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Abstract

Reliability and dependability in complex mechanical systems can be improved by

fault detection and isolation methods (FDI) as well as methods for force estimation.

These techniques are key elements for maintenance on demand, which can decrease

service costs and time signi�cantly. This work addresses FDI and force estimation

for a railway vehicle: The mechanical model is described as a multibody system,

which is excited randomly due to track irregularities. Numerous parameters, like

masses, spring- and damper-characteristics, in�uence the dynamics of the vehicle.

Often, the exact values of the parameters are unknown and might even change over

time. Some of these changes are considered as critical with respect to the operation

of the system and they require immediate maintenance. The aim of this work is

to detect faults in the suspension system of the vehicle and to estimate wheel rail

contact forces as well as forces in the suspension system. A Kalman �lter is used

for the state estimation. In order to detect and isolate faults, several Kalman �lters

are used, each of them is speci�c for a fault in the system. A statement of the

condition of the railway vehicle is then given by comparing the data of the system

under investigation and the data estimated with the Kalman �lters. The estimated

states are also used to solve the inverse problem in the force calculation. A full scale

train model with a nonlinear wheel rail contact model serves as an example for the

described techniques. Numerical results for di�erent test cases are presented. The

analysis shows that for the given system it is possible not only to detect a failure in

the suspension system from the system's dynamic response, but also to distinguish

clearly between di�erent possible causes for the changes in the dynamical behavior.

The wheel rail forces as well as the suspension forces can be estimated accurately.
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Kurzfassung

Die Zuverlässigkeit in komplexen mechanischen Systemen kann durch Fehlerde-

tektion und Isolationsverfahren sowie durch die Schätzung der Kräfte im System

verbessert werden. Diese Techniken sind Schlüsselelemente für eine zustandsorien-

tierte Instandhaltung, welche Servicekosten und -zeit signi�kant verringern können.

Das Ziel dieser Arbeit ist die Fehlererkennung und Kraftschätzung im Schienen-

fahrzeug. Das Schienenfahrzeug wird als Mehrkörpersystem modelliert und die An-

regung des Systems resultiert aus Gleislagefehlern. Verschiedene Parameter, wie

Massen, Federn und Dämpfer beein�ussen die Zugdynamik. Oft sind die genauen

Werte der Parameter unbekannt und könnten sich sogar im Laufe der Zeit ändern.

Einige dieser Veränderungen sind kritisch im Hinblick auf den Betrieb des Sys-

tems und erfordern eine sofortige Wartung. Das Ziel dieser Arbeit ist es, Fehler in

Dämpfern des Fahrzeuges zu erkennen und Kräfte im Kontakt zwischen Rad und

Schiene sowie in Dämpferelementen zu schätzen. Um die Dynamik des Schienen-

fahrzeuges zu rekonstruieren, werden mittels eines Kalman Filters die Zustände

des Systems geschätzt. Zur Erkennung und Isolation der Fehler werden mehrere

Kalman Filter verwendet, die jeweils spezi�sch für einen Fehler sind. Durch Vergleich

der Daten des zu untersuchenden Systems mit den per Kalman Filter geschätzten

Werten, wird auf das Auftreten von Fehlern zurück geschlossen.

Die inverse Berechnung der im System auftretenden Kräfte basiert ebenfalls auf

dem Kalman Filter. Der Kalman Filter wird verwendet um die Zustände des Systems

zu schätzen. Anschlieÿend muss der Zusammenhang zwischen dem Zustand und den

auftretenden Kräften ermittelt werden, durch diesen Zusammenhang können dann

die Kräfte geschätzt werden.
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Nomenclature

Functions

E[] expectation

F () transfer function

f1(), f2() geometry of the left and right wheel

fc() spring force

fd() damper force

FX() cumulative distribution function

fX() probability density function

g1(), g2() geometry of the left and right rail

P () probability likelihood

Scl() power spectral density of cross-level track irregularities

Sh() power spectral density of horizontal track irregularities

Sv() power spectral density of vertical track irregularities

SX() power spectral density

V ar() variance

δk Kronecker delta function

Scalars

A, B constants depending on the radii of curvatures

a, b the contact ellipse semi-axes

A,B event in terms of probability

Ai, Bi, Ci constants depending on the radii of curvatures

Aj, Bj, Cj constants depending on the radii of curvatures

Am, Bm, Cm, Dm constants for Hertz calculation

An, Bn, Cn, Dn constants for Hertz calculation

bh0, bv0, bcl2 coe�cients for track irregularities

Ch normal damping coe�cient

cji creepage coe�cients

Cxy cross-covariance
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Nomenclature

d distance between rail and wheel contact point

e scalar residual

fault sum of fault indication values

Fd normal damping force

Fh Hertz normal load

fHertz Hertz contact force

Fn normal load

Fx, Fy creep forces

G modulus of rigidity

Gr modulus of rigidity of rail

Gw modulus of rigidity of wheel

`0 unstrained spring length

K1, K2 constants for Hertz calculation depending on material properties

KHertz Hertz coe�cient

m mass of a body

mH , nH constants for Hertz calculation

MZ creep moment

p pressure in the contact point

p0 maximal pressure in the contact point

QF vertical wheel force

Ri1, Ri2, Rj1, Rj2 radii of curvature

Rxy cross-correlation

Rxx auto-correlation

s arc length

sr surface parameter of the rail

sw surface parameter of the wheel

t time

V magnitude of the wheel velocity

vrx, v
r
y velocity of the contact point at the rail

vwx , v
w
y velocity of the contact point at the wheel

X random variable

X̂ expected value of a random variable

Y random variable

YF lateral wheel force

Ŷ expected value of random variable

yt lateral displacement

zt vertical displacement

γx, γy, ωz longitudinal, lateral and spin creepage

∆t Sample time
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Nomenclature

δ penetration for Hertz normal Force

δF contact angle at the contact point

ε fault indication values

θ pitch-angle

µ friction coe�cient

ν Poisson's ratio

ρXY correlation coe�cient

σ standard deviation

τ time shift

φ roll-angle

Ψ yaw-angle

Matrices and vectors

A, B, C, D system, input, output and feed-through matrices

Arot,A1,A2,A3 rotational matrices

As, Bs, Cs, Ds system, input, output and feed-through matrices of the train model

Affi, Aff , AFF system matrices for form �lter

α Euler angles

Bffi, Bff , BFF input matrices for form �lter

Cffi, Cff , CFF output matrices for form �lter

CF forces output matrices

Dffi, Dff , DFF feed-through matrices for form �lter

DF force feed-through matrices

F forces

F, G, H, L Discrete system, input, output and feed-through matrix

Fc spring force

Fd damper force

I identity matrix

J moment of inertia tensor

Jac Jacobian matrix

K observer or Kalman �lter gain matrix

` vector between two points

M moment

nr normal vector of the rail surface

nw normal vector of the wheel surface

O observability matrix

P state residual covariance matrix

10



Nomenclature

p position of contact point

P̂−k a-priori covariance matrix

P̂+
k a-posteriori covariance matrix

pr contact point at the rail

pw contact point at the wheel

Q disturbance input covariance matrix

R measurement error covariance matrix

R global position vector of the origin of the body

r global position vector

Rr global position vector of the origin of the rail

Rw global position vector of the origin of the wheel

rx state vector residual

ry measurement residual

tr tangential vector of the rail surface

tw tangential vector of the wheel surface

u input signal

ur contact point position

uk discrete input signal

uw contact point position

v measurement noise vector

w process noise vector

x state vector

ẋ time derivative of state vector

x̂ estimated state vector
˙̂x time derivative of estimated state vector

xff , xffi, xFF state vector of form �lter

xk discrete state vector

x̂k discrete estimated state vector

x̂−k a priori estimated state vector

x̂+
k a posteriori estimated state vector

xs state vector of railway system

y output signal, measurement vector

ŷ estimated measurement vector

yff , yffi, yFF output vector of form �lter

yk discrete measurement vector

ŷk discrete estimated measurement vector

ys measurement vector of train model

ω angular velocity
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1 Introduction

The capacity of transport as well as the number of passengers is growing in the

railway industry. At the same time, the pressure to reduce service costs rises. The

e�ort to reduce service costs and time starts during the planning phase of the vehicle

and the rail, and it continues during the operation phase. During the operation phase

an enormous cost factor results from the maintenance of the railway track as well

as the railway vehicle. Thus, decreasing maintenance costs is a major focus in the

railway industry.

Reliability and dependability in complex mechanical systems can be improved by

fault detection and isolation methods (FDI) as well as force estimation techniques.

These techniques, FDI and force estimation, are key elements for maintenance on

demand, which could decrease service costs and time signi�cantly.

Further, an accurate and easy way to estimate forces in the system improves the

Asset Management. In the case of the railway vehicle, forces occurring in the wheel

rail contact and the suspension system are of special interest.

This work addresses two major topics: The �rst topic is the detection and isolation

of faults in the suspension system, the second topic is the estimation of forces in the

wheel rail contact point as well as in the suspension system.

In both topics, the dynamics of the railway vehicle is modeled by a multibody

system, which is excited randomly due to track irregularities. The Velaro RUS serves

as an example. Various parameters, like masses, spring- and damper-characteristics,

in�uence the dynamics of the vehicle. Often, the exact values of the parameters are

unknown and might even change over time. Some of these changes are considered

as critical with respect to the operation of the system and they require immediate

maintenance. In both topics the railway vehicle dynamics is captured with a Kalman

�lter. In order to improve the state estimation process, the characteristics of the

track irregularities are considered in the fault detection process. The characteristics

of the track irregularities are modeled with form �lters. The form �lters are based

on power spectral density functions of the assumed random track irregularities and

are included in the system's equations.

Thus, the aim of the �rst topic of this work is to detect and isolate faults in

the suspension system. The detection and isolation of faults is divided into two

steps: First, changes in the system, which are caused by a fault, are identi�ed (fault
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1 Introduction

detection). Second, the location of the faults are determined (fault isolation).

To detect and isolate faults, noisy acceleration measurements of the railway ve-

hicle are used. With this acceleration measurements multiple state estimations are

performed. Each estimation is based on a di�erent model of the railway vehicle,

one model represents the fault free case and the other models represent the faulty

cases. Out of all available models, the one with the smallest estimation error is

selected. Kalman �lters are used to perform the state estimations. A full scale train

model with nonlinear wheel rail contact and nonlinear suspension forces serves as

an example for the described techniques.

Important components in railway suspension systems are the anti-yaw damper,

the secondary lateral, and vertical damper. The anti-yaw damper is critical for

running stability, the other two in�uence mainly the ride comfort. In this study, the

presented FDI procedure is used in order to detect faults in any of these dampers.

Furthermore, it is possible to distinguish between a large number of di�erent fault

scenarios: It is possible to isolate a single fault at a single suspension element as

well as to detect and isolate multiple failures in the complex suspension system.

Numerical results for di�erent test cases are presented and the robustness of the

proposed method is analyzed.

The aim of the second topic is to estimate the lateral and vertical wheel rail

contact forces and suspension forces in the railway vehicle system. The use of

indirect methods for the estimation of dynamic forces acting on mechanical systems

is very interesting as a direct measurement of these forces is usually very di�cult

and sometimes impossible. The wheel-rail system is a major part of the railway

vehicle and has to ful�ll several functions, such as carrying, guiding and transmitting

power. Thus, forces occurring in the wheel-rail contact in�uence the running safety,

the track loading and the ride characteristics of the vehicle. Currently, wheel-rail

contact forces are determined using a wheelset equipped with strain gauges. In this

method the contact forces are calculated by evaluating the measured strains. These

custom made wheelsets are only operated during speci�c train rides, for example

to test new trains or tracks. On the other hand, the use of these strain gauges

is too expensive for normal operation. Therefore, there is demand for alternative

ways to calculate the wheel-rail forces. In addition, the forces resulting from the

suspension system provide information, which can be used for maintenance purposes

and strength calculation. The obtained force data serves to design and develop

optimized railway vehicles and tracks. Further, the evolution of the forces over time

can be analyzed and the correlation between di�erent components of the train and

track can be evaluated.

The estimation of the forces in the railway vehicle system is an inverse problem,

which includes several di�culties. The inverse problem is often not unique and

14



1.1 Review of literature

badly scaled. Similar to the �rst topic, a linear Kalman �lter is used for the state

estimation based on given acceleration data and speci�c track characteristics. The

relation between the state vector and the various forces is determined. This relation

is used and the di�erent forces are calculated based on the estimated states.

In order to test the FDI method for a variety of di�erent suspension faults, a

detailed model of the Velaro RUS with nonlinear suspensions as well as nonlinear

wheel rail contact forces is used. This model is used to simulate all test scenarios.

1.1 Review of literature

A number of recent publications address the detection and isolation of faults and

force estimation in railway vehicle systems.

Parameter estimation using a Rao-Blackwellized particle �lter and Extended Kalman

�lter [1, 2, 3] gives good results for linear and nonlinear suspension systems using a

two dimensional linear railway vehicle model. A multiple-model algorithm for the

detection of faults is given in [4, 5], a two dimensional half train serves as a model.

FDI methods for the handling of damping coe�cients are described in [6, 7]: De-

pending on the sign of the relative damper velocity, the coe�cients switch between

two distinct values. Suspension parameter estimation in the frequency domain is

presented in [8]. Model-less monitoring methods for railway vehicles are demon-

strated in [9, 10, 11]. A comparative study on fault detection methods of urban

rail vehicle suspension systems is presented in [12]: The fault detection methods are

applied to a three dimensional vehicle model, in which all four primary suspension

springs or all four secondary suspension dampers fail at the same time. A Hybrid

Extended Kalman �lter for fault detection in nonlinear suspension elements for a

half train model is given in [13]. In [14] a distributed fault detection method is pro-

posed for light rail vehicles. A vertical train model is used for the fault detection. In

[15], a fault detection method is introduced which uses a consensus principle compo-

nent analysis. The method is model less and it is shown that it is possible to detect

faults in the primary spring and damper when all primary springs or dampers were

faulty. It is not shown that it is possible to distinguish between di�erent dampers

and suspensions. In [16] a primary conceptual overview of processing possibilities

for condition monitoring systems is given.

The estimate of wheel rail contact forces based on measured wheel disc strains

is presented in [17]. Three di�erent numerical algorithms are presented. An in-

verse method for dynamic load estimation using measurements of system responses

is presented in [18]. In [19] and [20] an inverse dynamics method is introduced in

order to identify lateral wheel-rail forces. These methods use the Thikonov regular-
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1.2 Outline of the work

ization and the Bellman principle of optimality to minimize the objective function

for the estimation of applied forces due to excitation. In [21] the vertical dynamic

interaction between train and track is estimated by using an extended state space

vector approach in conjunction with a complex model superposition for the track.

In [22] vertical wheel rail contact forces at high-frequency are estimated based on

[21]. Measured results from two �eld test campaigns are used to validate the vehi-

cle�track interaction model. Four vehicle models and two visco-elastic track models

are compared.

Further, there are some investigations to estimate the track irregularities. In [23]

inverse linear parametric models are used to identify rail track irregularities. A

Kalman �lter is used in [24] to estimate the track geometry from carbody vibration.

Beyond the fault detection and force estimation there is a trend to use the Kalman

�lter to estimate several entities of the train. In [25] an unscented Kalman �lter is

used to estimate the friction coe�cient of the wheel rail contact. A multi-Kalman

�lter approach for estimation of wheel rail contact conditions is presented in [26]. A

nonlinear model of lateral and yaw dynamics of a wheelset is used in the presented

work. In [27] the Kalman �lter is applied for control strategies for active steering of

bogie-based railway vehicles.

The strategy developed in this work analyses a railway vehicle based on accel-

eration data. Compared to most work published in this area, a highly detailed

three dimensional train model is used. Because of the accurate train model and

the database of Kalman �lters, the fault detection as well as the force estimation

can be used to give a clear indication of the condition of a multitude of di�erent

components of the train model.

1.2 Outline of the work

In the �rst chapter, the motivation for this work and a literature review of research

related to fault detection and force estimation in the railway systems are given.

The next chapter presents the theoretical background of linear systems, signals

and probability theory, which are needed for this work. Basic characteristics of

linear systems are derived and the general form of a state observer is introduced.

The section on probability theory provides the information which is needed for the

Kalman �lter.

Chapter 3 addresses the train model, which is used for simulation and testing. The

�rst section covers the wheel rail contact model, which mainly in�uences the train

dynamics. The second section describes the components of the railway vehicle and

how the equations of motion are derived.

16



1.2 Outline of the work

Chapter 4 presents the procedure of fault detection and isolation and force esti-

mation. The Kalman �lter is introduced, conditions for the state estimations and

tuning parameters are explained. The introduction to Kalman �lters is followed by

the proposed method for fault detection and isolation. Starting with the characteris-

tics of the estimation error, the Kalman �lter is extended for the fault detection and

isolation in the suspension system. The results are shown and a stability analysis of

the proposed methods is performed. The chapter ends with a method to estimate

wheel rail contact forces [28] as well as suspension forces. The estimation of both

forces is an inverse problem, thus the concepts of system inversion are introduced

and the di�culties, which could occur, are worked out. It is presented how the

Kalman �lter is integrated in this inversion task. At the end, the results of the force

estimation and the relevance for safety and design optimization are shown.

Chapter 5 presents a summary of the obtained results. Both topics, the fault

detection as well as the force estimation are discussed.

17



2 Theory

This section covers theory and fundamental methods, which are extensively used in

this work. First, basic concepts of linear systems and signals are provided, which

are important to capture the train dynamics in an e�cient way. Then, probability

theory is covered, which is used to analyze the random excitation of the train model

and to de�ne the Kalman �lter for the state estimation of the train.

2.1 Linear systems and signals

Dynamical systems can be divided into linear and nonlinear systems. The theory of

linear systems is general and widely developed, whereas for the nonlinear case, many

concepts and theories for special issues exist. The concepts of linear system theory

are used in this work to perform the model based fault detection as well as the force

estimation. Thus, some basic theory of linear systems and signals is reviewed in this

chapter. More investigations can be found in [29], [30] and [31].

2.1.1 Linear systems

Figure 2.1 shows the block diagram of a dynamical system, which transforms an

input signal u(t) into the output signal y(t). If the output of the system is pro-

Figure 2.1: Dynamical system

portional to the input, the system is called linear. A linear function satis�es two

properties, the additivity and the homogeneity property

Additivity : f(a+ b) = f(a) + f(b), (2.1)

Homogeneity : λg(a) = g(λa), for all λ. (2.2)

18



2.1 Linear systems and signals

Applying equations (2.1) and (2.2) to a linear dynamical system, the results are

u1(t) 7→ y1(t) and u2(t) 7→ y2(t), (2.3)

u(t) = au1(t) + bu2(t) 7→ y = ay1(t) + by2(t), (2.4)

where the arrow ” 7→ ” denotes, that the system maps the input u(t) onto the output

y(t).

If a system is linear and in addition the system's behavior does not change over

time, the system is called a linear time invariant system (LTI). A time invariant

system must satisfy

u1(t) = u2(t− τ) 7→ y1(t) = y2(t− τ), (2.5)

where τ is any time shift. Many methods to analyze dynamical systems are based

on linear models. Thus, for nonlinear systems, suitable methods are needed for

linearisation.

2.1.2 State-space representation

A linear and time-invariant system, shown in Figure 2.2, can be expressed by a set

of linear di�erential equations describing the physical characteristics of the system.

This set of di�erential equations models the in�uence of the system input u(t) on

the system output y(t). A so-called state space representation is given, if the set of

Figure 2.2: LTI system

di�erential equations is transformed into a set of �rst order di�erential equations.

In addition, if the dynamical system is a LTI system the di�erential equation can

be written in matrix form

ẋ = Ax + Bu, (2.6)

y = Cx + Du, (2.7)

where x is the n-dimensional state vector with its time derivative ẋ. The m inputs

of the system are combined in the input vector u, the l outputs of the system are

combined in the output vector y. The matrix A de�nes the system matrix, the

matrix B is the input matrix and C is the output matrix. The matrix D is called

the feed-through matrix. It is zero, if there is no direct feed-through in the system.
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2.1 Linear systems and signals

The system matrices A, B, C and D are constant in the time-invariant case. Thus,

by using the state space representation, a system with multiple inputs and outputs

can be modeled and analyzed in a compact way.

Figure 2.3: State space system

A block diagram of the state-space model given by equations (2.6) and (2.7) is

shown in Figure 2.3. The diagram shows the principal parts of the system and their

connections.

2.1.3 Observability

The fault detection as well as the wheel rail force estimation use many concepts of

control theory. The states of the system are in general not directly accessible, thus

a controller needs a state estimation in order to perform state feedback control. In

this work, the state estimation is needed to reconstruct the system dynamics and

to determine faults or forces in the system. The concepts of controllability and

observability are related to each other, they are called dual problems. A system is

called controllable, if it is possible to �nd a control input that takes the system from

any initial point to any �nal point in any given time. A system is called observable,

if the values of its state variables can be uniquely determined from its input and

output signals. Figure 2.4 shows the concept of a closed loop state estimator. The

estimated state is denoted by x̂ and the estimated measurement is denoted by ŷ.

The state observer uses the measured output signal y(t) to compute the output

estimation error ŷ(t) − y(t), which is multiplied by a gain matrix K and added to

the estimator. The estimator dynamics is described by

˙̂x(t) = Ax̂(t) + KC (x̂(t)− x(t)) + Bu(t) (2.8)

˙̂x(t) = (A + KC)x̂(t)−KCx(t) + Bu(t) (2.9)
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2.1 Linear systems and signals

Figure 2.4: State estimator

for the given state space model

ẋ(t) = Ax(t) + Bu(t), (2.10)

y = Cx. (2.11)

The error dynamics of the estimator is

ẋ(t)− ˙̂x(t) = A(x(t)− x̂(t)) + KC(x(t)− x̂(t)) (2.12)

˙̃x = (A + KC)x̃. (2.13)

Thus, the eigenvalues of A + KC determine the stability of the estimation process.

The matrices A and C result from the mechanical system, the gain matrix K can

be chosen freely to obtain desired eigenvalues.

If it is possible to �nd a gain matrix K to obtain any set of desired observer

eigenvalues, the so-called observability matrix

O(C,A) =


C

CA
...

CAn−1

 (2.14)

has full rank. A weaker form of observability is detectability. If O(C,A) does not
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2.1 Linear systems and signals

have full rank, but a gain matrix K exists such that all eigenvalues of A+KC are in

the left half plan, i.e they have a negative real part, the system is detectable. Thus,

the train model must be at least detectable in order to reconstruct the state.

In reality, the system is corrupted with process noise w and measurement noise v,

which is shown in Figure 2.5.

Figure 2.5: State estimator with unknown input

Both noise terms in�uence the estimation process and the estimator dynamics is

described by

˙̂x(t) = Ax̂(t) + KC (x̂(t)− x(t))−Kv(t) + Bu(t). (2.15)

A special case of a state estimator is the so called Kalman �lter, this �lter requires

white process and measurement noise. The Kalman �lter is explained in more detail

in section 4.1 and is used extensively in the fault detection and force estimation

methods.

2.1.4 Discretization

In order to estimate the states of the train model, acceleration measurements are

used. The measurements are sampled at discrete instances of time, thus, to perform

a state estimation, the train model is discretized.
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2.1 Linear systems and signals

If the state space model from equations (2.6) and (2.7) is discretized with a sample

time ∆t, the discretized system results to

xk+1 = Fxk + Guk, (2.16)

yk = Hxk + Luk (2.17)

with

F = eA∆t, G = F(I− e−A∆t)A−1B, H = C, L = D. (2.18)

Many methods exist to discretize a system numerically. Since the railway model

is a very sti� problem, in this work an implicit Euler method is used. Using the

implicit Euler method, equation (2.6) can be approximated as

xk+1 − xk
∆t

≈ Axk+1 + Buk (2.19)

solving this equation for xk+1 results to

xk+1 − xk ≈ ∆tAxk+1 + ∆tBuk

xk+1 −∆tAxk+1 ≈ xn + ∆tBuk

(I−∆tA)xk+1 ≈ xn + ∆tBuk

xk+1 ≈ (I−∆tA)−1xn + (I−∆tA)−1∆tBuk

(2.20)

and �nally

xk+1 = Fxn + Guk, (2.21)

with F = (I−∆tA)−1 and G = (I−∆tA)−1∆tB.

With the implicit Euler method it is possible to derive a stable discrete time state

space model for the railway vehicle. The state space model is stable, if all eigenvalues

of F lie within the unit circle in the complex plane or rather if all eigenvalues have

an absolute magnitude smaller than one.
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2.2 Probability theory

2.2 Probability theory

For both topics of this work, the fault detection procedure as well as the force

estimation process, noisy measurement signals are used to determine the railway

vehicle dynamics. In order to get as much information as possible from these signals,

it is important to know the characteristics of the noise and how it in�uences the

system behaviour or rather the estimation process. In this section basic concepts are

reviewed of how to handle this uncertainty and it gives an introduction to probability

theory and random variables. Probability theory plays a major role in de�ning the

Kalman �lter and thus for the fault detection and force estimation.

2.2.1 Probability

The probability P (A) is the likelihood that a given event A will occur. An event

is the outcome of a process, called the experiment. The set of all possible events

is called sample space of the experiment and is denoted by Ω. The number of all

possible outcomes can be �nite or in�nite. The probability of P (A) is a numerical

measure and the number is between 0 and 1, the number 0 indicates impossibility

and the number 1 indicates certainty.

According to [32], there are the following probability axioms

1. (Non-negativity) P (A) ≥ 0, for every event A.

2. (Additivity) If A and B are two disjoint events, then the probability of their

union satis�es

P (A ∪ B) = P (A) + P (B). (2.22)

Furthermore, if the sample space has an in�nite number of elements and

A1,A2, ... is a sequence of disjoint events, then the probability of their union

satis�es

P (A1 ∪ A2 ∪ ...) = P (A1) + P (A2)... (2.23)

3. (Normalization) The probability of the entire sample space Ω is equal to 1,

that is, P (Ω) = 1.

2.2.2 Conditional probability and independence

Conditional probability is an important concept, which is used by the Kalman �lter

to perform a state estimation. It is used to propagate the state estimation through
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2.2 Probability theory

time and to increase the accuracy from time step to time step.

In probability theory, a conditional probability gives information about the out-

come of an event, given that another event has occurred. If the event B has occurred,
the conditional probability of event A is de�ned as

P (A|B) =
P (A,B)

P (B)
(2.24)

with the assumption that P (B) > 0. P (A,B) is the joint probability of A and B.
If an event A is not a�ected by an event B, the events are independent. In

probability theory, independent events have the joint probability

P (A,B) = P (A)P (B). (2.25)

If events A and B are independent, the conditional probability of P (A|B) is P (B)

or vice versa the conditional probability of P (B|A) is P (A). The Kalman �lter uses

this concept in order to quantify the likelihood of a state under the condition that

speci�c states were estimated in the past.

2.2.3 Random variables

According to [33], a random variable is de�ned as a function mapping a set of exper-

imental outcomes to a set of real numbers. The outcome of a particular experiment

is not a random variable. The random variable X exists independently of any of its

realizations, it will always be random and will never be equal to a speci�c value. A

random variable can be either continuous or discrete.

One way to describe a random variable is its cumulative distribution function (cdf)

FX(x) = P (X ≤ x). (2.26)

The cdf has the following properties

FX(x) ∈ [0, 1],

FX(−∞) = 0,

FX(∞) = 1,

FX(a) ≤ FX(b) if a ≤ b,

P (a < X ≤ b) = FX(b)− FX(a).

(2.27)

25



2.2 Probability theory

The derivative of the cdf is de�ned as the probability density function (pdf)

fX(x) =
dFX(x)

dx
, (2.28)

with the properties

FX(x) =

∫ x

−∞
fX(z)dz,

fX(−∞) ≥ 0,∫ ∞
−∞

fX(x)dx = 1,

P (a < X ≤ b) = FX(x2)− FX(x1)

=

∫ b

a

fX(x)dx.

(2.29)

Input noise is often assumed to be a Gaussian random variable, which is essential

when de�ning the Kalman �lter. A random variable is called Gaussian or normal

distributed if its pdf is given by

fX(x) =
1

σ
√

2π
exp

(
−(x− x̂)2

2σ2

)
. (2.30)

The values x̂ and σ in the pdf are the expected value and standard deviation of the

Gaussian random variable.

A pdf of a Gaussian random variable with a mean of zero and a variance of one is

given in Figure 2.6.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.6: Gaussian function
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2.2 Probability theory

The expected value for a discrete random variable X is

X̂ = E[X] =
m∑
i=1

xiP (X = xi). (2.31)

For a continuous random variable X the expectation E(X) is de�ned as:

E[X] =

∫ ∞
−∞

xfX(x)dx. (2.32)

The variance of X

V ar(X) = E[(X − E(X))2] (2.33)

is the expected value of the squared deviance of the random variable X to its expected

value. The variance is calculated for the discrete and continuous case as follows:

V ar(X) =
∑
i

(xi − x̂)2P (xi) for X discrete, (2.34)

V ar(X) =

∫ ∞
−∞

(x− x̂)2fX(x)dx for X continuous. (2.35)

The standard deviation is the square root of the variance

σ =
√
V ar(X). (2.36)

The expected value of a random variable X is also called the �rst central moment,

and the variance the second central moment.

Measures to quantify the dependence of two random variables X and Y are the

cross-covariance CXY and the cross-correlation RXY . The cross-covariance is de�ned

as
CXY = E[(X − X̂)(Y − Ŷ )]

= E[XY ]− X̂Ŷ .
(2.37)

The cross-correlation is de�ned as

RXY = E[XY ]. (2.38)

The cross-correlation coe�cient is de�ned as

ρXY =
CXY
σXσY

. (2.39)

Two random variables are linearly independent, if ρXY = 0.
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By considering a n-dimensional random variable X and a m-dimensional random

variable Y , the cross-covariance is de�ned as

CXY = E[XY T ] =

E[X1Y1] · · · E[X1Ym]
...

...

E[XnY1] · · · E[XnYm]

 . (2.40)

The auto-correlation de�nes the correlation of a signal with itself and is given by

RX = E[XXT ] =

E[X1X1] · · · E[X1Xn]
...

...

E[XnX1] · · · E[XnXn]

 . (2.41)

2.2.4 Stochastic processes

According to [33] a stochastic processX(t) is a mathematical model of a probabilistic

experiment that evolves in time and generates a sequence of numerical values. Each

numerical value is modeled by a random variable, so a stochastic process is simply

a sequence of random variables. In general, the distribution function of a random

process changes with time

FX(x, t) = P (X(t) ≤ x). (2.42)

A special case is the stationary random process, which has a constant distribution

function. The cross-correlation and auto-correlation function can also be applied to

a stochastic processes. Given the values X(t1) and X(t2) or Y (t2), taken at time t1
and t2 the auto-correlation of a stochastic process is de�ned as

RX(t1, t2) = E[X(t1)X(t2)T ], (2.43)

and the cross-correlation as

RXY (t1, t2) = E[X(t1)Y (t2)T ]. (2.44)

If the auto-correlation RX(t1, t2) of a stochastic process is zero for all t1 6= t2 then

X(t) is called white noise. Otherwise, X(t) is called colored noise. Random processes

are often de�ned by the power spectral density, which is de�ned using the Fourier

transformation of X(t).

X(ω) =

∫ ∞
−∞

= X(t)e−jωtdt. (2.45)
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Separating X(ω) in its real and imaginary parts

X(ω) = XR(ω) + jXI(ω) (2.46)

and its complex conjugate

X∗(ω) = XR(ω)− jXI(ω), (2.47)

the real-valued, scalar power spectral density function SX(ω) results from

|X(ω)|2 = X(ω)X∗(ω)

= XR(ω) +XI(ω)

= SX(ω).

(2.48)

Another way to describe the power spectral density is given by the Fourier-trans-

formation of the autocorrelation function:

SX(ω) =

∫ ∞
−∞

RX(τ)e−jωτdτ. (2.49)

For a discrete-time random process the power spectral density function is de�ned as

SX(ω) =
∞∑

k=−∞

RX(k)e−jωk ω ∈ [−π, π]. (2.50)

A discrete-time random process X(k) is white noise if

RX = σ2δk, (2.51)

where δk is the Kronecker delta function,

δk =

0, if k 6= 0

1, if k = 0
, (2.52)

i.e. the auto-correlation for a white-noise signal is zero, except for a time-shift τ = 0.
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3 Train model

This section gives a detailed description of the train model and the equations of

motion. In order to derive the equations of motion of a train model, it is important

to have an accurate wheel rail contact model. The wheel rail contact determines

the performance of the railway vehicle system. The contact model is described at

the beginning of this section. Next, this section covers the components of the train

model. The various bodies of the railway vehicle are presented and the structure

of the suspension system is introduced. In the end, the equations of motion for the

railway vehicle are given.

3.1 Wheel-Rail Contact

The wheel-rail-system has to perform several tasks: First, supporting the weight

leads to vertical forces in the contact point. Then, lateral forces guide the vehicle

along the track and third, forces tangential to the rail allow for acceleration or

deceleration of the vehicle. The forces, which are needed to perform all these tasks

are transferred in the contact area between wheel and rail. This contact area has

the size of about 1.5cm2 and is in�uencing the whole railway dynamics.

For the FDI process, a reliable model of the railroad vehicle system is needed. A

reliable model needs to include the wheel-rail-contact model. The formulation of the

contact problem is a complex task and has been the subject of several investigations,

which presented di�erent solutions. In general, studies are based on one of two

approaches: on the one side, there is the constraint approach and on the other side

the elastic approach. In the �rst case, the wheel and rail surfaces are assumed to

remain rigid and no separation or penetration are allowed. Kinematic algebraic

constraint equations are used to describe the contact between wheel and rail. In

the second case the wheel and rail surfaces are deformed in the contact region. The

normal force between the wheel and rail is obtained by using force models depending

on the intersection of the two surfaces and thus, separation and penetration are

allowed.

The computation of the wheel-rail contact forces can be divided into three steps.

The �rst step refers to the wheel and rail geometry and the determination of the con-
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3.1 Wheel-Rail Contact

tact points with the constraint or elastic approach. In the second step, the creepages

are determined, which measure the relative velocities between the wheel and the rail

at the contact points. In the third step, the resulting contact forces are determined.

In order to solve the wheel-rail contact problem, an accurate representation of the

geometry of the wheel and the rail surfaces is required. To calculate the contact

points and forces that act on the wheel and the rail, the radii of curvature and the

tangent and normal vectors to the surfaces are needed in each point.

3.1.1 Wheel and rail geometry

The rail and wheel geometry di�ers from country to country and is given in engi-

neering standards. The geometry of the wheel and the rail has a signi�cant in�uence

on the driving stability of a vehicle.

When the railway vehicle is running on a straight track with small unavoidable

deviations, the task of the pro�le is to keep the wheelset in central position. Only at

large deviations or when running through a curve, the wheel �anges of the wheelset

must take the guiding function. Further, the increase in travel speed over a critical

point can lead to instabilities, after small perturbation the wheel will not come back

to the central position and, in the worst case build-up increasingly. Figure 3.1 shows

an example for the wheel and rail pro�le.
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Figure 3.1: Wheel and rail geometry

Constantly acting forces during rolling, braking, accelerating and driving through

curves create a permanent wear. On the one hand, this results in surface abrasion

of the track, and on the other hand a surface abrasion of the wheel. In this work,

the original wheel rail pro�le is used.
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3.1 Wheel-Rail Contact

The task of the �rst step in computing the wheel rail contact forces is to �nd the

contact point between wheel and rail. It is assumed that the yaw motion of the

wheel is small, thus the problem is considered in two dimensions.

In the constraint approach, no indentation of the wheel and rail is allowed. When

considering the two dimensional case the wheel has one degree of freedom. All

parameters, which need to be calculated, are expressed in terms of the lateral wheel

movement. The lateral movement is described by the y-coordinate. The vertical

position z(y), the roll angle φ(y) and dz(y)/dy are of interest. In order to calculate

the contact point for a given lateral position y, the Newton-Raphson method is used.

The contact points at the wheel and rail surfaces are described by

pw1 = Rw + Aw
rotū

w
1 , (3.1)

pw2 = Rw + Aw
rotū

w
2 , (3.2)

pr1 = Rr + Ar
rotū

r
1, (3.3)

pr2 = Rr + Ar
rotū

r
2 (3.4)

which is shown in Figure 3.2. The vector R describes the position of the body �xed

coordinate system, ū is the vector from the body �xed coordinate system to the

contact point and Arot is the rotational matrix. The upper index stands for the

Figure 3.2: Wheel and rail contact point

contact point at the wheel w or at the rail r. The lower index determines the side

of the train, 1 stands for the right, 2 for the left side.

Each wheel has one contact point, if the following equations are true

pw1 − pr1 = 0, (3.5)

pw2 − pr2 = 0, (3.6)

tw1 · nr1 = 0, (3.7)

tw2 · nr2 = 0, (3.8)
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3.1 Wheel-Rail Contact

where nr is the normal vector of the rail at the contact point and tw the tangential

vector of the rail surface at the contact point shown in Figure 3.3. The condition,

that the contact point of the wheel is equal to the contact point of the rail, is satis�ed

by equations (3.5) and (3.6). Further, the two surfaces of the bodies must have the

same tangent planes at the contact point, thus the tangential vector of the wheel

must be normal to the normal vector of the rail. This is given by equations (3.7)

and (3.8).

Figure 3.3: Tangential and normal vector at the contact point

In the two dimensional case, the rotational matrix results to

Arot =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 . (3.9)

The vector ū describes the vectors from the body �xed coordinate system to the

contact point in coordinates of the body �xed coordinate system.

ūw1 =

 0

sw1
f1(sw1 )

 ūw2 =

 0

sw2
f2(sw2 )

 ūr1 =

 0

sr1
g1(sr1)

 ūr2 =

 0

sr2
g2(sr2)

 . (3.10)

The functions f and g describe the geometry of the wheel and rail, respectively,

and sw and sr are the lateral surface parameters, which represent the independent

variable for the wheel and rail surface. The tangential vectors of the wheels and the

normal vectors of the rails result to

t̄w1 =
1√

1 + (f ′1)2

 0

1

f ′1

 t̄w2 =
1√

1 + (f ′2)2

 0

1

f ′2

 (3.11)
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3.1 Wheel-Rail Contact

n̄r1 =
1√

1 + (g′1)2

 0

g′1
−1

 n̄r2 =
1√

1 + (g′2)2

 0

g′2
−1

 . (3.12)

This leaves four independent unknown parameters φ, sw1 , s
w
2 and rz, where rz is the

vertical component of the body �xed coordinate system of the wheelset. The four

equations to solve this problem are

pw1z − p
r
1z = 0, (3.13)

pw2z − p
r
2z = 0, (3.14)

[tw1y cosφ− tw1z sinφ]nr1y + [tw1y sinφ+ tw1z cosφ]nr1z = 0, (3.15)

[tw2y cosφ− tw2z sinφ]nr2y + [tw1y sinφ+ tw1z cosφ]nr2z = 0. (3.16)

Inserting equations (3.11) and (3.12) into equations (3.13)-(3.16) and expanding
yields

rz + sw1 sinφ+ f1(s
w
1 ) cosφ− g1(s

r
1) = h1 = 0,

rz + sw2 sinφ+ f2(s
w
2 ) cosφ− g2(s

r
2) = h2 = 0,

1√
1 + f ′1(s

w
1 )

2

1√
1 + g′1(s

r
1)

2
([cosφ− f ′1(sw1 ) sinφ]g1(s

r
1)
′ − [sinφ+ f ′1(s

w
1 ) cosφ]) = h3 = 0,

1√
1 + f ′2(s

w
2 )

2

1√
1 + g′2(s

r
2)

2
([cosφ− f ′2(sw2 ) sinφ]g2(s

r
2)
′ − [sinφ+ f ′2(s

w
2 ) cosφ]) = h4 = 0,

with

sr1 = ry + sw1 cosφ− f1(sw1 ) sinφ, (3.17)

sr2 = ry + sw2 cosφ− f2(sw2 ) sinφ. (3.18)

Starting from an initial guess, the contact point is calculated numerically with the

Newton Raphson method

xn+1 = xn − Jac−1h(xn) (3.19)

where Jac is the Jacobian matrix de�ned as

Jac =


∂h1
∂rz

∂h1
∂φ

∂h1
∂sw1

∂h1
∂sw2

∂h2
∂rz

∂h2
∂φ

∂h2
∂sw1

∂h2
∂sw2

∂h3
∂rz

∂h3
∂φ

∂h3
∂sw1

∂h3
∂sw2

∂h4
∂rz

∂h4
∂φ

∂h4
∂sw1

∂h4
∂sw2

 , (3.20)
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and x =
[
φ sw1 sw2 rz

]T
.

In the elastic approach, the wheelsets are considered as six dimensional. At the

point of contact, the two touching bodies deform. The normal contact forces are

calculated using Hertz contact theory. There are two advantages of the elastic

approach over the constraint approach: Firstly, it allows the separation of the wheel

and the rail, thus track irregularities can be applied more easily. Secondly, the

management of multiple contact points is simpli�ed. Because of these advantages,

the elastic approach is adopted in this work.

The procedure of �nding the contact point is based on the so-called DIFF method

[34]. This method is based on the idea, that the contact points minimize the di�er-

ence between the wheel surface and the rail surface in the vertical direction.

Figure 3.4: Wheel and rail intersection

Given a contact point at the wheel pw the contact point at the rail is calculated

as the intersection between the rail surface and a line parallel to the z-axis passing

through the wheel contact point pw. With the assumption, that the yaw motion

of the wheel is small, the contact point of the rail depends on the y-position of the

contact point of the wheel. Thus, the di�erence between the rail contact point and

the wheel contact point leads to

d = prz(yw)− pwz (yw) (3.21)

and is shown in Figure 3.4. Of all possible sets of contact points, the set of contact

points which minimizes the di�erence d is used. The smallest value of d is denoted

by δ and is used to calculate the normal force according to the theory of Hertz.

If there is more than one local minimum with negative sign, all these points are

considered as contact point. In this way it is possible to deal with multiple contact

points.
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3.1.2 Hertz theory

After determining the contact point, the contact force normal to the contact plane

is calculated. This is done with the Hertz contact force model

fHertz = KHertzδ
3
2 , (3.22)

where δ represents the relative compression of the touching bodies and KHertz is

based on the studies of Hertz.

To calculate the normal force with Hertz theory, some assumptions are made. On

the one side, these assumptions concern the geometry of the two touching bodies

at the contact point, on the other side, the assumptions also refer to the material

properties. Depending on the shape of the two bodies in the area of contact, the

problem can be conformal or non-conformal. If the contacting shape �ts even closely

together, conformal contact occurs. If the two bodies touch at a line or at a point,

non-conformal contact occurs.

For the non-conformal contact problem, Heinrich Hertz presented a solution to cal-

culate the contact area and pressure distribution. According to [35] the assumptions

used in Hertz theory are:

1. The surfaces of the bodies are continuous and non-conformal.

2. The strains are small.

3. The stress resulting from the contact force vanishes at a distance far from the

contact area.

4. The surfaces are frictionless.

5. The bodies are elastic, and no plastic deformation occurs in the contact area.

For the wheel-rail contact case, this is found to give a good approximation. The

Hertz theory assumes that the area of contact is elliptical. To describe the two

elliptical surfaces in the area of contact, two axes zi and zj, which are normal to the

tangent, are attached to the two touching bodies i and j, respectively. The origins

of both axes are at the contact point p and are considered as positive towards the

interior of the bodies. In the area of the contact point p, the elliptical shape of the

surface of each body is described by the equations

zi = Aix
2
i +Biy

2
i + Cixiyi + ... (3.23)

zj = Ajx
2
j +Bjy

2
j + Cjxjyj + ... (3.24)
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3.1 Wheel-Rail Contact

Figure 3.5: Two bodies in contact

where Ai, Bi, Ci, Aj, Bj and Cj are constants depending on the radii of the curvature

of the two bodies at the contact point. By introducing a new coordinate system the

distance between the two surfaces near the origin is de�ned as

h = zi + zj = Ax2 +By2 + Cxy. (3.25)

By choosing the orientation of the x and y axes in that way, that xy vanishes, the

upper equation leads to

h = zi + zj = Ax2 +By2. (3.26)

The constants A and B again depend on the geometric shape of the two surfaces

near the contact point p. A and B can be expressed as

A+B =
1

2

(
1

Ri1

+
1

Ri2

+
1

Rj1

+
1

Rj2

)
(3.27)

B − A =
1

2

√(
1

Ri1

− 1

Ri2

)2

+

(
1

Rj1

− 1

Rj2

)2

+ 2

(
1

Ri1

− 1

Ri2

)(
1

Rj1

− 1

Rj2

)
cos 2Ψ,

(3.28)

where Rk1 and Rk2 are the principle radii of curvature of the surfaces of bodies j

and i at the origin.

If the center of curvature lies within the body, the curvature is assumed to be
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3.1 Wheel-Rail Contact

positive. Further, an auxiliary angle θ is de�ned as

cos(θ) =
B − A
B + A

. (3.29)

Knowing the radii of curvature at the contact point p, equations (3.27) and (3.28)

can be solved. The auxiliary angle θ is calculated from equation (3.29). The principal

radii of curvature are calculated from ∂2zk/∂xk
2 = 1/Rk1 and ∂2zk/∂yk

2 = 1/Rk2.

Since the contact area is assumed to be small compared to the dimensions of the

two bodies, one can consider the contact area of the two bodies as semi-in�nite. The

contact pressure is assumed to satisfy the following requirements for the equilibrium

of the two bodies [34, 35]:

1. The total applied force Fn must be equal to the total resisting force generated

by the vertical component of the pressure p in the contact area, that is,

Fn =

∫ ∫
p dxdy. (3.30)

2. The components of displacement vanish at in�nity, therefore, the displacement

at a distance away from the contact region can be neglected.

3. The normal stresses outside the contact region are assumed to be zero.

4. The normal stresses acting on the two bodies are in balance within the contact

region.

5. The shear stresses τxz and τyz along the surfaces of the bodies are zeros.

If the pressure p is a quadratic function of x and y, these conditions can be satis�ed.

The pressure distribution in the contact area is then given by

p = p0

√
1−

(x
a

)2

−
(y
b

)2

, (3.31)

where a and b are the lengths of the ellipse semi-axes and p0 is the maximal pressure.

Resulting from the semi-ellipsoidal pressure distribution, the total normal load Fn
is given by

Fn =
2

3
p0πab. (3.32)

Using equations (3.31) and (3.32), one obtains [34, 35, 36]

p =
3Fn
2πab

√
1−

(x
a

)2

−
(y
b

)2

. (3.33)
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3.1 Wheel-Rail Contact

With the two constants K1 and K2

K1 =
1− νi2

πEi
, (3.34)

K2 =
1− νj2

πEj
, (3.35)

which depend on the material properties of the two bodies, the contact ellipse semi-

axes can be calculated from

a = mH

(
3πFn(K1 +K2)

4(A+B)

)1/3

, (3.36)

b = nH

(
3πFn(K1 +K2)

4(A+B)

)1/3

. (3.37)

The coe�cients mH and nH in equations (3.36) and (3.37) are needed to calculate

the semi-axes a and b. The coe�cients mH and nH are given by Hertz in Table

3.1 as functions of the angular parameter θ, for the values of θ between 0 deg and

180 deg [34].

To get mH and nH for an arbitrary value of the angle θ, the entries of the table

must be interpolated.

To increase the calculation speed, a closed-form expression for the coe�cients mH

and nH as functions of θ according to [34] is given by

mH = Am tan(θ − π/2) +
Bm

θCm +Dm

, (3.38)

nH =
1

An tan(θ − π/2) + 1
+Bnθ

Cm +Dn sin(θ). (3.39)

Here, the value of θ is given in radians, and the coe�cients Ak, Bk, Ck, and Dk

(k = mH , nH) are given in Table 3.2 [37].

Finally, the normal force Fh according to Hertz can be calculated by

Fh = KHertzδ
3/2 =

4β

3(K1 +K2)
√
A+B

δ3/2, (3.40)

where β is a constant and is given in Table 3.3 [35, 38].

For the computer implementation, the following steps are performed: The radii

of curvature Ri1, Ri2, Rj1 and Rj2 of the two bodies near the contact point must

be known. With the radii of curvature the constants A and B are evaluated from

equations (3.27) and (3.28). With A and B the auxiliary angle is computed. After

determining the constants K1 and K2 from equations (3.34) and (3.35) the semi-axes

a and b are calculated from the equations (3.36) and (3.37) and Table 3.1.

40



3.1 Wheel-Rail Contact

Table 3.1: Hertz coe�cients m and n

θ (deg) mH nH θ (deg) mH nH
0.5 61.4 0.1018 40 2.136 0.567
1 36.89 0.1314 45 1.926 0.604
1.5 27.48 0.1522 50 1.754 0.641
2 22.26 0.1691 55 1.611 0.678
3 16.50 0.1964 60 1.486 0.717
4 13.31 0.2188 65 1.378 0.759
6 9.790 0.2552 70 1.284 0.802
8 7.860 0.2850 75 1.202 0.846
10 6.604 0.3112 80 1.128 0.893
20 3.813 0.4125 85 1.061 0.944
30 2.731 0.4930 90 1.0 1.0
35 2.397 0.5300

Table 3.2: Coe�cients used for the closed-form functions m and n

Coe�. Value Coe�. Value
Am -1.086419052477 An -0.773444080706
Bm -0.106496432832 Bn 0.256695354565
Cm 1.350000000000 Cn 0.200000000000
Dm 1.057885958251 Dn -0.280958376499

Table 3.3: Hertz coe�cient β for Hertz force

A/B β
1.0 0.3180
0.7041 0.3215
0.4903 0.3322
0.3333 0.3505
0.2174 0.3819
0.1325 0.4300
0.0718 0.5132
0.0311 0.6662
0.0076 1.1450
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3.1 Wheel-Rail Contact

According to [39], a damping force is added to the Hertzian component. For a

given intersection δ, the damping force is proportional to the velocity of indentation

in the contact point. The expression of the normal force Fn is then given by

Fn = Fh + Fd = KHertzδ
3/2 + Chδ̇|δ|. (3.41)

The velocity of indentation δ̇ is calculated as the dot product of the relative velocity

vector of the contact points and the normal vector to the surface at the contact

point. To guarantee that the contact force is zero when the indentation is zero, the

factor |δ| is added. The value Ch is a damping coe�cient.

The normal forces are added to the dynamic equations of motion as generalized

applied forces.

3.1.3 Creep forces

The relative motion of two touching bodies can be the result of rolling and sliding

motion. Tangential forces occur, when the two bodies have di�erent velocities at

the contact point and di�erent angular velocities. When two elastic bodies are

in contact, some points of the contact area slip, while other points stick. Figure

3.6 shows the �rst two-dimensional approximation of the contact area according to

Carter [40].

Figure 3.6: Stick slip according to Carter [40]

The contact area can be divided in two parts, one stick area and one slip area. This

mix of elastic deformation and local slipping is known as creepage. For very small

creepage, Kalker suggested, that the area of slip is very small and can be neglected

[41]. Thus, the area of adhesion is equal to the area of contact. To calculate the

tangential forces, the normal force as well as the creepage is needed. The creepage

is split into a longitudinal, a lateral and a spin part and is calculated according to

[42] with
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3.1 Wheel-Rail Contact

γx =
vwx − vrx
V

,

γy =
vwy − vry
V

,

ωz =
Ωw
z − Ωr

z

V
,

(3.42)

where V is the magnitude of the wheel velocity and vw and vr are the velocities at

the contact point of the wheel and the rail. The values Ωw
z and Ωr

z are the di�erent

angular velocities of the contact point at the wheel and the rail.

With the normal force and the creepages, the creep forces are calculated according

to the linear theory of Kalker. As stated in [42] the creep forces and moments are

determined from
Fx = −Gabc11γx,

Fy = −Gabc22γy −G(ab)1.5c23ωz,

Mz = −G(ab)1.5c32γy −G(ab)2c33ωz,

(3.43)

where G is the modulus of rigidity and a is the contact ellipse semi-axis in the rolling

direction and b is the contact ellipse semi-axis dimension in the lateral direction.

Kalker calculated the modulus of rigidity G with the modulus of rigidity of the

wheel Gw and the rail Gr

G =
1

2

(
1

Gw

+
1

Gr

)
. (3.44)

The creep forces as well as the normal force at the wheel are shown in Figure 3.7.

Figure 3.7: Wheel rail force [43]

The creepage coe�cients cji, that depend only on Poisson's ratio ν and the ratio of

the semi-axis of the contact ellipse, are given in Table 3.4 [35] at which c32 = −c23.
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3.1 Wheel-Rail Contact

Table 3.4: Kalker's creepage and spin coe�cients

c11 c22 c23 c33
g ν=0 0.25 0.5 ν=0 0.25 0.5 ν=0 0.25 0.5 ν=0 0.25 0.5

a/b
0.1 2.51 3.31 4.85 2.51 2.52 2.53 0.334 0.473 0.731 6.42 8.28 11.7
0.2 2.59 3.37 4.81 2.59 2.63 2.66 0.483 0.603 0.809 3.46 4.27 5.66
0.3 2.68 3.44 4.8 2.68 2.75 2.81 0.607 0.715 0.889 2.49 2.96 3.72
0.4 2.78 3.53 4.82 2.78 2.88 2.98 0.720 0.823 0.977 2.02 2.32 2.77
0.5 2.88 3.62 4.83 2.88 3.01 3.14 0.827 0.929 1.07 1.74 1.93 2.22
0.6 2.98 6.72 4.91 2.98 3.14 33.1 0.930 1.03 1.18 1.56 1.68 1.86
0.7 3.09 3.81 4.97 3.09 3.28 3.48 1.03 1.14 1.29 1.43 1.50 1.60
0.8 3.19 3.91 5.05 3.19 3.41 3.65 1.13 1.25 1.40 1.34 1.37 1.42
0.9 3.29 4.01 5.12 3.29 3.54 3.82 1.23 1.36 1.51 1.27 1.27 1.27
b/a
1.0 3.4 4.12 5.2 3.40 3.67 3.98 1.33 1.47 1.63 1.21 1.19 1.16
0.9 3.51 4.22 5.3 3.51 3.81 4.16 1.44 1.57 1.77 1.16 1.11 1.06
0.8 3.65 4.36 5.42 3.65 3.99 4.39 1.58 1.75 1.94 1.10 1.04 0.954
0.7 3.82 4.54 5.58 3.82 4.21 4.67 1.76 1.95 2.18 1.05 0.965 0.852
0.6 4.06 4.78 5.8 4.06 4.50 5.04 2.01 2.23 2.50 1.01 0.892 0.751
0.5 4.37 5.10 6.11 4.37 4.90 5.56 2.35 2.62 2.96 0.958 0.819 0.650
0.4 4.84 5.57 6.57 4.84 5.48 6.31 2.88 3.24 3.70 0.912 0.747 0.549
0.3 5.57 6.34 7.34 5.57 6.40 7.51 3.79 4.32 5.01 0.868 0.674 0.446
0.2 6.96 7.78 8.82 6.96 8.14 9.79 5.72 6.63 7.89 0.828 0.601 0.341
0.1 10.7 11.7 12.9 10.7 12.8 16.0 12.2 14.6 18.0 0.795 0.526 0.228

Equivalent to the normal forces, the creep forces are added to the dynamic equa-

tions of motion as generalized applied forces.

3.1.4 Rail irregularities

The vehicle does not travel along a perfect path, neither on a straight track nor on

a curved track. Track irregularities act as disturbances, that stimulate the entire

vehicle to vibrate and are noticed by passengers. The excitation of a railway vehicle

results mainly from geometric irregularities of the rails or the wheels. By assuming

that the wheels are perfectly shaped, the only irregularities are given by the rail

track. The rail track irregularities are considered as random and occur in di�erent

directions. The random track irregularities are commonly characterized by their

power spectral densities (PSDs). These spectral characteristics are obtained from

exemplary track measurements and depend on the speci�c track, which is described

more detailed in [44].

In this work, the train model is excited randomly due to horizontal, vertical and

cross level track irregularities, as shown in Figures 3.8 and 3.9.

Track gauge irregularities are not considered since they are changing the wheel-
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3.1 Wheel-Rail Contact

Figure 3.8: Crosslevel track irregularities

Figure 3.9: Horizontal track irregularities

rail contact geometry, thus they do not in�uence input forces directly but rather

in�uence the characteristic of the system. The track is assumed in this work to be

rigid and immovable

The power spectral densities (PSDs) for horizontal, vertical and cross-level track

irregularities are considered as de�ned in ERRI B176 [46]. According to ERRI B176,

the polynomials of the PSDs for track irregularities are

Sh(Ω) =
bh0

ah0 + ah2Ω2 + Ω4

=
bh0

0.00028855 + 0.6803895Ω2 + Ω4
,

Sv(Ω) =
bv0

av0 + av2Ω2 + Ω4

=
bv0

0.00028855 + 0.6803895Ω2 + Ω4
,

Scl(Ω) =
bcl2Ω2

acl0 + acl2Ω2 + acl4Ω4 + Ω6

=
bcl2Ω2

5.535659 · 10−5 + 0.1308172Ω2 + 0.8722335Ω4 + Ω6
.

(3.45)

where Ω is the spatial frequency in rad
m
. The units of the PSDs are m2

rad/m
in lateral

and vertical direction and rad2

rad/m
in cross-level direction. For a vehicle traveling with

the velocity V the angular frequency ω in rad
s

is de�ned by ω = V Ω. Figure 3.10
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3.1 Wheel-Rail Contact

shows the PSD for the low vertical and Figure 3.11 shows the PSD for the low

horizontal track irregularities. Figure 3.12 shows the PSD for the low cross-level

track irregularity.
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Figure 3.10: Vertical track irregularities
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Figure 3.11: Horizontal track irregularities

The information of the spectral characteristics of the unknown input are used to

increase the accuracy of the fault detection method. This is achieved by extending

the state space model of the train with a form �lter containing the information about

the track irregularities.

The coe�cients of the form �lter are calculated from the PSD. According to [47]

a PSD SX(ω) can be formulated with the PSD S0 of white noise as following:

SX(ω) = S0 · |F (jω)|2 (3.46)
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Figure 3.12: Cross-level track irregularities

where F (jω) is the transfer function of the form �lter. The transfer function F (jω)

of the form �lter can be derived through factorization of the PSD polynomial since

|F (jω)|2 = F (jω) · F ∗(jω) (3.47)

where F ∗(jω) is the complex conjugate of the transfer function F (jω). The trans-

formation with s = jω leads to

SX(s) = S0F (−s)F (s). (3.48)

Substituting the spatial frequency Ω with s = jω and Ω = s
jV

and factorizing the
PSD polynomials of the track irregularities, equation (3.45) are rewritten as

Sh(s) =
bh0

0.00028855 + 0.6803895(s/V )2 + (s/V )4

=

( √
bh0V

2

s2 + 0.8452V s+ 0.01698676V 2

)( √
bh0V

2

s2 − 0.8452V s+ 0.01698676V 2

)
,

Sv(s) =
bv0

0.00028855 + 0.6803895(s/V )2 + (s/V )4

=

( √
bv0V

2

s2 + 0.8452V s+ 0.01698676V 2

)( √
bv0V

2

s2 − 0.8452V s+ 0.01698676V 2

)
,

Scl(s) =
bcl2(s/V )2

5.535659 · 10−5 + 0.1308172(s/V )2 + 0.8722335(s/V )4 + (s/V )6

=

( √
bcl2sV

2

0.00744V 3 + 0.387184V 2s+ 1.2832V s2 + s3

)
...( √

bcl2sV
2

0.00744V 3 − 0.387184V 2s+ 1.2832V s2 − s3

)
.

(3.49)
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Thus, the transfer functions for the horizontal Fh(s), vertical Fv(s) and cross-level

Fcl(s) track irregularities result to

Fh(s) =

√
bh0V

2

s2 + 0.8452V s+ 0.01698676V 2
,

Fv(s) =

√
bv0V

2

s2 + 0.8452V s+ 0.01698676V 2
,

Fcl(s) =

√
bcl2sV

2

s3 + 1.2832V s2 + 0.387184V 2s+ 0.00744V 3
.

(3.50)

The values of bh0, bv0 and bcl2 are given in Table 3.5 for low and high track irregu-

larities.

Using the transfer functions Fh(s), Fv(s) and Fcl(s) from above, the form �lter is

given as state space model [45]

ẋffi = Affixffi + Bffiwffi, (3.51)

yffi = Cffixffi, (3.52)

with the matrices

Affh =

[
0 1

−0.01698676V 2 −0.8452V

]
, Bffh =

[
0

1

]
, (3.53)

Cffh =

[√
bh0V

2 0

0
√
bh0V

2

]
, (3.54)

Affv =

[
0 1

−0.01698676V 2 −0.8452V

]
, Bffv =

[
0

1

]
, (3.55)

Cffv =

[√
bv0V

2 0

0
√
bv0V

2

]
, (3.56)

Table 3.5: Values of bh0, bv0 and bcl2

bh0 bv0 bcl2
low 1.440846 · 10−7 2.741619 · 10−7 4.87399 · 10−7

high 4.164787 · 10−7 7.343623 · 10−7 1.305533 · 10−6
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Affcl =

 0 1 0

0 0 1

−0.00744V 3 −0.387184V 2 −1.2832V

 , Bffcl =

0

0

1

 , (3.57)

Cffcl =

[
0
√
b0V

2 0

0 0
√
b0V

2

]
. (3.58)

Combining all three track irregularities in one set of equations the resulting ma-

trices are

Aff =

Affh 0 0

0 Affv 0

0 0 Affcl

 , Bff =

Bffh 0 0

0 Bffv 0

0 0 Bffcl

 , (3.59)

Cff =

Cffh 0 0

0 Cffv 0

0 0 Cffcl

 . (3.60)

The matrix Aff has the dimension 7× 7, matrix Bff 7× 3 and matrix Cff 6× 7.

The excitation of the wheelsets is assumed to be independent, i.e. any correlation

due to the wheels running on the same track is neglected. By the assumption given

above, the state space model for the form �lter including all three track irregularities

for all four wheelsets is given by:

ẋFF = AFFxFF + BFFwFF , (3.61)

yFF = CFFxFF , (3.62)

with the matrices

AFF =


Aff 0 0 0

0 Aff 0 0

0 0 Aff 0

0 0 0 Aff

 , BFF =


Bff 0 0 0

0 Bff 0 0

0 0 Bff 0

0 0 0 Bff

 , (3.63)
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CFF =


Cff 0 0 0

0 Cff 0 0

0 0 Cff 0

0 0 0 Cff

 . (3.64)
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3.2 Multibody simulation of railway vehicle systems

3.2 Multibody simulation of railway vehicle

systems

The applied fault detection and isolation procedure, as well as the force estimation

requires knowledge of the dynamic behavior of the railway vehicle. In order to

describe the dynamic behavior of a railway vehicle, the system must be described as

a mechanical model. Modern mechanical systems, like the railway vehicle, are often

very complex and consist of many components interconnected by joints and force

elements such as springs, dampers, and actuators. In order to derive the mechanical

model, the positions of these di�erent force elements at the bodies are needed, as

well as the characteristics of the elements.

The accuracy of the train model plays a major role for the fault detection procedure

and is indispensable for a precise simulation process. The drawback of a complex

train model lies in the high calculation e�orts. Thus, the complexity of the train

model must be a reasonable compromise between accuracy and calculation time.

Flexible multibody models are more accurate approximations of the system, es-

pecially at high frequencies, but result in a raise of computational task. The train

model for the fault detection and force estimation procedure is considered as a ridged

body model and thus high frequencies are neglected. The force elements connecting

the bodies are springs and dampers with di�erent linear and nonlinear characteris-

tics, and the nonlinear wheel rail contact force element acting on the wheelsets.

This section covers the elements of the train and how the well known methods of

multibody dynamics are used to describe the general structure of the train model.

3.2.1 Train Model

To test the fault detection and isolation method, the Velaro Rus , shown in Figure

3.13, is used as an example.

The Siemens Velaro is a family of high speed trains and operates for example

in Germany, Spain and Russia. The Velaro RUS is built for Russia and entered

passenger service at the end of 2009. The train serves on the line between Saint

Petersburg and Moscow.

To simulate the Velaro Rus, a mechanical model must be de�ned which charac-

terizes the train with all its relevant components. The model, shown in Figures

3.14 and 3.15, consists of a car body, two bogies, four wheelsets and two motors.

The bogie is the running gear of the Velaro which carries the car body. It consists

among other things of the bogie frame, wheels, springs and brakes. There are basi-

cally two di�erent types of bogies, on the one hand, there are powered bogies, and

on the other hand trailer bogies. At the power bogies of the Velaro trains, engines
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Figure 3.13: Velaro RUS

are mounted, which drive the train. The trailer bogies have no drive. To ensure

safety and comfort, the train is equipped with di�erent types of suspensions and

dampers. The design of the bogie is essential for the stable running of the train on

the track. The sine wave, which is resulting during running, increases its frequency

with increasing vehicle speed, and eventually leads to instability. This movement

is damped by the anti-yaw damper between bogie and car body and, even at high

speeds, the stability of the vehicle is guaranteed.

The wheelsets are connected to the bogies by the so-called primary suspension.

The primary suspension compensates the unevenness of the track and increases

the ride comfort together with the secondary springs. The secondary suspension

connects the bogies and the car body. Another suspension is to be found between

the motor and the bogie. As stated above, the anti-yaw dampers are a major part of

the secondary suspension system, they are used on vehicles with a maximum speed

over 160 km/h and thus also in high-speed trains such as the Velaro Rus. The shock

absorbers are mounted horizontally between the car body and bogie to attenuate

the sinusoidal running.

The blue circles in Figure 3.15 indicate the positions, where the suspension ele-

ments are �xed to the bodies. The red lines between the blue circles denote suspen-

sion elements.

Car body, bogie and motor motion are characterized by six degrees of freedom

each. By assuming constant running speed and constant rotational motion of the
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Figure 3.14: Matlab train model

Figure 3.15: Matlab train model enlarged

wheelset around the y-axis, the wheelset motion is considered with four degrees of

freedom. A wheelset consists of an axis and two wheels rigidly coupled. Since the

selected wagon is a motor coach, the wheelsets carry not only brakes but also a gear

box.

The aim of this work is, inter alia, to detect faults in the anti-yaw damper, the

secondary vertical damper and the secondary lateral damper. The �rst is important

for ride quality, while the second and third in�uence the running stability. Figures

3.16 and 3.17 show the suspension structure of the bogies. The positions of the three

dampers, which are used in the fault detection, are marked.

Some of the components of the suspension system of the train have nonlinear

characteristics, especially those chosen for the fault detection and isolation, the

anti-yaw damper, the secondary vertical damper and the secondary lateral damper.
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Figure 3.16: Bogie: Side view

Figure 3.17: Bogie: Top view

The nonlinear characteristics of the anti-yaw damper are shown in Figure 3.18. The
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Figure 3.18: Anti-yaw damper

nonlinear characteristics of the anti-yaw damper give a good damper response at low
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velocities while avoiding damages at high velocities. The nonlinear characteristics of

the secondary vertical and secondary lateral damper are given in Figures 3.19 and

3.20.
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Figure 3.19: Vertical damper
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Figure 3.20: Lateral damper

Compared to the anti-yaw damper, the nonlinearity of the secondary vertical and

secondary lateral damper is small.

3.2.2 Multibody Dynamics

After de�ning the components of the mechanical model of the railway vehicle, the

equations of motion are formulated. The bodies of the train are considered as

ridged bodies, and thus the displacement of each body is composed of translations

and rotations. The bodies are connected by force elements, each force element is

connected with two bodies and �xed at a speci�c point at the bodies, respectively.
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To uniquely determine the position of the di�erent bodies of the train, the coor-

dinate system shown in Figure 3.21 is used. In case of the train model, φ describes

the roll motion, θ the pitch motion and ψ the yaw motion. The train dynamics

are described in a coordinate system, which is moving along the railway track. The

displacement of a body can then be described using the six so-called trajectory

coordinates

1. the arc length coordinate s,

2. the lateral displacement yt relative to the trajectory,

3. the vertical displacement zt relative to the trajectory,

4. the roll-angle φ about xt,

5. the pitch-angle θ about yt and

6. the yaw-angle Ψ about zt.

.

Figure 3.21: Coordinate system

The Newton-Euler equations are used to derive the equations of motion. The

origin of the body coordinate system is attached to the center of mass of the body.

The Newton-Euler equations of motion for a rigid single body are given in matrix

form as follows [35] [
mI 0

0 J

][
R̈

˙̄ω

]
=

[
F

M̄− ω̄ × (Jω̄)

]
, (3.65)

where m is the mass of the rigid body, I is 3 × 3 identity matrix, J is the inertia

tensor, F is the resultant of the external forces and M̄ is the resultant of the external

moments de�ned in the body coordinate system. The vector ω̄ results from

ω̄ = Ḡα̇ (3.66)
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with

Ḡ =

− cosφ sin θ cos θ 0

sinφ 0 1

cosφ cos θ sin θ 0

 , α =

ψφ
θ

 . (3.67)

The moment M̄ is calculated by

M = ArotM̄ (3.68)

and

M = ui × F = (Arotū)× F . (3.69)

The matrix Arot is a 3 × 3 rotation matrix, which de�nes the orientation of the

axes of the body coordinate system with respect to the global coordinate system.

The Euler angles are used to describe the rotational matrix. In this method three

independent parameters de�ne the orientation of the body in space. The rotational

matrix Arot is the product of three simple rotations A1A2A3. The �rst rotation is

about the z-axis by the angle ψ

A1 =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 , (3.70)

the second rotation is about the x-axis by the angle φ

A2 =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , (3.71)

and the third rotation is about the y-axis by the angle θ

A3 =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (3.72)

Using these three rotations, the orientation of a body is described by the product

of all three matrices

Arot = A1A2A3, (3.73)
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which after multiplication gives

Arot =

cosψ cos θ − sinψ sinφ sin θ − sinψ cosφ cosψ sin θ + sinψ sinφ cos θ

sinψ cos θ + cosψ sinφ sin θ cosψ cosφ sinψ sin θ − cosψ sinφ cos θ

− cosφ sin θ sinφ cosφ cos θ

 .
(3.74)

The global position vector of an arbitrary point on the rigid body is written as

r = R+ Arotū, (3.75)

where R is the global position vector of the origin of the body coordinate system

de�ned as

R =

xiyi
zi

 . (3.76)

The vector ū is the position vector of the arbitrary point on the body with respect

to the origin of the body coordinate system and is de�ned as

ū =

ūxūy
ūz

 . (3.77)

Equations (3.65) to (3.77) are to be evaluated for each of the nine bodies. Di�erent

forces and moments act on individual components: They are due to springs and

dampers, linking the components, or due to the irregular track, which causes an

external excitation.

If the force elements are springs and dampers, the force is calculated from the

relative motion between the speci�c points. To calculate the relative motion, the

global position vector of the speci�c points is needed.

Two bodies are connected with a suspension at the points denoted by rj and ri.

De�ning

` = rj − ri, (3.78)

the spring force fc and the damper force fd is expressed as functions of ` and its

derivative:

fc = fc(||`||2 − `0), fd = fd(
`T ˙̀

||`||2
), (3.79)
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where l0 is the unstressed spring length. The force vectors acting on the points rj
and ri are

Fc = ±fc
`

||`||2
, Fd = ±fd

`

||`||2
. (3.80)

With the above equations, the train model is simulated. Figure 3.22 shows an

example of the lateral track position and the lateral movement of the �rst wheelset

for the nonlinear train model.
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Figure 3.22: Lateral track and wheelset position

3.2.3 Simulation of acceleration sensors

For the reconstruction of the system dynamics, the vehicle model is prepared with ac-

celeration sensors. The measurements of these acceleration data are used to perform

a state estimation with the Kalman �lter. The railway vehicle model is prepared

with 14 acceleration sensors, each wheelset has two sensors measuring the accelera-

tion in all three directions. Each bogie has two sensors measuring the acceleration

of all three directions. The carbody has two sensors, one at the front one at the rear

measuring the acceleration in the y-direction. It is assumed, that the measurement

noise of all sensors is white with a given standard deviation. The acceleration for

an arbitrary point at a rigid body is given by

r̈ = R̈+ ω̇ × u + ω × (ω × u),
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for the linear case this results to

r̈ = R̈+ ω̇ × u,

or

r̈x = ẍ+ θ̈uz − ψ̈uy,
r̈y = ÿ + ψ̈ux − φ̈uz,
r̈z = z̈ + φ̈uy − θ̈ux.

Figure 3.24 shows the vertical and Figure 3.23 the lateral acceleration data of the

simulated sensor placed at the front wheelset at the left side.
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Figure 3.23: Lateral measurements wheelset
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Figure 3.24: Vertical measurements wheelset
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3.2.4 Linearization and state-space formulation

The train model is simulated with the nonlinear wheel rail contact model and non-

linear suspension systems. For the fault detection procedure, the system must be

linearized about the operating point because a linear Kalman �lter is used to per-

form a state estimation. The linear Newton-Euler equations of motion for the train

model are given by
ẋs = Asxs + Bsws

ys = Csxs + Dsws,
(3.81)

where As, Bs ,Cs and Ds indicate the system, input, output and feed-through

matrices of the linearized train model. The state vector xs includes all states of the

train model. Since the train consists of �ve bodies with six degrees of freedom, and

four bodies with four degrees of freedom, there are 46 degrees of freedom and 92

components in the state vector. The vector ys is the measurement vector, which

includes the outputs of the acceleration sensors. The two sensors placed at the

coach, measure the y-direction, the other 12 sensors measure all three directions.

Thus the output vector ys consists of 38 values.

Since the equations of motion are nonlinear, the equations are linearized to obtain

the form of equation (3.81). The train model consists of complex nonlinear com-

ponents, which are sometimes only de�ned piecewise. For example the wheel rail

pro�le is given piecewise and thus the contact force as well. Therefore, it is di�cult

to linearize the system analytically and a numerical linearisation is performed. Fi-

nite di�erences are used for the linearisation about the operation point x0. Given a

function u, a second order approximation

u′ ≈ u(x0 + h)− u(x0 − h)

2h
(3.82)

is used for the �rst derivative.

3.2.5 Train model and form �lter

In order to increase the ability to correctly detect and isolate faults in the system,

the train model is combined with the model of the track irregularities. The system

containing the train model and the form �lter for the track irregularities is written

for the linear case as
ẋ = Ax + BwFF ,

y = Cx,
(3.83)
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with

A =

[
As BsCFF

0 AFF

]
, B =

[
0

BFF

]
, C =

[
Cs DsCFF

]
, x =

[
xs

xFF

]
. (3.84)

In this way it is possible to capture both, the railway vehicle and the track dynamic

in one system and the estimation process is improved signi�cantly. If the track irreg-

ularities are described with other power spectra, the form �lters must be adjusted

accordingly. Friedrich for example, de�ned power spectral density functions in [44]

which can be used alternatively.

The new matrix A has the dimension (ms + 4 · 7)× (ms + 4 · 7), matrix B (ms +

4 · 7)× (4 · 3) and matrix C ns × (ms + 4 · 7), where ms is the number of states of

the train model and ns is the number of measurement outputs of the train model,

in this work ms = 92 and ns = 38. Figure 3.25 shows the block diagram of the

combined system.

Figure 3.25: Form �lter combined with railway vehicle

The input of the system wFF is white noise, by passing through the form �lter,

the track speci�c excitation function is generated. This signal then acts as an input

to the rail vehicle. The output of speci�c points of the railway vehicle y is the

measurement signal, i.e. the acceleration.
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4 Fault detection and force

estimation

In this section, fault detection and force estimation, are presented. For the fault

detection as well as the force estimation, the Kalman �lter plays a major role.

Thus, at the beginning the Kalman �lter is introduced. Afterwards, it is explained

how the Kalman �lter is expanded to observe errors in the estimation process and

how several expanded Kalman �lters are used to detect and isolate faults in the

suspension system. The last section describes the estimation of wheel rail forces as

well as suspension forces.

4.1 Kalman �lter

In order to detect and isolate faults in the train model as well as to estimate wheel

rail forces or suspension forces, it is necessary to capture the dynamic states of the

train model. The only available information to perform this estimation comes from

acceleration sensors �xed at the train. The Kalman �lter is used to estimate all

states of the train from these acceleration signals.

The Kalman �lter, also known as linear quadratic estimator, solves the problem of

estimating the states of a linear dynamic system perturbed by white noise. The state

estimation uses measurements, which are linearly related to the states and corrupted

by white noise. The purpose of the Kalman �lter is to minimize the spread of the

estimate-error probability density [33].

The Kalman �lter is applied for the control of complex dynamic systems such

as continuous manufacturing processes, aircraft, ships, or spacecraft. A detailed

description of the Kalman �lter can be found in [33, 48, 49].

4.1.1 Propagation of states and covariance

The Kalman �lter propagates the expected value and the covariance of the state

through time. It takes into account system dynamics and inputs as well as it incor-

porates measurements and measurement error statistics.
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In this chapter, the equations to calculate the propagation of the expected value

of the state and covariance are given based on a discrete mathematical description

of a dynamic system. These equations are fundamental for the state estimation

procedure with the Kalman �lter.

Having the following linear discrete-time system:

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1, (4.1)

where uk is a known input andwk is Gaussian zero-mean white noise with covariance

Qk, the expected value of xk results to

x̂k = E(xk)

= Fk−1xk−1 + Gk−1uk−1.
(4.2)

By using equations (4.1) and (4.2) the covariance of xk changes with time in the

following way

(xk − x̂k)(...)
T = (Fk−1xk−1 + Gk−1uk−1 + wk−1 − x̂k)(...)

T

= [Fk−1(xk−1 − x̂k−1) + wk−1][...]T

= Fk−1(xk−1 − x̂k−1)(xk−1 − x̂k−1)TFT
k−1 + wk−1w

T
k−1+

Fk−1(xk−1 − x̂k−1)wT
k−1 + wk−1(xk−1 − x̂k−1)FT

k−1.

(4.3)

Therefore, the covariance of xk is obtained as the expected value of the above ex-

pression. Since (xk−1 − x̂k−1) is uncorrelated with wk−1, it results

Pk = E[(xk−1 − x̂k−1)(...)T ]

= Fk−1Pk−1F
T
k−1 + Qk−1,

(4.4)

where Q is the disturbance input covariance matrix. This equation is called a

discrete time Lyapunov equation, or a Stein equation [50, 33].

Equation (4.1) shows, that the process noise is directly entering the system dynam-

ics. Often, the process noise is multiplied by a matrix, before it enters the system

dynamics. That is,

xk = Fk−1xk−1 + Gk−1uk−1 + Lk−1w̃k−1, w̃k ∼ (0, Q̃k). (4.5)

This can be put into the conventional form of equation (4.1) by two steps. First,
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the rightmost term of equation (4.5) has a covariance given by

E[(Lk−1w̃k−1)(w̃k−1Lk−1)T ] = Lk−1E[w̃k−1w̃
T
k−1]LTk−1

= Lk−1Q̃k−1L
T
k−1,

(4.6)

therefore, equation (4.5) is equivalent to the equation

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1, wk ∼ (0,LkQ̃kL
T
k ). (4.7)

The same type of transformation is made with noisy measurement equations. That

is, the measurement equation

yk = Hkxk + Lkṽk, ṽk ∼ (0, R̃k) (4.8)

is equivalent to the measurement equation

yk = Hkxk + vk, vk ∼ (0,LkR̃kL
T
k ) (4.9)

where LkR̃kL
T
k = R is the measurement error covariance matrix.

4.1.2 Discrete time Kalman �lter

The Kalman �lter operates by propagating the expected value and covariance of the

state through time. The goal is to minimize the steady-state error covariance by

constructing a state estimate x̂. Figure 4.1 shows the block diagram of a system

with an integrated Kalman �lter.

Figure 4.1: Kalman �lter

Since, as for the estimation of the state x the expected state is used, the expression

expected state and estimated state are used equivalently.

The discrete time state space model for this system is given by

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (4.10)

yk = Hkxk + vk, (4.11)
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with the state vector x, the known input u and the output y. The noise processes

wk and vk are white, zero-mean, uncorrelated, and have known covariance matrices

Qk and Rk, respectively:
wk =∼ (0,Qk)

vk =∼ (0,Rk)

E[wkw
T
k ] = Qkδk−j

E[vkv
T
k ] = Rkδk−j

E[vkw
T
k ] = 0

(4.12)

The aim is to estimate the state xk based on the knowledge of the system dynamics

and the availability of the noisy measurements yk and the input uk. Depending on

the availability of the measurement yk, a distinction in the notation for an estimated

state x̂ is made as follows: If all the measurements up to and including time k are

used to estimate xk, an a posteriori estimate is performed, which is denoted as x̂+
k .

The "+" superscript denotes that the estimate is a posteriori

x̂+
k = E[xk|y1,y2, ...,yk] = a posteriori estimation. (4.13)

If all the measurements before (but not including) time k are used to estimate

xk, an a priori estimate is performed, which is denoted as x̂−k . The "-" superscript

denotes that the estimate is a priori

x̂−k = E[xk|y1,y2, ...,yk−1] = a priori estimation. (4.14)

Since the a posteriori estimation uses more information, it is considered that the a

posteriori estimation is better than the a priori estimation.

x̂−k = estimate of xk without the measurement at time k, (4.15)

x̂+
k = estimate of xk including the measurement at time k. (4.16)

To measure the statistic relationship between real and estimated states, the co-

variance of the estimation error xk − x̂k is calculated and denoted by

P−k = E[(xk − x̂−k )(xk − x̂−k )T ], (4.17)

P+
k = E[(xk − x̂+

k )(xk − x̂+
k )T ]. (4.18)

To start the estimation process, an initialization has to be performed by declaring

an initial estimate x̂0 of the initial state x0 = x(t = t0 = 0) and an initial estimation
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of the covariance of the estimation error P0,

x̂+
0 = E(x0), (4.19)

P+
0 = E[(x0 − x̂−0 )(x0 − x̂−0 )T ] (4.20)

= E[(x0 − x̂+
0 )(x0 − x̂+

0 )T ]. (4.21)

The matrix P0 represents the uncertainty in the initial estimate of x0. In case of

a perfectly known initial state P0 = 0, if there is no information of the initial state

P0 =∞.

The Kalman �lter algorithm is divided in two steps, the �rst step is the time

update and the second step is the measurement update.

The estimation process starts with x̂+
0 , the estimate of the initial state x0. By

using equation (4.2) the expected value of x propagates with

x̂−1 = F0x̂
+
0 + G0u0. (4.22)

This equation can be extended to obtain a more general equation, which is the

time update equation for x̂

x̂−k = Fk−1x̂
+
k−1 + Gk−iuk−1. (4.23)

After computing the time update of x̂, the time update ofP is computed. Following

equation (4.4) the time update for the initial guess of P0 as well as the general case,

the time update from P−k to P+
k can be computed from

P−1 = F0P
+
0 F

T
0 + Q0 (4.24)

or in general

P−k = Fk−1P
+
k−1F

T
k−1 + Qk−1. (4.25)

After computing the time update of the state x and the error covariance P the

estimation is improved with the measurement update. The measurement update

uses the information of the actual measurement.

The measurement yk changes the estimate of a constant x according to [33] as
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follows:
Kk =P−kH

T
k (HkP

−
kH

T
k + Rk)

−1

=P+
kH

T
kR
−1
k

x̂+
k =x̂−k + Kk(yk −Hkx̂

−
k )

P+
k =(I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k

((P−k )−1 + HT
kR
−1
k Hk)

−1

(I−KkHk)P
−
k ,

(4.26)

where Kk is called the Kalman �lter gain. Again the vector x̂−k and the matrix P−k
de�ne the estimated state and its error covariance matrix before the measurement

yk is available, and x̂+
k and P+

k are the estimated state and its error covariance

matrix after the measurement yk is available.

Combining all equations for the estimation process the discrete-time Kalman �lter

can be de�ned. The state estimation performed with the Kalman �lter can be done

with the following steps [33]:

1. The dynamic system is given by the equations:

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1

yk = Hkxk + vk

E[wkw
T
k ] = Qkδk−j

E[vkv
T
k ] = Rkδk−j

E[vkw
T
k ] = 0

(4.27)

2. The Kalman �lter is initialized as:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(4.28)

3. The Kalman �lter is given by the equations, which are computed for each time

step k = 1, 2, ..:
x̂−k = Fk−1x̂

+
k−1 + Gk−1uk−1

P−k = Fk−1P
+
k−1F

T
k−1 + Qk−1

Kk = P−kH
T
k (HkP

−
kH

T
k + Rk)

−1

x̂+
k = x̂−k + Kk(yk −Hkx̂

−
k )

P+
k = (I−KkHk)P

−
k

(4.29)

As mentioned above the Kalman �lter minimizes the squared estimation error.

The Kalman gain matrix is in�uenced by the noise characteristics of the process
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and measurement noise. Both characteristics are not exactly known in reality and

thus the assumed matrices Q and R can be used as tuning parameters to increase

robustness and/or accuracy.

4.1.3 Steady state Kalman �lter

If the state space model is linear and time invariant, a steady state Kalman �lter can

be used to perform the estimation. The advantage of the steady state Kalman �lter

is, that the Kalman gain matrix K must only be computed once and can be used for

the whole estimation process. This decreases the computational e�ort signi�cantly.

The drawback is, that it is not possible to change the system matrices during the

operation process and that the initial condition is not treated in the right way. The

steady state solution for the continuous time Kalman �lter can be derived from the

di�erential Riccati equation which is given by

Ṗ = −PCR−1CP + AP + PAT + Q. (4.30)

In the case of a LTI system A, C, Q and R are constant and P can reach a steady

state solution, when Ṗ reaches zero. This implies that

−PCR−1CP + AP + PAT + Q = 0, (4.31)

which is the so-called algebraic Riccati equation (ARE). Assuming Q ≥ 0 and

R > 0 and de�ning G as any matrix such that GGT = Q, the Kalman �lter gain is

computed as

K = PCTR−1. (4.32)

The state estimation performed with the steady state Kalman �lter is then given by

˙̂x = (A−KC)x̂ + Ky. (4.33)

To solve the algebraic Riccati equation and to guarantee that the solution is stable,

the problem is formulated using the so-called linear matrix inequalities. E�cient

solvers exist for linear matrix inequalities, which treat the problem in a reliable and

stable way, supposing a stable solution exists.

4.1.4 State estimation of the railway vehicle

The Kalman �lter is used to obtain information of the states of the railway vehicle.

Based on the available acceleration sensors, the state is estimated. Since the train
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4.1 Kalman �lter

model has no known input u, the state prediction step of the Kalman �lter reduces

to

x̂−k = Fk−1x̂
+
k−1. (4.34)

Further, the train model is considered as time invariant. Thus, state, input and

output matrix are constant.

Figures 4.2 and 4.3 exemplarily show the results for the estimation of the lateral

and vertical position of the �rst wheelset. The lateral state is estimated reliably.

The estimation of the vertical state is performed well after a short integration phase.
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Figure 4.2: Estimation of lateral position of wheelset
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Figure 4.3: Estimation of vertical position of wheelset

Figures 4.4 and 4.5 show the results for the estimation of the lateral and vertical

velocity of the �rst wheelset. Both states are estimated correctly and are even better
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estimated than the position. This results from the integration error from velocity

to position.
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Figure 4.4: Estimation of lateral velocity of wheelset
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Figure 4.5: Estimation of vertical velocity of wheelset

Figures 4.6 and 4.7 show the results for the estimation of the angular yaw position

and the angular yaw velocity of the �rst bogie. Both �gures show qualitatively the

same results as the lateral and vertical wheelset motion. The angular yaw position

is estimated correctly with a small error. The angular yaw velocity is estimated

nearly without an error.
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Figure 4.6: Estimation the angular yaw position of the �rst bogie
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Figure 4.7: Estimation the angular yaw velocity of the �rst bogie

The state estimation of the other states is equivalent to the estimations shown in

the �gures. Thus, with the given acceleration signals, it is possible to estimate the

states of the train.
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4.2 Fault detection and isolation

Increasing demands for higher system performance and product quality on the one

hand and more cost e�ciency on the other hand made fault detection and isolation

more and more interesting for the railway industry. Fault detection and isolation is

the procedure of monitoring a system, identifying when a fault has occurred, and

clarifying the type of fault and its location. There are two approaches to detect and

isolate faults. On the one hand, there is the model based FDI procedure and on

the other hand there is the signal processing based FDI. In the case of the model

based FDI process, a model of the system is used to monitor the system. In the

case of the signal processing based FDI process, a mathematical algorithm is used to

analyze the signals and to make a statement about the health of the system. Thus,

no model of the mechanical system is required. In this work, the FDI process is

performed with a model based approach. A reliable train model and the Kalman

�lter discussed in the last section are essential parts of the fault detection procedure.

In the case of the train model, the FDI process is used to detect and isolate faults

in the suspension system. The anti-yaw damper, the secondary lateral, and vertical

damper are exemplarily used to show the results of the proposed FDI method.

4.2.1 Estimation error

For the fault detection and isolation procedure, the state observation is performed

with di�erent systems. One of the systems represents the fault free case, the other

systems represent the di�erent faults, which should be detected. Thus, if n di�erent

faults should be detected and isolated, the observation process must be performed

for n+ 1 systems

ẋ = g(x,w, i), y(k) = hi(x(k),v(k), i) i = 0 : n. (4.35)

In this work, ẋ = g(x,w, i) is the di�erential equation describing the train dynamics

combined with the form �lter, and yk = h(xk,vk, i) describes the measurement

output. All n+ 1 systems are linearized at the operating point

A(i) =
∂g(i)

∂x

∣∣∣∣
x0

C(i) =
∂h(i)

∂x

∣∣∣∣
x0

i = 0 : n (4.36)

and discretized. The discretized matrix ofA(i) is denoted by F(i) and the discretized

output matrix C(i) is denoted by H(i). Having n+ 1 systems, each system is used

to compute an estimation of the state, denoted by x̂(i). Using the estimation x̂(i),
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4.2 Fault detection and isolation

an estimation of the output is constructed

ŷk(i) = H(i)x̂k(i). (4.37)

To quantify the estimation error of each system, the state residual

rxk(i) = xk − x̂k(i) (4.38)

and the measurement residual

ryk(i) = yk − ŷk(i) (4.39)

are de�ned. Both residuals give information about the performance of the estimation

process. Since the state vector x is not available, only the measured residual can be

used to clarify the state estimation performance. To compare the performance of

the di�erent systems, the variance of the residual is calculated

V ar[ryk(i)] = ryk(i)T ryk(i). (4.40)

The lower the variance of the measurement residual, the better is the state estimation

and the better the system is suited for the state estimation. Using the Kalman �lter

[33] to perform the state estimation, the covariance matrix of the measured residuals

is calculated by

E[ryk(i)ryk(i)T ] = E[(yk −H(i)x̂−k (i))(yk −H(i)x̂−k (i))T ]

= H(i)E[rxk(i)rxk(i)T ]H(i)T + E[vkv
T
k ]

= H(i)P−k (i)H(i)T + R.

(4.41)

This matrix is used to attach speci�c weights to the measurement residuals, which

increase the ability to choose the right system. The resulting scalar value is denoted

by e(i)

ek(i) = ryk(i)T (H(i)P−k (i)H(i)T + R)−1ryk(i). (4.42)

For each system i = 0 : n, ek(i) is calculated at each instant of time k.

4.2.2 Kalman �lter based fault detection

For all n + 1 systems, the state is estimated with the corresponding Kalman �lter.

In order to perform a state estimation, the di�erent Kalman �lters use the available

measurement values. In each sample point, the measurement residual ryk(i) = yk −
H(i)x̂−k (i) and the fault indication value ek(i) are calculated.
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Figure 4.8: Multiple Kalman �lters

The di�erent linearized and discretized systems are given by

xk = F(i)xk−1 + wk (4.43)

yk = H(i)xk + vk, (4.44)

with white, zero mean and uncorrelated process noise wk and measurement noise

vk. The process noise and the measurement noise have known covariance matrices

Q and R, respectively,

wk ∼ (0,Q), (4.45)

vk ∼ (0,R). (4.46)

The di�erent Kalman �lters are initialized with the expected initial condition x̂+
0

and the uncertainty of the initial estimation P+
0 . The vector x̂

+
0 and the matrix P+

0

are considered to be the same for all n+ 1 systems

x̂+
0 (i) = E[x0] (4.47)

P+
0 (i) = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]. (4.48)

The state estimation and the residual generation using the Kalman �lter is performed

with
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Prediction :

x̂−k (i) =F(i)x̂+
k−1(i)

P−k (i) =F(i)P+
k−1(i)F(i) + Q

Correction :

Kk(i) =P−k (i)H(i)T (H(i)P−k (i)H(i)T + R)−1

x̂+
k (i) =x̂−k (i) + Kk(i)(yk −H(i)x̂−k (i))

P+
k (i) =P−k (i)−Kk(i)H(i)Pk(i)

−

Residual :

ryk(i) =yk −H(i)x̂−k (i)

ek(i) =ryk(i)T (H(i)P−k (i)H(i)T + R)−1ryk(i).

(4.49)

The estimated states are used to calculate the measurement residual. With the

measurement residual the fault indication e is calculated.

In order to decouple the fault detection alarm from the size of the track disturbance

and unknown parameters, the values of e(1) to e(n) are always compared with the

fault free case e(0). The fault detection alarm is calculated by subtracting the fault

indication value of the error free system from each fault indication value of the faulty

systems

εk(1) =ek(1)− ek(0)

εk(2) =ek(2)− ek(0)

...

εk(n) =ek(n)− ek(0).

(4.50)

The index i = 0 stands for the fault free system. If there is a fault at the ith

suspension element the estimation with the ith system should have the smallest

estimation error. Thus, the �lter that gives the "best" state estimates identi�es the

actual system.

Since the output y is corrupted by measurement noise, the residual e of a single

point does not have su�cient information. Therefore, ε is averaged over a test period

T = 1 : m

fault1 =
1

m

m∑
k=1

εk(1)

...

faultn =
1

m

m∑
k=1

εk(n).

(4.51)

77



4.2 Fault detection and isolation

If no fault occurs fault1 to faultn should be positive. If there is a fault at the

ith position, faulti should be negative to detect the fault, further it should be the

smallest value to isolate the fault from the other possible faults.

4.2.3 Results of fault detection and isolation

The fault detection and isolation design procedure explained in the last section is

used to detect faults in a full scale train model. The Velaro RUS serves as an example

using parameters provided by the vehicle manufacturer. The track irregularities are

generated numerically based on the PSDs. The FDI procedure is used to detect

faults in all four secondary vertical dampers, in all four anti-yaw dampers and in all

four secondary lateral dampers. Two of the dampers connect the front bogie to the

carbody and two of them connect the rear bogie to the carbody, respectively. For

the simulation process, the full scale train model is simulated with nonlinear wheel

rail dynamics and nonlinear suspension system. This model is used to generate the

signals of the acceleration sensors. For the estimation process, the train dynamic is

linearized around the operation point.

Six di�erent test cases were considered to test the FDI method:

1. a fault free train,

2. a fault at the front left secondary vertical damper,

3. a fault at the front left anti-yaw damper,

4. a fault at the front left secondary lateral damper,

5. faults at the front right secondary vertical, anti-yaw and secondary lateral

damper,

6. faults at the front left, front right, rear left and rear right secondary vertical

damper.

In order to test the robustness of the FDI procedure against track uncertainties,

the gauge is modi�ed in the simulation process, whereas the model for the FDI

method uses the unchanged track gauge. In one case the gauge is increased by a

constant value, in the other one it is decreased by a constant value. Further the

FDI method is tested for a case where the track irregularities are twice as high as

expected.

The measurements of the acceleration sensors were created with the nonlinear

train model. To generate the measurements of the faulty systems, the correspond-

ing damping coe�cient is decreased by 30 %. The linearized test systems for the
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4.2 Fault detection and isolation

estimation process consider a damper coe�cient decrease of 20 % for the di�erent

fault cases. The test period is 100 seconds.

Figure 4.9 shows the results for the fault free case. All 12 fault indication values

faulti have positive values.
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Figure 4.9: Fault free train

Thus, if all fault indication values are positive, the system is accurately classi�ed

as a fault free system. Figure 4.10 gives the results for the proposed FDI procedure

for a fault at the front left secondary vertical damper. The results show that the

indicator for the front left vertical damper has the smallest value. These results

indicate a fault in the front left vertical damper. It can also be seen that the

detection value for the front right vertical damper has negative values. This is due

to the very similar e�ect of both dampers on the overall dynamics. For reasons of

safety, both dampers, the left and the right anti-yaw damper, should be checked for

faults.

Figure 4.11 shows the results for the FDI procedure for a fault at the front left

anti-yaw damper. The results show again the accuracy of the algorithm. The value

of the front left anti-yaw damper is the smallest. The second smallest value results

from the fault detection value of the right front anti-yaw damper, which is caused

by the close dynamic relation.

In Figure 4.12, the results for the FDI procedure for a fault at the front left

secondary lateral damper is shown. The fault indicator for this damper has the

smallest value and the fault detection value for the front right secondary lateral

damper has the second smallest value. Again, this, is due to the fact, that both

dampers have a similar in�uence on the system behavior. In case of the lateral

damper, it is not possible to distinguish between faults at the front left or front
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Figure 4.10: Fault at the front left vertical damper
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Figure 4.11: Fault at the front left anti-yaw damper

right side.

Figure 4.13 shows the results for a fault at the front right secondary vertical, anti-

yaw and secondary lateral damper. The fault detection procedure is working well.

All three dampers with a fault have a negative indication value.

Figure 4.14 shows the results for a fault at the front left, front right, rear left and
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Figure 4.12: Fault at the front left lateral damper
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Figure 4.13: Multiple fault 1

rear right secondary vertical damper. All four faulty dampers have a negative fault

value which correctly indicates the faults.

For all six test cases the FDI procedure gives an accurate fault indication. In the

�ve faulty test cases the detection as well as the isolation of the speci�c fault is

possible in most cases. Thus, it is possible to perform an accurate fault detection

and isolation under these conditions.

In a second step, to investigate the robustness of the FDI method against un-

certainties, parameters are varied. The track gauge is modi�ed in the simulation
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Figure 4.14: Multiple fault 2

process, whereas the FDI algorithm is not altered and uses the original track gauge.

Figures 4.15 and 4.16 show the results for a track gauge reduction of 4mm. Figure

4.15 shows the fault free case. Here, the indicator is accurate. Figure 4.16 shows the

results for a fault in the front left anti-yaw damper, the FDI procedure accurately

detects the fault.
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Figure 4.15: Fault free train with gauge reduction

Figures 4.17 and 4.18 show the results for a track gauge increase of 4mm. The
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Figure 4.16: Fault at the front left anti-yaw damper with gauge reduction

results for the fault free case, shown in Figure 4.17, as well as for the case with a

fault in the front left anti-yaw damper, shown in Figure 4.18, are detected correctly.

1 2 3 4 5 6 7 8 9 10 11 12
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 4.17: Fault free train with gauge increase

Thus, after variations of the track gauge, it is still possible to detect and isolate

faults.

Figures 4.19 and 4.20 show the test cases where the track irregularities are twice

as high as expected. Figure 4.19 shows the fault free case and Figure 4.20 shows the

results for the test case with a fault at the front left anti-yaw damper.

Both results are qualitatively equal to the case with no track excitation increase

and thus detect both test cases correctly.
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Figure 4.18: Fault at the front left anti-yaw damper with gauge increase
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Figure 4.19: Fault at the front left anti-yaw damper with gauge increase
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Figure 4.20: FDI results plotted over time
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4.2.4 Stability analysis

Until now, the investigation to test the FDI method has considered single test cases.

Since the results of the method depends, among others, on stochastic parameters,

the �uctuation range of the results is tested. To determine the robustness of the

proposed method, an extensive stochastic analysis is performed. Five di�erent test

cases are used for the robustness analysis.

1. a variation of the track excitation,

2. a variation of the velocity,

3. a variation of the mass of the coach,

4. a variation of the gauge size.

5. a variation of the track excitation strength.

In the �rst test case, the train is simulated 50 times. For each simulation, the

track excitation is changed. Figure 4.21 shows the results for the fault free case

and Figure 4.22 for the case with a fault at the front left anti-yaw damper. The

height of the bar indicates the mean value of all 50 simulations, the upper line the

maximum value and the lower line the minimum value. It can be seen that for all

50 simulations the fault free train as well as the fault at the anti-yaw damper is

indicated correctly. The results for all 12 damper faults are shown in the Appendix

A.
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Figure 4.21: Fault free train with di�erent excitations

For the second robustness test, the mass of the coach is varied from minus 20%

to plus 20% in 1% steps. The mass is only changed for the simulation process, for
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Figure 4.22: Fault at the front left anti-yaw damper with di�erent excitations

the fault detection procedure the mass is kept constant. Figure 4.23 shows the fault

free train and Figure 4.24 a fault at the anti-yaw damper. Both cases were indicated

correctly. The results for all 12 damper faults are shown in the Appendix B.
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Figure 4.23: Fault free train with di�erent weights for the coach

For the third robustness test, the track gauge is varied form minus 5 mm to plus

5 mm in 1 mm steps, for the fault detection procedure, the gauge is kept constant

again. Figures 4.25 and 4.26 show the results for the fault free case and a fault at

the anti-yaw damper. Both cases were indicated correctly.

For the next robustness test, the ride velocity is varied from 150 km/h to 300

km/h in 10 km/h steps. Figures 4.27 and 4.28 show the results for the fault free
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Figure 4.24: Fault at the front left anti-yaw damper with di�erent weights for the
coach
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Figure 4.25: Fault free train with di�erent gauge size

case and the case with a fault at the front left anti-yaw damper. The results for all

12 damper faults are shown in the Appendix C.

For the last robustness test, the track excitation is multiplied by a factor between

0.5 and 3 in 0.1 steps. Figures 4.29 and 4.30 show the results for the fault free case

and the case with a fault at the front left anti-yaw damper.

Figure 4.31 shows the correlation between the di�erent fault indications. The real

fault is given on the x-axis, the fault detection is marked on the y-axis. A blue box

indicates a positive fault indication value and therefore no fault, a red box indicates

a negative fault indication value and thus a fault. All faults are indicated correctly
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Figure 4.26: Fault at the front left anti-yaw damper with di�erent gauge size
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Figure 4.27: Fault free train with di�erent forward velocities

and there are only few false detections. For all three types of suspensions, it is not

possible to distinguish between a fault at the left and a fault at the right side of

a suspension of the same type and the same bogie. Except for this case, all other

faults are indicated correctly.
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Figure 4.28: Fault at the front left anti-yaw damper with di�erent forward velocities
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Figure 4.29: Fault free train with di�erent forward velocities
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Figure 4.30: Fault at the front left anti-yaw damper with di�erent forward velocities

Figure 4.31: Fault correlation
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4.3 Force estimation

The knowledge of the wheel rail forces provides information of the health of the track

and the railway vehicle as well as information about ride conditions. Currently,

wheel-rail contact forces are determined based on wheelsets equipped with strain

gauges. In this method the contact forces are calculated by evaluating the measured

strains. These custom made wheelsets are only used for speci�c and individual

railway vehicle rides, for example to test new railway vehicles or tracks. Because of

the high e�ort, this method is not used during regular operation. Therefore, a great

demand of alternative ways to calculate the wheel-rail forces exists.

In recent years, several methods were published, which use acceleration sensors

to determine the wheel-rail contact forces. In this section, the method described

in [28] is used to determine the wheel-rail forces. A Kalman �lter based approach

is introduced to determine the wheel rail contact forces. The procedure to calcu-

late the wheel-rail forces can be seen as an inverse problem. The forward problem

refers to the determination of the acceleration values of the vehicle based on forces

applied to the train. In the inverse problem, the forces are determined based on

acceleration data. Further, the inverse force estimation procedure is extended to

estimate the forces, which occur in the suspension system. Therefor the lateral and

vertical secondary damper and the anti-yaw damper are chosen. The estimation

of suspension forces brings bene�ts for maintenance purposes and strength calcula-

tions. The estimated forces can be used to optimize the compound of train�track

and the suspension system.

At the beginning of this section, basics of inverse problem theory are given, followed

by the procedure to calculate the wheel rail forces as well as the forces which occur

in the suspension system.

4.3.1 Matrix inversion

Calculating the input of a system by using the output values of a system is called an

inverse problem. Inverse problems come along with several di�culties as there might

exist more than one solution. Depending on the forward problem, three di�erent

types are considered. For a linear system they are:

Type 1 A linear system is considered as determined if the number of equations is

equal to the number of unknowns, in this case there exists either a unique

solution or no solution.

Type 2 A linear system is considered as underdetermined, if there are fewer equa-

tions than unknowns, in this case there exist in�nitely many solutions or no

solution.
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Type 3 A linear system is considered as overdetermined if there are more equations

than unknowns, in this case there is a unique solution or no solution.

The second type is the one, which brings the most di�culties. If there is a solution,

the only statement which could be given is, that the solution must be in a speci�c

space. For the third type, if there is no solution, a unique approximation can be

found which is as close as possible to the exact solution related to a speci�c norm.

For a system of linear equations, the mathematical description of a forward and

an inverse problem can be given by

y = Ax forward problem (4.52)

x = A−1y inverse problem (4.53)

with the state vector x the output vector y and the output matrix A. The matrix

A−1 is the inverse ofA, in order forA−1 to exist, the matrixAmust be square and it

has to be non-singular. If the matrixA is invertible, the �rst type is addressed. If the

dimension of y and x are not equal or the matrix A is singular, the inverse of A can

not be calculated. However, to solve this problem, the so-called pseudoinverse matrix

or generalized matrix is de�ned. Pseudoinverse or generalized matrices have similar

characteristics as the regular inverse of a matrix and denoted by A+. Depending on

the dimensions of y and x two di�erent cases are considered. The case r < n refers

to the second of the three types denoted above, thus there are fewer equations than

unknowns and the inverse solution may be overdetermined, the case r > n refers to

the third type, thus there are more equations than unknowns.

To cover the two di�erent cases, the rank of a matrix is introduced. The rank of a

matrix is de�ned as the maximum number of linearly independent rows or columns,

thus the rank of a nonsingular (n × n) matrix is n. The rank of a (r × n) matrix

can not be greater than the smaller dimension. The rank of the product of two

multiplied matrices can be no greater than the smaller rank of the original matrices.

To de�ne the pseudoinverse the product AAT is used. If A is a (r×n) matrix, thus

the dimension of ATA is (n × n) and of AAT is (r × r). Both products use the

same matrix A and thus both products have a rank which is equal or less r or n,

depending on which is the smaller one. For the case r > n, ATA may be invertible,

depending on the rank of A, but AAT is de�nitely not. For the overdetermined

case, both sides are �rst multiplied with AT and then with (ATA)−1

ATAx = ATy,

x = (ATA)−1ATy,

x = A+y.

(4.54)
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4.3 Force estimation

The overdetermined case has redundant information. If the vector y is consistent

and error free, equation (4.54) provides the exact value of x with more computations

than necessary. If the vector y is not consistent or contains errors, equation (4.54)

minimizes the mean-square error in the estimation of x.

For the underdetermined case, by considering that

AAT (AAT )−1 = I (4.55)

equation (4.52) can be written as

Ax = AAT (AAT )−1y (4.56)

or

x = AT (AAT )−1y (4.57)

x = A+y. (4.58)

In contrast to the overdetermined case, the underdetermined case does not provide

enough information for a unique solution of x, but out of all possible solutions it

does provide the solution that minimizes the quadratic norm of x.

4.3.2 Inverse problem

For the train model, the relation between the wheel rail force and the sensor outputs

is given by the state space model

ẋ = Ax + Bw (4.59)

y = Cx, (4.60)

where x is the state vector, w the input vector and y the output vector andA, B and

C are the system matrices. The forward problem is to calculate the measurements

y for given track excitation w. The inverse problem is to calculate w for given y.

Compared to the case given in equation (4.52) the relation between the input and

output can not be solved by a simple algebraic equation, further, the actual state of

the dynamical system must be considered.

The problem can be divided into two steps: The �rst step is to calculate the states

of the system by given measurements

y = Cx
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4.3 Force estimation

this is a problem of the second type, there exist either no solution or in�nitely many

solutions. If the problem is solved with the pseudoinverse, the solution is the one

which minimizes the quadratic norm of x. In this case, no information about the

previous state and the dynamic characteristic of the system is used. To involve the

dynamic characteristic in the state estimation process, a state observer is used. The

Kalman �lter is applied, as stated above, to estimate the state vectors of the system.

Having information about the state, the inverse problem

w = B+(ẋ−Ax)

can be solved. This is a problem of the third type and a unique solution can be

found by solving the linear least square problem.

4.3.3 Force calculation

In the case of the state space model of the railway vehicle given in section 3, the

input vector w describes the track position. If the information about the force

at the wheel is needed, new output matrices must be introduced. The forces of all

wheelsets are summarized in the vector F. The �rst step is to calculate the in�uence

of the input w and the state vector x to the force vector F. This is simply done by

using the nonlinear equation describing the train model and performing a variation

of the state and input vector. The linear relation between state vector, input vector

and the wheel forces can then be given by

F = CFxs + DFw.

For each wheelset, the vertical and horizontal forces shown in Figure 4.32 are esti-

mated.

The same procedure is performed to estimate an arbitrary suspension force. New

output matrices are de�ned, which describe the in�uence of the input w and the

state vector x on the suspension force.

If the state is estimated with the Kalman �lter, the only unknown is w. By

introducing the form �lter of the track irregularities, given in Section 3.1.4, the

output vector w is part of the state vector and the system is solved by

F =
[
CF DF

]
x.

Thus, to calculate the wheel rail contact force or any suspension force, the estimated

state x̂s and the estimated input ŵ of the railway vehicle system are needed.
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4.3 Force estimation

Figure 4.32: front left secondary vertical damper

According to [28], the procedure of determining the wheel-rail forces is divided

into �ve steps:

1. Simulation of the railway vehicle system and generation of measurement data

2. Extension of the linearized system with a form �lter

3. State and input estimation with a Kalman �lter on basis of measurement data

4. Force calculation with estimated states and inputs

5. Comparison of estimated and simulated results for the input forces

If real measurements are available the simulated measurements are simply replaced

by the real measurements.

4.3.4 Wheel rail contact force estimation

With the method presented above, the wheel rail contact forces are estimated. In

this section, the estimated forces are compared with the simulated force. For this

purpose, the train is simulated with a speed of 160km
h

and excited with track irreg-

ularities.

A comparison of estimated and simulated signals for the resultant vertical contact

forces for the �rst wheelset is shown in Figure 4.33 and an enlargement of the

diagram is given in Figure 4.34. The real and the estimated contact forces show a

signi�cant correlation.

Figure 4.35 shows the results for the estimation of the lateral contact forces of the

�rst wheel set. An enlargement of the diagram is given in Figure 4.36. There is,
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Figure 4.33: Vertical contact force �rst wheel
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Figure 4.34: Vertical contact force �rst wheel enlarged

again, a high correlation between the estimated and the simulated force. Figures

4.37 and 4.38 show the results for the estimation of the vertical and lateral contact

forces of the �rst wheelset at the left wheel.
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Figure 4.35: Lateral contact force �rst wheel
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Figure 4.36: Lateral contact force �rst wheel enlarged
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Figure 4.37: Vertical contact force �rst wheel
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Figure 4.38: Lateral contact force �rst wheel
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The lateral and vertical forces of a single wheel play a major role in the design of

the railway vehicle [51]. For example, Nadal proposed a single-wheel limit criterion

to guarantee �ange climb safety. This criterion is based on the ratio of the vertical

wheel force QF and the lateral wheel force YF of a single wheel shown in Figure

4.39.

Figure 4.39: Flange contact

The critical ratio is given by [52]

YF
QF

=
tan δF − µ

1 + µ tan δF
, (4.61)

where δF is the contact angle. By using the maximum contact angle, this equation

gives the minimum wheel YF/QF ratio at which the �ange climb derailment occurs

for given friction coe�cient µ. Thus the estimated lateral and vertical forces of a

single wheel can be used to perform safety analysis based on acceleration measure-

ments.

Equivalent to the safety calculations of the wheel, the estimated forces are used

to quantify the load condition applied to the rail. Lateral track shifts are of major

interest. These are caused by repeated lateral axle loads. The track can shift under

large lateral forces and since both, speed and load, of the railway vehicle increase,

it is important to check the load condition. Large lateral forces can induce a gauge

widening that can lead to a wheel-rail separation, as shown in Figure 4.40 or a rail

rollover shown in Figure 4.41.

The estimated lateral wheel rail forces can be used to verify the load applied to

the rail and prevent such occurrences.

Further, the estimated wheel rail forces can be used to perform wear calculation

for example like proposed in [53].
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Figure 4.40: Separation of rail

Figure 4.41: Rollover of rail

4.3.5 Suspension force estimation

Most components of railway vehicles, including bogies or wheelsets, are elements

where dynamic stresses are decisive in design calculations. Material fatigue of the

bogie or the wheel components takes place due to dynamic loads, which is super-

imposed on the static loads from weight and loading. A precise information of

the dynamic loads during the life cycle of a component is therefore important for

optimal component design or failure analysis. The consideration of dynamic load

components in design calculations as carried out to date, however, are almost en-

tirely greatly simpli�ed through dynamic plus-factors [54]. The information about

the dynamic load can be provided by estimating the suspension forces. The obtained

results of the suspension force estimation are shown in this section.

Figure 4.42 shows the results for the estimation of the front left secondary vertical

damper. Figure 4.43 shows the results for the estimation of the front left anti-

yaw damper and Figure 4.44 shows the results for the estimation of the front left

secondary lateral damper.

It can be seen, that all three suspension forces can be estimated accurately.
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Figure 4.42: Front left secondary vertical damper
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Figure 4.43: Front left anti yaw-damper
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Figure 4.44: Front left secondary lateral damper
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5 Conclusion

Increasing system reliability and dependability while decreasing maintenance costs

is a major topic in the railway industry. On-line fault detection and isolation of-

fers advantages, when early detection of faults and wear is crucial. Further fault

detection and isolation together with the ability to estimate forces in the railway

system brings bene�ts for maintenance, strength calculation and asset management.

Important forces which are needed for such purposes, occur in the wheel rail contact

and the suspension system of the railway vehicle.

The review of literature in the �rst chapter has shown, that there is demand for an

improve in fault detection and force estimation. Many concepts were presented but

no procedure was found, which allows for the detection and estimation of a variety

of faults and forces with such an accurate railway vehicle model and track model as

provided in this work.

The task of this work is to analyze a railway vehicle model based on acceleration

data measurements. The train dynamics are captured with a state observer and an

algorithm is introduced to detect and isolate faults in the suspension system and

to estimate forces in the wheel rail contact as well as in the suspension system.

The characteristics of the track irregularities are used to increase the accuracy of

the proposed method. The PSDs given in ERRI B176 are taken to describe the

characteristic of the track. A form �lter is designed to model the random track

irregularities corresponding to the PSD, which improves the results of the force

estimation. The railway vehicle system is combined with the form �lter, and a

Kalman �lter is used to perform a state estimation of the whole system.

In the �rst topic of this work, expanded multiple model Kalman �lters were used to

detect and isolate faults in a suspension system of a full scale railway vehicle model.

Important components in railway suspension systems are the anti-yaw damper, the

secondary lateral, and vertical damper. The anti-yaw damper is critical for running

stability, the other two in�uence mainly the ride comfort. In this study, the presented

FDI procedure is used in order to detect faults in any of these dampers. As test case,

a model of the Velaro RUS is used to detect faults. With the presented method,

faults in the vertical, lateral and anti-yaw damper can be distinguished sensitively

and reliably. It is even possible to isolate faults with nearly the same in�uence to
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the overall dynamics. Further single as well as multiple faults can be isolated.

The robustness of the FDI procedure is tested by a variety of modi�cations. The

random values to create the track irregularities are changed 50 times to quantify the

deviation of the FDI method. Further, the travel velocity is changed between 150

km/h and 300 km/h in 10 km/h steps. The mass of the coach is modi�ed between

minus and plus 20%. The gauge size is changed between minus 5 mm and plus 5

mm in 1 mm steps and at last the excitation amplitude is changed between 0.5 and

3 times of the regular excitation. Compared to the other changes, the change of

velocity is included in the FDI model. For the other test cases the FDI model holds

the original values. All test cases show the robustness of the proposed method and

are working well and reliably. Because of the robustness of the FDI method, the

author believes that the proposed method could be used to detect and isolate faults

in real scenarios.

In the second topic the Kalman �lter is used for the inverse determination of lateral

and vertical wheel-rail contact forces and suspension forces. The wheel rail contact

is a major part of a railway vehicle system and information about these forces is

important for wear and comfort analysis. Currently, wheel-rail contact forces are

determined based on wheelsets equipped with strain gauge. As in the �rst topic, the

method in this work only uses data from acceleration sensors to estimate the forces.

A Kalman �lter is used to estimate the states of the system, whereas the system

combines the railway vehicle and the form �lter with the characteristics of the track

irregularities. With the states of the railway vehicle and the track geometry, the

forces are estimated. The results show that it is possible to estimate the lateral and

vertical wheel rail contact forces. Methods are shown, which can use the estimated

wheel rail contact forces for a variety of safety calculations. Further, the estimation

of the forces in the secondary vertical damper, the secondary lateral damper and

the anti yaw-damper is possible. This estimation can be used for strength analysis.

In both cases, the estimation of the wheel rail contact forces as well as the estima-

tion of the suspension forces, the real and estimated forces highly correlate. Thus,

the proposed methods for both, fault detection and forces estimation can be used

to increase the safety and decrease maintenance costs.

The focus of this work was to develop a reliable strategy to analyze a railway

vehicle based on acceleration sensors. The proposed methods have been tested

by simulating a railway vehicle with nonlinearities. The methods are based on a

linearisation of this model and show good results.
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A Results for all suspension faults
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Figure A.1: Front secondary vertical damper fault
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Figure A.2: Rear secondary vertical damper fault
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Figure A.3: Front anti-yaw damper fault
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Figure A.4: Rear anti-yaw damper fault

1 2 3 4 5 6 7 8 9 10 11 12
−300

−200

−100

0

100

200

300

400

500

600

700

(a) at the left side
1 2 3 4 5 6 7 8 9 10 11 12

−300

−200

−100

0

100

200

300

400

500

600

700

(b) at the right side

Figure A.5: Front secondary lateral damper fault
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Figure A.6: Rear secondary lateral damper fault
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B Results for all suspension faults

for di�erent masses
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Figure B.1: Front secondary vertical damper fault
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Figure B.2: Rear secondary vertical damper fault
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Figure B.3: Front anti-yaw damper fault
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Figure B.4: Rear anti-yaw damper fault
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Figure B.5: Front secondary lateral damper fault
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Figure B.6: Rear secondary lateral damper fault
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C Results for all suspension faults

for di�erent velocities
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Figure C.1: Front secondary vertical damper fault
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Figure C.2: Rear secondary vertical damper fault
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Figure C.3: Front anti-yaw damper fault
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Figure C.4: Rear anti-yaw damper fault
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Figure C.5: Front secondary lateral damper fault
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Figure C.6: Rear secondary lateral damper fault
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