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“The scientific man does not aim at an immediate result. He does not expect that his
advanced ideas will be readily taken up. His work is like that of the planter — for the
future. His duty is to lay the foundation for those who are to come, and point the way.
He lives and labors and hopes.”

Nikola Tesla, “Radio Power Will Revolutionize the World” in Modern Mechanics and
Inventions (July 1934)
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Abstract

Epilepsy is one of the most common disorders of the brain. Its diagnosis is a challenging
task, which relies on the experience of the attending doctor. Misdiagnosis of epilepsy
reaches a rate of 30% and has tremendous consequences on the quality of life of the
wrongly diagnosed patient. A precise diagnosis of epilepsy requires the assessment of
both the clinical image and the Electroencephalogram (EEG). Although great advances
in automatic EEG analysis have been made, the same cannot be stated for the clini-
cal image. In current clinical practice the clinical image is assessed by the neurologist
through either witnessing the epileptic seizure or watching recorded videos of the patient
having an epileptic seizure, as well as taking observations delivered by caring persons
into account. The aim of this work was to use image and video processing methods for a
computerised analysis of the clinical image of absence seizures, a task that has not been
performed before for this specific type of seizure. In contrast to the majority of related
studies, which analysed epileptic seizures with distinct clinical characteristics involving
motion of the extremities, this work focused on motion characteristics of subtle facial ex-
pressions. For this purpose, video recordings from 12 patients with a total of 350 seizures
were analysed, incorporating state of the art object detectors for the eyes and mouth.
Motion analysis in these areas was performed using dense optical flow and background-
foreground segmentation with Gaussian mixture models. The two algorithms delivered
nine motion-describing signals for four regions of interest. From each signal, 24 features
from the time and frequency domain were extracted on a basis of a sliding window. Fi-
nally, 22 experiments with initially seven classifiers were performed in order to find the
relevant features that lead to seizure detection and therefore constitute measurable facial
characteristics of absence seizures.

The result was a set of features for the eye and mouth regions, that differentiate the
facial expression of absence seizures from other expressions in the recorded video. It
could be shown that under the condition of a robust detection of the eyes and the mouth,
absence seizures can be detected automatically. Finally, issues that are related to long-
term monitoring, which have not been yet explicitly taken into account by the research
community in this field were exposed.
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Zusammenfassung

Epilepsie ist eine der häufigsten Krankheiten des zentralen Nervensystems. Ihre Diag-
nose stellt eine herausfordernde Aufgabe dar, welche auf die Erfahrung des behandel-
nden Arztes beruht. Die Fehldiagnoserate von Epilepsie erreicht 30% und hat enorme
Auswirkungen auf die Lebensqualität der falsch diagnostizierten Patienten. Für eine
genaue Diagnose von Epilepsie ist die Beurteilung sowohl der klinischen Erscheinungen,
als auch des Elektroenzephalogramms (EEG) ein Voraussetzung. Obwohl die Forschung
große Fortschritte in der automatischen EEG-Analyse zählt, kann dasselbe nicht für die
computerunterstützte Analyse der klinischen Erscheinungen belegt werden. In der Praxis
werden die klinischen Erscheinungen vom Neurologen entweder durch Beobachtung des
epileptischen Anfalls während seines Auftretens oder im Nachhinein durch aufgenommene
Videos beurteilt, unter Berücksichtigung jeglicher Beobachtungen von Personen aus dem
Umfeld des Patienten. Das Ziel dieser Arbeit war es, Bild- und Videoverarbeitungsmeth-
oden zu nutzen, um eine Computerunterstützte Analyse der klinischen Erscheinungen
von Absencen durchzuführen, eine Aufgabe, die noch nicht zuvor für diese apezifische
Art von Anfällen durchgeführt wurde. Im Gegensatz zu den meisten verwandten Stu-
dien, in denen epileptische Anfälle mit deutlichen klinischen Charakteristika im Sinne
von Bewegungen der Extremitäten behandelt werden, konzentriert sich diese Arbeit auf
feine Bewegungsmerkmale von Gesichtsausdrücken. Es wurden Videoaufnahmen von
12 Patienten mit insgesamt 350 Anfällen analysiert. Dafür wurden Objektdetektoren
aus dem Stand der Technik benutzt um Augen und Mund zu erkennen. Die Bewe-
gungsanalyse in diesen Bereichen wurde mit dichtem optischen Fluss und Hintergrund-
Vordergrundsegmentierung mit Gaußschen Mischverteilungen durchgeführt. Diese Meth-
oden lieferten neun verschiedene Bewegungsbeschreibende Signale für insgesamt vier
Bereiche von Interesse. Aus jedem Signal wurden 24 Merkmale aus dem Zeit- und Fre-
quenzbereich mithilfe von einem gleitenden Fenster extrahiert. Schließlich wurden 22
Experimente mit anfangs sieben Klassifikatoren durchgeführt um die relevanten Merk-
male, die zur Detektion von Anfällen führen und somit messbare Bewegungsmerkmale
von Absencen im Gesicht darstellen, zu erkennen.
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Es ergab sich eine Zusammenstellung von Merkmalen für die Augen- und Mundbereiche,
welche den Gesichtsausdruck von Absencen von den anderen Ausdrücken im aufgezei-
chneten Video differenzieren. Es wurde gezeigt, dass Absencen automatisch erkennt
werden können, unter der Bedingung einer robusten Detektion der Augen- und Mundre-
gionen. Zusetzlich wurden Probleme aufgedeckt die in Zusammenhang mit der Langzeit-
überwachung von Patienten stehen und bisher noch nicht von der Forschungsgemeinschaft
in diesem Gebiet berücksichtigt wurden.
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Executive summary

Diagnosis of epilepsy is a challenging task, which is based on the experience of the at-
tending doctor. It is prone to the subjective or biased judgement of the neurologist or
caring person. Misdiagnosis of epilepsy reaches a rate of 30% [5] and has tremendous con-
sequences on the quality of life of the wrongly diagnosed patient, experiencing side effects
of medication, unnecessary driving restrictions and serious employment problems [13].
Indicating the importance of the diagnostic precision, the International League Against
Epilepsy (ILAE) presented a revised terminology and concepts for the organization of
seizures and epilepsies on the basis of the level of specificity, i.e. the diagnostic precision
[7]. Moreover, “(. . . ) one-third or more of all epilepsies are the most poorly understood,
and represent perhaps the most fertile area for future research (. . . )” [7]. This indicates
the need for a higher diagnostic precision, which is the main problem being addressed
in this thesis, on the level of analysing and quantifying the ictal phenomenology (i.e.
the clinical image). This is done by applying methods of computer vison, which include
image processing, video analysis, pattern recognition and machine learning, in order to
perform a computerised analysis of the clinical image of absence seizures, a task that has
not been performed before for this specific type of seizure.

A thorough introduction into the problem is given by describing the motivation behind
this work and providing information on the diagnostic procedure of epilepsy with a de-
tailed description of absence seizures. The largest part of the introduction is a systematic
review on seizure detection and analysis based on computer vision (Section 1.6). This
review offers an insight into methodology, achievements and challenges of existing ap-
proaches for motion detection, analysis and seizure recognition in epilepsy. This gives
valid guidelines for approaching the problem at hand and formulating the research ques-
tion, asking:

Which are the measurable facial characteristics of absence seizures, delivered by a com-
puterised analysis of a patient’s facial expression from video sequences and is it possible
to use them for detecting at least two seizures for each patient?
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The term “measurable” represents the quantitative aspect of the study, while the method-
ological boundaries are set by the terms “computerised”, “facial expression” and “video”.
Finally the diagnostic aspect is covered by investigating the possibility to detect at least
two seizures per patient, as defined by the ILAE (cf. Section 1.3).

The long-term video-EEG was recorded at the the University Hospital in Heraklion, Crete
and consisted of 12 patients with 350 seizures. The video pre-processing step included
deinterlacing and smoothing for noise reduction. The analysis focused on four regions
of interest (ROIs), the eye-pair, the left eye, the right eye and the mouth. The feature
extraction process was based on frame-differencing using Gaussian mixture models and
dense optical flow. These two techniques delivered nine different signals describing motion
patterns in each ROI, for each signal a total of 24 features were extracted in terms of a
sliding window. This resulted in a total of 864 features, which were evaluated with initially
nine classifiers in 22 experiments, grouped in four phases. The first three phases used
data from eight patients and the regions of interest were annotated semi-automatically
with a self-developed annotation tool. The final phase introduced fully automatic ROI
detection, as well as the additional four patients. In particular, the first phase used a
subset of the annotated seizures in order to limit the capturing conditions and isolate
interfering factors including noise from bad illumination, heavy occlusions etc. The main
aim of this phase was to select the window size and step for feature extraction, to test the
different classifiers and to perform feature selection. The second phase used all annotated
seizures, including those captured under varying conditions and tested the performance
of the final selected classifier in the previous phase. It also performed tests with various
sub-sampling ratios for the training set and a mapping of the classified instances to seizure
events as a whole. The third phase analysed the influence of the different ROIs in seizure
detection performance. The final phase introduced automatic ROI detection and applied
the gained information from the previous phases on the four remaining patients as a final
evaluation step.

The results demonstrate the existence of several features that differentiate motion pat-
terns of the eyes and the mouth from seizure and seizure-free epochs, although the number
and type of features is influenced by noise introduced as a result of the high variance in
capturing conditions, as well as the inter-person variability of the seizure manifestation
(characteristics and duration) by itself. The biggest challenge when it comes to detecting
individual seizures in a video sequence with a duration of several hours is the dataset
imbalance (many negatives and few positives). Even a few percentage of false positives
may easily exceed the total number of actual positives. In order to account for that, an
extremely high true negative rate would be necessary. Three possible solutions to that
problem include methods that statistically model normal data/behaviour, such as semi-
supervised anomaly detection (e.g. that only uses the normal labels), the partition of
the negative class into multiple subclasses, including “sleeping”, “eating”, “talking”, “read-
ing” etc. or even a multimodal approach that uses the EEG as an additional channel of
information.

Finally, the following answer can be given to the research question: Based on the analysed
data, the most relevant measurable characteristics that differentiate the facial expression
of absence seizures from other (unknown) expressions include the variance of time inter-
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vals between adjacent spikes, derived from the mean angle, the mean magnitude weighted
by the mean angle and the maximum magnitude weighted by the angle for the left and
right eye. The minimum, maximum and median of the same signals is mainly relevant
for the mouth region. Additional characteristics include the power in the band between
3 an 6 Hz and the dominant frequency derived from signals measuring the angle at maxi-
mum magnitude, the mean angle, the mean magnitude weighted by the mean angle, and
the pixel area from background-foreground segmentation for the left eye, right eye and
mouth. Considering the detection of at least two seizures for each patient, the results
showed that under the conditions of a robust detection of the left eye, the right eye and
the mouth (whenever visible), and given an initial position of an assumed existence of a
seizure with a period of approximately 3 times the seizure duration, at least 2 seizures
can be detected with an average precision of 0.86.
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CHAPTER 1

Introduction

Parts of the contents of this chapter have been published in [46, 108, 110, 111, 112].

1.1 Problem overview

Epilepsy is one of the most common disorders of the brain. The estimated number of
children and adolescents in Europe with active epilepsy is 0.9 million (prevalence 4.5–5.0
per 1000) [43]. Diagnosis of this disorder is a challenging task, which is based on the
experience of the attending doctor. It is prone to the subjective or biased judgement
of the neurologist or caring person. Misdiagnosis of epilepsy reaches a rate of 30% [5]
and has tremendous consequences on the quality of life of the wrongly diagnosed pa-
tient, experiencing side effects of medication, unnecessary driving restrictions and serious
employment problems [13].

A widely accepted classification of epileptic seizures [19] and epileptic syndromes [20]
has been established, respectively in 1981 and 1989, by the International League Against
Epilepsy (ILAE) and provides a common language that facilitates epilepsy diagnosis.
These proposals are and will be subject to continuous revisions [7, 35, 36], which underline
the fact that epilepsy diagnosis is characterized by practical, e.g. not being able to give
a recognized syndromic diagnosis to every patient, and dynamic aspects, as seizure types
and syndromes change while advances in neuroscience (e.g. genomics, molecular biology)
provide new information [35]. The special report of the ILAE on this subject presented
a revised terminology and concepts for the organization of seizures and epilepsies on the
basis of the level of specificity, i.e. the diagnostic precision, indicating the importance of
the latter [7]. Moreover, “(. . . ) one-third or more of all epilepsies are the most poorly
understood, and represent perhaps the most fertile area for future research (. . . )” [7].
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This indicates the need for a higher diagnostic precision, which is the main problem being
addressed in this thesis, on the level of analysing and quantifying the ictal phenomenology
(i.e. the clinical image). This is done by applying methods of computer vison, which
include image processing, video analysis, pattern recognition and machine learning.

In this scope focus is being set on automated facial expression analysis for a quantitative
description of epileptic seizures. Facial expressions have been an active research topic in
behavioural science, as they correlate well with self-reported emotion and emotion related
physiology, while expressive changes in the face are a rich source of clues about intra
and interpersonal indicators and functions of emotion [18, 132]. With respect to epilepsy,
facial expressions such as grimacing, starring, laughing etc. as well as face-related motion
patterns, such as lip smacking, eye deviation and eyelid flickering are frequently used in
descriptions of a patient’s clinical image of epileptic seizures [105].

The first step towards such a scheme is the detection of a deviation or anomaly in the
facial expression, which is characteristic to an epileptic seizure. The second step includes
the study of the parameters, upon which the detection scheme achieves its goal, to pro-
duce quantifiable information and new knowledge on the seizure. For the work at hand
absence seizures, which described in depth in Section 1.4, are analysed. They exhibit
a stereotypical expression and occur frequently enough. This allows the generation of an
adequate dataset in size. The focus on a single seizure has proven necessary, primarily for
the reduction of problem dimensionality, as more than 20 different seizure types1 exist
[7] with more than 40 possible either simple or complex facial expression descriptions
[31, 105].

1.2 Motivation

As mentioned above, misdiagnosis of epilepsy reaches a rate of 30% [5], which needs
to be lowered. For a precise diagnosis of epilepsy the assessment of both the clinical
image and the Electroencephalogram (EEG) is required. Although great advances in
the area of EEG analysis have been made [134], the same cannot be stated for the field
of automated analysis of the clinical image of a patient. In current clinical practice the
clinical image is assessed by the neurologist through either witnessing the epileptic seizure
or watching video episodes, from long-term video-EEG recordings, of the patient having
an epileptic seizure, and taking into account the observations delivered by caring persons.
In this framework a reliable video analysis tool provides additional information leading
to correct diagnosis. In many cases, especially if the epileptic events are rare, videos
of a person’s seizure are captured at home with a smartphone or a camcorder. The
automatic analysis of this video as well provides information to be utilized for a correct
diagnosis. Moreover, the new ILAE definition of epilepsy, as it is described in Section 1.3,
demands for at least two seizures being 24 h apart, as well as a seizure recurrence risk

1Although generalized seizures can be categorized, the new concepts in classification of the epilepsies
recommend that focal seizures should be described accurately according to their semiologic features with-
out trying to fit them into artificial categories. This, in connection to the existence of non characterizable
seizures makes it impossible to number all the existing seizure types [6].
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assessment, which sometimes is only possible if documented recordings of longer periods
are available. The latter asks for longer stays in hospitals or epilepsy centres for Video-
EEG recording, which can be shortened if the presence of a seizure can be documented
from video recordings only, taken anywhere.

A further related application of the video analysis capabilities lies within a smart home
monitoring environment. Currently such environments exist, providing home care services
for the elderly and patients with chronic diseases. Digital imaging, interactive webcams
and camera-nursing are about to be established as standard components of a promising
healthcare scheme that aims to extend the time people can live independent in their own
home, thus dealing with the consequences associated to the demographical challenge,
namely the higher needs in care services and the rising health-care expenditures due to a
growing population of the aged [131]. For epilepsy, a smart monitoring environment will
enhance the patient-related behavioural information originating at his/her home2. It will
provide answers to questions regarding seizure frequency, duration, terms of occurrence
(while awake, during sleep or both) and finally it may also serve as an alarming system
for severe seizure episodes [111]. Finally, the extraction of new knowledge considering
characteristics of the clinical image that are not visible by the human eye will contribute
to the research community.

1.3 Epilepsy diagnosis

The word epilepsy originates from the Greek verb “epilambanein” (επιλαμβάνειν), which
means “to seize, possess, or afflict” [84]. “Epilepsy is a disorder of the brain characterized
by an enduring predisposition to generate epileptic seizures and by the neurobiologic,
cognitive, psychological, and social consequences of this condition. (...) An epileptic
seizure is a transient occurrence of signs and/or symptoms due to abnormal, excessive and
synchronous neuronal activity in the brain.” [41]. This conceptual definition, proposed
by the ILAE in 2005 marks the existence of epilepsy if after the first unprovoked seizure
there is a high risk for another seizure. The required risk is hard to define and depends
on each case. Practically this requires the occurrence of a second unprovoked seizure at
least after 24 h [52]. In its latest official report in April 2014 [42], the ILAE considered
the difficulties of defining the required risk and other problems such as the fact that a
diagnosis of epilepsy is not linked to a decision for treatment and vice versa. Moreover the
above definition does not allow a patient to “outgrow” epilepsy. It provides the following
definition [42]:

2In some cases seizures will manifest only at the familiar home environment [8].
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Epilepsy is a disease of the brain defined by any of the following condi-
tions

1. At least two unprovoked (or reflex) seizures occurring more than
24 h apart

2. One unprovoked (or reflex) seizure and a probability of further
seizures similar to the general recurrence risk (at least 60%) after
two unprovoked seizures, occurring over the next 10 years

3. Diagnosis of an epilepsy syndrome
Epilepsy is considered to be resolved for individuals who had an age-
dependent epilepsy syndrome but are now past the applicable age or
those who have remained seizure-free for the last 10 years, with no
seizure medicines for the last 5 years.

In contrast to the commonly employed definition, epilepsy is defined as a disease and not
a disorder. The term disease is more suitable according the the ILAE, since it conveys
a more lasting derangement of normal function, while the term disorder implies a not
necessarily lasting functional disturbance and minimizes the serious nature of epilepsy.
The first item of the new definition includes the past definition. The second item intro-
duces circumstances that, based on the experts, lead to managing patients as if epilepsy
is present after the first unprovoked seizure. This includes e.g. patients after a stroke or
with epileptiform EEG. The defined threshold of 60% is based on epidemiological stud-
ies and provides the freedom to the neurologist to specify the recurrence risk for special
circumstances. The third item links the existence of an epileptic syndrome to epilepsy
even if the recurrence risk is low. The final comment in the definition allows for epilepsy
to “disappear”. The term “resolved” implies that a person no longer has epilepsy, but it
does not guarantee that it will not reappear.

As mentioned above, the decision of treatment is distinct from diagnosis but if decided,
the type of treatment relies heavily on the outcome of the diagnostic process, which
defines the type and dose of antiepileptic drug prescription or the possibility of brain
surgery. The most important questions that a neurologist has to answer when seeing a
new patient with a suspicion of epilepsy are the following:

• Are the seizures of epileptic origin3?

• Do seizures happen when the patient is awake, during sleep or both?

• How frequent are the seizures?

• Based on assessment of the clinical image and the EEG, which type of seizure does
the patient exhibit?

• Does the patient have more than one type of seizure?

• Where is the origin (in the brain) of a focal seizure?

3Many seizures may have other causes than epilepsy, e.g. as a reaction to anesthesia or a strong drug,
or may be caused by narcolepsy, Tourette syndrome, cardiac arrhythmia and other medical conditions.
Other non-epileptic events are psychological in origin and may be referred to as psychogenic seizures.
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These questions are not always easy to answer and require follow-up and/or long-term
monitoring procedures. In order to obtain an assured diagnosis, usually long-term video-
EEG is performed at a health care facility, giving the physician the possibility to ret-
rospectively assess the clinical image recorded on video in synchronization to the EEG.
During this process the neurologist compares any eplieptiform finding (e.g. epileptiform
discharges) in the EEG with the clinical image visible in the video during ictal and in-
terictal phases.

1.4 Absence seizures

Absence seizures are generalized seizures with three subtypes, according to the ILAE
[7]: typical absences, atypical absences and absences with special features (myoclonic
absence and eyelid myoclonia). Typical absences are brief, generalized epileptic seizures
of sudden onset and termination. They present a cluster of clinico-EEG manifestations
that may be syndrome-related, as for example in Childhood Absence Epilepsy, in which
typical absences persist as the only seizure type. Typical absences most frequently occur
between 4 and 9 years of age. Transient impairment of consciousness (severe, moderate,
mild or inconspicuous) is an essential component of typical absences and may be the only
clinical symptom (simple absences). When the transient impairment of consciousness is
combined with other manifestations (clonic, myoclonic, atonic, autonomic components
and automatisms) absences are characterized as complex [106].

Clonic and myoclonic symptoms are particularly frequent at the seizure onset. The most
common are clonic or myoclonic jerking of the eyelids, eyebrows, and eyeballs, including
random or repetitive eye closures and horizontal or vertical nystagmus-like ocular move-
ments. Perioral myoclonias at the corner of the mouth and jerking of the jaw are less
common, while clonic or myoclonic jerks of the head are even less frequent. Tonic com-
ponents may affect extensor or flexor muscles symmetrically or asymmetrically. The eyes
and the head may be drawn backwards (retropulsion) or to one side. Atonic symptoms
are not unusual and may lead to drooping of the head. Autonomic components consist of
pallor and less frequently sweating, flushing, salivation etc. Automatisms usually occur
when cognition is impaired and may be delayed, 4-6 sec after onset. The most common
automatisms are lip licking, smacking, swallowing, chewing, shoulder shrug and mute
speech movements. [104]

The above descriptions reveal the complexity of the problem at hand, but they also
indicate that head motion, eye- and mouth-related motion is heavily involved in absence
seizures.
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1.5 Seizure detection and prediction based on comput-
erised EEG analysis

EEG is with no doubt the most established instrument in analysing epileptic brain ac-
tivity. The first application of EEG in epilepsy was performed in 1934, by Frederic A.
Gibbs and his colleagues Hallowell Davis and William G. Lennox. They reported EEG
findings in epilepsy and states of altered consciousness [138]. Since then, EEG evolved to
play a central role in diagnosis and management of patients with seizure disorders. It is
a convenient and relatively inexpensive way to measure the physiological manifestations
of abnormal cortical activity as a result of epilepsy [128]. Since EEG is an important
component of the epilepsy diagnosis process, a brief overview of the involved methods is
given in this section.

Until recently, seizures were identified only visually by an expert neurologist. However,
this procedure constitutes a laborious task especially in the case of long-term EEG record-
ings. Therefore, automatic computer-based algorithms have evolved in order to shorten
and automate this procedure and many seizure detection methods are reported in the lit-
erature [2, 125, 134]. Most studies present a solution to the problem of seizure detection
in the context of a potential decision support system for the neurologist expert. As there
are many types of seizures, this is sometimes a difficult task, taking into account the
nature, the duration and singularities of each seizure type. When a patient experiences
seizures of different types one needs to categorize ictal EEG periods into specific types,
although some epileptic syndromes are difficult to be characterized as being of specific
category. A more demanding task, which is considered an open scientific question, is the
prediction of a seizure [143], which will obviously improve the quality of life of people suf-
fering from severe seizures. Besides, the perfect understanding of underlying mechanisms
leading to seizures does not jet exist, while and the determination of the exact location
in the brain of the origin of a seizure is a much sought-after problem.

Towards this direction, many EEG analysis algorithms have been proposed. They in-
clude linear methods, which have been widely used, based mainly on synchronization
features, as a primer and straightforward approach. Although these methods can detect
in some cases epileptic seizures, they have some limits if someone takes the nature of
real human EEG signal into account [59, 102]. Under this prism, EEG signals can be
interpreted as the result of a system consisting of highly non-linear elements. The study
of non-linear EEG dynamics can reveal hidden information and provide a more complete
picture of underlying brain processes [40]. As a result non-linear methods have been
used with increased accuracy over the last decade in the area of seizure detection and
prediction.

In order to detect or predict an epileptic seizure, various features are extracted, which are
either thresholded or fed into a classifier, trained to detect the event under investigation.
A summary of the extracted features is given in the following two Subsections. The
most common approach for determining a threshold is the product of a constant and
the standard deviation of the feature space distribution. In terms of machine learning,
classifiers including expert systems [103], decision trees [116], artificial neural networks
[74, 129, 135] and support vector machines [14] have been used.
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1.5.1 Seizure detection

For seizure detection, linear methods have been widely used due to their simplicity and
versatility. One of the simplest linear statistic metrics is the variance of the signal. It offers
an insight into dynamics underlying the EEG and is usually calculated in consecutive
windows. A further linear method is based on the autocorrelation function, exploiting the
periodic nature of seizures. Liu et al. [80], using scored autocorrelation moment analysis,
distinguished EEG epochs containing seizures with an accuracy of 91.4% although the
signals did not present differences in terms of spectral properties. Further linear methods
include linear prediction filters [4] discrete wavelet transform [39], relative fluctuation
index [145] and time-frequency methods [51].

On the other hand, non-linear analysis of EEG has attracted the interest by many research
groups mainly because it incorporates the non-stationary nature of a signal. It perceives
brain mechanisms as part of a macroscopic system in a way to understand its spatio tem-
poral dynamic properties. The revealed underlying information of ongoing EEG leads to
promising results not only in the detection but also in the prediction of upcoming seizures
[130]. Such methods include the fractal dimension [37] and the Lyapunov exponent [48].
Finally, coming from the information theory domain, entropy has been widely used for
automatic seizure detection [2, 74] to address and describe the irregularity, complexity,
or unpredictability characteristics of a signal.

1.5.2 Seizure prediction

The notion of seizure prediction was firstly introduced in 1975 based on spectral analysis of
EEG data collected from two electrodes [140]. In 1981, Rogowski et al. [123] investigated
preictal periods using pole trajectories of an autoregressive model, while Gotman et
al. [47] reported rates of interictal spiking as indicators of upcoming seizures.

In the category of linear methods, Mormann et al. [94] investigated, among other methods,
the statistical moment of the EEG amplitudes in order to detect the pre-ictal state.
Among other linear measures, the power has been used in [137] and the signal variance has
been used in [88] to predict seizure onset. Further approaches include Hjorth parameters
[107], accumulated energy [79] and autoregressive models [17].

Non-linear approaches for seizure prediction include the Lyapunov exponent [53], dynam-
ical similarity index [75], correlation dimension [85], entropy [147] and phase synchroniza-
tion [93].

1.6 Seizure detection and analysis based on computer
vision

This Section presents a systematic documentation of research related to the main subject
of this thesis. Its purpose is to report on the methodology, achievements and challenges
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of existing approaches in vision-based human motion analysis, motion detection, as well
as seizure recognition in epilepsy with a strong focus on utilized methodologies and as-
sociated feature sets. The following questions are addressed:

• What is the objective behind each reported work?

• Which technological/algorithmic tools are applied?

• Which features are being analysed?

• What constraints or assumptions are being set?

• What is the quality of the results so far obtained?

1.6.1 Methodology

The period of interest for this review spans from 2000 to 2014 (to date). The follow-
ing search string was used in the SCIRUS4 search engine as an initial search action in
July 2010: human* AND epilepsy AND (video OR vision) AND (motion OR movement
OR seizure) AND (analysis OR detection OR recognition) ANDNOT (“case report” OR
animal* OR mri OR fmri). The results were filtered based on their title and abstract.
Additionally searching of publications by the same authors of initially identified rele-
vant papers, following references, and using the “cited by” function whenever available
by the search engine resulted to a total of 28 articles from journals and conferences. In
classifying the available literature, the functional taxonomy presented in the 2001 sur-
vey by Moeslund and Granum [91], dealing with vision-based human motion capture,
has been taken into account. It distinguishes between initialization, tracking, pose es-
timation and recognition. This taxonomy was however rearranged to fit the purposes
of this review. Specifically, the articles here are first grouped into marker-based and
marker-free methods (cf. Subsection 1.6.4). Within each group, methods dealing with ei-
ther motion detection, analysis or recognition are then separately described, although for
marker-based approaches no explicit motion detection tasks were reported. Subsequently
for each subgroup references to initialization and tracking are made within the text if
available. Table 1.1 shows an overview of all included publications sorted according to
type (i.e. marker-based and marker-free) and year. It also summarizes the algorithms
each study presents and the respective methods that were applied for the evaluation of
results.

1.6.2 Vision-based human motion detection, analysis and recog-
nition of epileptic seizures

Research so far can be divided into three groups, each dealing with motion detection,
analysis or recognition. Regarding motion detection, there are efforts for normal and
seizure-like (not strictly epileptic) motion detection with the aim of developing intelligent
patient monitoring (e.g. alarm triggering) systems, for which the reliable detection of the

4http://www.scirus.com/, Accessed 2011
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onset of a seizure or any abnormal movement is important [118]. Moreover, motion detec-
tion can be used for data reduction purposes by detecting and discarding video sections
that do not contain information relevant to human motion. Although motion detection is
implicitly a part of any study dealing with motion analysis, for this review, only publica-
tions with detection of movement as their main objective were assigned to the first group.
With regard to motion analysis, the second group, research focuses on extracting objec-
tive information which quantitatively describes a patient’s motoric pattern for facilitating
diagnosis and enhancing treatment, while offering a refinement of the characterization of
motion. Finally, in terms of motion recognition, the third group, the identification of
specific seizure types and the distinction between epileptic and non-epileptic motion is
being explored in the corresponding studies. Performance and robustness of this task
is crucial since it provides the main functionality of a decision support system with sig-
nificant clinical utility in supporting the diagnosis and management of epilepsy. Hence
generalization of such a system to the whole spectrum of epileptic syndromes is a major
challenge towards an integrated health care scheme for this disease.

1.6.3 Features for motion detection, analysis and recognition of
epileptic seizures

Features are measurable properties of the phenomenon being observed. They enable
the quantification and subsequent classification of an observation and therefore should
be discriminating and independent [11]. The chosen features for vision-based human
motion analysis are usually physical quantities such as displacement (motion trajectories),
velocity, area, angle, angular speed and duration. The time-dependent signal derived from
these features is usually further decomposed into parameters such as the variance of time
intervals between subsequent peaks or the number of peaks per time unit. The following
features are utilized so far in studying epilepsy-related motion, based on video:

The most commonly analysed feature is the motion trajectory, the path of a moving ob-
ject through space as a function of time. In marker-based methods x- and y-components
of 2D marker trajectories [76] and derivatives, like the relative amplitude as a difference
to first frame [144], the distance of selected markers to a reference marker [23, 16] and
the power spectrum [16, 89, 136, 144] are often used. Recently, an approach using 3D
trajectories was proposed, measuring the Euclidian distance of a marker position in each
frame to the position in the first frame [27]. The dominant frequency and the accu-
mulated displacement of arm motion are used in motion recognition [82]. For motion
analysis without markers, trajectories, also called “temporal motor activity” signals, are
extracted by automatic tracking of either manually or automatically selected anatomical
sites [60, 65, 69, 97]. The location of selected anatomical sites is usually projected into the
horizontal-vertical plane in order to achieve data reduction from the 3D to the 2D space.
Regarding seizure recognition, the time-dependent projections of motion trajectories are
the basis for the extraction of further features [69]: (a) The variance of the time intervals
between any two subsequent peaks or transients. This feature is used for estimating the
periodicity of the movements based on the observation that rhythmic movements would
produce variances close to zero. (b) The energy ratio of the autocorrelation sequence
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Table 1.1: Publications on vision-based motion detection, analy-
sis and recognition of epileptic seizures from 2000 onwards, sorted
according to category (maker-based or marker-free) and year.

Author Year Seizure
type, mo-
tion type

Category Dime-
nsions

Methods for main objective Features Evaluation

Motion detection Motion analysis Motion recogni-
tion

Li et
al. [76]

2002 Epileptic
seizures,
not speci-
fied

Marker-
based, 22
markers

2D - Thresholding;
2D ballistic
model; Kalman
filter; Greedy
algorithm

- Motion trajectory;
Speed

Based on graphi-
cal visualization

Cunha et
al. [23]

2003 Epileptic
seizures,
not speci-
fied

Marker-
based, 30
markers

2D - Thresholding;
2D ballistic
model; Kalman
filter; Greedy
algorithm; com-
mercial tool;
Reference mark-
ers;

- Distance to refer-
ence markers

Based on graphi-
cal visualization;
Comparison to
manual tracking

Wagner
et
al. [142]

2004 Frontal
and tem-
poral lobe
epilepsy

Marker-
based, 2
points were
tracked

2D - Manual tracking
with a commer-
cial tool as in [31]

- Angular speed and
duration of head
movements. Du-
ration from seizure
onset to occurrence
of movements

Statistical anal-
ysis; Mann-
Whitney-
Wilcoxon-test

Meier et
al. [89]

2005 Automotor
and hy-
permotor
seizures

Marker-
based

2D - Manual tracking
with a commer-
cial tool as in [31]

Thresholding Relative wrist-
trunk speed; Rela-
tive wrist extend;
Power spectrum

Statistical analy-
sis

Ulowetz
et
al. [136]

2005 Automotor
and hy-
permotor
seizures

Marker-
based

2D - Manual tracking
with a commer-
cial tool as in [31]

Thresholding Relative wrist-
trunk speed; Wrist
extend; Trunk
extend; Power
spectrum

Statistical analy-
sis
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O’Dwyer
et al. [99]

2005 Temporal
lobe
epilepsy

Marker-
based

2D - Manual tracking
(cf. [98])

- Angle, duration,
angular speed of
head movement

Statistical anal-
ysis; Mann-
Whitney-
Wilcoxon-test

O’Dwyer
et
al. [100]

2007 Temporal
lobe
epilepsy

Marker-
based, 2
points were
tracked

2D - Manual tracking
with a com-
mercial tool:
MaxTraQ x.2,
Innovation
Systems Inc.
(cf. [98])

- Angle, ipsilateral
and contralateral
angular speed.
Duration of head
movement

Statistical anal-
ysis; Mann-
Whitney-
Wilcoxon-
test; Pearson’s
product-moment
correlation;
frame-by-frame
inspection

Cunha et
al. [24]

2009 Epileptic
seizures,
not speci-
fied

Marker-
based

3D - Commercial sys-
tem

- Not specified Comparison to
previous 2D
method [23]

Yang et
al. [144]

2009 Temporal
lobe
epilepsy

Marker-
based

2D - Manual marker
coordinate selec-
tion

- Power spectrum;
Relative amplitude

Statistical analy-
sis (t-test); Dis-
tal vs. proxi-
mal limb ampli-
tude ratio; Shoul-
der vs. abdomi-
nal amplitude ra-
tio
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Chen et
al. [16]

2009 Suppleme-
ntary
motor area
seizures of
frontal lobe
epilepsy;
Tempo-
ral lobe
epilepsy;
Psychogenic/non-
epileptic
seizures

Marker-
based

2D - Manual marker
coordinate selec-
tion

- Power spectrum;
Relative amplitude

Statistical anal-
ysis (one-way
ANOVA); Distal
vs. proximal
limb amplitude
ratio; Shoulder
vs. abdominal
amplitude ratio

Cunha et
al. [25]

2009 Automotor
and hy-
permotor
seizures

Marker-
based, 3
markers

2D - Thresholding;
2D ballistic
model; Kalman
filter; Greedy
algorithm

Thresholding Wrist extent;
Maximum; Aver-
age wrist motion
velocity

Statistical anal-
ysis; Mann-
Whitney-
Wilcoxon-test

Cunha et
al. [26]

2010 Upper
limb au-
tomatisms,
tempo-
ral and
frontal lobe
epilepsy

Marker-
based

2D Manual tracking
with a commer-
cial tool as in [99]

- Duration of au-
tomatisms in
relation to total
seizure duration;
Movement speed;
Total distance
traveled of marked
points during a
seizure; Dominant
frequency

Statistical analy-
sis

Mirzadja-
nova et
al. [90]

2010 Upper
limb au-
tomatisms,
tempo-
ral lobe
epilepsy

Marker-
based

2D - Manual tracking
with a commer-
cial tool

- Wrist extent; Dom-
inant frequency,
Maximum and
average speed;
Accumulated dis-
placement during
a seizure; Seizure
duration

Statistical analy-
sis

38



Rémi et
al. [121]

2011 Automotor
and hy-
permotor
seizures

Marker-
based

2D - Thresholding;
2D ballistic
model; Kalman
filter; Greedy
algorithm; as
in [76], [23]

Thresholding Trunk, wrist
movement ex-
tent; Trunk, wrist
movement speed

Statistical analy-
sis

Rémi et
al. [122]

2011 Frontal
and tem-
poral lobe
epilepsy

Marker-
based

2D - Automatic and
manual tracking;
Commercial
system

- Time between clini-
cal onset and head
turning; Duration;
Angular speed

Statistical anal-
ysis; Mann-
Whitney
Wilcoxon-test

Lu et
al. [82]

2011 Epileptic
seizures,
not speci-
fied

Marker-
based
(colored
pajama)

2D - HSV modeling
and Gaussian
mixture mod-
els for limb
segmentation;
Boundary point
detection; Edge
detection

Thresholding Motion trajecto-
ries; Arm orienta-
tion; Accumulated
displacement;
Dominant fre-
quency

Graphical visual-
ization

Cunha et
al. [27]

2012 Simulated
motor
paradigm;
Complex
motor
seizure

Marker-
based

3D - Commercial sys-
tem

- Euclidian distance Comparison to
previous 2D
method [23]
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Karayian-
nis et
al. [65]

2001 Neonatal
myoclonic;
Focal
clonic;
Random
movement

Marker-
free; Holis-
tic view

2D - Sub-band de-
composition;
Non-linear fil-
tering (median);
Segmentation
for gaining the
pixel area of
moving body
parts, Kanade-
Lucas-Tomasi
for site selection
and tracking for
gaining the mo-
tion trajectories

- Pixel area of mov-
ing body parts
(average, relative
speed), Motion
trajectories

Frame-by-frame
inspection

Karayian-
nis [60]

2002 Neonatal
myoclonic;
Focal clonic

Marker-
free; One
site/body
part

2D - Sub-band de-
composition for
Pixel area of
moving body
parts; Kanade-
Lucas-Tomasi
for gaining the
motion trajecto-
ries

- Pixel area of mov-
ing body parts, mo-
tion trajectories

Frame-by-frame
inspection

Karayian-
nis et
al. [61]

2003 Neonatal
myoclonic;
Focal clonic

Marker-
free; One
site/body
part

2D - Optical flow - Max. velocity
(maximum veloc-
ity)

Frame-by-frame
inspection

Karayian-
nis et
al. [64]

2003 Neonatal
myoclonic;
Focal clonic

Marker-
free; One
site/body
part

2D - Deformable
motion model
for tracking
compared to
translational
motion model

- Motion trajectories Frame-by-frame
inspection
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Liu et
al. [81]

2004 Synthetic
data
and real
epilepsy
monitoring
video

Marker-free 2D Markov random
field theory;
Mean field
theory

- - Change detection
maps

Frame-by-frame
inspection

Karayian-
nis et
al. [67]

2004 Neonatal
myoclonic

Marker-
free; Holis-
tic view
(all pixels
above a
level)

2D - Optical flow (dis-
crete formula-
tion compared to
Horn-Schunck);
Thresholding for
gaining the pixel
area of moving
body parts

- Pixel area of mov-
ing body parts

Frame-by-frame
inspection

Karayian-
nis et
al. [66]

2004 Neonatal
myoclonic

Marker-
free; One
site/body
part

2D - Predictive block
matching for site
tracking

- Motion trajectories Root-mean-
square error and
frame-by-frame
inspection

Sami et
al. [126]

2004 Neonatal
myoclonic;
Focal
clonic;
Random
movement

Marker-
free;
Multiple
sites/body
parts

2D - Optical flow for
site selection;
Predictive block
matching for
tracking

- Motion trajectories Frame-by-frame
inspection

Karayian-
nis et
al. [70]

2005 Neonatal
myoclonic;
Focal
clonic;
Random
movement

Marker-
free; Holis-
tic view
(all pixels
above a
level)

2D - Optical flow;
Thresholding for
gaining the pixel
area of moving
body parts

- Pixel area of mov-
ing body parts

Frame-by-frame
inspection

Karayian-
nis et
al. [72]

2005 Neonatal
myoclonic

Marker-
free; One
site/body
part

2D - Translational
motion model
for tracking

- Motion trajectories Frame-by-frame
inspection
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Karayian-
nis et
al. [71]

2005 Neonatal
myoclonic,
focal clonic;
random
movement

Marker-
free; One
site/body
part

2D - Fractional and
generalized frac-
tional block
motion model
for tracking
compared to
translational
and deformable
motion models

- Motion trajectories Root-mean-
square error and
frame-by-frame
inspection

Karayian-
nis et
al. [62]

2005 Neonatal
myoclonic;
Focal
clonic,
random
movement

Marker-
free; One
site/body
part

2D - Frame differenc-
ing; Non-linear
filtering (me-
dian); Cluster-
ing; Morphologi-
cal filtering

- Pixel area of mov-
ing body parts

Frame-by-frame
inspection

Karayian-
nis et
al. [69]

2005 Neonatal
myoclonic;
Focal clonic

Marker-
free; One
site/body
part

2D - Frame differenc-
ing; Non-linear
filtering (me-
dian); Cluster-
ing; Morphologi-
cal filtering and
optical flow plus
thresholding
for gaining the
pixel area of
moving body
parts; Predictive
block matching
and block mo-
tion tracking
for the motion
trajectories

Feed-forward
neural networks

Pixel area of mov-
ing body parts
(Variance of time
intervals, energy
ratio, maximum
peak duration,
number of peaks);
Motion trajectories
(Energy ratio,
maximum peak
duration, variance
of time intervals,
number of extrema)

Scatter plots,
Fisher ratio,
Generalized
Fisher ratio for
feature selec-
tion; Sensitivity,
specificity for
recognition
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Karayian-
nis et
al. [68]

2005 Neonatal
myoclonic;
Focal
clonic;
Random
movement

Marker-
free;
Multiple
sites/body
parts

2D - Optical flow
for site selec-
tion; Adaptive
block matching
for tracking
compared to
Kanade-Lucas-
Tomasi (trans-
lational motion
model)

- Motion trajectories Root-mean-
square error and
frame-by-frame
inspection

Karayian-
nis et
al. [73]

2006 Neonatal
myoclonic;
Focal
clonic;
random
movement

Marker-free 2D - Optical flow with
direct threshold-
ing; Clustering
of velocities and
clustering of mo-
tion model pa-
rameters.

Feed-forward
neural networks

Pixel area of mov-
ing body parts
(energy ratio,
variance of time in-
tervals, maximum
peak duration,
10% spectral power
frequency)

Scatter plots for
feature selec-
tion; Sensitivity;
Specificity

Karayian-
nis et
al. [63]

2006 Neonatal
myoclonic;
Focal
clonic;
Random
movement

Marker-free 2D - Frame differenc-
ing; Non-linear
filtering (me-
dian), Vector
clustering;
Morphological
filtering

- Pixel area of mov-
ing body parts
(Variance of time
intervals, energy
ratio, maximum
peak duration)

Scatter plots;
Fisher ratio;
Generalized
Fisher ratio;
t-test

Cuppens
et al. [28]

2008 Simulated
video for
normal
sleep move-
ment and
seizure-like
movement

Marker-free 2D - Optical flow - Max. velocity (Av-
erage of 0.06 % of
the highest magni-
tudes)

Movement vs.
non-movement
ratio; Absolute
value
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Cuppens
et al. [29]

2010 Epileptic
convolution
during
night;
normal
movement

Marker-free 2D - Optical flow Global/ variable
threshold

Max. velocity (Op-
timal percentage of
the averaged high-
est motion vector
magnitudes)

Movement vs.
non-movement
ratio; ROC-
curves; sensi-
tivity; positive
predicted value

Cuppens
et al. [30]

2010 Not speci-
fied epilep-
tic events
during
night

Marker-free 2D - Optical flow Threshold Max. velocity
(mean of the
magnitude of the
largest motion
vectors)

Three-fold cross
validation for
determining the
optimal values
for the number of
vectors and the
threshold

Ntonfo et
al. [96]

2012 Neonatal
seizures

Marker-free 2D - Frame differenc-
ing

Threshold Average motion
signal; Difference
between normalised
autocorrelation and
Yin estimator

Preliminary re-
sults; 10 video
recordings

Ntonfo et
al. [97]

2012 Neonatal
seizures

Marker-free 2D - Optical flow for
location of point
with maximum
velocity; Tem-
plate matching
and optical
flow for track-
ing; DBSCAN
clustering

- Geisture trajec-
tories: length,
location, angle,
speed

Preliminary re-
sults; Only two
videos; Car-
dinality of a
cluster
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Kalitzin
et al. [58]

2012 Major
motor
seizures,
clonic and
tonic-clonic
seizures

Marker-free 2D - Optical flow;
Principal com-
ponents extrac-
tion through
the maximum
eigenvalue of
the covariance
matrix; wavelets
responses at var-
ious frequencies
in a time window

Threshold Global properties
of the velocity field:
rates of rotation,
translation and
shear as primary
features; Final
feature: “spectral
contrast”

Statistical sep-
aration test:
non-parametric
Kolmogorov-
Smirnov test

Pisani et
al. [114]

2014 Neonatal
seizures
of clonic
type; Other
seizure
types;
Noise

Marker-free 2D - Background-
foreground
segmentation;
Erosion

Thresholding Average motion sig-
nal
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which is calculated as the ratio of the energy contained by the last 75% of the samples
of the autocorrelation sequence to the energy contained by the first 25%. It is a measure
for the rhythmicity of motion manifested as quasiperiodic peaks [69]. (c) The maximum
peak duration as a quantitative measure of the speed of the movement. (d) The number
of peaks per time unit, e.g. by shifting a time window counting the peaks over the entire
sequence.

A further common feature is the velocity, as well as statistical quantities (average, maxi-
mum) derived from it [25]. This feature is being employed for motion analysis in marker-
based methods [76, 121], alongside with the relative velocity between two markers (e.g.
the relative wrist-trunk speed) alongside with the relative velocity between two markers
[89, 136]. In marker-free approaches the velocity feature is also used for motion analy-
sis and is obtained from the velocity vector-fields computed, e.g. by optical flow, from
successive frames of the video. The so-called “temporal motion velocity” signal, used
in [61] consists of the maximum velocity over time of any pixel or pixel block in a given
region of each frame. The region is defined as the region that contains the moving body
part. Instead of defining a region and calculating the maximum velocity, the average of
a percentage of all maximum velocities can be calculated [28, 29]. For describing the
relative speed of motion, the relative speed signal is obtained by multiplying the areas of
the moving parts by the distance covered by them between adjacent frames [65].

Some marker-based techniques also use the area change over time of a rectangle con-
taining a marker trajectory (maximum in all directions) for motion analysis. It is called
the “movement extent”, e.g. of the wrist [25, 89] or the trunk [136]. During motion
analysis in marker-free applications, the so-called “temporal motion strength” signals are
extracted from video sequences by measuring the pixel area of the moving body parts
within successive frames [60, 65]. The temporal area change signal is obtained by aver-
aging areas containing motion whose centroids are present within a small radius between
successive frames, in order to prevent contribution of spurious noisy patches. The area
can also be regarded as the area containing all pixels with velocities exceeding a certain
threshold [67, 70] or as the minimum of clustered displacement areas [62, 63]. Other
methods for calculating the area include clustering of the pixel velocities or clustering
the model parameters obtained by fitting a motion model to the pixel velocities [73]. For
seizure recognition, the time-dependent area change signal is the basis for the extraction
of further features, i.e. the features (a) – (d) as described in first paragraph plus the 10%
spectral power frequency, by determining the upper band containing the 10% of the total
spectral power of the power spectral density. Seizures containing isolated sharp peaks
generate high values of the upper band (slow reduction of the power spectral density)
while seizures with many (near periodic) peaks produce low values (fast reduction of the
power spectral density) [63, 69, 73].

One more feature is the angle, measured between lines connecting tracked points [99]
and/or reference lines, as well as the angular speed. These features are used in [98,
99, 100, 142], along with the duration of movements and duration from seizure onset to
occurrence of movement for an approach where the tracked points are labeled manually,
supported by a software tool. Duration measures are often based on EEG or clinical
onset and EEG end, as reported in [90].
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Finally, a feature also used for marker-free motion detection, the “change detection maps”
are 2D binary random fields whose optimal configuration is being sought in terms of
applying Markov random field theory [81].

1.6.4 Methods and algorithms: marker-based and marker-free
approaches

Vision-based human motion analysis and seizure recognition in epilepsy can be divided
into two main categories, which consider marker-based and marker-free approaches. Mar-
ker-based approaches use one or more cameras that track easily detectable (e.g. infra-red)
objects/markers of various shape and size. These markers are placed on motion relevant
positions of the human body, like joints or extremities. Marker-free methods rely solely
on the content of image sequences taken by one or more video cameras. The video is
usually analysed with automatic methods. Some authors perform tracking of motion
relevant points by manually labelling such positions in the video. Since markers are not
physically attached, it is theoretically a marker-free approach, although it is actually
closer related to marker-based systems, which are based on tracking points, and since
automatic image analysis is not performed, papers using this method have been assigned
to the group of marker-based approaches.

Marker-based approaches

Marker-based systems have been utilised for motion analysis and motion recognition in
epilepsy. As mentioned in Subsection 1.6.2, motion analysis offers a quantitative descrip-
tion of a patient’s kinematic image, while in motion recognition the classification of a
motion pattern to a limited number of classes (e.g. seizures) and the interpretation of
movement over time is the kernel of interest.

a) Motion analysis

Li et al. [76] introduced a marker-based approach for quantifying motion of epileptic pa-
tients using 22 infra-red (IR) reflecting markers, symmetrically positioned over the whole
body. In an initialization phase the marker pixel patches were segmented by calculat-
ing a threshold using an entropy measure. Subsequently, the centroids of these patches
were calculated and the markers were labeled manually. The movement of a marker was
modeled using a 2D ballistic model, whose initial parameters were calculated from the
first three frames and were employed in a Kalman filter for predicting the positions of
the labeled markers in every next frame. For estimation of the correspondence between
successive markers a distance criterion optimization algorithm between the predicted and
the measured position was used. In coping with complexity of the correspondence algo-
rithm, the authors implemented a modified version of a non-iterative Greedy algorithm
where the normalized distance is used as a cost function. The motion (in pixels) of the
markers in the x- and y-direction and the velocity (pixels/s) were graphically displayed
in form of tracings mimicking the EEG. The velocity was also visualized as a 2D color-
coded graph on a human silhouette. The tracking method revealed some weaknesses
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during marker occlusions due to non-optimal patient position (e.g. sideways). Based on
the same methodology and in combination with a commercial tool, Cunha et al. [23] used
8 additional IR-markers in the scene for providing distance calibration and a reference
for the measurements (maximum displacement measurement error: 8%). The distance of
relevant markers to a reference marker was analysed graphically. Similar methods were
used for extracting the timing, duration and speed of head movement in a clinical study
analysing differences in ictal head turning in FLE and TLE [122], revealing significant
differences between the two patient groups. Furthermore, based on the above methods,
automatisms in TLE and FLE were studied in [26, 90] by means of the same features,
including the dominant frequency.

Head movements in patients with temporal lobe epilepsy (TLE) have been analysed by
O’Dwyer et al. [98, 99, 100] in order to evaluate the lateralizing significance. The motion
of a marker positioned on the nose in relation to a reference marker on the trunk was
analysed. Primarily, the angle between the straight line connecting both markers and the
horizontal image axis was investigated. From this parameter, the ipsilateral and the con-
tralateral angular speed and duration were extracted and statistically analysed. Similar
comparisons between ipsilateral and contralateral head movements were also carried out
in patients with TLE and frontal lobe epilepsy (FLE) and differences in the movement
characteristics and seizure evolution were found [142].

The set-up for marker-based recording, as described by Cunha et al. [23] was adopted
by Yang et al. [144] and Chen et al. [16] using a slightly revised marker positioning
system with 20 markers. Marker coordinates were collected manually for each marker
on each frame. Yang et al. [144] analysed the movement trajectories in automatisms
of TLE and FLE. They investigated distal vs. proximal limb motion ratios, shoulder
vs. abdominal motion ratios, and the frequency and relative amplitude (difference to
the first frame) of the trajectories. Statistically significant differences (t-test, p<0.05) in
distal vs. proximal limb motion ratios and shoulder vs. abdominal motion ratios were
found between patients with TLE and FLE. Using the same features, Chen et al. [16]
analysed the movement trajectories of hyperkinetic, tonic posturing, fencing posture and
tonic head turning seizures of the supplementary motor area and compared them with
temporal lobe seizures and psychogenic non-epileptic seizures. One-way ANOVA revealed
statistically significant (p<0.05) differences in average amplitude and distal vs. proximal
limb motion ratios.

Cunha et al. [22, 24] reported on a 3D marker-based motion quantification system for
epileptic seizures within the “MovEpil3D” project by synchronizing a video-EEG device
with a commercial movement tracking system (Vicon, Oxford, UK) using 4 high frame-
rate cameras offering higher accuracy. In [27] a comparison to the previous 2D method
[23] is performed for two cases: a) a simple simulated motor paradigm and b) a complex
epileptic seizure, characterized by a movement of both legs. The calculation of the error
rate was based on the Euclidian distance between the position of each marker in each
frame and its respective position in the first frame. The 3D method showed its superiority,
especially for motion patterns perpendicular to the 2D plane. Mean error rates of the 2D
method for the complex epileptic seizure varied from 22.4% in the best case and 161.7%
in the worst case, with regard to different distance reference measures.
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b) Motion recognition

Based on the initial tracking method presented by Li et al. [76], the classification of
automotor and hypermotor seizures was investigated in [25] using three markers, one
on the trunk and one on each wrist. A joint-model of the trunk-arm-wrist segment for
compensating the trunk movement was used for calculating the wrist extend (area change
over time of a rectangle containing a marker trajectory) and the maximum and average
wrist motion speed. These parameters were statistically analysed (Wilcoxon rank sum
test) and thresholds for classification were set. The results showed that thresholding the
wrist extend and the maximum speed yields accuracies of 100% and 90% respectively,
while the average wrist speed could not provide a clear separation. Similar features
including the relative wrist-trunk speed, power spectra of movements and the extend of
trunk had been evaluated at first for their capability in differentiating automotor from
hypermotor seizures, resulting in statistically significant differences between p<0.001 and
p<0.2 [89], and a sensitivity above 65% with a specificity greater than 70% (unknown
set) [136]. The approach described above was further investigated in [121], supporting
the applicability of the speed and extend of wrist and trunk movement for identifying
hyperkinetic seizures through thresholding.

Another type of marker-based method was presented by Lu et al. [82]. Although the
authors titled the method as markerless they utilized a coloured suit worn by the pa-
tient in bed in order to facilitate the tracking procedure, which implies a certain degree
of marking. For initialization, the user indicates two colors/regions for the foreground
(arms) and one background color/region. Body parts are detected using a coarse-to-fine
approach [56]. In the coarse phase the foreground is segmented based on hue, saturation,
value (HSV) color space modelling, which returns two foreground, one background and
one gray mask through thresholding median values. Forming the union of the respective
masks produces regions for the foreground and background. The fine segmentation stage
performs foreground-background classification using two Gaussian mixture models, one
for each class (GrabCut algorithm [57]), and keeping only one connected region with the
largest normalized area for each foreground color. For motion analysis, the trajectories
(position) of shoulders over time are estimated by using domain knowledge for identifying
the body parts and subsequently calculating an average body part position. The orien-
tation (angle) of the arms in each frame is also estimated by using edge detection. The
analysis of these features was done graphically (plotting). Out of these signals, two fea-
tures, namely the accumulated absolute displacement and the dominant frequency, were
calculated for 5 sec. windows in order to design a seizure detector. The detection was
based on selecting suitable thresholds (no further detection performance stated).

Marker-free approaches

As a first step prior to motion analysis and recognition, marker-free approaches have also
been applied for motion detection. In relation to epilepsy, this means the detection of
seizure-like motion that e.g. could trigger an alarm during monitoring of a patient (see
also Subsection 1.6.2).

a) Motion detection
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Cuppens et al. [28, 29, 30] applied optical flow for detecting movement of epileptic pa-
tients during sleep. In a preprocessing step, histogram equalization was performed. The
authors used the average of a portion of all velocities calculated using the Horn-Schunck
implementation for optical flow [40] in order to distinguish between epochs with- and
without movement via thresholding. Initially, the effects of variations in spatial resolu-
tion, frame-rate, video compression, illumination and camera point-of-view were studied
using videos of an adult simulating epileptic and non-epileptic movement [28]. In that
study 0.06% of the highest velocities were averaged with the purpose of achieving noise
rejection. A measure for comparison was the ratio of the maximum average velocity in a
movement epoch to the maximum average velocity in a non-movement epoch (MNMR).
In a second study [29] the authors determined the optimal threshold for detecting move-
ment epochs as well as the optimal percentage of the averaged highest motion vector
magnitudes. A global threshold and a variable threshold as a multiple of the standard
deviation added to the mean of a non-movement epoch at the start of each sequence were
analysed against the percentage of magnitudes. The MNMR, the sensitivity and the pos-
itive predictive value (PPV) were evaluated in a three-fold cross validation at a labeled
dataset of 11 sequences of 8 epileptic patients by plotting ROC-curves and examining the
maximum PPV at a sensitivity of 1. The variable threshold returned better results than
the global, giving a PPV between 0.86 and 1 at a sensitivity of 1.

Having the same objective as Cuppens et al. [28, 29], namely the detection of local motion
or otherwise called “change detection”, Liu et al. [81] applied Markov random field theory
(MRF) in order to avoid thresholding. Images were modeled as MRFs. The change
detection problem was deduced to the estimation of the optimal configuration of a 2D
binary random field, called the change detection map. For finding the optimal solution,
using the maximum a posteriori criterion, a mean field theory approach was adopted.
The problem was subsequently solved in an iterative manner minimizing the energy at
each pixel until convergence was reached. The algorithm was tested on a synthetic image
sequence, reporting a very low error rate (rate of pixels with false labels to all pixels),
as well as on a segment of a real epilepsy monitoring video reporting accurate movement
detection.

b) Motion analysis

Karayiannis et al. [61] used optical flow to extract temporal motion strength signals
for motion analysis purposes. Initially, three different methods for the computation of
optical flow, namely the block motion model method, the Horn-Schunck method and a
modified Horn-Schunck method using median filtering, were tested successfully on two
videos showing a myoclonic and a focal clonic seizure of an infant, with the objective
of obtaining quantitative information regarding the seizure [61]. The authors further
proposed in [67] a discrete formulation of the optical flow that relied on the discrete
approximation of the quadratic functionals describing the smoothness constraint, relying
on the squared Laplacian operator as mentioned by Horn-Schunck [40]. Motion strength
signals of a specific region were used for comparison to the regular Horn-Schunck-method
in videos of neonatal seizures. Errors in the computation of the optical flow resulted in
abrupt fluctuations of the area of the moving body part, a criterion according to which
the proposed modified method produced better results. A further implementation of
the optical flow was tested in [70], by forming the smoothness constraint in terms of
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a second order spline functional and using various masks for the approximation of the
Laplacian, utilized in solving the minimization problem. This implementation showed a
lower sensitivity of the motion strength signals to the threshold used for their extraction in
comparison to the Horn-Schunck-method. Considering the optical flow computation the
authors state that its performance is mainly affected by the specific smoothness constraint
employed. The velocity field estimated by optical flow was used by Karayiannis et al. [73]
in order to calculate the temporal motion strength signals also by a) clustering of the
pixel velocities and b) clustering the model parameters obtained by fitting a motion
model to a block of pixel velocities, thus providing the basis for assigning pixels of each
frame to either the background or to a moving body part. Optical flow in the Horn-
Schunck implementation together with morphological filtering was furthermore used for
selecting anatomical sites for extraction of motor activity signals from video recordings
of neonatal seizures [68, 126]. The areas in each frame containing moving body parts
were segmented by thresholding the magnitudes of the velocity vectors, thus producing
velocity patches. Spurious patches were reduced by employing morphological opening
and closing operations [68]. Initially, the location selected for tracking was a) the center
of the velocity patch with the largest area and b) the center of the velocity patch with
the maximum average velocity [126]. Due to the problem of losing track of sites in
homogenous areas of a moving body part, texture analysis was performed, based on the
concept of entropy, which was in turn defined in terms of a co-occurrence matrix [68]. The
final selected anatomical site was located at the point with the highest texture within the
initial velocity patch. This method was applied within the same study for additionally
selecting anatomical sites of multiple moving body parts, though a labeling procedure was
necessary for eliminating overlapping velocity patches. Another study, using optical flow,
is described by Kalitzin et al. [58]. From the velocity fields, global motion parameters,
i.e. the real and imaginary part of the three affine transformation rates (translation,
rotation and shear), were initially extracted. The next step included principal components
extraction, which were represented through the maximum eigenvalue of the covariance
matrix of the wavelet responses at various frequencies in a time window. For the detection
a feature called the “spectral contrast” was used. It represents the relative difference
between the sum over the frequency of the maximum Eigenvalues, weighted by a spectral
weight function, once with and once without its sign. The spectral weight function
was heuristically defined in order to highlight the seizures, which were of clonic and
tonic-clonic type (72 seizures in total). The final evaluation was based on statistical
separation tests (non-parametric Kolmogorov-Smirnov tests) and a simple detector based
on thesholding. The results showed a sensitivity of 95%.

A further approach for motion analysis is based on spatiotemporal sub-band decomposi-
tion, which was performed by Karayiannis et al. [60, 65] in order to utilize the redundancy
between adjacent frames and within each frame for identifying the moving body parts
of an infant during a seizure. In this case, 11-band spatiotemporal sub-band decomposi-
tion was performed for extracting temporal motion strength signals. The first step, the
temporal decomposition split the video signal into a low-pass (LP) temporal and a high-
pass (HP) temporal sub-band using a Haar filter. In a subsequent spatial decomposition
phase, each temporal sub-band was passed through an LP and HP filter along the hor-
izontal dimension and each of the resulting sub-bands was passed again through an LP
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and HP filter along the vertical dimension. For the spatial decomposition, a Daubechies
wavelet filter was used. Each HP and LP operation in the spatial decomposition process
was followed by a down-sampling by a factor of two, since the half of the frequencies
has been removed. Motion was detected and measured on the sub-band that contained
the LP spatial components in both horizontal and vertical dimensions of the initial HP
temporal sub-band, where a median filter was employed for removing spurious patches.
The filtered sub-band was clustered into foreground and background using a k-means
algorithm. The area of the foreground patches was used for the estimation of the tem-
poral motion strength signals. The authors comment that although limb motion could
be traced successfully, the experimental results indicated that the segmented frames may
still contain a few spurious patches due to noise. Further processing in terms of con-
sidering only those areas, whose centroids were present within a small radius between
successive frames, was necessary. Frame-by-frame inspection indicated that myoclonic
seizures and focal clonic seizures can be distinguished from non-seizure events, such as
tremor and posturing of the extremities, by detecting the most significant peaks, though
the method may not be suitable for types of seizure involving subtle movements such as
ocular and orobuccolingual seizures.

An alternate way to perform motion analysis is frame differencing. A series of frame differ-
encing, non-linear filtering, clustering and morphological filtering were performed in [62]
on videos of neonatal seizures in order to extract temporal motion strength signals. For
motion extraction each current frame was subtracted from the previous and the resulted
frame difference was filtered using a median filter for removing spiky noise. The filtered
frames were then segmented into 4 clusters using the k-means algorithm: A cluster corre-
sponding to pixels of positive intensity values of large magnitude, a cluster corresponding
to pixels of negative intensity values of large magnitude, a cluster containing background
pixels and a cluster containing pixels that do not belong to the background but are not
relevant to the motion. The last two clusters were merged together. Further reduction of
spurious patches was achieved throughout the application of a sequence of morphological
opening and closing operations. The displacement area of the moving body part was cal-
culated as the minimum of the areas occupied by the patches of the first two clusters. As
reported by the authors, this method offered effective noise reduction but during the noise
elimination attempt it may underestimate the area. This procedure was improved in [63]
by using vector clustering instead of scalar clustering. Vectors containing the 9 pixels of
a 3ÃŮ3 window were used. The features extracted out of the motion strength signals
(variance of time intervals, energy ratio, maximum peak duration) were evaluated statis-
tically based on their ability to separate between myoclonic seizures, focal clonic seizures
and random movement using the Fisher ratio, the generalized Fisher ratio as well as a
t-test. The differentiation of random movements from either myoclonic or focal clonic
seizures was identified as being the most challenging problem rather than distinguishing
between focal clonic and myoclonic seizures. Another study, using frame differencing, is
described by Ntonfo et al. [96]. The difference image was thresholded, producing a binary
image or mask (1 = white). The threshold was set heuristically in order to maximize the
ratio between the number of white pixels of the moving body part most affected by the
seizure, and the number of remaining white pixels in the frame. Noisy pixels were filtered
by the erosion operation. Finally the average motion signal was calculated as the sum of
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all remaining white pixels. For the detection of neonatal seizures, the periodicity of the
signal was analysed in terms of a difference between the normalised autocorrelation func-
tion and a fundamental frequency estimator (Yin estimator). The detection of a seizure
was based on counting minima below a certain threshold within overlapping windows and
was preliminary tested on 10 video recordings. This approach was utilized by Pisani et
al. [114] with a larger dataset (23 videos, 12 patients, 78 seizures), obtaining a sensitivity
of 71% (specificity of 69%) with 50% window overlap.

A further approach to motion analysis is based on tracking moving objects. This can be
performed with the well known Kanade-Lucas-Tomasi (KLT) tracking algorithm [83, 133].
Karayiannis et al. [60, 65] used a modified version of the KLT algorithm in order to ex-
tract temporal motor activity signals. The initial algorithm selects suitable sites in the
first frame based on the requirement that the spatial gradient matrix computed on the
corresponding frame location is above noise level and well-conditioned. The noise re-
quirement implies that both eigenvalues of the gradient matrix must be sufficiently large,
while the conditioning requirement means that the eigenvalues cannot differ by several
orders of magnitude. The sites are then tracked through the image sequence by using
a Newton-Raphson optimization method to minimize the difference between windows
in successive frames. The modification included an extension of the Newton-Raphson
method to operate under affine image transformations. This algorithm was tested on
two myoclonic and two focal clonic neonatal seizures as well as two video recordings of
random movement through frame-by-frame inspection. In some cases the algorithm lost
some of the sites, which means that moving body parts containing large amount of lost
sites could not be tracked through the entire sequence. This motivated the simultaneous
tracking of a sufficiently large number of spots from the selected anatomical site within
a predetermined radius. The temporal motor activity signals provided information re-
garding the frequency and rhythmicity of motion enabling the quantification of the two
seizure types under investigation.

Moving objects can also be tracked with a method called block or template matching.
The purpose of a block matching algorithm is to search and find a matching block of
pixels from one frame in a second frame, which may usually appear after the first one.
In [68], adaptive block matching was applied for extracting motor activity signals on a
set of videos of two types of seizures (myoclonic, focal-clonic) and random movement in
order to track selected anatomical sites. Block matching, a correlation-based approach
relies on the assumption, that a block of pixels remains constant over time and motion,
an assumption which is only valid at sufficiently high sampling rates. A reference block is
tracked using window searching for the most similar block in subsequent frames according
to a similarity measure. In [68] adaptive block matching, taking the mean square error
as a similarity measure was used, where the reference block was additionally updated to
take into consideration changes in the appearance of the target. Various update strategies
were tested in that study including a single-frame update strategy, a multi-frame update
strategy, a finite impulse response filtering update strategy and a Kalman filtering update
strategy. The results were compared to reference data coming from manual tracking. The
performance of adaptive block matching depended on the update strategy employed for
the reference block. Ultimately Kalman filtering proved to be the most reliable strat-
egy for this study. Compared to the KLT tracking method mentioned earlier, adaptive
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block matching was more accurate, providing a lower mean square error, and reliable,
having less failures in tracking the anatomical site. A combined approach was neverthe-
less suggested, where a displacement-estimation method (e.g. KLT) could initiate the
search for the best matching block in the next frame, which then would be performed by
adaptive block matching. As an alternative to adaptive block matching, predictive block
matching was applied during extraction of temporal motor activity signals in videos of
neonatal myoclonic and focal-clonic seizures [66, 126]. The approach, used for tracking of
selected anatomical sites, employed a translational motion model in order to estimate the
displacement of a block of pixels before initiating the search for a matching block. The
search itself relied on adaptive block matching, using the Kalman filtering update strat-
egy. Predictive block matching turned to be more reliable than adaptive block matching
when the video recordings contained high-amplitude movements of the infants’ extrem-
ities affected by seizures. Another study, using predictive block matching for detecting
neonatal seizures, is described by Ntonfo et al. [97]. The search area of the block to be
matched was defined according to the direction of the optical flow of the point to be
tracked, which was initially located as the point with the maximum magnitude, since
the seizures under analysis manifested with sudden movements. This approach returned
the motion trajectory, from which features including length, location, angle and speed
were extracted. Further analysis included clustering of the features in order to reveal
similarities.

c) Motion recognition

Karayiannis et al. [69] trained multiple feed forward artificial neuronal networks (FFNNs)
for classifying myoclonic from focal clonic neonatal seizures. The inputs used for training
the FFNNs were formed in terms of a) three features extracted from temporal motion
strength signals (variance of time intervals, energy ratio and maximum peak duration),
b) three features extracted from temporal motor activity signals (energy ratio, maximum
peak duration and variance of time intervals), and c) all the six features extracted from
temporal motion strength and motor activity signals. Sensitivity and specificity results
showed values above 85% when applied to the test set. Based on these findings the
authors suggest that it is feasible to develop an automated system for the recognition
and characterization of the types of neonatal seizures based on video recordings. They
furthermore report that the performance of neural network models trained to perform
seizure recognition and characterization is affected mainly by the existence of uncertain
events as a result of the lack of contextual information such as EEG recordings.

Using temporal motion strength signals, Karayiannis et al. [73] studied the classifica-
tion between myoclonic, focal clonic neonatal seizures and random infant movement in
two experiments: a) the classification between a neonatal seizure in general and ran-
dom infant movement using either the energy ratio, the variance of time intervals and
maximum peak duration (time-domain measures only) or the same plus the 10% spectral
power (time- and frequency-domain measures) and b) the classification between myoclonic
seizure, focal clonic seizure and random infant movement, again using either time-domain
measures only or the time- and frequency-domain measures. The authors reported that
training with a feature set including time- and frequency-domain metrics improved the
performance of the FFNNs (increased average specificity by 5%). Additionally, using two
output units, i.e. the classification between a neonatal seizure and random infant move-
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ment, rather comprised the network’s ability to distinguish between these two classes due
to the disparity between the manifestations of myoclonic and focal clonic seizures which
in this case were fused into one class. In other words, choosing the correct number of
possible decisions (output nodes) is crucial to the performance of the network.

1.6.5 Conclusion

It is noticeable that there is only a small number of research groups (2 for marker-based
and 5 for marker-free methods) active in the specific subject, probably defined by the
limited access to video data, usually derived from video-EEG sessions, in conjunction
with the need of a consent for usage of this data in research. As an alternative, sim-
ulated epileptic motion can be captured but its relation to complex epileptic motion
is questionable. To date, researchers have focused on the following seizure and/or mo-
tion types: epileptic (not specified), automotor, hypermotor, supplementary motor area
seizures of FLE, non-epileptic seizures, myoclonic, focal clonic, random movement and
motion related to FLE and TLE. This is a limited set not covering all the seizure types
and by far not addressing all electroclinical syndromes proposed by the report of the
ILAE Commission on Classification and Terminology [49]. It points out that a holistic
approach utilizing vision-based human motion analysis for epilepsy is missing. Moreover
the fact that the concentration of the researchers is quite exclusive on the analysis and
quantification respectively of selected motion patterns in epilepsy, reveals a low level of
advances in terms of integrated clinical decision support, based on recognition. During
the motion analysis phase the main problem seems to be the selection and extraction of
the appropriate features that are likely to reveal quantifiable information on the captured
motion. The most common features utilized are the motion trajectories and velocities of
markers, separate pixels or pixel blocks. A two-level approach considering the features is
distinguishable in marker-free methods where specific “secondary” features are extracted
from basic “primary” features (i.e. the motion signals) in means of signal processing.
These secondary features prove useful for feeding a classifier as in the case of Karayiannis
et al. [69, 73]. Considering efforts in motion/seizure recognition, a classification perfor-
mance of up to 94% sensitivity and 87% specificity based on test data has been achieved
[73]. The reported results have been validated in trials involving 20 to 240 video sequences
taken from 17 to 54 patients respectively [25, 69, 73].

The number of publications dedicated to either marker-free or marker-based methods is
more or less equally distributed, affirming the still existing trade-off (closer described in
[16]) that is usually taken between high reliability and easy application of marker-based
systems on the one hand and ubiquity and versatility of marker-free systems on the other,
whilst the only 3D method reported is a marker-based system [24]. Combined approaches
were not reported.

While following the evolution of methods for the capture of human movement, that
leads to marker-free motion capture for biomechanical applications [95] and the great
advances in the field of computer vision [92, 117], algorithms used for human motion
analysis in epilepsy without utilizing markers are of special interest. Although the lack of
human model usage, i.e. an a priori human model with relevant anatomic and kinematic
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information that is tracked or matched to 2D image planes or 3D representations, is
noticeable and raises the question whether these methods would be better suited or not
to the domain at hand. Model-free approaches, i.e. the direct extraction of motion
relevant information, can benefit from already available image and video analysis tools
as e.g. optical flow or the KLT tracker, which are indeed frequently employed in the
related literature. Among the reported methods, optical flow seems to be the most
promising approach because of the rich motion-related information that is hidden behind
the extracted velocity field. Given the fact that cameras during video-EEG recording
are usually fixed, simple frame differencing is with no doubt the most effective method
in terms of computational cost for extracting any region containing motion in the video
sequence (e.g. human silhouettes).

Within the reported methods, the more demanding model-free pose estimation task has
not been addressed yet. A general observation is that vision-based human motion analysis
in epilepsy up to now is limited to the extraction of abstract, but still quantitative,
information without an automatic inference to specific body parts. Only one publication
reported the analysis of multiple moving body parts or rather different regions with
motion in the sequence without actually detecting the body parts [68]. Nevertheless the
detection of body parts and related motion is a necessary step for future extraction of the
clinically relevant knowledge of “how”, in a quantitative manner, specific body parts are
moving and the relation of this movement to certain ictal phenomena. A model-based
approach on the other hand would, once the human model is fitted to the observation,
return through its parameters all the relevant information describing the motion of each
body part. Here the quality of the fitting process and complexity of the model define
the accuracy of the resulting information. Moreover the usage of a priori knowledge and
assumptions for the model might not correlate with the complex epileptic motion patterns.
A general problem of vision-based human motion analysis is the self-occlusion of body
parts, as a result of improper positioning of the patient or the occlusion by other objects
or persons [76]. As to clinical experience it is quite often the case, that during a seizure,
intervention is required by a caring person, nurse or a physician. This introduces an
additional problem, not addressed within the reported studies, of distinguishing multiple
persons within a scene in the case of marker-free analysis.

Considering recognition, there are positive results using thresholding [25] and ANN’s
[69, 73] that prove the feasibility of a vision-based system for classification of some spe-
cific seizure types. The question that remains open in this context is to what extent
vision-based human motion recognition can support generalized classification within the
whole domain of epileptic syndromes. Besides thresholding and ANN’s, the usage of
probabilistic methods as e.g. the Transferable Belief Model used for human action recog-
nition [120] or MRF theory already used for motion detection [81] might be a suitable
alternative while dealing with uncertainty. Moreover, the applicability of vision-based
human motion analysis in non-motor or autonomic events is limited. In such a case a
combined approach using EEG analysis is likely to be successful.

Concluding, it can be deduced that it is feasible to use automated video analysis in
extracting quantifiable information of a patient’s clinical manifestations and recognizing
various kinematic patterns related to epileptic seizures. The main characteristic of current
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approaches is that they address only a limited set of epileptic phenomena. Moreover there
is no automatic inference of which body part is producing which signal (displacement,
velocity, angle etc.), especially in the case of marker-free approaches, while marker-based
systems still need manual marker labelling. This inference âĂŞ if available âĂŞ would
be the key in producing information that can lead to clinically relevant knowledge. The
answer to the question whether the whole spectrum of epileptic activity can be cov-
ered, depends on the ability of a vision-based system to combine quantifiable motion
information that is robustly extracted from several automatically detected body regions
(extremities, face, head etc.).

1.7 Facial expression analysis in epilepsy

Advances in facial expression analysis are mainly driven by research efforts in human
emotion recognition. Based on a thorough review, which is presented in [132], most au-
tomatic facial expression analysis systems attempt to recognize a small set of prototypic
emotional expressions (e.g. disgust, fear, joy etc.), although emotion is more often com-
municated by subtle changes in one or a few discrete facial features, such as tightening of
the lips in anger or obliquely lowering the lip corners in sadness. Therefore the Facial Ac-
tion Coding System [34], a human-observer-based coding system designed to detect subtle
changes in facial features as a result of facial muscle activity, is often adopted.

Considering facial expression analysis in epilepsy, only one reference can be found by
P. Maurel et al. [87], who used a model-based approach to calculate the variation of
model parameters by fitting a 3D active appearance model. The main scope of this work
was to test the fitting method, which was based on energy minimization. An energy
was defined, which measures the quality of a given position of the 3D model, based on
the cross-correlation between a reference texture, applied to the model, and the image
in which the model is to be fitted. P. Maurel reports in his thesis [86] that the fitting
was initially performed on manually selected images in order to remove large movements
and occlusions. Finally the method was applied a selected video of epileptic seizures, in
which the facial expressions were visible during a large portion of the seizure. The aim was
to measure the relation between Stereoencephalography and dynamic facial expressions
represented in terms of moving vertexes of the fitted model. In this case the epileptic
seizure was clinically characterized by a deviation of the eyes, followed by a deviation of
the head. The results showed a frequency component on a specific electrode called “SA”
(bipolar signals number 22 or 23), which best correlates with the eye facial parameters
(opening and position).
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1.8 Research question

The previous sections have provided an extensive introduction into the field of study and
the final step is to formulate the research question that will guide the upcoming work.
The question is:

• Which are the measurable facial characteristics of absence seizures, delivered by a
computerised analysis of a patient’s facial expression from video sequences and is
it possible to use them for detecting at least two seizures for each patient?

The term “measurable” represents the quantitative aspect of the study, while the method-
ological boundaries are set by the terms “computerised”, “facial expression” and “video”.
Finally the diagnostic aspect is covered by investigating the possibility to detect at least
two seizures per patient, as defined by the ILAE (cf. Section 1.3).
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CHAPTER 2

Methods

Parts of the contents of this chapter have been published in [108, 109].

2.1 Video-EEG acquisition

The video-EEG system, which was used to record the data, utilizes two SONY R© EVI-
D70P, PAL color cameras with a resolution of 752 x 582 pixels at 25 fps interlaced. The
two cameras are connected to a video mixing device which is set at “picture in picture”
mode. In this mode the image of one camera is placed with a reduced resolution (smaller
size) on top of the image of the other camera at full resolution. The smaller image covers
1/4 of the area of the underlying image and is placed at the bottom right corner. The
“mixed” video is then sent to a frame grabber, which converts the video to a digital
format. The final video is then stored with MPEG-2 compression at a given bit-rate.
Since each video EEG recording may last up to several hours, a single resulting video file
would be too large to be handled by the file system and any analysis software. Therefore,
multiple video- and sometimes even multiple EEG files are stored. The synchronization
between the EEG and the video files functions on a millisecond basis and is handled by
the video EEG system.

The cameras are positioned at the corner where the ceiling meets the wall facing the bed.
They are set so that the visible area of the underlying image covers the whole patient
(i.e. the whole bed) and the smaller image is zoomed in on the face to provide a better
resolution for this area. This image is the one that was taken for analysis for this work.
Figure 2.1 shows an example of the recording scenario. Prior to each recording, directions
were given to the caring persons and nurses to try to keep the patient within the field of
view of the cameras and even readjust the horizontal and vertical tilt if necessary. During
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the night two IR lights turn on and the IR filter on the cameras is activated automatically.
Unfortunately due to various light sources, mainly TV and night lamp, which were active
during the night the IR activation did not function properly.

In synchronization to the video, 19-channel EEG based on the 10-20 positioning standard
was recorded at a sampling rate of 256 Hz. All patients were admitted for a first-time
diagnosis, while an informed consent was obtained from the parents to use the data for
research purposes.

Figure 2.1: An example of the video captured during video-EEG recordings at the Uni-
versity Hospital in Heraklion, Crete.

2.2 Video pre-processing

As mentioned in the previous section, each recording is split into multiple video files. Since
the epileptic seizures take up a minimal amount of time compared to all other activities
in the video, only those video files were selected that contain a seizure. The fact that the
recoded videos are interlaced denotes that they will contain noise, which is heavily con-
nected with motion[56] and would make any attempt of subtle motion analysis, as in the
case of absence seizures, impossible. Therefore, each video is deinterlaced prior to any fur-
ther analysis or processing. For deinterlacing the the FFmpeg [http://www.ffmpeg.org/]
filter “yadif” is used. The options are set such that the filter outputs one frame for each
input frame, assumes the bottom field first, and deinterlaces all frames. Since variations
in the bitrate of the input video files were observed, all videos were stored at the same
bitrate of 4096 kbit/s using the MPEG-2 codec. Other parameters that guaranteed con-
tinuity within all video files included setting the frame rate at 25 fps as in the original
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files, setting the pixel color format to yuv420p and removing the audio. The final com-
mand was the following: ffmpeg -i INPUT.AVI -filter:v yadif=0:1:0 -an -vcodec
mpeg2video -pix_fmt yuv420p -threads 4 -r 25 -vb 4096k OUTPUT_D.avi.

2.3 Video annotation

Video annotation is the process where the regions of interest, which will be used for further
analysis are defined. The regions of interest in this case are four and were selected as a
result of the description of the clinical image during absence seizures in Section 1.4. These
regions are: The region of the eye-pair, includes both eyes and eyebrows. The region of
the left eye, which includes the left eye and the left eyebrow. The region of the right
eye, which includes the right eye and the right eyebrow. And finally the region of the
mouth, which includes both lips. These regions are at first selected in a semi-automatic
manner for data analysis. This provides the only way to ensure that the correct regions
are analysed. For the final evaluation of the seizure detection capability of the developed
methods, automatic ROI detection algorithms are employed.

2.3.1 Semi-automatic annotation

The semi-automatc annotation was performed by using a software tool that was developed
specifically for this task, the “Simple Video Annotation Tool” (SVAT). It allows to anno-
tate five different objects inside each frame and the assignment of four identical attributes
for each of the objects. The annotation is assisted by using a KLT tracker in conjunction
with a function that searches for good features to track. An initially selected ROI can be
tracked and automatically annotated in subsequent frames, although corrective measures
and re-initialization might me necessary. Using this tool, five regions of interest (i.e. face,
eye-pair, left eye, right eye, mouth) were annotated for each seizure period. Seizure-free
periods before and after each seizure were annotated as well, the duration of which ranged
from seconds to a few minutes, depending on head pose and occlusions. Occluded objects
were not annotated. An object was regarded as being occluded if was partly covered by
any moving foreign object. Such foreign objects causing occlusions usually were arms,
hands, books, electronic devices, blankets, other persons etc. The five aforementioned
regions of interest were annotated by taking related definitions in the literature [33, 124]
(related to detection benchmarking), as well as the clinical image of the seizures under
investigation (Section 1.4) into account. The regions were defined as follows:

The region of the face is defined as a rectangle with sides in parallel to the image borders.
It includes both eyes and eyebrows, the nose and mouth. For this region to be valid, all
aforementioned elements must be visible. As a result of variations in head pose, it may
include parts of the head bondage holding EEG electrodes in place, the pillow, blanket
and shirt.

The region of the eye-pair is defined as a rectangle with sides in parallel to the image
borders. It includes both eyes and eyebrows. For this region to be valid, all aforemen-
tioned elements must be visible. As a result of variations in head pose, it may include
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parts of the nose, the head bondage holding EEG electrodes in place, the pillow and
blanket.

The region of the left eye is defined as a rectangle with sides in parallel to the image
borders. It includes the left eye and the left eyebrow (at least most part of the left
eyebrow). For this region to be valid, all aforementioned elements must be visible. As
a result of variations in head pose, it may include parts of the nose, the head bondage
holding EEG electrodes in place, the pillow and blanket.

The region of the right eye is defined as a rectangle with sides in parallel to the image
borders. It includes the right eye and the right eyebrow (at least most part of the right
eyebrow). For this region to be valid, all aforementioned elements must be visible. As
a result of variations in head pose, it may include parts of the nose, the head bondage
holding EEG electrodes in place, the pillow and blanket.

The region of the mouth is defined as a rectangle with sides in parallel to the image
borders. It includes both lips. For this region to be valid, all aforementioned elements
must be visible. As a result of variations in head pose, it may include parts of the nose,
the pillow, blanket and shirt.

An overview of the annotated seizures for patients P01–P08 is given in Tables 5.1–5.8
in the Annex, with comments regarding occlusions and capturing conditions for each
seizure.

2.3.2 Automatic annotation

The automatic video annotation is based on the Viola-Jones detection algorithm [141], as
implemented in OpenCV 2.4.8 [10], which uses a rejection cascade of boosted classifiers -
in this case decision trees - working with an extended haar-like feature set [77, 78] For face
and eye-pair detection, the trained cascades “haarcascade_frontalface_alt2.xml” [10] and
“frontalEyes35x16.xml” [1] respectively, are used. Both have received the highest rating in
their category [12], and performed reasonably well in the application at hand. For the de-
tection of the left and right eyes the trained cascades “haarcascade_lefteye_2splits.xml”
and “haarcascade_righteye_2splits.xml” [10], and for the mouth the cascade “haarcas-
cade_mcs_mouth.xml” [12].

The detection method assumes that only one face exists in the video sequence and that
it is in frontal position with only slight out-of-plane rotations. The method subsequently
takes the largest among multiple positives to be the ROI. Within the detected area of a
face, a second scan is performed for the detection of the eye-pair, the left eye, the right
and the mouth. Assuming again that the largest positive is the correct region of interest
with additional constraints: a) the mouth must be located within the lower third of the
detected face, b) the eye-pair must be located within the upper third of the detected
face c) the left eye must be located within the upper left square (one third of width and
height) of the detected face and d) the right eye must be located within the upper right
square (one third of width and height) of the detected face. If a face is not detected,
then a scan for the eye-pair, left eye, right eye, and mouth is performed on the whole
image.
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In order to ensure that the eyebrow is inside the ROIs for the left and right eye, these are
enlarged in each direction by 1/4 of their width and height respectively. It was further
on noticed that the mouth detector was producing many false positives, widely spread
over the image. In order to reduce these false positives, detected mouth regions that were
jumping in any horizontal or vertical direction by more than the width or height of the
previous detected mouth regions were filtered out. Furthermore, since the eye detectors
were more reliable, only mouth ROIs were chosen form frames where at least one eye was
also detected.

2.4 Signal extraction

As defined in [101], a signal is something that conveys information, generally about the
state or behavior of a physical system. The information is contained in some pattern
of variations. Signals are mathematically represented as functions of one or more inde-
pendent variables. Most commonly, the independent variable is time. For the purpose
of this work, signals that represent motion within specific areas of the face - the regions
mentioned above - are used as a primary source of information, similar to the work of
Karayiannis et al. [69, 73], who extract signals from moving extremities during epileptic
seizures. The signals are extracted for each ROI using two techniques, background-
foreground segmentation and optical flow.

Background-foreground segmentation (or frame differencing) is the process, where mov-
ing objects are segmented from a rather static background. The simplest way of motion
segmentation in a video sequences is frame differencing, hence the difference between
consecutive frames provides information on moving objects. Usually a reference image
is calculated as an average background, from which each new frame is then subtracted.
The difference is then thresholded in order to obtain a foreground mask. This work uses
a background-foreground segmentation algorithm based on Gaussian mixture models, as
implemented in OpenCV, based on the work of KadewTraKuPong and Bowden [57]. It
uses a multiple-colour background model for each pixel in order to produce the reference
image. This model is an adaptive non-parametric Gaussian mixture model. Each back-
ground pixel is modelled by a mixture of Gaussian distributions. Different Gaussians are
assumed to represent different colours. The model is fitted and updated as time passes
with an on-line Expectation Maximisation algorithm. The applied method uses the de-
fault values of OpenCV and the resulting signal is the area (in pixels) of the foreground
mask, normalized to the area of the ROI. The signal is abbreviated with “PBFS”.

Optical flow is a velocity field that transforms one image to the next image in a sequence.
In other words, it describes the relative motion between the camera and the scene. It
works under two assumptions. The motion must be smooth in relation to the frame
rate, and the brightness of moving pixels must be constant. In this work, the velocity
vector for each pixel is calculated within each ROI by using dense optical flow as de-
scribed by Farnebäck [38]. In order to account for variations in illumination throughout
a recording session, the histogram of the whole image is equalized prior to optical flow
calculation.
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From the resulting velocity field eight time- varying signals are calculated for each ROI:
the maximum magnitude (MXM) and the angle in radians of the corresponding vector
(AMXM), as well as the maximum magnitude weighted by that angle minus π (MXMW);
The mean vector angle in radians (MA), the mean magnitude weighted by the mean vector
angle minus π (MMW), the normalized sum of all magnitudes (SM), the normalized area
of thresholded (threshold=1) magnitudes (THP) and finally the the normalized area of
thresholded magnitudes, using an adaptive threshold (ATHP). Normalization of the three
last signals concerns the area of the ROI from which they are extracted. The adaptive
thresholding method is a binary method:

dst(x, y) =

{
255 if src(x, y) > T (x, y)

0 otherwise

The threshold value T (x, y) is a mean of the blockSize × blockSize neighborhood of
(x, y). The blockSize is calculated as nearest odd integer of

√
ROI_Area/8.

2.5 Feature extraction

All features are calculated in a C++ environment, using OpenCV 2.4.8 [10] [21], the
GNU Scientific Library 1.15 [45] and the Boost C++ Libraries 1.55.0 [127].

Features for vision-based human motion analysis are usually physical quantities such as
displacement, velocity, area, angle, angular speed and duration. Some of these features
are represented by the extracted signals mentioned in the previous Section. Since a seizure
is an event, the signals must be broken up in pieces that represent instances in time. For
the shortest possible instance, which is a single frame, the actual value of the signal at
that frame constitutes the feature that describes the instance. For instances with a larger
duration a window is set over the signal. Features are then extracted from the part of
the signal that lies within the window, such as e.g. the mean value of the signal inside
the window. This process may be connected with loss of information but it may also help
to minimize noise. Beyond that, it enables the extraction of new features that describe
characteristic properties of the signal itself, such as e.g. the frequency content. This
method is used for the extraction of the features.

It is often the case that not all ROIs are always visible at once, usually when the head
is rotated towards a side or when a ROI is occluded by an object, which results in
the existence of missing values within the signal in each window. In order to filter out
poor data, only those windows, which contain more than 75% of the signal, are further
processed. Any remaining missing values in these windows are interpolated by a cubic
spline interpolation (GNU Scientific Library 1.15 [45]). In the cases where the window is
rejected, all features are set with the flag of a “missing value”.

The extracted features from each window are presented in the following two subsections.
The first describes the time domain features and the second describes those from the
frequency domain. The selection of the features is based on the analysis of the literature
in Section 1.6. Beyond that, features used for motion analysis with accelerometer signals
[32, 139, 148], as well as features used for sound description [113] were selected.
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2.5.1 Time domain features

• Minimum (Minimum): The minimum value of the signal inside the window. It was
calculated using the std::min_element function of the standard c++ library.

• Maximum (Maximum): The maximum value of the signal inside the window. It
was calculated using the std::max_element function of the standard c++ library.

• Difference between the minimum and the maximum (MaximumMinusMinimum):
The minimum value of the signal inside the window subtracted from the maximum
value of the signal inside the window.

• Mean (Mean_Boost): The mean value of the of the signal inside the window. It
was calculated using the boost::accumulators::impl::mean_impl template from
the accumulators framework of the Boost C++ Libraries 1.55.0 [127].

• Median (Median_Boost): The median of the of the signal inside the window. It was
calculated using the median estimation based on the P 2 algorithm [54] with a quan-
tile probability of 0.5. The median is implemented with the boost::accumulators
::impl::median_impl template from the accumulators framework of the Boost
C++ Libraries 1.55.0 [127].

• Variance (Variance_Boost): The variance of the of the signal inside the window. It
was calculated iteratively based on the boost::accumulators::impl::variance_
impl template from the accumulators framework of the Boost C++ Libraries 1.55.0
[127].

• Standard deviation (StandardDeviation_Boost): The standard deviation of the of
the signal inside the window. It is the square root of the Variance_Boost.

• Root mean square (RootMeanSquare): It is the square root of the sum of squares
of the signal values inside the window.

• Interquartile range (InterquartileRange_Boost): The difference of the 0.75 quantile
minus the 0.25 quantile. The quantile estimation is based on the the P 2 algorithm
[54] as implemented with the boost::accumulators::impl::p_square_quantile_
impl template from the accumulators framework of the Boost C++ Libraries 1.55.0
[127].

• Skewness (Skewness_Boost): The skewness of a sample distribution is defined as the
ratio of the 3rd central moment to the 3/2-th power of the 2nd central moment (the
variance) of the samples. It is calculated using the boost::accumulators::impl::
skewness_impl template from the accumulators framework of the Boost C++ Li-
braries 1.55.0 [127].

• Kurtosos (Kurtosis_Boost): The kurtosis of a sample distribution is defined as
the ratio of the 4th central moment and the square of the 2nd central moment
(the variance) of the samples, minus 3. The term −3 is added in order to en-
sure that the normal distribution has zero kurtosis. It is calculated using the
boost::accumulators::impl::kurtosis_impl template from the accumulators
framework of the Boost C++ Libraries 1.55.0 [127].
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• Variance of time intervals between adjacent spikes (VTI): The variance of the time
intervals between any two subsequent spikes or transients. This feature is used for
estimating the periodicity of the movements based on the observation that rhythmic
movements would produce variances close to zero. It is one of the features used by
the group of Karayiannis et al. [69] for epileptic seizure recognition.

• Energy ratio (ENR): The energy ratio of the autocorrelation sequence which is
calculated as the ratio of the energy contained by the last 75% of the samples of the
autocorrelation sequence to the energy contained by the first 25%. It is a measure
for the motion manifested as quasiperiodic spikes (randomness). It is one of the
features used by the group of Karayiannis et al. [69] for epileptic seizure recognition.

• Zero crossing rate (ZeroCrossingRate): Zero crossing rate is the rate of sign-changes
along the signal.

• Mean crossing rate (MeanCrossingRate): Mean crossing rate is the rate of mean
crossings along the signal.

• Normalized energy (NormalizedEnergy): The normalized energy is the sum of
squares of the signal values, divided by the signal length.

• Entropy of the energy in bins (EntropyEnergyBins): The entropy of the energy in
bins is the Shannon entropy H(xi) calculated from the normalized energy of 10
equally sized consecutive bins, taken from signal.

H(xi) = −
N∑
i=1

xi log2 xi

2.5.2 Frequency domain features

The frequency domain features are derived from the power spectral density, which is
calculated with the discrete Fourier transform as implemented in OpenCV [10]. For
this purpose the signal is windowed using a Hamming window in order to reduce DFT
leakage.

• 25% spectral power frequency (25SPF): It is the upper bound of the frequency band
starting at 0 Hz that contains 25% of the total spectral power. Seizures containing
isolated sharp spikes would generate a broader band while seizures with many (near
periodic) spikes produce a narrower one. It is one of the features used by the group
of Karayiannis et al. [69] for epileptic seizure recognition with the difference that a
value of 10% is used instead of 25%.

• Total spectral power from 0 to 3 Hz (PW0-3)

• Total spectral power from 3 to 6 Hz (PW3-6)

• Dominant frequency (DominantFrequency): The frequency with the highest power.

• Entropy of power spectrum in bins (EntropySpectralBins): The Shannon entropy
H(xi) calculated from the normalized power of 10 equally sized consecutive bins,
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taken from power spectrum.

H(xi) = −
N∑
i=1

xi log2 xi

• Spectral roll off (SpectralRollOff): The frequency value at which 80 percent of the
spectral power is below that point.

• Spectra centroid (SpectralCentroid): The average frequency of the spectrum.

SpectralCentroid =

∑N
i=1 fipi∑N
i=1 pi

where pi is the power at frequency fi.

2.6 Data analysis

2.6.1 Performance measures

Classification tasks are typically evaluated with the help of a confusion matrix (Fig-
ure 2.2). The columns represent the classification outcome and the rows the actual
condition or class.

Classified as negative Classified as positive
Actual negative True negatives (TN) False positives (FP)
Actual positive False negatives (FN) True positives (TP)

Figure 2.2: The confusion matrix.

Accuracy is the percentage of correctly classified instances (true positives and true neg-
atives) with respect to all instances.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

Recall (also sensitivity or true positive rate) is the ratio of the number of true positives
to the total number of actual positives, expressed as a percentage. Recall is a measure of
completeness or quantity.

Recall =
TP

TP + FN
(2.2)

Precision (also positive predicted value) is the ratio of the number of true positives to the
total number of classified positives (true and false). Precision can be seen as a measure
of exactness or quality.
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Precision =
TP

TP + FP
(2.3)

Specificity (also true negative rate) is the ratio of the number of true negatives to the
total number of negatives. It measures the proportion of negatives which are correctly
identified as negatives.

Specificity =
TN

TN + FP
(2.4)

F-measure can be interpreted as a weighted average of the Precision and Recall. The
F-measure reaches its best value at 1 and worst at 0.

F-measure = (1 + β2) · Recall · Precision
β2 · Recall+ Precision

(2.5)

β corresponds to the relative importance of Precision against Recall. It is usually set to
1, so that the F-measure represents the harmonic mean of Precision and Recall.

2.6.2 Window size and step

As mentioned in Section 2.5, a running window of given size and overlap is applied on
each signal for the extraction of the features. The actual values for size and overlap
play a crucial role in defining the quality of the extracted features. It can be assumed
that window size and overlap is related to the duration of the event under examination,
i.e. the seizure, as well as to the sampling rate of the signal and the method of feature
extraction. In the case of spectral analysis an overlap of 50% to 75% is usually chosen
in order to achieve good temporal continuity in the frequency domain. Moreover, the
overlap, which defines the window step, should be set such that there is at least one
instance associated with the event under examination. The size of the window on the
other hand should be large enough to contain an adequate number of samples so that the
feature extraction technique does not suffer in quality, especially the spectral analysis.
Table 2.1 shows an overview of the mean seizure duration for each of the patients under
analysis. It ranges from 2.98 s to 19.33 s with an overall mean of 8.28 s. As a result of the
above considerations, window sizes of 2 s, 3 s and 8 s with an overlap of 50% and 75% will
be used as a starting point. The 2 and 3 s window cover the patients with the shortest
seizure durations, while the 8 s window lies near the overall average. Larger windows are
impractical since they would completely miss a large number of seizures.

2.6.3 Standardization

A high difference in the variance of different feature vectors may cause a classifier to be-
have incorrectly. One feature may lie in the interval of [0, 1] and the other in [−30000, 30000].
This difference in variance may make a classifier such as the K-nearest neighbours to see
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Table 2.1: Overview of mean seizure duration and standard deviation of the 12 patients
under analysis

Patient ID Number of seizures Mean seizure duration [s] Standard deviation
01 4 17.53 4.57
02 8 10.17 3.46
03 21 3.97 1.69
04 65 2.98 0.69
05 25 7.41 3.55
06 14 8.22 1.61
07 16 10.64 4.83
08 26 19.33 7.56
09 25 4.9 1.57
10 68 4.2 0.59
11 38 6.27 1.29
12 25 3.72 1.29

the first feature as more or less constant, thus not being able to learn from it [11]. This
problem is addressed by normalizing all feature vectors to unit variance.

Since the variance differences in the current dataset are not extreme and targeted nor-
malization is also taking place during signal and feature extraction, the features were
not standardized for the following analysis. In addition to that, standardization is always
performed with respect to a given dataset, and since the tests performed for this work are
made with multiple training and test sets (e.g. per patient, for all patients, leave-one-out
validation), standardization would pose a burden in the process. Finally a simple test,
performed with- and without standardization did neither show a positive nor a negative
effect on the performance of the classifiers.

2.6.4 Feature selection

The feature selection was performed with the data mining software Weka [49]. The
“CfsSubsetEval” evaluation method was used in conjunction with the “BestFirst” search
method. This approach has the tendency to return small numbers of selected features,
which is desired for the work at hand in order to provide a focus on a few essential
features. The “BestFirst” search method searches the space of attribute subsets by greedy
hillclimbing augmented with a backtracking facility. An exhaustive search in the feature
space is impossible due to the large amount of features. The worth of a subset of attributes
is evaluated by considering the individual predictive ability of each feature along with
the degree of redundancy between them. Subsets of features that are highly correlated
with the class while having low inter-correlation are preferred [50].

69



2.6.5 Classification

All classification tasks were performed with the data mining software Weka [49]. All
classifiers were selected based on initial tests with a subset of the data. A further consid-
eration on the selection of the classifier is the aim to represent a wide range of different
classifier types (Bayes, SVM, decision tree etc.). The FFNN was included because it
was used by Karayiannis et al. [69, 73] in the classification of myoclonic and focal clonic
seizures.

Bayes Network

A Bayes network over a set of variables is a network structure in form of directed acyclic
graph over the set of variables an a set of probability tables of a variable, given its parent
(conditional distribution) [9]. The algorithm implemented in Weka assumes that the data
set has discrete finite variables and no instances have missing values. If there are missing
values in the data set, values are filled in using weka.filters.unsupervised.attribute.
ReplaceMissingValues. The learning of a the network structure is performed as an opti-
mization problem where a quality measure of a network structure given the training data
is maximized. For this work, the widely used K2 [21] local scoring method chosen.

Naive Bayes

The Naive Bayes classifier can be seen as a specialized form of a Bayes network, where
two simplifying assumptions are made. It assumes that the predictive attributes are con-
ditionally independent, given the class, and that no hidden or latent attributes influence
the predictive process [55].

SMO - Sequential minimal optimization

This classifier implements J. Platt’s [115] sequential minimal optimization algorithm for
training a support vector classifier. This implementation globally replaces all missing val-
ues and transforms nominal attributes into binary ones. It also normalizes all attributes
by default.

Nearest neighbours classifier

Nearest-neighbour classifier. Uses normalized Euclidean distance to find the training
instance closest to the given test instance, and predicts the same class as this training
instance. If multiple instances have the same (smallest) distance to the test instance, the
first one found is used [3].
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AdaBoost

AdaBoost is a meta classifier for boosting a nominal class classifier using the Adaboost
M1 method [44]. It often improves performance dramatically, but is prone to overfitting.
The classifier, which was used for boosting is decision stump, i.e. a on-level decision
tree. Classification is based on entropy and missing values are treated as a separate
values.

Feed-Forward Neural Network

The Feed-Forward Neural Network is provided through a Weka plugin called “WEKA
Classification Algorithms”1 provided by Jason Brownlee under the GPLv2 licence. It
uses the Back Propagation learning rule with one hidden layer with 20 nodes. The node
transfer function is Sigmoid. This classifier was chosen to come as close as possible to
the classifier used by Karayiannis et al. [69, 73].

Decision Tree - J48

The decision tree is generated with the C4.5 algorithm by R. Quinlan [119]. At each node
of the tree, C4.5 chooses one attribute of the data that most effectively splits its set of
samples into subsets enriched in one class or the other.

2.7 Study procedure

The study is performed in terms of 21 experiments and divided in four phases. The first
three phases use the semi-automatic annotated ROIs, for patients P01–P08. Based on the
results of these phases, a final evaluation with automatic ROI detection is performed in
the last phase for P09–P12. The results are presented in Chapter 3 and a comparison and
contribution to the state of the art is given in Chapter 4. Finally a thorough discussion
is given in Chapter 5.

The four phases, described in more detail:

The first phase (Section 3.1) uses a subset of the annotated seizures in order to limit the
capturing conditions and isolate interfering factors including noise from bad illumination,
heavy occlusions etc. The main aim of this phase is to select the window size and
step for the feature extraction, to test the different classifiers and to perform feature
selection.

The second phase (Section 3.2) uses all annotated seizures, including those captured
under varying conditions and tests the performance of the selected classifier in phase 1.

1http://wekaclassalgos.sourceforge.net/ and http://sourceforge.net/projects/wekaclassalgos/, ac-
cessed online: 2014.
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It also performs tests with various sub sampling ratios for the training set and finally
maps the classified instances to seizure events as a whole.

The third phase (Section 3.3) analyses the influence of the different ROIs in the seizure
detection performance. It tests the selected classifier with single separated ROI data (e.g
only one eye) and with combinations of all ROIs.

The final phase (Section 3.4) applies the gained information from the previous phases on
a new set of patients (P09–P12) in addition to automatic ROI detection as described in
Subsection 2.3.2, and tests the performance.
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CHAPTER 3

Results

3.1 Phase 1 - Seizure analysis under ideal conditions

One of the major challenges in the area of computer vision is that the video capturing and
scene conditions are not constant over time. For the case at hand the greatest deviations
are observed with respect to illumination, pose and occlusion. Illumination varies from
natural daylight, over artificial room light to low light conditions during the night, with
or without the IR acquisition mode being enabled. Although the patient is mainly lying
on the bed, it is impossible to force him/her to always face the cameras. Patients are
often lying on either side, sitting on the bed to the side or with a steep angle towards
the cameras, or even being out of the cameras field of view. Finally, occlusions covering
part of the face occur mainly by the hands, hair, game devices and books, blankets and
other persons. For these reasons it is inevitable for any initial data analysis to isolate any
interfering factors and analyse the data under conditions with limited variations. These
“ideal conditions” are the following:

• The face is visible and in a frontal position with only very slight out of plane
rotations

• All ROIs are visible during the seizure (not necessary simultaneously)

• Daylight, good illumination

• No photostimulation or other flickering lights such as TV

Based on the above limitations, the following seizures (seizure ID) were selected for
patients P01-P08 according to visual inspection and by following comments in Tables 5.1–
5.8 in the Annex: 101, 102, 103, 104, 201, 204, 205, 301, 302, 303, 309, 401, 402, 403,
404, 411, 412, 414, 415, 416, 418, 419, 420, 421, 423, 426, 427, 428, 429, 430, 431, 440,
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441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459,
460, 465, 601, 602, 605, 606, 607, 611, 701, 702, 709, 801, 802, 803, 806, 807, 809, 810,
811, 812, 813, 814, 815, 816, 819. No seizures from P05 met the criteria to be included.
For the instances describing the seizure-free condition, periods with the same number of
instances (i.e. length) of the each seizure, immediately before and after the respective
seizure were taken.

The aim of this phase is to persevere the highest possible seizure detection performance.
This is achieved through a series of experiments which lead to selecting an appropriate
window size and step, selecting the necessary or best features and ROIs, as well as
the most suitable/best performing classifier. The following, mainly default, classifier
parameters in Weka were used for all experiments:

BayesNet, (1): bayes.BayesNet ’-D -Q bayes.net.search.local.K2 -- -P 1 -S
BAYES -E bayes.net.estimate.SimpleEstimator -- -A 0.5’ 7460374432587
75954

Naive Bayes, (2): bayes.NaiveBayes ’’ 5995231201785697655
SMO, (3): functions.SMO ’-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K \

"functions.supportVector.PolyKernel -C 250007 -E 1.0\"’ -65858836363
78691736

K nearest neighbours, (4): lazy.IBk ’-K 1 -W 0 -A \"weka.core.neighboursea
rch.LinearNNSearch -A \\\"weka.core.EuclideanDistance -R first-last\
\\"\"’ -3080186098777067172

AdaBoost, (5): meta.AdaBoostM1 ’-P 100 -S 1 -I 10 -W trees.DecisionStump’
-7378107808933117974

FFNN, (6): neural.multilayerperceptron.BackPropagation ’-I 500 -L 0.1 -B
1.0 -R 0 -F 1 -N 1 -A 0.2 -D 0.0 -X 20 -Y 0 -Z 0 -M 3’ -635536715768
257224

Decistion Tree, (7): trees.J48 ’-C 0.25 -M2’ -217733168393644444

3.1.1 Experiment 1 - Determination of suitable window size and
step

The aim of this experiment is to determine the most suitable window size and step for
the windowing process. For this purpose the F-measure has been chosen as a basis for
comparison, since it describes the overall performance of the classifiers. All features for
all four ROIs were used. All seven classifiers have been tested with each one of the six
combinations of window size and step for each patient. The results from a 10-fold cross
validation, repeated 10 times, are shown in Table 3.1 for each of the 7 classifiers. The case
for P03 with an 8 s window size at a step of 4 s (50% overlap) could not be tested because
the number of instances was less than 10. It is observable that patients with seizure
durations shorter than 8s (P03, P04 and P06) show lower values for the 8 s window. The
other patients (seizure duration above 10 s) show a certain robustness against varying
window sizes and step. Although this also depends on the selected classifier, e.g. the
weaker classifiers in average (FFNN and decision tree) show higher variabilities. In order
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to draw a conclusion of which window size and step should be selected, a ranking of the
results from the paired two tailed corrected t-test is shown in Table 3.2 (Significance 0.05).
Highlighted is the first rank for each patient. It reveals that a window size of 3 s with 0.75
s step yields the best overall difference (difference = 397) of wins against losses followed by
window size of 2 s with 0.5 s step (difference = 304). This ranking is obviously influenced
by all classifiers, especially weak classifiers may distort the overall image. Nevertheless,
a window size of 3 s with a step of 0.75 s can be seen as the best selection for the given
(sub-)dataset. This combination is used for all following experiments and phases.
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Table 3.1: Experiment 1: F-measure for the seven classifiers (1)–(7) for the combinations
of window size and step per patient. The highest average values for each patient are
highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7) Average
P01-W2-ST0.5 0.77 0.74 0.89 0.79 0.75 0.05 0.76 0.68
P01-W2-ST1 0.77 0.74 0.77 0.72 0.76 0.57 0.68 0.72
P01-W3-ST0.75 0.78 0.76 0.93 0.82 0.8 0.62 0.79 0.79
P01-W3-ST1.5 0.75 0.75 0.85 0.62 0.70 0.61 0.76 0.72
P01-W8-ST2 0.76 0.75 0.81 0.81 0.75 0.56 0.74 0.74
P01-W8-ST4 0.75 0.74 0.53 0.51 0.62 0.50 0.74 0.63
P02-W2-ST0.5 0.65 0.52 0.87 0.64 0.62 0.16 0.59 0.58
P02-W2-ST1 0.50 0.51 0.60 0.52 0.54 0.29 0.42 0.48
P02-W3-ST0.75 0.65 0.54 0.81 0.60 0.73 0.4 0.64 0.62
P02-W3-ST1.5 0.38 0.46 0.54 0.38 0.54 0.36 0.31 0.42
P02-W8-ST2 0.59 0.51 0.72 0.52 0.70 0.34 0.61 0.57
P02-W8-ST4 0.21 0.29 0.40 0.44 0.19 0.27 0.14 0.28
P03-W2-ST0.5 0.63 0.61 0.90 0.84 0.73 0.43 0.73 0.70
P03-W2-ST1 0.46 0.43 0.54 0.62 0.41 0.34 0.44 0.46
P03-W3-ST0.75 0.69 0.68 0.73 0.78 0.70 0.46 0.80 0.69
P03-W3-ST1.5 0.62 0.27 0.41 0.31 0.56 0.50 0.54 0.46
P03-W8-ST2 0.39 0.16 0.39 0.54 0.40 0.37 0.48 0.39
P04-W2-ST0.5 0.55 0.52 0.60 0.68 0.49 0.00 0.56 0.49
P04-W2-ST1 0.56 0.50 0.46 0.43 0.48 0.00 0.45 0.41
P04-W3-ST0.75 0.56 0.52 0.58 0.57 0.52 0.00 0.50 0.46
P04-W3-ST1.5 0.59 0.48 0.42 0.34 0.54 0.08 0.42 0.41
P04-W8-ST2 0.20 0.33 0.39 0.33 0.34 0.03 0.36 0.28
P04-W8-ST4 0.17 0.29 0.30 0.06 0.29 0.28 0.33 0.25
P06-W2-ST0.5 0.70 0.72 0.84 0.75 0.81 0.73 0.73 0.75
P06-W2-ST1 0.67 0.70 0.76 0.73 0.76 0.73 0.68 0.72
P06-W3-ST0.75 0.71 0.72 0.85 0.79 0.85 0.73 0.75 0.77
P06-W3-ST1.5 0.68 0.66 0.76 0.71 0.77 0.63 0.61 0.69
P06-W8-ST2 0.53 0.75 0.75 0.73 0.73 0.68 0.66 0.69
P06-W8-ST4 0.39 0.63 0.54 0.7 0.43 0.66 0.47 0.55
P07-W2-ST0.5 0.78 0.78 0.92 0.84 0.91 0.75 0.77 0.82
P07-W2-ST1 0.61 0.8 0.86 0.63 0.78 0.78 0.79 0.75
P07-W3-ST0.75 0.81 0.82 0.96 0.91 0.88 0.75 0.74 0.84
P07-W3-ST1.5 0.64 0.79 0.84 0.72 0.68 0.63 0.63 0.70
P07-W8-ST2 0.75 0.72 0.73 0.56 0.62 0.83 0.65 0.69
P07-W8-ST4 0.40 0.40 0.30 0.10 0.20 0.30 0.20 0.27
P08-W2-ST0.5 0.75 0.80 0.85 0.87 0.79 0.70 0.79 0.79
P08-W2-ST1 0.76 0.79 0.77 0.78 0.79 0.70 0.75 0.76
P08-W3-ST0.75 0.78 0.79 0.85 0.85 0.82 0.71 0.80 0.80
P08-W3-ST1.5 0.78 0.79 0.73 0.76 0.79 0.70 0.75 0.76
P08-W8-ST2 0.80 0.79 0.85 0.85 0.86 0.73 0.83 0.82
P08-W8-ST4 0.78 0.77 0.76 0.75 0.82 0.68 0.76 0.76
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Table 3.2: Experiment 1: Ranking of the combinations of window size and step per
patient, based on F-measure. The highest rank for each patient is highlighted in grey.

Dataset Wins− Wins Losses
Losses

P07-W2-ST0.5 151 151 0
P07-W3-ST0.75 143 143 0
P08-W8-ST2 140 142 2
P08-W2-ST0.5 130 135 5
P08-W3-ST0.75 127 132 5
P01-W3-ST0.75 126 127 1
P06-W3-ST0.75 101 106 5
P08-W2-ST1 92 109 17
P06-W2-ST0.5 89 101 12
P08-W8-ST4 87 100 13
P08-W3-ST1.5 83 103 20
P07-W2-ST1 81 88 7
P01-W8-ST2 77 89 12
P01-W3-ST1.5 68 85 17
P06-W2-ST1 64 83 19
P01-W2-ST1 63 88 25
P01-W2-ST0.5 56 96 40
P07-W3-ST1.5 53 54 1
P06-W3-ST1.5 52 65 13
P06-W8-ST2 50 67 17
P03-W2-ST0.5 47 77 30
P03-W3-ST0.75 43 57 14
P07-W8-ST2 38 41 3
P01-W8-ST4 2 46 44
P02-W3-ST0.75 -12 56 68
P02-W8-ST2 -23 27 50
P06-W8-ST4 -42 24 66
P02-W2-ST0.5 -54 47 101
P03-W3-ST1.5 -61 11 72
P03-W2-ST1 -95 12 107
P03-W8-ST2 -105 6 111
P02-W2-ST1 -113 22 135
P04-W2-ST0.5 -115 30 145
P04-W3-ST0.75 -131 22 153
P02-W3-ST1.5 -138 8 146
P04-W3-ST1.5 -156 12 168
P07-W8-ST4 -160 0 160
P04-W2-ST1 -160 11 171
P02-W8-ST4 -180 2 182
P04-W8-ST4 -209 5 214
P04-W8-ST2 -209 2 211
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3.1.2 Experiment 2 - Classifier selection per patient with all fea-
tures

The aim of this experiment is to select the most suitable classifier when using all 864
features for all four ROIs. The evaluation is performed per patient in terms of a 10-fold
cross validation, repeated 10 times. The results are shown below for four performance
measures (Tables 3.3–3.6). Ranking of the classifiers, based on the corrected two-sided
t-test (Significance 0.05) for the four comparison fields is given in Tables 3.7–3.10. The
performance evaluation results that classifier (3) performs better than the others, followed
by classifiers (5) and (4). Classifier (2) has only a good recall.

Table 3.3: Experiment 2: Accuracy for each classifier and patient. The highest average
value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
P01-W3-ST0.75 78.79 75.97 94.66 86.28 84.32 71.61 83.64
P02-W3-ST0.75 78.98 52.47 87.92 67.05 83.81 71.52 76.74
P03-W3-ST0.75 75.23 76.77 80.83 80.63 81.57 66.77 85.80
P04-W3-ST0.75 62.68 52.44 71.91 72.41 70.79 65.83 66.44
P06-W3-ST0.75 74.19 66.84 83.88 76.16 84.64 70.01 72.85
P07-W3-ST0.75 82.76 82.93 95.71 89.81 86.74 76.29 72.29
P08-W3-ST0.75 77.02 74.59 82.90 82.82 79.78 55.55 77.98
Average 75.66 68.86 85.40 79.31 81.66 68.22 76.53

Table 3.4: Experiment 2: Recall for each classifier and patient. The highest average value
is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
P01-W3-ST0.75 0.94 0.96 0.93 0.83 0.83 0.70 0.80
P02-W3-ST0.75 0.62 0.85 0.81 0.73 0.68 0.32 0.63
P03-W3-ST0.75 0.76 0.73 0.78 0.90 0.69 0.51 0.84
P04-W3-ST0.75 0.69 0.76 0.58 0.54 0.47 0.00 0.49
P06-W3-ST0.75 0.62 0.81 0.86 0.82 0.85 0.77 0.77
P07-W3-ST0.75 0.74 0.76 0.94 0.90 0.88 0.70 0.74
P08-W3-ST0.75 0.73 0.87 0.85 0.88 0.81 0.99 0.79
Average 0.73 0.82 0.82 0.80 0.74 0.57 0.72

Table 3.5: Experiment 2: Precision for each classifier and patient. The highest average
value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
P01-W3-ST0.75 0.67 0.63 0.94 0.83 0.80 0.64 0.79
P02-W3-ST0.75 0.75 0.40 0.84 0.52 0.82 0.61 0.70
P03-W3-ST0.75 0.69 0.69 0.73 0.72 0.78 0.48 0.82
P04-W3-ST0.75 0.47 0.40 0.60 0.62 0.61 0.01 0.51
P06-W3-ST0.75 0.87 0.66 0.85 0.76 0.88 0.71 0.74
P07-W3-ST0.75 0.94 0.93 0.99 0.93 0.91 0.85 0.79
P08-W3-ST0.75 0.84 0.73 0.85 0.82 0.83 0.55 0.81
Average 0.75 0.63 0.83 0.74 0.80 0.55 0.74
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Table 3.6: Experiment 2: F-measure for each classifier and patient. The highest average
value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
P01-W3-ST0.75 0.78 0.76 0.93 0.82 0.80 0.62 0.79
P02-W3-ST0.75 0.65 0.54 0.81 0.60 0.73 0.40 0.64
P03-W3-ST0.75 0.69 0.68 0.73 0.78 0.70 0.46 0.80
P04-W3-ST0.75 0.56 0.52 0.58 0.57 0.52 0.00 0.50
P06-W3-ST0.75 0.71 0.72 0.85 0.79 0.85 0.73 0.75
P07-W3-ST0.75 0.81 0.82 0.96 0.91 0.88 0.75 0.74
P08-W3-ST0.75 0.78 0.79 0.85 0.85 0.82 0.71 0.80
Average 0.71 0.69 0.81 0.76 0.76 0.52 0.72

Table 3.7: Experiment 2: Classifier
ranking based on accuracy. The high-
est rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 27 27 0
(5) 13 15 2
(4) 9 14 5
(7) -1 7 8
(1) -6 6 12
(6) -19 2 21
(2) -23 1 24

Table 3.8: Experiment 2: Classifier
ranking based on recall. The highest
rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(2) 14 16 2
(3) 12 15 3
(4) 3 9 6
(5) -5 4 9
(1) -5 10 15
(7) -7 5 12
(6) -12 7 19

Table 3.9: Experiment 2: Classifier
ranking based on precision. The high-
est rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 17 17 0
(5) 12 13 1
(4) 5 11 6
(7) 4 10 6
(1) 4 11 7
(6) -20 0 20
(2) -22 2 24

Table 3.10: Experiment 2: Classifier
ranking based on F-measure. The high-
est rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 26 26 0
(5) 8 10 2
(4) 7 9 2
(1) -3 5 8
(7) -4 5 9
(2) -5 3 8
(6) -29 0 29

3.1.3 Experiment 3 - Classifier selection per patient with selected
features for each patient separately

The aim of this experiment is to select the most suitable classifier when using selected
features for each patient for all four ROIs. The evaluation is performed per patient
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in terms of a 10-fold cross validation, repeated 10 times. The results are shown in
Tables 3.11–3.14 for four performance measures. Ranking of the classifiers is based on
the corrected two-sided t-test for the four comparison fields and is given in Tables 3.15–
3.18. The performance evaluation results that classifiers (1),(3) and (4) perform better
than the others. Considering the ranking, classifiers (1) and (4) stand out by taking the
first place in F-measure and precision respectively. It is noticeable that with the selected
features performance in general is slightly better than with all features (cf. experiment
2).

Features were selected with the weka.attributeSelection.CfsSubsetEval evaluator
using the weka.attributeSelection.BestFirst -D 1 -N 5 search and the full training
set. Total selected features: P01: 57; P02: 36; P03: 21; P04: 30; P06: 30; P07: 32; P08:
67.

Table 3.11: Experiment 3: Accuracy for each classifier after feature selection for each
patient. The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 87.77 78.35 92.68 90.78 83.55 69.16 85.99
’P02-W3-ST0.75 86.68 72.55 86.87 88.23 87.42 74.55 78.90
’P03-W3-ST0.75 89.50 81.23 80.90 88.03 87.87 70.20 88.87
’P04-W3-ST0.75 74.69 68.56 74.28 67.04 71.25 65.87 69.87
’P06-W3-ST0.75 84.19 78.14 80.75 79.66 86.87 74.52 72.88
’P07-W3-ST0.75 95.67 91.88 93.74 90.64 88.81 92.17 76.05
’P08-W3-ST0.75 82.57 79.05 81.08 84.81 79.46 55.22 78.95
Average 85.87 78.54 84.33 84.17 83.60 71.67 78.79

Table 3.12: Experiment 3: Recall for each classifier after feature selection for each patient.
The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 0.94 0.95 0.89 0.94 0.84 0.30 0.83
’P02-W3-ST0.75 0.78 0.92 0.77 0.77 0.78 0.43 0.66
’P03-W3-ST0.75 0.83 0.73 0.68 0.92 0.81 0.66 0.82
’P04-W3-ST0.75 0.69 0.78 0.46 0.56 0.47 0.00 0.50
’P06-W3-ST0.75 0.78 0.80 0.79 0.74 0.87 0.81 0.77
’P07-W3-ST0.75 0.94 0.93 0.93 0.88 0.90 0.94 0.77
’P08-W3-ST0.75 0.81 0.82 0.85 0.86 0.81 0.99 0.81
Average 0.82 0.85 0.77 0.81 0.78 0.59 0.74
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Table 3.13: Experiment 3: Precision for each classifier after feature selection for each
patient. The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 0.80 0.66 0.93 0.85 0.78 0.37 0.82
’P02-W3-ST0.75 0.83 0.57 0.85 0.88 0.86 0.67 0.74
’P03-W3-ST0.75 0.91 0.78 0.78 0.83 0.88 0.57 0.90
’P04-W3-ST0.75 0.62 0.53 0.69 0.52 0.62 0.00 0.58
’P06-W3-ST0.75 0.92 0.80 0.85 0.87 0.90 0.75 0.75
’P07-W3-ST0.75 0.99 0.94 0.96 0.96 0.92 0.94 0.82
’P08-W3-ST0.75 0.87 0.81 0.82 0.87 0.82 0.55 0.81
Average 0.85 0.73 0.84 0.82 0.82 0.55 0.77

Table 3.14: Experiment 3: F-measure for each classifier after feature selection for each
patient. The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 0.86 0.77 0.90 0.89 0.80 0.29 0.82
’P02-W3-ST0.75 0.79 0.70 0.79 0.81 0.80 0.47 0.67
’P03-W3-ST0.75 0.84 0.72 0.69 0.85 0.81 0.58 0.83
’P04-W3-ST0.75 0.65 0.63 0.55 0.54 0.52 0.00 0.53
’P06-W3-ST0.75 0.83 0.79 0.81 0.79 0.87 0.77 0.75
’P07-W3-ST0.75 0.96 0.93 0.94 0.91 0.90 0.93 0.77
’P08-W3-ST0.75 0.84 0.81 0.83 0.86 0.81 0.71 0.81
Average 0.82 0.77 0.79 0.81 0.79 0.54 0.74

Table 3.15: Experiment 3: Classifier
ranking based on accuracy after feature
selection for each patient. The highest
rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(1) 14 15 1
(4) 11 13 2
(3) 11 12 1
(5) 8 12 4
(7) -9 4 13
(2) -11 3 14
(6) -24 1 25

Table 3.16: Experiment 3: Classifier
ranking based on recall after feature se-
lection for each patient. The highest
rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(2) 13 14 1
(1) 6 10 4
(4) 2 7 5
(3) 0 5 5
(5) -2 4 6
(7) -9 2 11
(6) -10 7 17
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Table 3.17: Experiment 3: Classifier
ranking based on precision after feature
selection for each patient. The highest
rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(1) 16 17 1
(4) 10 12 2
(3) 8 11 3
(5) 6 9 3
(7) -2 6 8
(2) -14 2 16
(6) -24 0 24

Table 3.18: Experiment 3: Classifier
ranking based on F-measure after fea-
ture selection for each patient. The
highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(1) 14 14 0
(4) 12 14 2
(3) 6 8 2
(5) 3 8 5
(2) 3 9 6
(7) -12 4 16
(6) -26 1 27

3.1.4 Experiment 4 - Classifier selection per patient with union
of selected features for each patient

The aim of this experiment is to select the most suitable classifier when using the union
of selected features for each patient for all four ROIs from the previous experiment. This
resulted in a total of 229 features. A full list is given in the Annex, Table 5.20. The
evaluation is performed per patient in terms of a 10-fold cross validation, repeated 10
times. The results are shown in Tables 3.19–3.22 for four performance measures. Ranking
of the classifiers is based on the corrected two-sided t-test for the four comparison fields
and is given in Tables 3.23–3.26. Classifiers (3) and (4) stand out in this experiment.
The overall performance is more or less equal to that of experiment 2 (all features), but
with a gain of 635 less features.

Table 3.19: Experiment 4: Accuracy for each classifier with union of selected features for
each patient. The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 79.38 74.94 92.56 92.71 85.25 73.44 84.61
’P02-W3-ST0.75 85.28 50.72 86.80 86.73 86.16 70.52 78.63
’P03-W3-ST0.75 77.63 80.70 81.17 80.80 80.77 68.63 82.20
’P04-W3-ST0.75 70.93 58.50 73.01 71.88 71.07 65.87 68.17
’P06-W3-ST0.75 77.01 68.94 85.99 76.44 85.69 74.45 76.56
’P07-W3-ST0.75 86.76 77.81 95.98 91.24 86.98 73.07 75.33
’P08-W3-ST0.75 79.15 76.19 84.20 84.37 78.74 58.69 79.14
Average 79.45 69.68 85.67 83.45 82.10 69.24 77.81
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Table 3.20: Experiment 4: Recall for each classifier with union of selected features for
each patient. The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 0.96 0.93 0.90 0.90 0.84 0.66 0.80
’P02-W3-ST0.75 0.72 0.84 0.78 0.74 0.75 0.17 0.65
’P03-W3-ST0.75 0.74 0.80 0.79 0.87 0.69 0.63 0.80
’P04-W3-ST0.75 0.68 0.73 0.51 0.54 0.47 0.00 0.52
’P06-W3-ST0.75 0.65 0.78 0.86 0.87 0.85 0.76 0.80
’P07-W3-ST0.75 0.81 0.70 0.94 0.94 0.86 0.69 0.77
’P08-W3-ST0.75 0.76 0.86 0.88 0.85 0.81 0.80 0.80
Average 0.76 0.81 0.81 0.82 0.75 0.53 0.73

Table 3.21: Experiment 4: Precision for each classifier with union of selected features for
each patient. The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 0.67 0.62 0.91 0.92 0.81 0.51 0.81
’P02-W3-ST0.75 0.84 0.39 0.84 0.86 0.84 0.57 0.71
’P03-W3-ST0.75 0.72 0.73 0.75 0.74 0.76 0.60 0.79
’P04-W3-ST0.75 0.57 0.44 0.64 0.60 0.62 0.00 0.54
’P06-W3-ST0.75 0.90 0.69 0.89 0.75 0.89 0.77 0.79
’P07-W3-ST0.75 0.96 0.89 0.99 0.92 0.91 0.83 0.82
’P08-W3-ST0.75 0.85 0.75 0.84 0.87 0.81 0.63 0.82
Average 0.79 0.65 0.84 0.81 0.80 0.56 0.75

Table 3.22: Experiment 4: F-measure for each classifier with union of selected features
for each patient. The highest average value is highlighted in grey.

Dataset (1) (2) (3) (4) (5) (6) (7)
’P01-W3-ST0.75 0.79 0.74 0.90 0.90 0.81 0.55 0.80
’P02-W3-ST0.75 0.76 0.53 0.79 0.78 0.77 0.24 0.66
’P03-W3-ST0.75 0.70 0.74 0.75 0.78 0.69 0.57 0.76
’P04-W3-ST0.75 0.62 0.55 0.56 0.57 0.52 0.00 0.53
’P06-W3-ST0.75 0.74 0.73 0.87 0.80 0.86 0.76 0.78
’P07-W3-ST0.75 0.85 0.76 0.96 0.92 0.87 0.73 0.77
’P08-W3-ST0.75 0.80 0.80 0.86 0.86 0.81 0.65 0.81
Average 0.75 0.69 0.81 0.80 0.76 0.50 0.73
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Table 3.23: Experiment 4: Classifier
ranking based on accuracy for the union
of selected features for each patient. The
highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 22 22 0
(4) 18 18 0
(5) 7 11 4
(1) -2 6 8
(7) -3 5 8
(6) -20 2 22
(2) -22 1 23

Table 3.24: Experiment 4: Classifier
ranking based on recall for the union of
selected features for each patient. The
highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(2) 11 13 2
(3) 8 10 2
(4) 4 7 3
(1) 0 9 9
(5) -2 4 6
(7) -7 3 10
(6) -14 0 14

Table 3.25: Experiment 4: Classifier
ranking based on precision for the union
of selected features for each patient. The
highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 17 17 0
(4) 10 13 3
(5) 7 11 4
(1) 7 12 5
(7) 0 8 8
(6) -20 0 20
(2) -21 2 23

Table 3.26: Experiment 4: Classifier
ranking based on F-measure for the
union of selected features for each pa-
tient. The highest rank is highlighted in
grey.

Resultset Wins− Wins Losses
Losses

(3) 19 19 0
(4) 18 18 0
(5) 4 9 5
(1) 2 8 6
(7) -4 4 8
(2) -13 3 16
(6) -26 0 26

3.1.5 Remarks for experiments 2–4

So far, the performance of each classifier was tested in terms of a 10-fold cross validation
for each patient individually. This allowed to see if there are any peculiarities among
patients. Results for P04 e.g. are low in all three experiments, while P01, P07 and P08
show the best overall results. This could expected to certain extend since the latter three
patients took high ranking places in experiment 1, with the chosen windows size of 3 s
and step of 0.75 s, while P04 generally takes a low ranking place.

A second approach is to form a single dataset with the data from all patients and to
perform a 10-fold cross validation with the new dataset. The following three experiments
follow this approach with either all features, a subset of features selected from the new
dataset, and the union of features, selected individually from each patient as in experiment
4.

84



3.1.6 Experiment 5 - Classifier selection for all patients at once
with all features

The aim of this experiment is to select the most suitable classifier when using a single
dataset with all patients and all features. The evaluation is performed in terms of a
10-fold cross validation, repeated 10 times. The results are shown in Table 3.27 for four
performance measures. Ranking of the classifiers is based on the corrected two-sided
t-test for the four comparison fields and is given in Tables 3.28–3.31. Classifiers (3) and
(4) stand out in this experiment. A recall of 1.00 for classifier (6) is extraordinarily good,
although counterbalanced by the worst overall precision. Classifier (2) shows the best
recall.

Table 3.27: Experiment 5: Performance measures for each classifier with all patients in
one dataset and all features. Highest values are highlighted in grey.

Measure (1) (2) (3) (4) (5) (6) (7)
Accuracy [%] 64.86 56.30 73.14 71.33 68.14 44.75 68.87
Recall 0.65 0.83 0.68 0.65 0.63 1.00 0.63
Precision 0.60 0.51 0.71 0.69 0.65 0.45 0.66
F-measure 0.62 0.63 0.69 0.67 0.64 0.62 0.64

Table 3.28: Experiment 5: Classifier
ranking based on accuracy for all pa-
tients in one dataset and all features.
The highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 5 5 0
(4) 4 4 0
(7) 2 3 1
(5) 1 3 2
(1) -2 2 4
(2) -4 1 5
(6) -6 0 6

Table 3.29: Experiment 5: Classifier
ranking based on recall for all patients in
one dataset and all features. The high-
est rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(6) 6 6 0
(2) 4 5 1
(3) -1 1 2
(5) -2 0 2
(4) -2 0 2
(1) -2 0 2
(7) -3 0 3
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Table 3.30: Experiment 5: Classifier
ranking based on precision for all pa-
tients in one dataset and all features.
The highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(4) 5 5 0
(3) 5 5 0
(7) 1 3 2
(5) 1 3 2
(1) -2 2 4
(2) -4 1 5
(6) -6 0 6

Table 3.31: Experiment 5: Classifier
ranking based on F-measure for all pa-
tients in one dataset and all features.
The highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 5 5 0
(4) 3 3 0
(7) -1 0 1
(5) -1 0 1
(6) -2 0 2
(2) -2 0 2
(1) -2 0 2

3.1.7 Experiment 6 - Classifier selection for all patients at once
with selected features from all patients

The aim of this experiment is to select the most suitable classifier when using a single
dataset with all patients and a subset of features, 81 in total (Table 5.21, Annex), selected
from the same dataset. The evaluation is performed in terms of a 10-fold cross validation,
repeated 10 times. The results are shown in Table 3.32 for four performance measures.
Ranking of the classifiers is based on the corrected two-sided t-test for the four comparison
fields and is given in Tables 3.33–3.36. Classifiers (3) and (4) stand out in this experiment
mostly due to the ranking based on precision (classifier (3)), and average F-measure
(classifier(4)). It is observable that classifier (6) fails in therms of precision and recall
due to zero true positives. Classifier (2) shows the best recall.

Features were selected with the weka.attributeSelection.CfsSubsetEval evaluator
using the weka.attributeSelection.BestFirst -D 1 -N 5 search and the full training
set.

Table 3.32: Experiment 6: Performance measures for each classifier with all patients in
one dataset and selected features from all patients. Highest values are highlighted in grey.

Measure (1) (2) (3) (4) (5) (6) (7)
Accuracy 68.26 62.99 69.91 69.69 68.29 54.82 69.33
Recall 0.65 0.74 0.60 0.65 0.61 0.00 0.62
Precision 0.64 0.57 0.69 0.66 0.66 0.00 0.67
F-measure 0.65 0.64 0.64 0.66 0.63 0.00 0.65
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Table 3.33: Experiment 6: Classifier
ranking based on accuracy for all pa-
tients in one dataset and selected fea-
tures from all patients. The highest rank
is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(7) 2 2 0
(5) 2 2 0
(4) 2 2 0
(3) 2 2 0
(1) 2 2 0
(2) -4 1 5
(6) -6 0 6

Table 3.34: Experiment 6: Classifier
ranking based on recall for all patients
in one dataset and selected features from
all patients. The highest rank is high-
lighted in grey.

Resultset Wins− Wins Losses
Losses

(2) 6 6 0
(1) 2 3 1
(4) 1 2 1
(7) 0 1 1
(5) -1 1 2
(3) -2 1 3
(6) -6 0 6

Table 3.35: Experiment 6: Classifier
ranking based on precision for all pa-
tients in one dataset and selected fea-
tures from all patients. The highest rank
is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(3) 3 3 0
(7) 2 2 0
(5) 2 2 0
(4) 2 2 0
(1) 1 2 1
(2) -4 1 5
(6) -6 0 6

Table 3.36: Experiment 6: Classifier
ranking based on F-measure for all pa-
tients in one dataset and selected fea-
tures from all patients. The highest rank
is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(7) 1 1 0
(5) 1 1 0
(4) 1 1 0
(3) 1 1 0
(2) 1 1 0
(1) 1 1 0
(6) -6 0 6

3.1.8 Experiment 7 - Classifier selection for all patients at once
with union of selected features from each patient

The aim of this experiment is to select the most suitable classifier when using a single
dataset with all patients and a subset of features, consistion of the union of features
selected individually for each patient as in experiment 4 (cf. Table 5.20). The evaluation
is performed in terms of a 10-fold cross validation, repeated 10 times. The results are
shown in Table 3.37 for four performance measures. Ranking of the classifiers is based on
the corrected two-sided t-test for the four comparison fields and is given in Tables 3.38–
3.41. Classifiers (4) and (7) stand out in this experiment mostly due to the ranking based
on precision and F-measure. Classifier (2) shows the best recall.
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Table 3.37: Experiment 7: Performance measures for each classifier with all patients
in one dataset and union of selected features from each patient. Highest values are
highlighted in grey.

Measure (1) (2) (3) (4) (5) (6) (7)
Accuracy 66.74 57.50 70.56 73.95 68.63 46.79 70.95
Recall 0.65 0.81 0.63 0.65 0.63 0.76 0.65
Precision 0.63 0.52 0.69 0.74 0.66 0.37 0.69
F-measure 0.64 0.63 0.66 0.69 0.64 0.48 0.67

Table 3.38: Experiment 7: Classifier
ranking based on accuracy for all pa-
tients in one dataset and union of se-
lected features from each patient. The
highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(4) 5 5 0
(7) 3 3 0
(3) 2 3 1
(5) 1 2 1
(1) -1 2 3
(2) -4 1 5
(6) -6 0 6

Table 3.39: Experiment 7: Classifier
ranking based on recall for all patients
in one dataset and union of selected fea-
tures from each patient. The highest
rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(2) 5 5 0
(6) 0 0 0
(7) -1 0 1
(5) -1 0 1
(4) -1 0 1
(3) -1 0 1
(1) -1 0 1

Table 3.40: Experiment 7: Classifier
ranking based on precision for all pa-
tients in one dataset and union of se-
lected features from each patient. The
highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(4) 6 6 0
(7) 2 3 1
(5) 2 3 1
(3) 2 3 1
(1) -2 2 4
(2) -4 1 5
(6) -6 0 6

Table 3.41: Experiment 7: Classifier
ranking based on F-measure for all pa-
tients in one dataset and union of se-
lected features from each patient. The
highest rank is highlighted in grey.

Resultset Wins− Wins Losses
Losses

(4) 5 5 0
(7) 2 2 0
(3) 0 1 1
(5) -1 0 1
(1) -1 0 1
(2) -2 0 2
(6) -3 0 3

3.1.9 Remarks for experiments 2–7

Classifier (1) achieves the best overall accuracy (85.87 %), precision (0.85) and F-measure
(0.82) in experiment 3. in the same experiment, classifier (2) achieves the best overall
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recall. Classifier (3) wins in the most ranking tests, especially in experiments 2 and 4.
Classifier (4) stands out in experiment 7 with the highest rank in accuracy, precision
and F-measure. It is also always clos behind classifier (3) in the remaining experiments.
Concluding, classifiers (1), (3) and (4) should be closer examined in the the next experi-
ments.

All previous experiments have been performed on the basis of a 10-fold cross validation.
This method limits problems like overfitting and is useful for simulating the classifier
performance on an unknown dataset. Each fold is produced by randomly sampling in-
stances from the whole dataset. Since one seizure usually consists of multiple instances,
it could happen that the same seizure is represented through neighbouring instances of
itself in both the training and the test set. An approach which is closer to reality is
to use one patient’s complete data set for testing, while training on the datasets of the
remaining patients. This “per patient leave-one-out cross validation” is performed in the
next experiments in order to test the classifiers generalization ability.

Feature selection does not seem to have a major impact on the performance. Therefore,
a smaller feature set can be taken for further experiments. The next three experiments
study the impact of the three different feature sets.

3.1.10 Experiment 8 - Classifier selection, per patient leave-one-
out cross validation with all features

The aim of this experiment is to test the performance of the three selected classifiers
from the previous experiments through a per patient leave-one-out cross validation. This
experiment uses all features. The results are shown in Tables 3.42–3.44. Cells highlighted
in grey serve the comparison of the results of experiments 8 to 10.

Table 3.42: Experiment 8: Per patient leave-one-out cross validation using the Bayesian
Network classifier (1) with all features.

Test set Accuracy [%] Recall Precision F-measure
P01 69.92 0.97 0.56 0.71
P02 45.28 0.79 0.36 0.49
P03 32.20 0.18 0.15 0.17
P04 58.21 0.64 0.43 0.51
P06 70.31 0.62 0.78 0.69
P07 53.03 0.35 0.65 0.46
P08 68.65 0.51 0.87 0.64
Average 56.80 0.58 0.54 0.52
Standard deviation 14.43 0.26 0.25 0.19
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Table 3.43: Experiment 8: Per patient leave-one-out cross validation using the SMO
classifier (3) with all features.

Test set Accuracy [%] Recall Precision F-measure
P01 66.53 0.76 0.55 0.64
P02 42.14 0.68 0.32 0.44
P03 33.90 0.14 0.13 0.13
P04 55.14 0.49 0.38 0.43
P06 55.47 0.38 0.63 0.48
P07 53.03 0.32 0.67 0.44
P08 55.02 0.59 0.59 0.59
Average 51.60 0.48 0.47 0.45
Standard deviation 10.54 0.22 0.20 0.16

Table 3.44: Experiment 8: Per patient leave-one-out cross validation using the Nearest
Neighbours classifier (4) with all features.

Test set Accuracy [%] Recall Precision F-measure
P01 61.02 0.70 0.50 0.58
P02 38.36 0.57 0.29 0.38
P03 40.68 0.23 0.22 0.22
P04 55.80 0.25 0.32 0.28
P06 49.22 0.27 0.55 0.36
P07 37.88 0.22 0.40 0.28
P08 54.08 0.34 0.67 0.45
Average 48.15 0.37 0.42 0.36
Standard deviation 09.29 0.19 0.16 0.12

3.1.11 Experiment 9 - Classifier selection, per patient leave-one-
out cross validation with 81 selected features from all pa-
tients.

The aim of this experiment is to test the performance of the four selected classifiers
from the previous experiments through a per patient leave-one-out cross validation. This
experiment uses the 81 features, selected from all patients at once. The results are shown
in Tables 3.45–3.47. Cells highlighted in grey serve the comparison of the results of
experiments 8 to 10.
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Table 3.45: Experiment 9: Per patient leave-one-out cross validation using the Bayesian
Network classifier (1) with selected features from all patients.

Test set Accuracy [%] Recall Precision F-measure
P01 69.92 0.97 0.56 0.71
P02 45.28 0.77 0.35 0.49
P03 42.37 0.14 0.17 0.15
P04 65.21 0.49 0.49 0.49
P06 71.88 0.66 0.78 0.71
P07 63.64 0.38 0.93 0.54
P08 72.26 0.58 0.88 0.70
Average 61.51 0.57 0.59 0.54
Standard deviation 12.53 0.27 0.28 0.20

Table 3.46: Experiment 9: Per patient leave-one-out cross validation using the SMO
classifier (3) with selected features from all patients.

Test set Accuracy [%] Recall Precision F-measure
P01 72.88 0.87 0.60 0.71
P02 41.51 0.79 0.34 0.48
P03 55.93 0.32 0.39 0.35
P04 58.21 0.42 0.39 0.41
P06 57.03 0.29 0.74 0.42
P07 56.06 0.32 0.75 0.45
P08 54.70 0.34 0.68 0.46
Average 56.62 0.48 0.56 0.47
Standard deviation 09.13 0.24 0.18 0.12

Table 3.47: Experiment 9: Per patient leave-one-out cross validation using the Nearest
Neighbours classifier (4) with selected features from all patients.

Test set Accuracy [%] Recall Precision F-measure
P01 60.59 0.82 0.49 0.62
P02 40.88 0.76 0.33 0.46
P03 52.54 0.41 0.38 0.39
P04 58.21 0.30 0.36 0.33
P06 55.47 0.37 0.64 0.47
P07 50.00 0.19 0.70 0.30
P08 64.26 0.52 0.76 0.62
Average 54.56 0.48 0.52 0.45
Standard deviation 07.71 0.24 0.18 0.13
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3.1.12 Experiment 10 - Classifier selection, per patient leave-one-
out cross validation with union of selected features from
each patient.

The aim of this experiment is to test the performance of the four selected classifiers
from the previous experiments through a per patient leave-one-out cross validation. This
experiment uses the union of features, selected from each patient separately. The results
are shown in Tables 3.48–3.50. Cells highlighted in grey serve the comparison of the
results of experiments 8 to 10.

Table 3.48: Experiment 10: Per patient leave-one-out cross validation using the Bayesian
Network classifier (1) with union of selected features from each patient.

Test set Accuracy [%] Recall Precision F-measure
P01 69.92 0.97 0.56 0.71
P02 44.65 0.79 0.35 0.49
P03 37.29 0.18 0.17 0.18
P04 60.18 0.59 0.44 0.50
P06 70.31 0.57 0.81 0.67
P07 53.03 0.32 0.67 0.44
P08 69.28 0.51 0.89 0.65
Average 57.81 0.56 0.56 0.52
Standard deviation 13.27 0.27 0.25 0.18

Table 3.49: Experiment 10: Per patient leave-one-out cross validation using the SMO
classifier (3) with union of selected features from each patient.

Test set Accuracy [%] Recall Precision F-measure
P01 71.19 0.85 0.59 0.69
P02 41.51 0.76 0.33 0.46
P03 33.90 0.23 0.19 0.20
P04 54.92 0.43 0.36 0.39
P06 47.66 0.19 0.52 0.28
P07 48.48 0.24 0.60 0.35
P08 51.25 0.47 0.57 0.52
Average 49.84 0.45 0.45 0.41
Standard deviation 11.65 0.26 0.16 0.16
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Table 3.50: Experiment 10: Per patient leave-one-out cross validation using the Nearest
Neighbours classifier (4) with union of selected features from each patient.

Test set Accuracy [%] Recall Precision F-measure
P01 61.44 0.77 0.50 0.61
P02 45.91 0.66 0.34 0.45
P03 45.76 0.27 0.27 0.27
P04 52.52 0.22 0.26 0.24
P06 51.56 0.21 0.64 0.31
P07 48.48 0.24 0.60 0.35
P08 55.96 0.35 0.71 0.47
Average 51.66 0.39 0.47 0.38
Standard deviation 05.67 0.23 0.18 0.13

3.1.13 Remarks for experiments 8–10

The best overall performance, especially in terms of precision and F-measure, is achieved
by the Bayesian Network classifier (1) in experiment 9, where the selected features from
all patients are used. In general, the results of experiment 9 are better than those of
experiment 8 (all features) and experiment 10 (union of features), which shows similar
results to experiment 8. The most problematic case is patient P03, which is not perform-
ing well because of the limited number of instances. There are only 4 seizures with a small
seizure duration (average: 3.97 s). For this patient only, the Nearest Neighbours classifier
(4) performs better than the Bayesian Network. While generally performing worse than
the other two, the Nearest Neighbours classifier shows lower standard deviation in the
results with respect to each patient.

Concluding, since the most important goal is to achieve a high precision for the majority of
the patients, the Bayesian Network classifier is selected for further experiments. Moreover
the settings of experiment 9, utilizing the subset of 81 features will be used for the
subsequent evaluation.

3.1.14 Analysis of the selected features

The 81 features, which were selected in experiment 6 and subsequently confirmed in
experiment 9, are shown in Figure 3.1 grouped according to the ROI and signal, from
which they were extracted. The distribution of the number of features between the ROIs
does not show an extreme tendency towards a specific region. More or less all signals
are used for feature extraction, with the exception of the mouth region, where the sum
of magnitudes (SM), adaptive thresholded pixels (ATHP), mean magnitude weighted
(MMW) and maximum magnitude weighted (MXMW) are not used. The signal, from
which the most features (21 features) are extracted is the mean angle (MA) resulting from
the optical flow, followed by the pixel area from background-foreground segmentation
(14 features) and the angle at maximum magnitude (9 features), again resulting from the
optical flow. The remaining signals are used for an average of 6 features each. Within the
selected features, the most prominent are the variance of time intervals between adjacent
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spikes (VTI), the median and the minimum. VTI is generally closely connected with
signals related to the angle (MA, MMW and MXMW) for the left and right eye. The
probability distribution table of the Bayes Network on the whole training set, e.g. for
the VTI (MA, right eye) shows a higher probability (0.725) for it to be above 0.8 for the
“NoSeizure” class, while the probability for VTI to be within (0.26 − 0.8] is higher for
the “AbsenceSeizure” class. The median has a slightly higher probability (+0.1) for the
“AbsenceSeizure” class to be within a certain range. The same applies to the minimum of
the MA with a higher probability of about 0.2 for the “AbsenceSeizure” class. Regarding
the frequency domain features, the power in the band between 3 an 6 Hz is the most often
used feature (6 times) followed by the dominant frequency (5 times features), mainly from
signals related to the angle (AMXM, MA, MMW) and the pixel area from background-
foreground segmentation (PBFS). The power between 3 and 6 Hz from the MA signal
(left eye) shows a higher probability (0.759) to be below 6.24 during an absence seizure.
The dominant frequency of the MMW in the area of both eyes shows a higher probability
(0.772) to be below 2.4 for the seizure free period, while for the absence seizures the
frequency is more wide spread.
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Figure 3.1: Overview of the feature dependencies for each ROI for the 81 selected features.
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3.2 Phase 2 - Introduction of non ideal conditions: all
annotated seizures

The previous phase provided valuable information regarding the most suitable classifier,
feature selection, window size and step for seizure events captured under ideal conditions.
The aim of the second phase is to examine the influence of adding all annotated seizures
and their related seizure-free periods to the dataset. Since the classifier performance is
calculated based on correctly, or not, classified instances, while a seizure may consist of
multiple instances, in this phase a mapping of the instances to whole seizure events is
also performed (experiment 14).

3.2.1 Experiment 11 - Classifier performance per patient for all
annotated seizures with the 81 selected features from all
patients

The aim of this experiment is to closely evaluate the performance of the Bayesian Network
classifier, which was selected as the most suitable in the previous phase, with the addition
of all annotated seizures that were not included in phase 1, introducing patient P05. For
this purpose the same 81 selected features were chosen as in experiment 9, which showed
the best performance under the given criteria. The results of this experiment are shown
in Table 3.51 and were gained by a 10-fold cross validation, repeated 10 times for each
patient. The additional performance measure true negative rate (TN-rate, specificity)
was added to the result table, in order to give a better image of the performance. The
accuracy is rather high as a result of the dataset’s imbalanced towards the negative class
(“NoSeizure”) in conjunction to high TN-rate. This means that the classifier is very
good in classifying ictal-free behavior. An overview of the dataset balance is shown in
Table 3.52. The balance issue is examined in the next experiment.

Table 3.51: Experiment 11: Performance of the Bayesian Network classifier (1) for each
patient for all annotated seizures with selected features from all patients.

Dataset Accuracy TN-rate Recall Precision F-measure
P01 83.65 0.81 0.94 0.57 0.70
P02 82.71 0.90 0.47 0.53 0.49
P03 89.35 0.93 0.66 0.57 0.59
P04 86.43 0.90 0.50 0.34 0.40
P05 75.27 0.87 0.44 0.58 0.49
P06 66.31 0.75 0.54 0.62 0.56
P07 82.91 0.90 0.73 0.85 0.78
P08 77.63 0.76 0.79 0.81 0.80
Average 80.53 0.85 0.63 0.61 0.60
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Table 3.52: Dataset balance in terms of numbers of instances for patients P01–P08..

Dataset “AbsenceSeizure” “NoSeizure” “NoSeizure”
to “Absence-

Seizure”
ratio

Represented
seizures

Annotated
seizures
(semi-

automatically)
P01 91 370 4.1 4 4
P02 90 416 4.6 7 7
P03 51 380 7.5 10 16
P04 236 2341 9.9 64 64
P05 197 511 2.6 23 23
P06 114 165 1.4 11 11
P07 86 116 1.3 8 8
P08 475 378 0.8 21 21
Total 1340 4677 - 148 194

3.2.2 Experiment 12 - Classifier performance for all annotated
seizures, 81 selected features with various sub-sampling ra-
tions

The previous experiment showed that the classifier is very good in classifying instances
that describe behaviour other than that of the seizures. This could be the result of the
high imbalance between the number of instances between the two classes. The aim of this
experiment is to find the minimum balance ratio at which the classifier performs best in
term of precision, TN-rate and F-measure. The main thought behind this optimization
is to reduce chances of over fitting and to reduce the size of dataset, since it is expected
that in phase 4, where automatic ROI detection is introduced, the number of instances
for the “NoSeizure” class will be very high.

The experiment is performed per patient at “NoSeizure” to “AbsenceSeizure” ratios of 1
to 10 (maximum imbalance, P04, Table 3.52) in increments of 1. To achieve this, random
subsampling is performed on the “NoSeizure”class. The results are based on a 10 fold
cross-validation, performed 10 times.

Figures 3.2–3.6 show the results of the experiment. The accuracy (Fig. 3.2), which is
connected to the TN-rate at larger ratios (Fig. 3.3) rises to reach its limit at a ratio of 3.
Similarly, the precision (Fig. 3.5) and F-measure (Fig. 3.6) reach their limit at the same
ratio. It can be deduced that at this ratio, the number of instances of the “NoSeizure”
class is enough for the classifier to distinguish it form the “AbsenceSeizure” class.

The recall has its maximum value at a ratio of 1 (perfect balance). At this ratio, the
measures of TN-rate and precision show their minimum. This means that the classifier
correctly classifies the positive class (“AbsenceSeizure”) but misses the negative class
(“NoSeizure”), in terms of more false positives. This is probably the case because the
amount of instances for the negative class is not enough to truly represent it, since it is
randomly taken from a set of many various conditions and behaviours.

Finally the recall, the precision and the F-measure reach their average limit at a ratio of

97



3. This ratio will be used for further experiments. It has to be noted that some patients
(i.e. P02 and P03) would reach the maximum precision at higher ratios as can be seen
in Fig. 3.5.

Figure 3.2: Accuracy of the Bayesian Network classifier over various balance ratios of the
number of instances of the “NoSeizure” to the AbsenceSeizure class. Average values and
values per patient are shown.

Figure 3.3: True negative rate of the Bayesian Network classifier over various balance
ratios of the number of instances of the “NoSeizure” to the “AbsenceSeizure” class. Average
values and values per patient are shown.
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Figure 3.4: Recall of the Bayesian Network classifier over various balance ratios of the
number of instances of the “NoSeizure” to the “AbsenceSeizure” class. Average values and
values per patient are shown.

Figure 3.5: Precision of the Bayesian Network classifier over various balance ratios of the
number of instances of the “NoSeizure” to the “AbsenceSeizure” class. Average values and
values per patient are shown.

Figure 3.6: F-measure of the Bayesian Network classifier over various balance ratios of
the number of instances of the “NoSeizure” to the “AbsenceSeizure” class. Average values
and values per patient are shown.
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3.2.3 Experiment 13 - Classifier performance, per patient leave-
one-out cross validation

The aim of this experiment is to evaluate the performance of the Bayesian Network
classifier through a per patient leave-one-out cross validation. As mentioned earlier this
approach is closer to reality since it uses one patient’s complete data set for testing,
while training is done using the datasets of the remaining patients. This experiment
uses the 81 selected features, which were chosen in experiment 9 and a “NoSeizure” to
“AbsenceSeizure” ratio of 3, as elaborated in the previous experiment, for the training
set. The results are shown in Table 3.53.

The overall precision is notably low. precision is the ratio of the number of true posi-
tives to the total number of positives (true and false). The number of false positives is
influenced by the total number of actual negatives, which are many more than the actual
positives due to the class imbalance in the test set1. This means that it is likely to have
many more false positives than true positives. This results to low numbers for precision,
although the higher values for recall and true negative rate are promising. Seizures could
be filtered based on the fact that they are dense periods of small duration in contrast to
the ictal-free period, which is spread over time.

Table 3.53: Experiment 13: Performance of the Bayesian Network classifier (1), per
patient leave-one-out cross validation.

Dataset Accuracy TN-rate Recall Precision F-measure
P01 49.67 0.38 0.98 0.28 0.43
P02 73.12 0.78 0.49 0.33 0.39
P03 70.30 0.76 0.28 0.13 0.18
P04 84.48 0.90 0.27 0.22 0.24
P05 58.62 0.63 0.48 0.33 0.39
P06 62.72 0.70 0.53 0.55 0.54
P07 40.59 0.43 0.37 0.33 0.35
P08 69.75 0.79 0.62 0.79 0.70
Average 63.66 0.67 0.50 0.37 0.40

3.2.4 Experiment 14 - Classifier performance, per patient leave-
one-out cross validation and mapping to seizures as whole
events

All performance metrics so far have been based on instances. Since one seizure is usually
represented by more than one instance it is worthwhile to analyse the results of experiment
13 in terms of actual seizures. This requires a mapping of the instances to the actual
seizures and their ID. For this purpose, continuous regions of the “AbsenceSeizure” class
have been treated as individual seizure events. They are kept apart through continuous
regions of the “NoSeizure” class. The evaluation is performed under the assumption that if

1Note that that no subsampling is performed on the test set
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a continuous region classified as “AbsenceSeizure” overlaps with an actual absence seizure
event, then a true positive is counted. It has to be noted that one continuous region of
a classified seizure may overlap with multiple actual seizures. This case counts as one
true positive. Further on, it is not practical to calculate a value for true negatives, since
the “NoSeizure” period cannot be partitioned. The results are shown in Table 3.54. The
precision is still quite low. By taking advantage of the fact that seizures are short dense
events, filtering can be applied on the classifier results. It includes a running average
with a window length of 8 instances, followed by thresholding with a threshold set at 0.3
times the maximum average value. The results after filtering are shown in Table 3.55. It
is noticeable that the false positives are reduced effectively.

Table 3.54: Experiment 14: Per patient leave-one-out cross validation and projection to
seizures as whole events

Patient TP FP FN Recall Precision F-measure
P01 4 29 0 1.00 0.12 0.22
P02 4 1 3 0.57 0.80 0.67
P03 3 17 5 0.38 0.15 0.21
P04 20 82 32 0.38 0.20 0.26
P05 17 19 7 0.71 0.47 0.57
P06 10 6 1 0.91 0.63 0.74
P07 6 11 1 0.86 0.35 0.50
P08 23 18 2 0.92 0.56 0.70
Average - - - 0.72 0.41 0.48

Table 3.55: Experiment 14: Per patient leave-one-out cross validation and projection to
seizures as whole events. Filtered classifier output.

Patient TP FP FN Recall Precision F-measure
P01 4 3 0 1.00 0.57 0.73
P02 4 1 3 0.57 0.80 0.67
P03 5 3 5 0.50 0.63 0.56
P04 22 14 41 0.35 0.61 0.44
P05 12 2 8 0.60 0.86 0.71
P06 9 0 1 0.90 1.00 0.95
P07 4 1 2 0.67 0.80 0.73
P08 15 1 4 0.79 0.94 0.86
Average - - - 0.67 0.78 0.70

3.3 Phase 3 - Tests with single and multiple regions of
interest

The semi-automatic ROI annotation of the videos for patients P01–P09 showed that very
often, not all ROIs are concurrently visible. Having this in mind and trying to answer
the question if one facial region plays a particular role in analysing absence seizures, it
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is important to test the detection performance with individual and all combinations of
ROIs.

3.3.1 Experiment 15 - Classifier performance with respect to var-
ious regions of interest

This experiment is based on experiment 13, performing a per patient leave-one-out cross
validation. It uses one patient’s complete data set for testing, while training is done using
the datasets of the remaining patients. This experiment uses the 81 selected features,
which were chosen in experiment 9 and a “NoSeizure” to “AbsenceSeizure” ratio of 3 as
elaborated in experiment 12. The cross validation is performed for the following cases:
Eye-pair; left eye; right eye; mouth; left eye and right eye; left eye, right eye and mouth;
eye-pair and mouth; all ROIs.

The performance measures, averaged over the patients, are shown in Figure 3.7. The
accuracy and TN-rate show little variation due to the high number of negative instances,
as already commented in experiment 11. In the first four cases, where one ROI alone is
used, the recall is lower than in the cases that include combinations of multiple ROIs,
while the case with all ROIs is slightly surpassed by the two cases with either the eyes
or the eyes and the mouth missing. It is observable that the case with all ROIs shows
the worst overall precision. Figures 3.8 and 3.9 show the recall and precision for each
patient for each case. Both measures show different variabilities for each patient. Some
patients, such as P05 and P06 show a high varying recall. The low value for the mouth
ROI in P05 may be explained by the exceptionally low number of instances (the mouth
was obviously not visible), which lies at 72% below the average for the other ROIs of the
same patient. Although the precision does not seem to suffer much.

One might conclude that using more ROIs is advantageous for detecting more positive
instances. The reason for this most probably resides in the fact that occlusions of one
ROI are handled by the existence of the other ROI. The cases where the left eye, the
right eye, and/or the mouth are included seem to be the best choices. When the mouth
is included, a marginally higher average recall (+0.01) and precision (+0.01).
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Figure 3.7: Average performance measures for various ROIs.

Figure 3.8: Recall for each patient for various ROIs.

Figure 3.9: Precision for each patient for various ROIs.
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3.3.2 Experiment 16 - Classifier performance, per patient leave-
one-out cross validation and projection to seizures as whole
events (repetition of experiment 14 with left eye and right
eye only)

Given the results of the previous experiment, it is worthwhile to repeat experiment 14
with the left and the right eye. The experiment performs a mapping of the instances to the
actual seizures and their ID. For this purpose, continuous regions of the “AbsenceSeizure”
class have been treated as individual seizure events. Table 3.56 shows the results prior to
filtering and Table 3.57 shows the results after filtering. In both cases the performance
is slightly worse than experiment 14.

Table 3.56: Experiment 16: Per patient leave-one-out cross validation and projection to
seizures as whole events

Patient TP FP FN Recall Precision F-measure
P01 7 31 0 1.00 0.18 0.31
P02 6 26 0 1.00 0.19 0.32
P03 4 28 4 0.50 0.13 0.20
P04 23 81 27 0.46 0.22 0.30
P05 16 6 7 0.70 0.73 0.71
P06 11 4 2 0.85 0.73 0.79
P07 3 13 3 0.50 0.19 0.27
P08 32 30 3 0.91 0.52 0.66
Average - - - 0.74 0.36 0.44

Table 3.57: Experiment 16: Per patient leave-one-out cross validation and projection to
seizures as whole events. Filtered classifier output.

Patient TP FP FN Recall Precision F-measure
P01 4 3 0 1.00 0.57 0.73
P02 5 6 2 0.71 0.45 0.56
P03 5 6 5 0.50 0.45 0.48
P04 24 8 40 0.38 0.75 0.50
P05 11 0 8 0.58 1.00 0.73
P06 8 0 2 0.80 1.00 0.89
P07 4 3 4 0.50 0.57 0.53
P08 15 2 8 0.65 0.88 0.75
Average - - - 0.64 0.71 0.65
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3.3.3 Experiment 17 - Classifier performance, per patient leave-
one-out cross validation and projection to seizures as whole
events (repetition of experiment 14 with left eye, right eye
and mouth)

Given the results of the previous experiment, it is worthwhile to repeat experiment 14
with the left and the right eye. The experiment performs a mapping of the instances to the
actual seizures and their ID. For this purpose, continuous regions of the “AbsenceSeizure”
class have been treated as individual seizure events. Table 3.58 shows the results prior to
filtering and Table 3.59 shows the results after filtering. In the first case, the performance
is comparable to that of all ROIs, while in the second case with the filtered classifier
output the performance is better than that of all ROIs.

Table 3.58: Experiment 17: Per patient leave-one-out cross validation and projection to
seizures as whole events

Patient TP FP FN Recall Precision F-measure
P01 4 32 0 1.00 0.11 0.20
P02 4 3 3 0.57 0.57 0.57
P03 5 20 4 0.56 0.20 0.29
P04 21 72 31 0.40 0.23 0.29
P05 18 10 7 0.72 0.64 0.68
P06 9 7 1 0.90 0.56 0.69
P07 6 11 0 1.00 0.35 0.52
P08 27 25 2 0.93 0.52 0.67
Average - - - 0.76 0.40 0.49

Table 3.59: Experiment 17: Per patient leave-one-out cross validation and projection to
seizures as whole events. Filtered classifier output.

Patient TP FP FN Recall Precision F-measure
P01 4 1 0 1.00 0.80 0.89
P02 4 1 3 0.57 0.80 0.67
P03 5 1 5 0.50 0.83 0.63
P04 22 6 42 0.34 0.79 0.48
P05 13 0 7 0.65 1.00 0.79
P06 8 0 2 0.80 1.00 0.89
P07 4 1 2 0.67 0.80 0.73
P08 17 2 3 0.85 0.89 0.87
Average - - - 0.67 0.86 0.74

3.3.4 Remarks for experiments 14, 16 and 17

In experiments 14, 16 and 17 the mapping of instances to whole seizure events has been
performed for a) all ROIs, b) the left eye and right eye, and c) the left eye, right eye
and mouth. Figures 3.10 and 3.11 show the non-filtered and filtered average results
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respectively. The filtered results with both eyes and the mouth show the best overall
precision (0.86) and F-measure (0.74). The recall is the highest in the non-filtered case
for the same three ROIs (0.76). Its drop to 0.67 for the filtered case can be accepted,
given the high increase of the precision (+ 117%) and F-measure (+ 52%).

Concluding, the eye-pair, which is missing in case c) with the best results, obviously
introduces noise that diminishes the classifier’s performance. When using only the left
and right eye, the performance is slightly worse than in the other two cases. This suggests,
that motion in the eyes reveals most of the necessary information to correctly detect the
seizures. Of course on the other hand one can argue that an eye as such is the most
often visible element and was most often annotated. The addition of information of the
mouth enhanced the classifier performance. This can be related to additional information
coming from mouth automatisms that usually occur during a seizure.

Figure 3.10: Average performance measures for three different ROI sets.
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Figure 3.11: Average performance measures for three different ROI sets. Filtered classifier
output.

3.4 Phase 4 - Introduction of automatic ROI detec-
tion

The aim of this phase is to investigate the feasibility of a fully automatic seizure detection
scenario. As elaborated in the previous phase, the ROIs of the left eye, the right eye and
mouth are used, following the detection scheme described in Section 2.3.2. In addition
to that, the features, which were selected from patients P01–P08 as a whole dataset are
used. Concerning the three aforementioned ROIs, this results in 57 features out of the
initial 81. The training set is sub sampled to a “AbsenceSeizure” to “NoSeizure” ratio of 3
as elaborated in experiment 12. These parameters are applied at first on P01–P08. They
are tested with the classifier trained on the features, extracted from the automatically
detected ROIs (exp. 18), as well as on the semi-automatically extracted features already
used in the previous three phases (exp. 19). Finally, the same tests are applied on a new
test set, consisting of four new patients (P09–P12). It can be expected that automatic
ROI detection may not detect any ROI during some seizures. Table 3.60 shows the
detailed class distributions for all patients after the automatic ROI detection. The heavy
dataset imbalance, as well as the fact that more than half of the annotated seizures are
not represented in the dataset is cognizable.
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Table 3.60: Dataset balance in terms of numbers of instances for patients P01–P12.
Automatic ROI detection.

Dataset “AbsenceSeizure”
instances

“NoSeizure”
instances

“NoSeizure”
to “Absence-

Seizure”
ratio

Represented
seizures

Annotated
seizures by
neurologist

P01 86 846 9.8 4 4
P02 68 6462 95.0 7 7
P03 27 5672 210.1 5 16
P04 52 6238 120.0 18 64
P05 40 3109 77.7 7 23
P06 40 6072 151.8 5 11
P07 40 9518 238.0 6 8
P08 343 25838 75.3 19 21
P09 30 5340 178.0 6 25
P10 10 1323 132.3 4 68
P11 164 16703 101.8 22 38
P12 79 17440 220.8 18 25
Total 979 104561 106.8 121 310

3.4.1 Experiment 18 - Classifier performance, patients P01–P08,
automatic ROI detection for training and testing

This experiment uses for training and testing the 57 selected features (cf. experiment 9),
which are extracted from the automatically detected ROIs of the left eye, the right eye
and the mouth. It performs a per patient leave-one-out cross validation for P01–P08 and
the results are mapped to actual seizure events as in experiment 14. The non-filtered
results are shown in Table 3.61, while the filtered results are shown in Table 3.62. It is
immediately visible that the number of false positives is very high, compared to the true
positives. Although the false positives are reduced effectively with filtering (Table 3.62),
the overall difference is still high.

Table 3.61: Experiment 18: Performance of the Bayesian Network classifier. Per patient
leave-one-out cross validation and projection to seizures as whole events

Patient TP FP FN Recall Precision F-measure
P01 5 70 0 1.00 0.07 0.13
P02 9 581 2 0.82 0.02 0.03
P03 0 530 5 0.00 0.00 -
P04 3 396 11 0.21 0.01 0.01
P05 6 245 1 0.86 0.02 0.05
P06 3 188 2 0.60 0.02 0.03
P07 3 568 3 0.50 0.01 0.01
P08 10 1064 10 0.50 0.01 0.02
Average - - - 0.56 0.02 0.04
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Table 3.62: Experiment 18: Performance of the Bayesian Network classifier. Per patient
leave-one-out cross validation and projection to seizures as whole events. Filtered classifier
output.

Patient TP FP FN Recall Precision F-measure
P01 4 19 0 1.00 0.17 0.30
P02 5 175 2 0.71 0.03 0.05
P03 2 128 3 0.40 0.02 0.03
P04 6 117 12 0.33 0.05 0.09
P05 4 42 0 1.00 0.09 0.16
P06 1 49 4 0.20 0.02 0.04
P07 5 153 1 0.83 0.03 0.06
P08 11 228 12 0.48 0.05 0.08
Average - - - 0.62 0.06 0.10

3.4.2 Experiment 19 - Classifier performance, patients P01–P08,
semi-automatic ROI detection for training, automatic ROI
detection for testing

The relatively poor results of the previous experiment may be due to the fact that the
training data can be corrupted with noise, since the ROI detection is unsupervised. This
experiment is performed under the same conditions as the previous experiment, except
that the classifier is trained with the features, extracted from the semi-automatically
annotated ROIs, as in phases 1–3. The testing is carried out with the features from the
automatic ROI detection. The classifier results are mapped to seizure events. The non-
filtered results are shown in Table 3.63, while the filtered results are shown in Table 3.64.
This approach does not seem to have a positive impact on the false positive rate, except
for patient P01, which can be considered a special case, since the recording duration is
short and the class imbalance for this patient is very low (cf. Table 3.60).

Table 3.63: Experiment 19: Performance of the Bayesian Network classifier. Per patient
leave-one-out cross validation and projection to seizures as whole events

Patient TP FP FN Recall Precision F-measure
P01 4 44 0 1.00 0.08 0.15
P02 7 429 1 0.88 0.02 0.03
P03 1 445 2 0.33 0.00 0.00
P04 0 352 14 0.00 0.00 -
P05 6 206 2 0.75 0.03 0.05
P06 1 243 3 0.25 0.00 0.01
P07 5 622 2 0.71 0.01 0.02
P08 24 1796 6 0.80 0.01 0.03
Average - - - 0.59 0.02 0.04

109



Table 3.64: Experiment 19: Performance of the Bayesian Network classifier. Per patient
leave-one-out cross validation and projection to seizures as whole events. Filtered classifier
output.

Patient TP FP FN Recall Precision F-measure
P01 4 6 0 1.00 0.40 0.57
P02 5 115 1 0.83 0.04 0.08
P03 1 145 3 0.25 0.01 0.01
P04 1 98 16 0.06 0.01 0.02
P05 4 54 0 1.00 0.07 0.13
P06 1 64 4 0.20 0.02 0.03
P07 4 146 1 0.80 0.03 0.05
P08 12 522 7 0.63 0.02 0.04
Average - - - 0.60 0.07 0.12

3.4.3 Experiment 20 - Classifier performance for patients P09–
P12, with training set from P01–P08 (automatic ROI de-
tection)

This experiments uses the training set from patients P01–P08 as gained from the au-
tomatic ROI detection (left eye, right eye and mouth). Patients P09–P12 are used for
testing (automatic ROI detection). The results are shown in Table 3.65. The accuracy
and the TN-rate are within relatively acceptable limits and the low recall could be toler-
ated if the precision would be high, which is actually dramatically low. The main reason
for this is the imbalance in the test sets. Since the total duration of the recording for each
of the new patients spans several hours, the amount of “NoSeizure” instances is consider-
ably higher. This means that even with a high TN-rate, the false positives are immensely
more than the true positives. They are even more than the “AbsenceSeizure” instances in
total. Since the false positives appear in the denominator of the fraction for the precision
calculation, the latter takes very small values. As shown in Table 3.60 (detailed class
distributions), it is furthermore noticeable that the automatic ROI detection does not
provide the needed ROIs for the majority of seizures for patients P09 and P10, therefore
only a fraction of the actual seizures is represented in the dataset, especially for the last
four patients.

Considering the mapping of the instances to the actual seizures and their ID, where
continuous regions of the “AbsenceSeizure” class have been treated as individual seizure
events, Table 3.66 shows the results prior to filtering and Table 3.67 shows the results
after filtering. Although filtering reduces the false positives, the overall results in terms
of precision are rather poor.
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Table 3.65: Experiment 20: Performance of the Bayesian Network classifier for patients
P09–P12, using P01–P08 for training (57 selected features, automatic ROI detection).

Dataset Accuracy TN-rate Recall Precision F-measure
P09 55.62 0.56 0.23 0.00 0.01
P10 61.82 0.62 0.30 0.01 0.01
P11 61.58 0.62 0.30 0.01 0.02
P12 48.94 0.49 0.68 0.01 0.01
Average 56.99 0.57 0.38 0.01 0.01

Table 3.66: Experiment 20: Performance of the Bayesian Network classifier for each pa-
tient (P09–P12), using P01-P08 for training (57 selected features). Projection to seizures
as whole events

Patient TP FP FN Recall Precision F-measure
P09 3 553 3 0.50 0.01 0.01
P10 1 155 3 0.25 0.01 0.01
P11 11 1234 9 0.55 0.01 0.02
P12 15 1349 3 0.83 0.01 0.02
Average - - - 0.53 0.01 0.02

Table 3.67: Experiment 20: Performance of the Bayesian Network classifier for each
patient (P09–P12), using P01-P08 for training (57 selected features, automatic ROI de-
tection). Projection to seizures as whole events. Filtered classifier output

Patient TP FP FN Recall Precision F-measure
P09 2 120 4 0.33 0.02 0.03
P10 3 37 1 0.75 0.08 0.14
P11 12 374 10 0.55 0.03 0.06
P12 12 369 3 0.80 0.03 0.06
Average - - - 0.61 0.04 0.07

3.4.4 Experiment 21 - Classifier performance for patients P09–
P12, with training set from P01–P08 (semi-automatic ROI
detection)

This experiment is performed under the same conditions as the previous experiment, ex-
cept that the classifier is trained with the features, extracted from the semi-automatically
annotated ROIs, in a simmilar manner to experiment 19. The testing is carried out with
the features from the automatic ROI detection for the four new patients. The classifier
results are shown in Table 3.68, while the results in terms of mapping to seizure events
are shown in Table 3.69 prior to filtering and in Table 3.70 after filtering.

Although the TN-rate is higher in this experiment (0.71) than in the previous (0.57), the
results of mapping to actual seizure events are not generally better, although differences
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within some patients exist. Considering the filtered results, these include P10 who shows
a slightly higher precision from 0.08 to 0.12, and P12 who shows a lower precision from
0.03 to 0.01. It is noticeable that the number of false negatives for P12 is also higher,
reducing the recall from 0.80 to 0.17.

Table 3.68: Experiment 21: Performance of the Bayesian Network classifier for patients
P09–P12, using P01–P08 for training (57 selected features, semi-automatic ROI detec-
tion).

Dataset Accuracy TN-rate Recall Precision F-measure
P09 47.67 0.48 0.30 0.00 0.01
P10 79.28 0.80 0.20 0.01 0.01
P11 70.05 0.70 0.42 0.01 0.03
P12 87.36 0.88 0.13 0.01 0.01
Average 71.09 0.71 0.26 0.01 0.01

Table 3.69: Experiment 21: Performance of the Bayesian Network classifier for each
patient (P09–P12), using P01-P08 for training (57 selected features, semi-automatic ROI
detection). Projection to seizures as whole events

Patient TP FP FN Recall Precision F-measure
P09 4 569 3 0.57 0.01 0.01
P10 0 119 2 0.00 0.00 -
P11 14 1123 7 0.67 0.01 0.02
P12 3 827 13 0.19 0.00 0.01
Average - - - 0.36 0.01 0.02

Table 3.70: Experiment 21: Performance of the Bayesian Network classifier for each
patient (P09–P12), using P01-P08 for training (57 selected features, semi-automatic ROI
detection). Projection to seizures as whole events. Filtered classifier output.

Patient TP FP FN Recall Precision F-measure
P09 2 116 4 0.33 0.02 0.03
P10 3 23 1 0.75 0.12 0.20
P11 11 325 10 0.52 0.03 0.06
P12 3 246 15 0.17 0.01 0.02
Average - - - 0.44 0.04 0.08

3.4.5 Experiment 22 - Classifier performance, per patient leave-
one-out cross validation for P09–P12

In this final experiment, the data from patients P09–P12 (automatic ROI detection)
are used for training in terms of a per patient leave-one-out cross validation as already
performed in experiment 13. The results in Table 3.71 show a satisfactory values for
the accuracy (90%) and the TN-rate (0.91). Unfortunately these are bundled with a low
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recall (0.17), the lowest overall value. Especially for patient P11, a recall of 0.00 and
TN-rate of 1.00 shows that all instances were classified as “NoSeizure”, an indication that
this scenario suffers in modelling the “AbsenceSeizure” class. The mapping of instances
to actual seizures and their ID is also performed in. Table 3.72 shows the results prior to
filtering and Table 3.73 shows the results after filtering. The results are slightly inferior
to those of experiment 18, where the same scenario is tested with patients P01–P08.

Table 3.71: Experiment 22: Performance of the Bayesian Network classifier (1), per
patient leave-one-out cross validation for P09–P12 (57 selected features).

Dataset Accuracy TN-rate Recall Precision F-measure
P09 84.02 0.84 0.23 0.01 0.02
P10 89.94 0.90 0.30 0.02 0.04
P11 99.02 1.00 0.00 0.00 0.00
P12 87.19 0.88 0.15 0.01 0.01
Average 90.04 0.91 0.17 0.01 0.02

Table 3.72: Experiment 22: Per patient leave-one-out cross validation for P09–P12 (57
selected features) and projection to seizures as whole events

Patient TP FP FN Recall Precision F-measure
P09 3 459 3 0.50 0.01 0.01
P10 1 80 2 0.33 0.01 0.02
P11 0 0 22 0.00 - -
P12 3 1237 10 0.23 0.00 0.00
Average - - - 0.27 0.01 0.01

Table 3.73: Experiment 22: Per patient leave-one-out cross validation for P09–P12 (57
selected features) and projection to seizures as whole events. Filtered classifier output.

Patient TP FP FN Recall Precision F-measure
P09 2 131 4 0.33 0.02 0.03
P10 1 21 3 0.25 0.05 0.08
P11 0 0 22 0.00 - -
P12 5 347 13 0.28 0.01 0.03
Average - - - 0.29 0.02 0.04
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CHAPTER 4

Comparison and contribution to the state of the art

4.1 Comparison to the state of the art

The comparison to the state of the art can be performed on three levels: The dataset,
the methods, and the results. An overview of the comparison to the latest related studies
is given in Table 4.1.

With respect to the dataset, the main difference lies within the fact the all reports focus
essentially on clonic and myoclonic convolutions, mainly of neonatal seizures, while this
study has analysed absence seizures. Clonic and myoclonic convolutions are character-
ized by sudden fast motion of the affected body parts (usually the extremities), which
means that a ROI detection can be simply achieved by filtering fast motion in the image.
Additionally, motion of the extremities is more severe than the subtle motion in the face
during absence seizures, thus distinguishable even if a patient is lying on the side or if
he/she is covered by a sheet. Moreover, in the case of neonatal seizures, the patient rarely
moves out of the field of view of the camera. The number of patients and seizures studied
in the related reports varies from 9 to 50 patients and 11 to 80 seizures. This study has
analysed 12 patients and 350 seizures in total.

Considering the methods, similarities of this work to the state of the art can be seen.
The usage of frame differencing and optical flow is common in many relates articles.
This study introduces the application of a more advanced method for frame differencing,
which is based on mixture of Gaussians. Respectively, dense optical flow is used herein
in contrast to the more common sparse approach. Finally the major methodological
difference to other related studies lies within the large amount of analysed features and
the fact that multiple regions of interest were analysed simultaneously. This qualities,
in conjunction with the investigation of multiple signals relate this thesis closely data
mining and knowledge discovery approaches.
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With respect to obtained results, the published reports can be compared to phase 3 (ex-
periment 17) of this thesis, since ROI detection does not pose a significant burden in
the published literature and phase 3 uses manually annotated data. As can be seen in
Table 4.1, in this case, the precision (0.86) and sensitivity (0.67) is acceptably close to
the reported values in the literature. With regard to automatic ROI detection (phase 4),
the same metrics are considerably lower, but cannot actually be compared to other pub-
lications since they report the solely usage of segments of videos with a limited duration,
a fact that greatly reduces the class imbalance an the chances of false positives, as well as
noise from false ROI detections. In contrast to that, phase 4 has analysed several hours
of video for each patient.

4.2 Contribution to the state of the art

As described in the introductory chapter (Sections 1.6 and 1.7), examples of quantification
of motion during epileptic seizures already exist and seizure recognition approaches have
been successful for specific seizure types [29, 58, 69, 73, 114]. Nevertheless, a global
methodology for vision-based clinical image analysis in epilepsy has not been reported yet.
Motion of the body, extremities and the head has been analysed but very little attention
has been given to more detailed motion characteristics such as eye or finger motion. In
connection to a thorough examination of the clinical manifestations of all known epileptic
syndromes, which was performed by the author and published in [108], the strong belief
emerges that face-related motion analysis, as well as precise human posture recognition,
are essential parts of an integrated vision-based clinical image analysis system in epilepsy.
Moreover, these two elements have not yet received significant attention. This work
contributes primarily to motion analysis in the area of the face of epileptic patients. As
discussed in Section 1.7, the face and its expressions have been analysed in the context
of epilepsy only for a correlation study to the EEG. This work approached this problem
in order to extract motion patterns that are characteristic of epileptic motion and has
shown that it is possible to detect and characterise such patterns through a selection of
specific features.

A further contribution point relates to the selected type of epileptic seizure that has been
studied. While all other reports in this field analyse clonic and myoclonic seizures, which
can be detected through their intense motion nature, this work has analysed absence
seizures, which are characterised by subtle motion patterns and facial expressions. This
by itself poses a challenge that has been only indirectly studied by the research community
dealing with facial emotion recognition, but not explicitly in relation to epilepsy.

Finally, one of the challenges that is strongly related to health monitoring and surveillance
is the problem of analysing data with a duration of several hours, which are bundled with
non-controlled acquisition conditions. This work has performed this study, although with
relatively poor results. It is nevertheless the first to report on an attempt to face this
problem and propose possible solutions (cf. Chapter 5).
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Table 4.1: Overview and comparison of related publication to this
study (values with an asterisk are derived from other supplied val-
ues).

Author Year Total
pa-
tients

Age Seizure type ROI Testing con-
ditions

Classifier False
positive
rate

Preci-
sion
(PPV)

Sensit-
ivity

True
positive
rate
(Speci-
ficity)

Video Comments

Karayian-
nis et al.
[69]

2005 43 Neona-
tal

80 myoclonic
seizures, 80
focal clonic
seizures,
80 ran-
dom infant
movement

Extre-
mities

50% percent-
age split

FFNN 0.03* n.a. 89.5 0.97 Video
seg-
ments

Automatically
selected body
parts for track-
ing, otherwise
unknown body
part, results
averaged for two
seizure classes,
result-pair with
best Specificity,
subject is well
positioned into
the camera field
of vision

Karayian-
nis et al.
[73]

2006 54 Neona-
tal

80 myoclonic
seizures, 80
focal clonic
seizures,
80 ran-
dom infant
movement

Extre-
mities

50% percent-
age split

FFNN 0.08* n.a. 86.5 0.92 Video
seg-
ments

ROI probably
manually se-
lected, result-pair
with best Speci-
ficity, subject is
well positioned
into the camera
field of vision and
other forms of
interference with
the video signal
are minimal
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Cuppens
et al. [29]

2010 9 Up to
18 a

11 convo-
lutions, 62
movements

Extre-
mities

3-fold cross
validation
with groups
of patients

Variable
threshold
based on
standard
deviation,
using a
movement
vs. non-
movement
ratio

n.a. 0.95 1 n.a. Video
seg-
ments

Main aim is
to distinguish
convulsive move-
ment from
non-movement,
infrared camera
and nocturnal
recording only,
clustering of
events

Kalitzin
et al. [58]

2012 50 Unkno-
wn

72 ma-
jor motor
seizures
(clonic
movements)

Extre-
mities

Comparison
to a random
detector
and one 37h
video of one
patient with
no seizure
activity

Thresholding <1 n.a. 0.95 >0.9* Video
seg-
ments
from 12
to 56
min-
utes

major convulsive
seizures are long
lasting, towards
real-time

Pisani et
al. [114]

2014 12 Neona-
tal

78 clonic
seizures

Extre-
mities

Unknown Thresholding 0.31* 0.12* 0.71 0.69 Video
seg-
ments

No ROI detec-
tion, towards
real-time

This
study
(phase 3)

2014 8 Pedia-
tric
(2-13
a)

194 absence
seizures

Face
(left eye,
right eye,
mouth)

Per pa-
tient cross
validation

Bayesian
network

n.a. 0.86 0.67 n.a. Video
seg-
ments

Manually an-
notated ROIs,
experiment 17,
filtered classifier
output mapped
to seizures rep-
resented in the
dataset

This
study
(phase 4)

2014 12 Pedia-
tric
(2-13
a)

350 absence
seizures

Face
(left eye,
right eye,
mouth)

Per patient
percentage
split: 8
patients for
training, 4
for testing

Bayesian
network

0.29 0.01 0.26 0.71 Long
term
video
record-
ing

Automatically
detected ROIs for
test set, classifier
results with re-
spect to seizures
represented in
the dataset
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CHAPTER 5

Discussion and future work

5.1 Discussion

This monograph documents the work performed in order to analyse dynamic facial ex-
pressions of epileptic absence seizures, using computer vision. 12 patients with a total
of 350 seizures, annotated by an experienced neurologist, were included in the analysis.
While all related studies target on focal epileptic seizures with distinct clinical charac-
teristics (focal clonic, myoclonic, cf. Table 1.1, p. 36), this is the first attempt to analyse
generalised seizures with only subtle clinical manifestations. Moreover, it is the first at-
tempt to analyse the facial expressions of epileptic seizures on an extended dataset with
a high seizure count.

The results demonstrate the existence of several features that differentiate motion pat-
terns of the eyes and the mouth from seizure and seizure-free epochs, although the number
and type of features is influenced by noise introduced as a result of the high variance in
capturing conditions (illumination, pose, occlusion), as well as the inter-person variabil-
ity of the seizure manifestation by itself. This is underlined by experiment 3 (Subsec-
tion 3.1.3), which shows the highest seizure detection performance for all metrics, for
feature sets that have been selected for each patient individually. These feature sets did
not have the same elements. Moreover, for the feature set that works best for all patients,
as elaborated in experiment 6 (Subsection 3.1.7), it is noticeable that the feature spaces
of the three eye ROIs do not overlap much, as should be expected.

A further factor is the duration of the seizures, which varies between patients. The seizure
detection in patients P01, P03, P09, P10 and P12 with small mean seizure durations
(2.98 s to 4.9 s) generally performed worse than in the other patients with higher mean
durations (7.41 s to 19.33). The duration of a seizure is closely connected to the amount of
instances that can be extracted from it using the windowing technique. Shorter seizures
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inevitably are represented with less instances than longer ones. In this case a shorter
window could be used, although this would reduce the available signal length necessary
for the useful extraction of some features, especially in the frequency domain.

The biggest challenge when it comes to detecting individual seizures in a video sequence
with a duration of several hours is the dataset imbalance (many negatives and few pos-
itives). As shown in phase 4 (Section 3.4) even a few percentage of false positives may
easily exceed the total number of actual positives. In order to account for that, an ex-
tremely high true negative rate would be necessary. This problem, known as anomaly
detection, is an important problem within diverse research areas and application do-
mains such as fraud detection for credit cards, insurance, health care etc. It refers to
the problem of finding patterns in data that do not conform the expected behaviour (i.e.
anomalies, outliers, aberrations etc.) [15]. In cases where abnormalities are rare or the
data describing the conditions under investigation might not be enough, traditional clas-
sification methods might be less successful due to imbalanced class distributions. In such
cases methods that statistically model normal data/behaviour such as semi-supervised
anomaly detection (e.g. that only uses the normal labels) might prove useful [146]. In
addition to that, the negative class may include various other subclasses. For the case at
hand such subclasses would be “sleeping”, “eating”, “talking”, “reading” and others, all of
which have to be modelled under a single class label, a fact that deteriorates the classifier
performance. For this reason, breaking up the negative class into multiple classes can be
a possible solution. A further solution includes a multimodal approach that includes the
EEG as a second channel of information. Both channels would act complementary to each
other, since the video analysis can help in rejecting artefacts in the EEG and the EEG
would help in dealing periods with missing ROI detections, as well as rejecting many false
positives in the video analysis. Of course the main drawback of the EEG is that it needs
electrodes attached to a patient’s skull and is therefore an obtrusive technique.

Regarding the selected features, Subsection 3.1.14 concludes in a set of most prominent
characteristics that differentiate the absence seizure from the seizure-free periods. These
are related to the angle and magnitude of the vectors in the velocity field in the eye and
especially in the mouth area as shown in Figure 3.1. One of the most relevant features
is the variance of time intervals between adjacent spikes in the eye regions, while other
statistical features such as the minimum, maximum and median dominate in the mouth
region for the above signals. Considering the frequency domain, the dominant frequency,
as well as the power in the band between 3 and 6 Hz, from signals related to the angle, the
magnitude, and the pixel area from background-foreground segmentation are the features
most often used.

The dissection of the ROIs showed that information form the left and right eye is necessary
for a precise seizure detection, while the addition of the mouth provides slightly better
results. The reason for this most probably resides in the fact that occlusions of one ROI
are handled by the existence of the other ROI, particularly in cases where the head is
rotated to one side. Moreover, the information delivered from motion patterns in the
mouth area might include a primitive description of automatisms, which often occur in
absence seizures.
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The comparison to the state of the art is not straight forward. Section 4.1 has shown
that the related reports face less challenges than the current work, within the analysis
domain. They focus on large and fast movements, mainly of the body extremities, that
can be extracted from the video based on their extreme characteristic, without the need
of special ROI detectors. In contrast to that, this work relies on subtle motion of the
facial musculature, which may also occur in non extreme situations, e.g. while the patient
is sleeping or reeding a book. Nevertheless the results are not far behind, when the ROI
detection parameter is left out. Moreover a scenario including automatic seizure (and
ROI) detection for long-term video recordings lasting over several hours has not been
reported yet.

Finally, the following answer can be given to the research question: Based on the analysed
data, the most relevant measurable characteristics that differentiate the facial expression
of absence seizures from other (unknown) expressions include the variance of time inter-
vals between adjacent spikes, derived from the mean angle, the mean magnitude weighted
by the mean angle and the maximum magnitude weighted by the angle for the left and
right eye. The minimum, maximum and median of the same signals is mainly relevant
for the mouth region. Additional characteristics include the power in the band between
3 an 6 Hz and the dominant frequency derived from signals measuring the angle at maxi-
mum magnitude, the mean angle, the mean magnitude weighted by the mean angle, and
the pixel area from background-foreground segmentation for the left eye, right eye and
mouth.

Considering the detection of at least two seizures for each patient, the results showed that
under the conditions of a robust detection of the left eye, the right eye and the mouth
(whenever visible), and given an initial position of an assumed existence of a seizure
with a duration of approximately 3 times the seizure duration, at least 2 seizures can be
detected with an average precision of 0.86 (experiment 17, Table 3.59, p. 105).

5.2 Future work

By analysing the clinical image of absence seizures, this thesis has added a new seizure
type to the group of seizures studied with computer vision and has demonstrated that
epileptic motion patterns in the area of the face are measurable. This process has revealed
several problems, one of which is the robust ROI detection. The method should be highly
specific and sensitive enough in detecting the correct ROI. A possible approach could be
the usage of a skin detector in connection with a sensitive object detector and additional
heuristics concerning the face anatomy and head movement. As discussed in the previous
section, the major challenge is the variability in capturing conditions and patient be-
haviour as a result of the long duration of the recordings, in connection with an observed
inter-patient variability in seizure manifestation (duration and motion characteristics).
The first problem could be solved with image processing methods, especially designed for
surveillance and monitoring, while the second is more likely to be solved with classifica-
tion techniques that include multiple classes, supported by features that describe these
classes. The issue regarding the differences in the seizures between patients demands for
a closer investigation with a potentially larger set of subjects.
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Annex

5.2.1 Annotation data for patient P01

Gender: Male
Age at time of Video-EEG recording: 5 a
Total duration of Video-EEG: 14 m
Total number of seizures: 4
Mean seizure duration: 17.53 s
Standard deviation: 4.57 s
Comments: -

Table 5.1: Overview of the recorded seizures of patient P01

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0101 VID_389_D 4145 4746 24.08 Day; awake; lying; during hy-
perventilation; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0102 VID_389_D 5380 5730 14.04 Day; awake; lying; during hy-
perventilation; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0103 VID_389_D 7175 7544 14.76 Day; awake; lying; during hy-
perventilation; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure
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0104 VID_389_D 20143 20572 17.02 Day; awake; lying; seizure
starts immediately after photic
stimulation; face, eye-pair, left
eye, right eye and mouth
visible and annotated during
seizure

5.2.2 Annotation data for patient P02

Gender: Female
Age at time of Video-EEG recording: 9 a
Total duration of Video-EEG: 14 h and 48 m
Total number of seizures: 8
Mean seizure duration: 10.17 s
Standard deviation: 3.46 s
Comments: -

Table 5.2: Overview of the recorded seizures of patient P02

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0201 VID_4_D 3541 3890 14.00 Day; awake; lying; during hy-
perventilation; rubs left eye at
the end of seizure; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during most part of seizure

0202 VID_6_D 49014 49254 9.64 Day; awake; sitting; profile
face; only left eye hardly vis-
ible; nothing annotated

0203 VID_8_D 37531 37751 8.84 Night; awake; lying; IR
switched on; face, eye-pair,
right eye and mouth visible
and annotated during most
part of seizure; left eye anno-
tated during remaining part of
seizure; light is being switched
on at the last second of seizure

0204 VID_14_D 56862 57179 12.72 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0205 VID_17_D 14140 14496 14.28 Day; sleeping; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0206 VID_17_D 24079 24322 9.76 Day; sleeping; lying; profile
face; only right eye visible and
annotated during seizure

0207 VID_17_D 28453 28658 8.24 Day; sleeping; lying; profile
face; only right eye visible and
annotated during seizure
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0208 VID_17_D 31189 31285 3.84 Day; sleeping; lying; profile
face; only right eye visible and
annotated during seizure

5.2.3 Annotation data for patient P03

Gender: Male
Age at time of Video-EEG recording: 10 a
Total duration of Video-EEG: 16 h and 13 m
Total number of seizures: 21
Mean seizure duration: 3.97 s
Standard deviation: 1.69 s
Comments: The seizures of this patient usually exhibit a myoclonic jerk in the musculature of the whole
body.

Table 5.3: Overview of the recorded seizures of patient P03

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0301 VID_52_D 3011 3180 6.80 Day; awake; lying; during hy-
perventilation; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0302 VID_52_D 9701 9842 5.68 Day; awake; lying; during hy-
perventilation; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0303 VID_52_D 54116 54172 2.28 Day; awake; leaning with back
on bed pillow; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0304 VID_53_D 55365 55477. 4.52 Day; awake; lying; playing
portable video-game; mouth is
hidden by game device; eye-
pair, left eye and right eye
visible and annotated during
seizure

0305 VID_54_D 26230 26308 3.16 Day; awake; lying on the side;
playing portable video-game;
mouth is hidden by game de-
vice; only right eye visible and
annotated during seizure

0306 VID_59_D 23615 23738 4.96 Day; awake; lying on the side;
profile face; only left eye visible
and annotated during seizure;
mouth annotated during last
part of seizure
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0307 VID_59_D 47829 47881 2.12 Day; awake; lying; playing
portable video-game; mouth is
hidden by game device; eye-
pair, left eye and right eye
visible and annotated during
seizure

0308 VID_60_D 5036 5133 3.92 Day; sleeping; lying on the
side; only right eye visible and
annotated during seizure; pro-
file mouth also annotated

0309 VID_60_D 32033 32080 1.92 Day; awake; sitting on bed;
face, eye-pair, left eye, right
eye and mouth visible and an-
notated during seizure

0310 VID_61_D 55493 55551 2.36 Day; awake; sitting on bed;
only left eye and mouth visible
and annotated during seizure

0311 VID_62_D 21012 21098 3.48 Day; awake; lying on the side;
reading book; only right eye
visible and annotated during
parts of seizure

0312 VID_62_D 38032 38159 5.12 Day; awake; lying; reading
book; face completely hidden
behind book; rejected

0313 VID_63_D 31861 31972 4.48 Night; sleeping; lying on the
side; IR not switched on; noise;
profile face hardly visible; re-
jected

0314 VID_63_D 39829 39893 2.60 Night; sleeping; lying on the
side; IR not switched on; noise;
face not visible; rejected

0315 VID_63_D 54911 55014 4.16 Night; sleeping; lying; IR not
switched on; noise; face, left
eye, mouth and eye-pair visible
and annotated during seizure

0316 VID_63_D 57553 57600 1.92 Night; sleeping; lying on the
side; IR not switched on; noise;
face not visible; Rejected

0317 VID_63_D 58288 58353 2.64 Night; sleeping; lying on the
side; IR not switched on; noise;
face not visible; Rejected

0318 VID_66_D 11338 11528 7.64 Night; sleeping; lying on the
side; IR not switched on; noise;
right eye slightly visible and
annotated during seizure

0319 VID_70_D 48332 48499 6.72 Night; sleeping; lying on the
side; IR not switched on; noise;
right eye slightly visible and
annotated during seizure

0320 VID_75_D 21645 21726 3.28 Night; sleeping; lying on the
side; IR not switched on; noise;
right eye slightly visible and
annotated during seizure
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0321 VID_75_D 28994 29084 3.64 Night; sleeping; lying on the
side; IR not switched on; noise;
right eye slightly visible and
annotated during seizure

5.2.4 Annotation data for patient P04

Gender: Male
Age at time of Video-EEG recording: 7 a
Total duration of Video-EEG: 15 h and 1 m
Total number of seizures: 65
Mean seizure duration: 2.98 s
Standard deviation: 0.69 s
Comments: Patient often puts fingers in mouth. Usually exhibits a clonic jerk during the seizure.

Table 5.4: Overview of the recorded seizures of patient P04

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0401 VID_101_D 2507 2632 5.04 Day; awake; lying; during hy-
perventilation; head looking
slightly to the side; face, left
eye, right eye, mouth and eye-
pair visible and annotated dur-
ing seizure

0402 VID_101_D 12393 12494 4.08 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0403 VID_101_D 14310 14370 2.44 Day; awake; lying; head look-
ing slightly to the side; face,
eye-pair, left eye and right eye,
visible and annotated during
seizure

0404 VID_101_D 20822 20918 3.88 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during most part of seizure

0405 VID_101_D 22195 22254 2.40 Day; awake; lying; eating; face
partly occluded (hands over
mouth); eye-pair, left eye and
right eye visible and annotated
during seizure

0406 VID_101_D 28743 28817 3.00 Day; awake; lying; face partly
occluded (hands over mouth);
eye-pair, left eye and right eye
visible and annotated during
seizure
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0407 VID_101_D 30170 30227 2.32 Day; awake; lying; face partly
occluded by hands; eye-pair,
left eye and right eye visi-
ble and annotated during most
part of seizure

0408 VID_101_D 34698 34799 4.08 Day; awake; lying; face partly
occluded by hands; eye-pair,
left eye and mouth visible and
annotated during most part of
seizure; right eye annotated
during whole seizure

0409 VID_101_D 39677 39749 2.92 Day; awake; lying; looking to
the side; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0410 VID_101_D 42376 42437 2.48 Day; awake; lying; face partly
occluded by hands; eye-pair,
left eye and right eye visible
and annotated during seizure;
mouth annotated during parts
of seizure

0411 VID_101_D 46202 46262 2.44 Day; awake; lying; looking to
the side; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0412 VID_101_D 46744 46822 3.16 Day; awake; lying; looking to
the side; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0413 VID_101_D 55450 55563 4.56 Day; awake; lying; looking to
the side; face partly occluded
by hands over mouth; eye-pair,
left eye and right eye visible
and annotated during seizure

0414 VID_101_D 57615 57670 2.24 Day; awake; lying; looking to
the side; face, eye-pair, left
eye and right visible and an-
notated during seizure; mouth
annotated during most parts of
seizure

0415 VID_102_D 13014 13110 3.88 Day; awake; lying; face partly
occluded by hands; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during most part of seizure

0416 VID_102_D 46570 46661 3.68 Day; awake; lying; face mini-
mally occluded by finger; face,
eye-pair, left eye and right eye
visible and annotated during
seizure; mouth annotated dur-
ing last part of seizure
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0417 VID_102_D 52676 52753 3.12 Day; awake; lying; looking to
the side; face minimally oc-
cluded by finger; face, eye-pair,
left eye and right eye visible
and annotated during seizure

0418 VID_102_D 53539 53588 2.00 Day; awake; lying; looking to
the side; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0419 VID_103_D 3441 3524 2.00 Day; awake; lying; looking
slightly to the side; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0420 VID_103_D 12335 12439 4.20 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0421 VID_103_D 14293 14360 2.72 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0422 VID_103_D 19146 19214 2.76 Day; awake; lying; looking to
the side; face occluded by hand
on beginning of seizure; eye-
pair, left eye and right eye visi-
ble and annotated during most
part of seizure

0423 VID_103_D 21877 21957 3.24 Day; awake; lying; face, eye-
pair, left eye and mouth visible
and annotated during seizure;
right eye annotated during
most part of seizure

0424 VID_103_D 23375 23452 3.12 Day; awake; lying; looking
slightly to the side; face oc-
cluded by hand over mouth;
eye-pair, left eye and right eye
visible and annotated during
seizure

0425 VID_103_D 24376 24429 2.16 Day; awake; lying; looking
slightly to the side; Mouth oc-
cluded by finger; face, eye-pair,
left eye and right eye visible
and annotated during seizure;
mouth annotated during very
last part of seizure

0426 VID_103_D 28124 28189 2.64 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure
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0427 VID_103_D 29784 29862 3.16 Day; awake; lying; looking
slightly to the side; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0428 VID_103_D 32107 32164 2.32 Day; awake; lying; looking
slightly to the side; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0429 VID_103_D 35699 35782 3.36 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0430 VID_103_D 43761 43833 2.92 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0431 VID_105_D 1746 1827 3.28 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0432 VID_105_D 24587 24669 3.32 Day; awake; sitting; eat-
ing; face occluded (hand over
mouth); eye-pair, left eye and
right eye visible and annotated
during seizure; face and mouth
annotated during most part of
seizure

0433 VID_105_D 29294 29365 2.88 Day; awake; sitting; eating;
face, eye-pair, left eye, right
eye and mouth visible and an-
notated during seizure

0434 VID_105_D 30555 30619 2.60 Day; awake; sitting; eating;
face, eye-pair, left eye, right
eye and mouth visible and an-
notated during seizure

0435 VID_105_D 43112 43194 3.32 Day; awake; lying; eating; face,
eye-pair, left eye, right eye and
mouth visible and annotated
during seizure

0436 VID_106_D 11842 11900 2.36 Day; awake; lying; face oc-
cluded (hand over mouth); eye-
pair, left eye and right eye
visible and annotated during
seizure

0437 VID_106_D 14434 14491 2.32 Day; awake; lying; face slightly
occluded (finger over mouth);
face, eye-pair, left eye and right
eye visible and annotated dur-
ing seizure
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0438 VID_106_D 17933 18006 2.96 Day; awake; lying; face slightly
occluded (finger over mouth);
face, eye-pair, left eye and right
eye visible and annotated dur-
ing seizure

0439 VID_106_D 24308 24376 2.76 Day; awake; lying; face oc-
cluded (hand over mouth); eye-
pair, left eye and right eye
visible and annotated during
seizure

0440 VID_106_D 46096 46186 3.64 Day; awake; lying; looking to
the side; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0441 VID_106_D 52181 52248 2.72 Day; awake; lying; looking
slightly to the side; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0442 VID_106_D 59704 59764 2.44 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0443 VID_107_D 496 567 2.88 Day; awake; lying; looking
slightly to the side; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0444 VID_107_D 13204 13282 3.16 Day; awake; lying; looking
slightly to the side; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0445 VID_107_D 19892 19961 2.80 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0446 VID_107_D 34710 34771 2.48 Day; awake; lying; looking
slightly to the side; head
slightly rotated; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0447 VID_107_D 38398 38459 2.48 Day; awake; lying; looking
slightly to the side; head
slightly rotated; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0448 VID_107_D 53085 53146 2.48 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure
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0449 VID_107_D 55797 55861 2.60 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0450 VID_109_D 4076 4143 2.72 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0451 VID_109_D 7549 7598 2.00 Day; awake; lying; face slightly
occluded (finger over mouth);
face, eye-pair, left eye and right
eye visible and annotated dur-
ing seizure

0452 VID_109_D 11078 11124 1.88 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0453 VID_109_D 20354 20402 1.96 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0454 VID_109_D 27266 27339 2.96 Day; awake; lying; looking
slightly to the side; face oc-
cluded by arm during some
parts of seizure; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
most part of seizure

0455 VID_109_D 39086 39158 2.92 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0456 VID_109_D 56641 56714 2.96 Day; awake; lying; looking to
the side; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0457 VID_110_D 1523 1603 3.24 Day; awake; lying; looking to
the side; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0458 VID_110_D 14587 14653 2.68 Day; awake; lying; looking
to the side; face occluded at
the end of seizure; face, eye-
pair, right eye and mouth visi-
ble and annotated during most
part of seizure; left eye visible
and annotated during seizure

0459 VID_110_D 33939 33986 1.92 Day; awake; lying; looking
slightly to the side; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure
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0460 VID_111_D 16748 16803 2.24 Day; awake; lying; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

0461 VID_113_D 40740 40824 3.40 Day; awake; sitting on bed;
profile face; left eye hardly
visible and annotated during
seizure

0462 VID_113_D 46279 46359 3.24 Day; awake; sitting on bed;
profile face; left eye and mouth
hardly visible and annotated
during seizure

0463 VID_114_D 24305 24396 3.68 Day; awake; sitting on bed;
profile face; left eye hardly visi-
ble and annotated during parts
of seizure

0464 VID_115_D 46 155 4.40 Night; sleeping; no IR; noise;
face not visible; rejected

0465 VID_130_D 28204 28309 4.24 Daylight; sleeping; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during seizure

5.2.5 Annotation data for patient P05

Gender: Male
Age at time of Video-EEG recording: 2 a
Total duration of Video-EEG: 15 h and 27 m
Total number of seizures: 25
Mean seizure duration: 7.41 s
Standard deviation: 3.55 s
Comments: -

Table 5.5: Overview of the recorded seizures of patient P05

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0501 VID_183_D 2472 2589 4.72 Day; lying on the front; face
not visible; rejected

0502 VID_183_D 5920 6145 9.04 Day; lying; sleeping; face oc-
cluded (dummy in the mouth);
left eye visible and annotated
during seizure; eye-pair and
right eye annotated during
most part of seizure

0503 VID_183_D 8206 8367 6.48 Day; lying; sleeping; face oc-
cluded (dummy in the mouth);
eye-pair, left eye and right eye
visible and annotated during
seizure
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0504 VID_183_D 9145 9268 4.96 Day; lying; sleeping; face oc-
cluded (dummy in the mouth);
eye-pair, left eye and right eye
visible and annotated during
seizure

0505 VID_184_D 39238 39461 8.96 Day; awake; sitting on bed;
face heavily occluded; rejected

0506 VID_184_D 45352 45542 7.64 Day; awake; sitting on bed;
eating; face occluded; eye-pair
(rotated), left eye and right eye
visible and annotated during
seizure

0507 VID_184_D 45765 45869 4.20 Day; awake; sitting on bed;
eating; face occluded; eye-pair
(rotated), left eye and right eye
visible and annotated during
seizure

0508 VID_187_D 34439 34659 8.84 Day; awake; sitting on bed;
looking down; eye-pair, left eye
and right eye hardly visible and
annotated during last part of
seizure

0509 VID_189_D 13060 13251 7.68 Low light conditions; awake;
sitting on bed; looking to the
side; left eye hardly visible and
annotated during seizure

0510 VID_189_D 21647 21866 8.80 Low light conditions; awake;
sitting on bed; looking to the
side; left eye, right eye and eye-
pair hardly visible and anno-
tated during parts of seizure

0511 VID_189_D 22315 22408 3.76 Low light conditions; awake;
sitting on bed; looking to the
side; left eye hardly visible and
annotated during seizure

0512 VID_190_D 3643 3837 7.80 Day; awake; sitting on bed;
looking slightly to the side;
right eye visible and annotated
during seizure; mouth, eye-pair
and left eye annotated during
small parts of seizure

0513 VID_190_D 9452 9601 6.00 Day; awake; sitting on bed;
looking slightly to the side; left
eye visible and annotated dur-
ing seizure

0514 VID_192_D 46614 47096 19.32 Day; awake; lying on bed; face
partially occluded by hand;
right eye visible and annotated
during seizure; left eye anno-
tated during parts of seizure
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0515 VID_192_D 47300 47693 15.76 Day; awake; lying on bed; face
partially occluded by hand; left
eye visible and annotated dur-
ing last part of seizure; right
eye annotated during parts of
seizure

0516 VID_192_D 48721 48879 6.36 Day; awake; lying on bed; face
partially occluded by hand and
dummy; eye-pair, left eye and
right eye visible and annotated
during seizure

0517 VID_192_D 64256 64470 8.60 Night; lying on bed; no IR;
noise; face partially occluded
by mother’s arm; left eye visi-
ble and annotated during small
last part of seizure

0518 VID_192_D 100907 101084 7.12 Night; awake; lying on bed;
no IR; noise; face occluded
(dummy in the mouth); eye-
pair, left eye and right eye
visible and annotated during
seizure

0519 VID_192_D 101350 101427 3.12 Night; awake; lying on bed;
no IR; noise; face occluded
(dummy in the mouth); eye-
pair left eye and right eye
visible and annotated during
seizure

0520 VID_192_D 101975 102181 8.28 Night; awake; lying on bed;
no IR; noise; face occluded
(dummy in the mouth); eye-
pair, left eye and right eye
visible and annotated during
seizure

0521 VID_192_D 109248 109402 6.20 Night; awake; lying on bed;
no IR; noise; face occluded
(dummy in the mouth); eye-
pair, left eye and right eye
visible and annotated during
seizure

0522 VID_192_D 114321 114482 6.48 Night; sleeping; lying on bed;
no IR; noise; face occluded at
the beginning (dummy in the
mouth); eye-pair and right eye
visible and annotated during
most part of seizure; left eye
annotated during seizure; face
and mouth annotated during
the last part of seizure

0523 VID_198_D 83282 83419 5.52 Night; sleeping; lying on bed;
face rotated to the side; no
IR; right eye and mouth visible
and annotated during seizure
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0524 VID_201_D 61342 61448 4.28 Night; sleeping; lying on bed;
face rotated to the side; no
IR; right eye and mouth visible
and annotated during seizure

0525 VID_201_D 89164 89298 5.40 Night; sleeping; lying on bed;
face rotated to the side; no
IR; left eye and mouth hardly
visible and annotated during
seizure

5.2.6 Annotation data for patient P06

Gender: Female
Age at time of Video-EEG recording: 5 a
Total duration of Video-EEG: 15 h and 15 m
Total number of seizures: 14
Mean seizure duration: 8.22 s
Standard deviation: 1.61 s
Comments: Stops ongoing activity (arrest); eyes usually opening; looking up; frequent, maybe periodic
eye blinks; mouth activity usually stops during seizure.

Table 5.6: Overview of the recorded seizures of patient P06

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0601 VID_241_D 42 276 9.40 Day; awake; lying; head
slightly rotated within plane;
face, eye-pair, left eye, right
eye and mouth visible and an-
notated during seizure

0602 VID_241_D 3049 3282 9.36 Day; awake; lying; during hy-
perventilation; face occluded
by third person’s hand at the
beginning of the seizure; face,
eye-pair, left eye and right
eye visible and annotated dur-
ing remaining part of seizure;
mouth annotated during whole
seizure

0603 VID_241_D 11599 11826 9.12 Day; awake; lying; during pho-
tostimulation; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure

0604 VID_243_D 28668 28783 4.64 Day; low light conditions;
sleeping; lying; face, eye-pair,
left eye, right eye and mouth
visible and annotated during
seizure
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0605 VID_246_D 45394 45588 7.80 Day; awake; sitting on bed;
face, eye-pair, left eye, right
eye and mouth visible and an-
notated during seizure

0606 VID_250_D 51296 51514 8.76 Day; awake; lying; face oc-
cluded by an object; right eye
visible and annotated during
seizure; face, eye-pair, left eye
and mouth annotated during
parts of seizure

0607 VID_250_D 54913 55131 8.76 Day; awake; lying; face, eye-
pair, right eye and mouth an-
notated during seizure

0608 VID_251_D 8978 9190 8.52 Patient not visible; rejected
0609 VID_251_D 27004 27251 9.92 Night; awake; noise; no

IR; face occluded by moving
arms; face, eye-pair, left eye
and right-eye annotated during
parts of seizure; mouth anno-
tated during whole seizure

0610 VID_251_D 53939 54161 8.92 Day; awake; lying on the side;
part of face is outside of cam-
era view; left eye and mouth
annotated during most part of
seizure

0611 VID_251_D 57345 57554 8.40 Day; awake; sitting on bed;
face, eye-pair and left eye an-
notated during most part of
seizure; right eye and mouth
annotated during whole seizure

0612 VID_251_D 59209 59413 8.20 Lights on; awake; lying; eating;
face, eye-pair. left eye, right
eye and mouth visible and an-
notated during most parts of
seizure

0613 VID_252_D 42505 42720 8.64 Night; sleeping; lying on the
side; no IR; noise; right eye
hardly visible; rejected

0614 VID_261_D 40854 40969 4.64 Night; sleeping; lying on the
side; no IR; noise; face not vis-
ible; rejected

5.2.7 Annotation data for patient P07

Gender: Female
Age at time of Video-EEG recording: 2 a
Total duration of Video-EEG: 15 h and 50 m
Total number of seizures: 16
Mean seizure duration: 10.64 s
Standard deviation: 4.83 s
Comments: Stops ongoing activity; blinking; mouth automatisms, lip smacking, fast clonic component.
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Table 5.7: Overview of the recorded seizures of patient P07

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0701 VID_281_D 6279 6560 11.28 Day; lying; during hyperven-
tilation; face, eye-pair, left
eye, right eye and mouth visi-
ble and annotated during most
part of seizure

0702 VID_281_D 6762 6891 5.20 Day; lying; during hyperventi-
lation; face, eye-pair, left eye,
right eye and mouth visible
and annotated during seizure

0703 VID_281_D 45442 45847 16.24 Low light conditions; lying on
the front; face not visible; re-
jected

0704 VID_281_D 71358 71790 17.32 Patient out of camera view; re-
jected

0705 VID_281_D 89253 89639 15.48 Low light conditions; awake;
lying on the side; profile face;
left eye and mouth annotated
during most part of seizure

0706 VID_284_D 38131 38471 13.64 Low light conditions; awake;
sitting on bed; eating; right eye
annotated during most part of
seizure; eye-pair, left eye and
mouth annotated during some
parts of seizure

0707 VID_284_D 55235 55481 9.88 Patient out of camera view; re-
jected

0708 VID_285_D 26811 27187 15.08 Patient out of camera view; re-
jected

0709 VID_287_D 2558 2992 17.40 Day; awake; lying on the
side; patient moves alot eye-
pair, right eye, left eye and
mouth annotated during parts
of seizure

0710 VID_290_D 2267 2531 10.60 Night; sleeping; no IR; noise;
lying on the side; face not visi-
ble; rejected

0711 VID_296_D 21616 21775 6.40 Night; sleeping; no IR; noise;
lying on the front; face not vis-
ible; rejected

0712 VID_297_D 1939 2129 7.64 Night; sleeping; lying on the
back; noise; no IR; Face, eye-
pair and right eye annotated
during first part of seizure;
Mouth and left eye annotated
during whole seizure

0713 VID_299_D 107024 107296 10.92 Night; sleeping; no IR; noise;
lying on the front; face not vis-
ible; rejected

0714 VID_299_D 114302 114428 5.08 Night; sleeping; no IR; noise;
lying on the front; face not vis-
ible; rejected
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0715 VID_302_D 53682 53787 4.24 Low light condition; sleeping;
lying on the side; profile face;
right eye and mouth annotated
during seizure

0716 VID_303_D 6999 7093 3.80 Day; low light; sleeping; ly-
ing on the back; face partially
out of camera view; left eye
and mouth annotated during
seizure

5.2.8 Annotation data for patient P08

Gender: Female
Age at time of Video-EEG recording: 7 a
Total duration of Video-EEG: 15 h and 49 m
Total number of seizures: 26
Mean seizure duration: 19.33 s
Standard deviation: 7.56 s
Comments: Usually opens eyes if closed during seizure; mouth automatisms; lip smacking; eye blinking;
gaze fixation; may not always stop ongoing activity such as eating (e.g. Seizure ID 0815).

Table 5.8: Overview of the recorded seizures of patient P08

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0801 VID_331_D 2581 3151 22.84 Day; awake; lying on bed; dur-
ing hyperventilation; face an-
notated during most part of
seizure; eye-pair, left eye, right
eye and mouth annotated dur-
ing whole seizure

0802 VID_331_D 4417 5129 28.48 Day; awake; lying on bed;
during hyperventilation; face,
eye-pair, left eye, right eye
and mouth annotated during
seizure

0803 VID_331_D 5944 6547 24.12 Day; low light condition;
awake; lying on bed; dur-
ing hyperventilation; face,
eye-pair, left eye, right eye
and mouth annotated during
seizure

0804 VID_331_D 13170 13611 17.64 Day; low light condition;
awake; lying on bed; during
photic stimulation; camera
looses focus at the end of
seizure; face and mouth oc-
cluded by photic stimulation
device, eye-pair, left eye and
right eye annotated during
seizure
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0805 VID_331_D 16578 16958 15.20 Day; low light condition;
awake; lying on bed; during
photic stimulation; face and
mouth occluded by photic
stimulation device, eye-pair,
left eye and right eye anno-
tated during seizure

0806 VID_331_D 25503 26015 20.48 Day; low light condition;
awake; lying on bed; eye-
pair annotated during whole
seizure; face and mouth anno-
tated during parts of seizure;
eye-pair, left eye and right
eye annotated during whole
seizure

0807 VID_331_D 31052 31326 10.96 Day; low light condition;
awake; lying on bed; face
partly out of camera view;
eye-pair, left eye and mouth
annotated during parts of
seizure; right eye annotated
during whole seizure

0808 VID_331_D 44961 45348 15.48 Day; low light condition;
awake; lying on bed; face
partly out of camera view;
only right eye visible and
annotated during seizure

0809 VID_331_D 90384 90876 19.68 Day; low light condition;
awake; lying on bed; face,
eye-pair, left eye and mouth
annotated during most parts
of seizure; right eye annotated
during whole seizure

0810 VID_332_D 17878 18324 17.84 Day; lying on bed; awake; us-
ing tablet; face, eye-pair, right
eye, left eye and mouth anno-
tated during whole seizure

0811 VID_332_D 29369 29888 20.76 Day; lying on bed; awake; us-
ing tablet; face, left eye and
mouth annotated during most
part of seizure; right eye anno-
tated during whole seizure

0812 VID_332_D 42846 43273 17.08 Day; lying on bed; awake; us-
ing tablet; face annotated dur-
ing most part of seizure; eye-
pair left eye, right eye and
mouth annotated during whole
seizure

0813 VID_334_D 17669 18032 14.52 Day; lying on bed; awake; us-
ing tablet; face and mouth
annotated during most part
of seizure; eye-pair left eye
and right eye annotated during
whole seizure
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0814 VID_334_D 111866 112309 17.72 Day; lying on bed; awake; look-
ing down; face eye-pair left eye,
right eye and mouth annotated
during whole seizure

0815 VID_335_D 9937 10491 22.16 Day; lying on bed; awake; eat-
ing; face partially out of cam-
era view; eye pair, left eye
and right eye annotated dur-
ing whole seizure; mouth an-
notated during most part of
seizure

0816 VID_337_D 77261 77660 15.96 Day; lying on bed; awake; look-
ing down; head being moved by
clinician; face, eye-pair, left eye
and mouth annotated during
most part of seizure; right eye
annotated during whole seizure

0817 VID_340_D 15519 15859 13.60 Day; lying on bed; awake;
using tablet pc; eating lol-
lipop; face partially out of cam-
era view; eye pair, left eye
and right eye annotated during
whole seizure; mouth and face
not annotated

0818 VID_340_D 20193 20650 18.28 Day; lying on bed; awake;
using tablet pc; eating lol-
lipop; face partially out of cam-
era view; eye pair, left eye
and right eye annotated during
whole seizure; mouth and face
not annotated

0819 VID_341_D 3168 3505 13.48 Day; leaning on pillow; awake;
face looking down and to the
side; face, eye-pair right eye
and mouth annotated during
parts of seizure; left eye anno-
tated during whole seizure

0820 VID_343_D 72605 72942 13.48 Day; lying on the front; awake;
camera moves; face not visible;
rejected

0821 VID_343_D 81329 82432 44.12 Night; lying on the front; sleep-
ing; no IR; noise; face not vis-
ible; only eyelashes visible; re-
jected

0822 VID_343_D 86689 87417 29.12 Night; lying on the front; prob-
ably sleeping; no IR; noise; face
not visible; only eyelashes visi-
ble; rejected

0823 VID_343_D 90000 90774 30.96 Night; lying on the front; prob-
ably sleeping; no IR; noise; face
not visible; only eyelashes visi-
ble; rejected
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0824 VID_343_D 92122 92613 19.64 Night; lying on the front; prob-
ably sleeping; no IR; noise; face
not visible; only eyelashes visi-
ble; rejected

0825 VID_349_D 38390 38575 7.40 Night; lying; probably sleep-
ing; no IR; noise; face, eye-
pair, left eye, right eye and
mouth visible and annotated
during a small first part of
seizure

0826 VID_352_D 57223 57513 11.60 Low light conditions; lying on
the side; sleeping; only right
eye visible and annotated dur-
ing most part of seizure

5.2.9 Annotation data for patient P09

Gender: Female
Age at time of Video-EEG recording: 8 a
Total duration of Video-EEG: 15 h and 51 m
Total number of seizures: 25
Mean seizure duration: 4.90 s
Standard deviation: 1.57 s
Comments: -

Table 5.9: Overview of the recorded seizures of patient P09

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

0901 VID_379_D 5207 5329 4.92 -
0902 VID_400_D 12996 13115 4.80 -
0903 VID_400_D 18688 18789 4.08 -
0904 VID_400_D 24407 24472 2.64 -
0905 VID_400_D 60311 60459 5.96 -
0906 VID_400_D 104215 104334 4.80 -
0907 VID_400_D 111344 111489 5.84 -
0908 VID_400_D 119664 119771 4.32 -
0909 VID_401_D 3089 3191 4.12 -
0910 VID_403_D 20580 20728 5.96 -
0911 VID_403_D 29713 29821 4.36 -
0912 VID_403_D 76245 76484 9.60 -
0913 VID_403_D 113256 113420 6.60 -
0914 VID_404_D 25039 25230 7.68 -
0915 VID_404_D 34700 34789 3.60 -
0916 VID_407_D 10951 11084 5.36 -
0917 VID_407_D 40484 40617 5.36 -
0918 VID_407_D 45531 45644 4.56 -
0919 VID_407_D 70214 70371 6.32 -
0920 VID_407_D 82565 82667 4.12 -
0921 VID_410_D 7543 7641 3.96 -
0922 VID_410_D 11126 11191 2.64 -
0923 VID_410_D 14946 15036 3.64 -
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0924 VID_410_D 111251 111351 4.04 -
0925 VID_410_D 119865 119942 3.12 -

5.2.10 Annotation data for patient P10

Gender: Male
Age at time of Video-EEG recording: 5 a
Total duration of Video-EEG: 15 h and 9 m
Total number of seizures: 68
Mean seizure duration: 4.20 s
Standard deviation: 0.59 s
Comments: -

Table 5.10: Overview of the recorded seizures of patient P10

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

1001 VID_453_D 14143 14263 4.84 -
1002 VID_454_D 15663 15861 7.96 -
1003 VID_454_D 28953 29076 4.96 -
1004 VID_454_D 43219 43310 3.68 -
1005 VID_454_D 49652 49811 6.40 -
1006 VID_454_D 55005 55108 4.16 -
1007 VID_455_D 1044 1137 3.76 -
1008 VID_455_D 5532 5622 3.64 -
1009 VID_455_D 7965 8051 3.48 -
1010 VID_455_D 13969 14063 3.80 -
1011 VID_455_D 21714 21818 4.20 -
1012 VID_455_D 28213 28308 3.84 -
1013 VID_455_D 49307 49412 4.24 -
1014 VID_455_D 54292 54399 4.32 -
1015 VID_455_D 56182 56283 4.08 -
1016 VID_455_D 59420 59512 3.72 -
1017 VID_456_D 16681 16786 4.24 -
1018 VID_456_D 33404 33505 4.08 -
1019 VID_456_D 43430 43534 4.20 -
1020 VID_456_D 47919 48039 4.84 -
1021 VID_457_D 28389 28489 4.04 -
1022 VID_457_D 46754 46854 4.04 -
1023 VID_457_D 50152 50270 4.76 -
1024 VID_458_D 10522 10624 4.12 -
1025 VID_458_D 28449 28533 3.40 -
1026 VID_459_D 10522 10624 4.12 -
1027 VID_459_D 15500 15609 4.40 -
1028 VID_459_D 40742 40828 3.48 -
1029 VID_460_D 5421 5532 4.48 -
1030 VID_460_D 33462 33573 4.48 -
1031 VID_462_D 55821 55914 3.76 -
1032 VID_466_D 8614 8655 1.68 -
1033 VID_466_D 36536 36647 4.48 -
1034 VID_466_D 37660 37746 3.48 -

141



1035 VID_466_D 45181 45292 4.48 -
1036 VID_466_D 53566 53663 3.92 -
1037 VID_466_D 55930 56021 3.68 -
1038 VID_466_D 57038 57136 3.96 -
1039 VID_470_D 7338 7386 1.96 -
1040 VID_470_D 15998 16059 2.48 -
1041 VID_470_D 24706 24812 4.28 -
1042 VID_470_D 27709 27834 5.04 -
1043 VID_470_D 30197 30301 4.20 -
1044 VID_470_D 33282 33363 3.28 -
1045 VID_470_D 43438 43602 6.60 -
1046 VID_470_D 50971 51110 5.60 -
1047 VID_471_D 9117 9214 3.92 -
1048 VID_471_D 11454 11570 4.68 -
1049 VID_471_D 17423 17535 4.52 -
1050 VID_471_D 18676 18766 3.64 -
1051 VID_471_D 20296 20403 4.32 -
1052 VID_471_D 22848 22936 3.56 -
1053 VID_471_D 26567 26670 4.16 -
1054 VID_471_D 27204 27315 4.48 -
1055 VID_471_D 30415 30537 4.92 -
1056 VID_471_D 42969 43141 6.92 -
1057 VID_471_D 47581 47699 4.76 -
1058 VID_471_D 48135 48209 3.00 -
1059 VID_471_D 49516 49616 4.04 -
1060 VID_471_D 51717 51840 4.96 -
1061 VID_471_D 56280 56351 2.88 -
1062 VID_471_D 56976 57072 3.88 -
1063 VID_471_D 57816 57898 3.32 -
1064 VID_472_D 2753 2882 5.20 -
1065 VID_473_D 53394 53463 2.80 -
1066 VID_473_D 54466 54555 3.60 -
1067 VID_475_D 12266 12406 5.64 -
1068 VID_475_D 27387 27486 4.00 -

5.2.11 Annotation data for patient P11

Gender: Male
Age at time of Video-EEG recording: 13 a
Total duration of Video-EEG: 15 h and 2 m
Total number of seizures: 38
Mean seizure duration: 6.27 s
Standard deviation: 1.29 s
Comments: -

Table 5.11: Overview of the recorded seizures of patient P11

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

1101 VID_506_D 12145 12390 9.84 -
1102 VID_506_D 31437 31604 6.72 -
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1103 VID_506_D 52274 52431 6.32 -
1104 VID_507_D 5951 6118 6.72 -
1105 VID_507_D 34026 34176 6.04 -
1106 VID_507_D 40772 40929 6.32 -
1107 VID_507_D 47017 47182 6.64 -
1108 VID_507_D 54327 54488 6.48 -
1109 VID_507_D 58614 58766 6.12 -
1110 VID_508_D 1322 1471 6.00 -
1111 VID_508_D 28184 28328 5.80 -
1112 VID_508_D 32443 32603 6.44 -
1113 VID_509_D 14651 14822 6.88 -
1114 VID_509_D 46811 46955 5.80 -
1115 VID_510_D 24816 24974 6.36 -
1116 VID_510_D 58190 58356 6.68 -
1117 VID_511_D 17646 17773 5.12 -
1118 VID_512_D 30155 30310 6.24 -
1119 VID_512_D 38931 39076 5.84 -
1120 VID_513_D 12453 12629 7.08 -
1121 VID_514_D 30479 30620 5.68 -
1122 VID_514_D 35108 35288 7.24 -
1123 VID_514_D 57117 57275 6.36 -
1124 VID_516_D 960 1031 2.88 -
1125 VID_512_D 44680 44799 4.80 -
1126 VID_512_D 47288 47380 3.72 -
1127 VID_512_D 50678 50783 4.24 -
1128 VID_524_D 49920 50091 6.88 -
1129 VID_525_D 860 1032 6.92 -
1130 VID_525_D 2231 2427 7.88 -
1131 VID_525_D 13874 14073 8.00 -
1132 VID_525_D 45696 45856 6.44 -
1133 VID_526_D 2294 2485 7.68 -
1134 VID_526_D 4949 5114 6.64 -
1135 VID_526_D 23549 23736 7.52 -
1136 VID_526_D 29303 29486 7.36 -
1137 VID_527_D 52820 52919 4.00 -
1138 VID_527_D 57834 57945 4.48 -

5.2.12 Annotation data for patient P12

Gender: Female
Age at time of Video-EEG recording: 10 a
Total duration of Video-EEG: 7 h and 21 m
Total number of seizures: 25
Mean seizure duration: 3.72 s
Standard deviation: 1.29 s
Comments: -

Table 5.12: Overview of the recorded seizures of patient P12

Seizure
ID

Video file
name

Starting
frame

Ending
frame

Duration
[s]

Comments

143



1201 VID_532_D 8671 8732 2.48 -
1202 VID_532_D 9353 9488 5.44 -
1203 VID_532_D 11218 11271 2.16 -
1204 VID_532_D 11817 11966 6.00 -
1205 VID_533_D 29106 29202 3.88 -
1206 VID_534_D 9368 9488 4.84 -
1207 VID_534_D 58865 58959 3.80 -
1208 VID_535_D 11216 11360 5.80 -
1209 VID_535_D 51144 51263 4.80 -
1210 VID_536_D 11114 11213 4.00 -
1211 VID_536_D 29322 29397 3.04 -
1212 VID_537_D 27983 28101 4.76 -
1213 VID_539_D 2712 2802 3.64 -
1214 VID_539_D 40152 40217 2.64 -
1215 VID_539_D 46879 46977 3.96 -
1216 VID_539_D 47028 47042 0.60 -
1217 VID_540_D 18946 19023 3.12 -
1218 VID_540_D 23122 23253 5.28 -
1219 VID_540_D 32565 32635 2.84 -
1220 VID_540_D 50996 51042 1.88 -
1221 VID_540_D 64067 64161 3.80 -
1222 VID_553_D 44 132 3.56 -
1223 VID_553_D 902 1011 4.40 -
1224 VID_553_D 33886 33954 2.76 -
1225 VID_553_D 45593 45680 3.52 -

5.2.13 Experiment 3 - Selected features for each patient

Table 5.13: Experiment 3: Selected features for patient P01.

MMW_Eyes_W3_Kurtosis MXM_Mouth_W3_ENR
MMW_REye_W3_Skewness MXM_Mouth_W3_InterquartileRange
MMW_Mouth_W3_ENR MXM_Mouth_W3_PW3-6
MMW_Mouth_W3_Minimum AMXM_Eyes_W3_Median_Boost
MMW_Mouth_W3_Variance_Boost AMXM_Eyes_W3_Variance_Boost
MMW_Mouth_W3_StandardDeviation_Boost AMXM_Eyes_W3_Kurtosis
SM_Eyes_W3_Skewness AMXM_LEye_W3_VTI
SM_REye_W3_Skewness AMXM_LEye_W3_MaximumMinusMinimum
THP_LEye_W3_VTI AMXM_LEye_W3_Skewness
THP_REye_W3_Median_Boost AMXM_REye_W3_InterquartileRange
THP_REye_W3_DominantFrequency AMXM_REye_W3_DominantFrequency
THP_Mouth_W3_VTI AMXM_Mouth_W3_VTI
PBFS_LEye_W3_Maximum AMXM_Mouth_W3_EntropyEnergyBins
PBFS_REye_W3_DominantFrequency AMXM_Mouth_W3_PW0-3
ATHP_Eyes_W3_Skewness MXMW_Eyes_W3_VTI
ATHP_LEye_W3_VTI MXMW_Eyes_W3_Median_Boost
ATHP_LEye_W3_Minimum MXMW_Eyes_W3_InterquartileRange
ATHP_LEye_W3_Kurtosis MXMW_Eyes_W3_Kurtosis
ATHP_REye_W3_ZeroCrossingRate MXMW_LEye_W3_VTI
ATHP_Mouth_W3_Skewness MXMW_LEye_W3_Maximum
ATHP_Mouth_W3_ZeroCrossingRate MXMW_LEye_W3_MaximumMinusMinimum
MA_Eyes_W3_PW3-6 MXMW_LEye_W3_ZeroCrossingRate
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MA_LEye_W3_EntropyEnergyBins MXMW_REye_W3_Maximum
MA_Mouth_W3_Minimum MXMW_REye_W3_MaximumMinusMinimum
MA_Mouth_W3_Maximum MXMW_REye_W3_Median_Boost
MA_Mouth_W3_EntropyEnergyBins MXMW_REye_W3_Skewness
MXM_Eyes_W3_VTI MXMW_Mouth_W3_VTI
MXM_Eyes_W3_Median_Boost MXMW_Mouth_W3_PW3-6
MXM_Eyes_W3_Skewness

Table 5.14: Experiment 3: Selected features for patient P02.

MMW_LEye_W3_VTI MA_LEye_W3_VTI
MMW_LEye_W3_DominantFrequency MA_REye_W3_Minimum
MMW_REye_W3_ZeroCrossingRate MA_REye_W3_Median_Boost
SM_LEye_W3_ENR MA_REye_W3_InterquartileRange
SM_LEye_W3_EntropySpectralBins MXM_Eyes_W3_Variance_Boost
SM_REye_W3_VTI MXM_Eyes_W3_StandardDeviation_Boost
SM_REye_W3_InterquartileRange MXM_Eyes_W3_MeanCrossingRate
THP_Eyes_W3_Kurtosis MXM_LEye_W3_Maximum
THP_REye_W3_EntropySpectralBins MXM_LEye_W3_MaximumMinusMinimum
PBFS_Eyes_W3_Maximum MXM_Mouth_W3_Skewness
PBFS_Eyes_W3_MaximumMinusMinimum MXM_Mouth_W3_Kurtosis
ATHP_Eyes_W3_VTI AMXM_Eyes_W3_Variance_Boost
ATHP_LEye_W3_Median_Boost AMXM_Eyes_W3_StandardDeviation_Boost
ATHP_REye_W3_Skewness AMXM_LEye_W3_Variance_Boost
ATHP_REye_W3_SpectralRollOff AMXM_LEye_W3_PW3-6
ATHP_Mouth_W3_VTI AMXM_REye_W3_Kurtosis
ATHP_Mouth_W3_Kurtosis AMXM_Mouth_W3_ZeroCrossingRate
MA_Eyes_W3_25SPF MXMW_Eyes_W3_Maximum

Table 5.15: Experiment 3: Selected features for patient P03.

MMW_Eyes_W3_DominantFrequency MA_Eyes_W3_Skewness
MMW_LEye_W3_InterquartileRange MA_Eyes_W3_PW3-6
MMW_REye_W3_PW3-6 MA_Eyes_W3_DominantFrequency
SM_Eyes_W3_Median_Boost MA_REye_W3_Skewness
THP_Eyes_W3_Maximum MXM_Eyes_W3_Skewness
THP_Eyes_W3_PW3-6 AMXM_Eyes_W3_VTI
THP_LEye_W3_Maximum MXMW_Eyes_W3_Minimum
THP_LEye_W3_ZeroCrossingRate MXMW_Eyes_W3_MaximumMinusMinimum
ATHP_LEye_W3_ENR MXMW_LEye_W3_Maximum
ATHP_LEye_W3_Median_Boost MXMW_REye_W3_PW3-6
ATHP_LEye_W3_Kurtosis

Table 5.16: Experiment 3: Selected features for patient P04.

MMW_Eyes_W3_25SPF MA_Eyes_W3_Kurtosis
MMW_REye_W3_25SPF MA_Eyes_W3_PW0-3
MMW_REye_W3_DominantFrequency MA_Eyes_W3_DominantFrequency
MMW_Mouth_W3_ENR MA_LEye_W3_Minimum
MMW_Mouth_W3_DominantFrequency MA_LEye_W3_MaximumMinusMinimum
SM_LEye_W3_VTI MA_LEye_W3_Kurtosis
SM_LEye_W3_25SPF MA_LEye_W3_PW0-3
THP_Eyes_W3_EntropyEnergyBins MA_LEye_W3_DominantFrequency
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THP_REye_W3_PW0-3 MA_Mouth_W3_25SPF
PBFS_REye_W3_Kurtosis MA_Mouth_W3_PW3-6
PBFS_REye_W3_PW0-3 MXM_LEye_W3_25SPF
PBFS_Mouth_W3_Mean_Boost MXM_REye_W3_PW3-6
ATHP_LEye_W3_Kurtosis AMXM_LEye_W3_25SPF
ATHP_Mouth_W3_Minimum AMXM_LEye_W3_PW0-3
ATHP_Mouth_W3_Skewness MXMW_Mouth_W3_SpectralCentroid

Table 5.17: Experiment 3: Selected features for patient P06.

MMW_Eyes_W3_PW3-6 PBFS_Mouth_W3_MaximumMinusMinimum
MMW_REye_W3_Maximum PBFS_Mouth_W3_Kurtosis
MMW_Mouth_W3_InterquartileRange ATHP_Mouth_W3_MaximumMinusMinimum
MMW_Mouth_W3_Skewness ATHP_Mouth_W3_InterquartileRange
SM_Eyes_W3_InterquartileRange ATHP_Mouth_W3_Kurtosis
SM_REye_W3_InterquartileRange ATHP_Mouth_W3_25SPF
SM_Mouth_W3_VTI ATHP_Mouth_W3_DominantFrequency
SM_Mouth_W3_Maximum MA_Eyes_W3_Minimum
SM_Mouth_W3_Skewness MA_Mouth_W3_MeanCrossingRate
SM_Mouth_W3_EntropyEnergyBins MXM_Mouth_W3_VTI
THP_Eyes_W3_VTI AMXM_Mouth_W3_ENR
THP_REye_W3_Maximum AMXM_Mouth_W3_Minimum
THP_Mouth_W3_VTI AMXM_Mouth_W3_Median_Boost
THP_Mouth_W3_Median_Boost MXMW_Eyes_W3_Minimum
PBFS_Eyes_W3_Median_Boost MXMW_Eyes_W3_Skewness

Table 5.18: Experiment 3: Selected features for patient P07.

MMW_Mouth_W3_Median_Boost ATHP_Mouth_W3_Kurtosis
SM_REye_W3_Median_Boost ATHP_Mouth_W3_ZeroCrossingRate
SM_REye_W3_EntropySpectralBins ATHP_Mouth_W3_PW0-3
THP_Eyes_W3_Median_Boost ATHP_Mouth_W3_PW3-6
THP_REye_W3_Maximum MA_LEye_W3_ZeroCrossingRate
THP_REye_W3_Median_Boost MA_REye_W3_Kurtosis
THP_Mouth_W3_Skewness MXM_REye_W3_Median_Boost
PBFS_Eyes_W3_PW0-3 MXM_Mouth_W3_Maximum
PBFS_LEye_W3_PW3-6 MXM_Mouth_W3_InterquartileRange
PBFS_REye_W3_Maximum MXM_Mouth_W3_Skewness
PBFS_Mouth_W3_Kurtosis MXM_Mouth_W3_EntropyEnergyBins
PBFS_Mouth_W3_PW3-6 AMXM_REye_W3_Variance_Boost
ATHP_Eyes_W3_VTI AMXM_REye_W3_StandardDeviation_Boost
ATHP_REye_W3_Variance_Boost AMXM_Mouth_W3_EntropySpectralBins
ATHP_REye_W3_StandardDeviation_Boost MXMW_LEye_W3_Skewness
ATHP_Mouth_W3_Minimum MXMW_Mouth_W3_EntropyEnergyBins

Table 5.19: Experiment 3: Selected features for patient P08.

MMW_Eyes_W3_Mean_Boost MA_LEye_W3_StandardDeviation_Boo
MMW_LEye_W3_VTI MA_LEye_W3_Kurtosis
MMW_LEye_W3_PW3-6 MA_LEye_W3_PW3-6
MMW_REye_W3_VTI MA_LEye_W3_SpectralRollOff
MMW_REye_W3_ZeroCrossingRate MA_REye_W3_VTI
MMW_REye_W3_EntropyEnergyBins MA_REye_W3_Minimum
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SM_LEye_W3_Skewness MA_REye_W3_Median_Boost
SM_REye_W3_VTI MA_REye_W3_InterquartileRange
SM_REye_W3_InterquartileRange MA_REye_W3_PW3-6
SM_REye_W3_EntropyEnergyBins MA_REye_W3_SpectralRollOff
THP_LEye_W3_Mean_Boost MA_REye_W3_SpectralCentroid
THP_LEye_W3_Skewness MA_Mouth_W3_Maximum
THP_LEye_W3_Kurtosis MA_Mouth_W3_Variance_Boost
THP_LEye_W3_EntropyEnergyBins MA_Mouth_W3_InterquartileRange
THP_LEye_W3_PW3-6 MXM_LEye_W3_ENR
THP_REye_W3_VTI MXM_REye_W3_ZeroCrossingRate
THP_REye_W3_ENR AMXM_Eyes_W3_MeanCrossingRate
THP_REye_W3_MaximumMinusMinimum AMXM_Eyes_W3_SpectralRollOff
THP_REye_W3_InterquartileRange AMXM_LEye_W3_VTI
THP_REye_W3_Kurtosis AMXM_LEye_W3_PW3-6
THP_REye_W3_EntropyEnergyBins AMXM_REye_W3_VTI
THP_Mouth_W3_MaximumMinusMinimum AMXM_REye_W3_Minimum
THP_Mouth_W3_Median_Boost AMXM_REye_W3_Kurtosis
PBFS_LEye_W3_MeanCrossingRate AMXM_REye_W3_MeanCrossingRate
PBFS_Mouth_W3_VTI AMXM_Mouth_W3_ENR
ATHP_Eyes_W3_VTI AMXM_Mouth_W3_MaximumMinusMinimu
ATHP_Eyes_W3_Median_Boost AMXM_Mouth_W3_SpectralRollOff
ATHP_Eyes_W3_Variance_Boost MXMW_LEye_W3_VTI
ATHP_REye_W3_Median_Boost MXMW_LEye_W3_Median_Boost
ATHP_REye_W3_Variance_Boost MXMW_LEye_W3_EntropySpectralBins
MA_Eyes_W3_PW3-6 MXMW_REye_W3_VTI
MA_LEye_W3_VTI MXMW_REye_W3_Maximum
MA_LEye_W3_Minimum MXMW_REye_W3_EntropySpectralBins
MA_LEye_W3_Variance_Boost

5.2.14 Experiment 4 - Union of selected features for each pa-
tient

Table 5.20: Experiment 4: Union of selected features for each pa-
tient.

MMW_Eyes_W3_Mean_Boost MA_Eyes_W3_Skewness
MMW_Eyes_W3_Kurtosis MA_Eyes_W3_Kurtosis
MMW_Eyes_W3_25SPF MA_Eyes_W3_25SPF
MMW_Eyes_W3_PW3-6 MA_Eyes_W3_PW0-3
MMW_Eyes_W3_DominantFrequency MA_Eyes_W3_PW3-6
MMW_LEye_W3_VTI MA_Eyes_W3_DominantFrequency
MMW_LEye_W3_InterquartileRange MA_LEye_W3_VTI
MMW_LEye_W3_PW3-6 MA_LEye_W3_Minimum
MMW_LEye_W3_DominantFrequency MA_LEye_W3_MaximumMinusMinimum
MMW_REye_W3_VTI MA_LEye_W3_Variance_Boost
MMW_REye_W3_Maximum MA_LEye_W3_StandardDeviation_Boost
MMW_REye_W3_Skewness MA_LEye_W3_Kurtosis
MMW_REye_W3_ZeroCrossingRate MA_LEye_W3_ZeroCrossingRate
MMW_REye_W3_EntropyEnergyBins MA_LEye_W3_EntropyEnergyBins
MMW_REye_W3_25SPF MA_LEye_W3_PW0-3
MMW_REye_W3_PW3-6 MA_LEye_W3_PW3-6
MMW_REye_W3_DominantFrequency MA_LEye_W3_DominantFrequency
MMW_Mouth_W3_ENR MA_LEye_W3_SpectralRollOff
MMW_Mouth_W3_Minimum MA_REye_W3_VTI
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MMW_Mouth_W3_Median_Boost MA_REye_W3_Minimum
MMW_Mouth_W3_Variance_Boost MA_REye_W3_Median_Boost
MMW_Mouth_W3_StandardDeviation_Boost MA_REye_W3_InterquartileRange
MMW_Mouth_W3_InterquartileRange MA_REye_W3_Skewness
MMW_Mouth_W3_Skewness MA_REye_W3_Kurtosis
MMW_Mouth_W3_DominantFrequency MA_REye_W3_PW3-6
SM_Eyes_W3_Median_Boost MA_REye_W3_SpectralRollOff
SM_Eyes_W3_InterquartileRange MA_REye_W3_SpectralCentroid
SM_Eyes_W3_Skewness MA_Mouth_W3_Minimum
SM_LEye_W3_VTI MA_Mouth_W3_Maximum
SM_LEye_W3_ENR MA_Mouth_W3_Variance_Boost
SM_LEye_W3_Skewness MA_Mouth_W3_InterquartileRange
SM_LEye_W3_25SPF MA_Mouth_W3_MeanCrossingRate
SM_LEye_W3_EntropySpectralBins MA_Mouth_W3_EntropyEnergyBins
SM_REye_W3_VTI MA_Mouth_W3_25SPF
SM_REye_W3_Median_Boost MA_Mouth_W3_PW3-6
SM_REye_W3_InterquartileRange MXM_Eyes_W3_VTI
SM_REye_W3_Skewness MXM_Eyes_W3_Median_Boost
SM_REye_W3_EntropyEnergyBins MXM_Eyes_W3_Variance_Boost
SM_REye_W3_EntropySpectralBins MXM_Eyes_W3_StandardDeviation_Boost
SM_Mouth_W3_VTI MXM_Eyes_W3_Skewness
SM_Mouth_W3_Maximum MXM_Eyes_W3_MeanCrossingRate
SM_Mouth_W3_Skewness MXM_LEye_W3_ENR
SM_Mouth_W3_EntropyEnergyBins MXM_LEye_W3_Maximum
THP_Eyes_W3_VTI MXM_LEye_W3_MaximumMinusMinimum
THP_Eyes_W3_Maximum MXM_LEye_W3_25SPF
THP_Eyes_W3_Median_Boost MXM_REye_W3_Median_Boost
THP_Eyes_W3_Kurtosis MXM_REye_W3_ZeroCrossingRate
THP_Eyes_W3_EntropyEnergyBins MXM_REye_W3_PW3-6
THP_Eyes_W3_PW3-6 MXM_Mouth_W3_VTI
THP_LEye_W3_VTI MXM_Mouth_W3_ENR
THP_LEye_W3_Maximum MXM_Mouth_W3_Maximum
THP_LEye_W3_Mean_Boost MXM_Mouth_W3_InterquartileRange
THP_LEye_W3_Skewness MXM_Mouth_W3_Skewness
THP_LEye_W3_Kurtosis MXM_Mouth_W3_Kurtosis
THP_LEye_W3_ZeroCrossingRate MXM_Mouth_W3_EntropyEnergyBins
THP_LEye_W3_EntropyEnergyBins MXM_Mouth_W3_PW3-6
THP_LEye_W3_PW3-6 AMXM_Eyes_W3_VTI
THP_REye_W3_VTI AMXM_Eyes_W3_Median_Boost
THP_REye_W3_ENR AMXM_Eyes_W3_Variance_Boost
THP_REye_W3_Maximum AMXM_Eyes_W3_StandardDeviation_Boost
THP_REye_W3_MaximumMinusMinimum AMXM_Eyes_W3_Kurtosis
THP_REye_W3_Median_Boost AMXM_Eyes_W3_MeanCrossingRate
THP_REye_W3_InterquartileRange AMXM_Eyes_W3_SpectralRollOff
THP_REye_W3_Kurtosis AMXM_LEye_W3_VTI
THP_REye_W3_EntropyEnergyBins AMXM_LEye_W3_MaximumMinusMinimum
THP_REye_W3_PW0-3 AMXM_LEye_W3_Variance_Boost
THP_REye_W3_DominantFrequency AMXM_LEye_W3_Skewness
THP_REye_W3_EntropySpectralBins AMXM_LEye_W3_25SPF
THP_Mouth_W3_VTI AMXM_LEye_W3_PW0-3
THP_Mouth_W3_MaximumMinusMinimum AMXM_LEye_W3_PW3-6
THP_Mouth_W3_Median_Boost AMXM_REye_W3_VTI
THP_Mouth_W3_Skewness AMXM_REye_W3_Minimum
PBFS_Eyes_W3_Maximum AMXM_REye_W3_Variance_Boost
PBFS_Eyes_W3_MaximumMinusMinimum AMXM_REye_W3_StandardDeviation_Boost
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PBFS_Eyes_W3_Median_Boost AMXM_REye_W3_InterquartileRange
PBFS_Eyes_W3_PW0-3 AMXM_REye_W3_Kurtosis
PBFS_LEye_W3_Maximum AMXM_REye_W3_MeanCrossingRate
PBFS_LEye_W3_MeanCrossingRate AMXM_REye_W3_DominantFrequency
PBFS_LEye_W3_PW3-6 AMXM_Mouth_W3_VTI
PBFS_REye_W3_Maximum AMXM_Mouth_W3_ENR
PBFS_REye_W3_Kurtosis AMXM_Mouth_W3_Minimum
PBFS_REye_W3_PW0-3 AMXM_Mouth_W3_MaximumMinusMinimum
PBFS_REye_W3_DominantFrequency AMXM_Mouth_W3_Median_Boost
PBFS_Mouth_W3_VTI AMXM_Mouth_W3_ZeroCrossingRate
PBFS_Mouth_W3_MaximumMinusMinimum AMXM_Mouth_W3_EntropyEnergyBins
PBFS_Mouth_W3_Mean_Boost AMXM_Mouth_W3_PW0-3
PBFS_Mouth_W3_Kurtosis AMXM_Mouth_W3_EntropySpectralBins
PBFS_Mouth_W3_PW3-6 AMXM_Mouth_W3_SpectralRollOff
ATHP_Eyes_W3_VTI MXMW_Eyes_W3_VTI
ATHP_Eyes_W3_Median_Boost MXMW_Eyes_W3_Minimum
ATHP_Eyes_W3_Variance_Boost MXMW_Eyes_W3_Maximum
ATHP_Eyes_W3_Skewness MXMW_Eyes_W3_MaximumMinusMinimum
ATHP_LEye_W3_VTI MXMW_Eyes_W3_Median_Boost
ATHP_LEye_W3_ENR MXMW_Eyes_W3_InterquartileRange
ATHP_LEye_W3_Minimum MXMW_Eyes_W3_Skewness
ATHP_LEye_W3_Median_Boost MXMW_Eyes_W3_Kurtosis
ATHP_LEye_W3_Kurtosis MXMW_LEye_W3_VTI
ATHP_REye_W3_Median_Boost MXMW_LEye_W3_Maximum
ATHP_REye_W3_Variance_Boost MXMW_LEye_W3_MaximumMinusMinimum
ATHP_REye_W3_StandardDeviation_Boost MXMW_LEye_W3_Median_Boost
ATHP_REye_W3_Skewness MXMW_LEye_W3_Skewness
ATHP_REye_W3_ZeroCrossingRate MXMW_LEye_W3_ZeroCrossingRate
ATHP_REye_W3_SpectralRollOff MXMW_LEye_W3_EntropySpectralBins
ATHP_Mouth_W3_VTI MXMW_REye_W3_VTI
ATHP_Mouth_W3_Minimum MXMW_REye_W3_Maximum
ATHP_Mouth_W3_MaximumMinusMinimum MXMW_REye_W3_MaximumMinusMinimum
ATHP_Mouth_W3_InterquartileRange MXMW_REye_W3_Median_Boost
ATHP_Mouth_W3_Skewness MXMW_REye_W3_Skewness
ATHP_Mouth_W3_Kurtosis MXMW_REye_W3_PW3-6
ATHP_Mouth_W3_ZeroCrossingRate MXMW_REye_W3_EntropySpectralBins
ATHP_Mouth_W3_25SPF MXMW_Mouth_W3_VTI
ATHP_Mouth_W3_PW0-3 MXMW_Mouth_W3_EntropyEnergyBins
ATHP_Mouth_W3_PW3-6 MXMW_Mouth_W3_PW3-6
ATHP_Mouth_W3_DominantFrequency MXMW_Mouth_W3_SpectralCentroid
MA_Eyes_W3_Minimum

5.2.15 Experiment 6 - Selected features from all patients

Table 5.21: Experiment 6: Selected features from all patients.

MMW_Eyes_W3_Minimum MA_Eyes_W3_SpectralCentroid
MMW_Eyes_W3_Median_Boost MA_LEye_W3_VTI
MMW_Eyes_W3_DominantFrequency MA_LEye_W3_Minimum
MMW_LEye_W3_VTI MA_LEye_W3_Median_Boost
MMW_LEye_W3_Median_Boost MA_LEye_W3_InterquartileRange
MMW_LEye_W3_25SPF MA_LEye_W3_25SPF
MMW_REye_W3_VTI MA_LEye_W3_PW0-3
MMW_REye_W3_DominantFrequency MA_LEye_W3_DominantFrequency
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SM_Eyes_W3_Minimum MA_REye_W3_VTI
SM_Eyes_W3_Maximum MA_REye_W3_Minimum
SM_REye_W3_PW3-6 MA_REye_W3_Median_Boost
THP_Eyes_W3_PW3-6 MA_REye_W3_MeanCrossingRate
THP_LEye_W3_EntropyEnergyBins MA_REye_W3_EntropySpectralBins
THP_LEye_W3_PW3-6 MA_Mouth_W3_Minimum
THP_REye_W3_VTI MA_Mouth_W3_Maximum
THP_REye_W3_ENR MA_Mouth_W3_MaximumMinusMinimum
THP_REye_W3_MaximumMinusMinimum MA_Mouth_W3_Kurtosis
THP_Mouth_W3_Maximum MA_Mouth_W3_PW0-3
THP_Mouth_W3_Median_Boost MA_Mouth_W3_PW3-6
PBFS_Eyes_W3_VTI MXM_Eyes_W3_Variance_Boost
PBFS_Eyes_W3_Maximum MXM_Eyes_W3_Kurtosis
PBFS_Eyes_W3_MaximumMinusMinimum MXM_LEye_W3_Skewness
PBFS_Eyes_W3_InterquartileRange MXM_LEye_W3_Kurtosis
PBFS_Eyes_W3_DominantFrequency AMXM_Eyes_W3_Kurtosis
PBFS_Eyes_W3_SpectralRollOff AMXM_LEye_W3_Minimum
PBFS_LEye_W3_Maximum AMXM_LEye_W3_MaximumMinusMinimum
PBFS_LEye_W3_StandardDeviation_Boost AMXM_LEye_W3_Variance_Boost
PBFS_LEye_W3_25SPF AMXM_LEye_W3_PW3-6
PBFS_REye_W3_Median_Boost AMXM_Mouth_W3_ENR
PBFS_REye_W3_DominantFrequency AMXM_Mouth_W3_Minimum
PBFS_Mouth_W3_VTI AMXM_Mouth_W3_Median_Boost
PBFS_Mouth_W3_PW0-3 AMXM_Mouth_W3_SpectralRollOff
PBFS_Mouth_W3_PW3-6 MXMW_Eyes_W3_InterquartileRange
ATHP_Eyes_W3_Median_Boost MXMW_Eyes_W3_Skewness
ATHP_Eyes_W3_Variance_Boost MXMW_LEye_W3_VTI
ATHP_Eyes_W3_InterquartileRange MXMW_LEye_W3_MaximumMinusMinimum
ATHP_Eyes_W3_Kurtosis MXMW_REye_W3_VTI
ATHP_LEye_W3_Skewness MXMW_REye_W3_Skewness
ATHP_REye_W3_Variance_Boost MXMW_Mouth_W3_ENR
MA_Eyes_W3_Variance_Boost MXMW_Mouth_W3_Skewness
MA_Eyes_W3_InterquartileRange
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