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Abstract 

The field of internet mapping has seen substantial growth since 2005, with the entry of new global 

providers such as Google, Microsoft, Apple and Nokia besides numerous regional ones such as 

Herold and BEV in Austria or Baidu in China. The systematic collection and release of hundreds of 

Petabytes of geospatial image data at ground sampling distances (GSD) between 0.5 cm and 15 cm 

preceded the creation of multiple virtual 3D globes including millions of automatically created 

photorealistic building models. Further, the transition from a world of 1 billion personal 

computers in people’s homes to a world of 1.2 billion internet-enabled smart mobile devices, 

localized via global positioning technology has enabled a plethora of new geospatial applications. 

At the same time, driven by similar growth in a 100 billion USD cloud computing business, 

ubiquitous consumer electronics and social networks, various online photo collections such as 

Flickr, Photobucket, Panoramio, Facebook and Instagram have emerged. These have enabled the 

centralized collection an inventory of hundreds of Petabytes of images via crowdsourcing, by a 

community extending beyond 1 billion people.  

Both trends lead to an interest to investigate the relation between the systematic nature of 

traditional mapping techniques and the people-centric capture patterns of crowdsourced data. 

After establishing common ground about the state of internet mapping, we engage in this 

particular research area by defining the criteria for geospatial imagery and describing various 

data types and sources, such as 60-500 cm GSD satellite imagery, 0.5-30 cm oblique and vertical 

aerial imagery from planes and micro aerial vehicles (MAV), as well as 0.5-2 cm streetside and 

indoor imagery. We aim to obtain an understanding of the fundamental properties of the two data 

modalities as well as hybrid forms. We then evaluate ways of leveraging the advantages of each 

modality and of combining them with the aim of addressing some of the key research problems in 

internet mapping. 

First, we attend to the problem of systematically collecting tens of millions of images on public 

streets as a base layer for “human scale” internet mapping, as this kind of data most closely 

resembles the appearance and scales of 0.5-2 cm GSD community created imagery. We develop 

requirements and propose a solution for this problem, namely a mobile mapping system (MMS) 

we call UltraCam-M. Interesting problems arise in this setting. These include storage and 

computational loads on the order of Petabytes per month and thousands of CPU cores. 

The actual use of the data poses another issue. For example, systematically collected images must 

anonymize private information such as people faces and car license plates. Another aspect is that 

all additions must be fully automatic, both during data capture and processing, as the sheer data 

volumes of potentially millions of images per day impede significant manual intervention. To 

address these issues, we propose a novel workflow for automatically detecting and blurring more 

than 95% of all clearly visible faces and license plates while achieving a low per-pixel false positive 

rate of 2.5%. Both the capture system as well as the privacy protection method matured into 

practical applications within Bing Maps. 



 

 

Returning to the goal of connecting systematically collected imagery with crowdsourced data, we 

investigate state of the art image retrieval and location recognition techniques. We develop a 

novel geospatial image retrieval workflow for automatically matching roughly geo-positioned 

photos to a city scale set of millions of streetside panorama images as well as other geocoded 

image data which can be added dynamically. The workflow includes an optimized set of local 

image features, including an interest point detector based on the determinant of hessian (DOH) 

function, as well as a patch based polar feature descriptor. We further use a rotationally scoped 

“bag-of-features” based image retrieval method allowing dynamic insertion of new documents, in 

addition to a novel 1-point similarity and homography RANSCAC method for geometric 

verification. In combination this leads to high recall rates above 70% and low query times below 

3 seconds. After confirming that the DOH image features compare favorably with common 

alternatives for location based image matching, we evaluate the proposed workflow for various 

applications relevant for internet mapping, and investigate its applicability for real-time use such 

as for Augmented Reality. 

In a first application we attempt matching dissimilar user-photos from community photo 

collections (CPC) such as from Flickr to Bing Maps streetside imagery, with the goal of obtaining 

pixel-accurate geo-positioning and to embed them in the actual mapping service. Photos of the 

same place, taken by millions of people over various years can hence be connected together for 

easy finding and online exploration. This leads to increased freshness and image variety, and 

highlights popular regions on the map. We show that the proposed system can achieve 73% recall 

and 0.5% false positive rate despite differences in illumination, pose, scene contents and 

occlusions with server side query times typically below 3 seconds. In combination these results 

compare favorably with existing approaches. A similar methodology is used in a second 

application to improve the geocoding accuracy of business listings by matching storefront images 

to streetside panorama images by an average of 43 m, with comparable recall and false positive 

rates. This improvement to within a determined error tolerance of 10 m is required for the 

visibility of the businesses from the respective streetside panorama images in online maps. 

As mapping applications on mobile devices still adhere to internet bandwidth and compute 

restrictions, this report further examines whether 10-fold reductions in the transmitted data 

volumes, required for to sub-second upload times, affect the quality of results, in order to find an 

optimal quality/performance tradeoff. 

Finally, as the above image retrieval approach mostly applies to urban areas with dense streetside 

coverage, we also want to investigate whether crowdsourced imagery can instead be registered 

to aerial or satellite maps with scale differences spanning several orders of magnitude. Based on 

a reference method, we explore the feasibility of automatically registering shape from motion 

(SFM) point clouds such as obtained from Microsoft’s Photosynth. By employing some 

improvements such as rotational scoping and fast Fourier convolution, we achieve a 20-fold 

speedup for registering individual point clouds, while we can double the success rate of the 

reference method.  



 

 

Kurzfassung 

Das Gebiet der Internetkartographie ist durch den Einstieg neuer globaler Anbieter wie Google, 

Microsoft, Apple und Nokia neben zahlreichen regionalen Anbietern wie Herold und BEV in 

Österreich und Baidu in China seit 2005 beträchtlich gewachsen. Die systematische Erfassung und 

Veröffentlichung hunderter Petabyte von Geo-Bilddaten mit Bodenauflösungen zwischen 0.5 cm 

und 15 cm war nötig zum Entstehen mehrerer virtueller 3D Weltmodelle, inklusive Millionen 

automatisch generierter photorealistischer Gebäudemodelle. Der Übergang von einer Welt von 

einer Milliarde PCs zu einer Welt von 1.2 Milliarden Smartphones mit mobilem Internet und 

globaler Positionierung ermöglichte die Entstehung einer Vielzahl neuer Geoanwendungen. 

Gleichzeitig entstanden, getrieben durch Wachstum im Cloud-Computing sowie der Allgegenwart 

von Unterhaltungselektronik und sozialen Netzwerken, mehrere internetbasierte Bild-

sammlungen wie z.B. Flickr, Photobucket, Panoramio, Facebook und Instagram. Diese 

ermöglichen die zentralisierte Erfassung eines Bestands hunderter Petabyte von Bildern via 

Crowdsourcing durch mittlerweile mehr als eine Milliarde Menschen, bei einem Wachstum von 

täglich mehr als 300 Millionen neuen Bildern. 

Beide Trends führen zu einem Interesse an der Erforschung des Zusammenhangs zwischen der 

systematischen Natur traditioneller Kartenerfassungsmethoden, und den popularitäts-

getriebenen Aufzeichnungsmustern gemeinschaftlicher Datenaufzeichnung. Nach einem Über-

blick über Geschichte und derzeitigen Stand der Internetkartografie definieren wir Kriterien für 

Geo-Bilddaten, und beschreiben diverse Datentypen wie z.B. 60-500 cm Satellitenbilder, 0.5-

30 cm vertikal und schräg von Flugzeugen oder Mikro-Flug-Vehikel (MAV) aufgenommene 

Luftbilder, sowie 0.5-2 cm Straßen- und Innenaufnahmen. Weiters analysieren die fundamentalen 

Eigenschaften der beiden Modalitäten sowie von Mischformen. Danach erkunden wir Wege, um 

die Vorteile verschiedener Modalitäten durch deren Verknüpfung zur Lösung einer Reihe von 

Forschungsfragen in der Internetkartografie zu nutzen. 

Zuerst beschäftigen wir uns mit dem Problem der systematischen Erfassung von mehr als 10 

Millionen Straßenaufnahmen als Grundbaustein der Internetkartographie im „menschlichen 

Maßstab“, da diese Daten am ehesten dem Erscheinungsbild sowie den 0.5-2 cm Auflösungen des 

Crowdsourcing entsprechen. Wir ergründen Anforderungen und präsentieren einen 

Lösungsansatz für dieses Problem, in der Form eines mobilen Datenerfassungssystems namens 

UltraCam-M. Daraus ergeben sich interessante Problemstellungen, wie z.B. Speicher- und 

Prozessierungsanforderungen von Petabyte pro Monat und tausenden Prozessorkernen. 

Aus der eigentlichen Verwendung der Daten ergeben sich weitere Probleme. Zum Beispiel müssen 

systematisch aufgezeichnete Daten private Details wie menschliche Gesichter und Autokenn-

zeichen automatisch anonymisieren. Automatisierung bei Aufzeichnung und Prozessierung ist 

nötig, da die schieren Datenmengen von täglich bis zu Millionen von Bildern nennenswerte 

manuelle Eingriffe unmöglich machen. Um dieses Problem zu behandeln, präsentieren wir einen 

neuartigen Workflow, zur automatischen Erkennung und Unkenntlichmachung von mehr als 95% 



 

 

der deutlich sichtbaren Gesichter und Kennzeichentafeln, unter Erreichung einer 2.5 prozentigen 

Fehlerquote (False Positve Rate) pro Pixel. Sowohl das Aufzeichnungsssystem als auch der 

Workflow fanden praktische Anwendung in Bing Maps. 

Wieder zurück zum Thema der Verknüpfung systematisch und gemeinschaftlich aufgezeichneter 

Daten erkunden wir den derzeitigen Wissensstand im Bereich der bildbasierten Suche sowie der 

visuellen Ortserkennung. Wir entwickeln einen neuartigen Workflow zum automatischen Bild-

matching grob (~100 m) geopositionierter Fotos mit einem stadtumfassenden Bestand von 

Millionen von Straßenpanoramas und sonstigen Fotos, sowie der dynamischen Hinzufügung 

neuer Bilder. Wir kombinieren lokale Bildfeatures, bestehend aus einem Detektor basierend auf 

der Determinante der hessischen Matrix (DOH) sowie einem regionsbasierten polaren Deskriptor, 

mit rotationsbegrenztem und dynamisch erweiterbarem Bildranking mittels visueller Wörter und 

einem neuartigen Ähnlichkeits- und Homographie- RANSAC Algorithmus zur geometrischen 

Verifizierung. Dies führt zu hohen Matchraten über 70% und geringen Suchzeiten unter 3 

Sekunden. Nach einem Vergleich der DOH Features mit üblichen Alternativen, welcher überlegene 

Resultate ergibt, evaluieren wir den Workflow anhand mehrerer Anwendungen in der Internet-

kartographie, sowie für Echtzeit Augmented Reality Anwendungen. 

In einer ersten Anwendung versuchen wir das Matching unähnlicher Benutzerfotos aus Online-

Bildsammlungen wie z.B. Flickr, mit Straßenaufnahmen von Bing Maps, mit dem Ziel pixelgenauer 

Geolokalisierung und der Einbindung in den Kartendienst selbst. Fotos derselben Orte von 

Millionen von Leuten über Jahre hinweg können somit miteinander verknüpft und gemeinsam 

online durchsucht und erforscht werden. Dies führt zu erhöhter Aktualität und Bildvielfalt, und 

betont populäre Kartenregionen. Das beschriebene System erreicht 73% Trefferquote und 0.5% 

Fehlerquote, trotz Unterschieden in Beleuchtung, Pose, Szeneninhalt und Verdeckungen, bei einer 

serverseitigen Suchzeit unter 3 Sekunden. In Kombination übertreffen diese Resultate 

existierende Methoden. Eine zweite Anwendung, zur Genauigkeitsverbesserung der 

Geopositionierung von Firmeneinträgen um durchschnittlich 43 m durch das Matching von 

Fassadenbildern mit Straßenpanoramas, ergibt vergleichbare Treffer- und Fehlerquoten. Diese 

Verbesserung auf einen Positionsfehler unter 10 m ist für die Sichtbarkeit von Geschäften 

innerhalb der Straßenansicht von Kartendiensten erforderlich. 

Da Kartenapplikationen auf Mobilgeräten weiterhin Internetbandbreiten- und Rechenkapazitäts-

beschränkungen unterliegen, suchen wir einen optimalen Kompromiss zwischen den Hochlade-

zeiten und der übertragenen Datenmengen für das obige System, mit dem Ergebnis einer 10-

fachen Datenreduktion für Sub-Sekunden Suchzeiten bei nahezu gleichbleibender Qualität. 

Abschließend möchten wir erkunden, ob gemeinschaftlich erfasste Bilder alternativ auch zu 

Luftbild- oder Sattelitenbildkarten registriert werden können, welche flächendeckend zur 

Verfügung stehen, jedoch Skalierungsunterschiede von mehreren Größenordnungen ergeben. 

Basierend auf einer Referenzmethode erkunden wir die automatisierte Registrierung von „Shape 

from Motion“ (SFM) Punktwolken, wie z.B. von Microsoft Photosynth. Durch Verbesserungen, wie 

die Beschränkung auf plausible Rotationen und Filterung mittels Fast Fourier Transformation 

(FFT), erreichen wir eine 20-fache Beschleunigung bei der Registrierung einzelner Punktwolken 

bei Verdopplung der Erfolgsquote im Referenzvergleich.  
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1  Introduction 

 

1 Introduction 

Internet mapping and location inspire a vast research effort. Various types of images get 

converted into a 3D world model at an Exabyte data volume [1]. This report focusses on two 

different data modalities, systematically collected geospatial imagery, and crowdsourced imagery 

from community photo collections (CPC) [2].  

Systematic collections by professional mapping entities follow clearly defined and evenly spaced 

capture patterns throughout cities, states or continents [3]. Crowdsourcing via CPC on the other 

hand, involves communities involving Millions of amateur photographers. Images are often 

clustered around a sparse set of hotspot locations or landmarks, dictated by popularity amongst 

the crowd [4]. By combining the imagery from both modalities in a map, we seek to obtain 

systematic and dense coverage of large areas for completeness, with highlights around popular 

locations for relevance. To evaluate the potential of this approach, we need to understand the data 

volumes associated with the different sources. A subset of major sources is listed in Table 1-1. 

An example for large scale data collection for internet mapping is the “Global Ortho” project by 

Microsoft’s Bing Maps, with the goal of obtaining continuous aerial orthophotography of 10 

million square kilometers in North America and Europe at 30 cm ground sampling distance (GSD) 

[5]. This 0.3 Petabyte ortho-image has been generated automatically from an estimated 3 Petabyte 

of aerial photographs (assuming 10 times redundancy to enable automated processing [1]). 

Besides vertical aerial photography, oblique imagery are used to provide more visually appealing 

depictions, particularly of urban buildings. Microsoft has captured a total of 0.5 Petabyte of 

oblique aerial imagery at 20 cm GSD over an area of 1.45 million km2. 

Provider Product Modality GSD Coverage Data Volume 

DigitalGlobe Global Satellite Basemap Systematic 60 cm 500 million km2 3.7 Petabytes 

Microsoft Global Aerial Orthophoto Systematic 30 cm 10 million km2 0.3 Petabyte 

Microsoft Bird’s Eye Oblique Systematic 20 cm 1.45 million km2 0.5 Petabyte 

Google Street View Panoramas Systematic 0.5-20 cm 8 million km 20 Petabytes 

Flickr Photo Sharing Crowdsourced 0.5-20 cm global, sparse 4 Petabytes 

Facebook Photo Sharing Crowdsourced 0.5-20 cm global, sparse 150 Petabytes 

Table 1-1 Overview of Sample Major Data Sources and Volumes 

Another example is DigitalGlobe’s use of Earth Observation Satellites such as GeoEye-1 [6] for the 

acquisition of all 500 million square kilometers of the Earth’s surface at 60 cm GSD resulting in a 

3.7 Petabyte global basemap [7]. An even larger dataset of 20 Petabyte including approximately 
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400 million street-level imagery has been collected by Google Maps, covering 8 million street 

kilometers worldwide at typically 0.5-20 cm GSD, depending on the distance from the camera [8]. 

Though systematic collection for internet mapping has resulted in unprecedented geospatial data 

assets, community data collections represent a potentially superior alternative, particularly for 

indoor locations such as museums or shopping malls [1]. Flickr [9], for example currently holds a 

collection of 6 billion community photos, comprising 4 Petabytes of data [10]. An estimate we did 

based on a sampling showed that 23% or 0.9 Petabyte are “geospatially relevant”, meaning that 

they contain image contents representative for the capture location. Though the data volume of 

Flickr is smaller than that of Google Street View, it still comprises a relevant asset which has been 

used frequently for research related to community data exploitation [11, 12, 13, 14, 15, 16, 17]. A 

significantly larger asset of 220 billion photos comprising 150 Petabyte of data is hosted by social 

networking provider Facebook [18]. Even if only a fraction of this data (e.g. 20%) is geospatially 

relevant, it exceeds the data volumes occupied by Google street view imagery. From this analysis 

we conclude that community sources are indeed relevant in the context of internet mapping, and 

that their common use with systematically captured sources is worth exploring. 

   

    

Figure 1.1 Multiple Images of a Famous Landmark (Eiffel Tower, Paris) from Top Left to Bottom 

Right: DigitalGlobe Global Basemap @60 cm GSD; Microsoft Global Orthophoto @20 cm GSD; 

Microsoft Bird’s Eye Oblique @30 cm GSD; Google Street View @20 cm GSD; Flickr @20 cm GSD 

[19]; Facebook @5 cm GSD; Flickr @0.5 cm GSD [20]; 

The different qualities and resolutions of these systematically collected and crowdsourced image 

types are visualized using the example of a famous landmark in Figure 1.1, ranging from 60 cm 

GSD satellite imagery (top right) to 0.5 cm user photography from Flickr (bottom left). Note that 

user photography also contain interesting details such as events or images taken at night. 
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A particular problem we care about is the augmentation of systematically collected imagery, such 

as street-level panoramas with imagery from other sources, such as from CPC. This idea is similar 

to the examples created manually by the Museum of London [21], illustrated in Figure 1.2. Here, 

a pair of historic photographs from 1962 and 1953 in the foreground has been superimposed onto 

present-day imagery of the same locations in London, UK, as the background. 

  

Figure 1.2 Historic Photographs Superimposed onto Present-Day Imagery of the Same Locations  
“Emmeline Pankhurst being arrested while trying to present a petition to the King: 1914” © Museum of London (Left) [22];  

“A soldier gets a shoe shine outside Piccadilly underground station: 1953” © Henry Grant Collection/Museum of London (Right) [23]; 

One may envision replacing the historic images by present-day CPC photos in the foreground, 

superimposed onto street-level imagery in the background. In both cases the background 

provides context to the narrower field-of-view foreground images, while the foreground 

highlights some interesting (e.g. historic) details of the scene rather than a systematically obtained 

street-level view. Generating such image compositions automatically from arbitrary foreground 

and background images by means of image matching [24], is one of the problems examined in this 

report. This is a challenging problem due to the large data volumes of up to billions of images 

illustrated above, as well as the large variety between images caused by differences in lighting, 

pose, quality, scale and occlusions [25]. Nevertheless, we hope to achieve high success rates above 

70% and low false positive rates below 1% to ensure a satisfactory user experience. 

Another problem we care about is the automatic detection and obfuscation of private image 

contents such as people faces and car license plates at close to 100% rates, which is obligatory for 

systematically captured data in many geographies worldwide [26, 27]. For example the faces 

visible in the right background image in Figure 1.2 could not be shown in a street-level panorama 

image on an internet mapping site without prior blurring [28]. This problem is similarly 

challenging due to the large numbers of hundreds of millions of street-level images, and the 

variety in the appearance of people and license plates in images. 

1.1 Research Questions 

The advancements in internet mapping in general and the increasing role of imagery in this 

domain have resulted in a multitude of new opportunities but also new challenges with respect to 
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the use and management of such data. Hence we look at key challenges in internet mapping and 

the use of images. 

In order to approach the key challenges, we need to have clarity of “What are maps?” and “What is 

internet mapping?” This requires one to look at the history of mapping in the context of the World 

Wide Web, and the basic data types, data sources and applications. Based on existing work on the 

challenges related to internet mapping [29] as well as our own observations, we quickly can 

identify multiple unresolved research questions. A side-effect is the “classification of geospatial 

image data types”, based both on the capture mechanisms as well as on their utility for online 

mapping. However we first need to understand what we consider an “image” and what makes 

images “geospatial”. Is a 3D laser-scan of a statue considered an image, and is it geospatial? How 

about a photograph of a chair or a painting? Can images of products in a shop be geospatial? 

We are also very interested in “systematically captured human scale imagery”. This is a source for 

many related research questions such as how data capture can be done efficiently, how the data 

volumes can be managed, and what solutions exist for specific problems such as image privacy 

protection and geolocation. But we are also driven to use “community created images”. They differ 

from systematic data in coverage, accuracy, relevance, metadata and quality. As such it is of 

interest if and how they can be “used to supplement systematically collected data”, and whether 

interesting geospatial information can be automatically retrieved from such sources. 

Different types of geospatial imagery exhibit a variety characteristics and associated metadata. 

We therefore wish to “connect these multiple sources at no cost”, to propagate information across 

these sources with the aim of improving the mapping experience for the users. In this context it is 

particularly compelling to use “image matching techniques” to connect multiple images despite 

“substantial image dissimilarities caused by changes in scale, illumination, scene content, pose, etc.” 

We looked at existing image matching techniques for reliable matching of dissimilar images, and 

we find new and improved matching methods. In the process we are able to point to new types of 

applications for internet maps and LBS. 

Based on this general area of research, we aim to answer the following concrete questions: 

I. How did mapping and internet mapping evolve and what is their current state? 

a. What are maps in general, and what is internet mapping in particular? 

b. What common data types are being used? 

c. What are the available data sources? 

d. What are the main research areas to advance internet mapping? 

II. What characterizes systematically collected and community created geospatial images 

and what is their relevance for internet mapping? 

a. What are the criteria for geospatial imagery? 

b. How can geospatial images be classified based on the collection methodology? 

c. What distinguishes systematically collected from community created images? 

d. What different qualities of geospatial imagery exist? 

e. What are the data volumes associated with different data types and sources? 

f. How do geospatial imagery and their use relate to non-geographic images? 
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III. As human scale imagery are most similar to amateur photos, how have they emerged in 

internet mapping services and what challenges did providers have to face? 

a. What are the major requirements for human scale data capture? 

b. How does a particular system design fulfill these requirements? 

c. What issues arise in terms of people’s privacy with human scale maps? 

d. Can these issues be resolved using an automated workflow based on the available 

data? 

IV. Assuming that image registration will support information propagation between a 

variety of sources, how well can automatic registration methods deal with significantly 

dissimilar geospatial images? 

a. What challenges exist with regards to matching dissimilar image from different 

sources? 

b. How can community created images be registered reliably to a trellis of 

systematically captured images under similar scales? 

c. What modifications to existing general image search and registration methods are 

required for geospatial imagery? 

d. How can we measure the performance of such methods in the geospatial realm? 

e. Is image registration even feasible under larger scale differences such as between 

human scale and overhead imagery? 

V. What practical problems in internet mapping can be addressed by integrating 

community created and systematically collected imagery and what are the limitations of 

such attempts? 

a. How feasible is it to augment systematic geo-imagery with other sources? 

b. How can we increase the frequency of map updates beyond the rate at which 

systematic data are captured? 

c. Can we improve the quality of the map itself by conflating different image sources? 

d. Is it feasible to contribute real-time image data to internet maps? 

e. What tradeoffs need to be made to achieve real-time responses? 

VI. What new knowledge about the world can we learn from community created geospatial 

imagery and their metadata, and then feed into internet maps? 

a. Can we visualize information patterns in crowdsourced image data? 

b. How can we automatically retrieve such information? 

c. Is there value in augmenting internet maps with this kind of data? 

1.2 Approach to Respond to Research Questions 

The history of maps parallels the history of man. Of course we want to be clear about the most 

recent innovations as reflected in internet mapping (see Section 2.2) but we want to see this as an 

evolution of several 1000 years of previous achievements in mapping (2.1). Classical geospatial 

data types are vectors and rasters (images) organized in schemes described in Section 2.4. For 

internet mapping these sources of mapping data become increasingly varied (2.5). Finally we 
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report on some of the open research problems in this field, as well as the key contributions of the 

thesis addressing these problems (2.6).  

Image data used in geospatial applications have become very diverse. In Chapter 3 we review key 

characteristics of geospatial image data (3.1) and develop a classification of the data sources based 

on the acquisition methodology and associated characteristics. We distinguish between 

systematically collected aerial and space images (3.2 and 3.3), systematically collected human 

scale images (3.4), crowdsourced images (3.5) and semi-systematically collected images (3.6) and 

further indicate parallels to non-geographic images (3.7).  

A specific type and novel system for collecting terrestrial image data captured at street level is 

described and evaluated in Chapter 4. This chapter presents the background for the development 

of a mobile mapping system for streetside data capture (4.1, 4.2) as well as an automatic workflow 

for protecting private information in the recorded data. The key requirements for streetside image 

capture at a large scale (4.3), result in a proposed system design (4.4) we call UltraCam-M. Privacy 

protection is an important requirement for such data. We propose an innovative algorithm, which 

gets evaluated on a set of approximately 2000 manually labeled images (4.5).  

The diversity of image sources for internet mapping led us to research the problem of 

automatically matching dissimilar geospatial images in Chapter 5. We first introduce the area of 

location search (5.1), followed by an overview of related work (5.2). We then describe the location 

search problem we aim to solve (5.3), which involves several improvements (5.3.2) compared to 

our prior work (5.3.1) to enable various applications related to internet mapping, real-time 

mobile search and augmented reality (AR). An overview of a proposed extensible real-time image 

retrieval workflow for geospatial images is provided (5.4), followed by detained description of the 

feature extraction method (5.5), the image ranking approach (5.6), and the pairwise post-

verification (5.7). The image retrieval method is based on prior work by Nistér and Stevénius [30], 

extended by dynamic addition/removal of images as well as orientation constraints. Additionally 

we use a novel orientation-constrained post-verification method in combination with local image 

features based on the hessian interest point detector and a polar patch descriptor in order to 

achieve optimal retrieval performance in a tolerable time. 

Chapter 6 evaluates the image retrieval system proposed in Chapter 5 by means of experiments. 

We first describe a method and dataset for evaluating and optimizing local features for image 

retrieval and post-verification, and present evaluation results of the proposed system (6.1). Hence 

we describe two different applications of image retrieval in the field of internet mapping. One 

application uses the proposed system in order to precisely geo-position crowdsourced human 

scale imagery and to show it in the context of systematically captured data (6.1.6). The second 

application uses the same system with the aim to considerably improve the point of interest (POI) 

geocoding of businesses for navigation purposes (6.2.3). In both cases we use large sample 

datasets of tens of thousands of query images in order to numerically evaluate the system 

performance for the specific application. 

For client applications on mobile devices, using a cloud based image retrieval backend, 

impoverished mobile internet speeds impose restrictions on the data volumes to be transferred. 
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Therefore we evaluate the impact of reduced image fidelity on the quality of the image retrieval 

results in order to find an acceptable tradeoff.  

Although the Nistér-Stevénius type system is tolerant to a large degree of image variation, it is still 

limited to images which are captured at roughly the same (human-) scale. Therefore we further 

propose a system for automatic registration of a set of human scale images to aerial images with 

substantially different scales (Chapter 7). This method which is based on prior work By Kaminski 

et al. [14] first applies structure from motion (SFM) [15] on the set, and aligns the resulting point 

cloud to the aerial view. 

1.3 Contributions and Innovations 

The area of internet mapping poses several challenges related to the cost and logistics involved in 

the systematic acquisition, processing and presentation of imagery. This thesis proposes several 

ways of addressing these issues, both by supporting systematic image collection, as well as by 

augmenting it with imagery from other sources such as community photo collections. 

Mobile Mapping System for the Internet.   Systematic capture of terrestrial imagery throughout 

large areas, such as on public streets within a city, requires automation in the capture process, the 

processing and the publishing [31]. We propose a novel mobile mapping system [32] we call 

UltraCam-M which supports the automatic acquisition of panoramic imagery as well as the scene 

geometry by integrating a cluster of image sensors, depth sensors and navigational components. 

These data sources are controlled centrally and automatically during the capture process, 

providing a continuous stream of time-synchronized and geopositioned data for later processing. 

The propose system found practical application in Bing Maps for capturing streetside imagery in 

hundreds of cities worldwide, and led to several patent applications for the overall system design 

[33] as well as sub-components thereof [34, 35, 36, 37].  

Privacy Protection of Streetside Imagery.   Data captured in urban areas by a mobile mapping 

system exposes private contents such as people faces and license plates which need to be 

anonymized for publication on the web [27]. Therefore we propose a novel workflow for the 

automatic detection and obfuscation of people and license plates in imagery, using a combination 

of weak classifiers [38] identifying faces and license plates, skin and vegetation regions and planar 

surfaces, followed by adaptive image blurring taking into account the scale of the private objects 

estimated from depth data. This workflow also has been used as part of Bing Maps to privacy 

protect published streetside imagery, and led to several patent applications [39, 26]. 

Extensible Geospatial Image Index for Real-Time Location Recognition.   There exists a desire 

to connect different sources of geospatial imagery, such as crowdsourced data from CPC and 

systematically collected street-level images by means of image retrieval and matching [40]. Real-

time applications such as for augmented reality [41] additionally require the dynamic addition of 

new images to a search index, and a query of the index within seconds. We propose a novel 

workflow for this purpose, supporting real-time queries of an index containing millions of 

geospatial image documents. This workflow uses optimized image features using minima and 
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maxima of the determinant of hessian (DOH) function [42] for detection and a 3D polar histogram 

of gradients (HOG) [43] within patch regions for description. Further we employ a dynamic 

version of a bag of features (BOF) based image retrieval method based on [30], which optionally 

supports rotational scoping based on orientation priors. Finally a novel post-verification method 

using the local image features to solve the correspondence problem by means of a rotationally 

scoped KD-Tree [44], in combination with a 1-point similarity and homography RANSAC [45] 

algorithm with subsequent optimization and thresholding is used to achieve acceptable 

recall/precision performance. An early variant of this workflow [25] has been used for matching 

CPC images from Flickr to Bing Maps streetside imagery in an application called Bing Maps 

Streetside Photos community tech preview (CTP) [46]. Various patent applications have been filed 

for the work on matching and embedding imagery with streetside panoramas [47, 48, 49]. 

Performance Evaluation of Local Image Features.   Local feature detectors and descriptors are 

a key component of many image matching approaches, required to solve the correspondence 

problem between points in multiple images. A variety of such algorithms exist, and for a particular 

application an optimal choice is desired. The comparison by Mikolajczyk et al. [50] evaluates the 

relative performance of multiple interest point detectors for wide baseline stereo matching. 

However, it does not evaluate the different algorithms on scenes relevant for the problem of 

location recognition in complex 3D scenes at city-scale with changes in illumination, scale, pose, 

camera type and occlusions. Thus we propose a more relevant evaluation dataset and framework, 

to evaluate different local image features, or parameterizations thereof, for both the image 

retrieval and pairwise matching problems in location recognition. Similar to the recognition 

benchmark dataset by Stevénius and Nistér [51], our data is organized in quadruples of images of 

the same scenes, which have been specifically captured for location recognition. As quality 

metrics, we measure the average number of correct matches in the top 4 ranking results for image 

ranking, and the area under the ROC curve [52] (ROC integral) for pairwise matching. However, 

as we care about the applicability of a method on computationally impoverished platforms, we 

always relate the quality metrics with the corresponding feature extraction times. 

Rotation Constrained Registration of Point Clouds to Overhead Maps.   The above image 

matching method can deal with some amount of dissimilarity in lighting, scale, pose and 

occlusions. However, to deal with even larger scale differences spanning multiple orders of 

magnitude, we propose an improved workflow for registering point clouds obtained via structure 

from motion (SFM) [15] to overhead images based on prior algorithm by Kaminski et al. [14]. The 

proposed approach uses a modified edge cost taking into account the directions of edges in 

overhead images in addition to their locations, in combination with Fast Fourier convolution to 

achieve 15-fold speed up of the alignment with more than twice the success rate of the reference 

method.  
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2 Internet Mapping Services 

In March 1946, Argentinian writer Jorge Luis Borges described a vision of a map created by 

cartographers with such exactitude, that it would occupy the same space as the world it describes 

at a 1:1 scale [53]. Hence 1 km in the real world would correspond to 1 km in the map.  

About 6 decades later in March 2005, Bill Gates portrayed his own vision of a virtual-reality like 

map of the world, enabling the exploration of remote locations in 3D. One would be able to walk 

the streets, see what the traffic is like and enter shops to explore their merchandise. [54] This 

vision has led to the release of internet-based 2D street maps in 2005 [55] and a 3D virtual globe 

model of the entire planet in 2006 [56] by a newly formed “Virtual Earth” business unit within 

Microsoft, which later turned into Bing Maps [57]. 

Inspired by Gates’ vision, Leberl [1] estimated that such a digital model of the entire Earth’s 

surface as well as exteriors and interiors of man-made buildings at 15 cm, 2 cm and 0.5 cm 

ground sampling distance (GSD) respectively, demands the capture and photogrammetric 

exploitation of more than 1 Exabyte of image data. Currently, this data volume would fill 290,000 

hard drives of 4 TB each, occupy a space of 110 m3 (a 45 m2 · 2.5 m room) and weigh 200 tons 

(the equivalent of a Boeing 787 Dreamliner aircraft). Chances are, that hard drives will continue 

shrinking, but so may the respective GSD required for mapping. 

While a map of the Borgesian dimension remains fictive, these figures indicate how progress in 

cartography during the last decade has come as close to this vision as ever, driven by the advent 

and evolution of internet mapping. Besides Microsoft, other global providers such as MapQuest 

[58], Google Maps [59], Nokia [60] or Apple, and numerous regional providers like Herold [61] 

and BEV [62] in Austria or Baidu [63] in China follow similar visions to map the world at 

unprecedented details. 

These advances follow a history of several thousand years of innovations in mapping [64], since 

the creation of the first hand drawn maps on rock and clay-tablet 4,000 years ago [65]. The 

availability of printed maps since the 15th century [66] benefitted a broader community than prior 

manuscript versions, and new surveying techniques conducted by cartographers and explorers in 

the centuries thereafter led to increasingly accurate depictions of the entire World’s geography 

[67]. The first digital geographic information systems (GIS) invented in the 1960s and 1970s built 

upon these prior innovations [68], and laid the technological foundations for today’s internet 

mapping services. Mapping techniques such as digital Photogrammetry [69, 1] or Remote Sensing 

[70] from aerial or terrestrial platforms allow the detailed and efficient mapping at centimeter 

accuracy of extended areas such as entire cities, provinces or nations. 
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In this chapter, we provide an overview of internet mapping and its progress. We first want to 

answer the question “What is a map?” and obtain an understanding of the history of major 

innovations in mapping. This leads us to explore maps at a variety of scales, projections and types, 

such as 2D and 3D maps. We then explore the evolution of internet mapping in particular, and 

describe common data types and sources used in this field. Finally we provide an overview of 

some of the major research areas in internet mapping and relate them with the contributions of 

this report. 

2.1 Background and History of Mapping 

A famous proverb states that “a picture is worth a thousand words”. This suggests that it may 

reveal many complex details of an idea or a scene that are difficult to verbalize in written or 

spoken language. Humans are extremely capable of processing visual information, by far 

surpassing the current state of the art of machine vision in the majority of applications [71]. This 

fact has been exploited throughout the history of mankind by means of visualizing real-world 

objects or abstract concepts in man-made depictions.  

        

Figure 2.1 3D City Model of Chicago Textured with Aerial Imagery from Nokia Here [60] (Left); 

Artist’s Drawing of a 3D City Model after Hermann Bollmann [72] Using Abstract Representations 

of Buildings, Vegetation, Streets and Water Bodies [73] (Right);  

In more recent history people have been leveraging the extraordinary human visual processing 

bandwidth by employing various data visualization techniques, providing easy access to complex 

information sources. While one may argue that modern photorealistic pictures are more detailed 

and accurate than drawings or paintings, the latter often expose an important property. 

Abstraction is applied as a means of highlighting the essential pieces of information, while de-
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emphasizing or eliminating unnecessary clutter. Maps are a picture-like representations of parts 

of the world, employing varying amounts of abstraction [74]. As a variation of the above proverb, 

one may suggest that “a map is worth a thousand pictures”, as it employs an additional level of 

abstraction compared to pictures of the individual elements. 

This is demonstrated via the examples of two maps of downtown Chicago in Figure 2.1. A 

photorealistic 3D city model from Nokia Here [60] generated computationally by means of digital 

photogrammetry and computer vision [3], textured using aerial imagery and rendered using 

computer graphics (CG) [75] is put in contrast with an artist’s abstract drawing of the same scene 

[73]. In this drawing following principles introduced by Hermann Bollmann [72], complex 

building geometries and textures have been reduced to simplified structures, streets, water bodies 

and vegetation are represented by color shades, while text labels for street names have been 

added.  

Both photorealistic and abstract representations are being used in internet mapping for 

visualizing 2D and 3D maps. While photorealistic maps provide views that are more similar to 

actual environments, abstract geovisualizations enable the emphasis on essential detail for a given 

task, say for navigation. Automatically generating abstract versions of 3D city models is therefore 

an active research area [76]. 

  

Figure 2.2 Early Map of the Sumerian City of Nippur (dated 1300 BC) – From Hilprecht Collection 

2.1.1 What is a Map? 

The question “What is a map?” may yield significantly diverse answers depending on who is asked. 

Most dictionaries or textbooks on cartography define maps rather narrowly as "An accurate 

depiction of the Earth's surface or part of it at a reduced scale and mathematical projection 

showing geographical fact." [65] A slightly broader definition is provided in the Oxford English 

dictionary: "A representation of the Earth's surface or part of it, it’s physical and political features, 

etc., or of the heavens, delineated on a flat surface of paper or other material, each point in the 
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drawing corresponding to a geographical or celestial position according to a definite scale or 

projection." [77]  

However, both definitions exclude a broad set of depictions of the Earth or its parts. For example 

historical hand drawn maps and sketches on clay-tablets (see Figure 2.2) are not necessarily 

metrically correct, nor do they correspond to a specific mathematical projection. Another example 

related to internet mapping are computer generated 2D “party maps” based on [74], which aim to 

provide instructions to many people in an area, how to arrive to a particular location.  

 

 

Figure 2.3 2D Vector Map of Manhattan, NY in Bing Maps (Top); “Party Map” to Empire State 

Building, Manhattan; Generated Using Bing Maps’ “Destination Maps” Feature (Bottom); 

A respective feature called “Destination Maps” has been integrated in Bing Maps, which uses CG 

for rendering conceptualized maps under intended geometric distortions. Same as in case of the 

3D model above, this improves the readability for humans by highlighting the essential map 

elements required for navigation and deemphasizing irrelevant elements. Figure 2.3 compares a 

common vector map representation of Manhattan, already employing significant abstraction 

compared to a photorealistic map (top) with a party map pointing out instructions to the Empire 
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State Building (bottom). Different stylizations of the party map can be used to approximate the 

appearance of hand-drawn maps. 

The narrow “Oxford” definition also excludes maps showing thematic information such as 

population density, weather statistics, etc. in the geographic canvas of a map of the Earth’s surface. 

As stated by [64], “Maps contain and are more than the simple definition found in a dictionary. To 

obtain a fuller definition of what a map is we need to better understand for what purpose, why 

and for whom maps are and were produced.” 

Wikipedia uses a relatively broad definition for the term “map” in a cartographic sense as “… a 

visual representation of an area – a symbolic depiction highlighting relationships between 

elements of that space such as objects, regions, and themes.” [78] This definition more closely 

agrees with the above examples, and with our usage of the term in this report. 

2.1.2 Parallels to Hand-Drawn and Printed Maps 

Initial terrestrial maps of small areas of land have been dated as early as five-thousand to eight-

thousand years ago. Figure 2.2 above shows a clay tabled engraving of the city plan of Nippur, a 

city in early Mesopotamia which is dated to approximately 1500 BC. It is one of the earliest known 

maps featuring an orthogonal projection roughly to scale with the actual geographic site [79]. 

Orthogonal projections have been used ever since [5], and are a key element in internet mapping, 

say for the 2D vector maps shown above in Figure 2.3 or for ortho-imagery further discussed in 

Section 2.4 and Chapter 3. 

Stone and clay engravings were followed by hand-drawn maps on materials such as animal skin, 

sand, parchment, papyrus or paper. They featured increasingly large areas of the world, defined 

by the progress made by explorers and cartographers. However, the area of cartography was 

transformed by the broad availability of printing around the 15th century [66], which allowed for 

much wider distribution of maps of 1,000 or more prints [80]. This transformation is paralleled, 

if not exceeded by the advent of internet mapping [81], which raised the frequency of map 

generation from approximately 800,000 prints every few years up until 2008 [82], to more than 

1 billion internet maps every month [83].  

After cartographers had developed a better understanding of the Earth’s spherical nature, more 

complete and accurate maps such as the “Theatrum Orbis Terrarum” atlas by the Dutch 

cartographer Abraham Ortelius (1570 A.D.) were created. While still inaccurate compared to a 

current map from Bing Maps Figure 2.4 (bottom), the example (top) provides a much more 

comprehensive picture of the world than prior maps, and includes all seven continents [67].  

Gerard Mercator, who was a Dutch cartographer like Ortelius invented the “Mercator map 

projection” in 1569, which preserves equal scales in any direction as well as angles around a 

specific point on the map. Since the map scale in the Y-direction (Latitude) increases for points 

farther away from the equator, to keep the same local scale as the X-direction (Longitude), larger 

objects such as continents become distorted. Therefore maps usually are clipped at a certain 

longitude angle (e.g. 70-85 degree) to avoid extreme distortions at the poles [84]. 
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Figure 2.4 World Map from “Theatrum Orbis Terrarum” (Theater of the World), 1570 A.D. (Top); 

Satellite World Map in Bing Maps (Bottom); 
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Most printed and internet maps, for instance the example in Figure 2.4 or the 1965 world map in 

Figure 2.5, still use the Mercator projection [85, 86]. Elements of the layout used by Ortelius, such 

as its North-South orientation, or the use of meridians and parallels, served as a reference for 

atlases printed for several centuries thereafter, and are frequently used in internet maps today. 

 

Figure 2.5 Example World Map from 1965 [87] 

Along with political boundaries and time zones, the map in Figure 2.5 also contains examples of 

thematic maps describing themes such as the railway distributions or other statistical data 

overlaid on the geographic map canvas. In contrast, thematic internet maps visualize live and 

dynamic information, such as the temperature (see example from weather.com in Figure 2.6).  

 

Figure 2.6 Thematic Map of the Live Temperature Distribution in the US on July 7th 2013 [88] 
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Printing of maps is often based on color separation. A green color shows vegetation objects, blue 

everything related to water, brown to geomorphology and black to man-made structures such as 

roads [89]. A similar coloring scheme is still being used for internet maps, as the comparison 

between a typical printed map and a screenshot from Google Maps in Figure 2.7 illustrates. 

   

Figure 2.7 „Österreichische Karte“ ÖK 500 Printed at Scale 1:500,000 [62] (Left); Google Map 

Featuring Similar Coloring Scheme [59] (Right); 

Maps get printed at various scales, depending on the application. Large scale maps around 1:100 

for instance are used for building floor plans and small scales around 1:100,000,000 for entire 

world maps [90]. Figure 2.7 (left) shows an example map at scale 1:500,000. In contrast, digital 

internet maps are not bound to individual scales, as they support dynamic zooming. 

Although the above examples only provide a brief insight in the history of mapping and the 

different types of maps, it is worth noting that a much larger set of maps has been developed over 

time, focused on specific geographic aspects and tailored towards specific applications. Examples 

of specialized maps for transportation are nautical and aviation maps, hiking maps, tube maps and 

road atlases. Other map types include non-metric tourist maps, physical and topographic maps, 

treasure maps, building floor plans, stellar maps etc. In addition to planar maps, 3D globes, relief 

maps or miniature models provide a more plastic depiction of real-world landscapes [91]. 

2.1.3 Digital Maps 

Over the course of millennia, maps have been hand drawn or engraved individually or printed in 

numbers, on a variety of materials such as rock, clay, skin, sand, metal, parchment, papyrus, paper 

or plastic [67]. This practice has changed starkly with the development of computers with 

increasing processing capabilities, raster displays and digital representation of maps in various 

forms [92]. A transition from geodata as a realm of experts, into a commodity for the mass could 

be noticed since the 1970s [93]. Maps are no longer tied to paper and can be created, distributed, 

edited and shared much more easily and at unprecedented rates of tens of thousands of maps 

per minute [83]. Digitization in mapping has been an ongoing process since the 1970s, both in 

the processes involved in producing and distributing maps, as well as in map consumption [93].  
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Initially digital maps resembled analog maps, as they simply allowed viewing a static segment of 

the world at a single scale. Printed maps were frequently scanned and converted into a digital PDF 

format, which allowed digital distribution and viewing, but left out most of the potential 

advantages of digital maps such as interactivity, multimedia capabilities, and fast updates [92, 94]. 

“Early examples of more advanced digital maps include the Canada Geographic Information 

System (CGIS), one of the first operational GIS allowing analysis of geographic data, which was 

developed in the 1960s and 1970s by the Canadian Department of Forestry and Rural 

Development”. [68] “At about the same time, photogrammetrists started using analytical 

stereoplotters for measuring elevation profiles in stereo image pairs, gradually replacing analog 

equipment which had been used for the same purpose.” [95] This transition continued by 

replacing more and more analog steps in the map production workflows with their digital 

counterparts, such as digitization of analog imagery using specialized scanners [96], and digital 

processing of scanned imagery in order to obtain photogrammetric measurements. The 

commercial availability of the first digital aerial metric camera systems in 2003 eventually 

allowed entirely digital capture and processing workflows [97]. 

Two major data representations are used for storing and transmitting map data, raster data such 

orthophotos and digital elevation models and vector data, including linear features, polygonal 

features and point features [98]. Both data types can be stored in a myriad of different data 

structures and formats. More details about the different data types are provided in Section 2.3. 

In addition to storing data locally map creators had to find ways of distributing them to a broader 

set of users. Primarily two forms of distribution for mapping data can be distinguished: Offline 

and Online distribution. Offline “shrink wrapped” distribution of geographic data to consumers 

has been available for since the 1980s in the form of digital road atlases and navigation programs 

stored on digital media such as floppy disks, CDs and DVDs, or in-car navigation systems with pre-

installed maps for navigation [93]. Online consumer maps on the internet have been introduced 

in the early 1990s [94], and dramatically expanded and improved ever since. 

In the mid-1990s, despite the growing availability of home computers, network availability was 

limited. Offline distribution had the advantages that larger data volumes (e.g. 650 Megabyte CDs 

or 4.7 Gigabyte DVDs) could be transferred more efficiently packaged with interactive user 

interfaces. Due to the vast improvements and the wide availability of the internet and the World 

Wide Web, and the emergence of more interactive development tools such as Flash, AJAX and 

Silverlight this gap has now largely vanished [99]. 

Examples for offline data distribution are digital trip planning tools such as Microsoft “Streets and 

Trips”, or “ADI WorldMap” by American Digital Cartography which have been available in 

different versions since 1988 [100]. Microsoft Mappoint is a commercial mapping tool providing 

geographic data analysis and visualization capabilities to businesses since its release in 2000 

[101]. Offline mapping tools are usually commercial and require payment of a license fee, which 

further differentiates them from most online maps. In more recent versions, many tools use a 

hybrid approach by combining offline and online data sources and features.  
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2.2 Evolution of Internet Mapping 

The development and advancement of networking technology, specifically of the internet and the 

World Wide Web, had a similarly transformative effect on digital mapping as the development and 

growing distribution of computers. While this phenomenon became apparent since about 1995 

[102], relatively few publications exist on to the general advancements in internet mapping. The 

ICA Commission on Maps and the Internet represented by Peterson has provided regular 

overviews [29, 92, 94, 102, 103] since 1997 of the accelerating transition from a web of documents 

and static maps, to the current ecosystem of cloud based map services coupled with an armada of 

GPS enabled mobile devices serving as ubiquitous navigation companions. He points out three 

primary trends: Internet growth, trends in map types and trends in map use. 

2.2.1 Internet growth and internet map growth 

The exponential growth of the internet measured in the total number of global web servers 

(Figure 2.8), during the period observed by Peterson, is a remarkable phenomenon. Similarly, the 

percentage of the global population with access to internet, has grown significantly during this 

time. Peterson reported 533 million internet users in 2001, 935 million users in 2004, and 1,300 

million users in 2008. According to [104], this number has grown by 70% since then, reaching 2.2 

billion users worldwide in 2013, which corresponds to 32% of the world population. As can be 

seen in Figure 2.9, the per capita internet usage divides the globe, as certain geographic regions 

lack in internet infrastructure, financial resources or political freedom of information access [29]. 

 

Figure 2.8 History of Total Web Site Count since 1995 from NetCraft [105] 

Similar to the growth in internet usage in general, growth in internet map usage has been 

extraordinary over the last two decades, since the release of the first internet mapping services 

such as Xerox Parc Map Site (1993), MapQuest (1996), Cern Earth View (1997), Microsoft 

TerraServer (1997) or Tiger Mapping Service [92]. While little research has been published about 

the actual growth of internet mapping usage, many factors indicate a growth rate at least as high 

as for general internet usage. 
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Figure 2.9 Number Internet Users per Capita [104] 

A recent shift in internet server technology to “the Cloud” has considerably alleviated the burden 

for any business or non-profit-organization to operate web services such as for geospatial 

applications [106]. With the introduction of “cloud computing”, servers are no longer operated by 

individuals, but rather concentrated in server farms and rented out to businesses on a per-use 

basis. Maintenance is centrally managed by the cloud service providers, such as Amazon EC2, 

VmWare or Microsoft Windows Azure. This not only helps businesses reduce operating cost, but 

also creates an enormous flexibility [107]. Virtualization decouples running code from specific 

physical computers, and scalability allows users to migrate web services onto more or fewer 

machines almost instantly. The market for cloud computing in 2012 was USD 110 billion, which 

is predicted to grow at a rate of nearly 20% for the next years [108]. 

2.2.2 Commercial Internet Mapping on Personal Computers 

An indicator for a growing demand is the trend towards commercializing geospatial data and 

services. While initially map information was often controlled and provided by government 

institutions or universities, commercial services such as MapQuest [58] took the leadership 

position in this market [94]. This had a ground-breaking effect on the quality and types of maps. 

When the first digital maps became available on the internet in the early 1990s, they were still 

relatively rudimentary, and often represented scanned versions of printed maps served as 

individual documents via HTML pages or FTP shares. The potential income sources from 

sponsored business links soon attracted investors such as AOL, which developed the required 

service infrastructure and more user friendly graphical user interfaces. After its release in 1996, 

MapQuest soon became the clear market leader in internet mapping accounting for more than 

50% market share [92]. 

This leadership lasted almost 12 years, although other companies such as Yahoo and Microsoft 

increased the competition by releasing their own commercial internet mapping services in 2002 
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and 2005 respectively. While Yahoo was able to gain a noticeable market share of around 20%, 

Microsoft’s market share remained relatively constant below 10% during the period reported. 

 

Figure 2.10 Market Share of Major Internet Mapping Services (Source: www.hitwise.com) 

A major disruption occurred with the entry of Google Maps in the internet mapping business in 

2005, after its acquisition of Where 2 Technologies and Keyhole [109]. Using a significantly 

modernized and more interactive user interface, it provided pan and zoom functionality with 

mouse and keyboard as well as street maps and satellite imagery, Google was able to attract the 

attention of many users almost instantly. Within a 3 year time-period from Mid-2006 to Mid-2009 

(see Figure 2.10), the market share of Google Maps grew steadily. It became the market leader by 

the end of 2009, and has remained in this role since then, while the significance of MapQuest and 

Yahoo Maps continued to decline. To counteract the leadership of a single company in the mapping 

area, Microsoft Bing Maps announced a cooperation with Nokia in 2009 in their efforts around the 

collection and processing of 3D map data and in preparation for a broader cooperation in the 

mobile devices industry by means of Windows Phone [110, 111]. 

2.2.3 Common Map Features and Modes 

The evolution of a variety of internet mapping services increased the number of features. Initially 

the primary map type used were street maps, enabling turn-by-turn directions from a point A on 

the map to another point B, including addresses and points of interest (POI). Later on this 

functionality got extended by public transit directions, pedestrian navigation and even bike 

routes. Visualizations of current traffic conditions, as shown in Figure 2.11 further benefit from 

the real-time updating capabilities of online systems. 

In addition to vector-based street maps, satellite and aerial imagery at ground sample distances 

(GSD) between 15 cm and several meters were released on Google Maps, Bing Maps and MapQuest 

around 2005, enabling virtual explorations of remote locations of the world from home desktop 

PCs in photorealistic detail [55, 109, 112, 93]. Google Earth and Microsoft Virtual Earth were 
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released around 2006, providing photorealistic virtual 3D globes, as well as 3D city models [56], 

followed by Nokia Here 3D in 2012 [113]. More imagery types from 10 cm GSD oblique aerial 

images [114] down to 2 cm GSD “human scale” panoramas captured at street level or in shops [31, 

115, 116], were released later to enrich the visual realism of the mapping experience. More details 

about different image types used in internet mapping are given in Chapter 3. 

 

Figure 2.11 Live Traffic Conditions in the New York Area Reported by Bing Maps [57] 

Mapping providers also released application programmers interfaces (API) for third party 

developers, as a basis for developing a range of geospatial applications. Examples of third party 

applications are real-estate sites, weather maps showing animated cloud coverage, photo sharing 

sites, and many more geospatial applications. The cost of the API usage is typically based on the 

number of monthly site visits, although it is often free below a certain usage [117]. 

2.3 Mobile Maps 

After the time period covered in Figure 2.10 little data have been released about the market 

distribution for internet mapping services. While this can partly be attributed to the leadership 

position of Google in online-mapping and search in general, it may also be related with another 

major trend in mapping over the last years. As pointed out in [103], growth in internet map usage 

is now primarily driven by the broad adoption of mapping on mobile devices, also referred to as 

“Ubiquitous Cartography” or “Cybercartography”. 

2.3.1 Personal Navigation 

The last decade has seen two major trends in people’s map consumption for navigation between 

places: the decline and predicted death of the paper map [82, 118, 119, 120], and the shift from 

personal computers and dedicated navigation devices to internet-connected applications on 

smart mobile devices [121, 122]. 
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While in 2003 chances were people would use a printed paper road map, such as from AAA [123], 

for route guidance (e.g. during a trip), the emergence of GPS enabled personal navigation devices 

(PND) with digital routable maps has substantially altered this behavior. Printed atlas sales by 

publishers such as Rand McNally [124] have seen a decline of 7% annually [125] since 2007, while 

global sales of dedicated PND grew from hundreds of thousands to about 40 million units per 

year from 2004 to 2008 [121]. However, since 2010 a decline of about 15% annually could be 

noticed fir PND, caused primarily by a shift to 1.2 billion [126] internet-connected smartphone 

devices with applications offering similar navigation functionality. 

Particularly the release of Apple’s iPhone in 2007 with an integrated mapping application based 

on Google Maps, led to a momentous shift in the user behavior. In addition to allowing multi-touch 

panning and zooming of maps, it also provided functionality for searching of nearby points of 

interests (POI), and turn by turn navigation [103]. Initial flaws such as small screen resolutions or 

the lack of GPS positioning were fixed in later versions of the device as well as other smartphones 

based on Android, Windows Phone or Blackberry [127]. In addition to smartphones, devices with 

larger screens such as tablet computers have emerged, further extending the scope for mobile 

map consumption. Since tablet computers such as the iPad, Microsoft Surface or various Android 

based versions often share their development platforms with cell phones, the effort for creating 

applications on either kind of device is reduced. 

                

Figure 2.12 Mobile Versions of Google Maps (Left) and Google Earth (Right) showing Downtown 

Waterfront and Space Needle in Seattle 
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By 2013 cell phone usage has grown to 0.95 registered devices per capita [104]. An increasing 

number of mobile phones (22% in 2012) are smartphones with internet accessibility, of which 

89% are used throughout the day [126]. New network technologies such as “Long Term 

Evolution” (LTE) have led to an increase in the available network bandwidth. While 3G networks 

in 2008 offered bandwidths up to 14.4 Mbit/s for download and 5.8 Mbit/s for upload [103], LTE 

supports download speeds of up to 300 Mbit/s and upload speeds up to 75 Mbit/s [128]. 

An indication of the growing importance of mobile mapping is the amount of effort companies put 

into strengthening their position in this domain. In 2012 Nokia, which had acquired GIS data 

provider NavTeq in 2009, launched its internet mapping platform “Here” [60] to support mapping 

applications on new Nokia branded Windows Phone 8 devices. In February 2013 Yahoo retired 

its own desktop mapping service and replaced it by Nokia’s “Here” [60].  

To reduce its dependence on Google, Apple decided to replace the mapping functionality on iOS 6 

based devices with its own mapping service in 2012, additionally providing turn-by-turn 

navigation [129]. However, data quality issues caused significant criticism by users, which led 

Apple to later permit the release of Google Maps and Google Earth for the iOS platform [130], 

including both 2D and 3D maps as shown in Figure 2.12. 

2.3.2 Location Based Services 

Besides the built-in mapping functionality of mobile devices, mobile operating systems also 

provide API’s enabling mobile-app developers to create location based services (LBS). LBS are 

applications using information such as the current location or time in order to achieve a desired 

result [127]. For instance, GasBuddy searches for the lowest priced gas station in an area [131].  

 

Figure 2.13 Here City Lens Augmented Reality Application from Nokia Shows POI Augmentations 

Superimposed on Camera Stream; Phone is Oriented via API using Orientation Sensors [132] 

Along with providing similar user experiences as on the desktop PC, mobile devices offer new I/O 

capabilities such as multi-touch, voice commands and voice-guided navigation. Furthermore the 
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availability of inertial sensors and cameras integrated in mobile devices permit new interaction 

and visualization modes such as Virtual and Augmented Reality (AR). Some AR applications 

enable the exploration of 360 degree panoramic images, by simply rotating the phone. Such 

images may have been captured at remote locations and shared via the internet. Other AR 

applications such as Nokia’s Here City Lens (Figure 2.13) superimpose 3D located augmentations 

related to restaurants or similar points of interest on a live video stream from the phone’s video 

camera, thus enabling new ways of exploring and interacting with geospatial map data [132]. 

Modern development tools such as the Windows Phone software development kit (SDK) in 

combination with cloud computing enable multiple new business opportunities by realizing 

geospatial services with minimal development effort. In [106] we demonstrated that a simple 

mobile application for geospatial photo capture, involving a cloud based web-service could be 

developed in only 30 labor hours. We further explained the basic steps necessary to deploy an 

application, involving a web service hosting geospatial information and a map and camera enabled 

client software, consuming the web service through an API. 

2.4 Common Geospatial Data Types 

Internet mapping applications adopted the same data types used in offline digital mapping as well 

as GIS. Geospatial data are primarily categorized as either vector data or raster data [98]. A 

comparison of vector data and raster data is given in Figure 2.14 using the example of the “Maps” 

and “Satellite” modes of Google Maps. 

 

Figure 2.14 Comparison of Vector Data and Raster Data Used in Google Maps (Location: 

Schlossberg Mountain in Graz, Austria) 
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2.4.1 Vector data 

Vector data comprise the basic data type for geographic information, consisting of mathematical 

descriptions of different shapes. In a simple case vector data include vertices with geographic 

coordinates and edges connecting the vertices. Vector data are used for 2D or 3D features. 

Depending on the shape and size of the feature, three types can be distinguished [98]: 

 Point features indicate discrete nonadjacent geographic features or abstract points on a 

map. Examples are points of interest such as restaurants, vista points or bus stops, and 

abstract points such as city centers or meeting points. 

 Linear features describe elongated geographic features with a certain linear extent and 

width. Common examples are rivers, streets or railways. The linear extent of linear 

features can be measured, such as to determine the distance between two locations on a 

street. Curvature may be described by polylines or polynomial functions such as splines. 

 Polygons represent extended areas such as lakes, forests, buildings or city boundaries. As 

they are two-dimensional both their perimeter and area can be measured. 

In addition to geographic coordinates, vector features may contain attributes such as names, 

addresses, or classifications, which are required for map visualization or analysis. Navigation and 

route planning require various other metadata such as speed limits, turn restrictions at road 

intersections or ferry and public transport schedules [133]. 

To assure that data from different sources can be combined in the same map consistently, a clearly 

defined coordinate system has to be used. The most commonly used coordinate system is the 

World Geodetic System 84 (WGS84), a polar coordinate system based on the geoid of the Earth. 

Coordinates are measured in latitude/longitude/height triplets [134]. 

Despite the fact that the underlying data may be stored in a vector format, internet mapping often 

uses pre-rendered “rasterized” versions of vector data. This mainly helps to reduce the rendering 

effort on the client computer and assures consistent appearance of the map across different 

devices and browsers. In this case raster images representing the vector data are downloaded to 

the client [135]. 

An example for the common use of raster and vector data in a 3D map is the city model shown 

above in Figure 2.1 (left). In this case, triangles are uses to describe the 3D geometry of buildings, 

while raster imagery is used to texture the building façades.  

2.4.2 Raster Data 

While vector data use simple geometric primitives to describe distinct geographic features, raster 

data provide a continuous grid of values for an area of a map. Each cell (pixel) in a grid of cells is 

associated with respective values, describing a specific property of that cell [136]. In case of 3D 

raster data voxels represent volumetric units. 

Raster data in GIS and internet mapping are used to represent features such as: 

 Images like for instance orthophotos or oblique photographs discussed in Chapter 3. 
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 Continuous data such as used for the temperature map in Figure 2.6 above. 

 Thematic information such as the colors used to distinguish multiple countries. 

An important parameter of a raster map is the spatial resolution defining how many grid cells are 

covering a specific geographic extent. This is often measured as the distance on the ground 

spanned by a single cell called ground sample distance (GSD) [136]. 

While raster data can be stored in flat arrays, hierarchical data structures such as quadtrees [137] 

for 2D and octrees for 3D allow more efficient addition and search of individual entries at varying 

level of detail [138]. 

2.4.3 Geocodes 

A common feature on most internet mapping sites is the search of specific geocode locations on a 

map based on a POI name, ZIP code or a street address. This process is generally referred to as 

geocoding. A geocode is a georeferenced latitude/longitude coordinate “… assigned to a specific 

entity for the purpose of identifying its location on the Earth’s surface.” [139] The opposite 

process, which is finding a street address or other semantic location description based on a 

latitude/longitude tuple is called reverse geocoding. 

In order to facilitate geocoding and reverse geocoding functionality, a mapping between 

addresses and geo-coordinates is required. The accuracy of geocodes depends on the geocoding 

method and ranges from several meters to several hundreds of meters [140]. In the US and 

other countries with grid-like streets, geocodes for individual house numbers may be obtained 

simply by interpolating across locations of neighboring intersections. For example house number 

1450 of an avenue is presumably in the center between 14th street and 15th street. As this 

assumption is not necessarily true in all areas, the resulting geocoding coordinates may 

occasionally have large errors up to hundreds of meters. 

     

Figure 2.15 Comparison of Interpolated Geocoding (Left) and Rooftop Geocoding (Right) 

This approach is not possible in all locations such as in countries with less regular addressing 

schemes, and the obtained accuracy level may be insufficient for navigation purposes. Hence 

alternative methods such as rooftop-geocoding or geocoding using volunteered data need to be 
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used [141]. Rooftop-geocodes are supplied by specific data provides such as MelissaData [142], in 

which case the geo-location for an address is provided as the latitude/longitude tuple of a 

building’s rooftop. Even more precise geocoding may be required for applications involving 

human scale imagery [47], in order to guide a user to the correct location of a parking lot or a 

business front door, which is illustrated in more detail in Section 6.3.1 below. 

2.4.4 Data Organization – Quadtree 

In order to simplify the generation and consumption of geographic data at various levels of detail, 

hierarchical data organization may be required.  

 

Figure 2.16 Hierarchical Tile System used in Bing Maps; [86] 

Multiple providers such as Bing Maps, Google Maps or OpenStreetMaps use an addressing scheme 

based on the quadtree data structure [138] which has four children nodes for each node in the 

tree [143]. At the top level of the tree, 4 square tiles with indices {0,1,2,3} cover the whole extent 

of a map generated using the Mercator projection [84] with a clipping latitude of 85.05 degrees 

(Figure 2.16). Each tile image has a dimension of 256*256 pixel. At the next tree level each of the 

four nodes branches again into 4 nodes with indices {0,1,2,3}, which is repeated for each 

consecutive level up to a certain tree depth (19 in case of Google Maps). At a specific level 𝑛 of the 

tree the whole map is hence represented by 4𝑛 map tiles. A particular tile of the map can be 

addressed via a string of length 𝑛 consisting of the branching indices for each level (such as “120” 

in case of Central Europe). Depending on the viewport of the map on the client computer, only 

tiles at the respective level and within the viewport have to be downloaded. Details of the exact 

addressing schemes for Bing Maps and Google Maps are provided in [86] and [85].  

Figure 2.17 shows the relationship between the quad level and the number of tiles and pixels 

required to cover the whole world, as well as the length of a tile at the specific quad level measured 
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at the equator. In order to cover the surface of the Earth at a tile size of roughly 100 m, the chosen 

quad level 18 results in 275 billion tiles and 18 Petapixel. 

 

Figure 2.17 Relationship between Quad Level and Number of Tiles/Pixels as well as Tile Size [m] 

2.5 Data Sources  

Internet mapping services usually integrate a combination of data sources including government 

agencies, commercial data providers and community sources. The data obtained from these 

sources include both vector and raster data as described in Section 2.4. The following section 

focusses primarily on vector data sources, while the sources for different types of image raster 

data are covered in Section 3. 

2.5.1 Government Mapping Agencies 

Traditionally mapping data were primarily acquired, managed and distributed by national 

mapping agencies such as for example the “United States Geological Survey” (USGS), “Institut 

Géographique National” in France, “Ordnance Survey” in Great Britain or the “Bundesamt für Eich- 

und Vermessungswesen (BEV) in Austria [62]. 

While these government agencies still exist and play a central role in individual countries, the 

establishment of navigation systems and internet mapping created requirements for new kinds of 

data such as streetside imagery, turn restrictions or speed limits for navigation. Additionally a 

demand for a globally consistent maps with comparable quality and completeness cannot easily 

be fulfilled by a plethora of state agencies. 
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2.5.2 Commercial Data Providers 

As a consequence of the additional demands for global internet mapping and in-car navigation 

systems, various commercial companies entered this market. Two of the largest providers of 

vector data for mapping applications are TeleAtlas and NavTeq which were founded in 1984 and 

1985 respectively [127]. In order to acquire navigation data at a large scale, they operate fleets of 

vehicles equipped with different sensors such as GPS receivers, cameras and laser scanners as 

part of mobile mapping systems (MMS) [32] in order to collect data for offline analysis and data 

extraction. Images are hence analyzed either manually or automatically in order to detect road 

lanes and intersections, street signs or business locations. 

While both providers are still actively selling navigation data to different companies such as 

Garmin, Microsoft or MapQuest, the market situation shifted due to the acquisitions of TeleAtlas 

by TomTom in 2007 for USD 2.9 billion [144] and NavTeq by Nokia in 2008 for USD 8.1 billion 

[145]. The prices paid are indicative of the significance of geodata to companies invested in mobile 

device and internet technology. In 2011, Google largely abandoned the use of third party sources 

for Google Maps and replaced it with its own data, presumably to reduce cost for licensing and to 

benefit from its existing assets such as satellite and streetside images [146].  

In addition to license fees, restrictive license terms further increase the benefit for companies to 

be independent from third party data providers. As a sample NavTeq contract [147] indicates, use 

of the data is often limited to very specific applications not permitting any modifications, 

adaptations, additions or alterations. 

2.5.3 Community Mapping 

A relatively new way of obtaining and improving geospatial data is by means crowdsourcing the 

tasks of data entry and verification by an online community. “Crowdsourcing is the practice of 

obtaining needed services, ideas, or content by soliciting contributions from a large group of 

people, and especially from an online community, rather than from traditional employees or 

suppliers.” [148]. “Key differences are the fact that users lacking formal training in map making 

create the geospatial data themselves rather than relying on professional services; that potentially 

very large user groups collaborate voluntarily and often without financial compensation with the 

result that at a very low monetary cost open datasets become available and that mapping and 

change detection occur in real time.” [149]. While most internet mapping providers such as 

MapQuest or Bing Maps make use of user edits to individual existing map features, other systems 

are primarily based on crowdsourcing.  

Web 2.0 initiatives such as Open Street Map (OSM, 2004), WikiMapia (2006) or Google MapMaker 

(2008) have put a strong stake in the ground in this domain by creating wiki-enabled frameworks 

for collaborative mapping. A significant difference between MapMaker and the other two sites, is 

that Google uses the community created data obtained via MapMaker in order to improve its 

commercial Google Maps platform. In case of Open Street Map and WikiMapia, the created data 

are made available under a Creative Commons [150] share-alike license for non-commercial use 
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and thus remains public domain. Data entry can either be performed using the graphical web 

interface or by uploading GPS traces recorded offline. Aerial images by Bing Maps or Google Maps 

as a base layer serve as guidance for the operator when entering vector data. 

  

Figure 2.18 Sample Vector Data from Open Street Map Showing the Schlossberg Mountain in Graz, 

Austria (Left) compared to the same area in Google Maps. (Right) 

As pointed out by [103] the vector data created in OSM are often comparable if not superior to 

commercially collected data. Figure 2.18 illustrates this by showing the same map region from 

OSM and Google Maps. A study of the accuracy and completeness of OSM data compared to 

Ordnance Survey data in Great Britain found that OSM information “…was on average within 6 m 

of the position recorded by the Ordnance Survey, with approximately 80% overlap of motorways 

between the two datasets.” [151] It also found a significant gap in completeness of area, as OSM 

had captured about 29% of the area of England within about 4 years, with some obvious 

untouched regions, presumably due to the lack of “volunteer mappers” in that area. A newer 

comparative study [152] of the accuracy between Google Maps, Bing Maps and OSM for Ireland 

concluded that while each site showed individual differences, there was no clear winner between 

the services. 

2.6 Research Areas to Advance Internet Mapping 

The technical advancements in the area of internet based mapping described above, have 

fundamentally transformed how people use mapping information, how it gets created and who 

owns and controls it. The fact that most of this development has happened in less than a decade, 

in an environment driven by fast technological and economic change, implies that certain 

unresolved challenges still remain to be solved. Peterson [29] describes a list of such challenges 

related to both the internet in general as well as internet mapping in particular. 

2.6.1 Data Capture 

A big challenge for any company entering the internet mapping business at a global scale is the 

need to initially obtain a sufficiently large dataset of both vector data such as street maps or POI, 
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as well as image data such as aerial, satellite or streetside imagery. While considerable data can 

be licensed from providers such as NavTeq or Digital Globe, some kind of data such as human scale 

imagery is not commercially available at a global scale. This creates the necessity for internet 

mapping firms to operate a fleet of cars equipped with specifically designed camera systems, and 

to collect crowdsourced data from internet sites. The field of streetside mapping is new and few 

commercial systems exist which fulfill the requirements with respect to data quality as well as 

automation during capture and processing. Such requirements include the ability to capture 

LiDAR depth data in combination with imagery, precisely geocoded using GPS based navigation 

systems. Hence we propose a novel design for a streetside capture system in Section 4.1 which 

fulfills the stated quality and automation requirements. 

2.6.2 Privacy ……………… 

One of the primary concerns related to geospatial information is the privacy of individuals who 

are either using new technologies such as LBS, or people whose privacy is imperiled due to the 

data capture methods used by providers. Data privacy for LBS in order to anonymize and 

obfuscate location information is an open research area. The problem of anonymizing people and 

other private objects in human scale imagery is challenging due to the variability and enormous 

quantities of such images. In Section 4.5 we propose a novel solution for this problem. 

2.6.3 Cost and Ownership 

While data licensing and targeted data collection are a necessity for internet mapping providers, 

they also entail substantial investments. Very few companies have the required financial assets to 

pass this hurdle, especially in a market practically “owned” by strong existing players such as 

Google or MapQuest. Additionally the fact that strategically invaluable map data are owned by few 

commercial entities not only puts these entities in a strong position, but also poses a risk to map 

users of becoming overly dependent on individual businesses. Hence a democratization of map 

data owned by many, such as open-source maps obtained by crowdsourcing would be strongly 

desirable. Non-profit systems such as OSM have made substantial progress by obtaining public 

domain vector data. However, they are lacking the financial assets required for image data 

acquisition and hence depend on aerial and satellite imagery from other sources. 

In order to support the democratization of image data assets and to alleviate the collection cost, 

we therefore propose several methods of using open source images from Community Photo 

Collections (CPC) in the context of mapping. In Section 5.3.2 we describe a geographic image 

matching framework which is used as the basis for solving several related problems. This 

framework is used in Section 6.1.6 by connecting community created human scale images with 

systematically collected data. Additionally we propose an improved method based on [14], to 

automatically align point clouds derived from shape-from-stereo to an overhead aerial image of 

the same scene (Section 6.2.3). 
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2.6.4 Accuracy and Reliability 

Another challenge results from the high expectations users have with respect to the accuracy and 

reliability of internet maps. These expectations are partly caused by people’s experience with 

paper maps and the trust they developed with respect to information from the internet in general. 

Due to the fact paper maps were prepared mostly by professional cartographers in cooperation 

with governmental institutions, their accuracy level has been relatively high. Internet maps are 

created by merging information from a multitude of sources, and are usually considerably more 

detailed. For example they also contain geocoding information for street addresses, and points of 

interest. Erroneous address information in a navigation scenario will inevitably lead to user 

frustration. To reduce the likelihood of such problems, we propose an image-matching based 

method for correcting errors in business-geocoding in Section 6.2.3. 

2.6.5 Freshness of Images 

Aerial, satellite and terrestrial image sensor technologies have advanced towards the capture of 

Petabytes of image data at a global scale annually. Nevertheless cost limits the frequency at which 

it can be recaptured to reflect recent geographic changes. Particularly human scale images become 

stale after a certain amount of time, as changes can more easily be noticed in images showing 

details of streets. In order to counteract staleness, and improve the freshness of data, it is 

therefore desirable to use other more frequently updated data sources such as community images 

in addition to systematically collected images. In Section 6.1.6 we show that by augmenting 

streetside images with community photos of the same location, we can improve the freshness of 

the data presented to the user. 

2.6.6 Infrastructure 

As pointed out in Section 2.2.1 a digital divide between the developed and developing countries 

in the world exists with respect to the availability of computers and mobile phones as well as 

networking infrastructure. Due to this fact, and since new networking technologies such as LTE 

are only available in limited geographic areas even in more developed countries, network 

bandwidth is still a challenge for mobile mapping applications. Hence when building new 

technologies such as augmented reality applications, minimizing the data transmission 

requirements is an ongoing concern. We therefore analyze the influence of different image file 

sizes which have to be uploaded from a client device to a web service on the performance of the 

image matching system described in 5.3.2 to find an optimal tradeoff setting. 

2.6.7 Geopositioning Accuracy  

Mobile augmented reality applications such as the example shown in Figure 2.13 primarily use a 

combination of GPS, cell phone tower and WIFI hot-spot triangulation to obtain a position 

estimate, and a magnetic compass to obtain an estimate of the viewing direction. Since the 

accuracy of such positioning sensors is often limited to several meters in rural areas and tens of 
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meters in urban environments, it may be insufficient for precise navigational instructions or 

augmentations. For some applications (e.g. indicating the entrance of a business) pixel-accurate 

instructions would be preferable. For that reason we proposed an image based method for 

obtaining a more precise registration of cell phone images with existing geospatial images such as 

streetside panoramas, allowing pixel-precise registration of relevant contents 

2.7  Summary and Outlook 

In this chapter, we have provided answers to research questions I.a through I.d by documenting 

the evolution of cartography from hand-drawn and printed maps, via the first digital geographic 

information systems, to the location-aware and ubiquitous internet of today. 

We have defined maps as a visual representation of the (spatial) relationship between multiple 

elements within an area, such as objects, regions and themes. Many of the elements used in 

internet mapping today have evolved from prior achievements in mapping, which we have 

pointed out. 

Further we have described the main data types used in digital maps such as vector data and rater 

data, as well as the various data sources, including national mapping agencies, commercial data 

providers and crowdsourcing. 

Finally we have pointed out some of the major research areas in internet mapping, and how they 

relate to the main contributions of this report. 

Internet maps are being used by more than 1 billion unique users every month [83], on a variety 

of device form factors, for applications such as personal navigation, weather queries, mobile 

location based services and for Augmented Reality.  
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3 Categories of Geospatial Image Data 

3.1 Introduction 

Image maps have become an accepted data type with the advent of digital image processing. The 

aerial orthophoto is the preferred standardized image map widely discussed in mapping text 

books [153]. With the appearance of web based mapping services, images have become very 

diverse in various formats and scales [3], and are now an integral part of mapping services offered 

by providers such as MapQuest, Microsoft, Google, Nokia or Apple. This results primarily from the 

fact that images provide a more natural and visually pleasing experience compared to vector maps 

as illustrated in Figure 3.1. We are here referring to all sorts of amateur, hand-held camera 

photographs, as well as images taken from vehicles, flying drones and airplanes. 

 

Figure 3.1 Aerial “Birds-Eye” View of Manhattan Island, New York in Bing Maps 

We would like to evaluate the criteria by which images get selected for internet mapping. In this 

context we are interested in understanding what defines an image, and what makes it “geospatial”. 

We further want to distinguish between source image data and a “map” created from and 

containing images of various types. 
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3.1.1 Defining Geospatial Images 

In general we care mostly about “images”, “pictures” and “photographs” as “visible impressions 

obtained by a camera, telescope, microscope, or other device, or displayed on a computer or video 

screen” as defined in the Oxford Dictionary [77]. However we also want to include the results of 

different kinds of processing of the source images captured by sensors, such as the result of 

“stitching” [154] multiple source images into a continuous representation. We use the term 

“geospatial” also in its lexical definition as “relating to or denoting data that is associated with a 

particular location” [77]. Hence we consider images featuring objects associated with a particular 

location as “geospatial images” in contrast to those containing only location agnostic contents, and 

“geospatial relevance” as the degree at which images represent a given location.  

In other words, we consider an image that a familiar viewer would likely relate with a particular 

location or geographic region (e.g. a building, statue, mountain or pond) as more relevant in the 

context of mapping than a generic image (e.g. of a person, car, food item or book).  

This distinction largely agrees with the definition of “geographic relevance” of information in the 

context of LBS by Reichenbacher et al., who define it as a “quality [that] is expressed as the relation 

between an entity or its representation (e.g. image) and the actual context of using the 

representation.” [155] 

      

Figure 3.2 Examples of Geospatially Relevant and Irrelevant Images: Schwarzl See in Kalsdorf, Austria 

[57]; “The Japanese Bridge” Painting by Claude Monet [156]; Water Tower in Portage la Prairie, 

Canada [157]; Coca-Cola can; “Broken Chair” Sculpture in Geneva, Switzerland [158]; Ikea Chair; 

To understand this distinction better we analyze a few specific examples. An aerial photography 

of a pond and its surroundings (Figure 3.2, left) would most-certainly be considered geospatial, 

similar to a streetside image of a building façade or a picture of a statue in a particular church. 

However a picture of the Claude Monet’s “The Japanese Bridge” painting showing a pond may only 

be considered geospatial in the context of the museum where it is exposed (National Gallery, 

London). The water tower painted as a Coke-can in Figure 3.2 is clearly associated with a 

geographic location (Portage la Prairie, Canada) and is therefore geospatially relevant. However 

an image showing a generic object (e.g. a Coke-can) may be geographically relevant only if the 

object occurs more frequently at a given location than elsewhere or if people commonly relate this 

object with a location. The same reasoning also applies for the Ikea-chair and “Broken Chair” 

sculpture example. However one could argue that a piece of furniture can be associated with a 

location within a house (e.g. kitchen) and would be visible in imagery showing that room. Hence 

http://uploads4.wikipaintings.org/images/claude-monet/the-japanese-bridge-the-water-lily-pond.jpg
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the distinction also depends on the scale at which one looks at a geographic location and whether 

or not an object is photographed by itself or within the context of its environment. 

While we have provided a definition of geographic relevance of images, Epshtein et al. [159] 

analyzed the extraction of the relevance of geographic locations from a collection of community 

images. For this purpose they use a different definition of geo-relevance as the importance of a 

spatial point, proportional to the number of images showing that point. This definition still agrees 

with ours in the sense that location relevance can only be extracted from relevant images. 

3.1.2 Image Selection Criteria for Internet Mapping 

As detailed above, in order to be considered relevant for internet mapping, images should exhibit 

contents which are relevant for the specific location at which they are captured. Apart from geo-

relevance, we found several other selection criteria which can be used by mapping providers: 

 Comprehensiveness 

Mapping providers are faced with the challenge of obtaining global image coverage by 

integrating data from multiple sources. Hence, one of the selection criteria used is the data 

comprehensiveness, such as their broad and continuous regional or global availability. An 

example for comprehensive image data is the “global basemap” offered by DigitalGlobe for 

all 500 million km² on the planet [7]. 

 Freshness 

While historic images may provide specific value in certain situations and to some people, 

mapping usually requires the data to be up-to-date with respect to the actual appearance 

of the world’s locations. Therefore freshness of the data is considered an advantage over 

stale images no longer reflecting the geographic reality. Especially in situations requiring 

immediate action, such as natural disasters [160], up-to-date map data is essential, such 

as provided by Bing Maps in response to Hurricane Sandy [161]. 

 Quality 

The same quality measures as for digital images in general [162] apply also for geospatial 

applications. Primarily these are geometric properties such as the image resolution 

(ground sample distance, GSD) and the geometric accuracy, as well as radiometric 

properties such as signal to noise ratio, dynamic range, color consistency and the bit-depth 

used for storing an image. 

 Explorability and Discoverability 

We require that image data can be easily viewed and explored. This is characterized by 

the fact that they must be discoverable by users interested in a given geographic region, 

and that navigation in-between multiple images must be possible without significant 

effort. For example Photosynth [163] allows intuitive discovery and exploration of 

georeferenced image data via Bing Maps. 

 Geo-Positioning 

A primary requirement for achieving discoverability is the availability of geo-positioning 

data for an image, thus the camera pose, which may consist of a Latitude/Longitude 
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coordinate pair in a global coordinate system (e.g. WGS84), or additional parameters such 

as the altitude or angular orientation [134]. The positional accuracy requirements depend 

on the scale at which images are viewed. As Photosynth [163] demonstrates, pixel 

accurate registration is feasible and sufficient to achieve discoverability. 

 Privacy Compliance 

An important aspect of photography in general is the protection of people’s rights to 

privacy, whether they are in a private setting or in public environments such as streets, 

parks or shopping malls. The release of streetside imagery by Google and Microsoft has 

raised privacy concerns in many countries worldwide, particularly in Germany [164, 165]. 

Therefore it is essential for mapping service providers to put protective measures in place 

to guarantee that privacy requirements are met. 

3.1.3 Systematically Collected Images vs. Crowdsourcing 

We are presenting here various types of geospatial image data that are being used for online 

mapping services, along with their advantages and disadvantages with respect to the above 

criteria. We propose the classification of geospatial imagery in three major categories, based on 

the capture processes and patterns used for data collection. 

  

Figure 3.3 Distribution of Systematically Captured (Streetside) and Crowd-Sourced (Flickr) Images 

for the Same Area in Seattle, WA; Colors show Log10 of the Image Density per 100·100 m2 Tile;  

The first category are systematically collected images which are obtained by following a clearly 

defined procedure and capture pattern, so as to achieve sufficiently dense and up-to-date global 

coverage of Petabytes of images. These capture patterns are under control by an entity such as a 

mapping provider or a data supplier such as DigitalGlobe, NASA, GeoEye, Pictometry, TeleAtlas or 

NavTeq. Systematical image collection for online mapping services usually applies to vertical and 

oblique aerial imagery, providing a top-down view of the Earth, or more recently human scale 

imagery taken from a vehicle on the ground. While the specifications of these data types differ in 

many ways, the capture process follows similar rules, such as systematic and clearly defined 
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geographic pattern to assure continuous coverage at the desired geometric and radiometric 

quality and overlaps. 

The usage of systematically captured image data is accompanied by a second category, 

crowdsourced images uploaded by people around the world to online community photo 

collections such as Flickr [166], PhotoBucket [167], Panoramio [168] or Facebook [169]. In this 

case the capture process is mostly done by individuals for either their own benefit, to share with 

the community, or to achieve a certain task. It usually does not follow rules or specifications 

provided by a particular commercial entity, but rather represents the collective mindset of a 

community of people. While systematic data acquisition, capture and processing often incurs 

significant cost crowdsourced data is generally provided for free. 

The third category are semi-systematically collected images, hybrid forms of the prior two 

categories. This category exhibits certain attributes of both systematic and non-systematic data 

collection. An examples of semi-systematic image capture are organized programs for 

geographically relevant community photo collection such as Foursquare, Yelp or Redfin. 

A comparison of typical geographic distributions for systematic and crowd-sourced data in Figure 

3.3 indicates their complementary nature. While streetside images on Bing Maps (left) 

systematically cover the road-network of a city (e.g. Seattle) with a nearly constant image density 

(~160 images / 100·100 m2 tile), crowd-sourced images from Flickr (right) are distributed 

irregularly based on popularity. Flickr images are often clustered around hot-spots (e.g. > 10,000 

images per 100·100 m2 tile) around popular landmarks, such as “Pike Place Market”, “Gas Works 

Park” or “Space Needle”, while other areas remain unpopulated. Note that the latter two of these 

hot-spots actually don’t contain any streetside imagery, as they are not accessible by car. By 

combining the two asset types in mapping, one can thus benefit from the continuous coverage of 

systematic data as well as the popularity based distribution obtained from crowd-sourced data. 

3.1.4 Source Images and Processed Data 

We also distinguish between source image data directly captured by a sensor, and processed data 

products used in the context of internet mapping. Various levels of processing have to be 

considered, such as radiometric and geometric preprocessing of individual images, as well as the 

combination of multiple images into photogrammetric data products. 

In case of the UltraCam aerial camera system described in Section 3.3, raw images from individual 

sensors (Level-0) are radiometrically corrected (Level-1) and then geometrically stitched into a 

single continuous coordinate system (Level-2) containing separate panchromatic high-resolution 

and multispectral low-resolution images. From this data, Level-3 images in multiple color formats 

can be generated, such as Panchromatic, RGB, or false color infrared [97]. The processing 

workflow is detailed in Section 3.3. The procedure to convert human scale imagery from Level-0 

to Level-2 and into panoramas, such as the UltraCam-M system explained in Sections 4.1 through 

4.4 is analogous to aerial images. 
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Figure 3.4 Aero-triangulation of Thousands of Camera Locations and 3D Coordinates of Tie Points 

is an Essential Component of Automatic Photogrammetric Workflows [170] 

Based on the preprocessed aerial imagery, various workflows allow the automatic 

photogrammetric processing into 2D orthophotos, 2.5D digital surface models and 3D point 

clouds and meshes of the scene geometry, including buildings, trees, bridges etc. An initial step 

during this process is the automatic “aero-triangulation” (AT) [170] of 2D image correspondences 

into thousands of camera poses and sparse 3D point clouds (Figure 3.4) as a basis for further 

processing of aerial imagery. 

    

Figure 3.5 Digital Surface Model at 8 cm GSD (Left) and Aerial True Orthophoto at 30 cm GSD 

(Right); Location: Downtown Graz; [57, 59] 
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Digital surface models (DSM) are raster images with a specific ground sample distance (GSD) 

indicating the height of the surface for each cell, thus providing 2.5D data (See example in Figure 

3.5, left). In contrast to digital terrain models (DTM) which are a “bald-Earth” representation, DSM 

include man-made structures as well as vegetation ranging out from the terrain [170]. DSM and 

DTM are frequently generated using either aerial LiDAR systems as described in Section 3.2.4 or 

via multi-ray dense matching techniques from aerial imagery [171, 172, 173, 174, 175]. Obtaining 

DTM from both LiDAR and aerial DSM requires additional filtering to remove buildings and 

vegetation, which is provided by automatic software tools such as [176]. 

By using the depth information from DSM along with pixel data from individual raw images, 

automatic workflows [177, 178, 179, 176] generate synthetic top-down views called “true 

orthophotos” (Figure 3.5, right). Four steps are usually required to obtain orthophotos: 

Rectification, color matching, mosaicking and feathering [180]. While the first step transforms 

input data geometrically into the output format, the remaining steps result in radiometric 

consistency across a mosaic [180] of input images such as by means of the graph-cut algorithm 

[181]. 

   

Figure 3.6 Comparison of Building (Graz Opera House) in Classical Orthophoto (Left) and True 

Orthophoto (Right); [57] 

The term “true” relates to the circumstance that actual 3D geometry is used to generate precise 

orthogonal projections, rather than rectifying and stitching individual images into classical 

orthophotos. As a consequence vertical building facades do not appear in true orthophotos, as 

they do in classical orthophotos under varying angles (See comparison in Figure 3.6). 

By using true orthophotos to “paint” geo-aligned DSM, more “plastic” views of environments 

(Figure 3.7) can be obtained than by simply viewing 2D images. Such views can be navigated in 

3D and rendered from arbitrary viewpoints. However, 2.5D models of this kind lack any non-

convex geometric details of buildings and other structures, as well as texture information for the 

building facades. They also don’t represent individual objects such as buildings or vegetation 

separate from the underlying terrain. 

Therefore alternative approaches [182, 183, 184] obtain actual 3D object models from LiDAR data 

or imagery based on the output of similar dense matching methods as mentioned above. Building 
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roofs with chimneys, dormer windows, and skylights may further get detected and segmented 

[185]. 

 

Figure 3.7 2.5D Model Generated from DSM and True Orthophoto 

Figure 3.8 gives an example of an automatically created 3D city model from Microsoft Virtual 

Earth containing individual 3D meshes of buildings which were textured from the raw aerial 

imagery. Additionally, natural objects such as trees or bushes may be automatically detected and 

replaced by synthetic models at a higher level of detail [186]. 

 

Figure 3.8 3D City Model of San Francisco Automatically Generated from Aerial Images [60] 

3.2 Aerial and Space Images 

The most common image representation used on web based mapping sites are images showing 

the surface of the planet in a top-down fashion, by using orthographic projections. This view is 

more natural, though similar to classical vector based maps in that it represents a 2D image, 

navigable by zooming, panning or rotation (often in 90-degree steps). Additionally, it can be 

x[m] 
y[m] 

z[m] 



45  Categories of Geospatial Image Data 

 

augmented with traditional vector data such as street networks, building outlines, water bodies, 

terrain classifications, etc. or other geographically relevant information (e.g. precipitation 

statistics or population density) as part of a geographic information system (GIS) [68]. 

Primarily two types of top-down imagery are used by online mapping sites, aerial and satellite 

imagery. They are taken using specialized cameras carried on Earth observation satellites (EOS) 

or aircrafts. In addition to classical nadir orthophotography, several providers of web based 

mapping services also feature oblique aerial imagery in certain regions, providing slanted views 

at various angles (e.g. 20-60°). 

A continuous image representation of the world’s geography often requires the integration of a 

multitude of image sources and types in huge volumes. In fact, image data covering only the land 

part of the Earth’s surface, spanning 149 million km² at 15 cm GSD results in 5.88 Petapixel of 

net data. As automatic processing workflows often require image capture at 80% forward overlap 

and 60% side overlap for 10-15 times redundancy [171], the raw data adds up to 220 Petabytes 

of 8-bit RGB pixel. For a particular aerial camera (UltraCam Eagle [187]), a total of 316 million 

images are required, each with a ground coverage of 5.88 km². This estimate roughly agrees with 

[1] who estimated 190 Petabytes with slightly different assumptions about the redundancy. 

Various types of top-down image data are provided by a plethora of aerial survey companies, 

public organizations and satellite photography providers, using a variety of different sensors. 

 

Figure 3.9 GeoEye-1 Satellite (Artist’s View) [6] 

3.2.1 Satellite Imagery 

Earth observation satellites (EOS) comprise one of the major sources for top-down imagery used 

in internet mapping. The capture pattern of satellite sensors is systematic, as satellite orbits are 

continuous and totally pre-defined. Satellites sensors can be directed to different viewing 

directions though to capture different swaths of the surface. Most EOS such as GeoEye-1 use linear 
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image sensors, which can scan one or multiple lines spanning many pixels across (37,500 in case 

of GeoEye-1) at high frame rates (10,000 lines per second) and relatively small GSD (0.41 m). Line 

sensors, which are arranged perpendicular to the satellite’s trajectory scan a continuous image 

swath for each orbit revolution, in a process called “push-broom scanning” [188]. Multiple 

revolutions allow the capture of multiple swaths, which can hence be stitched into a single image. 

As individual swaths span widths up to tens of kilometers (15.2 km in case of GeoEye-1), large 

areas up to the size of Texas can be captured during a single day [6]. 

Often, satellites contain sensors to capture panchromatic as well as multispectral imagery, of 

which typically only the visible spectral bands are visualized on online maps. In order to reduce 

the sensor complexity and data volumes, the multispectral imagery is often captured at a lower 

resolution (larger GSD) than the panchromatic images. This requires “Pan-Sharpening” to 

combine high-resolution panchromatic and low–resolution multispectral images into a high-

resolution color image. Example methods for pan-sharpening of satellite images have been 

proposed in [189] and [190], while a similar approach for aerial images was presented by [191]. 

An overview of various EOS with GSD below 5 m and thus suitable for medium to high resolution 

image capture is provided in Table 3-1, sorted by increasing GSD and by launch date. While 

GeoEye-1 already achieves a GSD of 0.41 m, US government regulations require resampling to 

0.5 m GSD for commercial use, such as for internet mapping [192]. The same limitations will likely 

also apply to future higher-resolution satellites such as GeoEye-2 and WorldView-3. 

 

Satellite 

Name 

Operated by Country Launch Year Panchromatic 

GSD [m] 

Multispectral 

GSD [m] 

Swath 

Width [km] 

Worldview-3 DigitalGlobe USA Future 0.311 1.24 13.1 

GeoEye-2 DigitalGlobe USA Future 0.341 1.36 14.5 

GeoEye-1 DigitalGlobe USA 2008 0.411 1.65 15.2 

Worldview-2 DigitalGlobe USA 2009 0.461 1.84 16.4 

Worldview-1 DigitalGlobe USA 2007 0.5 - 17.6 

Pleiades-1A Spot Images France 2011 0.5 0.5 20 

Pleiades-1B Spot Images France 2012 0.5 0.5 20 

Quickbird DigitalGlobe USA 2001 0.61 2.44 16.5 

Eros B ISA Israel 2006 0.7 - 7 

IKONOS DigitalGlobe USA 1999 0.82 3.2 11.3 

Eros A ISA Israel 2000 1.8 - 14 

SPOT-6 Spot Images France 2012 1.5 8 60 

Formosat-2 NSPO Taiwan 2005 2 8 24 

SPOT-5 Spot Images France 2002 2.5 10 60 

Cartosat-1 ISRO India 2005 2.5 - 30 

ALOS Pasco Japan 2006 2.5 10 70 

Table 3-1 Overview of Earth Observation Satellites with Panchromatic GSD below 5 m; [192, 193] 

                                                             

1 Image GSD is restricted by US government to 0.5 m or above for commercial use. 
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Even though the field of view (FOV) of the line cameras usually faces the nadir direction, some 

satellite sensors additionally capture oblique forward and backward looking swaths. This 

generates additional images with a stereo parallax. Hence the data can be used for depth 

reconstruction to obtain digital surface models (DSM) or digital terrain models (DTM), which in 

turn are needed to produce ortho-imagery [194]. Finally satellite images get transmitted to 

ground stations, where they are stored, geo-processed and transmitted further for more 

processing [195]. 

In contrast to the frame sensors used for aerial photography, due to the nature of pushbroom 

scanning, each image line has a different capture time and thus exterior orientation (EO). Although 

the trajectories of satellites are significantly smoother than those of airplanes, any deviations from 

an ideal path will lead to distortions in the collected imagery which have to be modelled and 

corrected during postprocessing. Multiple methods exist to correct for such distortions, such as 

by measuring the various linear and angular motions using inertial sensors, and compensating for 

these effects during the stitching process. Further correction methods may involve stitching 

multiple swaths by using feature matching to determine distortions occurred in each swath, or via 

registration to existing geocoded orthophotos [196, 197].  

 

Figure 3.10 Comparison of Satellite and Aerial Imagery of the Same Location: IKONOS Image @ 1 m 

GSD (Top Left); WorldView-2 Image @ 0.5 m GSD (Top Right); UltraCam-D Image @ 20 cm GSD 

(Bottom Left); UltraCam-X Image @ 2.5 cm GSD (Bottom Right); [198] 

Satellite images don’t look fundamentally different from aerial imagery, and are often presented 

to users in one and the same map view. Differences may exist in image quality due to atmospheric 

http://aerometrex.com.au/blog/wp-content/uploads/2012/04/1m-adelaide.jpg
http://aerometrex.com.au/blog/wp-content/uploads/2012/04/0.5m-adelaide.jpg
http://aerometrex.com.au/blog/wp-content/uploads/2012/04/20cm.jpg
http://aerometrex.com.au/blog/wp-content/uploads/2012/04/25mm1.jpg
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effects and short exposure times (≤0.1 ms) in satellites versus perhaps 8 ms exposure from the 

air. A primary drawback of satellite imagery for commercial applications consists of limited GSDs 

at 0.5 m per pixel versus 2.5 cm from the air [187]. Aerial cameras get operated at optimized 

flying altitudes for best GSD, and for optimum 3D resolution, satellite image overlaps for 

automated 3D analysis are not easily obtained. 

Since the operating altitudes of satellites are substantially higher (e.g. 684 km for GeoEye-1 vs. 

2 km for UltraCam Eagle for 10 cm GSD), the visibility of the planet’s surface from the satellite is 

often occluded by clouds. Due to the rigid satellite trajectories, recapturing an affected region at a 

desired view angle is often infeasible, which poses challenges to obtaining continuous high quality 

images of extended regions such as countries within a single season [199]. However the limited 

availability of surveying technology and infrastructure in some countries, as well as political 

regulations related to the capture and publication of aerial imagery often leave satellite imagery 

as the only feasible option for obtaining nadir coverage [112]. 

3.2.2 Vertical Aerial Imagery 

Vertical aerial photography is the work-horse for precision to perform mapping at accuracies of 

1:10,000 geometry - that is with errors as 1/10,000 of the flying height [200]. Similar to satellite 

images, aerial images are captured using specifically developed aerial sensor systems, carried by 

airplanes. Approximately 1,000 large format cameras (≥90 Megapixel) are operated by a 

multitude of aerial survey companies [201] and public organizations worldwide [69], besides 

numerous medium format (30..90 Megapixel) and small format (20..30 Megapixel) cameras 

[202]. Aerial images are very similar to satellite images in that they show the surface of the Earth 

in a top-down view. Apart from the capture process itself, the major differences are related to the 

improved image radiometry, available detail at GSD values of 2.5 cm to 20 cm, and more 

pronounced overlaps for automatic 3D information extraction. 

Small GSD of 2.5 cm or less are achievable with aerial cameras by using long focal lengths and 

flying low, at perhaps 500 m above the ground. The stark difference between 0.5 m “satellite GSD” 

and 2.5 cm “aerial GSD” is visualized in Figure 3.10. Typical GSD values used for online maps of 

urban areas range from 15 cm to 30 cm, which currently can only be achieved by means of aerial 

imagery.  

The pattern in which aerial imagery is captured generally follows a set of parallel flight lines 

(Figure 3.11), covering an area in a systematically, similar to streetside imagery as shown above. 
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Figure 3.11 Sample Flight Plan for Aerial Image Capture 

While aerial image data are usually acquired and captured on a per area basis, large aerial survey 

companies offer existing data assets such as stitched orthophotos or DSM of entire cities, counties 

or even states for sale. Such data assets are already in the correct format to be included in online 

mapping systems. This is useful especially for establishing an initial coverage while scaling up a 

service within a short amount of time. Nevertheless, acquiring data from many different suppliers, 

using various sensors and data formats can also be cumbersome, and sub-optimal in terms of the 

data acquisition cost. Therefore, companies such as Microsoft or Google have spent significant 

efforts to establish their own infrastructure and workflows for data capture in order to increase 

control over data quality, consistency and cost efficiency. Microsoft acquired Vexcel Corp. in 2006 

to support the development of Virtual Earth (now Bing Maps) by means of its sensor and mapping 

expertise [203]. About a year later Google acquired aerial camera manufacturer ImageAmerica to 

similarly support its efforts to capture aerial imagery for Google Maps [204]. 

 

Figure 3.12 Areas Covered by „Microsoft Global Ortho Project“: The Entire Lower 48 US States 

(Left) and Parts of Alaksa; 14 European Countries (Right); 

Microsoft recently completed one of the largest aerial image capture project ever undertaken by 

creating continuous color orthophoto imagery of the whole area of the continental United States 

as well as 14 European countries at a consistent GSD of 30 cm. To allow image capture at this 10 

million km2 and 100 Terapixel scale within a time frame of only about two years (2010 – 2012), 
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a special sensor system (UltraCam-G) was developed by Microsoft Vexcel. Multiple systems of this 

and other camera types of the UltraCam series were operated in cooperation with multiple aerial 

survey firms in various regions to achieve this goal. Since data freshness is also a concern for 

mapping services, in order to reflect recent changes in the geography and man-made structures 

due to new constructions or natural disasters, 60% of this data will be re-captured within a 2.5 

year timeframe. Data from this “Global Ortho Project” have been made available to users via Bing 

Maps as well as for commercial use through a partnership with DigitalGlobe [5, 205]. 

3.2.3 A look back 

Aerial photography has been acquired essentially since the invention of photography, balloons 

and airplanes [206]. While originally images were taken simply to document the appearance of 

objects from the air, this development eventually led to the invention of aerial photogrammetry 

as an important tool to determine geometric properties of captured scenes, as well as for large 

area mapping in order to generate topographic maps.  

Until about 2003, aerial cameras used film as the medium for capturing and storing imagery which 

had to be processed using analog equipment. A transition to digital processing started around 

1990 as scanning film and processing pixels on increasingly powerful computers led to 

photogrammetric measurements. Photogrammetric scanners at +/- 2µm geometric accuracy (e.g. 

Vexcel VC4000 and Vexcel UltraScan 5000) were invented, which served to digitize the analog 

film-based imagery into 11,000*11,000 pixel arrays at 20 µm pixel size in the film plane [207]. 

Hence, due to advancements in digital image processing, computer vision and digital 

photogrammetry the digital images could be processed using photogrammetric software products 

directly.  

 

Figure 3.13 Multi-Overlay at 60% Forward Overlap (Left) and 80% Forward Overlap (Right); [171] 

 The transition from film to digital was completed by the replacement of film-based aerial camera 

systems with digital cameras since 2003, which led to a paradigm shift in the field of aerial 

photogrammetry [97]. Substantial benefits for aerial survey companies and data consumers 

resulted from this development, in terms of the image quality produced (no film grain), the 

capture and processing workflow (no consumables or chemistry required), and the production 

cost (huge potential for automation in data processing) [170]. Due to the elimination of cost for 

consumables, digital images could be captured at significantly larger overlap of 80% in the flight 
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direction and 60% across (Figure 3.13). Note that each point is viewed 5 times for individual flight 

lines, and up to 15 times in for multiple flight lines with 60% side overlap. This redundancy 

enables automatic workflows such as multi-ray matching for automatic 3D modelling [171]. 

Numerous providers offer digital aerial camera systems for medium and large scale aerial 

photography. Three of the most commonly used systems are the Digital Mapping Camera (DMC) 

system offered by Intergraph, the UltraCam family of cameras developed by Microsoft Vexcel, and 

the Airborne Digital Sensor (ADS) family of cameras offered by Leica Geosystems [208]. While the 

former two systems utilize a combination of multiple area-CCD sensors in a grid arrangement, the 

latter follows a similar principle to satellite cameras by using linear sensors in a push-broom 

fashion to scan swaths of terrains at a time. 

3.2.4 Aerial LiDAR 

Aerial Light Detection and Ranging (LiDAR) systems (laser scanners) from providers such as 

Leica, Optech, TopSys or Riegl represent a frequently used direct sensing alternative to 

photogrammetry using aerial images [209]. LiDAR is an optical remote sensing technology, which 

may be deployed from aircraft to measure distances to the ground. LiDAR sensors actively emit 

laser beams at a high rate (e.g. 400,000 Hz) [210] and measure properties of reflected light to 

determine range or other information of objects. Aerial LiDAR systems typically measure the time-

of-flight tof of the reflected laser beams as they pass twice through a medium (e.g. air) with the 

speed of light c. This time can be converted into a depth measurement d as per 

 𝑑 =
𝑐 ∗ 𝑡𝑜𝑓

2
 ( 3.1 ) 

By means of post-processing, a series of depth measurements can be converted into a 

georeferenced 3D point-cloud in a world geodetic coordinate system such as WGS84. This 

typically involves the combination of data from three sources: (a) a LiDAR sensor, (b) a GNSS 

receiver and (c) an inertial navigation system (INS). LiDAR scanning usually follows the 

pushbroom model by scanning a swath of depth measurements orthogonal to its trajectory [211]. 

Hence the position and orientation of the aircraft needs to be tracked continuously to allow 

precise geolocation of the 3D point cloud. 

Aerial LiDAR systems frequently allow the capture of multiple reflections per emitted laser beam, 

in order to obtain depth values for various layers on the ground, such as tree crowns or the terrain 

underneath. While the former two properties may be used to determine the depth to an object or 

terrain surface, the latter property serves as a measure of the surface reflectivity [211]. 

Various techniques have emerged to convert LiDAR point clouds into continuous DSM and DTM 

models [212, 213, 214] similar to the data presented in Section 3.1.4, which can be used as an 

input for GIS or internet maps. More research has been done in automatic city-modeling based on 

LiDAR data in isolation or in combination with aerial imagery [215, 216, 217, 184, 218, 219]. 
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Figure 3.14 Comparison of UltraCam Aerial Photograph at 8 cm GSD with Superimposed Leica 

GeoSystems ALS50 LiDAR Point Cloud at 70 cm Spacing in Forward Direction and 45 cm across 

[170]  

While LiDAR depth measurements can be relatively accurate on flat surfaces (2-15 cm) [211, 

170], the spacing in-between individual points (e.g. 40-70 cm), the point diameter on the ground 

(e.g. 1 m) and the accuracy of the GNSS/INS orientation system are often limiting factors [211]. 

The difference in point spacing compared to aerial image at 8 cm GSD is visualized in Figure 3.14. 

Therefore using dense matching techniques on 3-30 cm GSD aerial imagery often leads to more 

detailed DSM and DTM products at comparable height accuracy of 2-3 cm [170]. 

3.2.5 Oblique Aerial Imagery 

Oblique imagery has a history in military reconnaissance over restricted areas dating back to 1920 

[220, 221]. Since 2000 it has resurfaced within Internet mapping. In this application it is not used 

for relative accuracies better than 1/10,000 but to please the eye, and for simple quantitative 

measurements in urban areas [93]. Due to the focus on urban areas, the data volumes are reduced 

compared to vertical imagery. In June 2013, Bing Maps reported its total “Bird’s Eye” image 

coverage to be 0.5 Petabytes [114]. 

In general, oblique aerial imagery is captured in a similar manner as nadir images, by using 

airplane based camera systems operated by aerial surveyors. Differences exist mostly in the setup 

of the cameras within the aircraft, and the camera system design. Oblique images, in contrast to 

nadir aerial and satellite photography, are recorded by tilting the optical axis of a camera by some 

angle relative to the surface normal (nadir), in the range of 20 to 60 degrees [219].  

Due to this tilting angle, objects on the surface appear in a way that is often more natural for 

viewers to understand than in vertical imagery, as the perspectives closer resemble their daily 

experience (see Figure 3.15). For example, oblique imagery also shows the side walls of buildings 

in urban environments, which allows easier recognition and interpretation by viewers than nadir 

photography. 
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Figure 3.15 Oblique Aerial Photograph in Bing Maps @30 cm GSD (United Nations City, Vienna) 

While oblique imagery could theoretically be captured by satellite sensors, the increased amount 

of atmospheric disturbances caused by haze or clouds at typical satellite altitudes of e.g. 600 km 

reduce the feasibility. Therefore, most oblique imagery is captured using aerial cameras, the 

optical axes of which are tilted relative to the nadir direction.  

 

Figure 3.16 Microsoft UltraCam Osprey Oblique and Nadir Aerial Camera 

An array of individual camera cones is used synchronously, to generate oblique views in multiple 

directions at a time. For example, an arrangement can consist of four cones, each rotated 90 

degrees relative to its predecessor around the nadir axis. This leads to views of the underlying 

scene in all four cardinal directions. The incident angle of individual viewing rays from objects 

entering the camera varies throughout each image by up to half of the camera’s field of view. 

A common provider of oblique imagery is Pictometry [222], while other companies such as Leica 

Geosystems and Microsoft have also developed digital aerial camera systems for oblique image 

capture. A 2008 overview of oblique camera systems [221] lists more than 10 configurations 

containing between 1 and 8 individual cameras. A more recent (2013) camera design capturing 
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both nadir and oblique imagery simultaneously is the UltraCam Osprey [223] shown in Figure 

3.16.  

Oblique imagery can be embedded in internet mapping either as a collection of individual images, 

or as a continuously stitched oblique mosaic. In both cases, geo-registration of the images to each 

other, and ortho-images is required to provide a smooth transition across layers. Accurate 

registration between oblique images, 3D elevation models and vector data further enables the 

augmentation using vector information in a similar manner as ortho-images. Vector information, 

if rendered correctly by considering the 3D geometry (Figure 3.1 above), can add useful 

information to the oblique views [224]. 

Additionally oblique images can be used to texture 3D city models with higher-quality façades 

than nadir data [218, 219], or for semantic analysis of the building details such as for counting 

floors and windows and creating semantic models thereof [225].  

3.2.6 Aerial UAV Photography 

“Unmanned aerial vehicles” (UAV) or more specifically smaller sized “micro aerial vehicles” (MAV) 

such as the Microdrones md 4-200 in Figure 3.17 provide a low cost, and easy to setup alternative 

for capturing aerial imagery of small areas such as construction sites, parks, archeological sites, 

areas impacted by catastrophes etc. They are increasingly used by aerial mapping firms in order 

to generate mapping products such as orthophotos, DSM or 3D reconstructions of specific 

locations within a short time frame. Apart from the faster availability and lower cost of the data, 

other advantages include higher resolution (smaller GSD) of the imagery collected, less 

dependency on weather conditions due to the low flying altitude and lower emissions [226]. 

 

Figure 3.17 md 4-200 UAV [227] 

Research by [174] led to Pix4D [228], an automated processing workflow enabling the generation 

of different mapping products such as the surface mesh shown in Figure 3.18 from UAV imagery. 

A similar workflow based on SFM and dense matching has been proposed by [175]. While many 

data products are used for surveys of individual sites such as construction areas at accuracies of 

0.02 to 0.2 m [229], the same mapping products can also be used for internet mapping. They pose 

an especially attractive alternative in case of disaster response or other scenarios requiring fast 

turnaround. 
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Figure 3.18 Textured Surface Model of Laussane, Switzerland, Generated from UAV Imagery using 

Pix4D Workflow; [230] 

Depending on whether the flight pattern is pre-defined (e.g. Figure 3.19) or arbitrary, UAV and 

MAV may be classified as systematic or semi-systematic capture platforms.  

 

Figure 3.19 Example Flight Path of an Unmanned Aerial Vehicle [226] 

3.3 Internet-Inspired Digital Aerial Camera System 

We review a specific aerial camera development, as the main system driven to support a global 

data infrastructure for location-aware Internet search. The UltraCam was originally invented by 

Vexcel Imaging GmbH. in Austria for the general aerial mapping market and introduced in 2003 

[97]. It very much inspired the rapid transition from aerial film to a fully digital workflow of aerial 

photogrammetry [171, 231, 232, 93]. 
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However the need to add a high resolution image backdrop to emerging location-aware Internet 

search systems motivated a transfer of the UltraCam inventor into Microsoft’s Virtual Earth, now 

Bing Maps, program by mid-2006 [203]. 

 

Figure 3.20 Microsoft UltraCam Eagle – Flagship 260 Megapixel Large Format Digital Aerial 

Camera; 4 Panchromatic Cones are Arranged Vertically in the Center - Red, Green, Blue and NIR 

Cones in the 4 Corners; 

The initial model (UltraCam-D) soon became the leading product worldwide in this area with an 

estimated market share of 50% in 2012 [233]. Later, more models of the sensor family were 

released, such as the UltraCam Eagle shown in Figure 3.20 with increased image resolutions, 

different focal lengths and improved workflows. An overview of the different model revisions 

including the key specifications is provided in Table 3-2. 

Format UltraCam 
Generation 

Year Image Format Pixel 
Count 

Pixel 
Size 

Focal 
Length 

Cones CCD 
Count 

Large UltraCam-D 2003 11500 ∙ 7500 
@ 12 bpp 

86.2 M 9 µm 101.4 mm 4 Pan, 
4 MS 

13 

Large UltraCam-X 2006 14430 ∙ 9420 
@ 12 bpp 

135.9 M 7.2 µm 100.0 mm 4 Pan, 
4 MS 

13 

Large UltraCam-Xp 2008 17310 ∙ 11310 
@ 12 bpp 

195.7 M 6 µm 100.0 mm 4 Pan, 
4 MS 

13 

Large UltraCam-Xp 
Wide Angle 

2009 17310 ∙ 11310 
@ 12 bpp 

195.7 M 6 µm 70.0 mm 4 Pan, 
4 MS 

13 

Medium UltraCam-L 2009 8000 ∙ 6000 
@ 14 bpp 

62.7 M 7.2 µm 70.0 mm 2 Pan, 
2 MS 

4 

Medium-
Large 

UltraCam-Lp 2009 11704 ∙ 7920 
@ 14 bpp 

92.7 M 6 µm 70.0 mm 2 Pan, 
2 MS 

4 

Large UltraCam Eagle 2011 20010 ∙ 13080 
@ 14 bpp 

261.7 M 5.2 µm 70.0 mm /  
100.0 mm 

4 Pan, 
4 MS 

13 

Medium-
Large 

UltraCam Falcon 2012 14430 ∙ 9420 
@ 14 bpp 

135.9 M 7.2 µm 80.0 mm /  
210.0 mm 

4 Pan, 
4 MS 

13 

Medium, 
Oblique 

UltraCam Osprey 2013 11674 ∙ 7514 
@ 14 bpp 

87.7 M 5.2 µm 51.0 mm /  
25.5 mm/ 
80.0 mm 

1 Pan, 
2 MS, 
6 Obl 

9 

Table 3-2 Overview of UltraCam Aerial Camera Generations; Source: Microsoft 

3.3.1 Smart Sensing from the Air 

The UltraCam series of cameras showcased a novel sensor concept, using 4 panchromatic cameras 

as well as 4 cameras capturing individual multispectral channels (Red, Green, Blue and Near 
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Infrared). Each of the panchromatic camera cones is equipped with the same type of lens with 

approximately 100 mm focal length, exposing either 4, 2 or 1 CCD sensors: 

 C0 (Master cone) holds 4 sensors (a..d), positioned in the corners of a 3∙3 grid, providing 

a stable reference frame for stitching the remaining images. 

 C1 holds two sensors (a,b), one in the top center, and one in the bottom center of the grid 

 C2 holds two sensors (a,b), one on the left, and one on the right 

 C3 holds a single sensor in the center location 

The combined fields of view spanned by the different camera cones covers a full 3∙3 grid when 

superimposed onto each other. (Figure 3.21). The combination of the different cones represents 

the field of view of a single camera with a sensor 3∙3 times as large. The main reason for separating 

the different smaller sensors into different cones, was to enable the use of standard Full Frame 

Charge Coupled Device (CCD) sensors [234] rather than custom sensors spanning the whole 

image format. 

 

Figure 3.21 Sensor Arrangement for UltraCam Large Format Camera Systems (D, X, X-Prime, 

Eagle); Gray Tie Points in Overlap Areas are Used for Sub-Image Registration; 

The four multispectral cones each use a single CCD sensor of the same type as the panchromatic 

ones combined with lenses of about a third the panchromatic focal length. They are equipped with 

color filters, corresponding to the desired spectral behavior for the given color channel (Red, 

Green, Blue, NIR). This results in a similar field of view as the panchromatic array, at a 3 times 

increased GSD. 

In addition to the basic sensor concept, the UltraCam system featured several key advances, 

leading to superior image quality and more optimal workflows. Several of these advances were 

achieved by innovative electronics design, including a pulse pattern generator to control a full 

frame CCD sensor and other sub-systems described in [235]. 

 Full-frame CCD sensors with large 9 µm pixel led to superior image quality compared to 

film cameras (See Figure 3.22), with 60% reduced image noise, higher 12 bit dynamic 

range and better stereo-matching in low-textured areas while achieving similar sharpness 

as a 20 µm film scan [236]. 

C0a C0b 

C0c C0d 

C1a 

C1b 

C2a C2b C3 
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Figure 3.22 Comparison of Film Based Image (Left) and UltraCam-D Image @17 cm GSD (Right) 

 Forward motion compensation has been used in analog film cameras to reduce motion-

blur caused by the forward motion of the plane. While traditionally this has been achieved 

by mechanically moving the imaging plane synchronously with the landscape below, the 

UltraCam featured a novel control electronics allowing electronic FMC by means of time-

delayed-integration [237]. Thus pixels are shifted across the CCD sensors synchronously 

during exposures, allowing increased exposure times (e.g. 10-20 times) for superior 

radiometry even in case of small 3-4 cm GSD under cloudy flying conditions (Figure 3.23). 

   

Figure 3.23 Image of the Salzburg Dome Captured @4 cm GSD w/o FMC (Left) and with FMC (Right); 

 Variable aperture lenses further helped to accommodate varying lighting conditions (e.g. 

bright sunlight vs. twilight or cloudy) while using short (<10 ms) exposure times. 

 Syntopic triggering was introduced as an electronically controlled measure to avoid 

parallaxes between individual sub-images due to geometric offsets in the camera body. 

This means images are triggered in the same location of their trajectory rather than at the 

same time (synchronous) [237]. 

 High frame rates of up to 1.3 frames per second (fps) allowed capturing imagery at 

significantly larger forward overlaps than for film based cameras (e.g. 80-90% instead of 

typically 20-30%). The added redundancy in observations of the same geographic region 

enabled substantially different ways of data processing, such as multi ray stereo matching, 

and automatic DTM / DEM generation [171, 231]. 
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3.3.2 Processing Workflow 

Various processing steps are required to obtain image products from raw Level-0 imagery, based 

on geometric and radiometric calibrations (intrinsics and extrinsics) obtained during a lab 

calibration explained in Section 3.3.3. 

After the radiometric correction of the 13 raw images, to correct for defective pixels, dark level 

and vignetting, into Level-1, they get geometrically transformed into the respective location in the 

overall image format. Based on the geometric calibration, and tie-point matches in the sensor 

overlap areas (see Figure 3.21), bicubic resampling [238] is used to combine the individual Level-

1 sensor images into a single large panchromatic and 4 multispectral image layers (Level-2). For 

this purpose, cone C0 (=master cone) is used as a reference to fit the in-between images. Once the 

panchromatic sensors have been geometrically transformed and blended into a single output 

image, the four multispectral images are also geometrically corrected, registered to each other, 

and combined into a 4-channel multispectral image. 

To avoid distortions in the output images due to temperature drifts, an improved stitching 

algorithm was proposed by Ladstaetter et al [239], taking into account tie-point correspondences 

between panchromatic and multispectral images. Using a temperature model, temperature drift 

is estimated and corrected, leading to reduced reprojection errors during aero-triangulation. 

 

Figure 3.24 Level-3 False Color Infrared Image Captured with UltraCam-D Camera at 4 cm GSD; Red 

Colors Indicate Vegetation; Location: Children’s Hospital in Graz, Austria; 

The radiometrically and geometrically corrected panchromatic and multispectral Level-2 images 

are equivalent to a developed film image, in that the process for obtaining them depends purely 

on the camera calibration and the scene content.  
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Based on this intermediate format, various kinds of output image formats (Level-3) can be 

generated, including radiometrically adjusted high resolution RGB or false-color infrared (CIR) 

[97] images requiring Pan-Sharpening [191], or high resolution panchromatic images. Further 

radiometric adjustments such as a gamma-correction or general gradation curves can be applied 

during this process. While RGB images are commonly used for computing building-textures and 

orthophotos such as for internet mapping, CIR images (Figure 3.24) may be used to visualize (note 

the distinct red color) and classify vegetation like trees or bushes [240]. They are generated by 

mapping the near-infrared, red, and green spectral bands onto the visible RGB bands [241], thus 

indirectly extending the human’s spectral range to the near infrared band. 

3.3.3 Achieving High Accuracy Calibration at +/- 1 µm 

Calibrating systematic errors of aerial cameras is essential for achieving satisfactory sub-pixel 

measurement accuracy in photogrammetric applications. In [242] we proposed a method for 

calibrating the sensor geometry (intrinsic and extrinsic parameters) of the UltraCam system, by 

means of bundle adjustment of a set of automatically detected 2D observations of a known 3D 

arrangement of circular markers.  

 

Figure 3.25 Fixed 3D Arrangement of Markers used for Geometric Calibration 

For this purpose we use a commercial bundle adjustment tool called Bingo [243]. A sample 3D 

marker arrangement is depicted in Figure 3.25. The observed reprojection errors of individual 

cameras are generally better than +/- 1 µm RMS in the images. An example plot showing the 

residual calibration errors of +/- 0.8 µm RMS for a particular camera is given in Figure 3.26. 
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Figure 3.26 Residual Calibration Errors in Image Coordinates for 4 Sensors in Cone C0 of a 

Particular Camera as Reported by BINGO [243], Resulting in an RMS Error of 0.8 µm RMS [244] 

In addition to the sensor geometry, the radiometric properties such as camera vignetting and CCD 

sensor blemishes (dead pixels) have to be determined, to allow for correction during 

postprocessing. For this purpose, we capture a set of 7·4 calibration images using a Teflon based 

diffusor disk illuminated by a set of calibrated light sources to serve as a flat field target, as 

illustrated in Figure 3.27. 

 



Categories of Geospatial Image Data  62 

 

 

Figure 3.27 Setup for Capturing Radiometric Calibration Images 

The average of all calibration images is used as a reference for computing the calibration factors 

for each pixel (as the inverse of the normalized intensity values), as well as to automatically detect 

individual pixel and column defects in the images. We rotate the camera 4 times around its axis 

by 90 degrees, and tilt it in 7 different orientations in 10 degree steps relative to the two light 

sources to achieve a symmetric illumination pattern. Since the vignetting present in a camera 

depends on the aperture setting used, the process has to be repeated for each of 5 supported F-

numbers (F5.6, F8, F11, F16 and F22). The resulting radially symmetric correction factors for a 

sample camera are visualized in Figure 3.28. 

 

Figure 3.28 Radially Symmetric Vignetting Correction Factors for Different Aperture Settings 

As part of the standard calibration procedure, a report of the relevant geometric, radiometric, 

optical and electronics calibrations is generated [244]. 
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3.4 Human Scale Images and Mobile LiDAR Systems 

A novel and distinct kind of systematically collected image data, frequently used for online 

mapping application, are terrestrial images taken from a “human” perspective, such as on streets, 

in pedestrian outdoor areas or inside buildings [116, 115].  

The main application of human scale imagery is the Internet. Typically, images are captured in a 

panoramic configuration, giving a viewer a navigable 360 degree surround view of a scene. 

Advantages of human scale panoramas are the increased level of detail, the more natural 

appearance, and intuitive navigation within and in-between locations. Prior to panoramic images, 

mapping sites frequently used manually captured business storefront images showing the 

appearance of individual businesses to support navigation. 

Similar to aerial imagery, specifically designed hardware is required for capturing panoramic 

images in street networks spanning many thousand kilometers. The lack of existing commercial 

products led companies like Microsoft or Google to develop their own streetside capture systems. 

Human scale data have different image scales compared to aerial or satellite images. While 

satellite images for internet mapping are typically captured at 50 cm GSD or higher, and aerial 

imagery at 15 cm GSD or higher, the GSD of human scale images may be as little as 2 cm for 

outdoors and 0.5 cm for close-by indoor objects. Similarly, the capture intervals are substantially 

smaller (several meters versus tens or hundreds of meters for aerial), based on the desired image 

density at a specific location. 

As of now, the concerted capture of human scale imagery has been focused largely on public 

streets or areas accessible with a trolley, cart, bicycle, or similar form of transportation, while 

examples of other environments such as indoor venues or private outdoor areas accessible by 

walking have been shown less frequently. 

Leberl [1] has estimated that the total data volume required for human scale data to support a 3D 

world model at 2 cm urban street GSD and 0.5 cm indoor GSD is approximately 1,500 Petabytes 

in addition to 190 Petabytes for 15 cm aerial coverage. Actually reported data volumes still lag 

behind this estimate. Google reported in 2012 to have altogether 20 Petabytes of (compressed) 

street view images released, covering 8 million kilometers, which corresponds to roughly 300 

Petabytes of raw data captured [8]. 

In the following, we describe the specific aspects of terrestrial imagery used for mapping services, 

including streetside images, storefront images and images captured using wearable systems. 

Additionally we provide an overview of different formats used for storing panoramic images. 

Further requirements specific for human scale data capture are provided in Section 4.3. 

3.4.1 Streetside Imaging 

The term “streetside images” (or “Street View” in case of Google) usually refers to human scale 

images captured on public street networks, either in urban or rural settings [245]. As such, 

streetside images capture objects such as building façades, vehicles, street signs, people, animals, 
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vegetation and various other objects also referred to as “street furniture”. Such data gets captured 

using custom mobile mapping systems (MMS) carried by vehicles such as vans or cars, operated 

by vendors such as Facet Technologies [246]. Several such sensor platforms have been built by 

different companies such as NavTeq, TeleAtlas, Google, Microsoft, as well as numerous 

universities and research organizations. 

Streetside imagery provide views of a location (urban or rural) similar to what a user would 

perceive on-site, driving a vehicle or walking on the respective street. For example this can be 

used for navigation, to indicate paths to locations such as points of interest or addresses. It also 

allows exploration of remote locations, such as when planning a trip or deciding which hotel or 

restaurant to choose.  

Similar to aerial imagery streetside capture follows previously specified capture pattern, e.g. by 

driving each street of a given city, and taking pictures at a constant interval. Therefore, as pointed 

out above (3.1.3) they provide largely homogeneous coverage throughout a region (e.g. a city), 

independent of the significance or relevance of a place within the region (see Figure 3.29). 

 

Figure 3.29 Typical Coverage Pattern for Streetside Capture in Graz, Austria with UltraCam-M 

3.4.2 Business Storefront Imagery 

A specific type of geospatial imagery covers business storefronts, which are associated with points 

of interest (POI) on the map (Figure 6.15). Storefront imagery have been used by mapping sites 

prior to the availability of panoramic streetside data to show the appearance of a business from 

outside. This data type is partially still used today in areas without streetside coverage. 

The acquisition is often manual via sub-contracting companies such as InfoUSA [247], which hire 

a group of people to perform the field capture of images and rough GPS locations for POIs in a 

defined area. Although the geographic distribution of this type if imagery is not systematic (e.g. in 

equidistant intervals), we still consider the acquisition process a systematic one. Typically the 
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extent of the region is precisely defined, such as by using street numbers or city blocks, and the 

task is defined by provided instructions and a list of businesses to be captured. 

 

Figure 3.30 POI Listings on Google Maps and Bing Maps were Accompanied by Storefront Images 

Prior to the Emergence of Street View Data [59] 

3.4.3 Mobile LiDAR 

Similar to aerial data capture, LiDAR scanning may also be used in terrestrial settings to directly 

obtain depth information of a scene such as of building facades and other urban objects. Providers 

such as Faro, Riegl, SICK, MDL, Trimble, and Leica offer various types of LiDAR systems aimed at 

stationary and mobile data capture as part of a mobile mapping system (MMS) [248, 249, 250]. 

Depth information is obtained by measuring the time of flight, or phase shift of the reflected laser 

signal. The laser emitters and receivers often rotate at very high rates, thus scanning a slice of the 

observed scene during each revolution at scan rates of up to 1 MHz [251]. 

Georeferencing of the 3D point clouds captured by MMS frequently involves the same kind of 

components as for aerial systems such as GNSS and INS [252]. While LMS increase the cost and 

complexity of MMS compared to cameras, they directly obtain depth without the need for 

postprocessing. 

We describe the use of a mobile LiDAR system below in Section 4.3.4 as part of a particular mobile 

mapping system design. 

3.4.4 Indoor and Unnavigable Areas 

Several companies such as Google and Microsoft have been working on solutions for capturing 

human scale imagery in areas inaccessible by streetside capture systems. Such areas include 

outdoor venues such as parks, golf courses, skiing slopes and hiking trails, or indoor venues like 

sports stadiums, shopping malls, restaurants, museums and real estate. Same as for streetside 

data, panoramic images allow an immersive exploration of such locations. 
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Imagery can be obtained systematically or via crowd-sourcing. Systematic data collection is often 

performed using custom capture hardware, by internet mapping firms or by third party sources 

such as 360 Cities [253]. Mobile versions of Google’s capture platform mounted on bicycles, carts 

or skidoos as shown in Figure 3.31, have been used to capture otherwise inaccessible areas. 

Crowdsourced data capture uses panorama capture software such as Photosynth Mobile [254]. 

          

Figure 3.31 Different Google Street View Capture Platforms; Source: [115] 

While concerted capturing of such venues at a global scale by far lags behind the scale of streetside 

capture, the potential data volumes are expected to outgrow currently available images. This 

results from the large number of locations accessible for pedestrians, and the higher density of 

images required for such areas. 

3.4.5 Panoramic Image Representations 

Panoramic images are a popular form of visualizing a specific location from a human perspective, 

which allows immersive exploration of environments such as street scenes or indoor venues. 

Viewers can freely select the view port by zooming in and out, rotating around the vertical axis 

(pitch), as well as up or down (yaw angle). Apart from streetside and indoor captures by mapping 

providers, panorama stitching tools such as Photosynth Mobile [254] or Microsoft ICE [255] 

produce similar 360 degree panorama data usable for crowdsourcing. 

Panoramas can be rendered for viewing in different fashions, such as via the transformation into 

a single 2D image using cylindrical or equirectangular (spherical) projection [256]. This format 

can also be shown in relatively simple client applications (e.g. HTML 4.0) which do not support 

arbitrary views, while navigation is limited to panning and zooming. Further the views in such 

panoramas are distorted compared to central perspective images. Figure 3.32 (center and 

bottom) shows examples of panoramic images under cylindrical and equirectangular projections. 

Alternatively, in case the client application supports more complex transformations to the input 

panoramic image (e.g. homography transformation using a 3D rendering engine such as OpenGL 

or DirectX), an arbitrary and perspectively correct view corresponding to a virtual camera can be 

produced as the user scrolls and pans through a panorama [256]. For this purpose, a virtual 

camera viewport with a specific angle of view, viewing direction and focal length can be placed at 

the center of the panorama cube, and a viewport specific image can be rendered. 
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A common representation for storing human scale panoramic images represents the panoramas 

(see Figure 3.32 - top) uses 6 cube face images of a sub-segment of the overall solid angle. Each 

cube face further can be stored at different levels of detail in a tiled quadtree structure [137], such 

that only the relevant viewport and zoom level needs to be downloaded to the client application 

for visualization. The tiles used to store the panoramic images typically have a constant pixel 

count (e.g. 256 ∙ 256 pixel) [257].  

 

 

 

Figure 3.32 Different Formats for Panoramic Images of a Spice Shop in Aswan, Egypt: Cubic Format 

(Top); Cylindrical Projection (Center); Equirectangular (Spherical) Projection (Bottom); [258] 
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3.5 Crowdsourced Images 

Web based mapping services currently rely on systematically collected images as illustrated 

above, yet there exist examples of crowdsourced images as integral parts of online maps. The term 

“crowdsourced” refers to the fact that a large group of amateurs capture imagers, upload these to 

some web based community portal and share them with a broader community [259]. 

3.5.1 Digital Visual Memories 

Digital cameras and online sharing have created an abundance of collective ‘digital memories’. 

Pocket point-and-shoot cameras, digital SLRs, camcorders, surveillance cameras and 

smartphones can quickly and easily document events. The circumstances as well as motivations 

for taking photographs can be numerous, either for personal or for commercial applications.  

Some examples of personal uses of a camera are: documenting important moments in life, 

recording places visited while traveling, or simply to capture the aesthetics of a scene. People do 

this either to enhance their own memory, share their experiences with others, create art, or simply 

because it is virtually cost-free to take photos even without any obvious reason [260]. Professional 

uses of digital cameras include news reporters, forensic evidence, real estate, surveillance 

cameras installed for public safety purposes, traffic and weather cameras.  

New methods of sharing digital photographs have emerged since 1992 with the introduction of 

Photo CDs [261] and DVDs, high resolution mobile phones and digital photo frames. The web has 

also provided plenty of online photo sharing and social interaction websites such as Flickr, 

Panoramio, Instagram, Photobucket, Facebook or Twitter. These services, also referred to as 

Community Photo Collections (CPC) [2] host a quickly growing collection as detailed in 3.5.2. 

Besides people sharing images with their existing friends, new communities have been formed 

due to common interests in photography, creating artistic images of places, etc. For example, 

Flickr “meet-ups” and “photo walks” happen regularly in many different locations around the 

world [9]. People make it a hobby to create artistic photography by using tools like Photoshop or 

Instagram, sharing them with their community and commenting and voting on the aesthetic 

nature of their work. In addition to real photography, even fake imagery often gets created for the 

same reasons. 

Though pictures may not be captured with the intention of feeding data to internet mapping sites, 

they frequently contain geospatially relevant contents such as buildings or monuments. Agarwal 

et al. [11] have shown that a model of a significant part of a city like Rome could be created from 

150,000 crowdsourced images on Fickr. 

3.5.2 Image Sources 

Being traditional photo and video sharing sites, Picasa, Photobucket and Flickr were created in 

2002, 2003 and 2004 respectively, primarily as Web 2.0 platforms for people to share their images 

online with other people, be they friends and family [262]. These services allow uploading 
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previously collected imagery captured with various kinds of cameras like SLR, point-and-shoot 

and mobile phone cameras either directly on their web-sites or using client applications. More 

recently, social networking sites such as Facebook or Twitter added photo sharing functionality, 

which gained significant popularity in addition to general social interaction.  

   

Figure 3.33 Sample Set of Geo-Tagged Outdoor User Photographs from Flickr  

The ubiquity of 1.2 billion [126] smartphones and facilities provided for capturing and sharing 

pictures, led to a vast trend towards mobile photo sharing with 300 million photos uploaded only 

to Facebook per day [18]. Therefore, many of the traditional photo sharing sites and social 

networks released mobile photo sharing apps or added related functionality to their existing 

applications. Instagram, which was launched in October 201, is another example of a mobile photo 

sharing service, primarily as a mobile phone application for the iPhone, allowing application of 

digital image filters, and sharing of the photos with other Instagram users. 

While Flickr added a geo-tagging feature in 2006 [263], certain image sharing services directly 

associate images with geographic locations or points of interest by means of geo-tagging. 

Panoramio which was started in 2005 and later integrated into Google Maps, is a crowd-sourcing 

service specifically aimed at capturing outdoor locations of interest to people, which can be tagged 

using words describing the image content or location. Google Maps contains functionality for 

exploring such user photographs in addition to aerial and street view imagery. A set of sample 

outdoor images which were geo-tagged on Flickr is shown in Figure 3.33. 

The integration of images with maps continued with the release of Photosynth, which is based on 

the work by Snavely et al. [15], and automatically creates a 3D reconstruction of a scene by using 

a Structure from Motion (SFM) algorithm [24]. “Structure from motion aims to recover camera 

parameters, pose estimates, and sparse 3D scene geometry from image sequences” [15] based on 

a collection of photographs taken from different perspectives. An example Photosynth view of a 

scene as well as the corresponding 3D point cloud is visualized in Figure 3.34. Functionality for 

georeferencing such “Synths” by aligning the point cloud derived from the 3D reconstruction, to 

natural features in an aerial view [264] was added later on. This enhances the viewing experience 

for transitions between the different views [265]. Additionally an option of exploring the 

Photosynth collection through a map interface improved the discoverability of such data. Later 

Google added a similar feature called “Photo Tours” [266] which allowed exploration of user-
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contributed images integrated with in a similar way as Photosynth. However this feature is 

currently no longer available. 

 

Figure 3.34 Photosynth Generated from Crowdsourced Imagery (Left); Corresponding 3D Point 

Cloud (Right); Example: Banff Springs Hotel, Banff, Canada 

While most shared image content consists of individual photographs, taken with central 

perspective point and shoot cameras, recent developments of mobile panorama capture 

applications allow stitching panoramic images directly on mobile devices, and sharing them on 

the internet. Such services include AutoStitch, 360 Panorama or Photosynth Mobile. The latter 

enables users to capture images very similar to human scale data shown on Bing Maps, and share 

them with the community [254]. Desktop tools such as Microsoft ICE [255] also create panoramas 

from multiple images captured in a panoramic fashion, which can be uploaded to community sites. 

 

Figure 3.35 Sample Photosynth Mobile Panorama Image in a Spice Shop in Aswan, Egypt (See also 

Figure 3.32); [258] 

Additionally, many more web services with different primary foci exist, allowing community 

photo-sharing, such as blog sites, Wikipedia, RedFin, Amazon, EBay, SnapChat or Tumblr. 
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3.5.3 Data Volumes 

Established photo sharing sites such as Photobucket and Flickr last reported to have 10 and 6 

billion photos in total [267, 10]. By September 2012, after only two years, Instagram had grown 

to a base of 100 million users uploading 5 million new images per day. Additionally, Instagram 

was acquired by Facebook in 2012 for 1 billion USD, which is an indication of the general trend 

and value of such services [268, 269]. 

However, these numbers are dwarfed by an asset of 220 billion photos reported by Facebook 

alone at the end of 2012, occupying roughly 150 Petabytes [18]. According to the report, 

Facebook users upload 300 million new photos per day - 200 times more than Flickr’s 1.5 million 

[270]. At this rate Facebook will add the combined total asset of dedicated photo sharing sites 

every 70 days. Given that Facebook has roughly 20 times as many active members as Flickr, this 

indicates that Facebook users are on average about 10 times more active in sharing photos [271].  

An overview of the different data asset statistics is given in Table 3-3. No photo upload statistics 

could be found for Twitter, Photosynth and Panoramio, but we assume these services have 

significantly smaller data collections due to the short time of availability in case of Twitter and the 

focus on locations in case of the latter two. The total user count of 500 million indicates a large 

potential for Twitter to keep up with Facebook’s numbers [272].  

 

Provider Last 

Reported 

Total 

Photos 

Uploads / 

Month 

Total Users 

Flickr 8/2011 6 billion 45 million 51 million 

Photobucket 12/2012 10 billion 120 million 100 million 

Instagram 10/2012 5 billion 150 million 100 million 

Facebook 10/2012 220 billion 9000 million 1000 million 

Twitter 3/2012 n/r n/r 500 million 

Table 3-3 Data Volume Statistics for Major Photo Sharing Services 

Based on an analysis of 11,000 Flickr images in 2009, 23% were found to be geographically 

relevant. Assuming that this ratio is approximately constant for other sources like Facebook, this 

means that about 40 Petabytes of geospatially relevant imagery exists in CPC today. 

Compared to the estimated 1,700 Petabytes of image data required for a 3D world model [1] this 

still represents a small fraction (2.3%), especially considering the typically uneven geographic 

distribution of CPC data. 

3.5.4 Geolocation 

Lately there has been a growing demand for photos associated with geographic locations in a 

process called “Geo-Tagging”. It is a useful way of organizing the information, either for personal 
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use (“find all the photos from the vacation to Hawaii”) and commercial use (“What does that 

neighborhood look like?”). A common approach is to use Global Navigation Satellite Systems 

(GNSS) such as GPS (USA) or Galileo (Europe) devices to capture the location (latitude and 

longitude) continuously using satellites or an A-GPS which also uses the cellular network or Wi-

Fi hotspots. This information can be stored along with the image data (such as in the EXIF headers 

of the digital file) and can then be inserted into a spatial index for fast search. 

The advantage of geo-tagged imagery is that it can be displayed and browsed in a more natural 

way. Using a map-interface with push-pins or thumbnails representing each image (or image 

cluster) has become the de-facto standard, rather than just displaying a linear sequence of 

photographs. Figure 3.36 provides an example of a map-view with a collection of geographically 

organized images on Panoramio. Nevertheless, only a subset of users actually make use of geo-

tagging functionality when creating and sharing their imagery. A search in May 2013 on Flickr for 

geo-tagged images returned 220 million geo-tagged images, which corresponds to 3.6% of the 

total number of images shared on Flickr (Source: www.flickr.com). 

 

Figure 3.36 Geo-Coded Images in Austria on Panoramio 

The use of GNSS for localization of images has two major limitations: availability and accuracy. In 

case of digital pocket cameras or SLR, the need to carry an extra device just for storing the location 

is obviously an inconvenience. Furthermore, older photographs, such as historical ones anyways 

lack such data. As a consequence, most (96.4% in case of Flickr) of the available photos in 

community photo collections are still not geo-tagged. Additionally, many services such as 
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Facebook allow geo-tagging photos, but don’t share this kind of information with third parties 

through their application programmer interfaces (API) due to data privacy reasons and to protect 

the value of this information [273]. 

Accuracy is also a major issue. [274] found that 639 geo-tagged images on Flickr showed median 

positional errors between 58.5 m and 1,606 m for various geographic regions, while 794 

Panoramio images had smaller errors between 0 m and 24.5 m. When tagging a mountain, 

accuracies of this magnitude may be sufficient, but in an urban setting – especially when viewed 

at a human-scale, such measurement errors are large. Though [275] reports that the median GPS 

accuracy achieved with an iPhone 3G smartphone device is 8 m, GPS accuracy quickly deteriorates 

in urban settings due to various error sources such as multipath and atmospheric effects, and 

clock offsets [276]. These effects result in errors of up to hundreds of meters which translate into 

a completely different city block or landmark. Differential GPS or better error modelling to reduce 

the uncertainty [277] may be used as mitigations. However, the remaining errors may still be too 

large for some applications. Other infrastructure-based geo-tagging methods use triangulation 

between locations of known cell phone tower positions, or Wi-Fi hotspots, which achieve even 

less accurate geo-positioning at 600 m and 74 m median error respectively [275]. 

3.5.5 Benefits from Using Crowdsourced Data 

Understanding the value of crowdsourced image data for mapping or general image search, 

requires the understanding of how they differ from systematically collected datasets, and which 

additional information can be extracted via analysis. An obvious and huge advantage compared to 

systematic aerial and human scale imagery, is that community created data come at essentially no 

cost. Further they get produced at ever increasing rates, on a multitude of different services, which 

leads to superior “freshness” compared to systematically collected data. 

While the reliability of crowdsourced images in terms of their quality, significance to others and 

accuracy of metadata provided is generally lower for individual images than in case systematic 

collections, the power of using crowdsourced data comes from accumulating signals provided by 

many people [149]. Individual photos may either be of low quality, have incorrect geocoding [274] 

or contain incorrect or irrelevant tags. By combining the information from many users, the 

significant signals can often be separated from the noise, and hence provide new information. 

An example of added value is the potential of finding and suggesting locations relevant to people. 

Due to the fact that crowdsourced images are captured by a huge community of people in many 

locations, with different intentions, and without a common schedule, their geographic distribution 

differes starkly from the regularly spaced flight lines of aerial imagery, or dense coverage of street 

networks with streetside imagery. A key aspect that becomes obvious from the geographic 

distribution of geo-tagged crowdsourced images (Figure 3.37, left), is that certain locations (e.g. 

Pike Place Market, Space Needle or Pioneer Square in Seattle) have a very high photo-density, 

while in other areas, much fewer photographs are available. Typically, these “hot-spots” are areas 

that are more popular, such as touristic attractions, sports stadiums, parks or other public places. 

[12] and [278] describe approaches for automatic hot-spot extraction from CPC data. 
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Not only do the distributions of community created photographs reveal interesting places which 

systematic patterns ignore (3.1.3), the coverage patterns at finer scales even indicate the exact 

objects of interest, such as statues in a park, or pieces of arts in a museum. An example scene from 

[159], illustrating this fact, was reconstructed in 3D from images contributed by multiple people. 

The different camera frusta for all pictures have been intersected in a top down view similar to 

“flash lights” (Figure 3.37 right), pointing out the location of a hot spot in the scene. In the shown 

example the hotspot corresponds to the location of a painter’s canvas in an arts exhibition. 

     

Figure 3.37 Distribution of Geocoded Images from Flickr Shown as Quadtree (Left). Smaller and 

Brighter Areas Have Higher Density; Example from [159] - Intersection of Multiple Camera Frusta 

Highlight Popular Object (Right); 

By utilizing metadata information (Section 3.5.7) associated with CPC imagery, further 

information about the image content can be extracted, such as the name of a piece of art, 

commonly used adjectives for a certain location or object, or other related information.  

3.5.6 Challenges 

Challenges for using community created data assets for commercial applications arise from the 

fact that the content holders, such as Facebook, Yahoo, Google or Microsoft are not always willing 

to share these with outside parties. Even if programmatic data access to images by means of public 

application programmer interfaces (API) is provided, metadata such as geo-codes or tags are 

frequently only available to the content holders [273]. 

Further restrictions for using the uploaded data are by the content owners themselves, who 

impose certain license terms. While by default rights to use the data belong only to the content 

owner, many popular photo sharing services use the Creative Commons framework [150] 

providing people the ability to restrict only particular (e.g. commercial) use of their data or to 

make them freely available for all applications. Despite the benefit for the community of sharing 

images without license restrictions, individuals hesitate to do so. An analysis of 20,000 images 

Space 
Needle 

Pike 
Place Pioneer 

Square 
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uploaded to Flickr showed that about 95% of images are restricted for private use only, thus 

preventing any commercial exploitation of the data. 

Another challenge arises from the fact that photo assets and their metadata are not organized in 

a consistent way across different CPC services. This requires specific implementations when 

crawling third party CPC for relevant image data to aggregate them into a single database. 

Further, as mentioned above, the reliability of crowdsourced data is frequently low, especially for 

individual datasets or users [149]. Intentionally created spam by malicious users is a common 

problem, which mostly can be resolved by congregating data from many users via majority-voting 

or removal (blacklisting) of spammers [279]. 

3.5.7 Metadata 

While systematically collected data types like aerial and human scale imagery often include very 

precise metadata about the location (e.g. +/-2 m) and orientation of individual shots and even 

individual pixels within the frame, they often do not directly include additional metadata such as 

visible contents or background information about the image.  

In contrast, crowdsourced image data often have less precise geo-tagging information, but instead 

are linked with additional kinds of metadata: 

 User name / id of content owner 

 Capture / upload time and date 

 Latitude / longitude where data was captured 

 Title and description 

 Comments from different users 

 A collection of image-tags 

Particularly image titles, descriptions, comments and tags contain valuable semantic information, 

allowing further analysis by combining the data from multiple users. Tags are used to describe the 

image contents, location, people, etc. in order to allow searchers to find images concerning a 

certain topic such as a place name or subject matter. 

An analysis of 122,000 geocoded Flickr images in Seattle showed that 68.6% of all images 

contained a valid title (not including automatically created names such as image file names), and 

85.9% contained at least one tag. On average images contained 2.85 tags (350,000 total). 

Assuming that these ratios are representative for all 220 Million geocoded images, it means that 

Flickr data alone contain 150 Million geocoded image titles and 630 Million geocoded photo tags. 

One way of extracting valuable information from crowd-sourced data is by accumulating data 

from many users in multi-dimensional histograms and projecting them onto individual 

dimensions. Example projections of the frequency for popular photo tags in the latitude/longitude 

plane of a map, as well as projections onto the time axis are visualized in Figure 3.38. The user 

frequency maps are computed as the logarithm of the number of distinct users using the same 
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photo tag within a latitude/longitude bin. In this example a minimum of 2 users was required per 

bin in order to eliminate irrelevant tags used only by a single user.  

 

 

 

 

  

Figure 3.38 Sample Geographic and Temporal Distributions of Photo Tags 

Tag: „Seattle“ Tag: „Downtown“ Tag: „Waterfront“ 

Tag: „Arboretum“ Tag: „Monorail“ Tag: „Troll“ 

Tag: „Summer“ Tag: „Fall“ Tag: „Winter“ 

Tag: „Solstice Parade“ Tag: „Art“ Tag: „Music“ 

Tag: „Cat“ Tag: „Dog“ Tag: „Sunset“ 
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The temporal distribution (from 2004 to 2010) shows the actual number of occurrences for a 

given tag normalized by the total tags count within a particular time-span. 

Many interesting questions can be answered based on density analysis results. What are popular 

destinations for photographers? Are they more popular during certain times of the year? Which 

events recur repeatedly? Where and when certain subjects (e.g. cats or dogs) are more frequently 

observed? Where to go for taking sunset pictures of the city skyline? 

Some of the examples in Figure 3.38 reflect the boundaries of defined geographic regions (e.g. 

Seattle, Downtown, and Arboretum). Those regions are usually already known to maps providers, 

as they reflect areas such as cities, quarters, districts or parks, or linear features like streets or 

rivers. Note that the temporal distribution shows no significant trend or pattern for the tags 

“Seattle” or “Downtown”. 

Other tags point out interesting places which may not be included in traditional maps, but still 

constitute meaningful geographic entities for people (e.g. Waterfront, Troll or Monorail). These 

places may already be present as POI in map data provided by systematic sources like NavTeq or 

TeleAtlas. However their exact boundaries may be fuzzy. Therefore mapping providers could use 

the “crowd wisdom” to obtain better boundary definitions of places.  

Examples of temporal entities with characteristic geographic distributions are the four annual 

seasons. It is remarkable that according to the distributions people apparently prefer different 

parts of a city during the summer, than during the fall or winter. Recurring organized events such 

as parades, which have a clear geographic scope as well as temporal pattern, can be detected using 

the same visualizations. For example the tag “solstice parade” occurs exactly once a year in a 

specific region in Fremont in Seattle. While information of this type may also be available from 

other sources such as web sites or blogs, crowdsourcing may provide another source to learn 

about popular events. The final tag category discussed here are tags describing representative 

properties or scene contents (e.g. Art, Music, Sunset, Cat or Dog) which are typically not part of 

existing maps. Note that the tags “art” or “music” have a distinct geographic distribution within 

the city, which suggests that the areas with higher density are more popular venues for the 

respective category. 

All of the above types of tags can be used by online mapping services to enable users to search for 

events or entities according to their specific search intent or general interest, such as to answer 

the questions mentioned above. They further enable other scenarios such as auto-tagging of new 

photographs based on frequently used tags in particular geographic regions or during particular 

time-spans [280]. Similar to [281] and [282] we have proposed a method for automatic tag-

ranking based on geographic relevance of tags obtained from CPC, enabling tag-recommendations 

as well as tag-based image search [283]. 

3.5.8 User Query Images 

Query images play a specific role as they are either intentionally or unintentionally generated by 

the users of image based search application while submitting search requests. Although they are 
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not captured with the intention to add information to an existing system, such as a mapping 

service, product database, or other visual service, they potentially may serve as a valuable source 

of information providing relevance feedback to the system [284]. If, for example users reject a 

specific result provided to them repeatedly, there is likely a problem with the specific data asset 

which should be investigated and fixed. On the other hand, if users repeatedly select a specific 

entry in a list of results not ranked highly, this result could potentially be ranked higher for future 

queries. Tracking statistics about the actual query counts, as well as recall and precision metrics 

is further helpful to identify problems with the service. 

Further, the contents of the query itself, or related metadata identifying the identity or location of 

device or user can be used to personalize the search results [285]. 

One possible way of feeding back query information to a mapping system, would be to ingest the 

query data with the associated metadata to the system, if it can be confirmed that they actually 

contain geographically relevant data. This confirmation can happen automatically via image 

matching, or manually via data labelling. Sometimes, images of the same object or location have a 

large variation, such as images taken during the day and at night. Therefore, querying with an 

image taken at night, may have a lower likelihood of success if the index contains only daytime 

photos. However if a night-image query returns a successful match, adding it to the index may 

improve the recall rate for future users submitting night-images [48].  

3.6 Semi-Systematically Collected Images 

Many image sources can be clearly classified as systematic or crowdsourced data. However, there 

also exist hybrid forms of the two categories. On one hand programs are created by companies or 

other groups to motivate community data collection in certain areas, or according to specified 

rules. In this case the data captured are partially systematic because of the common set of rules, 

and partially unsystematic, due to the individual decisions during the actual data collection. An 

example for this case is Yelp, which enables users to upload and share imagery of food items or 

menus in a list of restaurants. 

On the other hand we count UAV and MAV described in Section 3.2.6 as semi-systematic capture 

platforms, if they don’t follow systematic capture patterns, but record imagery in an arbitrary 

flight pattern above a particular area. However we consider the same platforms systematic, if they 

are controlled in more systematic flight patterns such as lines, or paths within a road network.  

Public Programs for Community Collected Images 

Business and nonprofit organizations often have the desire to acquire certain kind of image data 

such as pictures of storefronts or restaurant menus. However, they may lack the required financial 

assets or infrastructure to perform this tasks on their own at a large scale. Therefore, a motivation 

exists to leverage the community by means of crowdsourcing of defined tasks according to a set 

of rules and specifications. As individuals perform the captures according to their own schedule, 

but following pre-defined rules, we consider the process semi-systematic. 
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Organizations follow different approaches to incentivate participation in crowdsourcing. While 

some efforts actually involve micro-payments of a few cent per captured dataset [286], others rely 

purely on voluntary participation in the sense of a public Wiki [287]. In the latter case, typical 

motivations include the involvement in a community of people with the same goal, the satisfaction 

of improving a public service by one’s own contributions, as well as the creation of virtual 

gratifications. Examples of virtual gratifications are achievements points for community 

contributions, badges for exceptional achievements, leadership perks and other similar rewards 

originally used in computer gaming [288]. 

Microsoft added a capability to its Photosynth Mobile application [254], allowing users to capture 

360 degree panorama images inside of restaurants or other venues, and to link them to the 

respective business entries on Bing Maps. This enables community contributions to a mapping 

service by generating human-scale-like experiences of public points of interest, and is an example 

of purely voluntary participation. 

Typically, location based social networks such as Yelp, FourSquare, UrbanSpoon and Google 

Places, make use of virtual rewards in order to motivate participants. These services enable users 

to explore public POI such as restaurants, hotels, museums or shops, checking in at the respective 

locations and providing feedback about them. Functionality for uploading and viewing user 

photographs of the respective places such as their storefronts, interior images and products is 

commonly provided, as shown for the example of a Yelp business listing in Figure 3.39. Storefront 

and interior images clearly have a geospatial nature as they relate to the location. Note the “First 

to Review” perk in the lower right corner, which is an incentive for people to contribute to the 

service. In order to keep the quality of the added data high, the community itself is involved by 

rating others people’s comments and flagging inappropriate imagery to avoid scam. 

 

Figure 3.39 Yelp Business Listing including Crowdsourced Storefront Photograph and “First to 

Review” Perk 

Other projects are actually set up as games with the goal of capturing many images in specific 

places for mapping. PhotoCity [289] was an alternate reality game (ARG) aiming at creating 3D 

reconstructions of university campuses from community images. Rewards were given to 

individuals or teams for adding new imagery in areas where gaps in the 3D reconstructions 
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existed, thus motivating people to generate complete representations of a place to help support 

their team. Recently Google’s Niantic Labs released an ARG called “Field Trip”, which motivates 

users to explore nearby historic places, museums, restaurants etc., thus providing additional 

valuable information to Google [290]. 

3.7 Non-Geographic Images 

Non-geographic applications are not directly the topic of this work, yet some methods used for 

general image matching are of interest in the geo-application, either for the purpose of location 

search or to create 3D reconstructions of scenes.  

3.7.1 Image / Object Search 

Several software companies such as Amazon, Google, Microsoft or A9 have released smartphone 

applications enabling visual searches by snapping real world objects. Products with planar front 

and back covers such as CD’s, DVD’s, Books, etc. are commonly indexed by such services, making 

use of image retrieval approaches using local image features [40, 30] such as KD-Tree based 

nearest neighbor search [44], bag of features [30], or more recent developments such as vector of 

locally aggregated descriptors (VLAD) [291]. The same methods are also applicable to non-planar 

objects, although different optimizations have to be made. 

Various methods of searching real world imagery exist, such as by recognizing printed bar-codes, 

QR-codes [292] or Microsoft-Tags [293], by using optical character recognition (OCR) [238] to 

detect and search by using text, or via facial recognition [294, 295]. However, these alternative 

methods are out of scope of this thesis as they are only partially applicable to online mapping.  

 

Figure 3.40 “OrCam” Wearable Computer Vision Enabled Device offering Visual Object Recognition 

for the Visually Impaired [296] 

Wearable, camera-enabled devices such as Google Glass [297] or OrCam [296] (Figure 3.40) have 

taken this idea one step further, by providing continuous object recognition functionality, and thus 

extending the sensory and cognitive abilities of people. 
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3.7.2 Product Images 

Searching for relevant product information within seconds by snapping a photo is a relatively new 

way of mobile search. This may be motivated by the need to obtain product reviews, price 

information, technical specifications or other helpful data for the user to decide whether or not to 

buy a product. It often involves querying a web-services hosting tens of millions of product images 

and metadata. Nistér et al. [30] first demonstrated a solution for this problem, based on TF-IDF 

scoring using quantized local image features, on a dataset of 40,000 CD cover images, which 

matured into a visual search feature in Bing powered devices such as Windows Phone. Figure 3.41 

features a search result returned by “Bing Vision” [298] for a query image of a book cover. 

A database of product information and product imagery is required for this purpose. Similar to 

geospatial applications, the imagery as well as product information can either be obtained in a 

systematic manner, or via crowdsourcing. Systematic images for product search get acquired by 

accumulating data from content providers such as online warehouses (Amazon), publishing 

companies, or companies specialized in creating product databases [299, 300, 301]. Alternatively, 

crowdsourced data acquisition may be used, which follows essentially the same rules as for 

geospatial data, by giving people the option of uploading imagery for missing products to a system, 

and offering information or other benefits in return. 

 

Figure 3.41 Sample Result of Visual Product Search using Bing Vision on Windows Phone 

The product search problem is non-trivial. Product database sizes often exceed many millions of 

individual products, which poses challenges to the scalability of the algorithms and infrastructure 

required. Large variations in the appearance of the product due to differences in the camera types 

and poses, lighting and occlusions pose challenges for an image retrieval system to achieve close 

to 100% recall rate. On the other hand, having a very large index of candidate images, and 

potentially many non-relevant query images, the problem is also hard in terms of the reliability 

(precision) of the results. Finally, due to limited data upload bandwidth on 3G network 

connections, only a limited data volume (e.g. 20 kB) can be uploaded per query, in order to 

minimize the query time and to maximize the user experience.  
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Although the index of products served by Bing Vision currently only includes planar products like 

books, CDs, DVDs and computer games, extending the scope to 3D objects such as product 

packaging or geometrically rigid products would be a feasible extension. However 3D object 

retrieval poses additional algorithmic challenges which are an active research area [302, 303]. 

3.7.3 Non-Geographic 2D and 3D Objects 

While product search constitutes the bulk of non-geographic visual search, other application 

extend beyond this scope, including search of general 2D and 3D objects such as toys, logos, traffic 

signs, magazine and newspaper pages, artwork, faces, text or 2D barcodes.  

Products such as Microsoft’s Bing Vision or Google Goggles include functionality for searching 

objects in the above categories using a combination of algorithms developed for the different 

search verticals [298, 304]. For example, Google Goggles added a feature for visual recognition of 

Sudoku puzzles as shown in Figure 3.42. 

 

Figure 3.42 Demonstration of Sudoku Search Feature in Google Goggles [305] 

3.8 Summary and Outlook 

In this chapter we have defined a set of selection criteria for imagery in the context of internet 

mapping, including a definition of “geospatially relevant images”, and furthermore provided an 

overview of the various types of images available. Parallels to non-geographic images in terms of 

the potentially applicable image matching techniques have been pointed out. 

We have presented a classification of the various image types based on the capture patterns and 

processes used, into systematically, crowdsourced and semi-systematically collected images. 

While systematically collected data are evenly distributed, crowdsourced data from CPC often are 

clustered around popular hotspots and contain potentially useful community-created semantic 

metadata. We have found that the estimated data volumes required for a 3D world model of 1,700 

Petabytes [1] by far exceed the available geographically relevant CPC data assets of 40 Petabytes. 

Therefore, while CPC data cannot fulfill the requirement for a comprehensive coverage of all 

http://www.megadual.com/wp-content/uploads/2011/08/Google-goggles-sudoku.jpg


83  Categories of Geospatial Image Data 

 

locations in the world anytime soon, they can still provide useful signals about popular locations 

and user behaviors. Furthermore, work by [11] has shown that particular locations in the world 

such as Rome or Dubrovnik are already covered densely enough in CPC to allow 3D 

reconstructions of large parts of the city. 

Based on the understanding of the characteristics of systematically collected and crowdsourced 

image data provided here, we will evaluate possible ways of integrating these assets with the aim 

to advance internet based mapping services in the following chapters. 
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4 Human Scale Image Data in Bing Maps2 

This chapter covers two main contributions to the introduction of human scale image data in 

internet mapping. Both innovations matured into a practical application in Bing Maps. 

First we develop key requirements to efficiently capture human scale imagery on public streets. 

We then propose a camera system we call UltraCam-M to satisfy these requirements. Figure 4.1 

gives a preview of the image data and 3D geometry captured by this system. 

 

 

Figure 4.1 Bing Maps Streetside Panorama (Top) and Corresponding Point Cloud (Bottom) 

Captured with UltraCam-M System in Graz, Austria  

Since any internet publication of human scale data requires the compliance with privacy 

regulations of different countries, one needs a system able to detect and obfuscate private license 

plates and people in streetside images. We present a workflow to achieve such privacy protection 

                                                             

2 Both the streetside capture system as well as the workflow for privacy protection described in this chapter 

are the result of project work by the Microsoft Vexcel team in Graz, Austria and the Virtual Earth Research 

team in Bellevue, WA and Boulder, CO. Streetside imagery in many different location in the US and Europe 

obtained with both systems are available via www.bing.com/maps. 

http://www.bing.com/maps
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and show its application at a success rate above 95% for clearly visible and 80% for vaguely visible 

private objects while achieving a relatively low false positive rate (FPR) below 2.5%. 

4.1 Streetside Image Capture for Internet Mapping 

2005 saw the successful release of orthomaps and aerial photography based 3D city models on 

mapping platforms such as Google Maps and Bing Maps [109, 55, 56]. As these image types lack 

in similarity to the “human experience” of walking and driving, there was a natural desire to add 

images at higher levels of detail. Streetside images were the logical choice at the time, due to the 

higher fidelity of the images, as well as the wide range of possible applications. Streetside imagery 

could be used to texture the building models at higher resolutions, or to support 3D reconstruction 

at a much higher level of detail. 

A problem to be solved in this context was the efficient data capture over large areas. In contrast 

to a person walking through an area and taking images of building façades and other urban objects 

manually, e.g. with an SLR camera, many of the steps required during this process have to be 

automated for efficiency reasons. This includes the decision, when and where a new image should 

be captured, which camera settings (such as the exposure times) should be used based on the 

scene appearance and vehicle velocity and how best to support the automated data management. 

For example, a system needs to keep track of where images have already been captured, in order 

to manage redundancy in the capture process. 

4.2 Mobile Mapping Systems 

The area of mapping using terrestrial mobile sensor platforms has been an active research topic 

since about 1990 [306, 307, 308]. A number of research and commercial systems for so-called 

“Mobile Mapping” existed in 2005, and have evolved since. Multiple overviews of such Mobile 

Mapping Systems (MMS) and their progress were compiled [309, 310, 311, 32]. One driving idea 

is the autonomous vehicle based operation of a variety of sensors, both imaging and non-imaging. 

Another driving force is the documentation and management of outdoor facilities with road 

networks, building-façades, traffic signs, vegetation along roads etc. 

 

Figure 4.2 Different MMS available in 2005 and 2006: [246] MMS for LBS Data Capture (Left); [248] 

Street Mapper MMS for Precise 3D Mapping (Center); TeleAtlas MMS for Street Mapping (Right) 

[312];  
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Hence during the advent of human scale imagery in internet mapping, MMS were primarily used 

in the context of GIS and navigation systems and to support fast collection of mapping data for 

applications such as asset monitoring, disaster response and accident investigation. MMS typically 

include a combination of different cameras, positioning sensors (such as GPS), inertial and 

magnetic sensors, odometers as well as distance measurement devices (LiDAR). Additionally they 

require some form of (ideally redundant) data storage, an uninterrupted supply of electrical 

power during capture, as well as an easy to use user interface providing feedback about the status 

of the system, and allowing to control the data capture. 

Despite the existence of several commercially available MMS in 2005 (See Figure 4.2), they were 

usually optimized for very high precision mapping and surveying of small areas, or the 

documentation of street signs for navigation purposes in large street networks. However no such 

system satisfied the internet requirements, particularly the need for capturing immersive 360 

degree images of street locations, which became the de-facto standard for internet mapping today. 

In the following we describe the requirements for a MMS aimed at mapping large street networks 

efficiently as well as our approaches to comply with them. Finally we provide an overview of the 

key elements of our proposed system. 

4.3 Requirements and Proposed Solutions 

4.3.1 Image Data 

Requirement: 

For internet mapping, we primarily are motivated by visually pleasing and immersive image data 

products such as the 360 degree panorama images described in Section 3.4.5. In order to capture 

such data in high quality, a cluster of individual cameras arranged in a hemisphere is used to 

capture raw imagery, which then gets stitched into a seamless panorama image. 

  

Figure 4.3 3D Building Model Textured with Aerial Imagery at 30 cm GSD (Left) and Potential 

Improvements using Streetside Image Captured at 2 cm GSD (Right). 
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A simple requirement defining the sensor resolution required is the GSD at which objects such as 

building façades are obtained. Based on the desire of capturing business names and traffic signs 

with stroke widths of 25.4 mm (1’’) at typical distances of up to 20 m, the angular frustum of a 

pixel needs to be 1.27 mrad or smaller [313]. 

A second motivation in addition to immersive panorama exploration is the need to add high 

resolution textures to existing building geometries obtained by aerial 3D reconstruction [231]. 

The quality difference between 30 cm aerial GSD with additional foreshortening due to the 

capture angle and 2 cm streetside GSD is evident in Figure 4.3. In addition to improving the texture 

resolution, façade modelling techniques [314, 315, 316] can be used to generate significantly 

better 3D models than from aerial images alone. 

However, texture resolution can alternatively also be improved by means of procedural façade 

descriptions and generating synthetic façade views at arbitrary levels of detail [225, 93, 317, 314]. 

Thus the two images in Figure 4.3 may eventually lead to the same procedural description and 

texture quality in a synthetically created view. 

Proposed Solution: 

The proposed system, which is explained in more detail in Section 4.4 involves a total of 12 

individual cameras in an arrangement fulfilling the requirements both for panoramic image 

capture as well as 3D building reconstruction. 

The angular resolution requirement of 1.27 mrad is approximated by using a 6.45 µm CCD camera 

(Prosilica GC1380) with an image size of 1.4 Megapixel (1024 horizontally * 1380 vertically) in 

combination with a 4.8 mm focal length lens (Schneider COMPACT 1.8/4.8). The resulting field of 

view of the individual camera images is 65 degrees horizontal and 90 degrees vertical. 

4.3.2 Automatic Exposure Control 

Requirement: 

Exposure control is an essential topic of automated camera systems in order to obtain optimal 

image quality using a sensor with a given bit depth and sensitivity. Typically the aim of exposure 

control is to achieve median intensity values in the center of the dynamic range despite variations 

in the illumination and scene content [318]. Neither over-exposure (clipping) nor under-exposure 

of images is desired as it irreversibly affects the image quality. Depending on the scene to be 

observed, the illumination and the camera sensitivity, the exposure time needs to be set such that 

the desired radiometric parameters of the recorded image are achieved. Since the proposed 

system contains multiple individual cameras, the exposure control needs to happen for each 

camera individually. 

In a dynamic application such as mobile mapping, where scene content and illumination can 

change significantly from image to image, this requires fast exposure time updates within less 

than approximately 50 ms to cope with such changes (Assuming a vehicle speed of 50 km/h the 

forward motion within 50 ms is 0.7 m). 
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The maximum valid exposure time is defined by motion blur. For a given forward motion velocity 

of 50 km/h and a maximum forward motion in object space of 1 pixel (25.4 mm on the façade) the 

maximum exposure time is 1.8 ms. This value needs to be updated dynamically based on the 

current velocity and distance to the façades.  

Proposed Solution: 

Many available camera systems perform exposure control based on the analysis of a series of 

previously captured full-resolution images, a method which only responds slowly to changes in 

illumination and image contents in dynamic applications [318]. Other cameras make use of a 

separate light meter [319] observing the same field of view as the camera as an input for exposure 

control. While this enables relatively fast exposure time updates within milliseconds, it requires 

additional components (electrical, optical) and hence make the system more complex. 

In [34] we proposed a novel method of performing exposure control for dynamic scenes. It 

requires collection of a quick view image shortly before each full resolution image using pixel 

binning, from which the ideal exposure time for the next full resolution image gets computed by 

means of histogram analysis. Particularly the white point, which is the 99th percentile gray value 

in the image is used for this determination.  

 

Figure 4.4 Example of Exposure Time Control based on Histogram Analysis of Quick View Image 

(White Point Detection) 

Because the quick view image covers largely the same field of view as the subsequent full 

resolution image, the full resolution image is typically exposed well and contains a higher dynamic 

range for each image than it could be achieved with conventional methods. The low resolution is 

advantageous because the data transfer and evaluation of the smaller image size can happen much 

faster (within less than 1 millisecond). During this time, the image content should only change 

marginally before the full resolution image can be recorded. 

White Point:  
 608 DN 

Exposure Time 

 767 µs 

White Point:  
             1333 DN 

Exposure Time 

  312 µs 
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Two examples for the exposure time computation are given in Figure 4.4. In the first example, the 

quick view image is darker than in the second example, which leads to a lower white point and 

higher exposure time than in the second example. As a result, even though the two quick view 

images differ significantly in brightness, the full resolution output images have nearly the same 

brightness. 

 

Figure 4.5 Weight factors for different areas of the image 

A modified variant of the exposure control may be used to avoid that a particular region of the 

quick view image (e.g. top part including sun or sky) influences the overall brightness of the 

output image too strongly. In contrast to the method described above, the histogram, white point 

and exposure time are not computed for the whole image at once, but for sub-regions of the image. 

These sub-regions can be arranged arbitrarily. An example of a 4∙4 rectangular tiling is shown in 

Figure 4. 

Each sub-region is associated with a weight factor, based on the emphasis that should be given to 

the regions for the exposure control. Hence, the resulting overall exposure time for a sensor is 

computed as the weighted average of the individual exposure times for each region according to 

𝑡𝑒𝑥𝑝 = 
∑ 𝑤𝑖 ∗ 𝑡𝑒𝑥𝑝,𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

4.3.3 Automatic Trigger Control 

Requirement: 

To achieve full automation during capture, the various image sensors need to be triggered by an 

automated mechanism at intervals determined by the respective application. While for internet 

exploration of streetside panoramas, capture intervals of 2 to 5 meters are likely sufficient and 

reflect the data on mapping sites today, other applications may have different requirements. 

Particularly for 3D reconstruction of building façades a certain amount of overlap between 

consecutive frames is required. Based on experience with aerial imagery 60-80% forward 
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overlap [171] may be a valid choice to be evaluated. Figure 4.6 visualizes 60% forward overlap 

in the streetside case. 

Using a fixed camera trigger rate (e.g. 10 fps) is often insufficient for this purpose. Apart from the 

trigger rate, capture interval and forward overlap are also affected by the forward velocity of the 

platform, the distance to the façade as well as the rate of turn of the vehicle in curves. 

 

Figure 4.6 Visualization of 60% Forward Overlap for Façade Images 

In case of a capture velocity of 50 km/h the required frame rate for the shortest realistic façade 

distance of 3 m and a desired forward overlap of 60% is 8.4 fps. For 80% overlap this number 

increases to 16.8 fps. 

Typical approaches for the trigger control of mobile mapping system are based on position 

measurements from a global navigation satellite system (GNSS) receiver, such that images are 

taken in equidistant positions [320]. The disadvantage of this approach is that it fails in case of 

bad satellite reception. Additionally the effective image overlap varies as a function of the distance 

to the façade and the rate of turn of the vehicle. To mitigate the problem of bad satellite reception, 

relative position measurements using odometers or inertial sensors may help, but even then 

façade distance and rate of turn are not taken into account. Visual Odometry using images [321] 

would potentially provide the required information, although real time processing requires 

additional compute resources. 

Proposed Solution: 

In [37] we proposed a novel solution for the problem of achieving a minimum desired forward 

overlap for the side looking cameras by means of trigger control. The method takes into account 

variations in velocity, rate of turn and object distance to the façade. For this purpose, the current 

velocity of the vehicle is measured using an odometer or distance measurement instrument (DMI), 

the rate of turn is measured by an inertial navigation system (INS), and the effective object 

distance to the façades is scanned by making use of a range measuring device such as a laser 

measurement system (LMS). 
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4.3.4 Depth Information 

Requirement: 

In order to provide a more intuitive and tangible experience of a real world environment, human 

scale functionality on web-based mapping sites often makes use of depth information in 

conjunction with image data. This allows exploration of the geometric scene structure by hovering 

over it with a 3D mouse cursor and selecting a specific point on a scene surface by clicking. The 

latter may initiate a transition to the image closest to the respective point. Figure 4.7 visualizes 

this behavior in case of Google Maps. The “cursor” is displayed as a rectangle placed parallel onto 

the scene geometry. 

 

Figure 4.7 Visualization of 3D Cursor in Google Maps Used to Explore and Select 3D Scene Elements 

Depth information for each panorama can further be used to facilitate visually pleasing transitions 

between locations, by rendering the image data superimposed onto the scene geometry, and 

blending between multiple views during geometric transitions. This approach of combining depth 

information with photography is similar to combining DSM with aerial orthophotos as explained 

in Section 3.1.4. Due to the subsequent mesh simplification, we assume that an accuracy 

requirement of 5% of the measured raw depth is sufficient. 

Proposed Solution: 

Primarily two approaches are available to obtain depth information: image based and laser based. 

Terrestrial LMS are commonly used as part of MMS to obtain 3D geometry for streetside scenes, 

as described in 3.4.3. As LiDAR data may still contain noise due to measurement errors or caused 

by dynamic scene content, it is common practice to apply further processing on the raw 3D 

geometry estimates in order to filter out noise. Further, to facilitate transmission of depth data 

over the internet and client-side rendering, the geometric structure have to be simplified via 

“mesh simplification” [322] to a low polygon count. 

Alternatively, a range of image based solutions have been proposed since 2005 to extract depth 

information of façades and other streetside objects by means of SFM to in combination with dense 
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matching techniques [172, 323, 314]. While such solutions don’t depend on additional sensors 

apart from cameras, they require a significant amount of computation either on regular CPU cores 

or graphics processing units (GPUs) optimized for parallel processing [324]. 

 

Figure 4.8 Depth Profile from Vertical Laser Scanner Overlaid onto Image during Postprocessing  

In 2006, to reduce the dependency on then less advanced computer vision algorithms we used a 

setup of 2 or more LSM [325] in the proposed system in order to obtain depth measurements up 

to 80 m away from the capture platform at accuracies of 5 cm or better. Figure 4.8 shows an 

example of the depth information obtained using one vertically arranged LSM superimposed onto 

one of the side-facing camera images. Due to the forward motion of the vehicle the geometry of 

the scene can be determined although the laser scanner only measures individual 1D depth 

profiles at a rate of 75 Hz. The exact layout of the LMS is described in Section 4.4. 

4.3.5 Positioning and Orientation 

Requirement: 

With the aim of facilitating the correct placement of image data on the map, as well as to support 

the logistics during capture, continuous tracking the position and angular orientation of the 

sensor platform at all times is a key requirement. Therefore, MMS usually contain some form of 

navigation system, tracking the location and orientation of the platform over time. The recorded 

data can hence be used to localize individual panorama images and laser scans. 

The required localization accuracy depends strongly on the intended application. If the 

orientation data should be used directly for positioning panoramic images in internet maps, 

stricter accuracy requirements need to be fulfilled. Based on our estimate of the user tolerable 

errors a positional accuracy of 2 m in combination with a rotational accuracy of 5 degrees seems 
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plausible. In case the initial panorama orientations are corrected during postprocessing by means 

of “Shape from Motion” (SFM) using images [24], the tolerances for raw positional errors depends 

mostly on the robustness of the method used. For this case we assume that a 5 m positional 

accuracy should be sufficient to facilitate the correspondence search around intersections during 

such postprocessing, and that SFM algorithms can deal with rotational prior uncertainties around 

20 degrees. 

Proposed Solutions: 

Typical solutions consists of one or more of the following: 

 An absolute positioning system providing coordinates in a local or global coordinate 

system. Positioning systems often rely on some form of infrastructure such as a network 

of satellites, dedicated positioning anchors or mobile communication infrastructure. 

Examples of global satellite navigation systems (GNSS) are the Global Positioning System 

(GPS), Global Navigation Satellite System (GLONASS) and GALILEO.  

Surveying grade GNSS accuracy may vary from sub-meter to tens of meters depending on 

various environmental factors. Errors caused by atmospheric effects, can be reduced by 

using differential measurements relative to satellite ground stations. However GNSS 

accuracy may still be limited in urban areas due to bad satellite visibility. Hence GNSS often 

are used in conjunction with complementary systems such as inertial measurement units 

or odometers, which provide more accurate relative pose updates [134]. 

 An inertial measurement unit (IMU) providing relative acceleration measurements in 3 

axes, and angular velocity measurements in 3 axes, which can be integrated to obtain 

relative velocity and angular differences. Due to the integrative nature of these 

measurements, they are prone to drift errors, and therefore should be used in conjunction 

with a complementary drift free system such as GNSS or a compass. 

 A magnetic compass provides an independent and drift free measurement of the sensor 

orientation based on the Earth’s magnetic field. Magnetic sensors work more reliably in 

rural environments as their accuracy is reduced in urban settings due to interferences of 

buildings and electrical infrastructure with the Earth’s magnetic field. 

 Vehicle based systems frequently utilize other positioning sensors such as wheel-based or 

optical odometers to provide low noise relative position estimates in a single dimension. 

 Laser Distance Measurement systems such as LiDAR (Light Detection and Ranging) are 

used frequently to augment the image data with corresponding scene depth information. 

In some applications, time synchronized depth measurements are also used to support the 

pose trajectory estimation in combination with the other sensors mentioned above such 

as via Monte Carlo Localization [326]. 

A range of integrated position and orientation systems for use in MMS are provided by 

manufacturers such as Applanix [252] or Topcon [327], which combine GNSS, INS and depth by 

means of sensor fusion. The specified positional accuracy of the Applanix POS LV 120 under 

optimal condition of continuous GPS visibility is better than 0.02 m horizontally and 0.05 m 

vertically, while the rotational accuracy is better than 0.1 degrees in all axes. Under worse 
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conditions of GPS outages of 60 s, this degrades to 2 m horizontal and 0.8 m vertical accuracy and 

rotational errors of 0.2 degrees (roll, pitch) and 0.65 degrees (heading), which is still within the 

specification provided above. 

The various sub-systems have to be time synchronized with each other and with the camera 

trigger signal, to facilitate the time alignment of their measurements. For this purpose, we have 

proposed a method for automatic synchronization of measurements from multiple sensor 

subsystems with +/- 5 ms accuracy, and aligning them using a common time base [36]. 

Measurements of these different components are typically integrated using sensor fusion such as 

by Kalman-Filtering - [328] - to achieve a trajectory which is optimal in terms of low positional 

and rotational errors in the fused output despite the errors in each of the individual sensor sub-

systems. A method to combine measurements of a velocity sensor (such as an odometer) with an 

inertial acceleration sensor to correct for errors in both individual systems was proposed as part 

of the UltraCam-M streetside sensor development [35]. 

Alternative approaches exist which use the captured image data to estimate trajectory by interest-

point based image matching using SFM or “Visual Odometry” [24], and combinations of such with 

the methods mentioned above. 

4.3.6 Time Synchronization 

Requirement: 

All of the laser scanners and cameras used in the proposed system have to be time-synchronized 

to each other and to all other sensors in the system to within +/- 5 ms, to support easy data 

alignment during processing. This tolerance leads to a maximum relative platform motion of 

14 mm at a typical velocity of 50 km/h which is below the image GSD of at 20 m distance. 

While cameras can be triggered at variable trigger rates (up to 15 times per second), the laser 

scanners are usually operated at a fixed line frequency (e.g. 75 Hz). This needs to be considered 

during the time synchronization.  

Proposed Solutions: 

In [36] we have proposed a solution for synchronizing multiple sensor sources based on time 

stamps for individual signals determined by a PC system clock as well as the clock of a trigger 

circuit. We have verified that the synchronization errors with this solution are below +/- 5 ms. 

4.3.7 Data Volumes and Redundancy 

Requirement: 

Due to the increased sub-cm image resolutions and short capture intervals of less than 5 m for 

human scale data, their data volumes can substantially exceed corresponding numbers for aerial 

imagery. This imposes significantly more stringent requirements during data capture, 

transmission to the processing facility, storage and processing. 
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A single stitched orthophoto image of a downtown area spanning 10·10 km² at 15 cm GSD is 

approximately 4.1 Gigapixel in size. Assuming a redundancy factor of 10 to permit automated data 

processing the recorded raw imagery for this area adds up to 41 Gigapixel. However, the same 

area captured with a 5 Megapixel panoramic streetside sensor at 4 m capture interval (assuming 

about 65∙65 city blocks of 150 m spacing) consists of approximately 330,000 individual 

panoramas, resulting in about 1,700 Gigapixel net worth of data. Assuming a redundancy factor 2 

due to duplications, this number doubles to 3,400 Gigapixel, about 80 times as much as in the 

aerial case. At higher resolutions, and with denser coverage including off-street and building 

interiors, the data volumes for the same area can even reach tens of TB of un-compressed images. 

Another problem requiring attention when capturing large areas with human scale sensors, is the 

need to minimize undesired duplications in the captured data. In order to minimize cost and time 

spent, specialized routing strategies have to be developed with the purpose of capturing a 

designated area within the shortest possible time, and / or following the shortest possible path 

through all required vertices and nodes of a graph. 

In case of failures of system failures, or if data problems are detected after capturing, further 

logistical efforts are needed to facilitate re-capturing of affected regions. 

Proposed Solution: 

The proposed sensor system includes a replaceable data unit (see Section 4.4) containing a total 

of 14 hard drives which a combined storage volume of 4,500 GB. This amount is sufficient for 

storing streetside data during a whole day of continuous data capture.  

The capture software validates the recorded data by means of checksums, and also controls data 

export onto external drives, which can hence be shipped to the processing facility. 

4.3.8 Data Processing 

Requirement: 

The preparation of human scale data for internet mapping requires substantial amount of data 

processing, including preprocessing of individual panoramic images, and the selection of a 

relevant subset for publishing. 

Part of the individual panorama processing is done to obtain RGB color images from the raw data 

using Bayer-Demosaicking [329, 191], and correct for radiometric and geometric imperfections. 

These imperfections are either determined during an offline calibration procedure or as via self-

calibration. Hence the individual sensor images have to be stitched together into a single 

panoramic image, which can be stored in various formats as explained in 3.4.5. Depth information 

collected by the laser scanners also has to be processed into a geometry model of the scene, as 

explained below in Section 4.5.5. 

Another step required for individual panoramic image individually concerns the automatic 

detection and obfuscation of private image contents. The requirements for privacy protection as 

well as a proposed solution are illustrated in Section 4.5. 
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Altogether, the steps mentioned above take a significant amount of time for individual panorama 

images published to the mapping site. For the initial version of the streetside pipeline used for 

Bing Maps, this time was approximately 2 minutes per published panorama image on a single 

CPU core. Considering that a downtown area including 330,000 individual panoramas would take 

3 days to capture with one system, and 460 days to process on a single CPU core, it becomes clear 

that on the order of 3,000 CPU cores are required to cope with 1.2 Petabytes of data per month, 

acquired by a fleet of 20 streetside capture vehicles. 

Solution: 

The data volumes and processing requirements related with streetside data demand a significant 

investment in processing infrastructure, including both hardware and software. For this purpose, 

Microsoft and other companies operate a number of data processing facilities with clusters of 

thousands of CPU cores [330], using distributed processing models such as Google MapReduce 

[331, 332, 333]. 

4.3.9 Camera Calibration 

Requirement: 

Similar to aerial cameras the geometric and radiometric properties of a terrestrial MMS have to 

be calibrated within a specified accuracy. We require the residual errors for a lab calibration to 

within +/- 2 µm RMS (~0.5 pixel) in the image plane, which be further improved by means of self-

calibration from data captured in the field. 

Proposed Solution: 

 

Figure 4.9 Infrared Laser Pattern Used for Determining Exterior Orientation of Laser Scanners 

We use a similar method for calibrating camera geometry (extrinsic and intrinsic parameters) and 

radiometry as for the aerial camera systems (see 3.3.3). The geometric accuracy achieved per 

camera during the calibration for a variety of prototype and production systems was generally 

better than the specified limit of +/- 2 µm RMS.  
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In addition to the cameras, we also calibrate the geometric properties of the laser scanners. For 

this purpose we remove the infrared cut-off filters from part of the cameras, in order to capture 

the light pattern emitted by the laser scanners (see Figure 4.9). By combining the image 

measurements of the emitted laser beams with the corresponding depth measurements, we can 

determine rotation and translation parameters of the laser scanners relative to the cameras using 

bundle adjustment [334]. 

4.4 Overview of UltraCam-M Implementation 

Similar to comparable aerial sensors, the UltraCam-M consists of several subsystems (see Figure 

4.10), including a sensor unit (SM), a computing and data storage unit (CM / DM), several 

navigational components for sensor positioning (POS), as well as an interface panel for camera 

operation (IPM). We have previously described the general sensor concept in [33]. 

The computing unit (CM) contains 7 individual processing units for controlling the different 

sensors and transmitting the recorded data to the hard drives. The replaceable data unit (DM) 

holds 14 individual hard drives, each with a storage volume of 320 GB. The interface panel (IPM) 

provides a graphical user interface from which the system can be controlled by a single 

operator/driver. It also shows real-time quick view images and capture statistics. The positioning 

sub-system (POS) includes an integrated GPS/INS unit as well as a contact free odometer to 

measure the vehicle’s velocity.  

 

Figure 4.10 Overview of Components of UltraCam-M Mobile Mapping System 

The sensor unit (Figure 4.11) consist of primarily the 12 image sensors, as well as 3 laser scanners 

(LMS) measuring the 3D geometry of the captured building façades. 

A part of the image sensors (C0..C5) is arranged hexagonally, providing a 360 degree panoramic 

view around the vertical axis, with two cameras directly facing the expected direction of building 
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façades (broadside cameras C1 & C4). Two sensors (C6 & C7) are placed at a vertical parallax of 

0.85 m to the former two, in order to support stereo reconstruction using a fixed baseline [24]. 

 

Figure 4.11 Arrangement of Cameras C0..C11 and Laser Scanners L0..L4 in UltraCam-M Mobile 

Mapping System 

Two more sensors (C8 & C9) are pointed up at an angle of 50 degrees observing the top portion 

of building façades, and extending the 360 degree panorama coverage. While all previously 

mentioned cameras use color CCD sensors with Bayer-pattern in order to capture RGB color 

images, the final two cameras (C10 & C11) use monochrome CCDs equipped with near infrared 

(NIR) filters in order to support vegetation classification. 

 

Figure 4.12 Overview of Images Recorded by All Cameras during One Trigger Event with 

Highlighted Overlap Areas 
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Each of the individual cameras is arranged in portrait orientation such that the angle of view is 

approximately 65° in horizontal direction and 90° in vertical direction. An overview of the images 

from all cameras for a certain trigger event is shown in Figure 4.12. The colored rectangles 

indicate overlap regions between adjacent images. 

Figure 4.13 visualizes the number of views for each viewing direction by means of color coding 

onto a sphere. While the broadside direction is viewed by 3 cameras (2 visible + 1 NIR), all other 

directions, apart from the overlap regions, are only observed by a maximum of 1 camera. The 

overlap regions can also be recognized in this view. The combined field of view of the panorama 

rig is approximately 5 Megapixel or 2 sr, while each pixel frustum covers a solid angle of about 

1.8 µsr. 

 

Figure 4.13 Illustration of the Number of Views for Each Viewing Direction at Infinity Projected 

Onto a Sphere; The panorama covers ~5 Million Pixels in Total @ 1.8 µsr Resolution; 

In addition to cameras, the UltraCam-M system also includes a number of LMS which are used to 

directly measure the distance to objects along a 180° degree planar field of view by measuring the 

time of flight (TOF) for each scan angle. The configuration of the laser scanners in the UltraCam-

M system is also laid out in Figure 4.11. One laser scanner (L0) is arranged horizontally and faces 

forward. Its purpose is to provide a horizontal depth profile along the scene at a certain height. 

Measurements from this LMS can be used during data capture to estimate distances to the left and 

right building façades, as part of the trigger control mechanism proposed in [37] (see Section 

4.3.3). Two vertically arranged laser scanners (L1, S2) facing orthogonal to the driving direction 

(broadside), allow the scanning of depth profiles of building façades and other objects due to the 

forward motion of the vehicle. The resulting point cloud is visualized in Figure 4.8, superimposed 

onto an image recorded by one of the broadside looking cameras. Two more backward facing laser 

scanners (L3, L4) can be added optionally, with the aim of scanning the building façades even in 

case of occlusions. Occlusions of the broadside LMS can happened due to people, vegetation, 

parking cars or other objects. 
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Figure 4.14 shows the final version of the UltraCam-M system (version 1) installed on a vehicle 

used for data capture in front of the Microsoft office in Graz, Austria.  

 

Figure 4.14 UltraCam-M Mobile Mapping System v1 Installed on Capture Vehicle 

4.5 Privacy Protection for Streetside Imagery 

Modern mapping services such as Bing Maps provide 360° images with panoramic views of streets 

in various cities throughout the world. These mapping applications display photos captured with 

multiple directional cameras mounted on a vehicle traveling along various streets. The vehicle 

uses GPS/INS units for positioning, LiDAR for measuring building geometries, and other 

components. The mapping service applications are provided to users with remote computing 

devices so they can experience a visually immersive perspective of streets. In effect, image 

capturing technologies provide users with the view of streets with buildings, streets, signs, object 

details etc. at a high level of detail. 

A flipside of the increased image resolution is that the raw images initially captured by cameras 

may include private objects such as people or car license plates. This fact raises privacy concerns 

both by the affected people, as well as by government and nonprofit agencies across the world. 

While one may argue that people and objects if they are visible in a public place such as a street, 

are not really in a public environment, local regulations in many places prohibit photography and 

publication of such photography without prior consent of the affected person or owner of an 

affected object. In most locations, this concerns mostly people’s faces and license plates of cars. In 

other locations such as Germany, local privacy laws also prohibit publication of house numbers 

visible on buildings. Additionally, people have to be enabled to flag remaining private objects for 

later removal by the map provider [165]. 

Altering the captured images to remove private objects is usually required. A common approach 

to privacy protection is to apply an algorithm that automatically detects private objects captured 
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in each raw image. Identified private objects are then processed to remove or blur the private 

objects before publically releasing the images [28]. This problem is especially challenging as 

humans generally are very skilled at recognizing people and people’s faces even under large 

variations, which means that automatic detection methods must be very well tuned in order to 

achieve sufficient detection of the majority of private objects. 

Due to the sensitive nature of privacy, and the potential legal consequences of not complying with 

privacy rules and regulations in different countries, achieving a high detection rate close to 100% 

is an important goal when developing methods for privacy protection. On the other hand, 

minimizing the damage to the non-private part of the recorded imagery incurred by false positives 

to below 2-3% of the image area, is another important requirement.  

Various algorithms have been developed to automatically detect faces and people in images, 

which seems relevant in the context of privacy protection for streetside imagery. Hence we 

decided to use a state of the art face detection method [335] proposed by Viola and Jones [294, 

336, 337] which is based on Haar-like features [338] for initial testing. The implementation used 

was by Cha Zhang and Gang Hua at Microsoft Research, Nevertheless, experiments showed that 

although frontal faces that were clearly visible at a high enough resolution could be detected 

reliably, this was not true for the majority of faces in typical streetside imagery, due to significant 

differences in the appearance of faces compared to the training data used for such methods.  

The main challenges are caused by the low resolutions of faces located at distances more than a 

few meters from the camera and large variations in the facial pose due to the raised camera 

position on the capture vehicle. Additional challenges arise from image noise due to exposure 

variations. Although face detection methods allow setting a sensitivity threshold to increase the 

detection rate, this also increases the false positive rate (FPR) significantly, while still not 

providing sufficient recall performance. That is, many non-private objects are identified as private 

objects, while there is still a large percentage (>50%) of private objects that cannot be detected 

successfully. Figure 4.15 features typical examples of faces and license plates as they are used for 

training and evaluation of existing detectors, as well as typical streetside examples of such objects. 

    

Figure 4.15 Typical Image Scales and Poses used for Evaluating “Traditional” Face and License 

Plate Detection Algorithms (Left) Compared to Streetside Example Faces and License Plates (Right) 

The same tradeoff with respect to recall/precision performance applies to automatic detection 

methods for other kinds of private objects, such as license plates. Many of the existing methods 

for license plate detection are tuned for application such as automatic toll collection, where large 

image scales (50-100 pixel font height) with little geometric distortion are common [339, 340, 

341]. They also report detection rates of 70-80% under such favorable conditions. As license 
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plates in streetside images occur in much smaller scales and are affected by strong distortions 

most existing methods are unlikely to work reliably enough for privacy protection purposes. 

We therefore propose a novel privacy protection workflow, which has been used in the initial 

release of streetside imagery by Bing Maps. It aims at achieving both a high recall rate in order to 

comply with legal requirements, as well as a low FPR. This is achieved by using a combination of 

detectors for identifying people and license plates, which by themselves would generate many 

false positives, and a second set of methods to identify areas in the images that are unlikely to 

contain private objects. Parts of this workflow have been presented in [39]. 

The detection algorithms include an implementation of Viola-Jones face detection [294], a set of 

low level features to detect areas of high contrast such as horizontal and vertical edges, and a 

specifically developed license plate detector, which was optimized for streetside imagery. The 

methods used for eliminating false positives and reducing their visual damage include a planar 

region detector, identifying building façades by comparing consecutive image events, hue based 

methods for segmenting skin tone and vegetation regions in images, height thresholding, as well 

as depth dependent adaptive image blurring. The individual methods are described in the 

following sections of the document (4.5.1 through 4.5.7). An illustration of their combination as 

well as a report of our experimentation results is provided in sections 4.5.8 and 4.5.9 respectively. 

4.5.1 Face Detection 

Detecting faces in images is a common problem in many different areas, such as consumer 

photography, surveillance applications, video conferencing or digital photography [335]. This 

presents us with an opportunity to use the same methods developed for face detection such as 

[294] for detecting people’s faces in streetside imagery for privacy protection. However, most of 

the standard applications of face detection differ significantly in their requirements regarding the 

variations of faces to be recognized as well as the required recall rates. For example existing 

detection methods often are tuned for faces viewing the camera captured at dimensions of 50-100 

pixels minimum.  

 

Figure 4.16 Example of Viola Jones Face Detection Applied on Streetside Image; Green Rectangles 

are True Positive Detections, Red Rectangles are False Positives; 
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However, streetside images often contain faces which are photographed from the top down, the 

side or even partly from the back. Therefore, additional challenges are posed on such methods 

due to large variations in the facial appearance, the pose, or the scale of the facial region in the 

image, which may cover only 10-20 pixels As a consequence we found that the recall performance 

of standard algorithms to be significantly worse (e.g. < 50%) for streetside imagery than for other 

applications. Figure 4.16 shows an example streetside image in which 2 out of 5 faces were 

detected correctly, while a window caused an incorrect detection. 

In order to improve the recall of the Viola-Jones face detector, several options exist. For example, 

the sensitivity of the algorithm can be increased, such that more faces are detected correctly, at 

the cost of an increased FPR. Since false positives frequently occur at unrealistic scales, such as 

around a window of a building façade (See Figure 4.16), geometric reasoning based on the 

available depth information can be used to filter out detections at clearly incorrect scales (e.g. at 

scale ratios >2). For example the window in the above figure can automatically be removed from 

the detection. However this method depends on reliable depth information. The depth 

information obtained by a vertically mounted 1D laser scanner (see 4.3.4) becomes unreliable in 

case of moving people or objects, as illustrated below in Section 4.5.5. Hence the depth map 

representation of a person can be offset by arbitrary amounts from their image location. In case 

the thresholds for the region sizes are set too tightly, false negatives can occur, while setting the 

thresholds too loosely can increase the false positives beyond acceptable limits. 

Another way of improving the recall performance is by training the respective face detection 

algorithm specifically for the typical appearance of faces as they occur in streetside imagery, 

including profile views, low resolution images, top down views etc. We attempted to retrain the 

face detection algorithm used for this specific purpose, which led to a noticeable improvement in 

the detection rate at a given FPR (by 10%), but was still not sufficient in many cases, such as due 

to profile views at small scale, people facing down or partly away from the camera. 

4.5.2 Edge Based Saliency Detection 

Both images of people’s faces as well as license plates typically contain features in a specific 

frequency band, such as a person’s mouth, nose and eyes in case of a face, or digits on license plate. 

As the algorithms specifically aimed at face detection often fail at achieving satisfactory recall 

rates for streetside privacy protection, we decided to use a simple, edge-based saliency detection 

algorithm tuned for high recall in this frequency band in addition to a dedicated face detection 

algorithm tuned for a low recall rate. 

In particular we first compute magnitudes of the horizontal and vertical derivatives of an input 

image (See Figure 4.17 a). We use filer kernel [-1 0 1] and its transpose to compute the derivatives 

(b, c). Hence we apply a 9·9 pixel median filter on the derivatives to remove individual outlier 

edges (d, e). Finally we compute the output detection mask by means of thresholding the median 

images and combining them via a logical AND (f), followed by a morphological closing operation 

(g). The threshold value and the filter kernel size were determined heuristically based on a set of 

40,000 streetside images over a variety of lighting conditions and geographies. 
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Figure 4.17 Visualization of the Different Steps during Edge Based Saliency Detection: a) Input 

Image; b) |Horizontal Derivative|; c) |Vertical Derivative|; d) Horizontal Median Filter Output; e) 

Vertical Median Filter Output; f) Binary Mask after Thresholding; g) Output Mask after 

Morphological Dilation; 

Although this method is prone to finding many false positives in up to 10% of the other image 

areas, it is very reliable in finding close to 100% of all facial regions. The high FPR can be reduced 

to an acceptable range by combination with alternative methods. For example, detections can be 

limited to a certain height above ground (e.g. 2.2 m) where people and cars can mostly be 

expected. Additionally pixel based skin tone or vegetation detection, or filtering of detections on 

planar surfaces such as walls or the street surface can be used to further reduce false positives. 

4.5.3 License Plate Detection 

License plate detection for privacy protection in streetside images presents challenges similar to 

face detection due to the large appearance variations of license plates. Differences in scale and 

resolution, the viewing angle as well as the license plate design itself are evident (See Figure 4.18). 

 

Figure 4.18 Samples of License Plates in Streetside Images 

Therefore many of the standard methods used for license plate detection, which are designed for 

applications with more control such as surveillance cameras, road tolling, etc. achieve insufficient 

recall rates for streetside images captured for mapping. With the goal to achieve a sufficient recall 

performance, we therefore decided to use a combination of low level operations such as local 
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sliding window filters or morphological operations for license plate detection. They are tuned for 

finding horizontally elongated regions of letters, at a variety of different viewing angles and scales. 

The following filters FW2, FW4, and FD are used on the input image by means of a sliding windows 

operation (convolution), leading to outputs rW2, rW4, and rD. For a particular input image (a) Figure 

4.19 shows the intermediate results of the detection algorithm. 
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Figure 4.19 Visualization of the Different Steps during License Plate Detection: a) Input Image; b) 

Filter Output |rW2|; c) Filter Output|rW4|; e) Filter Output |rD|; f) Result of Equation 4.3; g) Binary 

Mask; h) Result after Applying Morphological Operations and Connected Components; 

Filter FW2 is designed to generate high responses rW2 around vertical lines (letters on a license 

plate) with a width of 2 pixels (b). Filter FW4 also responds to vertical lines, with a width of 4 pixels 

and Filter FD responds to diagonal lines of width 2 (c and d). From the different filter responses, 

we compute a detection score 

 𝑅 = 2 ∗ |𝑟𝑊2| − |𝑟𝑊4| − 4 ∗ |𝑟𝐷| ( 4.3 ) 

which favors vertical lines of width 2 but punishes vertical lines of width 4 and diagonal lines (e). 

This results from the assumption that letters on license plates tend to have a certain stroke width, 

and are arranged roughly vertically. Next we apply the two filters 
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( 4.4 ) 
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consecutively on the score R in order to first locate horizontal structures with an expected height 

of a license plate (10 pixels) and then connect them using horizontal smoothing (f). 

The resulting score S of this filtering step is converted into a binary mask using thresholding (g). 

Finally we apply morphological opening and connected components on the mask in order to 

connect individual letters, and to remove components that do not have the expected (horizontally 

elongated) shape of a license plate. The result of this operation is the output license plate mask 

for the given scale (h). The same operation is repeated for several scales in order to find license 

places at different viewing distances. 

  

Figure 4.20 Sample Response S from License Plate Filter (Left); Input Image with Resulting 

Detection Masks from License Plate Detector (Right) 

For a larger sample image, the filter output S as well as the resulting license plate mask are shown 

in Figure 4.20. The detection mask has been superimposed on the input streetside image. The 

three identifiable license plates in the image have been correctly detected, besides some amount 

of false positives. This example supports the expectation that false positives are an acceptable 

phenomenon with hardly any effect on the application. 

4.5.4 Color based Segmentation 

Since the various detectors for faces and license plates described in 4.5.1 through 4.5.3 have been 

designed or configured specifically to achieve high recall performance as required for privacy 

protection, they also generate a significant amount of false positive detections in other, non-

private regions of the images. With the intention to limit the effect of false positives on the quality 

of the processed images, we remove detections in areas that classified as vegetation, or as non-

skin in case of faces and other body parts. 

As a preprocessing step for color based segmentation, the images first have to be color balanced. 

A simple way of doing so is by using presumably neutral gray parts of the images such as the street 

surface as a reference, and scaling the red and blue color channel linearly to align their intensity 

histograms to the green channel. 

Skin Segmentation 

For detecting skin regions in these color balanced images, we pursue a pixel based method 

involving a Bayes classifier [342, 343]. The method uses color histograms of skin and non-skin 
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color values c in a particular color space as a means to compute the conditional probabilities 

P(c|skin) and P(c|¬skin), as well as the non-conditional probabilities P(skin) and P(¬skin) as 

explained in [343]. Using Bayes’ Theorem, we can hence compute the conditional probability that 

a color value c belongs to a skin region. 

 
𝑃(𝑠𝑘𝑖𝑛|𝑐) =

𝑃(𝑐|𝑠𝑘𝑖𝑛) ∗ 𝑃(𝑠𝑘𝑖𝑛)

𝑃(𝑐|𝑠𝑘𝑖𝑛) ∗ 𝑃(𝑠𝑘𝑖𝑛) + 𝑃(𝑐|¬𝑠𝑘𝑖𝑛) ∗ 𝑃(¬𝑠𝑘𝑖𝑛)
 ( 4.5 ) 

We use this probability as the score for skin classification, and compare it against a threshold Θ to 

decide whether a given input pixel color c likely belongs to the skin class. 

 

Figure 4.21 ROC Curves for Color-Histogram Based Skin Classification using Bayes Classifier – View 

is Zoomed in at Range 0..20% FPR and 60..100% TPR 

For the training we selected a subset (50%) of color values from a labeled ground truth dataset of 

3,500 skin pixels, as well as 300,000 non-skin pixels in order to compute color histograms for 

both classes in a particular color space. Using the remaining data samples, we evaluated a variety 

of color spaces suggested in [343] for the histogram computation and classification to determine 

which one is most discriminative for the two classes: Normalized RGB (Nrgb), Hue Saturation 

Value (HSV), Cartesian HSV, Lab, Luv and Tint Saturation Luminance (TSL); 

  

Figure 4.22 Conditional Probabilities: P(c|¬skin) - Left; P(c|skin) - Center; P(skin|c) - Right 
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The resulting ROC curves [52] in Figure 4.21 show that while there is generally little difference 

between the color spaces, Cartesian HSV as well as TSV achieve slightly better true positive rates 

for a given FPR, than the other color spaces. In consequence we decided to use the Cartesian HSV 

color space for the classification. The different conditional probabilities for this color space are 

visualized in Figure 4.22. Note that the non-skin cluster is offset to the bottom-left relative to the 

skin cluster, although there is some amount of overlap. The skin classification score (right) is 

maximal around the location of the skin-cluster. 

  

Figure 4.23 Skin Classification Sample Image (Left); Skin Probability (Center); Skin Mask (Right); 

For a given input image (left), Figure 4.23 shows the conditional probabilities 𝑃(𝑠𝑘𝑖𝑛|𝑐) for 

individual pixel colors (center), as well as the resulting binary skin mask (right). 

Vegetation Segmentation 

Plants such as bushes and trees generally contain features (e.g. leaves) of a similar spatial 

frequency as facial features which would lead to many false positives of the edge based saliency 

detector (4.5.2). Therefore we want to specifically detect vegetation by means of per-pixel color 

segmentation. For this purpose we use boundaries in HSV color space for classification similar to 

[344]. These boundaries are defined as thresholds on the values of Hue, Saturation and Value (See 

Table 4-1) which were determined heuristically from sample images containing vegetation. 

hmin1 hmax1 hmin2 hmax1 smin smax vmin vmax 
0.1 0.2 0.51 0.57 0.1 0.85 0.1 0.75 

Table 4-1 Thresholds used for Pixel Based Vegetation Detection 

An individual pixel is counted as vegetation if its color values (h,s,v) fulfill the condition 

 𝐶𝑣 = [(ℎ𝑚𝑖𝑛1 ≤ ℎ ≤ ℎ𝑚𝑎𝑥1)∪ (ℎ𝑚𝑖𝑛2 ≤ ℎ ≤ ℎ𝑚𝑎𝑥2)]∩ (𝑠𝑚𝑖𝑛 ≤ 𝑠 ≤ 𝑠𝑚𝑎𝑥)∩ (𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥) ( 4.6 ) 

Figure 4.24 demonstrates the individual steps of the method based on a sample image. The binary 

mask resulting from the classification is filtered by morphological opening to remove noise. Then 

a density image of filtered binary mask (bottom left) is computed as the product of two 

convolution results using two different Gaussian kernels (σ2=10 and σ2=30 Pixels). The density 

image indicates whether an area of the image has a high density of pixels classified as vegetation. 

The resulting vegetation mask (bottom right) is computed from the density image via 

thresholding (dmin = 0.04) and using connected components to remove regions smaller than a 

certain size (1000 pixel).  
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Figure 4.24 Vegetation Segmentation Example: Sample Image (Top Left); Raw Mask after 

Thresholding (Top Right); Density Image (Bottom Left); Final Vegetation Mask (Bottom Right); 

4.5.5 Depth Map Creation 

Several methods (4.5.6, 4.5.7) used for the described privacy protection workflow, require a per-

pixel depth map image for individual camera views. 

For this purpose we use the georeferenced laser point cloud such as the example shown in Figure 

4.25 which has been computed by projecting the LiDAR based depth measurements relative to the 

motion trajectory captured by the positioning system. Note that red points in the 3D point cloud 

are outside of the cameras field of view, while green points are within. The blue lines indicate the 

camera frustum for the particular image event. The 3D points are hence projected into image 

coordinates (x/y) using the respective camera projection matrix P. 

 

(
𝑢
𝑣
𝑤
) = 𝑃 ∗ (

𝑋
𝑌
𝑍
1

) ;      (
𝑥
𝑦) = (

𝑢

𝑤
𝑣

𝑤

) ( 4.7 ) 

Figure 4.25 shows the projected points which have been color coded based on the depth from the 

camera (center). A z-buffer is created at the same resolution as the camera image, and filled with 

default depth values (e.g. 100 m). For every projected point, the z-buffer image at location (x/y) is 

updated to the depth value of the respective point, only if this depth value is lower than the 

previous depth value stored at the same location. Eventually, missing values in the z-buffer are 

filled by means of morphological greyscale opening [345, 238] for small gaps between individual 

samples, as well as bicubic interpolation for larger gaps. We use a disk-shaped structuring (r=8) 
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for the opening operation. As described in [346] greyscale opening removes bright features in 

images smaller than the structuring element, which means that in case of a z-buffer, closer points 

will dominate farther ones in their vicinity. 

   

Figure 4.25 Example Depth Map Workflow (Opera House Graz, Austria): 3D LiDAR Point Cloud with 

Camera Frustum and Visible Points Highlighted in Green (Left); Image with Projected Points 

(Center); Interpolated Z-Buffer Image (Right); 

Although LiDAR provides a computational advantage over stereo reconstruction of a scene, it also 

has several drawbacks. 

 

Figure 4.26 Streetside Image with Moving Person and Corresponding Depth Image; Note the 

Discrepancy Caused by the Motion of the Person between the LiDAR and Image Capture 

For example, it comprises capturing events that must occur simultaneously with image capturing. 

Thus 3D data become unreliable in the presence of moving objects, as visualized in Figure 4.26. 

The location of the moving person in the depth map (right) is offset relative to the corresponding 

image (left), due to the time offset between the two captures 

4.5.6 Detection of Objects on Major Planes 

As an additional measure to remove false detections, we use a method to identify major planar 

surfaces in urban scenes, which was previously described in [26]. Images of urban environments 

typically include several planar surfaces occupying portions of the images. These planes may 

include building façades, streets, sidewalks, and the like. The identified planes are used to create 

a mask that prevents those areas to be included in subsequent private processing. 
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The algorithm identifies planar surfaces by comparing the gray values of multiple exposures of 

the same scene. Figure 4.27 is an example of a triplet of images recorded by a streetside capturing 

system, with indices N-1, N and N+1 (from left to right), where a camera has transitioned along a 

street between each of the images. The three images overlap, and include both static objects 

belonging to major planes (street, façades) as well as dynamic objects (car, people, signs, and the 

like) not lying on the major planes. Although this example uses three images, the present solution 

is not limited to three because any number of images can be utilized to generate similar results. 

 

Figure 4.27 Samples of Consecutive Streetside Image Trigger Events N-1, N, N+1 

In order to determine the geometric relationship between identical scene points in the multiple 

views, we use a depth representation such as a depth map image, which has been generated using 

the method described in Section 4.5.5. However, rather than including all of the LiDAR 

measurements obtained, we only use those points located on major planes to generate the depth 

map, excluding points on other structures.  

  

Figure 4.28 Depth Map Image for Trigger Event N (Left); Depth Map Image Containing Only Planar 

Surfaces (Right); 
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Major planes may be extracted from the 3D LiDAR data through different methods, such as 

“RANdom SAmple Consensus,” (RANSAC) fitting of planes to the point cloud [45]. RANSAC is an 

iterative method utilized to robustly estimate parameters of a mathematical model from a set of 

observed data containing outliers. Figure 4.28 shows the original depth map image for event N 

including all scene points (left) as well as the depth map image computed only from points on 

major planes (within 0.2 m tolerance). For each of the three images in Figure 4.27, geometric 

information of the scene has been collected by the LiDAR scanner included with the streetside 

capturing system.  

 

Figure 4.29 Reprojection of Blurred Image N-1 (Left); Blurred Image N (Center); Reprojection of 

Blurred Image N+1 (Right) 

By using this depth map, the pixels from one image are mapped to another (re-projected) in 

accordance with the scene geometry (depth map) using a method similar to [347]. Based on the 

depth dependent transformation for each pixel location, image N-1 can be re-projected (warped) 

onto image N. The same can be done for image N+1. The result of such re-projections is displayed 

in Figure 4.29, compared to the original image N. Note that all three images have been blurred 

using a Gaussian filter [238] prior to re-projection to smooth out noise and small variances of grey 

values close to edges. Specifically, Figure 4.29 includes a blurred version of image N in the center, 

as well as images N-1 on the left and N+1 on the right, warped onto image N using depth 

information from major surfaces. 

After the re-projection, grey values from the re-projected image N-1 can be compared to grey 

values of the corresponding pixel locations of image N. For each pixel location, a grey value 

difference can be computed as the Euclidean distance in RGB space between two RGB vectors. 

Wherever a pixel location contains an object that is part of one of the major surfaces (street, 

façades), the re-projection error is low, and hence the two grey values should be nearly the same. 

If a pixel location contains an object that is either not on one of the major surfaces or has moved 

between the two image events or both, the grey values for the same location in the two images 

may significantly differ from each other (depending on an object and background). By using a 
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threshold, a binary decision can be made for each pixel to make a distinction between portions 

that are surfaces and outliers, which leads to the creation of a binary mask for the whole image. 

 

Figure 4.30 Major Plane Detection Mask 

The same computation of a grey value difference and use of a threshold may be performed for 

image N+1 as well, resulting in a second binary mask. Combining the two binary masks by using 

Boolean AND generates a final outlier detection mask. An example of such a mask is shown in 

Figure 4.30, superimposed onto the original image, where portions corresponding to a logical 

“FALSE” are shaded solid to indicate static objects on major planes, and locations corresponding 

to logical “TRUE” are all transparent portions. The present private object detection workflow uses 

this mask to identify private objects in portions of the image that are designated as outliers. The 

various detection algorithms detailed in 4.5.1 through 4.5.3 may hence be tuned to a high 

sensitivity (>95%) for detecting private objects while generating low FPR (<2%) because portions 

of the image designated as surfaces are excluded from detection. 

4.5.7 Depth Dependent Adaptive Blurring 

The final step of the presented privacy protection method involves the blurring of image regions 

that were identified as containing private content during the previous steps. Several goals exist 

for this blurring step. The primary goal is that the blurred image content can no longer be 

personally identified after the blurring step, and that the blurring method is irreversible, such that 

no algorithms can be used on the blurred image to recover the original image content. 

Additionally, it is important that while it should be made obvious for the community that the 

image has been intentionally redacted for privacy reasons, the amount of blurring should not 

affect the image quality more than required, especially in regions containing false positive 

detections. 

In order to fulfill the above requirements, we first add noise to the input image, and then apply 

Gaussian blurring by means of convolution. We further use the scene geometry as a guidance to 
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how much blurring needs to be applied at a specific location of the image. Objects such as faces, 

which are farther away from the camera, appear in the image at a smaller scale than nearby 

objects and thus require less blurring. Hence we use the scene depth images gathered by the laser 

scanners (Section 4.5.5) as a means to estimate the dimensions of private features in the image. 

Assuming a typical natural feature size snat of 1’’ (2.54 cm), the projected feature size sproj in pixels  

 
𝑠𝑝𝑟𝑜𝑗 =

𝑠𝑛𝑎𝑡 ∗ 𝑓

𝑑
 ( 4.8 ) 

can be computed for each pixel in the image, given that depth information d is available. The 

projected feature size in pixels is to decide which σ value to use used for the Gaussian blur at the 

specific location. We choose a sigma value proportional to the projected feature size. 

Due to the fact that the uncertainty of laser scan measurements for a given image grows as a 

function of the time between the image capture and the time when the actual laser line was 

captured |𝑡𝑐𝑎𝑚 − 𝑡𝑙𝑖𝑑𝑎𝑟|, we reduce the depth estimate by an uncertainty offset 𝜹𝒅. This leads to a 

larger amount of blur for objects scanned at a larger time offset from the camera trigger event. We 

use a linear uncertainty model, decreasing the depth estimate proportional to the time offset, up 

to an offset of -2 m according to 

 
𝜹𝒅 = max( 2 ,

|𝑡𝑐𝑎𝑚 − 𝑡𝑙𝑖𝑑𝑎𝑟|

2
) ( 4.9 ) 

An example demonstrates this behavior in Figure 4.31. The input depth map image (a) and depth 

offsets to compensate for the time difference (b) are combined into a corrected depth map image 

by subtraction (c), in order to compute the sigma values (d) used for blurring the input image in 

those regions detected by the privacy protection algorithm. The input image for this example, with 

highlights indicating detected regions, as well as the blurred output image are shown in Figure 

4.32 (a) and (b). All three detected license plates have been blurred sufficiently to render the 

license plate illegible. Note that the amount of blur applied to obfuscate the person in the back of 

the scene is smaller than for the license plates, due to the higher distance. 

While false positive detections around other parts of the car (rims and lights) have caused some 

notable blurring artifacts, the amount of blur is less than if a constant blur amount had been used 

throughout the image.  
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(a)                                                                                    (b) 

 

(c)                                                                                    (d)  

  

Figure 4.31 Depth Maps used for Depth Dependent Blurring: (a) Input Depth Map; (b) Depth Offset 

due to Time Uncertainty; (c) Updated Depth Map; (d) Sigma Values used for Gaussian Blur; 
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Figure 4.32 Input Image with Highlighted Regions Detected by Privacy Detector (Left); Output 

Image after Applying Depth Dependent Blurring – Details shown Enlarged (Right); 

4.5.8 Combination of Different Methods 

The proposed workflow for privacy protection in streetside imagery uses several detection 

algorithms providing high recall / low precision detection of private objects (faces, people and 

license plates) in combination with different ways of reducing false positives. Each detector 

generates binary pixel masks of the same size as the input image, which are combined using 

Boolean operations to determine the final blur mask used to generate the blurred output image. 

Figure 4.33 shows a sample streetside image captured with one of the broadside looking cameras 

of the UltraCam-M mobile mapping system, containing private objects such as vehicle license 

plates as well as a person. Although the person as well as the smaller of the two license plates 

appear at a relatively small scale, they may still be identifiable by someone familiar, and therefore 

should be detected by the privacy algorithm. The image further contains objects such as buildings, 

street markings, or vegetation which should be preserved as much as possible during privacy 

processing. 

The detection result of the individual detectors computed on the input image in are shown in 

Figure 4.34. As one can see the result of the edge based saliency detector (a) has been tuned for 

high recall / low precision in order to detect most parts of the image containing features of a 

certain dimension typical to faces, hands, or license plates. Detections have been restricted to a 

height above ground of 2.2 m as derived from the laser geometry measurements. 
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Figure 4.33 Sample Streetside Image with Private Content 

Similarly, the license plate detection result (d) is tuned for high recall / low precision, therefore 

causing many false positive detections. The detected regions generally have rather elongated 

shapes at an angle compared to the horizontal direction, as expected for license plates. 

The result of the color based skin (c) and vegetation masks (d) similarly have been tuned for a 

high recall and low precision, to avoid false negatives of the privacy detection workflow. Therefore 

the skin mask also includes other regions with similar colors, such as parts of the vegetation or 

the red car. The threshold for the vegetation detector are set for high precision / medium recall, 

thus causing some false negatives, and only few false positive detections.  

Finally, the detection result for objects on major planes in the scene are shown in Figure 4.36 (a), 

covering part of the street as well as parts of the bulding façades on the right. The building façades 

on the left were not detected as no depth information could be obtained due to the nearly parallel 

viewing direction of the LiDAR. This fact can also be seen in the depth image computed for the 

respective camera (b). 

Figure 4.35 describes schematically the boolean combinations used to combine the individual 

detectors and to compute the final detection mask used to control the image blurring algorithm. 

In order for the final mask to be logically TRUE, the edge based saliency detector AND either the 

skin OR license plate detectors have to be TRUE, AND NONE of the false positive removal methods 

such as major plane detection OR the vegetation detection may be true. Note, that a region 

detected as skin overrules regions also detected as vegetation, therefore the difference of the two 

is used for removing false positives. 
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(a)                                                                                    (b) 

   

(c)                                                                                    (d)  

  

Figure 4.34 Results of Individual Detectors: (a) Edge Based Saliency Mask; (d) License Plate 

Detector Result; (b) Skin Tone Detector Result; (c) Vegetation Detector Result 
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Figure 4.35 Boolean Combination of Individual Binary Detection Masks to Generate Final Detection 

Mask used for Output Image Blurring 

The resulting mask from this operation is depicted in Figure 4.36 (c), with colors indicating 

whether an object has been detected by the skin detector (green), the license plate detector (blue), 

or by both detectors (red). Finally, the resulting output image after applying the depth dependent 

blurring algorithm (d) shows that both license plates as well as the person facing the camera have 

been correctly detected and blurred by the algorithm. While false positives caused some amount 

of blurring of non-private regions, the majority of the image such as the building façades remain 

unaffected. Also, due to the depth dependent blurring algorithm, objects further away from the 

camera are blurred relatively less, than close-by objects. This can be seen specifically on the 

example of the farther of the two license plates.  
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(a)                                                                                    (b) 

    

(c)                                                                                    (d) 

   

Figure 4.36 (a) Detection of Regions on Major Planes; (b) Depth Image Computed from LiDAR Data 

(c) Combined Detection Mask (d) Resulting Output Image after Privacy Blurring 
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4.5.9 Experiments and Results 

In order to evaluate the performance of the streetside privacy protection algorithm described in 

4.5, we used two different test datasets. The first dataset was captured in downtown Manhattan, 

NY, and contains a total of 1,472 images. In this dataset, 1,404 faces were manually labelled by 

drawing ground truth (GT) bounding boxes around people’s faces. This dataset does not contain 

GT labels for license plates. The second dataset, captured in Denver, CO contains 553 streetside 

images. In this case, 2,488 faces and 43 license plates have been manually labelled as GT. In the 

second dataset, the face labels were further categorized depending on whether they were frontal 

views or side views of faces, and whether the face was clearly recognizable or vaguely 

recognizable. Instructions were given to the labelers, not to label any faces on printed posters, as 

they don’t reflect private content. 

The metrics we decided to use for evaluating the privacy protection algorithm are the per 

bounding-box recall for faces and license plates, as well as the per-pixel false positive rate (FPR) 

for all pixels outside of any labeled bounding box. The recall is computed as the fraction of 

bounding boxes which were sufficiently blurred by the algorithm. This number is computed in 

two steps. First the bounding boxes for which the ratio of detected pixels within the bounding box 

exceeds a threshold of 10% were automatically detected. This value was chosen, as the bounding 

boxes were often significantly larger than the actual face or license plate, such that for many 

correct detections, the actual facial region detected covered only a small part of the bounding box. 

The blurred output images were also manually inspected to assure that they were sufficiently 

blurred, and false positives were removed from the set. The per-pixel FPR is computed as the 

fraction of all pixels outside of any ground truth bounding box, which was erroneously detected. 

 

 

Figure 4.37 Examples of Correctly Identified and Blurred People and License Plates 

For the Manhattan dataset, which was used to evaluate the per-face recall standalone without 

license plate detection, the proposed workflow achieved a per-box recall of 95.4% (1335 detected 

faces). The per-pixel FPR for this dataset was 0.79%. 
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In case of the Denver dataset, the results are broken down based on the label type, and whether 

the license plate detection was used in addition to face detection in Table 4-2 and Table 4-3. The 

recall for all clearly visible faces (97.0%) is notably higher than for vaguely visible faces (83.5%), 

while it can be argued that the latter are less important to be detected. The overall recall for all 

face categories combined is 90.9%, compared to 95.3% for license plates. 

GT Label Type Total GT 
Labels 

Detected 
Labels 

Box 
Recall 

Pixel FP 
Rate 

Frontal Face Clear 596 575 96.5% 1.5% 
Side Face Clear 679 662 97.5% 1.5% 
Frontal Face Vague 566 459 81.1% 1.5% 
Side Face Vague 647 554 85.6% 1.5% 

Table 4-2 Privacy Metrics for Denver Dataset without License Plate Detection 

The observed per-pixel FPR for the Denver dataset is 1.5% without using the license plate 

detector, which increases to 2.3% with the license plate detector enabled. Although FPR is 

relatively high, their is offset by using the depth dependent blurring algorithm, as many false 

positive regions are located at such a distance from the camera, that the amount of blur caused in 

the images is marginal. 

GT Label Type Total GT 
Labels 

Detected 
Labels 

Box 
Recall 

Pixel FP 
Rate 

Frontal Face Clear 596 576 96.6% 2.3% 
Side Face Clear 679 664 97.8% 2.3% 
Frontal Face Vague 566 462 81.6% 2.3% 
Side Face Vague 647 560 86.6% 2.3% 
License Plate 43 41 95.3% 2.3% 

Table 4-3 Privacy Metrics for Denver Dataset with License Plate Detection 

After the completion of the described work, Frome et al [27] have reported similar recall metrics 

(89% faces, 94-96% license plates) for the privacy protection method used for Google Maps, while 

the FPR metrics reported (0.2% for face and LP combined) are an order of magnitude better than 

our results. However, the depth dependent blurring algorithm compensates for a substantial part 

of the FP generated by our system. A visual inspection on Google Maps we performed in April 

2009 confirmed that the percentage of faces that were blurred was about 90%, and for license 

plate it was 95%, which corresponds to the published numbers in the paper. On the other hand, 

an estimate of the FPR based on visual inspection suggested significantly higher numbers (5%) 

than those published in the paper. This may be because the data that had been published at that 

time had still been processed with a prior version of Google’s privacy protection system than 

described by Frome et al. 
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Figure 4.38 Examples of Remaining False Positives 

While we believe that the recall numbers for faces and license plates are promising considering 

the large variability in the appearance of such objects in streetside imagery, there is still a large 

potential to improve both the recall as well as the FPR. The examples of remaining false positives 

shown in Figure 4.38 indicate problematic areas, such as highly textured structures that were 

neither removed by the skin-tone or vegetation detectors, nor were they found to be on a major 

plane. Particularly bicycles, car lights or rims frequently cause FP detections. Such errors could 

potentially be reduced by training a learning based method such as [294] on particular instances 

of alike objects. Other problems occur in cases where one or more of the methods to avoid false 

positives failed, such as the major plane detection as well as the skin tone detection. One example 

in Figure 4.38 shows an area where part of a cross-walk was detected due to its high contrast. In 

this case the LiDAR point cloud did not align precisely enough with the image, which caused 

misalignments between the consecutive images. In addition the gray balancing had failed, 

therefore the street was within the color range classified as skin. 

 

 

Figure 4.39 Examples of False Negatives 

Similar to false positives, false negatives are also occur frequently (>80% of all cases) due to miss-

detections of major planes. This is often caused by are dark image regions resulting in miss-
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matches between private objects and background planes. Using a better, luminosity independent 

method of comparing gray values such as comparing only the chrominance or using relative 

instead of absolute thresholds may improve this behavior. In other cases, missed private content 

includes people standing close to walls or license plates being missed due to their extreme viewing 

angle, as shown in Figure 4.39. 

4.6 Summary and Outlook 

In this chapter we have described two of the main contributions to human scale image data in 

internet mapping, which matured into practical applications in Bing Maps. This includes a capture 

system for efficient capture of millions of streetside images fulfilling a series of requirements, as 

well as a workflow for automatic privacy protection for the captured imagery. 

4.6.1 Streetside Data Capture 

While the system described above (UltraCam-M version 1) reflects the requirements in internet 

mapping in 2007 and 2008, progress in various domains such as spherical image sensors [348], 

integrated GNSS/IMU systems [252], laser scanning devices [249, 250] as well as algorithms for 

data processing [314, 315, 316] has since pushed the limits in this domain. 

   

  

   

Figure 4.40 Locations Captured with UltraCam-M Streetside System (From Top Left): Eiffel Tower, 

Paris; Big Ben, London; Lombard Street, San Francisco; Excalibur Hotel, Las Vegas; Hollywood 

Boulevard, Los Angeles; French Quarter, New Orleans; US Capitol, Washington DC; Golden Gate 

Bridge, San Francisco; Times Square, New York; 

Since the development of the UltraCam-M system, streetside imagery have become an essential 

component of internet mapping sites such as Bing Maps and Google Maps. Both companies have 
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captured and shared hundreds of millions of images in many locations around the world. While 

Microsoft has focused mostly on urban areas in the US and Europe, Google has captured data even 

in remote areas on all 7 continents [349]. Both companies had to face both logistical challenges as 

well as privacy concerns by communities around the world. The following section defines the 

requirements for streetside privacy protection in more detail, as well as a proposed workflow to 

address the problem. 

4.6.2 Privacy Protection 

We have presented and evaluated a workflow for automatic detection and obfuscation of private 

objects such as people or car license plates in streetside imagery. We have shown that the 

presented method successfully detects >90% of people’s faces and >95% of license plates, which 

is comparable to the results reported by Frome et al. for the workflow used by Google Maps [27]. 

The higher FPR (2.3% vs. 0.2%) is partially offset by the proposed depth dependent blurring. 

Note that while automatic privacy processing of streetside imagery is an important and cost-

effective step to protect people’s rights for privacy, no algorithm can currently guarantee 100% 

recall rate without significantly affecting the image quality and thus rendering the data usefulness. 

Therefore, it is essential for internet mapping providers to establish functionality for manual 

flagging of private objects besides the automatic detection. 

With increasing sensor resolutions, both for human scale as well as aerial (oblique) images and 

the emergence of indoor imagery, privacy protection is gaining more significance, as a larger 

number of private objects is exposed. Therefore new methods for detecting a broader set of 

private objects (e.g. house numbers) in a larger range of image scales need to be developed.  

In order to retain optimal image quality despite artifacts due to false positives, it may be 

preferable to remove people and cars from the respective images or even replace them with 

anonymized content, rather than blurring the affected regions. [350] and [351] have presented 

interactive and automatic solutions for removing private objects, while [352] provides a method 

for replacing pedestrians with another one selected from a controlled and authorized dataset. 
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5 Geospatial Image Matching Within and 
Across Domains 

We have previously explained the varieties of geospatial imagery with a different choice of image 

scales and resolutions, capture processes used, their associated metadata and specifics of their 

ownership. Data often complement each other in that strengths of one type are weaknesses of 

another, and vice versa. While for example systematically collected streetside images have sub-

meter accurate geocoding and a well-defined coverage of large areas, they may often be several 

months or years old and do not contain information about which places are most popular or of 

user-interest. Community photo collections (CPC), on the other hand, can provide the missing 

popularity information and freshness, as well as a larger variability of the scene appearance (see 

nighttime image Figure 5.1). On the other hand they are lacking the geocoding accuracy often 

required for mapping sites. Additionally CPC data may contain user tags describing features of the 

recorded scene, which systematic sources can hardly provide. Therefore it would be generally 

desirable if complementary information from multiple image sources could be combined to 

improve the overall usefulness on the web. 

 

Figure 5.1 Nighttime User Photo from Flickr Superimposed on Bing Maps Streetside Panorama 

Image by Means of Image Matching (Aurora Bridge, Seattle) 

One way of achieving this synergy is by means of image based location recognition or location 

search, to connect images from multiple sources in order to allow propagation of different kinds 

of information across data types. Location recognition means in the simplest case recognizing that 

two or more images cover the same physical location. In a broader setting location search extends 

to the problem of finding the best matching location for a given query image within a search scope 

such as a building, street, city block, city or the world. 
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5.1 Image-Based Location Search 

The terms “location recognition” and “localization” using images have been broadly discussed in 

robotics research since about 1988 [353, 354, 355, 356]. They describe the automatic recognition 

of a previously visited or recorded location, which is a common problem in robotic navigation and 

more broadly in the area of “simultaneous localization and mapping” (SLAM) [357, 358, 359]. 

Other related research areas such as “landmark recognition” [16, 360], “personal navigation“ 

[361, 362], or “augmented reality” (AR) [41, 359] have an interest in solving essentially the same 

problem of visually recognizing a location [363]. 

In the following chapter we describe an innovative workflow to solve the problem of combining 

image data from different sources in order to maximize their usability for online mapping systems 

and other geospatial applications. Specifically we propose a scalable geo/spatial image index 

capable of efficiently matching geocoded and non-geocoded query images to an index containing 

tens of millions of geospatial images. The precision and recall of the query results are optimized 

by using priors for the location estimates as well as the image rotation. Both image query as well 

as image ingestion to the index are in real time without the need to rebuild the index. 

The presented solution has applications in several of the areas mentioned above, although it is 

primarily intended for city scale location recognition by means of matching new image data to 

previously available and geographically referenced images. City scale in this case refers to a 

database of several hundreds of thousands up to millions of images. Apart from the large search 

space, an automatic image matching system has to cope with large dissimilarities between such 

images. These are caused by differences in the capture system and the environment such as the 

following: 

 Differences in image quality (resolution, lens distortions, contrast, noise, …) 

 Differences in scale and perspective (human scale vs. aerial, small overlap regions, …) 

 Differences in illumination (day, night, dawn, sunshine, shadows, artificial lighting, …) 

 Dynamic scene contents and occlusions (people, cars, clouds, trees, …) 

 Major scene changes (new constructions, renovations, …) 

 Large time differences leading to a combination of the above. 

One of the goals of this work is to achieve a high matching rate, ideally 100%, while keeping the 

rate of false matches below an assumed user’s error tolerance of 1%. Another goal is to allow both 

batch processing of tens of query images per second, such as from a CPC like Flickr, as well as 

real time queries from mobile devices with end-to-end latencies below 5-10 seconds. 

5.2 Related Work 

The task of matching multiple images according to a set of features is one of the most important 

tasks of computer vision [364]. This has already been a topic for several decades, using a great 

variety of features and algorithmic approaches. This task becomes especially challenging if the 

image contents differ significantly in their radiometry, geometry, resolution, perspective or other 
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parameters. The task also becomes more computationally expensive if a large number of index 

images needs to be considered for a single query image.  

Let us consider some examples of using image matching to determine the location of the contents 

present in a query image within a series of index images, or an estimate of the camera pose relative 

to some world coordinate system.  

Structure from Motion 

While they are not the main focus of this work, structure from motion (SFM) methods are related 

to location recognition in that they also require the association of multiple images captured in the 

same location by identifying commonly visible scene elements. SFM methods proposed by Snavely 

et al. [15], Goesele et al. [2] or Agarwal et al. [11] match local image features such as SIFT [364] 

across images to identify common scene elements. The matches can hence be used to reconstruct 

the 3D geometry of the scene. SFM has been used in internet based applications such as Microsoft 

Photosynth [163] or Google Photo Tours [266]. While [15] and [2] aimed at small collections of 

tens to hundreds of images, [11] expanded the scope to a large collection of 150,000 images of the 

city of Rome downloaded from CPC. Additionally several location recognition methods [365, 366] 

use the resulting 3D structure and features as a basis model for “6 degree of freedom” (6DOF) 

localization. 

Global Landmark Recognition 

One application which often does not require 6DOF poses is the visual recognition of a particular 

instance in a global database of landmarks. This may be useful for organizing and auto-labeling a 

photography collection, e.g. after returning from a vacation. Databases are often created based on 

data from CPC which are either manually or automatically (based on GPS or user tags) grouped 

into individual landmarks. Li et al. [16] propose a method for automatically selecting a few 

hundred iconic CPC images from tens of thousands of images by means of clustering and creating 

an “iconic scene graph” between clusters. SFM scene models are hence computed from the iconic 

data to provide a compact summary of individual landmarks. Queries against the model using both 

visual appearance as well as geometric verification lead to recall (=TPR) numbers of up to 40% 

for 3 landmarks evaluated. 

Alternative, classification based approaches by Li et al. [17] and Zheng et al. [360] and have shown 

that significantly more landmarks can be modeled and recognized automatically at even higher 

recall. Li et al. achieve 45% recall by clustering 30 million CPC images into 500 distinct landmarks 

using their geocoding, and training a support vector machine (SVM) [367] to perform 

classification based on SIFT based bag-of-word and textual features. Zheng et al. use similar 

methods to obtain 21.4 million landmark images from CPC and tour guide web pages, from which 

5312 individual landmark clusters are identified. Queries are done using KD-tree [44] nearest 

neighbor search in a database of image features. Zheng et al. report recall performance of 46% 

with an FPR of 11%. 
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City Scale Location Recognition 

Location recognition differs from landmark recognition in that its aim is to provide a precise 

(meter to sub-meter) location or 6DOF pose for a query image within a larger (e.g. city-wide) 

region, rather than simply the association with a particular landmark. Hence a significantly larger 

corpus (e.g. several hundred thousand) of geo-positioned index images per city may be required 

for continuous coverage. Research by Johansson et al. [368], Robertson et al. [369] and Le Bris et 

al. [370] made use of the fact that many urban scenes primarily consist of planar building façades 

with linear features, by automatically extracting vanishing point directions [371, 372] from 

images and rectifying them into canonical views. Hence in order to confirm a match between two 

rectified images, the search space is reduced to the parameters of a similarity transform - offset, 

scale and (optionally) rotation. While [368] used summations of difference images to align image-

edges in X and Y independently, [369] instead applied wide baseline matching using local color 

statistics as features. Later, [370] followed the same idea, but used SIFT features to replace color 

features. After confirming the correspondence between a query image and an index image, a 6DOF 

pose can be determined based on the vanishing point directions and known index image 

orientations. All three methods achieved satisfactory results on “several” images, but were not 

evaluated on city scale datasets. 

Zhang et al. [362] proposed an approach based primarily on SIFT features for correspondence 

search, combined with a robust geometric verification using RANSAC [45] with a homography or 

fundamental matrix model. Finally the camera pose is estimated by triangulation using the point 

correspondences with two of the matched index images. [362] reported similarly good results as 

the above authors for a small set of 22 query samples. 

In contrast to the work reported above, Schindler et al. [363] aimed at location recognition within 

a much larger corpus of 30,000 systematically captured index images. This could be achieved by 

employing an image retrieval scheme based on [40] and [30] for efficient image ranking of index 

images. For ranking, a selection of the most location-distinctive quantized image features was 

used, leading to a better ranking performance than the original method [30]. This approach led to 

a recall rate of up to 73% for the first image in the ranked list. However the authors did not 

perform any verification of the matches, hence the FPR is expectedly high (27% = 1 - TPR). 

Other more recent work on location recognition by Irschara et al. [365] and Yunpeng et al. [366] 

use SFM for creating a “world model” used for localization. While [365] also uses image retrieval 

in a database of real and synthetic views of the world model to obtain valid matches, [366] rather 

compresses the model into a subset of “prioritized” features, which are matched to query features 

using nearest neighbor search and reasoning based on visibility. In both cases the resulting 

matches can be used to estimate 6DOF poses. [365] was evaluated on several landmark models 

ranging between roughly 100 and 1,000 images from CPC and targeted captures. The achieved 

recall rates ranged between 96% for query images captured close to the index images, and 43% 

for query images following a different path. [366] used an SFM method based on prior work in 

[11]. Hence significantly more index images (1,300 to 16,000) could be used to generate the 
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compressed SFM models. While no FPR numbers were reported, the achieved 94% are 

remarkable. 

Simultaneous Localization and Mapping 

A specific application of location recognition is the recovery and loop closing problem of SLAM 

systems for robotics and AR [359, 373]. In order to connect to a previously created map either 

after initialization or to recover after tracking failures, visual localization is commonly performed 

[358]. While tracking in large spaces with loops, it is also common practice to connect to 

previously observed frames to create additional constrains about the map geometry [374]. Similar 

methods as the ones described above, which are able to compute 6DOF poses relative to an 

existing map, may serve this purpose besides specific methods developed for SLAM applications. 

Local Image Features 

Most of the recent research on location recognition [375, 369, 376, 377, 362, 363, 378, 17, 360, 

16] makes use of local image features, which, in contrast to global features, describe properties of 

smaller regions within the image. The advantage of this approach is that when correct 

correspondences between regions of an image pair can be made, they can be used to compute a 

more precise geometric relation between the images. On the other hand, local image features 

usually require more processing steps and so are more expensive computationally. Matching local 

features usually requires four steps. First, salient image regions need to be found by an interest 

point detector, second the feature descriptors from these image regions get extracted. These 

feature descriptors of multiple images are compared and matched and the matches are verified 

geometrically. 

Typically, interest point detectors are designed to find salient local image regions such as corners 

or blobs in a scale space [379], by using a mathematical definition (e.g. Harris corners [380], 

Laplacian corners, Laplacian of Gaussian, Determinant of Hessian [381] etc.). Research has been 

performed to develop interest point detectors that are possibly invariant to changes in offset and 

scale [382, 376, 42], view point and illumination [383], and ideally detect the same interest point 

at the same scene location repeatedly. Since 3D viewpoint changes usually cause more or less 

large local deformations of image regions, invariance to affine [384, 385] or perspective [386] 

distortions can contribute significantly to the matching performance. Other research aims at 

computing interest points very rapidly for applications running on mobile hardware, e.g. FAST 

interest points [387]. More research has been done on evaluating and comparing the performance 

of different interest point detectors [388, 50, 389]. 

After the interest point detection, image patches are extracted around each point, often 

considering scale and orientation parameters determined by the interest point detector, from 

which feature descriptors can be computed. A primary motivation for feature descriptors is to 

compress the information contained within an image patch into a much smaller vector, to simplify 

the feature correspondence search across multiple images compared to simple correlation. In 

addition, features invariance to changes in scale, position, lighting and orientation is desired. A 

common approach to this is by computing statistical information about the distribution of 
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gradients in an image region. The most frequently used feature descriptor is SIFT [390, 364], 

which sub-divides the square image patch into 4∙4 equally sized regions, and computes for each 

region a histogram of image gradients, which is quantized into 8 bins each. This leads to a 128-

dimensional descriptor for the image region. Derivatives of SIFT are SURF features [391], 

Viewpoint Invariant Patches (VIP) [386] as well as DAISY features [392, 393, 394]. Several 

comparisons have evaluated the quality of the different feature descriptors [395, 43, 389, 50] 

which find SIFT generally to be superior compared to other methods. 

Correspondence Search and Verification 

Once the interest points are found, they need to be matched to the database images. As exhaustive 

search through all indexed descriptors is computationally expensive, a common solution is to 

organize the n descriptors of single or multiple images in a KD-tree structure [44], for efficient 

nearest-neighbor search in O(log n) complexity for a given query feature [376, 377, 15, 11]. 

Even much faster feature matching can be achieved by using quantized image features, also 

referred to as “visual words” [40, 30, 363]. A large number of image feature descriptors are 

clustered into a visual vocabulary, each of which is basically represented by a single integer 

number. For each index image, a list of the included words is saved, and an inverted file index can 

be generated which contains for each visual word a list of images in which it appears. Matching of 

a query image involves feature quantization and then using the inverted file table to find possible 

image matches. Index images can be quickly ranked by the number of words overlapping with the 

query image, which is usually weighted by some a-priory likelihood for each word. Using this 

method, millions of images can be searched within less than a second, which makes it very 

attractive to large scale image search problems, such as location matching. Examples of location 

matching based on visual words are [363] and [365]. 

The last step is typically a geometric verification of the point matches, to filter out mismatches, 

which occur frequently. This often uses the RANSAC algorithm [45], for robust model estimation 

even in the case of many outliers. A variety of models, such as Fundamental Matrix, Homography, 

6-DOF pose estimation etc. can be used to verify the geometry. 

Alternative Approaches 

While variants of the above workflow are common, other methods are also worth mentioning. 

Lilja [396] proposed a seed and spawn algorithm that tries to grow the matches starting from 

some strong seeds, by using geometric reasoning through the image space and scale space [379]. 

An alternative to using patch based feature descriptors for matching is edge information (edgels) 

either to support the location matching effort, or for later pose tracking within the world model, 

such as shown in [397]. Global image features, which contain a global description of the essence 

of an image (gist), comprise another alternative to local features. They are typically derived by 

simple statistical analysis or by image understanding methods, such as color histogram 

information, image texture statistics or statistical descriptions of the image content, and contain 

a much compressed representation allowing more efficient retrieval of related images. 
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Jacobs et al. [398] have presented a different approach for approximate geocoding of images, by 

correlating the time-modulation of image intensity in videos recorded by stationary web-cams to 

the pattern of cloud-motion derived from satellite images. The major advantage of global features 

is the relatively high speed of matching, even in the presence of a very large number of index 

images (>> 1 Million). Nevertheless, this is often outweighed by the disadvantage that positioning 

can usually only be done roughly, and with a large remaining uncertainty, which renders this 

method inappropriate for applications such as AR. 

Furthermore, while we focus on matching by using natural image features, frequently used tools 

for camera localization in AR are artificial markers such as those provided by ARToolkit [399]. 

Artificial markers are designed to be easily detectable, even on mobile devices [41, 400], but they 

impose the disadvantage that localization and tracking can only work in very limited areas where 

markers are located. 

5.3 One Query Image in a Sea of Index Images 

While a rough geo-location of user photographs already simplifies the task of exploring images by 

their location from a top-down view, it may not be as pleasant an experience when viewed from a 

“human-scale” perspective, such as within a streetside- or indoor- scene. In this case it would be 

desirable to have a more accurate alignment of the photograph with the underlying model such 

as shown in Figure 5.1 - ideally pixel-accurate. 

Not only could the image be observed from a perspective similar to the one from where it was 

taken (putting the observed scene in the context of its surrounding) [49], but it would also be 

possible to augment the image by relating to it known information about the world (such as the 

names of streets, buildings, shops, etc.). Knowledge of a photo’s position and orientation may also 

help organizing photos into groups based on scene semantics, offering a better browsing 

experience of the photos [159]. This could be achieved in an offline process, to more accurately 

geo-position a set of images, and augment them with the desired meta-information. If the process 

of aligning the image is fast enough, and computationally cheap, this could also be done in close 

to real-time, ideally on a mobile device, and be the basis for certain augmented reality (AR) 

scenarios. 

   

Figure 5.2 Samples of Geocoded Query Images from Community Photo Collection (Flickr) 
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The primary problem we want to solve is hence the matching of an arbitrary query image to an 

existing set of geospatial images present in an index. A secondary problem is the dynamic 

ingestion of a new query image into the image. The index may contain a mix of both human scale 

panorama images as well as user images previously matched. 

For offline-batch processing, as well as for real-time applications, the input data consist of one or 

more query images (See Figure 5.2). These are often associated with a geo-location (latitude, and 

longitude), as well as some estimate of the error radius r of the used geo-tagging method. Some 

image may have additional information about the orientation of the camera, while other images 

may only have a coarse definition of the location (e.g. city name). If a-priori location and search 

radius are known for the query image, all indexed images within this region are within the scope. 

If no scope is defined, the whole index is considered to be within the query scope. 

 

Figure 5.3 Overview of Streetside Panoramas within Search Range (Blue Circles) as well as the 

Query Image Prior Location (X) 

One assumption made henceforth is that the images are always oriented nearly horizontally, 

which applies to most pictures available on photo sharing sites, since users presumably rotate the 

images before uploading them. In addition, newer point and shoot digital cameras as well as some 

cell phone cameras, contain accelerometric sensors, for estimating of the gravity vector with 

respect to the image [401]. Not all images in the set necessarily have to be outdoor images, or are 

taken in an area where index images are available. Therefore an algorithm must evaluate whether 

a match is correct, based on some quality criteria. 

The accuracy radius r can often be extracted from image metadata, otherwise a default setting 

(e.g. 100 m) may be used. According to this, a search scope can be defined, restricting the search 

to images within the area (See Figure 5.3). As one can see, a radius r of 100 m can span multiple 

city blocks. Therefore, in some cases a large number of human scale panorama images (300 to 

1,000) and even more user images need to be taken into account during the matching process. 
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Another example of a query photo is shown in Figure 5.4 together with a panorama image and a 

user photograph in the index, taken at the same location. The 360° view of the panorama has been 

warped into a continuous two-dimensional image using spherical projection (see Section 3.4.5). 

The x-axis corresponds to the angle around the vertical panorama axis (“Panorama-Longitude”), 

and the y-axis corresponds to the angle from a horizontal plane in the panorama (“Panorama-

Latitude”). We assume that the index images have been oriented nearly horizontally which 

restricts valid transformations between query and index images to a certain extent (+/- 45 

degrees). While we support matches between two central perspective images or between a 

central perspective image and a panorama, we currently exclude matches between multiple 

panorama images for simplicity. 

 

Figure 5.4 Query Image to be Matched (Left); Sample of Bing Maps Streetside Panorama Image in 

Index (Center); Sample of Previously Added User Image in Index (Right); 

Note that while the examples given here contain only outdoor images, the applicability of the 

method described is not intentionally limited to this scenario. The same method could potentially 

be applied for indoor images. Evidently, the chances of matching depend largely on the contents 

of the captured images and whether they contain sufficient overlap of recognizable scene content. 

5.3.1 Bing Maps Streetside Photos 

In our previous work [25], we had presented a workflow for the location-search problem 

described above, allowing reliable geo-positioning of query images by means of image-matching 

using local image features. However the compute time of several minutes per query image, due to 

the exhaustive search within a search radius r restricted the approach to offline batch-processing 

rather than real-time matching. Additionally, no dynamic ingestion of new images for future 

queries was supported and the index was restricted to exclusively contain panorama images. 

The workflow was able to match roughly geo-coded query images from photo sharing sites like 

Flickr to a trellis of precisely located 360° streetside panorama images, hence providing pixel-

accurate 5-DOF pose (camera position and orientation without scale). It was optimized to handle 

input images even in the presence of significant changes to the camera pose, radiometry and scene 

content such as images taken at night, or old historic images.  

We demonstrated the algorithm on a database of 300,000 streetside images covering a whole city 

in order to show its usefulness for a vision-based augmented reality system. The algorithm 

successfully matched 59.5% of the verified test dataset in combination with a low false positive 
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rate of 0.5%. This performance could be achieved even though the test data included a subset of 

very challenging images, including night-shots, images that were very blurry, or had only a small 

overlap with the panorama images. Problems occurred mostly when query images had a large 

number of features due to repetitive structures on textured objects, or if the field of view of the 

query image was too limited and didn’t contain enough unique features to allow reliable matching.  

The workflow combined several key elements. First, we used descriptor based correspondence 

search, which was constrained by the feature orientation using orientation prior information. 

Since urban scenes often consist of partially planar objects, we used a homography model for 

geometric verification, reducing the chances of mismatches [293]. The method further involved a 

second guided matching phase after an initial homography estimation to increase the match 

density. Additionally match hypotheses were verified by image correlation. 

In order to distinguish true from false matches, we used a matching confidence score, which was 

based on various metrics from the matching process, such as the inlier count, the distribution of 

the matched points in both the query and index image, the mean reprojection-error, the mean 

Euclidean feature distance between all feature pairs, as well as a correlation coefficient between 

the two images. 

Results from this work were further demonstrated to the public as part of the Bing Maps 

Streetside Photos Community Tech Preview [46] presented at TED in 2010 [402]. The way of 

showing user photos superimposed onto streetside imagery has been described in [49]. 

5.3.2 From Offline to Real-time 

Based on the prior work [25] described above, we propose several major improvements related 

to the scope of the work as well as the algorithmic performance. While the previous system was 

designed to match user photographs in an offline process to a static set of panoramic images 

within a search radius, the proposed system extends the scope in several ways. Though 

determining a pixel-accurate alignment between query images and panoramic images is still a 

goal, the proposed method further supports image matching to other user contributed images, 

dynamic insertion of new images into the index, and reducing the restriction to search in small 

search radii. Several major performance improvements were required for the transition from an 

offline batch-process taking minutes per query to a real-time system capable of matching new 

photos to the existing index within 5-10 seconds. 

A drawback of the purely pairwise matching used in the prior system was the fact that the 

compute cost strongly depended on the search radius r and the density of existing images d in the 

area as per the complexity O(r² ∙ d). Therefore, it was limited to a small radius (e.g. 100 meters) to 

avoid excessive search times. Furthermore exhaustive search is only feasible if geocoding 

information is available, which applies only to a 3.6% subset of user photos available in CPC. As a 

means to avoid these limitations, we employ image ranking prior to pairwise matching, based on 

the “bag of features” approach described in [40] and [30]. Thus only a subset of the ranked list of 

images returned by ranking needs to be matched (e.g. 200) leading to a significant performance 
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improvement for search radii above 100 m. Thus even images without geocoding information can 

be matched with this approach if the visual ranking succeeds. Optionally we employ rotational 

scoping during image ranking, such that only features with roughly the same orientation are 

assigned the same visual word index. 

With an aim to achieve better performance of the system for real-time applications, we further 

propose a dynamic version of the visual word based index, allowing insertion of new image 

documents in quasi real-time of less than 5 seconds. While typical retrieval methods based on the 

“Term Frequency – Inverse Document Frequency” (TF-IDF) scoring function [403] allow retrieval 

of image documents in a static set of images, the proposed method uses a simpler scoring function 

allowing easy dynamic document insertion and removal while sacrificing little retrieval 

performance. Thus query images can be matched to other user images which were inserted into 

the index only seconds earlier. 

The processing cost for pairwise matching in our prior work was relatively high, due to the way 

orientation constrained descriptor matching was implemented, and due the need for a second 

matching phase with guided feature matching and correlating the actual images. We therefore 

want to eliminate or simplify several steps. These proposed changes include a single pass version 

of rotationally scoped approximate nearest neighbor search using a modified KD-tree [44], a fast 

similarity based RANSAC for geometric verification using hypotheses derived from individual 

point correspondences, and an optimization step for the geometric alignment using a similarity 

or homography model. 

The combination of these changes leads to significant speed improvements from several CPU 

minutes to 17.2 CPU seconds, while at the same time improvements to recall from 59.5% to 

73.3% can be achieved. 

Further substantial quality and speed enhancements are made to the local image features used 

for retrieval and pairwise matching. As an alternative to the Laplacian detector used in our prior 

work, we use both local maxima and minima of the “determinant of hessian” (DOH) [381] function, 

as also proposed by [42]. With an aim to enable feature extraction on mobile devices we use a 

recursive Gaussian blurring method [238] before computing the DOH score, proposed by Young 

and Van Vliet [404]. 

5.4 Extensible Real-Time Geospatial Image Retrieval Workflow 

As a basis for image matching we use local image features, extracted around salient image regions 

determined by an interest point detector in different levels of an image scale space [379]. For each 

interest point a high dimensional descriptor vector is computed, describing the gradient statistics 

within a patch around the detected interest point. Features are detected for each query image as 

well as each of the candidate images in the index in the same manner. Details of the interest point 

detection and feature extraction step for one variant of feature are provided below (Section 5.5). 
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Feature extraction is followed by a query in two phases. Initially a bag of features (BOF) [30, 40, 

405] based image retrieval method is used to efficiently find the most likely match candidates 

from the entire index based on a ranking (5.6) Hence a more expensive and more reliable post-

verification (5.7) of the top ranked images is performed in order to classify them into correct and 

incorrect matches. Both steps use the same local image features.  

Ranking initially uses a quantization method to find a representative scalar visual word index for 

each of the detected image descriptors. The set of visual words is hence used to rank all indexed 

images based on the co-occurrence of the same visual words as in the query image. To improve 

the reliability of the ranking results, we propose a rotational scoping method to assign only 

features of similar orientation to the same visual word index. For dynamic ingestion of new 

features into the index, we further propose a dynamic version of the index using a simplified 

ranking method. 

Post-verification is pairwise between the query image and each of the top ranked candidate 

images. It uses descriptor based nearest neighbor search by means of a KD-tree algorithm [44] to 

solve the correspondence problem between the query and candidate images followed by a 

geometric verification using a fast RANSAC [45] method. For improved reliability of descriptor 

based matching rotational prior information about the image orientation to constrain possible 

matches. The geometric verification initially estimates a similarity transform using a fast 

similarity RANSAC algorithm, followed by optimization using the Levenberg Marquardt method 

to find optimal solutions for the similarity and homography transforms between the images. The 

inlier count for the geometric verification is used as a metric to decide whether or not to accept a 

match, and to rank all matched images. 

Since the system is designed to handle both central perspective image data as well as panoramic 

images, certain distinctions have to be made during the different steps based on the image type. 

For example more features have to be detected to cover the larger viewing angle of panoramic 

images. Additionally the post-verification includes a panorama window selection step in order to 

determine which section of the panorama overlaps with the respective central perspective image. 

While we assume in the following sections the query to be a central perspective image and the 

candidate image to be either central perspective or panoramic, this should not limit the scope of 

the algorithm. In case of a panoramic query image and a central perspective index image, the 

image features are swapped and the same methods can be applied in the reversed direction. 

5.5 Feature Extraction3 

After the initial preprocessing of the images (which are resampled to be ≤ 640 Pixel in dimension 

and converted into grey-scale), interest-points are detected and corresponding feature 

                                                             

3 The methods for interest point detection and descriptor computation described here have been developed 

by a team of people at Bing Mobile led by David Nistér. 
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descriptors are extracted from both the query and index images. For our prior work described in 

[25], we had used a Laplacian interest point detector to detect a similarity reference frame around 

each location (Offset, Scale and Orientation) in combination with a version of a Daisy feature 

descriptor with 32 dimensions developed by Winder and Brown [392, 393, 394]. 

In order to improve both the detection speed as well as the quality performance of the features 

for image ranking and pairwise matching, we developed a significantly optimized version of the 

hessian detector, using the determinant of the Hessian (DOH) matrix of a local pixel neighborhood 

as the saliency measure. Additionally we use a patch based descriptor using gradient histograms 

within bins defined by a polar coordinate system. 

5.5.1 Hessian Interest Point Detection 

The elements of the determinant of the Hessian matrix  

 
det(𝐻(𝑥)) = |

𝐿𝑥𝑥(𝑥) 𝐿𝑥𝑦(𝑥)

𝐿𝑦𝑥(𝑥) 𝐿𝑦𝑦(𝑥)
|=𝐿𝑥𝑥(𝑥) ∗ 𝐿𝑦𝑦(𝑥) − 𝐿𝑥𝑦(𝑥)

2 ( 5.1 ) 

are the second order partial derivatives Lxx, Lyy and Lxy of the image intensities in a pixel 

neighborhood. Their use as a saliency measure has originally been proposed in [381], and has 

since been adopted frequently [43, 391].  
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Figure 5.5 Pixel Locations in Local Neighborhood used for Computing DOH score 

While most prior work uses primarily maxima of the DOH score for blob detection, one of the key 

differences in our method is that we use both maxima and minima in order to find two 

complementary types of features with a single metric to improve the overall performance for 

pairwise matching and image ranking. The use of minima in addition to maxima is also supported 

by [42] who found that negative local minima of the DOH function can augment or even 

outperform local maxima by providing additional point correspondences. 

We compute the DOH metric for each pixel and at various levels of a scale space pyramid [379]. 

Prior to computing the score, the respective pyramid level gets blurred via convolution with a 

Gaussian filter kernel of a given size (e.g. σ=4 pixel). In order to minimize the compute time for 

the Gaussian blur step we use a recursive implementation of the Gaussian filter proposed in [404] 

leading to a 20-fold speedup of this step compared to using convolution with horizontal and 
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vertical tap filters of size 55 pixel. Another advantage of this method is that the compute time is 

independent of the scale of the Gaussian, and no clipping artifacts occur such as when the tap filter 

has to be reduced in size for performance reasons. 

In order to speed up the detection further only a single pass through each blurred pyramid level 

is performed and the actual score is computed from the pixel values in a local 5*5 neighborhood 

(see Figure 5.5) according to  

 𝐿𝑥𝑥(𝑥) = 𝑆𝐶0+ 𝑆𝐶4− 2 𝑆𝐶2; 

𝐿𝑦𝑦(𝑥) = 𝑆𝐸2+ 𝑆𝐴2− 2 𝑆𝐶2; 

𝐿𝑥𝑦(𝑥) = 𝑆𝐷3− 𝑆𝐵3+ 𝑆𝐵1− 𝑆𝐷1; 

( 5.2 ) 

Figure 5.6 depicts an example low-resolution pyramid level of an image together with the 

respective DOH score image. Reddish pixels in the DOH image indicate positive scores occurring 

in blob-like structures at the given scale of the gray scale image such as the arcade windows of the 

building. Bluish pixels indicate negative DOH scores, occurring around saddle points of the gray 

scale image along rather elongated structures such as the balconies separating the different floors 

of the building. 

  

Figure 5.6 Determinant of Hessian - Score (Right) for Sample Pyramid Level (Left) with 116·87 

Pixel 

This step is followed by 2D non maxima suppression in the resulting score image by comparing 

pixels against their 8-neighborhood. In contrast to other implementations of hessian detectors 

[381, 43], and similar to [42] we use both maxima and minima of the DOH score as salient regions.  
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Figure 5.7 Sample Image Regions Detected by DOH Detector for Two Different Images (Basilica of 

St. John Lateran, Rome); Maxima are Drawn in Red, Minima in Blue; Green Highlight Shows Area 

with Similar Pattern of Detected Regions; 
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Optionally the non-maxima suppression can be extended to the scale dimension, by further 

comparing the score against the next higher and lower pyramid level. However we found that for 

ranking purposes, this actually reduces the performance, probably as it reduces the total number 

of features found. 

The result of this step is a set of interest point locations in a pixel raster, as well as the pyramid 

level of the detection, indicating the scale of the feature. Hence the detected point coordinates can 

be refined by quadratic interpolation either in 2D to obtain sub-pixel accurate point locations, or 

in 3D to also obtain a more accurate scale estimate [391]. 

Figure 5.7 illustrates sample points (regions) detected by the described algorithm for a pair of 

sample images of the Basilica of St. John Lateran in Rome, including points detected as maxima 

(red) and minima (blue) of the DOH score. The size of the square regions indicates the feature 

scale, based on the detection pyramid level, the line pointing from the center indicates the feature 

orientation (which is determined during the descriptor computation explained next - note that 

some features may have two orientations). Note that as pointed out in [42] the locations of the 

detected minima around rectangular corners are relatively stable over a range of detection scales, 

while maxima generally drift. This fact is also visible in Figure 5.7. 

Due to the similarity between the two images, maxima and minima of the DOH score occur 

repeatedly in the same scene location under similar orientations (such as in the region highlighted 

in green). This behavior is a desired property of an interest point detector. In the following step, 

a feature descriptor is computed for each detected point, based on its scale and location. 

5.5.2 Polar Descriptor Computation 

In analogy to many related methods such as SIFT [364], we use a gradient histogram to compute 

an image descriptor for patches around each of the detected interest points. While SIFT uses 

normalized orientation histograms within each bin of a 4*4 grid of a patch to compute the 

descriptor, we instead use a circular region and polar binning.  

For this purpose we extract a square patch region around the center of each interest point, at a 

scale (descriptor level) relative to the detection level of the point. The descriptor level is selected 

based on an assumed “region size” in the detection level, and a desired “patch size” in the 

descriptor level. The relation between detection level and descriptor level is one of the tuning 

parameters of the algorithm. They may be the same or different based on this parameter. 

From the extracted image patch we compute x- and y- derivative images, which are represented 

in 2D arrays of dimension s2 (e.g. 25·25 pixel). From the x- and y- derivatives we hence compute 

magnitude and orientation values which are similarly stored in a magnitude array and an 

orientation array. Note here, that we use the image of the pyramid level before the Gaussian blur 

was applied to it so the high-frequency content is still present. 

In order to de-emphasize magnitude values farther away from the center of the extracted image 

patch, we apply weight factors following the shape of a Gaussian centered on the region. Outside 
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of a radius r (𝑟 =
𝑠+1

2
) the weight factors are set to 0, which means that only magnitude values 

within a circular region are actually used for the calculation. 

Based on the accumulated orientation matrix, we then estimate the “principal orientation” of the 

region (the most pronounced orientation) from a single orientation histogram with a certain 

number of bins (e.g. 32). Based on each value in the orientation array, we select a bin in the 

histogram, in which we accumulate the corresponding weighted magnitude value. To obtain the 

principal direction from the histogram at a finer granularity than its bin size, we then apply a 

smoothing filter (e.g. using a 121 kernel) followed by a quadratic fit. The fitted maximum of the 

orientation histogram is hence used as the principal orientation of the region. Note that in case 

multiple equivalent maxima are found, we can choose to use only one or several of them. The 

detected principal orientation is used to “normalize” the way the patch descriptors are computed 

in the following steps in order to make them rotation invariant. It is also used as the orientation 

angle of the respective interest point, which may be needed for feature based matching. 

After the principal orientation has been determined, we create a 3D histogram of the values in the 

orientation image weighed by the magnitudes. The histogram is separated into 𝑅 radial bins, 𝐴 

angle bins and 𝑂 orientation bins (e.g. 𝑅 = 4,𝐴 = 8, 𝑂 = 4). The radial and angular bins are 

arranged in a polar coordinate system, while the orientation bins are stacked in a 3rd dimension 

(See Figure 5.8). 

 

Figure 5.8 Visualization of the 3D Polar Histogram used for the Descriptor Computation for A=8 

Angular Bins, O=4 Orientation Bins and R=4 Radial Bins 

For each cell in the orientation array, the respective bin in the 3D histogram is selected based on 

the cell’s radius from the patch center, the normalized (by the principal orientation) angle of the 

patch as well as the orientation value. The respective bin is incremented by the corresponding 

magnitude value in the magnitude array. 

Since the smallest radial bin is not divided into angle bins, the result is a vector with length N=𝑂 ∗

((𝑅 − 1) ∗ 𝐴 + 1), describing the local appearance of the region around the interest point center. 

The final step is to scale and truncate the orientation histogram so each of the dimensions can be 

represented as an 8-bit integer. This vector of 8-bit integers is the resulting feature descriptor for 

the given interest point. 
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Optionally to reduce the computation times of the following steps, the dimension of the computed 

descriptors can be reduced by means of a Principal Component Analysis (PCA) to e.g. 32 

dimensions [406]. 

5.6 Image Ranking 

A common problem related to image based search is that of retrieving corresponding image 

matches in a large trellis (up to millions) of indexed images by means of a computationally 

efficient ranking step. While more recent approaches use different features such as vector of 

locally aggregated descriptors (VLAD) [291] or Fisher Kernel [407, 408] to aim at even higher 

computational and memory efficiency, we are following the “bag of features” approach [40, 30]. 

This method uses a feature quantization to convert high dimensional image descriptors into scalar 

integer numbers called “visual words” in combination with a standard document retrieval 

approach using inverted file systems. 

In contrast to the prior work mentioned above which used K-Means clustering for feature 

quantization we apply a nearest neighbor search in a previously trained KD-tree data structure 

[44] for this purpose. The dataset we used for offline training (Kentucky dataset) is described in 

6.1.1. The corresponding visual word for a feature descriptor is derived from the integer index of 

the leave node containing the nearest neighbor descriptor. A typical vocabulary size is 

V=1,000,000. Visual words are thus defined by integer numbers in the range between 0 and V-1. 

5.6.1 Dynamic Image Index4 

To prepare for image retrieval, an index of the visual words for all index images needs to be 

generated. For this purpose, we use an inverted file system [409] which is a concept originating 

from general information retrieval [403], and is used in various applications such as web 

document search. An inverted file system contains for each word in the dictionary a list of 

documents containing the specific word. During index generation these lists have to be filled with 

document indices referring to specific images in the index. During retrieval the visual words from 

the query image serve as pointers to the inverted file table. For each entry in the inverted 

document list, and for each visual word from the query image a score is incremented. Finally the 

documents are sorted according to their scores in decreasing order, and the requested number of 

top-ranking results is returned by the query. 

Several scoring functions are available for determining a weighting score for each document. A 

common method uses the product of the term frequency of a word in the respective document, 

and its inverse document frequency in the whole corpus of documents. This weighting is often 

referred to TF-IDF scoring [40]. Since the inverted document frequency is harder to update in case 

                                                             

4 The implementation of a dynamic image index described here has been developed by a team of people at 

Bing Mobile led by David Nistér. 
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of dynamic deletion of documents after index creation, we decided to reduce the scoring function 

to only the term frequency, eliminating the inverted document frequency. We found that by using 

the Boolean term frequency (single count), which is 1 for a document containing a word at least 

once and 0 otherwise, almost the same retrieval performance can be achieved as with the TF-IDF 

scoring function. Using the Kentucky score metric proposed by [51] to measure the retrieval 

performance for the Places dataset described in 6.1.1, the Boolean term frequency method was 

able to achieve a score of 3.546 (out of 4) compared to 3.568 with the TF-IDF method. 

A new document can get ingested in the dynamic index in a similar approach as during index 

generation by adding its document id to the list of ids for each included visual word. A certain 

document from the index can be removed by adding the respective document id to a black-list, 

and ignoring black-listed documents henceforth. Black-listed documents can be eliminated 

completely whenever the index is re-generated according to some specified schedule, such as once 

a day or after the removal of a certain number of documents. 

5.6.2 Orientation Constrained Ranking 

Traditional BOF based image ranking methods make use of quantized visual words that are 

derived purely from the feature descriptors. The interest point information is usually not directly 

used during this quantization step.  

Due to the information loss caused by quantization, miss-matches between query- and index-

features are more likely during retrieval than during nearest neighbor search of the descriptor. 

Based on our results in [25] we are encouraged to use rotation priors to constrain quantized 

feature correspondences in a similar way as during pairwise matching. We therefore propose a 

modified quantization using the orientation information derived from the interest point detector 

to modify the visual word index and enhance the reliability of quantized matching. 

In order to compute the modified visual word indices, the features are sub-divided into N equally 

sized orientation bins which are shifted relative to each other by W=360°/N, and have a bin size 

of W∙f. The overlap factor f is used to avoid quantization of features with similar orientations into 

distinct bins (e.g. N=8; f=1.6; W=72°;). The modified visual word index for a given word is 

computed as the sum of the original index and a bin offset for bin n computed as n∙V. Features 

occurring in multiple bins are added multiple times with different bin offsets, thus leading to a 

higher visual word count for the respective images. It is sufficient to use an overlap factor f>1 for 

either the query- or indexed images, while no overlap (f=1.0) is required for the respective other 

image. Though the results should be similar independent of that choice, note that either the query 

time or the memory footprint will increase. 

To evaluate the rotationally scoped ranking method, we used the same Kentucky score metrics 

mentioned above, varying the bin count N between 2 and 8 as well as the overlap factor f between 

0 and 0.5. As input data, we used a constant set of visual words extracted from the “Places Dataset” 

described in Section 6.1.1 by using the “DOH features” from Section 5.5. The result of the analysis 

in Figure 5.9 indicates that rotational scoping with either N=4 or N=8 rotational bins performs 
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best. While for 8 rotational bins an overlap factor f=0.2 is optimal, reducing the number of bins to 

4 requires a smaller overlap of f=0.0 or f=0.1. In both cases, the achieved scores of 3.64 are 

substantially better than the baseline results without rotational scoping (3.57). 

 

Figure 5.9 Kentucky Score Metric for “Places” Dataset Measured for Different Numbers of 

Rotational Bins N and Overlap Factors f, and Compared to Baseline 

5.7 Pairwise Post-Verification 

Results get verified between the query image and each of the top ranked candidate images in a 

process called post-verification [30], in order to decide which candidates should be accepted and 

in which ordering they should be returned. 

Initially the feature descriptors from both images are used to find match correspondences based 

on local image similarity by means of a KD-tree algorithm [44]. If prior information about the 

relative image orientation exists, this prior information can be used to constrain possible matches, 

thus reducing the likelihood of false matches. Additionally, a ratio between the closest and second 

closest feature descriptor is tested to filter out ambiguous matches. 

Since the pairwise feature-based matching with a ratio test is still likely to create a high number 

of mismatches, geometric verification of the matched feature pairs is required. Matching images 

of a 3D-scene usually entails a model describing the epipolar geometry between an image pair. 

This may be the Fundamental-Matrix described in [24] defining the relation of each point in one 

image to a line in the other and vice versa. We found that for urban scenes the fundamental matrix 

provides more is often not discriminative enough to find outliers, and therefore can produce an 
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unacceptable number of false positives. This is also supported by [362] who found that in case of 

repetitive scene structures miss-matches are often classified as inliers to the Fundamental Matrix. 

Hence we decided that for stability reasons it would be better in urban cityscapes to use a more 

restrictive, homography based model, which basically assumes that the object points must lie on 

one or more approximately flat surfaces in the 3D-scene. A homography can transform each point 

in one image into exactly one point in the other image, and hence is more restrictive when filtering 

out outliers. The homography model is also advantageous for matching objects that are located 

far from the camera due to the decreasing parallax. The advantage of using homography for 

location recognition in urban scenes was also noted by the authors of [410, 362, 370]. To estimate 

the homography efficiently, we use a variant of the RANSAC [45] algorithm described in 5.7.3. 

In case of a panoramic candidate image a panorama window gets selected prior to the final 

geometric verification to determine which sub-window matches most likely to the query image. 

Once the panorama window has been determined the matched point coordinates within this 

window can be transformed into a corresponding central-perspective image, and hence the 

geometric verification can be performed in the same way as for non-panoramic images. 

5.7.1 Orientation Constrained Feature Correspondence Search 

When matching images using local image features, it is important to solve the correspondence 

problem with the intention of finding matching image regions across two or more images. This 

method requires a set of interest points with corresponding feature descriptor vectors, which 

result from a prior feature extraction step for both the query and candidate image. The query 

image is described by a set of n descriptor vectors 𝐷𝑄 = {𝐷1
𝑄 , 𝐷2

𝑄⋯𝐷𝑛
𝑄} in 𝑹𝑁 space while the 

candidate images contains m descriptor vectors 𝐷𝐶 = {𝐷1
𝐶 , 𝐷2

𝐶 , ⋯𝐷𝑚
𝐶 } in the same space. 

A naïve solution to this correspondence problem is an exhaustive nearest neighbor search of all 

descriptors in a candidate image using a given distance metric. While this approach is guaranteed 

to find the closest solution, it is computationally expensive. A common and more efficient 

approach used for local image features is to organize the descriptors of single or multiple images 

in a KD-tree structure [44], which supports approximate nearest-neighbor search for a given 

query feature in O(log n) complexity for n entries in the tree. The method is approximate in that it 

is not guaranteed to find the nearest neighbor in all cases except if all possible entries are 

evaluated exhaustively. Nevertheless, for practical image matching applications the nearest 

neighbor is found efficiently most of the time. In order to reduce the dimensionality of the 

descriptor space to simplify the nearest neighbor search, and to sort the remaining dimensions in 

order of decreasing variance, principal component analysis (PCA) can be used on the higher 

dimensional input descriptors [406]. 

For many applications it can be assumed, that the query image (e.g. user photo) as well as the 

candidate image (e.g. panorama) are horizontal to within a certain angular tolerance τ. Therefore 

it is reasonable to assume that only features with fundamentally similar feature orientations 

should be matched. Especially for streetside scenes, where repetitive structures and rotationally 
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symmetrical objects (e.g. windows) can occur, this can lead to a better “signal to noise ratio” in 

terms of the correct versus incorrect matches.  

 

Figure 5.10. Sample pair of query image (Left) and Part of Search Panorama Image (Right) Showing 

Orientation Vectors of Detected Interest Points. 

This method requires that an orientation angle is provided for each interest point during the 

detection. Figure 5.10 contains a sample image pair, for which the interest point frames Fi are 

shown as vectors, indicating their locations xi and yi, scale si and orientation angles φi determined 

during feature extraction. 

 𝐹 = (𝑠 ∙ cos𝜑 𝑠 ∙ sin𝜑 𝑥 𝑦)𝑇 ( 5.3 ) 

The proposed method differs from the orientation-binning method described in [25] in that all m 

descriptors in the candidate image (𝐷1
𝐶  . . 𝐷𝑚

𝐶 ) are used to generate a single KD-tree and during 

query, rather than performing queries to multiple KD-trees for different orientation bins. This 

leads to a simplification of the algorithm and a speed improvement, as only a single KD-tree needs 

to be generated and queried. Additionally it also produces more accurate results as the orientation 

thresholding can be done per feature rather than per bin.  

During standard KD-tree search, the nodes of the KD-tree are traversed starting at the root node, 

and following either the left or right path of the given node, depending on which side of a hyper-

plane the respective descriptor dimension lies. Hyper-planes are defined as thresholds for a given 

descriptor dimension which are determined during tree-generation as the median of the data for 

the respective dimension. This process is repeated until a certain level of the tree is reached, at 

which all indexed descriptors belonging to a node (leave-node) are compared exhaustively to find 

the closest one. For this purpose a distance metric such as the Euclidean distance or the cosine 

distance between the query descriptor and the candidate descriptor can be used in order to 

determine the closest descriptor. As leave-nodes often contain only a small number of descriptors 

(e.g. b=64), the actual closest descriptor may lie in a different leave node. Therefore multiple leave 
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nodes may have to be checked in a recursive manner up to a certain maximum (e.g. k=256), and 

depending on whether it is deemed possible that any other descriptor exists which is closer than 

the currently best candidate. In case of the Euclidean feature distance, this termination condition 

result from intersecting a hyper-sphere with a radius of the currently closest distance with the 

currently active hyper-plane. If the hyper-sphere and hyper-plane don’t intersect it is clear that 

no closer data point lies on the other side of the hyper-plane and the algorithm can terminate [44].  

 𝛷𝑄 = {𝜑
1
𝑄, 𝜑

2
𝑄⋯𝜑𝑛

𝑄} ;       𝛷𝐶 = {𝜑1
𝐶, 𝜑2

𝐶,⋯𝜑𝑚
𝐶 }; ( 5.4 ) 

To decide whether a candidate descriptor 𝐷𝑗
𝐶  is a valid match for a query descriptor 𝐷𝑖

𝑄
 under 

rotational scoping the orientation angles of both interest points (𝜑𝑖
𝑄 and 𝜑𝑗

𝐶) have to be 

compared to see whether the angular difference is less than or equal to the angular tolerance τ 

and reject them otherwise. This can be done as part of the exhaustive feature comparison step of 

the KD-tree algorithm, given that the respective feature orientation angles are available at this 

point. Since computing the distance between two descriptor vectors is substantially more 

expensive than checking the angular difference, this leads to a significant reduction of the search 

time. As this method still requires k∙n angular comparisons for n descriptors in the query image, 

we propose a more optimal alternative. For this purpose, the features in the candidate and query 

images first have to be sorted according to the orientation angle, for example from -180° up to 

180°. Further, a binary vector  

 𝑆𝐶 = {𝑠1
𝐶 , 𝑠2

𝐶 ,⋯ 𝑠𝑚
𝐶 }; ( 5.5 ) 

is required, which is initialized to: 

 
𝑠𝑗 = {

   𝑇𝑅𝑈𝐸 𝑖𝑓𝑓 𝜑𝑖
𝑄
−̂ 𝜑1

𝐶 ≤  𝜏 ;

𝐹𝐴𝐿𝑆𝐸 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
 ( 5.6 ) 

The “angle difference” operator 𝜑𝑎–̂ 𝜑𝑏 is defined as the smaller of the two angles between two 

vectors with the orientations 𝜑𝑎  and 𝜑𝑏 . While performing the nearest neighbor search for each 

query descriptor 𝐷𝑖
𝑄

 using the KD-tree algorithm described above the corresponding binary value 

𝑠𝑗  has to be verified for each candidate descriptor in the corresponding leave nodes. Since the 

features are sorted according to the feature orientation, only a few consecutive elements of the 

binary mask have to be updated for each new query feature i depending on whether the 

orientation condition is fulfilled, resulting in a maximum number of 2∙(m+n) angular comparisons. 

To reject ambiguous matches early in the process, a ratio test is performed, comparing the feature 

distances (in feature space) 𝜌𝑐𝑙𝑜𝑠𝑒𝑠𝑡 and 𝜌𝑠𝑒𝑐𝑜𝑛𝑑 between the query descriptor and the closest and 

second closest descriptor from the index image.  

 𝜌𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = ‖𝐷𝑞𝑢𝑒𝑟𝑦
𝑄 − 𝐷𝑐𝑙𝑜𝑠𝑒𝑠𝑡

𝑃 ‖   ;    𝜌𝑠𝑒𝑐𝑜𝑛𝑑 = ‖𝐷𝑞𝑢𝑒𝑟𝑦
𝑄 − 𝐷𝑠𝑒𝑐𝑜𝑛𝑑

𝑃 ‖ ( 5.7 ) 

According to 
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 𝒊𝒇𝒇 
𝝆𝒄𝒍𝒐𝒔𝒆𝒔𝒕
𝝆𝒔𝒆𝒄𝒐𝒏𝒅

  {
 > 𝝑:  𝑹𝒆𝒋𝒆𝒄𝒕 𝑴𝒂𝒕𝒄𝒉  
 ≤ 𝝑:   𝑨𝒄𝒄𝒆𝒑𝒕 𝑴𝒂𝒕𝒄𝒉

 ( 5.8 ) 

a feature pair is rejected if the ratio is above some threshold ϑ (e.g. 0.8, see [364]), and accepted 

otherwise. 

5.7.2 Panorama Window Selection 

In case of a panoramic candidate image, a sub-window needs to be selected before the actual 

geometric verification. This selection process is based on the feature correspondences returned 

by the algorithm described above. The interest point frames FQ and FC for a sample image pair are 

visualized Figure 5.11, where the panorama image format has been extended by 90 degrees to the 

right in order to represent the cyclic nature of this image format.  

    

Figure 5.11 Input Image with Feature Frames (Left); Extended Panorama Image (Right) 

The interest points and descriptor based matches occurring within the leftmost 90° window 

yellow box) are replicated at the right, and the same geometric verification method described in 

section 5.75.7.3 is used to find the best fitting homography model between the feature matches 

(See Figure 5.11, right). The 90 degree window centered on the median panorama longitude of 

the inlier matches (red chain-dotted line) is hence used for the remaining post-verification steps. 

Figure 5.12 shows the selected sub-window from the spherical panorama image as well as a 

version of the same image warped into a virtual camera view. 

All following explanations of the algorithm are based on the assumptions, that the panorama sub-

window is known, and that only the features from within this sub-window are used. 
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Figure 5.12. Selected Panorama Sub-Window (Left); Unwarped Sub-Window (Right); 

5.7.3 Geometric Verification using One-Point Similarity and Projective RANSAC5 

Most image matching frameworks geometrically validate putative candidate matches obtained 

during a pairwise correspondence search. In our previous work [25], we showed that for urban 

scenes consisting primarily of planar surfaces, agreement of the matches to a homography model 

or projective transform is often sufficient to support the decision whether a candidate image is an 

acceptable match or not. The homography transformation H from a 2D point in homogeneous 

coordinates 𝑋 = (𝑥 𝑦 1)𝑇 to a point 𝑋′ = (𝑥′ 𝑦′ 1)𝑇 is defined as  

 
(
𝒙′

𝒚′

𝟏

) ≅ 𝑯 ∗ (
𝒙
𝒚
𝟏
) = [

𝒉𝟏𝟏 𝒉𝟏𝟐 𝒉𝟏𝟑
𝒉𝟐𝟏 𝒉𝟐𝟐 𝒉𝟐𝟑
𝒉𝟑𝟏 𝒉𝟑𝟐 𝟏

] ∙ (
𝒙
𝒚
𝟏
) ( 5.9 ) 

where h11 through h32 are the variable elements of the homography matrix H. As the homography 

is defined for homogeneous coordinates, scaling of the matrix doesn’t affect the results. Therefore 

the 9th parameter (h33) can be set to 1, reducing the number of degrees to 8. Figure 5.13 shows the 

effect of applying a homography to an image in order to align it to a planar building surface of a 

streetside image. 

 

                                                             

5 The one-point similarity and projective RANSAC method described here has been developed by a team of 

people at Bing Mobile led by David Nistér. 
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Figure 5.13 Image of Historic Tramway in Downtown Seattle, which has been transformed using a 

Homography to fit to the Background Streetside Image 

A frequently used method for robust geometric verification is the Random Sample Consensus 

(RANSAC) algorithm [45], which is an iterative way of finding the parameters for a given 

mathematical model (e.g. homography) from a set of data points. The method is robust in that it 

can deal with a certain percentage of model outliers in the data, which are common for descriptor 

based image correspondence search. During each iteration, a sufficiently large random subset of 

the data is used to estimate a hypothesis of the model parameters, and the hypothesis is verified 

using the whole dataset. A score defining the degree of data agreement to the model is computed, 

and eventually the model with the best score is chosen. Examples for typically used scoring 

methods are the inlier count or a cost function based on the average deviation from the model. 

While determining the inlier count usually requires hard thresholds for each data point, cost 

functions allow a fuzzier decision metric such as the reprojection error for a given image point. As 

the selection process leading to each hypothesis is random, the method is non-deterministic and 

it finds the solution only with a certain probability p [45]. This probability depends on the 

expected inlier ratio w, the number of data points n needed to estimate all model parameters, and 

the number of RANSAC iterations k according to  

 1 − 𝑝 = (1 − 𝑤𝑛)𝑘 ( 5.10 ) 

As the 9th parameter (h33) of the homography is set to 1, only 8 parameters have to be solved for 

each hypothesis. Often this is achieved by using the x and y coordinates from n=4 point 

correspondences which provide sufficiently many equations to solve the model parameters. The 

probability of finding the correct solution depends strongly on the number of data points required 

as well as the inlier ratio. For an inlier ratio of w=20% and a fixed number of k=1,000 RANSAC 

iterations, the probability to find the correct solution is hence 79.8% while for an inlier ratio of 

w=10% it is merely 9.5%.  

In order to improve the chances of finding the correct solution, or to reduce the number of 

iterations required for the same probability, we therefore follow a different approach. Taking 

advantage of the fact that the homographies occurring in typical streetside scenes often exhibit 

limited perspective distortion we initially solve for a similarity transform using a 1-point RANSAC 

http://mitosis/FirstLightStable/?catalog=Catalog.dev.xap#5872/lat=47.611087&lon=-122.337569&alt=18.73&z=30&h=-85.2&p=11.4&pid=5082/5003/o=&a=&s=w&n=0
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algorithm with large error margins, followed by a robust optimization of the similarity as well as 

the homography parameters. 

 
(
𝒙′

𝒚′

𝟏

) = [
𝒔𝟎 𝒔𝟏 𝒔𝟐
−𝒔𝟏 𝒔𝟎 𝒔𝟑
𝟎 𝟎 𝟏

] ∗ (
𝒙
𝒚
𝟏
) ( 5.11 ) 

 

𝑆 = (

𝑠0
𝑠1
𝑠2
𝑠3

) ( 5.12 ) 

Initially a RANSAC step is used to find the best model hypothesis for the 4 parameters of the 

similarity transform S. In addition to the above equation, each correspondence provides a second 

equation  

 (
𝒐𝒙𝟐
𝒐𝒚𝟐

)  =  [
𝒔𝟎 𝒔𝟏
−𝒔𝟏 𝒔𝟎

] ∗ (
𝒐𝒙𝟏
𝒐𝒚𝟏

) ( 5.13 ) 

describing the transformation of the scale and orientation vectors (ox1 oy1)T and (ox2 oy2)T of the 

two feature regions. Presuming that reliable scale and orientation information are provided by 

the feature detector for each region only n=1 correspondence is required in order to solve for the 

4 similarity parameters. Hence it is essentially guaranteed that the correct model is found by 

RANSAC even for a much smaller number of iterations. For w=0.1 and k=100 the probability of 

finding the correct solution is 99.998%. For a given point correspondence [ox1 oy1 x1 y1]T and [ox2 

oy2 x2 y2]T the parameters s0 and s1 can be solved by transforming Eq. ( 5.13 ) into the form 

 [
𝒐𝒙𝟏 𝒐𝒚𝟏
−𝒐𝒚𝟏 𝒐𝒙𝟏

]
⏟        

𝑨

 ∗ (
𝒔𝟎
𝒔𝟏
)

⏟
𝒙

=  (
𝒐𝒙𝟐
𝒐𝒚𝟐

)
⏟  
𝒃

 
( 5.14 ) 

and solving for x via multiplication by A-1. Hence s2 and s3 can be determined using 

 (
𝒔𝟐
𝒔𝟑
)  =  (

𝒙𝟐
𝒚𝟐
) − [

𝒔𝟎 𝒔𝟏
−𝒔𝟏 𝒔𝟎

] ∗ (
𝒙𝟏
𝒚𝟏
) ( 5.15 ) 

For each hypothesis S a cost function 𝐶(𝑆) is evaluated by applying the hypothesis on all i point 

correspondences and computing a robustified cost 𝐶𝐶𝑒𝑛 for the reprojection error as well as costs 

𝐶𝑂𝑟𝑖 and 𝐶𝑆𝑐𝑎 for discrepancies in orientation and scale between the putative matches. 

 
𝑪(𝑺) = 𝑪𝑪𝒆𝒏 + 𝑪𝑶𝒓𝒊 + 𝑪𝑺𝒄𝒂 = ∑(𝑪𝑪𝒆𝒏

𝒊 + 𝑪𝑶𝒓𝒊
𝒊 + 𝑪𝑺𝒄𝒂

𝒊 )

𝒏

𝒊=𝟏

 

=∑(𝑹(𝒆𝑪𝒆𝒏
𝒊 , 𝒔𝒄𝑪𝒆𝒏)

𝟐
+ 𝑹(𝒆𝑶𝒓𝒊

𝒊 , 𝒔𝒄𝑶𝒓𝒊)
𝟐
+ 𝑹(𝒆𝑺𝒄𝒂

𝒊 , 𝒔𝒄𝑺𝒄𝒂)
𝟐
)

𝒏

𝒊=𝟏

 

( 5.16 ) 

In order to reduce the effect of model outliers a robustified cost function is used, based on the 

robustifier 𝑅(𝑒, 𝑠𝑐) which is also plotted as a function of e in Figure 5.14. 

 
𝑅(𝑒, 𝑠𝑐) = 𝑟𝑒 =

𝑒2

𝑒2 + 𝑠𝑐2
 ( 5.17 ) 
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The scale parameters sc for each error measure have to be selected large enough to compensate 

for the modelling error from using a similarity transform. Typical scale factors for normalized 

image coordinates in the range 0..1 are scSca = 0.2, scOri = 0.39 and scSca = 0.5. 

 

Figure 5.14 Robustifier Function R(e,sc) for sc=1.0 

The center error measure for a given pair of points is the reprojection error between the 

transformed coordinates of point 1 and the coordinates of point 2: 

 𝑒𝐶𝑒𝑛 = (
𝑒𝑥
𝑒𝑦
) = [

𝑠0 𝑠1
−𝑠1 𝑠0

] ∗ (
𝑥1
𝑦1
) + (

𝑠2
𝑠3
) − (

𝑥2
𝑦2
) ( 5.18 ) 

To measure the scale and orientation errors a transformation T 

 
𝑇 = [

𝑇11 𝑇12
𝑇21 𝑇22

]
1

√𝑜𝑥2 + 𝑜𝑦2
∗ [
𝑜𝑥2 𝑜𝑦2
−𝑜𝑦2 𝑜𝑥2

] ( 5.19 ) 

is applied on both the reprojected scale/orientation vector from image 1 as well as the 

scale/orientation vector from image 2, such that the latter is transformed into a unity vector. The 

deviations in x and y between the transformed first vector and the unity vector constitute error 

measures 𝑒𝑆𝑐𝑎 for scale and 𝑒𝑂𝑟𝑖 for orientation discrepancies according to 

 
(
𝑒𝑆𝑐𝑎
𝑒𝑂𝑟𝑖

) = 𝑇 ∗ ([
𝑠0 𝑠1
−𝑠1 𝑠0

]  ∗ (
𝑜𝑥1
𝑜𝑦1

) − (
𝑜𝑥2
𝑜𝑦2

)) 

=𝑇 ∗ [
𝑠0 𝑠1
−𝑠1 𝑠0

]  ∗ (
𝑜𝑥1
𝑜𝑦1

) − (
1
0
) 

( 5.20 ) 

The cost function in Eq. ( 5.16 ) can be evaluated for all k iterations of the RANSAC algorithm, and 

the hypothesis S0 with the lowest cost is chosen as the starting point for the following 

optimization. If the number of correspondences n is small enough, it may be even feasible to set 

k=n, thus evaluating all possible hypotheses exhaustively. 

We use the Levenberg-Marquardt (LM) method [411, 412] for numerical optimization in order to 

fit a more accurate similarity model to the data than that obtained by the above RANSAC 

algorithm. Iterative optimization updates the model S by some small amount δS in order to 

converge at a local minimum of the cost function. As this cost function is non-linear with respect 

to S, it can be locally approximated by a quadratic Taylor expansion  
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𝐶(𝑆𝑡+1) ≈ 𝐶(𝑆𝑡 + 𝛿𝑠) ≈ 𝐶(𝑆

𝑡) + ∇𝐶(S
𝑡) ∗ 𝛿𝑠 +

1

2
𝛿𝑠
𝑇 ∗ 𝐻𝐶(𝑆

𝑡) ∗ 𝛿𝑠 ( 5.21 ) 

in order to predict its value after the update where ∇𝐶(S
𝑡) is the gradient, 

 
∇𝐶= [

𝜕𝐶

𝜕𝑆0
⋯
𝜕𝐶

𝜕𝑆3
] = 2 ∗∑(𝐽𝑟𝑒

𝑖 𝑇 ∗ 𝑟𝑒𝑖)

𝑛

𝑖=1

= 2 ∗ (∑(𝐽𝑟𝑒
𝑖
𝐶𝑒𝑛

𝑇
∗ 𝑟𝑒𝐶𝑒𝑛

𝑖 + 𝐽𝑟𝑒
𝑖
𝑆𝑐𝑎

𝑇
∗ 𝑟𝑒𝑆𝑐𝑎

𝑖 + 𝐽𝑟𝑒
𝑖
𝑂𝑟𝑖

𝑇
∗ 𝑟𝑒𝑂𝑟𝑖

𝑖 )

𝑛

𝑖=1

) ( 5.22 ) 

of 𝐶 at 𝑆𝑡 and 𝐻𝐶(𝑆
𝑡) is the Hessian, 

𝐻𝐶 =

(

  
 

𝜕2𝐶

𝜕𝑆0𝜕𝑆0
⋯

𝜕2𝐶

𝜕𝑆0𝜕𝑆3
⋮ ⋱ ⋮
𝜕2𝐶

𝜕𝑆3𝜕𝑆0
⋯

𝜕2𝐶

𝜕𝑆3𝜕𝑆3)

  
 
= 2 ∗∑(𝐽𝑟𝑒

𝑖 𝑇 ∗ 𝐽𝑟𝑒
𝑖 )

𝑛

𝑖=1

= 2 ∗ (∑(𝐽𝑟𝑒
𝑖
𝐶𝑒𝑛

𝑇
∗ 𝐽𝑟𝑒

𝑖
𝐶𝑒𝑛

+ 𝐽𝑟𝑒
𝑖
𝑆𝑐𝑎

𝑇
∗ 𝐽𝑟𝑒

𝑖
𝑆𝑐𝑎
+ 𝐽𝑟𝑒

𝑖
𝑂𝑟𝑖

𝑇
∗ 𝐽𝑟𝑒

𝑖
𝑂𝑟𝑖
)

𝑛

𝑖=1

) ( 5.23 )  

of 𝐶 at 𝑆𝑡. Both are computed as the sum of the individual elements for all 𝑛 data points where 

𝑟𝑒𝐶𝑒𝑛
𝑖 , 𝑟𝑒𝑂𝑟𝑖

𝑖  and 𝑟𝑒𝑆𝑐𝑎
𝑖  are the individual robustified errors and 𝐽𝑟𝑒

𝑖
𝐶𝑒𝑛

, 𝐽𝑟𝑒
𝑖
𝑂𝑟𝑖

 and 𝐽𝑟𝑒
𝑖
𝑆𝑐𝑎

 are their 

Jacobians relative to the elements of 𝑆. The latter are the products of the Jacobians for the 

robustifiers and the Jacobians of the non-robustified errors relative to the elements of 𝑆. 

𝐽𝑟𝑒
𝑖
𝐶𝑒𝑛 = 𝐽𝑅

𝑖
𝐶𝑒𝑛

∗ 𝐽𝑒
𝑖
𝐶𝑒𝑛;      𝐽𝑟𝑒

𝑖
𝑆𝑐𝑎 = 𝐽𝑅

𝑖
𝑆𝑐𝑎

∗ 𝐽𝑒
𝑖
𝑆𝑐𝑎 ;      𝐽𝑟𝑒

𝑖
𝑂𝑟𝑖 = 𝐽𝑅

𝑖
𝑂𝑟𝑖
∗ 𝐽𝑒

𝑖
𝑂𝑟𝑖; 

( 5.24 )  

 
𝐽𝑅
𝑖
𝐶𝑒𝑛

=
1

√𝑠𝑐𝐶𝑒𝑛
2 + 𝑒𝑥

𝑖 2 + 𝑒𝑦
𝑖 2
[
1 − 𝑟𝑒𝑥

𝑖 2 −𝑟𝑒𝑥
𝑖 ∗ 𝑟𝑒𝑦

𝑖

−𝑟𝑒𝑥
𝑖 ∗ 𝑟𝑒𝑦

𝑖 1 − 𝑟𝑒𝑦
𝑖 2
] ;    𝐽𝑒

𝑖
𝐶𝑒𝑛 = [

𝑥1 𝑦1
𝑦1 −𝑥1

1 0
0 1

] ( 5.25 ) 

 
𝐽𝑅
𝑖
𝑆𝑐𝑎

=
1 − 𝑟𝑒𝑆𝑐𝑎

𝑖 2

√𝑠𝑐𝑆𝑐𝑎
2 + 𝑒𝑆𝑐𝑎

𝑖 2
;     𝐽𝑒

𝑖
𝑆𝑐𝑎 = [𝑇11 𝑇12 0 0] ( 5.26 ) 

 
𝐽𝑅
𝑖
𝑂𝑟𝑖

=
1 − 𝑟𝑒𝑂𝑟𝑖

𝑖 2

√𝑠𝑐𝑂𝑟𝑖
2 + 𝑒𝑂𝑟𝑖

𝑖 2
;     𝐽𝑒

𝑖
𝑂𝑟𝑖

= [𝑇12 −𝑇11 0 0] ( 5.27 ) 

By substituting Eq. ( 5.22 ) and ( 5.23 ) the cost function becomes 

 
𝐶(𝑆𝑡 + 𝛿𝑠) ≈ 𝐶(𝑆

𝑡) + 2 ∗∑(𝐽𝑟𝑒
𝑖 𝑇 ∗ 𝑟𝑒𝑖)

𝑛

𝑖=1

∗ 𝛿𝑠 + 𝛿𝑠
𝑇 ∗∑(𝐽𝑟𝑒

𝑖 𝑇 ∗ 𝐽𝑟𝑒
𝑖 )

𝑛

𝑖=1

∗ 𝛿𝑠 ( 5.28 ) 

In order to determine the update δS for the current iteration, the derivative with respect to δS can 

be computed, set to 0 and rewritten to the form A∙x=b. This is a linear system of equations that 

can be solved for δS e.g. using the Cholesky decomposition [413]. 

 𝜕𝐶(𝑆𝑡 + 𝛿𝑠)

𝜕𝛿𝑠
≈ 2 ∗∑(𝐽𝑟𝑒

𝑖 𝑇 ∗ 𝑟𝑒𝑖)

𝑛

𝑖=1

+ 2 ∗∑(𝐽𝑟𝑒
𝑖 𝑇 ∗ 𝐽𝑟𝑒

𝑖 )

𝑛

𝑖=1

∗ 𝛿𝑠 = 0 ( 5.29 ) 

 
∑(𝐽𝑟𝑒

𝑖 𝑇 ∗ 𝐽𝑟𝑒
𝑖 )

𝑛

𝑖=1⏟        
𝐴

∗ 𝛿𝑠⏟
𝑥

=∑(𝐽𝑟𝑒
𝑖 𝑇 ∗ 𝑟𝑒𝑖)

𝑛

𝑖=1⏟          
𝑏

 ( 5.30 ) 

To improve the speed of the convergence in the presence of small gradients, A is replaced by the 

sum of itself and its diagonal, scaled by a damping factor (1 + λ) as proposed by Marquardt. The 

value of λ is adjusted per iteration based on whether the cost function actually decreased or not. 
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Updates to S are only applied in case of an improvement. We start with a λ value of 0.001 which is 

multiplied by a factor 0.1 in case of an improvement and by a factor of 100.0 in case of no 

improvement.  

 
(∑(𝐽𝑟𝑒

𝑖 𝑇 ∗ 𝐽𝑟𝑒
𝑖 )

𝑛

𝑖=1

+ (1 + λ) ∗ diag(∑(𝐽𝑟𝑒
𝑖 𝑇 ∗ 𝐽𝑟𝑒

𝑖 )

𝑛

𝑖=1

∗ 𝐽𝑒))

⏟                                      
𝐴

∗ 𝛿𝑠⏟
𝑥

=∑(𝐽𝑟𝑒
𝑖 𝑇 ∗ 𝑟𝑒𝑖)

𝑛

𝑖=1⏟          
𝑏

 ( 5.31 ) 

The optimization is terminated either if the cost improvement is below a threshold indicating that 

convergence is reached, if λ exceeds a maximum (e.g. 1010) or after a maximum number of 

iterations (e.g. 5). 

In order to refine the transformation further, a second optimization can be performed to find an 

optimal homography model (8 parameters) based on the same point correspondences. For this 

purpose, the similarity transform needs to be converted into a homography by setting H=S. The 

error measures for the point center, scale and orientation in ( 5.18 ) and ( 5.20 ) are updated 

according to the homography model. 

 

𝑒𝐶𝑒𝑛 = (
𝑥𝑝
𝑦𝑝
) − (

𝑥2
𝑦2
) =

1

ℎ31 ∗ 𝑥1 + ℎ32 ∗ 𝑦1 + 1

⏞              
𝑜

∗ (
ℎ11 ∗ 𝑥1 + ℎ12 ∗ 𝑦1 + ℎ13
ℎ21 ∗ 𝑥1 + ℎ22 ∗ 𝑦1 + ℎ23

) − (
𝒙𝟐
𝒚𝟐
) 

( 5.32 ) 

 

(
𝑒𝑆𝑐𝑎
𝑒𝑂𝑟𝑖

) = 𝑇 ∗

(

 
 ℎ11 ∗ 𝑜𝑥1 + ℎ12 ∗ 𝑜𝑦1 − 𝑥𝑝 (ℎ31 ∗ 𝑜𝑥1 + ℎ32 ∗ 𝑜𝑦1)

⏞              
𝑟⏞                              

𝑝

ℎ11 ∗ 𝑜𝑥1 + ℎ12 ∗ 𝑜𝑦1 − 𝑥𝑝(ℎ31 ∗ 𝑜𝑥1 + ℎ32 ∗ 𝑜𝑦1)⏟                              
𝑞 )

 
 
− (
1
0
) ( 5.33 ) 

The Jacobians for the unrobustified errors in Eq. ( 5.25 ), ( 5.26 ) and ( 5.27 ) have to be updated 

accordingly, while the Jacobians of the robustifiers remain the same.  

 𝐽𝑒
𝑖
𝐶𝑒𝑛

= 𝑜 ∗ [
𝑥1 𝑦1
0 0
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𝑦1 1

−𝑥1 ∗ 𝑥𝑝 −𝑦1 ∗ 𝑥𝑝
−𝑥1 ∗ 𝑦𝑝 −𝑦1 ∗ 𝑦𝑝

] ( 5.34 ) 
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Since the homography models the actually occurring geometric transformations better than the 

similarity transform used, the scale factors for the robustifier may be slightly reduced. 

Finally the point correspondences can be separated into inliers and outliers of the computed 

homography model based on thresholds for the different error metrics. An inlier match is defined 

as a point correspondence for which the actual residual errors are below defined thresholds 𝑡ℎ𝐶𝑒𝑛 

for center position, 𝑡ℎ𝑆𝑐𝑎 for scale and 𝑡ℎ𝑂𝑟𝑖 for orientation. Typical values are 𝑡ℎ𝐶𝑒𝑛 = 1.1 ∗ 𝑠𝑐𝐶𝑒𝑛, 

𝑡ℎ𝑆𝑐𝑎 = 1.2 ∗ 𝑠𝑐𝑆𝑐𝑎 and 𝑡ℎ𝑂𝑟𝑖 = 1.4 ∗ 𝑠𝑐𝑂𝑟𝑖. In order to count only independent inlier matches 

belonging to different image regions in both images, the regions are first sorted by their size, and 

an overlap test is performed for each new region. If it is included in a previous inlier region, the 

match is rejected despite its error metrics, otherwise it is accepted. This leads to a more 
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discriminative inlier score than if all inliers were counted despite referring to the same image 

regions. 

5.8 Summary 

In this chapter, we have presented a workflow addressing the problem of location recognition by 

means of image retrieval in a city scale corpus of up to millions of geospatial images. The index 

supports both systematically captured human scale panoramic imagery, as well as user created 

content from CPC, mobile queries or other sources. It comprises an improvement in scalability 

over our prior work in this area [25] and can be used for various applications in areas such as 

internet mapping, robot localization, SLAM, augmented reality or landmark recognition. 

In the following chapter we will evaluate the presented workflow based on various applications 

related to internet mapping and location based search.
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6 Location Search Applications and 
Evaluation 

After presenting the workflow in the previous chapter, we evaluate the presented workflow and 

sub-components of it, and we describe two applications in the context of internet mapping. We 

first define an evaluation framework for measuring the performance of image features for 

retrieval and pairwise image matching (Section 6.1), and compare the proposed feature extraction 

method with a range of alternatives. We further investigate ways for speed optimization of the 

presented feature extraction method, leading to a 16-fold speedup from 400 ms to 25 ms for a 

VGA image without a significant degradation of their matching performance. 

                       

Figure 6.1 Sample Query Image from Smartphone (Left); Matched Bing Maps Streetside Panorama 

(Right) with Detected Bounding Polygon Showing Overlap with Query Image; 

We then revisit the application of matching user photography from CPC to human scale panorama 

images described in [25] in Section 6.1.6. By using the improved workflow presented in Chapter 

4.6, we could achieve improvements of the recall rate from 59.5% to 73.3% while retaining the 

same low false positive rate of 0.5%. Additionally matches to human scale panoramas can be 

achieved in real-time with from typical query times around 5-10 seconds compared to several 

minutes with the previous workflow. Figure 6.1 features an example of a user query image 

captured using a smartphone application (left) with a list of query results below the image. One 

of the query results showing a matching streetside image with a highlighted bounding region 

indicating the detected frustum of the query image is also shown (right). A second application 

(Section 6.2.3) addresses the problem of improving business-geocoding by means of image 
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matching, in order to increase the quality of business data on internet mapping sites. By using the 

same matching workflow, we can achieve a recall rate for storefront images of 75.8%, which 

comprises a significant improvement over 56.3% achieved using the previous method [25]. 

Business locations get updated by 40 m on average, to within a required 10 m radius from the 

actual business. 

Finally (Section 6.4) we evaluate the effect of reducing the data volumes transmitted over wireless 

networks either by image compression or down-sampling, on the quality of matching user-photos 

to human scale data. We found that a 10-fold reduction in file size from 188 kB to 19 kB per image 

led to only minor changes in both true- and false positive rates. 

6.1 Feature Evaluation 

When designing an image retrieval or matching system using local image features, decisions have 

to be made, which of a large variety of interest point detectors or feature descriptors to use. Since 

different applications such as image retrieval, SFM or wide baseline stereo matching often differ 

in the exact way the features are used, the requirements for the feature stack vary. For example, 

depending on the degree of variance in the images to be matched, such as whether the objects 

have mostly planar or 3-dimensional structures, how much perspective distortion is expected, or 

to what degree the scene itself has changed, different choices may be optimal. When dealing with 

different applications such as Photosynth [163], image based product search [298] or location 

recognition [354], our intuition suggests that no single choice of a detector or descriptor is optimal 

for all applications. Therefore it is generally advantageous to validate the choice using 

representative datasets for each application as well as meaningful metrics. Once a set of 

components has been chosen, the same datasets and metrics can also be used to validate how 

changes to parameters controlling the different components or speed optimizations influence the 

quality performance of an algorithm. 

In this work we do not aim at providing a comprehensive performance comparison of different 

interest point detectors and descriptors, as this would be biased by implementation details of 

methods available to us. Instead, we are proposing a method for comparing various options and 

settings for the applications of image retrieval in large databases, and pairwise post-verification 

of candidate matches obtained by ranking. While other applications such as SFM use the same 

type of image features, they often require different kinds of metrics and datasets for comparison, 

which are outside of the scope of this work. 

6.1.1 Datasets 

In order to compare the performance of different interest point detectors as well as feature 

descriptors for ranking a large set of images as well as for matching of image pairs, we used 

primarily two datasets. The first dataset was originally created and publicly shared by the 

University of Kentucky [51] to evaluate the image retrieval work published in [30] and to serve as 

a reference for general recognition of known objects. This dataset, referred to in the following as 
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“Kentucky dataset” includes 10,200 non-“geo” VGA images, consisting of 2,550 individual 

quadruples. Within each quadruple, the same object or scene has been captured under certain 

variations in perspective or lighting.  

Since the Kentucky dataset contains mostly images of small objects, and only very few locations, 

we decided to capture a new dataset in the same schema which was more representative of the 

application we were mostly concerned with – geo-location recognition. Additionally, we wanted 

to remove any uncertainties caused by the fact that the vocabulary training for the visual word 

based ranking is generally done using the Kentucky dataset. This second dataset, hence called 

“Places dataset”, consists of 3,444 mobile phone images resized to VGA resolution. It is organized 

in 861 quadruples captured at the same location with a similar degree of variability in the camera 

poses. However the lighting was not varied. Examples from both datasets are shown in Figure 6.2. 

 

 

Figure 6.2 Example Images from the Kentucky Dataset (Top 5 Rows) and Places Dataset (Bottom 5 

Rows). 
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6.1.2 Metrics ……………… 

We chose to use different metrics for ranking a large set of images and for the pairwise matching 

problem. The metric used for measuring the performance of an image retrieval system proposed 

by [51], is the average number of correct entries in the top 4 ranked results when querying a 

complete index with each image individually. We hence call this ranking metric “Kentucky score”, 

if evaluated on the Kentucky dataset, and “Places score” if evaluated on the Places dataset. Since 

the images are organized with increasing indices in quadruples, the evaluation if a match is correct 

is trivial by checking whether the query index modulo 4 equals the result index modulo 4.  

In addition to measuring the performance of features for ranking images, we were also interested 

in how well the same features could be used in a pairwise image matching problem, such as the 

post-verification component of the location matching system described in Section 5.7. For this 

purpose we applied the post-verification algorithm including KD-tree ranking [44] and RANSAC 

[45] on the 8 top ranked images after the ranking step, making sure that the 4 correct matches 

were always included. If they were not, we replaced the lowest ranked mismatch with the missing 

match. Note that the 4 non-matches from this ranking are harder than a random choice, as they 

were the result of ranking based on visual similarity. Computing these 8 pairwise matches for all 

images in the set, the true positive rate (TPR) and false positive rate (FPR) can be computed. As a 

metric we used the numerical integral of the ROC curve [52], obtained by varying the inlier 

threshold for the post-verification step. While for certain applications it may be more feasible to 

compare the actual TPR values for a defined FPR value as a quality metric, we feel that for general 

comparison the ROC-integral is a more comprehensive metric as it covers multiple different 

configuration settings. In order to minimize the dependency of the post-verifier metrics on 

changes in the ranking results, we used a fixed set of candidate images for this test, which was 

based on the best ranking result obtained during our tests. We hence refer to these scores as 

“Kentucky ROC-integral” or “Places ROC-integral” depending on the dataset used. 

Along with measuring these quality metrics for different features, we also keep track of the 

computation time required for detecting the various interest points on a single core of an Intel 

Xeon 5150 CPU. This is significant for deciding which option to use, especially on computationally 

constrained platforms such as mobile phones. While we were using optimized versions of the 

different algorithms, note that the computation time depends strongly on the actual platform and 

implementation. Therefore the timings shown below may not be representative for other 

implementations of the same features. Rather than that, the described method and visualizations 

should serve as a reference for others, when performing similar comparisons of available options. 

6.1.3 Feature Comparison Results 

The image features used in the following comparison include several detectors from a Microsoft 

internal library developed by Microsoft Research (MSR), such as the Laplacian, Harris, Hessian, 
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Hessian Laplace, MSER, and Fast detectors, in addition to our own6 implementations of the 

Hessian, MSER and Fast detectors [43, 414, 415]. In the following comparisons, these features will 

be referred to using the M_ or B_ prefix to indicate which version was used (M=MSR, B=BING).  

 

 

Figure 6.3 Comparison of Ranking Scores of Different Interest Point Detectors for Kentucky 

Dataset (Top) and Places Dataset (Bottom) 

Two different versions of feature descriptors were used in the comparison. All interest point 

detectors in the MSR library were evaluated with the corresponding descriptor code from the 

same library, while our versions of the detectors were evaluated with both MSR’s and our own 

                                                             

6 “Our” implementation here refers to Bing Mobile’s version of these features, which has been implemented 

by a team of people led by David Nistér. 
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descriptors to allow the distinction whether differences were caused by descriptor or detector. 

Based on the descriptor version used, the following results include either the postfix _M or _B. 

The graphs in Figure 6.3 provide a clear comparison of the performance of different feature 

combinations for the task of image retrieval, based on two datasets captured in different flavors. 

Both differences in the quality as well as the feature detection time are visualized. For example, it 

becomes clear that while B_MSER_B achieves about the same Kentucky score as B_FAST_M, the 

detection time is an order of magnitude higher, potentially making it unfeasible for use on a mobile 

device. On the other hand, B_HESSIAN_M, using the same descriptor as M_FAST_M is both faster 

and better for ranking according to this metric. It also turns out that our descriptors when 

compared to the MSR descriptors by using the exact same interest points, tend to perform better 

for image ranking. 

Given that B_HESSIAN_B has been heavily tuned for speed and image ranking performance, this 

tendency is not surprising, and a more fair comparison would be to use tuned versions of all 

different detectors. While there are differences between the scores for the Kentucky and Places 

datasets between individual pairs of features, the B_HESSIAN_B still ranks optimally compared to 

the others, indicating that the features have not been over-fitted to any specific dataset. The same 

tendency occurs for the post-verifier ROC curve integrals for the Places dataset (Figure 6.4), 

although it is interesting that while the Harris detector apparently worked better for ranking than 

most alternatives, this is not the case for pairwise matching. 

 

Figure 6.4 Comparison of ROC Integral of Different Interest Point Detectors for Places Dataset 

6.1.4 Feature Parameter Tuning 

In addition to comparing different feature detectors, the same datasets and metrics can also be 

used for evaluating the effect of individual parameters of a particular feature extraction algorithm.  
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Figure 6.5 Places Score for different Choices for the Number of Features as well as the Patch Size 

(PSxx) used as a Function of: the Feature Count (Top); the Extraction Time (Bottom);  

Two examples of parameters which can often be freely chosen, are the number of features to be 

detected per image (or the feature density), and the patch size that used for computing the feature 

descriptor for each interest point. Based on the patch size, image patches are chosen from 

different levels of the image pyramid, thus containing fewer or more pixels that have to be taken 

into account for computing orientation histogram based descriptors. While the descriptor 

compute time is linearly related with the number of features, it is typically proportional to the 

square of the patch size. 

Questions such as if a larger number of smaller patches or a smaller number of larger patches is 

preferable can best be answered by comparing relevant metrics. The chart in Figure 6.5 (a) shows 

the relation between patch size, feature count and the Places score. From this chart it is still not 

clear whether to use 5,000 features with 25 pixel patches, or 2,200 features with 57 pixel patches, 
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as both perform equally well for ranking. The chart in Figure 6.5 (b) which shows the Places score 

as a function of the extraction time (detection + feature computation) makes it clear, that fewer 

features are a better choice, as the extraction is about 2.5 times faster. The same reasoning can be 

made between any pair of parameter sets that can be evaluated, and for which data points can be 

drawn in the above diagrams. 

6.1.5 Optimizing Quality vs. Speed 

In order to fit a certain algorithm, such as a feature extraction method, into a given form factor 

CPU or other compute device, significant effort is often required to optimize code, improve 

algorithmic performance, or even replace one algorithm with another. As improvements are made 

towards higher speed, the performance of the algorithm tends to decline. For this purpose, using 

a set of clearly defined metrics describing the quality performance of said algorithm is essential 

for keeping track of the progress made. In our experience, the quality-speed graphs presented 

above prove to be a valuable way of tracking this progress. 

 

Figure 6.6 Quality-Speed Progress while Optimizing the Performance of Hessian Feature Detector 

The quality-speed graph in Figure 6.6 visualizes the progress of Places scores and feature 

extraction times during several revisions of algorithmic improvements and parameter tuning for 

the hessian interest point detector and polar descriptor described in Section 5.5.1. For the test 

3,750 interest points and descriptors were extracted from a VGA image.  

The individual revisions shown in the diagram, as well as the significant parameters and changes 

made are detailed in Table 6-1. The biggest speed gain to the detector (Revision A) could be 

achieved by algorithmic improvements such as by switching to a recursive Gaussian blur [238] 

implementation originally described in [404] and by code optimizations in the determinant of 

hessian computation as well as the extrema-search. Further improvements were achieved by 

reducing the descriptor patch size and the resolution of the highest pyramid level used for the 

detection. For each major change in these primary parameters, several other parameters of the 
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interest point detection and descriptor algorithm were tuned to optimize the Places score. Overall, 

a 16-fold speedup from 400 ms to 25 ms could while still retaining a acceptable retrieval rate. 

While the optimizations performed during revisions H-K provide further speed enhancements, 

we think that revision G provides the best tradeoff between the quality for image ranking and the 

extraction time. To compare the timing on the PC with typical timings on a mobile CPU, we further 

evaluated Revision G on an ARM Cortex-A8 mobile CPU present in an IPhone 4 device. On this CPU 

the feature detection on a VGA image took approximately 143 ms and the extraction of 3750 

descriptors took 455 ms, which means that the total extraction time (598 ms) is 13 times longer 

than on the PC. 

Version Extraction 
Time [ms] 

Places 
Score 

Highest 
Pyramid 
Level 

Descriptor 
Patch Size 

Change 

Original 402.65 3.54 640∙480 57 - 
Revision A 324.23 3.57 640∙480 57 Detector Code Optimizations 
Revision B 114.46 3.50 640∙480 33 Patch Size 33 Pixel 
Revision C 79.92 3.44 640∙480 25 Patch Size 25 Pixel 
Revision D 81.38 3.56 640∙480 25 Parameter Tuning 
Revision E 63.52 3.54 320∙240 25 Reduced Pyramid Resolution 
Revision F 45.72 3.45 320∙240 19 Patch Size 19 Pixel 
Revision G 45.62 3.50 320∙240 19 Parameter Tuning 
Revision H 29.88 3.33 320∙240 13 Patch Size 13 Pixel 
Revision I 30.95 3.39 320∙240 13 Parameter Tuning 
Revision J 26.10 3.24 192∙144 13 Reduced Pyramid Resolution 
Revision K 25.40 3.32 192∙144 13 Parameter Tuning 

Table 6-1 Revisions of Hessian Feature Extractor during Optimization 

6.1.6 Summary 

We have presented an evaluation method and metrics allowing the comparison of various image 

features for image retrieval as well as pairwise image-matching as part of a post-verification. The 

evaluation is based on two different datasets for general objects as well as location-specific 

imagery, and considers both the quality as well as the feature extraction time in a quality. We have 

further compared several interest point detectors and feature descriptors using this method. 

While the DOH descriptor and polar descriptor presented in Section 5.5 compare favorably to the 

compared options, this evaluation should be repeated for other problems than the one considered. 

Finally we have presented the utility of the evaluation method for tuning parameters of a feature 

extraction method, as well as for tracking the progress of code-optimizations of a specific 

extractor. In case of the feature extraction method presented in 5.5, a 16-fold speedup from 

400 ms to 25 ms could be achieved by means of code optimizations and parameter tuning. 

6.2 Bing Maps Streetside Photos 

The results of our prior work described in Section 5.3 are a set of geo-located user photographs 

superimposed on the matching streetside imagery of the same location, which were later shipped 
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as a feature of Bing Maps called Streetside Photos [46]. Since the same application is also 

supported by the improved image search index described in Section 5.3.2 we repeat the same test 

metrics and datasets in order to compare the quality performance of the old and new algorithm. 

6.2.1 Offline Dataset 

For this purpose we used a set of roughly 300,000 precisely (within +/- 2 m) geocoded panorama 

images in Seattle (Figure 6.7) covering an area of 10·13 km as the base model for location 

matching. As query images we used a test set of 11,000 images downloaded from Flickr that were 

geocoded within a radius of 100 m to at least one of the Streetside-panorama images. The image 

dimensions of the Flickr images used are 500·375 pixel. Out of those query images, 2,615 had 

been hand-labeled as outdoor-images containing recognizable image content (23%). We consider 

only those images as potential match candidates. 

 

Figure 6.7 Overview of Test Set of 300,000 Human Scale Panoramas in Seattle, WA, USA 

For the evaluation of the new method we used a search radius of 100 m around the prior location 

and a maximum number of 200 post-verifications per query image. We evaluated two variants of 

the RANSCAC method, either using the similarity transform determined after the first 

optimization, or the homography after the second optimization. We used the same Laplacian 

interest point detector and Daisy descriptor [393] as for the original method, hence the changes 

in the results are mainly caused by differences in the image ranking and pairwise post-verification 

process. The compute time spent per query on a 2006 CPU (Intel Xeon 5150) is approximately 1 

second for feature extraction and ranking, and 0.081 seconds for each post-verification (0.03 

seconds for I/O, 0.05 seconds for KD-tree search and 0.001 seconds for RANSAC). Altogether this 
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adds up to 17.2 CPU-seconds assuming 200 post-verifications. As the post-verifications are 

distributed across 10 machines in the production system, the total server side latency (without 

networking) turns out to be roughly 3 seconds (≈1 + 20 * 0.081). 

6.2.2 Offline Evaluation Results 

The comparison of the results for the new as well as the original methods are listed in Table 6-2. 

As one can see, the true positive rate (TPR) has improved substantially from 59.5% to 71.1% for 

the similarity based model and to 73.3% for the homography based model, with a similarly low 

false positive rate (FPR) of 0.6%. The alignment accuracy for features on planar surfaces usually 

is better than 5 pixel (1%) reprojection error measured in query image coordinates. For 3D 

structures, reprojection errors are significantly higher, as expected due to shortcomings of the 

homography model. 

 Original Results from 
[25] 

New Method Using 
Similarity Based 
Geometric Model 

New Method Using 
Homography Based 

Geometric Model 
True Positives   1556 1859 1918 
True Positive Rate 59.5% 71.1% 73.3% 
False Positives 59 88 67 
False Positive Rate 0.5% 0.7% 0.6% 

Table 6-2 Comparison of True and False Positive Matches for Original and New Method 

  

 

Figure 6.8. Examples of Images Shown in the Context of the Matched Streetside Panorama Images, 

in the Bing Maps Silverlight Client. Top Right is a Historic Image from 1919 at Pike Place, Seattle 

Some samples results from the original method are shown in Figure 6.8, in the context of the 

matched panorama images. More match results can be seen in the Bing Maps Application 

“Streetside Photos” [46]. In addition to the matches listed above, 376 query images (Figure 6.9)s 

could be matched successfully using the homography based method, despite substantial 



Geospatial Image Matching Within and Across Domains  170 

 

differences compared to the panorama images, in resolution, sharpness, illumination, perspective, 

camera geometry or due to noise or occlusions. 

    

Figure 6.9 Examples of Successful Matches with Minor Overlap between Query and Index Images; 

Detected Bounding Polygon is Shown in Red, Matched Feature Points in Green; 

  

Figure 6.10. Samples of false negatives (Images not successfully matched) 

In case of the homography post-verification, 697 false negatives were detected. Based on a 

sampling we estimate that about 200 of them had been geocoded incorrectly, such that the correct 

human scale image was outside of the search scope of 100 m. Most of the other images (Figure 

6.10) either had a very narrow field of view (left example) containing too few uniquely identifiable 

features, large amounts of repetitive structures such as building façades with many windows 

(center example), or they were taken from a perspective too different from the panorama image 

(right example). In addition, due to the use of the homographic geometry model for match-

verification, scenes with pronounced 3D structure were also more challenging to match.  

  

Figure 6.11 Sample Query Image and Streetside Match Demonstrating the Problem of Repetitive 

Structure in Urban Environments; 
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The problem of repetitive scenes in urban environments is also visualized in Figure 6.11. While 

the image of the ornament (left) could actually be matched automatically by the algorithm, there 

are several visually indistinguishable ornaments on the same building (right). The matching 

algorithm is unable to uniquely identify the particular ornament which has been photographed 

and instead returns an arbitrary one of them. 

  

  

Figure 6.12. Samples of False Positive Matches. Query Image (Top) and Corresponding Mismatched 

Index Image (Bottom). Red Lines Show Projected Outline of Query Image if Within View, Blue Dots 

Show Projected Image Center. 

Altogether 67 false matches were counted using the homography RANSAC, corresponding to a 

false positive ratio of 0.6%. Images containing repetitive structures, such as window shutters, 

building fronts with repetitive window-patterns or similar textures were more likely to be 

mismatched (See Figure 6.12 for samples of false positive match pairs), even though their 

matching scores were usually relatively low. 

6.2.3 Real-Time Matching 

In addition to supporting offline matching of query images from various sources to an index of 

Bing Maps streetside panoramas, the image index in Chapter 4.6 was optimized particularly for 

real-time queries and ingestions from mobile phones. Various applications are supported by real-

time queries, such as image-based localization based on accurately (+/- 2 m) positioned streetside 

data, or queries for information related to specific landmarks. For example, a user may capture an 

image of a landmark, add it to the index, and create a label linking to an online article of related 

information. A second user would hence be able to obtain the respective information by issuing 

an image query to the index. While the example above in Figure 6.1 highlighted the ability to 

perform real-time matches to streetside imagery, Figure 6.13 shows the same capability for user-
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uploaded index images. The example query (left) was issued inside of a shopping mall and 

returned the match to a previously transmitted and ingested query image. Note that since the 

dynamic image index described in 5.6 supports real-time ingestion of new images, the matched 

image may have been added as little as 5-10 seconds earlier either by the same or a different user. 

                     

Figure 6.13 Query Image Captured with Smartphone in Indoor Location (Left); Matched User-Photo 

with Detected Bounding Polygon (Right); 

While we did not perform an extensive analysis of the real-time query performance, we 

experienced satisfactory matching rates clearly above 80% in about 250 user issued queries 

containing recognizable image content also present in the index. The matching rate was higher 

than for the offline case with CPC images, likely due to the fact that query images were 

intentionally captured with a large enough portion of recognizable image content, such as 

buildings on the opposite side of the street. 

The end-to-end query times varied between 5 s and 20 s between capturing an image and 

obtaining the resulting list. We verified visually that the bounding polygon indicated a plausible 

area in the index image for all successfully answered queries. The only ambiguous results were 

due to repetitive structures similar to the example in Figure 6.11, where a similarly looking scene 

feature was returned rather than the exact object in the query image. 

6.2.4 Summary 

In this section we have shown that the presented geospatial image index can be used effectively 

for matching user photographs from CPC and smartphone cameras, to streetside imagery and 

other geocoded data. The achieved recall rate of 73.3% as well as well as the false positive rate of 

0.6% compare favorably to comparable solutions such as [363] or [365]. Server query time of less 

than 3 seconds allow real-time application of the system for self-localization in a map of 

streetside imagery, as well as offline processing of 10,000 queries per hour. 
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6.3 Improving Business Geocoding Using Storefront Images 

6.3.1 Problem Description 

A key functionality of any internet mapping service is the search for points of interest (POI) such 

as businesses in an area, and provide information about the location of the POI as well as 

navigational instructions. As users see the world at increasing scales in human scale imagery, the 

need for accurate POI location information grows. While an error in location of about 50 m may 

be acceptable when using an aerial view, it is unacceptable in human scale. Due to the fact that the 

geocoding for a large percentage of POI is derived from their street addresses, by interpolating 

across coordinates of street intersections, the geocoding errors can be significant, and often tens 

or hundreds of meters away from their actual location [140]. If the geocoding for a business is 

offset by more than 20 m, it is often unlikely to be spotted from the streetside image closest to that 

location. This assumption is supported by the example of a business storefront shown in Figure 

6.14 from streetside images offset along the street by 0, 5, 7.5, 10, 20 and 30 m. While at 10 m 

distance the business is still visible and may be recognizable, this is no longer true for 20 m. A 

manual analysis of a set of POIs on Bing Maps, that we conducted in several US cities with human 

scale data conducted in 2010, showed that about 2/3 of all POI entries were offset by more than 

30 m from their actual location. 

   

  

Figure 6.14 Business Storefront of “Café Amore” in Bristol, GB - Viewed from Streetside Images at 

Different Distances along the Street 

For that reason it is a priority for a mapping service to improve the geocoding of existing POIs as 

much as possible, in order to provide precise information to its users. An expensive way to 

improve the geocoding of businesses is to send a GPS equipped team of people into the field to 

obtain updated GPS locations for a list of POIs. A cheaper alternative is the use of human scale 

imagery, which is captured more frequently in urban areas with businesses, where accurate 

geocoding matters the most. For example, the human scale imagery can be used by paid data-

0 m 5 m 7.5 m 

10 m 20 m 30 m 
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labelers to search for the correct location of a business, and manually update the geocoding 

information accordingly. While this approach certainly can achieve the desired result of more 

accurate geocoding, it is also expensive, and cannot easily be scaled up to millions of POIs in 

thousands of cities. Alternatively, users of map services could be involved by means of 

crowdsourcing, which may have other draw-backs such a lack of motivation to participate or the 

risk of spam being introduced. Therefore, a reliable automatic solution would be preferable.  

6.3.2 Proposed Solution 

In [47] we have propose an approach to improving business geocoding by using image matching 

techniques. This approach takes advantage of the fact, that for many POIs, storefront images 

(Figure 6.15) had been used even prior to capturing streetside imagery (see 3.4.2). In addition to 

systematically collected storefront images, community sources such as Yelp could be used, as 

many business database entries contain user generated business storefront images. The system 

described in Chapter 4.6 may serve as a means to achieve reliable image matching. By providing 

a reliable match between the storefront images and the streetside panorama images, precise 

5DOF locations and orientations can be determined for the respective POIs. 

 

Figure 6.15 Sample Business Storefront Images Captured by InfoUSA [247] 

A goal for any automatic processing system, in addition to achieving the best possible result, is to 

minimize the compute time required for the task, as it often directly affects the cost. As mentioned 

in Section 0 the average compute time per query image is approximately 17.2 CPU-seconds on a 

2006 CPU (Intel Xeon 5150), assuming that 200 images need to be post-verified in total. Assuming 

current pricing of a cloud computing service such as Windows Azure of 18 cents/hour for a 

medium sized node [416] and an inefficiency factor of 3 it would cost 15,000 USD to update 1 

million business entries using the above system. As an alternative a crowdsourcing solution such 

as Amazon Mechanical Turk [417], which may cost 5 cent per POI transaction [418] would cost 

150,000 USD with a redundancy factor of 3 for the same number of POIs. Hence an automated 

solution appears to be favorable in this case. 

file://b88psfile001/f$/Synther/InfoUSAWorkDir/img/0/4/2/7
file://b88psfile001/f$/Synther/InfoUSAWorkDir/img/0/4/2/7
file://b88psfile001/f$/Synther/InfoUSAWorkDir/img/0/4/2/7
file://b88psfile001/f$/Synther/InfoUSAWorkDir/img/0/4/2/7
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Figure 6.16 Overview of Streetside Panoramas (Red) and Storefront Images (Green) used for 

Geocoding Experiment 

6.3.3 Experiments and Results 

In order to evaluate the feasibility of using image matching for updating the geocoding of POI 

entries on Bing Maps, we used a set of roughly 300,000 precisely geocoded panorama images in 

Seattle, in combination with 17,600 storefront images in the same area, collected by InfoUSA 

[247]. The storefront images provided (see examples shown in Section 3.4.2) have a resolution of 

400∙300 pixel, and the image quality is often suboptimal due to challenging exposure conditions, 

blurriness, perspective distortions etc. The geographic distribution of the two image types used is 

visualized in Figure 6.16. 

Out of the total amount of storefront images, 9,116 were actually close enough to the available 

streetside panoramas (within a 100 m radius) to be considered for image matching. Out of this 

set, 6,906 images could be matched to the streetside dataset in order to improve their geocoding. 

This corresponds to a recall rate of 75.8%, which is an encouraging number considering the large 

variation in the appearance of streetside scenes generally, and the suboptimal image quality of 

the storefront images used. Additionally, an unknown but non-zero percentage of the storefront 

images located within a 100 m radius likely is not actually visible from any of the streetside 

panoramas, as the businesses are located in cross streets or within malls. 
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Figure 6.17 6 Successfully Matched Image Pairs of Storefront Images and Streetside Panoramas 

Examples of matched image pairs of storefront images and streetside panoramas can be seen in 

Figure 6.17, illustrating the differences in the ratiometry and geometry between the two image 

sets.. The location of the matched features as well as the estimated overlap region have been 

highlighted in this view. 

 

 

Figure 6.18 Histogram and Cumulative Histogram of Position Offsets between Prior Geocoding 

Location and Location Determined by Image Matching 

The histogram and cumulative histogram (Figure 6.18) of the actual position offset determined by 

comparing the prior geocoding information for a POI with the location of the streetside panorama 

show that approximately 60% of businesses previously had geocoding errors in excess of 30 m. 
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The average prior error was 43.7 m, far above the tolerable distance of 10 m illustrated in 6.3.1. 

A visual inspection confirmed that the updated business locations were all within a tolerable 

radius of 10 m such that the businesses could actually be seen from the closest streetside 

panorama. 

As an alternative approach of automatic business geocoding from streetside imagery, we applied 

optical character recognition (OCR) on the imagery, and tried matching the retrieved text strings 

with the names of nearby POIs in the database. This approach only applies to a subset of business 

which have their name displayed on the building storefront or on signs. For this experiment we 

used an OCR algorithm tuned for text in natural scenes on a smaller set of 30,000 streetside 

panoramas and 1,305 POIs. Out of them, 99 could be found correctly, corresponding to a recall of 

approximately 7.6%. The details of this experiment, which was based on a variant of the OCR 

algorithm used for Bing Text Search and the Levenshtein distance [419] as a text similarity metric, 

are not subject of this work. For the same smaller area, a prior version of the image matching 

approach similar to what was presented in [25], was able to match 735 images correctly, 

corresponding to a recall of 56.3%. While we didn’t repeat the OCR based experiment on the 

larger dataset described above, the difference in recall suggests that image matching has a 

significantly higher potential to achieve the desired result. 

6.3.4 Summary 

The results presented above show that matching business storefront images to streetside 

panoramas by means of the proposed image index, can be used to update business geocoding 

successfully in 75.8% of cases. This improves the usability of the corrected POI significantly when 

viewed in human scale mode, as 2/3 of the POI were previously located outside of a presumably 

tolerable radius of 20 m. The cost and performance compares favorably to alternative approaches 

involving crowdsourcing or optical character recognition. 

6.4 Constraining Data Upload Volumes for Mobile Search 

6.4.1 Problem Statement 

Recent advances of mobile internet technology such as LTE have led to significantly increased 

bandwidths available for uploading and downloading data in certain geographic locations. 

Nevertheless in most locations the typical data volumes used for image based search still pose a 

challenge if the goal is to minimize the latency for a user initiated image query. Typical upload 

bandwidth for UMTS mobile networks, which is one of the most common standards [420], are on 

the order of 25 kB/s. This means that uploading an uncompressed RGB image in VGA resolution 

(640·480 pixel) to a web service takes on the order of 35 seconds which is unacceptable for most 

applications. Therefore it is desirable to reduce the upload file size in order to minimize the 

latency added by the file upload, ideally to less than 1 second. 
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Various options of reducing the file size for an image exist such as by lossless or lossy image 

compression or down-sampling the image for transmission. Since the required compression ratio 

makes lossless compression infeasible, we therefore evaluate only lossy compression using the 

JPEG algorithm [421] with varying degrees of compression. For resizing the images to different 

dimensions we use the bicubic interpolation method [238]. Another option would be to perform 

the feature extraction on the mobile device and upload only the extracted interest points and 

descriptor vectors, which requires additional compute latency on the mobile device. 

An important question in this context is which of the above options leads to the best tradeoff 

between file size and matching performance. In order to answer this question, we used the same 

streetside image dataset and matching algorithm used in Section 6.1.6 containing 11000 geocoded 

user images and 300,000 streetside panoramas. Hence we used a VGA version of the user images 

from Flickr as a starting point for resizing and compression to different settings. The metrics for 

comparing different options are the TPR and FPR of the matching results. In the following sections 

6.4.2 through 6.4.4 we describe the results of three different parameter variations. 

 Vary the image dimensions for transmitting the image, using a constant JPEG quality 

setting of 100%. 

 Vary the JPEG quality setting between 10% and 100% while keeping the image 

dimensions constant at 500·375 pixel 

 Vary the image dimensions as well as the JPEG quality setting concurrently in order to 

achieve a constant average file size of roughly 20 kB. At receiver resize image back to 

500·375 before feature extraction. 

6.4.2 Constant JPEG Compression Quality 

For the first test series we left the JPEG quality setting unchanged at 100% leading to a minimal 

compression and quality loss, while varying the image dimensions in a range between 320·240 

and 590·443 pixel. Table 6-3 gives an overview of the parameters used as well as various other 

relevant metrics, including the average file size per image, the average feature count as well as 

statistics about true and false positives.  

Image 
Dimensions 

JPEG 
Quality 

Average File 
Size [kB] 

Average  
Feature Count 

TP FP TPR FPR 

320·240 100 67.3 603.2 1668 11 0.63786 0.00088 

350·263 100 81.0 711.8 1746 16 0.66769 0.00128 

380·285 100 94.8 823.8 1822 24 0.69675 0.00192 

420·315 100 115.3 985.6 1865 26 0.71319 0.00208 

450·338 100 131.6 1116.0 1913 34 0.73155 0.00272 

480·360 100 147.4 1249.7 1926 52 0.73652 0.00416 

500·375 100 159.9 1339.0 1935 61 0.73996 0.00488 

540·405 100 180.0 1498.5 1977 74 0.75602 0.00592 

590·443 100 206.2 1709.9 1980 95 0.75717 0.00760 

Table 6-3 Resulting Metrics for Varying Image Dimensions with Constant JPEG Quality Setting 
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TPR and FPR are further plotted as a function of the average file size in Figure 6.19. From this 

result it becomes obvious that while both TPR and FPR increase with higher image dimensions 

the file size is in all cases too large to transmit an image within 1 s on a network with 25 kB/s 

transfer speed. The increased TPR and FPR are likely explained by the increased feature count for 

higher image dimensions. 

 

Figure 6.19 TPR and FPR vs. File Size for Varying Image Dimensions 

6.4.3 Constant Image Dimensions 

In a second experiment we evaluated how varying the JPEG quality for a given dimension of the 

query images (500·375 pixel) affects the file size and the quality metrics. In addition to the TPR 

and FPR metrics Figure 6.20 also shows the relation between the file size and the JPEG quality 

setting. 

Image 
Dimensions 

JPEG 
Quality 

Average File 
Size [kB] 

Average  
Feature Count 

TP FP TPR FPR 

500·375 100 159.9 1339.0 1935 61 0.73996 0.00488 

500·375 90 56.6 1344.4 1940 59 0.74187 0.00472 

500·375 80 38.1 1359.0 1935 52 0.73996 0.00416 

500·375 70 30.2 1382.0 1912 62 0.73117 0.00496 

500·375 60 25.2 1410.2 1933 50 0.73920 0.00400 

500·375 50 22.1 1437.3 1943 63 0.74302 0.00504 

500·375 40 19.1 1472.9 1929 55 0.73767 0.00440 

500·375 30 16.1 1520.4 1911 59 0.73078 0.00472 

500·375 20 12.5 1596.0 1858 52 0.71052 0.00416 

500·375 10 8.3 1655.1 1720 49 0.65774 0.00392 

Table 6-4 Resulting Metrics for Varying JPEG Quality Setting with Constant Image Dimensions 

In this case the TPR and FPR metrics remain surprisingly constant throughout a wide range of the 

sweep despite a large reduction of the file size. The average feature count increases for lower 

quality settings which is likely caused by the additional amount of compression noise present in 
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the images. A drop of the TPR can only be noticed from 30% to 20% JPEG quality. Generally this 

test suggests that an image quality setting above 40% doesn’t add significant value to the 

matching results. The average file size for 40% JPEG quality is only 19.1 kB which means it would 

take 0.764 seconds to upload an image via a 25 kB/s network connection.  

 

Figure 6.20 TPR and FPR vs. File Size for Varying JPEG Quality 

6.4.4 Constant File Size 

Based on the results presented in 6.4.3 an interesting question is whether it is preferable for a 

given file size of roughly 19 kB (corresponding to the 40% quality setting above) to use a larger 

image resolution with a higher compression, or a lower resolution with less compression. To 

answer this question we varied both the JPEG quality as well as the image dimensions in 

conjunction while transmitting the image, keeping the image file size roughly the same. To make 

sure the image dimensions used during the feature extraction don’t influence the feature count, 

we resize the images back to 500·375 pixel on the receiver side before feature extraction. 

Image 
Dimensions 

JPEG 
Quality 

Average File 
Size [kB] 

Average  
Feature Count 

TP FP TPR FPR 

320•240 82 17.5 1173.3 1825 46 0.69790 0.0036 

350•263 77 18.2 1489.7 1933 72 0.73920 0.0057 

380•285 71 18.5 1505.2 1922 69 0.73499 0.0055 

420•315 61 18.7 1510.7 1942 88 0.74264 0.0070 

450•338 52 18.7 1512.8 1937 70 0.74073 0.0056 

480•360 45 18.9 1504.6 1926 64 0.73652 0.0051 

500•375 39 19.0 1475.4 1919 63 0.73384 0.0050 

540•405 32 18.7 1497.7 1912 80 0.73117 0.0064 

590•443 25 18.4 1505.6 1902 48 0.72734 0.0038 

640•480 20 18.6 1510.7 1904 47 0.72811 0.0037 

800•600 10 18.4 1554.5 1873 57 0.71625 0.0045 

Table 6-5 Resulting Metrics for Varying Quality and Dimensions to Achieve Constant File Size 

Since the file size is kept roughly constant during this test, we draw the TPR, FPR and JPEG quality 

as a function of the maximum image dimension in Figure 6.21. While the TPR shows a moderate 
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peak for an image size of 420·315 pixel and a quality setting of 61%, the FPR numbers fluctuate 

relatively much in this range, making it difficult to select a clear optimum. Part of these 

fluctuations could be caused by the fact that the images had to be resampled twice using bicubic 

interpolation for this experiment. 

 

Figure 6.21 TPR, FPR and JPEG Quality vs. Image Dimension 

6.4.5 Summary 

The results of the above experiments indicate that it is possible to significantly reduce the file size 

sent over the network from 188 kB to roughly 19 kB without affecting the matching performance 

significantly. Whether this reduction in file size is achieved by image compression alone, or by a 

combination of image compression and resizing does not significantly affect the matching quality. 

Apart from the added latency, the option of performing the feature extraction on the mobile device 

has the disadvantage that the extracted image features often exceed the size of the compressed 

input image. For example the data volume required for 1,500 interest points (4 single precision 

floating point numbers) together with the respective descriptor vectors (32 bytes after applying 

PCA) is 70.3 kB. This compares to an average size of 57 kB required for JPEG compressed images 

with dimensions of 500·375 pixel and a JPEG quality of 90%, and hence makes this option less 

feasible. 
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7 Image Registration in the Presence of 
Large Scale Differences 

7.1 Dissimilar Geo-Images 

The method described in Chapter 4.6 robustly matches images in cases of roughly the same scale, 

while differences in the capture time, illumination, image quality and pose will be acceptable. 

However, it is a significantly more challenging problem to perform automatic registration of 

images across large scale and pose differences, such as between aerial and human scale imagery. 

As the example in Figure 7.1 illustrates, the differences in the image resolution (GSD), perspective 

and image quality between aerial and terrestrial imagery still pose considerable challenges for 

direct image matching methods. While these methods may occasionally work for oblique aerial 

imagery they will most likely fail for aerial or satellite based orthophotos. In fact it is often even 

challenging for a human to relate scene objects across such differences. 

Dissimilarities of course also exist between images for visible light cameras, thermal sensors, 

radar images and other imaging modalities [70]. However in internet application with user-query 

and index images we can focus on visible light camera images. 

Pizel Size: ~3 cm   Pixel Size: ~25 cm  Pixel Size: ~30 cm 

   

Figure 7.1 The Same Building Façade in a Terrestrial, Oblique Aerial and Orthophoto Perspective 

(Example City Hall, Graz, Austria) 

We propose a solution to a related problem, the automatic alignment of sparse point clouds 

obtained by SFM from terrestrial imagery [15] to oblique aerial views. The motivation to obtain 

such alignment is in order to place 3D reconstructions such as those obtained by Photosynth (see 

“Prague Old Town Square” example in Figure 7.2) at an accurate location, angle and scale on the 

map, allowing more intuitive visualizations and transitions between overhead- and 3D views. 
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Figure 7.2 Photosynth Reconstruction of Old Town Square in Prague, Czech Republic (Left); 

Corresponding SFM Point Cloud (Right); 

7.2 Reference Work 

Our method is a modification of the work described by Kaminsky et al. [14]. The authors take 

advantage of the fact that vertical planes such as building façades appearing in typical urban 

scenes often coincide with intensity edges in the corresponding ortho-views. This fact is 

illustrated in Figure 7.3 using the example of an edge image (center) extracted from an ortho-

image (left) using Canny edge detection [422], as well as a corresponding SFM point cloud 

obtained from user-photographs (right). 

  

Figure 7.3 Example from Kaminsky et al. [14]: Overhead Ortho-Image of Old Town Square in 

Prague, Czech Republic (Left); Corresponding Edge Image (Center); Overhead View of Structure-

from-Motion Point Cloud Obtained from User Photos using Photosynth (Right); 

The solution proposed by Kaminsky et al. is formulated as an optimization problem, with an 

alignment cost function 𝐴(𝑖, 𝑗, 𝜃, 𝑠) containing terms for an edge cost 𝐸(𝑖, 𝑗, 𝜃, 𝑠) as well as a free 

space cost 𝐹(𝑖, 𝑗, 𝜃, 𝑠) where 0 ≤ 𝛼 ≤ 1. The parameters to be optimized describe the translation 

(𝑖, 𝑗), rotation (𝜃) and scale (𝑠) of a similarity transform between the two top-down views. The 

optimal solution of 𝑇𝑖,𝑗,𝜃,𝑠 with respect to the alignment cost 𝐴(𝑖, 𝑗, 𝜃, 𝑠) is determined by brute 

force search over the parameter space. 
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 𝑨(𝒊, 𝒋, 𝜽, 𝒔) = 𝜶 ∗ 𝑬(𝒊, 𝒋, 𝜽, 𝒔) + (𝟏 − 𝜶) ∗ 𝑭(𝒊, 𝒋, 𝜽, 𝒔) ( 7.1 ) 

The edge cost is defined as the average L2 distance between (transformed) points 𝑇𝑖,𝑗,𝜃,𝑠(𝑝) in the 

3D point cloud and the nearest pixel (𝑥, 𝑦) in a binary edge image 𝐵 (Figure 7.3, right) obtained 

from an orthophoto by means of Canny edge detection [422]. The minimum distance for each 

point is computed efficiently by means of the Distance Transform [423] of 𝐵. 

 
𝑬(𝒊, 𝒋, 𝜽, 𝒔) =

𝟏

𝒏
∑ 𝐦𝐢𝐧

(𝒙,𝒚)∈𝑩
‖𝑻𝒊,𝒋,𝜽,𝒔(𝒑) − (𝒙, 𝒚)‖𝟐

𝒑∈𝑷

 ( 7.2 ) 

Additionally, the cost function contains a free space term to avoid alignments to extraneous edges 

in the overhead image. The free space cost is based on the idea that viewing rays between the 

camera centers and the observed scene points (Figure 7.4, right) should not intersect with edges 

in the ortho-image created by occluders which would interfere with the point visibility. It is 

defined as the sum of the pixel-wise product of each pixel in a transformed ray image 𝑅(𝑥, 𝑦) and 

the binary edge image. 

 
𝑭(𝒊, 𝒋, 𝜽, 𝒔) =

𝟏

𝒏
∑𝑹(𝑻𝒊,𝒋,𝜽,𝒔(𝒙, 𝒚))𝑩(𝒙, 𝒚)

𝒙,𝒚

 ( 7.3 ) 

For the “Old Town Square” example shown above, the correct alignment result between the point 

cloud and the overhead image is visualized in Figure 7.4. This alignment provides significantly 

more accurate geocoding for the individual user images including orientation, than if only GPS 

data had been used [14]. 

 

Figure 7.4 Ray Image as Reported by Kaminsky et al. Showing an Accumulation of all Viewing Rays 

between Camera Centers and Reconstructed Scene Points (Left); Correct Alignment Result (Right); 

As pointed out in [14] this method is not limited to outdoor images but can also be applied to 3D 

reconstructions of indoor scenes, where the edge image may be replaced by a binary floor plan 

image of the building. 

However, a weakness of this method is that the edge cost often forms minima plateaus in regions 

of densely populated edges as the average point distance is generally low. While the free space 

cost aims at ruling out such solutions, incorrect solutions are still likely to occur, especially for 

small scales where fewer edges can potentially intersect with the ray image. Additionally the 
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assumption used for the free space cost, that edges in ortho-images coincide with occluders is 

often invalidated in real environments. 

 

Figure 7.5 Example of Incorrect Alignment (Left and Center) using Kaminsky’s method due to a 

High Density of Edges in Part of the Image (Location: Coliseum, Rome, Italy); Result of Mitigation 

using GPS Data as Additional Input as Reported by Kaminsky et al.] 

Figure 7.5 (left and center) visualizes an example of an incorrect alignment using Kaminsky’s 

method due to a high edge density within a large part of the scene. Kaminsky showed that this 

problem can be reduced by using additional information, such as GPS data for the user images 

(See Figure 7.5 right). However since these data are only available for a subset of user images, it 

would be desirable to improve the basic alignment algorithm itself to mitigate such problems. 

7.3 A New Approach 

While following the same principle, our solution differs from the reference method in several 

ways. The most significant difference is that we use a modified edge cost function based on the 

orientation of edges in the point cloud as well as the orthophoto. The original definition results in 

a low edge cost if any edge is close to a transformed point despite its orientation (Figure 7.6, left). 

Our method however, requires an edge of a similar orientation (Figure 7.6, right) near the 

transformed point. Additionally we punish edges which are oriented orthogonal to the expected 

direction of a given point by means of an orthogonal edge distance term. 

 

Figure 7.6 Illustration of Incorrectly Rotated Alignment (Left) between Point Cloud (Red) and 

Edges (Blue); Better Alignment (Right); 

Further improvements aim at reducing the computational cost. Instead of computing the edge 

distance for each point of the point cloud individually, we first aggregate all points in top-down 

template images of the point clouds by computing a 2D histogram in XY-space. Similar to the ray 
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image in the original method this image can be rotated and scaled using standard resampling 

methods. The edge cost is hence computed by convolution with the distance images. As suggested 

by Kaminsky et al. we then use the fast Fourier transform (FFT) [424] to compute the convolution 

instead of actually convolving the image with the relatively large templates. 

The combination of the above changes helps to significantly boost the computation speed as well 

as the robustness of the method.  

7.4 New Algorithm Description 

As mentioned above the new edge cost differs from to the reference method in several ways, 

taking into account the orientation 𝜏(𝑝) of a given point as well as the orientation of the edge 

pixels 𝜏(𝑥, 𝑦). While the distance of a given point to a parallel edge with similar orientation should 

be small, the opposite is the case for edges that are orthogonal to the orientation of the point. Note 

that the rotations by 𝝅 are considered irrelevant for this purpose as intensity gradient directions 

are not related to the direction of the façade. The combined cost is computed as the sum of two 

edge cost terms, a cost 𝐸|| for parallel edges and a cost 𝐸⊥ for orthogonal edges.  

 𝑬(𝒊, 𝒋, 𝜽, 𝒔) = 𝑬||(𝒊, 𝒋, 𝜽, 𝒔) + 𝑬⊥(𝒊, 𝒋, 𝜽, 𝒔) ( 7.4 ) 

The orientations are considered parallel or orthogonal based on the following conditions: 

 𝝉(𝒑)|| 𝝉(𝒙, 𝒚)    𝒊𝒇𝒇 𝐜𝐨𝐬𝟐(𝝉(𝒑) − 𝝉(𝒙, 𝒚)) ≤ 𝐜𝐨𝐬𝟐𝜺 

𝝉(𝒑) ⊥  𝝉(𝒙, 𝒚)    𝒊𝒇𝒇 𝐜𝐨𝐬𝟐 (𝝉(𝒑) − 𝝉(𝒙, 𝒚) +
𝝅

𝟐
) ≤ 𝐜𝐨𝐬𝟐𝜺 

( 7.5 ) 

where 𝜺 is an tolerance window size (e.g. 
𝝅

𝟖
). The parallel term is computed similar to Eq. ( 7.2 ) 

but only takes into account the shortest distance to points with a similar orientation.  

 
𝑬||(𝒊, 𝒋, 𝜽, 𝒔) =

𝟏

𝒏
∑ 𝐦𝐢𝐧

(𝒙,𝒚)∈𝑩|𝝉(𝒙,𝒚)||𝝉(𝒑)
‖𝑻𝒊,𝒋,𝜽,𝒔(𝒑) − (𝒙, 𝒚)‖𝟐

𝒑∈𝑷

 ( 7.6 ) 

The orthogonal term is non-zero if the distance to an orthogonal edge is smaller than a certain 

radius 𝒓 (e.g. 10 pixel) and increases for smaller distances. 

 
𝑬⊥(𝒊, 𝒋, 𝜽, 𝒔) =

𝟏

𝒏
∑𝒅𝒊𝒊,𝒋,𝜽,𝒔(𝒑)

𝒑∈𝑷

 ( 7.7 ) 

 𝒅𝒊𝒊,𝒋,𝜽,𝒔(𝒑) = {
𝒓 − 𝒅𝒊,𝒋,𝜽,𝒔(𝒑) 𝒊𝒇𝒇 𝒅𝒊,𝒋,𝜽,𝒔(𝒑) < 𝒓

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 ( 7.8 ) 

 𝒅𝒊,𝒋,𝜽,𝒔(𝒑) = 𝐦𝐢𝐧
(𝒙,𝒚)∈𝑩|𝝉(𝒙,𝒚)⊥𝝉(𝒑)

‖𝑻𝒊,𝒋,𝜽,𝒔(𝒑) − (𝒙, 𝒚)‖𝟐
 ( 7.9 ) 
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Figure 7.7 Sample Orthophoto of Prague Old Town Square from Bing Maps (Left) with 

Corresponding Edge Orientation Map (Right) 

The orientation 𝝉(𝒙, 𝒚) of a given edge pixel is computed by convolution of the edge image with a 

line segment (e.g. l=31 pixel) under a number of different rotations in the range 0. . 𝜋 and selecting 

the rotation angle for each pixel that gives the highest convolution value. An example edge 

orientation map for an orthophoto (“Prague Old Town Square”) is visualized in Figure 7.7. 

 𝝉(𝒙, 𝒚) = 𝒂𝒓𝒈 𝐦𝐚𝐱
𝝉∈{𝟎,∆𝝉,𝟐∗∆𝝉,…𝝅−𝝉}

(𝑩 ∗ 𝑳𝝉)𝒙,𝒚 ( 7.10 ) 

The actual computation of the edge cost requires the preparation of a template image 

representing a projection of the 3D SFM point cloud on the X-Y plane (Figure 7.8, left). We compute 

this as a 2D histogram such that the intensity of a pixel corresponds to the number of points within 

the given cell on the X-Y plane. Thresholding to a minimum count helps to remove points not 

located on vertical surfaces. For this template image 𝐾 we can compute the orientation map 

similar to the ortho photo (Figure 7.8, right). 

 

Figure 7.8 Template Image from SFM Point Cloud (Left); Corresponding Orientation Map (Right);  
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Based on the orientation map we hence select a subset of points within a given orientation 

window (e.g. 
𝟓𝝅

𝟖
. .
𝟕𝝅

𝟖
), leading to a filtered template image 𝐾𝜏𝑚𝑖𝑛,𝜏𝑚𝑎𝑥 . Note that the template 

𝐾𝜏𝑚𝑖𝑛,𝜏𝑚𝑎𝑥
𝜃,𝑠 (Figure 7.9, left) has been rotated and scaled in accordance with the map in Figure 7.7. 

  

Figure 7.9 Rotated and Scaled Template Filtered by Orientation Window 
𝟓𝝅

𝟖
. .
𝟕𝝅

𝟖
 (Left); Ray Image 

(Right); 

With the intention of reducing the computation time by avowing individual computation of the 

point distance for every point we approximate Eq. ( 7.7 ) by a sum of 𝑛 convolutions (e.g. 𝑛 = 4) 

each corresponding to a certain orientation window 𝛼 ± 𝜀. 

 𝑬(𝒊, 𝒋, 𝜽, 𝒔) ≈ ∑ (𝑫||𝜶−𝜺,𝜶+𝜺
+ 𝑫⊥𝜶−𝜺,𝜶+𝜺) ∗ 𝑲𝜽+𝜶−𝜺,𝜽+𝜶+𝜺

𝜽,𝒔

𝜶𝝐{𝟎,
𝝅
𝟐
,𝝅,
𝟑𝝅
𝟐
}

 
( 7.11 ) 

 

Figure 7.10 Sum of Distance Images 𝑫||𝜶−𝜺,𝜶+𝜺
+ 𝑫⊥𝜶−𝜺,𝜶+𝜺 for Window 

𝟓𝝅

𝟖
. .
𝟕𝝅

𝟖
 

Both the parallel edge distance image 𝐷||𝛼−𝜀,𝛼+𝜀 as well as the orthogonal edge distance image 

𝐷⊥𝛼−𝜀,𝛼+𝜀 have to be convolved by the same template image for each selection of 𝜃, 𝑠 and 𝛼. Hence 
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the sum of the two images can be used to reduce the number of convolutions (see Figure 7.10), 

which is only required once for each value of 𝛼. While convolution in the image domain is feasible 

for small kernel sizes, it can be computationally expensive for images of 100+ pixel in size since 

the complexity of convolving an N∙N image with an M∙M image is approximately 𝑂(𝑁2 +𝑀2). 

Therefore it is customary to instead convert the two images into the frequency domain using 2D 

FFT, as the equivalent operation in the Fourier domain is the product of the two Fourier 

transforms [424]. 

 𝑨(𝒙, 𝒚) ∗ 𝑩(𝒙, 𝒚) ≡ 𝓕−𝟏 (𝓕(𝑨(𝒙, 𝒚)) ∙ 𝓕(𝑩(𝒙, 𝒚))) ( 7.12 ) 

Similarly we use FFT for convolution of the ray image in Figure 7.8 (d) with the edge image in 

order to compute the free space cost. Finally the alignment cost image is computed for each 

combination of 𝜃 and 𝑠 and for each location 𝑖/𝑗 in the image, and the parameters resulting in the 

globally best alignment cost are chosen as the result of the search. 

  

  

Figure 7.11 Results Shown for Modified Edge Cost (Left) and Original Edge Cost Defined by 

Kaminsky et al. (Right); Alignment Cost as Function of Position in Orthophoto for the Selected Scale 

and Orientation (Top); Best Alignment Cost as Function of Scale and Orientation (Bottom);  
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7.5 Experiments ……………… 

We used a set of 12 different scenes which were processed and shared by users via Photosynth 

together with corresponding aerial views from Bing Maps for evaluating both the original version 

of the edge cost described by Kaminsky et al. as well as our modified version. It is important to 

note that we used the modified way of computing the convolution via FFT to evaluate both 

methods. Following the idea presented in the reference publication, we assumed that a rough 

prior localization including location and scale, but lacking rotation is present for each dataset, 

such as obtained via GPS positioning and stored in the image metadata.  

Typically we compared the alignment cost across 10 different scales between 0.5 and 2 relative 

the prior scale estimate, 180 different rotations, 1-pixel increments (effective due to FFT) and a 

search area about 3 times the size (length and width) of the 3D reconstruction. We further resized 

the orthophoto to a size of 400·400 pixel, and used a format of 201*201 pixel for the template and 

ray images. Overall we therefore scanned 288 million possible alignments. With these settings 

the compute time for the “Prague Old Town Square” sample used in 7.4 was 3.5 min using Matlab 

on a single core of a 2006 CPU (Intel Xeon 5150). This compares to 67 min reported in [14] for 

the same number of rotations and scales, but using pixel increments of 5-10 pixel within an 

orthophoto of a size of 1,000·1,000 pixels (70 million alignments overall). 

     

     

     

Figure 7.12 Point Clouds Superimposed on Orthophotos and Edge Images using Kaminsky’s 

Method (Left), Our Method (Right) 
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The selected alignment cost image for the above example is depicted in Figure 7.11 for our 

proposed version of the edge cost (Top Left) as well as the original version definition by Kaminsky 

et al. (Top Right) as a function of the x- and y- translation. The coordinates of the best alignment 

have been highlighted. For this optimal choice of x and y, the alignment image as a function of 

scale and orientation is shown below, again for the modified and original edge cost definition. 

Similarly, the best scale and orientation have been highlighted. As can be seen both methods 

roughly find the same solution for all four similarity parameters. Nevertheless the optima in the 

alignment cost graphs are significantly more pronounced with the new orientation-based edge 

cost than for the non-orientation-based reference version. 

In fact the range of scales compared had to be restricted to ≥ 1 for the latter version as otherwise 

miss-registrations at small scales would have occurred. This may be a consequence of the fact that 

the ray image obtained from the 3D reconstruction we used had significantly more rays ranging 

behind walls as some pictures had been captured from an elevated location behind buildings. 

The correct alignment result between the point cloud and the orthophoto obtained with our 

method is depicted in Figure 7.12 (Top Right) compared to the result obtained with Kaminsky’s 

method. Two more examples are given where Kaminsky’s method failed to find the correct 

alignment, while the orientation based approach worked satisfactory.  

      

   

Figure 7.13 Examples of Failure Cases which could not be aligned with Either Method 

Some failure cases shown in Figure 7.13 pointing out the limitations of edge based alignment. The 

top left dataset of Stonehenge is challenging due to the occurrence of several concentric circles. 

Therefore only the center but neither scale nor orientation could be determined. In case of the 

Colosseum dataset (top right) none of the parameters could be determined correctly although 

some edges align relatively well. The bottom row shows examples of datasets where the SFM 

reconstruction failed to estimate the scene geometry correctly. Although the alignment was partly 

possible in case of the Peter’s square dataset (bottom left) it failed completely in case of the 

Marcus Square example (bottom right). 
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7.6 Summary 

We have shown that our modifications to the method proposed by Kaminsky et al. for performing 

2D alignment of SFM sparse point clouds (such as from Photosynth) to aerial photographs lead to 

improvements in the stability of the alignment process as well as the computational complexity. 

However there are still challenges with the robustness of the method due to problems with certain 

scene geometries as well as the quality of the SFM point clouds for many Photosynth scenes. 

Potential ways of improving the automated method results would be to use local image feature 

based methods for aligning the various edge images. Additionally since the described method 

requires a relatively precise prior estimate of the location and scale of the captured 3D scene, a 

geospatial image search index such as described in 5.3.2 may be a helpful for obtaining such prior 

information in the absence of GPS data. Wendel et al. [425] have further shown that the Kaminsky-

based alignment process of 3D point clouds can also be supported by using digital surface models 

(DSM) in addition to orthophotos, leading to significantly more robust alignments in case of 

objects on the ground, unoccupied space and models covering small areas. 

 

Figure 7.14 Manual Alignment Tool of Photosynth Point Clouds to Overhead Image Based on 

[264]. Example: Fairmont Banff Springs Hotel, Banff, AB, Canada (See Figure 3.34 for 3D View) 

With the aim of enabling users to improve the geocoding of 3D reconstructions as well as 

individual images, Microsoft has released an update to Photosynth based on [264] and [426] 

which allows manual alignment of point clouds to overhead-images (See Figure 7.14). The tool 

allows rotation, scaling and translation, as well as the labeling of individual locations in the 

overhead view.
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8 Conclusion and Outlook 

8.1 The Internet Ecosystem for Geodata and Mapping 

8.2 Contributions and Results 

Internet mapping has advanced considerably over the last two decades from being a collection of 

static maps to a globally available and ever-growing ecosystem of geographic data, including both 

vector data and image data in various forms, and made available on many different devices and 

form factors. This thesis has addressed several key problems and research questions related to 

internet mapping and geospatial images in the context thereof, as well as geospatial image 

retrieval and location search in particular. Particular contributions were made in the area of 

human scale data capture and processing in preparation for use in an internet mapping platform. 

For this purpose, the key characteristics of human scale images and requirements for a systematic 

streetside image capture were identified, and hence a system design was proposed to accomplish 

these requirements, which was later used for streetside data capture for the Bing Maps platform. 

Additionally an algorithm for automatic detection and anonymization of streetside imagery was 

proposed and verified successfully on a representative ground truth dataset. A variant of this 

algorithm has also been used for privacy protection of Bing Maps streetside imagery. 

We were able to show in experiments that … 

Further contributions were made in the domains of geospatial image retrieval and location search. 

A scalable real-time image index was proposed, featuring several novel algorithmic sub-

components. Specifically a variant of the Hessian interest point detector was combined with a 

polar orientation-based feature descriptor, both of which were evaluated and optimized for 

quality and speed based on several standard and custom datasets and metrics. A dynamic image 

ranking method based on prior work in [30] was introduced, using orientation constrains to 

increase the ranking success. Finally an orientation constrained pairwise post-verification 

algorithm feasible for central-perspective and panoramic images was presented, using a novel 1-

point RANSAC algorithm [45] for robust geometric verification. The presented algorithms were 

tested for various applications related to geospatial imagery, such as for connecting crowdsourced 

user images to streetside images, or for improving geocoding of business addresses. 

In order to support automatic geo-positioning of existing 3D scene reconstructions obtained by 

using structure from motion methods on crowdsourced images, a method based on [14] was 

suggested. The method automatically finds the alignment of the SFM point cloud with features in 
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the aerial image and hence is capable of handling much larger scale differences than other 

methods. In addition to the original work, the new method uses rotation constraints to reduce the 

likelihood of miss-matches, as well as FFT for performing convolutions with a template image 

more efficiently. Finally we proposed a method for automatic selection of relevant geocoded 

images based on textual metadata associated with community images in order to augment the 

systematically collected aerial or streetside data. This method can be used for automatic selection 

and visualization of the most relevant images for a given part and scale of a map, which can be 

applied in densely populated areas of the map such as cities, as well as in more sparsely 

photographed regions.  

8.3 Outlook 

The ongoing evolution of internet mapping, and especially the shift towards mobile devices like 

cell phones or tablets, opens a large room for new applications and research in this area. The 

increasing sensory and processing capabilities of such devices, the advancements in mobile 

internet technologies as well as the emergence of cloud computing creates the basis for new types 

of LBS and AR. Especially AR algorithms using the cameras and inertial sensors included in mobile 

devices such as simultaneous localization and mapping (SLAM) will benefit substantially from 

these increased capabilities. Recent developments in SLAM [427] allow mapping of small to 

medium-sized spaces (indoor) in real-time on mobile devices, which is likely to influence how 

mapping will be performed in the future. A particularly interesting aspect to investigate will be 

the registration of small-scale maps for visual tracking with global and systematically collected 

map data such as streetside and indoor imagery at a higher precision than GPS/compass data 

allow. Such registration will be required for obtaining relevant augmentation data from global 

mapping databases and showing them to the users of AR systems. The image localization work 

described herein such as the image features and geometric verification algorithm can serve as the 

basis for some SLAM applications, such as for localization in existing world-maps or re-

localization in a given map. 

Additionally new types of image sensors such as aerial drones, surveillance cameras and the 

increased uses of mobile camera-enabled devices provide trillions of independent observations 

of the world from different locations and at different times. Each camera image covers a specific 

slice in the 4D space of the world, with time as the fourth dimension. Current image matching 

techniques such as described in this thesis manage to connect individual segments of this 4D space 

together, with increasing difficulty for larger scale and time differences. By creating more links 

between individual images, the geometric relationships between them can be determined at 

increasing precision. Hence by propagating pose information across images, new images can be 

positioned more precisely relative to a global reference frame. Information propagation can 

further extend to metadata such as image tags, photographer information, event names etc. While 

many individual pieces already exist, and work such as [11] has shown impressive results for city-

scale 3D reconstructions, a common data organization scheme and image registration framework 

is still to be developed. Such a framework needs to cope with the massive scale of all available 
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image sources to create an integrated comprehensive 4D world map. Creating such a framework 

at a truly global scale, allowing registration of images and 3D scene reconstructions representing 

different points in time is still an unresolved problem with large research potential.
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