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Abstract

Two aspects of polymer chemistry have been studied by means of computational
methods. Structure and properties of micelles formed of symmetric A–B block
copolymers in a selective solvent have been obtained from static Monte Carlo
simulations on a simple cubic lattice employing the Pruned–Enriched Rosen-
bluth Method (PERM). This approach allowed to successfully sample micelles
of up to 26 chains with a maximum total length of 100 effective monomers.
A few simpler systems—semi-dilute solutions and polymer brushes on planar
and curved surfaces—were also studied in a similar manner and allowed to
validate the method. The results for micelles compare generally well to the
Daoud–Cotton model and experimental data, while the expected dependence of
association numbers on chain lengths could not be found.

Ground state properties and neutral electronic excitations of a group of
photoinitiators—benzophenone, 1,5-diphenylpenta-1,4-diyn-3-one (DPD) and its
bis(4-methoxy-), bis(4-thiomethyl-) and bis(4-(dimethylamino)) derivatives were
studied by TDDFT using LDA, GGA and hybrid functionals. AdditionallyGW -
quasiparticle states have been computed and the Bethe–Salpter equation (BSE)
was solved for the first two compounds. The results are in good qualitative
agreement with experimental data. The nature of transitions of the important
absorbance bands could be determined and processes that lead to photoini-
tiator activity clarfied. Exact exchange admixture to functionals appears to
be necessary to describe the π → π∗ transitions, while the hybrid functional
B3LYP seems to introduce spurious shifts in the nO → π∗ excitation energies.
Although GW yields very accurate ionization potentials, the solution of BSE
ontop of GW did not improve much on TDLDA, while being computationally
expensive. Nevertheless it is seen as a promising method.
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Zusammenfassung

Zwei Aspekte der Polymerchemie wurden durch Computermethoden unter-
sucht. Struktur und Eigenschaften von symmetrischen A–B Blockcopolymer-
Mizellen in selektiven Lösungsmitteln wurden aus Simulationen erhalten, die
auf der Pruned-Enriched-Rosenbluth-Methode (PERM) basieren und ein ein-
fach kubisches Gitter verwenden. Mittels dieser Methode konnten Mizellen aus
bis zu 26 Ketten mit einer maximalen Länge von 100 Monomeren erfolgreich
erfasst werden. Einige einfachere Systeme – Lösungen mittlerer Konzentration,
Polymerbürsten auf flachen und gekrümmten Oberflächen – wurden in ähnlicher
Weise untersucht und erlauben eine Validierung der Methode. Die Ergebnisse
für Mizellen entsprechen grundsätzlich dem Daoud-Cotton-Modell und experi-
mentellen Daten, wenn auch die erwartete Abhängigkeit der Assoziationszahlen
von der Kettenlänge nicht gefunden werden konnte.

Eigenschaften des elektronischen Grundzustandes und neutrale Anregungen
einer Gruppe von Photoinitiatoren – Benzophenon, 1,5-Diphenylpenta-1,4-diin-
3-on und seine Bis(4-methoxy)-, Bis(4-thiomethyl)- und Bis(4-(dimethylamino))-
Derivate – wurden mittels TDDFT untersucht, wobei LDA, GGA und Hybrid-
funktionale verwendet wurden. Zusätzlich wurden GW -Quasipartikelzustände
berechnet und die Bethe-Salpeter-Gleichung (BSE) für die ersten beiden Verbin-
dungen gelöst. Die Ergebnisse stimmen qualitativ gut mit experimentellen
Daten zusammen. Die Herkunft wichtiger Absorptionsbanden konnte bestimmt
und Prozesse, die eine Photoinitiatoraktivität bewirken, geklärt werden. Es
scheint notwendig zu sein, Funktionale mit exaktem Austauschanteil zu ver-
wenden, um die π → π∗-Übergänge zu beschreiben, gleichzeitig scheint das
B3LYP-Funktional die Anregungsenergien von nO → π∗-Übergängen fälschlich
zu erhöhen. Wenn auch die GW -Methode sehr genaue Ionisierungspotentiale
ergibt, brachte die Lösung der BSE auf Basis von GW keine große Verbesserung
im Vergleich zu TDLDA, bei gleichzeitigem hohen Rechenaufwand. Nichts-
destotrotz scheint sie eine vielversprechende Methode zu sein.
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Peter Cifra and Igor Laćık for fruitful discussions and encouraging comments
on my proposals.

The work on electronic structure and excitations would not have been pos-
sible without the contributions of a number of researchers. In particular I want
to thank Murilo Tiago (Oak Ridge National Laboratory, USA) and James Che-
likovsky (University of Texas, Austin, USA) for allowing me to use their DFT
and GW -BSE codes Parsec and RGWBS and many helpful hints, and the orga-
nizers of the ETSF summer school in Benasque (Spain) for accepting me to an
extraordinary helpful course on TDDFT and related methods, and for numerous
fruitful discussions. Further I thank Robert Liska and Niklas Pucher (Vienna
University of Technology) for providing experimental spectra.

I also want to thank Anne-Marie Kelterer (Institute of Physical and The-
oretical Chemistry, Graz University of Technology) for helpful discussions and
her cordial support in managing challenges in the course of the dissertation.

I gratefully acknowledge PCCL for allowing financial support of my work and
participations at several schools and conferences. Furthermore I want to thank
the European Science Foundation for granting visits to the group in Mainz in
the framework of STIPOMAT.

Finally I thank my family and friends who encouraged me to take all obsta-
cles that ocurred during the work.

iii



iv



Contents

1 Introduction and Motivation 1

2 Monte Carlo Simulations of Simple Polymeric Systems 3
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 A Model for Polymer Chains . . . . . . . . . . . . . . . . 3
2.1.2 Methodological Concepts . . . . . . . . . . . . . . . . . . 8
2.1.3 Random Number Generators . . . . . . . . . . . . . . . . 10
2.1.4 Constructing a Micelle . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Computing Radial Distributions . . . . . . . . . . . . . . 13

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Single Chain . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Semi-Dilute Solutions . . . . . . . . . . . . . . . . . . . . 17
2.2.3 A Single Chain Grafted onto a Planar Inert Surface . . . 20
2.2.4 Polymer Brushes . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Chains Grafted onto a Small Sphere . . . . . . . . . . . . 30
2.2.6 Block Copolymer Micelles . . . . . . . . . . . . . . . . . . 37

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4 Pseudocodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Electronic Excitations of some Photoinitiator Molecules 67
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 Density Functional Theory and Time-Dependent Density
Functional Theory . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 Green’s Function Based Many Body Perturbation Theory 74
3.1.3 The Bethe–Salpeter Equation . . . . . . . . . . . . . . . . 77
3.1.4 Technical Considerations . . . . . . . . . . . . . . . . . . 77
3.1.5 Selection Rules for Electronic Excitations . . . . . . . . . 78

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.1 Benzophenone . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.2 1,5-Diphenylpenta-1,4-diyn-3-one (DPD) . . . . . . . . . . 94
3.2.3 Derivatives of DPD . . . . . . . . . . . . . . . . . . . . . . 105

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

v



vi



Chapter 1

Introduction and
Motivation

The chemistry and technology of macromolecular compounds has been inves-
tigated in many aspects in the past 80 years and plays a major role in pure
and applied chemistry. Polymer chemistry is from a point of view, like chem-
istry in general, an interdisciplinary matter ranging from quantum physics to
biological activities of highly complex compounds, and from fundamental re-
search to industrial applications. The experimentalist who is nowadays able to
synthetize macromolecules with highly determined properties designed for so-
phisticated applications, may frequently encounter situations where measured
data or intended chemical reactions do not yield the expected behavior. Be it
that a property of interest is not accessible by experimental methods, that it is
obscured by a too large number of uncontrolled parameters of the experimental
setup, or that data deviate from or completely contradict expectations. These
cases may illustrate the necessity of theoretical and computational methods to
go hand in hand with work on the laboratory bench in successfully exploring
the fields of research.

In this work two different approaches are made to bridge between theory and
experiment. In Chapter 2 Monte Carlo simulations on a variety of polymeric
systems are presented. The main objective of this study is a deeper understand-
ing of the formation of block copolymer micelles in a selective solvent. This is an
active field of experimental work in the group. Due to elaborated polymeriza-
tion techniques, namely Ring-Opening Metathesis Polymerization (ROMP) of
a large class of substances, it has become possible to finetune block lengths and
monomer properties. And this ability raised questions about how chemical and
macromolecular parameters influence micellar structures and sizes. It should be
stressed here that simulations are not a theoretical method as such. Rather they
can be viewed as experiments on a computer using a simplfied model for the
system of interest. Like experiments, simulations produce not the same result
with every measurement, but a statistical distribution of values. The simpli-
fied model must of course possess all features which are necessary to describe
the desired properties. But it allows also to break the complex experimental
situation down to a few parameters and study how they affect the behavior of
the system. In that way simulations stand between experiments and theory and
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refer to both of them.
In Chapter 3 an approach of somewhat different spirit is followed. The

objects of the study are organic photoinitiator compounds which are used for
crossliniking and photocuring processes. Hence an actor in the polymerization
reaction is studied rather than the product. This is done by applying theoretical
methods to the molecules of interest and compute properties in the respective
approximation. As the electronic structure is to be calculated, all applied meth-
ods are based on quantum mechanics. These methods offer the possibility to
learn more about the details of electronic transitions, the orbitals involved and
their effect on the whole molecule.

Some of the methods and models in use here may seem odd at a first glance
to be applied to chemical problems. As outlined in detail later, the simulation
model for polymer chains greatly simplifies the macromolecules. This simpli-
fication goes that far, that their chemical structure is omitted altogether! At
the other hand, electronic structure methods that were used here treat the or-
ganic molecules as if they were a homogeneous electron gas, which is actually
an approximation for a solid metal. But it will be seen in the results sections
that nevertheless these methodological concepts proof to be valuable tools in
exploring the properties of the respective chemical system and the simplifica-
tions are valid to a large extent. Be it because the properties of a polymer chain
do indeed depend only on its length and the monomer interaction which can
in good approximation be expressed as an effective local one, be it because the
electron density in the organic molecules does indeed vary slowly enough that
the methods are applicable, in particular with some additional modifications.

It is hoped by the author that this work may shed some light on the fun-
damentals of the two problems briefly sketched already and be a help to the
experimentalist working on their practical realizations.

The work is organized as follows: Chapter 2 deals with the Monte Carlo simu-
lations of polymeric systems, Chapter 3 is dedicated to the electronic structure
and excitations of the photoinitiators. Every chapter starts with some back-
ground information on the methods and concepts in use. This methodological
introduction is by no means thorough or complete, rather it is intended to name
some important facts as a foundation and support for the interpretations of the
results. It is hence not suitable as an introduction of the concepts to the novice.
The interested reader finds references to text books and reviews she may follow.
After the background sections, the results of the work are presented and shortly
discussed—these sections are the main part of the work. The various systems
studied in every chapter are presented successively in a number of subsections.
Every chapter ends with a conclusio drawn from the whole of results, suggestions
for further work and the bibliography. Chaper 2 additionally lists pseudocodes
to explain in greater detail the implementation of the concepts.
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Chapter 2

Monte Carlo Simulations of
Simple Polymeric Systems

2.1 Background

2.1.1 A Model for Polymer Chains

General Remarks

This work deals with the statistics of long, flexible polymer chains. A vast
variety of polymeric compounds falls into this group, a few examples are given
in Figure 2.1.

There are several levels of abstraction applicable to modeling such systems.
The principal lines to decide which description is best to use follow the ques-
tions one wishes to answer by the results of the simulations and computational
efficiency. Several levels starting from an advanced physical theory and ending
at very simple models can be roughly divided into three levels

• an ab initio description based on quantum theories, such as Density Func-
tional Theory (DFT) or the Hartree-Fock approximation (HF) and beyond

• force fields, which describe atoms, bonds, bond angles and other features of
a molecule classically as point masses connected by springs with according
potentials for the relevant internal coordinates

• coarse grained models, that are further abstracted from the chemical struc-
ture

This last point deserves some more detailed attendance as such an abstract
model is used in this work. Apart from ab initio descriptions of, say a molecule
as a quantum mechanical object, all models rely on a classical treatment of the
system and disregard all quantum effects. This constitutes already a quite severe
simplification but still produces reasonable results for equilibrium geometries
and is suitable for systems containing a large number of atoms. From this point
one can go further and group atoms that build a more or less rigid structure and
subsume all forces into effective interactions. The case of a polymer chain allows
one to coarse grain all parts of one or several chemical monomers together and
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Figure 2.1: A few examples for flexible polymer chains: the common compounds
polyethylene (a), polypropylene (b) and polystyrene (c), building blocks for pluronics
polyoxyethylene (d), polyoxypropylene (e) and polyoxybutylene (f), building blocks
for copolymer micelles studied in the group at ICTM endo,exo[2.2.1]bicyclo-2-ene-5,6-
dicarboxylic acid (g) and its dimethylester (h).
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substitute it by a single structureless theoretical monomer exhibiting an effective
interaction ε [1, 2].

Another point of view starts from the properties of a polymer chain and
strives to track it back to solely the chain length and interaction parameters of
the theoretical monomers. The aim of this approach is to simplify the system
of interest as much as possible and to generalize the observations to a wide
range of compounds. In the limit of very long chains their properties become
independent of the local structure and all models yield the same results. More
about scaling theories can be found below and in Section 2.2.

The correspondence between a particular chemical structure and the ab-
stracted model is determined by interaction characteristics of the theoretical
monomer which can be traced back to the properties of the functional groups
building the chemical monomers and experimental bulk features such as densi-
ties or radii of folded chains in solution, see page 7.

The implementation of such a model bears the important consequence that
not only interactions between monomers can be included in the features of the
monomers, but also interactions with the solvent. The explicit description of
the solvent environment becomes completely unnecessary in this case, as it is
implicitly included in the interaction characteristics of the monomers. This
simplification causes a great increase in computational efficiency, as a large
number of degrees of freedom needed for a layer of solvent molecules around
the solute is omitted. It becomes hence tractable to run a simulation of rather
large solute objects in a dilute solution, what would be completely unreachable
otherwise.

Another simplification that seems a bit artificial at a first glance but does
reduce the computer work significantly, is the discretization of the monomer
coordinates. All objects in the system are only allowed to occupy sites on a
lattice and no position in between. Speaking in computer language, integer
coordinates are used rather than real ones. The simplest case is the hypercubic
lattice, i.e. the square lattice in two-dimensional space and the cubic lattice in
three dimensions, although other possibilities are sometimes advantageous, e.g.
the triangular or the face centered cubic lattice.

Characteristics of Polymer Chains on the Lattice

To sample the conformations of a polymer chain a Random Walk (RW) [5, 6]
would constitute the simplest possible sampling scheme. Such a chain is con-
structed stepwise by adding monomers at one of the nearest-neighbor positions
of the recent one. A site on the lattice may be visited several times during the
growth. Let the number of walks connecting the origin 0 and a point r inN steps
be NN (r). The total number of walks of N steps (or polymer conformations of
N monomers), i.e. the partition sum ZN , is then

∑

r

NN (r) = ZN = zN = zNNγ−1 (2.1)

with z neighbors of each site of the lattice and the exponent γ = 1. γ is a
universal exponent (like ν below) and depends for a give type of chain only on
the dimensionality d.

The end-to-end vector r is the sum of all step vectors
∑N

n=1 an making up
the walk. Each step vector has length a (which is 1 lattice unit throughout
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this work) and z possible directions. As different step vectors have independent
orientations, scalar products an ·am average to 0 if n 6= m and the mean square
end-to-end distance1 〈R2

ee〉 = 〈r2〉 becomes

〈r2〉 =
∑

n,m

〈an · am〉 =
∑

n

〈a2n〉 = a2N = a2N2ν (2.2)

with the universal exponent ν = 1/2. ν lies generally in the interval 1/2 ≤ ν ≤ 1
[7], where ν = 1/2 corresponds to a chain of independent links, as for the RW,
and ν = 1 to a rigid chain. ν, like γ, depends for a given chain type only on the
dimensionality d.

The RW neglects the finite volume of a polymer chain (the excluded volume)
and is hence not very useful to study polymers2. More useful, e.g. for the study
of polymer melts, is a modification of the RW that disallows double backing
steps. The exponents for this walk stay the same as for the original RW (γ =
1, ν = 1/2), but prefactors occur and z has to be replaced by zeff = z − 1.

The constraint of non-overlapping monomers excludes all configurations which
cross themselves. This is known as the Self-Avoiding Walk (SAW) [5, 6, 8],
which can be constructed by choosing one of the 2d− 1 positions (positive and
negative direction in every dimension d, double backing on itself is excluded by
definition) and deleting a chain when the position for the next monomer to be
added is already occupied.

The number of chain configurations for N (athermal) monomers is now

NN = ZN = z̃NNγ−1 (2.3)

with z̃ being an effective coordination number, somewhat smaller than the lat-
tice’s coordination number z. γ is roughly estimated to be 7/6 for d = 3. The
exponent ν for the scaling of the end-to-end distance Ree changes also for the
SAW and is estimated to ν3 = 3/5 for d = 3 and no thermal interactions3.
Note the swelling of the chain with respect to the RW, caused by the excluded
volume.

Another important observable studied by theory, simulations and experi-
ments such as Small Angle Sight Scattering (SAXS) is the radius of gyration
Rg [7, 9, 10]. It is obtained for a chain of N monomers from

〈R2
g(N)〉 = 1

N

〈

N
∑

k=1

(rk − rcm)
2

〉

=
1

N2

〈

N
∑

i=2

i
∑

j=1

(ri − rj)
2

〉

(2.4)

where rk is the position vector of the kth monomer and rcm is the center-of-mass
of the whole chain. The second expression was used in this work, because the
two sums can be combined with the process of growing the chain. The radius
of gyration scales also with the exponent ν

〈R2
g(N)〉 = A1a

2N2ν (2.5)

1This quantity is also referred to as Flory’s radius RF .
2But the mean square end-to-end distance also corresponds to the path a particle moves

driven by thermal diffusion. The diffusion time is then associated with the number of steps
taken during a simulation time. In the limit of arbitrary short step lengths the RW converges
to Brownian motion.

3Interestingly ν4 = 1/2, i.e. the SAW behaves like a RW, or ideally, in four dimensions.
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with the amplitude A1 depending on the model. The ratio of the end-to-end
distance and the radius of gyration is for the SAW [7]

lim
N→∞

6〈R2
g(N)〉

〈R2
ee(N)〉 = ℵ (2.6)

The universal constant ℵ is in one dimension ℵ1 = 1/2 and for d = 3 one
estimates ℵ3 to assume a value a bit smaller than 1 [7].

An alternative radius that can be computed from the walks is the hydro-
dynamic radius RH [7], which is related to experiments such a Dynamic Light
Scattering (DLS) [11]. It can be computed using

〈

1

RH

〉

=
1

N2

〈

N
∑

i=2

i
∑

j=1

1

|ri − rj |

〉

(2.7)

Mapping onto other Models and Real Chains

Following Geroff et al. [1, 3] in the limit long chains (N → ∞) and dilute
solutions (φ→ 0) chains are self-similar on length scales large compared to their
microscopic ones (i.e. the monomer bond length or the lattice unit length a in
the present case). The only relevant length scale for intramolecular distances is
the radius of gyration measured in units of the microspcopic length scale. Chain
lengths have to be mapped onto one another. In the limit of dilute solutions
one puts for the radius of gyration from simulations on the simple cubic lattice

〈R2
g〉SC/〈l2〉SC = CSCN

2ν (2.8)

with l = a and N the chain length in effective model monomers, and e.g. for an
experimental Rg would sets

〈R2
g〉exp/〈l2〉exp = CexpÑ

2ν (2.9)

where l is the monomer bond length and Ñ the degree of polymerization of
the real chain. Then a conversion factor α mapping the chain lengths onto one
another by N = αÑ must be such, that the amplitudes in both cases become
equal, Cexp = CSCα

2ν .
Two examples: Polymer 1 being polystyrene in a good solvent (carbon

disulfide), the Rg of a sample of Mw = 114000 g mol−1 was measured by
Small Angle X-ray Scattering (SAXS) as 137 Å [32]. The degree of polymer-
ization is then ≈ 1095 and the monomer bond length should be taken simply
as two C[sp3]–C[sp3] single bonds of roughly 1.54 Å. Polymer 2 being a ROMP
polymerized endo,exo[2.2.1]bicyclo-2-ene-5,6-dicarboxylic acid in good solvent
(ethanole), the Rg was measured by SAXS to be 8.1 nm for a degree of poly-
merization of about 200 [75]. The monomer bond length can be estimated by
optimizing the geometry of a tetramer by means of the semiempirical quantum
chemistry method PM3 to be roughly 5.3 Å. One gets then converting all lengths
to Å and disregarding all statistical or experimental errors

SAW (1) 1 SAW (2) 2

N or Ñ 1095 1095 200 200
l 1 3.08 1 5.3
〈Rg〉 or 〈R2

g〉1/2 26.83 137 9.75 81
α 2.36 2.15
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In other words 100 monomers in the sc lattice model correspond roughly to 42
monomer units in polystyrene or 47 monomer units in the lyophilic polymer of
[75].

2.1.2 Methodological Concepts

The algorithm in use for the present simulations is the Pruned–Enriched Rosen-
bluth Method (PERM) [4]. It is based on the SAW, which is realized by grow-
ing a polymer chain stepwise by adding new monomers on a randomly chosen
neighboring site to the chain head (excluding the last-but-one monomer position
xN−1). Recall from the preceding section that the construction procedure has
to be aborted when the chosen site is already occupied by another monomer,
i.e. the chain tries to cross itself. Hence this approach deletes many chains (at-
trition) and it is difficult to get good statistics of long chain configurations. The
number of surviving chains Cn after n steps is

Cn = C0e
−λn (2.10)

with λ being the attrition constant and C0 a constant approximately equal to
the initial number of samples.

To overcome this attrition problem an approach was developed by Rosen-
bluth and Rosenbluth [14]4. Within this method positions that are already
occupied are excluded from the choice for the next monomer. As in this case
some configurations are chosen more often than in a true SAW, i.e. in cases
where there are less than 2d− 1 empty positions, weights have to be introduced
to correct for this difference in counting. These Rosenbluth weights are

WN ∝
N
∏

n=1

wn (2.11)

with

wn =
kn

2d− 1
(2.12)

for a chain consisting of N monomers and kn empty positons to choose for the
nth monomer. Observe that W1 = W2 = 1 and a d-dimensional hypercubic
lattice is assumed. If these weights are multiplied by the maximum total num-
ber of configurations, which are allowed to cross themselves but not to double
back (Random Walk), 2d(2d− 1)N−2 (for N ≥ 2), the true number of possible
configurations of N monomers is obtained. This number is nothing else than the
partition sum ZN , which is in turn related to the free energy F of the system

FN = −kBT lnZN (2.13)

The Rosenbluth weights of different configurations may vary largely. As a
consequence the ensemble is dominated by a few configurations with relatively
high weights and statistics are poor. To deal with this difficulty the method of
enriching a sample was adapted by Grassberger [4]. Enrichment was originally
meant to adjust the sample size of an SAW to counterbalance attrition [15] and

4First calculations of this kind were carried out in the 1950’s on the “electronic high speed
computer” MANIAC I at Los Alamos, USA.
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amounts to copy a configuration (i.e. the sample of chains, not the actual chain
on the lattice) if necessary. This can be implemented as depth-first algorithm,
by building the chains recursively and copy the configuration at a point of the
growth, completing the chain and returning to the clone point.

In this context enrichment along with deletion of configurations is used to
adjust the Rosenbluth weights. If the weight of a configuration at step n exceeds
some upper threshold W>

n then the configuration is doubled and its weight di-
vided by 2. On the other hand, if its weight falls below some lower threshold
W<

n it is deleted with probability 1/2 and the weight of the surviving config-
urations is doubled. This procedure assures that the correct statistics are still
obtained, with the difference that the dominance of a few configurations with
a very large weight is avoided. Other choices for copying and adjusting the
weights are possible and may be advantageous.

If thermal interactions between monomers are present, the favoring of a site
due to the proximity of neighbors can be brought in by Boltzmann factors—
while still choosing one out of the neighboring empty site completely random
(a procedure which shall be called “simple sampling”). As these Boltzmann
factors correspond directly to the number (population) of configurations prefer-
ring this site, they can be included in the Rosenbluth weights. Starting from
Equation 2.12 and including the total number of configurations, they take then
the following form

wn = kne
−Ei/kBT (2.14)

with Ei =
∑

δi
εδi being the sum of all thermal monomer interactions ε between

next-neighbors δi and the new monomer at the chosen site i (see also Section
2.1.1). Alternatively, the Boltzmann factors can be included in the probability to
choose a particular site, i.e. the site for the new monomer is not chosen uniformly
amongst the empty sites, but according to the resulting thermal interaction.
This method shall be referred to as “importance sampling” here. The probability
to choose a site i at step n amongst kn free sites becomes in this case

pi =
e−Ei/kBT

∑kn

j=1 e
−Ej/kBT

(2.15)

Also combined choices for including the Boltzmann factors between the weights
wn and probabilities pkn

i are possible. In any case

pkn

i wn = e−Ei/kBT (2.16)

has to be fulfilled. The ∝ sign in Equation 2.11 means that constants can
be put in front of the right-hand side. In case these are just powers of N , i.e.
WN = zN

∏n
N=1 wn, the expectation value of

∑

N WN corresponds to the grand
canonical partition sum ZN .

An empty site represents the solvent environment, but no restriction is ap-
plied concerning the placement of a monomer onto it. Note that the athermal
SAW corresponds to a polymer chain in good solvent, where the monomers
“feel” an ideal solvent in their environment that screens all other monomers.
Monomers with thermal interactions tend to aggregate in such a way to mini-
mize the internal energy and “feel” a poor, thermal solvent around. Having a
Boltzmann factor for next neighbors i and j, which are not immediate consecu-
tive monomers of one chain, qij = eεij/kBT where εij = 1/kB one finds that the
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critical temperature for the θ collapse is estimated to be Tθ = 3.717± 0.003 for
this model [4]. At the θ-point the thermal SAW constructed with the algorithm
recovers the properties of the RW, while still posessing an excluded volume.

Earlier work employing PERM and its modifications include studies of ho-
mopolymer [4, 16, 17, 28] and heteropolymer chains [18, 19], star [20] and bottle
brush polymers [21] and confined polymers [22]. The cited sources use mostly
some lattice implementation, although there are also cases of off-lattice appli-
cations [4, 18].

2.1.3 Random Number Generators

A good portion of the quality of the code relies on the type of random genera-
tor in use to produce very many floating point numbers uniformly distributed
between 0 and 1. It should combine a maximum of uniformity in the distribu-
tion, a minimum of correlations between subsequent results and a minimum of
computer power to produce them.

Generators usually employ some linear congruential algorithm of the type

ij+1 = (aij + c) mod m (2.17)

with a proper choice for a, c andm, which produce a sequence of integer numbers
ij starting from a non-zero start value (seed) and are divided by m to yield
floating point numbers between 0 and 1. One weakness of this method is that if k
of its random numbers are used at a time to plot points in a k-dimensional space,
correlations occur in a sense that these points are not distributed uniformly but
lie on (k − 1)-dimensional planes. The number of planes is at most m1/k. This
may have severe consequences for a simulation as the phase space is not anymore
sampled completely and uniformly. Another issue is the period of the random
number sequence, at most of length m, which is chosen close to the system’s
maximum integer (e.g. 231−1 on a 32-bit machine). In this work a large number
of calls is necessary, so periods of this range are to be avoided. A solution to
this challenge (L’Ecuyer [23]) is the combination of two such linear congruential
generators with different periods. Then the two sequences are usually subtracted
and m − 1 of either of them is added, if the result is smaller than 0 (m being
the modulus of either of the generators).

The implementation of a linear congruential generator follows Schrage [26,
27] and is based on an approximate factorization of m in the form of m = aq+r
with q = integer(m/a) and r = m mod a. If r < q and 0 < z < m− 1 it can be
shown that

az mod m =

{

a(z mod q)− r · integer(z/q) if ≥ 0
a(z mod q)− r · integer(z/q) +m otherwise

(2.18)

and that all terms are in the range 0, . . . ,m− 1 and hence produce no over- or
underflow.

Additonally a shuffle step [26] can be used to remove low-order serial corre-
lations. The values ij are then not output directly at the jth call, but stored in
an array and output at some randomized later call.

The random number generator used in this work was the ran2-Routine from
[26], which corresponds to the above (see also pseudocode in Section 2.4). Ad-
ditionally a few runs were carried out employing Ranlux (in the levels 3 and 4)
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Figure 2.2: Two possible ways of growing an A–B block copolymer—sequentially (left)
or simultaneously (right). The numbers represent the order for adding monomers, A
and B type monomers are depicted as gray and black discs.

[24, 25], which is known as a high-quality generator. As ran2 gave comparable
results to Ranlux, it was chosen for the reasons of good performance and its
long period (the number of calls can reach the order of 1011 in a single run).

2.1.4 Constructing a Micelle

The description of the algorithm so far has been dealing with one homopolymer
chain only. A proper growth order has yet to be developed in order not to
introduce artificial biases for the case of A–B block copolymer micelles. Two
monomer types were introduced by their interaction features. While corona
monomers are simple SAW chains, core monomers exhibit additionally thermal
interactions to nearest neighbors.

To ensure equal growth conditions for the two branches of a copolymer chain,
it is necessary to grow the A and B branches simultaneously beginning from the
connection monomer, rather than sequentially beginning from one end of the
chain, as shown in Figure 2.2. This procedure results in the logarithm of the
partition sum lnZN being a linear function of N , contrary to the sequential case,
where lnZN deviates from the linear behavior, see Figure 2.3. In extension to
the micelle case, this consequently means that

• the whole micelle has to be grown simultaneously, adding the first A type
monomer to each chain, then the first B type monomer, then the second
A type one and so on, and

• the starting points for all unimers have to be assumed to lie in a spherical
shell around the center of mass of the whole aggregate, this spherical shell
is also the place where the micellar core region and the corona intersect.

The Starting Point Sphere

Starting points, i.e. the most central A type monomers of each chain, were
placed randomly on the surface of a sphere centered at the origin of the lattice.
They were obrtained by computing a random vector, scaling its length to an
assumed spherical radius (given as an input to the runs) and displacing the
obtained point to the next lattice point. By virtue of this rounding step a
slight broadening of the radial distribution of the starting points was already

11



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60  70  80  90  100

ln
 Z

N

Figure 2.3: Logarithm of the partition sum lnZN vs. chain length N for sequentially
(dashed) and simultaneously grown chains (full line).

obtained. It was assumed that this radial distribution was still too narrow,
so an additional broadening step prior to the rounding to distinct lattice sites
was applied. This broadening was achieved by altering the radius of a starting
point by adding a random number around 0 - either uniformly distributed or
Gaussian. Where Gaussian distributed random numbers were obtained using
the Box–Muller method [6].

The optimal radius for the starting point sphere was then determined by
comparing the estimates for the partition sums for different given radii.

Biased Chain Growth

Applying the method as described so far did not yield a large number of suc-
cessfully constructed micelles necessary for good statistics (i.e. a large number
of independent configurations resulting in relatively small errors), but many
“savage” aggregates with a poor monomer separation, low density in the core
and an accordingly low weight in the ensemble.

The trick that was applied successfully to circumvent this problem was to
bias the chain growth. This was done by altering the probabilities of the imor-
tance sampling PERM method in the following way: Taking n as the number
of the new monomer to put, counted for a corona or core block in the order of
the chain growth (i.e. n = 1 for the central monomers, which are connected to
the other block). Then the probability to choose the site was multiplied by b
(in addition to the weights according to thermal interactions), with

b =
2(n− 1) + 3

2(n− 1) + 1
(2.19)

for new core monomer sites at smaller radii and corona monomer sites at larger
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radii than the old position, thus e.g. the smaller radii sites were favored by
b = 3, 5

3 ,
7
5 ,. . . for the first, second, third,. . . core monomers. The probabili-

ties to choose positions at larger radii for core monomers and smaller radii for
corona monomers were multiplied by b−1. Additionally, the probablility for the
potential positions of the new A-type monomers in the core was multiplied by
the number of empty sites in vicinity to the new position—in order to reduce
the number of dead ends. This was carried out only at radii smaller than the
given starting point sphere (without any broadening) and an additional low(er)
density phase of an assumed thickness of 1.5 lattice units. The resulting new
chain weights had then to be corrected at the end of the step by diving by the
corresponding factors for the site chosen in order to obtain the correct result.

This procedure yielded the desired large numbers of independent configura-
tions with high weights even for the bigger aggregates.

2.1.5 Computing Radial Distributions

Computing radially varying properties, such as probability distributions or den-
sity profiles require special care as the lattice may introduce a spurious structure
to them. In the case of micelles, where the reference point is the center-of-mass
of the configuration (assuming mA = mB), the lattice degeneracy is avereaged
out to a large extent by summing over a large number of configurations. But
when some fixed origin is taken as the reference point, around which the sys-
tem is constructed, as in the cases of chains tethered to a sphere or starting
points the degeneracy becomes disturbing and the obtained profiles have to be
corrected for it. The correction is done by relating the monomers found in a
bin to the total number of lattice sites in the same bin. In that way the correct
values are obtained. Note that there is still a spurious structure in the radial
functions stemming from the discretized coordinates. Figure 2.4 shows the case
of radial bins of width 0.5 lattice units. There is a considerable even–odd pat-
tern in the total number of sites per bin, which correspond to the volume in the
model. The inset shows the relation to the geometric volume of the spherical
shells with same radii.
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Figure 2.4: Lattice sites of a simple cubic lattice in bins of 0.5 lattice units. The
inserted graph shows the number of sites per volume which was used for corrections.

2.2 Results

At the beginning of this section results for some simple systems are presented.
These systems have been studied already by others and data are found in liter-
ature. Hence the following five subsections, namely the studies of single chains,
semi-dilute solutions, polymer brushes and polymers grafted onto a spherical
surface, allow to test the validity of the approach and show strengths and weak-
nesses of the method. Results for symmetric A–B block copolymer micelles—the
main subject of this work—are finally presented in the last subsection.

2.2.1 Single Chain

Computations for the simplest case of a single, linear homopolymer chain are
the first step in this work and in a sense the foundation of the other, more
complex systems. Rather precise data from a broad variety of methods and
features of the model exist for the SAW.

Single chains with Nmax = 5000 monomers were grown in a cubic box of
L = 600 with periodic boundary conditions. The box size was checked for finite
size effects by test runs in a larger box (with size 700). Averages and error
estimations stem from an ensemble of 20 runs with 5 · 105 Monte Carlo steps
each.

As PERM yields estimates of the partition sum ZN (or the number of pos-
sible configurations NN for a chain of N monomers) as its basic quantity, one is
able to obtain the universal scaling exponent γ. In practice, the scaling relation
2.3 is reached only at very long chain lengths and the assymptotic approxima-
tion of the data is quite slow. Additionally, data exhibit an odd-even pattern if
plotted against N due to the structure of the cubic lattice. For these reasons
special care has to be taken in extracting the exponent γ [6, 28, 20]: Using triple
ratios Zx

aNZ
y
bN/ZN instead of ZN and introducing a correction term to scaling

of the form γeff(N) = γ + constN−∆. A value of ∆ ≈ 0.5 is usually found for
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Figure 2.5: Snap shot of a single SAW chain of 5000 monomers on the simple cubic
lattice. This and all later snap shots pictures were produced using VMD [31].
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Figure 2.6: Plot of γeff(N) against N−1/2 with only a limited number of error bars
shown for better clarity. The linear fit is 1.1560 + 0.0522N−1/2.

the SAW (for a discussion on ∆ see [29]).
Figure 2.6 shows a plot of γeff which was obtained from

γeff(N) = 1 +
23 lnZN − 22 lnZN/2 − lnZ12N

ln(222/12)
(2.20)

with a, b, x and y chosen such that errors are minimized and z̃ and the nor-
malization factors for the different terms cancel. The data show less statistical
quality for larger N, hence the asymmteric choice of a and b. The result is

γ ≈ 1.156± 0.001 (2.21)

where the error estimate stems from both, the errors inherent to the data for
lnZ and the linear fit. A value that is in line with other work [28, 20, 29]. The
value for ∆ was estimated to the usual value of 0.5, which gave the most linear
behavior of the data.

Inserting the value for γ into Equation 2.3 and extrapolating to the limit
N →∞, one obtains an estimate for the effective coordination number (or the
inverse critical fugacity) for the simple cubic lattice of

z̃ ≈ 4.684± 0.004 (2.22)

where the error stems mainly from the uncertainty of γ. Hence the result of
Hegger [30] for the same system and method is reproduced.

Geometric observables that were obtained are ensemble averages of the
(squared) radius of gyration 〈R2

g〉 and end-to-end distance 〈R2
ee〉. Again to yield

the exponent ν according to Equation 2.2 a careful analysis of the data is neces-
sary [6], using a ratio method and a correction to scaling νeff(N) = ν+constN−∆

similar to the corrections for γ.
The ratio formula

νeff(N) =
ln〈R2

g(8N)〉 − ln〈R2
g(N)〉

ln 16
(2.23)
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Figure 2.7: Plot of νeff(N) against N−1/2 with only a limited number of error bars
shown for better clarity. The linear fit is 0.5867 + 0.09985N−1/2.

gave smallest errors. Values for νeff(N) were then plotted against N−1/2 which
gave again a close-to-linear behavior, see Figure 2.7. The result is

ν ≈ 0.587± 0.001 (2.24)

where the error estimate stems again from both, 〈R2
g〉 and the linear fit. This

value is once again in line with other work [28, 20, 29]. 〈R2
g〉 was used instead

of 〈R2
ee〉 because it gave smaller errors.

2.2.2 Semi-Dilute Solutions

The osmotic pressure Π of a polymer solution is related to the change in free
energy F upon change of the solution’s volume (i.e. by adding solvent) while
keeping the number of chains fixed

Π =
∂F

∂V

∣

∣

∣

∣

number of chains

(2.25)

In the dilute regime, when the chains do not overlap, it obeys van’t Hoff’s law5

Π/T ∼ c/N . At increasing concentrations there exists an overlap concentration
(or region) c∗ at about the local concentration inside a single coil in a good
solvent [5]6

c∗ ≈ N/R3
F = a−3N1−3ν ≈ a−3N−4/5 (2.26)

or, in terms of the polymer fraction φ (i.e. the fraction of lattice sites occupied
by monomers, with φ = a3c), one obtains φ∗ ≈ N−4/5. Note that c∗ (or φ∗) is

5An improved approximation yields the virial expansion Π/T = c/N +A2c2 + . . . .
6While for experimentalists the form c∗ ≈ 3M

4πNAR3
g

involving the polymer’s molar mass

M , its radius of gyration Rg and Avogadro’s number NA may be more useful [33]. See also
footnote on page 23.
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Figure 2.8: Plot of Fφ−5/4N−1 against φ/φ∗ for chains of length 40, 60, 80 and 100
monomers. Experimental data in the form of Πc−9/4 against c/c∗ from [36] are also
given (exp1 refers to poly(α-methylstyrene) in toluene of M̄n ≈ 7 · 104 g/mol, exp2 to
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small for long chains. For c� c∗, i.e. semi-dilute solutions in good solvents, the
osmotic pressure follows des Cloizeaux’s rule [5, 7, 32, 33]

Π

T
∼ cνd/(νd−1) ≈ c9/4 ∼ φ9/4 (2.27)

Consequently, the free energy per chain in the solution must scale as F ∼ φ5/4.
PERM runs were carried out in a box of L = 30 with periodic boundary

conditions in all directions. Starting monomers for each chain were distributed
randomly in the box and chains grown simultaneously (as described in Section
2.4). The system was checked for finite size effects by test runs in a larger box
(with L = 40).

Figure 2.8 depicts results from for chains of length 40, 60, 80 and 100
monomers. Where the free energy per chain F was obtained as the difference be-
tween the logarithm of the partition sum of a single chain and the value for one
chain of the same length in the semi-dilute solution FN = lnZ1,single

N − lnZ1,φ
N .

The function Fφ−5/4N−1 should assume a constant value in case scaling law
2.27 is fulfilled. This is in fact seen for polymer fractions well above the overlap
value φ/φ∗ � 1.

Experimental data for poly(α-methylstyrene) in toluene are plotted for com-
parison. Here the measured osmotic pressures Π over c9/4 show a similar behav-
ior for concentrations c/c∗ � 1. The increase in F or Π at higher concentrations
may be the onset of the ideal behavior found for melts or mixtures with polymer
fractions φ→ 1.

At a concentration in the semi-dilute regime φ� φ∗, the scaling law for the
end-to-end distance Ree(φ) is for the athermal SAW [5, 32]

R2
ee(φ) ∼ Nφ(1−2ν)/(νd−1) ∼ R2

ee(0)

(

φ

φ∗

)(1−2ν)/(νd−1)

(2.28)
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Figure 2.9: Snapshots of chains of 100 monomers in semi-dilute solution. The box of
L = 30 contains from top left to bottom right 20, 30, 40 and 50 chains, corresponding
to φ = 0.074 . . . 0.185.
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where R2
ee(0) is the radius of a chain at zero concentration (i.e. for the single

chain). Taking ν ≈ 0.588 one obtains R2
ee(φ)/R

2
ee(0) ∼ (φ/φ∗)−0.23. The ra-

dius of gyration Rg(φ) is expected to behave essentially proportional to Ree(φ)
[32]. This scaling law was confirmed by neutron scattering experiments [32] and
simulations [34, 35].

As can be seen from Figure 2.10 the expected scaling behavior of 〈R2
ee(φ)〉

is not fully reached within the data range of this work (slope marked by the
full line in Figure 2.10). This deviation is likely due to the fact that the linear
scaling with N is not reached for chains of Nmax = 100 and strong corrections
to scaling are present for SAWs, what was already noted by Pelissetto [35].

2.2.3 A Single Chain Grafted onto a Planar Inert Surface

Before looking at polymer brushes I want to present the case of a single chain
tethered to a surface. This surface was inert, i.e. there were no thermal in-
teractions with the chains, but the lattice sites occupied by the surface were
not accessible for monomers. The simulation box had size Lx = Ly = 500,
Lz = 1001 and periodic boundary conditions in lateral directions x and y.
The lateral box dimension was checked not to introduce any finite size effects.
The inert surface was realized by occupying the plane (x, y, 1) with (athermal)
monomers. Chains with up to Nmax = 1000 monomers were constructed while
the starting monomer was always in the plane z = 2. An ensemble of 10 runs
of 106 Monte Carlo steps was used for an estimation of means and statistical
errors.

As the chains are constructed on the same simple cubic lattice like the free
chains before, the critical fugancity stays z̃ ≈ 4.684, but one finds another
exponent γs(1) from the partition sums [37] due to the effect of the wall.
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Figure 2.11: Snap shot of a single SAW chain of 1000 monomers grafted on a planar
surface. Only a part of the surface is shown for clearity.
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are within line width.
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Similar to the free chain case above, γs was obtained from the ratio formula

γs,eff(N) = 1 +
7 lnZN − 6 lnZN/3 − lnZ5N

ln(36/5)
(2.29)

and plotted against N−0.7 what gave the closest-to-linear behavior, as shown in
Figure 2.12. The result for γs is

γs ≈ 0.6794± 0.0004 (2.30)

reproducing former PERM results for the simple cubic lattice of 0.6786±0.0012
[37] and 0.679 ± 0.002 [30], and in excellent agreement with the field theoretic
result 0.680 [38].

As shown in Figure 2.13 the mean-squared end-to-end distance 〈R2
ee〉 and

radius of gyration 〈R2
g〉 seem to assume a constant elongation upon tethering

the chain to a wall, which was reported previously [39]. The elongation of 〈R2
g〉

was roughly 1.038 ± 0.001, obtained as mean of chains with 100 ≤ N ≤ 1000,
while the elongation of 〈R2

ee〉 approaches a value of ≈ 1.25 but seems to be
unconverged for the chain lengths studied.

2.2.4 Polymer Brushes

Polymer brushes consist of many chains end-tethered to a planar surface, see
Figure 2.14. Like in the single chain case before this surface was inert and
impenetrable. The system was constructed in a box with Lx = Ly = 30 and
Lz = 101 and periodic boundary conditions in lateral directions x and y. Lattice
sites lying in the plane (x, y, 1) were filled with monomers resembling the inert
surface. Then starting monomers were distributed randomly onto this surface
(i.e. in the plane (x, y, 2)). In case two starting monomers were to be put at
the same site then the distribution step was repeated. The box size was checked
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Figure 2.14: Scheme of a polymer brush with brush height h measured in a suitable
way, see text for details.

for finite size effects by comparing with results from test runs using a lateral
side length of 40. As in the case of semi-dilute solutions, chains were grown
simultaneously.

The grafting density φa for this system is simply the number of chains f
divided by the (x, y)-plane area φa = f/(LxLy). At very low grafting densities
(mushroom regime) the distance between chains is large and interchain contacts
do not play an important role, if any. Above an overlap grafting density φ∗a
which corresponds to the average distance between two chains D equals the
Flory radius7 RF

D ≈ RF ≈ N3/5 (2.31)

φ∗a ∼ D−2 ≈ N−6/5 (2.32)

chains become more and more stretched until the strong stretching regime is
reached at high grafting densities, where the chains are predominantly stretched
along the normal of the surface and the polymer fraction inside the brush be-
comes approximately constant [48].

The brush height h can be measured in terms of the first moment of the
z-distribution of momomers 〈z〉 [41]. In the mushroom regime, when φa < φ∗a,
h is almost independent of φa. Above the overlap grafting density two regimes
were observed. For intermediate densities φ∗a < φa < φa1 a scaling behavior of

h ∼ Nφ
1/3
a was found, where for higher densities above another threshold φa1

a scaling law of h ∼ Nφ
1/2
a . This was found by both, MD simulations [41] and

theoretical considerations [42]. As both thresholds φ∗a and φa1 depend on N ,
the intermediate regime may be very limited or completely absent. This is in
particular true for shorter chains.

Figure 2.16 (a) shows 〈z〉 for a range of grafting densities φa, reduced by
the overlap grafting density φ∗a and different chain lengths. There is only a
limited range of grafting densities accessible by the method, above which the
data become quite uncertain and start to behave erroneously (brush height
stays constant or even decreases). Apparently the lattice is too unflexible for

7Newer literature tends to replace RF with Rg , the radius of gyration, which is smaller by

a factor of
√
6. In any case, only a prefactor, not the scaling law is changed. See also footnote

on page 17.
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Figure 2.15: Snapshots of polymer brushes containing chains of N = 100 monomers.
From top left to bottom right the box contains 10, 20, 30 and 40 chains, corresponding
to a grafting density φa of 0.011, 0.022, 0.033 and 0.044.
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Figure 2.16: The brush height h, measured as 〈z〉 against φa/φ
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a for different chain
lenghts N (a) and scaled plot of 〈z〉 following [41] (b). Lines are guides for the eye
only.
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growing chains at these high densities. A scaling plot of 〈z〉 following [41, 42] is
depicted in Figure 2.16 (b). At higher grafting densities and for longer chains
the scaling behavior seems to be reached (a constant value in the scaled plot
is assumed), while the remarks made for graph (a) concerning the limited data
range are still to note, what renders the determination of the scaling somewhat

ambiguous. For the shorter chains the scaling 〈z〉 ∼ Nφ
1/3
a is rather limited, if

at all reached. This was observed for MD simulations [41] and experimentally
for a polydimethylsiloxane–polystyrene block copolymer at the ethylbenzoate–
air interface using neutron reflectivity measurements [43], where the apparent
scaling was found to be almost linear8.

To study in more detail the cross over of the different regimes, it would
be desirable to run simulations in a broader range of grafting densities and
in particular also with longer chains. But constructing dense systems by the
algorithm would be hardly achieveable and sampling a very large number of
degrees of freedom would render the results questionable.

Figure 2.17 shows monomer densities φ(z) along the z-axis for different graft-
ing densities φa = 0.011 . . . 0.044. As obtained by others [44] the density exhibits
a maximum close to the surface. The location of the maximum ξ should scale

about as ξ ∼ φ
−1/2
a . A behavior that could not be obtained from the data, as

it was not possible to determine the precise location of the maximum. Beyond
the maximum the profiles can be approximated by a parabolic function [44, 45]

φ(z) = A0 −B0z
2 (2.33)

8Note that the data of [43] do not allow a precise determination of the scaling exponent
for φa and the data of Figure 2.16 (a) could also be interpreted as “almost linear” behavior.
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where the constants A0 and B0 are

A0 =

(

9π2φ2a
32w

)1/3

(2.34)

B0 =
π2

8N2w
(2.35)

involving the excluded-volume interaction w which equals 1/2 for the SAW here.

If one scales the densities φ(z) by φ
2/3
a and perpendicular distances z by

Nφ
1/3
a all data should collaps to a master curve. The scaled plot along with

the parabolic function 2.33 is depicted in Figure 2.18. There is a significant
deviation from the proposed scaling. This observation is contrary to the work of
Chakrabarti and Toral [44] who also used a simple cubic lattice, but a dynamic
Monte Carlo scheme, and to the work of Lai and Binder [45] who used the
bond fluctuation model, i.e. also a dynamic scheme. It appears therefore that a
static MC algorithm, which grows chains on the simple cubic lattice in regimes
of intermediate density does not reproduce their geometric characteristics very
well, due to steric hindrance and limited flexibility of the chain.

If one looks specifically at the end monomers of the chains one finds profiles
as depicted in Figure 2.19. The free ends are driven towards the outer surface
of the brush, but have a non-zero density throughout the entire cross section.

For moderate grafting densities φa

φe(z) =
π2

4wN3
z(h2 − z2)1/2θ(h− z) (2.36)

was obtained [50, 44], where h is the brush height and w the above mentioned
excluded-volume parameter. As before a scaled plot with φe(z) reduced by

φ
2/3
a /N and z reduced by Nφ

1/3
a should yield a master curve to which all data

collapse. This plot is shown in Figure 2.20 along with the scaling law 2.36.
There are obvious deviations, in particular the finite density near the grafting
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plane, which where also found in [44]. Deviations may further be assigned to the
sc lattice and potentially the length of the chains which may not have reached
the scaling limit. For both densitiy profiles, for whole chains and end monomers,
a characteristic “foot” occurs at the right side with respect to the theory. This
was found by refined theory and is associated with fluctuations of the free chain
ends beyond the brush height h [46].

Related to the bulk osmotic pressure defined in Equation 2.25 one can define
a surface osmotic pressure Πa by

Πa =
∂F

∂φ−1
a

(2.37)

involving the surface grafting density φa and the free energy per chain F . The
characteristics of the surface pressure remain under discussion. Above the over-
lap grafting density φ∗a scaling theory [47, 48, 49] predicts for a good solvent

Πa ∼ Nφ
11/6
a , while SCF theory [50] yields Πa ∼ Nφ

5/3
a . A later work of Carig-

nano and Szleifer [51] using a single-chain mean field approach, while obtaining
the field of the other chains from Monte Carlo runs, states that there are con-
stant crossovers between several regimes with respect to the grafting density
and only apparent exponents for Nφxa are seen.

Figure 2.21 shows the free energy per chain F which was obained from the
estimated of partition sums of a single chain on a planar surface 〈Z1,pl

N 〉 and the

brush with f chains in the simulation box 〈Zf,pl
N 〉 by

FN = ln〈Z1,pl
N 〉 − 1

f
ln〈Zf,pl

N 〉 (2.38)

The main graph in Figure 2.21 shows a comparison with a scaling law following
[51]. The following expansion for the surface osmotic pressure was obtained
there

Πa =
1

2

∫

〈φ(z)〉2dz + 1

3

∫

〈φ(z)〉3dz + 1

4

∫

〈φ(z)〉4dz + . . . (2.39)
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It was shown that as long as the full expansion 2.39 is used, even the form of
the profile φ(z) plays not a decisive role. In particular this was demonstrated
for the parabolic profile9, see Equation 2.33 above, in which case one obtains

∫ h

0

φ(z)idz ∼ Nφ(2i−1)/3 (2.40)

From Figure 2.21, where Fφa is compared with an expansion up to i = 10
and using Equation 2.40, it can be seen that the apparent scaling exponent
obtained from PERM is somewhat higher than the one predicted by Equation
2.39. The inset of Figure 2.21 depicts a double logarithmic plot of F against
φa, which yields an apparent exponent of x ≈ 1.163 ± 0.002 by linear fit. This
consequently means for the surface osmotic pressure that an apparent exponent
of scaling φxa of x ≈ 2.163 from this work compares to the value of 1.9 from [51]
for the range of φa studied here. Where the latter figure is based on the originial
approach of [51] using MC sampling and employing the rotational isomeric state
(RIS) chain model. Another work of Carignao and Szleifer [53], which is based on
the bond fluctuation model, yields a scaling exponent for the chemical potential
slightly larger than 1, in better agreement with this work. A direct comparison
of F vs. φa from this work with results from an earlier work of Carignano and
Szleifer [52], based on pure Rosenbluth sampling of chains on the simple cubic
lattice shows the expected close agreement. The above described deviations
stem from the chain model used in the different sources. A more recent work of
Ohno et al. [54] uses an enrichment algorithm on the sc lattice and obtains for
the scaling of the entropy with the (regular) spacing d between chains −S ∼ d−y

an exponent y = 2.4 ± 0.1. Hence this corresponds to x = 1.2 ± 0.05 for the
scaling F ∼ φxa, using φa ∼ d−2, and a good agreement with the present results.

Experimentally the surface osmotic pressure can be measured as the change
in surface tension of a liquid interface due to the presence of chains forming
the brush as a function of surface coverage. Kent et al. [55] obtained data
from neutron reflectivity measurements of a polydimethylsiloxane–polystyrene
(PDMS–PS) copolymer at the ethylbenzoate–air interface, where the PS blocks
form the brush. There is evidence for scaling exponents > 5/3, but the uncer-
tainty of the data does not permit a precise comparison.

2.2.5 Chains Grafted onto a Small Sphere

I have studied systems of this type with respect to the case of block copolymer
micelles below, for which they mark a step of simplification and the possibility to
check the validity of the appoach. In the limit of small radii for the central sphere
Rs to which the chains are tethered the statistics of the system approximate
the characteristics of star polymers [56], which are a special class of branched
polymers in which all chains are tethered to a point.

Star polymers with a larger number of arms cannot be realized on simple
lattices with self-avoiding chains as the dense central region needs some mod-
ification. Approaches include allowing longer bonds [57], partially overlapping
monomers [20] and use of a small inert sphere [56]. Increasing the radius of

9Observe that this yields again the former SCF result Πa ∼ Nφ
5/3
a if the summation 2.39

is aborted after the first term.
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Table 2.1: Comparison of γf for f chains attached to a small sphere with Rs = 5.0
and comparison to MC results and theoretical values for star polymers.

f sphere Rs = 5.0 star polymers
this work MC results renormalization group

1 0.978(3) 1.1573(2)a 1.1575(60)g

2 0.920(6) 1.1573a 1.1575(60)g

4 0.685(8) 0.8355(19)a; 0.879(1)b; 0.75h; 0.78i

0.88(3)c; 0.71, 0.91d 0.83 . . . 0.86j

8 −0.348(14) −0.748(3)a; −1.00e; −1.50h; −0.45i
−0.99, −0.30d −0.88 . . .− 0.36j

16 −4.77(6) −6.640(10)a; −5.90e; −12.0h; −4.54i
−8.80, −5.71d

32 −22.1(3) −29.0(20)f −57.0h; −17.3i

aHsu 2004 [20], PERM and Domb-Joyce model. bBatoulis 1989 [63], dimerization method on
fcc lattice. c Wilkinson 1986 [64], Rosenbluth sampling on sc lattice. d Barrett 1987 [65],
Rosenbluth sampling using (112) and (113) steps on sc lattice. e Shida 2000 [66], enrichment
algorithm, sc lattice. f Ohno 2002 [67], enrichment algorithm, sc lattice. g Guida 1998 [68].
h Miyake 1983 [65]. i Ohno 1988 [63]. j von Ferber 2002 [69], various calculation models.

the central sphere above a critical radius R∗
s lets the scaling behavior approxi-

mate the case of a planar surface discussed above [49, 56]. The sphere can be
considered as small, when [49]

Rs � R∗
s ∼ Nσ−1/3 (2.41)

using the area per chain σ, which is obtained from the surface of the sphere
with Rs and the number of chains f by σ = 4πR2

s/f .
The systems as depicted in Figure 2.22 were constructed in the follow-

ing manner: First all sites of the simple cubic lattice whose distances from
some origin smaller than the requested Rs were occupied with inert surface
monomers. Then starting monomers for the chains were randomly distributed
in the shell around Rs. These starting positions were checked for the number of
next neighbor–surface monomers and adjusted to have not less than 1 and not
more than 4 of them, see pseudocode in Section 2.4 for details. The other steps
of the algorithm were then similar to the ones for the other systems described so
far. In computing radial density profiles, lattice degeneracy had be taken care
of as descried on page 13.

The partition function of a star polymer of f arms with N monomers is
given by a generalization of the expression for a linear chain, Equation 2.3,

ZN,f ∼ z̃fNNγf−1 (2.42)

with the same value for z̃ as before. For each star family with f arms, there
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Figure 2.22: Snapshots of SAW chains of 100 monomers grafted onto a spherical surface
of radius 5.0. From top left to bottom right the system ontains 4, 8, 16 and 32 chains,
corresponding to σ = 78.5, 39.3, 19.6 and 9.82.
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Figure 2.23: Comparison of measured values γf for f = 1 . . . 32 with scaling law
γf − 1 ∼ −f3/2. The dotted line is just a guide for the eye.

exists a different γf . Observe that γ1 = γ2 = γ, which are all linear chains 10.
Table 2.2.5 shows values for γf estimated from the present simulations,

as well as other MC estimates and theoretical results obtained from renor-
malization group theory. The γf -values from this work exhibit some uncer-
tainty as the chains Nmax = 100 only and were determined by extrapolating
lnZN,f/ lnZN−1,f = fN ln z̃+(γf − 1)ln[N/(N − 1)] to N →∞. As the chains
here are attached to a sphere and not to a point, the γf -values deviate from
literature values. Thus γ1 assumes an intermediate value between γ and γs for
a planar wall. The effect of the sphere is less pronounced for large f . As can
be seen from Table 2.2.5, there is considerable scattering within the literature
values from different sources, even so for the same systems and similar methods.
Concerning MC results the more recent data are by trend more precise and are
assumed to have higher significance. Theoretical values with tags (h) and (i)
are obtained from equations after Miyake and Freed [65] for the limit of few
arms

γf = 1 +
1

8

[

1− (f − 1)(f − 2)

2

]

(2.43)

and Ohno [63] for the limit of large f

γf = 1 + (γ − 1)f − 1

3
(γ − 1)1/2 [f(f − 1)]

3/4
(2.44)

By the simple geometric argument that a chain of the star is confined in a
cone (see below) γf is expected to scale with f as γf − 1 ∼ −f3/2 [70, 67]. This
prediction is not very well supported by the exponents from the MC simulations,
as is demonstrated in Figure 2.23, and was found also for star polymers before
[20].

This observation is coupled with the scaling of the free energy per chain in
the form of lnZN,1 − 1/f lnZN,f , which is shown in Figure 2.24. The function

10This is only valid for homopolymer stars, contrary to the block copolymer case described
earlier.
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Figure 2.24: Free energy change per chain due to the interaction with the other chains,
when grafted to a sphere of Rs = 5.0. Lines are guides for the eye only.

exhibits a close-to-linear behavior (the actual exponent increases monotonically,
but is always ≈ 1 in the f -range studied), which would suggest a scaling like
γf − 1 ∼ −f2, rather than −f3/2. Higher exponents are also suggested by MC
results of Batoulis [63], Hsu [20] and the above formula of Miyake/Freed.

Daoud and Cotton [58] and Zhulina [49] developed a scaling approach to
predict the properties of a star involving the picture of blobs [5], a local region
of size ξ(r) in which a branch exhibits the behavior of a single free chain. ξ(r) is
a function of the radius r and the number of arms f . In the outer, swollen region
the star looks like a semi-dilute solution of a chain of blobs. With ξ(r) ∼ rf−1/2

and the number of monomers in a blob n(r) = ξ(r)1/ν one obtains [58, 59]

φ(r) =
n(r)

ξ(r)3
∼ f (3ν−1)/2νr(1−3ν)/ν ≈ f0.65r−1.30 (2.45)

where a lattice unit of a = 1 is assumed and ν ≈ 0.588 is used. The profiles
φ(r), scaled by f−0.65, are shown in a double logarithmic plot in Figure 2.25.
The expected scaling with r is found, compare with the straight line with slope
−1.30, in a increasing region of r the more chains are present.

For the mean-squared radius of gyration 〈R2
g〉 and center-to-end distance

〈R2
ce〉 Daoud and Cotton [58, 59] state

〈R2
ce〉 ∼ 〈R2

g〉 ∼ N2νf1−ν ≈ N1.18f0.41 (2.46)

〈R2
g〉 was measured from the monomer positions of the whole system of chains,

but disregarding the sphere monomers. 〈R2
ce〉 was measured as the distance

between the starting monomers on the spherical surface and the end monomers.
When the data are scaled by the mean-squared radius of gyration of a single free
chain 〈R2

g1〉 of the same length as one arm of the star, different chain models
and experimental data become comparable.

The mean-squared radii of gyration 〈R2
g〉 and center-to-end (i.e. from the

grafting point to the free end monomer) distances 〈R2
ce〉, scaled by the radius
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along with data from off-lattice MD simulations [59]. The expected scaling with f is
represented by the straight line with slope 0.41.

of gyration of a single chain of the same length as one arm are depicted in
Figures 2.26 and 2.27. Along with results from this work experimental data
from light scattering experiments for Rg of polyisoprene and poylstyrene stars
[60] and simulation data from MD of off-lattice chains [59] are given. One
can see deviations of the present data from the expected behavior, which are
characteristic for the presence of the sphere to which the chains are tethered.
Hence the values of 〈R2

g〉 are offset to larger radii, what stems from the disregard
of the central sphere. The effect is fading out towards systems with more and
longer chains, as the sphere becomes smaller relative to the length scale of the
chains. A similar picture can be deduced from the data for 〈R2

ce〉. Compared
with 〈R2

g〉, and speaking for the MD results, the scaling behavior sets in at
larger numbers of arms for stars. For chains tethered to a sphere (this work),
the assumption of scaling behavior is even more shifted to larger f , because the
stretching due to the proximity of the other chains is reduced.

From the picture employed in the scaling model involving blobs, it was
proposed on geometric arguments that the radial distribution function of end
monomers P (r) is expected to approach a Gaussian bell-shaped curve for f � 1
[59, 61, 62]. As can be seen from Figure 2.28, the measured probability distri-
bution of end monomers does indeed exhibit Gaussian shape. The dotted lines
are Gaussians with the same mean and standard deviation as the raw data.
As expected and observed with MD simulations [59], deviations from Gaussian
shape increase with smaller numbers of chains (arms), in particular the prob-
ability of finding a free end close to the grafting point is overestimated by the
Gaussian. Observe that the apparent exclusion zone at r / 4.5 stems from the
central sphere. Due to the properties of the cubic lattice the effective radius
determining the zone of exclusion for chains is somwhat smaller than 5.0.
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2.2.6 Block Copolymer Micelles

Constructing copolymer micelles followed the method described in Sections 2.1.4
and 2.4 of putting starting points randomly on a sphere around some origin,
broadening their radial distribution and growing all chains and the core and
corona block simultaneously. Core and corona monomers differed by their in-
teraction features. While corona chains were simply athermal SAW chains as
in the systems presented above, the core chain conformations yielded a Boltz-
mann factor of 2.0 for each non-chain next neighbor contact. This corresponds
to a temperature of 1.443, well below the θ-temperature for the model of 3.717.
Snapshots of micelles with association numbers between 6 and 24 are shown in
Figure 2.29.

Testing the Micelle Constructing Ansatz

The micelles constructed by the PERM algorithm are not obtained spontaeously
from a uniform distribution of unimers in space during a run, but are assumed
to be spherical. Moreover, a determined radial distribution of the connection
sites between the core and corona blocks is given as an input to the runs. Hence
this ansatz had to be tested if it actually corresponds to the features of the
system.

This test was achieved by simple dynamical Metropolis type Monte Carlo
runs using only so-called reptation moves. As depicted in Figure 2.30, reptation
moves chose a polymer chain in the system and then try to shift the whole
chain in a randomly chosen direction by deleting a monomer at one end and
adding one at the other end. For the case of a copolymer chain this consequently
means that an core type monomer is deleted and a corona type one added (or
vice versa), and a monomer type flip occurs in the center of the chain. The
move is accepted due to the usual Metropolis rules by computing the energy
change and comparing it to a random number.
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Figure 2.29: Snapshots of block copolymer micelles consisting of 6, 12, 18 and 24
chains of 50 core and 50 corona monomers each.
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Figure 2.30: Reptation moves (depicted in 2D only for clearity): The original chain
(left) is moved to the right and occupies a randomly chosen new position. The result
is shown on the right picture.

38



0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

m
o

n
o

m
e

rs

radius

no broadening
uniform

Gaussian
MMC result

Figure 2.31: Comparison of the starting point distributions for 12 chains, obtained by
different methods.

Figure 2.31 shows a comparison of different methods to distribute the start-
ing points in space. There no broadening means that the randomly distributed
points on the surface of a sphere were solely displaced to the nearest lattice
site. In the case of uniform additional broadening was obtained by adding uni-
formly distributed random numbers (between −1.0 and +1.0) to the radius of
each point prior to rounding to lattice sites. A similar procedure was used in the
case of Gaussian, where broading was obtained by Gaussian distributed random
numbers of variance σ2 = 1.0. These three profiles are corrected for the lattice
degeneracy (i.e. divided by the number of lattice sites in each bin shell times its
volume).

Finally the curve labelled MMC run shows the results from a Metropolis run
using reptation moves. In this run an ensemble of 27 configurations from an
earlier PERM run was equilibrated by 3.8×106 MC steps and then the positions
of the most central core type monomers were recorded during another 2.5× 106

steps. Note that the distances in the latter case are measured with respect to
the flexible center-of-mass of the actual micelle, where starting points are given
at their distances to the origin of the coordinate system.

As can be seen in Figure 2.31, the proposed Gaussian broadening does indeed
correspond closest to the radial starting point distribution from the MMC runs.
Note that the radii for starting points (and also the radius of the core) decrease
during equilibration by MMC reptation moves. This effect corresponds to the
shortcoming of the approach of growing chains by PERM to a dense system on
the sc lattice. The obtained density in the cores from PERM is somewhat lower
than 1, see below.

The spherical shape of the micelle was conserved during Metropolis MC
equilibration, apart from a few cases were a chain completely left the aggre-
gate. This was measured by means of the principal moments of inertia for the
aggregates, what yielded I1 ≈ I2 ≈ I3, see Figure 2.32.
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The Free Energy

To gain insight into the thermodynamic properties of micelles in the framework
of the chosen model micelles of different sizes had to be constructed and their free
energy in term of − lnZ had to estimated from the Rosenbluth weights. As the
radius of the starting point sphere was assumed (see Section 2.1.4) and input to
the runs, a scan over a range of radii had to be carried out in order to obtain the
optimal one for a given chain length and aggregation number. These scans were
done with a stepsize of 0.5 lattice units. A Gaussian broadening of the radial
distribution of starting points with σ2 = 1.0 was used in all simulations. Typical
results from those scans are depicted in Figure 2.33. Note the dependence of
the optimal radius on the chain length, which is the expected behavior. The
error estimation stems from the results from 30 independent runs.

Taking the optimized radius for a range of chain lengths N and aggregation
numbers f and combining these data results in a diagram as depicted in Figure
2.34, where the gain in free energy (in terms of − lnZ) per chain is shown, when
is is transferred from the free non-aggregated state into a micelle of aggregation
number f . The error estimation stems from 20 independent simulation runs.

Figure 2.34 shows the free energy as a function of the aggregate size f which
exhibits minima at some f . This is the expected behavior, as these minima are
responsible for the occurence of micelles in solution.

Critical Micelle Concentration

The following chain of thought is inspired by [71] and [72], but modified to meet
the requirements of this work.

Adding an amphiphilic substance to a solvent the following equilibria be-
tween unimers Z and aggregates Zf of size f can be defined

fZ 
 Zf (2.47)
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Note that for every aggregate size f such an equilibrium occurs, and these
equilibria are coupled to each other. The equilibrium contants Kf are, using
the concentrations [Z] and [Zf ]

Kf =
[Zf ]

[Z]f
(2.48)

These are related to the change in free energy per chain ∆F 0
f , due to formation

of a cluster Zf of f unimers

kT lnKf = −f∆F 0
f (2.49)

with k being the Boltzmann constant and T the temperature. The fraction of
unimers Xf being part of clusters of size f is then

Xf = f [Zf ] = f

[

X1 exp

(

−∆F 0
f

kT

)]f

(2.50)

And the total concentration C of amphiphiles is

C = X1 +X2 + · · · =
∑

f

Xf (2.51)

At small amphiphile concentrations C most unimers will be in their free, non-
aggregated state. Increasing the concentration forces more and more the for-
mation of clusters, which occurs more or less pronounced at a distinct concen-
tration C (see figure 2.35). The critical micelle concentration (CMC) marks
the turnover from the single chain dominance (X1 � X2 > X3 > · · · ) to the
aggregate dominance, around position of arrow (a) in Figure 2.35.

An exacter way of defining the CMC follows [13] and was also used here. It
is defined as the equal weight of homogeneous and micellar solutions

CMC = Xcrit
1 ≈

max
∑

f=2

Xf

f
=

max
∑

f=2

Xf
1 exp

[

−f∆F 0
f

kT

]

(2.52)

and is hence shifted somewhat to higher concentrations C, qualitatively shown
by arrow (b) in Figure 2.35. CMCs were computed using equation 2.52 and
the values for −∆F 0

f /kT as depicted in figure 2.34 in an iterative manner. The
results are compiled in table 2.2.

Figure 2.36 shows the influence of copolymer chain lengths on the CMC.
Results from the present MC simulations are compared to experimental data
for pluronics in aqueous medium, where the hydrophilic block consists of poly-
oxyethylene (E) and the hydrophic block of either polyoxypropylene (P), poly-
oxybutylene (B) or polyethylene (C = CH2). Data are taken from [80] for ExPy

and from [81] for ExBy and ExCy and given for constant temperatures. The
experimental data are ordered according to the hydrophobic block length, while
the hydrophilic block length is kept roughly constant for ExPy (x ≈ 100) and
constant for ExCy (x = 8). The inset in Figure 2.36 shows computed values
from the Nagarajan/Ganesh model [82] for constant hydrophilic block length,
constant hydrophilic/hydrophobic ratio and constant hydrophobic block length
(where the data are ordered according to their hydrophilic block length). The
latter data show a rather small influence of the hydrophilic block length, what
was also observed experimentally [80].
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Figure 2.35: Schematic picture of the behavior of the mole fractions of unimers X1

and aggregates XN with increasing total concentration C (following [71]).

Table 2.2: Estimated CMC values for different total chain lengths.
N CMC ×104
30 1880.0
40 785.0
50 328.0
60 144.0
70 65.6
80 30.2
90 14.6
100 7.18
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Table 2.3: Polymer total concentrations C for constant m/V ∼ C ∗ N = 15 and
comparison to CMCs. The last two columns are the number and weight averages of
aggregation numbers.

N C C/CMC N̄n,agg N̄w,agg

30 0.500 2.66 7.6 11.6
40 0.375 4.78 9.9 12.6
50 0.300 9.15 11.0 12.5
60 0.250 17.4 11.4 12.6
70 0.214 32.6 11.4 12.9
80 0.188 62.3 11.3 11.9
90 0.167 114.0 11.0 11.4
100 0.150 209.0 10.8 11.1

Cluster Weights in Solution

Figure 2.34 shows the gain in free energy when a unimer chain is transferred into
a micelle. But what micelle sizes do occur in a solution of the diblock copolymer?
This information can be extracted from the data −∆F 0

f /kT , depicted in Figure
2.34, and using expression 2.50. To mimic a typical experimental setting, a
constant m/V , i.e. polymer mass per solution volume, well above the CMC was
assumed. This values for C (see Table 2.3) were taken as starting values for X1,
and the set of equations for all cluster sizes f solved iteratively. The results,
normalized for better comparison, are shown in Figure 2.37. In Table 2.3 values
for the number and weight averages of micelle sizes are also given, where the
latter corresponds to results of SAXS measurements. The aggregation numbers
of micelles stay almost constant while changing the chain length of the diblock
copolymer from 30 to 100 effective monomers.

This finding stays in contrast to theoretical considerations which usually
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Figure 2.37: Cluster weights X(f) according to their aggregation number f for a
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predict some dependence on the chain length of the core blocks: Zhulina and
Birshtein [78] and Halperin [79] employ a Daoud–Cotton like model [58] and find

f ∼ N
4/5
core for the limit of long corona chains (small core limit) and f ∼ Ncore

for the large core limit, when Ncore > Ncorona. Zhulina and Birshtein define the

small core limit as Ncorona > N
(1+2ν)/5ν
core ≈ N0.74

core and have another intermedi-

ate region, where f ∼ N2
coreN

−6ν/(1+2ν)
corona ≈ N2

coreN
−1.62
corona, which is valid when

N
(1+2ν)/5ν
core > Ncorona > N

(1+2ν)/6ν
core . Nagarajan and Ganesh [82] derive another

model which involves effective parameters according to the macromolecular
compound and solvent under investigation and obtain e.g. for polyoxyethylene-
polyoxypropylene (PEO-b-PPO) copolymers in water which is a good solvent for
the corona PEO chains f ∼ N1.19

coreN
−0.51
corona. Hence the latter two sources do also

see a substantial influence of the corona chain length, which counterbalances to
some extent the effect of the core chains.

This corona chain effect is also seen experimentally for PEO–PBO pluronics
[80], when the hydrophilic lock lengths are kept constant. A few experimental
data are compiled in Figure 2.38. Amongst PEO–PPO and PEO–PBO from
[80] there are also data from Stubenrauch [75] for symmetric diblocks with
Ncore ≈ Ncorona = NX , for which one finds roughly f ∼ N0.53

X .
It is assumed for the presented results that, concerning the relatively short

corona chains which feel an idealized solvent, their effect on the association
number is larger than in the above cases. Recall that the scaling exponent of
the free energy change per chain in a brush tethered to a small sphere or to
a planar surface was also found to be larger than in the conventional theories.
Furthermore the interaction of core chains and hence their effect on the associ-
ation number is underestimated by PERM, as the density in the core is lower
than one, see below. The strongly swollen corona chains and the underestima-
tion of the core influence result apparently in a cancellation of the two scaling
factors to a large extent.
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Figure 2.38: Some experimental data for association numbers Nagg: (◦) sym-
metric block copolymer of endo,exo[2.2.1]bicyclo-2-ene-5,6-dicarboxylic acid and its
dimethylester with N ≈ Ncore ≈ Ncorona [75], (•) E98−104PN , (4) ENB10 and (N)
ENB17−19 from [80].

Geometrical Features and Comparison with Scaling Theories

A check of the ability of the described method to sample successfully copolymer
micelles with the expected core–shell structure is done by computing the radial
probability distributions for core and corona monomers, as shown in Figure
2.39. The probabilities to find core (A) and corona (B) monomers at radius
r from the center-of-mass are given for a typical micelle containing 12 chains
with NA = NB = 50. As all observables in PERM, the results are obtained
as an average weighted by the chain weights for the considered conformations.
Additionally a (weighted) average was drawn from an ensemble of 20 runs, from
which also the error bars are deduced. The distributions show, that micelles with
the expected structure are indeed constructed and core and corona monomers
are well separated.

Radial monomer density profiles are shown in Figure 2.40 for micelles of f =
4, 6, 8, 10, . . . , 24 chains. The assumed dense core with φ(r) = 1 in the Daoud–
Cotton model [58] is not fully reached, in particular for small f . The maximum
density in the core region is rather about 0.9. This deviation seems to be caused
by the approach of growing chains from an outer shell inwards. Constructing an
SAW at melt densities on the sc lattice is very inefficient and yields only a small
number of configurations. The modification of the PERM algorithm—biasing
new monomer positions towards regions with more free neighbors for the next
step, see Section 2.4—enhanced the performance somewhat. As can be seen
from the MMC runs with reptation moves above, the connecting monomers are
slightly shifted to smaller radii, i.e. the core becomes denser when equilibrated
by dynamical MC.

To study the decay of the profile, a double logarithmic plot with scaled den-
sities is shown in Figure 2.41, in the same way as in the case of chains tethered
to a small sphere. One can see that, after a roughly constant region at small
r, the density decays quickly without exhibiting a determined scaling behavior
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with aggregation number f = 4, 6, 8, . . . , 24. The straight line has slope of −1.30.

∼ r−α. In particular the expected scaling law for the swollen corona of r−1.30

is not found (straight line in Figure 2.41). This behavior of micelles of sym-
metric block copolymers with relatively short chain lengths was also found for
e.g. polystyrene–polyisoprene in decane by SANS measurements and MC simu-
lations [73] and for micelles of copolymers made from norbornene derivatives11

via ring-opening metathesis polymerization (ROMP) by SAXS measurements
[74, 75], which allowed the synthesis of relatively well defined chain lengths. A
double logarithmic plot for data from the latter source is also shown in Fig-
ure 2.42 for symmetric block copolymers of different chains lengths. The block
lenghts of 100–100, 75–75, 40–40, 30–30 and 20–20 are “theoretical”, i.e. ac-
cording to experimental parameters in synthesis. The effective ratio of lyopho-
bic/lyphilic block by integration of the 1H NMR signal are 1.0, 0.9, 1.0, 1.1 and
1.2 and the PDI are 1.13, 1.16, 1.08, 1.10 and 1.07 for the above series.

The decay of the density in Figure 2.41 sets in at larger radii the higher
the aggregation number f is. This is consistent with simple geometric consid-
erations, as the core radius increases with f (see below). Figure 2.41 shows
furthermore a weak “shoulder” in the profile decay at larger radii. This shoul-
der was also observed experimentally, see Figure 2.42, and is associated with
the separation of core and corona monomers in the copolymer micelle.

The values for the radius of gyration of the micellar cores, more specifically
〈(Rcore

g )2〉1/2, are compiled in Figure 2.43. The error bars stem from an ensemble
of 20 or 30 runs, depending on the system size. Although long runs were carried
out and averages of several runs were taken, one still observes a significant
statistical scattering amongst the data. Neveretheless I present a simple analysis
in the form of a scaled plot, Figure 2.44. Assuming that the core monomers of
f chains form a dense sphere of radius rcore, one puts

4πr3core
3

=
1

2
Nf (2.53)

11To be more specific, copolymers with endo,exo[2.2.1]bicyclo-2-ene-5,6-dicarboxylic acid
and its dimethylester as their building blocks, whose structures are given in Figure 2.1.
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Figure 2.42: Radial density profiles from SAXS for symmetric block copolymers with
block lengths of 100–100, 75–75, 40–40, 30–30 and 20–20, see text. The dotted line
represents a scaling of ∼ r−4/3. Graph produced using data from [74, 75].
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then

ln rN−1/3 =
1

3
ln f + C (2.54)

where the core chain length is assumed to be NA = N/2. The straight line
in Figure 2.44 refers to this solid sphere, for which the constant becomes C =
ln(3/8π)1/3 + ln(2/5)1/2, where the relationship r =

√

5/2Rg is used. The
results for Rcore

g follow indeed roughly the expected scaling, albeit offset by a
relatively constant value. This offset is caused by the core density lower than 1
and the rough surface, both connected to larger Rg-values. A closer look reveals
that there are deviations from the slope of 1/3 to flatter curves for micelles of
few short chains and to steeper curves for the ones consisting of many chains
of any length. The former effect is dedicated to deviations from the spherical
shape for small cores12, while the latter deviations are likely to be an artefact
of the algorithm, which fails to construct large dense regions by growing chains
stepwise as described.

In Figure 2.45 the raw data for radii of gyration of whole micelles 〈(Rmic
g )2〉1/2

are given, and Figure 2.46 shows double logarithmic plots of the radii of gyration
and the distance vectors between the starting monomers (to which the corona
chains are connected) and the free ends in the corona, both scaled by 〈R2

g,1〉
of a single chain of the same length like a corona chain. The expected scaling
behavior Rg ∼ f0.41 (solid line) for the radii of gyration is reached, in particular
for longer chains and larger aggregates. Note that all monomers, inclusively
the core, are considered for the computation of 〈(Rmic

g )2〉1/2. Interestingly the
end-to-end distance of corona chains stays almost constant over the range of f
in the diagram (which covers most of the micelles that are expected to occur
due to their free energy). This stays in relation to the case of chains tethered
to a rigid sphere above, where an onset of the expected scaling was seen for

12Recall that the surface roughness of the core sphere is given as an input to the runs.
Although all data refer to starting points at radii which gave the minima in free energy, this
might cause an additional error which is more pronounced for small cores.
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Table 2.4: Weight average values for Rg for cores and whole micelles and Rh obtained
from the individual radii and cluster weights.

N R̄g,core R̄g,mic R̄h,mic

30 3.45 5.07 10.09
40 3.80 5.80 11.42
50 4.00 6.38 12.37
60 4.23 6.95 13.31
70 4.33 7.31 13.90
80 4.41 7.74 14.51
90 4.47 8.08 14.99
100 4.60 8.48 15.56
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Figure 2.47: Comparison of micellar radii from different sources: (�) Rg,core (�) Rg,mic

and (◦) Rh,mic from this work (+) Rg,core of polystyrene-b-poly(cesium acrylate) in
toluene by SAXS [85], Rh,mic of polystyrene-b-polybutadiene in (∗) DMF and (×) n-
heptane by DLS [84], (4) Rg,mic and (•) Rg,core by SAXS from Stubenrauch et al. [75]
and (N) Rg,mic of polystyrene-b-polybutadiene in heptane by SAXS [83].

f = 32. Obviously the radial scattering of connection points to the core chains
introduces further degrees of freedom, so that chain stretching is avoided.

It is noteworthy that the experimental scaling behavior of Rg or Rh with the
chain length N , which is accessible experimentally by SAXS and DLS, exhibits
slightly higher exponents. In those cases a weighted average over a range of
micelle sizes is measured—which is a different situation than for the constant
f results above. A comparison of micellar radii from different sources is shown
in Figure 2.47. Their scaling behavior is summarized in Table 2.5, from which
it becomes obvious that the apparent scaling exponent found with the MC
simulations is to small. This underestimation is introduced predominantly by
the association numbers, which do not scale with N as in the experiments. The
deviations are most significant for Rg,core, whereas Rg,mic and Rh,mic exhibit
nonetheless a scaling close to experiments.
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2.3 Conclusions

The PERM algorithm was applied to a structureless polymer model with effec-
tive interactions on the simple cubic lattice for various systems: a single SAW
chain, a semi-dilute solution in good solvent, a single chain end-tethered to a
planar inert surface, a polymer brush exposed to a good solvent, SAW chains
grafted to a small sphere and micelles built of symmetric diblock copolymers.
For the single chain systems, literature values could be reproduced with excellent
agreement. Although this work was not intended on high-precision calibration
data, the precision of the results is satisfactory. The first “new” system for the
algorithm that was studied here is the many-chain system in the semi-dilute
regime. The approach yielded results for the free energy/osmotic pressure of
such solutions in good agreement with des Cloizeaux’s rule and experimental
data. This amounts to a validation of PERM for interacting chains in a good
solvent, which plays an important role not only for the uniform semi-dilute so-
lution, but also for the other systems studied here. The scaling with N was not
reached for the end-to-end distance Ree of the chains. An effect that is likely
to be caused by the relatively short chain lengths—and also a general finding
of this work: the radii were not always obtained to be scaling as expected, due
to too short chains, and the statistical quality of their estimates not always
satisfactory. In particular this was found for Ree; the radius of gyration Rg was
less scattered, as expected for a figure obtained from a larger number of data
(all monomer positions). Polymer brushes with planar symmetry pose gener-
ally a challenge to static MC schemes as a relatively large portion of the space
has to be crowded by stretched chains. The yield of successful configurations
of the algorithm was hence poor and the range of grafting densities and chain
lengths was limited. Furthermore the simple, yet unflexible ansatz on the sc
lattice may have caused an additional deterioration. Hence the regime where
the expected scaling should be valid could not be fully reached and the profiles
and distributions of free end monomers where somewhat deviating from the long
flexible chain limits. The behavior of the surface osmotic pressure is subject to
diverging results from different approaches in literature. Carignano and Szleifer
developed a single-chain mean-field approach and use several chain models over
a broader range of grafting densities, what puts the differing data on a common
ground. More recently, Ohno used an enrichment algorithm on the sc lattice.
The results obtained here are in agreement with this latter work and fit also
into the work of Carignano and Szleifer.

The situation is more favorable in spherical symmetry when chains are end-
tethered to a curved surface as the density decays rapidly with r. Although,
to my knowledge, there are no data in literature for the partition sums which
allow a direct comparison, the general properties of the results are conform to
the broad spectum of studies of star polymers. This is also true for geometric
observables, where with increasing chain lengths and numbers the two cases
converege. The simple theory involving the cone approximation was not found
to be valid for the chain lengths studied. But this finding is in accordance with
MC simulations done by other authors.

The polymer brush in spherical symmetry was used as a test case for the
sampling of micelles consisting of many symmetric block copolymer chains. This
task is particularly difficult to achieve with other simulation techniques. It could
be demonstrated that, given some preliminary assumptions which were checked
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to be valid lateron, spherical micelles could be successfully constructed. Several
observables, micellar radii, density profiles and monomer distributions, agreed
reasonably with their expected properties, derived from models based on star
polymers. One important feature where the results of this work disagree with the
established models and experimental measurements is the scaling of association
numbers with chain lengths. This is ascribed to both, the steeper dependence of
the conformational free energy of corona chains on the number of chains found
also by other authors, as well as the shortcoming of the present approach in
describing the dense core of the micelles. This shortcoming is assumed to stem
from the sc lattice that makes it difficult for the algorithm to fill all sites of
the lattice with chains. Finally micellar radii for equilibated solutions were also
computed, which agree surprisingly well with experimental data, regarding the
deviating prediciton of cluster weights in equilibrium.

Suggestions for Further Work

A natural suggestion for further work is the test of more sophisticated lattices,
e.g. the bond fluctuation model for the simulation of micelles. It is assumed that,
as it allows for more flexible chains, the micellar core could be better sampled.
But these models also introduce more degrees of freedom and the sampling of
the larger phase space becomes more difficult.

In general the ansatz can be used to study the influence of several parameters
of the system: e.g. relative block lengths and other architectures or temperature
effects. Further computations on geometric features would also allow for more
comparisons with experiments and hence a further validation of the method.
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2.4 Pseudocodes

The Basic PERM Step

The pseudocode for PERM was taken from [4] and slightly modified to reflect
the necessary steps for growing several chains simultaneously.

1 subroutine step(x, n, k)
choose x′ next to x with equal probability p = 1/mn

if there is no free site return

wn = mn exp(−E(x′)/kBT )
5 Wn =Wn−1wnζ

Zn = Zn +Wn

measure Ree, Rg,...
if n < Nmax and Wn > 0

W> = c>Zn/Z1

10 W< = c<Zn/Z1

if Wn > W>

Wn =Wn/2
call step(x′, n+ 1, (k mod f) + 1)
call step(x′, n+ 1, (k mod f) + 1)

15 else if Wn < W<

Wn = 2Wn

compute random number ξ ∈ [0, 1]
if ξ < 1/2

call step(x′, n+ 1, (k mod f) + 1)
20 else

return

endif

endif

call step(x′, n+ 1, (k mod f) + 1)
25 endif

endif

27 end

Notes:
There are f single unimers in the system treated simulaneously (k = 1 . . . f),

which consist of a total of n monomers. The next subroutine call adds the next
monomer n + 1 to the next chain (k mod f) + 1. Furthermore the A and B
branches of the unimers are grown alternately.

For better computational efficiency the coordinates x where stored twice:
once in a three dimensional lattice array to quickly check neighbor sites, secondly
in a two dimensional chain array (n, {x, y, z}) to quickly scan configurations for
measurements.

The properly chosen factor ζ in line 5 prevents over- or underflow for vari-
ables Wn and Zn. Results were subsequently corrected for ζ.

There are mn free next neighbor sites to x (line 2).
In the case of importance sampling the weights wn become

∑mn

i=1 exp(−E(x′
i)/kBT )

and new monomer positions are chosen non-uniformly, see below.
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Finding New Monomer Positions - “Simple Sampling”

A new monomer position x′ is chosen uniformly out of mn free neighbors.

1 subroutine newpos(x)
d = (0, 0, 0); m = 0
do i = 1, . . . , 3

di = −1
5 if lattice(x+ d) = 0

m = m+ 1
k(m) = x+ d

endif

di = +1
10 if lattice(x+ d) = 0

m = m+ 1
k(m) = x+ d

endif

di = 0
15 enddo

if m = 0 return

compute random number ξ ∈ [0, 1]
j = integer(mξ) + 1

x′ = k(j)
20 end

Finding New Monomer Positions - “Importance Sampling”

New monomer positions are chosen according to their potential thermal inter-
action. The probability to choose the jth site out of mn free neighbors at x′

is

pj =
exp(−E(x′

j)/kBT )
∑mn

i=1 exp(−E(x′
i)/kBT )

(2.55)

1 subroutine newpos(x)
d = (0, 0, 0); m = 0
do i = 1, . . . , 3

di = −1
5 if lattice(x+ d) = 0

m = m+ 1
k(m) = x+ d

w(m) = w(m− 1) + exp(−E(k(m))
kBT )

endif

10 di = +1
if lattice(x+ d) = 0

m = m+ 1
k(m) = x+ d

w(m) = w(m− 1) + exp(−E(k(m))
kBT )

15 endif

di = 0
enddo

if m = 0 return
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if biasing is done

20 do i = 1, . . . ,m
if we put core monomer and r(k(i)) < r(x)

w(i) = w(i) 2(n−1)+3
2(n−1)+1

if we put core monomer and r(k(i)) > r(x)

w(i) = w(i) 2(n−1)+1
2(n−1)+3

25 if we put corona monomer and r(k(i)) < r(x)

w(i) = w(i) 2(n−1)+1
2(n−1)+3

if we put corona monomer and r(k(i)) > r(x)

w(i) = w(i) 2(n−1)+3
2(n−1)+1

if we put core monomer and r(k(i)) < r
⊙

30 w(i) = w(i)m(k(i))
enddo

endif

compute random number ξ ∈ [0, 1]
ξ = w(m)ξ

35 j = 1
do while (w(j) < ξ)

j = j + 1
enddo

x′ = k(j)
40 end

Notes:
The Boltzmann factors exp(−E(k(m))

kBT ) in lines 8 and 14 are determined in a
similar way as determining free neighbors, looping a vector d over all neighbors
of the potential new site and summing up thermal interactions.

The grey text (lines 19–32) refers to a bias, that favors core positions for
core monomers and outer positions for corona monomers. r means the distance
between the monomer position and center of the micelle (i.e. the origin around

which the micelle is constructed). The factor was chosen to be b = 2(n−1)+3
2(n−1)+1

and b−1, respectively. With n being the number of core/corona monomers in
the unimer chain.

In addition, core monomer positions k(i) are favored when the future posi-
tion has more free sites m(k(i)) around it (lines 29–30). This is done only inside
a chosen core radius r

⊙

.
In case this biasing is done, the monomer weight wn in the basic PERM step

has to be adjusted accordingly (see above).

Random Number Generator

The Fortran code for the long period random number generator of L’Ecuyer with
Bays-Durham shuffle was taken from [26] and modified to take the computer’s
system time as seed.

1 subroutine ran2(ξ)
parameter m1 = 2147483563; a1 = 40014; q1 = 53668; r1 = 12211
parameter m2 = 2147483399; a2 = 40692; q2 = 52774; r2 = 3791
if first call
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5 i1 = time()

do j = Ntab + 8, . . . , 1
k = integer(i1/q1)
i1 = a1(i1 − kq1)− kr1
if i1 < 0 then i1 = i1 +m1

10 if j ≤ Ntab then iv(j) = i1
enddo

iy = iv(1)
endif

k = integer(i1/q1)
15 i1 = a1(i1 − kq1)− kr1

if i1 < 0 then i1 = i1 +m1

k = integer(i2/q2)
i2 = a2(i2 − kq2)− kr2
if i2 < 0 then i2 = i2 +m2

20 j = 1 +
iy

1+(m1−1)/Ntab

iy = iv(j)− i2
iv(j) = i1
if iy < 1 then iy = iy +m1 − 1

ξ = min
(

iy
m1

, 1− ε
)

25 end

Notes:
The routine produces two sequences of random numbers i1 (lines 14–16) and

i2 (lines 17—19) based on two sets of parameters m1, a1, q1, r1 andm2, a2, q2, r2,
using Schrage’s method.

i1 is shuffled using an array iv(j) of size Ntab. The element is chosen us-

ing random number iy (saved from previous call) by j = 1 +
iy

1+(m1−1)/Ntab
∈

[1, Ntab].
The two random number sequences are combined in line 21, divided by m1

to produce a real number ∈ [0, 1]. A maximum value 1 is replaced by 1− ε, with
ε being some small constant properly chosen.

Distributing Starting Monomers on a Spherical Surface

The following routine distributes points on a given spherical surface. This sur-
face consists of lattice sites within a radius Rs from an origin (assumed to be
(0, 0, 0)), occupied with monomers of value −1. The points are corrected to
have not less than 1 and not more than 4 adjacent surface monomers.

1 subroutine startpts(f, Rs)

compute random numbers ξ1 . . . ξ3
r =

√

ξ21 + ξ22 + ξ23
x
(r)
1 = ξ1Rs/r; same for x

(r)
2 , x

(r)
3

5 x1 = integer(sign((abs(x
(r)
1 ) + 0.5), x

(r)
1 )); same for x2, x3

d = (0, 0, 0); m = 0
do i = 1, . . . , 3

di = −1
if lattice(x+ d) = −1
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10 m = m+ 1
k(m) = x+ d

endif

di = +1
if lattice(x+ d) = −1

15 m = m+ 1
k(m) = x+ d

endif

di = 0
enddo

20 if m = 0
if |x1| > |x2|, |x3|

x1 = x1 − sign(1, x1)
elseif |x2| > |x1|, |x3|

x2 = x2 − sign(1, x2)
25 else

x3 = x3 − sign(1, x3)
endif

elseif m > 4
if |x1| > |x2|, |x3|

30 x1 = x1 + sign(1, x1)
elseif |x2| > |x1|, |x3|

x2 = x2 + sign(1, x2)
else

x3 = x3 + sign(1, x3)
35 endif

endif

do (i > j) = 1, . . . , f
if x1(i) = x1(j) and x2(i) = x2(j) and x3(i) = x3(j)

start again

enddo

41 end

Notes:
In line 4 real coordinates are computed, these are rounded to the next integer

lattice site in line 5. The function sign(arg1,arg2) returns arg1 with the sign
of arg2.

After checking for adjacent surface monomers (lines 6–19), the points are
moved towards smaller radii, when there is no surface neighbor (lines 20–27),
and to larger radii, when there are more than 4 (lines 28–36). This is done
by altering the component with the largest contribution to the distance from
origin.

Finally, the points are checked not to lie on top of each other (lines 37–40).

Dynamical Monte Carlo using Reptation Moves

1 subroutine dynamo({conformations})
do i = 1, . . . , Nmax

call energy one(xi, Ei)

E = E + Ei
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5 enddo

E = E/2
do i = 1, . . . ,loops

compute random number ξ ∈ [0, 1]
choose chain and chain end at random

10 call energy one(xω, Edel)

call energy one(xc, Eflip1)

call newpos(xα)

clear monomer at xω

flip monomer type at xc

15 call energy one(x′
α, Eput)

call energy one(xc, Eflip2)

∆E = Eput − Edel − Eflip1 + Eflip2

accept = .false.

if ∆E < 0
20 accept = .true.

else

w = e−∆E/kBT

compute random number ξ ∈ [0, 1]
if ξ < w then accept = .true.

25 endif

if (accept)

E = E +∆E
update conformation

else

30 discard changes to conformation

endif

do measurements and statistics

enddo

34 end

Notes:
A reptation move of an A–B block copolymer chain consists of adding a

monomer of the same type at the chain head xα, deleting one at the chain tail
xω and flipping one monomer type in the center of the chain xc.

Routine newpos, which is called in line 12, chooses a free neighbor site with
equal probability (as in the “simple sampling” case above).

If a move is not accepted or no free neighbor site is found to put the new
monomer, the original conformation is preserved (jump from line 12 to 32 in
the latter case).

The routine energy one sums up interaction energies with next neighbors
according to monomer types, in a manner similar to routine newpos for the
“importance sampling” case above. The do-loop at lines 2–6 just computes once
the total energy of whole conformations (and corrects for double counting).

Runs worked on several conformations in parallel and averaged the individual
results. As in the PERM case, conformations were saved twice. Once in a chain
array to quickly scan through chains, and secondly on a three dimensional lattice
array. Up to 31 conformations were saved simulaneously in the latter, altering
the bits of a 32-bit integer by adding +2j for an A monomer of conformation j
and −2j for a B monomer.
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Chapter 3

Electronic Excitations of
some Photoinitiator
Molecules

3.1 Background

In the following sections a short introduction to the concepts of static and time-
dependent Density Functional Theory, many-body theory in the so-called GW
approximation and the Bethe–Salpeter equation is given as a digest of litera-
ture (see citations given in the following sections). This is solely intended as
a basis for the discussion and interpretation of the results, as this work was
restricted to applying existing concepts to the problems of interest here. There
was also a number of standard quantum chemistry methods in use, namely the
computation of gradients and geometry optimization on the basis of various
theories, calculation of nuclear shielding tensors (NMR chemical shifts) follow-
ing the Gauge-Independent Atomic Orbital method (GIAO), Complete Active
Space SCF (CASSCF) and the modelling of a solvent in the Polarizable Con-
tinuum Method (PCM). A description of which can be found in textbooks of
quantum chemsitry, e.g. [1, 2, 3].

3.1.1 Density Functional Theory and Time-Dependent Den-
sity Functional Theory

Ground State Density Functional Theory

The short overview of Density Functional Theory (DFT) given here follows some
prominent books and reviews on the topic [4, 5, 6, 7].

This is all about solving the Schrödinger equation for the many electron
problem

(

T̂ + V̂ee + V̂ext

)

Ψ(x1, . . . , xN ) = EΨ(x1, . . . , xN ) (3.1)
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with the operator for the kinetic energy

T̂ = −1

2

N
∑

i=1

∇2
i (3.2)

and the operator for the external potential

V̂ext =
N
∑

i=1

vext(ri) =
N
∑

i=1

Nnuc
∑

A=1

ZA

riA
(3.3)

acting on the wave function Ψ(x1, . . . , xN ). In the last expression the external
potential is supposed to stem solely from the interaction with the nuclei. It is
assumed that the nuclei are fixed and decoupled from the electrons. This is
known as the Born–Oppenheimer approximation.
Finally, the electron–electron interaction is represented by the two-electron op-
erator

V̂ee =
1

2

N
∑

i 6=j

1

ri − rj
. (3.4)

This last contribution makes the solution of the problem difficult, because it
couples the coordinates of the electrons. Otherwise it would have been possible
to break the Schrödinger equation down to one-particle equations and make the
calculation very simple and straightforward. And it is this point where approx-
imations have to come in.
Note that the wave function is antisymmetric with respect to electron inter-
change

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = −Ψ(x1, . . . , xj , . . . , xi, . . . , xN ) (3.5)

and normalized
∫

dx1 . . .

∫

dxN |Ψ(x1, . . . , xN )|2 = 1. (3.6)

The ground state energy is yielded from the Rayleigh-Ritz variational principle,
stating that any (antisymmetric, normalized) wave function which differs from
the true ground state wave function results in an energy, that is higher than the
true ground state energy.

E = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉 (3.7)

In Hartree–Fock Theory (HF) [8] the two-electron interaction 3.4 is re-
placed by an effective one-electron mean-field interaction. The system of inter-
acting electrons is hence approximated by a system of non-interacting electrons.
The wave function Ψ(x1, . . . , xN ) becomes then Φ, the well-known Slater deter-
minant of one-particle orbitals φi

Φ(x1, . . . , xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

φ1(x1) · · · φN (xN )
...

...
φ1(xN ) · · · φN (xN )

∣

∣

∣

∣

∣

∣

∣

(3.8)

If a closed shell system is treated, the Slater determinant can be restricted to
having the same orbital for the spin-up and spin-down electrons, so the spacial
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orbital appears twice—in other words doubly occupied—and is just multiplied
by the respective spin function σ(s), i.e. φi(x) = φi(r)σ(s). The electron–
electron interaction reduces then to two contributions

〈Φ|V̂ee|Φ〉 = U [Φ] + EX[Φ] (3.9)

Where the first term is the Hartree energy, the Coulomb interaction of a charge
distribution with itself.

U [Φ] =
1

2

∑

σσ′

∑

i,j

∫

drdr′
φ∗iσ(r)φ

∗
jσ′(r′)φiσ(r)φjσ′(r′)

|r− r′| (3.10)

It is based on the Coulomb potential,

vcouli (r) =
∑

σ′

∑

j 6=i

∫

dr′
|φjσ′(r′)|2
|r− r′| (3.11)

which is the interaction felt by electron i at r associated with the charge density
of all the other electrons j 6= i averaged over all space. It is local, so for instance
one could plot a Coulomb potential contour plot in a diagram. The second term
in 3.9 is the exchange energy

EX[Φ] = −
1

2

∑

σ

∑

i,j

∫

drdr′
φ∗iσ(r)φ

∗
jσ(r

′)φiσ(r
′)φjσ(r)

|r− r′| (3.12)

which is a non-local effect due to the Pauli exclusion principle, formally intro-
duced by the antisymmetric Slater determinant1 There is no simple and exact
exchange potential uniquely defined at a point in space, like for the Coulomb
part.

The deviation of the Hartree–Fock total energy from the exact one is the
definition of the so-called correlation energy.

Density Functional Theory (DFT) is of a different spirit. The basic
quantity which was proofed to determine all properties of the electronic system
is its ground-state electron density n(r). The total energy can hence be written
as a functional of the density. Any approximate electron density, which differs
from the exact density yields a total energy, that is higher than the exact total
energy (provided that the functional is exact). This is the counterpart of the
variational principle stated for the wave function above.

E = min
n

(

F [n] +

∫

dr vext(r)n(r)

)

(3.13)

F [n] is the universal part of the energy functional which applies to all systems,
the remainder is the influence of the external potential that determines the
actual electron density. The formal basis of DFT is stated in the Hohenberg–
Kohn theorems [9]. For every system it is possible to define a so-called Kohn-
Sham system [10], a reference system of non-interacting electrons that yields the
same electron density as the real system, defined by the one-particle equations

[

−1

2
∇2 + vs(r)

]

φi(r) = εiφi (3.14)

1Note that for one electron the terms for the exchange (3.12) and the Hartree energies
(3.10) cancel.

69



with vs(r) being the KS potential, and assuming a Slater determinant Φ. The
universal functional is

F [n] = Ts[n] + U [n] + EXC[n] (3.15)

it contains the exact kinetic energy of the non-interacting KS system Ts[n],

Ts[n] =
∑

σ

Nσ
∑

j=1

∫

dr
1

2
|∇φjσ(r)|2 (3.16)

which is a good approximation for the kinetic energy of the real system, and
the Hartree energy U [n] is equivalently to 3.10

U [n] =
1

2

∑

σσ′

∫

drdr′
nσ(r)nσ′(r′)

|r− r′| (3.17)

The remainder is called exchange–correlation energy EXC[n]. It contains by def-
inition an exchange term, a correction for the kinetic energy part and accounts
for effects that are subsummarized under the name correlation as above—and
is a priori unknown. Note that the KS orbitals are not that same as the HF
orbitals. An expression for the KS potential is obtained from the functional
derivatives of the above terms

vSσ(r) = vext(r) + vH(r) + vXCσ(r) (3.18)

vH(r) =
δU [n]

δn(r)
=
∑

σ′

∫

dr′
nσ′(r′)

|r− r′| (3.19)

vXCσ(r) =
δEXC[nα, nβ ]

δn(r)
(3.20)

There are several approximations for the unknown exchange–correlation en-
ergy functional. An early and simple approach is the local density approximation
(LDA), which assumes that it is possible to use the features of the uniform elec-
tron gas of the same but constant density as the volume element dr in space
one looks at and integrate over all space.

ELDA
XC [n] =

∫

drn(r)εXC(n(r)) (3.21)

The expression for the exchange part in εXC(n(r)) is taken from the exact ex-
pression for exchange [11] of the uniform electron gas.

εLDA
X = −3

4

(

3

π

)1/3

n(r)1/3 (3.22)

Note that unlike in the HF case, this effect is assumed to be completely local. It
contains the so-called self-interaction error—Hartree and exchange–correlation
energies for a one-electron system do not cancel, i.e. U [n]+EXC[nα, 0] 6= 0. For
the correlation part, defined to be the remainder EC = EXC − EX, there are
two often used approximations due to Perdew and Zunger [12] and Vosko, Wilk
and Nusair [13], where an approximate correction for the self-interaction error
is also incorporated into the functional.
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A natural extension to the LDA would be to make the functional not only
dependent on the local density, but additionally on the gradient of the local
density, what yields finally an approximation which is termed Generalized Gra-
dient Approximation (GGA). These functionals are sometimes called semi-local.
Popular examples are the exchange and correlation functionals of Perdew and
Wang (PW91) [15], Becke (B88) [14], Perdew, Burke and Ernzerhof (PBE) [17]
or Lee, Yang and Parr (LYP) [16].

A more pragmatic approach is to combine several types of functionals, adding
their strengths and maximizing cancelations of errors, along with a portion of
HF-like non-local exchange using expression 3.12 with KS orbitals. The weight
of the contributions is optimized by fitting them to reproduce as close as possible
properties of a limited number of chemical compounds. This is realized in the
B3LYP functional, which is in particular popular in organic chemistry. It has
the following ingredients

EB3LYP
XC = (1− a)ELDA

X + aEHF
X + bEB88

X + (1− c)EVWN
C + cELYP

C (3.23)

The parameters were obtained by fitting to a data set of organic molecules,
although the b parameter was derived recently [18]. B3LYP uses 20% of exact
exchange.

Time-Dependent Density Functional Theory

A lot of literature on TDDFT is available [19, 20, 21, 22, 23] and was used as
reference for this short introduction. The formal basis of TDDFT was given
by Runge–Gross theorem [27], which plays the same role as the Hohenberg–
Kohn theorems for the ground state case. It states that there is a one-to-one
mapping between the time dependent density and the time dependent external
potential, the potential can hence be written as a functional of the density n
(the initial wave function Ψ0 is assumed to be the non-degenerate ground state),
i.e. vext[n](rt).

Similar to the ground state case one can then define a Kohn–Sham system
by the following—now time dependent—equation

i
∂φjσ(rt)

∂t
=

(

−∇
2

+ vKSσ[n](rt)

)

φjσ(rt) (3.24)

where the KS potential is

vKSσ[n](rt) = vextσ[n](rt) +

∫

dr′
n(r′t)

|r− r′| + vXCσ[n](rt) (3.25)

Starting from a converged ground state KS wave function one can propagate a
system in time using equation 3.24. If at the beginning an electromagnetic field
is applied, one obtains from this propagation the optical features of the system
under investigation and can extract linear and non-linear properties, such as
one- and two-photon induced neutral electron excitations.

But usually it is computationally more effective to calculate the first-order
response of the ground state to the field, which also corresponds to the linear
optical absorption properties. Introducing the response function The first-order
response is given by

δnσ(rt) =
∑

σ′

∫

dt′
∫

dr′χσσ′ [n0](r, r
′; t− t′)δvextσ′(r′t′) (3.26)
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or, based on the KS system

δnσ(rt) =
∑

σ′

∫

dt′
∫

dr′χKSσσ′ [n0](r, r
′; t− t′)δvKSσ′(r′t′) (3.27)

where the change in the KS potential is again the sum of the individual changes
of the external potential and the Hartree and exchange–correlation contributions
δvKSσ(rt) = δvextσ(rt) + δvHσ(rt) + δvXCσ(rt) and δvextσ(rt) contains a weak
electromagnetic field. It can be written in the following form

δvKS(rω) = δvext(rω) +

∫

dr

{

1

|r− r′| + fXC(rr
′ω)

}

δn(r′ω) (3.28)

fXC is the so-called exchange–correlation kernel. It is in general a quantity
non-local in both, space and time (ω-dependence). Setting it to zero yields the
Random Phase Approximation (RPA)2 In conventional TDDFT fXC is usually
simplified applying the adiabatic approximation. It states that the exchange–
correlation potential vXC[n](rt) remains the one of the instantaneous ground
state vXC[n0](rt), what requires the changes to occur slowly and the system
to remain in its ground state at any time. If, additionally, LDA or GGA is
employed, fXC looses all non-locality in space and time and becomes, e.g. in the
LDA case (”ALDA”)

fXC[n](rr
′ω) ≈ fALDA

XC [n0](rr
′) = δ(r− r′)

∂2 (nεXC(n))

∂n2

∣

∣

∣

∣

n=n0(r)

(3.29)

The KS independent-particle response function χ0 can be constructed employing
the Lehmann representation from the KS eigenfunctions φiσ(r) and eigenvalues
εi

χ0σσ′(rr′ω) = δσσ′

∑

i,j

(njσ − niσ)
φ∗jσ(r)φiσ(r)φ

∗
iσ(r

′)φjσ(r
′)

ω − (εi − εj) + i0+
(3.30)

niσ is the occupation number of orbital φiσ(r) and 0+ a positive infinitesimal
introduced for mathematical reasons. χ0 has poles at the KS eigenvalue differ-
ences, obvious from equation 3.30, while the poles of χ are at the true excitation
energies. The connection between χ0 and χ is given by the following Dyson-like
equation, which is obtained from equating 3.26 and 3.27 and inserting the terms
for the KS potential

χ(rr′ω) = χ0(rr
′ω) +

∫

dr1dr2 χ0(rr1ω)

(

1

|r1 − r2|
+ fXC(r1r2ω)

)

χ(r2r
′ω) (3.31)

It can be expressed in the following way

χ(rr′ω) = 2
∑

s

ρs(r)ρs(r
′)

ω − ωs + i0+
(3.32)

2Note that RPA in this context uses KS wave functions to construct excitations. The
acronym is also sometimes used to refer to time-dependent HF—in this case HF wave functions
are the basis, of course.
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where ωs are the TDLDA excitation energies. The normal modes ρs are ex-
panded in the basis of electron transitions i–a between KS orbitals φ

ρs(r) =
∑

iaσ

Xs
iaφiσ(r)φaσ(r)

(

εa − εi
ωs

)1/2

(3.33)

The coefficients Xia and excitation energies ωs are obtained from the eigenvalue
equation

R1/2
[

R+ 4(KH +KXC)
]

R1/2X = ω2
sX (3.34)

with
Riai′a′ = δii′δaa′(ni − na)(εa − εi) (3.35)

and the matrices introducing the Hartree

KH
iai′a′ =

∫

drdr′φi(r)φa(r)
1

|r− r′|φi′(r
′)φa′(r′) (3.36)

and exchange–correlation interactions

KXC
iai′a′ =

∫

drφi(r)φa(r)fXC(r)φi′(r)φa′(r). (3.37)

In that way, the linear response equations are solved in the space of single-
particle transitions. Having the converged results of the eigenvalue problem
3.34 at hand the oscillator strengths are obtained as

fiaσ =
2

3

(

∣

∣

∣
~xTR1/2 ~Fiaσ

∣

∣

∣

2

+
∣

∣

∣
~yTR1/2 ~Fiaσ

∣

∣

∣

2

+
∣

∣

∣
~zTR1/2 ~Fiaσ

∣

∣

∣

2
)

(3.38)

where ~Fiaσ are the elements of the converged eigenvectors X of 3.34. Note the
oscillator strength sum rule for a complete basis of excitations is3

∑

iaσ

fiaσ = (number of electrons) (3.39)

The connection to the extinction coefficient ε(ν) or ε(ν̃), which is usually de-
termined in experiments, is given by integrating the absorption spectrum of a
transition

f = 4.33× 10−9

∫ ∞

0

ε(ν̃)dν̃ (3.40)

In the above chain-of-thought, the so-called Tamm-Dancoff approximation (TDA)
was applied. It assumes essentially that the significant contributions to Casida’s
equation come only from i–a electron transfers, the admixture of emissions a–i is
disregarded. This is the TDDFT analogue to configuration interaction method
of quantum chemistry involving single excitations only (CIS), and is e.g. used
in the implementations of the method in the GAMESS, TURBOMOLE and
Gaussian codes.

The TDA has the advantage that it is computationally more effective, but it
is an additional approximation in the method. Usually the results with and with-
out TDA do not differ significantly. Contrarely there are cases, when TDA does

3The vectors ~Fiaσ form a orthonormalized set
∑

iaσ
~Fiaσ

~FT
iaσ = 1
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better than the full treatment, e.g. when excitations far off the equilibrium ge-
ometry using hybrid functionals are computed and for open shell systems. This
is due to the triplet instability, the occurrence of imaginary excitation energies
connected to a poor description of static correlation effects by the exchange–
correlation functional for the ground state, which is cured when TDA is used
[22]. Note the the Parsec/RGWBS codes were used without this approximation.

3.1.2 Green’s Function Based Many Body Perturbation
Theory

As can be seen in the preceding section, there are several shortcomings in
TDDFT, namely the non-locality in space and time of the exchange–correlation
kernel, what leads to poor description of charge-transfer excitations and other
long range effects in molecules, and the single particle character of the KS refer-
ence system. In this section a different way of describing a many electron system
is introduced, which is not yet much in use in chemistry, Green’s function or
propagator based methods [22, 24, 25, 26, 8].

Any differential equation can be solved involving a so-called Green’s func-
tions, for more background see e.g. [28], and so this is the case for the Schrödinger
equation defining the many-electron problem stated at the beginning.

Ĥ0Ψ = EΨ (3.41)

The Green’s function for this zeroth-order problem is

(E − Ĥ0)G0(r, r
′, E) = δ(r− r′) (3.42)

Assuming an effective one-particle description with the Hamiltonian Ĥ0 =
∑

i f̂(i), as it is the case in both, HF and the KS system, one can write

f̂(i)φi(r) = εiφi(r) (3.43)

and the Green’s function becomes

G0(r, r
′, E) =

∑

i

φi(r)φ
∗
i (r

′)

E − εi
(3.44)

where i runs over all occupied and unoccupied orbitals and the resulting Green’s
function has poles for E equal to the eigenvalues of the HF or KS orbitals εi. The
exact Green’s function G(E) has poles at the exact energy differences between
the N and the (N ± 1)-particle systems. These particles have all interactions
included in their single particle properties (they are said to be renormalized)
and are hence called quasiparticles. The connection between the non-interacting
HF or KS Green’s function G0(E) and G(E) is made by introducing an effective
potential, the so-called self energy Σ, which is a non-local, energy dependent
quantity.

G(E) = G0(E) +G0(E)Σ(E)G(E) (3.45)

3.45 is known as Dyson equation. The self energy is then expanded in terms of a
screened Coulomb potential W instead of the bare Coulomb potential 3.4. W is
the interaction of two electrons including the effect of the other electrons around,
which is in many cases much weaker than the bare interaction. This transforms
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the problem of strongly interacting particles to the problem of weakly inter-
acting quasiparticles and leads to much better convergence than conventional
perturbation theory (such as Rayleigh–Schrödinger theory, commonly known as
Møller–Plesset theory in quantum chemistry). This leads to a set of equations
after Hedin [29]. Where4

Σ(1, 2) = i

∫

d(34)G(1, 3)W (4, 1+)Γ(3, 2; 4) (3.46)

expresses the self energy in terms of the screened interaction W and the vertex
function Γ (see 3.49),

W (1, 2) = V (1, 2) +

∫

d(34)V (1, 3)χ(3, 4)W (4, 2) (3.47)

is the screened electron–electron interaction,

χ(1, 2) = −i
∫

d(34)G(1, 3)G(4, 1+)Γ(3, 4; 2) (3.48)

is the polarizability, i.e. the response of the system to an additional particle or
hole, and

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫

d(4567)
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3) (3.49)

is the vertex function obtained from the change in the self energy due to the
addition of the particle (or hole)5. In general this set requires a self-consistent
solution.

In the practical calculations in this work the approach of M. Tiago et al. [30]
was used. Assuming a fast convergence in Hedin’s equations one can set the self
energy in the vertex function 3.49 to zero, it becomes then

Γ(1, 2; 3) ≈ δ(1, 2)δ(1, 3) (3.50)

The polarizability reduces to the RPA polarizability

χ(1, 2) ≈ −iG(1, 2+)G(2, 1) ≡ χ0(1, 2) (3.51)

And for the screened Coulomb interaction one gets

W0(1, 2) =

∫

d(3)ε−1
0 (1, 3)V (3, 2) (3.52)

with the dielectric function

ε0(1, 2) = δ(1, 2)−
∫

d(3)V (1, 3)χ0(3, 2) (3.53)

And the self energy becomes

Σ(1, 2) = iG(1, 2)W0(2, 1
+) (3.54)

4In the following, 1 stays for (r1, σ1, t1), 2 for (r2, σ2, t2) and so forth A “+” denotes holes
instead of electrons.

5In other words the linear response of the self-energy to a change in the total potential. Ver-
tex corrections acount for exchange–correlation effects between an electron the other electrons
in the screening density cloud [22]
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This non–self-consistent, approximate solution to Hedin’s equations is some-
times called the “one-shot” GW0 approximation.

It can be enhanced using TDLDA instead of RPA for the polarizability. At
the starting point the self energy is taken to be

Σ(1, 2) ≈ VXC(1)δ(1, 2) (3.55)

This expression is inserted into 3.49 to give for the vertex function

Γ(1, 2; 3) ≈ δ(1, 2)δ(2, 3) +

∫

d(45) {−iδ(1, 2)fXC(1)}G(1, 4)G(5, 1+)Γ(4, 5; 3)
(3.56)

The irreducible polarizability χ becomes

χ(1, 2) = χ0(1, 2) +

∫

d(3)χ0(1, 3)fXCχ(3, 2) (3.57)

and the screened Coulomb interaction

W (1, 2) = V (1, 2) +

∫

d(34)V (1, 3)Π(3, 4)v(4, 2) (3.58)

contains the full polarizability Π

Π(1, 2) = χ(1, 2) +

∫

d(34)χ(1, 3)V (3, 4)Π(4, 2) (3.59)

which in terms of

χ(1, 2) = χ0(1, 2) +

∫

d(3)χ0(1, 3)fXCχ(3, 2) (3.60)

is

Π(1, 2) = χ0(1, 2) +

∫

d(34)χ0(1, 3) {V (3, 4)− fXCδ(3, 4)}Π(4, 2) (3.61)

which is nothing else than the TDLDA response function.

Πf (1, 2) =
δn(1)

δVext(2)
(3.62)

Finally the self energy has the following form

Σ(1, 2) = iG(1, 2)

[

V (1+, 2) +

∫

d(34) {V (1, 3) + fXC(1)δ(1, 3)}Π(3, 4)V (4, 2)

]

(3.63)
Compared the the RPA based approximation above, the self energy now contains
an additional vertex term. This latter level of approximation is denoted GWf

approximation, following [30]. In any case one gets the eigenvalue equation

[HLDA +Σ− VXC]ψj = Ejψj (3.64)

with the quasiparticle orbitals ψj as an expansion in the basis of Kohn–Sham
eigenfunctions and the LDA Hamiltonian HLDA. The equation is then solved by
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diagonalization for quasiparticle energies and wave functions. Unlike the Kohn–
Sham eigenvalues the quasiparticle energies do have a physical meaning and can
be compared directly to photoemission and electron affinity measurements.

Originally it is intended to solve Hedin’s equations iteratively to self-consis-
tency, while it remains open how at best to achieve that and what is the effect on
the final results [24]. Within this approach, self-consistency could be reached
by solving Equation 3.64 and constructing all quantities on the basis of the
last iterations quasiparticle eigenfunctions and eigenvalues. Although in prac-
tice smooth convergence could not be achieved due to numerical accuracy and
thereby triggered instabilities.

3.1.3 The Bethe–Salpeter Equation

The Bethe–Salpeter equation describes neutral excitations of the quasiparticle
system in terms of the electron–hole correlation function L(1, 2; 1+, 2+) [30]
which is

L(1, 2; 3, 4) = G(1, 4)G(2, 3) +

∫

d(5678)G(1, 5)G(6, 3)K(5, 7; 6, 8)L(8, 2; 7, 4)

(3.65)
where the Green’s function constructed from the eigenvalues and eigenfunctions
above enters. The kernel operator, which describes the interaction between the
excited electron and hole left behind, is connected to the self-energy by

K(1, 2; 3, 4) = −iδ(1, 3)δ(2, 4)V (1, 2) +
δΣ(1, 3)

δG(4, 2)
(3.66)

Several levels of approximation are possible: constructing G from LDA Kohn–
Sham eigenvalues and eigenfunctions and letting Σ(1, 2) ≈ VXC(1)δ(1, 2) one
returns to the TDLDA eigenvalue equation 3.34, what opens a direct connection
between TDDFT and BSE and thereby a way of enhancing fXC; obtaining G
fromGW0 and putting δΣ/δG = iW0, what makesK(1, 2; 3, 4) consisting of bare
exchange and screened Coulomb interaction; or working on the basis of GWf ,
what adds another term to the kernel—a vertex correction based on LDA. In
any case an eigenvalue problem like or similar to Equation 3.34 is yielded which
is then diagonalized for excitation energies.

3.1.4 Technical Considerations

The above theories can be realized in different bases. The usual way that is
followed in computational chemistry is to use sets of Gaussian functions to
approximate the wave function of the theory and adjust their coefficients in the
course of the SCF procedure [1]. A lot of refined and optimized code libraries
are available for the tasks that occur in these calculations and common quantum
chemistry software packages such as GAMESS or Gaussian rely heavily on them.
Apart from coding, their advantages are that all electrons of light atoms are
included explicitly and that a whole lot of data is available in literature, which
demonstrates the accuracy and computational cost of a specific basis set. At
the other hand, there is no systematic way of converging the quality of the basis
set to achieve the desired accuracy of the result, the method is mostly limited to
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zero dimensional problems6 and massive parallelization is not straight forward.
In this work Gaussian basis set based codes were used for HF and DFT ge-

ometry optimizations and TDDFT calculations in vacuum and a solvent model.
One alternative that was employed by the Parsec and RGWBS codes is

to work in real space [5], i.e. superimposing a lattice at whose sites the wave
function and other quantities are computed. This has several advantages: the
potential operator is diagonal and reduces computational cost, the mesh size
can be converged to the desired numerical accuracy and the technique works for
zero dimensional and periodic systems on the same footing. Disadvantages are
that the use of pseudopotentials is obligatory, what introduces another source of
error, and that the computational cost for small systems with narrowly located
electrons (small mesh size necessary) is by far less effective than a computation
using a Gaussian basis.

In this work the real space codes were used for LDA single point, TDLDA,
GW and GW -BSE computations.

3.1.5 Selection Rules for Electronic Excitations

The approximations in the calculations of electronic excitations, amongst others
the Born–Oppenheimer approximation of separating electronic and nuclear wave
functions, introduce selection rules. These selection rules are not all strictly
fulfilled in the real system but provide a good guidance to the importance of an
electronic transition [31].

The transition moment integral M can be separated approximately into

M =

∫

ψ′∗µ̂ψdτ ≈
∫

ψ∗
v′ψvdτv

∫

ψ∗
e′ µ̂eψedτe

∫

ψ∗
s′ψsdτs (3.67)

where the first integral is the Frank–Condon factor due to the vibrational states,
which is not studied within this work. The second integral is the electronic
contribution to the transition moment integral causing the orbital selection rules
(µ̂e denotes the component of the dipole moment operator that depends only
on electron coordinates), and the last term accounts for the spin selection rule.
Primed wave functions are always referring to the excited state.

The spin selection rule is simple: the multiplicity of the two states involved
in the transition must be the same. Hence only singlet–singlet, triplet–triplet
transitions and so forth are allowed. This rule is rather strict, spin forbidden
transitions have in general a very low absorbance.

The orbital selection rule is somewhat less strict, typical extinction coeffi-
cients for orbital forbidden transitions are in the order of 100–103 M−1 cm−1.
It is determined from the character tables for the symmetry point group of
the molecule, what is demonstrated in the following for the two point groups
relevant in this work: C2 and C2v.

For the C2 point group the character table is

C2 E C2

A 1 1 z
B 1 −1 x, y
Γx,y,z 3 −1

(3.68)

6The term zero dimensional refers to single molecules or small clusters, as opposed to long
chains (1-dim), surfaces (2-dim) or crystals (3-dim), where a box with periodic boundary
conditions contents the system.
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The dipole moment operator µ̂e has three components which transform as x, y
or z. As the ground state is always totally symmetric (A) and the excited state
can be of A or B symmetry one finds two cases for the symmetry of the orbital
selection integral

∫

ψ∗
e′ µ̂eψe ∼ A

(

a
b

)

A =

(

a
b

)

(3.69)

and B

(

a
b

)

A =

(

b
a

)

(3.70)

If now the ground state symmetry A is found in the triple product Γ(ψe′) ×
Γ(µ̂e)× Γ(ψe), the transition is allowed—what is true for both cases above.

For the C2v point group the character table looks like

C2v E C2 σv(xz) σ′
v(yz)

A1 1 1 1 1 z
A2 1 1 −1 −1
B1 1 −1 1 −1 x
B2 1 −1 −1 1 y
Γx,y,z 3 −1 1 1

(3.71)

and the orbital selection rules are determined by

∫

ψ∗
e′ µ̂eψe ∼ A1





a1
b1
b2



A1 =





a1
b1
b2



 (3.72)

A2





a1
b1
b2



A1 =





a2
b2
b1



 forbidden! (3.73)

B1





a1
b1
b2



A1 =





b1
a1
a2



 (3.74)

and B2





a1
b1
b2



A1 =





b2
a2
a1



 (3.75)

So it is demonstrated that transitions from the gound to an A2 excited state
do not yield the ground state symmetry in the triple product. Hence these
transitions are forbidden by orbital symmetry.

3.2 Results

In the following sections data for optimized geometries and neutral excita-
tion properties for benzophenone, 1,5-diphenylpenta-1,4-diyn-3-one (DPD) and
its derivatives 1,5-bis(4-methoxyphenyl)penta-1,4-diyn-3-one (ODPD), 1,5-bis-
(4-(methylthio)phenyl)penta-1,4-diyn-3-one (SDPD) and 1,5-bis(4-(dimethylami-
no)phenyl)penta-1,4-diyn-3-one (NDPD) are presented. The data are compared
to experimental measurements and results from other methods, according to
availability. TDDFT was done for all compounds, whereas GW and GW -BSE
could only be applied to benzophenone and DPD for computational reasons.
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3.2.1 Benzophenone

Geometry

Being a small molecule the geometry of benzophenone, Figure 3.1, is not very
difficult to determine, with one exception—the torsion angle between the phenyl
rings and the keto plane O=C–C1–C2 or, equivalently, the angle between the
two phenyl rings, which should be defined here as the dihedral C1–C6–C1′–
C6′ (referring to the two vertical ipso-ortho aromatic bonds in Figure 3.1).
This internal coordinate was in question in both, experimental observations
and computational approaches.

In this work the geometry was obtained from an HF/cc-pVTZ optimization
run, see Figure 3.2, using GAMESS [32] with a maximum gradient of 10−5

Hartree Bohr−1 taken as convergence criterium. A C2 symmetry was assumed.
It revealed a dihedral angle between the phenyl ring and the keto plane of
33.8, and an angle between the ring planes of 57.7◦. Additionally, a geometry
optimum was determined on the B3LYP/cc-pVTZ hypersurface using the same
parameters as above. Both results are compared to previous theoretical results
and experimental data, see Table 3.1.

Figure 3.1: Schematic structure of the benzophenone molecule.

Figure 3.2: Front and side views [33] of the HF/cc-pVTZ optimized structure of ben-
zophenone. The blue line marks the C2 rotation axis of the assumed symmetry.

Table 3.2 compiles 1H and 13C NMR chemical shifts from experiment [38]
and calculations using the Gauge-Independent Atomic Orbital (GIAO) method
as implemented in Gaussian [39] with default parameters at the B3LYP/ IGLO-
II level for both, the HF- and the B3LYP-optimized geometries. The isotropic
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Table 3.1: Geometric data of benzophenone from optimizations with different meth-
ods and basis sets and from X-ray experiments for the crystals (superscripts mean
(c)arbonyl, (i)pso, (o)rtho, (m)eta and (p)ara; a this work).

internal coord. HF MP2 X-ray HF B3LYP
STO-3G 3-21G cc-pVTZ cc-pVTZ

[34] [35] [36] a a

O–Cc 1.225 Å 1.261 Å 1.23 Å 1.191 Å 1.218 Å
Cc–Ci 1.528 Å 1.505 Å 1.48–1.50 Å 1.501 Å 1.499 Å

Ci–Cc–Ci′ 119.1◦ 119.1◦ 122◦ 120.4◦ 120.6◦

O–Cc–Ci–Co 33.3◦ — — 33.8◦ 27.8◦

Co–Ci–Ci′–Co′ 54◦ 49◦ 56◦ 57.7◦ 52.9◦

Table 3.2: 1H and 13C NMR chemical shifts for benzophenone, measured values in
d-chloroform taken from [38] (superscripts mean (c)arbonyl, (i)pso, (o)rtho, (m)eta
and (p)ara); all values in ppm.

experiment calculated values
HF geometry B3LYP geometry

Ho 7.79 7.32 / 7.95 7.62 / 8.28
Hm 7.46 7.21 / 7.42 7.43 / 7.63
Hp 7.57 7.41 7.64
Cc 196.50 196.05 201.79
Ci 137.58 143.81 145.24
Co 129.96 134.06 / 134.71 136.79 / 137.97
Cm 128.21 130.34 / 132.68 132.45 / 134.77
Cp 132.33 135.47 138.19

nuclear shieldings are referenced to tetramethylsilane, whose shielding was com-
puted in the same way.

Deviations between the two geometries occur for the carbonyl C–O bond
and the angle between the two phenyl rings. HF underestimates the C–O bond
length, an observation that was made before [1]. HF comes closer to the phenyl–
phenyl dihedral angle measured by X-ray diffraction [36]. Note that the latter
was measured for the crystal phase. But there is evidence that a similar picture
is true for powders, melts and solutions [37]. All sited experimental sources
find the C2 symmetry within standard errors of the data, which was used as
a constraint to the geometry optimizations. The NMR shifts show the usual
uncertainties of the GIAO method at the applied level, although the HF geome-
try shows better agreement, in particular for the 13C shifts (and inclusively the
carbonyl C).

Ground State Properties and Neutral Excitations

Ground state properties and electronic excitations were determined using the
previously obtained geometries. Most calculations were done with the HF/cc-
pVTZ-optimized structure, while the B3LYP structure was used for a few tests
only, to show how minor geometry changes affect the results.

81



Within DFT/TDDFT, a first approach was to use LDA to allow also a com-
parison with the results from the real space code (RGWBS), with the Perdew–
Zunger functional PZ81 employed7. Secondly a GGA functional was used: PBE,
for the reasons of being increasingly popular in quantum chemistry and its com-
parably sound theoretical basis [23]. These calculations were done using again
the GAMESS code and starting from a well converged wave function, obtained
with a convergence threshold of 1 × 10−7 change in the electron density. The
basis set for all tasks was cc-pVTZ, which is assumed to be large enough to
cover all major effects but still permits smooth convergence. Results of linear
response TDDFT using the LDA and GGA functionals are given in Table 3.3,
along with Kohn–Sham orbital assignments and experimental data for the gas
phase and solutions in acetonitrile and hexane. Real space TDLDA excitation
energies from Parsec (see below) are given in Table 3.6.

The lowest excitation in the TDLDA and TDPBE spectrum is almost exclu-
sively of nO → π∗ character, compare Table 3.3 and Figure 3.3, in accordance
with what can be deduced from experimental solvent shifts [42, 44]—a hyp-
sochromic shift (increasing excitation energy with increasing solvent polarity)
and the absence of the band in acidic media due to protonation of the carbonyl
O. Furthermore its energy is in good agreement with the measured floures-
cence excitation spectrum. The nature of the intensive band (state no. 6 after
both functionals) is predicted to be the π → π∗ transition, like experimental
absorptions spectra suggest. The excitation energy here seems to be too low
(the π → π∗ exhibits a bathochromic shift, i.e. the excitation energy increases
with decreasing solvent polarity [44]). TDLDA and TDGGA excitation energies
differ only marginally, a behavior that was found already for e.g. naphthalene
[23].

Note that, strictly speaking, the Kohn–Sham orbitals do not have a chem-
ical significance themselves8, they only belong to the reference system of non-
interacting electrons and produce the total electron density of the real system (if
the functional is exact). However it was shown that KS orbitals are nevertheless
physically sound and suitable for qualitative chemical appliations [45, 46].

A natural extension for molecules containing polar groups is the inclusion of
HF-like exchange, popularly done in the form of hybrid functions. The choice
was like for the geometry optimizations B3LYP. The excitation energies and
assignments are given in Table 3.4. The assigned KS orbitals are shown in Fig-
ures 3.3 and 3.6. TDB3LYP results were also obtained for the B3LYP optimized
geometry. Additionally TDB3LYP calculations were done considering a solvent
environment. This was included employing the PCMmodel for acetonitrile. The
calculations were carried out with the Gaussian03 program suite. The cavity
was built of spheres from the United Atom Topological Model with 1.2 times the
UFF force field radii. Two different models were used, the default UA0 model
and another one whose radii are optimized for DFT calculations (UAKS). Note
the difference in the B3LYP functional between GAMESS, where VWN equa-
tion number 5 is used, and Gaussian03 taking expression 1 of VWN [13]. This
results in slight but insignificant deviations. The basis set was again cc-pVTZ.

Table 3.4 and Figures 3.6 and 3.7 show excitation properties and orbitals

7The LDA functional better known in chemistry is VWN; only insignificant differences to
PZ81 were found in some test calculations.

8Note also that arguing chemical properties on the basis of orbitals of a single configuration
does have in general its limitations.
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from TDB3LYP in gas phase and PCM acetonitrile. In general admixing HF
exchange in the functional increases the excitation energies, as found in other
cases [23]. Note that the orbital order changes (HOMO−3 ←→ HOMO−4),
while the assignments stay rather similar. Diffuse excitations are often im-
proved, but for valence excitations this is not always the case. This might be
also the reason for the shift of the intensive B-bands (states 4 and 15 in Ta-
ble 3.4), although no direct comparison with experiment is available. Note the
lesser nO → π∗ character in the weak A-band, compared to TDLDA, and the
deviation from the gas phase value. The difference between HF-optimized and
B3LYP-optimized geometries is significant (0.1–0.2 eV), with comparable de-
viations from experiment. The larger change in excitation energy occurs with
the π → π∗ transitions, where also the ground state optimized geometry dif-
fered at most from the HF picture, namely in the phenyl–phenyl dihedral angle
influenced by the phenyl π-electron cloud. The shifts in excitation energies
when transferring the molecule from vacuum into acetonitrile are in accordance
with the experiments. While the orbitals and transition assignments are not
fundamentally changed.

Simulated spectra from all TDDFT levels, along with the experimental spec-
trum in acetonitrile [43, 51] are shown in Figures 3.4 and 3.5. The theoretical
excitation energies and oscillator strenghts were broadened by Gaussians of
width 0.4 eV and superimposed to match a typical experiment. The 15 low-
est excitations were used, where the highest considered excitation energies are
5.6 eV for TDLDA, 5.7 eV for TDPBE and 6.3 eV for TDB3LYP. A comparison
of HF- and B3LYP-optimized structures is shown in the same manner in Figures
3.8 and 3.9.

GWf -BSE calculations were based on LDA Kohn–Sham orbitals obtained
with the Parsec code [47, 48] in real space. The benzophenone geometry from
HF/cc-pVTZ-optimization was set into a spherical cavity of radius 8 Å (conver-
gence: 0.0001 eV for the HOMO and total energy, and 0.01 eV for LUMO+10)
and a grid spacing of 0.20 Å (convergence: 0.0003 eV for individual orbitals, and
0.01 eV for the total energy). Wave functions vanish outside the cavity. Pseu-
dopotentials (PP) were generated using Martins’ code [49] and the Troullier–
Martins scheme [50] employing the PZ81 LDA functional. In general PPs were
soft (large cutoff radii) to facilitate SCF convergence and tested extensively for
the physico-chemical relevance of the obtained results. Parameters were as fol-
lows: for hydrogen the 1s electron was left in the valence, the cutoff radius was
set to 2.00 a.u. (1.06 Å); for carbon the 1s orbital was incorporated into the
core, cutoff radii for the 2s and 2p valence orbitals were 1.64 a.u. (0.46 Å); for
oxygen the 1s orbital was also part of the core, cutoffs for 2s and 2p orbitals
were 1.79 a.u. (0.95 Å). In all cases the core charge cutoff was set to the radius
where core and valence charges have the same magnitude. The convergence
criterion for the LDA SCF cycles was set to 2× 10−4 Ry. In the calculation of
the TDLDA excitation energies, the TDLDA polarizability, static screened in-
teraction, self energy corrections, quasiparticle energies and the Bethe–Salpeter
equation 34 occupied and 366 unoccupied orbitals were used. Thereby the sum
rule in TDLDA was satisfied to within 28%, a value which was found to assure
a accuracy of 0.1 eV in the quasiparticle energies [30].

Eigenvalues of HF, Kohn–Sham and quasiparticle states are compiled in
Table 3.5. Only the HF and KS HOMOs and the GW eigenvalues have a
physical meaning, provided in the KS case that the exact functional is known.
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Table 3.3: Important TDLDA and TDPBE excitations for the HF/cc-pVTZ-optimized
structure of benzophenone from GAMESS along with major contributions of KS orbital
transitions.

state energy sym osc. major contributions
eV origin target percent

TDLDA
1 3.25 A 0.001 HOMO LUMO 91
6 4.42 B 0.165 HOMO−4 LUMO 40

HOMO−2 LUMO 22
HOMO LUMO+2 17

15 5.64 B 0.064 HOMO−6 LUMO 48
HOMO−3 LUMO+2 31

TDPBE
1 3.30 A 0.001 HOMO LUMO 92
6 4.45 B 0.155 HOMO−4 LUMO 35

HOMO−2 LUMO 22
HOMO LUMO+2 21

15 5.68 B 0.165 HOMO−3 LUMO+2 53
experiment, gas phase a

3.30 (3.25) maximum (000 onset) from vibrationally re-
solved spectrum of S1

experiment, solution b

3.66; 3.58 0.1–0.2
4.96; 5.01 16.6–21.8

a measured fluorescence excitation in a collision free supersonic jet in He gas carrier [41];
b measured in MeCN and hexane (2nd values), extinction coefficients ε × 10−3 M−1 cm−1

[42, 43, 44]; osc. = oscillator strength.
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LUMO+1 LUMO+2 LUMO+3
ε = −1.74 eV ε = −1.61 eV ε = −1.42 eV
A A B

HOMO−1 HOMO LUMO
ε = −6.78 eV ε = −5.85 eV ε = −2.80 eV
B B B

HOMO−4 HOMO−3 HOMO−2
ε = −6.91 eV ε = −6.83 eV ε = −6.83 eV
A B A

Figure 3.3: LDA KS orbitals for benzophenone (HF-optimized) from GAMESS. The
KS orbital eigenvalues ε and their symmetry is also specified, the contour value for the
plot was 0.05.
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Table 3.4: Lowest important TDB3LYP excitations for benzophenone along with ma-
jor contributions of KS orbital transitions (comments on experiments see Table 3.3).

state energy sym osc. major contributions
eV origin target percent

TDB3LYP(VWN5) a

1 3.76 A 0.001 HOMO LUMO 77
4 4.94 B 0.228 HOMO−3 LUMO 53

HOMO−2 LUMO 34
15 6.27 B 0.166 HOMO−4 LUMO+2 38

HOMO−3 LUMO+3 31
TDB3LYP(VWN5) b

1 3.61 A 0.001 HOMO LUMO 74
4 4.76 B 0.251 HOMO-3 LUMO 45

HOMO-2 LUMO 43
15 6.19 B 0.144 HOMO-3 LUMO+3 32

HOMO-4 LUMO+2 29
TDB3LYP(VWN1) in PCM MeCN a,c

1 3.90 A 0.001 HOMO LUMO 62
3.84 0.001 70

4 4.79 B 0.326 HOMO−3 LUMO 68
4.84 0.295 64

13 6.25 B 0.137
15 6.29 0.127 HOMO−4 LUMO+2 52

experiment, gas phase
3.30 (3.25) maximum (000 onset) from vibrationally re-

solved spectrum of S1

experiment, solution
3.66; 3.58 0.1–0.2
4.96; 5.01 16.6–21.8

a calculation for HF/cc-pVTZ-optimized geometry; b calculation for B3LYP/cc-pVTZ-
optimized geometry; c the cavity is based on UA0 topological model, italic values are based
on an optimized model for DFT (UAKS).

Table 3.5: HF, Kohn–Sham and quasiparticle eigenvalues (in eV) for benzophenone
for the HF/cc-pVTZ-optimized geometry. The experimental PES shows a broad 5e−

band with maximum at 9.41 and shoulder at 8.97 eV [40].

orbital HF a LDA a LDA b PBE a B3LYP a GW b

HOMO −9.39 −5.84 −5.85 −5.63 −6.80 −8.92
HOMO−1 −9 .45 −6 .77 −6 .70 −6 .53 −7 .19 −8.92
HOMO−2 −9 .47 −6 .82 −6 .77 −6 .58 −7 .24 −9.14
HOMO−3 −9 .59 −6 .83 −6 .80 −6 .59 −7 .33 −9.20
HOMO−4 −11 .41 −6 .90 −6 .85 −6 .66 −7 .34 −9.25

a in cc-pVTZ Gaussian basis using GAMESS; b in real space using Parsec, see text for details;
the italic figures do not have an immediate physical meaning.
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Figure 3.4: TDLDA, TDPBE, TDB3LYP(VWN5), TDB3LYP(VWN1) with PCM
acetonitrile of benzophenone (HF-optimized) and experimental UV/vis spectrum in
acetonitrile [51]. The left scale belongs to the experimental line, the scaling of the
computed spectra is arbitrary but the same for the four.
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Figure 3.5: Same as figure 3.4 but zoom to lowest weak transition. Experimental
spectrum is 1× 10−3 M in acetonitrile [51].
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LUMO+1 LUMO+2 LUMO+3
ε = −0.65 eV ε = −0.49 eV ε = −0.27 eV
A A B

HOMO−1 HOMO LUMO
ε = −7.18 eV ε = −6.80 eV ε = −1.71 eV
B B B

HOMO−4 HOMO−3 HOMO−2
ε = −7.35 eV ε = −7.32 eV ε = −7.24 eV
B A A

Figure 3.6: B3LYP KS orbitals for benzophenone (HF-optimized). ε refers to the KS
eigenvalue for the orbital, at the bottom the symmetry is specified. The contour value
for the plot was 0.05.
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LUMO+1 LUMO+2 LUMO+3
ε = −0.72 eV ε = −0.67 eV ε = −0.54 eV
A B A

HOMO−1 HOMO LUMO
ε = −7.23 eV ε = −7.05 eV ε = −1.89 eV
B B B

HOMO−4 HOMO−3 HOMO−2
ε = −7.51 eV ε = −7.36 eV ε = −7.29 eV
B A A

Figure 3.7: B3LYP/cc-pVTZ KS orbitals for benzophenone (HF-optimized) from
Gaussian03 in PCM acetonitrile. Underneath the orbital specification ε refers to the
KS eigenvalue, the contour value for the plot was 0.05 (graphics by VMD, see [31] in
Chapter 2).
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Figure 3.8: TDB3LYP(VWN5) for HF and B3LYP optimized structures and experi-
mental UV/vis spectrum in acetonitrile (red, solid) [51] of benzophenone.
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Figure 3.9: Same as figure 3.8 but zoom to lowest weak transition. Experimental
spectrum is 1× 10−3 M in acetonitrile [51].
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Table 3.6: Important TDLDA and GW -BSE excitations of HF/cc-pVTZ-optimized
benzophenone from Parsec/RGWBS codes (osc. str. = oscillator strength).

LDA GWf -BSE
energy (eV) osc. str. symmetry energy (eV) osc. str. symmetry

3.28 0.001 A 3.07 0.001 A
4.40 0.133 B 4.39 0.402 B
5.65 0.177 B 6.29 0.703 B
6.27 0.072 A 6.38 0.188 B
6.29 0.062 B

The photoelectron (PE) spectrum [40] shows a broad band with a maximum at
9.47 eV and a shoulder at 8.97 eV, which corresponds to five electrons, four from
the π-ionizations originating from the orbitals at the phenyl rings and one from
the lone pair of the carbonyl oxygen nO. Note that the experimental values refer
to the maxima of the band, i.e. the vertical energy difference between ground
and ionized states. Strictly the adiabatic 0-0 transitions should be compared to
the KS eigenvalues and quasiparticle energies, which are expected to lie a few
hundredths to tenths of an eV lower.

While HF overestimates the ionization potential by 0.4 eV, LDA and GGA
are off by more than 3 eV, an effect that is connected to the general poor quality
of higher KS eigenvalues due to the deviation of their potential from the exact
one far from the nuclei [23]. This situation is only in part cured by admixture
of HF exchange in the case of B3LYP. At the other hand quasi-particle energies
of GWf compare well to experimental values. The quasi-particle energy of
−8.92 eV and the group of orbitals with eigenvalues between−9.10 and−9.25 eV
can be assigned to the highest, broad band in the PE spectrum. The onset
of lower-lying orbitals in the spectrum is then about 11.5 eV, which in turn
corresponds to the HOMO−5 of GW with −11.55 eV. Klasinc et al. [40] assign
the lone pair ionization to the high energy side of the broad band, rather than
to the shoulder. In contrast the GW results suggest some lone pair ionization
character in both sides of the band, see Figure 3.12.

The quasiparticle orbitals, depicted in Figure 3.12, support the DFT picture.
In particular this is true for B3LYP, whose orbital order also agrees with GWf .
The GWf -BSE excitation energy of the lowest, weak A-transition is further
lowered compared with TDLDA, thus is agrees less with the experiment (but
still better than B3LYP). At the other hand the intensive B-band stays almost
unchanged. Higher (diffuser) excitations are shifted, in particular the second
intense B-transition, which is increased from 5.65 eV in TDLDA to 6.29 eV—
again a support for the B3LYP values. Note also that the oscillator strength
of this high excitation is increased from TDLDA by all, TDPBE, TDB3LYP
and GWf -BSE. The LDA KS orbitals from Parsec underlying the GWf and
BSE calculations are approximately the same as the ones found with GAMESS
in Figure 3.3, and not shown for this reason. Simulated spectra containing
all excitations from TDLDA and GWf -BSE, broadened by Gaussians of width
0.4 eV, are shown again in Figures 3.10 and 3.11, along with the experimental
spectrum in acetonitrile [43, 51].

91



0.0

0.5

1.0

1.5

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

a
b

s
o

rb
a

n
c
e

eV

exp
tdlda
bse

Figure 3.10: TDLDA and GW -BSE spectra of benzophenone (HF-optimized) and
experimental UV/vis spectrum [51]. The left scale belongs to the experimental line,
the scaling of the TDLDA and GW -BSE lines is arbitrary but the same for the two.
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Figure 3.11: Same as figure 3.10 but zoom to lowest weak transition. Experimental
spectrum is 1× 10−3 M in acetonitrile [51].
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LUMO+1(LUMO+1) LUMO+2(LUMO+2) LUMO+3(LUMO+3)

ε = 0.67 eV ε = 0.42 eV ε = 0.67 eV
A, c = 0.04 A, c = 0.04 B, c = 0.03

HOMO−1(HOMO−1) HOMO(HOMO) LUMO(LUMO)

ε = −8.92 eV ε = −8.92 eV ε = −1.04 eV
B, c = 0.04 B, c = 0.09 B, c = 0.06

HOMO−4(HOMO−3) HOMO−3(HOMO−4) HOMO−2(HOMO−2)

ε = −9.25 eV ε = −9.20 eV ε = −9.14 eV
B, c = 0.08 A, c = 0.04 A, c = 0.03

Figure 3.12: Quasiparticle orbitals for benzophenone from PARSEC/GW -BSE codes.
The orbital specification in parenthesis refers to the corresponding zeroth order LDA
KS orbital, ε is the eigenvalue (quasi-particle energy) and c the outer contour value
for the plot.
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3.2.2 1,5-Diphenylpenta-1,4-diyn-3-one (DPD)

Geometry

As in the benzophenone case ground state optimized geometries of DPD, Figure
3.13, were obtained at the HF/cc-pVTZ and B3LYP/cc-pVTZ levels. A C2v

symmetry was assumed in the optimizations, which was also found when lifting
the symmetry constraint and starting optimizations from non-planar C2 and Cs

symmetries. The HF-geometry is shown in Figure 3.14, data for both are given
in Table 3.7. The last line in the table refers to the dihedral angle between the
phenyl and keto planes—which is constraint to 0◦ by C2v symmetry.

Figure 3.13: Schematic sketch of 1,5-Diphenylpenta-1,4-diyn-3-one (DPD).

Figure 3.14: Front, side and diagonal views of the HF/cc-pVTZ optimized structure
of DPD. The blue planes mark the mirror planes of the C2v symmetry.

B3LYP generally predicts longer bonds that HF—with the exception of the
single bonds, which are slightly shortened. In particular the carbonyl C–O bond
is longer in the B3LYP geometry, by following the tendency from the benzophe-
none case. Table 3.8 compiles 1H and 13C NMR chemical shifts computed for
both geometries with the GIAO method at the B3LYP/IGLO-II level. Also
here similar tendencies as in the case of benzophenone are seen, all-over the
HF-geometry yields lower deviations from the experiment with the exception of
the carbonyl C.
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Table 3.7: Some geometric data of DPD obtained from optimizations at the HF/cc-
pVTZ and B3LYP/cc-pVTZ levels.

internal coordinate HF geometry B3LYP geometry

O=C 1.185 Å 1.220 Å
C≡C 1.185 Å 1.208 Å
Ccarb–C≡ 1.454 Å 1.442 Å
≡C–Car 1.436 Å 1.420 Å
Ci–Co 1.389 Å 1.404 Å
Co–Cm 1.379 Å 1.386 Å
Cm–Cp 1.383 Å 1.392 Å
O=C – phenyl ring 0.0◦ 0.0◦

Table 3.8: NMR chemical shifts of 1H and 13C for DPD, measured values in d-
chloroform taken from [43].

experiment calculated values
HF geometry B3LYP geometry

aryl Hm and Hp 7.34–7.58 7.26(Hm) / 7.65(Hp) 7.48(Hm) / 7.54(Hp)
aryl Ho 7.59–7.77 7.54 / 7.55 7.79 / 7.82
C=O 160.80 156.85 163.57
aryl Co 133.35 137.91 / 139.15 141.71 / 142.83
aryl Cm 128.72 131.96 / 132.31 133.99 / 134.38
aryl Cp 131.27 134.32 136.88
aryl Ci 119.42 125.47 127.56
phen–C≡ 91.68 89.66 93.24
≡C–carb 89.42 93.55 97.35
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Figure 3.15: Experimental and TDDFT spectra of DPD (HF-optimized). Experimen-
tal line was obtained at a concentration of 5× 10−5 mol L−1 in acetonitrile [51].

Ground State Properties and Neutral Excitations

Electronic ground state properties and excitations were computed mostly for
the HF/cc-pVTZ symmetry in C2v symmetry. As for benzophenone DFT and
TDDFT results were obtained for LDA, PBE and B3LYP functionals. To learn
about the influence of geometric differences, excitations from TDB3LYP are
compared for both, the HF- and the B3LYP-optimized structures. Excitation
energies, oscillator strengths and orbital assignments are compiled for all func-
tionals in Table 3.9, KS orbitals from LDA are depicted in Figure 3.16 and
from B3LYP in Figure 3.17. The 15 lowest excitation energies9 and oscillator
strengths are combined in the simulated spectrum (Gaussians broadened by
0.4 eV) in Figure 3.15.

Comparing the TDLDA and TDPBE results one finds that they differ only
marginally and GGA does not improve substantially over LDA. Note that the
first transition of symmetry A2 is symmetry forbidden and hardly observed in
the experiment10. The picture changes significantly when going to the B3LYP
hybrid functional. The finding for benzophenone of a general shift in excitation
energies due to hybrid mixing in the functional applies also here, all transitions
are shifted by 0.5–0.7 eV from their LDA/GGA counterparts. This leads to a
better, if not excellent agreement with the experimental energies. Note though
that the comparison with the low resolution spectra taken in solution might be
misleading somewhat. At most this comparison could be made for the results in

9Highest included excitations were at 4.9 eV for TDLDA and TDPBE, 5.9 eV for TDB3LYP
and 6.0 eV for TDB3LYP/PCM.

10Pucher et al. [52] do report a weak band of ε ≈ 100 M−1 cm−1 at 3.1 eV that exhibits a
hypsochromic shift.
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Table 3.9: Important TDDFT excitations for DPD along with their major contribu-
tions of KS orbital transitions.

state energy (eV) sym osc. str. major contributions
origin target percent

TDLDA a

1 3.05 A2 0.000 HOMO LUMO 94
2 3.45 B2 0.583 HOMO−1 LUMO 85
3 3.78 A1 0.019 HOMO−4 LUMO 40

HOMO−2 LUMO 39
11 4.73 B2 0.305 HOMO−2 LUMO+1 77

TDPBE a

1 3.11 A2 0.000 HOMO LUMO 95
2 3.47 B2 0.581 HOMO−1 LUMO 86
3 3.80 A1 0.053 HOMO−2 LUMO 67
11 4.74 B2 0.311 HOMO−2 LUMO+1 79

TDB3LYP(VWN5) a

1 3.64 A2 0.000 HOMO−2 LUMO 89
2 3.96 B2 0.750 HOMO LUMO 90
4 4.43 A1 0.138 HOMO−1 LUMO 84
8 5.36 A1 0.112 HOMO LUMO+1 81
11 5.43 B2 0.168 HOMO−1 LUMO+1 86

TDB3LYP(VWN5) b

1 3.34 A2 0.000 HOMO−2 LUMO 90
2 3.72 B2 0.771 HOMO LUMO 89
4 4.21 A1 0.143 HOMO−1 LUMO 82
8 5.15 A1 0.121 HOMO LUMO+1 79
10 5.22 B2 0.160 HOMO−1 LUMO+1 86

TDB3LYP(VWN1) in PCM acetonitrile a

1 3.78 A2 0.000 HOMO−4 LUMO 88
2 3.79 B2 0.859 HOMO LUMO 90
5 4.32 A1 0.018 HOMO−1 LUMO 92
8 5.37 A1 0.131 HOMO LUMO+1 82
11 5.49 B2 0.167 HOMO−1 LUMO+1 82

experiment, MeCN [43] c

3.83 21.6∗

3.99 22.4∗

5.41 19.0∗

experiment [52] d

≈ 3.1 ≈ 0.1∗

3.91 n-hexane
3.85 25.0∗ MeCN

a computed for the HF/cc-pVTZ-optimized geometry; b computed for the B3LYP/cc-pVTZ-
optimized geometry; c the first two maxima build one band in the low resolution spectrum,
their energies in benzene are 3.80 and 3.99 and in MeOH 3.87 and 4.03 [43]; d first vibronic
transitions; osc. str. = oscillator strength; ∗ max. extinction coefficient ×10−3 L mol−1 cm−1.
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LUMO+1 LUMO+2 LUMO+3
ε = −2.18 eV ε = −1.77 eV ε = −1.77 eV
A2 B1 A2

HOMO−1 HOMO LUMO
ε = −6.45 eV ε = −6.26 eV ε = −3.35 eV
A2 B2 B1

HOMO−4 HOMO−3 HOMO−2
ε = −7.02 eV ε = −7.02 eV ε = −6.61 eV
B1 B2 B1

Figure 3.16: LDA/cc-pVTZ KS orbitals for DPD (HF-optimized). Underneath the
orbital specification ε refers to the KS eigenvalue and its symmetry, the contour value
for the plot was 0.05.
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LUMO+1 LUMO+2 LUMO+3
ε = −1.14 eV ε = −0.63 eV ε = −0.63 eV
A2 B1 A2

HOMO−1 HOMO LUMO
ε = −7.02 eV ε = −6.83 eV ε = −2.37 eV
B1 A2 B1

HOMO−4 HOMO−3 HOMO−2
ε = −7.46 eV ε = −7.46 eV ε = −7.35 eV
A2 B1 B2

Figure 3.17: B3LYP/cc-pVTZ KS orbitals for DPD (HF-optimized). Underneath the
orbital specification ε refers to the KS eigenvalue and its symmetry, the contour value
for the plot was 0.05.
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PCM acetonitrile (MeCN)—which still agree well with the experiments. Recall
also from the benzophenone case that the hybrid functional deteriorated the
excitation energy for the lowest nO → π∗ transition.

All TDDFT approximations predict the lowest strong transition to be of
π → π∗ character (note the orbital reordering between LDA and B3LYP).
Whereas the nO → π∗ transition is symmetry forbidden and easily obscured
experimentally. The practical importance of this finding lies in the fact that
for both transition types electron transfer occurs, but only the nO → π∗ type
transitions are efficient in hydrogen abstraction for the photoinitiation process.
In [43] it was deduced from a small hypsochromic shift, that the strong band
with maxima at 3.83 and 3.99 eV is of nO → π∗ character, a conclusion that is
not supported by TDDFT. Contrary Pucher et al. [52] assign a π → π∗ to the
strong absorption band and find the weak nO → π∗ band by “closer inspection”,
in accordance with this work.

To learn more about the excitations in DPD CASSCF(6,5)/cc-pVTZ calcu-
lations for ground and excited states were done for the HF-optimized geometry.
The CAS space consisted of 6 electrons in 5 orbitals. The starting orbitals
for the CASSCF were chosen to be 3 occupied HF orbitals: in addition to the
two highest occupied HF orbitals, a lower lying orbital was rotated into the
CAS space to ensure some nO character in addition to π-orbitals, similar to the
B3LYP orbital space in Figure 3.17. The unoccupied orbitals were just the 2
lowest unoccupied HF orbitals. Everything was done in cc-pVTZ basis. The
resulting orbitals and net occupation numbers of the active space are depicted
in Figure 3.18.

The ground state orbitals are obtained roughly similar to the DFT orbitals.
In the lowest state in B2 symmetry about one electron charge is transferred
from a π to a π∗-type anti-bonding orbital, while the nO → π∗ character of the
transition from ground into the S1(A2) state is also found with CASSCF. The
obtained dipole moments µ in Debye are

state µx µy µz

S1 (A1) 0.00 0.00 −4.73
S1 (A2) 0.00 0.00 −1.63
S1 (B2) 0.00 0.00 −8.15

(3.76)

where z-axis is the C2 torisonal axis (z+ heading up in Figure 3.14) and the x-
and y-axes lie in the mirror planes. Hence the dipole vector lies in the carbonyl
axis and heads “downwards” (referring again to Figure 3.14). Note the large
increase in the dipole moment for the transition to the S1(B2) state, which is
connected to an electron transferred from a π-orbital delocalized over the whole
molecule. This explains also the good performance of the hybrid functional in
contrast to TDLDA for the two π → π∗ transitions—due to its partly non-local
character—and the substantial corrections of GWf -BSE on TDLDA below. The
transition to the S1(A2) state triggers a stiff decrease in transition moment, due
to a charge adjustment in the carbonyl group. The transition is at the same
time predicited to be rather localized on >C=O. This finding is consistent with
the much better performance of TDLDA and TDGGA in case of the nO → π∗

transition. The hybrid functional seems to introduce here a spurious shift, which
is not found from solving the BSE.
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Figure 3.19: Electronic energies of non-planar DPD structures in C2 and Cs sym-
metries from HF/cc-pVDZ and MP2/cc-pVDZ, relative to the planar structure in kJ
mol−1. The abscissa means dihedral angle between keto and phenyl planes.

But there is more about this. Up to now all calculations were done for
the C2v planar structure of DPD, which is the minimum on both the HF and
B3LYP hypersurface. But that does not mean that only this stucture is present
at room temperature. Figure 3.19 shows the relative electronic energies (with-
out any vibrational contributions) when twisting the phenyl rings out of the
molecular plane. This is possible in two ways, either in opposite directions in a
C2 symmetry (conserving a C2 axis) or in like directions in a Cs symmetry (con-
serving a mirror plane σ)11. Energies from HF/cc-pVDZ and MP2/cc-pVDZ in
Figure 3.19 show little difference between the two symmetries. But they also
show that the energy barrier of the phenyl torison is rather low (6.45 kJ mol−1

by MP2/cc-pVDZ). Hence there is a significant portion of DPD present whose
phenyl rings are twisted out of the molecular plane. This twist breakes the
C2v symmetry and allows the former A2 transition of nO → π∗ character12.
This process may explain the fair activity of DPD as a photoinitiator. In the
experimental spectrum of DPD the transition could be causing the “foot” at
the low energy side of the broad band, although this assignment is somewhat
speculative.

GWf and BSE calculations were also done for the HF/cc-pVTZ structure
of DPD. Similar to benzophenone, the molecule was set into a spherical box of
now 10.0 Å radius and a grid spacing of 0.20 Å was used to reach a comparable
accuracy. For the excitations and self energy parts of the method a total of 800
states (42 occupied and 758 virtual states) was used. The TDLDA sum rule was
thereby fulfilled to 72%. Quasiparticle orbitals are shown in Figure 3.20 and
resemble closely the B3LYP orbital shape and order. As in the benzophenone

11The structure with phenyl rings perpendicular to the molecular plane posesses again C2v

symmetry.
12This situation is frequently seen and responsible for the finite absorption of symmetry

forbidden transitions. For a general discussion of these phenomena see e.g. Herzberg [53].
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LUMO+1 LUMO+2 LUMO+3
ε = −0.38 eV ε = 0.17 eV ε = 0.18 eV
A2, c = 0.03 B1, c = 0.03 A2, c = 0.03

HOMO−1 HOMO LUMO
ε = −8.91 eV ε = −8.69 eV ε = −1.83 eV
B1, c = 0.04 A2, c = 0.03 B1, c = 0.07

HOMO−4 HOMO−3 HOMO−2
ε = −9.24 eV ε = −9.24 eV ε = −9.20 eV
B1, c = 0.03 A2, c = 0.03 B2, c = 0.10

Figure 3.20: Quasiparticle orbitals for DPD (HF-optimized). Underneath the orbital
specification the eigenvalues ε, symmetries and the plot’s contour values c are given.

case, HOMO eigenvalues are changed significantly from −6.26 eV (LDA) and
−6.83 eV (B3LYP) to −8.69 eV (GWf ).

Excitation energies and oscillator strengths from Parsec/RGWBS codes for
the Random Phase Approximation (RPA), TDLDA and GWf -BSE levels of ap-
proximation are presented in Table 3.10. The comparably crude RPA yields
excitation energies which deviate substantially from the other levels of theory
and the experiment (note once more the limited comparability of the experi-
mental spectra), in particular for higher excitations. The lowest A2 transition
is comparable to TDLDA and—interestingly—in good agreement with BSE.
The TDLDA case was discussed already above. The slight deviations from the
GAMESS results stem from the different technical realization (real space and
PPs vs. Gaussian basis), where both introduce their own errors.

Excitation energies obtained from BSE exhibit once more similarities to
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Table 3.10: Lowest significant RPA, TDLDA and GWf -BSE excitations for DPD (HF-
optimized) from PARSEC/RGWBS codes.

RPA TDLDA GWf -BSE
energy osc. sym energy osc. sym energy osc. sym
2.91 0.000 A2 3.10 0.000 A2 2.78 0.000 A2

3.05 1.150 B2 3.41 0.602 B2 3.59 1.011 B2

3.23 0.523 A1 3.76 0.065 A1 4.26 0.049 A1

4.25 0.275 A1 4.73 0.286 B2 5.44 0.020 B2

4.44 0.482 B2 4.89 0.123 A1

experiment, MeCN [43] a

3.83 21.6∗

3.99 22.4∗

5.41 19.0∗

experiment [52] b

3.91 n-hexane
3.85 MeCN

a the first two maxima build one band in the low resolution spectrum, their energies in benzene
are 3.80 and 3.99 and in MeOH 3.87 and 4.03; b first vibronic transitions; osc. str. = oscillator
strength; ∗ max. extinction coefficient ×10−3 L mol−1 cm−1.

the benzophenone case. The lowest nO → π∗ transition is further lowered,
compared to TDLDA, but unfortunately there is no experimental reference to
decide whether this is an improvement or not. The intensive π → π∗ band
is shifted slightly and in relatively good agreement with TDB3LYP and the
experimental measurements. Higher excitations are corrected further to higher
energies, again in agreement with TDB3LYP and the experiments. The primary
difference to these two values is the much weaker oscillator strength. Simulated
spectra of all excitations as above are again shown in Figure 3.21.
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Figure 3.21: RPA, TDLDA, GWf -BSE and experimental spectra of DPD, Gaussian
broadened by 0.4 eV. Experimental parameters are the same as above [51].

3.2.3 Derivatives of DPD

1,5-Bis(4-methoxyphenyl)penta-1,4-diyn-3-one (ODPD) and 1,5-Bis(4-
(thiomethyl)phenyl)penta-1,4-diyn-3-one (SDPD)

The structures of ODPD and SDPD, Figure 3.22, are even more flexible as in
the case of DPD. Several internal coordinates are expected to have low barriers
for a twist or flip: the phenyl–keto dihedral angle like for DPD, the position of
the methyl group relative to the phenyl ring and the torsion of the methyl H
atoms.

The structures were determined at the HF/cc-pVTZ level with a gradient
convergence tolerance of 10−5 H Bohr−1. For ODPD two local minima were
studied in this work for comparison: one with planar phenyl rings and dihedral
angles C3–Ci–X–Cmex of 0◦ (mex = methoxy or thiomethyl, with X = O or S;
i.e. methyl groups head “up”), which is presumably the global minimum, and a
second one with the dihedral angle C3–Ci–X–Cmex of 180◦ (i.e. methyl groups
head “down”). The latter structure has an HF/cc-pVTZ electronic energy of
0.77 kJ mol−1 above the former and shall be named “twisted” ODPD (ODPDt)
henceforth. Data for the obtained geometries are compiled in Table 3.11, both
were obtained in C2v symmetry. Also for SDPD a structure with C3–Ci–X–Cmex

of 0◦ and a twisted SDPD structure with an angle of 180◦ are local minima,
the latter 0.77 kJ mol−1 higher in HF/cc-pVTZ electronic energy. The optical
properties of the two are approximately the same, similar to the case of ODPD
(see below). Therefore only the “non-twisted” structure was studied in greater
detail. Additionally, a local minimum in C2 symmetry with thiomethyl groups
twisted against the phenyl ring by roughly 90◦ was found, but this was 28.02 kJ
mol−1 higher than the C2v symmetry and was not studied further. Pictures of

105



the optimized (“non-twisted”) ODPD and SDPD structures are shown in Figure
3.23. As before, computed 1H and 13C NMR chemical shifts for HF/cc-pVTZ
geometries at the GIAO B3LYP/IGLO-II level are compared with experimental
values in Table 3.12.

Figure 3.22: Schematic sketches of ODPD and SDPD. The number refers to the ge-
ometry definitions.

Table 3.11: Structure data of HF/cc-pVTZ-optimized structures for ODPD, ODPDt
and SDPD.

internal coord ODPD ODPDt SDPD

O=C 1.186 Å 1.186 Å 1.185 Å
C≡C 1.186 Å 1.186 Å 1.185 Å
Ccarb–C≡ 1.452 Å 1.452 Å 1.453 Å
≡C–Car 1.432 Å 1.432 Å 1.433 Å
O=C – phenyl ring 0.0◦ 0.0◦ 0.0◦

Ci–Co 1.383a; 1.395b Å 1.396a; 1.383b Å 1.385a; 1.392b Å
Co–Cm 1.383a; 1.369b Å 1.369a; 1.383b Å 1.381a; 1.372b Å
Cm–Cp 1.385a; 1.393b Å 1.393a; 1.385b Å 1.385a; 1.393b Å
Cp–X 1.337 Å 1.337 Å 1.763 Å
X–Cmex 1.399 Å 1.399 Å 1.798 Å
Cp–X–Cmex 120.3◦ 120.3◦ 104.6◦

C3–Cp–X–Cmex 0.0◦ 180.0◦ 0.0◦

a data for the “upper side” of the phenyl rings (i.e. Cm = C3, C3′ in Figure 3.22); b data for

the “lower side” of the phenyl ring (not including C3, C3′ ).

Neutral electronic excitations of ODPD were computed using TDLDA and
TDB3LYP levels in cc-pVTZ basis, and with TDB3LYP in combination with the
PCM model and UFF radii enlarged by a factor of 1.2 for the cavity, see Table
3.13. The general picture developed from the benzophenone and DPD cases
is also true here. The exception is that there are now two orbital forbidden
nO → π∗ type transitions of symmetry A2, compare Table 3.13 with Figure
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(a)

(b)

Figure 3.23: Front, top/side and diagonal views of the HF/cc-pVTZ optimized struc-
tures of (a) ODPD and (b) SDPD. The blue planes mark the mirror planes of the C2v

symmetry.

Table 3.12: Computed NMR chemical shifts of 1H and 13C for HF/cc-pVTZ optimized
ODPD, ODPDt and SDPD, experimental values measured values in d-chloroform
taken from [54].

ODPD ODPDt SDPD
exp. calc. calc. exp. calc.

aryl Ho 7.61 7.39 / 7.47 7.41 / 7.45 7.55 7.29 / 7.42
aryl Hm 6.92 6.40 / 6.78 6.38 / 6.79 7.23 6.68 / 7.00
–XCH3 H 3.86 3.33 / 3.81 3.32 / 3.81 2.51 1.83 / 2.13
C=O 162.0 156.54 153.45 160.6 156.31
aryl Cp 160.9 165.49 162.47 144.1 154.06
aryl Co 135.4 139.45 / 141.15 136.82 / 137.67 133.6 123.63 / 128.24

aryl Cm 114.4 110.23 / 121.21 106.86 / 118.41 125.3 136.97 / 139.63

aryl Ci 111.4 116.39 113.46 115.1 119.43
phen–C≡ 92.5 89.74 86.58 92.0 89.71
≡C–carb 89.7 93.75 90.76 90.1 94.09
–XCH3 C 55.5 53.28 50.25 14.8 15.73
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3.24 for LDA orbitals and Figure 3.25 for B3LYP orbitals. These excitations
lie above the lowest π → π∗ transition (which is state 1 in both, TDLDA and
TDB3LYP). PCM shifts them even above the two lowest transitions of this type.
This data stay in contrast to Pucher et al. [52] who report a weak nO → π∗

transition around 3.1 eV, below the strong π → π∗ absorption band, where
the assignment was done due to solvent shifts. As before, TDB3LYP shifts the
TDLDA excitation energies by roughly 0.6 eV, and yields thereby energies partly
above the experimental values (which are measured in solvents and are hence
of limited comparability). PCM increases the nO → π∗ transitions and lowers
π → π∗, what is a plausible effect in good agreement with the experimental
data. Simulated spectra13 as before are shown in Figure 3.26.

The twisted ODPDt structure which is expected to have a significant Boltz-
mann weight due to its relative electronic energy does not cause much of a
change. The excitations are not influenced significantly by the twist, see Table
3.13 and Figure 3.2713, apart from flipping of closely lying states. Also the
orbitals which are important for excitations are not affected significantly (not
shown for this reason).

A similar picture can be drawn from Table 3.14 for SDPD, where the A2

states are further shifted with respect to the lowest excitation. B3LYP orbitals
are shown in Figure 3.28. Simulated spectra13 are given in Figure 3.29, where the
broadening was reduced to 0.3 eV for better comparability with the experimental
spectrum in MeCN.

13Including the 15 lowest excitations. Highest excitation energies are for ODPD: 4.6 eV
(TDLDA), 5.6 eV (TDB3LYP) and 5.5 eV (TDB3LYP/PCM); for ODPDt : 5.6 eV
(TDB3LYP); for SDPD: 4.3 eV (TDLDA), 5.5 eV (TDB3YP) and 5.1 eV (TDB3LYP/PCM).
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Table 3.13: Lowest important TDDFT excitations from GAMESS for ODPD along
with the major contributions of KS orbital transitions.

state energy (eV) sym osc. str. major contributions
origin target percent

TDLDA for ODPD
1 3.05 B2 0.725 HOMO LUMO 86
2 3.14 A2 0.000 HOMO−2 LUMO 94
3 3.34 A1 0.058 HOMO−1 LUMO 72
4 3.94 A2 0.000 HOMO−3 LUMO 98
12 4.42 B2 0.385 HOMO−1 LUMO+1 54

TDB3LYP(VWN5) for ODPD
1 3.65 B2 0.953 HOMO LUMO 90
2 3.71 A2 0.000 HOMO−2 LUMO 90
3 4.08 A1 0.725 HOMO−1 LUMO 85
4 4.46 A2 0.000 HOMO−5 LUMO 92
10 5.18 A1 0.199 HOMO LUMO+3 43
11 5.19 B2 0.308 HOMO−1 LUMO+1 83

TDB3LYP(VWN5) for ODPDt
1 3.65 B2 0.855 HOMO LUMO 91
2 3.71 A2 0.000 HOMO−2 LUMO 90
3 4.08 A1 0.181 HOMO−1 LUMO 85
4 4.46 A2 0.000 HOMO−5 LUMO 92
8 5.11 A1 0.215 HOMO LUMO+1 61
11 5.19 B2 0.156 HOMO−1 LUMO+1 83

TDB3LYP(VWN1) in MeCN (PCM) for ODPD
1 3.34 B2 1.077 HOMO LUMO 46
2 3.80 A1 0.176 HOMO−1 LUMO 44
3 3.93 A2 0.000 HOMO−4 LUMO 44
6 4.52 A2 0.000 HOMO−5 LUMO 44
10 5.12 A1 0.229
11 5.17 B2 0.307 HOMO−1 LUMO+1 33

exp in MeCN [54]
3.51 24.7 a

5.18 17.7 a

exp [52]
≈ 3.1 ≈ 0.1 a

3.63 n-hexane
3.50 32.0 a MeCN

osc. str. = oscillator strength; a max. extinction coefficient ×10−3 M−1 cm−1.
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LUMO+3 LUMO+4 LUMO+5
ε = −0.75 eV ε = −0.50 eV ε = 0.25 eV

LUMO LUMO+1 LUMO+2
ε = −2.94 eV ε = −1.74 eV ε = −1.65 eV

HOMO−2 HOMO−1 HOMO
ε = −5.92 eV ε = −5.83 eV ε = −5.66 eV

HOMO−5 HOMO−4 HOMO−3
ε = −6.91 eV ε = −6.91 eV ε = −6.83 eV

Figure 3.24: LDA KS orbitals for ODPD from GAMESS. Underneath the orbital
specification ε refers to the KS eigenvalue, the contour value for the plot was 0.05.
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LUMO+1 LUMO+2 LUMO+3
ε = −0.71 eV ε = −0.57 eV ε = −0.54 eV
A2 B1 A2

HOMO−1 HOMO LUMO
ε = −6.29 eV ε = −6.10 eV ε = −2.01 eV
B1 A2 B1

HOMO−4 HOMO−3 HOMO−2
ε = −7.40 eV ε = −7.40 eV ε = −7.05 eV
B1 A2 B2

HOMO−7 HOMO−6 HOMO−5
ε = −8.11 eV ε = −8.08 eV ε = −7.67 eV
A2 B1 B2

Figure 3.25: B3LYP/cc-pVTZ KS orbitals for ODPD from GAMESS. Underneath the
orbital specification ε refers to the KS eigenvalue, the contour value for the plot was
0.05.

111



0.0

0.2

0.4

0.6

0.8

1.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

a
b

s
o

rb
a

n
c
e

eV

exp
tdlda

tdb3lyp
tdb3lyp+solv

Figure 3.26: Experimental [51] and theoretical spectra of ODPD.
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Figure 3.27: TDB3LYP(VWN5) spectra of ODPD and twisted ODPDt along with
experimental spectrum (red, solid) [51].
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Table 3.14: Lowest important TDDFT excitations from GAMESS for SDPD along
with their major assignments to KS orbital transitions.

state energy (eV) sym osc. str. major contributions
origin target percent

TDLDA
1 2.60 B2 0.725 HOMO LUMO 87
2 2.79 A1 0.051 HOMO−1 LUMO 77
3 3.07 A2 0.000 HOMO−2 LUMO 94
4 3.81 B2 0.355 HOMO−1 LUMO+1 68
8 3.88 A2 0.000 HOMO−4 LUMO 98
12 4.04 B2 0.201 HOMO−3 LUMO 71

TDB3LYP(VWN5)
1 3.32 B2 0.946 HOMO LUMO 92
2 3.63 A1 0.118 HOMO−1 LUMO 88
3 3.67 A2 0.000 HOMO−2 LUMO 89
4 4.41 A2 0.000 HOMO−7 LUMO 92
7 4.61 A1 0.110 HOMO LUMO+1 82
8 4.64 B2 0.440 HOMO−1 LUMO+1 80
10 4.90 A1 0.101 HOMO−4 LUMO 63

TDB3LYP(VWN1) in MeCN (PCM)
1 3.04 B2 1.056 HOMO LUMO 46
2 3.36 A1 0.163 HOMO−1 LUMO 45
3 3.88 A2 0.000 HOMO−4 LUMO 44
6 4.47 A2 0.000 HOMO−7 LUMO 44
7 4.53 A1 0.112 HOMO LUMO+1 44
8 4.57 B2 0.483 HOMO−5 LUMO 25

HOMO−1 LUMO+1 22
10 4.75 A1 0.118

exp in MeCN [54]
3.31 35.8 a

4.94 20.6 a

osc. str. = oscillator strength; a max. extinction coefficient ×10−3 M−1 cm−1.
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LUMO LUMO+1
ε = −2.23 eV ε = −1.06 eV
B1 A2

HOMO−1 HOMO
ε = −6.04 eV ε = −5.93 eV
B1 A2

HOMO−3 HOMO−2
ε = −7.81 eV ε = −7.18 eV
A2 B2

HOMO−7 HOMO−4
ε = −0.71 eV ε = −7.48 eV
B2 B1

Figure 3.28: B3LYP/cc-pVTZ KS orbitals for SDPD. Underneath the orbital specifi-
cation ε refers to the KS eigenvalue, the contour value for the plot was 0.04.
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Figure 3.29: Experimental and TDDFT spectra of SDPD. The theoretical lines are
broadened by 0.3 eV, experimental spectrum was taken at 1.25×10−5 M in acetonitrile
[51].

1,5-Bis(4-(dimethylamino)phenyl)penta-1,4-diyn-3-one (NDPD)

The structure of NDPD, whose schematic sketch is depicted in Figure 3.30, was
optimized on the HF/cc-pVTZ hypersurface to a threshold of 10−5 H bohr−1. A
C2 symmetry was imposed in the search, what allowed the –N(CH3)2 groups to
twist against the phenyl ring plane. The final structure, which is shown in Figure
3.31, posesses only weakly pyramidalized amino groups (4◦, while e.g. ammonia
has about 40◦) which lie approximately in the ring planes. This position enables
conjugation of the N lone pair with the π systems of phenyl ring and triple bond.
A C2v structure with methyl groups sticking out of the molecular plane was 24.99
kJ mol−1 higher in HF/cc-pVTZ electronic energy. The typical orbitals of the
close-to-planar geometry with eigenfuntions extended over N, phenyl ring and
triple bond (see Figure 3.32) are not found in the C2v symmetry. Details of the
C2 geometry are presented in Table 3.15, 1H and 13C NMR chemical shifts from
GIAO B3LYP/IGLO-II are compared to experimental values in Table 3.16. The
C2v geometry was not studied further.

Excitation properties were obtained from TDLDA and TDB3LYP on a well
converged wave function (SCF criterion density change of 10−7) with GAMESS
and from TDB3LYP in combination with a PCM modelled MeCN solvent with
Gaussian03. The most important excitations are compiled in Table 3.17, in-
volved B3LYP orbitals are shown in Figure 3.32 and a simulated spectrum14

is presented in Figure 3.33. For the latter a line width of 0.3 eV was again
assumed. The TDPBE data referring to the line in the spectrum are omitted

14Covering the lowest 15 excitations. Highest included excitation energies are 4.2 eV
(TDLDA), 5.3 eV(TDB3LYP) and 5.1 eV (TDB3LYP/PCM).
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Figure 3.30: Schematic sketch of NDPD. The number and labels are used for geometric
specifications below.

Figure 3.31: Front and top views of the HF/cc-pVTZ optimized structure of NDPD.
The blue lines marks the rotation axes of the C2 symmetry.

Table 3.15: Geometric data of the HF/cc-pVTZ-optimized structure of NDPD.

internal coord value internal coord value

O=C 1.187 Å Co–Cm 1.374 Åa,b

C≡C 1.187 Å Cm–Cp 1.402 Åa,b

Ccarb–C≡ 1.451 Å Cp–N 1.374 Å
≡C–Car 1.430 Å N–CH3 1.445 Åa,b

O=C – phenyl ring 0.2◦ a; 0.5◦ b pyr c 4.0◦

Ci–Co 1.389a; 1.388b Å Cm–Cp–N–CH3 11.9◦ a,b

a data for the “upper side” of the phenyl rings (including Cm = C3, C3′ in Figure 3.30);
b data for the “lower side” of the phenyl ring (not including C3, C3′ ); c pyramidalization:
360◦ −

∑
∠(C–N–C).
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Table 3.16: 1H and 13C NMR chemical shifts for NDPD, measured values in d-
chloroform taken from [54].

exp calc exp calc
aryl Ho 7.53 7.38 / 7.39 C=O 160.7 156.31
aryl Hm 6.64 6.35 / 6.37 aryl Cp 151.8 154.16

–NMe2 H 3.04 2.35 / 2.37 aryl Cm 135.3 113.88 / 113.46
2.56 / 2.57 aryl Co 111.5 140.36 / 139.21
3.06 / 3.07 aryl Ci 105.3 112.58

phen–C≡ 95.1 90.56
≡C–carb 91.1 94.45
–NMe2 C 39.9 40.76 / 40.91

from Table 3.17 because they closely resemble TDLDA. The general picture de-
veloped in the previous cases is once more valid. TDLDA excitation are shifted
through the hybrid functional by 0.5–0.7 eV. While TDLDA was potentially un-
derestimating, TDB3LYP might overestimate the energies—where the cautious
phrasing takes into account that no directly comparable experimental data are
at hand15. What can be compared is the value from TDB3LYP with PCM sol-
vent model, and a good agreement with the experiment is obtained. Note that
there is a considerable bathochromic shift of the lowest π → π∗ transition (see
legend of Tabel 3.17), which is corresponding to the large impact PCM does on
the excitation energies.

15If at all then the energy in n-hexane of 3.14 eV should be compared to gas phase results.
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Table 3.17: Lowest important TDDFT excitations for NDPD along with their major
contributions of KS orbital transitions.

state energy (eV) sym osc. str. major contributions
origin target percent

TDLDA
1 2.64 B 0.735 HOMO LUMO 86
2 2.90 A 0.071 HOMO−1 LUMO 74
3 3.15 A 0.000 HOMO−2 LUMO 94
6 3.96 A 0.000 HOMO−3 LUMO 95
9 3.97 B 0.396 HOMO−1 LUMO+1 77
10 4.05 A 0.136 HOMO LUMO+2 61

TDB3LYP(VWN5)
1 3.28 B 1.004 HOMO LUMO 91
2 3.66 A 0.157 HOMO−1 LUMO 86
3 3.73 A 0.000 HOMO−2 LUMO 90
6 4.48 A 0.000 HOMO−7 LUMO 92
7 4.74 A 0.209 HOMO LUMO+1 86
8 4.77 B 0.412 HOMO−1 LUMO+1 84

TDB3LYP(VWN1) in PCM acetonitrile
1 2.86 B 1.123 HOMO LUMO 92
2 3.26 A 0.207 HOMO−1 LUMO 88
3 3.98 A 0.000 HOMO−4 LUMO 88
6 4.56 A 0.003 HOMO−7 LUMO 88
7 4.57 A 0.246 HOMO LUMO+1 88
10 4.63 B 0.449 HOMO−1 LUMO+1 68

exp in MeCN [54] b

2.85 60.8 a

4.56 26.8 a

osc. str. = oscillator strength; a max. extinction coefficient ×10−3 M−1 cm−1; b Pucher et
al. [52] found 2.84 eV and 53000 M−1 cm−1 in MeCN and 3.14 eV in n-hexane.
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LUMO+1 LUMO+2 LUMO+3
ε = −0.40 eV ε = −0.30 eV ε = −0.30 eV
A B A

HOMO−1 HOMO LUMO
ε = −5.55 eV ε = −5.39 eV ε = −1.71 eV
B A B

HOMO−4 HOMO−3 HOMO−2
ε = −7.12 eV ε = −7.12 eV ε = −6.77 eV
B A B

HOMO−7 HOMO−6 HOMO−5
ε = −7.37 eV ε = −7.35 eV ε = −7.31 eV
B B A

Figure 3.32: B3LYP/cc-pVTZ KS orbitals for NDPD from GAMESS. Underneath the
orbital specification ε refers to the KS eigenvalue and its symmetry, the contour value
for the plot was 0.05.
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Figure 3.33: Experimental and theoretical spectra of NDPD, the latter broadened by
0.3 eV. The experimental line was measured at a concentration of 2.5 × 10−5 M in
acetonitrile [51].

3.3 Conclusions

A group of aromatic ketones, which are in use or proposed as photoinitiators
in photopolymerizations, were studied by means of electronic structure theo-
ries. In particular neutral electronic excitations were computed on TDDFT and
GW -BSE levels of theory. In TDDFT several common functionals, refering to
the LDA (PZ81 functional) and GGA (PBE functional) approximations, and a
hybrid functional (B3LYP) were employed and their performance compared.

The ground state geometries were obtained as optimized minima with the
highest symmetry that yielded valid results. NMR shifts for these structures
were in good agreement with experimental data.

While the HF HOMO eigenvalue disagrees by 0.4 eV with the photoelectron
spectrum and the DFT HOMO KS eigenvalues are by far lower, the GW quasi-
particle energies agree excellently with not only the lowest but also higher PES
bands.

All compounds studied here exhibit excitations that stem from a transition
from the carbonyl O lone pairs nO to antibonding π∗ orbitals. These transitions
are known to cause photoinitiator activity due to succeeding H abstraction from
the monomer by the carbonyl O. To summarize the above tables (and add two
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TDPBE values), these excitations were obtained as follows

method BPH DPD ODPD SDPD NDPD
TDLDA 3.25 3.05 3.14 3.07 3.15
TDGGA 3.30 3.11 3.20 3.13 3.21
TDHybrid 3.76 3.64 3.71 3.67 3.73
GW -BSE 3.07 2.78 — — —
exp, gas 3.30 — — — —

From there I conclude that TDLDA and TDGGA are yielding this type of ex-
citation in good agreement with the experiment and GW -BSE and that GGA
functionals do not introduce large changes on LDA. The hybrid functional shifts
the excitations energies considerably and overestimates them. The cause of this
much poorer performance of the hybrid compared to the LDA functional re-
mains somewhat obscure. Apparently these excitation energies are particularly
sensitive to geometry changes (compare values for HF- and B3LYP-optimized
structures in the results section). GW -BSE seems not to improve on TDLDA
with respect to the sparse experimental data. From a general point of view, all
these excitations are weak (symmetry forbidden in C2v) and occur at an almost
constant wave length, in agreement with experimental findings. The compounds
should thus have a comparable photoinitiator activity, provided that no other
mechanisms are present.

The strongest absorption bands are in all cases π → π∗ transitions, and
the contributing KS orbital transitions hint at considerable charge transfers
between phenyl/alkyne moieties and the carbonyl group. To reiterate the above
and summarize

method BPH DPD ODPD SDPD NDPD
TDLDA 4.42 3.45 3.05 2.60 2.64
TDHybrid 4.94 3.96 3.65 3.32 3.28
TDHyb+PCM 4.79 3.79 3.34 3.04 2.86
GW -BSE 4.39 3.59 — — —
exp, solv 4.96 3.85 3.50 3.31 2.85

Hybrid functionals again shift the TDLDA (and TDGGA) excitation energies
by an almost constant quantity. In contrast to the nO → π∗ transitions above
the present underestimation of TDLDA (and TDGGA) is thereby corrected to
better agreement with experiment. This is a rather general observation [23] and
may also be explained by the large dipole moment changes found with CASSCF.
They suggest a considerable charge transfer character of these excitations which
is not well described by TDLDA. Admixture of non-local exchange cures this
shortcoming to some extent. The relatively crude solvent model PCM intro-
duces changes in agreement with experiments and mostly improves over the
vacuum results. GW -BSE improves somewhat on TDLDA, but still deviates
from experiments. The method should in general cover charge transfer type
excitations. But the changes introduced by B3LYP are in large parts removed
in the GW -BSE approximation (as in the former case). In general, the red shift
of excitations introduced in DPD derivatives by the auxochromic groups is in
good agreement with experiments and empirical rules.

It is hoped by the author that the various excitation properties of the com-
pounds studied could be successfully clarified by computational methods. The

121



theoretical observations may lead to deeper understanding of experiments and
more sophisticated applications.

Concerning the computational cost of the calculations TDDFT is clearly
much less expensive than GW -BSE, as the following table shows16

TDLDA (G) TDB3LYP (G) TDLDA (P) GWf -BSE
BPH C2 29.7 h (2) 53.3 h (2) 1.8 h (12) 121.2 h (12)
DPD C2v 19.2 h (2) 27.5 h (2) 10.0 h (6) 927.6 h (16)

It is seen that a higher symmetry reduces the computational cost drastically.
The longer CPU times for DPD with Parsec/RGWBS stem from the much
larger number of states that was used (800, instead of 400 for BPH). B3LYP
needs significantly more CPU time than LDA. The real space computations
for TDLDA are potentially less ressource intensive than with Gaussian bases,
depending on the number of states which are used for the linear response. GW -
BSE is in general an expensive method, again depending on the number of
states. This refers not only to CPU time, but also to memory use (2 Gb per
process in the DPD example, increasing with decreasing number of nodes).
The GWf parts without solving the BSE for the above examples are 54.8 h
(12) for BPH and 297.7 h (16) for DPD. Note that the real space codes are
partitioning well into several processes. The limited number of nodes in the
above examples stems from hardware limits rather than methodical feasibility.
One can draw the conclusion from the above that real space techniques are in
general a handy realization of quantum chemical methods. GW and GW -BSE
are both methods that involve considerable computational cost and are difficult
to apply as the method is rather complicated and elaborated codes with a long
history of development and community feedback lack.

Suggestions for Further Work

Although expensive, GW and GW -BSE are both promising methods that are
expected to gain broader popularity amongst computational chemists. In this
spirit more work should be done on examples for which more reference data are
available, in particular carefully obtained gas phase spectra. GW proofed to
be an accurate method to calculate photoelectron spectra, but also here more
experience should be acquired.

An interesting idea would be to compare the obtained results with excitation
spectra computed by Fourier transformation of real time TDDFT calculations.
This could also be done for two-photon processes.

16Wall clock time in hours on AMD Opteron 180s, the number of processes is specified in
parentheses. (G)AMESS was compiled with gfortran linked to the ACML library; (P)arsec:
gfortran and ACML library; RGWBS: gfortran and Lapack/Blas routines. Processor commu-
nication took place via a Gigabit-Switch on the basis of MPICH2.
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