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Abstract

Reliability and dependability in complex mechanical systems can be improved by
fault detection and isolation methods (FDI) as well as methods for force estimation.
These techniques are key elements for maintenance on demand, which can decrease
service costs and time significantly. This work addresses FDI and force estimation
for a railway vehicle: The mechanical model is described as a multibody system,
which is excited randomly due to track irregularities. Numerous parameters, like
masses, spring- and damper-characteristics, influence the dynamics of the vehicle.
Often, the exact values of the parameters are unknown and might even change over
time. Some of these changes are considered as critical with respect to the operation
of the system and they require immediate maintenance. The aim of this work is
to detect faults in the suspension system of the vehicle and to estimate wheel rail
contact forces as well as forces in the suspension system. A Kalman filter is used
for the state estimation. In order to detect and isolate faults, several Kalman filters
are used, each of them is specific for a fault in the system. A statement of the
condition of the railway vehicle is then given by comparing the data of the system
under investigation and the data estimated with the Kalman filters. The estimated
states are also used to solve the inverse problem in the force calculation. A full scale
train model with a nonlinear wheel rail contact model serves as an example for the
described techniques. Numerical results for different test cases are presented. The
analysis shows that for the given system it is possible not only to detect a failure in
the suspension system from the system’s dynamic response, but also to distinguish
clearly between different possible causes for the changes in the dynamical behavior.

The wheel rail forces as well as the suspension forces can be estimated accurately.



Kurzfassung

Die Zuverldssigkeit in komplexen mechanischen Systemen kann durch Fehlerde-
tektion und Isolationsverfahren sowie durch die Schitzung der Krifte im System
verbessert werden. Diese Techniken sind Schliisselelemente fiir eine zustandsorien-
tierte Instandhaltung, welche Servicekosten und -zeit signifikant verringern kénnen.
Das Ziel dieser Arbeit ist die Fehlererkennung und Kraftschiatzung im Schienen-
fahrzeug. Das Schienenfahrzeug wird als Mehrkorpersystem modelliert und die An-
regung des Systems resultiert aus Gleislagefehlern. Verschiedene Parameter, wie
Massen, Federn und Dampfer beeinflussen die Zugdynamik. Oft sind die genauen
Werte der Parameter unbekannt und konnten sich sogar im Laufe der Zeit dndern.
Einige dieser Verdnderungen sind kritisch im Hinblick auf den Betrieb des Sys-
tems und erfordern eine sofortige Wartung. Das Ziel dieser Arbeit ist es, Fehler in
Dampfern des Fahrzeuges zu erkennen und Kréafte im Kontakt zwischen Rad und
Schiene sowie in Dampferelementen zu schitzen. Um die Dynamik des Schienen-
fahrzeuges zu rekonstruieren, werden mittels eines Kalman Filters die Zustédnde
des Systems geschatzt. Zur Erkennung und Isolation der Fehler werden mehrere
Kalman Filter verwendet, die jeweils spezifisch fiir einen Fehler sind. Durch Vergleich
der Daten des zu untersuchenden Systems mit den per Kalman Filter geschitzten
Werten, wird auf das Auftreten von Fehlern zuriick geschlossen.

Die inverse Berechnung der im System auftretenden Kréfte basiert ebenfalls auf
dem Kalman Filter. Der Kalman Filter wird verwendet um die Zustdnde des Systems
zu schitzen. Anschlieffend muss der Zusammenhang zwischen dem Zustand und den
auftretenden Kraften ermittelt werden, durch diesen Zusammenhang kénnen dann

die Krafte geschitzt werden.
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Nomenclature

Functions

E[] expectation

F() transfer function

f10), f20) geometry of the left and right wheel

1) spring force

fa() damper force

Fx() cumulative distribution function

fx() probability density function

910), g2() geometry of the left and right rail

P() probability likelihood

Ser() power spectral density of cross-level track irregularities
Sh() power spectral density of horizontal track irregularities
Sy() power spectral density of vertical track irregularities
Sx() power spectral density

Var() variance

O Kronecker delta function

Scalars

A B constants depending on the radii of curvatures

a,b the contact ellipse semi-axes

A, B event in terms of probability

A, B;, C; constants depending on the radii of curvatures

Aj, By, C; constants depending on the radii of curvatures

A, B, Co, Doy constants for Hertz calculation

A, B, C, D, constants for Hertz calculation

bro, bwo, bero coefficients for track irregularities

Ch normal damping coefficient

Cji creepage coefficients

Cay cross-covariance



Nomenclature

d distance between rail and wheel contact point
e scalar residual

fault sum of fault indication values

Fy normal damping force

F, Hertz normal load

JHertz Hertz contact force

F, normal load

F,, F, creep forces

G modulus of rigidity

G, modulus of rigidity of rail

G modulus of rigidity of wheel

4y unstrained spring length

K, K, constants for Hertz calculation depending on material properties
Kiers Hertz coefficient

m mass of a body

mmg, Ny constants for Hertz calculation

My creep moment

P pressure in the contact point

Do maximal pressure in the contact point
Qr vertical wheel force

Ri1, Ria, Rj1, Rjo radii of curvature

R,y cross-correlation

R.. auto-correlation

s arc length

s" surface parameter of the rail

s® surface parameter of the wheel

t time

V magnitude of the wheel velocity

Uy, Uy, velocity of the contact point at the rail
vy, vy velocity of the contact point at the wheel
X random variable

X expected value of a random variable

Y random variable

Yr lateral wheel force

Y expected value of random variable

Yt lateral displacement

2 vertical displacement

Var Vys W longitudinal, lateral and spin creepage
At Sample time



Nomenclature

) penetration for Hertz normal Force
Op contact angle at the contact point
€ fault indication values

0 pitch-angle

[ friction coefficient

v Poisson’s ratio

PXY correlation coeflicient

o standard deviation

T time shift

) roll-angle

v yaw-angle

Matrices and vectors

A B C' D system, input, output and feed-through matrices
A, A, As Ag rotational matrices

A, B, C,, D, system, input, output and feed-through matrices of the train model
Agpi, Asr, App system matrices for form filter

a Euler angles

Bysi, By, Bep input matrices for form filter

Cyri, Crp, Crpp output matrices for form filter

Cr forces output matrices

Dy, Dys, Dpp feed-through matrices for form filter

Dpr force feed-through matrices

F forces

F. G H, L Discrete system, input, output and feed-through matrix
F. spring force

Fy damper force

1 identity matrix

J moment of inertia tensor

Jac Jacobian matrix

K observer or Kalman filter gain matrix

L vector between two points

M moment

n” normal vector of the rail surface

n% normal vector of the wheel surface

O observability matrix

P state residual covariance matrix
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Nomenclature

P position of contact point

f’,; a-priori covariance matrix

f’k* a-posteriori covariance matrix

1°8 contact point at the rail

pY contact point at the wheel

Q disturbance input covariance matrix

R measurement error covariance matrix

R global position vector of the origin of the body
T global position vector

R’ global position vector of the origin of the rail
R" global position vector of the origin of the wheel
I, state vector residual

r, measurement residual

t" tangential vector of the rail surface

tv tangential vector of the wheel surface

u input signal

u” contact point position

uy discrete input signal

u” contact point position

A measurement noise vector

w process noise vector

X state vector

X time derivative of state vector

X estimated state vector

X time derivative of estimated state vector
Xff, Xpfi, XFF state vector of form filter

X discrete state vector

Xk discrete estimated state vector

X, a priori estimated state vector

:fcz a posteriori estimated state vector

X state vector of railway system

y output signal, measurement vector

y estimated measurement vector

Yifs Yifis YFF output vector of form filter

Vi discrete measurement vector

Vi discrete estimated measurement vector
Vs measurement vector of train model

w angular velocity

11






1 Introduction

The capacity of transport as well as the number of passengers is growing in the
railway industry. At the same time, the pressure to reduce service costs rises. The
effort to reduce service costs and time starts during the planning phase of the vehicle
and the rail, and it continues during the operation phase. During the operation phase
an enormous cost factor results from the maintenance of the railway track as well
as the railway vehicle. Thus, decreasing maintenance costs is a major focus in the
railway industry.

Reliability and dependability in complex mechanical systems can be improved by
fault detection and isolation methods (FDI) as well as force estimation techniques.
These techniques, FDI and force estimation, are key elements for maintenance on
demand, which could decrease service costs and time significantly.

Further, an accurate and easy way to estimate forces in the system improves the
Asset Management. In the case of the railway vehicle, forces occurring in the wheel
rail contact and the suspension system are of special interest.

This work addresses two major topics: The first topic is the detection and isolation
of faults in the suspension system, the second topic is the estimation of forces in the
wheel rail contact point as well as in the suspension system.

In both topics, the dynamics of the railway vehicle is modeled by a multibody
system, which is excited randomly due to track irregularities. The Velaro RUS serves
as an example. Various parameters, like masses, spring- and damper-characteristics,
influence the dynamics of the vehicle. Often, the exact values of the parameters are
unknown and might even change over time. Some of these changes are considered
as critical with respect to the operation of the system and they require immediate
maintenance. In both topics the railway vehicle dynamics is captured with a Kalman
filter. In order to improve the state estimation process, the characteristics of the
track irregularities are considered in the fault detection process. The characteristics
of the track irregularities are modeled with form filters. The form filters are based
on power spectral density functions of the assumed random track irregularities and
are included in the system’s equations.

Thus, the aim of the first topic of this work is to detect and isolate faults in
the suspension system. The detection and isolation of faults is divided into two

steps: First, changes in the system, which are caused by a fault, are identified (fault

13



1 Introduction

detection). Second, the location of the faults are determined (fault isolation).

To detect and isolate faults, noisy acceleration measurements of the railway ve-
hicle are used. With this acceleration measurements multiple state estimations are
performed. Each estimation is based on a different model of the railway vehicle,
one model represents the fault free case and the other models represent the faulty
cases. Out of all available models, the one with the smallest estimation error is
selected. Kalman filters are used to perform the state estimations. A full scale train
model with nonlinear wheel rail contact and nonlinear suspension forces serves as
an example for the described techniques.

Important components in railway suspension systems are the anti-yaw damper,
the secondary lateral, and vertical damper. The anti-yaw damper is critical for
running stability, the other two influence mainly the ride comfort. In this study, the
presented FDI procedure is used in order to detect faults in any of these dampers.
Furthermore, it is possible to distinguish between a large number of different fault
scenarios: It is possible to isolate a single fault at a single suspension element as
well as to detect and isolate multiple failures in the complex suspension system.
Numerical results for different test cases are presented and the robustness of the
proposed method is analyzed.

The aim of the second topic is to estimate the lateral and vertical wheel rail
contact forces and suspension forces in the railway vehicle system. The use of
indirect methods for the estimation of dynamic forces acting on mechanical systems
is very interesting as a direct measurement of these forces is usually very difficult
and sometimes impossible. The wheel-rail system is a major part of the railway
vehicle and has to fulfill several functions, such as carrying, guiding and transmitting
power. Thus, forces occurring in the wheel-rail contact influence the running safety,
the track loading and the ride characteristics of the vehicle. Currently, wheel-rail
contact forces are determined using a wheelset equipped with strain gauges. In this
method the contact forces are calculated by evaluating the measured strains. These
custom made wheelsets are only operated during specific train rides, for example
to test new trains or tracks. On the other hand, the use of these strain gauges
is too expensive for normal operation. Therefore, there is demand for alternative
ways to calculate the wheel-rail forces. In addition, the forces resulting from the
suspension system provide information, which can be used for maintenance purposes
and strength calculation. The obtained force data serves to design and develop
optimized railway vehicles and tracks. Further, the evolution of the forces over time
can be analyzed and the correlation between different components of the train and
track can be evaluated.

The estimation of the forces in the railway vehicle system is an inverse problem,

which includes several difficulties. The inverse problem is often not unique and
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1.1 Review of literature

badly scaled. Similar to the first topic, a linear Kalman filter is used for the state
estimation based on given acceleration data and specific track characteristics. The
relation between the state vector and the various forces is determined. This relation
is used and the different forces are calculated based on the estimated states.

In order to test the FDI method for a variety of different suspension faults, a
detailed model of the Velaro RUS with nonlinear suspensions as well as nonlinear

wheel rail contact forces is used. This model is used to simulate all test scenarios.

1.1 Review of literature

A number of recent publications address the detection and isolation of faults and
force estimation in railway vehicle systems.

Parameter estimation using a Rao-Blackwellized particle filter and Extended Kalman
filter |11, 2, B3] gives good results for linear and nonlinear suspension systems using a
two dimensional linear railway vehicle model. A multiple-model algorithm for the
detection of faults is given in [4, [5], a two dimensional half train serves as a model.
FDI methods for the handling of damping coefficients are described in [6] [7]: De-
pending on the sign of the relative damper velocity, the coefficients switch between
two distinct values. Suspension parameter estimation in the frequency domain is
presented in [8]. Model-less monitoring methods for railway vehicles are demon-
strated in [9, 10, 11]. A comparative study on fault detection methods of urban
rail vehicle suspension systems is presented in [12]: The fault detection methods are
applied to a three dimensional vehicle model, in which all four primary suspension
springs or all four secondary suspension dampers fail at the same time. A Hybrid
Extended Kalman filter for fault detection in nonlinear suspension elements for a
half train model is given in [13]. In [I4] a distributed fault detection method is pro-
posed for light rail vehicles. A vertical train model is used for the fault detection. In
[15], a fault detection method is introduced which uses a consensus principle compo-
nent analysis. The method is model less and it is shown that it is possible to detect
faults in the primary spring and damper when all primary springs or dampers were
faulty. It is not shown that it is possible to distinguish between different dampers
and suspensions. In [16] a primary conceptual overview of processing possibilities
for condition monitoring systems is given.

The estimate of wheel rail contact forces based on measured wheel disc strains
is presented in [I7]. Three different numerical algorithms are presented. An in-
verse method for dynamic load estimation using measurements of system responses
is presented in [I8]. In [19] and [20] an inverse dynamics method is introduced in

order to identify lateral wheel-rail forces. These methods use the Thikonov regular-
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1.2 Outline of the work

ization and the Bellman principle of optimality to minimize the objective function
for the estimation of applied forces due to excitation. In [2I] the vertical dynamic
interaction between train and track is estimated by using an extended state space
vector approach in conjunction with a complex model superposition for the track.
In [22] vertical wheel rail contact forces at high-frequency are estimated based on
[21]. Measured results from two field test campaigns are used to validate the vehi-
cle-track interaction model. Four vehicle models and two visco-elastic track models
are compared.

Further, there are some investigations to estimate the track irregularities. In [23]
inverse linear parametric models are used to identify rail track irregularities. A
Kalman filter is used in [24] to estimate the track geometry from carbody vibration.

Beyond the fault detection and force estimation there is a trend to use the Kalman
filter to estimate several entities of the train. In [25] an unscented Kalman filter is
used to estimate the friction coefficient of the wheel rail contact. A multi-Kalman
filter approach for estimation of wheel rail contact conditions is presented in [26]. A
nonlinear model of lateral and yaw dynamics of a wheelset is used in the presented
work. In [27] the Kalman filter is applied for control strategies for active steering of
bogie-based railway vehicles.

The strategy developed in this work analyses a railway vehicle based on accel-
eration data. Compared to most work published in this area, a highly detailed
three dimensional train model is used. Because of the accurate train model and
the database of Kalman filters, the fault detection as well as the force estimation
can be used to give a clear indication of the condition of a multitude of different

components of the train model.

1.2 QOutline of the work

In the first chapter, the motivation for this work and a literature review of research
related to fault detection and force estimation in the railway systems are given.

The next chapter presents the theoretical background of linear systems, signals
and probability theory, which are needed for this work. Basic characteristics of
linear systems are derived and the general form of a state observer is introduced.
The section on probability theory provides the information which is needed for the
Kalman filter.

Chapter 3 addresses the train model, which is used for simulation and testing. The
first section covers the wheel rail contact model, which mainly influences the train
dynamics. The second section describes the components of the railway vehicle and

how the equations of motion are derived.
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1.2 Outline of the work

Chapter 4 presents the procedure of fault detection and isolation and force esti-
mation. The Kalman filter is introduced, conditions for the state estimations and
tuning parameters are explained. The introduction to Kalman filters is followed by
the proposed method for fault detection and isolation. Starting with the characteris-
tics of the estimation error, the Kalman filter is extended for the fault detection and
isolation in the suspension system. The results are shown and a stability analysis of
the proposed methods is performed. The chapter ends with a method to estimate
wheel rail contact forces [28] as well as suspension forces. The estimation of both
forces is an inverse problem, thus the concepts of system inversion are introduced
and the difficulties, which could occur, are worked out. It is presented how the
Kalman filter is integrated in this inversion task. At the end, the results of the force
estimation and the relevance for safety and design optimization are shown.

Chapter 5 presents a summary of the obtained results. Both topics, the fault

detection as well as the force estimation are discussed.
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2 Theory

This section covers theory and fundamental methods, which are extensively used in
this work. First, basic concepts of linear systems and signals are provided, which
are important to capture the train dynamics in an efficient way. Then, probability
theory is covered, which is used to analyze the random excitation of the train model

and to define the Kalman filter for the state estimation of the train.

2.1 Linear systems and signals

Dynamical systems can be divided into linear and nonlinear systems. The theory of
linear systems is general and widely developed, whereas for the nonlinear case, many
concepts and theories for special issues exist. The concepts of linear system theory
are used in this work to perform the model based fault detection as well as the force
estimation. Thus, some basic theory of linear systems and signals is reviewed in this

chapter. More investigations can be found in [29], [30] and [31].

2.1.1 Linear systems

Figure [2.1] shows the block diagram of a dynamical system, which transforms an

input signal u(t) into the output signal y(¢). If the output of the system is pro-

u(t y(t
#> Dynamical system $

Figure 2.1: Dynamical system

portional to the input, the system is called linear. A linear function satisfies two

properties, the additivity and the homogeneity property

Additivity : f(a+b) = f(a) + f(D), (2.1)
Homogeneity : Ag(a) = g(Aa), for all . (2.2)

18



2.1 Linear systems and signals

Applying equations (2.1)) and (2.2 to a linear dynamical system, the results are

u(t) —yi(t) and wuy(t) — yaft), (2.3)
u(t) = auy(t) + bus(t) — y = ayi(t) + bys(t), (2.4)

where the arrow ” — 7 denotes, that the system maps the input u(t) onto the output
y(1).

If a system is linear and in addition the system’s behavior does not change over
time, the system is called a linear time invariant system (LTI). A time invariant

system must satisfy
w(t) =wl—1) = yi(t) =yt —7), (2.5)

where 7 is any time shift. Many methods to analyze dynamical systems are based
on linear models. Thus, for nonlinear systems, suitable methods are needed for

linearisation.

2.1.2 State-space representation

A linear and time-invariant system, shown in Figure 2.2 can be expressed by a set
of linear differential equations describing the physical characteristics of the system.
This set of differential equations models the influence of the system input u(¢) on

the system output y(¢). A so-called state space representation is given, if the set of

t
L LTT system L

Figure 2.2: L'TT system

differential equations is transformed into a set of first order differential equations.
In addition, if the dynamical system is a LTI system the differential equation can

be written in matrix form

x = Ax + Bu, (2.6)
y = Cx + Du, (2.7)

where x is the n-dimensional state vector with its time derivative x. The m inputs
of the system are combined in the input vector u, the [ outputs of the system are
combined in the output vector y. The matrix A defines the system matrix, the
matrix B is the input matrix and C is the output matrix. The matrix D is called

the feed-through matrix. It is zero, if there is no direct feed-through in the system.
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2.1 Linear systems and signals

The system matrices A, B, C and D are constant in the time-invariant case. Thus,
by using the state space representation, a system with multiple inputs and outputs

can be modeled and analyzed in a compact way.

g |
u(t) | iy o
: > B kfto > > !
A =

Figure 2.3: State space system

A block diagram of the state-space model given by equations (2.6) and (2.7) is
shown in Figure The diagram shows the principal parts of the system and their

connections.

2.1.3 Observability

The fault detection as well as the wheel rail force estimation use many concepts of
control theory. The states of the system are in general not directly accessible, thus
a controller needs a state estimation in order to perform state feedback control. In
this work, the state estimation is needed to reconstruct the system dynamics and
to determine faults or forces in the system. The concepts of controllability and
observability are related to each other, they are called dual problems. A system is
called controllable, if it is possible to find a control input that takes the system from
any initial point to any final point in any given time. A system is called observable,
if the values of its state variables can be uniquely determined from its input and
output signals. Figure [2.4] shows the concept of a closed loop state estimator. The
estimated state is denoted by X and the estimated measurement is denoted by y.
The state observer uses the measured output signal y(¢) to compute the output
estimation error y(¢) — y(t), which is multiplied by a gain matrix K and added to

the estimator. The estimator dynamics is described by

x(t) = AX(t) + KC (x(t) — x(t)) + Bu(t) (2.8)
x(t) = (A + KC)x(t) — KCx(t) + Bu(t) (2.9)

20



2.1 Linear systems and signals

u(t) | X [ X oy
—> B fto > C : >
A |«
System
| _y
! K !
s % o X s
E B fto > > C - !
: y o
| A < |
Observer !

Figure 2.4: State estimator

for the given state space model

x(t) = Ax(t) + Bu(t), (2.10)
y = Cx. (2.11)

The error dynamics of the estimator is

A(x(t) — x(t)) + KC(x(t) — %(1)) (2.12)

x(t) — x(t)
x = (A + KC)x. (2.13)

Thus, the eigenvalues of A + KC determine the stability of the estimation process.
The matrices A and C result from the mechanical system, the gain matrix K can
be chosen freely to obtain desired eigenvalues.

If it is possible to find a gain matrix K to obtain any set of desired observer

eigenvalues, the so-called observability matrix

C

O(C,A) = C:A (2.14)

CA™!

has full rank. A weaker form of observability is detectability. If O(C, A) does not
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2.1 Linear systems and signals

have full rank, but a gain matrix K exists such that all eigenvalues of A +KC are in
the left half plan, i.e they have a negative real part, the system is detectable. Thus,
the train model must be at least detectable in order to reconstruct the state.

In reality, the system is corrupted with process noise w and measurement noise v,

which is shown in Figure [2.59]

v
ut) | - x Yy y(®)
: fto > > C —>
A =
: v
i K i
| k% s
! B S>> C —
: y
iObserver A=

Figure 2.5: State estimator with unknown input

Both noise terms influence the estimation process and the estimator dynamics is
described by

x(t) = Ax(t) + KC (x(t) — x(t)) — Kv(t) + Bu(?). (2.15)

A special case of a state estimator is the so called Kalman filter, this filter requires
white process and measurement noise. The Kalman filter is explained in more detail
in section 4.1 and is used extensively in the fault detection and force estimation
methods.

2.1.4 Discretization

In order to estimate the states of the train model, acceleration measurements are
used. The measurements are sampled at discrete instances of time, thus, to perform

a state estimation, the train model is discretized.
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2.1 Linear systems and signals

If the state space model from equations ([2.6)) and (2.7)) is discretized with a sample
time At, the discretized system results to

Xk+1 = FXk + Guk, (216)
yi = Hx; + Luy, (2.17)

with
F = 22 G=FI-e**"A"'B, H=C, L=D. (2.18)

Many methods exist to discretize a system numerically. Since the railway model
is a very stiff problem, in this work an implicit Euler method is used. Using the

implicit Euler method, equation (2.6) can be approximated as

Xk4+1 — Xk

At ~ Axk—i-l + Buk (219)

solving this equation for x;,; results to

Xpr1 — X = AtAXk_H + AtBuk
Xpp1 — AtAX, 1 = X, + AtBu,,

(2.20)
(I — AtA)xp1 =~ x, + AtBuy,
Xp1 ~ (I — AtA) 'x, + (I — AtA) ' AtBu,
and finally
X411 = Fx, + Guy, (2.21)

with F = (I — AtA)™! and G = (I — AtA)"'A¢B.

With the implicit Euler method it is possible to derive a stable discrete time state
space model for the railway vehicle. The state space model is stable, if all eigenvalues
of F lie within the unit circle in the complex plane or rather if all eigenvalues have

an absolute magnitude smaller than one.
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2.2 Probability theory

2.2 Probability theory

For both topics of this work, the fault detection procedure as well as the force
estimation process, noisy measurement signals are used to determine the railway
vehicle dynamics. In order to get as much information as possible from these signals,
it is important to know the characteristics of the noise and how it influences the
system behaviour or rather the estimation process. In this section basic concepts are
reviewed of how to handle this uncertainty and it gives an introduction to probability
theory and random variables. Probability theory plays a major role in defining the

Kalman filter and thus for the fault detection and force estimation.

2.2.1 Probability

The probability P(A) is the likelihood that a given event A will occur. An event
is the outcome of a process, called the experiment. The set of all possible events
is called sample space of the experiment and is denoted by €2. The number of all
possible outcomes can be finite or infinite. The probability of P(.A) is a numerical
measure and the number is between 0 and 1, the number 0 indicates impossibility
and the number 1 indicates certainty.

According to [32], there are the following probability axioms

1. (Non-negativity) P(A) > 0, for every event A.

2. (Additivity) If A and B are two disjoint events, then the probability of their

union satisfies
P(AUB) = P(A) + P(B). (2.22)

Furthermore, if the sample space has an infinite number of elements and
A1, As, ... is a sequence of disjoint events, then the probability of their union

satisfies

PAL UA U ) = P(A) + P(Ay)... (2.23)

3. (Normalization) The probability of the entire sample space Q) is equal to 1,
that is, P(Q2) = 1.

2.2.2 Conditional probability and independence

Conditional probability is an important concept, which is used by the Kalman filter

to perform a state estimation. It is used to propagate the state estimation through
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2.2 Probability theory

time and to increase the accuracy from time step to time step.

In probability theory, a conditional probability gives information about the out-
come of an event, given that another event has occurred. If the event B has occurred,
the conditional probability of event A is defined as

P(A,B)
P(A|B) = ———= 2.24
(A[B) PB) (2.24)
with the assumption that P(B) > 0. P(A, B) is the joint probability of A and B5.
If an event A is not affected by an event B, the events are independent. In

probability theory, independent events have the joint probability
P(A,B) = P(A)P(B). (2.25)

If events A and B are independent, the conditional probability of P(A|B) is P(B)
or vice versa the conditional probability of P(B|.A) is P(A). The Kalman filter uses
this concept in order to quantify the likelihood of a state under the condition that

specific states were estimated in the past.

2.2.3 Random variables

According to [33], a random variable is defined as a function mapping a set of exper-
imental outcomes to a set of real numbers. The outcome of a particular experiment
is not a random variable. The random variable X exists independently of any of its
realizations, it will always be random and will never be equal to a specific value. A
random variable can be either continuous or discrete.

One way to describe a random variable is its cumulative distribution function (cdf)
Fx(z) = P(X < x). (2.26)

The cdf has the following properties

Fx(x) € 0,1],
Fx(—00) =0,
Fx(c0) =1, (2.27)
Fx(a) < Fx(b) if a <b,
Pla < X <b) = Fx(b) — Fx(a)
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2.2 Probability theory

The derivative of the cdf is defined as the probability density function (pdf)

fx(z) = dF;;(x), (2.28)
with the properties
/ fx(z
fx(—o00) =
/: Fe(@)da = 1, (2.29)

/fX

Input noise is often assumed to be a Gaussian random variable, which is essential
when defining the Kalman filter. A random variable is called Gaussian or normal
distributed if its pdf is given by

1 —(z — 1)?
= ) 2.30
i (2 20) a0
The values  and o in the pdf are the expected value and standard deviation of the
Gaussian random variable.

A pdf of a Gaussian random variable with a mean of zero and a variance of one is
given in Figure [2.6
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Figure 2.6: Gaussian function
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The expected value for a discrete random variable X is
X =EX]=) xP(X = ). (2.31)
i=1

For a continuous random variable X the expectation E(X) is defined as:

ElX] = /_ e ()da. (2.32)
The variance of X
Var(X) = E[(X — E(X))?] (2.33)

is the expected value of the squared deviance of the random variable X to its expected

value. The variance is calculated for the discrete and continuous case as follows:

Var(X) = 2:(35z — )2 P(x;) for X discrete, (2.34)
Var(X) = / (x — 2)*fx(x)dx for X continuous. (2.35)

The standard deviation is the square root of the variance

o=+ Var(X). (2.36)

The expected value of a random variable X is also called the first central moment,
and the variance the second central moment.
Measures to quantify the dependence of two random variables X and Y are the

cross-covariance C'xy and the cross-correlation Rxy. The cross-covariance is defined

as
Cxy = E[(X — X)(Y =Y
= F[XY] - XY.
The cross-correlation is defined as
Rxy = E[XY]. (2.38)
The cross-correlation coefficient is defined as
C
PXy = =L (2.39)
Ox0Oy

Two random variables are linearly independent, if pxy = 0.
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2.2 Probability theory

By considering a n-dimensional random variable X and a m-dimensional random

variable Y, the cross-covariance is defined as

EXivi] - E[X1Y)]
Cxy = E[XYT] = ; (2.40)

The auto-correlation defines the correlation of a signal with itself and is given by

EXiXy] -+ E[X1X,]
Ry = E[XX"] = : : : (2.41)
E[X.X1] - FE[X,X,]

2.2.4 Stochastic processes

According to [33] a stochastic process X (t) is a mathematical model of a probabilistic
experiment that evolves in time and generates a sequence of numerical values. Each
numerical value is modeled by a random variable, so a stochastic process is simply
a sequence of random variables. In general, the distribution function of a random
process changes with time

Fx(z,t) = P(X(t) < 2). (2.42)

A special case is the stationary random process, which has a constant distribution
function. The cross-correlation and auto-correlation function can also be applied to
a stochastic processes. Given the values X (1) and X (¢2) or Y(¢2), taken at time t;

and t, the auto-correlation of a stochastic process is defined as

Rx(ti,t2) = E[X(t:1)X (t2)"], (2.43)
and the cross-correlation as

Rxy(ti,t2) = B[X ()Y (t2)"]. (2.44)

If the auto-correlation Rx(t1,t2) of a stochastic process is zero for all ¢ # ¢, then
X (t) is called white noise. Otherwise, X(t) is called colored noise. Random processes
are often defined by the power spectral density, which is defined using the Fourier

transformation of X (¢).

X(w) = /_ T X (t)e “tqt. (2.45)
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Separating X (w) in its real and imaginary parts

X(w) = Xp(w) + 7 X1 (w) (2.46)
and its complex conjugate

X*(w) = Xp(w) — X (w), (2.47)
the real-valued, scalar power spectral density function Sx(w) results from

X (w)]* = X (w)X"(w)
= Xp(w) + X1(w) (2.48)
= Sx(CU).

Another way to describe the power spectral density is given by the Fourier-trans-

formation of the autocorrelation function:
o0 .
Sx(w) = / Rx(T)e™“Tdr. (2.49)
—0oQ
For a discrete-time random process the power spectral density function is defined as

Sx(w)= Y Rx(k)e ™ wel[-mm]. (2.50)

k=—o00

A discrete-time random process X(k) is white noise if
Ry = 0”6y, (2.51)
where ¢;, is the Kronecker delta function,

0, ifk#0
5 = rk#0 (2.52)
1, if k=0

i.e. the auto-correlation for a white-noise signal is zero, except for a time-shift 7 = 0.
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3 Train model

This section gives a detailed description of the train model and the equations of
motion. In order to derive the equations of motion of a train model, it is important
to have an accurate wheel rail contact model. The wheel rail contact determines
the performance of the railway vehicle system. The contact model is described at
the beginning of this section. Next, this section covers the components of the train
model. The various bodies of the railway vehicle are presented and the structure
of the suspension system is introduced. In the end, the equations of motion for the

railway vehicle are given.

3.1 Wheel-Rail Contact

The wheel-rail-system has to perform several tasks: First, supporting the weight
leads to vertical forces in the contact point. Then, lateral forces guide the vehicle
along the track and third, forces tangential to the rail allow for acceleration or
deceleration of the vehicle. The forces, which are needed to perform all these tasks
are transferred in the contact area between wheel and rail. This contact area has
the size of about 1.5¢m? and is influencing the whole railway dynamics.

For the FDI process, a reliable model of the railroad vehicle system is needed. A
reliable model needs to include the wheel-rail-contact model. The formulation of the
contact problem is a complex task and has been the subject of several investigations,
which presented different solutions. In general, studies are based on one of two
approaches: on the one side, there is the constraint approach and on the other side
the elastic approach. In the first case, the wheel and rail surfaces are assumed to
remain rigid and no separation or penetration are allowed. Kinematic algebraic
constraint equations are used to describe the contact between wheel and rail. In
the second case the wheel and rail surfaces are deformed in the contact region. The
normal force between the wheel and rail is obtained by using force models depending
on the intersection of the two surfaces and thus, separation and penetration are
allowed.

The computation of the wheel-rail contact forces can be divided into three steps.

The first step refers to the wheel and rail geometry and the determination of the con-
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3.1 Wheel-Rail Contact

tact points with the constraint or elastic approach. In the second step, the creepages
are determined, which measure the relative velocities between the wheel and the rail
at the contact points. In the third step, the resulting contact forces are determined.
In order to solve the wheel-rail contact problem, an accurate representation of the
geometry of the wheel and the rail surfaces is required. To calculate the contact
points and forces that act on the wheel and the rail, the radii of curvature and the

tangent and normal vectors to the surfaces are needed in each point.

3.1.1 Wheel and rail geometry

The rail and wheel geometry differs from country to country and is given in engi-
neering standards. The geometry of the wheel and the rail has a significant influence
on the driving stability of a vehicle.

When the railway vehicle is running on a straight track with small unavoidable
deviations, the task of the profile is to keep the wheelset in central position. Only at
large deviations or when running through a curve, the wheel flanges of the wheelset
must take the guiding function. Further, the increase in travel speed over a critical
point can lead to instabilities, after small perturbation the wheel will not come back
to the central position and, in the worst case build-up increasingly. Figure|3.1|shows

an example for the wheel and rail profile.
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Figure 3.1: Wheel and rail geometry

Constantly acting forces during rolling, braking, accelerating and driving through
curves create a permanent wear. On the one hand, this results in surface abrasion
of the track, and on the other hand a surface abrasion of the wheel. In this work,

the original wheel rail profile is used.
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3.1 Wheel-Rail Contact

The task of the first step in computing the wheel rail contact forces is to find the
contact point between wheel and rail. It is assumed that the yaw motion of the
wheel is small, thus the problem is considered in two dimensions.

In the constraint approach, no indentation of the wheel and rail is allowed. When
considering the two dimensional case the wheel has one degree of freedom. All
parameters, which need to be calculated, are expressed in terms of the lateral wheel
movement. The lateral movement is described by the y-coordinate. The vertical
position z(y), the roll angle ¢(y) and dz(y)/dy are of interest. In order to calculate
the contact point for a given lateral position y, the Newton-Raphson method is used.

The contact points at the wheel and rail surfaces are described by

py = RY + Al uf, (3.1)
py = RY + AY uj, (3.2)
p; =R + A’ ul, (3.3)
p, =R + A’ 1 (3.4)

which is shown in Figure The vector R describes the position of the body fixed
coordinate system, u is the vector from the body fixed coordinate system to the

contact point and A, is the rotational matrix. The upper index stands for the

Figure 3.2: Wheel and rail contact point

contact point at the wheel w or at the rail ». The lower index determines the side
of the train, 1 stands for the right, 2 for the left side.

Each wheel has one contact point, if the following equations are true

Py —p} =0, (3.5)
Py —p; =0, (3.6)
t¥ . n} =0, (3.7)
¥ nj =0, (3.8)
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3.1 Wheel-Rail Contact

where n” is the normal vector of the rail at the contact point and t* the tangential
vector of the rail surface at the contact point shown in Figure The condition,
that the contact point of the wheel is equal to the contact point of the rail, is satisfied
by equations and (3.6). Further, the two surfaces of the bodies must have the
same tangent planes at the contact point, thus the tangential vector of the wheel
must be normal to the normal vector of the rail. This is given by equations

and (B.8).

z

Figure 3.3: Tangential and normal vector at the contact point

In the two dimensional case, the rotational matrix results to

1 0 0
At =10 cos¢p —sing| . (3.9)
0 sin¢g cos¢

The vector u describes the vectors from the body fixed coordinate system to the

contact point in coordinates of the body fixed coordinate system.

0 0 0 0
af = | ¥ uy = | sY ap = | s u, = | sy |. (3.10)
fi(sy) fa(s5) 91(s1) 92(s3)

The functions f and g describe the geometry of the wheel and rail, respectively,
and s and s" are the lateral surface parameters, which represent the independent
variable for the wheel and rail surface. The tangential vectors of the wheels and the

normal vectors of the rails result to

1 X 1 0

= —— | 1| =1 (3.11)
1+(f1) / 1+( 2) /
1 2
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3.1 Wheel-Rail Contact

1 0 1 0
N =———— | ¢ | Mh=—F—=|0|- (3.12)
L+ | 7 N

This leaves four independent unknown parameters ¢, s{’, s§ and r,, where r, is the
vertical component of the body fixed coordinate system of the wheelset. The four

equations to solve this problem are

pl. —pi. =0, (3.13)
Py, — Py, =0, (3.14)
[t} cos ¢ — 17 sing]ny + [t} sing + 17 cosPn], =0, (3.15)
[t5, cos ¢ — ty. singny + [t} sing + 17 cos Pn,, = 0. (3.16)

Inserting equations (3.11]) and ( into equations (3.13] and expanding

yields

Ty + sy sing + fi(s’)coso — g1(s]) = hy =0,
T, + sy sing + fa(sy) cos @ — ga(sy) = ha =0,

Vit ;1 (s7)2 /1 +1gl BE 5 ([cos ¢ — fi(sY) sindlgi(s)) — [sin + fi(s7) cos ¢]) = hg =0,
N f2 ) /1 +192 AE = ([cos ¢ — f3(s4) sin dlga(s5)" — [sind + f5(s3) cos ¢]) = ha = 0,
with
s1 =Ty + 87 cos ¢ — fi(sy)sing, (3.17)
sy =1y + 55 cos — fo(sy) sin ¢. (3.18)

Starting from an initial guess, the contact point is calculated numerically with the

Newton Raphson method
Xp41 = X, — Jac 'h(x,) (3.19)

where Jac is the Jacobian matrix defined as

Ohy 0Ohy Oh1 O
r, 0p osy  0sy
Ohy  Oha Oha  Ohg
or, 0¢p  Osy  0Osy
Ohs  Ohy  Ohs  Oh | > (3.20)
or o0} 0sy  0sy
Ohgy Ohga Ohs Ohy
or. 0¢ W 0sy

Jac =
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3.1 Wheel-Rail Contact

T
and x = |¢p sy s¥ Tz}

In the elastic approach, the wheelsets are considered as six dimensional. At the
point of contact, the two touching bodies deform. The normal contact forces are
calculated using Hertz contact theory. There are two advantages of the elastic
approach over the constraint approach: Firstly, it allows the separation of the wheel
and the rail, thus track irregularities can be applied more easily. Secondly, the
management of multiple contact points is simplified. Because of these advantages,
the elastic approach is adopted in this work.

The procedure of finding the contact point is based on the so-called DIFF method
[34]. This method is based on the idea, that the contact points minimize the differ-

ence between the wheel surface and the rail surface in the vertical direction.

Figure 3.4: Wheel and rail intersection

Given a contact point at the wheel p" the contact point at the rail is calculated
as the intersection between the rail surface and a line parallel to the z-axis passing
through the wheel contact point p*. With the assumption, that the yaw motion
of the wheel is small, the contact point of the rail depends on the y-position of the
contact point of the wheel. Thus, the difference between the rail contact point and

the wheel contact point leads to

d = p(Yw) = D% (Yu) (3.21)

and is shown in Figure Of all possible sets of contact points, the set of contact
points which minimizes the difference d is used. The smallest value of d is denoted
by ¢ and is used to calculate the normal force according to the theory of Hertz.
If there is more than one local minimum with negative sign, all these points are
considered as contact point. In this way it is possible to deal with multiple contact

points.
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3.1 Wheel-Rail Contact

3.1.2 Hertz theory

After determining the contact point, the contact force normal to the contact plane

is calculated. This is done with the Hertz contact force model

fHertz = KHertz(;%’ (322)

where 0 represents the relative compression of the touching bodies and Ky, is
based on the studies of Hertz.

To calculate the normal force with Hertz theory, some assumptions are made. On
the one side, these assumptions concern the geometry of the two touching bodies
at the contact point, on the other side, the assumptions also refer to the material
properties. Depending on the shape of the two bodies in the area of contact, the
problem can be conformal or non-conformal. If the contacting shape fits even closely
together, conformal contact occurs. If the two bodies touch at a line or at a point,
non-conformal contact occurs.

For the non-conformal contact problem, Heinrich Hertz presented a solution to cal-
culate the contact area and pressure distribution. According to [35] the assumptions

used in Hertz theory are:
1. The surfaces of the bodies are continuous and non-conformal.
2. The strains are small.

3. The stress resulting from the contact force vanishes at a distance far from the

contact area.
4. The surfaces are frictionless.
5. The bodies are elastic, and no plastic deformation occurs in the contact area.

For the wheel-rail contact case, this is found to give a good approximation. The
Hertz theory assumes that the area of contact is elliptical. To describe the two
elliptical surfaces in the area of contact, two axes z; and z;, which are normal to the
tangent, are attached to the two touching bodies ¢ and j, respectively. The origins
of both axes are at the contact point p and are considered as positive towards the
interior of the bodies. In the area of the contact point p, the elliptical shape of the

surface of each body is described by the equations

Zj = A]$? —+ B]y]2 + le’jyj + ... (324)
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3.1 Wheel-Rail Contact

Figure 3.5: Two bodies in contact

where A;, B;, C;, A;, B; and C; are constants depending on the radii of the curvature
of the two bodies at the contact point. By introducing a new coordinate system the

distance between the two surfaces near the origin is defined as
h =z + z; = Ax* + By* + Cuy. (3.25)

By choosing the orientation of the x and y axes in that way, that xy vanishes, the

upper equation leads to
h =z + z; = Ax* + By*. (3.26)

The constants A and B again depend on the geometric shape of the two surfaces

near the contact point p. A and B can be expressed as

/1111
A+B—+ I 3.27
* 2(Rﬂ+Ri2+Rj+Rj) (3:27)

1 1 1\? 1 1)° 1 1 1 1
B—A=- — =) 4= ) cos20
2\/(1%11 Rm) " (Rj R; ) i <R,~1 Rﬂ) <Rj Rﬂ) e

(3.28)

where Ry and Ry, are the principle radii of curvature of the surfaces of bodies j
and ¢ at the origin.

If the center of curvature lies within the body, the curvature is assumed to be
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3.1 Wheel-Rail Contact

positive. Further, an auxiliary angle 6 is defined as

B-A

cos(f) = LA

(3.29)

Knowing the radii of curvature at the contact point p, equations and
can be solved. The auxiliary angle 6 is calculated from equation (3.29). The principal
radii of curvature are calculated from 0%z, /0z;? = 1/ Ry and 0%2;,/0y;.% = 1/ Rya.

Since the contact area is assumed to be small compared to the dimensions of the
two bodies, one can consider the contact area of the two bodies as semi-infinite. The
contact pressure is assumed to satisfy the following requirements for the equilibrium
of the two bodies [34] 35]:

1. The total applied force F,, must be equal to the total resisting force generated

by the vertical component of the pressure p in the contact area, that is,

F, = / / p dady. (3.30)

2. The components of displacement vanish at infinity, therefore, the displacement

at a distance away from the contact region can be neglected.
3. The normal stresses outside the contact region are assumed to be zero.

4. The normal stresses acting on the two bodies are in balance within the contact

region.
5. The shear stresses 7., and 7,, along the surfaces of the bodies are zeros.

If the pressure p is a quadratic function of  and y, these conditions can be satisfied.

The pressure distribution in the contact area is then given by

p= po\/l - <§>2 - (%)2 (3.31)

where a and b are the lengths of the ellipse semi-axes and py is the maximal pressure.

Resulting from the semi-ellipsoidal pressure distribution, the total normal load F,
is given by
2
F, = gpowab. (3.32)

Using equations (3.31]) and (3.32]), one obtains [34, [35] [36]

p= b i (5 - () (333
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With the two constants K; and K,

11—y
K, = : 3.34
1 7TEZ‘ ) ( )
1—v?
K, = J 3.35
2 7TE]' ’ ( )

which depend on the material properties of the two bodies, the contact ellipse semi-
axes can be calculated from

B 3rF, (K, + Ko)\?

a—mH( A+ D) ) : (3.36)
B 3rF, (K, + K,)\?

b—nH< {4+ D) > . (3.37)

The coefficients my and ngy in equations and are needed to calculate
the semi-axes a and b. The coefficients my and ny are given by Hertz in Table
as functions of the angular parameter 0, for the values of # between 0deg and
180 deg [34].

To get my and ny for an arbitrary value of the angle 6, the entries of the table
must be interpolated.

To increase the calculation speed, a closed-form expression for the coefficients my

and ny as functions of 6 according to [34] is given by

B
1
N + B0 4 D, sin(6). (3.39)

T A, tan(f — w/2) + 1

Here, the value of 6 is given in radians, and the coefficients Ay, By, Ck, and Dy
(k = mp,ny) are given in Table [3.2] [37].
Finally, the normal force Fj, according to Hertz can be calculated by

4
Fh = KHert253/2 = B 63/27 (340)

(K, + Ky))VA+ B

where (3 is a constant and is given in Table [3.3] [35] [38].

For the computer implementation, the following steps are performed: The radii

of curvature R;i, R, Rj1 and Rjy of the two bodies near the contact point must
be known. With the radii of curvature the constants A and B are evaluated from
equations (3.27) and (3.28). With A and B the auxiliary angle is computed. After
determining the constants K; and K from equations (3.34) and (3.35)) the semi-axes

a and b are calculated from the equations (3.36) and (3.37) and Table 3.1]

40



3.1 Wheel-Rail Contact

Table 3.1: Hertz coeflficients m and n

(deg)
5

DA W RO D
o

W W N = 0o
T O OO

my

61.4
36.89
27.48
22.26
16.50
13.31
9.790
7.860
6.604
3.813
2.731
2.397

nNg
0.1018
0.1314
0.1522
0.1691
0.1964
0.2188
0.2552
0.2850
0.3112
0.4125
0.4930
0.5300

0 (deg)
40
45
50
55
60
65
70
75
80
85
90

my
2.136
1.926
1.754
1.611
1.486
1.378
1.284
1.202
1.128
1.061

1.0

nNg
0.567
0.604
0.641
0.678
0.717
0.759
0.802
0.846
0.893
0.944

1.0

Table 3.2: Coeflicients used for the closed-form functions m and n

Coefl.
Am
Bm
Cm
Dm

Value

-1.086419052477
-0.106496432832
1.350000000000
1.057885958251

Coefl.
A,

By,
Ch
D'IL

Value

-0.773444080706
0.256695354565
0.200000000000

-0.280958376499

Table 3.3: Hertz coefficient 3 for Hertz force

A/B
1.0

0.7041
0.4903
0.3333
0.2174
0.1325
0.0718
0.0311
0.0076

B
0.3180

0.3215
0.3322
0.3505
0.3819
0.4300
0.5132
0.6662
1.1450
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3.1 Wheel-Rail Contact

According to [39], a damping force is added to the Hertzian component. For a
given intersection o, the damping force is proportional to the velocity of indentation

in the contact point. The expression of the normal force F;, is then given by
Fy = Fy + Fy = Kpers20%? + C10)6). (3.41)

The velocity of indentation 4 is calculated as the dot product of the relative velocity
vector of the contact points and the normal vector to the surface at the contact
point. To guarantee that the contact force is zero when the indentation is zero, the
factor || is added. The value Cj, is a damping coefficient.

The normal forces are added to the dynamic equations of motion as generalized

applied forces.

3.1.3 Creep forces

The relative motion of two touching bodies can be the result of rolling and sliding
motion. Tangential forces occur, when the two bodies have different velocities at
the contact point and different angular velocities. When two elastic bodies are
in contact, some points of the contact area slip, while other points stick. Figure
3.6| shows the first two-dimensional approximation of the contact area according to
Carter [40].

Rolling direction

Adhesion area

Figure 3.6: Stick slip according to Carter [40]

The contact area can be divided in two parts, one stick area and one slip area. This
mix of elastic deformation and local slipping is known as creepage. For very small
creepage, Kalker suggested, that the area of slip is very small and can be neglected
[41]. Thus, the area of adhesion is equal to the area of contact. To calculate the
tangential forces, the normal force as well as the creepage is needed. The creepage
is split into a longitudinal, a lateral and a spin part and is calculated according to
[42] with

42



3.1 Wheel-Rail Contact

U — vy
Vo = v
oY — ol
Yy = %, (3.42)
Qy =
Wy = — 7
\%

where V' is the magnitude of the wheel velocity and v* and v" are the velocities at
the contact point of the wheel and the rail. The values ¥ and €27 are the different
angular velocities of the contact point at the wheel and the rail.

With the normal force and the creepages, the creep forces are calculated according
to the linear theory of Kalker. As stated in [42] the creep forces and moments are

determined from
F, = —Gabcyy vy,

F, = —Gabcyyy, — G(ab)'®casw., (3.43)
M, = —G(ab)"Pcsory, — G(ab)*cszw.,
where G is the modulus of rigidity and a is the contact ellipse semi-axis in the rolling
direction and b is the contact ellipse semi-axis dimension in the lateral direction.

Kalker calculated the modulus of rigidity G' with the modulus of rigidity of the
wheel G, and the rail G,

1/1 1
G =3 (G—W+G—> (3.44)

The creep forces as well as the normal force at the wheel are shown in Figure |3.7]

Figure 3.7: Wheel rail force [43]

The creepage coefficients c;;, that depend only on Poisson’s ratio v and the ratio of
the semi-axis of the contact ellipse, are given in Table [35] at which c3o = —ca3.
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3.1 Wheel-Rail Contact

Table 3.4: Kalker’s creepage and spin coefficients

Cc11 C22 C23 C33
g v=0 025 05 |v=0 025 0.5 v=0 0.25 0.5 v=0 0.25 0.5

a/b
0.1 251 331 485 | 251 252 253 | 0334 0473 0.731 | 6.42 8.28 11.7
0.2 259 337 481|259 263 266 | 0483 0.603 0.809 | 3.46  4.27 5.66
0.3 268 344 48 | 268 275 281 | 0.607 0.715 0.889 | 2.49 2.96 3.72
04 278 353 482|278 288 298| 0720 0823 0977 | 2.02 232 277
0.5 288 362 483|288 3.01 3.14 | 0827 0.929 1.07 1.74 1.93 2.22
0.6 298 6.72 491 | 298 3.14 33.1 | 0930 1.03 1.18 1.56 1.68 1.86
0.7 3.09 381 497 | 3.09 328 348 | 1.03 1.14 1.29 1.43 1.50 1.60
0.8 319 391 505|319 341 365 | 1.13 1.25 1.40 1.34 1.37 1.42
0.9 329 401 512|329 354 382 | 1.23 1.36 1.51 1.27 1.27 1.27
b/a
1.0 3.4 412 52 | 340 3.67 398 | 1.33 1.47 1.63 1.21 1.19 1.16
0.9 351 422 53 | 351 381 416 | 1.44 1.57 1.77 1.16 1.11 1.06
0.8 3.65 436 542 | 365 399 439 | 1.58 1.75 1.94 1.10 1.04 0.954
0.7 3.82 454 558 | 3.82 421 4.67 | 1.76 1.95 218 1.05  0.965 0.852
0.6 4.06 478 58 | 406 4.50 5.04 | 2.01 2.23 250 1.01 0.892 0.751
0.5 437 510 6.11 | 437 490 5.56 | 235 2.62 296 | 0.958 0.819 0.650
0.4 4.84 557 6.57 | 4.84 548 631 | 2.8 324 3.70 | 0.912 0.747 0.549
0.3 5.57 634 734 | 557 640 751 | 3.79 432 501 | 0.868 0.674 0.446
02 696 778 882|696 814 979 | 572 6.63 7.89 | 0.828 0.601 0.341
0.1 107 11.7 129 | 10.7 12.8 16.0 | 12.2 14.6 18.0 | 0.795 0.526 0.228

Equivalent to the normal forces, the creep forces are added to the dynamic equa-

tions of motion as generalized applied forces.

3.1.4 Rail irregularities

The vehicle does not travel along a perfect path, neither on a straight track nor on
a curved track. Track irregularities act as disturbances, that stimulate the entire
vehicle to vibrate and are noticed by passengers. The excitation of a railway vehicle
results mainly from geometric irregularities of the rails or the wheels. By assuming
that the wheels are perfectly shaped, the only irregularities are given by the rail
track. The rail track irregularities are considered as random and occur in different
directions. The random track irregularities are commonly characterized by their
power spectral densities (PSDs). These spectral characteristics are obtained from
exemplary track measurements and depend on the specific track, which is described
more detailed in [44].

In this work, the train model is excited randomly due to horizontal, vertical and
cross level track irregularities, as shown in Figures and

Track gauge irregularities are not considered since they are changing the wheel-
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3.1 Wheel-Rail Contact

—_—

Figure 3.9: Horizontal track irregularities

rail contact geometry, thus they do not influence input forces directly but rather
influence the characteristic of the system. The track is assumed in this work to be
rigid and immovable

The power spectral densities (PSDs) for horizontal, vertical and cross-level track
irregularities are considered as defined in ERRI B176 [46]. According to ERRI B176,

the polynomials of the PSDs for track irregularities are

bhO
Q pu—
Sh( ) apo + ahQQQ + 4

bro
B 0.00028855 + 0.680389502 + O4’
va
SU(Q) - Qqy0 + CLUQQQ + Q4
va
0.00028855 + 0.680389522 + O4’
bcl2£22
Qa0 + aaa2? + agat + QF
- bcl2Q2
© 5.535659 - 10—5 4 0.1308172022 + 0.87223354 + Q6

(3.45)

2

where € is the spatial frequency in %i. The units of the PSDs are in lateral

rad/m
and vertical direction and Tzcc”f/lin in cross-level direction. For a vehicle traveling with
the velocity V' the angular frequency w in % is defined by w = VQ. Figure m
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3.1 Wheel-Rail Contact

shows the PSD for the low vertical and Figure [3.11] shows the PSD for the low
horizontal track irregularities. Figure [3.12| shows the PSD for the low cross-level

track irregularity.
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Figure 3.10: Vertical track irregularities
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Figure 3.11: Horizontal track irregularities

The information of the spectral characteristics of the unknown input are used to
increase the accuracy of the fault detection method. This is achieved by extending
the state space model of the train with a form filter containing the information about
the track irregularities.

The coefficients of the form filter are calculated from the PSD. According to [47]
a PSD Sx(w) can be formulated with the PSD Sy of white noise as following:

Sx(w) = So - |F(jw)|? (3.46)
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3.1 Wheel-Rail Contact

]
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Frequency [724]

Figure 3.12: Cross-level track irregularities

where F(jw) is the transfer function of the form filter. The transfer function F(jw)

of the form filter can be derived through factorization of the PSD polynomial since

[F(jw)|* = F(jw) - F*(jw) (3.47)

where F*(jw) is the complex conjugate of the transfer function F(jw). The trans-
formation with s = jw leads to

Sx(s) = SoF(—s)F(s). (3.48)

Substituting the spatial frequency €2 with s = jw and 2 =

S

- and factorizing the
PSD polynomials of the track irregularities, equation (3.45)) are rewritten as

bho
S
n(5) =5.00028855 1 0. 6803895(3/ V)24 (s/V)

< ins VbroV? >
52 4+ 0.8452V s + 0.0169867612 —0.8452V's + 0.016986761 2
IS (S) _ va
Y 0.00028855 + 0.6803895(8/‘/)2 + (S/V)4
byo V2 buo V2
- <82 + 0.8452V's + 0.01698676V2> <32 —0.8452V's + 0.01698676‘/2) (3.49)

Sa(s) = bet(s/ V)"
‘ 5.535659 - 105 + 0.1308172(s/V )2 + 0.8722335(s/ V')

T (s/V)°

_ vV O¢l sV
0.00744V3 +0.387184V2s + 1.2832Vs2 + 53 |

vV bclgSV2
0.387184V2s + 1.2832V 5% — 53

<O.00744V3 -
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3.1 Wheel-Rail Contact

Thus, the transfer functions for the horizontal F},(s), vertical F,(s) and cross-level

F.(s) track irregularities result to

) N
524 0.8452Vs + 0.0169867612’

- DoV

524 0.8452Vs + 0.0169867612’

_ VbeasV?

534+ 1.2832Vs2 + 0.387184V25 4 0.00744V3"

Fh(S)

Fy(s) (3.50)

Fcl(s)

The values of by, by and byo are given in Table for low and high track irregu-
larities.
Using the transfer functions Fj,(s), F,(s) and F,(s) from above, the form filter is

given as state space model [45]

Xppi = AppiXppi + Brpiwggi, (3.51)
Yrri = CrpiXpriy (3.52)

with the matrices

0 1 0
Ay = B = | |, 3.53
fih [—0.016986761/2 —0.8452v | " H (3.53)
VooV2 0
Crn=1|" " o - (3.54)
0 VbV
0 1 0
Aspy = B = | |, 3.55
1 [—0.01698676V2 —o.8452v | Y H (3:55)
VhoV2 0
Crro = 0 .| (3.56)
0 VbV
Table 3.5: Values of by, b,o and b
bhO bv[) ble

low | 1.440846 - 1077 | 2.741619-107" | 4.87399 - 10~
high | 4.164787 - 1077 | 7.343623 - 107 | 1.305533 - 1076
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3.1 Wheel-Rail Contact

0 1 0 0
Affcl = 0 0 1 ) Bffcl = 0], (357)
—0.00744V3 —0.387184V? —1.2832V 1

0 + bgv2 0
Cira = )
0 0 VbV

Combining all three track irregularities in one set of equations the resulting ma-

(3.58)

trices are
A 0 0 By, 0 0
App=1 0 A 0 |\ Byy=1 0 B 0 |, (3.59)
0 0 Affcl 0 0 Bffcl

Cin 0 0
Cir=| 0 Cp 0 |. (3.60)
0 0 Cffcl

The matrix Ass has the dimension 7 x 7, matrix By 7 x 3 and matrix Csr 6 X 7.
The excitation of the wheelsets is assumed to be independent, i.e. any correlation
due to the wheels running on the same track is neglected. By the assumption given
above, the state space model for the form filter including all three track irregularities

for all four wheelsets is given by:

Xpr = AppXpr + Brrwpp, (3.61)
yrr = CrrXpp, (3.62)
with the matrices

Ay 0 0 0 B 0 0 0

0 A 0 0 0 B 0 0
AFF = " ) BFF - 7 ) (363)

0 0 A; 0 0 0 By 0

0 0 0 Ap 0 0 0 By
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Cyr

0

Cyy

0
0

0
0
Cry
0

0

0

0
Cryr

(3.64)
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3.2 Multibody simulation of railway vehicle systems

3.2 Multibody simulation of railway vehicle

systems

The applied fault detection and isolation procedure, as well as the force estimation
requires knowledge of the dynamic behavior of the railway vehicle. In order to
describe the dynamic behavior of a railway vehicle, the system must be described as
a mechanical model. Modern mechanical systems, like the railway vehicle, are often
very complex and consist of many components interconnected by joints and force
elements such as springs, dampers, and actuators. In order to derive the mechanical
model, the positions of these different force elements at the bodies are needed, as
well as the characteristics of the elements.

The accuracy of the train model plays a major role for the fault detection procedure
and is indispensable for a precise simulation process. The drawback of a complex
train model lies in the high calculation efforts. Thus, the complexity of the train
model must be a reasonable compromise between accuracy and calculation time.

Flexible multibody models are more accurate approximations of the system, es-
pecially at high frequencies, but result in a raise of computational task. The train
model for the fault detection and force estimation procedure is considered as a ridged
body model and thus high frequencies are neglected. The force elements connecting
the bodies are springs and dampers with different linear and nonlinear characteris-
tics, and the nonlinear wheel rail contact force element acting on the wheelsets.

This section covers the elements of the train and how the well known methods of

multibody dynamics are used to describe the general structure of the train model.

3.2.1 Train Model

To test the fault detection and isolation method, the Velaro Rus , shown in Figure
is used as an example.

The Siemens Velaro is a family of high speed trains and operates for example
in Germany, Spain and Russia. The Velaro RUS is built for Russia and entered
passenger service at the end of 2009. The train serves on the line between Saint
Petersburg and Moscow.

To simulate the Velaro Rus, a mechanical model must be defined which charac-
terizes the train with all its relevant components. The model, shown in Figures
and [3.15] consists of a car body, two bogies, four wheelsets and two motors.
The bogie is the running gear of the Velaro which carries the car body. It consists
among other things of the bogie frame, wheels, springs and brakes. There are basi-
cally two different types of bogies, on the one hand, there are powered bogies, and

on the other hand trailer bogies. At the power bogies of the Velaro trains, engines
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3.2 Multibody simulation of railway vehicle systems

Figure 3.13: Velaro RUS

are mounted, which drive the train. The trailer bogies have no drive. To ensure
safety and comfort, the train is equipped with different types of suspensions and
dampers. The design of the bogie is essential for the stable running of the train on
the track. The sine wave, which is resulting during running, increases its frequency
with increasing vehicle speed, and eventually leads to instability. This movement
is damped by the anti-yaw damper between bogie and car body and, even at high
speeds, the stability of the vehicle is guaranteed.

The wheelsets are connected to the bogies by the so-called primary suspension.
The primary suspension compensates the unevenness of the track and increases
the ride comfort together with the secondary springs. The secondary suspension
connects the bogies and the car body. Another suspension is to be found between
the motor and the bogie. As stated above, the anti-yaw dampers are a major part of
the secondary suspension system, they are used on vehicles with a maximum speed
over 160 km/h and thus also in high-speed trains such as the Velaro Rus. The shock
absorbers are mounted horizontally between the car body and bogie to attenuate
the sinusoidal running.

The blue circles in Figure .15 indicate the positions, where the suspension ele-
ments are fixed to the bodies. The red lines between the blue circles denote suspen-
sion elements.

Car body, bogie and motor motion are characterized by six degrees of freedom

each. By assuming constant running speed and constant rotational motion of the
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3.2 Multibody simulation of railway vehicle systems

Figure 3.14: Matlab train model

Figure 3.15: Matlab train model enlarged

wheelset around the y-axis, the wheelset motion is considered with four degrees of
freedom. A wheelset consists of an axis and two wheels rigidly coupled. Since the
selected wagon is a motor coach, the wheelsets carry not only brakes but also a gear
box.

The aim of this work is, inter alia, to detect faults in the anti-yaw damper, the
secondary vertical damper and the secondary lateral damper. The first is important
for ride quality, while the second and third influence the running stability. Figures
and [3.17)show the suspension structure of the bogies. The positions of the three
dampers, which are used in the fault detection, are marked.

Some of the components of the suspension system of the train have nonlinear
characteristics, especially those chosen for the fault detection and isolation, the

anti-yaw damper, the secondary vertical damper and the secondary lateral damper.
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secondary vertical damper

anti-yaw damper

Figure 3.16: Bogie: Side view

anti-yaw damper

secondary
lateral
damper

Figure 3.17: Bogie: Top view

The nonlinear characteristics of the anti-yaw damper are shown in Figure[3.18 The

x 10°

Force [N]

1 1
0.12 0.14 0.16

0 0.I02 0.I04 OAIOG 0.I08 011
Velocity [™Z]
Figure 3.18: Anti-yaw damper

nonlinear characteristics of the anti-yaw damper give a good damper response at low
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velocities while avoiding damages at high velocities. The nonlinear characteristics of
the secondary vertical and secondary lateral damper are given in Figures |3.19| and
3.201
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Figure 3.19: Vertical damper
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Figure 3.20: Lateral damper

Compared to the anti-yaw damper, the nonlinearity of the secondary vertical and

secondary lateral damper is small.

3.2.2 Multibody Dynamics

After defining the components of the mechanical model of the railway vehicle, the
equations of motion are formulated. The bodies of the train are considered as
ridged bodies, and thus the displacement of each body is composed of translations
and rotations. The bodies are connected by force elements, each force element is

connected with two bodies and fixed at a specific point at the bodies, respectively.
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3.2 Multibody simulation of railway vehicle systems

To uniquely determine the position of the different bodies of the train, the coor-
dinate system shown in Figure |3.21|is used. In case of the train model, ¢ describes
the roll motion, # the pitch motion and ¢ the yaw motion. The train dynamics
are described in a coordinate system, which is moving along the railway track. The
displacement of a body can then be described using the six so-called trajectory
coordinates

1. the arc length coordinate s,

2. the lateral displacement 3, relative to the trajectory,
3. the vertical displacement z; relative to the trajectory,
4. the roll-angle ¢ about z,

5. the pitch-angle 6 about y; and

6. the yaw-angle ¥ about z;.

Figure 3.21: Coordinate system

The Newton-Euler equations are used to derive the equations of motion. The
origin of the body coordinate system is attached to the center of mass of the body.

The Newton-Euler equations of motion for a rigid single body are given in matrix

ml 0| |R F
[0 J] L] - [1\71—@ X (Jw)] ’ (3.65)

where m is the mass of the rigid body, I is 3 x 3 identity matrix, J is the inertia

form as follows [35]

tensor, F is the resultant of the external forces and M is the resultant of the external

moments defined in the body coordinate system. The vector @ results from

w=Ga (3.66)
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with
—cos¢sinf cosf 0 (0
G = sin ¢ 0 1|, a=|o¢]. (3.67)
cospcosf sinf 0 0

The moment M is calculated by
M=A,,M (3.68)
and
M=u; x F=(A,,u) x F. (3.69)

The matrix A, is a 3 x 3 rotation matrix, which defines the orientation of the
axes of the body coordinate system with respect to the global coordinate system.
The Euler angles are used to describe the rotational matrix. In this method three
independent parameters define the orientation of the body in space. The rotational
matrix A, is the product of three simple rotations A;AsAj3. The first rotation is

about the z-axis by the angle

cosyy —siny 0
A, = |siny cosy 0], (3.70)
0 0 1

the second rotation is about the x-axis by the angle ¢

1 0 0
As = |0 cos¢ —sing|, (3.71)
0 sing cos¢

and the third rotation is about the y-axis by the angle 6

cosf 0 sind
A; = 0 1 0 |. (3.72)

—sinf 0 cosf

Using these three rotations, the orientation of a body is described by the product

of all three matrices

Ay = A AsA;, (3.73)
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which after multiplication gives

cost cosf —sinysingsind  —siny cos¢ cossin @ + sin ) sin ¢ cos 0
Aot = [sintcosf + cosysingsind  cosycos¢g  sintpsinf — cossin ¢ cos
— cos ¢sinf sin ¢ cos ¢ cos
(3.74)

The global position vector of an arbitrary point on the rigid body is written as
r=R-+ A, 1, (3.75)

where R is the global position vector of the origin of the body coordinate system
defined as

Z;
R= |y | . (3.76)

Zi

The vector @ is the position vector of the arbitrary point on the body with respect

to the origin of the body coordinate system and is defined as
u= |, . (3.77)

Equations (3.65)) to (3.77)) are to be evaluated for each of the nine bodies. Different
forces and moments act on individual components: They are due to springs and
dampers, linking the components, or due to the irregular track, which causes an
external excitation.

If the force elements are springs and dampers, the force is calculated from the
relative motion between the specific points. To calculate the relative motion, the
global position vector of the specific points is needed.

Two bodies are connected with a suspension at the points denoted by r; and r;.

Defining
L= r, —r (378)

the spring force f. and the damper force f; is expressed as functions of £ and its

derivative:

Ay
fe= f(lllll2 = o), fa= fd(m% (3.79)
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where [y is the unstressed spring length. The force vectors acting on the points r;

and r; are

£

F.=4Ff. .
J e

Fy=+f, (3.80)

1]z’

With the above equations, the train model is simulated. Figure [3.22] shows an
example of the lateral track position and the lateral movement of the first wheelset
for the nonlinear train model.
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Figure 3.22: Lateral track and wheelset position

3.2.3 Simulation of acceleration sensors

For the reconstruction of the system dynamics, the vehicle model is prepared with ac-
celeration sensors. The measurements of these acceleration data are used to perform
a state estimation with the Kalman filter. The railway vehicle model is prepared
with 14 acceleration sensors, each wheelset has two sensors measuring the accelera-
tion in all three directions. Each bogie has two sensors measuring the acceleration
of all three directions. The carbody has two sensors, one at the front one at the rear
measuring the acceleration in the y-direction. It is assumed, that the measurement
noise of all sensors is white with a given standard deviation. The acceleration for

an arbitrary point at a rigid body is given by

P=R+wxu+wx (wxu),
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for the linear case this results to
=R+ wxu,
or

Ty ::'IH—éuz —d}uy,
fy :y"_d)ux —Q'ZQUZ,

7, :é—l—éuy — Ou,.

Figure [3.24] shows the vertical and Figure [3.23] the lateral acceleration data of the
simulated sensor placed at the front wheelset at the left side.
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Figure 3.23: Lateral measurements wheelset
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Figure 3.24: Vertical measurements wheelset
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3.2.4 Linearization and state-space formulation

The train model is simulated with the nonlinear wheel rail contact model and non-
linear suspension systems. For the fault detection procedure, the system must be
linearized about the operating point because a linear Kalman filter is used to per-
form a state estimation. The linear Newton-Euler equations of motion for the train

model are given by
Xs = AsXs + Bswy (3.81)
ys = Csx; + Dow,,
where A,, B, ,C, and D, indicate the system, input, output and feed-through
matrices of the linearized train model. The state vector x, includes all states of the
train model. Since the train consists of five bodies with six degrees of freedom, and
four bodies with four degrees of freedom, there are 46 degrees of freedom and 92
components in the state vector. The vector y, is the measurement vector, which
includes the outputs of the acceleration sensors. The two sensors placed at the
coach, measure the y-direction, the other 12 sensors measure all three directions.
Thus the output vector y, consists of 38 values.

Since the equations of motion are nonlinear, the equations are linearized to obtain
the form of equation (3.81). The train model consists of complex nonlinear com-
ponents, which are sometimes only defined piecewise. For example the wheel rail
profile is given piecewise and thus the contact force as well. Therefore, it is difficult
to linearize the system analytically and a numerical linearisation is performed. Fi-
nite differences are used for the linearisation about the operation point xy. Given a
function u, a second order approximation

, u(xo+h) —u(zo — h)

U~ o (3.82)

is used for the first derivative.

3.2.5 Train model and form filter

In order to increase the ability to correctly detect and isolate faults in the system,
the train model is combined with the model of the track irregularities. The system
containing the train model and the form filter for the track irregularities is written

for the linear case as

x = Ax + Bwgp,
FF (3.83)
y = Cx,
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with

As BSCFF
0 AFF

0
Brr

B =

)
XFF

. C= [Cs DSCFF} Cx= [XS ] . (3.84)

In this way it is possible to capture both, the railway vehicle and the track dynamic
in one system and the estimation process is improved significantly. If the track irreg-
ularities are described with other power spectra, the form filters must be adjusted
accordingly. Friedrich for example, defined power spectral density functions in [44]
which can be used alternatively.

The new matrix A has the dimension (ms+4-7) x (ms+4-7), matrix B (m, +
4-7) x (4-3) and matrix C ng x (ms + 4 - 7), where m; is the number of states of
the train model and n, is the number of measurement outputs of the train model,
in this work ms; = 92 and n, = 38. Figure [3.25| shows the block diagram of the

combined system.

Figure 3.25: Form filter combined with railway vehicle

The input of the system wgp is white noise, by passing through the form filter,
the track specific excitation function is generated. This signal then acts as an input
to the rail vehicle. The output of specific points of the railway vehicle y is the

measurement signal, i.e. the acceleration.
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4 Fault detection and force

estimation

In this section, fault detection and force estimation, are presented. For the fault
detection as well as the force estimation, the Kalman filter plays a major role.
Thus, at the beginning the Kalman filter is introduced. Afterwards, it is explained
how the Kalman filter is expanded to observe errors in the estimation process and
how several expanded Kalman filters are used to detect and isolate faults in the
suspension system. The last section describes the estimation of wheel rail forces as

well as suspension forces.

4.1 Kalman filter

In order to detect and isolate faults in the train model as well as to estimate wheel
rail forces or suspension forces, it is necessary to capture the dynamic states of the
train model. The only available information to perform this estimation comes from
acceleration sensors fixed at the train. The Kalman filter is used to estimate all
states of the train from these acceleration signals.

The Kalman filter, also known as linear quadratic estimator, solves the problem of
estimating the states of a linear dynamic system perturbed by white noise. The state
estimation uses measurements, which are linearly related to the states and corrupted
by white noise. The purpose of the Kalman filter is to minimize the spread of the
estimate-error probability density [33].

The Kalman filter is applied for the control of complex dynamic systems such
as continuous manufacturing processes, aircraft, ships, or spacecraft. A detailed
description of the Kalman filter can be found in [33] 48] [49].

4.1.1 Propagation of states and covariance

The Kalman filter propagates the expected value and the covariance of the state
through time. It takes into account system dynamics and inputs as well as it incor-

porates measurements and measurement error statistics.
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4.1 Kalman filter

In this chapter, the equations to calculate the propagation of the expected value
of the state and covariance are given based on a discrete mathematical description
of a dynamic system. These equations are fundamental for the state estimation
procedure with the Kalman filter.

Having the following linear discrete-time system:
Xp = Fro1Xp—1 + Groqug—g + Wi, (4.1)

where uy, is a known input and wy, is Gaussian zero-mean white noise with covariance

Qg, the expected value of x;, results to

=Fp_1xp-1 + Groqup_g.

By using equations (4.1)) and (4.2)) the covariance of x; changes with time in the

following way

(Xk - }A{k>()T = (Fk,lxk,l + Gk,luk,l + Wi 1 — }A{k)()T
= [Fk—l(xkz—l — )A(k;_l) + Wk_lH...]T (4 3)
= Fro1(Xpo1 — Xpm1) (Kpm1 — Xem1) Fiy + Wieawi +

Fr1(Xp 1 —Xp1)Wi o + Wi (%61 — %5 1)FF .

Therefore, the covariance of x; is obtained as the expected value of the above ex-

pression. Since (Xx;_1 — Xj_1) is uncorrelated with wy_q, it results

P, = El(xp-1 — X4-1)(--.)"]

) (4.4)
= kalPklek—l + Qkfla

where Q is the disturbance input covariance matrix. This equation is called a
discrete time Lyapunov equation, or a Stein equation [50, [33].

Equation shows, that the process noise is directly entering the system dynam-
ics. Often, the process noise is multiplied by a matrix, before it enters the system

dynamics. That is,
xp = Fr 1%, 1+ Gy + L Wiy, Wy ~ (0,Qp). (4.5)

This can be put into the conventional form of equation (4.1) by two steps. First,
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4.1 Kalman filter

the rightmost term of equation (4.5) has a covariance given by

E[(Ly—1Wi—1) (W1 Ly—1)"] = L1 E[Wy_ Wy LY

L (4.6)
= Lk—le—lLk_p
therefore, equation (4.5)) is equivalent to the equation
xp = Froaxp 1 + Group +wi,  wi ~ (0, L,Q,LY). (4.7)

The same type of transformation is made with noisy measurement equations. That

is, the measurement equation

is equivalent to the measurement equation
Y. = Hka + Vi, Vi ~ (0, LkRkLg) (49)

where L,R;L7 = R is the measurement error covariance matrix.

4.1.2 Discrete time Kalman filter

The Kalman filter operates by propagating the expected value and covariance of the
state through time. The goal is to minimize the steady-state error covariance by
constructing a state estimate x. Figure [£.1] shows the block diagram of a system

with an integrated Kalman filter.

Y

Kalman filter

l% I

LTT system —>

A%

Figure 4.1: Kalman filter

Since, as for the estimation of the state x the expected state is used, the expression
expected state and estimated state are used equivalently.

The discrete time state space model for this system is given by

X = Fk_lxk_1 + Gk_luk_l + Wi (410)
Y = Hka + Vi, (411)

66



4.1 Kalman filter

with the state vector x, the known input u and the output y. The noise processes
w;. and vy are white, zero-mean, uncorrelated, and have known covariance matrices

Qi and Ry, respectively:

wi =~ (0, Q)
Vi = (0, Rk)
E[kaZ] = Qrlr—j (4.12)

E[Vkvg] = chsk_j
E[viwl] =0

The aim is to estimate the state x; based on the knowledge of the system dynamics
and the availability of the noisy measurements y; and the input u;. Depending on
the availability of the measurement y, a distinction in the notation for an estimated
state X is made as follows: If all the measurements up to and including time £ are
used to estimate X, an a posteriori estimate is performed, which is denoted as x;'.
The "+" superscript denotes that the estimate is a posteriori

X = E[xk|y1,y2, .-, Y&] = a posteriori estimation. (4.13)

If all the measurements before (but not including) time k are used to estimate

X, an a priori estimate is performed, which is denoted as %,.. The "-" superscript

denotes that the estimate is a priori
x, = E[xk|y1,y2, ..., Ys—1] = a priori estimation. (4.14)

Since the a posteriori estimation uses more information, it is considered that the a

posteriori estimation is better than the a priori estimation.

X, = estimate of x; without the measurement at time £, (4.15)
X, = estimate of x; including the measurement at time k. (4.16)

To measure the statistic relationship between real and estimated states, the co-

variance of the estimation error x, — X; is calculated and denoted by

Py = El(x — %) (x6 = %)), (4.17)
Pl = B[(xy — %) (xx — %)) (4.18)

To start the estimation process, an initialization has to be performed by declaring

an initial estimate X, of the initial state xg = x(t = to = 0) and an initial estimation
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of the covariance of the estimation error Py,

< = E(xo), (4.19)
P = E[(xo — %X;)(x0 — %5)"] (4.20)
= El(xo — %7 )(x0 —%{)"]. (4.21)

The matrix Py represents the uncertainty in the initial estimate of x4. In case of
a perfectly known initial state Py = 0, if there is no information of the initial state
Py = oc.

The Kalman filter algorithm is divided in two steps, the first step is the time
update and the second step is the measurement update.

The estimation process starts with X7, the estimate of the initial state xo. By

using equation (4.2 the expected value of x propagates with
)A(l_ = Fo)A(a_ + Gouo. (422)

This equation can be extended to obtain a more general equation, which is the

time update equation for x
)A(]; = Fk’*lfczj—l + Gk,iuk,l. (423)

After computing the time update of X, the time update of P is computed. Following
equation (4.4)) the time update for the initial guess of Py as well as the general case,

the time update from P, to P} can be computed from
P; = FPiF! + Qo (4.24)
or in general
P, =Fi P [ Fl |+ Qi1 (4.25)

After computing the time update of the state x and the error covariance P the
estimation is improved with the measurement update. The measurement update
uses the information of the actual measurement.

The measurement yj; changes the estimate of a constant x according to [33] as
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4.1 Kalman filter

follows:
K, =P, H{ (H,P_H} + R;)™"

=P H; R,
X =%, + Ky (yr — HiyXy)
P, =(1- K,H,)P, (I K,H,)" + KR, K}
()™ + Hy Ry Hy) ™
(I-KH)P,,

(4.26)

where Kj, is called the Kalman filter gain. Again the vector X, and the matrix P,
define the estimated state and its error covariance matrix before the measurement
yi is available, and x; and P} are the estimated state and its error covariance
matrix after the measurement yy, is available.

Combining all equations for the estimation process the discrete-time Kalman filter
can be defined. The state estimation performed with the Kalman filter can be done
with the following steps [33]:

1. The dynamic system is given by the equations:

X = Fr1Xp 1+ Gro1up1 + Wi
yi = Hixp + vy
Ew,wi] = Qror_; (4.27)
E[vivi] = Ribrj

Eviwi] =0
2. The Kalman filter is initialized as:

Xy = E(xo)

4.28
P} — El(xo — %3)(x0 - %3)7] (4.2%)

3. The Kalman filter is given by the equations, which are computed for each time
step k=1,2,..:
X, =Fi 1% |+ Gpjupg

P;; = kalPZ_ngfl + Qkfl

K, =P H] (H,P,H] + R;)™* (4.29)
X =%, + Ki(ys — Hix,)

P/ = (I1-K,Hy)P,

As mentioned above the Kalman filter minimizes the squared estimation error.

The Kalman gain matrix is influenced by the noise characteristics of the process
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4.1 Kalman filter

and measurement noise. Both characteristics are not exactly known in reality and
thus the assumed matrices Q and R can be used as tuning parameters to increase

robustness and/or accuracy.

4.1.3 Steady state Kalman filter

If the state space model is linear and time invariant, a steady state Kalman filter can
be used to perform the estimation. The advantage of the steady state Kalman filter
is, that the Kalman gain matrix K must only be computed once and can be used for
the whole estimation process. This decreases the computational effort significantly.
The drawback is, that it is not possible to change the system matrices during the
operation process and that the initial condition is not treated in the right way. The
steady state solution for the continuous time Kalman filter can be derived from the

differential Riccati equation which is given by
P=-PCR 'CP + AP + PA” + Q. (4.30)

In the case of a LTI system A, C, Q and R are constant and P can reach a steady

state solution, when P reaches zero. This implies that
—~PCR'CP + AP + PAT + Q =0, (4.31)

which is the so-called algebraic Riccati equation (ARE). Assuming Q > 0 and
R > 0 and defining G as any matrix such that GGT = Q, the Kalman filter gain is

computed as
K =PC'R™. (4.32)
The state estimation performed with the steady state Kalman filter is then given by
x = (A — KC)x + Ky. (4.33)

To solve the algebraic Riccati equation and to guarantee that the solution is stable,
the problem is formulated using the so-called linear matrix inequalities. Efficient
solvers exist for linear matrix inequalities, which treat the problem in a reliable and

stable way, supposing a stable solution exists.

4.1.4 State estimation of the railway vehicle

The Kalman filter is used to obtain information of the states of the railway vehicle.

Based on the available acceleration sensors, the state is estimated. Since the train
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model has no known input u, the state prediction step of the Kalman filter reduces
to

X, = FuX . (4.34)

Further, the train model is considered as time invariant. Thus, state, input and
output matrix are constant.

Figures [1.2 and [4.3] exemplarily show the results for the estimation of the lateral
and vertical position of the first wheelset. The lateral state is estimated reliably.

The estimation of the vertical state is performed well after a short integration phase.
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Figure 4.2: Estimation of lateral position of wheelset
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Figure 4.3: Estimation of vertical position of wheelset

Figures and [£.5] show the results for the estimation of the lateral and vertical
velocity of the first wheelset. Both states are estimated correctly and are even better
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estimated than the position. This results from the integration error from velocity

to position.
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Figure 4.4: Estimation of lateral velocity of wheelset
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Figure 4.5: Estimation of vertical velocity of wheelset

Figures [4.6] and [4.7] show the results for the estimation of the angular yaw position
and the angular yaw velocity of the first bogie. Both figures show qualitatively the
same results as the lateral and vertical wheelset motion. The angular yaw position

is estimated correctly with a small error. The angular yaw velocity is estimated

nearly without an error.
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Figure 4.6: Estimation the angular yaw position of the first bogie
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Figure 4.7: Estimation the angular yaw velocity of the first bogie

The state estimation of the other states is equivalent to the estimations shown in

the figures. Thus, with the given acceleration signals, it is possible to estimate the

states of the train.
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4.2 Fault detection and isolation

4.2 Fault detection and isolation

Increasing demands for higher system performance and product quality on the one
hand and more cost efficiency on the other hand made fault detection and isolation
more and more interesting for the railway industry. Fault detection and isolation is
the procedure of monitoring a system, identifying when a fault has occurred, and
clarifying the type of fault and its location. There are two approaches to detect and
isolate faults. On the one hand, there is the model based FDI procedure and on
the other hand there is the signal processing based FDI. In the case of the model
based FDI process, a model of the system is used to monitor the system. In the
case of the signal processing based FDI process, a mathematical algorithm is used to
analyze the signals and to make a statement about the health of the system. Thus,
no model of the mechanical system is required. In this work, the FDI process is
performed with a model based approach. A reliable train model and the Kalman
filter discussed in the last section are essential parts of the fault detection procedure.
In the case of the train model, the FDI process is used to detect and isolate faults
in the suspension system. The anti-yaw damper, the secondary lateral, and vertical

damper are exemplarily used to show the results of the proposed FDI method.

4.2.1 Estimation error

For the fault detection and isolation procedure, the state observation is performed
with different systems. One of the systems represents the fault free case, the other
systems represent the different faults, which should be detected. Thus, if n different
faults should be detected and isolated, the observation process must be performed

for n + 1 systems
x =g(x,w,i), y(k)=h;x(k),v(k),i) i=0:n. (4.35)

In this work, x = g(x, w, ) is the differential equation describing the train dynamics
combined with the form filter, and y; = h(xy, vk, i) describes the measurement

output. All n + 1 systems are linearized at the operating point

i=0:n (4.36)

X0 X0

and discretized. The discretized matrix of A(7) is denoted by F(7) and the discretized
output matrix C(i) is denoted by H(i). Having n + 1 systems, each system is used

to compute an estimation of the state, denoted by x(i). Using the estimation X(i),
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an estimation of the output is constructed

yi(i) = H(i)x.(2). (4.37)
To quantify the estimation error of each system, the state residual

ry, (1) = x5, — Xi(7) (4.38)

and the measurement residual

ry, (1) = y& — ¥i(i) (4.39)

are defined. Both residuals give information about the performance of the estimation
process. Since the state vector x is not available, only the measured residual can be
used to clarify the state estimation performance. To compare the performance of

the different systems, the variance of the residual is calculated
Varlr,, (i)] = ry, (i) 1y, (0). (4.40)

The lower the variance of the measurement residual, the better is the state estimation
and the better the system is suited for the state estimation. Using the Kalman filter
[33] to perform the state estimation, the covariance matrix of the measured residuals
is calculated by

Elry, (i)ry, (i)"] = El(yr — ()% (1)) (v — H(D)%;, (i)"]

H(i) Elry, (1)1, (i) TH(E)" + Elvivy] (4.41)
=H®)P, () H®E)T +R.

This matrix is used to attach specific weights to the measurement residuals, which
increase the ability to choose the right system. The resulting scalar value is denoted
by e(i)

er(i) = 1y, (1) (H(0)Py ()H(i)" +R) ™1y, (0). (4.42)

For each system ¢ = 0 : n, e (i) is calculated at each instant of time k.

4.2.2 Kalman filter based fault detection

For all n + 1 systems, the state is estimated with the corresponding Kalman filter.
In order to perform a state estimation, the different Kalman filters use the available
measurement values. In each sample point, the measurement residual r,, (i) = y; —

H(7)x, (¢) and the fault indication value ey (i) are calculated.
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Figure 4.8: Multiple Kalman filters

The different linearized and discretized systems are given by

X = F(i)Xk_l + Wy (443)
Y = H(Z)Xk + Vi, (444)

with white, zero mean and uncorrelated process noise w; and measurement noise
vi. The process noise and the measurement noise have known covariance matrices

Q and R, respectively,

w, ~ (0,Q), (4.45)
vi ~ (O, R). (4.46)

The different Kalman filters are initialized with the expected initial condition X
and the uncertainty of the initial estimation Pg. The vector XJ and the matrix P

are considered to be the same for all n 4+ 1 systems

Py (i) = E[(xo — %7 )(x0 — X3)"]. (4.48)

The state estimation and the residual generation using the Kalman filter is performed
with
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Prediction :
%5 () =F(7)%;, (i)
P; (i) =F())P{_, ()F(i) + Q
Correction :
Ky(i) =P ())H(:)" (H(:)P; ()H(i)" + R)™
% (1) =7 (1) + K () (s — H()%; (1)
P} (i) =P; (i) — Ke(i)H()Px(i)~
Residual :
ry, (1) =yr — H(i)X, (1)
en(i) =1y, ()" (H()Py ()H(E)" + R) ™'y, (0).

(4.49)

The estimated states are used to calculate the measurement residual. With the
measurement residual the fault indication e is calculated.

In order to decouple the fault detection alarm from the size of the track disturbance
and unknown parameters, the values of e(1) to e(n) are always compared with the
fault free case e(0). The fault detection alarm is calculated by subtracting the fault
indication value of the error free system from each fault indication value of the faulty

systems

(4.50)

ex(n) =ex(n) — ex(0).
The index ¢ = 0 stands for the fault free system. If there is a fault at the ith
suspension element the estimation with the ith system should have the smallest
estimation error. Thus, the filter that gives the "best" state estimates identifies the
actual system.
Since the output y is corrupted by measurement noise, the residual e of a single
point does not have sufficient information. Therefore, € is averaged over a test period

T=1:m

m

1
faulty =— Y €(1)
! m}; K
(4.51)
1 m
fault, =— ) €x(n).
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4.2 Fault detection and isolation

If no fault occurs fault; to fault, should be positive. If there is a fault at the
ith position, fault; should be negative to detect the fault, further it should be the

smallest value to isolate the fault from the other possible faults.

4.2.3 Results of fault detection and isolation

The fault detection and isolation design procedure explained in the last section is
used to detect faults in a full scale train model. The Velaro RUS serves as an example
using parameters provided by the vehicle manufacturer. The track irregularities are
generated numerically based on the PSDs. The FDI procedure is used to detect
faults in all four secondary vertical dampers, in all four anti-yaw dampers and in all
four secondary lateral dampers. Two of the dampers connect the front bogie to the
carbody and two of them connect the rear bogie to the carbody, respectively. For
the simulation process, the full scale train model is simulated with nonlinear wheel
rail dynamics and nonlinear suspension system. This model is used to generate the
signals of the acceleration sensors. For the estimation process, the train dynamic is
linearized around the operation point.

Six different test cases were considered to test the FDI method:
1. a fault free train,
2. a fault at the front left secondary vertical damper,
3. a fault at the front left anti-yaw damper,
4. a fault at the front left secondary lateral damper,

5. faults at the front right secondary vertical, anti-yaw and secondary lateral

damper,

6. faults at the front left, front right, rear left and rear right secondary vertical

damper.

In order to test the robustness of the FDI procedure against track uncertainties,
the gauge is modified in the simulation process, whereas the model for the FDI
method uses the unchanged track gauge. In one case the gauge is increased by a
constant value, in the other one it is decreased by a constant value. Further the
FDI method is tested for a case where the track irregularities are twice as high as
expected.

The measurements of the acceleration sensors were created with the nonlinear
train model. To generate the measurements of the faulty systems, the correspond-

ing damping coefficient is decreased by 30 %. The linearized test systems for the
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estimation process consider a damper coefficient decrease of 20 % for the different
fault cases. The test period is 100 seconds.
Figure [1.9 shows the results for the fault free case. All 12 fault indication values

fault; have positive values.
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Figure 4.9: Fault free train

Thus, if all fault indication values are positive, the system is accurately classified
as a fault free system. Figure gives the results for the proposed FDI procedure
for a fault at the front left secondary vertical damper. The results show that the
indicator for the front left vertical damper has the smallest value. These results
indicate a fault in the front left vertical damper. It can also be seen that the
detection value for the front right vertical damper has negative values. This is due
to the very similar effect of both dampers on the overall dynamics. For reasons of
safety, both dampers, the left and the right anti-yaw damper, should be checked for
faults.

Figure shows the results for the DI procedure for a fault at the front left
anti-yaw damper. The results show again the accuracy of the algorithm. The value
of the front left anti-yaw damper is the smallest. The second smallest value results
from the fault detection value of the right front anti-yaw damper, which is caused
by the close dynamic relation.

In Figure the results for the FDI procedure for a fault at the front left
secondary lateral damper is shown. The fault indicator for this damper has the
smallest value and the fault detection value for the front right secondary lateral
damper has the second smallest value. Again, this, is due to the fact, that both
dampers have a similar influence on the system behavior. In case of the lateral

damper, it is not possible to distinguish between faults at the front left or front
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Figure 4.10: Fault at the front left vertical damper
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Figure 4.11: Fault at the front left anti

right side.

Figure [4.13] shows the results for a fault at the front right secondary vertical, anti-

yvaw and secondary lateral damper. The fault detection procedure is working well.

All three dampers with a fault have a negative indication value.

Figure [4.14) shows the results for a fault at the front left, front right, rear left and
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Figure 4.12: Fault at the front left lateral damper
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Figure 4.13: Multiple fault 1

rear right secondary vertical damper. All four faulty dampers have a negative fault
value which correctly indicates the faults.

For all six test cases the FDI procedure gives an accurate fault indication. In the
five faulty test cases the detection as well as the isolation of the specific fault is
possible in most cases. Thus, it is possible to perform an accurate fault detection
and isolation under these conditions.

In a second step, to investigate the robustness of the FDI method against un-

certainties, parameters are varied. The track gauge is modified in the simulation
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Figure 4.14: Multiple fault 2

process, whereas the FDI algorithm is not altered and uses the original track gauge.
Figures and show the results for a track gauge reduction of 4mm. Figure
[4.15]shows the fault free case. Here, the indicator is accurate. Figure [£.16]shows the
results for a fault in the front left anti-yaw damper, the FDI procedure accurately
detects the fault.
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Figure 4.15: Fault free train with gauge reduction

Figures [4.17 and [£.18] show the results for a track gauge increase of 4mm. The
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Figure 4.16: Fault at the front left anti-yaw damper with gauge reduction

results for the fault free case, shown in Figure as well as for the case with a

fault in the front left anti-yaw damper, shown in Figure [4.18| are detected correctly.
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Figure 4.17: Fault free train with gauge increase

Thus, after variations of the track gauge, it is still possible to detect and isolate
faults.

Figures and show the test cases where the track irregularities are twice
as high as expected. Figure [4.19|shows the fault free case and Figure [4.20|shows the
results for the test case with a fault at the front left anti-yaw damper.

Both results are qualitatively equal to the case with no track excitation increase

and thus detect both test cases correctly.
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Figure 4.19: Fault at the front left anti-yaw damper with gauge increase
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4.2.4 Stability analysis

Until now, the investigation to test the FDI method has considered single test cases.
Since the results of the method depends, among others, on stochastic parameters,
the fluctuation range of the results is tested. To determine the robustness of the
proposed method, an extensive stochastic analysis is performed. Five different test

cases are used for the robustness analysis.

1. a variation of the track excitation,
2. a variation of the velocity,

3. a variation of the mass of the coach,
4. a variation of the gauge size.

5. a variation of the track excitation strength.

In the first test case, the train is simulated 50 times. For each simulation, the
track excitation is changed. Figure [4.21] shows the results for the fault free case
and Figure for the case with a fault at the front left anti-yaw damper. The
height of the bar indicates the mean value of all 50 simulations, the upper line the
maximum value and the lower line the minimum value. It can be seen that for all
50 simulations the fault free train as well as the fault at the anti-yaw damper is

indicated correctly. The results for all 12 damper faults are shown in the Appendix
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Figure 4.21: Fault free train with different excitations

For the second robustness test, the mass of the coach is varied from minus 20%

to plus 20% in 1% steps. The mass is only changed for the simulation process, for
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Figure 4.22: Fault at the front left anti-yaw damper with different excitations

the fault detection procedure the mass is kept constant. Figure shows the fault
free train and Figure a fault at the anti-yaw damper. Both cases were indicated
correctly. The results for all 12 damper faults are shown in the Appendix
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Figure 4.23: Fault free train with different weights for the coach

For the third robustness test, the track gauge is varied form minus 5 mm to plus
5 mm in 1 mm steps, for the fault detection procedure, the gauge is kept constant
again. Figures and show the results for the fault free case and a fault at
the anti-yaw damper. Both cases were indicated correctly.

For the next robustness test, the ride velocity is varied from 150 km/h to 300
km/h in 10 km/h steps. Figures and show the results for the fault free
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Figure 4.25: Fault free train with different gauge size

case and the case with a fault at the front left anti-yaw damper. The results for all
12 damper faults are shown in the Appendix [C|

For the last robustness test, the track excitation is multiplied by a factor between
0.5 and 3 in 0.1 steps. Figures and show the results for the fault free case
and the case with a fault at the front left anti-yaw damper.

Figure [4.31| shows the correlation between the different fault indications. The real
fault is given on the x-axis, the fault detection is marked on the y-axis. A blue box
indicates a positive fault indication value and therefore no fault, a red box indicates

a negative fault indication value and thus a fault. All faults are indicated correctly
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Figure 4.26: Fault at the front left anti-yaw damper with different gauge size
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Figure 4.27: Fault free train with different forward velocities

and there are only few false detections. For all three types of suspensions, it is not

possible to distinguish between a fault at the left and a fault at the right side of

same type and the same bogie. Except for this case, all other

a suspension of the

faults are indicated correctly.
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Figure 4.28: Fault at the front left anti-yaw damper with different forward velocities
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Figure 4.30: Fault at the front left anti-yaw damper with different forward velocities
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4.3 Force estimation

The knowledge of the wheel rail forces provides information of the health of the track
and the railway vehicle as well as information about ride conditions. Currently,
wheel-rail contact forces are determined based on wheelsets equipped with strain
gauges. In this method the contact forces are calculated by evaluating the measured
strains. These custom made wheelsets are only used for specific and individual
railway vehicle rides, for example to test new railway vehicles or tracks. Because of
the high effort, this method is not used during regular operation. Therefore, a great
demand of alternative ways to calculate the wheel-rail forces exists.

In recent years, several methods were published, which use acceleration sensors
to determine the wheel-rail contact forces. In this section, the method described
in [28] is used to determine the wheel-rail forces. A Kalman filter based approach
is introduced to determine the wheel rail contact forces. The procedure to calcu-
late the wheel-rail forces can be seen as an inverse problem. The forward problem
refers to the determination of the acceleration values of the vehicle based on forces
applied to the train. In the inverse problem, the forces are determined based on
acceleration data. Further, the inverse force estimation procedure is extended to
estimate the forces, which occur in the suspension system. Therefor the lateral and
vertical secondary damper and the anti-yaw damper are chosen. The estimation
of suspension forces brings benefits for maintenance purposes and strength calcula-
tions. The estimated forces can be used to optimize the compound of train—track
and the suspension system.

At the beginning of this section, basics of inverse problem theory are given, followed
by the procedure to calculate the wheel rail forces as well as the forces which occur

in the suspension system.

4.3.1 Matrix inversion

Calculating the input of a system by using the output values of a system is called an
inverse problem. Inverse problems come along with several difficulties as there might
exist more than one solution. Depending on the forward problem, three different

types are considered. For a linear system they are:

Type 1 A linear system is considered as determined if the number of equations is
equal to the number of unknowns, in this case there exists either a unique

solution or no solution.

Type 2 A linear system is considered as underdetermined, if there are fewer equa-
tions than unknowns, in this case there exist infinitely many solutions or no

solution.
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Type 3 A linear system is considered as overdetermined if there are more equations

than unknowns, in this case there is a unique solution or no solution.

The second type is the one, which brings the most difficulties. If there is a solution,
the only statement which could be given is, that the solution must be in a specific
space. For the third type, if there is no solution, a unique approximation can be
found which is as close as possible to the exact solution related to a specific norm.

For a system of linear equations, the mathematical description of a forward and

an inverse problem can be given by

y = Ax forward problem (4.52)
x=Ay inverse problem (4.53)

with the state vector x the output vector y and the output matrix A. The matrix
A~'is the inverse of A, in order for A~! to exist, the matrix A must be square and it
has to be non-singular. If the matrix A is invertible, the first type is addressed. If the
dimension of y and x are not equal or the matrix A is singular, the inverse of A can
not be calculated. However, to solve this problem, the so-called pseudoinverse matrix
or generalized matrix is defined. Pseudoinverse or generalized matrices have similar
characteristics as the regular inverse of a matrix and denoted by A™. Depending on
the dimensions of y and x two different cases are considered. The case r < n refers
to the second of the three types denoted above, thus there are fewer equations than
unknowns and the inverse solution may be overdetermined, the case r > n refers to
the third type, thus there are more equations than unknowns.

To cover the two different cases, the rank of a matrix is introduced. The rank of a
matrix is defined as the maximum number of linearly independent rows or columns,
thus the rank of a nonsingular (n x n) matrix is n. The rank of a (r x n) matrix
can not be greater than the smaller dimension. The rank of the product of two
multiplied matrices can be no greater than the smaller rank of the original matrices.
To define the pseudoinverse the product AAT is used. If A is a (r X n) matrix, thus
the dimension of ATA is (n x n) and of AAT is (r x r). Both products use the
same matrix A and thus both products have a rank which is equal or less r or n,
depending on which is the smaller one. For the case r > n, AT A may be invertible,
depending on the rank of A, but AAT is definitely not. For the overdetermined
case, both sides are first multiplied with AT and then with (ATA)™!

ATAx = ATy,
x = (ATA) 'ATy, (4.54)
x=Aty.
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The overdetermined case has redundant information. If the vector y is consistent
and error free, equation (4.54)) provides the exact value of x with more computations
than necessary. If the vector y is not consistent or contains errors, equation (|4.54|)
minimizes the mean-square error in the estimation of x.

For the underdetermined case, by considering that
AAT(AATY ' =1 (4.55)

equation (4.52) can be written as

Ax = AAT(AAT) 1y (4.56)

or
x =AT(AAT) 1y (4.57)
x=A"y. (4.58)

In contrast to the overdetermined case, the underdetermined case does not provide
enough information for a unique solution of x, but out of all possible solutions it

does provide the solution that minimizes the quadratic norm of x.

4.3.2 Inverse problem

For the train model, the relation between the wheel rail force and the sensor outputs

is given by the state space model

x = Ax+ Bw (4.59)
y = Cx, (4.60)

where x is the state vector, w the input vector and y the output vector and A, B and
C are the system matrices. The forward problem is to calculate the measurements
y for given track excitation w. The inverse problem is to calculate w for given y.
Compared to the case given in equation the relation between the input and
output can not be solved by a simple algebraic equation, further, the actual state of
the dynamical system must be considered.

The problem can be divided into two steps: The first step is to calculate the states

of the system by given measurements

y =Cx
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this is a problem of the second type, there exist either no solution or infinitely many
solutions. If the problem is solved with the pseudoinverse, the solution is the one
which minimizes the quadratic norm of x. In this case, no information about the
previous state and the dynamic characteristic of the system is used. To involve the
dynamic characteristic in the state estimation process, a state observer is used. The
Kalman filter is applied, as stated above, to estimate the state vectors of the system.

Having information about the state, the inverse problem

w =BT (x — Ax)

can be solved. This is a problem of the third type and a unique solution can be

found by solving the linear least square problem.

4.3.3 Force calculation

In the case of the state space model of the railway vehicle given in section [3] the
input vector w describes the track position. If the information about the force
at the wheel is needed, new output matrices must be introduced. The forces of all
wheelsets are summarized in the vector F. The first step is to calculate the influence
of the input w and the state vector x to the force vector F. This is simply done by
using the nonlinear equation describing the train model and performing a variation
of the state and input vector. The linear relation between state vector, input vector

and the wheel forces can then be given by
F = CFXS + DFW

For each wheelset, the vertical and horizontal forces shown in Figure [4.32] are esti-
mated.

The same procedure is performed to estimate an arbitrary suspension force. New
output matrices are defined, which describe the influence of the input w and the
state vector x on the suspension force.

If the state is estimated with the Kalman filter, the only unknown is w. By
introducing the form filter of the track irregularities, given in Section the

output vector w is part of the state vector and the system is solved by
F— [CF DF} X.

Thus, to calculate the wheel rail contact force or any suspension force, the estimated

state X, and the estimated input w of the railway vehicle system are needed.
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Figure 4.32: front left secondary vertical damper

According to [28], the procedure of determining the wheel-rail forces is divided

into five steps:

1. Simulation of the railway vehicle system and generation of measurement data
2. Extension of the linearized system with a form filter

3. State and input estimation with a Kalman filter on basis of measurement data
4. Force calculation with estimated states and inputs

5. Comparison of estimated and simulated results for the input forces

If real measurements are available the simulated measurements are simply replaced

by the real measurements.

4.3.4 \Wheel rail contact force estimation

With the method presented above, the wheel rail contact forces are estimated. In
this section, the estimated forces are compared with the simulated force. For this
purpose, the train is simulated with a speed of 16()'%” and excited with track irreg-
ularities.

A comparison of estimated and simulated signals for the resultant vertical contact
forces for the first wheelset is shown in Figure [4.33| and an enlargement of the
diagram is given in Figure [£.34] The real and the estimated contact forces show a
significant correlation.

Figure 4.35| shows the results for the estimation of the lateral contact forces of the
first wheel set. An enlargement of the diagram is given in Figure There is,

96



4.3 Force estimation

_1 .4 T T T T T T T T T
Real force
Estimated force

-1.45

_1.5_

Force [N]

-1.55

_1.6_

Time [s]
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Figure 4.34: Vertical contact force first wheel enlarged

again, a high correlation between the estimated and the simulated force. Figures
and [4.38 show the results for the estimation of the vertical and lateral contact
forces of the first wheelset at the left wheel.
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The lateral and vertical forces of a single wheel play a major role in the design of
the railway vehicle [51]. For example, Nadal proposed a single-wheel limit criterion
to guarantee flange climb safety. This criterion is based on the ratio of the vertical
wheel force Qr and the lateral wheel force Yz of a single wheel shown in Figure
4.39]

Contact point

Figure 4.39: Flange contact

The critical ratio is given by [52]

YF . tanép — M

—_— = 4.61
QF 1+/Lt&1’15p’ ( )

where 0 is the contact angle. By using the maximum contact angle, this equation
gives the minimum wheel Yz /Qp ratio at which the flange climb derailment occurs
for given friction coefficient . Thus the estimated lateral and vertical forces of a
single wheel can be used to perform safety analysis based on acceleration measure-
ments.

Equivalent to the safety calculations of the wheel, the estimated forces are used
to quantify the load condition applied to the rail. Lateral track shifts are of major
interest. These are caused by repeated lateral axle loads. The track can shift under
large lateral forces and since both, speed and load, of the railway vehicle increase,
it is important to check the load condition. Large lateral forces can induce a gauge
widening that can lead to a wheel-rail separation, as shown in Figure [4.40| or a rail
rollover shown in Figure [4.41

The estimated lateral wheel rail forces can be used to verify the load applied to
the rail and prevent such occurrences.

Further, the estimated wheel rail forces can be used to perform wear calculation

for example like proposed in [53].
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4.3 Force estimation

Figure 4.40: Separation of rail

Figure 4.41: Rollover of rail

4.3.5 Suspension force estimation

Most components of railway vehicles, including bogies or wheelsets, are elements
where dynamic stresses are decisive in design calculations. Material fatigue of the
bogie or the wheel components takes place due to dynamic loads, which is super-
imposed on the static loads from weight and loading. A precise information of
the dynamic loads during the life cycle of a component is therefore important for
optimal component design or failure analysis. The consideration of dynamic load
components in design calculations as carried out to date, however, are almost en-
tirely greatly simplified through dynamic plus-factors [54]. The information about
the dynamic load can be provided by estimating the suspension forces. The obtained
results of the suspension force estimation are shown in this section.

Figure shows the results for the estimation of the front left secondary vertical
damper. Figure 4.43| shows the results for the estimation of the front left anti-
yaw damper and Figure [4.44] shows the results for the estimation of the front left
secondary lateral damper.

It can be seen, that all three suspension forces can be estimated accurately.
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5 Conclusion

Increasing system reliability and dependability while decreasing maintenance costs
is a major topic in the railway industry. On-line fault detection and isolation of-
fers advantages, when early detection of faults and wear is crucial. Further fault
detection and isolation together with the ability to estimate forces in the railway
system brings benefits for maintenance, strength calculation and asset management.
Important forces which are needed for such purposes, occur in the wheel rail contact
and the suspension system of the railway vehicle.

The review of literature in the first chapter has shown, that there is demand for an
improve in fault detection and force estimation. Many concepts were presented but
no procedure was found, which allows for the detection and estimation of a variety
of faults and forces with such an accurate railway vehicle model and track model as
provided in this work.

The task of this work is to analyze a railway vehicle model based on acceleration
data measurements. The train dynamics are captured with a state observer and an
algorithm is introduced to detect and isolate faults in the suspension system and
to estimate forces in the wheel rail contact as well as in the suspension system.
The characteristics of the track irregularities are used to increase the accuracy of
the proposed method. The PSDs given in ERRI B176 are taken to describe the
characteristic of the track. A form filter is designed to model the random track
irregularities corresponding to the PSD, which improves the results of the force
estimation. The railway vehicle system is combined with the form filter, and a

Kalman filter is used to perform a state estimation of the whole system.

In the first topic of this work, expanded multiple model Kalman filters were used to
detect and isolate faults in a suspension system of a full scale railway vehicle model.
Important components in railway suspension systems are the anti-yaw damper, the
secondary lateral, and vertical damper. The anti-yaw damper is critical for running
stability, the other two influence mainly the ride comfort. In this study, the presented
FDI procedure is used in order to detect faults in any of these dampers. As test case,
a model of the Velaro RUS is used to detect faults. With the presented method,
faults in the vertical, lateral and anti-yaw damper can be distinguished sensitively

and reliably. It is even possible to isolate faults with nearly the same influence to
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5 Conclusion

the overall dynamics. Further single as well as multiple faults can be isolated.

The robustness of the FDI procedure is tested by a variety of modifications. The
random values to create the track irregularities are changed 50 times to quantify the
deviation of the FDI method. Further, the travel velocity is changed between 150
km/h and 300 km/h in 10 km/h steps. The mass of the coach is modified between
minus and plus 20%. The gauge size is changed between minus 5 mm and plus 5
mm in 1 mm steps and at last the excitation amplitude is changed between 0.5 and
3 times of the regular excitation. Compared to the other changes, the change of
velocity is included in the FDI model. For the other test cases the FDI model holds
the original values. All test cases show the robustness of the proposed method and
are working well and reliably. Because of the robustness of the FDI method, the
author believes that the proposed method could be used to detect and isolate faults

in real scenarios.

In the second topic the Kalman filter is used for the inverse determination of lateral
and vertical wheel-rail contact forces and suspension forces. The wheel rail contact
is a major part of a railway vehicle system and information about these forces is
important for wear and comfort analysis. Currently, wheel-rail contact forces are
determined based on wheelsets equipped with strain gauge. As in the first topic, the
method in this work only uses data from acceleration sensors to estimate the forces.
A Kalman filter is used to estimate the states of the system, whereas the system
combines the railway vehicle and the form filter with the characteristics of the track
irregularities. With the states of the railway vehicle and the track geometry, the
forces are estimated. The results show that it is possible to estimate the lateral and
vertical wheel rail contact forces. Methods are shown, which can use the estimated
wheel rail contact forces for a variety of safety calculations. Further, the estimation
of the forces in the secondary vertical damper, the secondary lateral damper and
the anti yaw-damper is possible. This estimation can be used for strength analysis.

In both cases, the estimation of the wheel rail contact forces as well as the estima-
tion of the suspension forces, the real and estimated forces highly correlate. Thus,
the proposed methods for both, fault detection and forces estimation can be used

to increase the safety and decrease maintenance costs.

The focus of this work was to develop a reliable strategy to analyze a railway
vehicle based on acceleration sensors. The proposed methods have been tested
by simulating a railway vehicle with nonlinearities. The methods are based on a

linearisation of this model and show good results.
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A Results for all suspension faults
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B Results for all suspension faults

for different masses
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B Results for all suspension faults for different masses
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113



B Results for all suspension faults for different masses

Todurep [eIoje] ATRPUOd0s JYSLL 1eal]
Todurep [e1oje] AIRpUOd0s o] Iedl
Todurep [eI9je] ATRPUOIAY I
Toduwrep [eI9je] AIRpUOIPS
Jodurep meA-1

Todurep E@_Nw.ﬁ

Todurep Bm%.ﬂia

Jodurep Bm%_ﬁ

Todurep peor

Jodurep e

b

7001
6001
500
400
300
200F
100

Iodurep [eIoye] A1epuodds PSLI Ieal
Todurep [erojye] A1epuOdds o IedT
Todwep [RIDYR] ATRPUO0DAY 1
Jodurep [eId)e] ATRPUOIYPS ).
Jodurep B,m%.L:

Todurep BL\A._

JTodurep Bm%-E_T

Todurep B@%A_E

Todurep eoy)

Todurep E“_~

-10¢

-200-

7001
600
500
400
300
2001
100

o f

-100-

-200-

12

1"

1 12

10

(b) at the right side

(a) at the left side
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C Results for all suspension faults
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