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Kurzfassung 
 

Fluoreszenzbasierte pH-Sensoren werden für die zahlreichen Anwendungen in Forschung und 

Industrie, für die eine verlässliche pH-Messung benötigt wird, zunehmend attraktiver. Strategien 

für die Entwicklung leistungsfähiger Sensoren sind daher gefragt. In dieser Arbeit werden neue 

pH-Sensoren vorgestellt, die auf photoinduziertem Elektronentransfer (PET) beruhen. Sie 

beruhen auf Funktionalitäten, die Fluoreszenzlöschung durch PET nur bei basischem pH 

verursachen, wenn sie in ihrer deprotonierten Form vorliegen („PET-Gruppen“). Das PET-

Konzept ist hochflexibel, wie an den verschiedenen Klassen von fluoreszenten 

Indikatorfarbstoffen (Perylen Bisimide, Rhodamine, Diketopyrrolo[3,4-c]pyrrole), PET-Gruppen 

(Amine, Phenolate) sowie Sensormaterialien (verschiedene organische Polymere sowie Silica 

werden zur Immobilisierung verwendet) und -formaten (Schichten und Partikel) ersichtlich ist. 

Spektraleigenschaften und Messbereich können durch Auswahl dieser Komponenten einfach 

eingestellt werden. Phenolate können auch Farbstoffe löschen die von Aminen unberührt bleiben 

und diese daher für die pH-Messung einsetzbar machen. Auch ein im Nahinfrarotbereich 

emittierender ((>700nm, Anregung bei ≈650nm möglich) Sensor der auf einem 1-Aminoperylen 

Bisimid basiert wird präsentiert. Darüber hinaus werden zwei Konzepte für die kovalente 

Bindung des Indikators an die Immobilisationsmatrix vorgestellt und die Wichtigkeit dieser 

Bindung wird experimentell belegt. Schließlich wird die praktische Anwendbarkeit der Sensoren 

anhand von Imaging sowohl in lebenden Zellen als auch in mikrofluidischen Systemen gezeigt.  
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Abstract 
 

Fluorescence pH-sensors are becoming increasingly attractive tools for the abundant scientific 

and industrial applications requiring reliable pH-measurement and monitoring. Hence, tools 

useful to the design of high-performance sensors are clearly needed. In this thesis, new pH-

sensors based on photoinduced electron transfer (PET) are presented. Those are accessible simply 

by attaching suitable functionalities (PET groups) capable of quenching fluorophores only in the 

deprotonated form. The versatility of the concept is demonstrated employing various classes of 

fluorescent indicator dyes (perylene bisimides, rhodamines, diketopyrrolo[3,4-c]pyrroles), PET 

groups (amines, phenoxides) and sensor matrices (several organic polymers and silica are used 

for immobilisation) and formats (layers and beads). It is shown how spectral properties and 

sensitive pH-range can be easily adjusted by the tools presented in this work. Phenoxide PET 

groups enable higher flexibility as they can effectively quench fluorophores which are not 

quenched by amines, as is pointed out. A sensor based on a 1-aminoperylene bisimide excitable in 

the deep red spectral range (≈ 650 nm) and emissive in the near infra-red (> 700 nm) is 

presented. Furthermore, two concepts for covalent grafting of the pH-indicator to the 

immobilisation matrix are successfully employed and the importance of covalent grafting is 

experimentally confirmed. Finally, practical applicability of the new sensors is exemplified not 

only by imaging in microfluidics, but also by live cell imaging. 
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Scope of this Thesis 
 

pH, as one of the most fundamental parameters in medical research and diagnostics, life sciences, 

industrial process control, food industry and environmental science and monitoring, is an analyte 

of high social relevance. There is a high demand for effective measurement devices meeting the 

requirements given by the highly diverse applications in which pH plays a key role. Even though 

potentiometric pH-sensors such as the pH glass electrode are well established and feature 

convincing performance in many respects, fluorescence pH-sensors offer numerous advantages 

concerning miniaturisation, high sample-throughput, cost effectiveness or measurement with 

minimal contact to the sample. They clearly have a lot of potential for making up an attractive 

alternative in many applications. Furthermore, they enable imaging applications which have 

given rise to extensive application in biochemical and biomedical research.  

Although numerous pH-probes and sensors have been presented, they are based on a limited 

number of fluorescent dye classes and only a few are potentially useful for long-term stable, high-

resolution measurement at long excitation and emission wavelengths. This work aims on the 

design and development of new pH-sensors fulfilling those requirements. For this purpose, most 

importantly, a highly photostable pH-probe possessing bright fluorescence in the deep red or near 

infra-red range is needed. Photoinduced electron transfer (PET) is taken advantage of as it allows 

the preparation of pH-probes based on many fluorescent dye classes which are not intrinsically 

sensitive to pH, thus greatly extending the selection of available probes. PET is induced by 

attaching a suitable functional group (“PET group”) the pKA-value of which determines the 

sensitive pH-range of the resulting sensor. It will thus be evaluated as a tool for designing sensors 

with spectral characteristics and pH-ranges tuneable to match the range of interest for any 

particular application. Cross-sensitivity to ionic strength and narrow sensitive range are the main 

practical limitations of optical pH-sensors. PET-based concepts are expected to provide optimal 

premises for overcoming those limitations owing to their high flexibility and will be tested in this 

respect. Finally, covalent coupling of the pH-probe to the immobilisation matrix (“sensor bulk”) is 

anticipated to improve the long-term performance of a pH-sensor. Grafting strategies will 

therefore be developed and evaluated. 
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Background 
 

Basics 
 

Luminescence 

 

Luminescence is a powerful tool that allows detailed investigation of physicochemical and 

biological systems, from the macroscopic point of view down to the molecular level [1,2]. Because 

it can provide information with a high spatial and temporal resolution, it is suitable for mapping 

and imaging very different samples, as well as for following processes down to the nanosecond 

time scale. There is a large amount of information included in the luminescence of a sample 

which includes luminescence intensity, its spectral characteristics, its polarisation and its 

evolution over time. Therefore, luminescent probes are very flexible and can be useful for probing 

several parameters at once. Luminescence can be influenced by a large number of parameters 

such as sample composition, temperature, polarity, viscosity or its electrochemical properties. 

Though that enables all of those parameters to be probed by luminescence, it naturally also calls 

for a careful design of luminescence probes and experiments. Otherwise, the information given by 

them will be blurred and become misleading.  

Luminescence is defined as the emission of light by an electronically excited system which, in 

turn, becomes partially or fully relaxed (figure 1). Luminescence can be emitted by many different 

species including organic and bioorganic molecules, organometallic complexes, atoms or 

inorganic crystals. This thesis will predominantly focus on organic luminophores. In those, 

luminescence is associated with relaxation from the first or second electronically excited state to 

the ground state. Since their electronic excitation is usually accompanied by vibrational and 

rotational excitation, luminescence emission is characterised by wide spectra, rather than narrow 

lines.  

Fluorescence is a particular type of luminescence in which the excited state has been reached by 

the absorption of light and relaxation is a singlet-singlet transition. In phosphorescence, 

relaxation is a triplet-singlet transition. Because fluorescence is by far most important to this 

thesis, the term luminescence will from now on only be used for processes involving triplet-singlet 

relaxation. Notably, luminescence does not necessarily require the presence of light. Electronic 

excitation can be induced by electric fields [3] – this is of high importance in organic electronics – 

or can be the result of (bio)chemical reactions, which has not only been taken advantage of by 

nature (glow-worms, deep sea flora and fauna) but is also of increasing interest to luminescence 

research and technology [4].  
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pH-measurement 

 

pH – defined as the negative decadic logarithm of the H+ ion activity in an aqueous solution - is 

one of the most fundamental analytes that exist. Because of its vital importance to biological 

systems, it is highly important in medicine, bioanalytics and life sciences, as well as in 

environmental and marine sciences. It is also a crucial parameter for many chemical, biochemical 

and physical processes that take place in aqueous systems and therefore more than relevant to 

biotechnological and chemical process control.  

In human blood serum, even small deviations from the normal pH range (7.35 – 7.45) can be 

associable with severe crisis or illness. Examples are renal disease, hypoxia, intoxication or 

diabetes [11]. In cells, pH is inhomogeneous but strictly regulated [12]. The normal function of 

organelle pH regulation and the maintenance of intracellular pH gradients are crucial for vital 

processes such as oxidative phosphorylation in mitochondria or sorting and degradation of 

unneeded matter in endosomes and lysosomes. Because ATP-production in mitochondria by 

ATP-synthase requires a pH-gradient with respect to the more acidic cytosol, cell respiration is 

severely troubled in the case of pH-dysregulation. The normal function of many enzymes requires 

a certain pH. Those include the hydrolysing lysosomal enzymes which in case of abnormal pH 

would fail to break down metabolic waste or start digesting the cell itself. pH also plays an 

important role in many other cell physiological processes including proliferation, the regulation of 

ion transport and apoptosis. Many biochemical processes generate or consume acidic or basic 

compounds, which is often taken advantage of in enzyme activity screening or generally in 

biochemical assays. In environmental and marine science and analytics, pH can provide 

information about the level of pollution and the viability of an ecosystem. The presence of certain 

(micro)organisms is often accompanied by distinctive pH-changes, and a variation in pH can be 

an early sign for a fundamental change. In biotechnology, the proper function of organisms or 

enzymes commonly requires a certain pH which has to be carefully monitored and maintained. 

Considerable amounts of acidic or basic components can be formed in biotechnological 

fermentations or industrial chemical processes, calling for continuous pH-control.  

pH is most frequently measured by the pH glass electrode, an ion-selective electrode used as 

potentiometric sensor. The potential of a silver / silver chloride electrode, which is in contact to 

the sample over a thin glass membrane, is measured. Protons cannot permeate the membrane, 

but bind to its porous surface which causes a migration of the natrium ions in the glass bulk and 

results in a linear decrease of the surface potential with increasing pH. Another silver / silver 

chloride electrode, which is in contact to the sample over a diaphragm and thus of pH-

independent potential, is used as reference. Both electrodes are usually incorporated into a single 

glass body. The pH glass electrode is one of the best established chemical sensors due to its large 

working range of at least pH 0 to 12, its predictable and well-investigated susceptibility to cross-

interferents and its accuracy. Drawbacks are in the fragility of the electrode and in the difficulty of 

miniaturisation. Safety concerns arise from the possible breaking of the glass body during in-vivo 

diagnostics or application in food industry, and small-scale or high-throughput applications are 

limited by relatively large size. Another frequently used electrochemical pH-sensor is the 

conductometric ion-sensitive field-effect transistor (ISFET). In contrast to a standard field-effect 

transistor, the gate (contact between source and drain) is not metallic but involves a thin layer of 

porous Si3N4, Al2O3 or Ta2O5 the conductivity of which is pH-dependent due to hydrolysis of 

surface groups. ISFETs can be manufactured in small dimensions by processes well-established in 
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semiconductor industry and have thus potential of overcoming the limitations of the glass 

electrode. However, they still require a reference electrode for readout. The usage of small 

semiconductor elements allows bypassing the need of glass-made reference electrodes which 

would bring the same limitations valid for the pH glass electrode but compromises the stability of 

sensor performance which makes frequent re-calibration necessary. 

Despite the strong performance of electrochemical pH-sensors, fluorescence sensors offer a 

number of advantages relevant to many applications. They enable measuring without any direct 

contact to the sample, can be produced at lower cost and are easier to miniaturise which makes 

them more attractive for high-throughput applications. Furthermore, they are applicable in the 

presence of electromagnetic fields and, importantly, they enable imaging applications. Drawbacks 

include their non-linear response curve and their sensitive range which is often limited to 3 pH-

units, though that can be accompanied by a higher resolution within that range. Moreover, like all 

optical sensors they measure proton concentration instead of activity which results in a cross-

sensitivity to ionic strength, though that can be minimised by optimising the fluorescent sensor 

material, reducing its charge. 

 

Fluorescence pH-sensors: Principles 
 

Basics 

 

Fluorescence pH-sensors in principle include no more than two components: a fluorescent pH-

probe, sometimes called pH-indicator, and an immobilisation matrix. Most frequently, the pH-

probe is a small organic molecule (i.e. a fluorescent dye), but fluorescent polymers or inorganic 

particles have also been employed. State-of-the-art pH-probes will be discussed in detail in later 

on. Obviously, the pH-probe needs to undergo a modulation in fluorescence quantum yield, 

spectral shape or decay time when exposed to variations in pH. That is associated with the 

equilibrium between an acidic (protonated) and a basic (deprotonated) form. As a result of the 

Henderson-Hasselbalch equation, pH-sensitivity is highest if pH = pKA but in general limited to 

pH = pKA ± 1.5. 

 

ܪ ൌ ܭ  ݈݃ ሾషሿ
ሾுሿ  ݈݃ ಳష

ಹಳ
െ  ுమை        Equation 1ܽ ݈݃ 

[B-],[HB] Concentrations of the acidic form HB and the basic form B- (M) 

fB-,fHB  Activity coefficients of both forms  

aH2O  Activity of water (constant) 

log(fB-/fHB) quantifies the cross-sensitivity to ionic strength (zero if negligible) 
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Equation 1 provides the basis for the sigmoidal calibration of optical pH-sensors: 

max/)(
maxmin

1
I

e
III dxpKpH A

+
+

−
= −

 

I Measured fluorescence intensity 

Imax Numerical coefficient expressing maximal  

Imin Numerical coefficient expressing minimal intensity  

pKA Numerical coefficient expressing the (apparent) pKA value (point of inflection) 

dx Numerical coefficient expressing the width of the sensitive range 

 

The immobilisation matrix is to provide an environment in which the pH-probe is finely and 

homogeneously distributed without aggregating. Organic polymers are most common, but sol-

gels or other silicon based materials have also been used. It should feature suitable water uptake 

to make sure the sensor equilibrates to sample pH as fast as possible. Beyond facilitating a 

suitable probe concentration and distribution, the immobilisation matrix plays a key role in 

optical sensors because it can exclude unwanted species in the sample from the sensor bulk, 

hence reducing cross-sensitivities. Exclusion of cross-interferents is most effective in gas sensors 

which essentially extract volatile compounds from the sample. In pH-sensors, components of a 

certain size and hydrophobicity can be kept out, above all in biological samples. A protective layer 

that acts as a filter, for instance a dense hydrogel, may additionally be applied between sensor 

layer and sample. Mechanical and adhesive properties of the sensor are governed by the 

immobilisation matrix, which makes up the bulk material. A good pH-sensor requires 

optimisation of both pH-probe and immobilisation matrix.  

 

Optimisation criteria can be summarised as follows: 

 

Desirable features of the pH-probe: 

 

• High brightness (high molar absorption coefficient and fluorescence quantum yield) 

• Tuneable pKA value, which allows adjusting the sensitive range of the sensor 

• Good chemical stability and photostability 

• Long excitation and emission wavelengths 

• Large Stokes’ shift 

• Spectral compatibility with common optical modules (light sources, filters, detectors) 

• Good solubility and stability in the immobilisation matrix 

• Commercial availability or easy synthetic accessibility 

• Low charge for minimising cross-sensitivity to ionic strength in the sensor  

• Functionalities for covalent coupling to the immobilisation matrix  

 

  

Equation 2  
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Desirable features of the immobilisation matrix: 

 

• Suitable water uptake 

• Mechanical stability in the dry state as well as in contact with water 

• Commercial availability or synthetic accessibility 

• Negligible absorption of visible and near infra-red light 

• Chemical stability in a wide pH range  

• Low charge for minimising cross-sensitivity to ionic strength of the sensor  

• For layers and fibres: good adhesion on suitable supports; compatibility with coating 

procedures 

• For beads: simple and reliable bead fabrication; stability in dispersion 

• Solubility in solvents needed for sensor fabrication 

• Functionalities for covalent probe grafting  

 

Scope for Application 

 

The pH-range most relevant to optical sensors is given by the typical applications of interest. In 

diagnostics, maximum sensitivity should match the physiological pH (near 7.4) to enable a 

resolution as high as possible in this narrow range of interest. In life sciences, the same range may 

be desirable. However, due to the different pH in some tissues and cell compartments, slightly 

acidic (often pH 6 – 7, but pH can be as low as 4.5 in lysosomes [12]) or basic (pH 7.5 – 8 which is 

present in mitochondria [13]) pH may be targeted, depending on the particular application. The 

weakly acidic range is also of high interest to cancer research since cancerous tissue usually 

features an abnormally low pH as a result of glycolysis [14]. In biotechnological process control, 

pH between 5 and 7, depending on the fermentation, need to be detected. This range is therefore 

often also of interest in enzyme activity screening. Marine biology calls for measuring pH in 

seawater, which is in the range 7.8 -8.5 [15]. Applications outside these ranges are rare. A pH-

sensing concept thus ideally should feature a sensitive range tuneable within pH 4.5 – 8.5 to allow 

for adaption of the sensitive range to the individual application, enabling optimal resolution.  

 

Referencing Techniques 

 

Like all fluorescence sensors, pH-sensors require a referencing technique for practical application 

in order to compensate for many effects and parameters which are not directly related to analyte 

concentration. Those include variations in local probe concentration and optical pathlength, 

unsteady efficiencies of the light source, the detector and the guidance of light to the detector or 

probe leaking, photobleaching and aggregation. Referencing can be performed by evaluating the 

ratio between the fluorescence intensities in two spectral windows, rather than in a single one 

(ratiometric measurement). Excitation can be kept constant and fluorescence can be observed at 

two windows (dual emission measurement), or one can use a fixed emission window and vary 



Introduction 

11 

excitation wavelengths (dual excitation measurement) [1]. Since dual emission measurement is 

applicable to devices equipped with a light source featuring narrow emission, such as many 

fluorescence microscopes and generally most systems employing lasers, it can be considered more 

useful. Probes featuring a pH-dependent shift in fluorescence spectra are called self-referencing 

as they do not require an additional fluorescent dye for referencing but their own fluorescence can 

be read out using two spectral windows (intrinsic referencing). Those are much more robust 

concerning variations in probe concentration due to leaking, photodegradation or aggregation 

since in sensors applying two fluorescent dyes the rate of those processes is usually unlike. ICT-

based pH-probes (discussed in the following section) are generally self-referencing, though those 

undergoing PPT are only compatible with dual excitation measurement. For PET-based probes, a 

reference fluorophore is needed (extrinsic referencing). 

Measurement of fluorescence decay time is much more robust against most of the mentioned 

perturbations and therefore is commonly considered self-referenced. However, decay times are 

not as simple to be measured as intensities. Perhaps the most relevant method for reading out 

luminescence sensors in the decay time mode is phase modulation fluorimetry. In this technique, 

fluorescence is excited by light of modulated intensity. The fluorescent emission signal is, with 

respect to the excitation light, shifted in phase and partially demodulated. Luminescence decay 

time is calculated from the phase shift measured:  

 

߰ሺ݁ݔሻ ൌ ܣ   ሻ         Equation 3aݐሺ߱ݏܿܤ

 

߰ሺ݁݉ሻ ൌ ܽ  ݐሺ߱ݏܾܿ െ ߶ሻ        Equation 3b 

Ψ(ex)  Wave function of the excitation light 

Ψ(em)  Wave function of the emission light 

A,a  Average intensity of excitation and emission light 

B,b  Modulation amplitudes of excitation and emission light 

ω  Angular modulation frequency (s-1)  

Ԅ  Phase shift of the emission light with respect to the excitation light 

  

߶ ൌ arctan ሺ߬߱ሻ         Equation 4 

τ  Luminescence decay time (s) 

 

While phase modulation fluorimetry is comparatively easy to perform for luminophores featuring 

decay times around or superior to 1 µs (those can feature phosphorescence, delayed fluorescence 

or fluorescence from lanthanoid centres), much more complex and costly instrumentation 

becomes necessary for organic fluorophores which typically feature decay times in the 

nanosecond range and therefore require very high modulation frequencies. Fluorescent dyes are 

predominantly used in pH-sensors as most luminophores featuring long luminescence decay 

times show cross-sensitivity to molecular oxygen which constitutes a severe limitation. 

Consequently, direct decay time measurement is not a good option in many applications for pH-

sensors. An alternative is the dual lifetime referencing (DLR) technique in which the fluorescent 

indicator is combined with a pH-insensitive reference showing a significantly longer 

luminescence decay time [16,17]. The phase shift measured is then dependent on the 
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luminescence intensity ratio between indicator and reference, rather than the decay time of the 

reference which is ideally constant.  

 

Ԅݐܿ ൌ Ԅோாிݐܿ 
1

Ԅோாி݊݅ݏ
 
ூேܯூேܫ

ோாிܯ ோாிܫ
 

Ԅ  Phase shift measured 

ԄREF  Phase shift measurable if only emission from the reference is observable 

IIND  Emission intensity of the indicator 

IREF  Emission intensity of the reference 

MIND  Demodulation of the indicator (defined as (b/a)/(B/A), parameters as stated in eqn. 3) 

MREF  Demodulation of the reference 

 

Equation 5 is valid if tanԄREF is 1, which corresponds to an optimal modulation frequency. 

Because ԄREF and MREF can be assumed as constant and MIND is ൎ1, cotԄ is dependent only on IIND/ 

IREF, which for an ideal reference (IREF = const.) is sigmoidally dependent on pH (eqn. 2). 

When a high ratio of probe fluorescence is detected, a small phase-shift is observed and vice 

versa. Note that DLR is not a true measurement of luminescence decay time but constitutes a 

readout technique for fluorescence intensity based on phase modulation fluorimetry. It is 

therefore sensitive to changes in the signal brightness of both indicator and reference, as is the 

case in extrinsic ratiometric measurement. To deal with this limitation, reference materials very 

robust against photobleaching or leaking can be used. Nevertheless, the fluorescent indicator 

needs to fulfil equally high standards in order to obtain a highly robust pH-sensor. 

 

Sensor Fabrication 

 

Sensor fabrication in the simplest case involves dissolving pH-probe and matrix material in an 

organic solvent (figure 4). The resulting “cocktail” is then processed and left for solvent 

evaporation. Processing can consist in knife coating, screen printing, spin coating or spray coating 

of layers, while sensor fibres are often dip coated. Beads[18,19] can be prepared from “cocktails” 

by spray drying, precipitation or by dispersion followed by solvent evaporation. The probe can 

also be delivered into the beads by swelling with a probe solution (“staining”). Beads may also be 

entrapped into layers instead of or in addition to small molecules, particularly in sensors 

containing multiple sensitive components. 

Alternatively, sensors can be made from the monomers by polymerisation [20] in bulk/solution 

(layers, fibres) or in emulsion (beads). Polymerisation is more complicated than the polymer 

processing methods mentioned beyond, but more versatile as it allows the preparation of self-

made, optimised polymers. It also offers a direct access to cross-linked polymers and covalent 

probe coupling, though with some materials, cross-linking and probe coupling may be carried out 

after processing – a prerequisite for that is the presence of suitable functional groups. Some 

materials, such as sol-gels [21], are by definition made by polymerisation.  

Some bead materials are compact and do not take up water. Examples are silica beads, though 

those are highly porous. In those cases, the probe is usually covalently linked to the bead surface. 

The beads are then dispersed in sensor layers or can be directly used. Properties of sensors may 

be different if the probe is bound to the surface than when it is located in the bulk as the probe is 

Equation 5 
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results in a measurable deprotonation of the pH-probe [25]. However, most fluorescence sensors 

for metal cations rely on different principles, including ICT or PET [26] (discussed in the 

following section). In PET-based probes, the PET group – most frequently an amine – is 

integrated into an ionophore and PET efficiency is modulated upon cation binding. Those probes 

principally are cross-sensitive to pH, though in many cases sample pH may be constant or outside 

the sensitive pH-range of the probe. 

 

State-of-the-art Fluorescence pH-sensors 
 

In this section, an overview about the most common fluorescence pH-sensors and -probes will be 

given. Some other concepts of particular relevance for this thesis will be discussed in the following 

section.  

 

Luminescent Probes 

 

The majority of pH-probes are organic fluorophores that bear a (de)protonisable group such as a 

hydroxyl, amino or imino group. Those usually feature large pH-dependent shifts in absorption 

and fluorescence spectra, often together with differing quantum yields and fluorescence decay 

times for acidic and basic form. That originates from the very different electron-donating 

properties of the protonated and deprotonated group and the different electron densities in the 

fluorophore resulting from them. The process is called intramolecular charge transfer (ICT). 

Because of the spectral shifts, such probes are suitable for dual-wavelength (ratiometric readout), 

as has been discussed in the previous section.  

Probably the most well-known examples for ICT-based pH-probes are fluorescein derivatives 

(figure 5). The deprotonation of the phenolic group causes a strong bathochromic shift and an 

increase in fluorescence quantum yield so that the fluorescence of the basic form is interrogated 

in most cases. Emission of the basic form is often predominant even if the acidic one is excited. 

Fluoresceins are in equilibrium with a colourless lactone form, which is predominant in 

hydrophobic environment but also formed in a significant, for some derivatives in a dominating 

amount in water at low pH. Lactone formation can enhance the pH-sensitivity of fluoresceins by 

decreasing the brightness of the acidic form. However, it may be unwanted in some cases and can 

be prevented by esterification of the 3-carboxy group [15,27]. Bisacylated fluoresceins such as 

2',7'-bis-(2-carboxyethyl)-(5,6)-carboxyfluorescein (BCECF) [28] are fluorogenic in the presence 

of esterases which has enabled their frequent application in live cells [29,30] and in enzyme 

activity screening. The biggest drawback of fluoresceins is their poor photostability which can be a 

severe limitation in pH-sensing and fluorescence imaging. Electron-withdrawing 2’,7’-

substitutents improve the photostability while simultaneously lowering the pKA value to ≈ 5 [31], 

compared to 6.5 for the parent compound [32]. 2’,7’-Difluorofluorescein (“Oregon Green”) and 

2’,7’-dichlorofluorescein are frequently used pH-probes and derivatives bearing ion recognition 

moieties are widely applied in metal ion sensing [33,34]. 2’7’-Dialkylfluoresceins exhibit higher 

pKA values principially enabling their application in marine science[15], but practical application 

is compromised by poor photostability. Fluoresceins with groups suitable for bioconjugation in 

the 5- and 6-positions are frequently applied as fluorescent labels. In those cases, their pH-

sensitivity is often unwanted. Nevertheless, fluoresceins are among the most popular dyes in 
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fluorescence microscopy and available light sources and optical filters often match their spectral 

characteristics. Fluorescent dyes such as Alexa 488 have been made commercially available to 

provide highly photostable, pH-insensitive alternatives to fluoresceins in fluorescent labelling 

[35]. 

Rhodamines [36] (figure 5) are structurally similar to fluoresceins and also feature excellent 

brightness (product of molar absorption coefficient and fluorescence quantum yield, εxΦF ≈ 

100,000 M-1cm-1), while their photostability is usually significantly better. They are not 

intrinsically pH-sensitive, but the 1-amides and similar derivatives undergo lactame formation at 

basic pH. If suitable amide substituents are attached, the pKA value can be tuned to enable 

measurement of weakly acidic to near-neutral pH [37-39]. The mechanism is very similar to 

lactone formation in fluoresceins and indeed, standard rhodamines bearing a 1-carboxy group 

undergo lactonisation, though unlike in fluoresceins the reaction is more favourable in basic 

media. In cases where lactonisation is unwanted, the 1,5-sulfo derivatives, called 

sulforhodamines, may be used. Fewer examples exist of pH-sensitive rhodamines and related 

compounds employing a PET (discussed below in this section) mechanism [40]. Those include 

compounds with other heteroatoms replacing oxygen in the xanthene core [41] and compounds 

lacking the 1-carboxy group (called rosamines) [42]. In the latter case, other substituents than 

hydrogen are usually present in the 1-position to prevent rotation of the phenyl ring which would 

cause a significant decrease in fluorescence brightness. Rhodamines are applied as fluorescent 

labels [36], as cell staining agents in fluorescence microscopy, in single molecule spectroscopy 

[43] and as fluorescent standards [44]. 

Benzo[c]xanthenes dyes were presented by Whitaker et al. [45]. Since then, they have been 

extensively applied both as molecular pH-probes and as indicators in pH-sensors [46-48]. 

Beneficially for life sciences, they feature longer absorption (510 – 600 nm) and emission (540 – 

650 nm) wavelengths than most other fluorescent pH-probes. They include seminaphtho-

fluoresceins (SNAFL dyes) and seminaphthorhodafluors (SNARF dyes) carrying oxygen or 

nitrogen atoms at the 10-position, respectively. For those derivatives carrying hydroxyl groups in 

the 3-position of the acidic form (SNAFL and some SNARF dyes), their deprotonation results in a 

bathochromic shift and in a decrease in fluorescence quantum yield. In some other SNARF dyes, 

the tertiary amino group in the 10-position is protonated in the acidic form and the 3-position is 

chinoid in both forms. For those, the basic form is bathochromically shifted but of higher 

fluorescence quantum yield with respect to the acidic one. Most benzo[c]xanthenes offer high 

sensitivity at near-neutral pH which is in good accordance with the physiological studies they are 

most frequently applied in. Their brightness is significantly lower than the one of fluoresceins and 

rhodamines (εxΦF < 15,000 M-1cm-1, < 8000 M-1cm-1 if emissive in the red spectral region [45]) 

and in our experience, photostability can be an issue [49]. 

In some ICT-based pH-probes, the excited state value pKA
* is significantly lower than the ground 

state value pKA which causes fast deprotonation of the fluorophore once it has been excited. That 

process is known as photoinduced proton transfer (PPT). As a result, only fluorescence emission 

of the basic form is observable, regardless of pH. On the other hand, absorption and fluorescence 

excitation spectra remain pH-dependent. A well-known pH-probe undergoing PPT is 8-

hydroxypyrene-1,3,6-trisulfonate (HPTS), which has been widely employed for pH [50-52] and 

carbon dioxide [23] [53] sensing. The basic phenoxide form is brighter (εxΦF ≈ 20,000 M-1cm-1) 

and excitable at longer wavelength (455 nm) than the acidic one (εxΦF < 10,000 M-1cm-1; 405 nm). 
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The high charge of the molecule causes high cross-sensitivity to ionic strength and covalent 

coupling is required to prevent leaking into the aqueous sample. Hydrophobic trisulfonamide 

derivatives overcome both of those drawbacks and are excitable at longer wavelengths (≈ 520 nm, 

emissive at ≈ 560 nm when immobilised) [54]. However, in our experience brightness and 

photostability are diminished in comparison to the trisulfonate.  

Another example for pH-probes undergoing PPT are 7-hydroxycoumarines. Coumarins are also 

accessible to the design of PET-based probes [55] (the PET principle is discussed below). 

However, they are excitable in the UV spectral range and excitability with visible light is restricted 

to extended coumarins [56]. 
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Figure 5: Structures and typical spectral properties of pH-probes undergoing ICT (sensitivity mechanisms for 

rhodamines are discussed beyond), with (de)protonable groups indicated by red circles. Spectral properties stated 

correspond to the form showing brighter fluorescence. 

 

pH-probes can also take advantage of the photoinduced electron transfer (PET) process [57-62]. 

A functional group (the “PET group”) is attached which results in a redox process between the 

PET group and the excited state fluorophore. In most cases, an electron is transferred from the 

PET group to fluorophore [63-65] and we will focus on that process, although there are also a few 

examples of excited state fluorophore oxidation [61]. The PET process is usually quickly 

reversible, the net result is thus fluorescence quenching, not fluorophore decomposition (figure 

6). Amines are by far the most frequently employed PET groups, but phenoxides [66,67], 

carboxylates [68,69] or pyridine groups have been reported as well. All of those groups can 

undergo protonation, at which PET is no longer possible. Consequently, there is pH-sensitivity at 

pH-values close to the pKA of the protonated PET group.  
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Figure 6: Schematic illustration of photoinduced electron transfer (PET). Left: Example with an amine donor - 

PET is prevented upon protonation as redox properties of the donor are dramatically changed. Right: Illustration 

of the redox process based on molecular orbitals.   

 

The thermodynamic driving force for PET is given by Weller’s equation[57]:  

 

ொ,ா்ܩ∆ ൌ ை௫,ோܧ െ ோௗ,ி௨ܧ  െ ா௫,ி௨ܧ∆  െ  ூ     Equation 6ܧ 

ΔGQ,PET  Free enthalpy of the PET process (eV) 

EOx,Rec  Oxidation potential of the receptor (eV) 

ERed,Flu  Reduction potential of the fluorophore (eV) 

ΔEExc,Flu  Singlet excitation energy of the fluorophore (eV) 

EIP  Ion pairing energy (eV) 

 

PET is most effective with strongly electron-donating PET groups and electron-accepting 

fluorophores. Another important consequence of Weller’s equation is that it is harder to obtain a 

PET-based pH-probe with fluorophores excitable at long wavelengths. One has to choose 

fluorophores and PET groups with beneficial redox potentials to compensate for the low 

transition energy then. Note that Weller’s equation accounts for the thermodynamic favourability 

of the PET process and therefore defines the conditions under which PET in possible. Although 

PET often features a significantly higher rate than fluorescence if thrermodynamically favourable, 

there are also examples of kinetic inhibition [65]. Stereochemical parameters [70,71] may show 

considerable effects on the process. PET is also usually more likely in a polar environment, which 

can even enable the design of polarity probes [72].  

PET is a quenching process that does not further influence the excited and ground state 

properties of the fluorophore. Therefore, only fluorescence intensity is affected, while there is no 

change in spectral shape and location and absorption is not affected at all. Although in some cases 

PET-based pH-probes may undergo changes in absorption spectra, those are caused by 

accompanying ICT effects, not PET. They can be described as effects of the charge of the PET 

group on the fluorophore, which may be located in close proximity. PET groups are typically not 

electronically connected to the fluorophore, but separated from it by covalent linkage over a 

spacer [59] . In systems where the PET group is directly bound to the fluorophore, but there is no 

conjugation concerning molecular orbitals, one speaks of a virtual C0-spacer [41,66]. However, 

examples of PET groups integrated into the fluorophore are known as well [57,73,74]. There are 

few examples of PET groups non-covalently attached to the fluorophore or not attached to it at all 

[57,75]. That is understandable because the PET process requires contact between the molecular 
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orbitals of fluorophore and PET group to some extent. The distance between both should 

therefore be short. 

PET offers high flexibility in pH-probe design, allowing to include intrinsically pH-insensitive 

fluorophores. Another major advantage of PET-based concepts is their modularity [62], which 

essentially allows tuning spectral properties and sensitive properties independently from each 

other by selecting fluorophore and PET group, respectively. Attaching PET groups of different 

structure generally facilitates simple tuning of the pKA value of a pH-probe and can be applied to 

different fluorophores in the same way. Due to the lack of any pH-dependent spectral shifts, 

excitability and effects such as excitation energy transfer are independent on pH, which can make 

sensor behaviour less complicated. On the other hand, intrinsic dual wavelength referencing 

(section referencing techniques) is typically not possible for PET-based systems. Other 

referencing techniques may cause additional issues or require more sophisticated readout 

instrumentation.  

Borondipyrromethene (BODIPY) (figure 7) dyes are among the most well-known PET-based pH-

probes [66,76,77]. The BODIPY chromophore features excellent brightness (εxΦF ≈ 80,000 M-

1cm-1) and is frequently applied in studying biological systems [78,79]. Its pH-sensitive derivatives 

are often utilised as molecular probes, rather than in pH-sensors. Probes useful for different pH-

ranges have been presented, making up an example for the flexibility of the PET concept. 

However, BODIPY dyes leave room for optimisation concerning photostability and are excitable 

at comparatively short wavelengths. 

Naphthalene diimides and 1,8-naphthalimides feature good photostability and have been shown 

to be very effectively quenched by PET [80-82]. Such pH-probes are applied in cell imaging and 

commercially available as LysoSensors. They stain acidic cell compartments such as lysosomes 

where their fluorescence is enhanced and thus visible with good contrast to the surrounding, less 

acidic cytosol [83,84]. Interestingly, this advantage can be compromised by incomplete PET, even 

though 1,8-naphthalimides are known to feature highly effective PET in organic solvents where 

biological components are absent. PET-based anthracene probes [58,85] are also commercially 

available lysosomal stains. Significant drawbacks of naphthalene diimides and 1,8-

naphthalimides include low brightness (εxΦF ≈ 10,000 – 20,000 M-1cm-1) and short excitation 

wavelengths (< 450 nm) [86-88]. 2-Amino and 2,6-diaminonapthanlene diimides show strongly 

bathochromically shifted absorption (≈ 520 nm, ≈ 610 nm, respectively) [86] [89] but leave much 

room for optimisation in terms of brightness. 

Cyanines are fluorophores offering excitability at rather long wavelengths. The chromophore is 

consisted of a chain of conjugated C-C double bonds terminated by nitrogen atoms. Increasing 

length of the conjugated chain correlates with increasing absorption and fluorescence 

wavelengths. Cyanines covering most of the visible spectrum are commercially available, for 

instance as Cy® dyes. Their extremely narrow, intense absorption brings high brightness (up to 

εxΦF ≈ 100,000 M-1cm-1 which is exceptionally high for deep red emission) [83] [90]. There are 

two types of pH-probes. In PET-based probes, both nitrogen atoms are alkylated and a suitable 

PET group is attached [91,92]. If one or both nitrogen atoms are not alkylated, deprotonation of 

the cationic form results in a strong hypsochromic spectral shift and effective fluorescence 

quenching [93,94]. Cyanines have been the most relevant pH-probes emissive in the deep red and 

near infra-red, though alternatives are slowly being developed. Their biggest drawback is the 

limited chemical and photochemical stability of the polyolefinic fluorophore core, though the 

severity of this issue may considerably vary depending on probe structure and application.  
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Figure 7: Structures and typical spectral properties of pH-probes undergoing PET. 

 

Fluorescent probes exploiting the PET mechanism are much more common for detecting metal 

cations than they are for detecting protons. Though metal ion sensing is beyond the scope of this 

thesis, it has to be mentioned here that a large number of probes for calcium, sodium, 

magnesium, zinc and many other physiologically relevant metal ions has been presented 

[26,28,34,95-100]. Fluorescent cation probes have significantly contributed to understanding 

both intra- and extracellular physiological and biological processes. 

Organic dyes are the most common luminescent pH-probes due to ease of preparation, rational 

design and handling, defined properties and the profound knowledge about them. Nevertheless, 

other sensitive materials are attracting increasing attention. Fluorescent micellar structures and 

organic polymers come in many different structures and are often applied as beads [101-103]. 

Upconverting nanoparticles [104,105] enable multiphoton excitation techniques which are 

characterised by the complete absence of fluorescent background. Research has so far only 

provided a coarse insight into their features. Quantum dots [106,107] feature broad, intense 

absorption while their emission wavelengths are dependent on their particle size and therefore 

tuneable. Toxicity is probably the biggest limitation of these interesting materials. Fluorescent 

proteins [108,109] have revolutionised live cell research. They are expressed in the cells and 

directly interrogated there, rather than being used in “conventional” pH-sensors with 

immobilised pH-probes which are discussed in most of this thesis. They can be engineered to 

become pH-sensitive [110,111] but are not designed for application outside of cells.  
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Immobilisation Matrices 

 

The most common immobilisation matrices in pH-sensors are hydrogels based on organic 

polymers. The term hydrogel refers to those polymers which are swellable but not soluble in 

water. Examples for commercially available linear polymers of suitable hydrophobicity are 

poly(2-hydroxyethylmethacrylate) [81] or polyurethane hydrogels [27]. Cross-linked acrylamide 

gels were among the first materials used [20]. Cross-linked materials need to be polymerised 

during or after sensor preparation. Many of those would be water-soluble as linear polymers. Sol-

gels [21,112] make up another important class of immobilisation materials and also involve sensor 

preparation staring from monomers. Silica beads are probably the most common examples for 

solid carriers the pH-probes is bound onto [113,114]. Even though suitable bulk materials for 

optical pH-sensors are commercially available, in many cases an individual immobilisation 

concept involving a self-designed immobilisation matrix and/or an individually developed 

grafting technique may provide the best solution for a certain pH-indicator or application. The 

individual design of immobilisation matrices may be more work-intensive but is also more 

flexible, yielding pH-sensors with particular properties that may not be accessible by the use of 

standard materials. A few of the numerous examples are [102,103,115,116].  

 

Objectives: Design of High-performance pH-sensors 
 

In order to meet the high demands of the diverse potential applications, tools for the design of 

high-performance pH-sensors are clearly needed. Among the numerous optimisation criteria 

mentioned earlier (section fluorescence pH-sensors: principles), high fluorescence brightness in 

combination with long excitation and emission wavelengths, tuneability of the sensitive range and 

highly stable sensor performance are probably the most crucial ones. Probe design is a logical 

starting point as those challenges are impossible to meet without an optimal pH-probe, though a 

well-suited immobilisation concept is necessary for exploiting the full potential of high-

performance probes. Although it is of course desirable to fulfil all optimisation criteria perfectly, 

for some applications only some of them may be of high relevance while the optimisation of 

others may needlessly complicate sensor design or may compromise advantages which are of 

superior importance. The main objective of this thesis is therefore to demonstrate the value of 

tools applicable in sensor design. Those tools are not only intended to fulfil the mentioned 

optimisation criteria, but in particular to provide as much flexibility as possible in combination 

with ease of use, so that optimal pH-sensors for every application can be obtained in a simple 

way. 

 

High-performance Fluorophores 

 

The most widely employed pH-probes still feature individual drawbacks, as has been discussed. 

However, several high-performance fluorophores have so far not been employed in pH-sensing on 

a regular basis. Most of them have been presented very recently, often during the preparation of 

this thesis. However, the potential of some fluorophores known for a longer time still seems 

unexploited or largely unrecognised. 
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Perylene bisimides (PBIs) feature high brightness (εxΦF ≈ 20,000 – 80,000, ≈ 40,000 M-1cm-1 for 

the derivatives most relevant in this thesis) and are known for excellent photostability, chemical 

and thermal stability [117]. They are widely applied in organic electronics [118,119], 

(supra)molecular signalling [120,121], single molecule fluorescence techniques [122,123] and 

fluorescent labelling of biomolecules such as enzymes or DNA [124-126]. Though PBI-based pH-

probes employing PET were first presented in 1998 [59], their performance in sensors was 

modest owing to the high intrinsic aggregation tendency of the dyes. Although a few other 

examples of pH-sensitive PBIs have followed [103], much of their potential in this regard is still 

unexploited. PBIs offer great versatility concerning modification that allows tuning their spectral 

properties, to attach different PET groups in order to tune their pKA values and to suppress 

aggregation. In particular, tetraphenoxy-PBIs offer fluorescence emission wavelengths of > 600 

nm in combination with excellent photostability [69,119], while those bearing amino groups at the 

perylene core enable emission in the deep red to near infra-red range [127,128]. Near-infra red 

emission is even better accessible by enlarging the perylene core [119,129,130], but the resulting 

terrylene dyes are extremely hydrophobic and prone to aggregation. A class of PBI-based 

fluorophores with bright emission (εxΦF ≈ 90,000 M-1cm-1) in the deep red spectral region (≈ 650 

nm) has recently been presented by Langhals et al [131]. None of those dyes has yet been utilised 

for pH-sensing. 

Diketopyrrolo[3,4c]pyrroles have been widely applied as pigments [132], though strategies for 

solubilisation have been presented and the resulting dyes have found extensive application in 

organic electronics [133,134]. Though only featuring moderate brightness (εxΦF ≈ 20,000 M-1cm-

1), they are attractive due to their high chemical stability and promising data concerning two-

photon excitability has been presented [135]. Pyrrolopyrrole cyanine dyes [136,137] show 

excitability at long to extremely long wavelengths (≈ 850 nm, ≈ 950 nm for bis(pyrrolopyrrole) 

cyanines) together with exceptionally high molar absorption coefficients (≈ 250,000 M-1cm-1, ≈ 

550,000 M-1cm-1 for bis(pyrrolopyrrole) cyanines) and very high brightness for that emission 

range (ΦF ≈ 0.5, resulting in εxΦF > 100,000 M-1cm-1; ΦF ≈ 0.1 for bis(pyrrolopyrrole) cyanines). 

Though their synthesis is demanding, the major challenge to their application in sensors may be 

solubility issues as the need for solubilising groups in order to provide at least some solubility has 

been reported. Despite the potential of the fluorophores, pH-sensitive diketopyrrolo[3,4c]pyrroles 

and pyrrolopyrrole cyanines have not yet been presented.  

Squaraines are structurally unconventional fluorophores deriving from 3,4-

dihydroxycyclobutene-1,2-dione (“squaric acid”) which have found application in organic 

electronics [138-141]. There are structurally very different derivatives some of which possess 

extremely bright (up to εxΦF ≈ 200,000 M-1cm-1) red-light emission due to their remarkably high 

(up to > 300,000 M-1cm-1) molar absorption coefficients. The very poor photostability and the low 

stability against nucleophilic attack of some squaraines can be improved to some degree by 

structural modification, but poor solubility in our experience can be an issue. Nevertheless, their 

excellent brightness makes them promising candidates for fluorescence sensing, and a few 

squaraine-based pH-probes have already been presented [142,143]. 

Tetraarylazadipyrromethene (Aza-BODIPY) dyes are nitrogen-bridged analogs to BODIPY 

(discussed in the previous section) dyes featuring near infra-red emission (680 – 740 nm, 

absorption 660 – 710 nm). The deprotonation of phenolic or amino groups in a suitable position 

causes strong bathochromic shifts in absorption spectra. Though those shifts are caused by ICT, 
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the accompanying complete fluorescence quenching of the basic form clearly makes up evidence 

that PET plays a role in these dyes. While the pH-sensitive probes were presented by O’Shea and 

co-workers [73,144], the first pH-sensors based on Aza-BODIPYs were published more recently 

[145]. Excellent photostability and good brightness (εxΦF ≈ 10,000 M-1cm-1 is an appreciable value 

for a dye featuring near infra-red emission) are significant advantages. The shift in absorption 

spectra brings a dependence of the calibration function on probe concentration originating from 

Förster resonance energy transfer while intrinsic referencing is not possible because the basic 

form is non-fluorescent. However, this limitation is not very critical as the calibration function 

remains predictable.  

Aza-BODIPY derivatives conformationally restricted by ethylene bridges [146] promise 

significantly higher brightness (εxΦF ≈ 40,000 M-1cm-1) in combination with slightly longer 

excitation (up to 740 nm) and emission (up to 750 nm) wavelengths. Even brighter (up to εxΦF ≈ 

140,000 M-1cm-1) near infra-red (absorption / emission 720 / 740 nm) have been reported for 

furane-condensed (“Keio Fluors”) [147] and thiophene-condensed [148] BODIPY analogs. 

However, pH-probes based on those fluorophores have not yet been presented.  

 

Designing New High-performance pH-probes 

 

Despite the recent progress discussed, high brightness, excitability at long wavelengths and high 

photostability in combination are featured by very few pH-probes so far. We are therefore looking 

for a highly flexible concept suitable for introducing pH-sensors based on new fluorescent probes. 

Photoinduced electron transfer (PET) is clearly well suited to meet those challenges, and 

drawbacks such as difficulties in sensor referencing can be overcome. We also anticipated that 

PET is ideal for overcoming two of the most significant limitations of optical pH-sensors: their 

limited sensitive range and their cross-sensitivity to ionic strength. The first one can be overcome 

by combining several pH-probes in a single sensor which ideally should feature identical spectral 

properties but differing pKA values. That can be accomplished by attaching different PET groups 

to the same fluorophore. Cross-sensitivity to ionic strength is caused by high charges of both pH-

probe and immobilisation matrix. All common PET groups feature a single (de)protonation step 

and minimal indicator charge results when they are attached to a neutral fluorophore.  
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Covalent Probe Coupling 

 

In the majority of pH-sensors reported in the literature, the pH-probe is physically entrapped in 

the immobilisation matrix, but not covalently bound to it. However, covalent linkage can improve 

the performance of fluorescence pH-sensors for several reasons. Firstly, there is no probe leaking 

from the sensor into the sample. If water-soluble pH-probes are used, leaking would lead to 

malfunction of the sensor very quickly. It has been shown that the attachment of hydrophobic 

anchors such as octadecyl groups can dramatically reduce leaking in such cases [27]. Still, 

covalent probe grafting can be beneficial, above all in biological systems where the toxicity caused 

by probe leaking is a concern. Secondly, above all for organic dyes, migration and aggregation can 

be dramatically reduced because the mobility of the dye is much lower when it is covalently 

attached. That is important because dye migration and aggregation can cause unwanted drifts in 

the fluorescence signal, above all for hydrophobic dyes and for long application times.  

 

Excitability at Long Wavelengths 

 

Low energy light causes less scattering and fluorescent background, lower levels of photodamage 

and has higher transmission in biological samples. Human tissue is significantly penetrated by 

red light and even more by near infra-red (NIR) light [149]. High levels of autofluorescence are 

generally only evoked by red light in the presence of chlorophylls, while even those cause minimal 

perturbations if NIR-excitation is employed.  

The design of fluorescent probes suitable for interrogation at long wavelengths is a challenge 

because the small energy gap between ground state and excited state favours internal conversion, 

naturally decreasing fluorescence quantum yield. A quantum yield of 0.3 is a high value for 

fluorophores emitting in the NIR and in the case of emission at > 850 nm a value of 0.1 can be 

considered as exceptionally high. If probe design relies on PET, one has to consider that the 

thermodynamic driving force for PET decreases with the excitation energy. Fluorophore and PET 

group therefore have to be carefully selected to enable effective quenching. 
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Preface to Chapter 1 
 

Perylene bisimides (PBIs) were the first dyes of interest in this thesis. Their high brightness, 

excellent chemical stability and photostability and their versatility concerning chemical 

modification, which brings numerous possibilities for tuning spectral properties and attaching 

PET groups, indeed made them very promising. As is demonstrated in this chapter, asymmetric 

PBIs carrying an amino group causing PET in one imide position and a solubilising 2,6-

diisopropylphenyl group in the other one are a good basis for very bright pH-sensors, as is shown 

both for 1,6,7,12-tetrachloroPBIs and 1,6,7,12-tetraaryloxyPBIs. That constitutes a significant 

progress since PBIs presented earlier [59] were used in polyvinylchloride containing very high 

levels of plasticiser, a material far from optimal for pH-sensing. Another system presented much 

more recently [103] allowed only a glimpse of their potential for pH-sensing. It is also confirmed 

that the sensitive pH-range can be tuned by attaching different PET groups and very similar 

calibration curves are obtained with chromophores featuring different spectral properties. 

Furthermore, combining several pH-probes with different pH-ranges is a feasible concept for the 

preparation of sensors with a broad sensitive range, as is experimentally verified. Those facts 

underline the high flexibility of the PET concept which is expected to be transferable to other 

fluorophores. 

Though the presented sensors underline the high potential of PBI-based fluorescence pH-sensors, 

there are significant issues severely limiting their usefulness for application. Most importantly, 

their calibration curves are unstable. The sensors based on tetrachloro-PBIs indicators show a 

decrease in sensitivity over time, probably caused by dye aggregation, which implies the need of 

re-calibration after a few hours. The instability of sensors employing tetraphenoxy-PBIs is even 

more severe as is visible by shifting pKA values, very long response times combined with 

incomplete response and poor signal reproducibility. Furthermore, while the expected excellent 

photostability is confirmed for the tetraphenoxy-PBIs, the tetrachloro derivatives surprisingly 

undergo a fast change in absorption spectra when intensely illuminated in the presence of water.  

Consequently, sensors based on tetrachloro-PBIs are restricted to short application times and low 

light intensities while tetraphenoxy-PBIs do not seem suitable for practical application at all. To 

overcome those issues, referencing with another fluorophore is not suitable, but aggregation of 

the highly hydrophobic indicator dyes needs to be suppressed, for instance by covalent dye 

coupling. However, covalent linkage by grafting the perylene bisanhydride to amino-

functionalised matrix materials turned out to be unsuccessful, probably due to the formation of 

amides that do not undergo full ring-closing to the imides. Furthermore, the excitation and 

emission wavelengths of the sensors are still shorter than desired, above all for the tetrachloro-

PBIs. The most common strategies for increasing their absorption and fluorescence wavelengths 

are associated with further π-extension of the chromophore which is expected to further 

aggravate aggregation issues. Other concepts for making the sensors excitable at longer 

wavelengths therefore need to be found. 
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New Fluorescent Perylene Bisimide Indicators – a Platform for 
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Asymmetric perylene bisimide (PBI) dyes are prepared and are shown to be suitable for the 

preparation of fluorescence chemosensors for pH. They carry one amino functional substituent 

which introduces pH sensitivity via photoinduced electron transfer (PET) while the other one 

increases solubility. The luminescence quantum yields for the new indicators exceed 75% in the 

protonated form. The new indicators are non-covalently entrapped in polyurethane hydrogel D4 

and poly(hydroxyalkylmethacrylates). Several PET functions including aliphatic and aromatic 

amino groups were successfully used to tune the dynamic range of the sensor. Because of their 

virtually identical spectral properties, various PBIs with selected PET functions can easily be 

integrated into a single sensor with enlarged dynamic range (over 4 pH units). PBIs with two 

different substitution patterns in the bay position are investigated and possess variable spectral 

properties. Compared to their tetrachloro analogues, tetra-tertbutyl substituted PBIs yield more 

long-wave excitable sensors which feature excellent photostability. Cross-sensitivity to ionic 

strength was found to be negligible. The practical applicability of the sensors may be 

compromised by the long response times (especially in case of tetra-tertbutyl substituted PBIs). 

 

Introduction 
 

Monitoring of pH is of vital importance in biotechnology, environmental analysis and marine 

science, as well as in medicine. Optical pH sensors based on fluorescence are attractive since 

continuous, real-time measurement can be performed in a virtually contactless way. Unlike 

electrochemical pH sensors, they are not subject to electromagnetic interferences and can feature 

higher sensitivity within their dynamic range. Although optical pH sensors show cross-sensitivity 

to ionic strength, this inconvenience has been overcome by employing a low-charged indicator 

dye embedded into an uncharged matrix [27]. Another drawback is their narrow dynamic range, 

compared to electrochemical sensors. Many fluorescence pH sensors that can be found in the 

literature are based on fluorescein derivatives [150,151], 8-hydroxypyrene-1,3,6-trisulfonate 

(HPTS) and its derivatives [50,152-154] or benzo[g]xanthene dyes [47,155-157]. However, most of 

the above sensors suffer from several drawbacks. Particularly, fluoresceins are commonly known 

for their limited photostability, especially in case of 2´,7´-alkyl-substituted derivatives [27]. Since 

HPTS is a highly charged molecule the cross-sensitivity to ionic strength is very high. Its lipophilic 

derivatives overcome these drawbacks but possess limited brightness. Benzo[g]xanthene dyes are 

long-wave excitable (> 600 nm) [45], but show moderate brightness and are prone to 

photobleaching [49]. The above-mentioned indicators possess considerably different spectral 

properties in the protonated and deprotonated state and therefore are limited to systems where a 

(de)protonisable function is located within the chromophore. However, pH sensitivity can also be 

introduced over photoinduced electron transfer (PET, figure 1-1). This process involves a redox 
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reaction between a chromophore in the excited state and another functionality that can be found 

within the same molecule or in its close vicinity but in most cases is not integrated into it [61]. As 

PET is usually fast and fully reversible, it essentially constitutes a quenching process. In most 

cases, the above-mentioned functionality is an amino group which is capable of quenching only in 

the non-protonated state so that pH sensitivity is found if the pH is close to the pKA of the amino 

group. 

 

hν
Photo-excitation

LUMO

HOMO

Excited
Fluorophore

Electron
 donor

Reduced 
Fluorophore

Oxidised
 Donor

Deactivated
Fluorophore

Recovered
Donor

PET
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Fluorophore  

Figure 1-1: Schematic layout of photoinduced electron transfer (PET) between an electron donor and a 

fluorophore (electron acceptor). As a result of excitation, a MO higher in energy becomes populated (i.e. the 

HOMO is elevated) and electron transfer becomes possible. If the donor is an amine, its HOMO is located at much 

lower energy in the protonated state so that PET becomes impossible. 

 

Various chromophors including polyaromatic hydrocarbons [58,64,96,113,158], coumarins [55] 

and particularly naphthalimides [82,159-161] have already been shown to be quenched via PET by 

aliphatic amines. Therefore, the field of available fluorescent pH indicators can be dramatically 

extended by attaching amino groups to not intrinsically pH-sensitive chromophores. Notably, 

PET has been widely used for the design of ion sensors [33,100,162-165]. An advantage of PET-

based systems is their modularity [62], i.e. fluorophore and receptor can be selected 

independently to specifically design a fluorescent indicator. Spectral properties are determined by 

the chromophore, whereas proton affinity (i.e. pKA) is much more specific for the amino function 

(fluorophore-spacer-receptor systems) [61]. Furthermore, an extension of the pH-sensitive range 

is much less complicated in the case of PET-based pH indicators since several dyes with different 

pKA values but virtually identical spectral properties can be combined. The drawbacks of the 

chromophores commonly used to design PET-sensors include their short-wave excitation 

(resulting in higher levels of auto-fluorescence in biological media and stronger light scattering) 

and, particularly, moderate to low luminescence brightness (BS, defined as the product of molar 

absorption coefficient ε and luminescence quantum yield QY). For example, the BS for 

naphthalimide-based indicators is ∼12,000.  

Perylene bisimide (PBI) dyes are known for their relatively high molar absorption coefficients 

30,000-90,000 cm-1 M-1 [69,166], fluorescence quantum yields close to unity [167], and excellent 

photostability [117]. These features enable their application in OLEDs [168], photovoltaic cells 

[169], fluorescent solar collectors [167] and dye lasers [170], to state only a few. Furthermore, 

PBIs feature good versatility in respect to synthetic modification [59,103,127-129,171-176] which 

makes them promising candidates for the design of new PET pH indicators. In fact, the pH 

sensitivity of PBIs with amino functional substituents in both imide positions has already been 

demonstrated by De Silva and co-workers [59]. The application of those dyes in polymeric 

matrices was very limited due to their low solubility and high tendency to aggregation. Recently, 

Langhals and Pust [103] presented pH-sensitive nanomicells consisting of a PBI dye and sodium 
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dodecyl sulphate. However, the field of perylene-based fluorescent pH indicators is still in its 

infancy. Here we present a detailed study of various asymmetric PBI indicators that show 

appreciable pH sensitivity and bright fluorescence in different hydrogel matrices. As will be 

demonstrated, the pH sensitivity can be tuned by varying the amino functionality in the imide 

position whereas the substituents in the bay position influence the spectral properties.  

 

Experimental 
 

Materials  

 

1,6,7,12-Tetrachloroperylene-3,4:9,10-tetracarboxylic bisanhydride and 1,6,7,12-tetra(4-tert-

butylphenoxy)perylene-3,4:9,10-tetracarboxylic bisanhydride (technical grade) were purchased 

from Beijing Wenhaiyang Industry and Traiding Co.Ltd (http://china.zhaoteng.com). 1-Methyl-2-

pyrrolidone and propionic acid were obtained from ABCR (www.abcr.de). All other solvents 

(synthesis grade) as well as NaCl and buffer salts were supplied by Carl Roth (www.roth.de). 

Deuterated chloroform CDCl3 and anhydrous sodium sulfate were bought from Aldrich 

(www.sigmaaldrich.com). Silica gel (0.040-0.063 mm) was from Acros (www.fishersci.com). 

Polyurethane hydrogel (HydromedTM D4) was purchased from CardioTech (www.cardiotech-

inc.com). Poly(hydroxyproylmethacrylate) was obtained from Scientific Polymer Products 

(www.scientificpolymer.com). Poly(hydroxyethylmethacrylate) (MW=150000 g/mol) was from 

Polysciences Inc. (www.polysciences.com). Poly(ethylene glycol terephthalate) support (Mylar®) 

was from Goodfellow (www.goodfellow.com). Preparation of fluorescein octadecyl ester is 

reported elsewhere [27,177]. 1,6,7,12-tetrachloro-N,N’-(2,6-diisopropylphenylperylene-3,4,9,10-

tertracarboxylic bisimide was synthesised in analogously to the literature procedure [69]. 

 

Syntheses 

 

The synthetic concept is exemplified by the following synthesis of 2a. The other dyes were 

obtained in a similar way. Their preparation is described in detail in the supplementary 

information.  

1,6,7,12-Tetrachloro-N-(2,6-diisopropylphenyl)-N’-(3-morpholinopropyl)perylene-3,4:9,10-

tertracarboxylic bisimide (2a). 1,6,7,12-Tetrachloroperylene-3,4:9,10-tetracarboxylic 

bisanhydride 1a (1 g, 1.88 mmol) was dissolved in 1-methyl-2-pyrrolidone (=NMP) (150 ml), 

warmed to 35°C and a solution of 3-morpholinopropyl-1-amine (0.275 ml, 1.88 mmol) in NMP 

(20ml) was added dropwise under vigorous stirring. The reaction progress was monitored via thin 

layer chromatography on silica-gel and via UV-Vis spectroscopy. After TLC revealed total 

consumption of 1 and no further shift in absorption spectra of the mixture was observed, 

propionic acid (50 ml) and 2,6-diisopropylaniline (1.54 ml, 7.51 mmol) were added. The mixture 

was heated to 130°C for 21 h. After cooling to room temperature, it was poured onto 20% aqueous 

NaCl (1.4 l). The brown precipitate was separated by centrifugation, washed, re-dissolved in 

CH2Cl2, and dried with Na2SO4. Column chromatography with silica gel as the stationary and 

CHCl3:MeOH as the mobile phase afforded 488 mg (32%) of 2a as an orange powder. 1H NMR 

(300MHz, CDCl3, TMS): δ=8.75 (2H, s, Cl-C-CH-(1)); 8.71 (2H, s, Cl-C-CH-(2)); 7.53 (1H, t, iPr-

C-CHCH-, J=7.6Hz); 7.37 (2H, d, iPr-C-CH-); 4.32 (2H, t, (CO)2NCH2-, J=7.3Hz); 3.63 (4H, t, 

OCH2-, J=4.5Hz); 2.73 (2H, m, PhCH(CH3)2, J=6.8Hz); 2.53 (2H, t, NCH2C2H5N(CO)2, J=6.9Hz); 
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2.46 (4H, t, NCH2CH2O J=3.9Hz); 1.96 (2H, p, NCH2CH2CH2N, J=7.3Hz); 1.19 (12H, dd, -

CH(CH3)2, J1=6.7Hz, J2=4.1Hz). MALDI-TOF: m/z [MH+] 814.1382 found, 814.1409 calcd. 

 

Preparation of the sensor foils 

A “cocktail” containing indicator dye (0.44 mg), hydrogel D4/pHPMA (44 mg) and 

tetrahydrofurane (500 µl) was knife-coated on a dust-free Mylar support to obtain a ∼ 7 µm thick 

sensing layer after solvent evaporation. For pHEMA, the cocktail consisted of 55g⋅l-1 polymer and 

550 mg⋅l-1 dye concentration in EtOH:H2O (9:1 v/v).  

 

Methods 

 

Absorption measurements were performed on a Cary 50 UV-VIS spectrophotometer from Varian 

(www.varianinc.com). Fluorescence spectra were recorded on a Hitachi F-7000 

spectrofluorimeter (www.hitachi.com). Relative fluorescence quantum yields were determined 

using rhodamine 101 (Fluka, www.sigmaaldrich.com) as a standard. NMR spectra were recorded 

on a 300MHz instrument (Bruker) in CDCl3 with TMS as a standard. MALDI-TOF mass spectra 

were recorded on a Micromass TofSpec 2E. The spectra were taken in reflectron mode at an 

accelerating voltage of +20 kV.  

pH calibration curves were obtained in a microplate reader (FluoStar Optima, BMG Labtech, 

www.bmglabtech.com). The “cocktail” containing dissolved polymer (5% w/w in THF or 

EtOH/H2O mixtures) and dye (0.0125% w/w) was pipetted into 96-well polypropylene 

microtitreplates (Greiner Bio-one, www.gbo.com) and the solvent was allowed to evaporate. The 

obtained spots were incubated in the buffer solutions and interrogated using bandpass filters 

(475-490nm for excitation, 585-600nm for the PMT detector). The pH of the phosphate and 

phosphate-citrate buffer solutions was controlled by a digital pH meter (InoLab pH/ion, WTW 

GmbH & Co. KG, www.wtw.com) calibrated at 25 °C with standard buffers of pH 7.0 and 4.0 

(WTW GmbH & Co. KG, www.wtw.com). The buffers were adjusted to constant ionic strength 

using sodium chloride as the background electrolyte.  

Sensor response curves were recorded with a two-phase lock-in amplifier (SR830, Stanford 

Research Inc., www.thinksrs.com) equipped with a blue LED (λmax 455nm) from Roithner 

(www.roithner-laser.com), a BG-12 short pass filter at the excitation side and a long-pass filter 

OG 550 (Schott, www.schott.com) before the PMT tube (H5701-02, Hamamatsu, 

www.sales.hamamatsu.com). The modulation frequency of 160 Hz was used. 

For leaching tests, sensor foils (D4) were placed in a flow-through cell and the absorption of the 

films was monitored while aqueous buffers (IS 100 mM) were passed through it. 

Photobleaching experiments were performed by irradiating the samples with the light of a 458 

nm high-power 10W LED array (www.led-tech.de) focused through a lens purchased from 

Edmund optics (www.edmundoptics.de). Prior to the experiment a piece of the sensor foil (D4) 

was positioned in a quartz cuvette filled with the appropriate buffer. The photodegradation 

profiles were obtained by monitoring the absorption spectra. The absorption of the sensing layers 

and in the maximum of the light source was adjusted to 0.1.  
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Results and Discussion 
 

Syntheses 

 

As was mentioned above, perylene bisimides (PBIs) belong to photochemically robust molecules 

which possess high fluorescence brightness. However, solubility of many perylene derivatives is 

often rather low [167]. The commercially available 1,6,7,12-tetrachloroperylene-3,4,9,10-

tetracarboxylic bisanhydride (figure 1-2) was chosen as a starting material since the chloro 

substituents in the bay position remarkably increase solubility compared to unsubstituted 

perylenes without significantly affecting spectral properties. The imide position was selected for 

attaching PET functionalities since spectral properties are usually not influenced by imide 

substituents due to nodes in the molecular orbitals located at the nitrogen atoms [178]. 

Preliminary experiments showed that symmetric tetrachloroperylene bisimides (TCPBIs) with 

two PET functionalities show excellent acid-base sensitivity in organic solvents, but application in 

a hydrogel matrix was compromised by severe leaching of the dicationic protonated form. Hence, 

it was envisioned that a single PET functionality is sufficient to render the molecule pH sensitive 

whereas the second position can be occupied by a solubilising group which enhances solubility 

and provides sufficient lipophilicity. Among such groups the bulky 2,6-diisopropylphenyl moiety 

is known to significantly enhance the solubility of perylene dyes and is present in highly soluble 

commercial Lumogen® Red dye. Several diamines were utilised for introducing the PET 

functionality, including aliphatic and aromatic ones (figure 1-2). 
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Figure 1-2: Reagents and conditions: 2a, 2b: I) R-NH2 (1Eq.), NMP, 35 °C, 2h II) 2,6-diisopropylaniline (4 Eq.), 

NMP:EtCOOH (4:1), 130 °C, 18h; 2c: I) 2,6-diisopropylaniline (1.1Eq.), NMP:EtCOOH (4:1), 130 °C, 18h II) R-

NH2 (0.9Eq.), 35 °C; 2d: R-NH2 (0.9Eq.), 2,6-diisopropylaniline (1.1Eq.), NMP, 130 °C, 24h; 3: I) 2,6-

diisopropylaniline (3Eq.), NMP:EtCOOH (1:1), 130 °C, 24h II) R-NH2 (2Eq.), 40 °C. 
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It was found that 1 can be reacted with aliphatic amines under mild conditions but reaction with 

aromatic amines requires elevated temperature and acidic catalysis. Notably, asymmetric PBIs 

are often prepared via a monoanhydride monoimide as an intermediate [179,180]. In the present 

case, however, this route is unpromising owing to poor stability of 1a under the basic conditions 

that are usually employed for the preparation of the mentioned intermediate. The substantially 

different reactivities of aliphatic and aromatic amines did not allow simple coupling of an 

equimolar mixture with 1 (according to [181], for instance), but this concept was successfully 

employed for the preparation of bisaromatic compound 2d. The indicators 2a-c were prepared in 

a one-pot synthesis without isolation of the intermediate. Here the second amine was added to 

the reaction mixture after the reaction with the first amine was completed. The mixture of the 

asymmetric PBI and both symmetric PBIs was separable by column chromatography. The same 

concept was successfully employed also for the preparation of 3 starting from commercially 

available 1b. The modest overall yields (7-36%) are explained by the formation of symmetric side 

products, naturally competing with the formation of the desired product. Nevertheless, all the 

products could be obtained in sufficient amount starting from reactants readily available at low 

cost.  

 

Photophysical Properties 

 

Table 1-1 provides an overview of photophysical properties of the new indicators. They possess 

good luminescence brightnesses BS. The molar absorption coefficients ε are found to be ∼40,000 

M-1cm-1 for all the indicators and the fluorescence quantum yields exceed 0.75. BS higher than 

34,000 are obtained for all the dyes. These values are significantly higher than for the most 

common PET indicators based on naphthalimides (BS ∼12,000). As expected, substitution of the 

chlorine atoms by 4-tert-butylphenoxy groups results in a pronounced bathochromic shift of the 

absorption and emission bands. Note the very similar spectral properties of 2a-d which indicates 

extensive decoupling between the chromophore and the amino-functional substituent. 

 

Table 1-1: P hotophysical properties of the perylene bisimide indicators in solution. Since pH-induced spectral 

shifts are small (< 5 nm in all cases), maxima are reported for acidic media only. 

Dye λmax abs(ε·10-4)/nm (M−1·cm−1) 
CH2Cl2 

λmax em/nm 
CH2Cl2 

QY 
acidic CHCl3 

QY 
basic CHCl3 

2a 520(3.98); 486(2.76); 427(1.05) 552 0.95 0.044 
2b 520(4.00); 486(2.78); 426(1.04) 552 0.95 0.015 
2c 521(4.13); 487(2.88); 427(1.11) 554 0.84 0.055 
2d 520(4.54); 487(3.16); 426(1.18) 559 0.81 <0.001 
3 582(4.45); 542(2.70); 452(1.62) 624 0.76 0.11 

 
Sensing Properties in Solutions 

 

As expected, all the indicators possess much lower fluorescence quantum yields in the basic form 

compared to the acidic form (table 1-1). Table 1-2 shows the solvent dependency of the acid/base 

sensitivity for 2b and 3 as representative examples. Efficient PET effect (Iacidic/Ibassic > 10) is 

observable in all the solvents tested, with only minor influence of solvent polarity on PET 
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efficiency and without a clear trend being recognisable. It should be mentioned here that the 

efficiency of a PET process can correlate with solvent polarity. For instance, for anthracence 

derivatives it was found to increase with polarity [72].  

 

Table 1-2: PET efficiency of 2b (8.10-8 M) and 3 (3.10-8 M) in organic solvents, expressed as the ratio between 

fluorescence intensity in acidic (CF3COOH, 0.05% v/v) and basic (ethyldiisopropylamine, 0.05% v/v) solvent. 

Solvent Dielectric constant PET efficiency 

  2b 3 
n-Hexane 1.9 41 1.9 
Toluene 2.4 62 3.9 

Methyl-tertbutyl ether 2.6 42 3.5 
Chloroform 4.7 47 4.6 
Ethyl acetate 6.0 43 5.6 

Tetrahydrofuran 7.4 42 5.5 
Acetone 20 43 4.6 

1-Propanol 20 32 4.6 
Ethanol 24 39 4.9 

Methanol 33 27 3.9 
 

Sensing Properties in Polymeric Films 

 

The pH sensors were obtained by non-covalently entrapping the indicators into hydrogels. D4 (a 

polyurethane hydrogel), poly(hydroxypropylmethacrylate) and poly(hydroxyethylmethacrylate) 

were used. Immobilisation has little effect on the absorption and the emission spectra of the 

indicators which shift bathochromically. For example, the absorption and emission in D4 were 

found to peak at 525nm and 558 nm, respectively, for 2a, and at 589 and 622nm, respectively, for 

3. The sensing layers obtained show bright fluorescence which is visible with the naked eye at 

daylight. It should be mentioned that fluorescence of 3 in poly(hydroxyalkylmethacrylates) is 

weak which is likely to be caused by aggregation of the indicator. In agreement to the behaviour 

expected for a PET sensor, the fluorescence excitation and emission spectra are diminished in 

intensity but not altered in shape as pH is increased (figure 1-3). The absorption spectra remain 

almost unaltered and their pH-dependent spectral shift does not exceed 5nm in all cases. Such 

behaviour was found for all PBIs presented. As expected, fluorescence intensities of the indicators 

show typical sigmoidal shapes of the calibration plots (figure 1-4) from which the apparent pKA 

values can be obtained. The apparent pKA values as well as the intensity ratios for the acidic and 

the basic form of the dye are summarised in table 1-3. 
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Table 1-3: Calibration parameters of the indicators in hydrogels D4, poly(hydroxypropylmethacrylate) (pHPMA) 

and poly(hydroxyethylmethacrylate) (pHEMA): apparent pKA values and the PET efficiency defined as the 

intensity ratio for the acidic and the basic forms of the indicator IA/IB. 

Dye Matrix 
 D4 pHPMA pHEMA 
 Apparent 

pKA 
IA/IB Apparent 

pKA 
IA/IB Apparent 

pKA 
IA/IB 

2a 5.1 5.5 5.6 47 4.9 26 
2b 5.2 29 6.2 13 4.8 28 
2c 6.5 12 ⎯ 8.6 6.8 38 
2d 1.1 4⋅103 1.9 7⋅103 ⎯ ⎯ 
3 5.1 3.3 ⎯ ⎯ ⎯ ⎯ 
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Figure 1-3: pH-dependent optical properties of 3 (left) and 2a (right) in hydrogel D4, IS = 100 mM. Fluorescence 

excitation were acquired at λem= 580nm and 640nm, fluorescence emission was excited at 515nm and 550nm for 

2a and 3, respectively.  
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Figure 1-4: Calibration curves for the PBI indicators. Left – in D4 hydrogel; right – in 

poly(hyroxypropylmethacrylate). In poly(hyroxypropylmethacrylate), 2c does not show a typical sigmoidal 

calibration curve, therefore the apparent pKA was not determined. Since 3 shows only weak fluorescence in the 

same matrix, the corresponding calibration curve is not displayed. 



Chapter 1 

37 

Table 1-3 demonstrates that the apparent pKA values can be tuned by introducing amino groups 

with different basic character. The acidity of the protonated form decreases in the order 

2d>2a≈2b>2c which corresponds to the general trend expected for aromatic, tertiary and 

secondary amines. On the other hand, the apparent pKA values are also influenced by the polymer 

matrix. Significantly higher pKA values (9.5-10) were reported for comparable compounds in 

solution [59]. Localisation in the less polar environment of the hydrogel matrix may decrease the 

apparent pKA values since the charged acidic form is destabilised in these regions. This effect is 

opposite in case of anionic indicators (such as fluoresceins) which are known to have higher pKA 

values in less polar environment. The generally higher pKA values in pHPMA can be explained by 

higher hydrophilicity of the former compared to the hydrogel D4 which is a block copolymer 

containing both hydrophilic and hydrophobic domains. In this context, the pKA values found in 

pHEMA are unexpectedly low, considering that pHEMA is even more polar than pHPMA. A 

possible explanation is partial aggregation of the lipophilc dyes in this relatively hydrophilic 

matrix. In fact, the brightness of pHEMA sensor films is lower than in the other polymer matrices 

which also suggests limited solubility of the dye in pHEMA. 

It can be summarised that both the nature of the amino-group and the polymer can be used to 

tune the dynamic range of the sensor. Notably, the pKA values obtained for 2b and 3 are very 

similar despite their significantly different spectral properties. Therefore, the concept is likely to 

be transferable to other perylene-based indicators with different spectral properties.  In terms of 

the dynamic range the sensors presented here are adequate for biotechnological applications. 

However, the pKA values are generally too low for the sensors to be suitable for measurements at 

physiological conditions and in seawater. On the other hand, the indicator bearing an aromatic 

amine (2d) may find application for monitoring pH in strongly acidic media. 

The PET efficiencies (defined as the ratio of the fluorescence intensities for the acidic IA and the 

basic forms IB of the indicator) are also collected in table 1-3. Generally, Weller´s equation [57] 

can be used to predict the PET efficiency [59,61] if the redox potentials of the fluorophore and the 

quencher are known:  

 

Ion
S
Fluo

d
Fluo

ox
cPET EEEEG −−−=Δ Re

Re         (2) 

 

where ΔG is the thermodynamic driving force for PET, EOx,Rec and ERed,Fluo are the 

oxidation/reduction potentials of amino function and fluorophore, respectively, is the energy of 

the singlet excited state of the fluorophore, and EIon is the ion pairing energy of the PET products. 

As can be seen, the highest PET efficiency is observed for the aromatic amine (which is “switched 

off” in the basic form) and it is lower for the aliphatic amines. The sensitivity of 3 is significantly 

reduced compared to 2b which bears the same PET functionality. The replacement of electron-

withdrawing chlorine atoms by electron-donating aryloxy groups is expected to decrease the 

thermodynamic driving force for PET since (i) electron density in the chromophore is increased 

and its reduction, therefore, becomes less favourable and (ii) ES,Fluo decreases since 3 is excited at 

longer wavelength than 2b. Nevertheless, a value of 3.3 still is sufficient for effective sensing. 

However, the above trend should be considered if bathochromically shifted pH indicators are 

designed since the PET efficiency may become too low for practical applications. 
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pH-sensor with Enlarged Dynamic Range 

 

As was demonstrated above the spectral properties of the indicators 2a-d are virtually identical 

(table 1-1) which provides the possibility of designing a pH sensor with enlarged dynamic range. 

To demonstrate the feasibility of the approach 2b and 2c were mixed together in the same sensor 

material. The absorption and the emission spectra of the hybrid material are virtually identical to 

the spectra of the individual probes (figure 1-5). The response of the sensor is also shown in figure 

1-6. Indeed, the dynamic range of the new sensor is extended by ∼ 2 units compared to the 

sensors based on single indicators. The calibration curve can still be fitted with eq. 1 (correlation 

coefficient > 0.998). In the same way, 2b can be combined with 2d. Since the pKA values of both 

differ significantly, a two-step pH response is obtained (figure 1-S1, supplementary information). 

It should be emphasised here that the functionalities determining the pKA value have very little 

influence on spectral and photophysical properties of the PBI indicators. Undesired effects caused 

by inner filter effects, Förster Resonance Energy Transfer between the probes or unlike 

photostabilities are therefore minimised. This is in contrast to other classes of pH indicators (e.g. 

fluoresceins) where the design of a broadband sensor is compromised by such effects. On the 

contrary, the PBI indicators presented here seem to be ideally suitable for the design of a 

broadband sensor. Such a sensor may represent an alternative to a glass electrode in various 

applications (e.g. environmental monitoring).  
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Figure 1-5: Characteristics of the broadband pH sensor containing 2b (0.08% w/w)) and 2c (0.16% w/w) in 

hydrogel D4: Top - spectral properties of the sensor (thick black line) compared to those of 2b (thin red line); 

bottom - the respective calibration curves (triangles - broadband sensor, stars - 2b, circles - 2c). Conditions: IS = 

100mM, RT. 
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Cross-sensitivity to Ionic Strength 

 

Cross-sensitivity to ionic strength (IS) is a common drawback of optical pH sensors. The effect of 

the ionic strength on the calibration plots can be rather small if the charge of the indicator is 

minimal. In fact, the lipophilic fluorescein derivatives (neutral in the protonated form and 

bearing a single negative charge in the deprotonated form) were demonstrated to possess very low 

cross-sensitivity to IS [27]. Figure 1-6 shows the response of a pH sensor based on an individual 

PBI (dye 3 in hydrogel D4) and the response of the broadband sensor based on the mixture of 2b 

and 2c. Evidently, both sensors exhibit virtually negligible cross-sensitivity to IS. In fact, the 

alteration of the IS from 50 to 500mM is accompanied by the increase of the apparent pKA values 

by ≈ 0.1 units.  
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Figure 1-6: Ionic strength dependency of the calibration curves of the pH sensors. Left –  for the sensor based on 3 

(0.25% w/w) in D4; right - for broadband sensor containing 2b (0.08% w/w)) and 2c (0.16% w/w) in D4. 

 

Leaching Tests 

 

In case of 2a, 2b, 2d and 3 no leaching into the aqueous solution is detectable after 24h in basic 

(pH > pKA + 2) and acidic buffers (pH < pKA - 2) which is in contrast to severe leaching observed 

for the indicators bearing two PET functionalities. In case of 2c in D4, the absorption decreased 

by 7% within the first 6h at acidic pH but slowed after that (0.2%/h). No decrease was observed in 

basic buffer. Consequently, leaching is not critical for the investigated sensors due to pronounced 

hydrophobicity of the indicator dyes. 

 

Photostability 

 

Figure 1-7 demonstrates the photodegradation profiles for three pH indicators, namely perylene-

based 2b and 3, and fluorescein octadecyl ester (FODE) which is used for comparison. 

Surprisingly, the photostability of the tetrachloro-PBI indicators 2a-d was found to be rather 
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poor. In fact, the dyes bleach even faster than FODE. The rapid photodegradation is accompanied 

by the formation of a new dye which absorbs in NIR (700-800nm, figure 1-7, right). One of the 

possible bleaching pathways may be substitution of the chlorine atoms by hydroxide ions or 

water. This assumption is supported by the fact that the photostability of dissolved 2a-d 

deteriorates in the presence of water, but it improves significantly in organic solvents such as 

tetrahydrofurane (THF). If water is added to THF the bleaching rate increases proportionally. 

Interestingly, the bleaching reaction is accompanied by an increase of fluorescence in unbuffered 

organic solvents which suggests the formation of HCl. The photobleaching rate of 1,6,7,12-

tetrachloro-N,N’-(2,6-diisopropylphenylperylene-3,4,9,10-tertracarboxylic bisimide which bears 

no PET functionality was found to be similar which also suggests that the photobleaching 

pathway is determined by the presence of the halogens rather than the presence of a PET 

functionality. 
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Figure 1-7: Photobleaching of perylene bisimide indicators in hydrogel D4: Left - decrease in absorption 

tetrachloro-substituted PBI 2b and tetraaryloxy-substituted PBI 3, and for fluorescein octadecyl ester (FODE); 

right - spectral changes accompanying the decomposition of 2b. 

 

It is evident that substitution of the chlorine atoms in the PBI molecule by aryloxy groups renders 

the molecule highly photostable (figure 1-7, left). In fact, bleaching for 3 is several orders of 

magnitude slower than for FODE. For example, FODE degraded by almost 50% after 5min of 

irradiation whereas 3h of irradiation of 3 results in degradation of only 1.5% (pH 1.5) or 3% of the 

indicator (pH 9.6). Notably, the phototostability of 3 in organic solvent is not affected by the 

presence of water. Evidently, the aryloxy-substituted PBI is a platform of choice for designing pH 

sensors, but the tetrachloro-substituted derivatives are excluded from many applications due to 

their poor photostability.  

 

Dynamic Response 

 

Figure 1-8 demonstrates the response of the sensor based on 2b in hydrogel D4 to an alteration of 

pH. As can be seen, the response is reversible and fairly fast (t90 is 5min on going from pH 6 to pH 

4.3 and <30s in the reverse direction). The response time is a critical parameter if pHPMA is used 
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as immobilisation matrix. Significantly longer response times (>1h) are characteristic even for the 

thin (2 µm) sensing layers. In contrast to that, the sensors based on pHEMA are found to have 

significantly faster response which is comparable to the D4-based sensors. Generally, the sensors 

respond considerably faster to increasing pH than to its decreasing.   

It was found that the sensors based on 3 embedded in hydrogel D4 responds much slower than 

the sensors based on 2a-d. In freshly prepared foils, t90 can be ~10 min on going from pH 6 to pH 

4 and ~5 min in the reverse direction. However, a considerable flattening of the curve causes 

significantly longer t95 (~60 and 15 min, respectively). It should also be noted that response times 

tend to significantly increase over storage time. That also results in worse reversibility for older 

foils. Evidently, very long response times for 3 indicate its localisation in hydrophobic domains of 

the hydrogel. Several strategies can be proposed for improving the response times of the 

indicators. For example, significantly less hydrophobic aryloxy substituents can be used to force 

the indicator into more hydrophilic regions. Covalent immobilisation (for instance via 

replacement of the 2,6-diisopropylphenyl substituent with a vinyl or acrylate moiety and 

subsequent co-polymerisation) may also help to provide a hydrophilic environment for the 

indicator.  
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Figure 1-8: Response curves of 2b in D4 (dye content 1%, layer thickness 5µm) to dynamic changes of pH.  

 

Long-term Stability 

 

In hydrogel D4, the calibration curves show some drift towards lower IA/IB if the sensors are 

stored in buffer solution for several days (figure 1-9). For instance, in case of 2a, IA/IB decreases 

from 5.5 to 2.9 within 4 weeks. Notably, the apparent pKA values remain constant. Slow 

aggregation of the indicator is a possible reason for this phenomenon. Nevertheless, the drift is 

negligible within an interval of a few hours, but for longer measurements recalibration is 

required. On the other hand, virtually no drift was observed for the sensors based on pHPMA. 

Those sensors can be used for weeks without considerably changing their calibration plots.  
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Figure 1-9: Calibration plots for 2a (0.25% w/w) in D4 followed over time. The sensors were stored in aqueous 

buffers (IS = 100 mM) in the darkness.  

 

Referencing 

 

Evidently, fluorescence intensity is a rather ambitious parameter which is affected by various 

factors such as light intensity of the excitation source, sensitivity of the detector, turbidity of the 

probe etc. Therefore, different referencing schemes are commonly employed. For the sensors 

presented above ratiometric measurements become possible by immobilising a fluorescent pH-

insensitive dye in the same matrix (figure 1-S2). Other schemes such as Dual Lifetime Referencing 

are also possible. 

 

Conclusion 

 
pH-sensitive PET functional perylene bisimides (PBIs) were obtained in a single reaction step 

starting from commercially available compounds. The new indicators possess good luminescence 

brightness which is substantially higher that for common PET indicators such as naphthalimides. 

Two classes of PBIs with differing spectral properties were investigated: tetrachloroPBIs (2a-d) 

and a tetraaryloxyPBIs (3) which features bathochromically shifted absorption and emission 

spectra. Due to their small charge the sensing materials possess virtually negligible cross-

sensitivity to ionic strength. The sensors based on tetrachloroPBIs possess good brightness in 

hydrogels D4, pHPMA and pHEMA and show excellent PET efficiencies. The pKA value of the 

sensor can be tuned by attaching different amino groups to the PBI indicator. Virtually identical 

photophysical properties allow the preparation of a sensor for a broad pH range (> 4 pH units). 

Unfortunately, the sensors based on tetrachloroPBIs photodegradate readily. On the contrary, 

those based on the tetraaryloxy-substituted 3 possess unmatched photostability which is orders of 

magnitude higher than that of a common fluorescein-based indicator. As is demonstrated, the 

pKA value is not considerably influenced by the nature of the chromophore. This suggests that 

tuneability of pKA is applicable to tetraaryloxy-substituted PBIs and other perylene 

chromophores.  The performance of the sensor based on 3 is compromised by long dynamic 

response which indicates localisation of the indicator in the hydrophobic domains of the hydrogel. 

It can be concluded that the PET-based perylenes represent a promising class of pH indicators 
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featuring excellent brightnesses, high photostabilities and tuneability of proton affinity and 

spectral properties. They constitute a platform for the future design of high-performance pH 

sensors that may outperform existing systems. However, all presented sensors still suffer from 

drawbacks. The poor photostability of those based on tetrachloroPBIs has been shown to be 

outstandingly improved by using tetraaryloxy-substituted 3. To overcome the issues of slow 

dynamic response and signal drifts, optimisation in the indicator structure or/and covalent 

immobilisation into the polymer network are the most promising concepts.   
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Syntheses 

 

1,6,7,12-Tetrachloro-N-(2,6-diisopropylphenyl)-N’-(2-dibutylaminoethyl)perylene-3,4:9,10-

tertracarboxylic bisimide (2b).  

1,6,7,12-Tetrachloroperylene-3,4:9,10-tetracarboxylic bisanhydride 1a (1 g, 1.88 mmol) was 

dissolved in NMP (150 ml), warmed to 35°C and a solution of N,N-dibutylethylenediamine (0.403 

ml, 1.88 mmol) in NMP (15 ml) was added dropwise under vigorous stirring. After the solution 

was stirred for 2 h the temperature was elevated to 50°C stirring continued for 1.5 h. Propionic 

acid (50 ml) and 2,6-diisopropylaniline (1.54 ml, 7.51 mmol) were added. The solution was cooled 

to room temperature and poured onto 20% aqueous NaCl (1,400 ml). The brown precipitate was 

separated by centrifugation, washed, re-dissolved in CH2Cl2:acetone 3:1, dried with Na2SO4 and 

purified by column chromatography with silica gel as the stationary and CHCl3:MeOH as the 

mobile phase. 2b was obtained as a deep orange powder (572 mg, 36%). 1H NMR (300MHz, 

CDCl3, TMS): δ=8.75 (2H, s, Cl-C-CH(1)); 8.71 (2H, s, Cl-C-CH(2)); 7.53 (1H, t, iPr-C-CHCH-, 

J=7.7Hz); 7.37 (2H, d, iPr-C-CH-); 4.33 (2H, t, (CO)2NCH2-, J=7.0Hz); 2.66-2.83 (4H, m, 

PhCH(CH3)2; (CO)2NCH2CH2); 2.54 (4H, t, NCH2C3H7, J=7.3Hz); 1.44 (4H, p, NCH2CH2C2H5, 

J=6.9Hz); 1.26-1.36 (4H, m, NC2H5CH2CH3)1.19 (12H, dd, -CH(CH3)2, J1=6.7Hz, J2=4.0Hz); 0.87 

(6H, t, C3H7CH3, J=7.2Hz. MALDI-TOF: m/z [MH+] 842.2079 found, 842.2086 calcd. 

 

1,6,7,12-Tetrachloro-N-(2,6-diisopropylphenyl)-N’-(4-butylaminoethyl)perylene-3,4:9,10-

tertracarboxylic bisimide (2c).  

1,6,7,12-Tetrachloroperylene-3,4:9,10-tetracarboxylic bisanhydride 1a (1 g, 1.88 mmol) and 2,6-

diisopropylaniline (0.350ml, 1.80 mmol) were dissolved in 300 ml of NMP:propionic acid (4:1 

v/v) in a round bottom flask. The mixture was kept at 130°C for 16 h and after adding more 2,6-

diisopropylaniline (0.050 ml, 0.26 mmol) and heating for 3h it was allowed to cool to 40°C. N-

butylethylenediamine (0.245 ml, 1.71 mmol) in NMP (15ml) was added in portions and the 

solution was stirred at 40°C for 3 h. The deep brown reaction mixture was added to 30% aqueous 

NaCl (1.4 l), the precipitate was separated by centrifugation, washed, re-dissolved in 

CH2Cl2:acetone (3:1), dried with Na2SO4 and purified by column chromatography with silica gel as 

the stationary and toluene:EtOH as the mobile phase. 2c was obtained as a deep orange powder 

(186mg, 14%). 1H NMR (300MHz, CDCl3, TMS): δ=8.75 (2H, s, Cl-C-CH-(1)); 8.71 (2H, s, Cl-C-

CH-(2)); 7.53 (1H, t, iPr-C-CHCH-, J=7.7Hz); 7.37 (2H, d, iPr-C-CH-); 4.42 (2H, m, (CO)2NCH2-); 

3.09 (2H, m, (CO)2NCH2CH2); 2.68-2.80 (4H, m, PhCH(CH3)2; NCH2C3H7); 1.47-1.58 (2H, m, 

NCH2CH2C2H5); 1.31-1.41 (2H, m, NC2H5CH2CH3), 1.19 (12H, dd, -CH(CH3)2, J1=6.7Hz, 

J2=3.8Hz); 0.87 (3H, t, C3H7CH3, J=7.1Hz). MALDI-TOF: m/z [MH+] 786.1456 found, 786.1460 

calcd. 

1,6,7,12-Tetrachloro-N-(4-dimethylaminophenyl)-N’-(2,6-diisopropylphenyl)perylene-3,4:9,10-

tertracarboxylic bisimide (2d).  

1,6,7,12-Tetrachloroperylene-3,4:9,10-tetracarboxylic bisanhydride 1a (1 g, 1.88 mmol), 2,6-

diisopropylaniline (0.424ml, 2.07mmol) and N,N-dimethyl-p-phenylenediamine (0.240mg, 

1.69mmol) were placed in a round bottom flask and dissolved in 250 ml of NMP:propionic acid 

(4:1v/v). The mixture was heated to 130°C overnight. It was cooled to room temperature and 
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added to 20% aqueous NaCl (1.400ml). The precipitate was separated by centrifugation, washed, 

redissolved in CH2Cl2/acetone 6:1, dried with Na2SO4 and purified by column chromatography 

with silica gel as the stationary and toluene:acetone as the mobile phase to yield 2d as an orange 

powder (140 mg, 10%). 1H NMR (300MHz, CDCl3, TMS): δ=8.76 (4H, d, Cl-C-CH-(1,2) 

Δδ=4.0Hz); 7.53 (1H, t, iPr-C-CHCH-, J=7.7Hz); 7.37 (2H, d, iPr-C-CH-); 7.16 (2H, d, 

(CH3)2NCCHCH, J=8.9Hz), 6.87 (2H, d, (CH3)2NCCH); 3.05 (6H, s, NCH3); 2.74 (2H, p, 

PhCH(CH3)2 J=6.8Hz); 1.19 (12H, dd, -CH(CH3)2, J1=6.7Hz, J2=3.8Hz). MALDI-TOF: m/z [MH+] 

806.1136 found, 806.1147 calcd. 

 

1,6,7,12-Tetra(4-tert-butylphenoxy)-N-(2,6-diisopropylphenyl)-N’-(2-

dibutylaminoethyl)perylene-3,4:9,10-tertracarboxylic bisimide (3).  

1,6,7,12-Tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic bisanhydride 1b (2 g, 2.03 

mmol) was dissolved in 300 ml of NMP)/propionic acid (1:1 v/v), the solution was flushed with 

N2 and heated to 130 °C. 2,6-Diisopropylaniline (1.25 ml, 6.09 mmol) was added and the deep red 

mixture was stirred for 24 h. After cooling to 40°C N,N-dibutylethylenediamine (0.853 ml, 4.06 

mmol) was added dropwise. The mixture was stirred overnight at RT. The violet crude product 

was precipitated with water, filtered, re-dissolved in CH2Cl2, dried with Na2SO4 and purified by 

column chromatography with silica gel as the stationary and ethyl acetate:methylene chloride as 

the mobile phase. Yield: 184 mg (7%) of 3. 1H NMR (300MHz, CDCl3, TMS): δ=8.26 ((4H, d, 

ArO-C-CH-(1,2), Δδ=3.7Hz); 7.41 (1H, t, iPrCCHCH-, J=7.7Hz); 7.19-7.29 (10H, m, tBuCCHCH-; 

iPrCCH-);  6.84 (8H, dd, tBuCCH-(1,2), J=8.6Hz, Δδ=5.6Hz); 4.22 (2H, t, (CO)2NCH2-, 

J=7.0Hz); 2.64-2.77 (4H, m, PhCH(CH3)2; (CO)2NCH2CH2); 2.51 (4H, t, NCH2C3H7, J=7.2Hz); 

1.37-1.52 (4H, m, NCH2CH2C2H5); 1.28 (40H, d, C(CH3)3 (1,2), Δδ=6.8Hz, NC2H5CH2CH3); 1.11 

(12H, d, -CH(CH3)2, J1=6.7Hz); 0.87 (6H, t, C3H7CH3, J=7.2Hz). MALDI-TOF: m/z [MH+] 

1298.7321 found, 1298.7197 calcd. 
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Further Results 
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Figure 1-S1: Calibration curve a pH sensor containing 2b (0.0125% w/w) and 2d (0.0125% w/w) in hydrogel D4, 

conditions: IS = 100mM, RT. While the pH-response of both indicator dyes (2d: 0.5<pH<1.5; 2b: 5<pH<6) is 

clearly observable, their pKA’ values are too unlike to allow the design of a true broadband optrode with a single 

but broad dynamic range. 
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Figure 1-S2: A ratiometric pH sensor with 3 (0.5% w/w) as indicator dye and TCDPPBI (1.25% w/w) as reference 

dye in hydrogel D4. Emission spectra were taken with an excitation wavelength of 515nm, excitation spectra were 

observed at 635nm. Notably, TCDPPBI acts as donor in Föster resonance energy transfer, and 3 (the absorption 

spectrum of which perfectly matches the emission spectrum of TCPBI) is an acceptor. Since the absorption 

spectrum of the acceptor does not depend on pH, the efficiency of FRET (and the intensity of the donor) is 

constant in the whole pH range. On the contrary, the fluorescence intensity of 3 decreases if the pH is increased. 

Therefore, the ratio between the fluorescence in the emission maxima of both dyes allows pH calibration with a 

referenced signal.   



 

 

 

 

 

 

 

 

 

 

Chapter 2 

 

Novel Near Infra-red Fluorescent pH-Sensors Based on 

1-Aminoperylene Bisimides Covalently Grafted to 

Poly(acryloylmorpholine)  



Novel Near Infra-red Fluorescent pH-Sensors Based on 1-Aminoperylene Bisimides Covalently 

Grafted to Poly(acryloylmorpholine) 

48 

Preface to Chapter 2 
 

In this chapter, very important and significant improvements of the pH-sensors based on 

perylene bisimides (PBIs) are presented, making them highly promising for practical application. 

Firstly, the absorption and fluorescence wavelengths of the PBI probes are dramatically increased 

without enlarging the chromophore core, thus without further provocating dye aggregation. A 

very simple reaction of the tetrachloro-PBIs with secondary cyclic amines yields the new 1-

aminoPBIs which feature excitability in the deep red, near infra-red emission and large Stokes 

shifts due to their strong push-pull character. Though fluorescence brightness is reduced (to εxΦF 

≈ 5,000 M-1cm-1, compared to εxΦF ≈ 40,000 M-1cm-1 for the tetrachloro-PBIs), it is still satisfying 

for a near infra-red-emissive dye and sufficient for high signal intensity. 

Secondly, sensor dynamics are greatly improved to yield a pH-sensor which features fast and 

complete response, as well as excellent signal reproducibility and good long-term stability. That is 

accomplished by a concept for covalent dye coupling using the dye as cross-linker, which results 

in tight immobilisation of the dye in the matrix network. Coupling is carried out attaching 

acrylate groups followed by photo-co-polymerisation. The acrylate groups are grafted to the 

chromophore by chlorosulfonation of the 2,6-diisopropylphenyl substituents in the PBI, followed 

by reaction with N-aminopropylmethacrylamide. This is a flexible method that can be used to 

graft many different groups to various fluorophores – however, stability of the fluorophore 

against chlorosulfonic acid is a prerequisite. The co-polymerisation method used here yields very 

robust sensor layers with excellent adhesion and mechanical stability consisting of a material not 

yet employed in pH-sensors, poly(acryloylmorpholine).  

Though the new concept for the preparation of new sensors with covalently coupled pH-probe is 

only tested with 1-aminoPBIs, it is likely that it would yield sensors with similarly good 

performance when the significantly brighter (εxΦF ≈ 40,000 M-1cm-1) tetraphenoxy-PBIs are used 

for applications where long fluorescence wavelengths may be less important than strong signals. 

Because this sensor shown near infra-red fluorescence, covalent dye coupling and good long-term 

stability, it makes up a key result to this thesis by which many objectives have been realised.  
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Novel Near Infra-red Fluorescent pH-Sensors Based on 1-

Aminoperylene Bisimides Covalently Grafted to Poly(acryloyl-

morpholine) 
This chapter was published in Chemical Communications, 2013, 49, 2139–2141; doi: 

10.1039/C3CC39151E 

 

Authors: Daniel Aigner, Sergey M. Borisov, Peter Petritsch and Ingo Klimant 

 

Novel pH sensors relying on 1-aminoperylene bisimide dyes covalently grafted to cross-linked 

poly(acryloylmorpholine) are presented. They feature fluorescence in the near infra-red range 

and a large Stokes shift (> 90 nm). 

 

Fluorescence is a powerful tool for probing physical, (bio)chemical and biological 

(micro)environments as it allows highly sensitive mapping with excellent temporal and spatial 

resolution [1,2]. In the past decade, there has been a rapidly increasing interest in fluorescent 

dyes with near infra-red (NIR) emission since low energy light generates much lower fluorescent 

and scattering background and causes far less damage to biological samples. While NIR emitting 

fluorescent markers have become readily commercially available, pH probes are still scarce in that 

spectral range [73,91,107,145]. pH is one of the key analytes in biological and medical samples as 

well as in many biotechnological applications. This work focuses on a novel NIR fluorescent pH 

probe which is particularly useful in a solid matrix, i.e. in a pH sensor. 

Perylene bisimides (PBIs) have been extensively investigated for numerous applications in 

molecular (opto)electronics and numerous other fields due to their exceptional optical and 

electrochemical properties, their remarkable ability to form supramolecular assemblies and their 

outstanding (photo)chemical stability [118-120,122,182,183]. While the PBI parent compounds 

emit yellow light, several strategies have been presented to increase their excitation and emission 

wavelengths. Extension of the π-system by elongation of the perylene core [184,185], attachment 

of unsaturated residues to the core via C-C bonds [171,186] or condensation with 1,2-diamines 

[187,188] are effective in this regard but result in very hydrophobic structures with a pronounced 

tendency towards aggregation in polar media which is highly unfavourable for the use in pH 

sensors. The attachment of electron-donating groups, in particular amines, can increase 

excitation and emission wavelengths by introducing a push-pull effect without an extension of the 

π-system. The concept has been successfully employed on the structurally related naphthalene 

diimides to obtain red-light emitting dyes and pH probes [81,86,89,189]. However, to the best of 

our knowledge, the corresponding NIR emissive pH indicators based on PBIs have never been 

reported. 

In this work we present the PBI-based pH probes 1 and 2 (figure 2-1) and a pH sensor featuring 

covalent dye linkage, fluorescence emission in the NIR range (λMAX 735 nm) and a large Stokes 

shift (> 90 nm). pH sensitivity originates from Photoinduced Electron Transfer (PET) from the 

non-protonated amine (PET group) to the perylene chromophore, resulting in fluorescence 

quenching at basic pH [60,61]. In 1, Intramolecular Charge Transfer (ICT) also contributes to pH 

sensitivity.  
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Figure 2-1: Structures of the PET (Photoinduced Electron Transfer) pH indicators 1 (PET group close to the 

perylene core) and 2 (PET group in the imide position). 

 

Table 2-1: Spectral properties of 1 - 3 and the not amino-substituted pH indicator 4c9 N-(2-(N,N-

dibutylamino)ethyl)-(N’-(2,6-diisopropylphenyl)-1,6,7,12-tetrachloroperylene-3,4:9,10-tertracarboxylic bisimide 

(structure shown in the supplementary information)): ε - molar absorption coefficient, λmax abs absorption 

maximum wavelength, λmax em fluorescence maximum wavelength, ΦF relative fluorescence quantum yield; n.d. 

not determined. 

Dye Medium 
 

ε·10-4 (M−1cm−1)  
acidic/ basic 

λmax abs (nm)  
acidic/ basic 

λmax em (nm)  
acidic/ basic 

ΦF 
acidic/ basic 

1 THF 
 

D4 

1.48/1.83 
1.91/1.95 

n.d. 

444/446 
627/661 
447/450 
631/672 

727/751 
 

706/n.d. 

0.26/0.002 
 

n.d. 

2 
 

THF 
 

D4 

1.54/1.59 
1.76/1.78 

n.d. 

449/448 
657/652 
451/449 
666/659 

758/754 
 

740/736 
 

0.13/0.08 
 

n.d. 

3 
 

THF 
 

pAcMoa 
 

1.54/1.69 
1.99/1.95 

n.d. 

445/448 
630/666 
450/453 
641/682 

732/755 
 

735/n.d. 

0.23/0.003 
 

n.d. 

4c CH2Cl2 1.04 
2.78 
4.00 

426/426 
486/486 
520/520 

552/552 0.95/0.015 

a Poly(acryloylmorpholine) 
 

The pH probes can be prepared starting from the corresponding 1,6,7,12-tetrachloroperylene 

bisimides in a simple step. The bisimides are accessible from the commercially available 

bisanhydride via standard procedures. The substitution of a single chlorine atom by a cyclic 

secondary amine (figure 2-2) results in a bathochromic shift of 100 - 140 nm, compared to the 

starting material. Several amino-PBIs have been described [127,186,190-194], however they have 

not yet been prepared over the substitution of chlorine. The remaining chlorine atoms reduce the 

electron density in the perylene core which enhances the push-pull effect and makes the 

chromophore a good acceptor for PET. 
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Figure 2-2: Preparation scheme for the pH sensor with covalent dye linkage. A detailed description of all synthetic 

steps can be found in the ESI. 

 

1 and 2 show two very distinct absorption bands at 450 nm and > 627 nm which correspond to 

the S0→S2 and the S0→S1 transitions [192]. They possess lower fluorescence brightness (table 2-1; 

similar to literature values) [127] compared to the usually very bright PBIs without amino groups. 

However, brightness is still satisfying for pH probes with NIR emission. The photostability of 1 is 

better than the one of seminaphthorhodafluor (SNARF) decyl ester, which belongs to a frequently 

employed class of red light emitting pH probes. Exposed to the same illumination intensity, the 

SNARF ester is degraded by 30% in 1.5 h, 1 by 20% in acidic and 2% in basic solution (figure 2-S1 

in the supplementary information).  

Probe 1 carries the PET group close to the perylene core, in contrast to 2 where it is located in the 

imide position and thus is fully electronically decoupled. We found a strong effect of pH/acidity 

on fluorescence brightness of 1 both in solution and in a hydrogel film (D4®). Notably, the 

attachment of a secondary amino group by reacting 4a with piperazine instead of N-

methylpiperazine results in a dye which is equally pH sensitive but unstable in solution over time 

and shows broad, non-sigmoidal pH calibration curves. A possible reason is the higher reactivity 

of the secondary amine. For 2, the effect of pH/acidity is much weaker and is largely dependent 

on the environment – 2 is 4.2 times brighter in acidic than in basic methylene chloride; in 

acetone/water 3:1 (V/V) the ratio 1.5 was found. In a D4 film, the pH induced signal change is 

15%, too small for a reliable pH sensor (figure 2-3). Note that fluorescence quantum yields 

decrease in the order protonated 1 > (de)protonated 2 > deprotonated 1 while absorption and 

fluorescence spectra are bathochromically shifted. The electron-withdrawing effect of the nearby 

heteroatom (that is, NH+ > O > N, respectively) weakens the push-pull effect in the 1-

aminoperylenes. This ICT effect causes a pH-dependence in the absorption spectra of 1. The low 

brightness of deprotonated 1, compared to the protonated form, can be explained by the 

combination of ICT and PET. Since 1 proved to be the most stable and sensitive, this basic 
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structure (i.e. a tertiary amine bound closely to the perylene core) has been selected for the 

preparation of a NIR pH sensor.  
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Figure 2-3: A: Absorption and fluorescence emission spectra (excited in the isobestic point) of 3 (0.2% (w/w)), 

covalently coupled to a cross-linked poly(acryloylmorpholine) layer (thickness 20 µm), measured at different pH 

(aqueous buffer, ionic strength 100 mM). B: Corresponding spectra for 2, physically entrapped in D4 hydrogel 

(0.5% w/w, 7 µm thick layer). 

 
The immobilisation of pH probes in a solid matrix to yield pH sensors is of outstanding 

importance for many applications. From previous work, we know that the performance of pH 

sensors relying on physically entrapped PBIs can be unsatisfying in long-term measurements. We 

thus decided to prepare a pH sensor with covalent dye linkage to suppress migration and 

aggregation. This was achieved by the attachment of methacrylate groups and subsequent photo-

co-polymerisation [195] into a cross-linked polymer layer which in turn is covalently linked onto a 

glass substrate upon polymerisation. Poly(acryloylmorpholine) was selected as bulk matrix 

polymer since preliminary experiments revealed that it provides suitable hydrophilicity (water 

content 50% in swollen condition, figure 2-S2) and good solubility of the pH probes in the 

monomer. This is the first time the polymer is reported as a matrix in an optical pH sensor. 

Methacrylate-modified 3 can be prepared from 1 by chlorosulfonation followed by reaction with 

an amino group (figure 2-2). This novel approach is not limited to tagging acrylates but can be 

extended to a large variety of functionalities, e.g. highly polar or charged groups in order to obtain 

water-soluble pH probes for biological imaging. Concerning spectral and pH sensitive properties, 

3 is very similar to 1 (table 2-1, figures 2-S3,2-S5,2-S6). 

The resulting pH sensor features very good reproducibility and signal stability in long-term 

measurement, together with a response time of < 90 s. It is much superior in this regard to 

sensors relying on 3 and 1 physically entrapped into D4 hydrogel (figure 2-4A and figure 2-S7, 

respectively). For those sensors the poor dynamic response is probably caused by pH-dependent 

dye migration between the hydrophilic and hydrophobic domains present in D4 which has an 

impact on fluorescence quantum yield. Poly(acryloylmorpholine), in contrast, is a more 
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homogeneous matrix and dye migration is strongly suppressed by covalent linkage. Note that 3 

acts as a cross-linker, reducing its own mobility to a minimum.  
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Figure 2-4: A: Dynamic response of the pH sensor with covalently grafted 3 (layer as specified below figure 2-3), 

compared to a D4 hydrogel sensor where 3 (0.5% w/w, layer thickness 7µm) is physically entrapped. B: pH 

calibration curves of the sensor with covalent dye linkage. pH1/2 is the value at which half of the pH induced signal 

change is effective. 

 

The sensor is very promising for biotechnological applications since its most sensitive range (pH 5 

- 7) matches the pH region of interest in a wide variety of fermentation processes. This feature is 

particularly interesting since the recently presented NIR indicators [73,145] operate at higher pH. 

Photobleaching is not critical for the sensor, as displayed in figure 2-S1. Cross-sensitivity to ionic 

strength, a common problem in optical pH sensors, is small in the range 100 – 400 mM (error < 

0.1 pH units, figure 2-S8; this is the range present in most biotechnological applications). To 

underline practical applicability, a referenced pH sensor employing the dual lifetime referencing 

(DLR) technique [17,22] has been prepared. The good performance of the referenced system is 

demonstrated in figure 2-S3. 

In conclusion, we have presented a facile route to a novel NIR fluorescent pH sensor with 

covalent linkage of the indicator dye. The sensor is highly suitable for monitoring scientific and 

industrial biotechnological applications. In comparison to cyanine dyes which are the most 

frequently employed NIR emissive pH probes the presented indicator dye offers the advantages of 

good photostability and a large Stokes shift [91,107]. Current efforts are focused on indicators 

covering other pH ranges, as well as water-soluble derivatives for bioimaging. 

This work was supported by the Austrian Science Fund FWF (project P 21192-N17). We thank 

Prof. Robert Saf (Institute for Chemistry and Technology of Materials) for acquiring MALDI-TOF 

spectra and the Institute of Organic Chemistry for their support in performing LC-MS.  
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Further Results 
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Figure 2-S1: A: Performance of 3 (0.2 % (w/w)), covalently coupled to a cross-linked poly(acryloylmorpholine) 

layer (thickness 20 µm) in long-term measurement and under varying illumination conditions – the LED used for 

excitation is switched to continuous illumination (until then illumination time was 14% of the total measurement 

time). > 1 h of continuous illumination causes an error of < 0.1 pH units, when calculated over the calibration 

curve. Note that in practical applications continuous illumination is not necessary and an interrogation time of 30 

ms is typically sufficient to obtain a measurement point. Thus 1 h of continuous illumination equals about 

100,000 measurement points which enables a long measurement time (days or weeks, depending on the 

application). B: Photodegradation profiles of 1 and SNARF decyl ester as a reference in N,N-dimethylformamide 

(acidic: 0.1% V/V trifluoroacetic acid; basic: 0.1% V/V ethyldiisopropylamine) when illuminated with a high-

power LED array (645 nm). Absorption was observed in the respective maxima, i.e. 630 nm for acidic 1, 670 nm 

for basic 1, 657 nm for the reference. Initial absorptions were 1.1 at 645 nm. 
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Figure 2-S2: Water content of poly(acryloylmorpholine) in the swollen state as a function of the cross-linker 

(polyethylene glycol diacrylate) ratio used (% w/w with respect to the total monomer weight). Water content was 

determined gravimetrically. The cross-linking degrees used in sensors in this work are 5 % for the intensity based 

sensor and 2.5 % for the dually lifetime referenced sensor (dashed lines).  
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Figure 2-S3: Spectral properties of 1 (A), 2 (B) and 3 (C) in tetrahydrofuran/water 9:1 (V/V). Solutions were 

acidified with HCl (10 mM) and made basic with ethyldiisopropylamine (ratio 0.1 % V/V). Concentrations were 30 

µM for measuring absorption and 3 µM for fluorescence. Fluorescence was excited in the respective isosbestic 

points. 
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Figure 2-S4: A: Absorption (solid) and fluorescence spectra (dashed) of 1 in D4 hydrogel (dye content 0.5 % 

(w/w), layer thickness 7 µm) at different pH (aqueous buffer, ionic strength 100 mM). Fluorescence was excited in 

the isosbestic point (648 nm). B: Corresponding calibration curves. pH1/2 is the value at which half of the pH 

induced signal change is effective.  



Novel Near Infra-red Fluorescent pH-Sensors Based on 1-Aminoperylene Bisimides Covalently 

Grafted to Poly(acryloylmorpholine) 

56 

0.00

0.02

0.04

0.06

400 500 600 700 800

3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

Wavelength/nm 

pH 9.93
pH 5.60

A
bs

or
pt

io
n

pH 2.67 pH 2.67
pH 5.05
pH 5.60
pH 6.38
pH 8.18

0.0
0.2
0.4
0.6
0.8
1.0
1.2

B

N
or

m
al

is
ed

 
Fl

uo
re

sc
en

ce
 In

te
ns

ity
 (a

.u
.)

A

 

pH1/2 = 5.63

N
or

m
al

is
ed

 F
lu

or
es

ce
nc

e
In

te
ns

ity
 a

t 7
40

nm
 (a

.u
.)

pH
 

Figure 2-S5: A: Absorption (dashed) and fluorescence spectra (solid) of 2 in D4 hydrogel (dye content 0.5 % 

(w/w), layer thickness 7 µm) at different pH (aqueous buffer, ionic strength 100 mM). B: Corresponding 

calibration curve based on fluorescence emission in the maximum. pH1/2 is the value at which half of the pH 

induced signal change is effective. Absorption is virtually independent on pH, calibration is not shown. 
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Figure 2-S6: A: Absorption (solid) and fluorescence spectra (dashed) of 3 in D4 hydrogel (dye content 0.5 % 

(w/w), layer thickness 7 µm) at different pH (aqueous buffer, ionic strength 100 mM). Fluorescence was excited in 

the isosbestic point (652 nm). B: Corresponding calibration curves. pH1/2 is the value at which half of the pH 

induced signal change is effective.  
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Figure 2-S7: Dynamic response of the pH sensor with covalently grafted 3 (layer as specified below figure 2-S1) in 

long-term measurement, compared to D4 hydrogel sensors where 3 and 1 are physically entrapped (dye content 

0.5% w/w, layer thickness 7 µm).  
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Figure 2-S8: Calibration curves of 3 (layer as specified below figure 2-S1), measured at different ionic strengths. 

pH1/2 is the pH at which half of the pH induced signal change is effective.  
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Figure 2-S9: A: Dynamic response of a dually lifetime referenced (DLR) sensor, i.e. 3 (0.1 % w/w), covalently 

coupled to a cross-linked poly(acryloylmorpholine) layer (thickness 20 µm) containing phosphorescent Cr3+-

doped gadolinium aluminium borate (Cr-GAB; 25 % w/w; molar Cr3+ content 2.5 % with respect to Al3+)) as 

reference material. B: Spectral properties of the components of the DLR sensor. The transmissions of the 

excitation filter (585 - 640 nm) and emission filter (> 695 nm) are visualised by striped areas. 
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Materials and Methods 

 

Materials 

1,6,7,12-Tetrachloro-N,N’-di(2,6-diisopropylphenyl)perylene-3,4:9,10-tertracarboxylic bisimide 

(4a) and 1,6,7,12-tetrachloro-N-(2,6-diisopropylphenyl)-N’-((2-dibutylamino)ethyl)perylene-

3,4:9,10-tertracarboxylic bisimide (4c) were synthesised from 1,6,7,12-tetrachloroperylene-

3,4:9,10-tetracarboxylic bisanhydride (purchased from Beijing Wenhaiyang Industry and 

Traiding Co.Ltd, http://china.zhaoteng.com) as reported in chapter 1. 1-Methyl-2-pyrrolidone 

was from TCI Europe (http://www.tcichemicals.com). Solvents used for work-up and purification 

(synthesis grade) and for LCMS (HPLC-MS grade) as well as NaCl, buffer salts and microscope 

slides were supplied by Carl Roth (www.roth.de). Deuterated solvents were obtained form 

eurisotop (www.eurisotop.com). Silica gel (0.040-0.063 mm) was purchased from Acros 

(www.fishersci.com), polyurethane hydrogel D4 from CardioTech (www.cardiotech-inc.com). 

Chrome(III)-doped gadolinium aluminium borate phosphors were prepared in analogy to a 

procedure described elsewhere [196]. All other chemicals were form Sigma-Aldrich 

(www.sigmaaldrich.com). Poly(ethylene glycol terephthalate) support (Mylar®) was from 

Goodfellow (www.goodfellow.com).  

 

Methods 

Absorption measurements were performed on a Cary 50 UV-VIS spectrophotometre from Varian 

(www.varianinc.com). Fluorescence spectra were recorded on a Hitachi F-7000 

spectrofluorimetre (www.hitachi.com). Relative fluorescence quantum yields were determined at 

25 °C using Nile Blue (ΦF = 0.27 in ethanol) [197] as a standard. NMR spectra were recorded on a 

300 MHz instrument (Bruker; coupling constants J will be stated in Hz) with TMS as a standard. 

MALDI-TOF mass spectra were recorded on a Micromass TofSpec 2E. The spectra were taken in 

reflectron mode at an accelerating voltage of +20 kV. For LCMS measurements, a Nucleodor 100-

5 µm C18ec reversed phase column (Macherey Nagel; 130 x 8mm) was used; mobile phases were 

water/acetic acid 1000:1 (V/V) and acetonitrile (gradients are stated in tables A-1 and A-2, 

appendix). A HP/agilent G1315A diode array detector and a Shimadzu LSMS-2020 mass detector 

(www.shimadzu.de; electrospray ionisation) were employed. 

Sensor response curves and pH calibration curves were measured in a home-made stainless steel 

flow-through cell, pumping buffer with a flow rate of 1 ml min-1 (except for the pH calibration 

curves of the sensors in D4 hydrogel which were measured with the spectrofluorimetre, sensors 

were incubated in a cuvette filled with buffer solution for 1min prior to measurement). Cell 

temperature was kept constant at 25 °C. The sensors were interrogated with a two-phase lock-in 

amplifier (SR830, Stanford Research Inc., www.thinksrs.com) equipped with a red LED (λmax 629 

nm) from Roithner (www.roithner-laser.com), a 620/50 nm bandpass filter from Edmund optics 

(www.edmundoptics.de) at the excitation side and a 695 nm long-pass filter (Schott, 

www.schott.com) before the PMT tube (H5701-02, Hamamatsu, www.sales.hamamatsu.com). 

The modulation frequency of 160 Hz was used for intensity measurement, while dually lifetime 

referenced sensors were measured employing a modulation frequency of 2.5 KHz. 

The pH of the phosphate and phosphate-citrate buffer solutions was controlled by a digital pH 

meter (InoLab pH/ion, WTW GmbH & Co. KG, www.wtw.com) calibrated at 25 °C with standard 
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buffers of pH 7.0 and 4.0 (WTW GmbH & Co. KG, www.wtw.com). The buffers were adjusted to a 

constant ionic strength of 100 mM using sodium chloride as the background electrolyte.  

Photostability measurements were performed by irradiating the samples with the light of a 645 

nm high-power 10 W LED array (www.led-tech.de) focused through a lens purchased from 

Edmund optics. The photodegradation profiles were obtained by monitoring the absorption 

spectra.  

 
Syntheses 

 

N,N’-di(2,6-diisopropylphenyl)-1-(4-methyl-1-piperazinyl)-6,7,12-trichloroperylene-3,4:9,10-

tertracarboxylic bisimide (1) 
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Figure 2-S10: Preparation of 1. 

 

4a (250 mg, 0.29 mmol) was added to a mixture of N-methylpiperazine (1.2 ml, 10.8 mmol) and 

1-methyl-2-pyrrolidone (1.2 ml) at 40 °C. The mixture was stirred for 60 min, 0.1 M aqueous 

HCl/saturated aqueous NaCl 1:1 (V/V) (100 ml) was added, the green precipitate was washed with 

water/saturated aqueous NaHCO3 9:1 (V/V) (2 * 50 ml) and water (2 * 50 ml) and dried. Column 

chromatography with silica gel (40 – 63 µm) as the stationary and CH2Cl2:MeOH 70:1 (V/V) as 

the mobile phase afforded 1 (158 mg, 60 %). NMR spectroscopy: δH (300 MHz, CDCl3) 8.75 (2 H, 

d, ArH (Core)), 8.59 (2 H, d, ArH (Core)), 7.53 (2 H, t, J 7.8, ArH), 7.38 (4 H, d, J 7.8, ArH); 4.29 

(2 H, br s, NCH2), 2.87-3.10 (2 H, m, NCH2), 2.70-2.87 (4 H, m, ArCH), 2.48-2.70 (2 H, m, 

NCH2), 2.38 (3 H, s, NCH3), 2.25-2.34 (1 H, br s, NCH2), 1.96-2.15 (1 H, br s, NCH2), 1.21 (24 H, 

m, ArCHCH3). δC (300 MHz, CDCl3) 163.6, 163.1, 162.9, 162.8 (C=O); 151.8, 145.9 (2 C), 145.7 (2 

C), 135.6, 133.8 (2 C), 133.4, 133.3, 133.2, 132.3, 130.5, 130.4, 130.0 (2 C), 129.8, 129.7, 128.3, 

124.6, 124.3-124.4 (4 C), 124.0, 123.8, 123.4, 122.1, 120.8, 119.6 (aromatic); 55.1, 54.6, 52.3, 47.5, 

45.9 (NCH2); 29.3-29.5 (multiple C, ArCH); 24.1-24.4 (multiple C, ArCHCH3). MALDI-TOF m/z 

911.2974 found, 911.2897 calculated. 
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N-(2-(N,N-dibutylamino)ethyl-N’-(2,6-diisopropylphenyl)-1-(4-morpholinyl)-6,7,12-

trichloroperylene-3,4:9,10-tertracarboxylic bisimide (2) 
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Figure 2-S11: Preparation of 2. 

 

4c (65 mg, 0.077 mmol) was added to a mixture of morpholine (0.65 ml, 7.4 mmol) and 1-methyl-

2-pyrrolidone (0.65 ml) at 40 °C. The mixture was stirred for 90 min, 0.1 M aqueous 

HCl/saturated aqueous NaCl 1:1 (V/V) (20 ml) was added and the green precipitate was washed 

with water/saturated aqueous NaHCO3 9:1 (V/V) (2 * 25 ml) and water (2 * 25 ml) and dried. The 

crude product was purified by column chromatography with silica gel (40 – 63 µm) as the 

stationary and CH2Cl2:MeOH (starting material was eluted with a ratio of 200:1 (V/V), product 

with 50:1) as the mobile phase to yield 2 (40 mg, 58 %). NMR spectroscopy: δH (300 MHz, CDCl3) 

8.70 (2 H, d, ArH (Core)), 8.52ppm (2 H, d, ArH (Core)), 7.51 (1 H, t, J 7.8, ArH), 7.37 (2 H, d, J 

7.8, ArH ), 4.40 (2 H, br s, (CO)2NCH2), 4.18-4.28 (1 H, m, NCH2CH2O), 4.04-4.18 (2 H, m, 

NCH2CH2O (1 H) and OCH2 (1 H)), 3.82-4.00 (1 H, m, OCH2), 3.50-3.69 (1 H, m, OCH2), 3.28-

3.43 (1 H, m, OCH2), 2.18-3.28 (9 H, m, (CO)2NCH2CH2N (2 H) and NCH2 (4 H) and NCH2CH2O 

(1 H) and ArCH (2 H)), 2.06-2.18 (1 H, m, NCH2CH2O), 1.38-1.69 (4 H, br s, NCH2CH2), 1.30-1.38 

(4 H, m, NCH2CH2CH2), 1.11-1.27 (12 H, q, J 5.9, ArCHCH3), 0.92 (6 H, t, NCH2CH2CH2CH3). δC 

(300 MHz, CDCl3) 163.5, 162.9, 162.7 (2C) (C=O); 151.5, 145.7, 145.5, 135.4, 133.6, 133.1, 

132.7, 132.6, 131.9, 130.3, 130.1 (2 C), 129.8, 129.7, 129.5, 128.1, 124.2, 124.1, 123.9, 123.7, 

123.2, 123.1, 120.6, 119.8 (aromatic); 66.9, 66.0 (OCH2); 53.9 (broad), 52.7, 50.8 (broad), 

47.8 (NCH2); 29.2 (ArCH); 24.0 (ArCHCH3); 20.4, 13.9 (Alkyl). MALDI-TOF m/z 893.3066 

found, 893.3004 calculated. 
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N-(3-([N-(3-(methacryloylamino)propyl)amino]sulfonyl)-2,6-diisopropylphenyl)-N’-(4-([N-(3-

(methacryloylamino)propyl)amino]sulfonyl)-2,6-diisopropylphenyl)-1,6,7,12-tetrachloro-

perylene-3,4:9,10-tertracarboxylic bisimide (4b) 
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Figure 2-S12: Preparation of 4b. 

 

4a (400 mg, 0.47 mmol) was heated to 60 °C in chlorosulfonic acid (4 ml) for 3 h. The reaction 

mixture was allowed to cool to RT and added dropwise onto crushed ice. The orange precipitate 

was transferred into a funnel, washed with ice water until neutral and dried applying a rotary 

vane pump. The dry disulfonyl dichloride was dissolved in anhydrous N,N-dimethylformamide 

(30 ml), N-(3-aminopropyl)methacrylamide hydrochloride (1.88 mmol, 336 mg) and 

triethylamine (4.71 mmol, 0.65 ml) were added. After stirring for 3 h at RT, the product was 

precipitated with 0.1 M aqueous HCl/saturated aqueous NaCl 1:1 (V/V) (200 ml), separated by 

centrifugation and washed with water (3 * 150 ml). The crude product was purified by column 

chromatography with silica gel (40 – 63 µm) as the stationary and CHCl3:MeOH 97/3 as the 

mobile phase to yield 4c (308 mg, 53 %). NMR spectroscopy: δH (300 MHz, CDCl3) 8.67 (4 H, s, 

ArH (Core)), 8.18 (1 H, d, J 8.4, ArH)), 7.84 (2 H, s, ArH), 7.51 (1 H, d, J 8.4, ArH), 6.23 (2 H, 

q, J 6.7, SO2NH), 5.55-5.80 (4 H, s and br s, C=CH (2 H) and CONH (2 H)), 5.37 (2 H, s, 

C=CH), 4.20 (1 H, p, J 6.2, ArCH), 3.47 (4 H, m, SO2NCH2), 3.13 (4 H, br s, CONCH2), 2.79 (2 

H, hex, J 6.6, ArCH), 2.63 (1 H, p, J 6.5, ArCH), 1.98 (6 H, s, C=CCH3), 1.74 (4 H, p, J 6.9, 

SONCH2CH2CH2N), 1.20 (24 H, m, ArCHCH3). MALDI-TOF m/z 1255.2783 found, 1255.2802 

calculated. 
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N-(3-([N-(3-(methacryloylamino)propyl)amino]sulfonyl)-2,6-diisopropylphenyl)-N’-(4-([N-(3-

(methacryloylamino)propyl)amino]sulfonyl)-2,6-diisopropylphenyl)-1-(4-methyl-1-

piperazinyl)-6,7,12-trichloroperylene-3,4:9,10-tertracarboxylic bisimide (3) 
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Figure 2-S13: Preparation of 3. 

 

4b (300 mg, 0.239 mmol) was added to a mixture of N-methylpiperazine (2 ml, 18 mmol) and 1-

methyl-2-pyrrolidone (3 ml) and stirred 40 °C for 45 min. The crude product was precipitated 

with 0.1M aqueous HCl/saturated aqueous NaCl 1:1 (V/V) (40 ml), washed with water/saturated 

aqueous NaHCO3 9:1 (V/V) (2 * 40 ml) and water (2 * 40 ml) and purified by column 

chromatography (silica gel, 40 – 63 µm), eluting with CH2Cl2:MeOH 25:1 (V/V), yielding 3 (136 

mg, 43 %). NMR spectroscopy: δH (300 MHz, CDCl3) 8.66-8.78 (2 H, m, ArH (Core)), 8.49-8.62 

(2 H, m, ArH (Core)), 8.14 (1 H, d, J 8.2, ArH), 7.84 (2 H, s, ArH), 7.49 (1 H, d, J 8.2, ArH), 

6.40 (2 H, br s, SO2NH), 6.00 (2 H, br s, CONH), 5.75 (2 H, s, C=CH), 5.35 (2 H, s, C=CH), 

4.32 (2 H, br s, NCH2CH2N), 4.18 (1 H, m, ArCH(1)), 3.30-3.53 (4 H, m, SO2NCH2), 2.95-3.20 

(5 H, m, CONCH2 (4 H) and NCH2CH2N (1 H)), 1.99-2.95 (11 H, m, NCH2CH2N (5 H) and 

ArCH (3 H) and NCH3 (3 H)), 1.87-1.99 (6 H, s, C=CCH3), 1.71 (4 H, m, SONCH2CH2CH2N), 

1.19 (24 H, m, ArCHCH3). MALDI-TOF m/z 1319.4100 found, 1319.4034 calculated. 

 

Preparation of pH-sensors with covalently linked indicator dye 

Microscope slides (76 mm x 2.6 mm x 1 mm) were functionalised with acrylate groups by covering 

them with a solution of methacryloxypropylmethyldichlorosilane (0.02 ml) in anhydrous 

tetrahydrofuran (THF; 1 ml). After incubating for 10 min in an inert atmosphere, the slides were 

washed with acetone and dried (60 °C, 10 min). A monomer mixture consisting of 1-

acryloylmorpholine (95 mg), polyethylenglycol diacrylate (5 mg; average molecular weight 700 g 

mol-1), photoinitiator 2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone (0.05 mg) and 

indicator dye 3 (0.2 mg) was added onto a functionalised microscope slide in an argon 

atmosphere and closed up tightly putting another microscope slide on top to yield a 26 mm x 26 

mm layer of homogeneously distributed monomer mixture. Illumination with a 366 nm UV light 

source (4 * 9 W, Jolifin “Tunnel”, www.jolifin.com) for 6 min afforded polymer layers which were 
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washed with THF/H2O 1:1 (V/V) for 30 min prior to use. The layer thickness can be adjusted by 

attaching spacers of defined thickness onto the microscope slide used for closing up. In this work, 

the layer thickness of 20 µm was used.  

For the preparation of dually lifetime referenced sensors, the following cocktail composition was 

used: 1-acryloylmorpholine (48 mg), polyethylenglycol diacrylate (2 mg), photo-initiator (0.06 

mg), dye 3 (0.067 mg), chrome(III)-doped gadolinium aluminium borate (17 mg; composition: 

GdAl2.925Cr0.075(BO3)4).  

 

Preparation of pH sensors with physically entrapped indicator dye 

A “cocktail” containing indicator dye 1 - 3 (0.21 mg), hydrogel D4 (41 mg) and EtOH/H2O 9:1 

(V/V) (500 µl) was knife-coated on a dust-free Mylar support to obtain a sensing layer of 7.5 µm 

thickness after solvent evaporation.  
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Preface to Chapter 3 
 

Here, pH-sensors based on rhodamines quenchable by PET are presented. Among the numerous 

pH-probes based on rhodamines, this is one of the few employing PET and the only one with PET 

groups close to the xanthenes nitrogen atoms. Though not emissive in the near infra-red like the 

system presented in chapter 2, they are very bright pH-sensor with fast, highly reproducible 

response over a long time. Because the rhodamine probes are water-soluble, covalent dye 

coupling is absolutely necessary. That is facilitated by a pentafluorophenyl group available for 

“click” reaction with mercapto groups. In one immobilisation concept, the reaction is directly 

employed for binding onto silica particles which easily can be modified to carry mercapto groups. 

In the second concept, reaction with mercaptopropionic acid introduces a carboxy group which is 

then grafted to amino-functionalised hydrogel particles by the standard conjugation procedure 

involving activation with N-hydroxysuccinimide. Though both types of microparticles may be 

directly used in the particle form, they are embedded into hydrogel layers to yield planar optrodes 

in this work. While featuring almost identical pKA values, the silica-based sensor shows a 

significantly wider working range. 

The pentafluorophenyl intermediate shows high reactivity due to dimerisation and to another 

reaction resulting in reversible decolouring that could not be fully characterised. Although 

reactivity is much lower after reaction with mercapto groups, photostability of the sensors is not 

as high as expected, with photoreduction being the likely cause. 

Nevertheless, the sensors are promising for practical applications and the strategies developed for 

covalent dye linkage may be useful also for other sensor systems. Because of their sensitive range 

at slightly acidic pH, they are most useful for application in biotechnology. Although high 

brightness and good long-term stability make the sensors a significant result for this thesis, they 

have not been selected of further optimisation since excitability at longer wavelengths is difficult 

to realise with the rhodamine-based system that lacks flexibility for further modification. Though 

related systems condensed with additional double bonds or benzene rings are known (red Alexa 

dyes, benzo[g]xanthenes) are known, high synthetic effort seems necessary to achieve only a 

moderate increase in excitation wavelengths and a decrease in photostability accompanying those 

modifications seems likely. 
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New Fluorescent pH-Sensors Based on Covalently Linkable PET 

Rhodamines 
 

This chapter is the result of cooperation with Universidad de Granada, Spain, and was 

published in Talanta, 2012; 99, 194–201; doi: 10.1016/j.talanta.2012.05.039 

 

Authors: Daniel Aigner, Sergey M. Borisov, Francisco J. Orriach Fernández, Jorge F. 

Fernández Sánchez, Robert Saf and Ingo Klimant 

 

A new class of rhodamines for the application as indicator dyes in fluorescent pH sensors is 

presented. Their pH-sensitivity derives from photoinduced electron transfer between non-

protonated amino groups and the excited chromophore which results in effective fluorescence 

quenching at increasing pH. The new indicator class carries a pentafluorophenyl group at the 9-

position of the xanthene core where other rhodamines bear 2-carboxyphenyl substituents instead. 

The pentafluorophenyl group is used for covalent coupling to sensor matrices by “click” reaction 

with mercapto groups. Photophysical properties are similar to “classical” rhodamines carrying 2’-

carboxy groups. pH sensors have been prepared with two different matrix materials, silica gel and 

poly(2-hydroxyethylmethacrylate). Both sensors show high luminescence brightness (absolute 

fluorescence quantum yield ΦF≈0.6) and high pH-sensitivity at pH 5-7 which makes them 

suitable for monitoring biotechnological samples. To underline practical applicability, a dually 

lifetime referenced sensor containing Cr(III)-doped Al2O3 as reference material is presented. 

 

Introduction 
 

pH is a key parameter for a wide range of applications in the medical field, in environmental and 

life sciences or for regulation and routine monitoring in industrial processes and in sewage 

purification plants, to mention only a few areas. Although electrochemical pH sensors are well-

established and reliable tools for a large number of analytical tasks, optical pH sensors offer 

unmatched advantages in many other challenging applications, in particular for high-throughput 

screening, for applications where minimal contact to the sample is preferable, where a high 

degree of miniaturisation is required or in systems that do not allow the application of 

potentiometric sensors due to a strong electromagnetic field.  

A number of fluorescent pH sensors have already been established in which derivatives of 8-

hydroxypyrene-1,3,6-trisulfonate (HPTS) [50,51,198], fluoresceins [27,115,199,200] and 

benzo[g]xanthene dyes [45,48,49,201] have been the most common pH-sensitive indicator dyes. 

Most of these indicators, however, still are subject to limitations. Fluoresceins are commonly 

known for their limited photostability. HPTS derivatives are excitable at relatively short (< 500 

nm) wavelengths which results in high levels of autofluorescence and scattering background. 

Benzo[g]xanthene dyes are long-wave excitable, but offer only limited brightness (defined as the 

product of molar absorption coefficient ε and fluorescence quantum yield, ΦF) ≤12⋅103 M-1cm-1 

[45] , which is at least 5 times lower than for the dyes presented in this work, and are prone to 

photobleaching [49]. 

Rhodamines are xanthene dyes featuring outstanding brightness (high ε in the order of 100⋅103 M-

1cm-1 and ΦF of 0.7-1 for most derivatives), generally good solubility in water and good 
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photostability [36]. These properties have enabled their application in cell imaging [202,203] and 

single molecule imaging [43,204], for the characterisation of micelles [205] and polymer beads 

[206] , as standards for fluorescence quantum yield [44] or as molecular switches [43,207] and 

fluorescence thermometers [208], to state only a few. Numerous rhodamine-based fluorescent 

probes for cations - most importantly Hg2+ [203,209,210], Cu2+ [211], Fe3+ [212], Pb2+ [213] - and 

thiols [214] have been presented. On the other hand pH-sensitive systems relying on rhodamines 

as pH probes [37,39,40,215-219] are less common. Most of these systems take advantage of the 

cyclisation equilibrium in rhodamines leading to non-fluorescent lactames.  

Here we present a new class of amino-functional rhodamines the pH-sensitivity of which 

originates from the intramolecular photoinduced electron transfer process (PET, 

[59,60,61,65,77,96]) between non-protonated amino groups and the excited chromophore (figure 

3-1). To the best of our knowledge, only very few examples for pH-sensitive PET rhodamines 

[41,102] can be found in the literature and those focus on application as probes in solution, not in 

a solid sensor matrix. The new dye class is accessible by a straightforward one-step synthesis. It 

carries a pentafluorophenyl group in the 9-position of the xanthene core which is employed for 

simple and effective covalent coupling by “click” reaction with mercapto groups. Covalent 

indicator linkage can be highly beneficial for pH optrodes since it suppresses migration and 

aggregation processes. Nucleophilic substitution in pentafluorophenyl groups has recently been 

presented as a versatile tool for grafting [220-224] . The suitability of the new fluorinated PET-

rhodamines as indicators in pH sensors will be demonstrated.  

 

Experimental 
 

Materials and Methods 

 

3-(1-Piperazinyl)phenol, pentafluorobenzaldehyde, methanesulfonic acid and (3-

mercaptopropyl)trimethoxysilane were purchased from ABCR (www.abcr.de). Urea was from 

Acros (www.acros.com). All other reagents were obtained from Aldrich (www.sigmaaldrich.com). 

All reagents were of synthesis grade. Deuterated solvents were purchased form eurisotop 

(www.eurisotop.com). Anhydrous pydridine and N,N-dimethylformamide were bought from 

Aldrich. All other solvents (synthesis grade, HPLC gradient grade), as well as potassium 

persulfate, sodium chloride and buffer salts, were supplied by Carl Roth (www.carlroth.de). 

Hydroxyethylmethacrylate and ethyleneglycoldimethacrylate were filtered over aluminium oxide 

prior to use. Water used for HPLC chromatography was deionised using a Barnstedt NANOpure 

system. Dowex® 1-8 cation exchange resin was freshly charged with chloride prior to use.  

Absorption measurements were performed on a Cary 50 UV-VIS spectrophotometer from Varian 

(www.varianinc.com). Fluorescence spectra were recorded on a Hitachi F-7000 

spectrofluorimetre (www.hitachi.com). Relative fluorescence quantum yields ΦF were determined 

using rhodamine 101 (ΦF=0.96 [225]; Fluka, www.sigmaaldrich.com) as a standard. Absolute 

fluorescence quantum yields were determined on a Fluorolog 3 spectrofluorimetre equipped with 

an integrating sphere (Horiba Scientific, www.horiba.com). 1H-NMR spectra were recorded on a 

300 MHz instrument (Bruker) with TMS as a standard. 19F-NMR spectra were taken on a 

Mercury Inova 300 instrument (Bruker) at a frequency of 282.47 MHz. MALDI-TOF masses were 

determined on a Micromass TofSpec 2E in reflectron mode at an accelerating voltage of +20 kV. 

pH calibration curves and sensor response curves were obtained by passing buffer solutions (1 
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ml⋅min-1) by a sensor foil placed in a home-made flow-through cell. Cell temperature was kept 

constant at 25 °C. The luminescent signal was interrogated with a two-phase lock-in amplifier 

(SR830, Stanford Research Inc., www.thinksrs.com) equipped with a green LED (λmax 525 nm) 

from Roithner (www.roithner-laser.com), a XR3080 bandpass filter (500-540nm; Horiba, 

www.horiba.com) at the excitation side and a long-pass filter (Schott, www.schott.com; OG 580 

(> 580 nm), unless otherwise stated) before the PMT tube (H5701-02, Hamamatsu, 

www.sales.hamamatsu.com). The modulation frequency of 160 Hz was used, unless otherwise 

stated. The pH of the phosphate and acetate buffer solutions was controlled by a digital pH meter 

(InoLab pH/ion, WTW GmbH & Co. KG, www.wtw.com) calibrated at 25 °C with standard buffers 

of pH 7.0 and 4.0 (WTW GmbH & Co. KG, www.wtw.com). The buffers were adjusted to constant 

ionic strength using sodium chloride as a background electrolyte. LCMS measurements were 

performed on a Shimadzu LCMS system equipped with a LSMS-2020 mass detector and a SPD-

M20A diode array detector (www.shimadzu.de).  

 

Preparation of Dyes and Sensors 

 

N,N’-di(3-azapentane-1,5-diyl)-2’,3’,4’,5’,6’-pentafluororhodamine acetate (1) 

A mixture of 3-(1-piperazinyl)phenol (2.7 g, 15.15 mmol), pentafluorobenzaldehyde (1.5 g, 7.65 

mmol) and methanesulfonic acid (20 ml) was heated to 210 °C under vigorous stirring. 

Temperature was maintained for 4.5 h, pentafluorobenzaldehyde (500 mg, 2.5 mmol) was added 

in two equal portions during the first 2.5h. The deep red mixture was allowed to cool to RT and 

was added dropwise into THF (250 ml). The sticky solid formed was re-dissolved in MeOH 

(50ml) and again precipitated with THF (250 ml). The procedure was repeated six times until a 

black powder was obtained. The powder was dissolved in H2O (100 ml) and passed over Dowex® 

1-8 cation exchange resin (Carl Roth) charged with chloride. The deep red solution was dried to 

yield 3.8 g of crude product. Purification was performed by HPLC chromatography on an Agilent 

1100 station (www.chem.agilent.com) employing a Nucleodor 100-5 µm C18ec reversed phase 

column (Macherey Nagel; 200x15mm) and MeOH/0.1% aqueous acetic acid (gradient is stated in 

table A-3, appendix) as the mobile phase. Upon purification, 37 mg crude product yielded 12 mg 

pure 1. Owing to the limited size of the available HPLC facility, not all crude 1 was purified. If up-

scaling is performed, 1.23 g (2.14 mmol, 28%) of pure 1 can be isolated. 1H NMR (300 MHz, 

CD3OD containing 0.1% HOAc and 0.1% CF3COOH, TMS): δ = 7.65ppm (2H, d, Ar-H(positions 

1,8), JArH12,78 = 9.6 Hz); δ = 7.46 (2H, dd, Ar-H(2,7), JArH24,57 = 2.5 Hz); δ = 7.42 (2H, d, Ar-

H(4,5)); δ = 4.13 (8H, t, ArNCH2, J = 5.2 Hz); δ = 3.48 (8H, t, HNCH2); δ = 1.99 (3H, s, Hacetate). 
19F NMR (282.5 MHz, D2O): δ = -139ppm (2F, d, J = 20 Hz); δ = -150 (1F, t, J = 21 Hz); δ = -160 

(2F, dt, J1 = 6 Hz, J2 = 21 Hz). MALDI-TOF: m/z [MH+] 515.1847 found, 515.1870 calcd. 
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N,N’-di(3-azapentane-1,5-diyl)-4’-(2-carboxyethylmercapto)-2’,3’,5’,6’-tetrafluororhodamine 

acetate (2) 

Crude 1 (328 mg, containing 157 mg, 278 µmol of pure 11), N,N-dimethylacetamide (8 ml) and  

triethylamine (248 µl, 1.78 µmol) were heated to 50 °C and 3-mercaptopropionic acid (34.4 µl, 

390 µmol) was added dropwise. Temperature was maintained for 3 h and the mixture was washed 

with hexane until a solid residue was obtained (4x100 ml). The residue was dissolved in MeOH/1 

M aqueous HCl 1:1 (3x10 ml) and precipitated with THF (3x150 ml). Crude 2 was obtained as a 

black powder (130 mg). Purification was performed similarly to 1 (different gradient is stated in 

table A-4) and yielded 19 mg of pure 2 (35 mg crude product; 71 mg (0.11 mmol, 39%) if up-

scaled). 1H NMR (300 MHz, CD3OD containing 0.1% CF3COOH, TMS): δ = 7.55ppm (2H, d, Ar-

H(positions 1,8), JArH12,78 = 9.6 Hz); δ = 7.32 (2H, dd, Ar-H(2,7), JArH24,57 = 2.3 Hz); δ = 7.26 (2H, 

d, Ar-H(4,5)); δ = 4.06 (8H, t, ArNCH2, J = 4.9 Hz); δ = 3.48 (8H, t, HNCH2); δ = 3.32 (2H, t, 

ArSCH2, J = 6.7 Hz); δ = 2.76 (2H, t, CH2COOH); δ = 2.06 (4.7H, s, Hacetate). 19F NMR (282.5 

MHz, D2O): δ = -132ppm (2F, q, J = 11 Hz); δ = -139 (2F, q, J = 11 Hz). MALDI-TOF: m/z [MH+] 

601.1923 found, 601.1896 calcd. 

 

N,N’-di(3-azapentane-1,5-diyl)-2’,4’-dicarboxyrhodamine acetate (3) 

Trimellitic anhydride (1.62 g, 8.42 mmol), 3-(1-piperazinyl)phenol (3 g, 16.83 mmol) and 

methanesulfonic acid (25 ml) were heated to 165 °C. Temperature was maintained for 3.5h, the 

deep red mixture was allowed to cool to RT and was added dropwise into THF (100 ml). The 

sticky black precipitate was re-dissolved in MeOH and precipitated by adding THF. The 

procedure was repeated six times to yield crude 3 (1.8 g) as a black powder. Purification was 

performed similarly to 1 (different gradient is stated in table A-5) and yielded 14 mg of pure 3 (44 

mg crude product; 890 mg (1.74 mmol, 21%) if up-scaled). Both the 4’-carboxy and the 5’-carboxy 

regioisomer could be isolated in pure form and identified by NMR spectroscopy (figures A-36, A-

37). Although the 5’-carboxy isomer was formed in comparable amounts (figure A-45) and is 

equally suitable for the present application, only pure 4’-carboxy isomer was used for 

characterisation. 1H NMR (300 MHz, D2O, TMS): δ = 8.32ppm (1H, s, Ar-H(position 3’)); δ = 

8.00ppm (1H, d, Ar-H(5’), JArH5’6’ = 7.5 Hz); δ = 7.27 (3H, d, Ar-H(6’,1,8), JArH12,78 = 9.3 Hz); δ = 

7.06 (2H, d, Ar-H(2,7)); δ = 6.97 (2H, s, Ar-H(4,5)); δ = 3.85 (8H, broad s, ArNCH2); δ = 3.35 

(8H, broad s, HNCH2); δ = 1.90 (3H, s, Hacetate). MALDI-TOF: m/z [MH+] 513.2101 found, 

513.2138 calcd. 

 

Mercapto-functionalised silica gel beads  

Li Chrospher 60 silica gel beads (Merck, average size 5 µm; 1 g) were dispersed in EtOH/H2O 19:1 

(40 ml) in a polypropylene vessel. (3-Mercaptopropyl)trimethoxysilane (26.8 µl, 0.144 mmol) and 

                                                           
1 Crude 1 was used for the synthesis of 2. The assay of 1 in the crude product can be easily 

calculated. The total rhodamine content is equal to the ratio of the molar absorption coefficients 

of crude and pure product (which is 4.3⋅104M-1cm-1/8.9⋅104=0.48). Figure S13 shows that there 

are no other rhodamines contained in the crude product (no impurities absorbing at 540 nm). 

Therefore, the assay of 1 in the crude product is 48% (w/w). For calculation, chloride was the 

assumed counter ion for crude 1, while pure 1 is the acetate salt.  
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acetic acid (2 ml) were added and the mixture was stirred overnight at RT. The beads were 

separated by centrifugation (2450⋅g), washed with EtOH (6x50 ml) and dried (60 °C, 1 bar). 

 

Amino-functionalised poly(hydroxyethylmethacrylate) (poly(HEMA)) beads 

Poly(HEMA) beads were prepared adapting a method reported in the literature [226]. Poly(vinyl 

alcohol) (86000 g⋅mol-1, 99% hydrolysed) (3 g) was dissolved in refluxing H2O (300 ml). The 

mixture was allowed to cool to 40 °C and flushed with nitrogen for 30 min. 2-

Hydroxyethylmethacrylate (3.26 ml, 27.3 mmol), ethylene glycol dimethacrylate (0.36 ml, 1.91 

mmol), 2-aminoethylmethacrylate hydrochloride (80 mg, 0.48 mmol) and potassium persulfate 

(3 mg, 0.01 mmol) were added, the mixture was heated to 70 °C and stirred under a gentle 

nitrogen stream for 18 h. The precipitated beads were separated by centrifugation (2450⋅g), 

washed with H2O (4x100ml) and EtOH (3x100ml) and freeze-dried (1 mbar, -90 °C, 18 h) to yield 

1.6 g of a white powder. 

 

pH-sensitive silica gel beads  

A mixture of mercapto-functionalised silica gel beads (250 mg), rhodamine dye 1 (1 mg, 1.74 

µmol), triethylamine (2.7 µl, 0.019 mmol) and N,N-dimethylacetamide (1 ml) was heated to 60 °C 

under vigorous stirring for 6 h. The beads were separated by centrifugation (2450⋅g), washed with 

10 mM HCl (6x5 ml), EtOH (2x5 ml) and H2O (6x5 ml) and dried (60 °C, 1 bar).  

 

pH-sensitive poly(HEMA) beads  

2 (1 mg, 1.5 µmol) was dissolved in anhydrous N,N-dimethylformamide(DMF; 0.5 ml) and 

dicyclohexylcarbodiimide (DCC; 1.37 mg, 6.6 µmol) was added. The solution was stirred at RT for 

15 min and N-hydroxysuccinimide (NHS; 1 mg, 8.7 µmol) was added. After 45 min, a dispersion 

of amino-functionalised poly(HEMA) beads (100 mg) in anhydrous pyridine (1 ml) and a catalytic 

amount of 4-(dimethylamino)pyridine (DMAP) were added. The mixture was stirred overnight. 

The beads were separated by centrifugation (2450⋅g), washed with DMF (2x5 ml), CH2Cl2 (2x5 

ml), EtOH (3x5 ml), 10 mM HCl (5x5 ml) and H2O (3x5 ml) and freeze-dried (1 mbar, -90 °C, 18 

h). 

 

Preparation of Cr(III)-doped Al2O3 (ruby) 

Al(NO3)3
.9H2O (16.54 g, 44 mmol), Cr(NO3)3

.9H2O (0.36 g, 0.90 mmol) and urea (18 g, 0.3 mol) 

were dissolved in H2O (100 ml). The mixture was concentrated until a turquoise gel was obtained. 

The gel was heated to 500 °C and kept at this temperature for 10 min. After cooling to RT, the 

green solid was ground in a mortar and sintered for 24 h at 1100 °C in air. The pale pink powder 

obtained was ground in a ball mill to yield 1.9 g of fine Cr-doped Al2O3.  

 

Preparation of the sensor foils 

pH-sensitive silica gel beads in D4 hydrogel: A “cocktail” containing silica gel beads (28 mg), 

hydrogel D4 (41 mg) and EtOH/H2O 9:1 (500 µl) was knife-coated on a dust-free Mylar support 

to obtain a sensing layer of about 12.5 µm thickness after solvent evaporation.  

pH-sensitive cross-linked poly(HEMA) beads in linear poly(HEMA): Linear poly(HEMA) 

(MW=150000 g⋅mol-1) was dissolved in EtOH:H2O (9:1 V/V), insoluble residues were separated 

by centrifugation and discarded. Cross-linked poly(HEMA) beads (10 mg) were added to the 
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obtained solution (29 mg polymer in 500 µl) and the “cocktail” was knife-coated on a dust-free 

Mylar support to give a sensing layer of about 7 µm thickness after solvent evaporation.  

 

Results and Discussion 
 

Structures and syntheses of the new pH indicators and sensors are shown in figure 3-1. They are 

based on 1 which, unlike other rhodamines, does not carry a 2’-carboxy group. For comparison, 

compound 3 bearing a 2’-carboxy group is also investigated. pH-sensitive rhodamines have been 

covalently coupled to two different sensor matrices, i.e. silica gel beads and cross-linked poly(2-

hydroxyethylmethacrylate) (poly(HEMA)) beads. Polymer hydrogels like poly(HEMA) are the 

most common matrices in pH sensors. Silica gel represents an interesting alternative material 

with very different properties. 1 was linked by direct reaction with mercapto-functionalised silica 

gel beads, while another route involving 2 was employed for the attachment to amino-

functionalised poly(HEMA) beads.  

 
Photophysical Properties 

 

The photophysical properties of the synthesised rhodamines and commercially available 

rhodamine B are displayed in table 3-1. The electron-withdrawing highly fluorinated phenyl 

substituent causes a bathochromic shift of ≈ 30 nm for both acidic and basic form in compounds 

1 and 2 in comparison to 3. They are therefore excitable at > 70 nm longer wavelength than such 

widely used pH indicators as fluorescein or pyrene derivatives. Luminescence brightness is often 

expressed as the product of molar absorption coefficient ε and fluorescence quantum yield ΦF. 

Both are comparable to the high values known for rhodamines.  
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Figure 3-1: Preparation of the pH-indicators 1-3 and the two types of pH-sensor beads. Reagents and conditions: 

a) pentafluorobenzaldehyde, CH3SO3H, 210 °C (28%); b) 3-mercaptopropionic acid, Et3N, N,N’-

dimethylacetamide, 50 °C (39%); c) mercapto-functionalised silica gel beads, Et3N, N,N’-dimethylacetamide, 60 

°C; d) amino-functionalised poly(HEMA) beads, DCC, NHS, DMAP, N,N’-dimethylformamide; e) trimellitic 

anhydride, CH3SO3H, 165 °C (21%). 
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A somewhat lower ΦF was found for 1, while 2 shows almost equal ΦF to 3 and rhodamine B. Note 

that mercapto-substituted 2 rather represents the rhodamine structures present in the sensors 

and is therefore more valid for comparison. 

Similar ΦF around 0.6 were found for the presented sensor materials (table 3-2). ε are even higher 

for 1 and 2 than for 3. Consequently, luminescence brightness of a mercapto-substituted 

pentafluorophenyl-rhodamine such as 2 is as high as in the case of rhodamines carrying a 2’-

carboxy group. Note that in table 3-1, lower ε are accompanied by broader absorption peaks 

(higher half-widths at half maximum, HWHM) so that the integral absorptions of all rhodamines 

are similar.  

 
Table 3-1: Photophysical properties of 1-3 and rhodamine B: absorption maximum (λmax abs) and corresponding 

molar absorption coefficient (ε); half-width at half maximum in absorption (HWHM); fluorescence emission 

maximum (λmax em); relative fluorescence quantum yield (ΦF). Values were determined in aqueous buffer 

solution, unless otherwise stated. Organic solvents were acidified with CF3COOH (0.1% V/V) and made basic with 

Et3N (0.1% V/V). 

Compound λmax abs(ε 10-4)/nm (M−1·cm−1) 
acidic/basic 

HWHM/nm 
acidic/basic 

λmax em/nm 
acidic 

ΦF 
acidic/basic 

1 560(8.82)/ 584(7.62) 40/57 588 0.40/<0.01 
2 561(10.2)/583(8.17) 39/54 591 0.67/0.02 
3 533(8.46)/554(8.38) 42/43 562 0.69/<0.01 

Rhodamine Ba 543(10.6) 35 565 0.70 
a All values in EtOH, without any acid or base added  

 

pH-sensitive Properties in Aqueous Solution 

 

Absorption and fluorescence spectra of 2 together with pH calibration curves of 1-3 are shown in 

figure 3-2. pH sensitivity is caused by a strong decrease in emission intensity due to photoinduced 

electron transfer (PET). The sensitive range is around pH = 7 so that all dyes are potentially useful 

for fluorescence imaging in physiological samples. Fluorescence is essentially turned off as 

deprotonation of the piperazonium groups occurs. A hypsochromic shift of about 20 nm is 

observed for the absorption spectra of 1-3 upon protonation (table 3-1). This effect is not related 

to PET. It can be attributed to the electron-withdrawing effect of the positively charged 

piperazonium groups located in proximity of the rhodamine core. Note that fluorescence spectra 

are not bathochromically shifted with increasing pH. This indicates that the highly fluorescent 

acidic form is in equilibrium with a non-fluorescent basic one quenched by PET.  
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Figure 3-2: pH-sensitive properties of 1-3 in aqueous buffer solution (ionic strength 100 mM). Absorption spectra 

(A) and fluorescence spectra (B) of 2, dye concentration was 2 µM when recording absorption and 0.05 µM when 

recording fluorescence spectra. Spectra of 1 and 3 are similar and can be found in the supplementary information. 

C: pH calibration curves of 1 (squares), 2 (circles) and 3 (triangles) based on absorption, observed in the 

absorption maximum of the basic form. D: corresponding curves based on fluorescence emission, observed in the 

emission maximum of the acidic form. pH1/2 is the pH at which half of the overall pH-dependent signal change is 

observed. 

 

The sensitive range of 1 and 2 (figure 3-2) is found at lower pH than the one of 3, which 

illustrates the incomplete decoupling between the piperazinyl groups and the chromophore. The 

acidic form of 1 and 2 is more strongly destabilised by the vicinity of the rhodamine core that 

carries a strongly electron-withdrawing fluorinated substituent. Absorption calibration shows 

response at considerably higher pH than fluorescence calibration. This can be attributed to the 

fact that shifts in absorption are related to the deprotonation of both piperazonium groups, 

whereas the deprotonation of the first group may already cause highly efficient PET. 

Figure 3-3 emphasises that 1 does not undergo lactonisation under conditions where 3 is almost 

completely present in the lactone form. Lactame formation, a very similar process, has been taken 

advantage of to introduce pH sensitivity into rhodamines [37,39,40,215-217]. In the present 

system, however, preliminary experiments showed that lactonisation causes almost complete 

decolouring of PET rhodamine 3 as soon as it is linked to a sensor matrix. Therefore, the sensors 

presented in this work rely exclusively on the PET mechanism and employ dyes that do not 

undergo lactonisation. 
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Figure 3-3: Lactonisation of 3, visualised by absorption spectra in H2O and basic EtOH (containing Et3N, 0.1% 

V/V). Due to lactonisation, virtually no absorption is observed in basic EtOH. On the other hand, 1 shows a shift 

but no attenuation of absorption in basic EtOH compared to H2O. The slight decrease in the absorption maximum 

is due to peak broadening, not lactonisation.  

 

Sensors with Covalent Dye Linkage 

 

Covalent attachment of pH-sensitive rhodamine to both silica gel and cross-linked poly(2-

hydroxyethylmethacrylate) (poly(HEMA)) beads was successful, yielding pH sensor beads. For 

characterisation, the beads were dispersed in polyurethane hydrogel D4® (for the silica gel beads) 

or in linear poly(HEMA) (for the cross-linked poly(HEMA) beads) to yield planar optrodes. Bright 

orange fluorescence of the obtained sensors is clearly visible for the acidic form (figure 3-4) and 

absolute fluorescence quantum yields were found to be rather high (table 3-2). Both sensor types 

exhibit excellent sensitivity and are most useful for measuring pH 5-7 which fits the pH range of 

interest in many biotechnological applications. The sensors respond at lower pH than the aqueous 

solutions of 1 and 2. That is most likely due to the less polar environment in the sensor which 

destabilises the highly charged acidic form. Förster resonance energy transfer from the acidic to 

the basic form may also contribute to this effect, since the dye concentration is significantly 

higher in the sensors than in solution. Despite the high charge of the indicator dye, the sensors 

show small to moderate cross-sensitivity to ionic strength (figure 3-5). That is particularly true if 

the ionic strength (IS) is ≥100 mM, which is the case in the majority of biotechnological 

applications. For the silica gel sensors, errors are ≤ 0.1 pH-units if IS = 100-200 mM and ≤ 0.2 

pH-units if IS = 100-500 mM. They are smaller for the sensor based on poly(HEMA) beads ( ≤ 

0.05 pH-units if IS = 100-200 mM, ≤ 0.1 pH-units if IS = 100-500 mM), which is expected since 

poly(HEMA) is a less charged matrix than silica gel [27,227]. The response times are fairly fast 

(τ90 < 2 min for the sensor based on silica gel beads; τ90 = 2-3 min for the sensor based on 

poly(HEMA)). Reversibility and repeatability of the sensors are very good, as demonstrated in 

figure 3-7 and figures 3-S3, 3-S4 in the supplementary information. 
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Figure 3-4: A: pH Calibration curves (ionic strength 100 mM) for the sensor foils based on silica gel beads in D4® 

hydrogel and cross-linked poly(HEMA) beads in linear poly(HEMA), both carrying covalently linked PET 

rhodamine. pH1/2 is the pH at which half of the overall pH-dependent signal change is observed. B: Photographic 

image of the poly(HEMA) sensor foils in acidic (pH 4) and basic (pH 9) buffer. 
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Figure 3-5: Calibration curves of the sensor based on silica gel beads (A) and on poly(HEMA) beads (B), measured 

at different ionic strengths (IS), and corresponding pH1/2 values (pH value at which half of the overall pH-

dependent signal change is observed).  

 

Table 3-2: Photophysical properties of the sensing materials. The sensor foils were treated with acidic/basic buffer 

solution, pH 4/9. Prior to measuring ΦF, the foils were acidified with HCl vapour. 

Sensor λmax exc/nm 
acidic/basic 

λmax em/nm 
acidic/basic 

ΦF 

acidic 

Silica gel beads in D4 hydrogel 572/583 598/609 0.65 
Cross-linked poly(HEMA) beads in  

linear poly(HEMA) 
576/592 601/612 0.61 

 

Detailed calibration curves are shown in figure 3-4. The silica gel sensor beads are applicable over 

a broad range (pH 3-8). Measuring at pH > 8 (which is essentially outside the sensitive range) is 

not recommended and leads to irreversible signal decrease. That is probably caused by hydrolytic 
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cleavage of the Si-O bonds that attach the indicator to the silica gel surface. At pH ≤ 7.5, no signal 

decrease was observed over many hours. Notably, pH response is broader and quenching at basic 

pH is less effective than in solution or in the poly(HEMA) beads. This may be related to 

stabilisation of the cationic acidic form by the negatively charged silica gel surface. Other effects 

may also contribute to the observed phenomenon. In fact, Gao et. al. [228] demonstrated that 

fluorescence of a rhodamine dye bound to a silica gel surface can be enhanced at increasing pH.  

The sensor based on poly(HEMA) beads shows very strong quenching at basic pH and a sharper 

response at pH 5-7, thus offering excellent sensitivity in this range. It is highly suitable for 

probing biotechnological samples.  

 

Photostability 

 

We expected the electron-withdrawing pentafluorophenyl group to suppress photooxidation and 

therefore improve the photostability of the rhodamines 1 and 2, compared to 3. However, the 

opposite effect was found for 1-3 in aqueous solution (figure 3-6) where 1 and 2 showed 

measureable photodegradation when illuminated with a high-power 525nm LED (3W). This 

suggests a non-oxidative mechanism as main photodegradation pathway. Therefore, worse 

photostability can be a drawback in the current system based on pentafluorophenylrhodamines, 

compared to the “classical” rhodamines carrying 2’-carboxyphenyl substituents. However, the 

sensors based on 1 and 2 are still very robust under the employed measurement conditions. In 

fact, continuous illumination with a standard 5 mm 525 nm LED over > 5 h caused no changes in 

the fluorescence signal. Note that for practical applications, continuous illumination is often not 

necessary so that measurement can be carried out for a much longer time before recalibration is 

required. Indeed, if long-time application and high light densities are required, the photostability 

of the sensors might become an issue. 
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Figure 3-6: Photodegradation profiles (approximated with monoexponential decay) of 1-3 in aqueous buffer 

solution (100 mM; pH = 7.5) when illuminated with a 525 nm high-power LED (3 W). The solutions (3 ml) were 

placed in a glass cuvette and irradiated in a fixed position with respect to the light source. The photodegradation 

profiles were obtained by monitoring the absorption spectra in the absorption maximum of each dye. Dye 

concentration was adjusted so that A525 = 0.4 for all dyes.  
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Dually Lifetime Referenced pH-sensor 

 

For practical applications, an optical sensor based on fluorescence intensity requires referencing. 

One possibility is the combination with a luminescent reference material and interrogation by 

phase fluorimetry (dual lifetime referencing, DLR) [16,17]. The observed phase shift is then a 

function of the ratio between luminescence intensity of the fluorescent indicator and the 

luminescent reference material. Cr(III)-doped Al2O3 (“ruby”) was chosen as a reference material 

because it is spectrally compatible with the sensor particles and the light source (525 nm LED; 

figure 3-7A) and features good chemical stability and photostability. A typical measurement with 

pH-sensitive silica particles as sensitive material is shown in figure 3-7B. The referenced sensor 

shows excellent response and reversibility.  
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Figure 3-7: Properties of the DLR pH sensor (pH-sensitive silica gel beads:ruby 1:6 w/w in a 10 µm thick D4 

hydrogel layer): A: Normalised luminescence excitation (dashed lines) of the rhodamine linked to silica gel 

particles and of ruby; luminescence emission (solid lines) of the DLR sensor at two different pH (both spectra 

were normalised dividing by the largest intensity count measured at pH 3.9), recorded with a spectrofluorimeter 

(λEXC  = 525 nm). The transmission of the excitation filter (500-540 nm) and emission filter (> 630 nm) are 

visualised by striped areas. B: pH-response curve recorded by phase modulation fluorimetry (550 Hz). 

 

Conclusion 
 

A new class of pH-sensitive rhodamines has been presented. Their pH-sensitivity originates from 

photoinduced electron transfer (PET) from non-protonated amino groups to the excited 

chromophore. Concerning synthetic accessibility and performance as pH-indicators, they at least 

equal to the pH-sensitive rhodamines employing lactame-formation which have been extensively 

studied [39,40,215-217]. The dyes are suitable for pH monitoring not only in the dissolved state, 

but also as indicators in pH sensors. In contrast to the rhodamine bearing a 2,4-dicarboxyphenyl 

group (dye 3), the new indicators carry a pentafluorophenyl group which enables facile and 

effective grafting via “click” chemistry. Furthermore, the sensitive properties of the new indicators 

are not affected by pH-dependent lactonisation, while almost complete lactonisation in the same 
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environment was detected for 3. Sensors with covalent indicator linkage have been successfully 

prepared based on two matrix materials, silica gel and poly(2-hydroxyethylmethacrylate). Both 

sensors feature bright fluorescence (ΦF ≈ 0.6) and their sensitive range perfectly matches the pH 

range of interest for many biotechnological applications (i.e. pH 5-7). They also show good 

response times, repeatability and long-term stability. For practical applications, a dually lifetime 

referenced sensor has been presented. Cross-sensitivity to ionic strength causes small to 

moderate errors (generally 0-0.1, at most 0.2 pH units), provided that the ionic strength is 100-

500 mM, which is the case in most biotechnological applications. Although photostability is 

impaired by the pentafluorophenyl group, it does not compromise the applicability of the sensors 

under the tested conditions which can be used for a long time without a measurable signal 

decrease. 
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Supplementary Information 
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Figure 3-S1: Absorption spectra (left) and fluorescence spectra (right) of 2 in aqueous buffer solution (ionic 

strength 100mM) at different pH. Dye concentration was 2µM when recording absorption and 0.05µM when 

recording fluorescence spectra. 
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Figure 3-S2: Absorption spectra (left) and fluorescence spectra (right) of 3 in aqueous buffer solution (ionic 

strength 100mM) at different pH. Dye concentration was 2µM when recording absorption and 0.05µM when 

recording fluorescence spectra. 
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Sensor Response Curves 
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Figure 3-S3: Reversibility and repeatability of the sensor based on silica gel beads in D4® hydrogel. Signal drift 

and irreversible response are only observed at high pH values (>8) which are essentially outside the sensitive 

range. 
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Figure 3-S4: Reversibility and repeatability of the sensor based on cross-linked poly(HEMA) beads linear 

poly(HEMA). They are good over the whole investigated pH range (pH 3-10). 
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Preface to Chapter 4 
 

The pH-sensors based on diketopyrrolo[3,4-c]pyrroles (DPPs) presented in this section bring 

above all two new elements to this thesis: 

Firstly, phenoxides are used as PET groups instead of amines. Interestingly, amines were found 

not to cause quenching of DPPs, while very effective quenching is caused by the phenoxides. The 

use of phenoxides, together with the employment of three different immobilisation matrices 

(Hydromed D4® polyurethane hydrogel layers, poly(2-hydroxyethylmethacrylate) layers and 

Eudragit RL100® nanoparticles) allows covering a broad pH-range of pH 4 – 10, while only pH < 

7 are well measurable with the sensors presented in chapters 1 – 3. Sensitive range tuning is 

possible by varying the PET group and the immobilisation matrix and therefore expected to be 

applicable in the same way with the fluorophores presented in sections 1 – 3. In the absence of a 

PET group, there is another pH-dependent equilibrium in DPPs associated with deprotonation of 

the lactam nitrogen at pH > 10, making the sensors even more flexible and potentially applicable 

at strongly basic pH for which few pH-probes are available.  

Secondly, when DPPs are combined with reference fluorophore Macrolex® Fluorescence Yellow, a 

ratiometric pH-sensor suitable for readout with a simple RGB camera is obtained. The 

nanoparticle-based sensors were successfully employed for fluorescence imaging in (micro)fluidic 

systems. That makes up the first demonstration of practical applicability of the pH-sensors 

developed in this thesis. Because the reference dye is used as donor in Förster resonance energy 

transfer (FRET), excitation efficiency and therefore brightness of the sensor are significantly 

improved, overcoming the moderate intrinsic brightness of DPPs. 

The drawback of the DPP-based sensors is in their poor signal reproducibility and in drifting 

measurement signals. That is probably caused by modest photostability of the sensors and by 

migration and aggregation of the indicator dye which is not covalently coupled. Notably, 

significantly better photostability was found for similar DPPs in non-aqueous systems. Even when 

measured at very low light intensities, the DPP-based sensors show unstable behaviour over time, 

with signal drifts similar to those observed for tetraphenoxy-PBIs (chapter 1). Though not critical 

for the short application times typical for many fluidic applications, signal instability still 

constitutes a very significant limitation. This is therefore another example for non-covalent 

entrapment of highly hydrophobic or poorly soluble dyes resulting in poor sensor performance. 

Solubility of the DPP-probes is limited due to interactions involving hydrogen bonds at the lactam 

units. However, preliminary experiments with N-alkylated DPPs showed that they cannot be 

made pH-sensitive by the same method as non-alkylated DPPs. Hence improving solubility and 

covalent probe coupling are difficult as there are no functional groups available. Further 

optimisation of the DPP-based sensors was therefore not carried out. 
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Fluorescent Materials for pH Sensing and Imaging Based on Novel 

1,4-Diketopyrrolo-[3,4-c]pyrrole Dyes 
 

This chapter was published in Journal of Materials Chemistry C, 2013, 1, 5685–5693; doi:  

10.1039/c3tc31130a. 

 

Authors: Daniel Aigner, Birgit Ungerböck, Torsten Mayr, Robert Saf, Ingo Klimant 

and Sergey M Borisov 

 

New optical pH-sensors relying on 1,4-diketopyrrolo-[3,4-c]pyrroles (DPPs) as fluorescent pH-

indicators are presented. Different polymer hydrogels are useful as immobilisation matrices, 

achieving excellent sensitivity and good brightness in the resulting sensor. The operational pH 

can be tuned over a wide range (pH 5 – 12) by selecting the fine structure of the indicator and the 

matrix. A ratiometric sensor in the form of nanoparticles is also presented. It is suitable for RGB 

camera readout, and its practical applicability for fluorescence imaging in microfluidic systems is 

demonstrated. 

The indicators are available starting from the commercially available DPP pigments by a 

straightforward concept employing chlorosulfonation and subsequent reaction with amines. Their 

sensitivity derives from two distinct mechanisms. At high pH (> 9), they exhibit a remarkable 

alteration of both absorption and fluorescence spectra due to deprotonation of the lactam 

nitrogen atoms. If a phenolic group is introduced, highly effective fluorescence quenching at near-

neutral pH occurs due to photoinduced electron transfer (PET) involving the phenolate form.  

 

Introduction 
 

pH is one of the key parameters in medical, environmental and life sciences. Despite the strong 

performance of electrochemical pH-sensors, optical pH-sensors have proved invaluable in 

numerous important applications. They possess numerous advantages including for example 

greater ease of miniaturisation and the possibility of contactless measurement. Moreover, optical 

probes enable imaging applications [17,99,229-231]. These features are particularly attractive in 

high-throughput screening and for probing small samples such as living cells or sub-cellular 

structures [83,101].  

Optical pH-sensors typically consist of a pH-sensitive dye (i.e. a pH-indicator) immobilised in a 

polymer matrix which has to provide suitable mechanical and adhesive properties, together with 

sufficient water uptake. Although most optical pH-indicators are essentially (de)protonable 

chromophores [20,45,152], those with proton receptors separated from the chromophore have 

also found numerous applications. They are the most flexible in terms of rational dye design since 

the chromophore and the receptor can be selected independently. Most frequently, they take 

advantage of the photoinduced electron transfer (PET) [60,62] process. Though PET is an 

extensively investigated effect, in most publications it is introduced by amine functionalities [64] 

[55,77,102], while phenolic groups have attracted comparatively little attention. In 1997, Gareis et 

al. [66] presented a boron-dipyrromethene (BODIPY) pH-indicator with a phenolic proton 

receptor. Most comparable systems have relied on the BODIPY chromophore since then 

[76,78,232].  
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Derivatives of 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole, often referred to as DPPs, are 

chemically stable, brightly fluorescent [233] molecules that have found a variety of applications. 

While the parent compounds are commonly used pigments, the attachment of suitable 

substituents yields readily soluble fluorescent dyes. Alkylation of the lactam nitrogen atoms is 

most effective in this regard since hydrogen bonding interactions are suppressed. DPP-based dyes 

and pigments have been used as high-performance colorants in prints and inks, as components of 

solid-state dye lasers [132,234-237] and more recently in the field of organic optoelectronics. 

Particularly, DPP-containing conjugated polymers [133,238,239] and small molecules [134] have 

found extensive use in Organic Field Effect Transistors (OFETs) [240,241] and Organic Solar Cells 

[242,243]. DPP dyes are also particularly promising for the design of two-photon excitable 

fluorophores [135,244]. A few DPP-based fluorescent probes and sensors for fluoride [245], 

cyanide [246], thiols [247] and molecular hydrogen [248] have been developed. The DPP-based 

probe presented by Yamagata et al. [249] is suited for detecting strong acids in organic solvents, 

rather than measuring near-neutral pH in aqueous solution. Recently, we presented carbon 

dioxide sensors that exploit the deprotonation of the lactam nitrogen atoms in DPPs [24]. The 

same mechanism is useful for the determination of comparatively high pH (> 9), as will be 

demonstrated in this work. Furthermore, we present – to the best of our knowledge for the first 

time – DPP-based pH-sensors that operate at near-neutral pH. They rely on PET from phenolate 

groups to the chromophore.  

 

Results and Discussion 
 

The preparation of the new pH-indicators and sensors is shown in figure 4-1. The indicators 2 and 

3 feature phenolic PET groups. 4 carries a morpholino group for solubilisation and is an example 

of a DPP pH-indicator relying on deprotonation of the lactam nitrogen.  

 

Indicator Syntheses 

 

The indicators 2 - 4 can be easily prepared in a single step starting from commercially available 

1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole. Notably, the reaction conditions applied afforded 

only monosulfonated products. Doubly sulfonated products are formed under harsher reaction 

conditions [24]. The intermediate, a sulfonyl chloride, can yield a large variety of sulfonamides, 

depending on the amine it is reacted with. The synthetic concept employed is simple and versatile 

as it is applicable for any class of chromophore that can withstand chlorosulfonation. It is useful 

for tagging a large variety of structures and is not limited to the preparation of pH-indicators, 

which has been the main focus of this work. 

The modest yields (13 – 22%) are due to difficulties in purifying the products by column 

chromatography. They strongly bind to the stationary phase and are hard to elute completely. 

Nevertheless, all products could be easily isolated in sufficient amounts starting from the cheap 

commercial pigment. 
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Figure 4-1: Scheme for the preparation of the fluorescence pH-sensors in this work.  

 

Indicator Properties 

 

Spectral properties of the DPP sulfonamides 2 - 4 in comparison to the starting material are listed 

in table 4-1. The attachment of a sulfonamide group results in bathochromically shifted and less 

structured absorption bands, while the Stokes shifts are significantly enlarged. Despite that 2 – 4 

are not N-substituted their solubilities exceed 2 g / l in N,N-dimethylformamide and 

tetrahydrofuran. This is dramatically higher than for pigment 1 which is virtually insoluble in 

these solvents at 25 °C. Note that for the majority of applications requiring soluble DPPs, N-

substituted derivatives are used. However, our preliminary experiments indicated that 

chlorosulfonation of a N,N’-dialkylated DPP (N,N’-di(2-ethylhexyl)-1,4-diketo-3,6-

diphenylpyrrolo[3,4-c]pyrrole) and subsequent reaction with 4-amino-2,6-dichlorophenol did not 

yield a pH-indicator. 

 

Table 4-1: Spectral properties of the DPP dyes in tetrahydrofuran: λmax abs – wavelengths of the absorption 

maxima; ε - molar absorption coefficients; λmax em - wavelengths of the fluorescence emission maxima; ΦF - 

relative fluorescence quantum yield; n.d. - not determined; n.m. – not measureable (2 and 3 are virtually non-

fluorescent in the phenolate form). Acidic/basic denotes 0.1% (V/V) trifluoroacetic acid / 1 mM 

tetrabutylammonium hydroxide. 

Dye λmax abs(ε·10-4) / nm (M−1·cm−1) 
acidic / basic 

λmax em / nm 
acidic / basic 

ΦF  

acidic/basic 

1 468(2.95), 502(3.91)  514, 552 n.d. 
2 509(2.23), 543(2.40) / 575(1.88), 606(2.16)a 580 / n.m. 0.70 / n.m. 
3 508(1.74), 541(1.86) / 575(1.60), 606(1.86)a 577 / n.m. 0.66 / n.m. 
4 509(2.02), 541(2.14) / 391(0.95), 584(1.89), 619(2.39) 576 / 679 0.71 / 0.08 

a The bathochromically shifted spectra correspond to the dianionic form (both phenol and lactam are 
deprotonated). The absorption of the monoanionic form (only phenol is deprotonated) is not shifted with 

respect to the acidic form (figure 4-3). 
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The pH-sensitivity of the DPP indicators is associated with two distinct mechanisms, as 

illustrated in figure 4-2. 2 and 3 are subject to photoinduced electron transfer (PET) when the 

phenolic group is deprotonated. The result is fluorescence quenching around the pKA of the 

phenolic group (that is, pH 5.9 – 9.3, table 4-2). No alteration of the absorption spectra at all is 

observed (figure 4-3), indicating that the effect is solely PET. Importantly, the quenching is 

extremely efficient (virtually no fluorescence from the deprotonated form is detected) which 

indicates that phenolates are suitable proton receptor groups for designing fluorescent pH-

indicators. Thus they represent a very promising alternative to the much more common amino-

based receptors.  

Fluorescence quenching of 4 occurs at higher pH (9.7 – 11.6, figure 4-4) and is clearly 

accompanied by a bathochromic shift in absorption and fluorescence spectra. This effect is caused 

by deprotonation of the lactam nitrogen within the chromophore [24]. Similar changes in the 

absorption spectra can also be observed for 2 and 3 at higher pH. The absorption spectra shown 

in figure 4-2C correspond to the neutral and the monoanionic form of 4. Note that the monoanion 

exhibits weaker but clearly detectable fluorescence. Under more basic conditions, a further 

bathochromic shift is observable, which originates from partial deprotonation of the second 

lactam nitrogen, resulting in the dianion.  

Notably, the sulfonamide moiety itself can also undergo deprotonation. Typical pKA values would 

be in the range 8 – 11 for structures comparable to 2 and 3 [250,251]. Such a deprotonation 

mechanism may contribute to their pH-sensitivity to some extent. The anion formed, a 

sulfonimide, is in protolytic equilibrium with the phenolate form shown in figure 4-2. Note that 

the sulfonamide group in 4 cannot be deprotonated and its pH-sensitivity is thus related 

exclusively to lactam deprotonation. 
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Figure 4-2: Mechanisms causing pH-sensitivity in the DPP-based indicators. 
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Figure 4-3: pH-dependent absorption (A, C) and fluorescence (B, D) spectra of the DPPs 2 and 4. Since 2 and 3 

feature virtually identical spectral properties and differ only by their sensitive pH ranges, 3 has been included in 

the supplementary information (figure 4-S1) only. Spectra were recorded in ethanol/aqueous buffer (ionic 

strength 100 mM) solution 1:1 (V/V). pH values are those of the aqueous buffer used. DPP concentration was 20 

µM for absorption and 4 µM for fluorescence measurements. 
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Figure 4-4: A: pH calibration curves of the DPP indicators in ethanol/aqueous buffer (ionic strength 100 mM) 

solution 1:1 (V/V); pH values are those of the aqueous buffer used. B: Corresponding fluorescence calibration 

curves for the solution (λEXC = 540 nm, observed at 595 nm); C, D: pH calibration curves based on fluorescence in 

planar sensors (dye content 0.25%; C in D4® hydrogel; D in poly(2-hydroxyethylmethacrylate), E: Calibration 

curves in RL100 sensors beads dispersed in aqueous buffer (dye content 0.5% (w/w), bead concentration 0.2 mg / 

ml).  
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Table 4-2: pH1/2, the pH values at which half of the pH-dependent signal change is effective, based on absorption 

(Abs.) and fluorescence (Fluo.), corresponding to the calibration curves in figure 4-4. n.d. denotes not determined. 

Dye EtOH/H2O 1:1 (V/V) D4 poly(HEMA) RL100 
 pH1/2  

(Fluo.) 
pH1/2  

(Abs.) 
pH1/2  

(Fluo.) 
pH1/2  

(Abs.) 
pH1/2  

(Fluo.) 
pH1/2  

(Fluo.) 
2 6.49a 11.3b 7.76a n.d.c 7.08a

 5.88a  

3 7.63a 11.3b 9.34a n.d.c 8.36a 7.62a 

4 9.75b 9.88b 11.1b 11.6b 11.1b 9.65b 

a corresponds to deprotonation of the phenolic PET group 
b corresponds to deprotonation of the lactam nitrogen 

c The doubly charged basic form is quickly leached out of the sensor 
 

The photostability of the DPPs has been investigated and compared to reference dyes which 

represent two of the most commonly used types of pH-indicators. It is vastly superior to that of 

fluorescein octadecyl ester (figure 4-5). Compared to HPTS (8-hydroxypyrene-1,3,6-trisulfonate), 

a highly photostable pH-indicator, DPPs are degraded 3 – 4 times faster under the same 

illumination conditions. Photostability is greatly increased (dye degraded > 20 times slower) in 

deoxygenated samples which implies an oxidative photo-degradation pathway or may involve 

photosensitised singlet oxygen. No degradation at all was observed for the phenolate form of 2. 

That could be because PET causes fast quenching, leaving little time for degradation in the excited 

state.  
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Figure 4-5: Photodegradation profiles of the DPP dyes, compared to fluorescein octadecyl ester and 1-

hydroxypyrene-3,6,8-trisulfonate (HPTS) in the form of an ion pair with tetraoctylammonium. The solutions in 

tetrahydrofuran (for HPTS, 0.02 mM tetraoctylammonium hydroxide in the form of an 1 M methanolic solution 

was added) were illuminated with an 458 nm high-power LED array. The decay rates compared to 2 are 0.92 for 

3, 1.12 for 4, 0.31 for HPTS ion pair and 6.1 for FODE. 

 

pH-sensing Materials 

 

The pH-indicators have been immobilised in polymer matrices to obtain pH-sensors. The host 

materials are Hydromed® D4 (a commercially available polyurethane-based hydrogel) and poly(2-

hydroxyethylmethacrylate) (p(HEMA)) in the form of planar sensors and Eudragit® RL100 (a 

positively charged acrylate polymer) in the form of sensor nanobeads (typical average size 30 

nm). The sensors are promising not only due to their high brightness and sensitivity, but in 
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particular because their sensitive range can be tuned by selecting the indicator structure and the 

matrix (table 4-2, figure 4-4). The PET-based indicators 2 and 3 can tackle pH 5 – 10. 

Monochlorinated 3 covers higher pH than dichlorinated 2. The basic form of the indicator is 

negatively charged and thus most effectively stabilised by the cationic RL100 matrix and least 

effectively stabilised by the comparatively hydrophobic D4; this results in pH1/2 values increasing 

in the same order. The pH-range covered by 2 and 3 in those matrices meets the one of interest to 

the most relevant applications for pH-sensors, namely medical applications (physiological pH 7 – 

7.5), marine science (optimal pH 7.5 – 8.5) and biotechnological process monitoring (pH 5 – 7, 

depending on the process). 4 enables measurement at pH 9 - 12, a range that is more seldomly 

addressed but is of importance to applications such as concrete quality testing. In this pH-range, 

the choice of already available pH-indicators is rather limited.  

In practical applications, not only the sensitive range of a fluorescence sensor is of importance but 

also referencing possibilities. Referencing can make the signal independent on the optical path 

length, the efficiency of the light source and the guidance of light to the detector. Therefore, a 

ratiometric pH-sensor employing the commercially available coumarin Macrolex Yellow (3-(5-

chloro-2-benzoxazolyl)-7-(diethylamino)-2H-1-benzopyran-2-one) as a reference dye has been 

developed. In this approach, the reference dye is excited, its excitation energy is partially 

transferred to the DPP pH-indicator dye by Förster resonance energy transfer (FRET) and the 

emission ratio between both dyes is detected. The referenced system is particularly promising 

since it can be read out with a simple RGB-CCD camera (figure 4-S2 in the supplementary 

information). Imaging with RGB cameras is becoming increasingly popular [252-254]. Its 

sensitive range is very similar to the non-referenced analog, as demonstrated in figure 4-S3.  

 

Planar Sensors  

The usefulness of the planar ratiometric sensors is demonstrated in figure 4-6 – fluorescence 

imaging was successfully performed over an application time of > 0.5 h. However, limitations 

were revealed when the long-term performance of the planar sensors was examined in a fiber-

optic measurement setup with a LED light source. A significant decrease of the indicator signal is 

observable if a sensor based on 2 or 4 is measured over several hours (6% per hour for 2, 14% per 

hour for 4; visualised in the ESI, figures 4-S4 and 4-S5, respectively). This signal drift is also 

present in the ratiometric system. It is strongly intensified when measurement is carried out 

under continuous illumination and it is accompanied by a diminishment in the DPP absorption 

band. That implies photo-degradation is an important factor for the signal drift. However, no 

significant dependence on illumination time was found if that time is generally short (a fraction of 

< 1% of the overall measurement time) and minimal emission intensity of the light source is 

applied. That suggests that other effects like dye aggregation or migration can also cause 

unwanted signal drift and become dominant at lower light intensities. Consequently, the DPP-

based pH-sensors in the planar format are limited to applications requiring short times and low 

light densities.  
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Conclusions 

 
In conclusion, new pH-sensors have been presented that exclusively rely on fluorescent dyes and 

host polymers which are either commercially available or can be prepared from commercially 

available compounds in a single, simple reaction step. By properly selecting the sensor 

components, one can tune the sensitive pH-range of the material to cover a broad region (pH 5 - 

12). This pH-region meets the requirements of a vast majority of pH-sensor applications. While 

sensors in the planar format are limited to short-time applications, sensitive nanobeads in 

Eudragit® RL100 polymer are most promising for practical applications in (micro)fluidic systems 

and even for fluorescence imaging and microscopy. By taking advantage of a ratiometric 

approach, good compatibility with a simple RGB camera for readout is accomplished.  

Beyond the presented new pH-sensors, this work highlighted the usefulness of the tools employed 

for rational dye design. The phenolate proton receptors have been demonstrated to be very 

efficient quenchers operating via Photoinduced Electron Transfer and represent a promising 

alternative to the more commonly used amino-receptors. They can be used in combination with 

other fluorophores in order to match the requirements of a particular application considering 

spectral properties or indicator stability. The receptors have been attached by a simple concept, 

i.e. chlorosulfonation and subsequent reaction with amines. Following this concept, a variety of 

functionalities can be tagged to DPPs, making them suitable for probing analytes other than pH 

or targeting particular biomolecular structures. 

 

Experimental 
 

Materials and Methods  

 

1,4-Diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (Irgazin Scarlet) was purchased from Kremer 

Pigmente (http://kremer-pigmente.de/en), Macrolex Fluorescent Yellow from Simon and Werner 

GmbH (www.simon-und-werner.de). 4-Amino-2-chlorophenol was from TCI Europe 

(www.tcichemicals.com), 4-amino-2,6-dichlorophenol from ABCR (www.abcr.de). Solvents used 

for work-up and purification (synthesis grade) as well as buffer salts were supplied by Carl Roth 

(www.roth.de). Deuterated solvents were obtained from Eurisotop (www.eurisotop.com), silica 

gel from Acros (www.fishersci.com). Polyurethane hydrogel D4® was from CardioTech 

(www.cardiotech-inc.com), poly(2-hydroxyethylmethacrylate) (MW = 150000 g / mol), from 

Polysciences Inc. (www.polysciences.com), Eudragit® RL100 from Evonik Industries 

(http://corporate.evonik.de). All other chemicals were form Sigma-Aldrich 

(www.sigmaaldrich.com). Poly(ethylene glycol terephthalate) support (Mylar®) was from 

Goodfellow (www.goodfellow.com).  

NMR spectra were recorded on a 300 MHz instrument (Bruker) with TMS as a standard. MALDI-

TOF mass spectra were taken on a Micromass TofSpec 2E in reflectron mode at an accelerating 

voltage of +20 kV. Absorption measurements were performed on a Cary 50 UV-VIS 

spectrophotometer from Varian (www.varianinc.com). Fluorescence spectra were recorded on a 

Hitachi F-7000 spectrofluorimeter (www.hitachi.com). Relative fluorescence quantum yields 

were determined at 25 °C using rhodamine 101 (ΦF = 0.98 in ethanol [225]) as a standard. 

Photostability measurements were performed by irradiating the samples with the light of a 458 
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nm high-power LED array (10W input power, www.led-tech.de) focused through a lens purchased 

from Edmund optics. The photodegradation profiles were obtained by monitoring the absorption 

spectra.  

pH-imaging was performed using a RGB-CCD camera (Marlin F201C, Allied Vision Technologies, 

http://www.stemmer-imaging.de) equipped with a Xenoplan 1.4/23 objective lens 

(http://www.schneiderkreuznach.com). For images taken on the fluorescence microscope (Zeiss 

Axiovert 25 CFL, http://corporate.zeiss.com), a blue ultrabright LED with emission maximum at 

λ = 450 nm (Luxeon lambert emitter, blue, 5 W) was applied as the excitation light source and 

combined with a filter set-up consisting of Linos DT blue/Linos DC blue/Schott OG 515 (LINOS 

Photonics, Göttingen, Germany; Schott, www.schott.com) as the excitation filter/dichromatic 

mirror/barrier filter, respectively. Image acquisition was performed with the software AVT 

SmartView (http://www.alliedvisiontec.com). Matlab R2008a (www.mathworks.com) was used 

for image processing. The color channels of the obtained images were separated and the 

ratiometric images were obtained by dividing the red by the green channel.  

Microfluidic flow-through experiments were performed using a custom made flow cell or a 6 

channel μ-Slide (ibidi µ-Slide VI 0.4, http://ibidi.com), which was connected to a syringe pump 

(model 540060, TSE systems, www.tse-systems.com).  

The pH of the buffer solutions was controlled by a digital pH-meter (InoLab pH/ion, WTW 

GmbH & Co. KG, www.wtw.com) calibrated at 25 °C with standard buffers of pH 7.0 and 4.0. The 

buffers were adjusted to a constant ionic strength of 100 mM using sodium chloride as the 

background electrolyte.  

 

Syntheses 

 

1,4-Diketo-3-((4-[N-(3,5-dichloro-4-hydroxyphenyl)amino]sulfonyl)phenyl)-6-

phenylpyrrolo[3,4-c]pyrrole (2) 

1,4-Diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (500 mg, 1.73 mmol) was heated in chlorosulfuric 

acid (3 ml) to 60 °C. After 3 h, the mixture was allowed to cool to RT and was added dropwise 

onto ice cubes. The deep orange precipitate was filtered using a Büchner funnel, rinsed with cold 

H2O (0 °C) until pH was neutral and dried by applying a rotary vane pump for 0.5 h. The obtained 

sulfonyl chloride was dissolved in dry N,N-dimethylformamide (30 ml) and 4-amino-2,6-

dichlorophenol (1.25 g, 7.02 mmol, 4 equiv.) and triethylamine (1.94 ml, 13.9 mmol) were added. 

The mixture was stirred for 2.5 h at RT, then 1 M aqueous HCl (150 ml) was added. The 

precipitate was washed with water, dried and purified by column chromatography (silica gel, 40 – 

63 µm) with ethyl acetate / chloroform 75 / 25 as eluent, yield 188 mg (21%). Mp.: Decomposition 

at > 260 °C. UV/VIS absorption: λmax(tetrahydrofuran)/nm 246 (ε/dm3 mol-1 cm-1 37 000), 291 

(32 100), 509 (22 300) and 543 (24 000). IR absorption: νmax/cm-1 3426 and 3320 (NH), 3222 

(OH), 3030-3160 and 2800-2980 (CH), 1676, 1630 and 1595 (CO), 1555, 1488, 1395, 1331, 1283, 

1219, 1156, 1088, 986, 893, 843, 811, 757, 726, 701, 645, 605, 552, 470. NMR (300 MHz, DMSO-

d6, TMS): δH = 11.47 (1 H, s, Ar-H), 10.44 (1 H, s, ArOH), 10.11 (1 H, s, SO2NH), 8.3 - 8.7 (2 H, br 

s, CONH), 8.33 (3 H, d, J = 8.4Hz, Ar-H), 8.26 (1 H, dd, J1 = 7.7 Hz, J2 = 1.1 Hz, Ar-H), 7.70 - 7.86 

(4 H, m, Ar-H), 7.09 (2 H, s, Ar-H). δC = 175.67, 166.14 (C=O); 147.20, 146.29, 139.39, 139.02, 

135.80, 133.54, 132.49, 131.34, 130.49, 130.16, 129.17, 127.65, 126.25, 124.73, 122.64, 120.99, 

110.81, 100.35 (aromatic). MALDI-TOF: m/z [MH+] 528.0190 found, 528.0188 calcd. 
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1,4-Diketo-3-((4-[N-(3-chloro-4-hydroxyphenyl)amino]sulfonyl)phenyl)-6-phenylpyrrolo[3,4-

c]pyrrole (3) 

3 was prepared according to the same procedure as 2, 4-amino-2-chlorophenol (4 equiv.) was 

reacted with the sulfonyl chloride. Column chromatography was performed with ethyl acetate / 

ethanol / 25% aqueous NH3 93 / 7 / 0.33 as eluent, yield 116 mg (14%). Mp.: Decomposition at > 

270 °C. UV/VIS absorption: λmax(tetrahydrofuran)/nm 245 (ε/dm3 mol-1 cm-1 27 200), 291 (23 

800), 508 (17 400) and 541 (18 600). νmax/cm-1 3407 and 3314 (NH), 3225 (OH), 3030-3160 and 

2800-2980 (CH), 2360, 2339, 1677, 1635 and 1593 (CO), 1557, 1507, 1487, 1405, 1332, 1287, 

1202, 1156, 1088, 1053, 953, 895, 843, 820, 757, 726, 701, 614, 597, 544, 496. NMR (300 MHz, 

DMSO-d6, TMS): δH = 11.45 (1 H, s, Ar-H), 10.10 (2 H, d, ArOH, SO2NH), 8.3 - 8.7 (2 H, br s, 

CONH), 8.31 (3 H, dd, J1 = 8.1 Hz, J2 = 2.1 Hz, Ar-H), 8.26 (1 H, dd, J1 = 7.7 Hz, J2 = 1.4 Hz, Ar-

H), 7.70 - 7.86 (4 H, m, Ar-H), 7.06 (1 H, d, J = 2.3 Hz, Ar-H), 6.89 (1 H, dd, J1 = 8.7 Hz, J2 = 2.4 

Hz, Ar-H), 6.85 (1 H, d, J = 8.5 Hz, Ar-H). δC = 175.64, 166.15 (C=O); 150.50, 147.15, 139.79, 

139.16, 135.81, 133.26, 132.46, 131.31, 130.48, 129.24, 128.99, 127.65, 126.67, 124.71, 123.23, 

121.78, 119.54, 116.90, 110.75, 100.36 (aromatic). MALDI-TOF: m/z [MH+] 494.0600 found, 

494.0577 calcd. 

 

1,4-Diketo-3-((4-(1-morpholinyl)sulfonyl)phenyl)-6-phenylpyrrolo[3,4-c]pyrrole (4) 

1,4-Diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (300 mg, 1.04 mmol) was heated in chlorosulfuric 

acid (3 ml) to 60 °C. After 3 h, the mixture was allowed to cool to RT and added dropwise onto 

morpholine (10 ml). The deep red mixture was stirred for 10 min and H2O (80 ml) was added. 

The precipitate formed was thoroughly washed with water, dried and purified by column 

chromatography (silica gel, 40 – 63 µm) with methanol / chloroform 95 / 5 as eluent, yield 170 

mg (22 %). Mp. > 300 °C. UV/VIS absorption: λmax(tetrahydrofuran)/nm 247 (ε/dm3 mol-1 cm-1 

28 000), 292 (27 900), 509 (20 000) and 541 (21 400).  IR absorption: νmax/cm-1 3419 and 3309 

(NH), 3030-3170 and 2780-2980 (CH), 2368, 2339, 1665, 1627 and 1597 (CO), 1554, 1486, 1449, 

1436, 1340, 1325, 1284, 1260, 1161, 1114, 1095, 938, 839, 747, 701, 668, 612, 595, 536, 469. NMR 

(300 MHz, DMSO-d6, TMS): δH = 11.58 (1 H, s, Ar-H), 8.3 - 8.8 (2 H, CONH), 8.50 (2 H, d, J = 

8.7 Hz, Ar-H), 8.36 (1 H, d, J = 7.8 Hz, Ar-H), 8.30 (1 H, dd, J1 = 7.8 Hz, J2 = 1.1 Hz, Ar-H), 7.85 

(3 H, dt, J1 = 8.4 Hz, J2 = 1.9 Hz, Ar-H), 7.77 (1 H, t, J = 7.5 Hz, Ar-H), 3.67 (4 H, t, J = 4.2 Hz, 

OCH2), 2.95 (4 H, t, J = 4.1 Hz, ArNCH2). δC = 175.71, 166.19 (C=O); 147.27, 138.99, 135.81, 

135.01, 133.76, 132.49, 131.34, 130.48, 129.15, 127.66, 127.26, 124.73, 110.90, 100.41 (aromatic); 

65.29 (C-O); 45.92 (C-N). MALDI-TOF: m/z [MH+] 438.10 found, 438.11 calcd.  

 

Preparation of planar sensors 

A “cocktail” containing indicator dye (0.16 mg), hydrogel D4 / p(HEMA) (41 mg) and ethanol / 

water 9:1 (V/V) (500 µl) was knife-coated on a dust-free Mylar support to obtain a ≈ 7 µm thick 

layer after solvent evaporation. Ratiometric sensors were prepared in analogy, using 0.2 mg of 2, 

0.6 mg of Macrolex Yellow and tetrahydrofuran (461 µl) as a solvent.  

 

Preparation of sensor nanoparticles 

Eudragit RL100 (100 mg) was dissolved in acetone (50 ml), indicator dye (1 mg) and Macrolex 

yellow (1.25 mg) were added. Water (300 ml) was added quickly (5 s). Acetone was removed on a 

rotary evaporator and the particle suspension was concentrated to a volume of 50 ml.  
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Figure 4-S1: pH-dependent absorption and fluorescence spectra of 3. Spectra were recorded in ethanol/aqueous 

buffer (ionic strength 100 mM) solution 1:1 (V/V). pH values are those of the aqueous buffer used. DPP 

concentration was 20 µM for absorption and 4 µM for fluorescence measurements. 
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Figure 4-S2: A: pH-dependent fluorescence spectra a planar ratiometric sensor containing Macrolex Yellow (1.5% 

(w/w)) and DPP pH-indicator 2 (0.5% (w/w)). B: Spectral characteristics of the RGB CCD camera. 
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Figure 4-S3: pH calibration curve of the ratiometric sensor beads, i.e. dye 3 (1% w/w) and Macrolex Yellow 

(reference dye; 1.25% w/w) in RL100 (bead content 2 mg / ml in aqueous buffer of ionic strength 100 mM), 

compared to beads containing only 3 (0.5% w/w) – this non-referenced system is also included into figure 4-4 

(main text). 
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Figure 4-S4: Long-time performance of a planar ratiometric sensor containing Indicator 2 (0.5% w/w) and 

Macrolex Yellow (1.5% w/w) in D4 hydrogel, excited with a 450 nm LED (Roithner, www.roithner-laser.com) 

combined with a Schott BG 12 bandpass filter (350 - 465 nm). The reference channel was equipped with 520 / 40 

nm bandpass filter, the indicator channel with a 600 / 50 nm bandpass filter (both from Edmund optics, 

www.edmundoptics.de). Both channels were equipped with separate PMT detectors, i.e. do not represent absolute 

brightness ratios. The planar sensor was placed in a home-made flow-through cell and 100 mM buffer was passed 

through the cell, flow rate 1ml / min. Cell temperature was kept constant at 25 °C. The sensors were interrogated 

with a two-phase lock-in amplifier (SR830, Stanford Research Inc., www.thinksrs.com) equipped with a PMT 

detector (H5701-02, Hamamatsu, www.sales.hamamatsu.com). Illumination time was 1% of the measurement 

time. 
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Figure 4-S5: Long-time performance of a planar sensor containing 4 (0.4% w/w) in D4 hydrogel, excited with a 

525 nm LED combined with a 520 / 40 nm bandpass filter (Edmund Optics) and a Schott OG 550 nm longpass 

filter before the detector. Measurement was carried out as stated near figure 4-S4. 
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Figure 4-S6: -calibration curve of pH-nanosensor beads containing dye 3 (1% w/w) and Macrolex yellow 

(reference dye; 1.25% w/w) in RL100 polymer. The beads were read out under the fluorescence microscope 

employing a RGB-CCD camera. Response curve and images are shown in figure 4-7.   
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Preface to Chapter 5 
 

In previous experiments, phenoxides proved highly flexible for tuning the sensitive range of 

optical pH-sensors and they turned out to quench some flurophores more effectively than amines. 

That was found not only for DPPs (chapter 4) but preliminary experiments also showed that 1-

aminoPBIs and tetraphenoxy-PBIs are completely quechned by phenoxides but only partially 

quenched by amines located in the imide position. In this section is confirmed that phenoxides 

generally are more effective quenchers than the more frequently used amines and thus make a 

larger number of fluorophores accessible to pH-sensing. Fluorescent dyes with phenoxides and 

amines linked to the same fluorophore in a manner as similar as possible reveal more effective 

quenching by phenoxides in basic solution under defined conditions for fluoresceins, rhodamines, 

DPPs, tetraphenoxy-PBIs and 1-amino-PBIs. It is also confirmed that equal PET groups bring 

similar calibration curves even when linked to structurally very different fluorophores, indicating 

that assembling fluorophores and PET groups in a modular way is an effective, predictable 

method to obtain pH-probes with selectable spectral properties and sensitive pH-range. The PET 

groups are attached in the form of aminophenols which are compatible with many conjugation 

reactions and many of which are commercially available. A variety of simple reactions including 

coupling of activated carboxylic acids and sulfochlorides with amines is employed. Those 

reactions are typical for bioconjugation and fluorescent labelling and are easy to perform utilising 

bioconjugation “kits”. Consequently, a large number of tailor-made pH-probes is accessible by 

simple strategies which are convenient to perform and do not require a profound expertise in 

organic synthesis.  

As electrochemical experiments reveal, the less positive oxidation potential of phenoxides 

compared to amines is probably not the sole reason for their higher effectiveness as quenchers, 

but kinetic aspects may play a significant role. Indeed, the low PET efficiencies of the 1-

aminoperylene bisimdes and rhodamines carrying amines investigated in this chapter contrast 

the results in chapters 2 and 3 where very high efficiencies were found for the same fluorophores 

with amino groups attached in different positions.  

In the majority of the cases where quenching by PET is partial, the basic form exhibits a shorter 

fluorescence decay time than the acidic one. Note that shorter decay times may not be observable 

if quenching is very effective as the fluorescent signal of the basic form is too weak and only 

residual fluorescence of the acidic form or background fluorescence is measurable.  
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Enhancing Photoinduced Electron Transfer Efficiency of 
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Photoinduced electron transfer (PET), which causes pH- and environment-dependent quenching 

of fluorescent dyes, is more effectively introduced by phenoxide groups than by amino groups 

which have been much more commonly used so far. That is demonstrated in fluorescence and 

electrochemical measurements involving several classes of fluorophores. Consequently, the 

attachment of phenolic groups allows for fast and simple preparation of a wide selection of 

fluorescent pH-probes with tailor-made spectral properties, sensitive ranges and individual 

advantages, so that the needs of a large number of applications can be met. Fluorophores carrying 

phenolic groups may also be used for sensing analytes other than pH or molecular switching and 

signalling. 

 

Introduction 
 

Rational dye design is a key issue in molecular recognition, (super)molecular signalling and 

optoelectronics. “Modules” capable of a certain function such as interacting with an analyte [1] 

(pH, cations, carbon dioxide, glucose or complex biomolecules like proteins), molecular switching 

[256-258] or charge generation [259,260] are attached to or integrated into a chromophore. 

Photoinduced electron transfer (PET) [57,60,61] is a process that can enable all of these 

processes. A functional group capable of PET undergoes a redox process involving the excited 

state (but not ground state) of a chromophore. In fluorescent dyes, this results in fluorescence 

quenching as the process is quickly reversible. The charge separation implied is thus short-lived 

but can be taken advantage of in photovoltaics.  

In this work, we focus on fluorescent dyes suitable for sensing pH (“probes”). We also aim on 

providing insights into the PET process in general which may be helpful for the design of dyes and 

materials applying PET for other purposes. PET-based fluorescent probes and sensors have been 

presented mostly for recognising ions [26,96,261-263], but also for measuring pH 

[41,55,59,83,189]. Those probes and sensors are of great potential for application in diagnostics, 

life sciences, environmental analytics or industrial process control. In most PET-based probes, 

fluorescence quenching is caused by an alkylamino group. Upon protonation of the amine or 

interaction with a cation, PET is impeded or prevented, which results in fluorescence 

enhancement. Consequently, there is a pH-response affiliated with the deprotonation of the 

phenolic form, thus characterised by the corresponding pKA value, with a usual sensitive pH-

range of pKA ± 1.5. Phenoxide groups can act in the exactly same way, as was first demonstrated 

by Gareis et al. by means of a phenol-modified boron-dipyrromethene (BODIPY) dye [66]. Yet, 

only a few examples of pH-probes carrying phenolic PET groups have been presented so far, most 

of which are BODIPY dyes [67,76,232,264,265]. Notably, dyes with phenolic groups fully 
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integrated into the chromophore are not commonly considered true PET probes since the redox 

properties of the chromophore itself are pH-dependent, even though PET may play a significant 

role in some [73,142].  

Here we present, for the first time, a systematic comparison between fluorescent pH-probes 

carrying phenoxide PET groups and those bearing amines. We show, on the basis of various 

fluorophores, that halogenated phenoxide groups are generally more effective quenchers than 

amines, and they make up a great basis for designing fluorescent probes. Because many phenol 

derivatives are commercially available and they can be attached to numerous dyes by simple 

reactions, probes with tailored properties are available in a convenient way. Their spectral 

properties, sensitive ranges and stabilities can be selected to meet the variable and demanding 

requirements of life sciences and diagnostics. 
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Figure 5-1: Structures and preparation of 1-6 and working principle of photoinduced electron transfer (PET). 

Synthetic conditions: a) CH3SO3H, 145°C, 1 h; b) SO2Cl2, RT, 2 h; c) EDC, NHS, DMF, RT, 1.5 h; R, Et(iPr)2N, 4 h; 

d) R, Et3N, DMF, 16 h, 0 – 25°C; e) ClSO3H, 60°C, 3 h; R; f) RNH2, 2,6-diisopropylaniline, 1-methyl-2-pyrrolidone 

(“NMP”), C2H5COOH, 110°C, 22 h; g) PhOH, K2CO3, NMP, 110°C, 3.5 – 22 h; h) Morpholine, NMP, 40 °C, 2 h. 
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Results and Discussion 
 

Several dye classes with very different spectral (figure 5-1, table 5-1) and chemical properties have 

been selected for this work, including xanthenes (fluoresceins and sulforhodamines), 

diketopyrrolo-[3,4-c]pyrroles (DPPs) and perylene bisimides (PBIs). To introduce PET, both 

halogenated (o-chloro and o,o-dichloro) phenols and tertiarty amines have been attached. Both 

groups are capable of introducing pH-sensitivity, as PET is prevented upon protonation. 

Fluorescence pH-calibration has therefore been selected as the primary evaluation method of the 

PET process. Calibration was carried out in mixtures of ethanol and aqueous buffer (1/1 (V/V)), to 

provide sufficient solubility for all the investigated dyes which include both water soluble and 

highly hydrophobic structures. To further suppress any potential aggregation and other effects 

perturbing the fluorescence measurement (dimerisation, self-quenching), calibration was 

performed in highly dilute (6.10-8 - 2.10-6 M) solution. For all dyes, no or very little (≤ 3 nm) effect 

of buffer pH on maxima and shape of both absorption and fluorescence spectra was found which 

emphasises the absence of major pH-dependent effects other than PET. Only data measured in 

acidic solution is thus stated in table 5-1. 

 

Table 5-1: Absorption and fluorescence maxima and individual advantages of the presented dyes in ethanol/water 

mixture, (5 – 10 mM buffer pH 4.0 added, pH 6.4 for 1A and 1B). Dye concentration was 2 – 20 µM for 

absorption, 0.05 – 2 µM for fluorescence measurement. 

Dye λmax abs (ε 10-4) / nm (M−1·cm−1) 
(EtOH/H2O 1:1 (V/V)) 

λmax fluo / nm 
(EtOH/H2O 1:1 

(V/V)) 

Individual advantages 

1A 513 (8.58) 534 Very bright; two sensitive ranges 
1B 514 (9.07) 535 Very bright 
2A 564 (9.84) 589 Very bright 
2B 567 (9.13) 590  
3A 502 (1.82), 533 (1.84) 591 Well suited for fluorescence 

imaging[266] 
3B 505 (1.66), 535 (1.71) 594  
3C 504 (1.79), 533 (1.81) 589 Well suited fluorescence imaging[266] 
5A 447 (1.44), 541 (2.80), 578 (4.24) 620 Outstanding photostability 
5B 451 (1.30), 541 (2.77), 578 (4.19) 620 Outstanding photostability[267] 
5C 452 (1.21), 543 (3.08), 578 (4.66) 620 Outstanding photostability 
6A 461 (1.60), 662 (1.74) 756 Near infra-red emission 
6B 449 (1.77), 658 (1.85) 761 Near infra-red emission[268] 
 

Quenching caused by PET at basic pH was significantly stronger for the dyes carrying phenolic 

groups (dyes 1-6 a,c) than for those bearing amines (dyes 1-6 b) (figure 5-2, table 5-2). Indeed, 

quenching was almost complete for DPPs 3a and 3c and PBIs 5a, 5c and 6a, while it was partial 

for 5b and absent for 3b and 6b. In the case of xanthenes, partial quenching by phenoxide groups 

but no quenching by amino groups was found. Note that, even though PET is often associated 

with on-off fluorescence quenching [60], partial quenching by PET is not uncommon for certain 

systems in certain environments [267-269]. For tetrachloro-PBIs (such as 4a-c, which are 
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intermediates for the preparation of 5a-c), we had previously found strong quenching by amines 

[270].  

All pH-probes are synthetically easily accessible, xanthene and DPP dyes via a single step, PBIs 

via two simple steps. In particular, the xanthene based-probes were prepared from commercially 

available dyes (Lissamine rhodamine B and 5(6)-carboxy-2',7'-dichlorofluorescein NHS ester). 

These and many other dyes, which have been designed to perform bioconjugation, are widely 

commercially available and easy to handle as “kits”. In this way, pH-probes with selectable 

spectral properties are easily accessible also to the synthetically inexperienced user. This work 

clearly emphasises that phenoxide PET groups are better suited for creating a selection of new 

pH-probes since they can be combined with significantly more fluorophores to yield PET-based 

probes. The phenol-based probes presented here cover a wide range (excitable at 400 – 660 nm, 

emissive at 500 – 750 nm) of the visible spectrum. They feature individual advantages so that 

many applications can be addressed with them. For example, the xanthenes 1A and 2A are very 

bright and compatible with light sources and filters widely used in fluorescence microscopy. Both 

feature sensitivity at near-neutral pH while good photostability can be expected for rhodamines 

and dichlorofluoresceins, in contrast to non-chlorinated fluoresceins. 1A is an example for a probe 

featuring two sensitive ranges and can therefore be applied for measuring both near-neutral and 

acidic pH. Advantages of 3A,C, 5A,C and 6A have been discussed in previous publications, as 

listed in table 5-1.  

Furthermore, since many aminophenols with different substitution patterns are commercially 

available, it is possible to select the pKA value of the resulting pH-probe and thus its sensitive 

range. For instance, the di- and monochlorinated phenolic groups presented here are useful for 

slightly acidic and neutral to slightly basic values, respectively. The similar pKA values for 

fluorophores featuring very different structure and hydrophilicity underline that the sensitive 

range can be selected beforehand depending on the application.  
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Figure 5-2: Fluorescence pH-calibration curves of fluorescent dyes (6.10-8 M in ethanol / aqueous buffer (ionic 

strength 100 mM) 1/1 (V/V)) modified with phenoxide (1-6 a,c) and amine (1-6 b) PET groups. 
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However, probes carrying phenolic groups are not limited to pH-sensing, but also potentially 

useful for measuring carbon dioxide and ions – since the sensitivity in most optical carbon 

dioxide probes is affiliated with the protonation of a phenoxide group [23,271] and PET-based 

indicators (mostly based on amines, so far) have been widely applied for optical sensing of metal 

cations [26,95,96,272]. 

Because PET is a quenching process, we expected that dyes undergoing PET may feature shorter 

fluorescence decay times than their acidic forms which are not affected by PET. While decay times 

are not expected to be pH-dependent in the case of complete quenching since the decay time of 

the basic form is not measureable, we anticipated that a shorter decay time should be detectable 

for dyes undergoing partial quenching. In fact, we found shorter decay times for 1B and 5B, 

indicating that PET is a quenching process that diminishes both fluorescence intensity and decay 

time. For 2B, a biexponential decay curve was found in basic solution and a diminishment in 

decay time could not be verified, indicating that in this case, there may be more than just two 

species contributing to the decay times. Still, pH-probes undergoing partial quenching by PET are 

potentially very useful for quantitative pH measurement and imaging as they enable decay time 

readout and do not require further referencing. Indeed, we have very recently applied that 

concept for live cell pH-imaging [267]. 

 

Table 5-2: pH-sensitive of the presented dyes: ΦF – fluorescence quantum yield; τ – fluorescence decay time. 

Acidic/basic: pH of the buffer added to the ethanol/water mixture (buffer concentration 5 – 10 mM, ionic strength 

50 mM); acidic – pH 4.0, basic – pH 9.4 (for 1A and 1B pH 6.4 and 11.7, respectively). In organic solvents, acidic 

solutions contain trifluoroacetic acid, basic ones ethyldiisopropylamine (0.1% (V/V) each). Dye concentration was 

2 µM for 6a and 6b, 0.05 – 0.3 µM for all other dyes. n.m. – not measureable. 

Dye ΦF  
(EtOH/H2O 1:1 (V/V)) 

ΦF  
(CH2Cl2)  

τ / ns 
(EtOH/H2O  
1:1 (V/V)) 

 Acidic Basic Ratio pKA Acidic Basic Acidic Basic 
1A 0.72 0.48 1.50 4.6a); 8.3   3.9 2.2 
1B 0.79 0.85 0.93 4.4a)   3.9 3.9 
2A 0.4 0.084 4.76 6.2   2.2 2.9; 0.6d) 
2B 0.37 0.35 1.06 --   2.0 2.2 
3A 0.18 < 0.01 > 20 6.3 0.7c) < 0.01c). 5.5 n.m. 
3B 0.29 0.33 0.88 -- -- -- 6.0 6.2 
3C 0.26 < 0.01 > 20 8.0 0.66c) < 0.01c) 3.4 n.m. 
5A 0.16 < 0.01 > 20 5.9 0.99 0.025 5.4 n.m. 
5B 0.38 0.18 2.11 6.3 0.9 0.16 5.8 2.8 
5C 0.56 < 0.01 >50 7.7 -- -- 4.6 n.m. 
6A 0.052 < 0.01 > 20 5.8 0.17 0.038 1.1 n.m. 
6B 0.043 0.051 0.84 (6.7)b) 0.24 0.0055 1.6 1.5 

a) Intrinsic pH-sensitivity of the fluorescein derivative, not related to PET 
b) Slight enhancement of fluorescence at basic pH, not related to PET 

c) In tetrahydrofuran, according to 35 
d) Biexponential fit was required, with 79% abundance for 2.9 ns 
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The thermodynamic driving force of the PET process, -ΔGQ,PET, is given by Weller’s equation: [57] 

 

ΔGQ,PET = EOx,Rec - ERed,Flu - ΔEExc,Flu - EIP 

 

Where EOx,Rec is the first oxidation potential of the PET group (receptor), ERed,Flu the first reduction 

potential of fluorophore, ΔEExc,Flu the singlet excitation energy of the fluorophore and EIP the ion 

pairing energy. Consequently, a high rate for PET, resulting in effective quenching, will be 

observed if the PET group is easily oxidised, the fluorophore is easily reduced and the fluorophore 

is absorptive at short wavelengths [59,61,62]. PET is also more favourable in polar solvents [72]. 

Though kinetic aspects can play a significant role - in particular, PET becomes less effective with 

decreasing distance between fluorophore and PET group, and an adverse nature and orientation 

of molecular orbitals may inhibit the process [65,70,71] - these thermodynamic considerations 

generally enable a valuable estimation whether a PET process will take place.  

We therefore measured the redox potentials of fluorophores and PET groups to determine              

-ΔGQ,PET (table 5-3). Model compounds for fluorophore and PET group were used in some cases, 

as listed in table 5-3 and disussed in the following. 

 

Table 5-3: Redox properties and calculation of PET driving force using model compounds. ΔEExc,Flu (singlet 

excitation energy) is calculated from the fluorescence spectra measured as stated for table 5-2. Redox potentials of 

the model compounds ΔUOx,Rec and ΔURed,Flu were determined from cyclic voltammograms (displayed in the 

appendix) measured in ethanol/water containing K2CO3 (5% w/w), except for DPP-MonoSA and 5A-C which were 

measured in tetrahydrofuran/water 9:1 (V/V) containing K2CO3 (0.2% w/w). (i) denotes irreversible reaction. 

Dye ΔEExc,Flu 
/ eV 

Model Fluorophore ΔURed,Fl / 
V 

Model PET 
Group 

ΔUOx,Rec  / 
V 

ΔGQ,PET  / 
eV 

1A 2.37 2,7-Dichlorofluorescein -1.16 5C 0.64 (i) -0.67 
1B 2.37 2,7-Dichlorofluorescein -1.19 Triethylamine 1.03 -0.25 
2A 2.15 Sulforhodamine B -0.99 5A 0.71 (i) -0.55 
2B 2.15 Sulforhodamine B -0.99 Triethylamine 1.03 -0.23 
3A 2.21 DPP-MonoSAa -0.79 (i) 5A 0.71 (i) -0.81 
3B 2.21 DPP-MonoSAa -0.79 (i) Triethylamine 1.03 -0.48 
3C 2.21 DPP-MonoSAa -0.79 (i) 5C 0.64 (i) -0.87 
4A 2.29 Cl-DAPBIb -0.21 5A 0.71 (i) -1.47 
4B 2.29 Cl-DAPBIb -0.21 Triethylamine 1.03 -1.15 
4C 2.29 Cl-DAPBIb -0.21 5C 0.64 (i) -1.54 
5A 2.07 5A -0.55 5A 0.71 (i) -0.91 
5B 2.07 5B -0.55 Triethylamine 1.03 -0.59 
5C 2.07 5C -0.55 5C 0.64 (i) -0.98 
6A 1.75 MOP3Cl-DAPBIc -0.37 5A 0.71 (i) -0.77 
6B 1.75 MOP3Cl-DAPBIc -0.37 Triethylamine 1.03 -0.45 

a) 1,4-Diketo-3-((4-[N-(2-ethylhexyl)amino]sulfonyl)phenyl)-6-phenylpyrrolo[3,4-c]pyrrole 
b) 1,6,7,12-Tetrachloro-N,N’-di(2,6-diisopropylphenyl)perylene-3,4:9,10-tertracarboxylic bisimide 

c) 1-(4-Morpholinyl-6,7,12-trichloro-N,N’-di(2,6-diisopropylphenyl)perylene-3,4:9,10-tertracarboxylic bisimide 
 

In accordance to the method used by DeSilva and co-workers [59], model compounds available at 

low cost and with presumably very similar photo- and electrochemical properties were measured 

for most fluorophores. The redox potentials of the PET groups may be estimated measuring those 
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of amines and chlorophenoxide or p-aminochloropphenoxide ions. However, since in most of the 

obtained indicators the PET groups are located closely to electron-withdrawing groups (imide, 

sulfonamide, carboxamide), we decided to use 5A-C as model compounds. The oxidation 

potential found for the basic form of 5A (0.708 V) is indeed higher than the one of 2,6-

dichlorophenol (0.56 V, irreversible oxidation) and significantly higher than the one of 4-amino-

2,6-dichlorophenol (-0.09 V, reversible oxidation). Using 5A – in which the phenoxide group is 

substituted by a strongly electron-withdrawing imide group - as model compound should prevent 

an overestimation of -ΔGQ,PET since the other phenoxide groups are not expected to feature 

significantly lower electron densities. In 5B, the oxidation potential cannot be reliably determined 

due to background oxidation. The literature value for triethylamine [59] was used instead. The 

true oxidation potantials of the indicators may be slightly higher due to the presence of β-nitrogen 

atoms carrying electron-withdrawing substituents. Singlet excitation energies were calculated 

form fluorescence spectra as outlined by Ford et al [273]. For the ion pairing energy, the value 0.1 

can be assumed [59,274]  

For all indicators, PET has been estimated to be thermodynamically favourable, even for the 

amines 1-3B and 6B in which no PET was experimentally found. The use of triethylamine as 

model compound may cause an overestimation of -ΔGQ,PET. However, in order to inverse 

thermodynamic favourability for PET in all indicators, the true oxidation potentials of the amines 

should be as high as ≈ 1.5 V (almost 0.5 V higher than for triethylamine), which seems highly 

impropable considering that the amines only differ by a β-amino substituent. Conqequently, even 

though the smaller thermodynamic driving force for PET may play a role in the much lower 

efficiency of the PET process observed with amines, it does not seem convincing as the sole 

explanation. Kinetic aspects may play an additional role and indeed, we had previously found 

highly effective PET both for rhodamines [275] and 1-aminoperylene bisimides [268] carrying 

amino groups in different positions than those investigated in this work. Thus we present here 

another example for how the PET process can be influenced by structural parameters. Effective 

PET requires certain proximity between the HOMO of the donor and the LUMO of the acceptor 

which may be easier to realise with phenoxide systems. Note that amino groups usually require a 

minimum spacer length of two atoms if attached by the easy-to-use techniques presented in this 

work. A single-carbon spacer would results in aminal structures which are unstable. 

 

Conclusion  
 

In conclusion, we have demonstrated that employing phenolic groups causing photoinduced 

electron transfer (PET), pH-probes derived from a wide range of fluorophores can be created, 

featuring selectable sensitive pH-ranges, spectral properties and individual advantages that can 

be selected to meet the requirements of many particular applications. In particular, phenoxide 

PET groups allow much higher flexibility than the much more commonly used amines as they can 

quench many fluorophores at basic pH which are not quenched by amines. The probes are 

accessible via simple reactions similar to those common in bioconjugation chemistry, which 

makes the concept applicable for a wide research field, without requiring a profound expertise in 

synthetic organic chemistry. Fluorophores carrying phenolic PET groups are not limited to pH-

sensing, but can be applied for the numerous other application possibilities affiliated with PET 

such as ion sensing, molecular switching and signaling or organic electronics. 
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Experimental 
 

Materials and Methods  

 

1,6,7,12-Tetrachloroperylene-3,4:9,10-tetracarboxylic bisanhydride was purchased from Beijing 

Wenhaiyang Industry and Traiding Co.Ltd (http://china.zhaoteng.com), 1,4-diketo-3,6-

diphenylpyrrolo[3,4-c]pyrrole (Irgazin Scarlet) from Kremer Pigmente (http://kremer-

pigmente.de/en). The preparation of Cl-DAPBI and DPP-MonoSA is published elsewhere 

[24,270]. MOP3Cl-DAPBI was prepared according to a procedure described previously [268]. 1-

Methyl-2-pyrrolidone was from ABCR (www.abcr.de), chlorophenols from TCI Europe 

(www.tcichemicals.com). Deuterated solvents were obtained form Eurisotop 

(www.eurisotop.com), silica gel from Acros (www.fishersci.com), solvents used for column 

chromatography from VWR (www.vwr.at). Inorganic salts were supplied by Carl Roth 

(www.roth.de). All other chemicals were from Sigma-Aldrich (www.sigmaaldrich.com).  

Absorption measurements were performed on a Cary 50 UV-VIS spectrophotometer from Varian 

(www.varianinc.com). Fluorescence spectra were recorded on a Fluorolog3 spectrofluorimetre 

(www.horiba.com) equipped with a NanoLED 455 nm laser diode and controller for decay time 

measurement. Decay curves were subjected to monoexponential fit using DAS6 software supplied 

by the manufacturer. Relative fluorescence quantum yields were determined using rhodamine 

101, rhodamine B and Nile Red as standards (quantum yields 0.96, 0.65 [225] and 0.27 [197] in 

ethanol, respectively). NMR spectra were recorded on a 300MHz instrument (Bruker) in CDCl3 

with TMS as a standard. MALDI-TOF mass spectra were recorded on a Micromass TofSpec 2E. 

The spectra were taken in reflectron mode at an accelerating voltage of +20 kV.  

The pH of the buffer solutions (phosphate, acetate, TRIS) was controlled by a digital pH meter 

(Seven Easy, Mettler Toledo, www.mt.com) calibrated at 25 °C with standard buffers of pH 7.0 

and 4.0 (WTW GmbH & Co. KG, www.wtw.com). The buffers were adjusted to constant ionic 

strength using sodium chloride as the background electrolyte.  

Electrochemical measurements were performed using a VMP3 electrochemical workstation 

(Biologic) and a multi-necked, air-tight glass cell. The measurements were carried out at room 

temperature. A 1 mm diameter glassy carbon disk (BAS Inc.) was employed as the working 

electrodes. Prior to use the working electrode was polished with 0.05 μm alumina slurry in water 

and rinsed with copious amounts of water and ethanol followed by drying. A platinum wire served 

as the counter electrode. Measurements were performed using a Ag/AgCl reference electrode 

(BAS Inc.). Electrolytes were saturated with Ar prior to the measurements. E1/2 was determined 

from the peak potentials for quasi-reversible processes. For irreversible processes the E1/2  was 

estimated from the half peak potential Ep/2 via E½ = Ep/2 -1.09 RT/nF [276].  

 

3-Chloro-4-hydroxybenzylamine 

4-Hydroxybenzylamine (300 mg, 2.44 mmol) was dissolved in a mixture of 1M hydrochloric acid 

in acetic acid (5 ml) and N,N-dimethylformaide (0.5 ml). Sulfuryl chloride (414 µl, 5.12 mmol) 

was added and the precipitate formed upon stirring (RT, 2 h) was separated by centrifugation, 

washed with acetic acid and methylene chloride and left to dry. The product (containing ≈ 6 % 

impurity) was used without further purification, yield 264 mg (69 %). 1H NMR (300 MHz, 

CD3OD, TMS): δ = 7.44 (d, 1H, J = 1.9 Hz, H(1)); 7.22 (dd, 1H, J1 = 8.3 Hz, J2 = 1.8 Hz, H(2); 6.97 

(d, 1H, J = 8.4 Hz, H(1); 4.00 (s, 2H, H(4)).  
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5(6)-Carboxy-2',7'-dichlorofluorescein  

Trimellitic anhydride (1g, 5.21 mmol) and 4-chlororesorcinol (1.51g, 10.4 mmol) were stirred in 

methanesulfonic acid (25 ml) at 145°C for 1 h. The mixture was allowed to cool to RT and water 

(400 ml) was added. The crude product was washed thoroughly with water (1.5 l), dried and used 

without further purification, yield 2.36 g (98 %). 

 

5(6)-(3-Chloro-4-hydroxy-benzylaminocarboxy)-2',7'-dichlorofluorescein (1a) 

(5,6)-Carboxy-2',7'-dichlorofluorescein (350 mg, 0.62 mmol), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (166 mg, 0.87 mmol) and N-

hydroxysuccinimide (100 mg, 0.87 mmol) were stirred in dry N,N-dimethylformamide (5 ml) for 

1.5 h at RT. To the solution of NHS ester obtained were added 3-chloro-4-hydroxybenzylamine 

(205 mg, 1.30 mmol) and ethyldiisoproylamine (301 µl, 1.73 mmol)). After 4 h, the crude product 

was precipitated and washed with water, dried and purified by column chromatography (silica 

gel, 40 – 63 µm) with methylene chloride / methanol / acetic acid 98 / 2 / 0.25 as eluent. Eluate 

containing product was concentrated to 5 ml, precipitated and washed with water, drying yielded 

211 mg (46 %). 1H NMR (300 MHz, CD3OD containing 0.02 M NH3, TMS): δ = 8.49 (d, 0.5H, J = 

1.3 Hz, H(5a)); 8.01 – 8.15 (m, 1.5H, H(4a,4b,5b)); 7.69 (d, 0.5H, J = 1.0 Hz, H(3b)); 7.33 – 7.39 

(m, 1H, H(3a,7)); 7.30 (d, 0.5H, J = 1.8 Hz, H(7)); 7.16 – 7.22 (dd, 0.5H, J1 = 8.2 Hz, J2 = 2.0 Hz, 

H(9)); 7.11 (d, 2.5H, J = 1.6 Hz, H(2,9)); 6.82 – 6.93 (dd, 1H, J1 = 8.3 Hz, J2 = 14.2 Hz, H(8)); 

6.60 (s, 2H, H(1)); 4.43 – 4.56 (d, 2H, H(6)). MALDI-TOF: m/z [MH+] 584.0069 found, 

584.0071 calcd. 

 

5(6)-(4-Methyl-1-piperazinylcarboxy)-2',7'-dichlorofluorescein (1b) 

After preparing the NHS ester as described for 1a, N-methylpiperazine (175 µl, 1.58 mmol) and 

ethyldiisoproylamine (301 µl, 1.73 mmol)) were added and the mixture was stirred for 4 h. 

Repeated washing with n-hexane afforded an oily residue which was purified by column 

chromatography with methylene chloride / methanol / concentrated aqueous HCl 85 / 15 / 0.375 

as eluent, yield 163 mg (39 %). 1H NMR (300 MHz, CD3OD containing 0.02 M NH3, TMS): δ = 

8.09 – 8.17 (s + d, 1H, H(5a,5b); 7.65 (dd, 1H, J1 = 7.8 Hz, J2 = 1.1 Hz, H(4a,4b)); 7.27 – 7.39 (2d, 

1H, J1 = 7.7 Hz, J2 = 1.2 Hz, H(3a,3b)); 7.10 – 7.19 (2s, 2H, H(2)); 6.59 (s, 2H, H(1)); 7.10 – 7.19 

(2s, 2H, H(2)); 3.5 – 3.9 (m, 4H, H(6)); 2.44 – 3.64 (m, 4H, H(7)); 2.28 – 2.39 (2s, 3H, H(8)). 

MALDI-TOF: m/z [MH+] 527.0756 found, 527.0776 calcd. 

 

Sulforhodamine B-4’-(N-(3,5-dichloro-4-hydroxyphenyl))sulfonamide (2a) 

4-Amino-2,6-dichlorophenol (17 mg, 0.096 mmol) and triethylamine (13.8 µl, 0.010 mmol) were 

dissolved in anhydrous N,N-dimethylformamide (0.3 ml), the mixture was cooled to 0°C and 

lissamine rhodamine B (50 mg, 0.087 mmol) was added. After stirring for 4h at 0°C and 12h at 

RT, the solvent was removed by repeated washing with n-hexane. The sticky crude product was 

purified by column chromatography with methylene chloride / methanol 96 / 4 1 as eluent, yield 

28 mg (45 %). 1H NMR (300 MHz, (CD3)2SO, TMS): δ = 10.43 (1H, s, H(9)); 10.20 (1H, s, H(8)); 

8.43 (1H, d, J = 1.7 Hz, H(4)); 7.72 (1H, dd, J1 = 8.0 Hz, J2 = 1.8 Hz, H(5)); 7.43 (2H, d, J = 7.9 

Hz, H(6)); 7.06 (2H, s, H(7)); 6.98 (2H, dd, J1 = 9.5 Hz, J2 = 1.8 Hz , H(2)); 6.93 (2H, d, J = 1.9 

Hz, H(3)); 6.84 (2H, d, J = 9.3 Hz , H(1)); 3.63 (8H, q, J = 7.1 Hz , H(10)); 1.20 (12H, t, J = 6.9 Hz 

, H(11)). MALDI-TOF: m/z [MNa+] 740.1034 found, 740.1035 calcd. 

  



Enhancing Photoinduced Electron Transfer Efficiency of Fluorescent pH-probes with 

Halogenated Phenols 

112 

Sulforhodamine B-4’-(N-(3-azapentane-1,5-diyl))sulfonamide (2b) 

N-Methylpiperazine (21.2 µl, 0.19 mmol) was dissolved in anhydrous N,N-dimethylformamide 

(0.3 ml), lissamine rhodamine B (50 mg, 0.087 mmol) was added. Reaction and work-up were 

carried out as described for 2a. Column chromatography was performed used with methylene 

chloride / methanol / 25% aqueous ammonia 94.5 / 5 / 0.5 as eluent, yield 23 mg (41 %). 1H NMR 

(300 MHz, D2O, 0.1% HCl conc., TMS): δ = 8.49 (1H, d, J = 1.5 Hz, H(4)); 8.14 (1H, broad d, J = 

7.8 Hz, H(5)); 7.57 (1H, d, J = 7.6 Hz,  H(6)); 6.95 (2H, d, J = 9.7 Hz,  H(1)); 6.92 (2H, dd, J1 = 

10.0 Hz, J2 = 1.2 Hz , H(2)); 6.84 (2H, d, J = 1.1 Hz, H(3)); 4.03 (2H, d, J = 12.6 Hz, H(7)); 3.64 – 

3.73 (2H, d, J = 12.3 Hz, H(7)); 3.53 – 3.64 (8H, q, J = 7.1 Hz, H(10)); 3.33 (3H, d, J = 12.6 Hz, 

H(8)); 2.92 – 3.06 (5H, m, H(8,9)); 1.24 (12H, 7, J = 6.9 Hz, H(11)). MALDI-TOF: m/z [MH+] 

641.2493 found, 641.2468 calcd. 

 

1,4-Diketo-3-((4-[N-(3,5-dichloro-4-hydroxyphenyl)amino]sulfonyl)phenyl)-6-

phenylpyrrolo[3,4-c]pyrrole (3a) 

The preparation of 3a is described in chapter 4. 

 
1,4-Diketo-3-((4-(4-methyl-1-piperazinyl)sulfonyl)phenyl)-6-phenylpyrrolo[3,4-c]pyrrole (3b) 

1,4-Diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (500 mg, 1.73 mmol) was heated in chlorosulfuric 

acid (5 ml) to 60 °C. After 3 h, the mixture was allowed to cool to RT and added dropwise onto N-

methylpiperazine (10 ml, 90.1 mmol, pre-cooled to 0°C). The product was precipitated with H2O 

(100 ml), washed thoroughly with water, dried and purified by column chromatography with 

ethyl acetate / ethanol / 25% aqueous ammonia 89 / 10 / 1 as eluent, yield 51 mg (7 %). 1H NMR 

(300 MHz, (CD3)2SO, TMS): δ = 11.50 (1H, broad s, H(9)); 8.45 – 8.7 (2H, broad, H(13)); 8.41 

(2H, d, J = 8.4 Hz, H(2,3)); 8.25 – 8.35 (2H, 2d, J = 7.7 Hz, H(5,8)); 7.68 – 7.83 (4H, m, 

H(1,4,6,7)); 2.93 (4H, broad t, H(10)); 2.35 (4H, broad t, H(11)); 2.12 (3H, s, H(12)). MALDI-TOF: 

m/z [MH+] 451.1405 found, 451.1440 calcd. 

 

1,4-Diketo-3-((4-[N-(3-chloro-4-hydroxyphenyl)amino]sulfonyl)phenyl)-6-phenylpyrrolo[3,4-

c]pyrrole (3c) 

The preparation of 3c is described in chapter 4. 

  
N-(3,5-Dichloro-4-hydroxyphenyl)-N’-(2,6-diisopropylphenyl)-1,6,7,12-tetrachloroperylene-

3,4:9,10-tertracarboxylic bisimide (4a) 

1,6,7,12-Tetrachloroperylene-3,4:9,10-tetracarboxylic bisanhydride (3 g, 5.66 mmol) was 

dissolved in 1-methyl-2-pyrrolidone (200 ml) at 110 °C. 4-Amino-2,6-dichlorophenol (1.04 g, 5.84 

mmol), 2,6-diisopropylaniline (1.2 ml, 6.37 mmol) and propionic acid (100 ml) were added, the 

mixture was flushed with nitrogen and stirred at 110 °C for 22 h. 5 % aqueous NaCl (800 ml) was 

added, the orange precipitate was filtered, washed with water, dried and purified by column 

chromatography with methylene chloride / toluene 70 / 30 as eluent, yield 1.18 g (25 %).1H NMR 

(300 MHz, CDCl3, TMS): δ = 8.75 (4H, 2s, H(1)); 7.53 (1H, t, J = 7.7 Hz, H(3)); 7.39 (2H, d, J = 

7.9 Hz, H(2)); 7.29 (2H, s, H(6)); 6.08 (1H, s, H(7)); 2.74 (2H, quint, J = 6.7 Hz, H(4)); 1.19 (12H, 

dd, J1 = 6.9 Hz, J2 = 3.6 Hz, H(5)). MALDI-TOF: m/z [M+] 849.9963 found, 849.9949 calcd. 
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N-(2,6-Diisopropylphenyl)-N’-(2-(dimethylamino)ethyl)-1,6,7,12-tetrachloroperylene-3,4:9,10-

tertracarboxylic bisimide (4b) 

1,6,7,12-Tetrachloroperyl-2-pyrrolidone (200 ml) at 80 °C. The mixture was flushed with nitrogen 

and N,N-dimethylethylene diamine (0.65 ml, 5.89 mmol) was added. After 1 h, temperature was 

raised to 120°C, 2,6-diisopropylaniline (4.61 ml, 24.4 mmol) and propionic acid (70 ml) and the 

mixture was stirred for 20 h. 20 % aqueous NaCl (1 l) was added, the orange precipitate was 

filtered, washed with dilute aqueous NaHCO3, dried and purified by column chromatography with 

methylene chloride / methanol 50 / 1 as eluent, yield 1.36 g (33 %).1H NMR (300 MHz, CDCl3, 

TMS): δ = 8.71 (4H, 2s, H(1)); 7.52 (1H, t, J = 7.6 Hz, H(3)); 7.38 (2H, d, J = 7.7 Hz, H(2)); 4.41 

(2H, t, J = 5.7 Hz, H(6)); 2.76 (4H, m, H(4,7)); 2.42 (6H, s, H(8)); 1.18 (12H, dd, J1 = 3.7 Hz, J2 = 

3.2 Hz, H(5)). MALDI-TOF: m/z [M-H+] 760.1169 found, 760.1125 calcd. 

 

N-(3-Chloro-4-hydroxyphenyl)-N’-(2,6-diisopropylphenyl)-1,6,7,12-tetrachloroperylene-

3,4:9,10-tertracarboxylic bisimide (4c) 

4c was prepared in the same way as 4a, 4-Amino-2-chlorophenol (813 mg, 5.66 mmol) was used 

instead of the dichloro compound, yield 1.41 g (31 %). 1H NMR (300 MHz, CDCl3, TMS): δ = 8.75 

(4H, 2s, H(1)); 7.53 (1H, t, J = 7.8 Hz, H(3)); 7.39 (2H, d, J = 7.8 Hz, H(2)); 7.33 (1H, d, J = 2.3 

Hz, H(6)); 7.22 (1H, d, J = n.m. due to CHCl3, H(8)); 7.17 (1H, dd, J1 = 8.7 Hz, J2 = 2.3 Hz, H(7)); 

5.77 (1H, s, H(9)); 2.74 (2H, quint, J = 6.8 Hz, H(4)); 1.19 (12H, dd, J1 = 6.6 Hz, J2 = 3.6 Hz, 

H(5)). MALDI-TOF: m/z [M+] 816.0355 found, 816.0340 calcd. 

 

N-(3,5-Dichloro-4-hydroxyphenyl)-N’-(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-perylene-

3,4:9,10-tertracarboxylic bisimide (5a) 

A mixture of 4a (70 mg, 0.082 mmol), 1-methyl-2-pyrrolidone (7 ml), phenol (77mg, 0.82 mmol) 

and potassium carbonate (91 mg, 0.66 mmol) was stirred at 110°C for 15 h. 50 ml of 20 % aqueous 

NaCl containing 0.7 M HCl were added, the purple precipitate was filtered, washed with water, 

dried and purified by column chromatography with toluene / ethanol 99 / 1 as eluent, yield 54 mg 

(61 %). 1H NMR (300 MHz, CDCl3, TMS): δ = 8.24 (4H, 2s, H(1)); 7.44 (1H, t, J = 8.4 Hz, H(3)); 

7.23 – 7.34 (10H, m, H(2,8)); 7.21 (2H, s, H(6)); 7.12 (4H, m, H(9)); 6.98 (8H, t, J = 6.5 Hz, 

H(7)); 6.11 (1H, s, H(10)); 2.71 (2H, quint, J = 6.4 Hz , H(4)); 1.14 (12H, d, J = 6.6 Hz, H(5)). 

MALDI-TOF: m/z [M+] 1080.248 found, 1080.258 calcd. 

 

N-(2,6-Diisopropylphenyl)-N’-(2-(dimethylamino)ethyl)-1,6,7,12-tetraphenoxyperylene-

3,4:9,10-tertracarboxylic bisimide (5b) 

A mixture of 4b (800 mg, 1.05 mmol), 1-methyl-2-pyrrolidone (50 ml), phenol (950 mg, 10.1 

mmol) and potassium carbonate (1.1 g, 7.96 mmol) was stirred at 110°C for 3.5 h. 50 ml of 15 % 

aqueous NaCl containing 0.3 M HCl were added, the purple precipitate was filtered, washed with 

dilute aqueous NaHCO3, dried and purified by column chromatography with methylene chloride / 

methanol 98 / 2 as eluent, yield 681mg (65 %). 1H NMR (300 MHz, CDCl3, TMS): δ = 8.21 (4H, 

2s, H(1)); 7.42 (1H, t, J = 7.8 Hz, H(3)); 7.20 – 7.33 (10H, m, H(2,10)); 7.12 (4H, q, J = 7.8 Hz, 

H(11)); 6.96 (8H, q, J = 3.9 Hz, H(9)); 4.28 (2H, t, J = 6.8 Hz, H(6)); 2.58 – 2.75 (4H, m, (4,7)); 

2.34 (6H, s, H(8)); 1.12 (12H, d, J = 6.8 Hz, H(5)). MALDI-TOF: m/z [M-H+] 990.3752 found, 

990.3754 calcd. 
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N-(3-Chloro-4-hydroxyphenyl)-N’-(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-perylene-

3,4:9,10-tertracarboxylic bisimide (5c) 

5c was prepared in the same way as 5a, 4c (70 mg, 0.086 mmol) was used as starting material, 

yield 40 mg (45 %). 1H NMR (300 MHz, CDCl3, TMS): δ = 8.24 (4H, 2s, H(1)); 7.44 (1H, t, J = 8.2 

Hz, H(3)); 7.23 – 7.33 (11H, m, H(2,6,10)); 7.06 – 7.16 (6H, m, H(7,8,11)); 6.98 (4H, dd, J1 = 5.1 

Hz, J2 = 7.5 Hz, H(9)); 5.73 (1H, s, H(12)); 2.71 (2H, quint, J = 6.3 Hz , H(4)); 1.12 (12H, d, J = 6.8 

Hz, H(5)). MALDI-TOF: m/z [M-H+] 1045.2913 found, 1045.2892 calcd. 

 

N-(3,5-Dichloro-4-hydroxyphenyl)-N’-(2,6-diisopropylphenyl)-1-(1-morpholinyl)-6,7,12-

trichloroperylene-3,4:9,10-tertracarboxylic bisimide (6a) 

4a (175 mg, 0.24 mmol) was stirred in a mixture of morpholine (3 ml, 35 mmol) and 1-methyl-2-

pyrrolidone (3 ml) at 40°C for 2 h. 50 ml 15 % aqueous NaCl containing 0.4 M HCl were added, 

the green precipitate was filtered, washed with water, dried and purified by column 

chromatography with methylene chloride / methanol 50 / 1 as eluent, yield 144 mg (75 %). 1H 

NMR (300 MHz, CDCl3, TMS): δ = 8.73 (2H, s, H(1)); 8.59 (1H, s, H(1)); 8.54 (1H, s, H(1)); 7.53 

(1H, t, J = 7.8 Hz, H(3)); 7.38 (2H, d, J = 7.7 Hz, H(2)); 7.30 (2H, s, H(6)); 6.08 (1H, s, H(11)); 

4.07 – 4.32 (3H, m, H(7,10)); 3.95 (1H, t, J = 8.9 Hz, H(10)); 3.58 (1H, d, J = 11.4 Hz, H(9)); 3.37 

(1H, t, J = 8.8 Hz, H(9)); 2.65 – 2.90 (3H, m, H(4,8)); 2.17 (1H, d, J = 13.7 Hz, H(8)); 1.19 (12H, 

dd, J1 = 6.5 Hz, J2 = 11.8 Hz, H(5)). MALDI-TOF: m/z [M-H+] 900.0797 found, 900.0790 calcd. 

 

N-(2,6-Diisopropylphenyl)-N’-(2-(dimethylamino)ethyl)-1-(1-morpholinyl)-6,7,12-

trichloroperylene-3,4:9,10-tertracarboxylic bisimide (6b) 

6b was prepared in the same way as 6a, 4b (180 mg, 0.21 mmol) was used as starting material, 

eluent for column chromatography was methylene chloride / methanol 30 / 1, yield 132 mg (69 

%). 1H NMR (300 MHz, CDCl3, TMS): δ = 8.61 (2H, m, H(1)); 8.45 (2H, m, H(1)); 7.44 (1H, t, J = 

7.8 Hz, H(3)); 7.30 (2H, d, J = 7.6 Hz, H(2)); 7.30 (2H, d, J = 7.6 Hz, H(2)); 4.32 (2H, m, H(6)); 

3.95 – 4.25 (3H, m, H(9,12)); 3.84 (1H, m, H(12)); 3.53 (1H, t, J = 12.3 Hz, H(11)); 3.28 (1H, t, J = 

8.4 Hz, H(11)); 2.55 – 2.95 (5H, m, H(4,7,10)); 2.31 (6H, 2d, H(8)); 2.06 (1H, t, J = 13.5 Hz, 

H(10)); 1.10 (12H, m, H(5)). MALDI-TOF: m/z [M-H+] 809.0286 found, 809.0264 calcd. 
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Preface to Chapter 6 
 

Now that the suitability and high flexibility of PET-based systems for optical pH-sensing has been 

shown, their practical applicability is to be demonstrated. One of the most scientifically relevant 

and exciting fields of application for fluorescent probes is live cell imaging. PET-based probes are 

not perfect candidates for this purpose since referencing is urgently required but not easy to 

perform. They are typically not useful in ratiometric imaging as they exhibit no pH-dependent 

spectral shift. However, fluorescence lifetime imaging (FLIM) has become more attractive in the 

recent years as confocal FLIM-microscopes have become more available. Those require pH-

probes with different fluorescence lifetimes for acidic and basic forms. Examples are pH-probes 

undergoing partial quenching by PET, as has been revealed in chapter 5. 

Among the probes capable of partial quenching, tetraphenoxy-PBIs carrying amines as PET 

groups have been selected for live cell FLIM because they are very bright, excellently photostable 

and accessible to further structural modification. Modification is necessary as tetraphenoxy-PBIs 

need to be made water-soluble and functionalities promoting cell permeability have to be 

provided. Chlorosulfonation at mild conditions allows the introduction of four groups at the 

phenoxy substituents. For delivery into cells, which is often promoted by cationic groups, two 

strategies are investigated: Attachment of sulfonate groups followed by physical entrapment into 

cationic nanoparticles (Eudragit RL100®) to yield pH-nanosensors and attachment of guanidine 

ethyl ester units to yield a molecular probe. 

In agreement to previous results with Eudragit RL100, the nanoparticles are delivered into four 

different cell types with localisation predominantly in lysosomes. When cells are permeabilised to 

equilibrate to the buffer solution applied, a pH-induced lifetime change typically from 4.8 ns (pH 

4.5) to 3.8 ns (pH 8) throughout the pH-range relevant in cells is observable. Bafilomycin A1, an 

inhibitor of lysosomal acidification, causes a decrease in observed lifetime which is in agreement 

with the increase in lysosomal pH expected. The nanosensors are also successfully employed in 

3D models of neuronal tissue (“neurospheres”). These results underline that the nanoparticles are 

useful for live cell pH-imaging. 

In contrast, the molecular probe based on tetraphenoxy-PBI shows effective cell staining but pH-

response in all cell types is blurred by strong inhomogeneity in lifetimes over individual images. 

Those probes are not useful for reliable pH-measurement probably due to strong interactions 

with biological components which can be very critical in the absence of a protective polymer shell.  

In chapter 1, tetraphenoxy-PBIs proved of little use for pH-sensors due to aggregation issues. 

However, the RL100 nanoparticles used in this chapter remained useful and stable for at least 14 

days upon storage in buffer. Their stability is sufficient for imaging applications in which sensors 

are often used once and then discarded. The tetra-anionic PBI may be more stable against 

aggregation due to its tight binding to the cationic matrix, its more hydrophilic character and its 

high charge presumably inhibiting stacking.   
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Perylene Bisimides for FLIM-based pH Measurements in 2D and 3D 

Cell Models 
 

This chapter has been submitted to Journal of Materials Chemistry B  

 

Authors: Daniel Aigner, Ruslan I Dmitriev, Sergey M Borisov, Dmitri B Papkovsky 

and Ingo Klimant 

 

New perylene bisimide based pH-sensitive probes for live cell fluorescence lifetime imaging 

(FLIM), represented by cationic hydrogel nanoparticles and guanidine-rich conjugates, are 

described. They were evaluated in high-resolution confocal FLIM-TCSPC (time-correlated single 

photon counting) studies with adherent mammalian cells (2D) and neurosphere (3D) models and 

compared with the conventional pH probe BCECF. We found that the nanoparticle probe 

provides stable pH calibration, with lifetime changes from 4.7 to 3.7 ns between pH 4.4 and 8, 

which are attributed to photoinduced electron transfer (PET). In contrast, the molecular probes 

lacking a protective polymer coat were affected by micro-environment and worked less reliably in 

quantitative FLIM. High brightness and excellent photostability, efficient staining of various cells 

and positive optical response to acidification are the major benefits of the new pH probes. 

Development of new derivatives with stronger PET effect can further improve the resolution of 

pH measurements. 

 

Introduction 
 

Intracellular pH in mammalian cells is tightly regulated in a complex manner [12]. 

Compartmentalised cells possess a considerable heterogeneity in pH. The cytosolic values 7.1 - 7.2 

are essential for the function of intracellular organelles. The degradation of proteins in lysosomes 

requires an acidic pH (4.5 - 5.5) [83], the alkaline pH of the mitochondria (7.5 - 8) is crucial for 

oxidative phosphorylation [13,277]. The fluxes of other ions (Na+, K+, Ca2+, Cl-) also depend on pH 

gradients [12,278,279]. Intra- and extracellular pH gradients play important roles in cell 

proliferation, senescence and apoptosis [280], endo- and exocytosis, intracellular transport and 

organelle recycling [281,282] and muscle cell contractility [283]. Cellular pH is a useful biomarker 

for neuroscience [284-286] and cancer research, cell bioenergetics and metabolism [14]. 

Fluorescence imaging is an established method for investigating cells and cellular compartments, 

allowing the analysis of submicron-size objects in multiple dimensions (spatial, temporal, 

multicolour) [2,287]. Imaging techniques usually rely on fluorescent probes which can be 

genetically encoded fluorescent proteins, molecular probes or (polymeric) nanoparticles 

[108,288-290]. Synthetic intracellular fluorescent probes provide controlled concentration and 

brightness in the cell, fast and efficient loading and tuning of cell-permeating properties 

[291,292]. The main challenges with self-loading probes are in controlling their intracellular 

localisation and providing robust and specific response to pH minimally affected by environment. 

This can be addressed by the use of amphiphilic probes with specific charged groups and 

targeting "escort" moieties (e.g. antibody fragments or peptide sequences) and by encapsulation 

of reporter dyes in polymeric nanoparticles (pH-nanosensors) having sizes of 10 – 100 nm. 
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Current research on pH-nanosensors is focused on new indicator dyes and materials with 

improved operational performance, bio-distribution and reduced toxicity [18,293-297]. 

The main detection modalities for intracellular pH-probes are fluorescence intensity (ratiometric 

detection) [83] and lifetime (FLIM) measurements [298,299]. FLIM instrumentation is becoming 

more widely available and popular in biomedical research, since it can provide stable and absolute 

pH calibration and reliable quantitative measurements. The FLIM technique is compatible with 

laser-scanning one- and two-photon microscopy and facilitates multi-parametric measurements, 

as the fluorophores can also be distinguished by their lifetimes. Therefore, FLIM-based detection 

is also very attractive for quantitative and high-resolution pH analysis in cultured cells and 3D 

tissue models.  

FLIM detection have been described for several pH-probes, including fluorescent proteins 

[110,111,300,301], quantum dots [106,295] and organic dyes (as molecular probes or embedded 

into nanosensors). 2',7'-Bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF) is one such organic 

dye but it has poor photostability [302-305]. BCECF and other probes [306-309] have 

demonstrated the promise of FLIM for quantitative pH measurements, but there is a clear need 

for development of new pH probes with improved brightness, photostability and staining 

properties for FLIM applications. 

Perylene bisimides (PBI) are organic dyes exhibiting convenient spectral properties, bright 

fluorescence and high photostability [117,119,120]. They have been used for DNA, protein and 

membrane labelling [126,310,311], but not for intracellular pH measurement, to the best of our 

knowledge. Due to their high intrinsic hydrophobicity, PBI are often modified with branched 

hydrophilic groups to suppress aggregation and facilitate their use in biological systems [312-

316].  

In this work, we prepared new PBI derivatives for FLIM-based imaging of intracellular pH. As 

previously demonstrated [59,268,270], pH sensitivity can be introduced by attaching amino 

groups causing PET which leads to fluorescence quenching by the free amine, but not by the 

protonated form dominating at low pH (figure 6-1) [60,61]. We anticipated that PET should also 

reduce fluorescence lifetime of the basic form, thus enabling FLIM-based pH imaging. Moderate 

quenching would be ideal for our application since strong quenching would make the lifetime of 

the basic form hard to measure (low fluorescent signals). We therefore designed pH probes as 

tetraaryloxy-substituted PBI as we found previously that PET can cause their partial quenching 

[270]. In this work, we found that solubility, brightness and FLIM compatibility were gradually 

improved by incorporation into nanoparticles and by chemical modification of PBI with cell-

penetrating guanidine groups. Both probe preparation strategies were relatively easy to perform. 

However, only incorporation of the dye in polymer nanoparticles was sufficient for reliable 

quantitative FLIM measurements, providing minimal effect of the environment on the calibration 

and making them superior compared with structurally similar PBI-based molecular probes and 

with BCECF.  
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Results and Discussion 
 

Preparation and Evaluation of PBI pH Probes and Sensors 

 

Nanosensor particles (NSP) and a molecular probe (MP) based on PBI were produced for FLIM-

based pH measurement in live cells (figure 6-1). NSP consisted of a polyanionic PBI incorporated 

into cationic nanoparticles, made by precipitation of Eudragit RL-100®, a biocompatible acrylate 

hydrogel [19], which has been shown to facilitate cell penetration [317]. In MP, four arginine ethyl 

ester units have been introduced to obtain a polycationic PBI. The charged groups were attached 

by chlorosulfonation followed by either hydrolysis or reaction with a primary amine (arginine 

ethyl ester) [268]. The uncharged precursors were synthesised according to established 

procedures [69,270]. 
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Figure 6-1: Structures of NSP and MP.  
 
First, we evaluated the pH response of NSP and MP in aqueous buffer solution (figure 6-2). In 

agreement with the PET mechanism, partial fluorescence quenching was observed for NSP, with 

sigmoidal pH response and a pKA value of 6.4, most likely corresponding to the (de)protonation 

equilibrium of the tertiary amino group. Furthermore, a clearly diminished fluorescence lifetime 

at basic pH was observed showing sufficient separation of lifetime values (≈ 2 ns) at the extreme 

physiological pH-values: pH 4.4 (lysosomes) and pH 8 (mitochondria) [12]. These results indicate 

that partial quenching by PET can lead to a decrease in fluorescence lifetime measureable by 

FLIM. Since different lifetimes for acidic and basic forms are expected, fluorescence decay should 

be bi-exponential at neutral and slightly basic pH. However, we found that with PBI producing 

relatively small changes in lifetime values, mono-exponential fits (with 1.2 ns shift, figure 6-S1)) 

were accurate and reproducible, allowing easier data processing. Therefore we used them in our 

study. 
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For MP, fluorescence intensity decreased over a broad pH range (5 – 9), and sigmoidal fits for pH 

calibration were not applicable. Fluorescence lifetime in solution underwent only minor changes 

which may be due to the low emission of the basic form. It is likely that pH-response was affected 

by aggregation, which was evident by diminished fluorescence quantum yield in water (0.33) and 

structureless absorption spectra which are untypical for tetraaryloxy-PBI [270]. In 

tetrahydrofuran/water 9:1, the quantum yield was much higher (0.93) and spectra of MP were 

typical for tetraaryloxy-PBI. On the contrary, NSP in water did not show those signs of dye 

aggregation. Thus, aggregation which complicates the pH response of MP does not occur in NSP.  
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Figure 6-2: Photophysical properties of NSP (5 g l-1) and MP (0.5 µM) in aqueous buffer at 25°C. A: pH calibration 

curves based on fluorescence intensity; B: Calibration based on fluorescence lifetime; C: Absorption and 

fluorescence emission (excited at 550 nm) spectra.  

 

Cell Permeation Properties  

 

Cell permeability of the pH-probes was first studied with mouse embryonic fibroblast (MEF) cells. 

We found efficient intracellular staining over 24 h incubation at concentrations of 5 µM (MP) and 

10 g l-1 (NSP, equivalent to a dye concentration of 0.025 µM). MP showed faster cell staining, 

with maximal signals reached after 6 h and 35% of the maximum already after 1 h (figure 6-3). 

Interestingly, emission clearly weakened after 24 h staining. A possible explanation is hydrolysis 

of the ester groups in MP by cellular esterases which would dramatically change the net charge 

and therefore cause migration to a different microenvironment. Although cellular uptake was 

slower for NSP, stronger emission was reached after 24 h, compared to MP. Slower staining 

kinetics can be explained by different size and internalisation mechanism [318]. Notably, cells 

were even stained to some degree by the polyanionic pH probe used in NSP without any polymer 

shell. However, the fluorescent signal was much lower (> 10-fold, not shown) compared to NSP 

and fluorescence lifetime was only slightly dependent on pH (Δτ ≈ 0.3 ns in cells, compared to ≈ 1 

ns for NSP, table 6-1), underlining the important role of polymer shell.  

Both NSP and MP in MEF cells displayed punctuated intracellular localisation (figure 6-3), 

similar to endocytic compartments, in agreement with previous reported data for nanoparticle 

and guanidine-containing conjugates [294,319]. For NSP we studied intracellular localisation in 

detail (figure 6-3) and found a considerable overlap with transferrin (marker of clathrin-mediated 

endosomes including lysosomes) and no overlap with Dextran 10,000 (macropinosomes) or 

markers of nuclei and mitochondria (not shown). These results point at predominantly lysosomal 

localisation, previously reported for a RL100-based oxygen sensitive probe [317]. Indeed, when 

we counter-stained NSP with another RL100-based probe, PtTPTBPF (emitting in another 

spectral window) [320], we found a significant overlap (yellow colour), indicating a similar 
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pattern of intracellular localisation for RL100-based nanoparticles doped with different indicator 

dyes.  

 
Figure 6-3: Cell staining properties with MEF cells. A: Kinetics of cell staining (0 – 24 h). Cells were incubated 

with probe, washed and imaged on fluorescence microscope and then their brightness in cells was quantified; B: 

Confocal images showing localisation of NSP and MP in the cell, counter-stained with Calcein Green(cytosolic 

stain); C: Co-localisation of NSP with markers of macropinosomes (Dextran 10,000), nuclei (Hoechst) and 

clathrin-mediated endosomes (transferrin); D: Co-localisation of NSP with platinum(II)-meso-tetra(4-

fluorophenyl)tetrabenzoporphyrin (PtTPTBPF) in RL100. Scale bars are in µm.  

 

Similarly, we observed that NSP and MP can provide intracellular staining of several other cell 

types (6 – 20 h staining time), including human colon cancer cells HCT116 (wild type and 

deficient on oxidative phosphorylation, SCO2(-/-) [321]) and Caco-2. We observed no damaging 

or acute toxic effects upon staining. Cytotoxicity of the new probes tested by CellTox Green assay 

(membrane integrity) was found to be negligible: after staining for 24 h, viability of the cells 
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remained at 98 – 99% (not shown). This indicates that NSP and MP can be successfully used 

with different cell types. 
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Figure 6-4: Photostability of NSP and MP (excited at 590 nm), compared to BCECF (470 nm exc.) and TMRM 

(590 nm exc.), obtained with MEF cells, under continuous illumination on a wide-field fluorescence microscope.  

 

The photostability of NSP and MP upon live cell imaging was tested and found to be superior 

over the conventional FLIM pH-probe BCECF and spectrally similar rhodamine derivative TMRM 

(figure 6-4). Upon continuous LED illumination for 2 min, no decrease in fluorescent signal was 

found. A slight decrease within the first seconds can be due to a small, bleachable fraction, but 

after that, the signal remained constant. In contrast to that, the intensity of BCECF was 

diminished by 30% within the first 10 s.  

 

pH Sensing and Imaging with Cultures of Adherent Cells. 

 

Next we evaluated pH-sensing properties using FLIM microscopy and compared their 

performance with known pH-probe BCECF. Cells stained with NSP and MP were permeabilised 

with nigericin and equilibrated in buffer solutions of different pH (4.4 – 8). [12,83,110,322] 

Figures 6-5, 6-8 and table 6-1 summarise FLIM calibration experiments with different probes on 

four different cell lines. In all cases, fluorescence lifetime was reduced with increasing pH. For 

NSP, the pH-dependent change in lifetime (Δτ) was less profound (around 1 ns), compared to 

data obtained in plain buffer (≈ 2 ns). Lifetimes values in different cell lines varied only slightly 

(table 6-1), reflecting the shielding effect of the polymer matrix from the environment. Resolution 

of the FLIM method could be significantly limited by variations in fluorescence lifetime within 

individual images. Those can be due to actual pH gradients in cells, imperfections of 

measurement, data processing and analysis, or cross-sensitivity of the pH-probe to the 

environment. Though absolute lifetime distributions for NSP (half-width 0.3 – 0.6 ns) were 

broader than for BCECF (0.2 – 0.3 ns), relative to the total value they were narrower (25 – 65%, 

compared to 100 – 150% for BCECF, Δτ was 0.9 – 1.2 ns for NSP and ≈ 0.2 ns for BCECF). 

Hence, NSP can provide better resolution in pH measurements.  

For MP, which lacks a protective polymer shell, Δτ found in cells (0.5 – 1 ns) was larger than in 

buffer (0.3 ns) and strongly dependent on the cell type, showing broad distributions of lifetimes 
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over the images (table 6-1, figures 6-5, 6-S2). Even though we could clearly see an effect of pH on 

probe lifetime, we were unable to perform pH calibrations reliably due to considerable effects of 

environment. However, due to its fast and efficient permeation, MP strategy may be used in 

future probe design.  

It is important to mention that the Δτ observed for BCECF differed from published data where Δτ 

was typically 0.5 – 1 ns and absolute values for the acidic and basic forms varied [302-305]. A 

smaller Δτ was found by Hille et al [323]. The variations in Δτ and poor performance of BCECF in 

our FLIM-based pH sensing can be explained by its poor photostability (figure 6-4), strong 

concentration dependence of fluorescence properties and different measurement set-up used. 

Although BCECF emission intensity did change with pH (decreased at acidic pH, figure 6-S3), we 

could not use this probe in quantitative FLIM. NSP clearly allowed for a better resolution in 

intracellular pH imaging by FLIM than BCECF. 

 

Table 6-1: Fluorescence lifetimes (calculated as stated in the experimental part) of pH-probes in different cell lines 

measured by FLIM microscopy at 25°C. 

Probe Environment Average fluorescence 
lifetime [ns] 

Half-width of lifetime 
distribution [ns]  

  pH 4.4 pH 8.0 pH 4.4 pH 8.0 
NSP MEF cells 4.73 3.68 0.56 0.32 

 HCT116 wild type cells 4.58 3.68 0.53 0.41 
 HCT116 SCO2(-/-) cells 4.82 3.75 0.31 0.60 
 Caco-2 cells 4.68 3.48 0.52 0.47 

MP MEF cells 3.86 2.82 1.43 0.55 
 HCT116 wild type cells 4.31 3.19 0.73 0.85 
 HCT116 SCO2(-/-) cells 3.51 2.92 0.81 0.91 
 Caco-2 cells 4.06 3.56 1.34 1.33 

BCECF MEF cells 3.79 3.64 0.22 0.29 
 
Full FLIM pH calibrations for NSP with MEF and HCT116 SCO2(-/-) cells are shown in figure 6-

5C. We found clearly sigmoidal calibration curve behaviour at pH 6 – 8, with pKA values (6.5 – 

7.0) similarly to NSP in buffer. However, for the range pH 4.4 – 6, a linear fit seems equally or 

more accurate, indicating in that range other effects than PET may contribute to pH sensitivity of 

the probe. 

In MEF cells at temperatures 25°C and 37°C the calibration curves were not identical (figure 6-

S4) but linear fits were applicable at both temperatures for pH < 6, the typical pH for the found 

localisation of NSP (lysosomal), thus enabling uncomplicated calibration in the measurement 

range of interest. In buffer, lifetime-based calibration curves of NSP measured at 37°C and 25°C 

are very similar (figure 6-S4). 
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Application of PBI Probes for FLIM Imaging of Multicellular Spheroid (3D) Models 

 

The reliability and physiological significance of data obtained with cell cultures significantly 

increase when cells maintain cell-cell interactions within 3D environment and experience 

diffusion-limited supply of metabolites [326]. For evaluation of NSP and MP we selected 

neurosphere culture, representing heterogeneous multicellular spheroid aggregates with size 

distribution of 0.1 – 0.5 mm. The neurosphere model is useful for studying processes of neural 

cell development, cellular responses to various patho-physiological conditions and drugs in 3D 

[327-329]. 

Using a previously optimised procedure [330], we produced neurospheres from rat embryonic 

brain and performed their staining with the pH-probes BCECF, NSP and MP. Notably, both NSP 

and MP displayed efficient in-depth staining, while BCECF produced weak signals from 

neurosphere interior staining (figure 6-6). Similarly to our data obtained with adherent cells, MP 

showed the highest efficiency being able to stain spheroids in 24 h, while NSP needed a 

continuous staining protocol (>72 h). On average from 3 spheroids of 0.2 – 0.3 mm diameter, 

MP yielded 2.1-fold higher signals than NSP and 5.2-fold higher ones than BCECF. 

As we could not reliably perform pH FLIM calibration for MP, NSP-stained neurospheres were 

selected for further experiments. The detailed analysis of probe distribution across the spheroids 

revealed extracellular patch-like localisation similar to the staining pattern of previously reported 

RL100-based probes [330]. However, the analysis of FLIM images revealed clear presence of 

micro-regions with decreased lifetime (~0.6 ns drop) inside the spheroids (figure 6-6B). The line 

profiles across the optical cross-sections clearly indicated the presence of regions corresponding 

to alkaline pH. This data contradicts to observed pH gradients in tumor spheroids [329], which 

might be argued by different nature of neurosphere-forming cells (neural stem cells), having cell 

metabolism distinctive from cancer cells [14]. Interestingly, these “alkaline pH” cores harbouring 

distinct pH gradients were of asymmetrical shape and sometimes were present in a number of 

copies per spheroid. They can also indicate functional cell heterogeneity of neurosphere- forming 

cells. 

With BCECF we observed decreased fluorescent signals within the spheroid core. This could be a 

result of lower pH-values there or of poor in-depth probe accumulation.  

In another set of experiments we performed neurosphere stimulation with sodium glutamate, a 

common neuromediator and excitotoxic stimulant [331]. Figure 6-6C shows that all analysed 

spheroids showed reproducible decrease of fluorescence lifetime upon stimulation with sodium 

glutamate within 15 – 30 min, implying alkalinisation of neurospheres. Thus, our experiments 

demonstrate that PBI can be used for pH mapping and time-lapse monitoring by FLIM within 

spheroid cultures. 
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Figure 6-6: FLIM pH imaging with neurospheres cultured for 4 days in vitro (DIV). A: Typical images for 

neurospheres stained with NSP (5 mg l-1, days 1, 3), MP (2 μM, 24 h) and BCECF (2 μM, 24 h). Each image 

represents a single optical section across selected spheroids; B: False-color FLIM images of neurospheres stained 

with NSP (top) and line profiles (indicated with red dashed lines) across the spheroids (bottom); C: Averaged 

lifetime values within cores of spheroid under resting (0) and stimulated conditions (15, 30 min, 2 mM sodium 

glutamate), for 3 different spheroids. Scale bar is in μm. 

 

Conclusion 
 

In conclusion, we have presented and evaluated new pH-probes based on perylene bisimides, 

immobilised in cationic hydrogel particles (NSP) or conjugated to cell-penetrating moieties 

(MP). We found that NSP is the most suitable probe for intracellular pH measurements by FLIM 

and provided efficient intracellular staining (predominantly lysosomes) within 6 – 24 h. Excellent 

photostability and high brightness are the clear advantages and when compared to a conventional 

FLIM pH-probe, BCECF, better pH-resolution was found. NSP was successfully applied for FLIM 

measurements in four different cell lines (2D cell culture) and with neurospheres prepared from 

primary neural cells (3D culture). For further optimisation, an improvement of pH-resolution by 

increasing the absolute pH-dependent lifetime change appears to be most relevant. That may be 

achieved by increasing the efficiency of the PET process by using different PET groups and/or 

different PBI structures. 

In comparison to NSP, the small molecule MP was not very useful for intracellular pH-

measurement by FLIM, probably due to aggregation and strong interaction with intracellular 

components. This indicates that nanoparticle structures can feature significant advantages for the 

development of FLIM-based pH-probes, compared to "unprotected" probes such as small 

molecule dyes or fluorescent proteins. 
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Experimental 
 
Materials and Methods 

 
Calcein Green AM, BCECF, tetramethylrhodamine methyl ester (TMRM), B27 serum-free 

supplement, Alexa Fluor488-dextran 10,000 and transferrin conjugates, MitoTracker Green were 

from Invitrogen (Biosciences, Dublin, Ireland). Epidermal growth (EGF) and fibroblast growth 

(FGF) factors were from Millipore (Cork, Ireland). PtTPTBPF-RL100 nanoparticles were 

prepared as described previously [332]. CellTox Green Cytotoxicity assay kit was form Promega 

(MyByo, Ireland). 1,6,7,12-Tetrachloroperylene-3,4:9,10-tertracarboxylic bisanhydride was from 

Beijing Wenhaiyang Industry and Traiding Co. Ltd (http://china.zhaoteng.com), 1-methyl-2-

pyrrolidone from TCI Europe (http://www.tcichemicals.com). Deuterated solvents were obtained 

form Eurisotop (www.eurisotop.com), silica gel from Acros (www.fishersci.com). Eudragit® 

RL100 was from Evonik Industries (http://corporate.evonik.de). All other chemicals and reagents 

were form Sigma-Aldrich. Standard cell culture grade plasticware was from Sarstedt (Wexford, 

Ireland) and Corning (VWR, Ireland), glass bottom mini-dishes were from MatTek (Ashland, 

USA), glass bottom multiwell slides from Ibidi (Martinsried, Germany). 

NMR spectra were recorded on a 300 MHz instrument (Bruker) with TMS as a standard. MALDI-

TOF mass spectra were taken on a Micromass TofSpec 2E in reflectron mode at an accelerating 

voltage of +20 kV. Absorption measurements were performed on a Cary 50 UV-VIS 

spectrophotometer from Varian (www.varianinc.com). Fluorescence spectra were recorded on a 

Hitachi F-7000 spectrofluorimetre (www.hitachi.com). Relative fluorescence quantum yields 

were determined at 25 °C using rhodamine 101 (ΦF = 0.98 in ethanol) as a standard.  

 

Syntheses  

 

N-(2,6-Diisopropylphenyl)-N’-(2-dimethylaminoethyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-

tertracarboxylic bisimide (2): 

1,6,7,12-Tetrachloroperylene-3,4:9,10-tertracarboxylic bisanhydride (3 g, 5.66 mmol) was 

dissolved in 1-methyl-2-pyrrolidone (NMP; 210 ml) at 80°C. A solution of 648 µl (5.66 mmol) 

N,N-dimethylethylenediamine in NMP (10 ml) was added dropwise and the mixture stirred for 1 

h. Temperature was increased to 120°C, 2,6-diisopropylaniline (4.61 ml, 22.7 mmol) and 

propionic acid (70 ml) were added and the mixture was stirred overnight. The crude product was 

precipitated with 20% aqueous sodium chloride solution, filtered, washed with water and dried. 

Purification by column chromatography (silica gel 40 – 63 µm) with dichloromethane/methanol 

40:1 (V/V) as eluent afforded 1.58 g (37%) N-(2,6-diisopropylphenyl)-N’-(2-

dimethylaminoethyl)-1,6,7,12-tetrachloroperylene-3,4:9,10-tertracarboxylic bisimide; 1H NMR: 

(300 MHz, CDCl3, δ): 8.71 (2s, 4H, ArH), 7.52 (t, J = 7.8 Hz, 1H, ArH), 7.38 (d, J = 7.7 Hz, 2H, 

ArH), 4.39 (t, J = 6.3 Hz, 2H, CH2), 2.6 – 2.8 (m, 4H, CH2 and CH3), 2.37 (s, 6H, CH3), 1.18 (dd, 

J1 = 3.7 Hz, J2 = 3.2 Hz, 12H, CH3). 

800 mg (1.05 mmol) of the obtained product, phenol (950 mg, 10.1 mmol), potassium carbonate 

(1.1 g, 7.96 mmol) and NMP (60 ml) were stirred at 115°C for 6 h. The crude product was 

precipitated with 20% aqueous sodium chloride solution containing 0.3 M HCl, filtered, washed 

with water, dried and purified by column chromatography (silica gel 40 – 63 µm) with 

dichloromethane / methanol 50:1 (V/V) as eluent, yield 0.78 g (75 %). 1H NMR: (300 MHz, 
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CDCl3, δ): 8.21 (2s, 4H, ArH), 7.42 (t, J = 7.8 Hz, 1H, ArH), 7.20 – 7.33 (m, 10H, ArH), 7.12 (q, J 

= 7.8 Hz, 4H, ArH), 6.96 (q, J = 3.9 Hz, 8H, ArH), 4.28 (t, J = 6.8 Hz, 2H, CH2), 2.58 – 2.75 (m, 

4H, CH2 and CH), 2.34 (s, 6H, CH3), 1.12 (d, J = 6.8 Hz, 12H, CH3). 

 

N-(2,6-Diisopropyl-4-sulfophenyl)-N’-(2-dimethylaminoethyl)-1,6,7,12-tetra(4-

sulfophenoxy)perylene-3,4:9,10-tertracarboxylic bisimide (3)  

and N-(2,6-Diisopropyl-4-([N-(1-ethoxycarbonyl-4-guanidinylbutyl)amino]sulfonyl)phenyl)-N’-

(2-dimethylaminoethyl)-1,6,7,12-tetra(4-([N-(1-ethoxycarbonyl-4-

guanidinylbutyl)amino]sulfonyl)phenoxy)perylene-3,4:9,10-tertracarboxylic bisimide (MP):  

Compound 2 (200 mg, 0.202 mmol) in 3 ml chlorosulfonic acid was stirred at 0°C for 50 min, 

added dropwise onto ice cubes, filtered, washed with cold water and dried under vacuum at RT to 

yield the sulfochloride intermediate (298 mg), which was used without further purification. 

For the preparation of 3, 150 mg of the sulfochloride was stirred overnight in a mixture of 

tetrahydrofuran (8 ml), water (2 ml) and triethylamine (200 µl, 1.43 mmol). The mixture was 

concentrated under vacuum and purified by column chromatography (silica gel 40 – 63 µm) with 

dichloromethane/methanol 3:1 (V/V) as eluent. The product was re-dissolved in a mixture of 

methanol (0.5 ml) and water (0.1 ml) and precipitated with a mixture of methylene chloride, 

toluene and n-hexane (1 ml each) to yield 68 mg (52 %) of deep red powder after drying. 1H NMR: 

(300 MHz, (CD3)2SO:D2O 20:1 (V/V), δ): 7.98 (s, 2H, ArH), 7.84 (s, 2H, ArH), 7.68 (d, J = 8.7Hz, 

4H, ArH), 7.59 (d, J = 8.4Hz, 4H, ArH), 7.42 (t, J = 7.6 Hz, 1H, ArH), 7.28 (d, J = 7.5 Hz, 2H, 

ArH), 6.98 (2d, J = 7.4 Hz, 8H, ArH), 4.27 (broad s, 2H, CH2), 3.25 – 3.4 (broad s, 2H, CH2), 2.6 

– 2.9 (m, 8H, CH2 and CH), 1.01 (d, J = 6.6Hz, 12H, CH3). UV–vis (H2O): λmax (ε) = 567 (32000), 

536 (32000), 454 nm (17000). HRMS: m/z 1310.20 ([MH+], 1310.20 calcd.); 1332.19 ([MNa+], 

1332.18 calcd.); 1348.16 ([MNaK+], 1348.16 calcd.). 

For the preparation of MP, the rest of the sulfochloride was added to a solution of arginine ethyl 

ester dihydrochloride (275 mg, 1.00 mmol) and triethylamine (290µl, 2.07 mmol) in dry N,N-

dimethylformamide (10 ml) and stirred overnight at RT. The crude product was precipitated and 

washed with 20% aqueous sodium chloride solution, dried and purified by HPLC chromatography 

(column NUCLEODUR® 100-5 C18 ec, 125 mm × 21mm ID, Macherey-Nagel, on a Dionex™ 

UltiMate™ 3000 semi-preparative system) as stated in detail in table A-7, appendix, yield 19 mg 

(8%). 1H NMR: (300 MHz, CD3OD, δ): 8.19 (d, J = 8.4Hz, 4H, ArH), 7.81 (dd, J1 = 6.2Hz, J2 = 

8.5Hz, 8H, ArH), 7.45 (t, J = 7.8Hz, 1H, ArH), 7.30 (d, J = 7.6Hz, 2H, ArH), 7.12 (dd, J1 = 8.6Hz, 

J2 = 16.5Hz, 8H, ArH), 4.50 (broad s, 2H, CH2), 3.85 – 4.10 (m, 12H, CH and CH2), 3.51 (broad s, 

2H, CH2), 3.22 (m, 8H, CH2), 2.97 (s, 6H, CH3), 2.69 (p, J = 6.8Hz, 2H, CH), 1.6 – 1.9 (m, 16H, 

CH2), 1.0 – 1.23 (m, 24H, CH3). UV–vis (H2O): λmax (ε) = 557 (42000), 447 nm (17000). HRMS: 

m/z 2046.72 ([MH+], 2046.73 calcd.). 

 

Preparation of nanosensor particles (NSP)  

This was done accordingly to previously described procedure [332]. Briefly, a solution of RL100 

polymer (200 mg) and 3 (0.5 mg) in acetone (80 ml) was prepared and water (500 ml) was added 

quickly (5 s). The nanoparticle suspension (typical average size 30 nm) was concentrated in 

vacuum to reach a concentration of 5 g l-1 and was stored at 4°C (1 month). Prior the use, it was 

filtered through 0.2 μm filter.  

Cell Culture 
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Mouse embryonic fibroblast (MEF), human colon carcinoma HCT116 and human colorectal 

adenocarcinoma Caco-2 cells were from ATCC (Manassas, VA, USA) and were handled as 

described previously [319,333]. For fluorescence microscopy and confocal imaging, cells were 

seeded for onto Cell+ (confocal upright microscope) or glass bottom (inverted microscope) 

collagen-poly-D-lysine coated mini-dishes to reach 50 – 75% confluence. Staining with 

fluorescent probes was performed by addition of medium containing probe, incubation (0.5 – 24 

h) and 1 – 2 cycles of washing. Typical staining concentrations/times for fluorescent probes were 

2.5 µM/ 0.5 h (BCECF), 20 nM/ 10 min (TMRM), 1 µM/ 0.5 h (Hoechst 33342, Calcein Green 

AM), 0.01%/ 10 min (CellTox Green), 25 μg ml-1/ 0.5 h (Dextran 10,000-Alexa Fluor488), 40 μg 

ml-1/ 0.5 h (Transferrin-AlexaFluor488), 100 nM/ 0.5h (MitoTracker Green), 10 μg ml-1 / 16 h 

(PtTPTBPF in RL100). 

 

Neurosphere Culture 

 

All procedures with animals were performed under a licence issued by the Irish Government 

Department of Health and Children (Ireland) and in accordance with the Directive 2010/63/EU 

adopted by the European Parliament and the Council of the European Union. Neurospheres from 

cortices of embryonic (E18) rat brain were prepared as described before [330] and cultured in 

DMEM/ F12 Ham medium supplemented with FGF (20 ng ml-1), EGF (20 ng ml-1), B27 (2%) and 

penicillin-streptomycin for 4 days in vitro (DIV), to reach a size of 0.1 – 0.5 mm. For microscopy, 

neurospheres were collected, washed with medium and plated on poly-D-lysine coated 35 mm 

dishes and allowed to adhere for 30 min.  
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Microscopy 

 

Analysis of cell staining kinetics, cell viability and photostability experiments were performed on 

wide-field fluorescence microscope Axiovert 200 (Zeiss) equipped with custom made pulsed LED 

(390, 470 and 590 nm excitation), fluorescence emission filter cubes and integrated temperature 

and CO2/O2 control as described previously [330]. 

FLIM imaging was performed on upright Axio Examiner Z1 (Zeiss) microscope, equipped with 

20x/1.0 W Apochromat objective, heated stage (Z-axis control), integrated TCSPC (time-

correlated single photon counting) confocal scanning module DCS-120 (Becker & Hickl, 

Germany), an R10467U-40 and 50 photon counting detectors (Hamamatsu Photonics K.K.) and 

TCSPC hardware (Becker & Hickl) [330]. The PBI and TMRM probes were excited with 

picosecond supercontinuum laser SC400-4 (Fianium, UK) at 540 nm (561 nm longpass filter, 

emission 565 – 605 nm), while BCECF, Calcein Green, Alexa Fluor488-conjugates and 

MitoTracker Green at 488 nm (495 nm longpass filter, emission 512 – 536 nm). Hoechst 33342 

probe was excited at 405 nm (435 nm longpass filter, emission 438 – 458 nm). PtTPTBPF in 

RL100 was excited at 614 nm (665 nm longpass filter, emission 750-810 nm).  

Buffers for pH titrations used were composed of 10 mM buffer salt (sodium acetate, MES, MOPS 

or HEPES), 135 mM KCl, 2 mM CaCl2, 1 mM MgCl2 and 20 mM Sucrose. Prior to calibration, 

nigericin (10 µM) was added with 15 – 30 min pre-incubation time. The following equation was 

used for sigmoidal calibration: 

 

Data processing 

The wide-field microscopy imaging data were processed in ImSpector pro software (La Vision 

BioTec, Germany), and exported in ASCII (line profiles) or RGB Tif (images) format. FLIM data 

obtained from 256x256 regions of interest were fit using mono-exponential decay function, delay 

parameter t1=42, binning factor 1 in SPCImage software (Becker & Hickl). Fit curves in each pixel, 

excluding dark regions, yielded a lifetime distribution over the whole image, with lifetime being 

displayed on the x-axis and the abundance of each lifetime on the y-axis. From the distribution 

curve were calculated the average lifetime (50% of the total integral is reached) and half-width 

(difference between lifetimes at which half-maximal abundance is reached).  
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Supplementary Information 
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Figure 6-S1: Typical fluorescence decay curves in MEF cells stained with NSP, permeabilised with nigericin and 

exposed to buffer as indicated, obtained by confocal TCSPC-FLIM. 

 

 

Figure 6-S2: Confocal TCSPC-FLIM of permeabilised cells stained with NSP or MP, permeabilised with nigericin 

and exposed to buffer as indicated, performed at 25°C. Left: False-colour images of cells exposed to buffers with 

different pH; Right: Corresponding distributions of lifetimes within the images. 
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The attachment of groups causing photoinduced electron transfer (PET) has enabled the 

preparation of optical pH-sensors based on intrinsically insensitive fluorophores, namely 

perylene bisimides (PBIs), rhodamine and diketopyrrolo[3,4-c]pyrroles (DPPs). Spectral 

properties and other parameters mainly determined by the indicator dye such as photostability 

can therefore be chosen depending on the application. Selection of the PET group enables 

effective tuning of the sensitive pH-range, for instance by using secondary and tertiary amines or 

phenols with different halogenation patterns. Proper selection of the immobilisation matrix can 

additionally contribute to the tunability. Those facts underline that PET is a highly versatile 

concept for the design of pH-sensors. Note that the PET-based probes and sensors in this thesis 

can generally be prepared in a comparatively simple way. Because probes with different pKA-

values but virtually identical spectral properties are accessible, the PET-concept is also optimal 

for designing sensors with a broad sensitive pH-range, as was experimentally confirmed. 

Furthermore, sensors with minimal (< 0.1 pH-units between 50 and 500 mM) cross-sensitivity to 

ionic strength could be obtained, underlining that PET helps to deal with many of the most 

critical limitations of optical pH-sensors. The dual lifetime referencing (DLR) concept was 

successfully employed in several examples, underlining that even though intrinsic ratiometric 

referencing is not possible for the PET-based sensors, referencing is still unproblematic at least 

for sensors in the layer format. Very notably, we found that phenoxide groups systematically 

cause more effective PET than the more frequently employed amines, thus making a wider 

selection of fluorophores accessible to pH-sensing.  

For sensors based on PBIs, severe issues in long-term stability above all due to aggregation were 

found. However, those can be overcome by performing covalent dye coupling. Furthermore, 

preparation of 1-aminoPBIs makes the sensors near infra-red emissive. Sensors based on the red-

light emitting tetraphenoxyPBIs offer high brightness and excellent photostability and were 

successfully employed in live cell imaging. For DPP-based sensors, similar problems in sensor 

signal stability were found. Covalent immobilisation is difficult for those, but they were 

successfully applied in the bead format for microfluidic imaging where typical application times 

are short. Rhodamines are highly water-soluble and obviously require covalent immobilisation 

which could be accomplished by “click” chemistry. They yield very bright sensors potentially 

useful in fluorescence imaging or biotechnological process monitoring. Consequently, covalent 

dye coupling is often the key tool required to make a good pH-probe a good pH-sensor. 

While valuable tools for preparing high-performance fluorescence pH-sensors have been 

presented, a system offering high brightness, near infra-red emission and excellent photostability 

in combination is still to be found. For this purpose, improved fluorophores are required. A class 

of pH-sensors already meeting those criteria to a comparatively high extent based on 

tetraarylazadipyrromethene (Aza-BODIPY) dyes has been presented by Jokic et al [145]. Further 

optimisation may be possible employing high-performance near infra-red emitting fluorophores 

as outlined in section 4.1. That may be a challenge with PBIs as 1-aminoPBIs are of limited 

brightness and core-enlarged PBIs are presumably too hydrophobic. However, bisimidazoloPBIs 

recently presented by Langhals et al [131] have promise. Pyrrolopyrrole cyanines[136] and some 

BODIPY [147] and Aza-BODIPY [146] dyes have great potential as well due to their extraordinary 

spectral properties. All of those dyes are yet to be tested as PET-based pH-probes. Testing their 

quenchability by PET groups – preferentially phenoxides – is the first step towards future pH-

optrodes with optimal performance.  
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Structure Analyses 
 

Chapter 1 
New Fluorescent Perylene Bisimide Indicators – a Platform for Broadband pH Optodes 

 

NMR Spectroscopy 
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Figure A-1: 1H-NMR spectrum of 2a 
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Figure A-2: 1H-NMR spectrum of 2b 
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Figure A-3: 1H-NMR spectrum of 2c 
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Figure A-4: 1H-NMR spectrum of 2d 
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Figure A-5: 1H-NMR spectrum of 3 

 

MALDI-TOF Mass Spectroscopy 

 

 

 

 

 

 

 

 

 

 

 

Figure A-6: MALDI-TOF spectrum of 2a 

 

Figure A-7: MALDI-TOF spectrum of 2b 
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Figure A-8: MALDI-TOF spectrum of 2c 

 

 
 

Figure A-9: MALDI-TOF spectrum of 2d 

 

 

 

 
 

Figure A-10: MALDI-TOF spectrum of 3  
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Figure A-14: HSQC-NMR of 1 (300 MHz, CDCl3). All unmarked carbons carrying protons are undistinguishable 

in signal from a marked one due to molecular symmetry. 

 

 

Figure A-15:: 1H-NMR of 2: δH (300 MHz, CDCl3) 8.70 (2 H, d, ArH (Core)), 8.52 (2 H, d, ArH (Core)), 7.51 (1 H, t, 

J 7.8, ArH(DIP)), 7.37 (2 H, d, J 7.8, ArH(DIP)), 4.40 (2 H, br s, (CO)2NCH2), 4.18-4.28 (1 H, m, NCH2CH2O), 

4.04-4.18 (2 H, m, NCH2CH2O (1 H) and OCH2 (1 H)), 3.82-4.00 (1 H, m, OCH2), 3.50-3.69 (1 H, m, OCH2), 3.28-

3.43 (1 H, m, OCH2), 2.18-3-28 (9 H, m, (CO)2NCH2CH2N (2 H) and NCH2 (4 H) and NCH2CH2O (1 H) and ArCH 

(2 H)), 2.06-2.18 (1 H, m, NCH2CH2O), 1.38-1.69 (4 H, br s, NCH2CH2), 1.30-1.38 (4 H, m, NCH2CH2CH2), 1.11-

1.27 (12 H, q, J 5.9, ArCHCH3), 0.92 (6 H, t, NCH2CH2CH2CH3). 

1 

2 

3,4 

5 

6 

7 
8 

9 

13 11 

9 12 12 

10 10 N

N

Cl

Cl

O O

O O

CH3
CH3

CH3
CH3

N

N
Cl

CH3CH3CH3
CH3

CH3

H H

HH

H

H

H

HH

H

HH

H H

H H H
H

H H

H
H

12

3 4

5

6

7

8

9

10

11

12
13

Diisopropylphenyl
(DIP) substituent

Core

N

N

Cl

Cl

O O

O O

N

O
Cl

CH3CH3CH3
CH3

H H

HH

H

H

H

HH

H H H
H

H H

H
H

NCH3 CH3

H H

H H

H H H H

H H

H H

H
H

H
H



Appendix 

159 

 

Figure A-16:: 13C-APT-NMR of 2: δc (300 MHz, CDCl3) 163.5, 162.9, 162.7 (2 C) (C=O); 151.5, 145.7, 145.5, 135.4, 

133.6, 133.1, 132.7, 132.6, 131.9, 130.3, 130.1 (2 C), 129.8, 129.7, 129.5, 128.1, 124.2, 124.1, 123.9, 123.7, 123.2, 

123.1, 120.6, 119.8 (aromatic); 66.9, 66.0 (OCH2); 53.9 (broad)A, 52.7, 50.8 (broad ) A, 47.8 (NCH2); 29.2 (ArCH); 

24.0 (ArCHCH3); 20.4, 13.9 (Alkyl). Underlined peaks are of negative intensity (CH or CH3), those in italics can be 

found in the HSQC spectrum. Box A: Detail of a standard (not APT) 13C spectrum. The broad peaks cannot be 

found in the 13C-APT spectrum, however they were found in HSQC (figure ESI13, peaks 14 and 15).  

 

 

 

Figure A-17: HH COSY-NMR of 2 (300 MHz, CDCl3). 
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Figure A-18: HSQC-NMR of 2 (300 MHz, CDCl3). All unmarked carbons carrying protons are undistinguishable 

in signal from a marked one due to molecular symmetry. 

 

In dye 3, NMR spectroscopy reveals that the chlorosulfonation of the 2,6-diisopropylphenyl 

group can lead to substitution in the 3,5- and in the 4-position. That is expected since steric 

effects (vicinity of the relatively bulky isopropyl group) here favour 4-substitution while electronic 

(o,p-directing influence of the isopropyl group) and statistic (superior number of positions) 

effects favour 3,5-substitution. The signals of the unsubstituted group (7.51 ppm, 1 H, t and 7.37 

ppm, 2 H, d) have been replaced by signals corresponding to 4-substitution (7.84 ppm, 2 H, s) 

and to 3,5-substitution (7.49 ppm, 1 H, d and 8.14 ppm, 1 H, d) in an approximate ratio of 1:1 

(integral areas). For the sake of clarity, the assumed product structure here carries two differently 

substituted 2,6-diisopropylphenyl rings. The product may in reality also contain products where 

both rings are 4-substituted or both are 3,5-substituted. Other signals with low integrals (e.g. 

those at 7.55-7.75 ppm) are due to other products with even different substitution patterns, since 

under the acidic conditions of chlorosulfonation the isopropyl groups may migrate to others than 

the 2,6-positions. However, the exact substitution pattern of the diisopropylphenyl groups is not 

expected to have any significant impact on the investigated spectral and pH-dependent 

properties, since they are fully electronically separated from both the chromophore and the 

piperazinyl (pH receptor) moieties. MALDI-TOF mass spectroscopy (fig. ESI25) and LCMS (fig. 

ESI30) confirm that 3 contains only the isomers. 
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Figure A-19: 1H-NMR of 3: δH (300 MHz, CDCl3) 8.66-8.78 (2 H, m, ArH (Core)), 8.49-8.62 (2 H, m, ArH (Core)), 

8.14 (1 H, d, J 8.2, ArH(SDIP2)), 7.84 (2 H, s, ArH(SDIP1)), 7.49 (1 H, d, J 8.2, ArH(SDIP2)), 6.40 (2 H, br s, 

SO2NH), 6.00 (2 H, br s, CONH), 5.75 (2 H, s, C=CH(a)), 5.35 (2 H, s, C=CH(b)), 4.32 (2 H, br s, NCH2CH2N), 

4.18 (1 H, m, ArCH(1)), 3.30-3.53 (4 H, m, SO2NCH2), 2.95-3.20 (5 H, m, CONCH2 (4 H) and NCH2CH2N (1 H)), 

1.99-2.95 (11 H, m, NCH2CH2N (5 H) and ArCH (3 H) and NCH3 (3 H)), 1.87-1.99 (6 H, s, C=CCH3), 1.71 (4 H, m, 

SONCH2CH2CH2N), 1.19 (24 H, m, ArCHCH3). 

 

 

Figure A-20: HH COSY NMR of 3 (300 MHz, CDCl3). 
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Figure A-21: HSQC NMR of 3 (300 MHz, CDCl3). All unmarked carbons carrying protons are undistinguishable 

in signal from a marked one due to molecular symmetry. 

 

 
Figure A-22: 1H-NMR of 4b: δH (300 MHz, CDCl3) 8.67 (4 H, s, ArH (Core)), 8.18 (1 H, d, J 8.4, ArH(SDIP2)), 7.84 

(2 H, s, ArH(SDIP1)), 7.51 (1 H, d, J 8.4, ArH(SDIP2)), 6.23 (2 H, q, J 6.7, SO2NH), 5.55-5.80 (4 H, s and br s, 

C=CH(a) (2 H) and CONH (2 H)), 5.37 (2 H, s, C=CH(b)), 4.20 (1 H, p, J 6.2, ArCH(1)), 3.47 (4 H, m, SO2NCH2), 

3.13 (4 H, br s, CONCH2), 2.79 (2 H, hex, J 6.6, ArCH(3)), 2.63 (1 H, p, J 6.5, ArCH(2)), 1.98 (6 H, s, C=CCH3), 

1.74 (4 H, p, J 6.9, SONCH2CH2CH2N), 1.20 (24 H, m, ArCHCH3). 
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Figure A-23: HH COSY NMR of 4b (300 MHz, CDCl3).  

 

MALDI-TOF Mass Spectroscopy 

 

MALDI-TOF mass spectroscopy clearly shows exact masses that are in agreement with the 

product structures. Other signals, which correspond to [M-HCl]+ and [M-HCl-2H]+, are formed 

upon MALDI (possibly by a photoreaction) and are not present in the products in significant 

amounts. That is confirmed by several facts - their formation is strongly enhanced if the laser 

energy used in MALDI is increased (fig. ESI27); NMR do not show a significant contamination 

with dechlorinated products (would require further signals in the aromatic range); if electrospray 

ionisation is employed (fig. ESI28-30), only product masses but no [M-HCl]+ nor [M-HCl-2H]+ 

are detected. 

 

 

 

 

 

 

 

 

 

 

Figure A-24: MALDI-TOF spectrum of 1. 
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Figure A-25: MALDI-TOF spectrum of 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-26: MALDI-TOF spectrum of 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-27: MALDI-TOF spectrum of 4c. 
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Time/min Ratio CH3CN/% Ratio 0.1% aqueous HOAc/% Flow rate/ml⋅min-1

0 0 100 1 
5 100 0 1 

10 100 0 1 
11 0 100 1 
15 0 100 1 

 

Table A-2: Elution gradient used for LCMS characterisation of 3 

Time/min Ratio CH3CN/% Ratio 0.1% aqueous HOAc/% Flow rate/ml⋅min-1

0 0 100 1 
1 40 60 1 
8 75 25 1 
9 100 0 1 

11 100 0 1 
12 0 100 1 
16 0 100 1 
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Chapter 3 
New Fluorescent pH Optrodes Based on Covalently Linkable PET Rhodamines 

 

NMR Spectra 

 

 

Figure A-32: 1H-NMR spectrum of 1 in CD3OD containing 0.1% HOAc and 0.1% CF3COOH. Before addition of 

HOAc the integral of acetate hydrogen (1.99ppm) was 2.9 (spectrum not shown here). δ = 7.65ppm (2H, d, Ar-

H(positions 1,8), JArH12,78 = 9.6 Hz); δ = 7.46 (2H, dd, Ar-H(2,7), JArH24,57 = 2.5 Hz); δ = 7.42 (2H, d, Ar-H(4,5)); δ 

= 4.13 (8H, t, ArNCH2, J = 5.2 Hz); δ = 3.48 (8H, t, HNCH2); δ = 1.99 (3H, s, Hacetate). 

 

 

Figure A-33: 19F-NMR spectrum of 1. δ = -139ppm (2F, d, J = 20 Hz); δ = -150 (1F, t, J = 21 Hz); δ = -160 (2F, dt, 

J1 = 6 Hz, J2 = 21 Hz). 
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Compound 2 

 

 

Figure A-34: 1H-NMR spectrum of 2 in D2O containing 0.1% CF3COOH. δ = 7.55ppm (2H, d, Ar-H(positions 1,8), 

JArH12,78 = 9.6 Hz); δ = 7.32 (2H, dd, Ar-H(2,7), JArH24,57 = 2.3 Hz); δ = 7.26 (2H, d, Ar-H(4,5)); δ = 4.06 (8H, t, 

ArNCH2, J = 4.9 Hz); δ = 3.48 (8H, t, HNCH2); δ = 3.32 (2H, t, ArSCH2, J = 6.7 Hz); δ = 2.76 (2H, t, CH2COOH); 

δ = 2.06 (4.7H, s, Hacetate). 

 

 

 

Figure A-35: 19F-NMR spectrum of 2. δ = -132ppm (2F, q, J = 11 Hz); δ = -139 (2F, q, J = 11 Hz). 
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Compound 3 

 

Compound 3 could be identified as the pure 4’-carboxy regioisomer (figure S9). For comparison, 

the spectrum of the 5’-carboxy regioisomer (figure S10), which was also obtained upon HPLC 

purification of crude 3, is shown. Resonance at >7.9ppm is can be attributed to the protons in the 

dicarboxyphenyl ring which are in ortho-position to a carboxy group. The 4’-isomer contains only 

two such protons, while three can be found for the 5’-isomer. 

 

Figure A-36: 1H-NMR spectrum of 3 (4’-carboxy regioisomer) in D2O. δ = 8.32ppm (1H, s, Ar-H(position 3’)); δ = 

8.00 (1H, d, Ar-H(5’), JArH5’6’ = 7.5 Hz); δ = 7.27 (3H, d, Ar-H(6’,1,8), JArH12,78 = 9.3 Hz); δ = 7.06 (2H, d, Ar-

H(2,7)); δ = 6.97 (2H, s, Ar-H(4,5)); δ = 3.85 (8H, broad s, ArNCH2); δ = 3.35 (8H, broad s, HNCH2); δ = 1.90 

(3H, s, Hacetate). 

 

 

Figure A-37: 1H-NMR spectrum of the 5’-carboxy regioisomer to 3 in D2O. δ = 8.20 (1H, dd, Ar-H(4’), JArH3’4’ = 

8.1Hz, JArH4’6’ = 1.7 Hz); δ = 7.99 (1H, d, Ar-H(3’)); δ = 7.97 (1H, d, Ar-H(6’)); δ = 7.35 (2H, dd, Ar-H(1,8), JArH12,78 

= 9.4 Hz, JArH24,57 = 1.6 Hz); δ = 7.11 (2H, d, Ar-H(2,7)); δ = 7.08 (2H, d, Ar-H(4,5)); δ = 3.93 (8H, t, ArNCH2, J = 

4.6 Hz); δ = 3.42 (8H, t, HNCH2); δ = 2.80 (5.3H, s, Hacetate). 
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Gradients used for HPLC purification: 

 

Table A-3: HPLC gradient used for the purification of 1. 

Time/min Ratio MeOH/% Ratio 0.1% aqueous HOAc/% Flow rate/ml⋅min-1 

0 0 100 4 
10 30 70 4 
11 100 0 4 
16 100 0 4 
17 0 100 4 
22 0 100 4 

 

Table A-4: HPLC gradient used for the purification of 2. 

Time/min Ratio MeOH/% Ratio 0.1% aqueous HOAc/% Flow rate/ml⋅min-1 

0 10 90 16 
30 25 75 16 
32 100 0 16 
40 100 0 16 

 

Table A-5: HPLC gradient used for the purification of 3. 

Time/min Ratio MeOH/% Ratio 0.1% aqueous HOAc/% Flow rate/ml⋅min-1 

0 0 100 4 
12 30 70 4 

12.5 100 0 4 
16.5 100 0 4 
17 0 100 4 
21 0 100 4 

 

Gradient used for LC-MS characterisation 

 

Table A-6: Gradient used for LC-MS characterisation of 1-3. 

Time/min Ratio MeOH/% Ratio 0.01% aqueous HCOOH/% Flow rate/ml⋅min-1 

0 2 98 0.7 
5 2 98 0.7 

10 100 0 0.7 
12 100 0 0.7 
13 2 98 0.7 
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Chapter 4 
Fluorescent Materials for pH Sensing and Imaging Based on Novel 1,4-Diketopyrrolo-[3,4-

c]pyrrole dyes 

 

NMR spectra 

 

  

Figure A-47: 1H-NMR spectrum of 2 (300 MHz, DMSO-d6, TMS): δH = 11.47 (1 H, s, Ar-H(9)), 10.44 (1 H, s, 

ArOH), 10.11 (1 H, s, SO2NH), 8.3 - 8.7 (2 H, CONH), 8.33 (3 H, d, J = 8.4 Hz, Ar-H(2,3,5)), 8.26 (1 H, dd, J1 = 7.7 

Hz, J2 = 1.1 Hz, Ar-H(8)), 7.70 - 7.86 (4 H, m, Ar-H(1,4,6,7)), 7.09 (2 H, s, Ar-H(10,11)). 

 

 
Figure A-48: 1H-NMR spectrum of 3 (300 MHz, DMSO-d6, TMS): δH = 11.45 (1 H, s, Ar-H(9)), 10.10 (2 H, d, 

ArOH, SO2NH), 8.3 - 8.7 (2 H, CONH), 8.31 (3 H, dd, J1 = 8.1 Hz, J2 = 2.1 Hz, Ar-H(2,3,5)), 8.26 (1 H, dd, J1 = 7.7 

Hz, J2 = 1.4 Hz, Ar-H(8)), 7.70 - 7.86 (4 H, m, Ar-H(1,4,6,7)), 7.06 (1 H, d, J = 2.3 Hz, Ar-H(10)), 6.89 (1 H, dd, J1 

= 8.7 Hz, J2 = 2.4 Hz, Ar-H(12)), 6.85 (1 H, d, J = 8.5 Hz, Ar-H(11)). 
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Figure A-49: 1H-NMR spectrum of 4 (300 MHz, DMSO-d6, TMS): δH = 11.58 (1 H, s, Ar-H(9)), 8.3 - 8.8 (2 H, 

CONH), 8.50 (2 H, d, J = 8.7 Hz, Ar-H(2,3)), 8.36 (1 H, d, J = 7.8 Hz, Ar-H(5)), 8.30 (1 H, dd, J1 = 7.8 Hz, J2 = 1.1 

Hz, Ar-H(8)), 7.85 (3 H, dt, J1 = 8.4 Hz, J2 = 1.9 Hz, Ar-H(1,4,6)), 7.77 (1 H, t, J = 7.5 Hz, Ar-H(7)), 3.67 (4 H, t, J 

= 4.2 Hz, OCH2), 2.95 (4 H, t, J = 4.1 Hz, ArNCH2). 

 

 

Figure A-50: 13C-APT-NMR spectrum of 2 (300 MHz, DMSO-d6, TMS): δC = 175.67, 166.14 (C=O); 147.20, 146.29, 

139.39, 139.02, 135.80, 133.54 (CAr); 132.49 (CAr-H6), 131.34 (CAr-H7); 130.49, 130.16 (CAr); 129.17 (2C, CAr-H2, CAr-

H3), 127.65 (CAr-H8), 126.25 (2C, CAr-H1, CAr-H4), 124.73 (CAr-H5); 122.64 (2C, CAr); 120.99 (2C, CAr-H10, CAr-H11); 

110.81, 100.35 (CAr). 
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Figure A-51: 13C-APT-NMR spectrum of 3 (300 MHz, DMSO-d6, TMS): δC = 175.64, 166.15 (C=O); 150.50, 147.15, 

139.79, 139.16, 135.81, 133.26 (CAr); 132.46 (CAr-H6), 131.31 (CAr-H7); 130.48, 129.24 (CAr); 128.99 (2C, CAr-H2, CAr-

H3), 127.65 (CAr-H8), 126.67 (2C, CAr-H1, CAr-H4), 124.71 (CAr-H5), 123.23 (CAr-H10), 121.78 (CAr-H12); 119.54 (CAr); 

116.90 (CAr-H11); 110.75, 100.36 (CAr). 

 

 

Figure A-52: 13C-APT-NMR spectrum of 4 (300 MHz, DMSO-d6, TMS): δC = 175.71, 166.19 (C=O); 147.27, 138.99, 

135.81, 135.01, 133.76 (CAr); 132.49 (CAr-H6), 131.34 (CAr-H7); 130.48, (CAr); 129.15 (2C, CAr-H2, CAr-H3), 127.66 

(CAr-H8), 127.26 (2C, CAr-H1, CAr-H4), 124.73 (CAr-H5); 110.90, 100.41 (CAr); 65.29 (C-O); 45.92 (C-N). 
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m/z
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MALDI-TOF Spectra:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-53: MALDI-TOF spectrum of 2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-54: MALDI-TOF spectrum of 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-55:: MALDI-TOF spectrum of 4 
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Full UV/VIS absorption spectra (230 – 1000 nm) and IR spectra: 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure A-56: UV/VIS absorption spectra of 2 (top, left), 3 (top, right) and 4 (bottom) in tetrahydrofuran 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-57: ATR-IR spectra of 2 (top, left), 3 (top, right) and 4 (bottom) in tetrahydrofuran 
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Chapter 5 
Enhancing Photoinduced Electron Transfer Efficiency of Fluorescent pH-probes with 

Halogenated Phenols 

 

Electrochemical measurements 

 

 

Figure A-58: Cyclic voltammograms of model compounds for fluorophores, denominated as stated in table 5-3 

(main text). LumRed stands for LumogenRed (1,6,7,12-Tetraphenoxy-N,N’-di(2,6-diisopropylphenyl)perylene-

3,4:9,10-tertracarboxylic bisimide) which is a model compound for 5A-C for which a very similar first reduction 

potential (-0.55 V) was found. %a-C are shown in the following figure. 

 

Figure A-59: Cyclic voltammograms of model compounds for PET groups; DCAP stands for 4-amino-2,6-

dichlorophenol, MCAP for 4-amino-2-dichlorophenol and 26dcp for 2,6-dichlorophenol. 
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NMR Spectroscopy 

 

 

Figure A-60: 1H NMR of 1a (300 MHz, CD3OD containing 0.02 M NH3, TMS): δ = 8.49 (d, 0.5H, J = 1.3 Hz, 

H(5a)); 8.01 – 8.15 (m, 1.5H, H(4a,4b,5b)); 7.69 (d, 0.5H, J = 1.0 Hz, H(3b)); 7.33 – 7.39 (m, 1H, H(3a,7)); 7.30 

(d, 0.5H, J = 1.8 Hz, H(7)); 7.16 – 7.22 (dd, 0.5H, J1 = 8.2 Hz, J2 = 2.0 Hz, H(9)); 7.11 (d, 2.5H, J = 1.6 Hz, 

H(2,9)); 6.82 – 6.93 (dd, 1H, J1 = 8.3 Hz, J2 = 14.2 Hz, H(8)); 6.60 (s, 2H, H(1)); 4.43 – 4.56 (d, 2H, H(6)).  

 

 

Figure A-61: 1H NMR of 1b (300 MHz, CD3OD containing 0.02 M NH3, TMS): δ = 8.09 – 8.17 (s + d, 1H, 

H(5a,5b); 7.65 (dd, 1H, J1 = 7.8 Hz, J2 = 1.1 Hz, H(4a,4b)); 7.27 – 7.39 (2d, 1H, J1 = 7.7 Hz, J2 = 1.2 Hz, H(3a,3b)); 

7.10 – 7.19 (2s, 2H, H(2)); 6.59 (s, 2H, H(1)); 7.10 – 7.19 (2s, 2H, H(2)); 3.5 – 3.9 (m, 4H, H(6)); 2.44 – 3.64 (m, 

4H, H(7)); 2.28 – 2.39 (2s, 3H, H(8)). 
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3-Chloro-4-hydroxybenzylamine 

 

Figure A-62: 1H NMR of 3-Chloro-4-hydroxybenzylamine (300 MHz, CD3OD, TMS): δ = 7.44 (d, 1H, J = 1.9 Hz, 

H(1)); 7.22 (dd, 1H, J1 = 8.3 Hz, J2 = 1.8 Hz, H(2); 6.97 (d, 1H, J = 8.4 Hz, H(1); 4.00 (s, 2H, H(4)). 

 

 

 

Figure A-63: 1H NMR of 2a (300 MHz, (CD3)2SO, TMS): δ = 10.43 (1H, s, H(9)); 10.20 (1H, s, H(8)); 8.43 (1H, d, 

J = 1.7 Hz,  H(4)); 7.72 (1H, dd, J1 = 8.0 Hz, J2 = 1.8 Hz, H(5)); 7.43 (2H, d, J = 7.9 Hz, H(6)); 7.06 (2H, s, H(7)); 

6.98 (2H, dd, J1 = 9.5 Hz, J2 = 1.8 Hz , H(2)); 6.93 (2H, d, J = 1.9 Hz, H(3)); 6.84 (2H, d, J = 9.3 Hz , H(1)); 3.63 

(8H, q, J = 7.1 Hz , H(10)); 1.20 (12H, t, J = 6.9 Hz , H(11)). 
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Figure A-64: 1H NMR of 2b (300 MHz, D2O, 0.1% HCl conc., TMS): δ = 8.49 (1H, d, J = 1.5 Hz, H(4)); 8.14 (1H, 

broad d, J = 7.8 Hz, H(5)); 7.57 (1H, d, J = 7.6 Hz,  H(6)); 6.95 (2H, d, J = 9.7 Hz,  H(1)); 6.92 (2H, dd, J1 = 10.0 

Hz, J2 = 1.2 Hz , H(2)); 6.84 (2H, d, J = 1.1 Hz, H(3)); 4.03 (2H, d, J = 12.6 Hz, H(7)); 3.64 – 3.73 (2H, d, J = 12.3 

Hz, H(7)); 3.53 – 3.64 (8H, q, J = 7.1 Hz, H(10)); 3.33 (3H, d, J = 12.6 Hz, H(8)); 2.92 – 3.06 (5H, m, H(8,9)); 

1.24 (12H, 7, J = 6.9 Hz, H(11)). 

 

 

Figure A-65: 1H NMR of 3b (300 MHz, (CD3)2SO, TMS): δ = 11.50 (1H, broad s, H(9)); 8.45 – 8.7 (2H, broad, 

H(13)); 8.41 (2H, d, J = 8.4 Hz, H(2,3)); 8.25 – 8.35 (2H, 2d, J = 7.7 Hz, H(5,8)); 7.68 – 7.83 (4H, m, H(1,4,6,7)); 

2.93 (4H, broad t, H(10)); 2.35 (4H, broad t, H(11)); 2.12 (3H, s, H(12)). 
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Figure A-66: 1H NMR of 4a (300 MHz, CDCl3, TMS): δ = 8.75 (4H, 2s, H(1)); 7.53 (1H, t, J = 7.7 Hz, H(3)); 7.39 

(2H, d, J = 7.9 Hz, H(2)); 7.29 (2H, s, H(6)); 6.08 (1H, s, H(7)); 2.74 (2H, quint, J = 6.7 Hz, H(4)); 1.19 (12H, dd, 

J1 = 6.9 Hz, J2 = 3.6 Hz, H(5)). 

 

 

Figure A-67: 1H NMR of 4b (300 MHz, CDCl3, TMS): δ = 8.71 (4H, 2s, H(1)); 7.52 (1H, t, J = 7.6 Hz, H(3)); 7.38 

(2H, d, J = 7.7 Hz, H(2)); 4.41 (2H, t, J = 5.7 Hz, H(6)); 2.76 (4H, m, H(4,7)); 2.42 (6H, s, H(8)); 1.18 (12H, dd, J1 

= 3.7 Hz, J2 = 3.2 Hz, H(5)). 
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Figure A-68: 1H NMR of 4c (300 MHz, CDCl3, TMS): δ = 8.75 (4H, 2s, H(1)); 7.53 (1H, t, J = 7.8 Hz, H(3)); 7.39 

(2H, d, J = 7.8 Hz, H(2)); 7.33 (1H, d, J = 2.3 Hz, H(6)); 7.22 (1H, d, J = n.m. due to CHCl3, H(8)); 7.17 (1H, dd, J1 

= 8.7 Hz, J2 = 2.3 Hz, H(7)); 5.77 (1H, s, H(9)); 2.74 (2H, quint, J = 6.8 Hz, H(4)); 1.19 (12H, dd, J1 = 6.6 Hz, J2 = 

3.6 Hz, H(5)).  

 

 

Figure A-69: 1H NMR of 5a (300 MHz, CDCl3, TMS): δ = 8.24 (4H, 2s, H(1)); 7.44 (1H, t, J = 8.4 Hz, H(3)); 7.23 – 

7.34 (10H, m, H(2,8)); 7.21 (2H, s, H(6)); 7.12 (4H, m, H(9)); 6.98 (8H, t, J = 6.5 Hz, H(7)); 6.11 (1H, s, H(10)); 

2.71 (2H, quint, J = 6.4 Hz , H(4)); 1.14 (12H, d, J = 6.6 Hz, H(5)). 
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Figure A-70: 1H NMR of 5b (300 MHz, CDCl3, TMS): δ = 8.21 (4H, 2s, H(1)); 7.42 (1H, t, J = 7.8 Hz, H(3)); 7.20 – 

7.33 (10H, m, H(2,10)); 7.12 (4H, q, J = 7.8 Hz, H(11)); 6.96 (8H, q, J = 3.9 Hz, H(9)); 4.28 (2H, t, J = 6.8 Hz, 

H(6)); 2.58 – 2.75 (4H, m, (4,7)); 2.34 (6H, s, H(8)); 1.12 (12H, d, J = 6.8 Hz, H(5)). 

 

  

Figure A-71: 1H NMR of 5c (300 MHz, CDCl3, TMS): δ = 8.24 (4H, 2s, H(1)); 7.44 (1H, t, J = 8.2 Hz, H(3)); 7.23 – 

7.33 (11H, m, H(2,6,10)); 7.06 – 7.16 (6H, m, H(7,8,11)); 6.98 (4H, dd, J1 = 5.1 Hz, J2 = 7.5 Hz, H(9)); 5.73 (1H, s, 

H(12)); 2.71 (2H, quint, J = 6.3 Hz , H(4)); 1.12 (12H, d, J = 6.8 Hz, H(5)). 
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Figure A-72: 1H NMR of 6a (300 MHz, CDCl3, TMS): δ = 8.73 (2H, s, H(1)); 8.59 (1H, s, H(1)); 8.54 (1H, s, H(1)); 

7.53 (1H, t, J = 7.8 Hz, H(3)); 7.38 (2H, d, J = 7.7 Hz, H(2)); 7.30 (2H, s, H(6)); 6.08 (1H, s, H(11)); 4.07 – 4.32 

(3H, m, H(7,10)); 3.95 (1H, t, J = 8.9 Hz, H(10)); 3.58 (1H, d, J = 11.4 Hz, H(9)); 3.37 (1H, t, J = 8.8 Hz, H(9)); 

2.65 – 2.90 (3H, m, H(4,8)); 2.17 (1H, d, J = 13.7 Hz, H(8)); 1.19 (12H, dd, J1 = 6.5 Hz, J2 = 11.8 Hz, H(5)). 

 

 

Figure A-73: 1H NMR of 6b (300 MHz, CDCl3, TMS): δ = 8.61 (2H, m, H(1)); 8.45 (2H, m, H(1)); 7.44 (1H, t, J = 

7.8 Hz, H(3)); 7.30 (2H, d, J = 7.6 Hz, H(2)); 7.30 (2H, d, J = 7.6 Hz, H(2)); 4.32 (2H, m, H(6)); 3.95 – 4.25 (3H, 

m, H(9,12)); 3.84 (1H, m, H(12)); 3.53 (1H, t, J = 12.3 Hz, H(11)); 3.28 (1H, t, J = 8.4 Hz,  H(11)); 2.55 – 2.95 (5H, 

m, H(4,7,10)); 2.31 (6H, 2d, H(8)); 2.06 (1H, t, J = 13.5 Hz, H(10)); 1.10 (12H, m, H(5)). 
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MALDI-TOF Mass Spectroscopy 

 

For the products 4-6, in addition to [MH]+ and [MNa]+, M+ [M - H]+ and [M - 2H]+ (products of 

photoionization) were in some cases detected  

 

        

 
 

 

 

 

 

 

 
 

 

 

Figure A-74: MALDI-TOF spectrum of 1a 

 

 

        

 
 
 
 

 

 

 

 
 

 

Figure A-75: MALDI-TOF spectrum of 1b 

 

 
 
 

 

 

 
 

 

 
 

 

Figure A-76: MALDI-TOF spectrum of 2a 
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Figure A-77: MALDI-TOF spectrum of 2b 

 

 
 
 

 

 

 
 

 
 

 

 

Figure A-78: MALDI-TOF spectrum of 3b 

 

 

 

 
 
 

 

 
 
 

 

 
 

   

Figure A-79: MALDI-TOF spectrum of 4a 
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Figure A-80: MALDI-TOF spectrum of 4b 

 

 

      

 
 

 

 

 
 
 

 

 
 

Figure A-81: MALDI-TOF spectrum of 4c 

 

 

        

 

 
 
 

 
 

 
 

 

 

 

Figure A-82: MALDI-TOF spectrum of 5a 
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Figure A-83: MALDI-TOF spectrum of 5b 

 

       

 

 

 

 
 

 
 

 

 

 

 
Figure A-84: MALDI-TOF spectrum of 5c 

 

     

 
 

 
 

 

 
 

 
 

 
Figure A-85: MALDI-TOF spectrum of 6a 
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Figure A-86: MALDI-TOF spectrum of 6b 
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Chapter 6 
Perylene Bisimides for FLIM-based pH Measurements in 2D and 3D Cell Models 
 

NMR Spectra: 

 

 
Figure A-87: 1H NMR-spectrum (300MHz, CDCl3, TMS) of N-(2,6-Diisopropylphenyl)-N’-(2-

dimethylaminoethyl)-1,6,7,12-tetrachloroperylene-3,4:9,10-tertracarboxylic bisimide; δ = 8.71 (4H, 2s, H(1)), 7.52 

(1H, t, H(3a)), 7.38 (2H, d, J = 7.7Hz, H(3b)), 4.39 (2H, t, J = 6.3Hz, H(2a)), 2.6 – 2.8 (4H, m, H(2b) and H(3d), 

2.37 (6H, s, H(2c)), 1.18 (12H, dd, J1 = 3.7 Hz, J2 = 3.2 Hz, H(3c)). 

 

 
Figure A-88: 1H NMR-spectrum (300MHz, CDCl3, TMS) of 2; δ = 8.21 (4H, 2s, H(1)); 7.42 (1H, t, J = 7.8 Hz, 

H(3a)); 7.20 – 7.33 (10H, m, H(3b,4b)); 7.12 (4H, q, J = 7.8 Hz, H(4c)); 6.96 (8H, q, J = 3.9 Hz, H(4a)); 4.28 (2H, 

t, J = 6.8 Hz, H(2a)); 2.58 – 2.75 (4H, m, (2b,3d)); 2.34 (6H, s, H(2c)); 1.12 (12H, d, J = 6.8 Hz, H(3c)). 
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Figure A-89: 1H NMR-spectrum (300MHz, (CD3)2SO:D2O 20:1 (V/V), TMS) of 3; δ = 7.98 (2H, s, H(1)), 7.84 (2H, 

s, H(1)), 7.68 (4H, d, J = 8.7Hz, H(4b)), 7.59 (4H, d, J = 8.4Hz, H(4b)), 7.42 (1H, t, J = 7.6Hz, H(3a)), 7.28 (2H, d, 

H(3b)), 6.98 (8H, 2d, H(4a)), 4.27 (2H, broad s, H(2a)), 3.25 – 3.4 (2H, broad s, H(2b)), 2.6 – 2.9 (8H, m, H(2c) 

and H(3d)), 1.01 (12H, d, J = 6.6Hz, H(3c)). An unusual shift for H2O (3.5 instead of 3.3 ppm) is probably caused 

by difficulties upon shimming, as 5% of D2O had to be added to DMSO-d6 to provide sufficient solubility of the 

dye. 

 

 
Figure A-90: HH-COSY NMR-spectrum (300MHz, (CD3)2SO:D2O 20:1 (V/V), TMS) of 3.  
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Figure A-91: HH-COSY-NMR-spectrum (300MHz, CD3OD, TMS) of MP. 

 

 
Figure A-92: 1H NMR-spectrum (300MHz, CD3OD, TMS) of MP; δ = 8.19 (4H, d, H(1)), J = 8.4Hz), 7.81 (8H, dd, 

J1 = 6.2Hz, J2 = 8.5Hz, H(4b)), 7.45 (1H, t, J = 7.8Hz, H(3a)), 7.30 (2H, d, J = 7.6Hz, H(3b)), 7.12 (8H, dd, J1 = 

8.6Hz, J2 = 16.5Hz, H(4a)), 4.50 (2H, broad s, H(2a)), 3.85 – 4.10 (12H, m, H(5a) and H(5e)), 3.51 (2H, broad s, 

H(2b)), 3.22 (8H, m, H(5d)), 2.97 (6H, s, H(2c)), 2.69 (2H, p, J = 6.8Hz, H(3d)), 1.6 – 1.9 (16H, m, H(5b) and 

H(5c)), 1.0 – 1.23 (24H, m, H(3c) and H(5f)).  
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MALDI-TOF Spectra: 
  

 
Figure A-93: MALDI-TOF-spectrum of 3. Maxima at m/z = 1270-1272 and 1287.1 correspond to [MNa2K+] and to 

[MNaK2+], respectively. 

 

 
Figure A-94: MALDI-TOF-spectrum of MP. Maxima at m/z = 2061 – 2064 and 2069 – 2073. Correspond to 

[MNa+] and to [MNK+], respectively. m/z = Those around 2033.71 and 2019.65 most likely originate from small 

amounts of MP monomethylester and MP monocarboxylate (transesterification or hydrolysis of one of the four 

ethyl ester groups in MP which can occur during HPLC-chromotography or concentration after purification, 

catalyzed by formic acid. 

 

HPLC Purification Details for MP: 

 
Table A-7: HPLC gradient used for the purification of MP (Temperature 30°C). 

Time/min Ratio MeOH/% Ratio 0.01% aqueous  
formic acid/% 

Flow rate/ml⋅min-1 

0 35 65 20 
35 70 70 20 

35.1 100 0 20 
39 100 0 20 
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