cross-correlation, and the second plot illustrates the

GCC-PHAT. Both are combined according to (4.13a) in the third plot, which is

dubbed as Weighted-GCC. For the multi-band cross-correlations, this process is

carried out for every filterbank channel and summed to create a “summary” cross-

correlation. The multi-band cross-correlations are denoted as CCf(τ) which are

computed using (4.13b) for every gammatone filter. The bottom plot of Fig. 4.10

illustrates the resulting multi-band “summary” cross-correlation with the proposed

weighting function.

A detailed analysis of PHAT weighting for the ASL task is carried out in [33]. It

is one of the first studies done to investigate why the PHAT weighting works well in

practical conditions. The study set out to explain two important characteristics of
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PHAT weighting: one regarding PHAT being optimal in ML sense when the level of

noise is low and second that PHAT is robust to reverberation, because its optimality

is independent of environmental reverberation.

In the MPoPi algorithm, the next step is to use a summarization step, which nor-

malizes the cross-correlation before the PoPi decomposition step. With the normal-

ization, the relative information content of the multiple correlation functions is ade-

quately represented and allows combinations of the information from these functions

in a better way. With this step, the relative delays associated with the position-pitch

information of all sources will be more enhanced in the case of multiple speakers

reducing the impact of sources with higher SNR values. These multiple normalized

cross-correlations CCf(τ) are then summed up to form the so called “summary”

cross-correlation Rsummary =
64

∑

f=1

CCf(τ). The “summary” cross-correlation is used

for the PoPi decomposition.

−500 −400 −300 −200 −100 0 100 200 300 400 500
−1

−0.5

0

0.5

1
GCC

−500 −400 −300 −200 −100 0 100 200 300 400 500
−0.5

0

0.5

1
GCC−PHAT

−500 −400 −300 −200 −100 0 100 200 300 400 500
−1

−0.5

0

0.5

1
Weighted−GCC

−500 −400 −300 −219 −100 −6 100 207 300 400 500
−1

0

1
Proposed Modification

Correlation Lag (samples)

Figure 4.10: The full-band GCC with no weighting is shown in the top plot, the
second plot illustrates the GCC with PHAT weighting. The third
plot presents the modified PHAT-weighted GCC (Weighted-GCC). The
bottom plot shows the proposed modification applied on every cross-
correlations of the gammatone filtered signals, which are added to form
the “summary” cross-correlation. A pitch period of 213 samples can be
seen in the bottom plot where the left peak is shifted to −219 samples
as the main peak is not at the zero lag but at −6 samples.



4.2. The Multiband Position-Pitch Algorithm 71

Multiband Position-Pitch Decomposition

The joint position and pitch estimates are determined for the “summary” cross-

correlation function using the relation described in detail in Section 4.1 given as

ρt(ϕ0, F0) =
1

2K + 1
·

K
∑

k=−K

Rsummary(⌊k · L(F0) +O(ϕ0)⌋), (4.14)

where K is set to 3, L(F0) is pre-calculated for the frequencies F0 = [80, . . . , 400]Hz,

and O(ϕ0) are DoA candidates ϕ0 = [0◦, . . . , 360◦] with a stepsize of 1◦ as discussed

in Section 4.1.2. This decomposition is carried out for every pair of microphones

and added together to create the final PoPi plane.

Illustrative Example

The effectiveness of the gammatone filterbank preprocessing in the MPoPi method

is shown using the same speech segment of Fig. 4.7. The cross-correlations of two

signals of a microphone pair filtered with four different gammatone filters with

center frequencies (Fc) at 442Hz, 640Hz, 1974Hz, and 4555Hz are presented in

Fig. 4.11. Splitting the signal into subbands emphasizes the harmonic structure of

each speaker, furthermore the bandpass filtering helps the weaker source with low

energy to get a strong presence in the final summed cross-correlation. Here each sub-

band is making a different contribution to the “summary” cross-correlation, which

is used for the PoPi decomposition. The low frequency channels exhibit the pitch

information, and the high frequency channels provide better DoA resolution.

The pitch estimation improves by using the preprocessing as the band-pass-

filters with different Fc isolate either the fundamental frequencies or multiples it

for both speakers. In the top subplot of Fig. 4.11, the band-pass filter number

18 (Fc = 442Hz) leads to a cross-correlation from which the PoPi decomposition

can extract the true male pitch of 109Hz, because the fourth harmonic (4F0) lies

within the pass-band of Filter 18. In a similar way, Filter 23 (Fc = 640Hz) includes

the true female pitch F0 = 215Hz because of the presence of the corresponding

third harmonic (3F0). The last two plots show the cross-correlation functions of

high frequency channels, which exhibit peaks corresponding to the position of the

male and female speakers, respectively. Moreover, not every frequency channel is
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useful in gathering the correct information regarding location and pitch cues. There-

fore, the GCC of two more gammatone filters with center frequencies of 555Hz and

2774Hz are shown in Fig. 4.12. Both filters show no useful information for time-

delay and pitch values. The straight-forward summation of all the channels to gen-

erate the PoPi decomposition can lead to erroneous location estimates. Therefore,

a frequency-selective criterion is presented in Section 4.3, which pre-groups the fre-

quency channels based on the periodicity information. This pre-grouping improves

the accuracy of the MPoPi method. The results are presented in the experimental

section of the chapter.

Fig. 4.13 illustrates the PoPi decompositions of the cross-correlations of the band-

pass filtered signals presented in Fig. 4.11. In the MPoPi method, the cross-

correlations of all filter outputs are normalized and summed up to a so-called “sum-

mary” cross-correlation. Fig. 4.14 shows the “summary” cross-correlation of the

speech segment. Here, the merits of all filters are combined leading to a function,

Figure 4.11: The cross-correlations of two signals of a microphone pair (mp = 12)
filtered with 4 different gammatone filters with center frequencies (Fc)
at 442Hz, 640Hz, 1974Hz, and 4555Hz.
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Figure 4.12: GCC of non-informative gammatone filter outputs.
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Figure 4.13: PoPi planes of different filter outputs. Both speakers were located 2m
away from the array in the SPSC meeting room with an estimated
reverberation time of 500msec. The estimated SNR for this recording
was 32 dB and DRR was 1.51 dB.
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Figure 4.14: Summary cross-correlation of the gammatone filterbank for a mixture
of speech, where “◦” marks present the DoA and pitch information for
the male speaker and “�” marks present the DoA and pitch information
for the female speaker.

Figure 4.15: MPoPi decomposition of the same speech segment with two concurrent
speakers. Contrary to PoPi method, the MPoPi algorithm correctly
estimates both DoA and F0 of each speaker.
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including the position and the pitch information of both speakers. The center peak

belonging to the male speaker (marked with a ‘◦’) is located at the position of +66

samples (≈ 310◦), while two correct multiples appear at the distance of 438 samples

(109Hz). The peak defining the position of the female speaker (marked by a ‘�’)

is located at −68 samples (≈ 142◦) with a distance to the multiples of 223 samples

(215Hz). Using the “summary” cross-correlation in Fig. 4.15, the PoPi-plane shows

two sharp peaks at positions which indicate the true pitch and DoA values of the

two sources.

4.3 Frequency Selection Based MPoPi Method

The MPoPi algorithm works well when both speakers show voiced speech segments

in a low reverberant and high SNR scenario. Given real-world speaker scenarios,

especially involving speaker interactions and in challenging acoustic conditions, the

performance of the MPoPi algorithm deteriorates. This section describes further

investigations which were made in order to explore whether a frequency-selective

procedure, which is based on statistical speech models and which is inspired from

ASA techniques can successfully be combined within the MPoPi algorithm. In

case of multiple speakers with varying voiced and unvoiced combinations, the joint

position-pitch decomposition over the summation across all frequency channels pro-

duces erroneous results. This leads to the definition of a mechanism to pre-group

the channels and apply the PoPi decomposition on different sets. The frequency-

selective criterion is based on the structure of the auditory filterbank (gammatone

filterbank), which have overlapping bandwidths; therefore, in general the neighbor-

ing channels contain the same harmonic(s) or formant. In order to quantify their

similarity, a cross-channel correlation coefficient C is used as follows

C(f, t) =
1

L

L−1
∑

τ=0

Â(f, τ, t)Â(f + 1, τ, t), (4.15)

where f is the filter index, t is the time instant, τ is the time-lag, and L denotes

the maximum lag of the normalized auto-correlation function Â(f, τ, t) of the fil-

tered input signal. The auto-correlation functions are computed using a 42.67msec

Hann window on the output of each auditory filter (64 gammatone filters). The

auto-correlations are also used to generate the Auto-Correlogram (ACG), which is
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a three-dimensional function representing sound periodicity, it maps the signal peri-

odic energy in a frequency channel of the auditory model at different auto-correlation

delays at a given time. The normalization in (4.15) makes the cross-channel corre-

lation insensitive to the signal energy. The channels whose cross-channel correlation

is higher than the threshold of 0.95, are grouped together. This accounts for a

preliminary grouping of frequency channels, where the reduced ACG is obtained

by summation of these channels across frequency. Each set of grouped channels is

called “subband” [91].

In [91], the final spectral grouping on these selected channels is carried out to

extract the periodicity information of the speech sources from ACG. The reason

to select ACG was based on the well-known property that it exhibits a dendritic

(or tree-like) structure for periodic sounds or voiced speech signal. The dendritic

structures are formed because the frequency channels excited by the periodic sig-

nal show a similarity at delays corresponding to the multiples of the fundamental

period of the signal. Fig. 4.16 shows the ACG of a female speech utterance. The

periodicity of speech is illustrated through the presence of the dendritic structure in

the top subplot. The corresponding “summary” ACG which is formed by summing

all the frequency channels is shown in the bottom subplot. A peak at 3.42msec in

the “summary” ACG shows the presence of a harmonic source with fundamental

frequency F0 = 292Hz which can also be seen at the stem of the dendrite in the top

subplot.

As each source has its own dendritic structure present in the ACG , a 2D cosine

function was proposed in [91], which approximates the local shape of the dendritic

structure around each gammatone filter. The 2D cosine function consists of five

Gabor functions applied to adjacent reduced subbands, in which the middle Gabor

function is aligned with the subband. The Gabor functions for a cosine is given as

gaborc(x;T, σ) = exp(− x2

2σ2
) cos

2πx

T
, (4.16)

where T is the period of the cosine and σ is the standard deviation of the Gaussian.

For the application of Gabor functions on real speech signals, the authors in [91]

proposed to estimate the frequency of sinusoid in Gabor function. It was emphasized

in [91] that due to quasi-periodic nature of speech signals, the repeating frequency

or period pi in each ACG can be off its Fc. Therefore, pi was empirically estimated

for each filter. The standard deviation of the Gaussian was then fixed to pi/2
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Figure 4.16: The Auto-Correlogram (ACG) of a female speaker. The auto-
correlation delay (in msec) is shown along the horizontal-axis and the
center frequencies (in Hz) of gammatone filterbank which are linearly
distributed on ERB scale are shown along the vertical-axis. The cor-
responding “summary” ACG which is formed by summing all the fre-
quency channels is shown in the bottom subplot. A peak at 3.42msec
in the “summary” ACG shows the presence of a harmonic source with
fundamental frequency F0 = 292Hz which can also be seen at the stem
of the dendrite in the top subplot.

as proposed by the authors in [91]. The enhanced auto-correlation is formed by

convolving the auto-correlation of each subband i with support of its four adjacent

subbands (two above and two below) with its corresponding 2D Gabor function after

zero-padding is given as

Ac(i, τ, t) =

2
∑

mi=−2

L
∑

n=1

A(i+mi, τ + n, t) gaborc(n; pi+mi
, pi+mi

/2), (4.17)

where L is the maximum auto-correlation delay. The authors [91] further proposed

to replace the cosine by a sine function. This reduces the ripples produced as the

function aligns not only with the stem of the dendrite but with other peaks as well.

Both the sine and cosine functions are convolved with the auto-correlation functions,
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and then squared and added to create the enhanced ACG A(f, τ, t) given as

A(f, τ, t) = Ac(f, τ, t)
2 + As(f, τ, t)

2. (4.18)

It was suggested in [91] that in the enhanced ACG, the stems of the dendritic

structures are more emphasized and the peaks in each frequency channel align better

with the stems. In an offline process, for each frame of the input signal, dendritic

structures ranging from 0 to Nmax are found, where Nmax is the maximum number

of harmonic sources. This process is carried out by picking the largest peak in each

subband and generating a histogram, where the highest counting bins indicate the

location of possible dendrites associated with harmonic sources. The authors used

an empirical threshold of 5 (kept same in this study as well), thus ignoring all bins

with counts less than the threshold. A small threshold makes overestimation errors

and may assign more frequency channels than what actually contain the harmonicity

information. However, it avoids the problem of discarding a channel when it carry

harmonic information. In case of two concurrent sources, each frame is labeled

as having 0, 1 or 2 dendritic structures. The frequency-selection preprocessing is

combined with the MPoPi method to generate a joint position-pitch decomposition

based on spectral grouping. The cross-correlations CCf(τ) of every gammatone

filter as defined in Section 4.2 are summed according to segmentation information

retrieved from the frequency-selective criterion. The resulting “summary” cross-

correlations is denoted as R(τ)FSP
, where the subscript is added to differentiate

from the original MPoPi-based “summary” cross-correlation Rsummary. The new

“summary” cross-correlations R(τ)FSP
is as follows:

R(τ)FSP
=

1

NP

·
NP
∑

f=1

CCf (τ), (4.19)

where, for instance in case of a two speaker scenarios, P ∈ [∅, 1, 2]; N1 and N2 are

the number of frequency channels belonging to speaker 1 and speaker 2, respectively.

For every group of channels, a separate PoPi decomposition according to (4.1) is

calculated from the function in (4.19):

ρFSP
=

1

2K + 1

K
∑

k=−K

RFSP
(⌊k · L(F0) +O(ϕ0)⌋). (4.20)

The resulting algorithm will from now on be referred to “MPoPi-FS”, for the case
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when there is no frequency selection, the system reverts to the MPoPi algorithm

where the PoPi decomposition is carried out on the “summary” cross-correlation

Rsummary by summing over all channels. So far, only the spectral integration pro-

cess which is derived on a framewise segmentation of concurrent speech has been

discussed. It was further emphasized in [91] that the sequential integration have

additional benefits especially when considering the pitch of simultaneous speakers

which may overlap in time and tend to be smooth and continuous within a short

period of few hundred milliseconds. Thus the combination of spectral and sequen-

tial grouping ensures an even stronger grouping of sources, and the addition of

evidence from these regions to the MPoPi algorithm produces more robust location

estimates. Hence the next section presents how a technique based on this idea was

further extended for the developed multi-channel system.

4.4 Spectro-Temporal Fragment Based MPoPi

Method

In the previous section, the frequency selection technique proposed in [91] was dis-

cussed. The authors designed a system to extract spectro-temporal regions or “frag-

ments” dominated by energy of a single speaker in the presence of multiple concur-

rent speakers. This scheme was proposed to carry out Speech Fragment Decoding

(SFD) which is used for an Automatic Speech Recognition (ASR). In [92], the au-

thors employed a decoding process on the fragment representation to simultaneously

identify speech evidence and recognize speech (for details, see [92]). The process of

spectral-temporal grouping of the frequency channels is shown in Fig. 4.17. The

fragment generation system uses the pre-grouped channels to compute pitch esti-

mates. After which a rule-based tracker was used to create multiple pitch tracks

over the estimates and the best matched channels are recruited for each track. This

way different spectro-temporal regions of fragments are formed by matching each

pitch track with the correlogram peaks presented in every frequency channel. Thus,

each spectro-temporal fragment is dominated by a single source.

An example of the spectral and sequential grouping is shown in Figs. 4.18(a)-(d),

where Fig. 4.18(a) shows the mixture of speech “place blue in Z zero soon” (female)

and “place blue by H 2 please” (male) and Fig. 4.18(b) presents the “cochleagram”.

According to [13], the cochleagram is defined as the time-frequency representation of
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the neural activity pattern, where, in each frequency channel, the response can be

interpreted as the instantaneous firing rate within an auditory nerve fiber. The

cochleagram is similar to the spectrogram but computed by passing the signal

through a cochlear model, which includes the gammatone filterbank and Meddis

hair cell model. The Meddis model is known to replicates many characteristics of

auditory stimuli such as half-wave rectification, compression, spontaneous firing and

saturation effects [13]. The cochleagram shown in Fig. 4.18(b) was produced using a

64-channel gammatone filterbank, where the output of the Meddis hair cell model is

smoothed with an 42.7msec window and updated at 20msec intervals. The spectral

grouping introduced in Section 4.3 is illustrated in Fig. 4.18(c), labeling each time

frame as having ∅, 1, or 2 dendritic structures using different shades of gray showing

the presence of no harmonic source, one harmonic source or two harmonic sources,

respectively. At this level, it gives a preliminary measure of harmonicity present

in different frequency channels. This spectral grouping is finally combined with se-

Figure 4.17: Fragment generation process shown in anticlockwise sequence: the up-
per left plot shows the spectral grouping in different shades of gray
in each frame which is based on the frequency-selection criterion. Lo-
cal pitch estimates in each spectral group are extracted as shown in
lower left plot. From these local estimates, two pitch tracks are pro-
duced by linking the local pitch estimates as shown in the bottom right
plot. Finally, two regions are formed based on two pitch track segments
as shown in top right plot. These regions are referred to as spectro-
temporal fragments ([92, p.117]).
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quential integration to create the harmonic fragments presented in this section as

shown in Fig. 4.18(d).

Recent studies on data recorded with a binaural mannequin have demonstrated

that the grouping of location cues over the spectro-temporal regions of speech signal

yields robust location estimates [66]. A further extension of the fragment based

system was proposed in [67] by weighting the elements in a fragment to improve

location estimates. The results presented in [67] showed that the proposed scheme

helps as not all elements in the fragment are equally affected by reverberation.

In this thesis, a study to investigate the significance of integrating the spectro-

temporal regions into the MPoPi algorithm is carried out for concurrent speaker

localization. Unlike the previously mentioned study [66, 67], a microphone array con-

sisting of 24 omni-directional microphones is used to record the concurrent speech.

The current setup lacks any directionality or human like characteristics and hence is

more vulnerable to acoustic conditions of the surrounding. The array is treated as a

coherent set of sensors, for which the spectro-temporal regions are generated using

one reference microphone pair consisting of microphones 1 and 13. The reason for

using this pair was that it is also used as a reference axis to localize speakers with

respect to the array.

Fig. 4.19 presents the proposed scheme which combines the frequency-selection

and spectro-temporal fragments within the MPoPi method. In this case, the frag-

ments provide the additional information as to how the cross-correlations should

be added for the PoPi decomposition presented in (4.21). The resulting method

is named MPoPi based spectro-temporal-fragment algorithm or “MPoPi-STF”,

whereas also only spectral grouping information can be used to combine the cross-

correlations, which is then termed “MPoPi-FS”. These terms are used in the re-

mainder of the thesis to distinguish between the MPoPi algorithm and its proposed

modifications.

The speech signals from microphone 1 and 13 are normalized and added to form

the speech mixture, which is processed through the fragment generation system. The

system then outputs the fragments formed over both frequency and time as shown

in Fig. 4.19. The cross-correlations are computed for every filter output. These

cross-correlations as defined in Section 4.2 are added across the spectro-temporal
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Figure 4.18: (a) A mixture of speech “place blue in Z zero soon” (female) and “place
blue by H 2 please” (male) (b) Cochleagram of the mixture, where time
(sec) is plotted on the horizontal-axis and vertical-axis presents the
gammatone filter index or corresponding center frequency (Hz), and
the colorbar represents the energy of the signal at a given time and
frequency in dB (c) Spectral grouping of frequency channels labeling
each time frame as having 0, 1, or 2 dendritic structures using different
shade of gray showing the presence of no harmonic source, one harmonic
source or two harmonic sources (d) Harmonic fragments after sequential
grouping, the spectro-temporal regions are color-coded where a single
color represents the number of frequency channels and time frames
belonging to a particular fragment.
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Figure 4.19: Proposed scheme for multi-channel extension of a fragment system for
a 24-channel UCA, where ch.1 and ch.13 are normalized and added to
form the speech mixture used to generate the spectro-temporal frag-
ments. The resulting fragments are finally combined within the MPoPi
algorithm. The PoPi planes of all 12 oppositely placed microphones are
generated through this process and then added according to (4.4).

fragments following the systems proposed in [67] such as:

R(τ)unweighted =
1

L
·

∑

(f,t) ǫ ̥p

CC(f,t)(τ) (4.21a)

R(τ)weighted =
1

L
·

∑

(f,t) ǫ ̥p

ψ(f,t) · CC(f,t)(τ), (4.21b)

where ̥p is a speech fragment containing frequency channels at various time in-

stants, L is the total number of frequency channels and time frames in a fragment,

and CC(f,t)(τ) is the cross-correlation for a frequency channel f and frame t over
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a range of time-lags, τ ǫ {τmin, . . . , τmax}. The spectro-temporal regions are color-

coded as shown in Fig. 4.18(d), where each color represents the frequency channels

and time frames belonging to a particular fragment. In (4.21a), an averaged cross-

correlation is computed for a speech fragment, where each frequency channel in the

fragment is assigned an equal weight. Whereas in (4.21b), the summation is car-

ried out by assigning different weights ψ(f,t) based on the interaural coherence (IC)

weighting criterion [93] given as:

ψ(f,t) = max
τ

CC(f,t)(τ). (4.22)

The results reported in [17] suggest that the weighted “summary” cross-correlation

from (4.21b) is more suitable for the fragment generation system. Therefore, in this

thesis only the weighted spectro-temporal fragment scheme is used. The process is

repeated for both algorithms for every microphone pair. The resulting planes are

later summed for all microphone pairs to generate the final location estimates.

4.5 Experimental Evaluations

This section presents a list of experiments which evaluate the performance of the

proposed ASL algorithms for different acoustic conditions such as: background noise,

single to multiple, and static to mobile speakers to name the few. The details of the

recordings and speaker setups have already been discussed in detail in Chapter 3.

For analysis of the proposed algorithms, a frame length of 42.6msec is used with

a frame shift of 20msec. These parameters were selected keeping the problem at

hand in mind as for pitch estimation in order to determine the pitch of 80Hz and

its three harmonics at least 37.5msec frame length is required. The high update

rate is essential for any localization algorithm to track fast changing events in the

environment. The array used for all recordings had 24 microphones placed in a UCA

with 0.55m diameter. The recordings were made in the cocktail party room with

reverberation time of 500msec. The estimates were produced by using 12 pairs of

oppositely placed microphones. Furthermore, the proposed algorithms are compared

with the well-known ASL method called as SRP-PHAT, which was presented in

Chapter 2. In [8], the author presented the relationship between the SRP-PHAT and

GCC-PHAT method. The author showed that the SRP-PHAT for anM microphone

system is equal to the sum of GCC-PHAT of all possible pairs of microphones. As
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the cross-correlation of a microphone pair (1, 2) will be same as (2, 1), and the

auto-correlations only add a constant to the final value, the traditional SRP-PHAT

requires only the upper triangular matrix of GCC-PHAT. For the 24-channel UCA,

the SRP-PHAT is computed with only the 12 diametrically placed pairs. This

process varies from the traditional formulation. This summation, however, gives

a better functional value in locating the source(s). The reason is that microphone

pairs with two microphones which are far apart from each other tend to minimize the

cross-correlation values of the noise, while maintaining the cross-correlation values of

the true signals coming from the source. On the one hand, close pairs tend to boost

up the cross-correlation values but those values could be because of the similarity

of the noise profiles at the two microphones of the pair. The computation of SRP-

PHAT using of a subset of microphone pairs can be referred to as the “modified”

SRP-PHAT algorithm†.

4.5.1 Controlled Experiments

The controlled setups are used for algorithm evaluations by playing back high-quality

speech through loudspeakers. This setup allows to repeat the experiments many

times and makes a detailed evaluation of the algorithms much easier. To determine

the accuracy scores, the ground truth values are determined from reference label

files. These reference files are prepared using the noise-free and reverberation-free

high quality speech from the Grid corpus [81] as illustrated in Section 3.5.

Single Static Speaker

The evaluations of the algorithms begin with a single static speaker placed at 2m

from the array. Fig. 4.20(a) and Fig. 4.20(b) show the accuracy in percent (the

accuracy counts are calculated using the metric defined in Chapter 3) plotted as

a Cumulative Distribution Function (CDF) versus the error threshold for a single

speaker located at 169◦ and 310◦, respectively. The threshold is varied from 1◦ to

90◦ as shown along the horizontal-axis of the plots. The results are averaged over

six speakers, three males and three females, which were randomly selected from

†I would like to thank Hoang Do from the Brown University, U.S.A for this useful discussion. For
the rest of thesis, the “modified” SRP-PHAT is referred to as the SRP-PHAT defined for the
given geometry.
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Figure 4.20: Accuracy counts plotted as a CDF versus the error threshold for a sin-
gle speaker placed at (a) 169◦ and (b) 310◦. The “- ■ -” represents the
results of PoPi algorithm, “–✶–” represents the results of PoPi algo-
rithm with cepstrum and PHAT weighting, “–●–” represent the results
of MPoPi, and “–◆–” represents the results of SRP-PHAT algorithm.
The speaker was placed at a distance of 2m from the array.
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Figure 4.21: Accuracy counts of MPoPi and SRP-PHAT algorithm for a single
speaker versus different kinds of background noise. The “●” repre-
sents the results of MPoPi for 169◦ case, “■” represents the results of
SRP-PHAT for 169◦ case, “★” represent the results of MPoPi for 310◦

case, and “✳” represents the results of SRP-PHAT for 310◦ case. The
speaker was placed at a distance of 2m from the array.

the Grid corpus for the playbacks. Each speaker utterance is three seconds long.

For comparison, the full-band PoPi algorithm and its proposed modification with

cepstrum and PHAT weighting methods (Section 4.1.3), the multiband extension

termed MPoPi algorithm (Section 4.2), and SRP-PHAT is used. Out of all the algo-

rithms, the full-band PoPi algorithm has the most outliers. The proposed weighting

for the PoPi method shows improved performance at smaller error thresholds. In

case of the speaker at 310◦, however, both PoPi methods with and without the

weighting function fail to converge even at 90◦ threshold. Because of the poor per-

formance of the PoPi algorithms, they will not be used further in the evaluations.

The MPoPi and SRP-PHAT algorithms give ninety percent correct estimates in

both cases within a 10◦ error threshold. Hence, for the single speaker scenarios with

high SNR conditions, MPoPi shows a similar performance as the SRP-PHAT.

Background Noise

The evaluations are extended to testing MPoPi and SRP-PHAT under various acous-

tic conditions with different kinds of background noise commonly present in a meet-
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ing room or an office space. The kinds of noise against which all algorithms are

tested are as follows:

• Beamer Noise (fixed on the roof in the center of the meeting room).

• Environmental noise coming from an open window (located on one of the wall

of the meeting room as shown in Fig. 3.5).

• Opening and closing of the door (see Fig. 3.5).

• Machine Noise (a computer placed on the floor below the window of the meet-

ing room).

Fig. 4.21 presents the accuracy counts for a single speaker at 169◦ and 310◦. The

accuracy counts are displayed versus the different kinds of background noise along

the horizontal-axis. The results are again averaged over all six speakers. The error

threshold is fixed at 5◦. This value is chosen as it corresponds to the minimal

inter-speaker distance of 35 cm in case of 2m distance from the array. For all the

conditions, MPoPi shows more consistent performance in comparison to SRP-PHAT,

which has an accuracy difference of up to twenty percent for similar noise scenarios

at different speaker positions especially between the beamer and machine noise for

310◦ due to strong reflection arising around 8◦ shift.

Moreover, a special set of recordings were carried out, where a “noise” (inter-

ference) loudspeaker was placed on a floor at the same distance from the array

as the “speech” (desired) source (for details of the experimental setup, please see

Section 3.7). The speech source was placed at two different positions, one close

to the noise source, at 169◦, and the other farther away at 310◦. Fig. 4.22 shows

the accuracy results at 5◦ error threshold for SRP-PHAT and MPoPi algorithm for

the two DoAs. In this case, the performance of both algorithms deteriorates as the

SNR decreases below 10 dB. An interesting observation is that if the desired and in-

terference speakers are closer, the SRP-PHAT algorithm works better than MPoPi

algorithm. In contrast, for the case where the desired speaker is farther away from

the interference speaker, MPoPi is able to localize the speech source better than the

SRP-PHAT.

Multiple Concurrent Speakers

The evaluations are further extended to multiple concurrent speakers, which means

that there can be more than one active speaker in a single analysis frame. The algo-

rithms are tested for four concurrent speakers, and results are averaged for different
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Figure 4.22: Single speaker accuracy counts of MPoPi and SRP-PHAT algorithm
versus different SNR levels. The “–●–” represents the results of MPoPi
for 169◦ case, “–■–” represents the results of SRP-PHAT for 169◦ case,
“–★–” represent the results of MPoPi for 310◦ case, and “–✳–” repre-
sents the results of SRP-PHAT for 310◦ case. The speaker was placed
at a distance of 2m from the array.

speaker combinations. Here, two proposed modifications to the MPoPi algorithm

that is MPoPi-FS (Section 4.3) and MPoPi-STF (Section 4.4) are added for evalua-

tions. These methods are designed to improve localization accuracy for concurrent

speaker scenarios using different subband processing techniques. Figs. 4.23(a)-(g)

presents the averaged accuracy scores of all algorithms for two concurrent speakers

plotted as a CDF versus the error threshold ranging from 1◦ to 40◦. The curves

show the averaged results over all speaker combinations. There were nine speaker

combinations recorded for the two concurrent speakers scenarios consisting of three

male-male, three female-female, and three male-female combinations. Fig. 4.23(a)

shows the accuracy counts for closely spaced speakers, where speaker separation is

gradually increased up to oppositely placed speakers as shown in Fig. 4.23(g).

The MPoPi-FS and MPoPi-STF outperform SRP-PHAT algorithm for smaller

thresholds up to 5◦ in all cases except in Fig 4.23(b), and Fig 4.23(f). The rea-

son for the decrease is that the DoA estimates of the algorithms were one degree

higher than the acceptance range for one of the speaker’s position. That is why

the accuracy increases as the threshold becomes larger. Another problem for the

poor performance of algorithms for the scenario in Fig 4.23(f) is because the second
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Figure 4.23: Accuracy counts versus the error threshold plotted as a CDF for two
concurrent speakers at different speaker positions (a)-(g) starting from
closely spaced going up to oppositely placed, where “·- ■ -·” repre-
sents the SRP-PHAT algorithm, “·- ● -·” represents the MPoPi method,
“–✳–” represent the MPoPi-FS and “–◆–” represents the MPoPi-STF
method. The speakers were placed at a distance of 2m from the array
with SNR of 32 dB and DRR of 1.51 dB.
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Figure 4.24: Accuracy counts of SRP-PHAT and MPoPi algorithms for different
noise types in case of two concurrent speakers placed at 142◦ and
310◦. The “■” represents the SRP-PHAT algorithm, “✳” represents
the MPoPi method, “✕” represent the MPoPi-FS and “●” represents
the MPoPi-STF method. The speakers were placed at a distance of 2m
from the array.

speaker was placed close to the window at 187◦. Due to the highly reflective surface

of the window, strong reflections were present in form of spurious peaks in the PoPi

plane.

Single speaker noise conditions were repeated for the case of two concurrent speak-

ers as well. The SNR recordings with white noise were only repeated up to SNR of

10 dB, which is represented as “WN-10dB” on the plot. The speakers were placed

at 142◦ and 310◦ while keeping the same distance from the array. Fig. 4.24 shows

the accuracy counts for all algorithms for different noisy conditions presented along

the horizontal-axis. The error threshold is fixed at 5◦. The results are averaged over

nine speaker combinations as explained earlier in the section. The accuracy scores

show the advantage of MPoPi methods over the phase information only SRP-PHAT

method in localizing two concurrent speakers.

The algorithms are further evaluated for three and four concurrent speaker sce-
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Figure 4.25: Accuracy counts versus error threshold plotted as a CDF for three con-
current speakers placed at (a) 142-328-45 degrees, (b) 270-288-310 de-
grees, where “–■–” represents the SRP-PHAT algorithm, “–●–” rep-
resents the MPoPi method, “–✳–” represent the MPoPi-FS and “–◆–”
represents the MPoPi-STF method. The speakers were placed at a
distance of 2m from the array.

narios. In the three speakers case, eight speaker combinations were recorded,

which included two sets each of male-male-male, male-female-male, female-female-

male, and female-female-female. In the four speaker case, there were five different

speaker combination scenarios including one set each of male-male-male-male, male-

male-male-female, male-female-male-female, female-female-female-male, and female-

female-female-female. Fig. 4.25(a) shows the results of three spatially separated

speakers and Fig. 4.25(b) shows the results of three closely spaced speakers. The

accuracy counts are plotted as a CDF versus the error threshold, which is varied

from 5◦ to 90◦. The results are averaged over all eight speaker combinations in both

cases. For the four concurrent speakers, Fig. 4.26(a) shows the accuracy counts of far

placed speakers and Fig. 4.26(b) shows the accuracy counts of closely spaced speak-

ers. The threshold range is the same as for four speaker scenarios. The accuracy

results are averaged over all five speaker combinations. The relative improvement

achieved by the MPoPi-FS and MPoPi-STF over MPoPi for the these scenarios is

decreased. The deterioration in performance is due to highly challenging environ-

ment where the frequency segmentation and fragment generation is carried out on

a single channel where it is difficult to resolve three concurrent harmonic sources
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Figure 4.26: Accuracy counts versus error threshold plotted as a CDF for four con-
current speakers placed at (a) 115-142-288-310 degrees, (b) 270-288-
310-328 degrees, where “–■–” represents the SRP-PHAT algorithm,
“–●–” represents the MPoPi method, “–✳–” represent the MPoPi-FS
and “–◆–” represents the MPoPi-STF method. The speakers were
placed at a distance of 2m from the array.

in reverberant environment. A further investigation is required so that the other

channels of the microphone array can also facilitate the segmentation and sequential

integration process.

Different Array Configurations

Another interesting set of recordings was made by exploiting the variability pro-

vided by the UCA. The diameter of the array can be varied from 0.2m to 0.55m

as shown in Fig. 3.1. Only the MPoPi algorithm is chosen to test its performance

variations occurring because of the variable number of microphones and array diam-

eters. Figs. 4.27(a)-(d) present the accuracy counts versus error threshold plotted as

a CDF for all four diameters. For this experiment, the speaker was placed at 310◦

at a constant distance of 2m from the array. Fig. 4.27(a) shows the accuracy counts

by using only three microphone pairs, Fig. 4.27(b) shows the counts using four mi-

crophone pairs, Fig. 4.27(c) and Fig. 4.27(d) presents the cumulative counts using

six and twelve microphone pairs, respectively. In all cases, the pairs are formed by

using only oppositely placed microphones. This simplifies the problem of localizing
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an active speaker as all pairs share a common center defined as the origin of the

array.

Fig. 4.27(a) shows that if fewer numbers of microphone pairs are used, an array

with a smaller diameter performs better. This can be attributed to the problem

of spatial aliasing, which occurs when the microphone pairs are placed at a large

distance from each other and the distance between a microphone pair is more than

the smallest wavelength of interest. Thus grating lobes are created along with the

main beam in the beam pattern of the microphone array. The presence of grating

lobes leads to incorrect position estimates. The spatial disambiguation improves by

adding one more pair as shown in Fig. 4.27(b). Therefore, at least four microphone

pairs are needed to accurately localize active speakers. Overall, the array with

the largest diameter outperforms the other for the higher number of microphone

pairs because the DoA resolution improves if the distance between the microphones

increases. This is also the reason why the smaller diameter arrays require large

thresholds to achieve high localization accuracy.

The effect of array diameter is further tested for the two concurrent speaker sce-

nario. Fig. 4.28 shows the accuracy results in terms of CDF versus the error thresh-

old of two speakers placed at 142◦ and 310◦ for different array diameters. The

threshold is plotted along the horizontal-axis, which is varied from 1◦ to 40◦. Here

all 12 pairs are used for the DoA estimation. The arrays with the smaller diam-

eters, for example, d = 30 cm and d = 20 cm require larger thresholds to achieve

the accuracy of larger diameter arrays. Therefore, if the application and computa-

tional resources permit, using a large number of microphones and diameter spacing

improves localization accuracy.

4.5.2 Real Speakers Experiments

This section presents the results for different speaker interaction scenarios recorded

with human speakers. The recordings were carried out with four speakers, two males

(Martin and Wolfgang) and two females (Anna and Tania) using two scenarios:

• Presentation scenario

• Meeting scenario

In the presentation scenario, one speaker was standing close to the white board

or projector screen, and the others formed the audience sitting in fixed positions. In
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Figure 4.27: Accuracy in percent versus the error threshold plotted as a CDF for a
single speaker placed at 310◦ using (a) 3 pairs (inter-pair angle: 60◦),
(b) 4 pairs (inter-pair angle: 45◦), (c) 6 pairs (inter-pair angle: 30◦),
(d) 12 pairs (inter-pair angle: 15◦) of microphones for different array
diameters. The “–■–” represents MPoPi results for the 20 cm, “–●–”
represents the results for 30 cm , “–✳–” represent results using 40 cm,
and “–★–” represents results with 55 cm array.
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Figure 4.28: Accuracy in percent of MPoPi algorithm versus the error threshold
plotted as a CDF for two concurrent speakers placed at 142◦ and 310◦

using different array diameters. The “–■–” represents the 20 cm results,
“–●–” represents the 30 cm results, “–✳–” represent the 40 cm results,
and “–★–” represents the 55 cm results.

the meeting scenario, a group of participants were sitting closely around the array.

In both cases, the array was placed in the center of the room, Fig. 4.29(a) and

Fig. 4.29(b) shows the speaker combinations over time in presentation and meeting

scenarios, respectively. In the presentation scenario, the presenter is not fixed at

one position and there are constant head movements which change the speaker’s

orientation with respect to the array. Moreover, during the recording, there were

small interruptions from the audience with speech overlap. Fig. 4.30(a) presents the

accuracy in percent plotted as a CDF versus the error threshold for the presentation

scenario. The accuracy drops in comparison to the controlled speaker scenarios for

the MPoPi and SRP-PHAT algorithm because of an absence of head orientation

and exact DoA information for the presenter at each time frame. The recordings

with real speakers pose challenges such as: uncertainty in an actual source position

resulting due to involuntary movements of mouth, head, and body by a speaker.

There were no close talking or lapel microphones used in the recordings. Therefore,

the reference files were generated manually by a listening test using channel 1 of

the array. This is somewhat crude but a reasonable solution in absence of a head

tracking system. The MPoPi modifications tend to perform better than the SRP-
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(a) Presentation (b) Meeting

Figure 4.29: Real-world interaction scenarios including four human speakers:
(a) Presentation scenario with one speaker giving a talk or lecture and
the rest are the audience creating small interruptions during the talk,
(b) Meeting scenario, where speakers first takes turns to talk and later
have overlapped speech up to four concurrent speakers during the meet-
ing.
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Figure 4.30: Accuracy in percent versus error threshold plotted as a CDF for real-
world speaker interaction scenarios: (a) Presentation, and (b) Meeting.
The “–■–” represents the SRP-PHAT algorithm, “–●–” represents the
MPoPi method, “–✳–” represent the MPoPi-FS and “–★–” represents
the MPoPi-STF method.
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PHAT in the presentation scenario.

For the meeting scenario, all four speakers actively participated as shown in

Fig. 4.29(b), where in the beginning each participant took turns to speak followed

by mutual interruptions creating different concurrent speaker combinations. The

results are presented in Fig. 4.30(b), the ground truths were estimated the same

way as in the presentation scenario. The MPoPi-STF method performs the best

and SRP-PHAT generates the lowest score out of all the algorithms.

The modifications to the MPoPi algorithm show consistent performance improve-

ment in both controlled and real speaker experiments. This shows that the pre-

grouping and sequential integration of frequency channels gives robust location es-

timates and improves detection of multiple concurrent speakers.

Mobile Speakers

So far, the speakers are considered restricted to fixed positions, which emulates

speaker interaction scenarios in meetings, and office space avoiding speaker mobility.

Some recordings for single and multiple speakers were carried out, where all speakers

were moving usually facing the array. Fig. 4.31(a) shows the detection results of

SRP-PHAT and MPoPi algorithms for a mobile speaker, where a male speaker

(Martin) is moving in front of the array keeping constant distance from the array

starting from 180◦ and moving towards 0◦ in a step-wise manner. Both detection

algorithms generate erroneous estimates due to the reverberant environment and

the variation in head orientation of a speaker during motion. Fig. 4.31(b) shows

the accuracy counts for both algorithms, where MPoPi performs better than SRP-

PHAT at smaller error thresholds. The ground truth was generated with the help of

visual information: a point and shoot camera was used to capture the movements of

the speaker during recordings. The audio and video tracks were synchronized and

DoA information is labeled during the active portion of speech. This is a simpler

workaround because of the absence of any motion tracking system in the meeting

room. Under such scenarios, a likelihood function taking into account the history

of observations and a dynamical model for speaker movement yield more robust

estimates. Keeping this idea in mind, three likelihood functions are proposed in

the particle filtering framework to mitigate this problem. The details of these new

methods will be presented in Chapter 5.
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Figure 4.31: A single speaker moving in front of the array (a) Detection results of
SRP-PHAT (“♦”) and MPoPi(“×”), (b) Accuracy counts versus error
threshold plotted as a CDF, “–■–” represents SRP-PHAT and “–●–”
represents the MPoPi method.

Moreover, a multi-speaker scenario was recorded using two concurrent speak-

ers, where cross-over and approach-and-retreat scenarios were created as shown in

Fig. 4.32(a) and Fig. 4.32(b), respectively. In both cases, the speakers start from a

given position and move towards each other to create a crossing or approach-retreat

scenario. The detection results of MPoPi algorithm for two such cases are presented

in Figs. 4.33(a)-(b). Figs. 4.33(a) show the localization result of a male-female

(Martin-Anna) crossing scenario, where the male speaker started at 150◦ and the

female speaker started at 0◦. The male speaker keeps on moving in a circular motion

around the array after approaching the 0◦ mark. The detection results are shown

by markers which are not associated with any particular speaker. The localization

result of a female 1-female 2 (Anna-Tania) interaction scenario where both speakers

starting at well-separated DoAs, female 1 started at 180◦ and female 2 started at 0◦,

both come closer to each other and then move away towards their respective starting

points is shown in Fig. 4.33(b). The second female is unstructured because of the

strong power ratio mismatch between the two speakers. The first female has much

louder voice than the second female. As MPoPi method is an energy based method,

it is difficult to localize both speakers concurrently. Even though the MPoPi algo-

rithm makes several errors during the detection, the pattern still can be seen from

the plots and the detection accuracy can be improved by using a tracking algorithm.
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Figure 4.32: Mobile speaker scenarios for two speakers over time starting at well-
separated DoAs and moving towards each other creating (a) Cross-over
and, (b) Approach-and-retreat cases.
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Figure 4.33: Detection Results of MPoPi algorithm for two mobile speakers over time
starting at well-separated DoAs and moving towards each other creating
(a) Cross-over scenario where male speaker starts at 150◦ and female
speaker starts at 0◦. The male speaker keeps on moving in a circular
motion around the array after approaching the 0◦ mark, (b) Approach-
and-retreat scenario where the first female speaker starts at 180◦ and
the second female starts at 0◦. Both speakers come closer to each
other and then move away towards their respective starting points.
The position markers only represents the estimated DoAs and are not
assigned to any particular speaker in these plots.
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4.6 Discussion

The goal of this thesis is to test the proposed ASL algorithms in real environments

and compare their performance with the state-of-the-art SRP-PHAT algorithm.

There is extensive work carried out in the microphone array community with var-

ious kinds of algorithms proposed, which perform well in simulated environments;

hence leaving an ambiguity about their performance with real data. Therefore, it

is essential to test the methods in actual environments to assess their usefulness

for real-world applications. The test set was recorded in a meeting room, where no

efforts were made to reduce the noise and multi-path propagation as these two pose

the most challenges to the ASL methods (for experimental details, see Chapter 3).

The results for the single speaker scenario are presented in Figs. 4.20(a)-(b). The

full-band PoPi algorithm performs the worst out of all algorithms with just 20% ac-

curacy at 1◦ threshold. There is not much accuracy gained by using the “Cepstrum-

PHAT” weighting function for the full-band PoPi algorithm. The MPoPi algorithm

gives consistent performance in both cases. The SRP-PHAT gives around 90% ac-

curacy for the speaker placed at 169◦ but deteriorates to 70% for the 310◦ case. The

problem with the 310◦ case is that there is a strong reflection at 318◦. Therefore,

when the error threshold increases to 10◦ there is an abrupt increase in accuracy

score. The MPoPi algorithm does not suffer from this problem, it has an accuracy

count of 83% for the 169◦ case and 80% for the 310◦ case. The evaluations are

further extended to the various kinds of background noise. The results in Fig. 4.21

show comparable performance of SRP-PHAT and MPoPi methods, but these noises

did not make much effect on the SNR conditions of the room as the loudness of

the speech signal was quite high in comparison to these environmental noises. The

accuracy scores for MPoPi are around 80% for all the noisy conditions in both cases.

But SRP-PHAT has an inconsistent performance: the accuracy drops to 66% for

the 169◦ “Door” case and then jumps to 83% for the 310◦ “Door” case. This shift

in accuracy scores based on speaker position is observed for all noise cases. The

evaluations of algorithms for different SNR recording as discussed in Section 3.7

are presented in Fig. 4.22. Both algorithms deteriorate for SNR ≤ 10 dB, where

MPoPi at −5 dB gives only 25% of correct estimates within 5◦ range of the true

DoA. The position of the speech source relative to the noise source has little to no

effect on MPoPi performance but SRP-PHAT has around 40% shift in accuracy for

both cases. The results show that the MPoPi algorithm makes better use of the
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arrays’ geometry, and it is more consistent in spatial disambiguation in comparison

to the SRP-PHAT algorithm.

The results for two concurrent speakers as depicted in Fig. 4.23 includes two

new algorithms which have been introduced in Sections 4.3, and 4.4, and which

are referred to as MPoPi-FS and MPoPi-STF. The results show that the selective

criterion in the form of “spectral grouping” (MPoPi-FS) and “spectral and sequential

grouping” (MPoPi-STF) improve the location accuracy over MPoPi and SRP-PHAT

methods for two concurrent speakers. MPoPi-STF gives on average 75% correct

estimates within an error threshold of 5◦, whereas MPoPi-FS gives on average 65%

correct estimates. The MPoPi and SRP-PHAT gives on average 59% and 57%

correct estimates within 5◦ of the true source positions. The percentage of correct

estimates increases more sharply for MPoPi-STF and MPoPi-FS algorithms as the

error threshold is increased to 10◦. The plots show that the proposed algorithms are

able to localize the sources irrespectively of the speaker setup.

The single speaker noise conditions were also repeated for two concurrent speakers.

Fig. 4.24 presents the accuracy scores of all algorithms using the noise recordings

of the two speakers case. The MPoPi-STF performs the best out of all algorithms

by providing 77% correct estimates within 5◦ of the true speakers positions. The

SRP-PHAT performs the worst and gives an average of 57% accuracy for all noisy

conditions.

Further tests carried out in case of three and four concurrent speakers showed

similar performance improvement of subband processing based MPoPi methods over

original MPoPi and SRP-PHAT algorithms. The results presented in Figs.4.25 and

4.26 showed two different cases of well-separated and closely spaced speakers. The

performance pattern of SRP-PHAT is similar; it performs poorly when speakers are

well-separated and better for closely placed speakers. This behavior can be explained

further when looking at the analytic solution of SRP-PHAT, which is assumed to

be a summation of many cosines. When the array is steered towards the target

speakers, the cosines interfere constructively; for other positions, the cosines interfere

destructively. This behavior is based on the principle of linear superposition in wave-

theory. When the speakers are closely spaced, there is coherent superposition near

the speakers, but when they are placed at farther locations, the cosines may add

up incoherently leading to near-zero values. A similar principle is true for MPoPi

decomposition, but the mapping of fundamental frequency with the respective DoA

improves the algorithm’s spatial disambiguation ability resulting in a consistent
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performance independent of source positions as shown by MPoPi-STF and MPoPi-

FS methods. On average, the MPoPi-STF has 67% correct estimates within 10◦ of

the true speakers positions for three concurrent speakers scenarios and 68% for the

four concurrent speakers scenarios. The SRP-PHAT has on average 56% correct

estimates for three speakers and 57% correct estimates for four speakers within 10◦

of the true speaker positions.

The accuracy results of the MPoPi algorithm for a variable number of microphone

pairs and array diameters in case of a single speaker and a two concurrent speaker

scenario are shown in Figs. 4.27 and 4.28, respectively. The aperture of the array

defines its spatial resolution. The accuracy counts increase with the diameter of the

array but fewer numbers of microphone pairs have a detrimental effect on localiza-

tion accuracy. This problem arises because of spatial aliasing, where there are strong

grating lobes present with the main lobe and the array pointing at the desired direc-

tion accumulate inputs from other directions as well (this becomes more challenging

in multi-path environments). The spatial aliasing can be avoided if sampling is car-

ried out at half of the wavelength, which corresponds to the minimum wavelength

of interest. In practice, however, this means that for an array with sensor spacing of

0.55m, aliasing occurs above 311Hz. The authors in [94] have addressed this prob-

lem and suggested that the classical narrowband aliasing criterion should not be

used for broadband signals such as speech. Furthermore, to characterize the time-

domain response of a microphone array, the signal’s bifrequency spectrum should

be considered. Here for larger spacing, more microphones should be used as fewer

will not have their cosines add up coherently or incoherently for target and other

directions, respectively. To gain good spatial disambiguation with a large aperture

array, the minimum number of microphone pairs should be four. For multiple active

speakers, the large aperture arrays (0.4-0.55m) score better than the smaller array

with 0.2m diameter. Therefore, if the application permits, increasing the number

of microphones and the diameter improves ASL methods. For the 0.55m array, the

accuracy drops from 80% to 65% for a single speaker when using only three micro-

phone pairs instead of twelve. For two concurrent speakers, the smaller array with

0.2m diameter requires at least a 15◦ threshold to bring the accuracy close to the

large aperture arrays, whereas the 0.55m diameter array achieves a similar accuracy

at only 5◦ threshold.

The results for the two real-world scenarios such as presentation and meeting

scenarios are depicted in Fig. 4.30. The recordings with real speakers pose more
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challenges than the controlled speakers, for instance, the correct labeling of the

speaker’s position and activity is difficult (without a close-talking microphones and

motion tracking system) due to involuntary movements of mouth, head and body.

The distant-speech based voice activity detection of concurrent speakers is an open

research area with limited performance for smaller time frames. A decrease in per-

formance of all algorithms in comparison to controlled cases can be attributed to

the above mentioned problems. Nevertheless, the proposed methods still show an

improvement over SRP-PHAT. In the presentation scenario, MPoPi-STF has 70%

accurate estimates within 10◦ of the true speaker positions. In comparison, SRP-

PHAT has only 58% accuracy for the same threshold. The MPoPi-STF has 61%

accuracy for the meeting scenario within 10◦ threshold. In comparison, the SRP-

PHAT has only 41% accurate estimates.

In the last part of the experiments, the setup was used to evaluate the MPoPi

algorithm for moving speakers. The detection and accuracy results for these exper-

iments for a single speaker are presented in Fig. 4.31. This preliminary case study

was carried out to see if a moving speaker can be tracked with a circular microphone

array as the focus of this thesis has been to improve the location accuracy for the

case of static multiple sources in meeting rooms or office space environments. Both

MPoPi and SRP-PHAT generates erroneous location estimates. The MPoPi algo-

rithm has 70% accurate estimates within 15◦ of the true speaker position, whereas

SRP-PHAT gives 61% for the same threshold. The results in Fig. 4.33 show the

estimates of MPoPi algorithm for two moving speaker scenarios, where the speakers

cross-over and approach-and-retreat. The estimation accuracy can be improved by

using a tracker taking into account a dynamical model and history of observations

with a likelihood function instead of with a direct estimation. The application of

sequential Monte Carlo methods to speech signals have become an active area of

research in recent years, the recursive Bayesian filter or Particle Filters (PF) are

two of such methods. In this thesis, the proposed ASL algorithms are combined

with the PF tracking framework to propose new methods, which will be discussed

in detail in Chapter 5.

4.7 Conclusions

This chapter presented different ways of combining the periodicity information of the

speaker in the location estimation task. The full-band PoPi algorithm failed to pro-
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vide robust location estimates in realistic environment. The cepstrum and PHAT

weightings marginally improved the PoPi performance for a single speaker. The

MPoPi algorithm with an auditory inspired preprocessing gave the largest perfor-

mance improvement and comparable performance to SRP-PHAT for single speaker

scenarios. The addition of a frequency-selective criterion in MPoPi algorithm re-

ferred as MPoPi-FS was proposed, which grouped the frequency channels belonging

to the same speaker. In this way, a speaker with relatively low energy was empha-

sized more. The joint position and pitch decomposition on these grouped channels

gave robust location estimates for concurrent speaker scenarios. A pitch tracker

was integrated at a low algorithm level to create spectro-temporal regions and frag-

ments for PoPi decomposition called as MPoPi-STF. These auditory inspired tech-

niques gave on average 20% more accurate results than SRP-PHAT. Although the

performance improvement comes at a cost of high computational complexity (see

Appendix B), with the availability of increasing computing resources these days, an

implementation of a MPoPi and its variants is possible close to real-time.
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Chapter 5
Acoustic Source Tracking

This chapter presents a brief overview of traditional Acoustic Source Localization

and Tracking (ASLT) algorithms as well as the basics of the well-known Sequential

Monte-Carlo (SMC) methods, also known as particle filters. Thereafter the formula-

tion of the source tracking problem for the given setup is presented. The algorithms

proposed in Chapter 4 are combined with the particle filtering framework. Subse-

quently, a number of solutions based on the Markov Chain Monte-Carlo (MCMC)

sampling techniques are presented, which solve the well-known problems faced by

particle filters. A joint position and pitch tracking algorithm is also presented in this

chapter. In the end, the proposed ASLT algorithms are evaluated for the different

acoustic scenarios discussed in Chapter 3.

5.1 Background

In this chapter, the problem of speech source localization is defined in terms of the

optimal Bayesian solution. There are a number of techniques available in the liter-

ature to recursively estimate this solution. The well-known tracker is the Kalman

filter [95], which assumes that the underlying process is linear and Gaussian (in-

cluding the process and measurement noises in the system). Therefore, it can be

parameterized by the mean and covariance. Under such conditions, an analytic so-

lution can be derived by a set of parametric equations to recursively estimate the

posterior density providing the current state of the system. These assumptions are

not strictly valid in real-world scenarios where the speakers often change their lo-

cation and there is a significant speech overlap along with short speech utterances

107
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(typically less than a second). In case of source localization using a microphone

array, the TDoAs are estimated for various pairs and combined through a certain

criterion to find the position of the source. The TDoA of a speech source at position

γs is a non-linear function expressed as

T ({γm1,γm2},γs) =
||γs − γm1|| − ||γs − γm2||

c
, (5.1)

where γm1 and γm2 are the positions of a pair of microphones in Cartesian coor-

dinates, and c is the speed of sound. The position of sources can be estimated by

minimizing the error function e(γs) given as

e(γs) =
N−1
∑

i=0

1

σ2
i

[τ̂i − T (·)]2, (5.2)

where τ̂i is the observed TDoA for a pair of microphones and σ2
i is the error co-

variance associated with this observation [6]. Because T (·) is non-linear, different

linearization techniques such as a Taylor’s series expansion [96] and applying the

Extended Kalman Filters (EKF) [97] have been used in literature. However, it is

difficult to tune the parameters of these algorithms. In order to avoid the lineariza-

tion step and to include non-Gaussian measurement noise, the Unscented Kalman

Filter (UKF) has been proposed in literature [98, 99]. A recent application of the

UKF to the speaker localization problem is presented in [100]. The spontaneous

speech produced in realistic environments can be highly dynamic in terms of space

such as fast speaker changes and time such as short speech utterances, which makes

it a challenging task to apply these techniques in such scenarios.

As an alternative to the conventional tracking approaches, the SMC methods

known as Particle Filtering (PF) provide a probabilistic framework to track acous-

tic sources in a realistic environment. In principle, the PF methods approximate

the optimal Bayesian filter by representing probability distributions through a finite

set of particles [101, 102]. For a state-space model with a given dynamical model,

an observation model, and sampling techniques, the particle filter recursively ap-

proximates the filtering distribution of the states. The candidate sources’ locations

are predicted and measured by carrying out a random search in the defined space

and evaluating their respective likelihoods. Applications of particle filters to the sin-

gle acoustic source localization and tracking can be found in [103, 104]. Although

the PF methods have been successfully applied in realistic scenarios, there are still
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some open issues to resolve. The conventional particle filtering framework is diffi-

cult to extend to spontaneous multi-party speech scenarios. Under such conditions,

the PF methods either require multisource models (or multi-modal distributions)

or the adaptation of a single-source model to switch between different speakers’

positions. In order to resolve the data association problem of PF methods, an accu-

rate estimation of the number of active speakers is required, which is non-trivial in

multisource reverberant scenarios. Moreover, complex birth/death rules should be

created for rapidly varying numbers of active sources. In this chapter, the particle

filtering framework is modified for joint position-pitch tracking of single and multiple

concurrent sources. Moreover, solutions to some of the above mentioned problems

related to the application of particle filters in such scenarios are presented.

5.2 Particle Filter Based Source Tracking

Particle filters are widely used in practical applications of tracking single and multi-

ple speakers due to their ability in dealing with multimodality, non-linear functions,

and non-Gaussian noise. The idea behind the state-space approaches such as parti-

cle filters is that there is temporal continuity in peaks arising due to real sources in

the observations, whereas the outliers have no temporal consistency. According to

[102], the tracking problem can be defined as follows:

Let the evolution of state Θk of a target at time-step k be given by

Θk = Fk(Θk−1,nk−1), (5.3)

where Fk can be a non-linear function of the state Θk−1, and nk−1 is an independent

identically distributed (i.i.d) process noise sequence. The above equation defines the

dynamics of the source and how the states are evolving. There is a measurement

process using any source localization algorithm, where the observation Yk is available

in the form of noisy measurement of the hidden state Θk given as

Yk = T k(Θk,vk), (5.4)

where T k is a non-linear function defined in (5.1), and vk is a possibly non-Gaussian

i.i.d measurement noise sequence. The task at hand is to track speech sources with

the source state defined as Θk = [ϕ̂1, ϕ̂2, · · · , ϕ̂S, Ns], where ϕ̂s is the DoA for
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source s and Ns is the total number of sources active at the current time-step k. Let

Y1:k = [Y1. · · · ,Yk] denote the concatenation of all measurements up to the time

frame k. The aim is then to recursively estimate the posterior filtering distribution

p(Θk|Y1:k) using Bayes’ Theorem as follows:

p(Θk|Y1:k−1) =

∫

p(Θk|Θk−1)p(Θk−1|Y1:k−1)dΘk−1

p(Θk|Y1:k) ∝ p(Yk|Θk)p(Θk|Y1:k−1). (5.5)

The first step is the prediction step, which will use the combined dynamical model

p(Θk|Θk−1) to propagate the previous posterior p(Θk−1|Y1:k−1) to give the estimate

of the predictive distribution p(Θk|Y1:k−1). The second step is the update step, where

the likelihood p(Yk|Θk) is combined with the predictive distribution at time-step k.

Particle filters essentially implement the recursions in (5.5) by using a large set

of discrete samples, so called particles, with associated discrete probability masses

commonly known as weights wk. The symbolic representation of the particle filter

is shown in Fig. 5.1, where the set of particles with the corresponding weights ap-

proximates the true posterior distribution by following the steps outlined above. In

the current application, the measurements Yk are the marginalized MPoPi decom-

positions over the F0 dimension given as

Yk =
∑

F0

ρk(ϕ0, F0). (5.6)

Fig. 5.2 shows the PoPi plane of two concurrent speakers (a male at 310◦ and a

female at 142◦). The resulting measurement function Yk is presented in the bottom

plot.

A general particle filter algorithm is presented in Algorithm 5.1. The process

is started with a set of Np state samples {Θ(i)
0 }Np

i=1 with corresponding likelihood

weights uniformly distributed in the state-space. At time-step k−1, the combination

of state samples and likelihood weights approximates the distribution p(Θk−1|Y1:k−1).

The new samples are generated by propagating the state samples from the previous

iteration conditioned on a transition equation. With the new set of particles and the

availability of the observation Yk, the likelihood of each weight is updated using the

likelihood function p(Yk|Θk). After the normalization, an additional step is carried

out to deal with one inherent problem of degeneracy (where the variance of particles
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Figure 5.1: Symbolic representation of particle filtering starting from an initializa-
tion step where the circles represent particles with uniform weights. One
iteration from time-step k − 1 to k is shown here, the size of particles
denotes the corresponding likelihood weight. The set of particles and
weights approximates a specific PDF. The steps are outlined on the
right-hand side (as defined by [10]).

increases over time and after some iterations all but one particles have negligible

weight). One possible solution presented in literature is to apply a resampling

step [102]. The basic idea of the resampling process is to eliminate particles that

have smaller weights and to increase the number of particles with larger weights.

There are many different resampling techniques proposed in literature [105]. The

Systematic resampling is used to decrease the particle variance. As the resampling

is done on a discrete representation of p(Θk|Y1:k) given by

p(Θk|Y1:k) ≈
Np
∑

i=1

w
(i)
k δ(Θk − Θ

(i)
k ), (5.7)
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Figure 5.2: Position-Pitch plane of two concurrent speakers, a male at 310◦, and a
female at 142◦. The bottom plot displays the measurement function Yk,
that is the MPoPi decomposition marginalized over the F0 dimension.

such that p(Θi∗
k = Θ

j
k) = wj

k, thus resulting in an i.i.d sample from the density.

Therefore, all the weights are reset to w(i) = 1
Np

. One side effect of the resampling

process is the problem of sample impoverishment, where particles with large weights

are selected many times. According to [102], when the process noise is small, there

will be a repetition of particles at the same sample points and all the particles will

converge to a single point after a few iterations. The authors in [102] suggested to

use MCMC sampling and Sequential Importance Resampling (SIR) techniques to

avoid this problem. Moreover, the choice of importance density is crucial for the

appropriate use of particle filters for any given problem. In the following sections, the

different parts of the particle filtering framework are discussed and new algorithms

are proposed to track multiple speakers.
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Algorithm 5.1 A generic particle filter algorithm for source tracking.

Initialization of Particle Filters:

The particle filters are randomly distributed in the state-space, {Θ(i)
0 }Np

i=1

with associated uniform weights {w0
(i) = 1/Np}Np

i=1, where i is the particle
index and Np is the number of particles.

Iteration:

1. Predict the new set of particles {Θ(i)
k }Np

i=1 by propagating the previous set

{Θ(i)
k−1}

Np

i=1 according to the dynamics model.

2. Transform the signals received at the microphones into localization measure-
ments Yk given as:

Yk = T (Yk)

3. On the basis of the observation Yk, form the likelihood function p(Yk|Θk).

4. The new weights corresponding to the particles are assigned to as:

wk
(i) = p(Yk|Θk

(i)),

and normalized to obtain

Np
∑

i=1

wk
(i) = 1.

5. Resample the particles by multiplying the particles {Θ(i)
k }Np

i=1 with higher
weights and deleting the ones with smaller weights to avoid the degeneracy
problem using a suitable resampling method. Set the weights to a uniform
value.

Location Estimation:

The final estimate for the location of sources can be calculated by clustering
the particles’ set or a histogram measure using a predefined threshold.
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Table 5.1: Selected values for dynamic model parameters.

Model σRW βΘ [Hz] v̄Θ [degree/s]
RW 1◦ - -
LM - 0.2 0.1

5.3 Dynamic Model

Various source dynamic models have been presented in literature [101] for the prob-

lem of localizing of an active source. We have used two kinds of dynamic models for

the source tracking algorithms. One is based on random walk and the other is the

Langevin model [103].

1. The Random Walk (RW) with variance σ2 is given by

Θk = Θk−1 + σRW · uk, (5.8)

where σRW = 1◦ and uk ∽ N (0, 1) is a Gaussian variable with zero mean and

unit variance.

2. The Langevin Model (LM) is a well-known process to characterize stochastic

motion. It assumes that the source motion is independent and identically dis-

tributed in each Cartesian co-ordinate. To track the DoAs of active sources,

the model is transformed for angular co-ordinates resulting in following equa-

tions

Θ̇k = aΘΘ̇k−1 + bΘuΘ, (5.9a)

Θk = Θk−1 + TUΘ̇k, (5.9b)

where uΘ ∽ N (0, 1), and TU is the time interval between two consecutive

updates of the state vector, and

aΘ = exp(−βΘTU ),

bΘ = v̄Θ

√

1 − a2
Θ,

with v̄Θ is the steady-state velocity parameter, and βΘ is the rate constant.

The values of the parameters used for the experiments are shown in Table 5.1.
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5.4 Multiband Position-Pitch Estimation Based

Likelihood Function

There were some properties defined in [104] regarding the use of any localization

function as a likelihood function. The author suggested that the likelihood function

should be chosen to reflect that the peaks in the localization function belong to

likely source positions. Additionally, it should also reflect that there might be no

peak belonging to any source locations such as when no source is active, or when

spurious peaks are present due to background noise and sensor calibration errors.

Keeping in view the above mentioned criterion, a pseudo-likelihood function is

derived from the M-PoPi algorithm output based on the formulation of [104] given

as

F (Yk,Θ) = max{Pk(ϕ̂Θ), ξ0}r, (5.10)

where ϕ̂Θ is the localization parameter corresponding to the state, ξ0 ≥ 0, and

r ∈ R+. The use of r is to sharpen the peaks in the localization function. The

presence of ξ0 ensures that the function is non-negative and includes the case where

no peak in the localization function belongs to the true source [104]. The likelihood

function used to assign new weights to the particle filters is then calculated as,

p(Yk|Θk
(i)) = F (Yk,Θ

(i)
k ). In the experiments, ξ0 = 0 and r = 2 are used.

5.5 Voice Activity Detection

In order to switch the likelihood model, a simple speech/non-speech classification.

The particle filters should stop updating during the silence periods and spread the

particles randomly in the state-space. This allows the particle filters to follow the

speaker and to avoid the track loss problem when the speaker reappears at differ-

ent/same position. To classify a frame of data as speech or silence, an energy based

voice activity detection method is used. In case of a microphone array with multiple

channels, the first channel was used for the classification. A quantile-based method

is used to estimate the adaptive thresholds related to the noise level with a 15msec

/200msec conversation rule [106]. The energy-based VAD algorithm needs at least

50 frames or 1 sec of speech signal to make the speaker activity decision. This is a

limitation for the framewise ASL method. Therefore a framewise VAD method is
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presented, which makes the decision by defining a threshold on the maximum value

of the position-pitch matrix. The threshold is learned from the recorded data. Even

though the previous VAD method is more robust than the latter, in most of the

experiments, the framewise VAD method is used except if stated otherwise.

5.6 Particle Filter with Integrated Voice Activity

Detection

The tracking algorithm continuously updates the source locations during the silence

periods occurring in the middle of speech signals, as if the source was still active.

This makes it necessary to include voice activity detection in the tracking framework.

The idea introduced in [107] is used to integrate the voice activity detector in the

likelihood function such as

p(Y|Θ) = q0 · UD(ϕ̂Θ) + Z · (1 − q0) · P(ϕ̂Θ), (5.11)

where the subscript k has been omitted for the sake of simplicity. The value q0

represents the hypothesis that the measurement originates from clutter, and 1 − q0

indicates that the measurement originates from a true source. ϕ̂Θ corresponds to

the state vector Θ and UD is the uniform Probability Density Function (PDF) over

the considered state-space D. The second term in (5.11) is the pseudo-likelihood

function P(·) derived from the MPoPi algorithm as explained in Section 5.2 and Z
is the normalization constant.

During the silence periods, this integration allows the tracking algorithm to put

more emphasis on the considered dynamics’ model in spreading the particles, while

at the same time reducing the importance of MPoPi observations because no use-

ful information is present when the speaker is inactive. This allows the particles

to spread in the state-space, and when the speaker reappears at a different/same

location, the algorithm can resume to track successfully.

5.7 Proposed Modification

So far the discussion is based on the bootstrap method, where the particles are

drawn without considering the current observations. The performance of the boot-

strap method degrades when the number of acoustic sources and disturbance levels
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Figure 5.3: The evolution of the measurement function Yk over time in case of two
concurrent sources. A male speaker is located at 310◦ and a female
speaker is located at 142◦. The measurement function shows speakers
presence at varying instances.

increases. Fig. 5.3 shows the time evolution of the measurement functions in case of

two concurrent sources (a male speaker at 310◦ and a female speaker at 142◦). Since

both speakers are present at varying instances, the tracker is required to reinitial-

ize and sample from the majority of the state-space to track a varying number of

sources appearing at different locations over time. Therefore, in this thesis, a scheme

is proposed, which combines the bootstrap and importance sampling techniques.

The bootstrap method was proposed in [108]. It gained popularity for being

conceptually simple and it leads to straightforward practical implementations. The

main advantage of this method is that it locks on to speaker position and does not get

affected by surrounding factors. The bootstrap method has one inherent problem:

it does not account for the current observations when propagating the particles in

the current time step. Therefore, it only generates particles defined by the previous

time step. This property has a major drawback if the speaker becomes silent, or

when he takes a longer pause and/or changes location. This results in track loss

and there is no mechanism defined in the method to recover from this problem. The

use of VAD information in the likelihood function resolves this problem but no new

samples are drawn from the state-space to track new speakers entering the acoustic

scene.



118 5. Acoustic Source Tracking

As discussed earlier, the bootstrap or the particle filter is a recursive Bayesian

filter by Monte Carlo simulations. It exhibits the posterior density function by a

set of random samples with associated weights, which asymptotically converges to

the posterior PDF. In real-life Bayesian filtering problems, the posterior density

p(Θk|Y1:k) is not available, and it is not possible to directly draw samples from it.

As an alternative, the importance sampling approach can be used [102]. It relies on

the principle that in the absence of a posterior density function, the samples can

be drawn from the importance sampling function q(·). For this distribution, the

samples Θ
(i)
k where i is the particle index can be drawn from the conditional PDF

Θ
(i)
k ∽ q(Θk|Y1:k). The corresponding weights can be drawn in the following way

[102]:

w
(i)
k ∝ w

(i)
k−1

p(Yk|Θ(i)
k )p(Θ

(i)
k |Θ(i)

k−1)

q(Θ
(i)
k |Θ(i)

k−1,Yk)
. (5.12)

An appropriate choice of the sampling function is essential to reduce the problem

of degeneracy, where the variance of particles increases over time and after a few

iterations all but one particle will end up having negligible weights. In the literature,

the optimal importance sampling function has shown to be [102]:

qopt(Θk|Θk−1,Yk) = p(Θk|Θk−1,Yk). (5.13)

In this case, the importance density takes the previous state Θk−1 and the current

observation Yk into account.

Choice of importance sampling function

In theory, any density with some assumptions can be used as an importance sampling

function. The main objective of such a function is that during the iterative update

of the particles, some are redirected to regions of state-space with high posterior

likelihoods. In the literature, the choice of sampling function varies depending on

the given problem. Therefore, the new importance sampling functions based on

MPoPi functions introduced in Chapter 4 are derived here. The MPoPi function

can be used directly as an importance sampling function

qMPoPi(Θk|Y1:k) , P, (5.14)
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where P(·) is the MPoPi function marginalized over the F0 dimension as defined

in (5.6). It does not take previous observations into account but still presents an

improvement over the bootstrap method, where the prior density p(Θk|Θk−1) is used

for importance sampling without taking any observations into account.

It is important to reiterate that qMPoPi is not a PDF but a pseudo-density function

that is not normalized. To draw importance samples from P(·), a strategy similar

to [10] is applied by defining a threshold function ΦMPoPi(ϕ), which is non-nil only

for regions of state-space, where P(ϕ) is above a certain threshold level ξ.

q̃MPoPi(Θk|Y1:k) ∝ ΦMPoPi(ϕ) =







1, if P(ϕ) ≥ ξ

0, otherwise.
(5.15)

The DoA vector ϕ , ϕk corresponds to the current state of the variable Θk.

To draw importance samples, ΦMPoPi(ϕ) is normalized as a uniform distribution.

The value of ξ is set to be thirty-five percent of the maximum value of P(·). It

is important to note that the function q̃MPoPi(Θk|Y1:k) is only used to draw state

samples. For the computation of the likelihood function qMPoPi(Θk|Y1:k) = P is used

instead.

Algorithm 5.2 presents an algorithm which combines bootstrap and importance

sampling approaches via the effective sample size parameter Neff. This parameter

either selects bootstrap for quickly locking on to speaker position and robustness in

challenging environments [103] or importance sampling for reducing the degeneracy

problem. The process starts with those particles which are randomly distributed

with uniform weights. At every iteration, the effective sample size is computed.

The decision to either choose importance sampling or simple bootstrap is based on

a pre-selected threshold (the value is fixed to Np/2, where Np is the total number

of particles). This is a tunable parameter and needs to be chosen beforehand.

Another solution to the above mentioned problems is to combine both approaches,

where a certain percentage of particles is drawn from the importance function and

the rest of the particles are drawn through bootstrapping. This approach is usually

helpful in cases where the threshold does not yield good results. The modification of

the approach is shown in Algorithm 5.3. In this case, the bootstrap process is carried

out first, then a certain percentage of particles is deleted and re-populated with

samples and their corresponding likelihood weights using the importance density
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function. The parameter Jp defines re-population factor for particles. This provides

a surveillance mechanism to search for new sources while keeping track of active

ones. As a new source appears at a different location, the particles will be able to

track the new source without the problem of track loss.

In this thesis, the bootstrap method is combined with the importance sampling

technique to create algorithms which can recover from track loss and have the prop-

erty of re-initialization, which is necessary for concurrent speaker scenarios. The

proposed algorithms are combined with the three ASL algorithms presented in Chap-

ter 4 such as: MPoPi, MPoPi-FS and MPoPi-STF methods. For each ASL method,

the PoPi decomposition matrix is used as an importance sampling function. The

best fitting PF algorithm is used for every ASL method. The details of the exten-

sions are presented in the experimental section of this chapter.

The next section presents a novel joint position and pitch tracking algorithm.

Moreover, a new particle filter-based dynamical model for pitch tracking is presented.

The particle filtering framework is redefined for this problem, where state-vector

includes both the pitch and the DoA estimates.
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Algorithm 5.2 Proposed SIS based algorithm

Initialization of Particle Filters:

The particle filters are randomly distributed in the state-space, {Θ(i)
0 }Np

i=1

with associated uniform weights {w0
(i) = 1/Np}Np

i=1, where i is the particle
index and Np is the number of particles.

Iteration:

1. Compute Neff given as:

Neff =
1

Np
∑

i=1

(w
(i)
k )2

2. If Neff <
Np

2
Importance sampling:

a) Sample the particles Θ
(i)
k ∽ q̃(Θ

(i)
k |Y1:k)

b) Compute the importance weights:

w̃
(i)
k = p(Yk|Θ(i)

k ) · min

{

p(Θ
(i)
k |Y1:k−1)

q(Θ
(i)
k |Y1:k)

, 1

}

3. Otherwise Bootstrap:

a) Sample the particles Θ
(i)
k ∽ p(Θ

(i)
k |Y1:k−1)

b) Compute the likelihood weights

wk
(i) ∝ wk−1

(i) · p(Yk|Θ(i)
k )

4. Finally, normalize to obtain

Np
∑

i=1

wk
(i) = 1.

Location Estimation:

The final estimate for the location of sources can be calculated by clustering
the particles’ set or a histogram measure using a predefined threshold.
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Algorithm 5.3 Proposed SIR algorithm

Initialization of Particle Filters:

The particle filters are randomly distributed in the state-space, {Θ(i)
0 }Np

i=1

with associated uniform weights {w0
(i) = 1/Np}Np

i=1, where i is the particle
index and Np is the number of particles.

Iteration:

1. Bootstrap:

2. Sample the particles Θ
(i)
k ∽ p(Θ

(i)
k |Y1:k−1)

3. Compute the likelihood weights

wk
(i) ∝ wk−1

(i) · p(Yk|Θ(i)
k )

4. Select a subset of particles Jp:

ŵ = SORT(w), in descending order and store indices

Θ̂k = Θk(ind(ŵ)), ind(ŵ) are weight indices

5. Importance sampling:

6. Sample the remaining (Np − Jp) particles Θ̃
(i)
k ∽ q̃(Θ̃

(i)
k |Y1:k)

7. Compute the corresponding importance weights:

w̃
(i)
k = p(Yk|Θ̃(i)

k ) · min

{

p(Θ̃
(i)
k |Y1:k−1)

q(Θ̃
(i)
k |Y1:k)

, 1

}

8. Create the new set of particles and weights:

Θ̌k = [Θ̂k; Θ̃k]

w̌k = [ŵk; w̃k]

9. Finally, normalize to obtain

Np
∑

i=1

w̌
(i)
k = 1.

Location Estimation:

The final estimate for the location of sources can be calculated by clustering
the particles’ set or a histogram measure using a predefined threshold.
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Importance Function using MPoPi

Unlike Fig. 5.2, where the position-pitch plane is marginalized and used as a mea-

surement function Yk for state estimation. This section presents an extension of the

particle filters for joint position and pitch estimation.

A new dynamic model based on the random walk is defined for the pitch tracking,

where F is the state-vector of pitch. At every iteration k, it is determined as

Fk = Fk−1 + uk, (5.16)

where uk models the pitch changes in consecutive time frames, which is based on

Laplacian distribution given as

p(∆p) =
1

2λp

exp

(

−|∆p − lp|
λp

)

, (5.17)

where ∆p represents pitch period changes, and lp and λp are distribution param-

eters. The parameters were estimated with a trial and error approach and fixed

at λp = 2.5 lag steps and lp = 0.4 lag steps. The authors in [90] cited the decli-

nation phenomenon as the reason to use positive lp. The declination phenomenon

is associated with the natural speech, where it suggests that the speech utterance

has a tendency for pitch periods to increase (and the respective pitch frequencies to

decrease). Moreover, the pitch and DoA dynamics are modeled independently. The

source state is redefined as αk = [ϕ̂, F̂0]k, where ϕ̂ is the DoA, and F̂0 is the pitch

estimate of an active source at the current time step k. 2D particles are used here,

where each dimension contains state samples representing the position and pitch

with corresponding combined likelihood weights. For the joint tracking of position

and pitch, the MPoPi function containing position and pitch relations of the active

speakers is used as an importance sampling function given as

qMPoPi(αk|Y1:k) , P. (5.18)

In order to draw samples from the importance function, similar definition (5.15)

is used

q̃MPoPi(αk|Y1:k) ∝ ΦMPoPi(ϑ) =







1, if P(ϑ) ≥ ξ

0, otherwise.
(5.19)
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Here again the vector ϑ , ϑk corresponds to the current state of the variable αk

containing the joint DoA and pitch estimates of the active sources at time instant k.

To draw importance samples, ΦMPoPi(ϑ) is normalized as a 2D uniform distribution.

The value of ξ is set to be thirty-five percent of the maximum value of P(·). It is

important to re-iterate that the function q̃MPoPi(αk|Y1:k) is only used to draw state

samples. For the computation of the likelihood function qMPoPi(αk|Y1:k) = P is

used instead. Moreover, the likelihood function in (5.11) for the given problem is

re-defined as

p(Yk|αk) = q0 · UD + Z · (1 − q0) · Pk(·), (5.20)

where P is the 2D pseudo-likelihood function.

Figs. 5.4(a)-(i) illustrate the process of joint position and pitch tracking using

the PoPi plane. For this case, a 3 sec long speech utterance of a female speaker

placed at 328◦ is used. In the beginning, the particles are randomly spread in the

position-pitch plane. As the speaker becomes active, all the particles migrate to

the active position-pitch region. Algorithm 5.3 is selected to estimate the pitch and

DoA estimates in this case. The value of Jp is selected to be ninety percent of the

total number of particles, which is fixed at Np = 100. During each iteration, a small

number of particles is drawn from the current observation and combined with the

rest of the particles propagated from previous iteration. This technique helps in

recovering from track loss when the speaker takes a short pause.

The estimated pitch and DoA contours for the above example are shown in

Fig. 5.5. The top plot shows the estimation results of the pitch and the bottom plot

shows the DoA estimates. The pitch contour is more dynamic than the position

contour (which is fixed in this case). The proposed method makes pitch estimation

errors at the beginning of the utterance. Once the particles are converged to the

true pitch value, the joint position and pitch tracking algorithm is able to success-

fully track both DoA and pitch of the speaker. This shows that the dynamic model

selected for the pitch tracking is suitable for this application. The VAD is made on

the learned threshold for the PoPi plane. Therefore, it is difficult to distinguish the

voiced and unvoiced frames based on this information. Hence, during the unvoiced

segments, the method continues to track both pitch and DoA.
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Figure 5.4: Joint position-pitch tracking using particle filters of a female source
placed at 328◦.(a)-(i) shows the PoPi planes at different instances, “�”
shows the particle filter-based estimate, “×” shows the ground truth po-
sition and pitch value and the particles are presented by “white dots”
on the plane.
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Figure 5.5: The position-pitch tracking of a female speaker placed at 328◦. The top
plot shows the pitch and the bottom plot shows the DoA estimation over
time. The “solid-line” denotes the ground truth value and “×” shows
the estimated values for pitch and DoA.

5.8 Experimental Evaluations

In this section, the experiments presented in Chapter 4 are repeated by adding

the results of the ASLT algorithms proposed in this chapter. The total number of

particles used in all experiments is fixed at Np = 100. Due to the stochastic nature

of the algorithms, the results for all the particle filter-based methods are averaged

over ten trials. The accuracy counts and the Cumulative Distribution Function

(CDF) presented in Section 3.7 are used to evaluate the algorithms performance for

different scenarios.

5.8.1 Controlled Experiments

Here the term controlled means that the recordings were made with loudspeakers,

the reasons for the setup were discussed in Section 4.5.1.

Single Static Speaker

The single speaker scenarios are first presented, where the MPoPi and SRP-PHAT

based likelihood functions are used in the general particle filtering framework pre-
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Table 5.2: Localization accuracy in percent for different speaker positions. The bold
values represent the best performance achieved out of all 4 algorithms for
every case.

DoA 72◦ 115◦ 169◦ 252◦ 270◦ 288◦ 310◦

MPoPi 70.30 80.52 81.96 66.68 69.84 77.26 79.23
MPoPi-PF 92.39 98.39 98.00 96.75 94.10 95.56 96.67

SRP-PHAT 55.59 87.70 92.24 59.28 77.80 85.60 70.16
SRP-PHAT-PF 24.89 61.64 85.35 42.86 53.75 64.75 58.13

sented in Algorithm 5.1 referred to as “MPoPi-PF” and “SRP-PHAT-PF” methods,

respectively. Table 5.2 shows the accuracy counts for all algorithms at different

speaker DoAs. The error threshold is fixed at 5◦ and the results are averaged over

six speakers (three males and three females). The MPoPi based particle filtering

algorithm outperforms the other algorithms in every case. The main difference be-

tween the particle filtering algorithms and the detection based algorithms is the prior

knowledge of the number of speakers. In the particle filtering scheme, a histogram is

computed at every iteration to detect number of bins exceeding a predefined thresh-

old, which is fixed at 20% of the Np in all experiments. The consistent performance

of the MPoPi algorithm makes it a suitable candidate to formulate the likelihood

function, whereas the SRP-PHAT algorithm suffers from spurious peaks and gives

poor performance. The choice of source dynamic models for particle filter algorithms

in the static speaker case did not make much difference. Therefore, the random walk

model defined in (5.8) is used here. The measurements for the MPoPi algorithm are

marginalized over the F0 dimension (example shown in Fig. 5.2). This process is

carried out for all the cases in the remainder of the thesis except if stated otherwise.

Unlike Section 4.5.1, the CDF is not plotted for this case because the MPoPi-PF

method works well for the given error threshold.

Background Noise

Different background noise scenarios discussed in Section 4.5.1 are used to generate

accuracy scores for the particle filter-based algorithms. Table 5.3 presents the accu-

racy counts for a single speaker at 169◦ under different acoustic conditions, where

the results are averaged over six speakers with the error threshold fixed at 5◦. The

MPoPi-PF algorithm successfully tracks the speaker in all conditions, whereas the
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Table 5.3: Localization accuracy in percent versus different background noise of a
single speaker placed at 169◦, where bold values represent the best per-
formance achieved out of all 4 algorithms for every case.

Noise Type Beamer Window Door Machine
MPoPi 79.87 77.76 74.49 82.85

MPoPi-PF 97.52 82.05 96.67 98.00

SRP-PHAT 73.50 76.22 66.19 92.24
SRP-PHAT-PF 60.36 41.43 88.46 85.35

Table 5.4: Localization accuracy in percent versus different background noise of a
single speaker placed at 310◦, where bold values represent the best per-
formance achieved out of all 4 algorithms for every case.

Noise Type Beamer Window Door Machine
MPoPi 82.16 86.68 83.55 81.71

MPoPi-PF 90.20 93.89 97.14 96.67

SRP-PHAT 83.14 85.74 82.46 70.16
SRP-PHAT-PF 41.59 39.15 83.95 58.13

SRP-PHAT-PF algorithm gives inconsistent results. The environmental noise due

to the open window affects both algorithms more severely than other noisy con-

ditions. Table 5.4 presents the results for the 310◦ case. The MPoPi-PF method

again shows the best results in every case. The estimates of the MPoPi algorithm

become more robust by inclusion of a tracker, whereas the SRP-PHAT algorithm

benefits more by inclusion of source number information. The SRP-PHAT function

has strong peaks at wrong positions, which yields erroneous results for the particle

filtering method. Therefore, the SRP-PHAT function does not seem suitable for the

pseudo-likelihood function.

The SNR recordings presented in Section 4.5.1 are used to evaluate the tracking

algorithms performance. In these recordings, a “noise” loudspeaker emitting white

noise signal was placed on the floor at the same distance from the array as the

“speech” source. Two sets of recordings with SNR ranging from −5 dB to 20 dB

were recorded at two different “speech” source positions. In the first case, the

speech source was placed at 169◦ (closer to the noise source), and in the second

case at 310◦ (further away from the noise source). The results for both cases are
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Table 5.5: Localization accuracy in percent versus different SNR conditions for a
single speaker placed at 169◦, where bold values represent the best per-
formance achieved out of all 4 algorithms for every case.

SNR -5 dB 0dB 5dB 10 dB 15 dB 20 dB
MPoPi 25.22 38.20 52.98 66.50 75.46 75.89

MPoPi-PF 60.06 73.39 77.92 85.05 86.50 86.03

SRP-PHAT 50.83 63.79 72.48 78.79 84.85 85.20
SRP-PHAT-PF 35.70 42.28 65.07 81.87 90.73 89.06

Table 5.6: Localization accuracy in percent versus different SNR conditions for a
single speaker placed at 310◦, where bold values represent the best per-
formance achieved out of all 4 algorithms for every case.

SNR -5 dB 0dB 5dB 10 dB 15 dB 20 dB
MPoPi 16.85 34.31 48.31 58.72 66.31 70.87

MPoPi-PF 21.46 58.92 67.69 76.40 83.79 83.25

SRP-PHAT 6.27 23.13 36.54 55.54 64.99 70.23
SRP-PHAT-PF 7.67 15.50 23.20 43.70 67.31 76.78

presented in Table 5.5 and Table 5.6, respectively. All the algorithms fail to provide

robust estimated for ≤ 0 dB scenarios. The MPoPi-PF algorithm gives the most

consistent performance out of the four algorithms. This setup is different from

artificially adding the noise to the speech sources. The noise field in this case is not

diffusive and has spatial presence. The poor performance of SRP-PHAT algorithms

validates their known problem in high reverberation and low SNR scenarios. The

MPoPi methods suffer as well but yield better results than SRP-PHAT methods. In

general, SNR ≥ 25 dB is measured in the meeting room for the other scenarios (i.e.,

excluding the spatial noise source).

Multiple Speaker Scenarios

So far the algorithms are evaluated for single speaker scenarios under various acous-

tic conditions. In this section, the methods are tested for multi-speaker scenar-

ios. Here the term multi-speaker means two kinds of cases, one is the turn-taking

case where the speakers are talking without any speech overlap. The other case is
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Figure 5.6: The position tracking of a turn taking scenario: The top plot shows the
actual DoA positions, the middle plot shows the tracking results of the
bootstrap method and the bottom plot shows the results of the combi-
nation of bootstrap and importance sampling methods. The inclusion
of VAD information helps in re-initialization ability for both methods.
The bootstrap method has the difficulty of staying at one DoA position,
whereas the importance sampling based method is more consistent in
DoA estimation of active speaker. The outliers in both methods are
occurring due to voicing errors in the algorithm.
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the concurrent speaker scenario, where multiple speakers are talking at the same

time. For the turn-taking scenario, the results are only presented for the MPoPi

algorithm. Fig. 5.6 shows the tracking results of MPoPi based bootstrap and im-

portance sampling methods. The top plot shows the ground truth values of the

speakers’ positions. The middle plot shows the results for the bootstrap method

(Algorithm 5.1) using (5.11) as the pseudo-likelihood function. The bottom plot

shows the result of the combined bootstrap-importance sampling method (Algo-

rithm 5.3) using the same likelihood function. The use of VAD information in both

algorithms improves robustness in tracking a new source at different position. This

is achieved by spreading the particles randomly in the state-space during the silent

segments. When the speaker becomes active again at the new position, some parti-

cles will be in the vicinity of that position. This helps in recovering from the track

loss problem of the bootstrap method. Without VAD, the tracker remains stuck

at the previous position and is unable to track the new speaker. Algorithm 5.3

makes use of the importance sampling step introduced in Section 5.7, where it adds

a certain percentage of particles sampled from the importance sampling functions

with the previously propagated particles. The proposed method produces more con-

sistent estimates than the bootstrap method and it is able to track the change in

speaker position as well. The value of Jp defined in Algorithm 5.3 is set to ninety

percent of the total number of particles. Some wrong DoA estimates during the

speech utterances are due to voicing errors made by the speaker during short speech

pauses.

In Section 5.7, the pitch information was added in the tracking framework. The

modification of the likelihood function resulted in joint position and pitch tracking

of a single source (see, Fig. 5.4). In this section, the MPoPi based importance

sampling method (Algorithm 5.3) is tested for the multiple speaker turn-taking

scenario. Fig. 5.7 illustrates the results for the joint pitch and position tracking for

the turn-taking scenario with similar parameters as presented above. The proposed

algorithm is able to track both pitch and DoA contours. The fundamental frequency

contour is more dynamic than the speaker’s position (which is fixed in this case). The

algorithm makes errors in the beginning of each speaker-turn when the particles are

not yet converged to the true position-pitch pair. Due to absence of voiced/unvoiced

information, the tracker is unable to accurately track the pitch contour. The choice

of dynamic model for pitch tracking seems appropriate but the spectral smearing of

the speech signal in a reverberant environment makes the task of pitch estimation
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difficult. For these reasons, the task of pitch estimation is not carried out further

in this work. Rather than estimating the true pitch value, the inclusion of pitch

information in DoA estimation task proves beneficial and yields robust results in

realistic environments.

Multiple Concurrent Speakers

This section presents the same results of multiple concurrent scenarios using a similar

setup discussed in Section 4.5.1. Four more algorithms are added to the SRP-PHAT

and MPoPi methods discussed before. Two of these algorithms are the “MPoPi-

FS” and “MPoPi-STF” methods presented in Section 4.3 and Section 4.4, respec-

tively. These algorithms are included in the particle filtering framework presented

in Algorithm 5.2. The resulting algorithms are referred as “MPoPi-FS-PF” and

“MPoPi-STF-PF”.

The MPoPi-FS and MPoPi-STF method are based on auditory pre-processing of

the MPoPi algorithm using a gammatone filterbank. In the MPoPi-FS algorithm,

the frequency channels are grouped based on the pitch values of the concurrent

speakers. The PoPi decomposition is then carried out for all the sub-groups. The

particle filters are divided into an equal number of all these sub-groups. In case of

two concurrent speakers, the particles are divided into two sub-groups (50 particles

for each set). There is no temporal continuity in these segments and the speaker

positions are varying in these sub-groups. Therefore, Algorithm 5.2 is a suitable

choice in this case as it only allows to resample when the effective size of the particles

decreases below a given threshold (fixed at Np/2). The second sub-group does not

carry information at each time step. In case of no spectral grouping, the method

reverts back to the MPoPi algorithm. Therefore, using Algorithm 5.3 in this case

is more suitable. The value of Jp for Algorithm 5.3 is fixed at 40% of the total

number of particles. Similar process is used for the MPoPi-STF method. As for the

MPoPi-STF case, there is both spectral and temporal grouping but the temporal

grouping is based on the pitch information. Therefore, the particle filters provide

an additional grouping in terms of source dynamics. The MPoPi and SRP-PHAT

based particle filtering methods are using Algorithm 5.3 with similar value of Jp

used for MPoPi-FS and MPoPi-STF methods.

Figs. 5.8(a)-(g) present the results of accuracy counts plotted as CDF for two

concurrent speakers (averaged over nine speaker combinations discussed in Sec-

tion 4.5.1) starting from closely spaced speakers to oppositely placed speakers. The
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Figure 5.7: The position and pitch tracking of a turn taking scenario. The top plot shows the pitch tracking, the bottom
plot shows the results of the combination of bootstrap and importance sampling methods for DoA estimation.
A small number of estimation errors occurred during the beginning of each iterations. The algorithm is able to
converge to the true pitch and DoA values after few iterations.
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Table 5.7: Localization accuracy in percent versus different noisy conditions of two
concurrent speakers placed at 142◦ and 310◦, where bold values represent
the best performance achieved out of all algorithms for every case.

Noise Type Beamer Window Door WN WN WN
0dB 5dB 10 dB

MPoPi 67.88 68.18 65.89 50.37 59.23 63.05
MPoPi-PF 67.98 68.54 65.97 52.59 60.28 63.99
SRP-PHAT 61.23 63.91 59.81 46.86 52.39 56.81

SRP-PHAT-PF 55.44 57.42 53.16 40.71 47.69 49.94
MPoPi-FS 73.44 72.71 71.51 56.39 63.92 68.43

MPoPi-FS-PF 78.32 78.89 79.47 70.79 75.72 77.19
MPoPi-STF 80.20 80.21 78.38 64.69 72.08 77.15

MPoPi-STF-PF 78.58 78.77 77.81 69.63 73.57 78.63

error threshold is varied from 1◦ to 40◦. The MPoPi-FS-PF method works well in all

speaker interaction scenarios, whereas the MPoPi-STF does not benefit much from

the particle filtering algorithms and gives consistent results without the use of track-

ing. The results show that the addition of particle filters to the spectro-temporal

fragment based MPoPi method is not complimentary, because a low-level tracking

is already present in the MPoPi-STF method, which is based on the pitch evidence

rather than the position information. The SRP-PHAT algorithms performed the

worst out of all the algorithms. The superior performance of MPoPi-FS-PF shows

that the temporal integration of spectral regions based on position evidence is more

consistent than the temporal integrations based on the pitch evidence as in case of

MPoPi-STF.

The noise conditions presented for the two concurrent speakers in Section 4.5.1 are

repeated for the evaluation of the tracking algorithms. Table 5.7 shows the accuracy

counts for all the above mentioned algorithms. The case where the speakers were

placed at 142◦ and 310◦ is used here. The error threshold is fixed to 5◦ and the counts

are averaged over all nine speaker combinations. The MPoPi-FS based particle

filtering method gives the best results with marginal difference to the MPoPi-STF

method in all cases.

The proposed ASLT methods are also tested for three concurrent speaker scenar-

ios. Figs. 5.9(a)-(b) present the results of accuracy counts plotted as a CDF for all

algorithms in far placed and closely spaced cases. These results are averaged over



5.8. Experimental Evaluations 135

(a) (b)

1 3 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [1

00
%

]

Threshold [Deg]

310−328 Degree

 

 

SRP−PHAT
SRP−PHAT−PF
MPoPi
MPoPi−PF
MPoPi−FS
MPoPi−FS−PF
MPoPi−STF
MPoPi−STF−PF

1 3 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [1

00
%

]

Threshold [Deg]

288−310 Degree

 

 

SRP−PHAT
SRP−PHAT−PF
MPoPi
MPoPi−PF
MPoPi−FS
MPoPi−FS−PF
MPoPi−STF
MPoPi−STF−PF

(c) (d)

1 3 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [1

00
%

]

Threshold [Deg]

115−142 Degree

 

 

SRP−PHAT
SRP−PHAT−PF
MPoPi
MPoPi−PF
MPoPi−FS
MPoPi−FS−PF
MPoPi−STF
MPoPi−STF−PF

1 3 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [1

00
%

]

Threshold [Deg]

115−169 Degree

 

 

SRP−PHAT
SRP−PHAT−PF
MPoPi
MPoPi−PF
MPoPi−FS
MPoPi−FS−PF
MPoPi−STF
MPoPi−STF−PF

(e) (f)

1 3 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [1

00
%

]

Threshold [Deg]

45−310 Degree

 

 

SRP−PHAT
SRP−PHAT−PF
MPoPi
MPoPi−PF
MPoPi−FS
MPoPi−FS−PF
MPoPi−STF
MPoPi−STF−PF

1 3 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [1

00
%

]

Threshold [Deg]

72−187 Degree

 

 

SRP−PHAT
SRP−PHAT−PF
MPoPi
MPoPi−PF
MPoPi−FS
MPoPi−FS−PF
MPoPi−STF
MPoPi−STF−PF

(g)

1 3 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [1

00
%

]

Threshold [Deg]

142−310 Degree

 

 

SRP−PHAT
SRP−PHAT−PF
MPoPi
MPoPi−PF
MPoPi−FS
MPoPi−FS−PF
MPoPi−STF
MPoPi−STF−PF

Figure 5.8: Accuracy counts versus the error threshold plotted as a CDF for two
concurrent speakers at different speaker positions (a)-(g) starting from
closely spaced going up to oppositely placed, where “–■–” represents
the SRP-PHAT algorithm, “–●–” represents the MPoPi method, “–✳–”
represent the MPoPi-FS and “–◆–” represents the MPoPi-STF method.
The dashed lines with similar legend denotes the corresponding particle
filtering algorithms for each method.
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eight speaker interactions scenarios as discussed in Section 4.5.1. The error threshold

is increased from 5◦ to 90◦. Both auditory inspired techniques outperform the SRP-

PHAT algorithms. The evidence of correct number of sources becomes much weaker

here and the tracking algorithms are unable to localize speakers accurately. The

increase in variance of particles helps in localizing closely spaced speakers as shown

in Fig. 5.9(b). The prior knowledge about the total number of sources becomes

more important as the number of speakers increases. As for the ASL algorithms,

the correct peaks are present but the likelihood functions are unable to estimate

the correct number of sources at a framewise level. Therefore, a more sophisticated

mechanism is required for the source number estimation task. This problem is be-

yond the scope of the current work. Similarly, Figs. 5.10(a)-(b) shows the accuracy

results versus the error threshold for four concurrent speaker case. The results are

averaged over five speaker interaction. The worst performance comes from the SRP-

PHAT algorithm, while the MPoPi-FS and MPoPi-STF methods are performing the

best.

5.8.2 Real Speakers Experiments

The presentation and meeting scenarios for the real speakers are discussed in Sec-

tion 4.5.2. Similar setups are used to test the ASLT algorithms presented in this

chapter. Fig. 5.11(a) shows the results for the presentation scenario and Fig. 5.11(b)

shows the results for the meeting scenario. The accuracy counts are plotted as a

CDF which are computed for all algorithms for the error threshold varying from

5◦ to 50◦. The speaker interactions for both cases are presented in Fig. 4.29. The

MPoPi-FS and MPoPi-STF based tracking algorithms give the best results for both

scenarios.

Mobile Speakers

Fig. 5.12(a) shows the tracking results of the SRP-PHAT and MPoPi algorithms for a

single mobile speaker. The details of the recordings were presented in Section 4.5.2.

The SRP-PHAT tracking algorithm generates more erroneous estimates than the

MPoPi based tracking algorithm. Fig. 5.12(b) shows the results of the accuracy

counts versus the error threshold plotted as a CDF by varying from 10◦ to 90◦.

The CDFs are computed for MPoPi and SRP-PHAT based speaker detection and
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Figure 5.9: Accuracy counts versus error threshold plotted as a CDF for three con-
current speakers at (a) 142-328-45 degrees, (b) 270-288-310 degrees,
where “–■–” represents the SRP-PHAT algorithm, “–●–” represents
the MPoPi method, “–✳–” represent the MPoPi-FS and “–◆–” repre-
sents the MPoPi-STF method. The dashed lines with similar legend
denotes the corresponding particle filtering algorithms for each method.
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Figure 5.10: Accuracy counts versus error threshold plotted as a CDF for four con-
current speakers at (a) 115-142-288-310 degrees, (b) 270-288-310-328
degrees, where “–■–” represents the SRP-PHAT algorithm, “–●–” rep-
resents the MPoPi method, “–✳–” represent the MPoPi-FS and “–◆–”
represents the MPoPi-STF method. The dashed lines with similar
legend denotes the corresponding particle filtering algorithms for each
method.
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Figure 5.11: Accuracy counts versus error threshold plotted as a CDF for real-world
speaker interaction scenarios (a) Presentation style, and (b) Meeting
style. The “–■–” represents the SRP-PHAT algorithm, “–●–” repre-
sents the MPoPi method, “–✳–” represent the MPoPi-FS and “–★–”
represents the MPoPi-STF method. The dashed lines with similar
legend denotes the corresponding particle filtering algorithms for each
method.

tracking algorithms, where MPoPi-PF performs the best out of all algorithms in this

realistic scenario.

5.9 Discussion

The ASLT algorithms proposed in this chapter were tested under a wide range of

scenarios using the multi-channel recordings made in a regular meeting room. For

the controlled setups, the experiments for the single speaker case highlight the most

commonly occurring scenario in an office space or a meeting room. The results of the

MPoPi based particle filtering algorithm gives on average 96% accurate estimates

within 5◦ error threshold for a whole range of speaker positions. To obtain speaker

independent results for each speaker position, the accuracy counts are averaged

over multiple speakers (six in the single speaker case). The conventional MPoPi

algorithm has just 75% correct estimates within 5◦ of the true speaker DoA. The

pseudo-likelihood function defined in (5.11) for the tracking framework works really

well for the MPoPi algorithm. As depicted in Table 5.2, the SRP-PHAT likelihood

function suffers from strong reflections causing anomalies in the location estimates.

The SRP-PHAT tracker gets stuck at local maxima and is unable to track the true



5.9. Discussion 139

(a) (b)

400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

Frames

D
o

A
 [

d
e

g
]

 

 
SRP−PHAT Est.
MPoPi Est.
Ground Truth

10 15 20 25 30 40 50 60 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 [

1
0

0
%

]

Threshold [deg]

 

 

MPoPi
MPoPi−PF
SRP−PHAT
SRP−PHAT−PF

Figure 5.12: A single speaker moving in front of the array (a) Detection results
of particle filters using SRP-PHAT (“♦”) and MPoPi(“×”) method,
(b) Accuracy counts versus error threshold, “–■–” represents SRP-
PHAT and “–●–” represents the MPoPi method. The dashed lines with
similar legend denotes the corresponding particle filtering algorithms for
each method.

peak in the likelihood function belonging to the actual speaker. On average SRP-

PHAT tracker has just 56% accurate estimates for the same threshold. This is a

20% drop in accuracy from the 76% accurate estimates achieved by conventional

SRP-PHAT. This shows that the thresholding of SRP-PHAT response to estimate

speaker’s DoA as it is done in the conventional method gives better results than

using the complete response. Another critical information is the a priori knowledge

of total number of active speakers. Therefore, the MPoPi algorithm’s consistent

performance makes it suitable for use in practice.

The experiments for the single speaker case for different background noise yield

similar results. These results presented for the two cases in Table 5.3 and Table 5.4

show the robustness of the MPoPi-PF method in a wide variety of acoustic condi-

tions by giving on average 95% correct estimates within 5◦ of true speaker’s DoA.

The SRP-PHAT-PF method is unable to give consistent performance and gives on

average 62% accurate DoA estimates within a 5◦ threshold. The likelihood functions

based on the SRP-PHAT output functions suffer from presence of virtual sources

at multiple positions. It is difficult to track the true source position as the particle

filtering algorithm gets stuck at the local maxima. A hard-decision method using

the information about the total number of sources works better in such scenarios
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as evident from the results of the conventional SRP-PHAT algorithm. The SNR

experiments repeated for the two background noise cases as shown in Table 5.5 and

Table 5.6 follow a similar trend. The accuracy of both methods decreases signif-

icantly for SNR≤ 0 dB. On average MPoPi-PF has 72% accurate estimates and

SRP-PHAT-PF has 53% accurate estimates for a 5◦ threshold.

The evaluations were further extended to the multiple speaker scenarios. The

interactions of speakers were defined in two separate cases. One was termed turn-

taking scenario, where multiple speakers are participating but there is no speaker

overlap. The second case was defined as the multiple concurrent scenario, where up

to four speakers are active at the same time. For the turn-taking scenario, Fig. 5.6

shows that the conventional bootstrap algorithm with the proposed likelihood func-

tion is able to track the speakers at different positions giving up to 90% correct DoA

estimates within 10◦ threshold. A critical step in this case is the inclusion of the

VAD information in the likelihood function. During the silent regions, the VAD-

based tracker spread the particles in the state-space. Therefore, when the speaker

reappears at the same or different position, there are some particles present in the

vicinity of the speaker position to resume speaker tracking. The voicing errors made

by the VAD algorithm cause wrong position estimates. The proposed importance

sampling method is able to track the position estimates more consistently than the

bootstrap method, where 96% estimates are accurate within 5◦ of true speaker’s

DoA. Therefore, the new resampling method is more suitable in such scenarios than

the conventional resampling methods such as the systematic resampling method

used in the bootstrap method. The tracking is further extended to pitch dimension,

where the importance sampling approach proposed in Section 5.7 is used for joint

position and pitch tracking of an active speaker in the turn-taking scenario as pre-

sented in Fig. 5.7. Besides some small error made in the beginning and at the end

of each utterance, the tracker can successfully follow the pitch and DoA contours.

The inclusion of VAD in the likelihood functions is beneficial as only a small number

of wrong pitch-position estimates are generated during the silence periods. Pitch

tracking is also suffering from the absence of accurate voiced/unvoiced information

as the VAD is based on learning the noise floor of PoPi matrix in the silent regions.

The unvoiced frames have higher intensity than the noise floor resulting in erroneous

pitch measurements. The likelihood for pitch estimates also suffers from pitch halv-

ing and doubling errors. Therefore, the tracker requires more robust mechanism to

gather pitch evidence.
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The two MPoPi-based algorithms defined in Section 4.3 and Section 4.4 were

combined with the particle filtering framework. The resulting particle filtering al-

gorithms were presented in Section 5.7. The results of accuracy counts plotted as a

CDF for the two concurrent speakers scenarios were depicted in Fig. 5.8. Since the

results without the tracker have already been discussed in Section 4.6, here, only

the particle filtering results are compared. The MPoPi-STF method used the pitch

information to track speakers over time. The inclusion of particle filtering does not

improve the method’s performance. The MPoPi-FS method on the other hand does

not group the pitch cues over time but segments the frequency channels belonging

to different speakers at every frame. The inclusion of particle filtering for MPoPi-FS

is more beneficial than the MPoPi-STF method. The MPoPi-FS-PF gives on aver-

age 78% accurate estimates and MPoPi-STF-PF gives 71% accurate estimates for

5◦ error threshold. The MPoPi-PF gives an average of 62% accuracy for 5◦ thresh-

old. Whereas SRP-PHAT-PF algorithm performs worst with average 55% correct

estimates for similar threshold. The SIS based particle filtering method involves a

compromise between filter’s freedom and probability of incorrect initialization. The

parameter Jp as defined in Algorithm 5.3 selects this ratio of increasing the filter’s

freedom to search a wider area of state-space, and increasing the probability of in-

correct re-initialization. Hence, the value of Jp needs to be selected keeping in mind

the tracking application.

The results of all algorithms for the two concurrent speakers noisy scenarios are

shown in Table 5.7. On average, MPoPi-FS-PF gives the best performance out of

all algorithms with 77% accuracy within 5◦ of true speaker’s position. The results

for MPoPi-STF are on average 75%, which are comparable to MPoPi-FS-PF. The

similarity shows that the pitch information can be incorporated at different parts of

the localization process as it is done in case of MPoPi-FS and MPoPi-STF. There-

fore, the source tracking can be carried out either on the pitch contours or source

dynamics as both yield comparable results.

Figs. 5.9 and 5.10 show the accuracy plotted as CDFs for three and four con-

current speakers, respectively. The estimation of the number of sources becomes

difficult for these scenarios. The particle filtering algorithms give poor performance

in comparison to the conventional methods, where the number of speakers is known

a priori. The accurate knowledge about the total number of speakers is difficult to

gather by using a simple histogram technique. The design of a robust source number

estimator is still an open-research topic and beyond the scope of the current work.
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The tracking algorithms for real speaker interaction scenarios such as meeting

and presentation scenarios are evaluated. The results for all algorithms are shown

in Fig. 5.11. The particle filtering algorithms using the MPoPi-FS and MPoPi-STF

based importance functions show superior performance in both cases. In the pre-

sentation scenario, MPoPi-FS-PF and MPoPi-STF-PF give 80% correct estimates

for 10◦ threshold. The meeting scenario is more challenging with speech overlap of

four speakers at one time, but still both MPoPi-FS-PF and MPoPi-STF-PF manage

to give 70% correct estimates within 10◦ of actual source positions. These results

show that for practical scenarios involving real-speakers, the particle filter-based

estimation is more robust than the conventional approaches. Moreover, the results

for a mobile speaker presented in Fig. 5.12 show MPoPi-PF robustness in this sce-

nario, where only few estimation errors are made, whereas SRP-PHAT-PF makes

more estimation errors than MPoPi-PF. The accuracy results shown in Fig. 5.12(b)

validate the improved performance of the MPoPi based particle filtering over the

SRP-PHAT method. The MPoPi-PF gives more than 90% accurate DoA estimates

within 15◦ threshold, whereas SRP-PHAT-PF has around 80% correct estimates for

the same threshold.

5.10 Conclusions

This chapter combined the ASL methods proposed in Chapter 4 in the particle

filtering framework. The problem of source localization and tracking was developed

using the new importance sampling functions. These functions were based on the

MPoPi algorithm presented in Chapter 4. Two new particle filtering algorithms were

proposed, which combine the bootstrapping and importance sampling approaches

for localization and tracking of multiple speakers. The proposed ASLT algorithms

were evaluated using the corpus presented in Chapter 3. These new algorithms

show improved localization accuracy over the SRP-PHAT method in a wide range

of scenarios involving both controlled and real speaker setups.
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Conclusions and Future Work

This work treats the problem of acoustic source localization and tracking using a

microphone array. The ASL problem was formulated in Chapter 2 along with the

discussion about the signal model used for location estimation. The details about

the new multi-channel database were presented in Chapter 3. Different acoustic

measurements and evaluation metrics to determine accuracy of location estimates

were outlined. Furthermore, a detailed discussion about the segmentation process

of the reference speech files was presented. This labeling process allowed to accu-

rately evaluate the algorithms’ performance for concurrent speaker scenarios. In

Chapter 4, a speech-related feature known as the fundamental frequency was em-

phasized in the localization process by using a novel joint position and pitch (PoPi)

decomposition method. To improve the performance of the PoPi method in realistic

scenarios, different weighting functions were proposed. These weighting functions

were based on cepstrum analysis and the well-known PHAT weighting of the GCC

methods. An auditory inspired pre-processing was proposed for the PoPi method

and the resulting algorithm was referred to as the MPoPi method. The usefulness of

that pre-processing step was shown through an illustrative example using a speech

segment with two concurrent sources. Furthermore, the grouping of location cues

was carried out in two different ways. The location cues were estimated by grouping

different subbands of the MPoPi method based on the pitch information. That re-

sulted in a low-level tracking of multiple concurrent speakers. A frequency-selective

criterion using a single speech segment was used to group different frequency chan-

nels belonging to different speakers in the case of concurrent speakers. The location

cues were estimated from the individual MPoPi decompositions of those groups. All
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those CASA techniques were then combined in the particle filtering framework. The

proposed ASLT methods were presented in Chapter 5. The MPoPi decomposition

proved to be a suitable importance sampling function in experimental evaluations

under various acoustic conditions. The modifications to the MPoPi method us-

ing the frequency-selective criterion (MPoPi-FS) was successfully combined with

the particle filtering algorithm. The combination of the low-level pitch tracking

and location-based particle filtering did not significantly improve location accuracy.

Therefore, either approach can be used for speaker localization, but the frequency-

selective criterion with particle filters gave consistent results in most of the cases. All

the proposed ASLT methods were evaluated with both controlled and real speaker

experiments under various acoustic conditions. In conclusion, this thesis showed that

the combination of CASA and SMC techniques yields better results in comparison

to the conventional methods such as SRP-PHAT.

Result Comparison with the Selected Theses

The experimental results of this thesis are compared with the results reported in

the doctoral work listed in Section 1.1.1. The comparison is focused on the experi-

mental setup used to evaluate the algorithms and the results reported for different

speaker scenarios. The work done by Michael Brandstein [7] presented the theoret-

ical framework of source location estimates. The Linear Intersection (LI) method

presented in the thesis was tested for practical speech source localization. The suc-

cessful localization of individual talkers in multi-speaker scenarios is achieved using

a 10-element bilinear array and three small independent arrays setup in a conference

room. The passive source localization method presented by Brandstein work is a

two-step process. In the first step, the TDEs are calculated for the microphone pairs

and then they are combined based on the array geometry to compute the location

estimates. This method leads to erroneous results in challenging environments with

high reverberation time and ambient noise. Another issue is the disambiguation

between the “real” and “virtual” sources created due to intersection of bearing lines

at multiple locations formed by the multiple microphone pairs. In the current work,

the two-step process is avoided and the multiple pairs are combined to estimate the

source location. For the single speaker scenario, the proposed joint position-pitch

estimation methods give around 80% accuracy for 5◦ error threshold. With the

inclusion of the tracker almost all location estimates are correct within this range.
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The well-known traditional SRP-PHAT method was proposed by Hector Dibiase

[8]. This is a direct method avoiding the two-step process. In his thesis, he used a

15-element microphone array placed on the wall in a mildly reverberant conference

room. The results for single speaker scenarios showed nearly 90% correct estimates

for speech sources using 4◦ error threshold. Later the 3D source localization of a

single source using the Huge Microphone Array (HMA) with 128 microphones is pre-

sented. The SRP-PHAT gives 70% correct location estimates for this task. The per-

formance of SRP-PHAT for concurrent speakers was briefly discussed without any

quantitative evaluations. In this thesis, the proposed methods are compared with

the SRP-PHAT method. The auditory pre-processing shows improved performance

over the SRP-PHAT algorithm for the single speaker as well as the multiple con-

current speaker scenarios. The tracking algorithms based on the MPoPi likelihood

functions show robust results in comparison to the SRP-PHAT methods presented

in Chapter 5. In single speaker scenarios, nearly all location estimates are correct

within 5◦ and around thirty percent more accurate estimates are achieved than SRP-

PHAT for concurrent speaker scenarios. The main issue is with the computational

complexity of the MPoPi algorithm. A comparison with the SRP-PHAT method

is shown in Appendix B, which shows the complexity of the MPoPi algorithm is

linearly increasing with the number of gammatone filters.

The other notable work in this area was carried out by Guillaume Lathoud [9]. His

work focused on the post-processing stage of the sound source localizer. The author

proposed a short-term clustering method for speaker identification using two table-

top 8-channel UCAs in a conference room. His technique used location cues along

with spectral features such as MFCCs for the speaker identification task. In the

context of the speaker detection and localization task, the author proposed a sector-

based Phase Domain Metric (PDM) following the steered beamforming principle.

The results presented for speaker detection and localization were processed through

an adaptive speech/non-speech classification and short-term clustering. The goal of

this thesis is to provide robust instantaneous location estimates, which will improve

the performance of the post-processing algorithms. Hence, the comparison of results

with this work was not carried out in this thesis.

The successful application of particle filters to track a single speaker in realistic

environments was presented by Eric Lehmann [10]. He proposed different likelihood

models based on GCC and SBF principles for tracking a single moving speaker.

The proposed methods were tested both on synthetic and real audio. The RMSE
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for different audio examples was reported to be less than 50 cm in an office environ-

ment. The author used a distributed microphone setup to track the moving speaker,

which is somewhat different from the current work. In my work, single source track-

ing results with an RMSE of around 35 cm (corresponds to 5◦ error threshold) are

achieved. In addition to that, results of tracking multiple concurrent speakers are

reported in this thesis which were only speculated in Lehmann’s work. Another no-

table difference is that in Lehmann’s work, the tracker is assigned the true starting

position of the source in the beginning. This is somewhat restrictive in practice as

the speaker true starting position is not known and must be determined by the ASL

methods. The tracking algorithms proposed in this thesis are randomly initialized,

which is a necessary condition for application of any ASLT algorithm in practice.

A recent attempt in use of particle filters for multiple speakers tracking was re-

ported by Maurice Fallon [11]. The results reported in his work were based on

recordings made with the distributed microphone setup. The joint location and ori-

entation estimates with an RMSE of 25 cm were reported for a single moving speaker

scenario. The track-before-detect framework reported in Fallon’s thesis showed bet-

ter location estimates with an RMSE of less than 10 cm at different levels of SNR.

This framework also assumes that the source positions are known at the start of

the tracking algorithm and that the sources remain active throughout. Keeping

this shortcoming in mind, Fallon proposed a probabilistic variable-dimension parti-

cle filtering algorithm. For the variable-dimension particle filtering algorithm, only

illustrative examples for speaker tracking were presented. Therefore, it is difficult

to compare the algorithms. Moreover, there were certain heuristics applied for the

particle addition and removal mechanism. The success of such algorithms in a wide

variety of scenarios is difficult to foresee.

Future Work

The problem addressed in this thesis leads to some interesting new directions, which

are important and significant to pursue for a practical Sound Source Localization

(SSL) system. The use of VAD makes the location estimates robust, where the loca-

tion estimates can be discarded based on the likelihood value assigned for the current

frame by the VAD algorithm. Therefore, a robust distant-speech VAD method for

concurrent speaker scenarios is desired, which can be used in conjunction with the
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SSL system. Another important aspect is to incorporate the information of speaker

orientation in the localization process. For hands-free communication, the use of

cross-correlations or the SBF to extract the orientation information can be of greater

value in practice. The a priori knowledge about the number of active speakers is

required for traditional ASL algorithms. This task is not trivial and needs to be

combined with the ASL algorithms to perform the localization of active speakers in

a stand-alone manner. The improved performance of the MPoPi methods comes at

a price of higher computational complexity than the modified SRP-PHAT method.

As shown in Appendix B, the computational complexity is directly proportional

to the number of gammatone filters. Therefore, a computationally efficient form of

MPoPi algorithm that yields same performance should be investigated in the future.
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Appendix A
Relationship Between SRP-PHAT and

MPoPi Approaches

According to the author in [8], the traditional SRP-PHAT for a M channel mi-

crophone array can be computed by summing the GCC-PHAT of all possible mi-

crophone pairs shifted by the steering delays (excluding the auto-correlations and

symmetric pairs). Therefore, the SRP-PHAT response according to (2.20)

P(∆1 . . .∆M) = 2π

M
∑

k=1

M
∑

q=k+1

Rkq(∆q − ∆l). (A.1)

where Rkq is the GCC-PHAT between signals received at microphone k and micro-

phone q, which according to (4.2) is given as

Rlk(∆lk) =

∫ +∞

−∞

1

|Xk(ω)X∗
q (ω)|Xk(ω)X∗

q (ω) exp(jω∆kq) dω (A.2)

The first term after the integration is the PHAT weighting. If the PHAT weighting

is disabled and set to 1 and by taking only the diametrically placed pairs mp for the

UCA, the relation in (2.20) can be rewritten as

P (∆) =

Mp
∑

mp=1

Rmp
(∆mp

) (A.3)

where ∆mp
is defined as the set of steering delays for every direction. Similarly, if

the full-band PoPi decomposition defined in (4.3) considers only the end-fire length
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(in samples) of the cross-correlation instead of 2K − 1 peaks (no pitch estimation),

the definition reduces to:

ρ(ϕ0) =

Mp
∑

mp=1

Rmp
(O(ϕ0,mp

)) (A.4)

According to (A.3) and (A.4), there is a strong similarity between SRP-PHAT and

the PoPi decomposition as both methods use the steering delays to scan over the

DoA range. The PoPi algorithm performs the parameterized sampling of the cross-

correlation, whereas the SRP-PHAT carry out the spatial averaging across different

microphone pairs. Both algorithms will show a maximum if the set of steering delays

matches the true DoA of a sound source.
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Computational Complexity

The improved performance of MPoPi algorithm over SRP-PHAT comes at a price

in form of increased computational complexity. A comparative complexity analysis

of the two algorithms can be performed using the following definitions for each

operation as defined in [8]:

Nl ≡ # of evaluations of objective function

Nk ≡ # of DFT components in computation

Nm ≡ # of microphones in the array

Np ≡ # of pairs used

Ng ≡ # of gammatone bandpass filters for MPoPi algorithm

Nτ ≡ # of points computed for each GCC function in the time-lag domain

Using the “big-O” notation [109], the number of operations required for evalua-

tions of PoPi decomposition and SRP-PHAT algorithms. In this thesis, the SRP-

PHAT is computed by summing the GCC-PHATs of a subset of microphone pairs.

Therefore, the SRP-PHAT requires O(NlNp) +O(NkNτ Np) evaluations (the com-

plexity for traditional SRP-PHAT is O(NlNk Nm)). The PoPi decomposition com-

putes the evaluations for a set of microphone pairs, where the signals of each pair is

passed through gammatone filterbank and GCC is computed for every filter resulting

in O(NlNp) +O(Ng Nk Nτ Np).

Compute Ratio =
MPoPi operations

SRP-PHAT operations
=
O(Ng Nk Np Nτ ) +O(NlNp)

O(Nk NpNτ ) + O(NlNp)
(B.1)
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B.1 Example

In this thesis, a 24-element UCA was used to search over a grid of DOAs rang-

ing from 1 to 360 degrees with a 1-degree step size. In this case, Nl = 360. The

range of maximum lag for GCC is not defined for the SRP-PHAT and MPoPi al-

gorithms. Therefore, the GCC is computed for the maximum-lag equivalent to the

frame length of 2048 samples. For the MPoPi method, all the microphones Nm are

filtered through the gammatone filterbank Ng = 64, and GCC functions are com-

puted for all the frequency channels for every pair. This number of evaluations for

the PoPi decomposition results in Nl = 481 × 360 = 173160 evaluations. The value

of Np is chosen to be 12 as only diametrically placed microphones pairs are used

for computation. Using the derived relationship, the MPoPi method requires 64

times more computation than modified SRP-PHAT and 1.36 times when compared

to traditional SRP-PHAT. The full-band PoPi method requires 1.55 times more

computation than modified SRP-PHAT and 3.04 times more faster than the tradi-

tional SRP-PHAT. Hence, the major computation load comes from the evaluations

of GCC for every frequency band rather than the joint position-pitch relations.



Appendix C
Other Work

During the period from Nov., 2008 to Mar., 2009, I was a visiting researcher at the

Chair of Multimedia Communications and Signal Processing, University of Erlangen-

Nuremberg, Germany. During my visit, I worked on the problem of tracking speaker

identities using Blind Source Separation (BSS) systems.

The problem of speaker switching in BSS occurs due to the permutation ambi-

guity inherent to any BSS system, e.g, in multi-speaker scenarios where trajectories

of the moving sources approach and cross each other. To address this problem,

a new scheme is proposed to be used as a post-processing stage to BSS systems.

This scheme exploits the fundamental frequency F0, which is a strong speaker dis-

criminant feature especially in cross-gender cases. Various state-of-the-art pitch

estimation methods have been evaluated for this task including some new promising

techniques to compute the fundamental frequency. The proposed scheme has been

evaluated for different scenarios involving moving sources for various gender combi-

nations. The proposed scheme performed well in most of the cases. The proposed

techniques along with the results were published in a technical report.

Related Publication:

• Tania Habib, Anthony Lombard, and Walter Kellermann. Tracking Speaker

Identities in Blind Source Separation Systems. Technical report, Graz Uni-

versity of Technology, 2010.
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