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Abstract

The Bayesian inversion of measurement data for the solution of inverse prob-
lems forms an attractive though computational expensive approach to gain
statistical knowledge about the quantity of interest given the measured data
and the model. This thesis accesses the issue of accelerating computational
inference and the topic of Bayesian calibration of computer models for electri-
cal tomography with examples for electrical capacitance tomography (ECT).
The first part of the thesis covers the acceleration of Markov Chain Monte
Carlo (MCMC) methods by speeding up the forward map, the use of fast
approximation techniques and the application of improved sampling tech-
niques. The finite element based forward map is reworked and a framework
maintaining Green’s functions is developed using mathematical properties
of the self adjoint boundary value problem. The framework features several
advantageous computational techniques including fast Jacobian and trans-
pose of Jacobian operations as well as exact low-rank updates using the
Woodbury identity. The methods are developed to increase the speed of
the Metropolis Hastings algorithm by the use of approximations a well as
for an efficient implementation of a Gibbs sampler. The second part of the
thesis covers the issue of model errors and the effective use of calibration
measurements to correct the forward map. Classical calibration schemes are
reviewed in the Bayesian sense and two type of auto calibration algorithms
are presented. The calibration variables are consequently treated as addi-
tional unknowns. Finally a stochastic forward map approach is investigated,
which allows the incorporation of knowledge about the error of the forward
map to quantify the error of the computer model. Summary statistics and
measured data are provided for all experiments to quantify the performance
gain of the developed approaches. The approaches to speed up statistical in-
version demonstrated the ability to accelerate all methods and increase the
statistical efficiency. With the Gibbs sampler independent samples can be
drawn with an output frequency similar to nonlinear deterministic methods.
The incorporation of calibration knowledge leads to well behaved Markov
chains even for the case of strong model errors.



Kurzfassung

Die Bayessche Inversion von Messdaten zur Lösung inverser Probleme stellt
einen attraktiven, aber zumeist rechenintensiven Ansatz dar, um für ein
gegebenes Modell und gemessene Daten statistisches Wissen über die gesuchte
Größe zu erlangen. Diese Arbeit behandelt Ansätze zur Beschleunigung
statistischer Inversionsmethoden sowie das Thema der Bayesschen Kalib-
rierung von elektrischen Tomographiesystemen. Beispiele werden am inverse
Problem der elektrischen Kapazitätstomographie (ECT) gezeigt. Der er-
sten Teil der Arbeit beschäftigt sich mit der Beschleunigung von Markov
Chain Monte Carlo (MCMC) Methoden durch schnelle Rechentechniken,
Approximationsmethoden und schnelleren Samplingverfahren. Das finite El-
emente Gleichungssystem des vorliegenden Problems wird überarbeitet und
die Eigenschaften des selbstadjungierten Randwertproblems werden durch
einen Lösungsansatz mit Green’schen Funktionen genützt. Die neuen Tech-
niken erlauben schnelle Matrix Operationen auf der Jacobimatrix sowie eine
effiziente Benützung der Woodbury Formel. Mit den entwickelten Metho-
den lässt sich anschließend der Metropolis Hastings Algorithmus beschleu-
nigen sowie ein Gibbs Sampler realisieren. Der zweite Teil der Arbeit be-
handelt die Einbringung von Kalibrierinformation zur Unterdrückung bzw.
Korrektur von Modelfehlern. Standardkalibrierverfahren werden im Bayess-
chen Rahmen evaluiert und zwei Autokalibrierverfahren werden entwickelt.
Zu letzt wird ein stochastisches Computermodel abgeleited. Dieses nützt
bestehendes Wissen von Kalibriermessungen um den aktuellen Modellfehler
zu prädizieren und damit eine Unsicherheitsangabe über die Modellausgänge
zu generieren. Die Arbeit enthält zusammenfassende Statisitiken und Mess-
daten über alle Rekonstruktionsexperimente und zeigt deren Verbesserung
hinsichtlich Beschleunigung und statistischer Effizienz. Mit dem Gibbs Sam-
pler ist es möglich unabhängige Samples mit der gleichen Frequenz zu gener-
ieren, wie typische nichtlineare Verfahren. Die Einbringung von Kalibri-
erinformation führt zu besseren Verhalten auch im Fall von starken Mod-
ellfehlern.
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1 Introduction

This first chapter provides the introductional part, the problem statement
and the outline the thesis.

1.1 A Short Introduction to Inverse Problems

In a number of fields in modern science and the daily work life people are
dealing with estimating or finding quantities of interest x ∈ RN , which are
not directly measurable or observable. Instead they can only take measure-
ments d̃ ∈ RM from some other quantities, which are somehow related to
x. Such problems are generally referred to as inverse problems or parameter
estimation problems [Ram05]. Examples for such problems are process tomo-
graphic applications like electrical capacitance tomography (ECT), medical
imaging techniques like electrical impedance tomography (EIT) [Hol05], com-
puted tomography or optical diffusion tomography, geophysical problems like
reservoir modeling, or quality control applications like nondestructive mate-
rial testing or remote sensing applications. The underlying physical problem
is given by determining x from data d̃. for the given process P (·). An often
used model for the measurement process is given by

d̃ = P (x) + v, (1.1)

where v presents an additive noise term. There also exist a number of other
process models like e.g. multiplicative noise models or noise models with
a more complex interaction of the noise variable v but in this work the
additive noise model will be maintained. For the solution of the given task a
(computer) model F (x) is constructed, which is referred to as forward map
F : x 7→ y. Models or forward maps are the key component of all inverse
problems as they build the link between the quantities of interest and the
measured quantities. The obvious claim on the forward map is given by

F (x) = P (x) ∀x, (1.2)
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which means that the model output y equals the noise free data d = P (x).
Hence, the straightforward approach

x∗ = F−1(d̃), (1.3)

appears suitable to provide the solution for the inverse problem, which also
gives the name to the problem type.

In traditionally deterministic inversion theory, the inversion of F (·) to deter-
mine x is mostly treated as an optimization problem [TV82] of form

x∗ = arg min
x
||F (x)− d̃||. (1.4)

Powerful optimization algorithms are used to provide an efficient manip-
ulation strategy for x in order to minimize the misfit between the model
output y = F (x) and the measured data d̃ for an appropriate cost function
and an appropriate norm [Vog02], [Han98]. However, the pure minimization
of the misfit between the model output and the measurements may fail to
provide useful inverses for certain problems. This comes due to the inher-
ently ill-posed nature of some of the examples previously mentioned [Bra07],
which makes a direct inversion of F (·) unstable. Conditions for ill-posedness
were given by Hadamard in 1923 [Had23]. To overcome this problem the
original optimization problem is augmented by a stabilization scheme such
as Tikhonov regularization [Tar05]. These augmentation schemes are called
regularization schemes [Bra07], [EHN02]. Once the setup of the algorithm
is completed deterministic methods are able to provide reasonable results
within a comparatively small computation time.

A contrasting framework to deterministic inversion theory is statistical in-
version theory [KS05]. Within this theory the inverse problem is treated as
a Bayesian inference problem. Rather than providing a single result these
methods can provide the posterior density function π(x|d̃) over the solution
conditioned on the measured data d̃. Thus, also information about the qual-
ity of the result can be obtained. The attractive feature of Bayesian inversion
theory is given by the natural way of incorporating existing knowledge about
the measurement noise v and other errors as well as prior knowledge for x.
The drawback is given by the largely increased computational burden and
increased modeling requirements, which make the application of statistical
methods, especially in large scale inverse problems, often intractable. This
especially holds for problems where the underlying forward map is given by
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a partial differential equation whose solution requires numerical techniques.
Adequate computational techniques and schemes have to be deployed, to
make statistical inversion methods more suitable for a broader field of appli-
cations.

Both types of inversion methods can be applied and once implemented they
usually work fine for the task

x∗ = F−1(F (x) + v), (1.5)

where the calligraphically F should denote the stabilized inversion overcom-
ing the ill-posedness by using incorporated prior knowledge. This syntectical
constellation is referred to as an inverse crime setup [KS07]. It is made when
data is generated by the same model, which is used for the reconstruction.
Hence, it can only be done in simulation experiments. The use of inverse
crime data is sometimes useful to test the functionality of the inversion al-
gorithm. When applying the inversion algorithm to data from P (·), the
inversion often shows different effects or even does not work. The culprit for
this failure is given by the equal sign in equation (1.2). In fact, equation
(1.2) is often more like

F (x) ≈ P (x). (1.6)

More precisely the model inadequacy causes a model error

e = P (x)− F (x), (1.7)

which can outweight the measurement noise v. To overcome this problem a so
called model calibration strategy has to be applied [KO00] . This calibration
can be performed by several ways either on the so called images space or on
the data space and then the calibration information can be applied in either
a deterministic of probabilistic way. Using a calibration scheme the problem
can be solved using real data or the data from another model, which builds
the real test for the ability to solve inverse problems.

1.2 Problem Statement and Motivation

Section 1.1 provided an introduction to inverse problems and the problems
one has to face when solving them. This section states more clearly the
problems which arise and the motivation to solve them in this thesis. In this
work Bayesian methods are used to solve the inverse problem of electrical
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capacitance tomography (ECT). The two main topics of this work, which
also build the title of the thesis, are:

• Accelerating Bayesian methods,

• A Bayesian framework for calibration.

The often mentioned drawback for the application of statistical methods
is their comparative slowness with respect to deterministic methods. This
comes due to the huge number of forward map evaluations typically neces-
sary, to draw independent samples from the posterior distribution. However,
the natural incorporation of any sort of knowledge as well as the availability
of uncertainty information about the result are too interesting assets for the
application of Bayesian methods. The first part of the work deals with the
acceleration of Bayesian methods. This topic covers the items

• Accelerating the forward map.

• Fast computational techniques (Jacobian operations, etc.).

and

• Use of approximations techniques,

• Surrogate models.

The first two points cover numerical techniques, which accelerate the evalua-
tion of the forward map. These developed techniques are numerically exact,
which means that they provide the same result up to machine precision with
respect to a standard implementation, but in a fraction of the time. The
second two points use approximation techniques to further accelerate the
evaluation of the forward map but at the cost of approximation errors. Sub-
sequently specialized sampling algorithms will be used to take advantage of
the fast computational techniques. This points will be summarized by

• Accelerated sampling using approximations,

• Fast exact sampling methods.

The applicability will then be demonstrated for two types of image repre-
sentations on test examples for ECT. A main emphasis in the design of the
methods lies in a wider usability for a general class of problems. Innovation
provided by the use of fast computational methods and surrogate techniques
as well as the use of more sophisticated sampling algorithms will be referred
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to as "Computational techniques" and "Bayesian algorithms".
The second main part of this thesis considers the problem of model inade-
quacy and the concerning problems of model errors. As already mentioned
in section 1.1, calibration schemes have to be employed as countermeasures
to overcome model error problems. Traditional schemes will be reviewed and
the possibility of incorporating calibration information in a Bayesian sense
will be exploited. The points treated in this part of the thesis are

• Bayesian review of calibration approaches.

• Use of calibration information.

• Uncertainty in the calibration information.

• Calibration in a Bayesian sense.

• Incorporation of uncertainty information to the forward map.

Innovation provided by this points shall be referred to as "Bayesian formu-
lations". Again, the methods are developed to be used for different kind of
problems.

Summarizing the problem statement and the motivation provided by this
section will also end up in the innovation provided in this thesis which can
be summarized by.

• Computational techniques,

• Bayesian algorithms,

• Bayesian formulations.

1.3 Related Work and Scientific Research
Fields

Because of the motivation for this thesis and the ambitious aim of the work,
the thesis covers a range of several fields of physics, engineering, computa-
tional mathematics and science - a matter of fact when dealing with inverse
problems. The following list provides a collection related fields to the work.

• Physical modeling.
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• Computational physics for linear partial differential equation (PDE)
systems.

• Numerical mathematics.

• Approximation techniques.

• Statistical inversion methods.

• Bayesian methods.

• Markov chain Monte Carlo (MCMC) methods.

• Numerical optimization.

• Model errors and calibration techniques.

An important aspect in the development of the algorithms and methods lies
in their wider applicability to other inverse problems. This is especially in
concern with the computational methods developed for the forward map, as
well as with the issue of calibration. The following list collects several fields
where the developed computational techniques can be directly applied and
thus the full span of methods can be used directly.

• Industrial applications (electrical capacitance tomography).

• Medical applications (electrical impedance tomography).

• Geophysical methods.

• Problems with an underlying resistor network (referred to as WSW T

systems).

1.4 Outline and Novelity

This section provides the outline of the thesis and lists the novelty con-
tributed in each chapter, which are formally given by the terms computa-
tional techniques, Bayesian algorithms and Bayesian formulations, in more
detail.

Chapter 2 recalls the basics of Bayesian inversion theory and presents the
algorithms and formulations used in this thesis. Section 2.2 belong to the
topic of Bayesian algorithms and presents the Markov chain Monte Carlo
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(MCMC) methods, which are later used in this work to generate samples
from the posterior distribution. Section 2.3 is about Bayesian formulations
and covers the aspect that the used (computer) model does not fit to the
reality and hence a calibration scheme is required to make the model work
for real data. In this sense, the major significant points are given by

• Calibration in the Bayesian sense.

• Empirical Bayesian calibration.

• Mutual inference approaches.

• A stochastic forward map.

Chapter 3 deals with computational techniques for linear PDE systems. The
focus of this work lies on the forward map for ECT and the efficient solution
of the governing boundary value problem. The methods are applicable to
all systems where the stiffness matrix is a linear function of the material
coefficients and the problem is self adjoint. These systems will be referred to
as WSW T systems. In the first part of the chapter the standard solution
framework is replaced by a framework for maintaining Green’s functions. The
special advantage of the framework is the possibility of directly operating
on system specifics like the Jacobian matrix. Compared to the standard
framework, where the Jacobian has to be evaluated separately before, the
new framework allows the computation of matrix vector products of the
Jacobian or its transpose without evaluating the matrix itself. The major
points of the rework of the standard solution scheme are,

• Orthogonal decomposition for finite element (FE) systems.

• Integral evaluation by linear maps.

• A Green’s functions framework for ECT.

• Fast Jacobian and transpose of Jacobian operations.

Fast low-rank update schemes are developed which become necessary for
efficient conditional sampling. These schemes are based on the Woodbury
matrix identity and offer the possibility to efficiently solve the model for small
changes in the input data. Hereby the increased computational advantages
can be achieved with the use of Green’s functions. Further, a specialized
Woodbury formulation for WSW T systems is developed. Lastly, domain
decomposition techniques are exploited, which decrease the computational
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costs for the evaluation of the the forward map as only a smaller equation
system with respect to the original equation system has to be solved. Finally,
a computation time comparison for all methods is presented. Summarizing
the new contributions of this second part of the chapter, the novel points are

• Fast low-rank updates.

• A generalized Woodbury formulation for WSW T systems.

• Domain decomposition techniques.

In the last part of chapter 3 the application of approximation techniques
for the forward map is discussed. In these approaches, the forward map
is replaced by computational cheap approximation methods. The following
points are contributed

• Surrogate approximations.

• Polynomial approximation of the forward map.

• A reduced order physical model.

Chapter 4 is titled "Case studies" and combines the Bayesian algorithms and
formulations presented in chapter 2, with computational techniques devel-
oped in chapter 3. Necessary details for the implementation of the algorithms
are listed and a detailed analysis of the algorithms is presented. The novelty
in the results can be summarized by

• A fast deterministic algorithm using Jacobian operations.

• Accelerated inversion with different approximation techniques.

• Gibbs sampling using conditional sampling techniques.

• A Bayesian analysis of the forward map.

• A mutual inference approach.

• A Stochastic forward map.
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1.5 Publications

Throughout the genesis of this thesis, the author has published several jour-
nal publications and one invited book chapter in the field of inverse problems.
The publications are mainly in the field of electrical capacitance tomogra-
phy (ECT) and capacitive measurement systems but also an eddy current
problem is presented. The following list provides a brief summary of each
publication

• [NZWF11] This invited book chapter titled "Current reconstruction
methods for electrical capacitance tomography" deals with several as-
pects of ECT including the forward map and reconstruction algorithms.
It contains the physics of the ECT problem, and the mathematical
tools necessary for solving the forward problem using the finite ele-
ment method, as well as further methods for deriving gradients with
respect to the unknown quantities. The presented survey of current re-
construction algorithms covers the current state of the art techniques
like simple back projection algorithms, Landweber iteration methods,
offline iteration online reconstruction (OIOR) methods, optimal back
projection methods, nonlinear approaches, Bayesian recursive methods
and Bayesian inference approaches. For comparison short parts of the
book are also repeated in this work, although the developed frame-
work of computational methods for the forward map in this thesis uses
a Green’s functions approach, which offers advanced possibilities and
substantially decreased computation times.

• [NSWZ10] This paper is the journal version of [NSWZ09] and investi-
gates the resolution behavior of nonlinear reconstruction methods on
extremely coarse finite element meshes. The paper contains an analysis
of the achievable resolution in different parts of the region of interest
and presents studies about the applicability of coarse meshes compared
to fine meshes.

• [WNF11] This publication is the journal version of [WNF10]. The work
is about accelerating MCMC methods for ECT by the use of approxi-
mation techniques including surrogate models in combination with the
delayed acceptance version of the Metropolis Hastings algorithm. Sev-
eral parts of the work are also of topic in this thesis and will also appear
in this work although this thesis of coarse contains a more advanced
treatment of the tasks.
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• [NWB11] This work is the journal version of [NWB10] and deals with
the inverse problem of stress zone imaging in steel plates of electrical
machines. Stress zones occur due to punching or other production
processes and cause decreased magnetic properties in the sheet, which
result in higher losses. The work describes the eddy current forward
problem and the inverse problem and contains exemplary simulation
results.

• [NWZ11] This publication is the journal version of [NWZ10] and deals
with the robust determination of material parameters in ECT under
the impact of model errors. The paper compares the robust H∞ filter
with the Kalman filter for the case, that no calibration is performed.

• [SBN+11] This paper is the journal version of [SBN+10]. The paper
presents a sensor fusion concept for capacitance measurements and
ultrasound measurements in order to determine the object type and
the distance estimation of an object in front of a bumper. The system
is thought for roll over protection and parking assistance systems.

1.5.1 Other Publications

Beside the above mentioned journal publications also several other papers
related to the thesis were published as output of other work the author was
involved during his time as university assistant at the Institute of Electri-
cal Measurement and Measurement Signal Processing at Graz University
of Technology. The following lists summarizes these publications including
again a brief summary.

• [FZWN08] In this paper a filter algorithm has been developed, which
allows edge preserving reconstructions with a 2D ECT system for short
3D objects.

• [NS08] This paper contains parts of the authors masters thesis, where a
reconstruction algorithm for the complex conductivity was developed.

• [NS09] This paper contains other parts of the authors masters thesis,
where the physical effects inside an ECT sensor are explored and the
impact of wave propagation effects due to high excitation frequencies
is investigated.

• [NZ09] In this work different magnetic switches using ferromagnetic
shielding for a food tablet system with integrated heating were inves-
tigated by simulations and measurements.
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• [NSWZ09] This paper is the conference version of [NSWZ10].

• [ZN09] In this publication the behavior of ECT sensors with shortened
electrodes has been investigated. The work builds a first study for
capacitive systems with exposed electrodes for environmental detec-
tion tasks. For this class of problems the electrodes are always small
compared to the dimensions of the problem domain.

• [NWZ10] This publication is the conference version of [NWZ11].

• [NZ10] In this study the application of ECT algorithms for liquid level
measurements in tanks using capacitive sensors is explored.

• [NMGZ10] In this publication a baking dish was equipped with a proto-
type measurement system for impedance tomography and the electrical
properties of dough during a baking process were monitored to provide
information during the baking process.

• [NGB+10] The paper describes a simulation and measurement study
for robust sensing of human proximity on working tools.

• [SBN+10] This paper is the conference version of [SBN+11].

• [GBN+10] As a demand of an industrial project, a measurement cell
for determining the relative permittivity of foam materials was built
and presented in the work. The paper includes an uncertainty analysis
of the cell.

• [WNF10] This paper is the conference version of [WNF11].

• [NWB10] This paper is the conference version of [NWB11].

• [ZN10] In this work a ratio metric back projection algorithm for ECT
is presented. The algorithm is gain invariant, which makes it suit-
able for low cost hardware systems which offer drift behavior due to
temperature variations.

• [NOS+10] This paper summarizes the results of a collaboration with
the institute of Numerical Mathematics at TU Graz, where a boundary
element method (BEM) level set approach is used for shape determi-
nation tasks in ECT.

• [NZ11] This work builds an extension to [NZ10], where different sensors
topologies are investigated for the application of liquid level measure-
ments.



2 Bayesian Inversion and
Calibration

This chapter of the thesis presents the algorithms for accelerated computa-
tional inference for inverse problems and the topic of Bayesian formulations
to incorporate calibration information and to calibrate computer models in a
Bayesian sense. Hence, the chapter is about methods of statistical inversion
theory and some basic knowledge about probability theory for the Bayesian
approach is required. The necessary methods will be explained at each step.
Detailed information about the required fundamentals can be found e.g. in
[Siv96] or [BS 4].

Compared to deterministic inversion methods, which in general provide a
point estimate solution, statistical methods offer a different view on the
properties of the treated quantities, which can be summarized in the following
statements [KS05].

• Every variable is treated as a random variable.

• All knowledge about the quantities is expressed in the form of proba-
bility density functions (pdfs).

• Solutions are summary statistics over the posterior density function.

The attractiveness of the Bayesian approach lies in the intuitive way to incor-
porate existing knowledge about the noise or prior knowledge of the solution
into the inversion process and to incorporate uncertainty of models or cali-
bration.

2.1 Bayesian Inversion Theory

As already mentioned in the introductory part of this thesis, an inverse prob-
lem is given if one aims on determining a quantity x ∈ RN from information
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of indirect observations d̃ ∈ RM . Formally this measurement process can be
written as

d̃ = P (x,v), (2.1)

where P (·) denotes the physical process that leads to the observations. v
denotes a noise process which corrupts the otherwise noise free data d in
some way. Often v acts in an additive manner as measurement noise on
d, but for generality at this stage it should be denoted by this way. Given
knowledge about the process P (·) a model

y = F (x,v), (2.2)

is built, which is referred to as the forward map. Ideally F (·) should behave
like the process P (·), but in fact more often the interrelationship F (·) ≈ P (·)
can be achieved, as every model process is afflicted by either simplifications,
or by the fact, that some knowledge about P (·) is not available although one
would be able to model it. However, the forward map is assumed to be com-
plete in the sense that y is uniquely defined by x and v. So far all elements
used in the notation are realizations of random variables, which is necessary
due to the physical relationship. This is indicated by the use of small capitals.
The corresponding random variables are written in large capitals, i.e. x is
a realization of the random variableX. Thus, they are defined by their pdfs.

The key element of statistical inversion theory is given by Bayes law [GCSR 5],
which is given by

π(x|d̃) =
π(d̃|x)π(x)

π(d̃)
∝ π(d̃|x)π(x). (2.3)

The terms in equation (2.3) are the prior distribution π(x), the likelihood
π(d̃|x) and the evidence π(d̃). π(x|d̃) is the posterior distribution [Gre05].
The likelihood function π(d̃|x) is assigned to be a probability density func-
tion, which expresses the probability that the measurements d̃ are caused
by x. In other words, the likelihood answers the question "How likely is it,
that x causes the measured data d̃?". Thus, the likelihood quantifies the
misfit between the measured data and the output of the forward map using
knowledge about the noise process. The prior distribution π(x) forms a key
issue for the successful application of Bayesian inversion theory. Through
the prior it is possible to incorporate statistical knowledge about X. The
most simple prior is given by only evaluating the permissibility of x, i.e.
π(x) = 0 for realizations x which are infeasible and π(x) = 1 for any valid
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realization. By this, infeasible solutions are effectively neglected. An esti-
mator which maximizes the posterior distribution, is called a maximum a
posteriori (MAP) estimator. For the simple 0/1 prior the MAP estimator
is in essence a maximum likelihood (ML) estimator which avoids infeasible
solutions. Using this simple prior the quality of the estimator is already in-
creased. However, by the choice of more specific priors it is possible to build
highly effective estimators. The evidence π(d̃) is given by

π(d̃) =

∫
RN

π(d̃|x)π(x)dx, (2.4)

which is the marginal density function of the likelihood π(d̃|x). The com-
putation of the evidence is in general an infeasible task as the evaluation of
the integral becomes untractable for higher dimensional spaces or complex
forward maps. However, the evidence has only the role of a normaliza-
tion constant, which normalizes the posterior distribution. Hence, it can be
skipped, which leads to the right hand term in equation (2.3). The distri-
bution π(x|d̃) is called the posterior distribution. In essential the posterior
distribution gives answer to the question "Given the prior, how likely is it,
that x is caused by the measured data d̃?". Hence, the posterior distribution
provides statistical information about the probability of x given d̃.

The attractiveness of the Bayesian framework for inversion lies in several
aspects [Gre05]:

• The approach is applicable to any forward problem.

• No derivatives have to be computed.

• Available prior knowledge can be incorporated in a natural way.

• Information about the measurement noise can be added in the same
natural way.

• The result is a probability density function. Complete information
about the uncertainty of the result is available.

However, so far Bayes law only provides a way to evaluate the probability of
a specific realization of X. The following subsections should provide some
key issues about the application of statistical inversion and the information
one can obtain by applying Bayesian methods.
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The Likelihood Function

The likelihood function π(d̃|x) is the key element to incorporate knowledge
about the measurement noise v. The likelihood function is formally given
by

π(d̃|x) =

∫
RM

π(d̃,v|x)π(v)dv, (2.5)

which means that it is found by marginalization v out of π(d̃,v|x). The
question is about the distribution of π(d̃,v|x). By fixing all variables it
becomes clear, that for additive noise the distribution π(d̃|x,v) is given as

π(d̃|x,v) = δ(d̃− F (x)− v), (2.6)

where δ(·) is the Dirac delta function. The integral of equation (2.5) becomes
easy to solve, as it is the convolution of a function with a Dirac delta function.
Hence, the likelihood function is given as

π(d̃|x) = πv(d̃− F (x)), (2.7)

which is the distribution of the measurement noise v. For zero mean Gaus-
sian noise the likelihood function is

π(d̃|x) ∝ exp

{
−1

2

(
y − d̃

)T

Σ−1
v

(
y − d̃

)}
, (2.8)

where Σv is the covariance matrix of the noise. This derivation assumes
additive measurement noise, but the formalism can also be applied to other
noise distributions. Examples therefore are given in [KS05].

2.1.1 Estimation of Specific Quantities

The output of Bayesian inversion methods is given by equation (2.3) as the
posterior distribution. π(x|d̃) provides a relative probability about x condi-
tioned on the data d̃. Though π(x|d̃) contains complete information about
the distribution of x conditioned on d̃, the meaning of the information pro-
vided by π(x|d̃) is not that clear at the first.

The representation of the probability of single components of x from π(x|d̃)
is possible, but may not be very meaningful in order to understand the
whole information. Hence, representative numbers to represent main issues
about π(x|d̃) are necessary. Two meaningful point estimates are given by
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the maximum likelihood estimate

xML = arg max
x

π(d̃|x), (2.9)

and the maximum a posteriori estimate

xMAP = arg max
x

π(x|d̃). (2.10)

The ML estimate presents the result of highest likelihood, which means the
result x with the smallest misfit between the model output and the measured
data d̃. As no prior knowledge is used, it can generally not be applied to ill-
posed inverse problems, which rely on the incorporation of prior knowledge.
The MAP estimate uses the incorporated prior knowledge and presents a
mode of the posterior distribution. This result is referred to as a point esti-
mate of the posterior distribution.

Looking onto the properties of the likelihood function one can imagine, that
this point estimate can be found by solving an optimization problem [KS05].
In fact, this is the practical way to find estimates, as the equivalent opti-
mization problems can be efficiently solved by using methods from numeri-
cal optimization. In the case of multi-modal distributions the application of
point estimates becomes critical, as the solution dependents on the starting
point of the optimization problem. Further the MAP estimate can become
less meaningful if the distance of the MAP estimate and the main part of
the posteriori distribution is too large. In this case a more representative
estimate is the conditional mean (CM)

xCM =

∫
RN

xπ(x|d̃)dx, (2.11)

which encounters the whole posterior distribution. The uncertainty of the
CM estimate can then be stated by the conditional covariance

cov(x, d̃) =

∫
RN

(x− xCM)T (x− xCM)π(x|d̃)dx. (2.12)

The CM estimate is now different to the MAP estimate as it requires the
evaluation of an integral which can become inaccessible in the case of com-
plex forward problems or higher dimensional spaces [Liu94]. Numerical in-
tegration schemes like quadrature methods can typically not be applied for
inverse problems as they rely on knowledge about the support of the function
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and properties of the function itself. A numerical integration scheme which
proofed to converge for such integrals is Monte Carlo integration [MRR+53].
The key idea of Monte Carlo integration is to set up a random number gen-
erator which generates samples, or support points, of the target distribution.
Thinking about a discrete state space the samples are generated with a fre-
quency proportional to their probability. Hence, the integral reduces to the
mean over the samples. A class of algorithms proofed to be effective for
sampling pdfs are Markov chain Monte Carlo (MCMC) methods [Has70].

2.2 Markov Chain Monte Carlo Methods

In this section the computational tools for exploring the posterior density
function using Markov Chain Monte Carlo (MCMC) methods are explained.
Numerical methods for this task generally work on sampling methods which
means, that the algorithms aim to produce independent samples of the pos-
terior distribution for the further application of Monte Carlo Integration.
These algorithms can generally be seen as random number generators and
their efficiency strongly depends on the effective generation of independent
samples. Reports on the use of MCMC methods for solving inverse problems
have been made for several examples e.g. [MT95], [KKSM00], [WF09].

2.2.1 Markov Chains and Monte Carlo Integration

Markov chains build the key element inside MCMC methods to generate
samples from a target distribution π(·). Suppose M = {Xn}∞n=0 being a
sequence of random variables on the state space X . The process is called a
Markov chain if it satisfies the Markov condition

Pr(Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = Pr(Xn+1 = xn+1|Xn = xn).
(2.13)

The Markov condition means, that the state of Xn+1 only depends on the
previous state Xn, which is termed a first order Markov chain. The transi-
tion probability between two consecutive states is a conditional probability
and described by the transition kernel K(xn, xn+1).

Markov chains offer several mathematical properties, which shall shortly be
discussed in the following paragraph. Detailed informations about the prop-
erties can for example be found in [Tie94] or [GRS96]. The chain M is called
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homogeneous if

Pr(Xn+m+1 = xn+m+1|Xn+m = xn+m) = Pr(Xn+1 = xn+1|Xn = xn) ∀m,
(2.14)

holds. A more important property is given by the irreducibility of the chain.
On discrete state spaces, irreducibility means that all states on X inter-
communicate. Hence, the transition kernel K(·, ·) has a non zero transition
probability between each combination of the states. On continuous state
spaces, irreducibility is defined as the property, that any set of finite proba-
bility in the state space can be reached from every starting point. Another
important property of Markov chains is called reversibility. This property is
given if the so called detailed balance condition

π(xn+1)K(xn, xn+1) = π(xn)K(xn+1, xn), (2.15)

holds, which is a necessary and sufficient condition. Reversibility is the
attribute that for a given sequence M, and for a given proposal kernel, one
is not able to determine the direction of simulation.
A Markov chain may have the property of periodicity if the state xn+j can
become the state xn for j > 2. For discrete state spaces this property can be
given, if the main diagonal of the transition matrix is zero. If the proposal
kernel allows that xn+1 = xn, the kernel is called aperiodic.

Given this definitions, the sequence M converges against the target distribu-
tion π(·) for sufficient large n, if the kernel is irreducible and aperiodic. Thus,
samples from the target distribution can be generated and the powerful tool
of Monte Carlo integration can be applied [Tie94].

Monte Carlo Integration

The output of the Markov Chain is a set of samples from the probability
density function π(x). A first application, where an integral over the distri-
bution π(x) has to be evaluated, was presented by the CM estimate (2.11).
Monte Carlo integration is a general technique to approximately evaluate
integrals of a function f(x) using samples xi of π(x). For this Monte Carlo
integration is given as∫

RN

f(x)π(x)dx ≈ 1

N

N∑
i=1

f(xi). (2.16)
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By Monte Carlo integration even complex integrals can be approximated by
a mean computation from the output of the chain.

2.2.2 Metropolis Hastings Algorithm

An algorithm to generate samples from a distribution π(·) using an under-
lying Markov chain is the so called Metropolis Hastings (MH) algorithm
[MRR+53]. Its generalized form was presented in [Has70]. The algorithm is
given by the following:

1. Pick the current state x = Xn of the Markov chain.

2. With proposal density q(x,x′) generate a new state x′.

3. Compute the acceptance probability α = min
[
1, π(x′|d̃)q(x′,x)

π(x|d̃)q(x,x′)

]
.

4. With probability α accept x′ and Xn+1 = x′, otherwise reject x′ and
set Xn+1 = x.

Hereby q(x,x′) is referred to as proposal density. The so called acceptance
probability

α = min

[
1,
π(x′|d̃)q(x′,x)

π(x|d̃)q(x,x′)

]
, (2.17)

in line 3 represents the computational costly part of the MH algorithm, as
the evaluation of π(x′|d̃) requires the solution of the forward map for the
proposal candidate x′. A specific of the MH algorithm is the fact, that
proposals can become rejected. Hence, an efficient generation of proposal
candidates is mandatory. Further, the algorithm has the tendency to pro-
duce highly correlated samples of X, which means that samples with a low
lag between are almost the same. For large lags the samples can be viewed
as independent.

An extension to the MH algorithm for scalable state spaces is the so called
Metropolis Hastings Green (MHG) or reversible jump MCMC [Gre95] algo-
rithm. The idea behind this extension is to describe the generation of a new
candidate x′ by a deterministic function x′ = Ψ(x, γ), where γ is again a
random variable. If the function Ψ is differentiable and invertible the MHG
algorithm allows to change the dimension of the state space. This writes the
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acceptance ratio as

α = min

[
1,
π(x′|d̃)q(x′,x)

π(x|d̃)q(x,x′)
|Jm|

]
, (2.18)

where Jm

Jm =

∣∣∣∣∂(x′, γ′)

∂(x, γ)

∣∣∣∣ , (2.19)

is the Jacobian for the mapping from composite parameter (x, γ) to compos-
ite parameter (x′, γ′). Hence, the state space can be accessed and manipu-
lated, which can be a useful feature.

2.2.3 Delayed Acceptance MH Algorithm

The delayed acceptance Metropolis Hastings (DAMH) algorithm was pre-
sented in [CF05] and is motivated by the idea to replace the forward map
F (·) by a cheap approximation of the forward map F ∗(·) in a first step. If a
proposal evaluated by F ∗(·) is accepted, it is reevaluated using the accurate
model F (·). Thus, the DAMH algorithm can be seen like two nested MH
algorithms. The algorithm is given by

1. Pick the current state x = Xn from the Markov chain.

2. With proposal density q(x,x′) generate a new state x′.

3. Compute α = min
[
1, π∗x(x′|d̃)q(x′,x)

π∗x(x|d̃)q(x,x′)

]
.

4. With probability α accept x′ to be a proposal for the standard MH
algorithm. Otherwise set x′ = x and return to 2.

5. Compute β = min
[
1, π(x′|d̃)q(x′,x)

π(x|d̃)q(x,x′)

]
.

6. With probability β accept x′ and Xn+1 = x′, otherwise reject x′ and
set Xn+1 = x.

It is obvious to observe, that the efficiency of the DAMH algorithm strongly
depends on the quality of the approximated forward map F ∗(·). The like-
lihood function π∗x(x′|d̃) is used for the evaluation of the approximation.
The lower x expresses a possible state dependency of π∗x(x′|d̃). Again, the
extension towards the reversible jump rule can be applied. Beside this, the
DAMH algorithm provides similar overall behavior to the MH algorithm.
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2.2.4 Gibbs Sampler

A different algorithm to the class of MH algorithms is the Gibbs sampler
which was firstly prominently presented in [GG84]. More detailed informa-
tion about the algorithm can be found in [CG92]. The algorithm is given
by

1. Pick the current state x = Xn from the Markov chain.

2. For every element i of the vector x:

a) Set xi of x as independent variable, while all other elements are
fixed.

b) Draw xi ∝ π(xi|x1, x,2, . . . , xi−1, xi+1, . . . , xN) from the condi-
tional distribution.

3. Set Xn+1 = x.

The original variant of the Gibbs sampler updates the elements of the vector
x componentwise. The Gibbs sampler can be viewed as a MH algorithm
that uses the conditional distribution to generate a proposal. In this case
α reaches α = 1 and every proposal is accepted, which is a main difference
between the Gibbs sampler and MH schemes.

To generate a sample from the conditional distribution a one dimensional
sampling scheme is required. One possible method is given by inverse trans-
form sampling [Dev86] which computes

Φi(t) =

∫ t

−∞
π(x)dxi, (2.20)

and then generates a sample by

xi = Φ−1
i (u). (2.21)

where u ∝ U([0, 1]). Gibbs sampling has his historic origin for tasks, where
the individual (conditional) distributions are known but the joint distribu-
tion is unknown. Hence, the joint distribution is found by samples generated
from the different conditional distributions.

In the case that only the joint distribution is known, the conditional distribu-
tion for an element of x is in principle easy to access, as only the remaining
elements of x have to be fixed. Then the conditional distribution can for
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example be approximated by using some support points. For problems with
a complex underlying forward map this requires the repeated evaluation of
the forward map. Thus, although each proposal is accepted, the evaluation
of the conditional distribution can become computationally costly, which is a
main drawback for the application of a Gibbs sampler to complex problems
such like inverse problems.

2.2.5 Efficiency of MCMC Methods

A main issue about the application of MCMC methods is their efficiency
in terms of producing independent samples form the distribution π(·). A
measure for the efficiency of MCMC methods is the integrated auto corre-
lation time (IACT) τint. The meaning of τint can be explained by the mean
estimator

µ =
1

N

N∑
i=1

xi, (2.22)

for the random variable X. For the case, that the samples of X are indepen-
dent, the variance of the estimated mean value µ is [Kay93]

σµ =
σ

N
, (2.23)

where σ is the standard deviation of X. This does not hold for correlated
samples from X. In this case σµ becomes

σµ = τint
σ

N
(2.24)

Thus, τint presents the number of correlated samples, which have the same
variance decreasing behavior as one independent sample [Gey92]. An efficient
way to compute τint is presented in [Wol04]. As a low value of τint is of high
interest, the design of the MH kernel has to be taken with care, as the kernel
is responsible for the generation of new proposals. In this sense, the setup
of a MH algorithm is always determined by an initial tuning phase of the
kernel, which can become an expensive task, if the problem is of high dimen-
sion. For the case, that x contains a special data representation, i.e. a shape
model, also special moves can be implemented to form the proposal kernel.
This moves are mostly motivated by physical considerations and the setup
of the kernel may therefore be seen as easier. An example for this is given in
[WF09]. However, in the general case the setup of an MH algorithm remains
a certain trial and error task. Various schemes for the design of optimal
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MH algorithms are presented in [RR01]. The use of adaptive MH algorithms
[CMP08] is in general a way to get rid of this problem, but adaptive methods
also require a sophisticated setup in the initial phase in order to learn effi-
ciently enough information about the distribution to adapt correctly. A self
tuning algorithm which promises some advantages was presented in [CF10].

2.3 Calibration of Computer Models

This section deals with the steps necessary to get a computer model working
for dealing with measurement data. So far all methods have been explained
for the case, that the model F (·) is accurate enough to describe the behavior
of P (·). In this case, the measured data d̃ can be directly used as input data
for the inversion algorithm.

The belief of the relation F (·) = P (·) is in fact often more like a wish. The
development of computer models and computational methods has seen enor-
mous achievements in the past decades and highly complex large scale sim-
ulations like earthquake simulations, weather forecasting, geothermal sim-
ulations, etc. are possible today. However, inverse problems and at least
the inverse problem presented in this work, often require a higher degree of
accuracy. In this context often the two terms

• Absolute imaging,

• Differential imaging,

are used. Absolute imaging refers to the first kind of mentioned problems,
where the measurements can be used for the inversion without any further
preprocessing [VVSK99]. Differential imaging [AG96] belongs to the second
class of described problems. Although this quantification is mainly used for
the image reconstruction or the images space itself, it can also be used on
the measurements or the data space as well. For the second case it has the
meaning that calibration measurements are required. Then the algorithms
work on the difference between the actual data and the calibration data. The
practical issue of this selection depends on the degree of deviation caused by
a change of x compared to the offset value.

Almost every model with the purpose to simulate a physical system will differ
from the real system to a certain degree. This differences are caused by
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• Neglected physical effects: Often physical effects are neglected in order
to keep the forward map computationally simple. The best exam-
ples for this are electrical problems, where often Laplacian type partial
differential equations (scalar) are used instead of vectorial Helmholtz
type partial differential equations, which arise when the full Maxwells
equations are solved.

• Incorrect boundary conditions: The assumed boundary conditions do
not correspond to the reality. An electrical example for this are Neu-
mann boundary conditions, where i.e. the normal component of the
current density is assumed to be constant at the electrode. In fact, the
current density at the edges of the electrodes are higher.

• Discretization effects: Every kind of discretization (space and/or time)
causes an error. Hence, already the use of the discrete representation
for x introduces an error.

• Differences in the geometry: The exact geometry is often not known.
The wrong modelling of the domain becomes critical in regions of high
sensitivities or wrong boundary conditions.

• Truncated domains: In many cases a 2D model is used, although the
real system is always affected by 3D effects. Further, in the case of
unbounded domains, the use of the finite element method requires the
application of a far boundary, which leads to an unwanted large number
of finite elements. Decreasing the far boundary causes larger interac-
tions between the region of interest and the boundary, which lead to
different effects.

• Unmodelled behavior of the measurement chain: the behavior of the
measurement chain is almost ever neglected. However, every measure-
ment system has at least a feedback effect on the measured object
itself.

Hence, the absolute values computed by a model will differ from measured
values even in the case, that the model is believed to be representing the
exact physical system. If the difference is small enough with respect to the
noise absolute imaging can be applied. Otherwise calibration schemes have
to be introduced to handle the differences between the model F (·) and the
physical process P (·).



2 Bayesian Inversion and Calibration 26

As absolute imaging problems are obviously the less difficult case, the fol-
lowing subsections will deal with the handling of problems where differential
imaging techniques will have to be applied.

2.3.1 A Standard Framework in Computer Science

As already mentioned with the point "Discretization effects" in the list of
the previous section the notations used to introduce the topic are not fully
compatible to the notations which are typically found in literature [KO00]
on computer model calibration and also do not present all aspects of the
problem.

So far all explanations and methods have been demonstrated for the state
vector x which was stated as the model input for F (·) and the variables
of interest. In fact the process P (·) rather depends on the (continuous)
quantity φ. The variable x is obtained due to a certain mapping x : φ 7→ x.
An example for such a mapping is given by a finite element discretization,
where φ is mapped on discrete volumes with piecewise constant properties.
Although it is aim to determine φ, it is only possible to determine x. With
this equation (1.1) has in fact to be written as

d̃ = P (φ) + v. (2.25)

A basic framework for the calibration of computer models was presented
in [KO00]. In their work, the authors start with the assumption, that a
computer model

y = F (x, ζ), (2.26)

exists, which is adequate to simulate the behavior of the process. The vari-
ables ζ are so called calibration variables. The calibration variables are
fixed variables and can be understood as tuning parameters inside the com-
puter model. Examples for such variables are i.e. geometry factors, material
specifics, or sensitivities of simulated sensors. In this work we refer to ζ as
image space calibration variables, because it enters F (·) in the same way
as the variable x. The calibration parameters ζ are fixed and known for
each simulation of the model, but they differ from the true set of calibration
parameters ς, which would be the ideal set of parameters. x is the vector of
interest, which we want to identify from the measurements d̃ after the model
is calibrated.

To correct the remaining difference between the model and the true process, a
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regression parameter ρ and a model inadequacy functionD(·) are introduced,

P (φ) ≈ ρF (x, ζ) +D(x). (2.27)

The approach is similar to an offset and gain calibration scheme with ρ and
D(·) working in the data space to correct the model F (·). The data to per-
form the calibration steps is given by calibration measurements d̃c or dc,
respectively. Hereby dc denotes a measurement with a better signal to noise
ratio (SNR) than d̃c. This can be achieved by averaging several calibration
measurements. These measurements were taken for known values of φc. In
the same, the model is simulated with the corresponding input data xc in
order to obtain the data yc.

The origin of the framework presented in [KO00] is in computer science.
Because of this background, the work makes no specifics about the process or
the model. Instead, Gaussian process models are used to model the behavior
of F (·, ·) and D(·). The following subsection will give a brief introduction
for.

Gaussian Processes

Gaussian process models are a favorable tool in statistical analysis and com-
puter science [Ras06] to model the behavior between input data x and output
data y. The approach assumes a Gaussian behavior of form[

y
y∗

]
= N

(
0,

[
Σ(x,x) Σ(x,x∗)
Σ(x∗,x) Σ(x∗,x∗)

]
,

)
(2.28)

for the relation between independent (input) data x and dependent output
data y. As a general approximation approach Gaussian process models are
also sometimes applied to model the behavior of systems without any other
considerations about the true model which is described by yi = Fi(xi). The
output y∗ for the new input x∗ can be predicted by

y∗ = Σ(x∗,x)Σ(x,x)−1y, (2.29)

and further, the covariance of y∗ given all the data can be quantified by

cov(y∗) = Σ(x∗,x∗)−Σ(x∗,x)Σ(x,x)−1Σ(x,x∗). (2.30)



2 Bayesian Inversion and Calibration 28

The entries of the matrices Σ(·, ·) are evaluated using an appropriate co-
variance function, which relates the input vectors. An often used type of
covariance function is the exponential covariance function

Σ(s, s′,α) = λ exp

(
−
∑

i

|s− s′|pi

φi

)
, (2.31)

which belongs to the class of stationary functions, as only the distance be-
tween s and s′ is evaluated. The vector α is a hyper parameter, which
contains all tuning variables of the function. The choice of α is indeed a
question on its own. Again, an inferential approach could be made by

π(α|x,y) ∝ π(y|x,α)π(α), (2.32)

to obtain knowledge about the posteriori distribution over α. However, this
approach is only usable for problems of comparatively low dimension. A more
detailed explanation for the determination of α can be found in [KO01].

A Standard Framework in Computer Science - Continued

The application of a Gaussian process model is quite common in computer
science and statistical analysis. This is mainly due to the analytical accessi-
bility of the Gaussian functions. However, for large models, the application
of this approach requires the nontrivial procedure to find the hyper parame-
ters for the functions F (·, ·) and D(·). The whole calibration and the inverse
problem can then be treated by

π(x,ρ,αF,D|d̃,dc) ∝ π(d̃,dc|x,xc,ρ,αF,D)π(x)π(αF,D), (2.33)

where αF,D contains the hyper parameters for the Gaussian process mod-
els replacing F (·, ·) and D(·). Because of dimensionality reasons the direct
approach in (2.33) is in general not applicable.

2.3.2 The Enhanced Error Model

In contrast to the previously discussed calibration methods in this section,
the enhanced error model [KS05] is not primarily motivated by the problem
of model inadequacy, which is a main part in [KO00]. Instead, the enhanced
error model provides a suitable scheme to replace the accurate but computa-
tional expensive simulator F (·) by a reduced simulator F ∗(·) without large
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losses in the quality in the result. The following assumptions are made for
the development of the enhanced error model

1. There exists an exact physical model for the process P (·).

2. There exists a computer model F (·) which represents the physical pro-
cess P (·) with enough accuracy, but the model may not be usable for
the inversion as it is computationally to expensive.

3. There exists a computer model F ∗(·), which is usable for the inversion.

Hence, the enhanced error model requires an absolute imaging problem. The
enhanced error model starts with the expression

y = F ∗(x∗) + (F (x)− F ∗(x∗)). (2.34)

One can see that y equals the output of F (·), but it is evaluated by using
F ∗(x∗). For this, the second part has to be seen as a correction term. It
might also be the case, that F ∗(·) operates on x, but for using the same
notation as in [KS05], x∗ is used. When using the reduced model F ∗(·), the
correction term

en = F (xn)− F ∗(x∗n), (2.35)

presents the deterministic model error. The idea of the enhanced error model
is know to apply a stochastic model for the correction term. Samples using
any available prior knowledge are drawn and computed on both models.
This does not mean that only samples from x are drawn, but also samples
from ζ can be included to incorporate knowledge about the uncertainty of
model parameters. Then, Gaussian distributions are computed to describe
the model error by

e ∝ N (µe,Σe), (2.36)

and the prior knowledge by

x ∝ N (µx,Σx), (2.37)

where µ(·) is the mean and Σ(·) is the corresponding covariance matrix.
Hence, the step equals a marginalization of e from x as well as the uncertain
calibration parameters ζ [KS05]. Subsequently, either a sampling algorithm
or, because of the analytical expressions, a MAP based optimization can be
used to solve the inverse problem. The prior based determination of µe and
Σe leads to a global description of the model error. Local behavior of the
error gets therefore lost and also the fact that the marginal error over the
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posterior distribution may be quite different to the marginal error over the
prior makes the global treatment of en not be an optimal choice.

It should be mentioned that the enhanced error model can also be used to
get rid of uncertain calibration parameters ζ. In this case, ζ is treated as
random variable during the sampling procedure to build the enhanced error
model. After the reconstruction it is even possible to determine the real
value of ζ.

Posterior Based Update of the Enhanced Error Model

A suitable way to update the mean and covariance structure of the enhanced
error model appears within the DAMH structure, as the acceptance of a
proposal generated by F ∗(·) leads to an exact evaluation of the accurate
model F (·). The following update equations can be used [Cui10], to build
an adaptive version of the enhanced error model [CFO+10], [FCN11]

µe,n =
1

n

(
(n− 1)µe,n−1 + en

)
, (2.38)

Ce,n = Ce,n−1 + ene
T
n , (2.39)

Σe,n =
1

n− 1

(
(n− 1)Ce,n − nµe,nµ

T
e,n

)
. (2.40)

The enhanced error model learns automatically about the local properties of
the error and the likelihood function is given by

πx∗(x|d̃) = exp

{
−1

2

(
y∗ + µe,n − d̃

)T

(Σv + Σe,n)−1
(
y∗ + µe,n − d̃

)}
.

(2.41)
Hence, an automatic error learning within the DAMH algorithm can be es-
tablished.

2.3.3 A More Detailed Look on Calibration

At least two aspects in metrological and model based inverse problems lead
to a difficulty with the calibration framework presented in section 2.3.1.

• Good knowledge about the computer model F (·, ·) is present.

• The inadequacy function D(·) is not known.
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The first point addresses the fact that at least good knowledge about the
physical behavior is available, and that the implemented computer model is
sufficient to solve the equations in a correct manner. This means that the
model is at least able to provide correct trends, although its not correct in
its absolute values. The replacement of F (·, ·) by a Gaussian process seems
less adequate. The second point means, that knowledge about the additive
model inadequacy is typically not given. The only thing which one could do,
is to compare the model against a model which is believed to be more accu-
rate. Based on the difference an inadequacy function D(·) could be designed
using a Gaussian regression model. However, even the more accurate model
will not meet the real process for differential imaging problems and hence
the inadequacy function is in this case useless.

The calibration strategy presented in [KO00] aims more on the determina-
tion of the ζ. A detail about the calibration strategy for ζ is the general
allowance of even physically impossible values for ζ. This seems to be an
odd fact. Certain elements of ζ might have larger or lower values compared
to their nominal value in order to compensate other effects, but the elements
should not reach impossible values, even if they would lead too a perfect
fitted model. An impossible or infeasible value for ζ should more be an in-
dicator, that a certain effect is neglected. In this work ζ should be set to
a fixed value although the actual realization may differ from the true value.
Consequently the calibration is performed in the sense of the corrections by
ρ and D(·) for the given model as given in equation (2.27).

Because of the problem of designing an inadequacy function equation (2.27)
will be simplified to

P (x) ≈ ρF (x, ζ) + c, (2.42)

which is again an offset gain calibration, but with the constant c replacing
the inadequacy function. The affine approach in equation (2.42) means, that
we assume that F (·, ·) gives the correct trends, but has a wrong gain and
is shifted by an offset. In this sense the affine approach is also a quality
measure for the model, as a nonlinear calibration function would mean, that
the model does not even provide the correct trends.

Retaining the calibration scheme (2.42), the question is about the determi-
nation of ρ and c out of the calibration data dc and the meaning of this
procedure. Collecting the parameters ρ and c with the hyper parameter
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ξ = {ρ, c}, the whole Bayesian inferencial problem can be written as

π(x, ξ|d̃,dc) ∝ π(d̃, dc|x, ξ)π(x)π(ξ). (2.43)

Using the product rule, the left hand term of equation (2.43) can be expressed
by

π(x, ξ|d̃,dc) ∝ π(x|ξ, d̃,dc)π(ξ|d̃,dc). (2.44)

The term π(ξ|d̃,dc) offers the dependency of the calibration data ξ to the
available information d̃ and dc. It seems odd, that the calibration vector ξ
itself relies on the data d̃. However, this expresses the fact, that a parameter
set ξ can be found, which provides the best fit of the model output for the
measured data. The dependency of ξ on the data d̃ seems clear, but due to
the structure of the calibration scheme (2.42) it remains unfavorable, as the
fitting of the model towards the data can also be done only by ξ.

2.3.4 An Empirical Bayes Approach

Knowing that ξ also depends on the data d̃ and that ξ is a random variable
described by the distribution π(ξ|d̃,dc), it is in practice often the case that
one just uses a meaningful fixed value for ξ. It is also a computationally
cheaper way to treat the problem as no computational inference about ξ is
required.

This means, that a sample from the distribution π(ξ|d̃,dc) has to be gener-
ated. As this can only be done with the calibration data dc, the data d̃ is
neglected. For the determination of the elements of ξ, the affine calibration
approach requires at least two calibration measurements dc, to obtain the
components of ρ and c for each output of the model F (·).

For the case of several calibration measurements, a typical and obvious ap-
proach to find ξ is given by a least squares fit of form

ξLSQ = arg min
ξ={ρ,c}

||ρF (xc) + c− dc||22. (2.45)

For the case of only two measurements, the solution of (2.45) is directly given
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by

d =
dc,H − dc,L

yc,H − yc,L

(
F (x)− yc,L

)
+ dc,L, (2.46)

=
dc,H − dc,L

yc,H − yc,L︸ ︷︷ ︸
ρ

F (x) + dc,L

(
1− dc,H − dc,L

yc,H − yc,L

)
︸ ︷︷ ︸

c

, (2.47)

where dc,L and dc,H are the two calibration measurements and the subscript
L (low) and H (high) should denote two calibration points. Looking, at
equation (2.46), the approach fixes the model on the end points. This is
quite an obvious decision for the choice of ξ and can be referred to as a two
point calibration.

In Bayesian terms, this calibration strategy follows the rules of empirical
Bayes approaches [Cas85]. Empirical Bayes approaches are characterized
by the approach to describe a distribution π(·) by knowledge from existing
samples from the distribution. One can also say that one is conditioning
on the best estimate of some nuisance parameters such as the calibration
parameters. As the measurements are actually not used, equation (2.44)
reduces to

π(x, ξ|d̃,dc) ≈ π(x|ξ, d̃,dc)π(ξ|dc), (2.48)

and by the knowledge, that a least squares fit equals the ML estimate in the
case of Gaussian noise, the two point calibration provides the ML estimate
for ξ of the distribution π(ξ|dc).

2.3.5 A Full Bayesian Approach for Mutual Inference

The calibration based on the empirical Bayes approach is in many cases a
sufficient strategy to solve the given inverse problem with the given computer
code.

The approach of fixing the parameter ξ from calibration data dc makes the
model in some sense only optimal for the calibration data. In the case that
ξ also depends on the data d̃, a calibration in the empirical Bayesian sense
could lead to the behavior, that the determination of an unknown x out of
data d̃ is only possible, if x is somehow close to xc. In this case, ξ has to
be allowed to change its value, which means, that it has to become part of
the estimation process. The extended state vector to be estimated is given
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by xT
e =

[
xT ξT

]
, but for clarity in the following parts, x and ξ will be

treated separately. For this mutual inference approach equation (2.43) has
to be rewritten in the form

π(x, ξ,x(Nc)
c |d̃,d(Nc)

c ) ∝ π(d̃,d(Nc)
c |x, ξ,x(Nc)

c )π(x)π(ξ)π(x(Nc)
c ), (2.49)

where d(Nc)
c collects the Nc calibration measurements and x(Nc)

c collects the
corresponding calibration inputs. As the calibration measurements have
equal prior probability π(x

(N)
c ) is constant and can be skipped. The same

holds in principle for π(ξ), but this is because of the lack of knowledge about
ξ. To ensure a proper behavior of the chain, a uniform distribution with
some respectful range centered around the least squares estimate can be ap-
plied.

For the likelihood function π(d̃,d(Nc)
c |x, ξ,x(Nc)

c ), an approach similar to ap-
plications in radio carbon dating can be used [CCL95]. Hereby, the likelihood
function is expressed by the product

π(d̃,d(Nc)
c |x, ξ,x(Nc)

c ) ∝ π(d̃|x, ξ)
Nc∏
i=1

ωiπ(di
c|ξ,xi

c), (2.50)

which means that calibration measurements and the current measurement
are independent. ωi is a weighting factor for the calibration data and presents
the trust in the calibration measurements so ωi corresponds to π(xi

c). The
approach itself is computational inexpensive in the sense, that the forward
map has only to be evaluated for a new proposal of x but not for ξ. How-
ever, the number of variables for determining the elements of ξ is still twice
the number of measurements. Hence, an MCMC algorithm for determining
both, x and ξ, will require a sophisticated setup to be efficient.

2.3.6 Sampling with a Distribution π(ξ|·)
The empirical Bayes approach and the full Bayesian calibration approach
for mutual inference are a logical consequence of the likelihood function
π(ξ|d̃,dc) of equation (2.44). The empirical Bayes approach gets rid of it
by fixing ξ. This step requires a certain accuracy, as a wrong choice of ξ
will bias the solution. The full Bayesian approach takes the dependency of
ξ on the data into care, but this times ξ becomes an unknown variable to
estimate itself. This is not to worry about, but the dependency on the data
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remains in some sense unfavorable, as it could happen, that the calibration
just fits the model output towards the data d̃. A more preferable posterior
distribution would be of kind

π(x, ξ|d̃, d̃c) ∝ π(d̃, ξ|x)π(x)π(ξ|dc). (2.51)

The meaning of the scheme of this posterior distribution is, that a prior dis-
tribution of ξ is generated based on calibration data dc. Then the sampling
is performed in the way, that in a first samples of x are generated for a fixed
ξ. In a second step samples from ξ are generated from π(ξ|dc).

2.3.7 A Stochastic Forward Map Approach

So far, the calibration data has been used to design likelihood functions
π(d̃,d(Nc)

c |x, ξ,x(Nc)
c ) and taking ξ as part of the sampling problem, which

is at least one way to incorporate calibration information.

A different approach is the idea of using calibration measurements to form a
so called stochastic forward map. The known error obtained by the calibra-
tion measurements is used to form an error or uncertainty estimate of the
model output for the current state. Hence, the otherwise deterministic for-
ward map becomes a statistical model itself, which assigns a quality measure
to its output variables. Subsequently, the deterministic output y should be
replaced by Y . An approach for such a model is given by

Y = F̃ (x) +D(·). (2.52)

This structure is in principal the same as the structure of (2.27) presented in
[KO00]. The function F̃ (x) should present the best available deterministic
model, which could include a calibration like

F̃ (x) = ρF (x) + c. (2.53)

The function D(·) is again a model inadequacy function. It can compensate
the model error, but its main sense is to incorporate statistical knowledge
about F̃ (x). I.e. if it is known from calibration data, that some model
outputs suffer from a certain set of data, the model inadequacy function
should present this information in form of an uncertainty statement about
the model, if x gets close to the region where the calibration measurement
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is done. Then the likelihood is given by

π(d̃|x) ∝ exp

{
−1

2

(
Y − d̃

)T

(Σv + ΣY)−1
(
Y − d̃

)}
, (2.54)

where ΣY presents the uncertainty of F̃ (x) in the sense of a covariance
matrix. Although the idea of such a functionD(·) is clear, the design becomes
a demanding and problem dependent task. As a last statement, it should be
stated, that the way to design a function D(·), or algorithms in general, can
be separated into

• Image space based methods: D = D(x, ·).

• Data space based methods: D = D(d̃, ·).

2.4 Summary

In this chapter the basics of Bayesian inversion theory and inference ap-
proaches were introduced. After discussing the general idea of using a
Bayesian formulation the powerful tool of Monte Carlo integration is ex-
plained and the issue of statistical algorithms is treated. Two different sam-
pling algorithms, the MH algorithm and the Gibbs sampler were presented
and their behavior in concern of sampling from the posterior distribution
from inverse problems is discussed. For the MH algorithm also an acceler-
ated variant called the DAMH algorithm is presented and a framework for
adaptive error learning is introduced in order to improve the behavior of the
algorithm.

Then the topic of model errors and Bayesian formulations for differential
imaging problems is discussed. Standard approaches from computer science
are reviewed for their appropriateness to the solution of inverse problems and
appropriate versions are derived. The aspects about this calibration schemes
are explained in a Bayesian sense and two type of auto calibration algorithms
are suggested and discussed. Finally the idea of a stochastic forward map
approach is introduced. This approach uses calibration information to quan-
tify the quality of the output of the forward map.

Throughout the chapter a general notation for all quantities is used allowing
its application to a broader field of problems. After introducing computa-
tional techniques like or approximated forward map F ∗(·) in the next chapter



2 Bayesian Inversion and Calibration 37

the introduced algorithms and strategies are tested in chapter 4.



3 Computational Techniques
for Linear PDE Systems

In this chapter, computational methods for the ECT forward map are de-
veloped. After reviewing the set of standard techniques to solve the forward
problem and build the forward map the first part of this chapter presents
a computational framework using a Green’s functions approach which offers
enormous computational advantages. Although the presented methods have
a special focus on ECT, they are in general applicable to problems with an
underlying linear (partial) differential equation in a self adjoint problem. For
this class of systems, the stiffness matrix of the finite element system is a
linear function of the unknown coefficients. In this sense the system matrix
can be expresses in form of the matrix product WSW T .

The second part of this chapter deals with approximation techniques to re-
place the computational expensive but accurate model F (·) by a computa-
tionally cheaper model F ∗(·), or even by a so called surrogate model.

3.1 Electrical Capacitance Tomography

This section provides a short introduction to the inverse problem of electri-
cal capacitance tomography (ECT). As the focus of the chapter lies on the
ECT forward map and computational methods for it, the topic of process
tomography, which is one major application of ECT will only be touched in
a slender way. The following list should collect some topics in the field and
the application of ECT for process tomography, together with some major
references.

• ECT sensors: [HDX+88], [Yan10], [JB00].

• ECT hardware: [Yan96], [WHL09], [WFHK05], [WFHK08].

• Process tomography: [Gla97], [BHW03].

• Process control: [SM05], [BWLW02].
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• General reconstruction methods: [YP03], [LFY+04] ,[Isa96],
[NZWF11].

• Statistical approaches: [WBS07], [WF08], [SWF08], [WF09].

• Sensor Fusion: [SWW05], [DSSW08].

• Applications: [Whi02], [WHWB96], [FZL07], [HXW+94], [CP05],
[HL10].

• Others: [WSF+07], [FZWN08], [SW08], [NSWZ10].

ECT is an inverse problem, which uses capacitance measurements for deter-
mining information about a certain region of interest ΩROI. Figure 3.1(a)
depicts a typical scheme for a 2D ECT system suitable for process tomog-
raphy, where it is well suited due to the good contrast in terms of the per-
mittivity of typical industrial processes like multiphase flows. A number of
Nelec electrodes are mounted on the exterior of a process pipe (PVC tube).
By measurements of the inter-electrode capacitances the spatial dielectric
permittivity distribution in ΩROI can be determined. To take measurement
of the capacitances typically an AC-voltage is applied to one of the elec-
trodes and the displacement currents on the other electrodes are measured.
Figure 3.1(b) depicts a typical measurement pattern.
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(a) Scheme of an ECT sen-
sor.
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(b) Typical measurement pattern.

Figure 3.1: Scheme of an ECT sensor and typical measurement pattern.

Following [BHW03], the electrical effects inside an ECT sensor are described
by the potential equation

∇ · (ε0εr∇V ) = 0, (3.1)
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where V is the electric scalar potential and ε0 = 8.854 × 10−12 AsV−1m−1 is
the absolute permittivity. εr denotes the dimensionless relative permittivity.
For the explained measurement modi the boundary conditions are given by

V∂Ω = 0, (3.2)
VΓj

= V0, (3.3)
VΓi

= 0 ∀j 6= i, (3.4)

where ∂Ω denotes the boundary of the problem domain and Γj denotes the
surface of an individual electrode. After solving (3.1) for the specified bound-
ary conditions, the capacitances Ci,j between electrode i and electrode j can
be computed by

Ci,j = − 1

V0

∮
Γi

ε0εr∇Vj · ~ndΓ i 6= j. (3.5)

The computation of the capacitances given the material distribution is re-
ferred to as forward map F : ε 7→ C. This model does not include any other
effects in the real process P : ε 7→ C, like 3D effects, specifics of measure-
ment electronics, etc.. The effect of this physical approximation has to be
removed by calibration. As an analytic solution is typically not available,
numerical schemes like the finite element method (FEM) or the boundary
element method (BEM) have to be used to build a numerical evaluated for-
ward map F : ε 7→ C. In the case of the FEM it is common to assign the
permittivity value of each finite element in ΩROI to the entries of the vector
x = ε. In the case of the BEM typically shape models are used to describe
the contour of an inclusion. Hence, the parameters of the shape model build
the entries of x.

In terms of absolute and differential imaging, ECT generally belongs to the
class of differential imaging problems. Typically offset capacitances between
the electrodes are in the range of pF, whereas the changes caused by in-
clusions are in the range of fF. As ECT belongs to the class of problems
where the signal deviation is only a fraction of the offset value the applica-
tion of calibration measurements becomes necessary and hence ECT is truly
a differential imaging problem.
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3.1.1 Data Representation

An issue which comes to hand in any higher dimensional problem is about
the representation of the results. Typically, a classification is made between

• Low level representation.

• Mid level representation.

• High level representation.

Low level and mid level representations build representations about the ma-
terial distribution. Pixel like image representations are a classical example
for low level representations. For ECT this kind of representation is typi-
cally associated with the material values of the finite elements. This scheme
can be applied to any problem but is disadvantageous for further processing
and the image quality of such schemes is generally low. Mid level schemes
typically utilize a generic model to describe the data in a more specific way.
A typical example for imaging problems is i.e. the use of some kind of shape
model to describe the boundary of an inclusion. Hence mid level representa-
tions typically allow a more informative representation of the data and also
permit a suitable access for further information extraction (i.e. the evalua-
tions of areas or volumes). High level representations feature more specific
issues about the data and are suitable for answering more general questions
like "How many inclusions or objects are inside the domain ΩROI?".

3.2 Standard Solution Techniques for ECT

This section briefly explains the standard computation steps for the ECT
forward map using the finite element method [Pol06].

3.2.1 Finite Element Forward Model

Solving the partial differential equations (3.1) for the boundary conditions
(3.2) to (3.4) by a numerical scheme like the finite element method or the
boundary element method ends up in a linear equation system of the form

K̂v = r. (3.6)
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In the case of the FEM, the scalar potential V from equation (3.1) is ap-
proximated by

V ≈
p+1∑
i=1

viNi, (3.7)

in the domain Ωe, which is the domain of the finite element. vi denotes the
weights of linear independent basis functions Ni. The stiffness matrix K is
assembled out of the Ne element matrices Ke by

K =
Ne∑
i=1

εiKe,i, (3.8)

where εi is the permittivity of the finite element. For this the element ma-
trices are computed by evaluating the coefficients using the Ritz-Galerkin
equation

ki,j =

∫
Ωe

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ. (3.9)

Then the matrix K̂ and the right hand side vector v are formed by applying
the Dirchlet type boundary conditions to K and v by matrix manipulations.

3.2.2 Charge Computation

The evaluation of equation (3.5) is referred to as charge computation. To
avoid computing ∇V the charge method [YSW98] can be applied. The
computation is given by

Qelec =
∑
nelec

(Kv)nelec
, (3.10)

where nelec refers to the nodes of the finite element mesh, which are situated
on the boundary of the electrode.

3.2.3 Jacobian Computation

An important property of systems is the Jacobian matrix J . For the de-
scribed ECT forward map the Jacobian is defined by

J =
[
∇C1 ∇C2 C3 . . . ∇CN

]T
. (3.11)
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The Jacobian contains the derivatives of the output variables with respect
to the input variables. An existing efficient method to compute the Jacobian
is the adjoint variable method (AVM) [Bra03]. The elements of J can be
computed by

dCi,j = γT
i

[[
∂r

∂εk

]
−

[
∂K̂

∂εk

]
vj

]
dεk, (3.12)

where j denotes the number of the active electrode, i denotes the number
of the receiver electrode and k is the number of the finite element. γ is the
solution of the adjoint problem

K̂γi =

[
∂Qi,j

∂vj

]
. (3.13)

The adjoint variable method suggests the computation of the Jacobian at
the cost of an additional forward problem and can be seen as a quite efficient
and straight forward method to obtain derivatives.

3.3 A Green’s Function Approach

The standard computation steps seem obvious as they correspond to the
governing physical laws. Also the AMV method to compute the Jacobian
seems efficient, as only one additional forward problem has to be solved and
by maintaining efficient coding techniques it seems obvious that a fast per-
forming computer code can be built.

However, in fact these computation steps offer some drawbacks. In this
subsection numerical methods based on the use of Green’s functions are in-
troduced, which provide computational advantages, i.e. the approach allows
operations on the Jacobian matrix without solving another forward problem.
This means that one is able to compute matrix vector multiplications of the
Jacobian or its transpose without the explicit evaluation of the Jacobian.
Also an exact fast low-rank update scheme based on the Woodbury formula
is developed. By this, a line search can be performed at decreased computa-
tional costs. The first two subsections provide an efficient way to assembly
the stiffness matrix and to compute the charges. These methods provide the
basis for some later introduced computations. Some of the techniques will
also be used in subsection 3.5.2 to build a reduced forward model. Further,
the forward map F : ε 7→ C is replaced by F : ε 7→ Q of convenience
reasons.
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3.3.1 Fast Stiffness Update

To update the stiffness matrix after a material update requires a reevaluation
of equation (3.8). To keep the number of operations low typically a stiffness
matrix K ini is formed out of the non effected finite elements. Thus, the sum
in equation (3.8) is reduced to NROI, which is the number of finite elements
in ΩROI. However, the update still requires a loop operation, which is known
to be slow in languages like MATLAB.

A significantly faster method based on an orthogonal decomposition is men-
tioned in [Fox05]. For any square matrix A an eigenvector decomposition of
form

A = QDQ−1, (3.14)

can be made, where the columns of Q are the eigenvectors and D is a
diagonal matrix of the eigenvalues. For A being a symmetric matrix, which
is the case for the element matrices, the inverse in equation (3.14) can be
replaced by its transpose. By assembling the sparse matrices W l out of the
eigenvectors of the element matrices multiplied by the square root of the
corresponding eigenvalue, it is possible the compute the material update by

K = K ini +

p∑
l=1

W lEW T
l , (3.15)

where p is the rank of the element matrix which is the order of the finite
element minus one. E is a (sparse) diagonal matrix of permittivity values.
As only sparse matrix operations are required, this form of the material up-
date is exceptional fast when using linear algebra packages and in the case
of linear triangular finite elements even only p = 2 sums are necessary.

Due to the specifics of the geometry of the ECT sensor a further advantage
can be used. As the interior of the pipe and the electrodes are separated by
the tube wall, the boundary conditions do not affect the interior. Thus, the
initial stiffness matrix K ini can already contain the Dirichlet type boundary
conditions and after the material update K equals K̂.

3.3.2 Charge Map

The charge map is referred to as an approach to compute the charges on
the electrodes as a function of the potential distribution on ∂ΩROI, which
is the interior boundary of the tube. To be more precisely this approach
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of computing the charges splits the charges into a constant part and a part
which depends on V∂ΩROI

. For this the linear map Qc : V∂ΩROI
7→ ∆Q is

introduced. The idea of this concept may appear to be without any benefit,
as the charge method presented in 3.2.2 is already highly efficient. However,
there are two major points:

• In section 3.5.2 a matrix manipulation will be used to reduce the di-
mension of the stiffness matrix in order to solve the problem only for
the potential in the domain ΩROI. Then, the charge map is used to
compute the charges out of the potential distribution on the interior
boundary of the tube.

• In the following an approach using Green’s functions is explained. In
this concept the use of the charge map appears in a natural way and
offers several advantages (for example see 3.3.4 or 3.3.5).

Further, the charge method requires the stiffness matrix K, which is not
necessary when using the charge map.

The application and computation of the charge map is motivated by think-
ing about the problem in terms of an electrode arrangement. From linear
network theory it is known that the relation between the potentials on the
electrodes and the charges on the electrodes are related by the capacitance
matrix C. To determine the elements of C a voltage is applied to one elec-
trode, while all other electrodes are grounded. Then the charges on the
electrodes are determined and the elements of the capacitance matrix can be
found using the relation q = Cu. For the computation of the charge map this
means solving (3.1) in the domain Ω \ΩROI, where the boundary conditions
are given by

V∂Ω = 0, (3.16)
V∂ΩROI

= δ(z − zi) ∀i (3.17)
VΓj

= 0 ∀j, (3.18)

for z ∈ ∂ΩROI . In the case of the finite element implementation the coordi-
nates zi are given by the coordinates of the nodes on ΩROI. Then the discrete
version of Qc becomes the Nelec ×N∂ΩROI

matrix Qc : v∂ΩROI
7→ ∆Q, where

N∂ΩROI
is the number of boundary nodes. To compute the total charges on

the electrodes, an affine part given by the Nelec ×Nelec matrix Qa has to be
computed, which presents the back side capacitance between the electrodes.
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For this v∂ΩROI
is set to zero and the problem is solved for each electrode.

The charge are finally computed by

Q = Qa +QcV ∂ΩROI
, (3.19)

where V ∂ΩROI
contains the finite element solutions (column vectors) on ∂ΩROI.

In this representation, every column of Q corresponds to the measurements
of the corresponding transmitter electrode.

3.3.3 Adjoint Problem and Green’s Functions

The fast stiffness matrix update and the charge map approach can be ap-
plied to the standard solution framework and already lead to an accelerated
forward map. An approach for solving a PDE using Green’s functions is now
presented. Its quite different approach and is motivated by considerations
from functional analysis. Although the use of the new framework requires
the same number of matrix inversions for the forward problem itself, it per-
mits the use of other fast operations, which beat all standard methods in
terms of computation time.

In the following, the theory behind the approach is presented. Consider a
PDE of form

Lu = f, (3.20)

in the domain Ω with the boundary conditions B

Bu = c, (3.21)

on ∂Ω, where L denotes a linear differential operator of order p in n variables.
Using a multi-index notation k = (k1, k2, . . . , kn) and defining the length |k|
of the multi-index as

|k| = k1 + k2 + . . .+ kn, (3.22)

and the differential operator Dk as

Dk =
∂|k|

∂xk1
1 ∂x

k2
2 . . . ∂xkn

n

, (3.23)

the operator L of equation (3.20) can be formally written as

L =
∑
|k|≤p

ak(x)D
k. (3.24)
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A Green’s function g is defined as the fundamental solution to the equation

Lg(x, ξ) = δ(x− ξ), (3.25)

that satisfies the boundary conditions

Bg = 0, (3.26)

where δ(x − ξ) is the Dirac delta function at the source position ξ. By the
definition of the inner product

〈f, h〉 =

∫
Ω

f(x)h(x)dx, (3.27)

of functions f and h in the domain Ω, with f, h : Ω 7→ C, the inner product
of a function with the Dirac delta function gives

〈u, δ(x− ξ)〉 = u(ξ). (3.28)

Evaluating the inner product 〈Lu,w〉, where w is an arbitrary but differen-
tiable function, turns to an equation of form

〈Lu,w〉 = 〈u, L∗w〉+ remaining part, (3.29)

where the operator L∗ is termed the formal adjoint operator. Maintaining
the multi index scheme, L∗ can be expressed by

L∗ =
∑
|k|≤p

(−1)|k|Dkak(x). (3.30)

To give a more precise statement about the "remaining part" in equation
(3.29), the Lagrange’s identity can be used to write

(Lu)w − u(L∗w) = ∇ · J(u,w), (3.31)

where J is a vectorial bilinear form of u, w and their derivatives to the order
p− 1. Taking the domain integral of (3.31) ends up in Green’s 2nd theorem

〈Lu,w〉 = 〈u, L∗w〉+

∫
∂Ω

~n · J(u,w)ds, (3.32)

where the domain integral of ∇ · J(u,w) becomes a boundary integral due
to Gauss’ divergence theorem. This boundary integral is termed the bilinear
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concomitant or bilinear confluent. Because of the appearance of the bilinear
confluent the boundary value problem is only called formally adjoint. If the
bilinear confluent vanishes and L = L∗ holds the problem is termed to be
self adjoint.

Due to the linearity of the gradient and the inner product of the potential
equation (3.1), the differential operator for the ECT problem is a linear
operator and by applying the definition (3.30) to equation (3.1) in order to
obtain the adjoint operator, it can be seen that L = L∗. Thus, the operator is
formally self adjoint. Working out the bilinear concomitant for equation (3.1)
gives Green’s formula for the ECT problem

〈Lu,w〉 − 〈u, L∗w〉 =

∫
∂Ω

ε0εr
∂u

∂~n
w − ε0εr

∂w

∂~n
uds. (3.33)

The objective now is to find a set of boundary conditions in order to achieve
that the bilinear confluent vanishes. If this can be achieved, the problem
offers some advantageous properties, which will be used later. For Dirchlet
type boundary conditions this task is simple, as u and w only have to be
restricted to functions such that the original boundary conditions Bu = 0
and the adjoint boundary conditions B∗u = 0 are zero. Then the bilinear
confluent vanishes. In this case the problem is self adjoint. The property of
self adjoint problems is the most important property for the further steps.
Considering h to be the Green’s function of the adjoint problem,

L∗h(x, η) = δ(x− η), (3.34)

such that h(x, η) fulfills the homogeneous adjoint boundary conditions. As
the bilinear confluent vanishes for self adjoint problems one can write

〈Lg(x, ξ), h(x, η)〉 = 〈g(x, ξ), L∗h(x, η)〉, (3.35)
〈δ(x− ξ), h(x, η)〉 = 〈g(x, ξ), δ(x− η)〉, (3.36)

h̄(ξ, η) = g(ξ, η). (3.37)

The conjugate adjoint Green’s function equals the original Green’s function
with reversed arguments. This is called the reciprocity principle. In the case
of a self adjoint boundary value problem also

g(x, ξ) = h̄(x, ξ) = ḡ(ξ, x), (3.38)

holds. The reciprocity principle states, that the relation between an excita-
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tion source and a sink remains unchanged if the two positions of source and
sink are switched. This relation can be used for solving (3.20) for non zero
boundary conditions Bu = c.

Replacing w in equation (3.32) by h gives

〈Lu, h〉 = 〈u, L∗h〉+

∫
∂Ω

~n · J(u, h)ds, (3.39)

〈f(x), h(x, ξ)〉 = 〈u, δ(x− ξ)〉︸ ︷︷ ︸
u(ξ)

+

∫
∂Ω

~n · J(u, h)ds. (3.40)

Thus

u(ξ) = 〈f(x), h(x, ξ)〉 −
∫

∂Ω

~n · J(u, h)ds, (3.41)

holds, but as h = ḡ one can write

u(ξ) = 〈f(x), ḡ(x, ξ)〉 −
∫

∂Ω

~n · J(u, ḡ)ds, (3.42)

= 〈f(x), ḡ(x, ξ)〉 −
∫

∂Ω

~n · J(c, ḡ)ds. (3.43)

This offers the possibility to find the solution u for the problem Lu = f with
the boundary conditions Bu = c by applying Green’s function on the right
hand side term. In a short notation, this can be written as [You88]

u = L−1f = Gf, (3.44)

where G is an integral operator whose kernel g is the Greens’s function. In
this way, it can be seen that G acts in an inverse sense to L.

Green’s Functions for ECT

This inside view on the problem is based on methods from functional analysis
but gives a deeper understanding about the applicability of Green’s functions.
The same theory can be applied to linear equation systems where it turns
out that Hermitian matrices offer the property of self adjointness [You88].
As the finite element stiffness matrix of the electrostatic field problem has
the property of being a Hermitian matrix, the problem is self adjoint and
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thus Green’s functions can be used.

Instead of an evaluation of the standard forward problem (3.6) now

K̂gk = ek, (3.45)

is solved, where ek is the kth unit vector and k belongs to the nodes on
∂ΩROI. Using a matrix notation for the Green’s functions and the identity
vectors

K̂G = E∂ΩROI
, (3.46)

the solutions V ∂ΩROI
can be computed by

V ∂ΩROI
= GTR, (3.47)

where R contains the right hand side vectors of (3.6). Again the Green’s
functions have an inverse behavior to K̂. Similar, the charges on the elec-
trodes can be computed by

Q = Qa +QcG
TR. (3.48)

However, this approach has the immense drawback, that N∂ΩROI
Green’s

functions have to be determined. To remember, for the standard framework
only Nelec matrix inversions were necessary. From the computations of the
charges one can see that a left side multiplication by Qc has to be done. This
can be used to manipulate (3.46) by

K̂GQT
c = EkQ

T
c , (3.49)

K̂GQ = EkQ
T
c , (3.50)

K̂GQ = RQ. (3.51)

Now again only Nelec problems have to be solved and the charges can be
computed by

Q = Qa +GT
QR. (3.52)

By this approach, the forward map comes so far at the same cost in terms
of matrix inversions as the standard framework. In the following, several
computational techniques will be developed, which take extensive use of GQ,
which can be referred to as Green’s functions for the charges.
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3.3.4 Jacobian Operations

It was already mentioned, that matrix vector multiplications of type Jε and
JTq are needed in several algorithms. Hereby q is the vectorial form of Q.
With the standard computation schemes, this means that the Jacobian J is
evaluated to perform the multiplications. Although for e.g. the AVM offers
an efficient scheme to compute J , it requires a further evaluation of an ad-
joint problem, which comes at the same cost as the forward map. Further,
the storage of the Jacobian becomes costly as the Jacobian is a dense matrix
and the Jacobian itself is not of interest. Only matrix vector products with
the Jacobian are required. A method to by-pass the expensive evaluation of
the Jacobian are Jacobian operations [Fox05]. Operating on the Jacobian
means that the matrix vector multiplications are performed using mathe-
matical relationships and properties of the problem, but without an explicit
evaluation of the Jacobian.

In the following, the scheme will be explained for J : ε 7→ v. The derivation
starts with the extension of the forward problem (3.6) by

(K̂ + dK̂)(v + dv) = r, (3.53)

which can be rearranged to

K̂dv = −dK̂(v + dv). (3.54)

By this, a derivative with respect to a component of ε can be expressed as

dv

dεj

= −K̂
−1dK̂

dεj

v. (3.55)

An extension to all elements of ε can be done by using the chain rule

dv = Jdε = −
∑

j

−K̂
−1dK̂

dεj

vdεj (3.56)

= −K̂
−1

[∑
j

dK̂

dεj

dεj

]
v (3.57)

= −K̂
−1
K̂dεv. (3.58)

So far this scheme has no advantage compared to the AVM method, as still
an inversion of K̂ is necessary. Now, as the problem is self adjoint, the
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inverse behavior of Green’s functions presented in equation (3.47) can be
used, to express equation (3.58) by

dv = −GTK̂dεG. (3.59)

The result is remarkable, as due to the use of the Green’s functions no fur-
ther forward problem has to be solved. The evaluation of Jε comes at the
cost of some matrix multiplications.

To operate on the Jacobian for the charges, G can be replaced by GQ due
to the linearity of the charge map. So the Jacobian operation J : ε 7→ Q is
given by

dQ = −GT
QK̂dεGQ. (3.60)

In combination with the orthogonal decomposition of the stiffness matrix dQ
becomes

dQ = −GT
Q

[
p∑
l

W ldEW T
l

]
GQ. (3.61)

In the same way the transpose of Jacobian operation JT : Q 7→ ε can be
derived as [Fox05]

JTq = −
p∑

l=1

(
GT

QW l

)T
Q
(
GT

QW l

)
, (3.62)

where Q is the matrix form of the vector q. It turns out, that due to the
matrix structure of Q the result is given as the main diagonal of (3.62). The
result is given by

JTq = −diag

(
p∑

l=1

(
GT

QW l

)T
Q
(
GT

QW l

))
, (3.63)

and in order to avoid the computation of the off-diagonal elements, this can
be written as

JTq = −

(
p∑

l=1

(
GT

QW l

)T ⊗ (QGT
QW l

))
, (3.64)

where ⊗ expresses the column and row wise multiplication.
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3.3.5 Exact Fast Low-Rank Updates

During the solution process of the inverse problem one is often faced by the
task to determine the solution for a marginally changed material distribu-
tion. This happens when the material value of one pixel (one finite element)
changes. The change in the charges could be approximated by the Jacobian
approximation. A method to compute the exact solution without evaluating
all forward problems again is given by the Woodbury matrix identity [Hag89]

(A+LU)−1 = A−1 −A−1L
(
I +UA−1L

)−1
UA−1, (3.65)

where the matrix
(
I +UA−1L

)
is referred to as the Woodbury matrix. The

Woodbury identity provides an efficient method to compute the inverse of
the matrix B = (A+LU) for a low-rank update of the matrix A, when
A−1 is known. For the ECT problem, the matrix B is given by

B = K̂new = K̂old + γ

p∑
l=1

W l∆EW T
l , (3.66)

where the second term expresses the change in the permittivity values and
γ denotes a scaling variable of the update expression. Several methods are
possible to perform the decomposition

γLU = γ

p∑
l=1

W l∆EW T
l . (3.67)

Again an eigenvector decomposition could be used to take advantage of the
rank deficiency of the element matrices. This further decreases the dimen-
sion of the inverse matrix in the Woodbury formula and in the case of single
element update an analytic evaluation becomes possible by the use of the
the adjoint extension to express the inverse of the 2 × 2 Woodbury matrix(
I +UA−1L

)
. However, for larger dimensional updates the eigenvector de-

composition becomes comparatively slow. A Cholesky decomposition with
L = C and U = CT cannot be used due to the rank deficiency. Hence,
the LU-decomposition becomes a suitable decomposition. For a single finite
element update, the matrix L becomes a nnode×3 matrix with entries in the
rows C, which correspond to the nodes of the effected finite element.

The efficiency of the Woodbury identity is introduced by the use of Green’s
functions to replace A−1 = K̂

−1

old on the left and on the right side of the
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Woodbury matrix. Following the developments in [FN97] only the Green’s
functions for the nodes C have to be evaluated and the effect of a low-rank
update can be evaluated by

∆Q = −γGT
QL (I + γU :,CGC,CLC,:)

−1UGQ, (3.68)

where a MATLAB like notation is used and GC,C denotes the set of Green’s
functions for the nodes C. Thus, for the application of the Woodbury iden-
tity the forward problem has to be solved for C identity vectors. Then, an
arbitrary scaling of ∆E by the factor γ can be computed at the cost of in-
verting the Woodbury matrix, which is a 3×3 matrix for the case, that only
one (linear and triangular) finite element is updated.

Although the scheme is efficient the additional evaluation of GC,C is still a
painful bottleneck in the case of higher dimensional updates. The application
of the Woodbury identity has to be done carefully with respect to the number
of elements which are updated. In gradient-based optimization schemes the
number of updates is typically high and efficient efficient line search schemes
only require a low number of additional evaluations of the forward map. In
this case the number of computations to obtain the needed Green’s functions
GC,C is likely to increase the number of forward computations in the normal
lines search scheme. However, for low dimensional updates the application
of the Woodbury formula offers an enormous computational advantage.

3.3.6 Fast Exact Update for WSW T Systems

The necessary evaluation of additional Green’s functions in the Woodbury
formula (3.68) still requires evaluations of the forward map to apply the
scheme. Considering, that the m×m matrix A is of form

A = W 1S0W
T
1 , (3.69)

where S0 is a n× n diagonal matrix containing the material values and W 1

is a constant m × n projection matrix to build the system matrix A with
n > m. The update of the matrix A is of form

B = A+W 1SW
T
1 , (3.70)
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where S is again a diagonal matrix. Using the decomposition

L = W 1, (3.71)
U = SW T

1 , (3.72)

the Woodbury identity writes as

B−1 = A−1 −A−1L
(
I +UA−1L

)−1
UA−1, (3.73)

= A−1 −A−1W 1

(
I + SW T

1A
−1W 1

)−1
SW T

1A
−1. (3.74)

Again the inverse of A is necessary. Recall that A−1 can be expressed by

A−1 = W 2S
−1
0 W

T
3 . (3.75)

As S0 is a diagonal matrix, the inversion of S0 comes at the cost of computing
the reciprocal values in the main diagonal, which is the cheapest way of
inverting the matrix. To evaluate W 2 and W 3 the relation AA−1 = I is
used to analyze the problem. This appears as

W 1S0W
T
1W 2S

−1
0 W

T
3 = I. (3.76)

As S0S
−1
0 = I is an obvious fact, the equation suggests the mathematical

relations
W T

1W 2 = I, (3.77)

and
W 1W

T
3 = I. (3.78)

Equation (3.78) builds an over-determined equation system and W 3 is given
by

W 3 =
(
W 1W

T
1

)−1
W 1, (3.79)

which is the Moore Penrose inverse or pseudo inverse of W T
1 . Thus, W 3 can

be evaluated directly from W 1. This computation has to be done only for
once in the initial phase. Equation (3.77) is an undetermined problem. A
matrix W 2 fulfilling (3.77) cannot be found. However, the existence of W 3

satisfying equation (3.78) and the structure in equation (3.76)

W 1 S0W
T
1W 2S

−1
0︸ ︷︷ ︸

I

W T
3 = W 1W

T
3 = I, (3.80)

suggests the correctness of equation (3.77). Hence, equation (3.75) can be
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substituted into the Woodbury matrix although knowing, that W 2 cannot
be found. One can obtain(

I +UA−1L
)−1

=
(
I + SW T

1A
−1W 1

)−1
, (3.81)

=

I + SW T
1W 2︸ ︷︷ ︸
I

S−1
0 W

T
3W 1

−1

, (3.82)

=
(
I + SS−1

0 W
T
3W 1

)−1
, (3.83)

where W 2 cancels out. The result in equation (3.83) is remarkable, as the
scheme only requires the inversion of the diagonal matrix S0 during the
runtime and the evaluation of W 3 is only required for one time during the
initialization. Although W T

3W 1 is a full matrix, the Woodbury matrix is
diagonal dominant, as S has only nonzero entries in the main diagonal where
an update should be evaluated. If only the diagonal elements C of S are
nonzero equation (3.83) can be further reduced to(

I +UA−1L
)−1

=
(
I + SCS

−1
0,CW

T
3,:,CW 1,:,C

)−1
, (3.84)

where SC and S0,C are diagonal matrices of dimension C × C.

The scheme presented offers a remarkable advance compared to the scheme
of equation (3.68) but it requires a decomposition of the equation system
into the form of equation (3.69). In fact this decomposition can be done
for any problem which is similar to a resistor network [Str86]. This means
that an underlying graph exists as it is the case for finite element methods.
Hence, the matrix S belongs to the edges of the updated finite element mesh
and W 1 can be found as decomposition of the Laplacian matrix by

(W 1W
T
1 )l,m =


deg(vl) if l = m,

−1 if l 6= m and vi is adjacent to vj,

0 else.
(3.85)

The matrix contains the connectivity information between the nodes and the
edges. The Laplacian equals the admittance matrix Y of nodal voltage anal-
ysis Y v = i for a network with all resistors having the value one. However,
for the solution it is necessary to remove at least one node which gives the
reference potential. The matrix W 1 can even be found in a more simple
way, as its columns only contain a one in the row which becomes projected
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into the main diagonal and a minus in the rows which build the off diagonal
entries in the Laplacian matrix. In this sense also the computation of W 3 is
not critical, as the inversion of W 1W

T
1 in equation (3.79) comes to the cost

of the forward problem. Further, only the columns of W 3 corresponding
to the edges which are effected by an update have to be computed. This
evaluation can further be done by using Green’s functions.

To compute S, a map P S : E 7→ S has to be formed. This is possible by
decomposing the element matrices of each finite element into a 3× 3 resistor
network on the edges [Bra03]. On the neighboring edge of two finite elements,
the resistors are in parallel and P S becomes a linear map of form

S = diag(P SEdiag), (3.86)

where Ediag denotes the vector of the main diagonal of the matrix E . Given
this decomposition, for the finite element system, the change ∆Q can be
computed by

∆Q = −GT
Q,C2,:W 1,:,C

(
I + SCS

−1
0,CW

T
3,:,CW 1,:,C

)−1
SW T

1,:,CGQ,C2,:,
(3.87)

where C again denotes the effected edges of the finite element and C2 denote
the nodes not on the boundary ∂Ω. C2 becomes necessary, as the scheme
works on the reduced matrix.

Given this way to build S and W 1, the decomposition is somehow remark-
able, as the physical law and the geometry are presented in the diagonal of
S, whereas W 1 only contains the connectivity information from the edges in
form of integer values. Also the fact, that W 3 an thus the term W T

3W 1 in
equation (3.83) only depends on the connectivity reveals a deeper structure
inside the used terms as no material values are included. In fact, the Lapla-
cian presents a discrete version of the Laplace operator. A slight drawback
is the fact that this scheme operates on the edges of the finite elements,
which means that the dimension of the Woodbury matrix has the tendency
to become larger than in the previous applications of the Woodbury iden-
tity. However, for a single material finite element update, the Woodbury
matrix (3.84) is of dimension 3× 3, which is the same as presented in equa-
tion (3.68) and this new approach does not require the evaluation of further
Green’s functions.

An arguable point in the generality of the approach lies in the fact, that W 1
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has to be the reduced adjacency matrix in order to incorporate the Dirichlet
type boundary conditions. This means that the rows of W 1 which corre-
spond to nodes on Dirichlet type boundaries are removed. Without this, the
Laplacian matrix is a singular matrix.

Efficient Solution of Matrix Pencils

The evaluation of a line search or a conditional sampling requires multiple
inversions of the Woodbury matrix and an efficient scheme for a further
improvement seems suitable. The structure of the Woodbury matrix as the
sum of two matrices forming an equation system

(A+ γB)x = c, (3.88)

is referred to as matrix pencil of degree two or as a linear matrix pencil. For
the Woodbury matrix, the fact that A = I forms a further advantage. A
modified version of an algorithm presented in [ES78], which already takes
care to the Woodbury structure is given by the following computations.

In a first step, a Hessenberg decomposition of the matrix B is performed by

B = LHL−1. (3.89)

Then the equation system
Lz1 = c, (3.90)

is solved, using the property LH = L−1. Now, the equation system(
γ−1I +H

)
y = γ−1z1, (3.91)

has to be solved. Subsequently x can be found as

x = Ly. (3.92)

The algorithm provides a reduction of about 25 % of the computation time
compared to the repeated solution of (3.88). However, the necessity to solve
(3.91) every time is still a drawback.

Another way to solve (3.88) is given by using an eigenvector decomposition
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of the matrix B. The inverse of the Woodbury matrix is then given by

(I + γB)−1 = QB (I + γDB)−1Q−1
B , (3.93)

where QB contains the eigenvectors of B and DB is a diagonal matrix of
the eigenvalues of B. The decomposition and the computation of the inverse
of QB have only to be done for once and due to the diagonal structure of
(I + γDB), the evaluation of (I + γDB)−1 comes at the cost of inverting
the elements in the main diagonal.

This is an attractive approach except that the eigenvector decomposition
is comparatively costly. The application of the method becomes a trade
off between cost of the eigenvector decomposition and the number of low-
rank evaluations. For larger updates, where the eigenvector decomposition
becomes even more expensive, the approach might even get insufficient. A
further, problem is given by the fact, that the matrices QB and its inverse
Q−1

B are dense matrices. Hence also the multiplication of the right hand side
terms in (3.93) becomes expensive.

3.3.7 Domain Decomposition Techniques

The size of the equation system (3.6) to solve is essentially affected by the
degree of discretization. It was reported in [KS07] and [KS05] that the error
through the discretization should be smaller than the measurement noise.
In cite [WNF10] an unstructured finite element mesh with about 6000 el-
ements was presented as the coarsest mesh to meet these requirements for
the used ECT sensor. This number is mainly caused by the discretization
in the region of the electrodes, as for an accurate flux integration a finer
discretization in this region is required. The main number of the entries of
K̂ represents the domain Ω \ΩROI, which stays constant. Only the elements
of K̂ corresponding to ΩROI change during a material update.

A decomposition seems suitable in order to invert only the part of K̂ which
is affected by a material update. The charge map already presents a method
where the charges can be computed using the potential distribution on ∂ΩROI.
By rearranging the elements of the vector v, equation (3.6) can be presented
as [

K̂ROI K̂Diag

K̂
T

Diag K̂Rest

] [
vROI

vRest

]
=

[
r1

r2

]
, (3.94)
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Figure 3.2: Typical spy plot of the stiffness matrix after using the Schur
complement (no permutation scheme has been applied). The
block structure is introduced by the exterior part.

where vROI collects the nodal potentials in ΩROI and on its boundary ∂ΩROI.
Now the Schur complement [ZF05] can be used to set up the smaller equation
system(

K̂ROI − K̂DiagK̂
−1

RestK̂
T

Diag

)
vROI = r1 − K̂DiagK̂

−1

Restr2. (3.95)

As only the matrix K̂ROI

K̂ROI = K ini,ROI +

p∑
l=1

W l,ROIEROIW
T
l,ROI, (3.96)

is changed, the inversion of the larger matrix K̂Rest can be done in a pre com-
putation step and during the runtime only a matrix problem of the dimension
of the matrix K̂ROI has to be solved. However, this reduction comes at the
cost of introducing a block matrix structure into the new stiffness matrix.
Figure 3.2 depicts a typical spy plot of the reduced stiffness matrix. Due
to the block structure the bandwidth of the matrix increases and thus the
performance of direct solvers decreases drastically. Hence, the application of
Cholesky decomposition becomes necessary.

A further improvement can be made by again using the Woodbury for-
mula (3.65) in order to pre evaluate the inverse of the constant parts of
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the reduced matrix (3.95). For this,

A = K ini,ROI − K̂DiagK̂
−1

RestK̂
T

Diag, (3.97)

has to be used, as the matrix K̂DiagK̂
−1

RestK̂
T

Diag cannot be inverted itself as
it is rank deficient. K ini,ROI has to be of full rank, which can be ensured by
setting up K ini of equation (3.15) for εr = 1 in ΩROI. Then the susceptibility
χ = εr − 1 has to be used for the material update and the update term of
the Woodbury identity is given by

LU =

p∑
l=1

W l,ROIχROIW
T
l,ROI. (3.98)

Again a Cholesky decomposition can be applied to invert the Woodbury
matrix.

3.3.8 Performance Estimation and Discussion

The previous two sections of this chapter provided information about the
standard solution techniques and techniques using Green’s functions. The
first section contains the solution of the forward problem and the evaluation
of the Jacobian. The use of Green’s functions enables further computational
abilities, such as fast low-rank updates to the solution of the stiffness matrix.
Table 3.1 represents a list of the computation times for the methods. The
times were determined on an Intel Core 2 Duo CPU with 2.10 GHz clock fre-
quency on a 64 bit operating system with 4 GB RAM for two finite element
meshes. Mesh 1 is a mesh with about 3100 elements in total, which results in
about 1950 nodes. This mesh has about 580 degrees of freedom. Meshes of
this size are mostly used on ECT systems, as the computational costs vs. the
spatial accuracy are in a good trade of for use with deterministic methods.
Mesh 2 is a mesh with about 12200 finite elements in total and about 2650
elements in the interior of the pipe, resulting in an equation system with
about 7200 unknowns. The table summarizes the most important computer
times. All times of the new methods have to be seen with respect to the times
of a normal evaluation of the forward map or the Jacobian, respectively. For
the block concerning the domain decomposition techniques not all possible
varieties are included which means, that. not all possible combinations of
the Schur complement and the Woodbury identity are stated. However, the
listed times give a statement on the usefulness of some combinations. It also
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Nr. Operation/Method tmesh1 tmesh2

ms ms
Forward map:
1 Forward problem standard F : ε 7→ C 96 640
2 Forward problem new F : ε 7→ Q 4.8 26
3 Standard material update (3.8) 35.5 230
4 Fast material update (3.15) 0.039 2

5 Matrix inv. K̂v = r (×Nelec) (3.6) 3.3 19

6 Cholesky d. of K̂ K̂ = CCT 1.4 9
7 Matrix inv. with Chol. 2.2 12

Jacobian operations:
8 Jacobian by AVM (3.12) 360 > 2000
9 Jacobian op. J : ε 7→ Q (3.61) 0.48 3.9
10 Transp. of Jacobian op. JT : Q 7→ ε (3.64) 3.3 15.5

Low-rank updates:
11 Exact low-rank update (1 elem.) (3.68) 3.5 16.3
12 WSW T Woodbury (1 elem.) (3.87) 0.66 2.1
13 Exact low-rank update (20 elem.) (3.68) 11.6 55.4
14 WSW T Woodbury (20 elem.) (3.87) 2.7 14.1
15 Exact update 1 elem × 50 (3.68) 7.3 26.3
16 WSW T Woodbury 1 elem × 50 (3.87) 2.4 3.9

Domain Decomposition:
17 Domain d. by Schur c. 23.8 66
18 Chol. d. for Schur c. 29 75
19 Schur c. with Cho. 2.9 8
20 LU d. for Wood. identity 6.1 514
21 Woodb. matrix for Schur c. 104 > 4600
22 Woodb. for Schur c. with Chol. 0.895 17.1

Table 3.1: Computation times of the methods presented in section 3.2 and
section 3.3.
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has to be mentioned that a poor comparison of the computation times is not
the fairest way to compare the two implementations. In fact a comparison
maintaining a Landau notation [Bla11] should be used. However, the times
give at least an inside view about the gain of a fast implementation. For the
further comparisons the use of the time table is a fair approach, as the new
methods build an extension of the new forward map.

The first block in table 3.1 presents times regarding the evaluation of the for-
ward map. Line 1 presents the computation times for the forward problem
when implemented in the standard way. Line 2 presents the times with the
new approaches using the fast material update and the charge map based on
GQ. The performance gain is evident. Line 3 and 4 give an insight about the
efficiency of the eigenvector decomposition to assembly the stiffness matrix.
Another computational issue which becomes time consuming is the introduc-
tion of the Dirichlet type boundary conditions to form K̂ out of K. This
operation is not necessary in the new method, as the charges are computed
by the charge map and the boundary conditions are introduced byK ini. Line
5 presents the time amount for solving the 16 forward problems. The times
for solving the equation system using a Cholesky decomposition and the
Cholesky decomposition itself are presented in line 6 and 7. The overall time
when using Cholesky decomposition is in this case higher. However, this re-
sults were obtained for an air filled pipe. In this case the stiffness matrix has
the lowest condition number. For the case of material inclusions the condi-
tion number increases and in this case the direct inversion takes longer, while
the inversion using Cholesky decomposition takes the same time. Hence, it is
always preferable to use the Cholesky decomposition. This holds especially
for larger equation systems.

The second block contains the computation times in for the with Jacobian
operations. Line 8 presents the times for the evaluation of the Jacobian using
the adjoint variable method. It is obvious, that the AVM becomes the bot-
tleneck when used. Line 9 contains the times for the Jacobian operations. It
can be seen, that the Jacobian operation outperforms the AVM by a factor
of 750 for mesh 1 and > 130 for mesh 2. The transpose of Jacobian opera-
tions require more computation time compared to the Jacobian operations,
as they require reasonable more multiplications. However, the operation is
still several times faster than the evaluation of the Jacobian.

The third block contains the performance of low-rank updates. The com-
putation times of this methods have to be viewed in contrast to block 1, as
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their aim is to provide the solution for a small update without computing
the full forward problem again. The lines 11 and 12 contain the evaluation
times when a single finite element is updated. In the first case, the evalua-
tion of (3.68) requires the computation of the three Green’s functions which
correspond to the finite element. Hence, the computation times in line 11 are
only slightly lower than the computation times in line 2. In the case of the
generalized Woodbury matrix, the performance gain is obvious. The lines 13
and 14 present the evaluation time of 20 elements. The elements were not
connected, which presents the worst case for the evaluation, as this requires
the computation of 60 Green’s functions or leads to 60 independent edges in
the generalized form. This fact appears in line 13 for the standard Wood-
bury scheme. The times in line 14 are only slightly lower than the times
in line 2. It turned out, that the multiplication in equation (3.83) become
more expensive and causes the bottleneck in this computation. For repeated
evaluations of the Woodbury formula it becomes mandatory to evaluate the
right hand term GT

Q,C2,:W 1,:,C and the left hand term SW T
1,:,CGQ,C2,: of the

Woodbury matrix separately to save computation time. The lines 15 and
16 present the times for the repeated update of the same single finite ele-
ment. Again the Woodbury formulation provides an enormous speed update.

The last block represents the computation times when domain decomposi-
tion methods are applied. As can be seen in line 17, the direct application
of the Schur complement using the presented domain decomposition ends up
in a significantly increased computation time. This is due to the introduced
block structure of the Schur complement. Solving the same problem using
a Cholesky decomposition leads to a remarkable reduction of the compu-
tation time for mesh 2, as can be seen in line 19. However, the Cholesky
decomposition itself is expensive, as can be seen in line 18. To use the Wood-
bury matrix and LU decomposition of the update term has to be evaluated.
The computation times are comparatively slow, but this is more likely to be
caused by the Matlab implementation. As the update is a sparse matrix, a
direct update of the LU decomposition seems possible, to reduce this evalu-
ation time. In line 21 the inverse of the Woodbury matrix is evaluated using
the sum of the block matrix of the Schur complement and the initial stiffness
matrix as constant matrix with known inverse using the LU decomposition
to describe the update. However, with a further Cholseky decomposition a
remarkable performance gain can be found for mesh 1, as line 22 indicates.
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3.4 Overview of Approximation Techniques

In the following several common approximation techniques for the forward
map are presented in short, which will be used for within the DAMH algo-
rithm. Detailed information can be found in [FSK08].

3.4.1 Local Approximations

An obvious method to estimate the behavior of the function F (·) in the
region of the point x is by applying a Taylor series expansion about the
point x . The model output is locally approximated by

F (x+ ∆x) ≈ F ∗(x+ ∆x) = F (x) +
∂F (x)

∂x

∣∣∣∣
x

∆x, (3.99)

where the derivative of F (·) with respect to x is called the Jacobian. The
quality of this type of approximations either depends on the nonlinearity
of the function F (·), as well as on the displacement ∆x. A major aspect
about the application of this approximation is the efficient computation of
the Jacobian matrix. With the availability of efficient schemes for the given
application the Jacobian based approximation forms a suitable tool within
the DAMH algorithm.

3.4.2 Polynomial Approximations

Polynomial approximations try to approximate F (·) by a matrix vector prod-
uct given by

F ∗(x) = P x̃, (3.100)

where x̃ is an augmented input vector. Hence, each row of the matrix
P builds an approximation for each output quantity. The augmentation
of x up to a polynomial approximation for F (·) by degree M is given by
x̃ =

[
1 xT . . . (xT )M

]T . Only using the initializing 1 in x̃ an affine ap-
proximation is built. To obtain the rows of the matrix P , the Vandermonde
matrix has to be built out of sampled data. Then each row of P is given
by applying the Moore Penrose pseudo inverse. It has been demonstrated
in [FSK08], that a polynomial approximation of order M is in essential a
Taylor series approximation of order M +1. Hence, the use of a higher order
polynomials would theoretically increase the approximation quality but too
high dimensional polynomial approximations are likely to lead to overfitted
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approximations. Also effects like saturation can not be handled with poly-
nomial approximations.

Within the DAMH algorithm also an adaptive form of the polynomial ap-
proximation can be applied by using the result of the second step to update
the matrix P . The update can for example be done by a recursive least
squares method (RLS). A computational less expensive update method is
given by the least mean squares (LMS) algorithm [Hay01]

pk+1 = pk+1 + µ(F (x)− pT
k x̃)x̃, (3.101)

where µ denotes the adaptation constant.

3.4.3 Other Techniques

Radial Basis Functions

In a number of engineering disciplines it is common to describe the behavior
of systems or signals in form of a weighted sum of basis functions which
offer a well known behavior. A prominent example for periodic functions is
Fourier analysis. For approximating smooth and continuous functions the
use of symmetric basis functions, so called radial basis functions (RBF),
has turned out to be a more efficient approach. Every output of F (·) is
approximated by

F ∗
i (x) = wTψ(x) =

nc∑
j=0

wjψ(||x− cj||), (3.102)

where ψ(·) denotes the radial basis function centered at c and wj denotes
the individual weight. Thus, the value of ψ(·) depends only on the Euclidian
distance between x and the center c. Beside the choice of the center location,
the choice of the RBF type ψ(r) itself is of essential concern when using this
approximation type. Prominent examples for simple basis functions are the
linear function ψ(r) = r, the cubic function ψ(r) = r3 or the thin plate spline
ψ(r) = r log(r). Examples for parametric basis functions are the Gaussian
function ψ(r) = e−r2/σ2 or the multiquadratic RBF ψ(r) =

√
r2 + σ2. For

fixed parameters and center points the weights w can again be found by a
pseudo inverse approach on sampled data. The design matrix for this case
is referred to as Gram matrix.
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Kriging and LOLIMOT

Kriging is another approximation technique, which was originally invented
for geostatical applications [Kri51]. The main characteristics of Kriging tech-
niques is the use of basis functions of form [FSK08]

ψi = exp

(
−

k∑
j=1

θj|xi
j − xi|pj

)
. (3.103)

Hence, the basis functions equals a Gaussian kernel of pj = 2,∀j and θj =
1/σ2,∀j. However, due to these parameters the basis function (3.103) allows
to be more specific. Based on this, one can see that the basis function for
Kriging is in essential a covariance function. In fact, the approach for Kriging
is then the same as for the presented Gaussian Process regression presented
in subsection 2.3.1.

Local linear model tree (LOLIMOT) techniques [Nel01] are comparatively
new techniques for approximation although their origin dates back to [TS85].
This technique basically works on the principle of neuronal networks, which
makes it in principal similar to the previous presented techniques. LOLIMOT
strategies divide the the complex model into several smaller subproblems. In
the ideal case this subproblems are independent such that each subproblem
can be solved independently. Then simple general approaches like linear
models are used to describe the behavior of each subproblem.

3.5 Two Surrogate Approximations for ECT

In this section two approximations for ECT are implemented. One surrogate
model is based on the polynomial approximation techniques discussed in the
previous section. The second is a physically reduced model.

3.5.1 A Polynomial Surrogate Model

This section presents the design of a polynomial surrogate for ECT. The
approach was presented by the author in [WNF10], where the polynomial
surrogate was directly used within the MH algorithm. As explained in 3.4.2,
the determination of the coefficients of the matrix P requires samples of the
permittivity distribution x and the capacitances to build the Vandermonde
matrix. In principle such samples can be drawn by exploring the prior dis-
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tribution π(x) using a MCMC scheme. However, a prior distribution π(x)
which is suitable for the solution of the inverse problem, may be insufficient
to draw representative samples from x, as π(x) is mainly designed to incor-
porate knowledge about the solution. Instead it may appear more simple
and efficient to directly draw patterns of the material distribution from the
imagination about concrete realizations.

As a typical scenario for ECT often circular inclusions are given. Hence, an
intuitive choice for the generation of samples is to place cylindric objects in
an arbitrary sense inside the pipe. The following procedure presents a way
to generate such patterns

1. Draw #incl ∼ bU(1,#max incl)c.

2. For the selected number of inclusions perform the following three steps:

a) Draw [xcenter, ycenter] ∼ U(in ΩROI).
b) Draw εr ∼ U(εr,min, εr,max).
c) Draw rincl ∼ U(rmin, rmax).

3. Place the circular inclusion in the pipe ΩROI.

4. Compute the capacitances for the given pattern.

Alternatively, the material distribution can also be assumed to be Gaussian
bumps. Hence, some smoothness assumption about the material distribution
is incorporated. Similar to the choice of the radius when rods are used as
prior samples, the sampled radius can be used as full width half maximum
value (FWHM) to characterize such a Gaussian bump. Figure 3.3 depicts
two typical samples of the two prior distributions. Like in [WNF10] an affine
approximation of the forward map was built for low contrast material distri-
butions (PVC rods) to replace a finite element solver with about 560 finite
elements in the interior of the pipe. Figure 3.4 depicts the behavior of the
approximation error for low permittivities. The achieved SNR of this approx-
imation is depicted in Figure 3.4(a) together with a SNR measurement of the
ECT system under empty conditions. One can see that the approximation
has almost the same quality as the measurements. Figure 3.4(b) depicts a
specific distribution of the approximation error. One can see that the dis-
tribution is nonsymmetric and has a tail towards positive values. However,
like in [WNF10] the error was approximated as a Gaussian function as the
main bulk of the distribution looks similar to one. The likelihood function



3 Computational Techniques for Linear PDE Systems 69

(a) Typical rod like pattern. (b) Typical Gaussian bump
like pattern

Figure 3.3: Typical material patterns obtained by the presented procedure
to generate samples for building up an approximated forward
map.

in the MCMC algorithm remains a Gaussian function, and the total covari-
ance matrix is the sum of the measurement noise covariance matrix and the
approximation error covariance matrix.
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Figure 3.4: Behavior of the affine approximation compared to ECT mea-
surements.

3.5.2 A Reduced Physical Model - Mesh Fusion

The presented polynomial surrogate model is a local, non-physical approxi-
mation of the ECT forward map. This localness is a drawback, as it limits its
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use to certain material scenarios i.e. low permittivities. In this subsection a
physically based surrogate is built. The reduction of the computational load
is based on the use of a coarse mesh in the domain ΩROI.

The fine discretization in the region near the electrodes typically effects the
element size even in some distant region from the electrode to be small and
thus the number of finite elements to be high. This is because of the fact,
that the expansion from small finite elements to larger ones requires a cer-
tain distance from the electrode. However, a fine discretization in the center
region of the tube is not mandatorily required, as the sensitivity in the inte-
rior in the center region or in regions with some distance to the electrodes is
low and thus in generally only a lower resolution can be achieved. This was
explored in [SWZ+07] and [NSWZ10]. It seems useful to replace the finite
element discretization in the interior of the pipe by a coarser discretization.
Figure 3.5(a) depicts a coarse mesh, which was inserted into the interior of

(a) Finite element mesh with coarse dis-
cretization in ΩROI.

(b) Detailed view on the tube internal
boundary and the gap caused by the
coarse mesh.

Figure 3.5: Accurate finite element discretization with coarse mesh in ΩROI.

the tube. For the domain Ω \ ΩROI the fine mesh remains. Figure 3.5(b)
gives a more detailed view of the mesh fusion. As the internal mesh forms a
polygon with less corners than the internal boundary of the tube, a gap be-
tween the both meshes comes up. It would be possible to form a curved finite
element to close the gap. However, it was decided to keep the gap. Without
any arrangements in the stiffness matrix the boundary of the gap would act
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like a homogeneous Neumann boundary condition, which introduces a wrong
physical behavior. To avoid this, the potential of the boundary nodes of the
fine mesh is approximated using linear combinations of the potential of the
boundary nodes of the coarse mesh. The weights of the linear combination
were determined using the ratios of the arc lengths on the interior of the
tube. The number of unknowns of the equation system is decreased because
the nodes on the interior of the tube can be eliminated after introducing the
linear relationships to K̂, but this comes at the cost of an increased con-
dition number of the matrix. In the further, the Schur complement (3.95)
can be applied, as the ratio of unknowns in ΩROI compared to the remaining
number of unknowns in Ω\ΩROI suggests the use of a domain decomposition
approach. The reduced stiffness matrix again has a block structure. How-
ever, due to the highly decreased number of unknowns, this equation system
can be solved faster, even without further decompositions. Figure 3.6 finally

Figure 3.6: Potential distribution for the reduced physical model.

depicts a potential plot of the electric scalar potential on the reduced mesh.
The potential on the boundaries on the gaps is approximated by the corre-
sponding edge points of the coarse mesh. Although the potential plot looks
quite good, the approximation leads to large errors in regions of high field
gradients. Hence, the approximation error can be expected to be large on
electrodes close to the active electrode. A drawback of this approximation
is the loss of the self adjoint property of the forward problem. This could
be worked out by finding the boundary conditions which make the problem
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again self adjoint. The computation time of the reduced forward map was
measured with about 1.3 ms. This is so far not a big gain compared to the
other approximation schemes. However, the reduced physical model works
over the whole permittivity range which is a valuable property.

3.6 Summary

In this chapter fast computational methods and techniques maintaining Green’s
functions as well as a specific model order reduction and approximation ap-
proaches were developed. The presented methods in this chapter lead to a
variety of different reconstruction schemes in combination with the statistical
inversion methods presented in chapter 2. Even the speed of the standard
MH algorithm can be improved, as the speed comparison of subsection 3.3.8
suggests the use of the new approach compared to the standard approach
presented in section 3.2. This can also be used to increase the speed of de-
terministic methods. The following list provides several combinations of the
methods and algorithms which appear as interesting combinations. Lines
with a star at the end have the main purpose to accelerate the inversion.

• A fast deterministic scheme*.

• Standard MH using the standard models.

• Standard MH using an approximation*.

• DAMH algorithm using an approximation*.

• Gibbs sampling using low-rank updates*.

The first entry is stated due to the availability of the Jacobian transpose
operation which forms an efficient way to implement optimization-based in-
version algorithms. The second point is the standard MH algorithm and is
stated for completeness. However, this algorithm will be used to provide
reference solutions compared to the accelerated schemes. The third point
suggests the use of an approximated forward model directly within the stan-
dard MH method. This can be done by modifying the likelihood function
to take care to the approximation error, which has already been presented
in [WNF10], where the forward map has been replaced by an affine approx-
imation. The DAMH algorithm in line four offers several different forms for
combining computational methods and approximations together, with the
main purpose to speed up Bayesian inversion methods. Most of this items
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allow at least several different forms or extensions like the application of the
enhanced error model, an adaptive form of the polynomial approximation
or the use of additional calibration information. The application of Gibbs
sampling is motivated by the ability of computing fast low-rank updates.
I.e. an arbitrary update of a single finite element can be done at the cost
of a repeated inversion of the 3× 3 matrix pencil in the Woodbury formula.
Hence, it would be even possible to evaluate the conditional probabilities in
an analytic way, once the Woodbury matrix is given. Thus, the application
of Gibbs sampling seems a reasonable way, as the costly evaluation of the
full forward map can be avoided during each conditional sampling step.



4 Case Studies

This chapter contains case studies using the discussed approaches and the
developed methods in the two previous chapters. The first section gives an
overview about the two types of data representation, the prior models, and
describes the simulation setup.

Sections 4.2 a fast deterministic inversion scheme is presented which uses the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm and takes advantage
of the Jacobian transposed operation. Section 4.3 contains the result of the
DAMH reconstructions using the three presented approximation types and
their variants, in section 4.4 a Gibbs sampler is presented. Finally section 4.5
contains the results from the Bayesian calibration studies where the different
Bayesian formulations and the stochastic forward map are investigated and
the topic of model errors and calibration strategies is treated.

All sections include the necessary details about the specific implementation
and the results of the different algorithms and methods are presented and
analyzed.

4.1 Reconstruction Framework and
Simulation Setup

4.1.1 Volumetric Parameter Description

The volumetric parameter description is referred to as a low level represen-
tation. In this case, the elements of the parameter vector x correspond to
the elements of the material vector ε or εr of the finite element forward map.
Hence, x = ε holds. The posterior probability density function is given by

π(x|d̃) ∝ exp

(
−1

2
eTΣ−1

v e

)
exp

(
−1

2
αxTLTLx

)
I(x). (4.1)
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The first term in the exponential function builds the likelihood function
for additive measurement noise, where e denotes the misfit e = F (x) − d̃.
The second term belongs to the prior distribution, where L incorporates
knowledge about the solution. For most experiments a discrete second order
operator has been used for L, which incorporates a smoothness assumption
for x [BHW03]. Hence, the reconstruction of sharp material boundaries is
generally not possible due to this type of prior. α in equation (4.1) is a weight
factor for the prior. The function I(x) is an indicator function, which has
the value one for allowed realizations of X and zero for infeasible realiza-
tions of X. I(x) is used to incorporate the constraints about the relative
permittivity. The logarithm of the posterior distribution in equation (4.1)
is in essential the same, as a least squares cost function in deterministic in-
version schemes. Hence, the results obtainable by this prior and the used
representation will in general be similar to results obtained by deterministic
algorithms. For some illustrations of the result an adaptive threshold oper-
ation is applied in order to present a filtered result. The threshold level is
defined by

th = ((εmax − εmin)/2 + 1), (4.2)

which is the half peak value of the permittivity distribution.

The volumetric description will be used for deterministic reconstruction ap-
proach and for Gibbs sampling. A proposal generation scheme is not neces-
sary, as samples are generated directly from the conditional density. For the
application of standard MH algorithms, typical proposal generation scheme
for the MH algorithm can be found in [FN97].

4.1.2 Contour Description

In contour reconstruction tasks it is aim to determine the shape of a contour
in an otherwise uniform background material. The permittivity values are
assumed to be known. Hence, an efficient way to present close boundaries
is required. Such a representation is referred to as mid level representation.
Especially in concern with a finite element forward map, a representation
which features a simple way to map the shape of the contour on the permit-
tivity vector ε is required. A very efficient scheme in combination with the
finite element forward map are radial basis functions (RBFs) [BI98], [UPV04].

With the RBF approach an object is represented in implicit form given by
f(z) = 0, where z represents the Cartesian coordinates of a point on the
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boundary of the shape. The function f(·) is of form

f(z) =
N∑

i=1

λiφ(||z − cN
i ||) (4.3)

where cN
i represent a set of N given locations on the boundary of the object

and the function φ is the used RBF. The support points cN
i build the state

vector x. For the representation of closed contours in 2D the thin plate RBF

φ(r) = r2 · log(r), (4.4)

is used, where r is the Euclidean distance ||z − c||. The weights λi are
determined by solving the equation system

Aλ = h, (4.5)

using the constraint f(z = ci) = hi = 0. For the thin plate spline, the
set of basis functions needs to be augmented by the linear function P (x) =
azx + bzy + c, wherewith equation (4.3) becomes

f(z) =
N∑

i=1

λiφ(||z − ci||) + P (z). (4.6)

Consequently equation (4.5) is extended to[
A Q
QT 0

] [
λ
cp

]
=

[
h
0

]
, (4.7)

where Q =
[
xp 1

]
and cp =

[
a b c

]T . To use the RBF scheme
in an efficient way within a finite element scheme, the set cN

i has to be
extended by a further point, which lies inside the contour. For this point a
negative value for hi is assigned. Then, to determine if a point lies inside or
outside the object, only the sign of the function f has to be evaluated. This
procedure is referred to as mapping. Figure 4.1 depicts an exemplary RBF
to illustrate this principle. For an accurate mapping onto a finite element
mesh a grid of evaluation points has to be placed onto the finite elements.
Then, the mapping becomes a counting task with respect to the points inside
and outside the contour. As prior distribution π(x) the following equation
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Figure 4.1: Exemple of a RBF shape description.

is used

π(x) = exp

(
− 1

2σ2
pr

c(x)√
πΓ(x)

)
I(x), (4.8)

where c(x) denotes the circumference of the shape described by x and Γ(x)
denotes the area of the object [WF09]. Hence, the prior (4.8) evaluates the
deviation of the shape to that of a circle. The degree of deviation is con-
trolled by the variable σ2

pr. I(x) is again an indicator function. For the shape
reconstruction, the indicator function proofs the contour for self intersection,
correct interior angles, zig zag behavior, etc..

The proposal generation is done by using four basic moves to manipulate the
shape. This moves are referred to as translation, rotation, scale and corner
move [WF09] and are depicted in figure 4.2.

(a) Translation. (b) Rotation. (c) Scale. (d) Corner move.

Figure 4.2: The four moves for the proposal generation used for the shape
reconstruction tasks.

An important point is the correct evaluation of the prior and the postprocess-
ing of the data. The state vector x only contains the support points of the
shape. The shape is determined by f(z) = 0. An evaluation of the prior has
to be done for the contour defined by this root finding problem. As the RBF
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description supports curved connection lines between the support points an
evaluation of the direct connection line between two support points can lead
to strong errors. To describe the uncertainty of the boundary estimation so
called scatter plots can be used [WF09], which depict points of the posteriori
distribution of the contour, i.e. uniform sampled points along the surface of
the contour. Only plotting the support points does not present the contour
and due to a certain clustering behavior this plots are less meaningful.

4.1.3 Simulation Setup

(a) True inclusion.

20 40 60 80 100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

Nr. measurement

S
N

R
 (

dB
)

(b) Typical SNR.

Figure 4.3: True position of the material inclusion for the shape reconstruc-
tion tasks and typical SNR of the measurements.

For the simulation studies, the data d = P (xtrue) for the true material
distributions xtrue was generated on the fine mesh which was used for the
computation time studies in the previous chapter. Figure 4.3(a) depicts the
true inclusion, which is used for the shape reconstruction tasks. The per-
mittivity of the inclusion is assumed to be known and has a value of either
εr = 3.5 (PVC) for the low permittivity case or εr = 80 (water) for the high
permittivity case, respectively. The parameter σpr of the prior distribution
(4.8) has been set to σpr = 1 for all shape reconstructions. For the finite
element based reconstruction tasks a different distribution is reconstructed.

In all simulations the input data d̃ was generated by corrupting d with ad-
ditive, zero-mean Gaussian noise with a variance of σ2 = 5 × 10−6, which
was stated to be a typical noise level [WSF+07]. Figure 4.3(b) depicts the
signal to noise ratio (SNR) for a realization of the input signal. Compared
to the SNR level depicted in figure 3.4(a) the SNR for the reconstructions is
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considerable lower. However, this level will be used, as the obtained results
depict the behavior of the algorithms under harder conditions.

To provide a fair comparison between the different MH and DAMH variants
for shape reconstructions the same proposal kernel has been used for all sim-
ulations. The probability of the corner move has been set to 3 % while the
remaining moves had equal probability. The same kernel is also used for the
later reconstructions, where calibration becomes an issue.

For the experiments aiming on the acceleration of statistical inversion meth-
ods the calibration was performed using the empirical Bayes approach based
on the two point calibration. For this, calibration data was generated for
xL = 1, xH1 = 3.5 and xH2 = 80, which means that the domain ΩROI was
completely filled with a medium of the corresponding relative permittivity
(air, PVC, water).

4.2 An Accelerated Deterministic Scheme

Although this thesis is focused on using of Bayesian inversion methods, the
developed techniques in section 3.3 motivate the application of an accel-
erated deterministic inversion algorithm for element-based reconstruction.
This section will briefly demonstrate an accelerated deterministic method.
The motivation for this lies much less in the application of deterministic
algorithms, but to use the output of a deterministic method to initialize a
statistical inversion algorithm. This is motivated by the idea to decrease the
duration of the burn in period by providing an initial mean estimate for x.

Deterministic algorithms are often treated as optimization problems which
minimize an appropriate cost functional. An often used approach for ECT
is given by [BHW03]

x∗ = arg min
x

∥∥∥F (x)− d̃
∥∥∥2

2
+ αxTLTLx, (4.9)

s. t. I(x) (4.10)

which is exactly the logarithm of the posterior distribution (4.1). However,
the prior terms are named regularization terms and α denotes the regular-
ization parameter. For fast convergence mostly second order optimization
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schemes are used to solve (4.9). This leads to the scheme

xk+1 = xk − s
(
JTJ + αLTL

)−1 (
JTrk + αLTLxk

)
, (4.11)

where J is the Jacobian and r is the residual vector containing the difference
between the model output F (x) and the measured data d̃. The parameter s
denotes a step-size or line search parameter. The fundamentals of (4.11) are
given by the Gauss-Newton method, where the Hessian matrix is approxi-
mated by

H = 2JTJ , (4.12)

and the gradient is given by

g = 2JTr. (4.13)

Then, for a positive definite Hessian matrix a descent direction for (4.9) is
given by

s = −H−1g, (4.14)

which is referred to as Newton direction [Fle87]. To incorporate the indicator
function I(x), the scheme typically requires methods used in constrained
optimization like an active set method [Fle87], to ensure the avoidance of
infeasible values of x.

4.2.1 BFGS based Hessian Update

A major concern about the Gauss Newton scheme (4.11) is the requirement
of the Jacobian J to approximate the Hessian matrix H . Although the
Jacobian can be reconstructed by Jacobian operations, it seems more suitable
to use a modified scheme which directly operates on the Hessian. An efficient
update scheme which directly works on the inverse of the Hessian is the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) scheme [Fle87]. The iteration steps are
given by

1. Evaluate the Newton direction pk = −H−1
k gk.

2. Find s to set xk+1 = xk + spk and set sk = spk.

3. Compute zk = g(xk+1)− g(xk).

4. Evaluate H−1
k+1 = H−1

k +
sT

k zk+zT
k H−1

k zk

(sT
k zk)2

sks
T
k −

H−1
k zksT

k +skzT
k H−1

k

(sT
k zk)

.
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As the gradient gk can be evaluated by the Jacobian transpose operation, the
scheme fits suitable to the developed framework. The efficiency of the BFGS
algorithm is based on the direct update of H−1

k in line 4. Hence, the scheme
is in fact nothing else than a version of the Woodbury identity. Although it is
not the most genteel way, the value of xk+1 in step 2 should be corrected for
feasibility by clipping xk+1, in order to obtain physical meaningful results.

4.2.2 Deterministic Results with Different
Regularization Terms

Figure 4.4(a) depicts the result obtained by the deterministic algorithm us-
ing the smoothness prior. The regularization parameter has been set to
α = 10−7. This value was found by experiment. A systematic to find an ap-
propriate regularization parameter is given by the L-curve criterion [Han98]
but also adaptive methods exist [WBH04]. The two black circles mark the
true position of the inclusions. The true relative permittivity was set to
εr = 3.5. For the reconstruction, the line search parameter s has been set to
s = 1 and a fixed number of 50 iterations was evaluated. The result depicted
in figure 4.4 is a typical result for deterministic algorithms. Because of the
low level representation, the image quality is in general comparatively low.

To demonstrate the ability of an equivalent Gaussian prior distribution, a
covariance matrix Σx has been computed from samples generated by the
method described in section 3.5.1. Then the regularization matrix L for
equation (4.9) is given by the Cholesky decomposition LTL = Σx. Figure
4.5 depicts the results using the Gaussian prior. The algorithm settings
have been the same as for the reconstruction using the smoothness prior.
Compared to the results depicted in figure 4.5, the results are less blurred
and offer a better better spatial resolution with respect to the contours of the
inclusion. Remembering that the Gaussian prior was formed by just using
samples from imaginary material distributions the approach is at least an
effective way to find suitable regularization terms.

4.3 MH Algorithm with Approximations

In this section, the DAMH is used to perform the reconstruction of the
inclusion depicted in figure 4.3(a) using different approximation techniques.
For comparison subsection 4.3.1 provides a reference solution obtained by
the standard MH algorithm. For all shape reconstruction experiments the a
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(a) Deterministic result. (b) Deterministic result (threshold ap-
plied).

Figure 4.4: Result obtained by the accelerated deterministic scheme using
the BFGS update.

(a) Deterministic result. (b) Deterministic result (threshold ap-
plied).

Figure 4.5: Result obtained by the accelerated deterministic scheme using
the BFGS update with a sample based Gaussian prior.
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circular inclusion placed in the center of the pipe has been used to initialize
the algorithm. For the evaluation the first 100000 samples were removed
from the chain in order to be not effected by the the burn in phase.

4.3.1 Standard MH Reference Solution

Figure 4.6 and 4.7 depict the results obtained with the standard MH algo-
rithm. A summary of the behavior of the algorithm is also included in the
first block of table 4.1, where Acα is the acceptance ratio for the proposal.
Line 1 and 2 of table 4.1 list the results when inverse crime data is used. For
all other reconstructions the appropriate two point calibration scheme was
applied.

The results for the reconstruction of the low permittivity case (PVC) de-
picted in figure 4.6 are acceptable. The conditional mean estimate an the
ML estimate offer a small part sticking out of the main volume of the inclu-
sion. Beside this the remaining parts of the inclusion are well estimated. The
oscillations along the boundary and the part sticking out indicate that the
used prior is comparatively moderate. A much stricter prior would smooth
the result and the behavior should vanish. Because of the decreased sensitiv-
ity in the interior of the pipe, the determination of the boundary part of the
contour facing towards the center of the pipe shows an increased variance.
This can be oberved in the scatter plot depicted in figure 4.6(b). Although
the result is acceptable, the chain is yet not in equilibrium as can be seen
by the output trace depicted in figure 4.6(c). This can also be seen by the
autocovariance function and the IACT τint depicted in figure 4.6(d) and the
large large uncertainty illustrated by the gray shaded regions. Thus the chain
would have to run longer but for the purpose of this section, to demonstrate
the accelerated behavior of the chains using the approximations, the simu-
lation was stopped. Although its large uncertainty the IACT was evaluated
with about 4000 samples which is considerable long. The result with inverse
crime data looks almost the same but it has a lower IACT and the chain
has a better behavior. This indicates that the calibration scheme works but
already introduces an error.

In contrast, the results for the high permittivity case depicted in figure 4.7
offer an unsatisfactory behavior, as the determination of the shape offers a
visible biased behavior. The low variance in the scatter plot in figure 4.7(b)
indicate that the chain almost stucks. This bad behavior of the chain can
also be observed by the output trace depicted in figure 4.7(c) and 4.7(d). For



4 Case Studies 84

 

 

True inculsion
CM estimate
MAP estimate

(a) Mean estimate.

 

 

True inculsion
Scatter data

(b) Scatter plot.

1 2 3 4 5 6 7 8 9 10
x 10

4

−140

−138

−136

−134

−132

−130

−128

−126

−124

−122

−120

MCMC update

lo
g 

po
st

er
io

ri

(c) MCMC output.

0 5000 10000 15000
−1

−0.5

0

0.5

1

ρ

0 5000 10000 15000
0

5000

10000

τ in
t

W

(d) IACT.

Figure 4.6: MH reference results for the low permittivity case (PVC).
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Figure 4.7: MH reference results for the high permittivity case (water).
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inverse crime data the reconstruction leads to a proper result. The IACT for
the inverse crime case is increased with respect to the low permittivity case.
This can be explained by a better fitting of the proposal kernel compared
to the low permittivity case, which is effected due to the nonlinear behavior
of the forward map. However, the bad behavior of the chain and the large
value of τint in line 4 have a different origin. Compared to the inverse crime
case this behavior has its origin in an improperness in the input data for the
MCMC algorithm, which is caused by the calibration scheme. The calibra-
tion for high permittivities fails. This will be of concern in the later sections.
By the large IACT it can be stated, that for high permittivities the Markov
chain almost gets stuck due to improper input data.

Although this first results indicate the problem of model errors and that the
used calibration scheme has problems for inclusions with high permittivities
it will be used in the next subsection to compare the performance of the
different approximation types.

4.3.2 DAMH Setups for the Different Approximations

This subsection describes the setups for the DAMH algorithm for the three
types of used approximations. In the following subsections the term enhanced
error model [KS05] will be used to represent the adaptive form of it, which is
based on the posterior distribution, as it was presented in subsection 2.3.2.

First Order Approximation

The setup for the DAMH algorithm using a first order approximation is
considerable simple, as the approximation is given by the Jacobian operation.
No further adjustments on the approximation itself have to be made. For
the evaluation of the likelihood of the proposal the full set of data d̃ is used.
For both types of inclusions the following experiments were performed:

• Pure DAMH.

• DAMH with adaptive enhanced error model.

Polynomial Approximation

For the DAMH algorithm using a polynomial approximation, in a first step
two affine approximations were built as described in subsection 3.5.1. To
evaluate the likelihood of the proposal, a reduced data vector d̃r is used. In
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this case, the data of the electrodes next to the transmitter electrode has
been skipped. The following experiments were performed for both types of
inclusions:

• Pure DAMH with static approximation.

• DAMH with adaptive enhanced error model and static approximation.

• DAMH with adaptive enhanced error model and adaptive approxima-
tion.

The adaptive version of the affine approximation is based on the LMS update
presented in equation (3.101). For this case, the evaluation of en for the
adaptive enhanced error model requires a re-evaluation of the model output
on the updated forward map.

Reduced Physical Model

Compared to the other approximations, the application of the reduced phys-
ical model within the DAMH algorithm requires a more sensitive setup of the
algorithm. Although the potential plot in figure 3.6 looks quite reasonable,
the approximation of the boundary potential by the nodal potentials of the
coarse mesh, is a major error source. This especially holds for the charges
on the electrodes close to the active electrode, as the field gradient in this
region has its maximum. Again a reduced data vector d̃r is used for the
evaluation of the likelihood of the proposal. A further essential detail about
the application of the posterior based enhanced error model, is given by the
computation of the error en = F (xn) − F ∗(x∗n). As the model F (·) has a
different gain and a different offset compared to the approximation F ∗(·), the
output y of F (·) has to be mapped into the range of the approximation F ∗(·)
to build the enhanced error model. This is done by a linear interpolation in
form of an offset gain correction similar to the two point calibration given
by formula (2.46).

4.3.3 Summary of DAMH Results

Table 4.1 collects an analysis about the reconstruction tasks using the MH
algorithm and the DAMH algorithm with different approximations and for
different setups. Some selected reconstruction results are depicted in figure
4.8. For the DAMH algorithm, Acα in table 4.1 is the acceptance ratio for
the proposal when the approximation is used. Acβ|α then is the acceptance
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rate for the second step. Hence, Acβ|α can be understood as a quality mea-
sure for the approximation. Acβ is the overall acceptance rate of the DAMH
algorithm.

The second block in table 4.1 contains the results using the DAMH algo-
rithm in combination with the Jacobian approximation. Some results of this
experiments are depicted in Figure 4.8(a), 4.8(b) and 4.8(c). For the low
permittivity case the application of the Jacobian approximation introduces
a large improvement as can be seen by figure 4.8(a) and 4.8(c). The algo-
rithm behaves almost like the MH algorithm. The almost same value of Acβ|α
indicates that the the approximation error is almost negligible as can be seen
in line 7 and 8. The expected behavior for the Jacobian approximation of
being a good approximation for small changes is fulfilled. Figure 4.8(b) de-
picts the result for the high permittivity case without using the enhanced
error model. The result from the scatter plot is of equal quality as the result
obtained by the MH algorithm but from the statistics provided in table 4.1
one can see that the chains for this case almost stick. Applying the enhanced
error model for the high permittivity case introduces an interesting behavior
as can be seen in line 8. Surprisingly, the acceptance rate Acα and Acβ drop
and Acβ|α reaches 100%. This is explainable, by the large approximation
error for high permittivities. As the enhanced error model adopts, it learns
to this large approximation error and leads to a significant low acceptance
rate Acα. Those proposals are then accepted at almost 100% rate leading to
Acα ≈ Acβ. However, the overall acceptance rate is too low to make the ap-
proach usable. The result could be improved by adopting the moves in order
to obtain smaller differences between the actual state and the proposal lead-
ing to a smaller approximation error. However, for large differences between
the current state and the proposal the use of the Jacobian approximation is
critical.

In the third block of table 4.1 the results using the affine approximation
are listed. Figure 4.8(d), 4.8(e), and 4.8(f) depict the results for the low
permittivity case including the static approximation without enhanced er-
ror model, the static approximation with the enhanced error model and the
adaptive version of the affine approximation. The affine approximation did
not work in the high permittivity case for the same region as the Jacobian
approximations and thus no results are depicted. This failure for high per-
mittivities is caused by the increased model error of the affine map for high
permittivities in the static case. In the adaptive case, it appears that the
forward map becomes to local and thus an exploration of the full state space
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Nr. Simulation εr Conv. Acα Acβ|α Acβ τint

% % %
Standard MCMC:
1 Inverse crime 3.5 y 6.09 X X 1832
2 Inverse crime 80 y 3.73 X X 3965
3 Normal 3.5 y 4.31 X X 3788
4 Normal 80 y 2.41 X X 7286

DAMH with first order approximation:
5 Normal 3.5 y 3.97 84.29 3.35 1949
6 Normal 80 y 2.56 92.7 2.37 10049
7 With EEM 3.5 y 4.75 84.24 4.00 3828
8 With EEM 80 n 0.004 100 0.004 10209

DAMH with affine approximation:
9 Normal 3.5 y 2.91 60.54 1.76 3854
10 Normal 80 n 0.35 78.99 0.28 5624
11 With EEM 3.5 y 4.50 73.02 3.28 1199
12 With EEM 80 n 1.03 58.14 0.60 1144
13 Adap. appr. with EEM 3.5 y 5.68 53.4 3.03 4584
14 Adap. appr. with EEM 80 n 0.21 77.46 0.16 11169

DAMH with reduced model:
15 With EEM 3.5 y 6.49 53.71 3.49 1945
16 With EEM 80 y 9.79 10.90 1.06 4584

Table 4.1: Results from the reconstructions using the MH and the DAMH
algorithm in combination with different approximations.
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Figure 4.8: Some results obtained by the DAMH algorithm in combina-
tion with different approximations. The subtitles at the figures
correspond to the lines of table 4.1.
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becomes impossible once the approximation has adopted to a too local area.
Hence, also the adaptive version of the affine approximation fails for the high
permittivity case. Looking at the results from figure 4.8(d) to figure 4.8(f)
and keeping in mind the completely artificial nature of the approximation
the results are outstanding. This especially holds for the last two cases. Also
the increased values of the IACT are remarkable. The acceptance rate Acβ|α
is lower than for the Jacobian approximation. Comparing line 9 with line 11,
the effect of the enhanced error model becomes observable by the increased
acceptance rate and the decreased value of τint. In this case the error be-
tween the forward map and the approximation is small enough compared to
the case for the Jacobian approximation in line 8. Thus, the enhanced error
model is able to effectively compensate the error. In the adaptive case, it
appears that the forward map becomes to local and thus an exploration of
the full state space becomes impossible once the approximation has adopted
to a too local area.

The fourth block contains the DAMH results using the reduced model. The
two reconstruction results are depicted in figure 4.8(g) and 4.8(h). Both re-
sults are equal to the results obtained by the standard MH algorithm. For
the low permittivity case depicted in figure 4.8(g) the result even appears
as one of the best results of the series of scatter plots. However, the low
acceptance rate Acβ|α indicates, that the used approximation is almost at
the limit of its meaningful usability as only 50% of the accepted. This value
even drops for the high permittivity case as can be seen in line 16. The over-
all behavior of the DAMH using the reduced model is equal to the standard
MH algorithm for the low permittivity case. The approximation fulfills its
purpose but it should be stated as a reminder that approximations like the
presented reduced physical model have to be handled with care. As this re-
ductions directly play with physical properties of the system the introduced
error can become considerable large. Model reduction based on physical re-
ductions should be handled with care. Nevertheless, the results also presents
the powerfulness of the enhanced error model.

4.4 Gibbs Sampling for ECT

In this section Gibbs sampling on the finite element representation is pre-
sented. For the application of a Gibbs sampler the computational scheme in
concern with the computational methods is always given by

1. Draw a conditional sample.
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2. Compute the new forward map to obtain the new Green’s functions
GQ for the cheap evaluation of the next conditional sample.

The scheme requires the continued evaluation of the forward map after each
conditional sampling step in order to obtain the new Green’s functions GQ.
This appears as computationally expensive. However, the applicability of
the Gibbs sampler is motivated by the ability to performing the conditional
sampling with low computational costs due to the availability of low-rank
updates.

When using the standard Woodbury scheme, the time amount of the reeval-
uation of the new set of Green’s functions GQ for the next element can be
reduced, by solving the update of the forward map using the extended right
hand side matrix

[
RQ EC

]
. EC includes the identity vectors for the

nodes C, which correspond to the next finite element in the update chain
of the Gibbs sampler. This advantage is only because of the special imple-
mentation of the matrix inversion scheme in MATLAB and does not hold for
the general case. For the Woodbury formula using the WSW T formulation
this extension of the right hand side is not necessary. However, to keep the
Woodbury matrix a 3× 3 matrix, the update is mandatory.

It could be argued, that reevaluations of the forward map could be saved by
using larger low-rank updates as the inversion of even a larger Woodbury
matrix seems cheaper in a numerical sense than the solution of the forward
map. However, this scheme was were not implemented.

4.4.1 Gibbs Sampling for Bimodal Material
Distributions

The simplest application of Gibbs sampling is given for bimodal material
distributions. In this case, the update scheme is given as

1. Flip one element of x to generate the proposal x′.

2. Compute α = min
[
1, π(x′|d̃)

π(x|d̃)

]
.

3. Accept x′ with probability α.

The selection of the finite element to be toggled can be done by several ways.
In the most simple case, only a loop is applied to update all elements con-
secutively during a sweep. The probability of the opposite state is evaluated



4 Case Studies 92

(a) Mean estimate (threshold applied). (b) Standard deviation.
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Figure 4.9: Results from Gibbs sampling for bimodal material distribution.

using a low-rank update scheme. For small changes, i.e. the difference be-
tween the permittivity values is small even the Jacobian operation can be
used, to approximate the probability of the opposite state. To initialize the
algorithm, the output of the deterministic algorithm can be used after apply-
ing a threshold operation with respect to the bimodal distribution. Figure
4.9 depicts the results obtained from bimodal Gibbs sampling. The algo-
rithm was initialized with the result of the deterministic algorithm. As the
difference between the the two permittivity states is low, the probability of
the opposite state was evaluated using the Jacobian operation. The regular-
ization parameter α has been set to α = 10−7.
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Compared to the deterministic result, the mean estimate depicted in figure
4.9(a) offers an excellent result. The standard deviation shown in figure
4.9(b) reflects the low sensitivity in the center region of the pipe. On a
part of the boundary of the left inclusion the variance is considerably higher,
which is an expectable behavior and already known from the shape recon-
structions. However, the interpretation of the standard deviation for low
level representation has a slightly unclear character which comes due to the
inherently low quality of this representation. An interesting effect about the
efficiency of the algorithm is depicted in figure 4.9(c) and figure 4.9(d). The
IACT of τint = 2 is considerable low, which means that the bimodal Gibbs
sampler, once in equilibrium, produces an independent sample at every sec-
ond iteration. As the use of the Jacobian operation provide an enormous
speed up, this algorithm offers the potential of real time application.

4.4.2 Gibbs Sampling for Arbitrary Material
Distributions

The more demanding case for Gibbs sampling is given for the case of un-
known material values. For this samples from the full conditional posterior
distribution have to be generated. The straight forward way for provid-
ing conditional samples is given by a numerical implementation of inverse
transform sampling. The conditional distribution becomes a function of the
scaling variable γ in equation (3.66) and the support of γ is determined by
the indicator function I(x). For a numerical implementation the conditional
distribution is approximated by some support points. This is a possible op-
tion, although it requires a larger number of low-rank evaluations, in order
to provide an accurate representation of the conditional density. However,
the scheme proved to have some numerical difficulties with fast declining
densities, as it operates directly on the posterior distribution and not on the
logarithm of it. Hence, a different algorithm has to be used.

Conditional Sampling of the Posterior Distribution

A scheme to avoid inverse transform sampling is rejection sampling [CG92].
To take samples from a target density g(X), rejection sampling requires a
second density function gu(X), with gu(X) ≥ g(X) ∀X. If g(X) is easy to
sample from, samples of g(X) can be effectively generated by

1. Sample a point x from gu(X) and u ∝ U([0, 1]).

2. If u ≤ g(x)
gu(x)

accept x, otherwise repeat.
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Also a version using a lower bound gl(x) ≤ g(x) ≤ gu(x) exists, where the
sampling is done by

1. Sample a point x from gu(X) and u ∝ U([0, 1]).

2. If u ≤ gl(x)
gu(x)

accept x.

3. If not, accept x in the case of u ≤ g(x)
gu(x)

. Repeat otherwise.

Due to the constraints given by the indicator function I(x) the support will
become bounded. In this case, the reconstruction of the functions gl(X) and
gu(X) is further simplified [GBT95].

For the case that g(x) offers log concave behavior [GBT95], another version
of rejection sampling can be implemented, which allows an even simpler
construction of the upper and the lower function. In this case the rejection
sampler also works on the logarithm of g(x), by using h(x) = ln(g(x)). The
two bounding functions l(x) and h(x) have to fulfill l(x) ≤ h(x) ≤ u(x).
As the scheme works on the logarithm, the functions l(x) and h(x) can be
designed using simple piecewise linear functions. Then, a sample can be
generated by the following

1. Draw a sample x from u(x) and w ∝ U([0, 1]).

2. If w ≤ exp(l(x)− u(x)) accept x.

3. If not, accept x in the case of w ≤ exp(h(x)−u(x)). Repeat otherwise.

A simple method to sample from u(x) is presented in [Lux78]. An extension
to this scheme is adaptive rejection sampling, where the rejected point of
the evaluation of g(x) is used to update the upper and the lower bounding
functions.

It is in some sense a controversial issue that schemes like rejection sampling
were designed to generate a huge number of independent random variables
from a known distribution. This is motivated by the application of Monte
Carlo integration for the numerical evaluation of integrals over complex func-
tions. A Gibbs sampler for inverse problems on the other hand requires only
one sample of the conditional distribution but the conditional distribution
itself is not given directly. Only support points are available but this points
are in general expensive to evaluate as the full forward map has to be evalu-
ated. For this problem the Woodbury approach is used for a cheap evaluation
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of the conditional distribution. Only by this the Gibbs sampler becomes us-
able within an expectable time. As a further reevaluation of the forward
map is also not desirable only the two last schemes of rejection sampling be-
come suitable, but with the simplification that the third step is neglected to
avoid a reevaluation of g(x). The sampler only uses the upper and the lower
function. Hence, the third version is used, as it provides the possibility to
work on the logarithm of the posterior distribution, which offers numerical
advantages. Figure 4.10 depicts the output of the sampling scheme, for two
exemplary conditional distributions.
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Figure 4.10: Two examples for rejection sampling on conditional distribu-
tions.

Although figure 4.10 suggests that the implemented rejection sampler scheme
works the algorithm is not proved for correct convergence. The problem can
be seen as less critical, as the conditional sampling is performed repeatedly
for each element. Hence, a not completely correct taken sample is seen as
less critical. The more concerning point is the the assumption of the log
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concave behavior for the conditional density of (4.1).

Global non log concave behavior has so far not been observed in the data.
This may be more an effect of the smoothness assumption in the prior of
the conditional posterior density (4.1). However, as figure 4.11 depicts, local
non log concave behavior can be observed which suggests that the conditional
posterior density may not be a simple function. In this case, the permittivity
of an element, with a true permittivity value of one was increased starting
from one. For very small values of γ, the conditional density increases show-
ing non log concave behavior. As the conditional distribution changes its
trend into the direction of lower probabilities, which is the correct trend the
function offers log concave behavior. However, as a global log concave be-
havior could be observed within the test runs, a probably non log concave
behavior of a local distribution can mostly be neglected. In the case that
the non log concave method becomes a problem also appropriate rejection
sampling schemes for this case can be applied [MCP08].
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Figure 4.11: Example for non log concave behavior of the conditional pos-
terior density.

Gibbs Sampling for Arbitrary Material Distributions - Continued

With the scheme for drawing conditional samples from the posterior dis-
tribution the Gibbs sampler can be implemented. Again, the result of the
deterministic algorithm can be used to initialize the algorithm. Figure 4.12
summarizes the results. The parameter α was again set to α = 10−7. By the
mean estimate illustrated in figure 4.12(a), one can see that the estimated
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(a) Mean estimate. (b) Mean estimate (threshold applied).
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Figure 4.12: Mean estimate with applied threshold threshold operation for
figure 4.12(a) and trend of the posterior probability in the
initial phase.
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inclusions are too small. This becomes especially obvious on the result af-
ter a threshold operation has been applied as shown in figure 4.12(b). The
underestimation can be observed on those parts of the inclusion facing the
center of ΩROI. One can see by the standard deviation in figure 4.12(c), that
the uncertainty in this region is comparatively high. Hence, the standard de-
viation suggests, that the right inclusions are larger. Figure 4.12(d) depicts
the posteriori probability in equilibrium and figure 4.12 the IACT τint. The
samples obtained after one sweep over all variables are independent! Once
the chain is in equilibrium, each sweep produces an independent sample of
the material distribution. Figure 4.12(f) shows the posterior distribution in
the burn in phase. It takes only a comparatively low number of about 25
samples, before the chain reaches the equilibrium.

A sweep over all variables takes only about some seconds which is approx-
imately same amount of time as the presented deterministic scheme takes.
This is remarkable, as the sampling algorithm is able to deliver an indepen-
dent sample in almost the same time, as a deterministic algorithm delivers a
result. This could further be improved by using a different update schemes
[LYHN05], [RC06], [Fis96]. Although the image quality itself is low, the
availability of samples allows a statement about the quality of the result,
whereas a deterministic algorithm only provides the same result. Hence, the
possibilities provided by the Gibbs sampler are extremely valuable.

4.5 Bayesian Calibration

For the reconstruction tasks of the previous sections the empirical Bayes
approach was used for calibration, which has been presented in subsection
2.3.4. For the low permittivity case the results are acceptable but for the
high permittivity case they are biased (i.e. compare figure 4.7) and almost
not usable. In fact, simulations on inverse crime data showed almost perfect
behavior concerning the estimation of the boundary of the ellipsoidal object
used in the investigations. This was stated in table 4.1.

In this section, the issue of calibration is treated and the Bayesian formula-
tions are tested. Subsequently the calibration parameter ξ becomes part of
the estimation problem or the likelihood function is adopted for the Bayesian
forward map approach, respectively.
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4.5.1 Impact of Neglected Calibration

First, the impact of neglecting any calibration strategy should be reviewed.
For this, the simulated data of the fine model is used and the reconstruction
is performed on the coarse model.

Figure 4.13(a) depicts the deterministic result when the raw data of the fine
mesh is directly used for the reconstruction. One can see that the recon-
struction result is a blurred image with large artefacts. Using a threshold
operator, the result looks almost as in the calibrated case, but this is out of
interest.

Figure 4.13(b) shows the result when the enhanced error model is applied.
In this case the optimization problem is given by

x∗ = arg min
x

∥∥∥Cw

(
F ∗(x) + µe − d̃

)∥∥∥2

2
+ αxTLTLx, (4.15)

s. t. I(x), (4.16)

where µe is the mean of the model error en = F (xn) − F ∗(x∗n) and Cw

is given by CT
wCw = (Σe + Σv)−1, which is the Cholesky decomposition

of the inverse total covariance matrix . For the practical implementation
it turned out to be useful to normalize Cw by its maximum value. Again,
the enhanced error model has been built by samples drawn with the method
described in subsection 3.5.1. It has to be mentioned that this approach can-
not be used for ECT, as the enhanced error model requires an exact forward
map which is not the case for differential imaging problems. However, for
academic reasons the enhanced error model will be applied to study its effect.

The result obtained with the enhanced error model is shown in figure 4.13(b)
and is of the same quality as the result using the normal calibration scheme.
Figure 4.14 illustrates the elements of the main diagonal of Cw, which
presents the weighting of the residuals. One can see, that measurements
of adjacent electrodes with respect to the driving electrode have full weight,
whereas the residuals of measurements from electrodes close to the active
electrode are less weighted. It turned out that the choice Cw = I has no
large influence on the result. This, however, is also due to the low image
quality of low level representations, which covers this effect. The effect of
calibration is mostly to compensate the offset error.

The results of this subsection point out the need of calibration schemes or
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(a) Deterministic result. (b) Deterministic result with enhanced
error model.

Figure 4.13: Result obtained by the accelerated deterministic scheme with-
out calibration and with the enhanced error model.
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Figure 4.14: Main diagonal of the matrix Cw.
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model correction schemes like the enhanced error model to deal with data.
In [NWZ10], the same problem was treated using a robust H∞ approach
[Sim06] showing the ability to outperform Kalman filter approaches [GA93].
However, as the enhanced error model can only be applied if a model F (·)
exists, which is accurate enough, differential imaging problems always rely
on calibration schemes.

4.5.2 The Problem of Empirical Bayesian Calibration

This subsection should give a first introduction about the concern of treat-
ing ξ as part of the estimation problem. For the previous used empirical
Bayes calibration scheme, ξ was determined out of a least squares fit from
calibration data dc, which was obtained from simulations of homogeneous
filled pipes. Calibration data dc,L and dc,H was generated using material
values corresponding to the permittivity of the inclusion. dc,L was always
generated for an air filled pipe, while dc,H was generated for either PVC or
water. Figure 4.16 shows the trends of the ML estimates for ρ and c for
several calibration schemes. The trend "air - rods -pvc" comprises a third
set of calibration measurements, where PVC rods were placed on several
positions inside the pipe. This positions are depicted in figure 4.15. The
trends in figure 4.16(a) display a non negligible difference in the behavior of
the gain correction ρ. Especially the difference to calibrations where water
is used, is significantly. Basically, the calibration using water means a larger
system deviation compared to a calibration measurement using PVC. As the
flux depends on the gradient of the electric field, a finer discretization is
required. This mainly causes the difference between the coarse and the fine
model. For the reconstruction scenario of the elliptic object only a small
number of electrodes has a close distance to the inclusion and hence require
a larger gain. Thus, the gain at the remaining electrodes is too large and
the calibration is essentially not suitable for this scenario. For the case that
one tries to reconstruct an inclusion in water, the air-water calibration is the
calibration to use. The least squares estimate of c, which is depicted in figure
4.16(b), offers appropriate behavior on electrodes with a certain distance to
the transmitter electrode, but shows strong deviations on electrodes close to
the transmitter electrode. Especially for the calibration using water, c has
also a different sign for electrodes close to the transmitter electrode. Thus,
the calibration causes a too large misfit, which can be seen as the major
reason for the stucking behavior of the Markov chains.

Using this knowledge it becomes clear, that the reconstruction of the elliptic
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Figure 4.15: Positions of several rods used for providing calibration data.
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Figure 4.16: Example of trends for the calibration parameters ρ and c for
different empirical Bayes calibrations.
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Figure 4.17: Example of trends for the calibration parameters ρ and c for
a ML calibration and for a best fit approach, where the model
is fitted to the data for a known state x.
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inclusion used in this work is much more demanding for the high permittivity
case than for the low permittivity case. The parts of the inclusion close to
the pipe cause a large deviation of the electric fields in this region, which
results in a larger calibration error for electrodes close to the object. The
fixed calibration cannot compensate this and the error can show full impact.
It would be simpler if the inclusion is placed close to the center of ΩROI or
with some distance to the electrodes. In this case the deviation of the elec-
tric field is smaller and the error has smaller impact. This is a property of
soft field tomography systems, where the objects have an influence on the
direction of the used sensing quantity.

Another extreme case which can be thought for calibration, is the case where
the model is fitted to the data for a known realization of X. The trends of ρ
and c for such an approach are depicted in figure 4.17, where the coarse model
was fitted to the accurate model using the two point calibration scheme for
air and the test distribution illustrated in figure 4.3(a). One can see, that
in this case, the trends of ρ and c differ completely from their trends for
homogeneous fillings, which are also depicted in figure 4.17. This difference is
because of the appearance of small differences in the denominator of fraction
terms for ρ and ξ in equation (2.47). As the inclusion used for the experiment
is relatively small and near to the pipe wall, the change in the charges on
the electrodes on the opposite site is small and hence, the small differences
appear. In this sense it is clear, that such a two point calibration is a bad
approach, as a certain signal deviation is required. This also imposes that xc

has to differ from x certainly enough. The homogeneous filled pipes are an
example for xc, which differ enough from x, because as the results already
showed, this calibration works.

4.5.3 Information from π(ξ|dc)

Fixing the value of ξ has already been investigated as a problem, as ξ offers a
large variability with respect to the used calibration scheme and the inclusion
itself. Hence, it is of interest to obtain more information about ξ. This can
be done by drawing samples from the distribution π(ξ|dc), which is given as

π(ξ|dc) ∝
Nc∏
i=1

π(dc|xc, ξ). (4.17)
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Since the individual calibration measurements are independent, the density
function can be written as

π(ξ|d(N)
c ) ∝ exp

{
−1

2

Nc∑
i=1

(
ρyc,i + c− dc,i

)T
Σ−1

c

(
ρyc,i + c− dc,i

)}
.

(4.18)
To take samples from π(ξ|dc), a Gibbs sampler can be used, which means
that a sweep over the variables is performed. Unfortunately it is not possible
to recast (4.18) in the form of a known probability density function. Because
of the nonlinear forward map it was not mentioned in the previous parts, but
if the conditional distribution is a known standard distribution, a standard
random number generator could be used within the Gibbs sampler. As this
is not possible, again a rejection sampling scheme has to be used to draw
samples from the parameter vector ξ. As the domain of ξ is now unbounded,
which means that the support of g(X) is infinite, a slightly different recon-
struction scheme for gl(X) and gu(X) has to be implemented [GBT95].

Figure 4.18 and figure 4.19 depict some normalized probability density func-
tions of elements of the vector ξ− ξLSQ after sampling from π(ξ|d(N)

c ) using
homogeneous fillings for calibration. This plots provide information about
the distribution of ξ and especially their deviation from the least squares
estimate. For the case of low permittivities, the results for ρ show at least a
good agreement with the used two point scheme. Electrodes with a certain
distance to the transmitter electrode offer a higher variance for the gain. The
offset correction offers a larger variance for electrodes close to the transmitter
electrode. For high permittivities, one can see a very proper behavior of ρ
and c for electrodes which are not directly next to the transmitter electrode.
For electrodes directly next to the transmitter electrode, the elements of ξ
offer a large uncertainty in both, ρ and c.

The results correspond to the experience, that for ECT systems or similar
soft field systems like EIT, the measurements from electrodes close to the
active electrode are often not usable. This especially holds for high contrast
problems because of the already mentioned reason. The weight of the residu-
als is often less weighted or the measurements are completely neglected. This
is exactly the behavior which can be seen in the diagonal of the covariance
matrix of the enhanced error model. Neglecting this data is a way to get rid
of the problem, but it means also the abandonment of measurement data.
However, the justification of this experience by samples from π(ξ|dc) is in
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Figure 4.18: Normalized probability density functions π(ξi − ξi,LSQ|dc) for
several electrodes as result from sampling from π(ξ|dc) for low
permittivities.



4 Case Studies 106

0

5

10

15

20 −0.02

0

0.02

0.04

0

0.5

1

ρ−ρ
LSQNr.

π n(ρ
−

ρ LS
Q

|d
c)

(a) Gain correction ρ.

0

5

10

15

20 −0.04

−0.02

0

0.02

0.04

0

0.5

1

c−c
LSQNr.

π n(c
−

c LS
Q

|d
c)

(b) Offset correction c.

Figure 4.19: Normalized probability density functions π(ξi − ξi,LSQ|dc) for
several electrodes as result from sampling from π(ξ|dc) for
high permittivities.



4 Case Studies 107

fact a very tough result, as the strong variation of ξ for the close electrodes
implicates, that the model is out of range for high permittivities. Thus, not
the measurements are wrong, but the model is unusable. The ECT forward
map is in fact not able to describe the process P (·) over the whole range,
which is a serious fault.

Summarizing this information one can interpret them also in the sense that
in fact the likelihood function uses a wrong noise model. So far the likelihood
function is designed for zero mean Gaussian noise. With model errors intro-
ducing a mean error and a gain error this noise model is not correct. The
enhanced error model incorporates (global) knowledge about model errors by
approximating them as a Gaussian distribution. However, from the results
of the previous subsection it was seen that model errors in soft field tomog-
raphy have local behavior. In the following two subsections two different
approaches are presented to overcome the problem of model errors.

4.5.4 Mutual Inference for x and ξ

This subsection covers the approaches introduced in the subsections 2.3.5 and
2.3.6. All results of this subsection have to be compared with the results of
the standard MH algorithm (i.e. with figure 4.6 and 4.7) presented in section
4.3.1. The idea of full Bayesian calibration is to treat the calibration variables
ξ as part of the estimation problem. For this, to different approaches are
made:

• ξ depends on the data.

• ξ is independent from the data.

The likelihood function for sampling from the posterior distribution (2.50)
is given by

π(d̃,d(Nc)
c |x, ξ,x(N)

c ) = π(d̃|x, ξ)
N∏

i=1

π(di
c|ξ,xi

c), (4.19)

where π(d̃|x, ξ) is the likelihood function for d̃ and π(di
c|ξ,xi

c) are the likeli-
hood functions of the calibration measurements. All calibration information,
which comprises the homogeneous fillings and the data for each rod are used
to form the product term. The weights ωi in equation (2.50) have been
set to one, which means that all calibration measurements have the same
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uncertainty. In more detail, the likelihood function is given by

π(d̃,d(N)
c |x, ξ,x(N)

c ) ∝ exp

{
−1

2

(
ρy + c− d̃

)T

Σ−1
v

(
ρy + c− d̃

)
−1

2

Nc∑
i=1

(
ρyc,i + c− dc,i

)T
Σ−1

c

(
ρyc,i + c− dc,i

)}
.

(4.20)

For sampling from the posterior distribution, in principal every algorithm
of the presented MCMC algorithms in this work can be used. For the MH
algorithm this also means that an appropriate proposal kernel for ξ has to
be designed. Because of the large dimension of ξ compared to the number
of unknowns for boundary reconstructions this is a critical issue. for the
shape reconstructions, where 30 boundary points were used, the additional
estimation of the 2 × Nmeas = 480 elements of ξ increases the problem di-
mensionality by a factor of 17. Hence, the same Gibbs sampler presented in
4.5.3 will be used for generating samples from ξ. The algorithm structure
for both inference approaches about x and ξ is given by

1. Draw samples from x using the likelihood (4.20).

2. Draw samples form π(ξ|d̃,dc) or π(ξ|dc), respectively.

3. When sampling ξ from π(ξ|dc) update the posterior probability of the
new state with the new calibration variables ξ.

For the Gibbs sampler, the most obvious way is to run the sampling proce-
dure for ξ after one sweep over the material parameters. For the MH scheme,
a certain number of standard MH steps is performed and then a sweep over
ξ is done. Because of this, the Gibbs sampler for ξ can be seen as part of
the proposal kernel.

For sampling from π(ξ|dc), the probability density function is given by the
product

π(ξ|dc) ∝
Nc∏
i=1

π(dc|xc, ξ), (4.21)
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(a) Mean estimate. (b) Standard deviation.

Figure 4.20: Mean estimate and standard deviation for Gibbs sampling
with full Bayesian calibration.

where again all calibration measurements have equal weight. In detail,
π(ξ|dc) is implemented as

π(ξ|d(N)
c ) ∝ exp

{
−1

2

Nc∑
i=1

(
ρyc,i + c− dc,i

)T
Σ−1

c

(
ρyc,i + c− dc,i

)}
,

(4.22)

which is exactly the right part of π(d̃,d(N)
c |x, ξ,x(N)

c ).

Results for the Low Level Representation

Figure 4.20 depicts the mean estimate and the standard deviation for x
obtained by the Gibbs sampler for the full Bayesian approach. The result is
in principle the same, as in the case when the pure two point calibration is
used. It is a matter of fact, that the quality of the low level representation
covers the effects of a non appropriate choice of ξ. This could i.e. also be
observed when using a two point calibration with air and water for PVC
reconstructions. Although the image quality is in general low, the effect that
low level representations and algorithms are insensitive with respect to the
calibration makes this kind of representation more suitable for tasks, where
a lack of calibration measurements is present.
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Results for Mid Level Representation

Table 4.2 lists the results for shape the reconstruction tasks using the two
Bayesian calibration approaches. Line 1 and 2 summarize the behavior when
using the full Bayesian approach, where samples from ξ are drawn from
π(ξ|d̃,dc). The results for low and high permittivities are depicted in figure
4.21(a) and 4.21(b). Comparing the results of this mutual inference approach
with the results of the standard approach presented in subsection 4.3.1, the
results are almost equal to the case using the fixed calibration. Looking on
the IACTs of the full Bayesian approach a far lower value for τint appears for
both reconstructions. Yet this chains reached the equilibrium. For the recon-
struction of the inclusion with the high permittivity, the IACT is again large.
This is an indicator, that the calibration works well for small permittivities,
but suffers for large ones. Line 3 and 4 of table 4.2 list the results when sam-
ples from ξ are drawn from π(ξ|dc). The corresponding results are depicted
in figure 4.22(a) and 4.22(b). The figures offer a high variance in the poste-
rior distribution as can be seen by the scatter plots. The estimated shape

Nr. Simulation εr Conv Acα τint

1 ξ from π(ξ|d̃,dc) 3.5 y 4.51 569

2 ξ from π(ξ|d̃,dc) 80 y 0.43 104
3 ξ from π(ξ|dc) 3.5 y 3.84 76
4 ξ from π(ξ|dc) 80 y 2.63 101

Table 4.2: Results from Bayesian calibration.

of the inclusion with the high permittivity is again biased but in this case
the result is quite better compared to all other experiments so far. An inter-
esting fact is the highly decreased IACT for both reconstructions. For the
low permittivity the result is acceptable although. For the high permittivity
case the result is biased but the clustering has vanished. Hence the approach
for sampling ξ from π(ξ|dc) shows some benefit for the behavior of the chain.

Summarizing, it can be stated, that the mutual inference approach increases
the quality and the behavior when reconstructing low permittivity distribu-
tions. For inclusions with a high permittivity the dependence of ξ on the
data showed to be unsuccessful. Sampling ξ from π(ξ|dc) decreased the bias
but leads to a higher variance in the posterior distribution.
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(a) εr = 3.5.
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Figure 4.21: Result from the mutual inference approach with ξ ∝
π(ξ|d̃,dc).

 

 

True inculsion
Scatter data

(a) εr = 3.5.

 

 

True inculsion
Scatter data

(b) εr = 80.

Figure 4.22: Result from the mutual inference approach with ξ ∝ π(ξ|dc).
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4.5.5 A Stochastic Forward Map for ECT

This subsection deals with the issue discussed in subsection 4.5.3 in order
to design a stochastic forward map using calibration information to quantify
the uncertainty of the forward map. This subsection deals with the aspect of
designing a model inadequacy function D(·) from calibration data and con-
sequently manipulate the likelihood function to incorporate this knowledge.
As the design of a specific function for the model inadequacy is in general an
infeasible task, the function D(·) has to be designed from a known class of
functions. Because of the universal applicability of Gaussian processes, the
inadequacy function D(·) will be designed as a Gaussian process and hence,
the stochastic forward map becomes

Y = F̃ (x) + GPDe(·). (4.23)

The Gaussian process GPDe(·) is of form[
ec

e

]
= N

(
0,

[
Σ(xc,r,xc,r) Σ(xc,r,xr)
Σ(xr,xc,r) Σ(xr,xr)

])
, (4.24)

where ec is the known error from calibration measurements, which is defined
by

ec = dc − F̃ (xc). (4.25)

The error e is the error to estimate for the state xr. The lower r for xr in
the Gaussian process (4.24) expresses, that a reduced version of the state
is used. The meaning of this will be explained in the next subsection. The
last subsection presents results where the stochastic forward map is used for
reconstructions.

Design of an Inadequacy Function De

As already mentioned in sub-section 2.3.7, the inadequacy function GPDe(·)
can generally be designed as a data space function or as an image space
function. However, because of the nonlinear forward map an image space
based inadequacy function is at least preferable. The inadequacy function
has the obvious form GPD(x), which is a treatable approach, as long as x is
of comparatively low dimension. Thus, an appropriate reduction approach
R : RN 7→ RNr , Nr � N , has to be developed, to design the inadequacy
function GPD(xr) for a reduced vector xr, which depends on x.

The design of a reduction R : x 7→ xr is in principle of heuristic nature.
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However, as the Gaussian process uses correlation information between the
current (reduced) state and the reduced states of the calibration measure-
ments, the reduction Rx has to emphasis specifics about x in order to obtain
a good correlation. For this, knowledge about the behavior of the error can
be used. This knowledge is given as

• The forward map works for inclusions of low permittivity.

• For high permittivities, the charges on the electrodes next to the trans-
mitter electrodes suffer from large errors.

A further point which was not mentioned yet is about the type of input for
the inadequacy function. So far it was assigned that the inadequacy function
D(·) is a function of x. This is not useful for the shape description because
the support points of the shape model can be moved on the boundary with-
out changing the shape. Hence, a more suitable approach is to used fixed
domains as input for D(·). Thus, the inadequacy will be designed using the
permittivity vector ε of the finite element forward map.

Based on this, a possible formulation for a reduction is given by

xr,i =

∫
ΩROI

(εr(z)− 1)px

|z − zref,i|pz
dΩ, (4.26)

where z denotes the Cartesian coordinate. The point zref,i are reference
points to incorporate geometrical knowledge. The exponentials px and pz

are used to control the behavior of the function. The approach incorporates
the value of x together with spatial information. The choice of (εr(z)− 1) is
because of the lower bound of the relative permittivity. As the model error is
known to be correlated with the distance to the electrodes a possible choice
for zref is given by the corners of the electrodes, as the local flux density has
its highest value in this region. This leads to Nr = 2 ·Nelec elements for the
vector xr. For the numerical implementation of (4.26) the integral can be
evaluated previously and hence the reduction can be written as

xT
r = ((x− 1)px)

T
P . (4.27)

To build up individual correlation matrices Σ(xr,i,xr,j) only the elements
of xr corresponding to the transmitter electrode and the receiver electrode
are used. The same holds for Σ(xr,x

∗
r). Figure 4.23 exemplary depicts the

behavior of the Gaussian surrogate for the material distribution depicted
in figure 4.3(a), which was used for the shape reconstructions. One can
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see, that the estimated variance is high for measurements where the error
becomes large. Thus, the inadequacy function provides the wanted behavior.
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Figure 4.23: Example for the behavior of GPD(xr). The upper plot shows
the absolute error of the model for the material distribution
depicted in figure 4.3(a). The lower plot contains the variance
of the predicted model error.

Shape Determination with the Stochastic Forward Map

To investigate the behavior of the stochastic forward map, the shape deter-
mination is performed for the low and the high permittivity case. For the
experiments, different calibration types (air-PVC or air-water) were used,
in combination with different ways to incorporate the information from the
stochastic forward map. These were either just to take the covariance in-
formation from GPD(xr) or to take both, the estimated mean and the co-
variance from GPD(xr) to incorporate this knowledge into the likelihood
function. The inadequacy function includes calibration measurements of the
rod data of figure 4.15 for low and high permittivities and homogeneous fill-
ings. Only the error ec of equation (4.24) has to be adapted according to
the calibration type for F̃ (x).

Table 4.3 collects the results of the experiments. All results have to be com-
pared with the results of the MH reference solution presented in section 4.3.1,
where a fixed calibration is used. Especially the case for the high permittiv-
ity is of interest.
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Figure 4.24: Results obtained by using the Bayesian forward map for the
low permittivity case (to compare with figure 4.6).

Line 1 and 2 contain the results for the low permittivity case. The cor-
responding scatter plots are depicted in figure 4.24. This results have to
be compared with the results depicted in figure 4.6(b). Especially the case
when only the covariance information is used to manipulate the likelihood
function provides an improvement to the reference solution of figure 4.6(b).
The scatter plot when using also the mean is depicted in figure 4.24(b). In
this case the quality of the reconstruction is decreased but the prediction of
the error is even more complicate and a wrong prediction of µ can lead to a
serious fault. From the IACT values in line 1 and 2 of table 4.3 one can see
decreased values of τint. The chains for this case behaved well.

Nr. Simulation εr Conv. Calib. Acα τint

1 Only σ 3.5 y Air-PVC 4.32 1717
2 With µ and σ 3.5 y Air-PVC 4.78 2388
3 No Bayesian forward map 80 y Air-PVC 1.81 4722
4 Only σ 80 y Air-PVC 1.71 3525
5 With µ and σ 80 y Air-PVC 1.52 10417
6 Only σ 80 y Air-Water 2.39 6382
7 With µ and σ 80 n Air-Water 2.30 4201

Table 4.3: Results from Bayesian calibration.

The more interesting case is given for the high permittivity reconstructions.
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Figure 4.25: Results obtained by using the Bayesian forward map for the
high permittivity case (to compare with figure 4.7).
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They are documented in line 3 to 7 of table 4.3 and figure 4.25. Line 3 and
figure 4.25(a) present the result when the standard forward map and an air-
PVC calibration is used. The result looks quite good with respect to figure
4.7(b) although it is effected by an artefact at the left side of the inclusion.
As can be seen by the high value of τint in table 4.3, the chain has again a bad
convergence behavior, which is similar to the standard MH reference solu-
tion of subsection 4.3.1. However, the result looks better than the reference
result using the air-water calibration, which is depicted in figure 4.7. The
calibration using water is of more critical nature for the reason explained in
subsection 4.5.3.

Line 4 and 5 contain the results when the stochastic forward map is used
for the same calibration type. The two scatter plots are depicted in figure
4.25(b) and 4.25(c). For the first experiment only the covariance information
is used. For the second experiment both, the covariance and the expected
mean, are used to manipulate the likelihood. The results are yet not per-
fect with respect to the low permittivity case but especially the first result
depicted in figure 4.25(b) provides a clear improvement compared to fig-
ure 4.7(b). While the IACT for the first experiment is slightly decreased the
IACT for the second experiment is high suggesting that the chain has stalled.
Again the estimation of the error by the Gaussian process in order to correct
the likelihood is the more demanding task this behavior can be expected.
The result of the first experiment is quite remarkable as the artefact are suc-
cessfully suppressed. Beside the stalling behavior of the chain also the result
of the second experiment can be accepted. Line 6 and 7 list the result for the
Bayesian forward map when the air-water calibration is used. This results
have to be compared with the standard MH result in subsection 4.3.1, where
the same calibration has been used. Using only the covariance information
to correct the likelihood function results again in a decreased IACT. This
result is illustrated in figure 4.25(d). Although the chain behaves better in
terms of the IACT the result is too much biased. For the case that also the
mean of GPD(xr) is used, the reconstruction failed. The estimated model
error to correct the forward map is to large and hence, the reconstruction
is not possible. It turned out, that the setup of GPD(xr) for the air-water
calibration is more complicate compared to the air-PVC case.

Summarizing the results of the Bayesian forward map compared to the results
only using the standard forward map with the standard calibration it can
be stated, that the results can outperform the previous approaches and the
Markov chains show much better behavior in terms of the IACTs.
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In this thesis schemes for accelerated Bayesian inversion and calibration ap-
proaches are presented and demonstrated for the inverse problem of ECT.
The two main topics of this thesis, which also build the title of the work,
are the acceleration of Bayesian inversion methods and the issue of model
errors and how to overcome them by means of calibration. The acceleration
of Bayesian inversion methods covers a large range starting from the devel-
opment of efficient computation schemes for the forward map, the design of
approximation techniques and the application of fast sampling techniques.
The topic of model errors and calibration accesses schemes to make compu-
tational inverse problems working with real data. Summarizing these points
the thesis provided contributions for

• Computational techniques,

• Bayesian algorithms,

• Bayesian formulations.

The fundamentals of Bayesian inversion theory, which build the backbone of
this work are presented in chapter 2. In the Bayesian inversion framework
every variable is treated as random variable leading the inversion problem to
become a Bayesian inferential problem. The attractiveness of the approach
lies in the natural incorporation about both, measurement errors and prior
information about the quantities of interest. Several Markov Chain Monte
Carlo algorithms are presented, which provide an acceleration with respect
to the standard MH algorithm. These statistical algorithms are used in the
later part of the thesis in combination with the developed computational
methods.
As major new part of chapter 2 the general calibration of computer models
is treated and the issue of model errors is discussed. Model errors build a
fundamental problem to overcome when solving inverse problems for mea-
surement data. This is especially the case for differential imaging problems.
The nature of traditional calibration schemes is reviewed in a Bayesian sense
and the use of further calibration information is investigated for two mutual
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inference approaches. With these Bayesian formulations two auto calibrating
algorithms were built, which allow a natural incorporation of further calibra-
tion measurements and solve the inverse problem in one step without any
further preprocessing steps. Last, a different approach called stochastic for-
ward map is developed. In this approach calibration information is used to
design a forward map, which quantifies the uncertainty of its output. Thus,
the forward map does not only provide a number but also provides a state-
ment about the quality or the confidence in this number. These Bayesian
formulations are tested in the last part of the chapter "Case studies" and im-
provements in terms of statistical efficiency and behavior could be achieved
with respect to the standard solution.

Chapter 3 presents computational techniques for the forward map of ECT
using the finite element method. The concrete methods are developed with
focus on ECT but can be applied to all problems where the stiffness ma-
trix can be decomposed into WSW T systems, which holds for all problems
which are similar to a resistor network. Several aspects of the forward map
are reworked in order to obtain a forward map which only contains fast
matrix vector operations. Then a computational framework maintaining
Green’s functions is developed to take use of the self adjointness of the for-
ward problem. Beside improvements in computation time the use of Green’s
functions permits to several other time saving assets like Jacobian opera-
tions and exact low-rank updates using the Woodbury identity. Jacobian
operations allow a fast and efficient numerical access to the Jacobian with-
out a direct evaluation of the Jacobian. Thus, fast local approximations can
be built or gradient information can be obtained using the current solution.
With the Woodbury formula an efficient and exact evaluation of low-rank
updates can be done. By this the influence of small changes in the input
data can be evaluated without an evaluation of the full forward map. This
mathematical tools then built the computational backbone within the used
MCMC algorithms. Further some aspects about the use of domain decom-
position techniques are discussed. The second point in chapter 3 is about
approximation techniques or so called surrogate models. Two surrogate mod-
els, a polynomial approximation and a reduced physical model are discussed.

Chapter 4 combines the approaches of chapter 2 with the computational
techniques developed in chapter 3. Two types of data representations, a low
level representation and a mid level representation using a shape model, are
used to perform different reconstruction tasks.
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As first reconstruction algorithm, a fast deterministic second order scheme
using a BFGS update to approximate the inverse Hessian is demonstrated.
The scheme uses several computational tricks of the developed computational
framework, making it a least an efficient and fast deterministic scheme.

The third part of the chapter deals with the acceleration of MH methods
using different approximation techniques within the DAMH algorithm. The
three presented approximation techniques are used for a shape reconstruc-
tion task and implemented in several versions to compare either the benefit
of using the enhanced error model on the posterior distribution or to work
out another specific variant of the approximation like the adaptive version
of the polynomial approximation. Beside the polynomial approximation for
high permittivities all approximations could be used for accelerating the algo-
rithm reaching the same result as obtained with the standard MH reference
solution. However, the adjustment of a proper DAMH algorithm requires
some experience to find a working setup. This especially holds for the task
to neglect certain measurements in the first step of the DAMH where approx-
imations were used and is at least the case for the reduced physical model,
as it is close to the limit. To override physical laws by approximating the
potential on the gaps between the two meshes is critical, as the gaps are close
to the electrodes. Hence, such tricks are critical in regions of high sensitivity
with respect to the model output. However, in regions of low sensitivity such
methods may be well applied.

The fourth block of chapter 4 is about the application of a Gibbs sampler for
ECT using a low level representation. The application of a Gibbs sampler
strongly relies on the efficient computation of fast low-rank updates which
is possible due to the use of the Woodbury formula. Two versions of the
Gibbs sampler, one for bimodal material distributions and one for arbitrary
material distributions, are implemented and show excellent results compared
to the deterministic results. A remarkable aspect about the application of
the Gibbs sampler are the low integrated auto correlation times. Due to the
efficient numerical evaluation the presented Gibbs sampling schemes produce
an independent sample in nearly the same time as a nonlinear deterministic
algorithm. Hence, this schemes come close to the demands of real time ap-
plication.

The last part of chapter 4 covers the topic of calibration and model errors.
Model errors are a serious problem when solving inverse problems with mea-
surement data. First, the typical calibration approaches are reviewed and
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the variability in the calibration parameters is demonstrated, to analyze to
origin of the model errors. Two different mutual inference approaches are
implemented for inference about both, the data and the calibration vari-
ables. In the first approach the calibration was dependent on the data. For
the reconstruction of the inclusion with the low permittivity, the approach
showed a good behavior and decreased the integrated auto correlation time.
In the high permittivity case the approach has the same behavior as when
using fixed calibration parameters. For the approach, that the calibration
only depends on the calibration measurements, the results offered a drasti-
cally decreased integrated auto correlation time. However, the results are
also effected by a high variance in the posterior distribution. Thus, the im-
provement of the mutual inference approach is in general low. As last step
a stochastic forward map approach is tested by using calibration informa-
tion to design an inadequacy function, which provides information about the
quality of the result. With this approach, the integrated auto correlation
time could be drastically decreased leading to statistical efficient Markov
chains even for the more demanding high permittivity case.

5.1 Outlook an Future Work

Although the thesis contributes several new aspects to the field also several
new and further points appear as future work.

The Green’s functions approach provides several improvements for the for-
ward map. Remaining tasks for further investigations can be summarized
by

• Direct influence of the material update on the Cholesky decomposition,

• A better workout of the domain decomposition techniques,

• A fully analytic low-rank scheme.

The first point means, that the material update should directly result in the
Cholesky matrix. By this one could save further time as no Cholesky de-
composition is necessary. The second point covers the use of domain decom-
position techniques. Last, a full analytic version of the Woodbury identity
would be fruitful for further speeding up of the conditional sampling. This
will be explained with the next points.
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With respect to the statistical inversion methods the following points seem
as useful future tasks:

• Gibbs sampling using different update schemes.

• Automatic prior adjustment.

• Gibbs sampling for mid level representations.

• Inverse transform sampling.

This points mainly address the application of the Gibbs sampler. Although
the presented MH algorithms can be accelerated by using approximations,
the advantages of the Gibbs sampler remain an attractive issue for further
work.

The most simple improvement for the speed of the Gibbs sampler is to apply
a different update scheme for the sweeps. The second point addresses the
choice of the prior parameter α. So far the prior parameter α has been fixed
similar as it is done for deterministic methods. However, also the prior pa-
rameter could become a variable to estimate. By this an automatic adjusting
could be implemented and one could get rid of the choice of the regulariza-
tion parameter. Further, this parameter could also be used to improve the
results of deterministic methods.

A more demanding task is given by applying the Gibbs sampler for shape
determination tasks. In this case, one has to work out the influence of a move
onto the finite elements and then use the Woodbury identity to sample from
the conditional distribution. Because of the good behavior the Gibbs sam-
pler showed for the low level representation this approach seems extremely
useful to accelerate sampling for mid level representations.

Inverse transform sampling is in concern with the mentioned full analytic
low-rank update. If it would be possible to derive an analytic expression
for the low-rank update, one could think about describing the conditional
distribution as an analytical term and hence the idea of inverse transform
sampling appears possible. Thus, the now used rejection sampling schemes
could be replaced, which again results in an enormous increased computation
time. This presents the highest end of possible methods.

Another issue for accelerating the inversion methods is given by
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• Importance sampling using polynomial acceleration schemes.

Importance sampling [Gey92] is a technique for Monte Carlo integration
where samples from different distribution are generated. Then the impor-
tance weight is evaluated for each of the samples by computing the posterior
probability the target distribution. This importance factor is used as a weight
for the Monte Carlo integration. If the first distribution is easy to sample
from and the difference between the two distributions is not too large, the
method provides a fast way to perform Monte Carlo integration. Hence, the
idea of importance sampling is in principle simple, but the application of
this scheme to inverse problems is a demanding task, as it means, that the
posterior distribution has to be replaced by a distribution where an efficient
generation of independent samples is possible. Polynomial acceleration is an
efficient scheme to accelerate sampling from even high dimensional Gaussian
distributions. It seems preferable to built a similar Gaussian distribution
for the posterior distribution. For the mean in principle the output of a
deterministic algorithm can be used. The more complex case is given by
generation of a representative covariance matrix.

A further point covers the issue of calibration and model errors. An inter-
esting point in this concern is given by

• A more formal design for inadequacy functions to form stochastic for-
ward maps.

The two mutual inference approaches showed so far less success in the case
of larger model errors as it is the case for the reconstruction of inclusions
with a high permittivity. The far more interesting point is given by the
stochastic forward map. The design of the inadequacy functions in this
work is explained and done in a heuristic way, which requires a lot of expert
knowledge. A more general way to design inadequacy functions for different
problems seems preferable. In this work a Gaussian process using an expo-
nential covariance function has been used. Also this seems to be a point for
improvements, as more richer classes of functions are available.

Although, this work was done using standard personal computers for all sim-
ulations, a final statement about the implementation of MCMC algorithms
and forward map calculations using field programmable gate arrays (FPGAs)
should be made. These devices allow a specific implementation of algorithms
in hardware, which allows an enormous speed up or even parallelization. In
combination with statistically efficient sampling algorithms like the Gibbs
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sampler the use of such hardware could enable real time statistical inversion
for inverse problems.
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