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für die Möglichkeit diese Dissertation in einer sehr fruchtbaren und lehr-
reichen Zusammenarbeit zu erstellen. Spezieller Dank ergeht an meinen Be-
treuer und Mentor bei ams, Günter Hayderer, von dem ich weit über das
Fachliche hinaus viel lernen konnte. Weiters bedanken möchte ich mich bei
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Abstract

The monitoring and evaluation of the manufacturing process condition is a
crucial challenge in semiconductor manufacturing. During production steps
each production unit (wafer) records data information from multiple process
variables and at multiple time points. This results in multi-way data arrays.
In this work we present a generalized methodology for multivariate process
control of such multi-way arrays by using multi-way principal component
analysis. Kernel techniques allow the approach to also capture nonlinear
relationships as frequently observed in semiconductor process data. Special
attention is also paid on the robustness of the approach. In two case studies,
observed changes in production processes can be detected and their root
causes can be tracked down successfully. For the multivariate monitoring of
post-production checks a software user interface has been created that makes
the created models applicable for process engineers.

The thesis was written in cooperation with Austrian semiconductor man-
ufacturer ams AG.

Zusammenfassung

Die Überwachung und Bewertung des Prozesszustandes ist eine zentrale Her-
ausforderung in der Halbleiterherstellung. Während der Produktionsschritte
werden für jede Produktionseinheit (Wafer) Daten von mehreren Prozess-
variablen und zu mehreren Zeitpunkten aufgezeichnet. Das führt zu soge-
nannten Multi-way Datenanordnungen. In der vorliegenden Arbeit stellen
wir eine verallgemeinerte Methodik für die mehrdimensionale Prozesskontrolle
solcher Multi-way Datenanordnungen basierend auf der Multi-way Haupt-
komponentenanalyse vor. Durch die Verwendung von Kernschätzern können
auch nichtlineare Zusammenhänge, wie sie häufig bei Halbleiterprozessen
beobachtet werden, berücksichtigt werden. Auch auf die statistische Robust-
heit des vorgestellten Verfahrens wird eingegangen. In zwei Fallstudien wer-
den Änderungen im Produktionsprozess detektiert und ihre Ursache heraus-
gefunden. Für die mehrdimensionale Überwachung von Qualitätskontrollen
nach der Herstellung wurde eine Software-Oberfläche generiert, welche die
erstellten Modelle für Prozessingenieure anwendbar macht.

Die Arbeit wurde in Kooperation mit dem österreichischen Halbleiterher-
steller ams AG erstellt.
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Chapter 1

Introduction

The evaluation of the manufacturing process condition is a crucial challenge
in modern semiconductor fabrication. The ever growing process complex-
ity as well as novel developments like 180 nm manufacturing or 3D device
manufacturing lead to a growing amount of recorded data. Large numbers of
process parameters are recorded by sensors during each equipment operation
in the production line as well as during various post-production quality and
functionality tests. Strict quality and yield requirements as well as pressure
of competition demand advanced monitoring strategies and techniques of ad-
vanced process control (APC) to evaluate the collected data. APC summa-
rizes data-driven efforts for process monitoring, analysis and modelling such
as fault detection and classification (FDC), intelligent maintenance planning
(predictive maintenance) and data-based replacement of physical measure-
ments (virtual metrology).

The numerous physical processes underlying semiconductor manufactur-
ing are highly complex, and process parameters are often strongly interre-
lated. Thus, APC methods often employ multivariate approaches to capture
these complex relationship structures. Multivariate statistical process con-
trol (MSPC) techniques are more and more common in order to monitor the
performance of such processes based on the recorded data. In order to set up
adequate MSPC models the assessment of the normal operating condition of
a process is crucial as data of future production is compared to this reference
situation using multivariate measures. Typically, the reference situation is
modelled based on a historic data set of normal operating condition data, i.e.,
data without outliers and abnormalities. For standard modelling approaches
outliers can have undesired effects on the estimation of the reference. This
can result in less powerful models. Robust methods to estimate the true

1



2 CHAPTER 1. INTRODUCTION

normal operating condition in an unaffected way are recommended and of-
ten superior to their classical, non-robust counterparts. Thus, they are well
suited for the task of setting up MSPC models.

In this work we present advanced process control methods for robust mul-
tivariate monitoring of various aspects of a semiconductor production line.
Figure 1.1 schematically outlines such a production line.

Figure 1.1: Schematic outline of a semiconductor manufacturing line.

In the initial design phase a chip’s composition is defined based on its final
application, and the operational ranges of the relevant electrical parameters
are specified. Then the blank wafer goes through a large number of complex
processing steps such as lithography, diffusion, ion implantation, etching or
film deposition. Afterwards, wafer acceptance tests are used to examine
the functioning of the resulting chips on a wafer and check if the relevant
electrical parameters are in fact within their predefined operational ranges.

We present methodologies for robust multivariate process control of both
the actual processing steps (process control during production) and wafer
acceptance test results (process control after production).

Many processing steps like etching, chemical vapor deposition (CVD) or
physical vapor deposition (PVD) process wafers sequentially over a certain
processing time. This results in multiple multivariate measurement vectors
over the course of the wafer processing. The recorded data is referred to as
trace data or multi-way data. Furthermore, the underlying physical relation-
ships can lead to nonlinear behaviour. The proposed method for monitoring
such production steps is constructed to be able to handle both multi-way
data and possible nonlinearities by using a kernel approach. Resulting moni-
toring models are able to detect and diagnose faults, even in real-time during
the actual wafer processing.
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We also propose a method to monitor wafer acceptance test (WAT) results
in a multivariate way. The resulting models are able to take into account the
correlations among the electrical WAT parameters. This gained information
is considered highly valuable as usual WAT parameter monitoring is of uni-
variate type. However, the electrical parameters are often interrelated and
correlated. With the proposed method, abnormalities in the multivariate
relationships among parameters can be detected and diagnosed using multi-
variate decomposition methods. In addition, a user interface was constructed
that lets process engineers use the constructed models to monitor WAT data
in a simple way.

The proposed methods offer the possibility of advanced and in-depth per-
formance monitoring in a more and more complex and challenging produc-
tion environment. Especially, the proposed kernel and multi-way approaches
allow the evaluation and extraction of the most important process informa-
tion. For the monitoring of production process steps these methods enable
a novel evaluation of the health of the production as well as the health of
the corresponding production equipment. Special attention is also paid on
the robustness of the approaches in order to be able to estimate true pro-
cess conditions unaffected by one-time effects, measurement errors or other
abnormal behaviour.

This thesis is composed as follows. Chapter 2 summarizes multivari-
ate process monitoring methods based on a robust version of Hotelling’s T 2

statistic. Furthermore, it deals with distribution-free control limit estima-
tion. Chapter 3 gives an overview on classical linear fault detection and
diagnosis based on principal component analysis (PCA) and multi-way ap-
proaches. Chapter 4 discusses nonlinear process monitoring based on kernel
PCA. Based on these fundamentals, a novel approach for advanced fault de-
tection and diagnosis using robust multi-way multi-block kernel PCA is intro-
duced in chapter 5. Chapter 6 and 7 then exemplariliy present applications
of the proposed methods. One for advanced process control of a plasma etch
equipment (chapter 6) and one for robust multivariate monitoring of WAT
data of a specific process type (chapter 7).

All computations were performed in R, version 3.1.1 (see R Core Team
(2014)). The package knitr (see Xie (2014)) was used to directly connect R
code and results with the LATEX output.
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Chapter 2

Robust Multivariate Process
Control

2.1 Hotelling’s T 2

The majority of modern industrial processes rely on the behaviour of a set
of parameters working together in order to create a desired production out-
put. The parameters or variables of such multivariate processes are often
interrelated and form a correlated set, i.e., the single variables do not behave
independently of each another. In order to monitor such complex processes
multivariate methods are needed that are capable of mapping the interre-
lated structure. They have to be preferred over univariate methods where
process variables are monitored separately and where relationships between
variables are neglected.

For the task of monitoring multivariate process data Hotelling’s T 2 statis-
tic (see Hotelling (1931)) is considered the standard method. It is named
after Harold Hotelling who was among the first to apply it for multivariate
quality control purposes (see Hotelling (1947)). The statistic maps the per-
formance of a multivariate process to a univariate statistic, i.e., its values
can be monitored in a univariate statistical process control (SPC) chart and
a control limit can be given. Thus it is well suited for multivariate statistical
process control and fault detection, especially with industrial applications
(see Mason and Young (2002)).

Specifically, the T 2 statistic measures the distance of points to their center
in a p dimensional space. It differs from the classical Euclidean distance
measure in that it considers the variation of the involved variables via their

5



6 CHAPTER 2. ROBUST MULTIVARIATE PROCESS CONTROL

covariance matrix.

For an individual p-variate normally distributed vector x = (x1, . . . , xp)
T

with expectation vector µ and covariance matrix Σ Hotelling’s T 2 statistic
is defined as

T 2 = (x− µ)TΣ−1(x− µ).

Under these assumptions it holds

T 2 ∼ χ2
p

where χ2
p represents a chi-square distribution with p degrees of freedom.

For a given sample of n observations in p variables the usually unknown
parameters µ and Σ can be estimated from the given sample. For each
observation i = 1, . . . , n we have an observation vector xi = (xi1, . . . , xip)

T

where the data are given as n× p matrix X, i.e.,

X =

x11 . . . x1p
...

...
xn1 . . . xnp

 .

The corresponding classical sample mean vector is x = (x̄1, . . . , x̄p)
T

where

x̄j =
1

n

n∑
i=1

xij, j = 1, . . . , p.

The elements Sjh of the corresponding classical sample covariance matrix S
are calculated as

Sjh =
1

n− p

n∑
i=1

(xij − x̄j)(xih − x̄h), j, h ∈ {1, . . . , p}.

This classical estimation approach leads to the sample version of Hotelling’s
T 2. For each multivariate observation i = 1, . . . , n it is given by

T 2
i = (xi − x)TS−1(xi − x). (2.1)

In the following we omit the subscript i and simply refer to T 2
i as T 2 or

T 2 value of observation xi.

Usually, a T 2 control chart for multivariate process control is implemented
in two stages, a retrospective modeling stage usually referred to as phase
1 and a monitoring stage referred to as phase 2. In phase 1 a historical
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data set (HDS) of in-control observations or “good” observations is needed
to estimate the in-control mean vector and covariance matrix, i.e., process
mean and covariance under normal operating conditions. In phase 2 new
observations are compared to the in-control situation characterized in phase
1 in terms of their T 2 distance by using the HDS estimates.

Assume the parameters µ and Σ of the underlying p-variate normal dis-
tribution are unknown and are estimated using the classical sample estimates
as discussed above. In phase 1 these estimates are obtained using a HDS in
the form of X. In this case it holds

T 2 ∼
[(n− 1)2

n

]
B(p/2,(n−p−1)/2).

where B(p/2,(n−p−1)/2) represents a beta distribution with parameters p/2 and
(n− p− 1)/2.

In phase 2 the observation vector x is independent of the computation of
x and S. In this case it holds

T 2 ∼
[p(n+ 1)(n− 1)

n(n− p)

]
F(p,n−p).

where F(p,n−p) represents an F distribution with p and (n − p) degrees of
freedom (see Tracy et al. (1992)).

Based on these distributional properties an upper control limit (UCL) for
the T 2 values can be determined and a control chart can be constructed to la-
bel phase 2 observations in-control or out-of-control (or signaling). Thereby
the UCL simply represents the (1 − α) quantile of the corresponding T 2

distribution where α is the false alarm rate.

2.2 MYT Decomposition

If an observation is labeled out-of-control by the T 2 procedure, i.e., its T 2

value is larger than the determined UCL, one is interested in the root cause.
The Mason-Young-Tracy (MYT) decomposition of a T 2 signal offers the pos-
sibility to determine the involved variables (see Mason et al. (1995)). It does
so by decomposing a T 2 value into independent parts that can be related to
the p input variables or combinations of them. However, for a given T 2 value
there are several possibilities to decompose it using the MYT-approach. For
the general case with variables x1, . . . , xp one possible decomposition is given
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by

T 2 = T 2
(x1,...,xp)

= T 2
1 + T 2

2.1 + T 2
3.1,2 + · · ·+ T 2

p.1,2,...,p−1

= T 2
(x1,...,xp−1)

+ T 2
p.1,2,...,p−1

where the subscript (x1, . . . , xp) denotes that the T 2 signal is computed using
the variables x1 to xp. T

2-terms with subscripts of the form p.1, 2, . . . , p− 1
are called conditional terms and denote relationships among variables. They
can be computed iteratively via

T 2
p.1,2,...,p−1 = T 2 − T 2

(x1,...,xp−1)
,

T 2
p.1,2,...,p−2 = T 2

(x1,...,xp−1)
− T 2

(x1,...,xp−2)
,

...

T 2
2.1 = T 2

(x1,x2)
− T 2

(x1)

where the conditional term T 2
2.1 denotes the T 2 value of the relationship

between x1 and x2, i.e., it indicates if there is a problem with the correlation.
The term T 2

1 is the T 2 value determined using only the variable x1. Such
single variable terms are called unconditional.

The control limit for each term can be determined using the distributional
properties of T 2 in the multivariate normal case and p accordingly. For
unconditional terms the T 2 distributions are given by

T 2
j ∼

(n+ 1

n

)
F(1,n−1), j = 1, . . . , p,

and for conditional terms it is given by

T 2
j.j1,...,jk

∼
[(n+ 1)(n− 1)

n(n− k − 1)

]
F(1,n−k−1), j1, . . . , jk ∈ {1, . . . , j − 1}

where k equals the number of conditioned variables. The respective UCLs
are then obtained using (1− α) quantiles for a specified false alarm rate α.

There is a large number of possibilities for computing the MYT-decom-
position if p is large. A sequential computational scheme that aims to reduce
the number of computations is proposed in Mason et al. (1997).
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2.2.1 Two-Dimensional Case

To illustrate the MYT decomposition we examine the case of two variables
x1 and x2. In this case a T 2 value can be decomposed into

T 2 = T 2
1 + T 2

2.1 or T 2 = T 2
2 + T 2

1.2. (2.2)

The unconditional terms in (2.2) are defined as

T 2
1 =

(x1 − x̄1)2

s21
and T 2

2 =
(x2 − x̄2)2

s22

with x̄i and si are the mean and standard deviation of variable xi, i ∈ {1, 2}.
These are simply 1-dimensional T 2 statistics. The conditional terms in (2.2)
are given by

T 2
2.1 =

(x2 − x̄2.1)2

s22.1
and T 2

1.2 =
(x1 − x̄1.2)2

s21.2
.

They measure the statistical distance between the variable xi and the condi-
tional mean x̄i.j for i, j ∈ {1, 2}, i 6= j. If x̄i.j is out-of-control the observed
value of xi is not where it is expected to be for the given value of xj, i.e., the
relationship between xi and xj as it is described by the phase 1 covariance
matrix has changed.

Figure 2.1 shows the acceptance regions associated with both conditional
terms, i.e., the geometrical interpretations of T 2

2.1 and T 2
1.2, respectively. For

x1 = a corresponding values of x2 are accepted if they lie in the blue region,
considering the relation to x1 (left panel). For x2 = b values of x1 are accepted
if they lie in the red region (right panel). The line labeled as x̄2.1 denotes the
regression line that results from modeling x2 using only x1 as explanatory
variable, i.e., the estimated conditional mean of x2 depending on x1 (and vice
versa for x̄1.2).

An example with four different out-of-control observations is shown in
figure 2.2.

Point A in figure 2.2 signals unconditionally in T 2
2 and conditionally in

T 2
2.1. Point B signals only in T 2

2.1 as the residual to the regression line x̄2.1
is too large compared to phase 1. This means that the observed value of x2
differs from the value predicted by x1 where the prediction is derived from
phase 1. Point C signals in T 2

1.2 and point D signals in both conditional
terms.
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x1

x2

a

x2.1

x1

x2

b

x1.2

Figure 2.1: Acceptance regions associated with conditional T 2 terms.

x1

x2 x1.2

x1.2

A

B

C

D

Figure 2.2: Univariate control limits (dashed) and four points with out-of-
control T 2 values.
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2.3 Robust T 2 Control Charts

The T 2 control chart given in equation (2.1) is based on the classical empirical
estimates of mean and covariance. This makes it highly sensitive to outliers.
This is due to the fact that these classical estimators are not robust. In
addition, the assumption that phase 1 data comes from an in-control process
is not always valid. Thus the underlying HDS on which the estimations are
based has to be constructed carefully.

One way of constructing a proper HDS is to iteratively remove outliers
and recompute the UCL. Then the final HDS is the data set where no outliers
remain. This procedure can be cumbersome and may fail to detect moderate
outliers. Also, it is well known that due to the masking effect multiple outliers
may go undetected due to their effect on the estimators (see Vargas (2003)).
Thus they do not necessarily have a large T 2 value. Furthermore, it can
be shown that a T 2 chart based on the classical covariance estimator is not
effective in detecting mean vector shifts or trends (see Sullivan and Woodall
(1996), Sullivan and Woodall (1998)).

Alternatively, one can use robust estimates of mean and covariance to
calculate the T 2 statistic, i.e.,

T 2 = (x− xrob)TS−1rob(x− xrob). (2.3)

Robust estimators are less affected by outlying observations as they reduce
or remove their effects. Furthermore the probability of detecting outliers can
be improved by the use of robust estimators (see Vargas (2003)).

Figure 2.3 shows the difference between classical and robust covariance
estimation and the resulting effect on a T 2 ellipse with 95% confidence level.
The classical estimation (red ellipse) is heavily influenced by the outlying
points whereas the robustly estimated blue ellipse only focuses on the central
data cloud.

A popular robust estimator of multivariate location and scatter is the
minimum covariance determinant (MCD) estimator (see Rousseeuw (1984),
Rousseeuw and Van Driessen (1999)). The MCD algorithm looks for a subset
of size n/2 ≤ h < n of the data whose covariance matrix has the smallest
determinant. The corresponding multivariate mean and covariance matrix
(multiplied by a consistency factor) of the determined h-subset then serve as
MCD estimators of multivariate location and scatter. These estimators are
highly robust and have favourable asymptotics (see Butler et al. (1993)).

Another nice property of the MCD is its high breakdown point, i.e., the
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Figure 2.3: Comparison of classical and robust estimation of T 2 el-
lipses on 100 simulated data points from the bivariate normal distribution
BN(0, 0, σx = 10, σy = 2, ρxy = 3) and 10 uniformly distributed outliers from
distribution (Ux(−15, 0), Uy(0, 15)).

smallest portion of outlier contamination in the data that can have an ar-
bitrarily large influence on the estimators. The MCD reaches its highest
possible breakdown value of (n−p+2)/2 when (n+p)/2 ≤ h ≤ (n+p+1)/2
(see Lopuhaä and Rousseeuw (1991), Hubert and Debruyne (2010)). Further-
more, the MCD estimators (µ̂MCD(X), Σ̂MCD(X)) are called affine equivari-
ant, i.e., for a dataset X ∈ Rn×p they satisfy

µ̂MCD(XA + b) = Aµ̂MCD(X) + b

Σ̂MCD(XA + b) = AT Σ̂MCD(X)A

for any b ∈ Rp and any nonsingular matrices A ∈ Rp×p. This ensures that
the estimators behave properly under affine transformations of the underly-
ing data. It makes the analysis independent of measurement scales of the
variables as well as translations or rotations of the data (see Hubert et al.
(2008), section 2.2).
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A statistically more efficient enhancement of the MCD estimator is the
reweighted MCD (RMCD) estimator (see Willems et al. (2002), Croux and
Haesbroeck (1999)). The RMCD procedure uses the weighted mean and
weighted covariance estimators where the weights are based on robust dis-
tances (see Rousseeuw and Van Zomeren (1990)), i.e., Mahalanobis distances
based on MCD estimators.

Let x1, . . . ,xn be a random sample from a continuous distribution F in
Rp. The RMCD estimators of µ and Σ are the weighted mean

xRMCD =

∑n
i=1wixi∑n
i=1wi

and the weighted covariance matrix

SRMCD = cη,pd
η
n,p

∑n
i=1wi(xi − xRMCD)(xi − xRMCD)T∑n

i=1wi
. (2.4)

The weights are based on robust distances determined by the MCD estima-
tors xMCD and SMCD, i.e.,

D(xi) =
√

(xi − xMCD)TS−1MCD(xi − xMCD).

The values of wi, i = 1, . . . , n are then determined using a cutoff value based
on the chi-square distribution for the robust distance measures D(xi), i.e.,

wi =

{
1 if D(xi) ≤ χ2

p,η

0 otherwise,

where χ2
p,η is the ηth quantile of the chi-square distribution with p degrees of

freedom, i.e., observations above the cutoff value χ2
p,η are downweighted. As

suggested in Rousseeuw and Van Zomeren (1990) and Chenouri et al. (2009)
a value of η = 0.975 is typically used.

Furthermore, in expression (2.4) the factor cη,p makes SRMCD consistent
under the multivariate normal distribution and the factor dηn,p is a finite-
sample correction factor (see Chenouri et al. (2009); Pison et al. (2002) for
further details).

T 2 control charts based on RMCD estimators are more efficient than
classical T 2 charts when there are outliers in phase 1 (see Chenouri et al.
(2009)).
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2.4 Robust Model Construction

The T 2 statistic needs the covariance matrix to be nonsingular, i.e., without
exact collinearities. However, severe but not exact collinearities in the covari-
ance matrix may also have distorting effects (see Mason and Young (2002),
p. 65). Collinearities can have their origin in theoretical relationships existing
in the data and in the presence of outliers. For example, semiconductor man-
ufacturing data often show complex dependency structures due to physical
relationships among the process parameters. Collinearities in the covariance
matrix correspond with collinearities in the correlation matrix. Thus, highly
correlated variables should be removed from the data set.

The classical estimator of the correlation ρ, Pearson’s sample correlation
coefficient r, is not robust. Thus, it can give misleading results under the
presence of outliers in the data. In order to construct a robust T 2 model
robust correlation estimators and robust correlation matrices should be used.
The goal is to remove parameters from the phase 1 data that are redundant
due to high absolute values of the robust correlation.

A possible approach to robust correlation is to use the correlation matrix
resulting from a robust RMCD covariance matrix estimation. The robust
data subset determined by the RMCD estimator is used to estimate a robust
correlation matrix. This leads to robust correlation coefficient rRMCD. Al-
ternative ways to estimate the correlation ρ in a robust way can be found in
Shevlyakov and Smirnov (2011).

A guideline for identifying a near-singular covariance matrix is the con-
dition number (see Mason and Young (2002), p. 67)

c =

√
λmax
λmin

where λmax and λmin are the largest and smallest eigenvalues of the corre-
lation matrix, respectively. A condition number greater than 30 implies a
severe collinearity. However, when based on a non-robust correlation matrix,
the condition number can give misleading results under outlier contamina-
tion. In order to compute a condition number not influenced by outliers a
robust correlation matrix should be used to compute the eigenvalues.

For a robust T 2 modeling approach highly correlated variables should be
removed from phase 1 data until its robust condition number is smaller than
30.
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2.5 Nonparametric Control-Limit Estimation

In order to rely on the distributional properties as given in section 2.1 to
determine the control limit for a T 2 control chart the underlying process
data has to follow a multivariate normal distribution. However, often this
is not the case. Moreover, by using robust estimators instead of classical
ones one also cannot rely on the same distributional assumptions as for the
classical T 2 statistic.

Thus, in situations where the observation vector x = (x1, . . . , xp)
T does

not follow a p-variate normal distribution or where the T 2 statistic is com-
puted using robust estimates of µ and Σ, nonparametric techniques can be
used to determine the (1− α) quantile of the T 2 values in phase 1.

A simple but rough method for determining a UCL is to use Chebyshev’s
inequality (see Mason and Young (2002), p. 48). It states that regardless of
the distribution of a random variable Y ,

P (µ− kσ < Y < µ+ kσ) ≥ 1− 1

k2
(2.5)

where µ and σ2 are expectation and variance, respectively, of Y and k > 1
is a chosen constant. In order to use (2.5) for UCL estimation the mean T
and standard deviation sT of the T 2 values are estimated. Then,

UCL = T + ksT

where k is determined by selecting the false alarm rate α and solving α =
1/k2.

For a better approximation kernel density estimation (KDE) can be used
to estimate the distribution of the T 2 statistic as well as of the UCL of the T 2

chart (see Chou et al. (2001)). The UCL can be estimated using the (1− α)
quantile of the fitted kernel distribution function of T 2. This approach may
yield a good approximation provided the sample size is reasonably large.
However, KDE requires the determination of several parameters including a
smoothing parameter (bandwidth), the kernel function and the number of
spaced points. Furthermore, for highly skewed distributions calculations of
the area of the tail region can become less accurate.

As an alternative to a KDE-based approach a UCL estimation based on
nonparametric bootstrapping (see Efron (1979), Davison and Hinkley (1997))
can be used. For nonnormal and skewed distributions such as the robust T 2

this is considered a simple and convenient approach (see Phaladiganon et al.
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(2011)). Based on the algorithm given in Phaladiganon et al. (2011) the
procedure for UCL estimation for robust T 2 control chart works as follows.

Bootstrap procedure for UCL determination

1. Compute the robust T 2 values of n observations from phase 1 data
using (2.3). For example, use RMCD estimators.

2. Let T
2(i)
1 , T

2(i)
2 , . . . , T

2(i)
n be a set of n T 2 values from the ith bootstrap

sample, i = 1, . . . , R (R large, e.g. R > 1000), randomly drawn with
replacement from the initial robust T 2 values.

3. For each of the R bootstrap samples determine the (1−α) quantile for
a user-specified false alarm rate α.

4. Determine the UCL by taking the mean or the median of the R (1−α)
quantiles.

The determined UCL is then used to monitor new observations in phase
2, i.e., if the T 2 value of a new observation exceeds the UCL declare it as
out-of-control.

2.5.1 Confidence Intervals

In order to assess the uncertainty of the UCLs estimated by bootstrap-
ping nonparametric bootstrap confidence intervals are used (see Davison and
Hinkley (1997), chapter 5). A confidence region with a specified coverage
probability γ is a set Cγ(y) of parameter values depending only on the data
y which satifies

P (θ ∈ Cγ(y)) = γ

for the true parameter value θ. A confidence interval is then defined by
estimated limits θ̂α and θ̂1−α such that

P (θ < θ̂α) = α

for any value of α. The coverage of the resulting equi-tailed interval [θ̂α, θ̂1−α]
is then γ = 1− 2α.

Such intervals can be calculated in various ways. For a general setting,
suppose that T is a continuous estimator for the scalar θ. Denote the pth
quantile of T − θ by ap, then

P (T − θ ≤ aα) = α = P (T − θ ≥ a1−α).
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With this, the 1− 2α equi-tailed interval has limits

θ̂α = t− a1−α, θ̂1−α = t− aα. (2.6)

As the distribution of T−θ is usually unknown, approximation methods have
to be considered.

The simplest approach is a normal approximation, i.e.,

[θ̂α, θ̂1−α] = t∓
√
vz1−α (2.7)

where z1−α = Φ−1(1 − α) is the (1 − α) quantile of the standard normal
distribution and v is the approximate variance of T .

If the normal approximation is inaccurate it can be replaced by resampling
based methods. Based on equation (2.6), the quantiles aα and a1−α can be
estimated by the corresponding quantiles of T ∗− t. Approximating them by
simulation leads to confidence limits

θ̂α = 2t− t∗((R+1)(1−α)), θ̂1−α = 2t− t∗((R+1)α) (2.8)

where t∗(R+1)p is the p quantile of t∗ estimated by the (R + 1)pth value of
the R simulated and ordered values t∗(1), . . . , t

∗
(R). These limits are generally

referred to as basic bootstrap confidence limits for θ.

A simple modification of this is to use the normal approximation from
equation (2.7), but to use bootstrapping instead of the N(0, 1) approximation
for approximating Z = (T − θ)/

√
V . The resulting bootstrap version z∗ =

(t∗−t)/
√
v∗ of Z is calculated using each simulated sample t∗ and the variance

estimate v∗. The p quantile of Z is then again estimated by the (R + 1)pth
value of the R simulated and ordered values z∗(1), . . . , z

∗
(R). This leads to

confidence limits

θ̂α = t−
√
vz∗((R+1)(1−α)), θ̂1−α = t−

√
vz∗((R+1)α). (2.9)

These limits are generally referred to as studentized bootstrap confidence lim-
its for θ. As outlined in Davison and Hinkley (1997), this method is, in
principle, superior to the previous basic method.

In the nonparametric case where no model is assumed for the data distri-
bution the resulting confidence intervals are similar to the parametric case.
For the basic bootstrap method the only change is that the simulation model
is the empirical distribution function F̂ . Otherwise, equation (2.8) applies.
For the studentized bootstrap method equation (2.9) still applies. However,
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the standard variance estimate v can be replaced by some other variance
estimates.

As further outlined in Davison and Hinkley (1997), simple confidence limit
methods can be improved by applying transformations. Percentile methods
use the existence of a good transformation but do not require this transfor-
mation to be known explicitely.

Suppose h is some unknown transformation of T and U = h(T ) with a
symmetric distribution. Imagine that h is known and a 1 − 2α confidence
interval is calculated for the parameter φ = h(θ) using the basic bootstrap
method. However, the symmetry is used to write aα = −a1−α in equation
(2.6). This leads to taking u − u∗((R+1)(1−α)) instead of u∗((R+1)α) − u and
u− u∗((R+1)α) instead of u∗((R+1)(1−α)) to estimate the α and 1−α quantiles of

U . This changes equation (2.8) to

u∗((R+1)α), u∗((R+1)(1−α)).

The back transformation to the θ scale then is

t∗((R+1)α), t∗((R+1)(1−α)).

This can be computed without the actual knowledge of the transformation h.
This method is referred to as bootstrap percentile interval for θ. As it turns
out, the method does not work very well with nonparametric bootstrapping
even for suitable transformations h. However, adjustments exist that provide
successful results.

For the method to work well the estimator T should be unbiased on
the transformed scale and invariant under distribution change from F to F̂ .
This is usually not the case. Assume first that the data is described by a
parametric model with an unknown parameter θ. The adjusted percentile
method uses the assumption that for some unknown transformation h, un-
known bias correction factor w and unknown skewness correction factor a
the transformed estimator U = h(T ) satisfies

U ∼ N(φ− wσ(φ), σ2(φ)) with σ(φ) = 1 + aφ.

The method then uses the distribution of T ∗ denoted by Ĝ and

Ĝ(θ̂α) = P (T ∗ < θ̂α|t) = P (U∗ < φ̂|u) = Φ
( φ̂α − u
σ(u)

+ w
)

= Φ
(
w +

w + zα
1− a(w + zα)

)
.
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to express the α confidence limit for θ in simulation terms as

θ̂α = t∗((R+1)α̃) with α̃ = Φ
(
w +

w + zα
1− a(w + zα)

)
.

These limits are generally referred to as BCa confidence limits.

In the nonparametric case, the bias correction w remains the same but the
skewness correction a slightly differs. For general details on the estimation
of w and a see Davison and Hinkley (1997), section 5.3.

The calculation of a bootstrap UCL as well as the corresponding nonpara-
metric equi-tailed two-sided confidence intervals can be done in R using the
package boot (see Canty (2002)) and its functions boot() and boot.ci().
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Chapter 3

PCA-based Process Control

We now turn to methods of multivariate process monitoring that are based
on latent structures in the involved process variables instead of the original
inputs. The idea is to compute a new coordinate system formed by these la-
tent variables where the dimension of the problem can be reduced to a most
informative subset. The goal is to filter out the relevant multivariate informa-
tion described by a few latent variables and separate it from noise. For high
dimensional data sets this often reduces the problem complexity and allows
a simplified multivariate monitoring of the essential process information.

Principal component analysis (PCA) is considered the standard method
for such dimension reduction tasks (see Jackson (1991), Joliffe (2002)). PCA
finds linear combinations of the input variables, i.e., directions that best de-
scribe the major variability trends in the data. It is adequate for data sets
with a large number of variables and a complex correlation structure. This is
often the case for data generated by physical or chemometric processes, e.g.
semiconductor production processes. The PCA result is a transformation
of possibly highly correlated original input variables into a set of uncorre-
lated latent variables or principal components (PCs). Ideally, the information
needed to adequately describe the process operation is captured in a set of
PCs that is smaller than the set of original inputs. Subsequently this pro-
jection to latent structures can be used as a starting point of multivariate
statistical process control methods. In combination with variability measures
like Hotelling’s T 2 this PCA-based approach is widely used for the detection
of out-of-control situations in industrial applications.

This chapter starts with a brief overview of the fundamentals of PCA-
based process monitoring. Then various enhancements and adaptions such
as robust PCA, multi-block PCA and multi-way PCA are reviewed and their

21
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applicability in multivariate process control, fault detection and fault diagno-
sis are discussed. These techniques then form the basis of nonlinear process
monitoring as discussed in the next chapter.

3.1 Fundamentals

Consider a data matrix X ∈ Rn×m composed of n observations in m variables.
X is usually either mean centered for PCA based on the covariance matrix
or autoscaled for PCA based on the correlation matrix. Robust centering
and scaling can also be used. PCA decomposes X into a matrix T ∈ Rn×R

of scores, a matrix P ∈ Rm×R of loadings and a residual (error) matrix
E ∈ Rn×m such that

X = TPT + E

with R ≤ min (m,n) being the number of principal components retained in
the model. The columns of T, i.e., the vectors tr, form an orthogonal set,
thus tTi tj = 0 for i 6= j. The columns of P, the loadings pr, are eigenvectors
of the covariance matrix (or correlation matrix if autoscaled), i.e.,

cov(X)pi = λipi. (3.1)

where λr is the eigenvalue associated with pr. The loadings are orthonormal,
i.e., pTi pj = 0 for i 6= j and pTi pj = 1 for i = j. The resulting space
SP = span{P} forms the so-called principal component subspace. Thus, the
loadings contain information on how variables relate to each other. They are
used to transform the original data into the principal component subspace.
Thus, the scores are linear combinations of the original data X and the
loadings, i.e.,

Xpr = tr.

for r = 1, . . . , R PCs. The scores contain information on how the observations
are related to each other and can be seen as representation of the data in
the principal component subspace. The eigenvalues λr associated with the
pairs (tr,pr) are arranged in descending order. They measure the amount of
variance in the data matrix X that is described by the PCs.

These are direct consequences of formulating PCA as a mathematical
maximization problem with constraints (see Varmuza and Filzmoser (2009),
pp. 69-70). The first PC is by definition the latent variable with maximum
variance of the scores, i.e., it explains as much variability of the data as
possible. It is the linear combination of the variables

t1 = x1b11 + · · ·+ xmbm1
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with unknown coefficients b1 = (b11, . . . , bm1)
T . Then we have Var(t1) →

max under the condition bT1 b1 = 1. The rth PC is determined via the maxi-
mization problem Var(tr)→ max under the constraints that the new loading
vector has length one and is orthogonal to all previous loadings. Writing this
as Lagrangian expression and solving it using Lagrange multipliers leads to
the eigenvalue problem (3.1). The solution of the unknown bi is found by tak-
ing the eigenvectors of cov(X), i.e., the loadings. The resulting eigenvalues
are equal to the variances of the PCs.

For R = min(n,m) it holds X = TPT , i.e., E = 0. Otherwise the PCs
explain a portion of variability of X. In order to determine the number of PCs
to sufficiently describe the data several methods were proposed, e.g., cross-
validation (see Wold (1978)) or parallel analysis (see Horn (1965), Glorfeld
(1995)).

3.1.1 NIPALS

One possibility to determine the principal components is to compute all eigen-
vectors and eigenvalues of the estimated sample covariance matrix. Here, also
robust estimates can be used. A standard procedure for this task is Jacobi
rotation of the sample covariance matrix cov(X). If there are more variables
than observations (m > n) singular value decomposition (SVD) of X can be
used (see Varmuza and Filzmoser (2009)).

Another possibility is to compute the principal components not all at once
but sequentially, i.e., one after the other. The nonlinear iterative partial least-
squares (NIPALS) algorithm is based on this idea (see Geladi and Kowalski
(1986), Wold et al. (1987a)). Originally developed by Herman Wold (see
Wold (1966), Wold (1975)) the procedure is still popular in chemometrics,
especially if the number of variables is large and only the first few principal
components are of interest.

For a given data matrix X the algorithm is as follows.

NIPALS

1. Mean center or autoscale X.

2. Start with an arbitrary column of X as initial score vector t = xj.
Set E = X.

3. Compute p = ET · t.
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4. Normalize p to length 1: p = p
‖p‖ .

5. Update t = Ep.

6. If t has converged with a predefined precision, a principal component
has been computed; go to step 7. Otherwise iterate until convergence.

7. Update E = E − tpT and continue with step 3 for the next principal
component.

The procedure of calculating a principal component by using the residual
matrix of the previous principal component (step 7) is called deflation.

3.1.2 Process Control Using PCA

In order to apply PCA for multivariate process control tasks the first step is
to establish a PCA model based on normal operating condition data. Then
future process behaviour can be referenced against the in-control situation.
A new m-dimensional test observation vector xtest ∈ Rm is projected onto
the principal component subspace by

ttestr = (xtest)Tpr

where ttestr is the corresponding score value of PC r and r = 1, . . . , R. Note
that xnew is mean-centered (or autoscaled) using the estimators from the in-
control data set of phase 1. Here, also robust estimates can be used. The
associated PCA residual etest ∈ Rm is given by

etest = xtest − x̂test

with (x̂test)T = (ttestR )TPT where ttestR ∈ RR is the vector of the scores of xtest

and P ∈ Rm×R is the loading matrix of the PCA model with R PCs. The
scores can be monitored in a multivariate control chart based on Hotelling’s
T 2, i.e.,

T 2 = (ttestR )TΛ−1R ttestR (3.2)

where ΛR ∈ RR×R is the estimated covariance matrix of the scores com-
puted from in-control data of phase 1. As the scores of different PCs are
uncorrelated this is a diagonal matrix. Its main diagonal is composed by the
variances of the scores, i.e., the eigenvalues of cov(X). A control limit can be
determined using the distributional assumptions of the T 2 statistic in case of
multivariate normality of the scores or via nonparametric bootstrapping in
nonnormal situations (see Phaladiganon et al. (2013)).
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In summary, the T 2 statistic based on the first R PCs of X provides a
test for deviations in the process variables that are of greatest importance to
the variance of X̂ = TP T (see MacGregor and Kourti (1995), section 3.2).

However, a process monitoring procedure based solely on the first R PCs
may not be sufficient. The T 2 statistic only measures deviations from the in-
control situation within the principal component subspace. If a new type of
abnormality occurs that deviates from the plane spanned by the PCs, the T 2

statistic may fail to detect it. In order to adequately detect and describe such
events the squared prediction error (SPE, Q statistic) has to be computed
(see Jackson and Mudholkar (1979)). It measures the squared perpendicular
distance of an observation to the principal component subspace of the PCA
model, i.e., the amount of variation not captured by the PCA model. For
xtest it is given by

SPExtest = ‖etest‖22 =
m∑
i=1

(xtest
i − x̂test

i )2. (3.3)

If the errors follow a normal distribution an upper control limit for the
SPE statistic can be determined based on historical in-control data by using
approximate distributions of quadratic forms. As shown in Box (1954) a
weighted chi-square distribution is a good approximation, i.e.,

SPEα = gχ2
h;α (3.4)

where g = θ2/θ1 with θ1 =
∑m

j=R+1 λj and θ2 =
∑m

j=R+1 λ
2
j , λj are the eigen-

values of cov(X), χ2
h,α is the α quantile of the chi-square distribution with h

degrees of freedom and h = θ21/θ2 (see also Qin (2003), section 3.1). Another
approach to estimate g and h is by using matching moments estimation tech-
nique (see Nomikos and MacGregor (1995)). Jackson and Mudholkar (1979)
established an alternative upper control limit for the SPE statistic.

The assumption of normality of the errors may not always hold in prac-
tice. Thus, as with the T 2 statistic based on PCA scores, nonparametric
bootstrapping can be used to determine the desired α quantile of the SPE
statistic in a nonparametric way (see Phaladiganon et al. (2013)). As stated
in Van Sprang et al. (2002), if the parameters of the χ2 distribution used
to determine the SPE limits are obtained directly from the moments of the
sampling distribution of the historic in-control data, the approximating dis-
tribution is found to work well even in cases of nonnormal errors.

In summary, a T 2 chart to monitor the first R PCs in combination with
an SPE chart to monitor the lack of PCA model fit forms an effective set for
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multivariate process fault detection. A fault detection index that combines
both T 2 and SPE into a single measure is proposed in Yue and Qin (2001).
They also propose an upper control limit for this combined measure.

The discussed PCA-based process control approach has been the subject
of numerous studies. Overview and case studies can be found in Kresta et al.
(1991), MacGregor and Kourti (1995), Wise and Gallagher (1996) or Qin
(2003) or more recently in Kourti (2005) or Qin (2012).

3.2 Robust PCA

The classical PCA approach is based on the sample covariance matrix of the
data and hence it is sensitive to outliers. In the presence of outliers the PCs,
i.e., the directions of maximum variance in the data, can be distorted and at-
tracted towards the abnormal observations. In such cases robust PCA meth-
ods instead of classical PCA should be used. Figure 3.1 shows the difference
between classically and robustly computed maximum variance directions.

There are different ways to compute robust principal components (see
e.g. Varmuza and Filzmoser (2009), section 3.5 or Filzmoser and Todorov
(2011), section 5). The most straightforward and intuitive approach is to
use robust estimation of the sample covariance or correlation matrix instead
of classical estimation (see Croux and Haesbroeck (2000)). For example
the MCD estimator can be used. It provides robust estimators of both the
covariance matrix and the multivariate location. The location estimation
can be used to robustly center the data. Then the eigenvalues can be derived
from the MCD-estimated covariance matrix. The resulting PCs are highly
robust against outliers. However, this approach is limited in the number of
variables m. This is because the MCD estimator can only be computed if
h > m with n/2 ≤ h ≤ n being the size of the robust MCD-subset. For
h ≤ m the determinant of the resulting covariance matrix of the h-subset is
zero. Thus this approach can not handle applications with m > n.

A second approach to robust PCA is based on the projection pursuit tech-
nique (see Li and Chen (1985), Croux and Ruiz-Gazen (2005)). The idea is to
obtain the PCs by maximizing a robust measure of variance, e.g. the median
absolute deviation (MAD), instead of the classical one and project the data
points on the resulting directions. When maximizing a robust variance mea-
sure obtaining the desired PCs is not as simple as solving an eigenvalue prob-
lem. Thus, several approximative algorithms for robust projection-pursuit
PCA have been proposed (see Croux and Ruiz-Gazen (1996), Croux and
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Figure 3.1: First principal component of 100 simulated multivariate normal
data points and 10 outliers based on classical and robust (MCD) covariance
matrix estimation.

Ruiz-Gazen (2005), Hubert et al. (2002), Croux et al. (2007)). The resulting
PCA method is highly robust and works for high-dimensional applications
with m > n.

Another idea that aims to combine the ideas of robust covariance esti-
mation and projection-pursuit PCA is ROBPCA (see Hubert et al. (2005),
Hubert et al. (2008)). At first, a singular value decomposition is applied on
the robustly centered data to reduce the full data space to an affine subspace
spanned by the n observations. Then the h < n least outlying data points are
used to compute a robust covariance matrix and to select the number of PCs
to retain. In order to select these h data points the “outlyingness” of each
observation is determined using the Stahel-Donoho outlyingness measure (see
Stahel (1981), Donoho (1982)). It is defined as

r(xi) = max
v∈B

|xTi v −med(xTj v)|
mad(xTj v)

(3.5)



28 CHAPTER 3. PCA-BASED PROCESS CONTROL

whereB is the set of all non-zero vectors, med(xTj v) is the median of {xTj v, j =
1, . . . , n} and mad(xTj v) = med(|xTj v −med(xTl v)|) with l = 1, . . . , n is the
MAD. For the MAD to be a consistent estimator for the estimation of the
standard deviation σ, it has to be standardized, i.e., σ̂ = 1/(Φ−1(3/4)) ·mad
for normally distributed data. However, for a more general formulation of
(3.5) any univariate estimator m(.) of location and s(.) of scale can be used
(e.g. see Debruyne (2009)). In the ROBPCA procedure, the median and
MAD in (3.5) are replaced by the MCD location and scatter estimators, re-
spectively. Furthermore, the set B is restricted to all directions through two
data points or 250 random directions from B if

(
n
2

)
> 250. The covariance

matrix of the h points with smallest outlyingness r is computed. Its first k
eigenvectors span the subspace onto which the data points are then projected.
Finally, center and covariance of the projected data is estimated using the
RMCD procedure. The eigenvectors of this projected data covariance matrix
determine the robust principal components.

In addition to robust computation of the scores and loadings an initial
robust centering or autoscaling of the data is often recommended. A robust
estimator of the multivariate center with good statistical properties is the
L1-median (spatial median, geometric median). It is a generalization of the
univariate median to higher dimensions. For a data set X = (x1, . . . ,xn) of n
observation vectors with each xi ∈ Rm, the L1-median µ̂(X) is defined as the
point for which the sum of the Euclidean distances to these n observations
is minimal, i.e.

µ̂(X) = arg min
µ

n∑
i=1

‖xi − µ‖ (3.6)

where ‖ · ‖ denotes the Euclidean norm. As its univariate counterpart, the
L1-median has the best possible breakdown point of 0.5 (see Lopuhaä and
Rousseeuw (1991)). There are several algorithms for its computation (see
Fritz et al. (2012) for a comparison).

For autoscaling the data one also needs an estimator of scale. A usual
choice for highly robust estimation of univariate scale is the median abso-
lute deviation (MAD) with a breakdown point of 0.5. A less robust scale
estimator is the interquantile range (IQR) with a breakdown point of 0.25.
Alternative robust estimators of scale with high breakdown points can be
found in Rousseeuw and Croux (1993).
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3.3 Multi-Block PCA

The approach using T 2 and SPE is suitable for detecting faults, process shifts,
drifts or other abnormal behaviour in a production process. However, if a
fault is detected one is interested in fault diagnosis, i.e., a root cause analysis
of the fault and the variables involved in the nature of the fault. As the
underlying principal component scores are linear combinations of the original
input variables they do not always allow a straightforward interpretation. In
this case, a T 2 decomposition may not be suitable for fault diagnosis.

A possible tool for fault diagnosis in PCA-based process monitoring mod-
els is the concept of contribution plots (see Miller et al. (1998), Westerhuis
et al. (2000), Qin (2003)). With contribution plots the contributions of each
process variable to the scores of the PCA model can be determined. They
can be given for T 2 as well as for the SPE statistic. Even if these plots may
not explicitly diagnose the root cause of a fault they can provide additional
insight and determine variable entries that are not consistent with the normal
operating condition (see Kourti and MacGregor (1995)). Confidence bounds
for contribution plots can also be defined (see Conlin et al. (2000), Wester-
huis et al. (2000)). A method for determining variable contributions that has
a higher rate of correct fault diagnosis for T 2 and SPE indices than tradi-
tional contribution plots is the reconstruction-based contribution approach
(see Alcala and Qin (2009)).

Another fault diagnosis technique is multi-block PCA. It is applied if the
contribution of groups or blocks of variables instead of single variables is
of interest. The idea of multi-block PCA was first introduced by Wold et
al. in 1987 (see Wold et al. (1987c)). It is suitable if the process variables
can be grouped in meaningful blocks. This is often the case in semiconductor
manufacturing processes as groups of variables are often conceptually related
or can be assigned to certain parts of a manufacturing equipment. Multi-
block PCA then allows monitoring of these variable groups individually in
addition to an overall monitoring. This can make faults assignable to specific
variable blocks or production equipment parts which is highly desirable for
fault diagnosis in semiconductor production.

There are several versions of multi-block PCA (see Westerhuis et al.
(1998)). We focus on consensus PCA (CPCA). Formally, the data set
X ∈ Rn×m is divided into B blocks X1, . . . ,XB with block b having mb vari-
ables and m =

∑B
b=1mb. The procedure seeks a consensus direction among

all blocks. In addition to global scores and loadings, called super scores and
super loadings, the procedure also determines block statistics in terms of block
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scores and block loadings. The super statistics are derived using all variables
whereas the block statistics are derived using only variables from the cor-
responding block. A multi-block adaption of the NIPALS algorithm can be
given. However, as can be shown the results from multi-block PCA can be
derived from standard PCA models (see Westerhuis et al. (1998), Chen and
McAvoy (1998), Qin et al. (2001)). Furthermore, it can be shown that the
super scores of CPCA are identical with the scores of regular PCA (see Qin
et al. (2001)). Following Qin et al. (2001), a version of the CPCA algorithm
based on the PCA scores is given as follows.

CPCA based on PCA scores
Let X = [X1 · · ·XB] be divided into B blocks.

1. Perform regular PCA on X to obtain the scores t1, . . . , tR.

2. Set Eb,1 := Xb for b = 1, . . . , B

3. For PC r compute

block loadings: pb,r =
ET
b,rtr

‖ET
b,rtr‖

,

block scores: tb,r = Eb,rpb,r and Tr = [t1,r · · · tB,r],

super loadings: pT,r =
TT
r tr

‖TT
r tr‖

.

4. Deflate residuals by

Eb,r+1 =

(
I− trt

T
r

tTr tr

)
Eb,r.

and go to step 3 to compute the next PC.

3.3.1 Block Statistics

In order to apply the multi-block PCA approach for process monitoring and
fault diagnosis the super statistics as well as the block statistics have to be
monitored. Faults are detected using super T 2 and super SPE statistics.
Then fault diagnosis is achieved via block T 2 and block SPE charts.

As super scores of a multi-bock PCA model coincide with the scores from
regular PCA, the super T 2 statistic is the same as the T 2 of regular PCA
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scores given in equation (3.2). The super SPE statistic also coincides with
the regular SPE statistic from equation (3.3).

Followig Qin et al. (2001), the block T 2 statistics are given by

T 2
b = tTb Λ−1b tb (3.7)

where Λb is the covariance matrix of the block scores tb for b = 1, . . . , B
variable blocks and R PCs. The block scores tb for a given block b can
be correlated. Thus, Λb is not necessarily a diagonal matrix and can even
become singular. In such cases, a pseudoinverse Λ+

b of Λb should be used,
i.e.,

T 2
b = tTb Λ+

b tb.

The block T 2 statistic can be drilled down even further and variable contribu-
tions can be determined. This connects block statistics to the aforementioned
contribution plots. Rewrite the super T 2 statistic as

T 2 = xTPΛ−1PTx = ‖Λ−1/2PTx‖2 =
∥∥∥ B∑
b=1

Λ−1/2PT
b xb

∥∥∥2
where Pb is the set of mb rows of the loading matrix P ∈ Rm×R corresponding
to block b. Then the block T 2 can be written as

T 2
b = ‖Λ−1/2PT

b xb‖2 =
∥∥∥ mb∑
l=1

Λ−1/2PT
b,lxb,l

∥∥∥2
and the contribution of the lth variable in the bth block can be determined
by

T 2
b,l = ‖Λ−1/2PT

b,lxb,l‖2.
This leads to contribution plots as defined in Miller et al. (1998) (see Qin
et al. (2001), section 4.2).

In an analogous manner the block SPE statistic for variable block b is
given by

SPEb = ‖xb − x̂b‖2 (3.8)

and the contribution of the lth variable to SPEb is given by

SPEb,l = (xb,l − x̂b,l)
2.

Furthermore,

SPEb =

mb∑
l=1

SPEb,l.
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These variable contribution statistics can be used to further localize process
variables most affected by a fault.

Control limits for the block statistics in case of multivariate normality
can be derived from the limits for regular statistics in a straightforward way
and are given in Qin et al. (2001). In the nonnormal case the nonparametric
bootstrapping approach can be used.

3.4 Multi-Way PCA

Up to now we have considered data matrices of the form X ∈ RI×J for process
monitoring tasks. Such data matrices consisting of observations in rows and
variables in columns define two-dimensional or two-way arrays. However, in
some applications it is necessary to consider three-way or, more generally,
multi-way arrays that define higher dimensional data structures. A three-
way array can occur if, for each observation, each variable is measured at
multiple time points. This measuring scheme leads to a three dimensional
array consisting of observations, variables and time points. Graphically this
can be represented as data cube as illustrated in figure 3.2.

I

J

K

Figure 3.2: Illustration of a three-way data array as cube consisting of I
observations (batches) in J variables measured at K measurement points,
e.g. measurement sites or time points.

Among many applications in chemometrics and physical production pro-
cesses, three-way arrays are the result of several crucial processing steps in
semiconductor manufacturing. For example, for a wafer that takes K = 200
seconds to process J = 10 process variables are measured each second. By
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considering a data set of I = 100 wafers this leads to a three-way array with
100 samples in 10 variables and 200 time points. The third dimension can
also be the result of measuring a wafer at multiple measurement sites. Pro-
cesses like these are often referred to as batch processes and the production
units, e.g. wafers, are referred to as batches.

Thus, in order to analyze all of the recorded data information methods
are needed that are able to handle three-way arrays. Overviews of multi-way
analysis techniques can be found in Geladi (1989), Smilde et al. (2004) or
Acar and Yener (2009).

One possible multi-way analysis method is the Tucker3 model proposed
by Tucker in 1966 for psychometrical applications (see Tucker (1966)). Here,
the multi-way array is decomposed into sets of scores and loadings. For a
three-way array X with dimension I × J ×K consider the element xijk ∈ X.
The corresponding Tucker3 model is defined as

xijk =
P∑
p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr + eijk

where aip, bjq and ckr are elements of the loading matrices (or modes) A ∈
RI×P , B ∈ RJ×Q and C ∈ RK×R respectively, gpqr is an element of the
core array G ∈ RP×Q×R and eijk is an element of the three-way error array
E ∈ RI×J×K . The arrays A, B, C and G can be computed by minimizing
the sum of squared errors and the matrices P, Q and R can be determined
via cross validation. Analogously, a Tucker2 model can be defined where
only two modes are treated and a Tucker1 model treats only one mode. The
Tucker1 method corresponds to simply rearranging the three-way array as
a matrix and decomposing the unfolded data via classical PCA (see also
Varmuza and Filzmoser (2009), section 3.8.5). For Tucker3, also a robust
version is available (see Pravdova et al. (2001)).

Another approach for handling multi-way arrays is parallel factor analysis
(PARAFAC) as introduced by Harshman in 1970 (see Harshman (1970)). For
a three-way array it can be expressed as

xijk =
R∑
r=1

airbjrckr + eijk

where R is the number of components to extract, air, bjr and ckr are elements
of the component matrices A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R and eijk is
again an element of the residual array E ∈ RI×J×K . It can be shown that a
PARAFAC model can be considered a constraint variant of a Tucker3 model
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(see Kiers (1991)). Details on PARAFAC and its use in chemometrics can
also be found in a tutorial by Bro (1997). A robust version of PARAFAC
has also been developed (see Engelen and Hubert (2011)).

A popular method for three-way analysis is to simply unfold the three-
way array to a two-way matrix and analyse the unfolded matrix using PCA.
This was already referred to as Tucker1 method. Although the approach
does not consider the three-way nature of the data, as opposed to Tucker3 or
PARAFAC, it is especially popular for process control applications. This is
due to its simplicity and the fact that classical and well-known ideas based
on PCA can be applied. The approach is also referred to as multi-way PCA
as it provides multi-way solutions of PCA results (see Wold et al. (1987b)).
Thus, multi-way PCA is algorithmically consistent with classical PCA.

Nomikos and MacGregor were among the first to apply multi-way PCA
for the task of monitoring industrial batch processes (see Nomikos and Mac-
Gregor (1994), Nomikos and MacGregor (1995)). The simple but powerful
approach led to many other discussions and industrial applications (see e.g.
Kourti et al. (1995), Chen and McAvoy (1998), Dahl et al. (1999), Louwerse
and Smilde (2000), Lennox et al. (2001)) and especially in semiconductor
manufacturing where many forms of process data are naturally organized in
three dimensions (see e.g. Wise et al. (1999), Yue et al. (2000), Qin et al.
(2006), Cherry and Qin (2006)).

In the following subsections we discuss fault detection and diagnosis of
three-way data processes in all data dimensions of the underlying three-way
array. Batch level fault detection allows the identification of faulty batches
(sample dimension). A multi-block approach makes fault diagnosis possible
and allows one to identify variables or groups of variables that show the fault
(variable dimension). Finally, on-line monitoring enables an identification of
the time point of fault occurrence or when the process starts to drift off from
its normal operation (time dimension).

3.4.1 Batch Level Fault Detection

At first the multi-way principle component subspace has to be determined.
For a given three-way array X ∈ RI×J×K there are naturally three possibil-
ities to unfold it to a two-way matrix. The most common technique is to
unfold X by the time axis, i.e., put each matrix slice of dimension I × J side
by side to the right. The result is a two-way matrix X∗ of dimension I×JK,
thus each row represents one batch. This unfolding allows an analysis of X
at batch level where the given data information is summarized with respect
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to variables and their time variation (see Nomikos and MacGregor (1994),
p. 1364). An illustration of this unfolding technique is given in figure 3.3.

I

J

K

k = 1 k = 2 . . .

I

JK

Figure 3.3: The unfolding of a three-way data array of dimension I × J ×K
to a matrix of dimension I × JK. For k = 1, . . . , K the k + 1th matrix is
positioned right of the kth matrix.

The goal of multi-way PCA is to decompose a three-way array X ∈
RI×J×K into a series of score vectors t ∈ RI and loading matrices P ∈ RK×J

and a three-way residual array E such that

X =
R∑
r=1

tr ⊗Pr + E

and R PCs. The vector-matrix multiplication is defined by

X̂[i, j, k] =
R∑
r=1

tr ⊗Pr :=
R∑
r=1

tr[i]Pr[k, j].

A graphical depiction of this decomposition is given in figure 3.4.

A NIPALS version for three-way arrays can also be given (see Nomikos
and MacGregor (1994)) and is formulated as follows.
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Figure 3.4: Decomposition of a three-way array by multi-way PCA.

NIPALS for three-way arrays
Let X ∈ RI×J×K be a three-way array.

1. Autoscale each column of X.

2. Start with an arbitrary column of X as initial score vector t.
Set E = X.

3. P = ET · t.

4. P = P/‖P‖.

5. t = E�P.

6. If t has converged with a predefined precision a principal component
has been computed; go to step 7. Otherwise iterate steps 3 to 5 until
convergence.

7. Update E = E− t⊗P and continue with step 3 for the next PC.

As in classical two-way PCA the result is a separation into a systematic
part and a residual noise part. The systematic part consists of scores related
to the batches (e.g. wafers) and loading matrices related to variables and
time points. Thus, as in classical two-way PCA, the score vectors contain
one value per observation (batch) per component and can be considered as
coordinates in the multi-way principal component subspace.

Multivariate statistical process control techniques from the two-way case
can be applied in a natural way to multi-way PCA results for three-way
arrays. New batches can be monitored via their scores and residuals. Let
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xtest ∈ Ri×J×K be a new batch observation that is autoscaled using in-control
estimators, then

ttestr = xtest �Pr

etest = xtest −
R∑
r=1

ttestr ⊗Pr.

Due to batch level unfolding, faulty batches can be determined. T 2 monitor-
ing of the scores is the same as in the two-way case. The SPE statistic is the
sum of squares of the residuals for a batch. For xtest it is given by

SPEi = SPExtest =
J∑
j=1

K∑
k=1

etest[i, j, k]2.

The value SPEi represents the squared perpendicular distance of xtest from
the multi-way principal component subspace defined by the normal operating
condition multi-way PCA model.

3.4.2 Fault Diagnosis

In order to identify the root cause of a fault, multi-block PCA can be applied
to the unfolded three-way array to determine variable block contributions.
For industrial processing, the grouping should be determined using process
engineer knowledge in order to be conceptually meaningful and interpretable.
Figure 3.5 depicts the unfolding procedure for multi-way multi-block PCA
in a schematic way.

The blocking in figure 3.4.2 is depicted as solely by variable. This allows
a drill-down root cause analysis to determine variable blocks or equipment
parts that are connected with a fault. However, more sophisticated blocking
schemes such as blocking by variable and measurement sites (see Qin et al.
(2006)) or variables and time phases can also be applied. This way, time
points could be summarized according to different processing steps. For
example, for a wafer with a processing time of 200 seconds, the first and
last 10 seconds could be warm-up and cool-down phase, respectively. Such
phases often show special behaviour and, if they are of interest for the overall
process result, could be treated separately. The remaining 180 seconds could
be grouped according to different processing steps given by the process recipe.

Block contributions can then be monitored via the block T 2 statistic as
given in equation (3.7) and the block SPE statistic given in equation (3.8).
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Figure 3.5: Schematic illustration of the unfolding of a I × J ×K-three-way
data array to a I × JK-matrix if variables are summarized to blocks colored
red, yellow and blue.

3.4.3 On-line Monitoring

The computation of scores and residuals for new batches xtest ∈ R1×J×K is
only possible if xtest is complete, i.e., if it has J-dimensional observations in
all K time points. However, for batch processing one is interested in moni-
toring the new batch on-line during its processing, i.e., in time points k < K.
If the process is in its kth time interval only k < K rows of xtest are complete
and all future observations from time points k + 1, . . . , K are missing, i.e.,
yet to be measured. Figure 3.6 illustrates this problem for the data matrix
of a single unfinished batch.

1
k

K

J

Figure 3.6: Illustration of the 1×J×K dimensional data matrix generated by
a single unfinished batch with J variables measured at K time points. From
time point k < K onwards the matrix is not complete as future observations
are not yet measured.

To overcome this problem future observations have to be filled up in order
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to create a complete batch that is consistent with the multi-way PCA model
structure. In Nomikos and MacGregor (1995) three approaches for fill-up
strategies were proposed.

(a) Fill up the remaining slots with zeros.

(b) Fill up the remaining slots with the current value.

(c) Use the ability of PCA to handle missing values.

The approach to use depends on the characteristics of the process under
consideration. However, the most common approach is (b), i.e., to assume
that future deviations from the mean trajectory will remain constant at the
value observed at time k for the remaining batch run (see Nomikos and
MacGregor (1994)). For PARAFAC models an alternative approach can be
given (see Meng et al. (2003)).

Applying one of the proposed methods results in complete batch mea-
surements for each time point k with k = 1, . . . , K of in-production batches.
This allows on-line monitoring of the production with T 2 and SPE monitoring
statistics, both globally (super score level) and locally (block level), for each
recorded data point during the processing of a batch. When implemented
on-line in a production environment, the method can provide detailed real-
time information on the process condition. Thus, faults can be detected and
diagnosed as they occur during batch processing and, if possible, corrective
measures can be applied immediately.
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Chapter 4

Nonlinear Process Control

The data analysis and process monitoring approach based on PCA assumes
that the underlying data set has linear characteristics as it linearly maps
multivariate data onto lower dimensions. However, for many applications
in industrial processes this assumption is not always valid. For example,
plasma-based processes as used in semiconductor manufacturing often show
nonlinear behaviour and nonlinear relationships among the process variables.
Here, PCA often performs poorly and fails to sufficiently capture the data
characteristics. It can even yield misleading results (e.g., see Palus and Dvo-
rak (1992)). Due to this drawback, several nonlinear approaches to PCA have
been proposed in the literature, e.g. in Kramer (1991), Dong and McAvoy
(1996), Hiden et al. (1999) or Jia et al. (2001). However, the most pop-
ular technique for nonlinear PCA is kernel PCA (KPCA) as proposed in
Schölkopf et al. (1998). The main advantage of kernel PCA is its simplicity
as it merely involves linear algebra. As in the linear case, process monitoring
based on KPCA relies on the T 2 and SPE statistics. However, the approach
allows superior fault detection compared to classical PCA if nonlinearities
are present. This makes it appropriate for monitoring complex industrial
production processes with nonlinear characteristics.

This chapter reviews KPCA and basic nonlinear process monitoring. Re-
cent approaches on robustifications as well as fault diagnosis for KPCA mon-
itoring models are also discussed.
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4.1 Kernel PCA

The basic idea of kernel PCA is to first map the original input data to a
high-dimensional feature space using a nonlinear mapping function. In this
feature space the variables are assumed to vary linearly and the PCs are
extracted. Compared to other nonlinear PCA approaches KPCA is simple
as it does not require a nonlinear optimization problem to be solved but
simply an eigenvalue problem. Furthermore, the possibility to use several
different nonlinear transformations of the inputs allows the modeling of a
wide range of nonlinearities.

Formally, a given data set of n mean-centered observations in m variables,
xi ∈ Rm with i = 1, . . . , n is first mapped into a feature space F via the
nonlinear mapping function

Φ : Rm → F.

In this space the mapped data is again assumed to be mean-centered, i.e.,∑n
i=1 Φ(xi) = 0. Centering the data in the feature space will be discussed

later. Using the covariance matrix C in F , i.e.,

C =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T ,

the principal components are determined by solving the eigenvalue problem

λv = Cv, (4.1)

with eigenvalues λ ≥ 0 and eigenvectors v ∈ F\{0}. All solutions of v with
λ 6= 0 lie in span(Φ(x1), . . . ,Φ(xn)), i.e., there exist coefficients α1, . . . , αn
such that

v =
n∑
j=1

αjΦ(xj). (4.2)

Furthermore, the eigenvalue problem (4.1) can be written as

λ〈Φ(xi), v〉 = 〈Φ(xi),Cv〉, (4.3)

where 〈x,y〉 is the dot product between vectors x and y. Using

Cv =

(
1

n

n∑
i=1

Φ(xi)Φ(xi)
T

)
v =

1

n

n∑
i=1

〈Φ(xi), v〉Φ(xi)
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and combining (4.2) and (4.3) leads to

λ
n∑
j=1

αj〈Φ(xi),Φ(xj)〉 =
1

n

n∑
j=1

αj〈Φ(xi),
n∑
k=1

Φ(xk)〉〈Φ(xk),Φ(xj)〉 (4.4)

for all i = 1, . . . , n. Then, defining an n× n matrix K with

Kij := 〈Φ(xi),Φ(xj)〉 (4.5)

simplifies equation (4.4) to

nλKα = K2α (4.6)

where α = (α1, . . . , αn)T . In order to find solutions of equation (4.6) it is
sufficient to find solutions for the eigenvalue problem

nλα = Kα (4.7)

for nonzero eigenvalues (as proven in Schölkopf et al. (1998), appendix A).
Thus, performing PCA in the feature space F is equivalent to finding solu-
tions to the eigenvalue problem (4.7). This gives eigenvectors α1, . . . ,αn to
the corresponding eigenvalues λ1 ≥ · · · ≥ λn. Thus, in KPCA up to n PCs
can be extracted. The problem of dimensionality can be reduced by retain-
ing only the first R eigenvectors. The remaining eigenvectors α1, . . . ,αR are
normalized. By requiring

〈vr,vr〉 = 1

for r = 1, . . . , R and using (4.2) this leads to

λF,r〈αr,αr〉 = 1.

The principal component scores tr for PC r of an observation vector x are
extracted by computing its projections onto the vectors vr, i.e.,

tr = 〈vr,Φ(x)〉 =
n∑
i=1

αr
i 〈Φ(xi),Φ(x)〉. (4.8)

The mapping Φ can be an arbitrary nonlinear mapping into the possibly
high-dimensional feature space F . The direct computation of this mapping
can be computationally intense or is simply not possible. However, the map-
ping Φ is never needed explicitly except in dot products, see equations (4.5)
and (4.8). With this, one can avoid the direct computation of Φ by intro-
ducing a kernel function of the form

k(x,y) = 〈Φ(x),Φ(y)〉. (4.9)
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This allows the computation of dot products of the nonlinear mapping with-
out the explicit knowledge of Φ itself. This is computationally cheaper than
performing the mapping on x and y, respectively. The idea is often referred
to as kernel trick. In general, this provides simple nonlinear generalizations
for algorithms that can be expressed solely in terms of dot products. Thus,
based on the kernel trick several other kernel methods have been introduced
for both supervised and unsupervised nonlinear analysis and modeling. For
an extensive overview on these methods see, e.g., Schölkopf and Smola (2002).

A number of different kernel functions exist. The requirement on a kernel
function is to satisfy Mercer’s theorem (see Mercer (1909)). It states that if
the kernel function k is a continuous kernel of a positive integral operator then
there exists a mapping Φ into a space where equation (4.9) can be applied (see
Christianini and Shawe-Taylor (2000)). Examples for valid kernel functions
are the following:

• Linear kernel :
k(x,y) = 〈x,y〉,

• Polynomial kernel :
k(x,y) = (a〈x,y〉+ b)d,

• Radial basis functions (RBF, Gaussian kernel):
k(x,y) = exp (−σ‖x− y‖2),

where the parameters a, b, d and σ have to be specified in advance. Substi-
tuting all occurrences of 〈Φ(x),Φ(y)〉 with the chosen k allows the straight-
forward application of KPCA to a given data set. The choice of the function
k then determines the mapping Φ and the feature space F . While the linear
kernel does not induce any nonlinearity, the polynomial kernel as well as the
radial basis functions are considered standard nonlinear kernels.

However, the choice of a kernel function that is most appropriate for a
given data problem strongly depends on the system under study. Further-
more, there are several techniques on how to determine the number of princi-
pal components to extract in a kernel PCA model, e.g., cross-validation (e.g.,
see Alam and Fukumizu (2014)) or the average eigenvalue method (e.g., see
Lee et al. (2004a)). For the Gaussian kernel, kernel parallel analysis (KPA)
has been proposed to determine both the value of σ and the number of prin-
cipal components as a function of σ (see Jorgensen and Hansen (2012)). It
does so by comparing the eigenvalues for each KPCA component to the dis-
tribution of eigenvalues of data sets obtained by permuting the original input
data several times. Such data sets are often referred to as null data sets.
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However, in case of the Gaussian kernel, for a given system under study,
testing the monitoring performance of a model for various values of σ can
lead to satisfying results (see Lee et al. (2004a)). Then, KPA based on the
determined σ can be used as a guideline for the number of components to
extract due to its simplicity.

4.1.1 Mean Centering in the Feature Space

We have assumed that the observations xi ∈ Rm with i = 1, . . . , n are mean
centered in the input space, i.e.,

∑n
i=1 xi = 0, as well as in the feature space

F , i.e.,
∑n

i=1 Φ(xi) = 0. In the feature space this is not as simple as we can
not explicitly compute the mean of Φ(xi) for i = 1, . . . , n. However, mean
centering in the feature space can be expressed via the noncentered kernel
matrix K (see Schölkopf et al. (1998), appendix B). Formally, for a given
nonlinear mapping Φ centering is performed via

Φ̃(xi) = Φ(xi)−
1

n

n∑
i=1

Φ(xi).

Computing a centered version of K leads to

K̃ij =

〈
Φ(xi)−

1

n

n∑
k=1

Φ(xk),Φ(xj)−
1

n

n∑
l=1

Φ(xl)

〉

= Kij −
1

n

n∑
k=1

1ikKkj −
1

n

n∑
l=1

Kil1lj +
1

n2

n∑
k=1

n∑
l=1

1ikKkl1lj

= (K− 1nK−K1n + 1nK1n)ij

where 1ij := 1 and (1n)ij := 1
n

for all i, j = 1, . . . , n. Thus, the centered

kernel matrix K̃ can be determined directly from the noncentered original
kernel matrix K. The eigenvalue problem (4.7) can then be solved using the
centered version K̃.

New test data points can be centered using training data estimates. Con-
sider ntest test observation vectors y1, . . . ,yntest . The corresponding kernel
matrix is given by

Ktest
lj = 〈Φ(yl),Φ(xj)〉

for l = 1, . . . , ntest and j = 1, . . . , n, thus Ktest ∈ Rntest×n. The corresponding
mean centered version K̃test can again be determined in terms of Ktest in an
analogous manner. This gives

K̃test = Ktest − 1
′

nK−Ktest1n + 1
′

nK1n
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where 1
′
n is a ntest × n matrix with all entries equal to 1/n.

4.1.2 Process Control Using KPCA

The ability to capture the nonlinear structure in data makes kernel PCA
suitable for monitoring of complex industrial processes. The process control
method based on KPCA is similar to the classical PCA-based approach and
utilizes the T 2 statistic and the SPE in the feature space (see Lee et al.
(2004a)).

A new data sample xnew ∈ Rm is first mean centered or autoscaled in the
original input space using training data estimates. Then the kernel vector
ktest ∈ Rn is computed via

ktest
i = 〈Φ(xtest,Φ(xi))〉 = k(xtest,xi)

for xi ∈ Rm for i = 1, . . . , n and a kernel function k. Then the mean centered
test kernel vector k̃test is computed as described above. The corresponding
test score vector ttest ∈ RR for R PCs is determined via

ttestr = 〈vr, Φ̃(xtest)〉 =
n∑
i=1

αr
i 〈Φ̃(xi), Φ̃(xtest)〉 =

n∑
i=1

αr
i k̃

test
i (4.10)

for r = 1, . . . , R and where Φ̃ denotes the mean centered version of the
mapping Φ. The T 2 statistic of the test scores is determined analogously to
the linear case in equation (3.2), i.e.,

T 2 = (ttest)TΛ−1ttest

where ΛR ∈ RR×R denotes the estimated covariance matrix of scores from a
KPCA model with R PCs of in-control data. If the scores follow a multivari-
ate normal distribution the limit can be determined accordingly, otherwise
nonparametric bootstrapping using the training data T 2 statistic can be used
to determine the desired α quantile.

The squared prediction error can be applied to measure the goodness of
fit of a sample to the KPCA model. It can be computed in the feature space
F in a straightforward way (see Lee et al. (2004a)). Let Φ̂R(x) =

∑R
r=1 trvr

be the reconstructed value of the nonlinear mapping Φ(x) using KPCA scores
tr and loadings vr for r = 1, . . . , R principal components. Clearly, for R = n
we have Φ̂R(x) = Φ(x). Then the SPE in the feature space is defined as

SPER = ‖Φ(x)− Φ̂R(x)‖2. (4.11)
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Using vTi vj = 1 for i = j and vTi vj = 0 for i 6= j, the statistic can be
computed via

SPER = ‖Φ(x)− Φ̂R(x)‖2 = ‖Φ̂n(x)− Φ̂R(x)‖2

= Φ̂n(x)T Φ̂n(x)− 2Φ̂n(x)T Φ̂R(x) + Φ̂R(x)T Φ̂R(x)

=
n∑
i=1

tiv
T
i

n∑
j=1

tjvj − 2
n∑
i=1

tiv
T
i

R∑
j=1

tjvj +
R∑
i=1

tiv
T
i

R∑
j=1

tjvj

=
n∑
i=1

t2i − 2
R∑
i=1

t2i +
R∑
i=1

t2i

=
n∑
i=1

t2i −
R∑
i=1

t2i .

The control limit for the SPE statistic can be obtained similar to the classical
PCA case, i.e., by using for example equation (3.4) if the errors follow a
normal distribution or nonparametric bootstrapping otherwise.

4.2 Multi-Block Kernel PCA

If kernel PCA is applied to nonlinear process control tasks fault diagnosis is
desirable. However, in a kernel context fault diagnosis is even more difficult
than in the linear PCA case as the nonlinear mapping function from the
original input space to the feature space is generally unknown.

As for linear PCA, fault diagnosis can be enabled by a multi-block ap-
proach. This leads to multi-block KPCA as recently proposed in Zhang et al.
(2010). Although limited to a certain type of kernels the approach provides
a kernel generalization of the CPCA procedure based on the NIPALS algo-
rithm.

We assume that for a given data set X of m-dimensional observation
vectors x1, . . . ,xn the m variables can be divided into B variable blocks
where block b has mb variables and m =

∑B
b=1mb. This yields the grouping

scheme Xb = x1,b, . . . ,xn,b for b = 1, . . . , B. In multi-block KPCA the kernel
matrix is computed separately for each block. This leads to block kernel
matrices Kb

i,j. This is only possible when the overall kernel matrix can be
decomposed such that

Ki,j =
B∏
b=1

Kb
i,j. (4.12)
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The Gaussian kernel fulfills the property as for the 2-norm it holds

‖xi − xj‖2 =
B∑
b=1

‖xi,b − xj,b‖2

which leads to

Ki,j =
B∏
b=1

exp

{
−‖xi,b − xj,b‖2

c

}
=

B∏
b=1

Kb
i,j.

However, property (4.12) is not fulfilled for all kernels. For example, for the
polynomial kernel with d > 1 it generally holds

〈xi,xj〉d 6=
B∑
b=1

〈xi,b,xj,b〉d.

Thus, the polynomial kernel with d > 1 does not allow a multi-block KPCA
analysis as discussed here.

For valid kernels, the multi-block KPCA algorithm to sequentially extract
R PCs derives as follows (see Zhang et al. (2010)). Substituting the origi-
nal data X with its mapped version Φ(X) in the original CPCA algorithm
formally yields the kernelized CPCA version. However, in order to allow the
actual computation of the block statistics the approach has to be modified to
be based on the use of the kernel matrix K = 〈Φ(X),Φ(X)〉 = Φ(X)TΦ(X)
instead of the mapped data Φ(X). This results in the following procedure.

Multi-block kernel PCA

1. Center each block kernel matrix Kb, i.e.,

Kb = Kb − 1nKb −Kb1n + 1nKb1n

where 1n is an n× n matrix with all entries equal to 1/n.

2. Initialize the super score tT,r. For the first PC, i.e., r = 1, choose tT,1
as an arbitrary column from an arbitrary block kernel matrix and set
Kb,1 := Kb.

3. For each block compute the block scores

tb,r =
Kb,rtT,r√
tTT,rKb,rtT,r

.
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4. Arrange all block scores into a single matrix, i.e.,

Tr = [t1,r · · · tB,r].

5. Compute the super loadings

pT,r =
TT
r tT,r

‖TT
r tT,r‖

.

6. Update the super scores, i.e.,

tT,r = TrpT,r

7. If tT,r has converged, i.e., the change in the elements of tT,r from one
iteration to the next is smaller than a predefined precision value ε (e.g.,
ε = 10−6), the rth principal component has been computed; go to step
8. Otherwise iterate steps 3 to 6 until convergence.

8. For each block compute the residual block kernel matrix

Kb,r+1 =

(
I−

tT,rt
T
T,r

tTT,rtT,r

)
Kb,r

(
I−

tT,rt
T
T,r

tTT,rtT,r

)

9. Go to step 2 to compute the next PC.

A new sample xtest can be monitored via T 2, SPE charts and their block
equivalents. At first, for each block b = 1, . . . , B the block kernel vector of
xtest
b is determined by

ktest
b = 〈Φ(xtest

b ),Φ(Xb)〉

and centered using training data estimates, i.e.,

k̃test
b = ktest

b − 1TnKb − 1nk
test
b + 1TnKb1n

where 1Tn = ( 1
n
, . . . , 1

n
) ∈ R1×n. In order to determine the block scores of

the new sample, the score conversion given in step 3 of the algorithm is
summarized to a block coefficient matrix Ab,r for block b of PC r. It is given
by

Ab,r =
tT,r√

tTT,rKbtT,r
.
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Then the block score of the rth PC of a new sample is computed by

ttestb,r = ktest
b Ab,r.

Order the resulting block scores in a matrix Ttest = [ttest1,r · · · ttestB,r ] and use the
super loadings pT,r to compute the super score element of the new sample
vector xtest by

ttestT,r = TtestpT,r.

Use R PCs to compute the super T 2 statistic to monitor the super scores,
i.e.,

T 2 = (ttestT ))TΛ−1ttestT

where Λ is the covariance matrix estimate of the super scores determined in
phase 1. The corresponding block T 2 statistic is given by

T 2
b = (ttestb ))TΛ−1b ttestb

where Λb is the covariance matrix estimate of the phase 1 block scores of
variable block b.

The block SPE statistic can be determined by

SPEb = Φ(xtest
b )(I−PPT )Φ

T
(xtest

b )

= k(xtest
b ,xtest

b )− (k̃test
b )TAbA

T
b k̃test

b

where

k(xtest
b ,xtest

b ) = k(xtest
b ,xtest

b )− 2

n

n∑
i=1

k(xb,i,x
test
b ) +

1

n2

n∑
i=1

n∑
j=1

k(xb,ixb,j)

and k(x,y) is a kernel function valid for multi-block analysis, e.g. the Gaus-
sian kernel. Then the overall super SPE statistic is simply the sum of the
block SPE statistics, i.e.,

SPE =
B∑
b=1

SPEb.

In summary, these statistics enable fault diagnosis and a root cause analysis
drilled down to variable block level for process monitoring models based on
KPCA when a multi-block-feasible kernel is used.
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4.3 Robust Kernel PCA

As with classical PCA, outliers can also have an effect on the resulting scores
and loadings of kernel PCA with any unbounded kernel (see Debruyne et al.
(2010)). Several approaches to a more robust version of KPCA have been pro-
posed (see e.g. Lu et al. (2004), Nguyen and De La Torre (2009)). However,
these approaches are mostly restricted to the Gaussian kernel and not based
on high-breakdown methods in the linear case (see Debruyne and Verdonck
(2010), p. 156). As proposed in Debruyne and Verdonck (2010), three kernel
versions of robust PCA approaches can be formulated. Spherical KPCA is
based on spherical PCA (see Locantore et al. (1999)), where the data is first
projected on a sphere around the spatial median and then PCA is performed
on the sphered data. Kernel projection pursuit is based on robust projection
pursuit PCA and kernel ROBPCA is a kernel version of ROBPCA. Out of
the three proposed approaches, kernel ROBPCA essentially applies classical
KPCA to a more robust h-subset of the initial data set. This feature makes
kernel ROBPCA simple and flexible for further extensions as all techniques
and modifications that apply to classical KPCA seamlessly apply to kernel
ROBPCA. This is especially useful when it is considered in a process moni-
toring context where fault diagnosis techniques are needed in addition to a
robust consideration. Based on the robust subset as determined by kernel
ROBPCA we propose a technique for robust centering of the kernel matrix.

As in linear ROBPCA, kernel ROBPCA relies on the Stahel-Donoho out-
lyingness measure as given in equation (3.5). This is possible as the Stahel-
Donoho outlyingness measure can be computed in any kernel induced feature
space (see Debruyne (2009)). The kernel ROBPCA algorithm as proposed
in Debruyne and Verdonck (2010) is given as follows.

Kernel ROBPCA

1. For d = 1 to 500 directions do the following.

(a) Take a vector λ with all zeros except for 1 at position i and −1 at
position j with (i, j) chosen at random. This vector represents a
random direction between two points in the feature space F .

(b) Compute the vector containing all univariate projections of the
feature vectors on the corresponding direction, i.e.,

a =
Kλ√
λTKλ

where K denotes the kernel matrix.
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(c) Compute the outlyingness measure for each observation on this
direction, i.e.,

rd =
a−m(a)

S(a)

where m and S denote the MCD estimators of location and scale
respectively.

(d) Store for each observation its maximum outlyingness.

2. Form a subset using the h observations with the lowest maximum out-
lyingness.

3. Apply classical KPCA on this h-subset.

Using the robust loadings as determined by kernel ROBPCA the scores
for the full set of n observations can be computed in a robust way.



Chapter 5

Robust Multi-block Multi-way
KPCA

In the following we propose a novel method for monitoring complex pro-
duction processes with nonlinear characteristics. Based on the methods dis-
cussed in the previous chapters we introduce robust multi-block multi-way
kernel principal component analysis (RobMBMWKPCA) for robust fault de-
tection, fault diagnosis and on-line monitoring of production processes that
produce three-way data arrays.

In general, semiconductor production equipments such as chemical vapor
deposition (CVD), physical vapor deposition (PVD) or etch tools process
single wafers sequentially over a certain processing time. During the wafer
processing data of several process variables is recorded at a fixed frequency,
e.g., one measurement vector per second. The resulting data arrays are of
three-way nature. Furthermore, process variables can often be grouped into
variable blocks based on their functional relationships or their assignment
to functional equipment units, e.g., variables measured on pressure or tem-
peratur units. The resulting trajectories of such process variables over time
as well as their relationships can often be of nonlinear nature due to the
underlying physics.

The proposed approach offers the possibility to monitor such production
processes in a nonlinear way. It ensures both robust fault detection by relying
on robust statistics and fault diagnosis drilled down to variable block level.
Furthermore, by using a multi-way approach fault detection and diagnosis
is extended to the third data dimension and on-line monitoring is enabled.
By getting information on the variables involved in a fault during batch
processing, corrective measures can be applied before a batch is completed
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or scrapped. This allows a detailed and nonlinear process monitoring of
batches during their processing on both overall and variable group level.

The chapter is organized as follows. At first, a variant of robust kernel au-
toscaling, i.e., mean centering and variance scaling in the kernel feature space,
is proposed. Then, the complete RobMBMWKPCA procedure consisting of
phase 1 model construction, phase 2 monitoring and on-line monitoring is
introduced. Finally, its implementation in R is discussed.

5.1 Robust Autoscaling in the Feature Space

5.1.1 Robust Mean Centering

Based on the kernel ROBPCA algorithm a robust centering of the kernel ma-
trix can be derived. The h least outlying points as determined by the kernel
ROBPCA procedure form a robust subset in the feature space. Thus, the
center of the kernel matrix Kij = 〈Φ(xi),Φ(xj)〉 can be robustly estimated
using only the points from this subset.

Let H denote the set of the h least outlying points as determined by the
Stahel-Donoho outlyingness measure. Then a robustly centered version K̃ of
the kernel matrix K can be computed by

K̃ij = 〈Φ(xi)−
1

h

∑
xk∈H

Φ(xk),Φ(xj)−
1

h

∑
xl∈H

Φ(xl)〉

= Kij −
1

h

∑
xk∈H

〈Φ(xk),Φ(xj)〉 −
1

h

∑
xl∈H

〈Φ(xi),Φ(xl)〉

+
1

h2

∑
xk∈H

∑
xl∈H

〈Φ(xk),Φ(xl)〉

= Kij −
1

h

∑
xk∈H

k(xk,xj)−
1

h

∑
xl∈H

k(xi,xl) +
1

h2

∑
xk∈H

∑
xl∈H

k(xk,xl)

or written in terms of matrix operations using the kernel matrix K:

K̃ = K− 1∗hK−K(1∗h)
T + 1∗hK(1∗h)

T (5.1)

with 1∗h ∈ Rn×n such that

[1∗h]ij =

{
1
h

if xj ∈ H
0 otherwise

(5.2)
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for i, j = 1, . . . , n. Analogously, a test data kernel matrix Ktest ∈ Rntest×n

can be robustly centered with the robust training data center estimation by

K̃test = Ktest − 1∗
′

h K−Ktest(1
∗
h)
T + 1∗

′

h K(1∗h)
T

where 1∗
′

h ∈ Rntest×n is defined as 1∗h but with ntest rows.

An alternative method for robust kernel matrix centering is centering
around the spatial median instead of the mean as proposed in Debruyne
et al. (2010). The procedure involves the use of an iterative algorithm in
order to find the vector of coefficients that determine the spatial median in
the feature space.

5.1.2 Multi-Way KPCA and Robust Variance Scaling

Batch processes usually have more complex nonlinear characteristics as stan-
dard continous processes as batches are often processed in different stages.
Thus, efficient and detailed nonlinear process monitoring is necessary. For
this purpose the standard KPCA method has been extended for three-way
batch processes leading to multi-way kernel PCA (see Lee et al. (2004b)).
The approach is basically the same as in the linear case. The three-way
array with I observations in J variables measured K times is unfolded to
a two-way matrix of dimension I × JK and standard KPCA is performed.
For a robust version kernel ROBPCA can be used. However, in Lee et al.
(2004b) it is suggested to perform variance scaling in the feature space in
addition to kernel mean centering in the multi-way KPCA context.

Let X ∈ RI×JK be an unfolded three-way array. Let K denote the corre-
sponding kernel matrix, i.e., Kij = 〈Φ(xi),Φ(xj)〉, where xi,xj ∈ R1×JK are
unfolded sample vectors for i, j = 1, . . . , I. Variance scaling of the centered
kernel matrix K̃ is performed by

K̃scl,ij =

〈
Φ(xi)− 1

I

∑I
k=1 Φ(xk),Φ(xj)− 1

I

∑I
k=1 Φ(xk)

〉
1
I−1
∑I

l=1

(
Φ(xl)− 1

I

∑I
m=1 Φ(xm)

)2
=

K̃ij

1
I−1
∑I

l=1 K̃ll

or expressed in matrix operations,

K̃scl =
K̃

trace(K̃)/(I − 1)
.



56 CHAPTER 5. ROBUST MULTI-BLOCK MULTI-WAY KPCA

A robust kernel variance scaling can again be achieved by utilizing the robust
h-subset as determined by kernel ROBPCA. Let H be this robust subset of
the h least outlying observations in the feature space and let KH denote the
kernel matrix of the observations in H. Then a robustly autoscaled kernel
matrix is given by

K̃rob
scl,ij =

〈
Φ(xi)− 1

h

∑
xk∈H Φ(xk),Φ(xj)− 1

h

∑
xk∈H Φ(xk)

〉
1

h−1
∑

xl∈H
(
Φ(xl)− 1

h

∑
xm∈H Φ(xm)

)2
=

[K̃rob]ij
1

h−1
∑h

l=1[K̃
H ]ll

or written in matrix operations,

K̃rob
scl =

K̃rob

trace(K̃H)/(h− 1)
.

Using robust kernel autoscaling as proposed above in combination with
kernel ROBPCA allows a robust multi-way kernel PCA modeling.

5.2 The RobMBMWKPCA Procedure

Kernel ROBPCA simply applies classical KPCA on a robust subset of the
data. This makes it very flexible and easy to extend. Thus, multi-block
KPCA can be applied on the robust h-subset. Furthermore, the underlying
block kernel matrices can be determined from an unfolded multi-way array
where the unfolding is performed as schematically depicted in figure 3.4.2.
This leads to robust multi-block multi-way KPCA. The complete procedure
is presented in the following.

5.2.1 Phase 1: Construction of Normal Operating Con-
dition Model

We begin with phase 1, i.e., the model construction stage as discussed in
chapter 2. Let X ∈ RI×J×K be a multi-way array of data representing the
normal operating condition of a production process. Let the J variables be
ordered in B conceptually meaningful blocks.
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1. Unfold X to a matrix Xu of dimension I × JK.

2. Autoscale Xu using robust estimators to obtain X̃u. For example, use
the L1-median as robust estimator of multivariate location and the
MAD as robust scale estimator for each column.

3. Compute the kernel matrix K of X̃u using a multi-block valid kernel
function k, e.g. the Gaussian kernel.

4. Apply steps 1 and 2 of the kernel ROBPCA procedure on K to deter-
mine the subset of h observations least outlying in terms of the Stahel-
Donoho outlyingness. The value h determines the robustness and has
to be chosen in advance. Typical values are h = 0.75I or h = 0.8I.

5. For each variable block use k to compute the block kernel matrices
Kh
b ∈ Rh×h using only observations from the h-subset.

6. Autoscale each block kernel matrix using kernel mean centering and
kernel variance scaling to obtain K̃h

b , i.e.,

Kh,mc
b = Kh

b − 1hK
h
b −Kh

b1h + 1hK
h
b1h

K̃h
b =

Kh,mc
b

trace(Kh,mc
b )/(h− 1)

where 1h is a h× h matrix with all entries equal to 1/h.

7. Apply steps 2 to 9 of the multi-block KPCA algorithm on the block
kernel matrices Kh

b and extract R principal components. This results
in matrices of robust super scores thT ∈ Rh×R, robust block scores th·,r ∈
Rh×B for r = 1, . . . , R and robust super loadings pT ∈ RB×R.

8. For each block compute the robust block coefficient matrix Ah
b ∈ Rh×R

by

Ah
b,r =

thT,r√
(thT,r)

TKh
b t
h
T,r

9. In order to determine full block scores t·,r ∈ RI×B and full super scores
tT ∈ RI×R in a robust way, kernel block matrices K∗b ∈ RI×h are
required for each block. For b = 1, . . . , B they are given by

[K∗b ]ij = k(xi,x
h
j )

where xi for i = 1, . . . , I are rows of Xu and xhj for j = 1, . . . , h are
observations from the robust h-subset.
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10. Apply robust kernel autoscaling on K∗b to obtain K̃∗b ∈ RI×h. Here, the
robust kernel centering can be written in terms of the unscaled K∗b and
the h-subset kernel matrix Kh

b , i.e.,

K∗,mc
b = K∗b − 1

′

hK
h
b −K∗b1h + 1

′

hK
h
b1h

K̃∗b =
K∗,mc
b

trace(Kh,mc
b )/(h− 1)

where 1
′

h is a I × h matrix with all entries equal to 1/h. Note that
robust kernel centering of the non-square K∗b can also be written only
in terms of K∗b , as proposed in (5.1) for square kernel matrices. This
gives the same result, i.e.,

K∗,mc
b = K∗b − 1∗hK

∗
b −K∗b1h + 1∗hK

∗
b1h

with 1∗h ∈ RI×I defined analogously to (5.2).

11. Compute the full block scores for each block as well as the full super
scores in a robust way, i.e.,

tb,r = K̃∗bAb,r

tT,r = TrpT,r

where each Tr ∈ RI×B is the matrix with block scores in columns for
PCs r = 1, . . . , R.

12. Compute the robust block T 2 statistics based on robust estimation of
the block scores covariance and the robust super T 2 statistic based on
a robust estimation of the super scores covariance matrix. For exam-
ple, use the robust RMCD covariance matrix estimator. Furthermore,
compute the block SPE and super SPE statistics as discussed above.

13. Determine the respective control limits for all monitoring statistics us-
ing the nonparametric bootstrapping procedure.

5.2.2 Phase 2: Test Data Monitoring

We continue with phase 2, i.e., the monitoring stage. Let Xtest ∈ RItest×J×K

be a three-way array of data from Itest new batches with unknown operating
condition and the same variable block ordering.

1. Unfold Xtest to a Itest×JK matrix and autoscale it using the robust lo-
cation and scale estimators from the normal operating condition model.
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2. For each block use k to compute the test block kernel matrices Ktest
b ∈

RItest×h, i.e.,
[Ktest

b ]ij = k(xtest
i ,xhj )

where xtest
i ∈ R1×JK are new observations for i = 1, . . . , Itest.

3. Apply robust kernel autoscaling on Ktest
b to obtain K̃test

b , i.e.,

Ktest,mc
b = Ktest

b − 1test
h Kh

b −Ktest
b 1h + 1test

h Kh
b1h

K̃test
b =

Ktest,mc
b

trace(Kh,mc
b )/(h− 1)

where 1test
h is a Itest × h matrix with all entries equal to 1/h.

4. Compute the test block scores and test super scores using the robust
loadings, i.e.,

ttestb,r = K̃test
b Ab,r

ttestT,r = Ttest
r pT,r

where each Ttest
r is the matrix with test block scores in columns for

PCs r = 1, . . . , R.

5. Compute the T 2 and SPE monitoring statistics at block and super
level using the robust covariance matrix estimation from the normal
operating condition model.

6. For each of the Itest batches monitor whether T 2 or SPE exceeds its
respective control limit to get information on the performance of the
new batch in comparison to the normal operating condition.

5.2.3 On-line Monitoring

Let xt ∈ R1×J×t be data of a single new batch that is in the middle of
production, i.e., measurements are available only until the current time point
t < K.

1. Unfold xt to a vector of size 1 × Jt and autoscale xt with robust esti-
mators from the normal operating condition.

2. Anticipate future measurements from t onwards by filling them with
the deviation observed at time t. This results in a complete batch
observation xt∗.
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3. Apply steps 2-5 from the test data monitoring procedure on xt∗.

4. Repeat these steps every time a new measurement is conducted for this
batch.

By applying this procedure monitoring statistics at block and super level
are made available every time a new J-dimensional measurement vector is
added to the batch, e.g. every second. As the procedure is fast and can
be applied practically in real-time, this allows on-line fault detection and
diagnosis during the batch production.

5.3 Implementation in R

The steps of the complete RobMBMWKPCA procedure are now discussed
in terms of their implementation in R.

5.3.1 Phase 1 in R

1. We begin by assuming that the three-way array X ∈ RI×J×K of phase 1
data, i.e., data representing the normal operating condition, is given as
an unfolded data matrix Xu ∈ RI×JK . The data is read in and stored
in variable X.unfold with I rows and J*K columns.

2. Robust mean centering of the X.unfold is performed using the function
l1median NLM() from the pcaPP package (see Filzmoser et al. (2014)).
Robust variance scaling is performed using the function mad(). This
results in the robustly autoscaled data matrix X.unfold.s.

3. The unscaled I × I kernel matrix kernel.matrix.unscld of the ro-
bustly autoscaled data matrix X.unfold.s is computed using the func-
tion kernelMatrix() from the kernlab package (see Karatzoglou et al.
(2004)). The kernel argument determines the underlying kernel func-
tion. As a multi-block valid kernel the Gaussian kernel can be used. It
is set using the kernlab function rbfdot() with an adequate value of
sigma and stored in the variable krnl.

4. In order to find the subset of h least outlying points we first set a cor-
responding value alpha.h that controls the subset size, e.g., alpha.h
<- 0.8. A function krobpca.subset() has been written that deter-
mines the clean subset of size h <- alpha.h*I based on the kernel



5.3. IMPLEMENTATION IN R 61

ROBPCA procedure. It takes a kernel matrix and a value of alpha.h
as arguments. It is called by

hs <- krobpca.subset(kernel.matrix=kernel.matrix.unscld,

alpha=alpha.h)

and returns a list of indices of the corresponding kernel.matrix that
are least outlying in terms of the Stahel-Donoho outlyingness, i.e.,
h.subset <- hs$indices.

5. Let numberofblocks be the number of variable blocks. Robust un-
scaled kernel matrices can be constructed for each variable block using
only clean observations from the h subset. These kernel matrices are
stored in an array kernel.matrices.rob.unscld of dimension h×h×
numberofblocks. For a variable block b (b = 1, . . . , numberofblocks)
the matrices are computed using the function kernelMatrix() only on
X.unfold.s[h.subset, block.b.columns] where block.b.columns

are the columns of X.unfold.s that correspond to variable block b.

6. We can now perform autoscaling in the feature space on the result-
ing block kernel matrices. Then mean centering and variance scaling
can be performed as proposed in section 5.1. The result is the ar-
ray kernel.matrices.rob of dimension h × h × numberofblocks of
numberofblocks robustly autoscaled block kernel matrices of clean ob-
servations.

7. We are now ready to apply multi-block KPCA on the array of robustly
autoscaled block kernel matrices kernel.matrices.rob. A function
mbkpca() has been written that determines super scores and super
loadings as well as block scores and block coefficient matrices from a
given array of block kernel matrices. It takes the block kernel matrix
array and the number numberofcomponents of principal components
to extract as arguments. It is called by

model <- mbkpca(kernel.matrices=kernel.matrices.rob,

components=numberofcomponents)

and returns robust super and block statistics for a given number of
components, i.e.,
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super.scores.h <- model$super.scores

super.loadings <- model$super.loadings

block.scores.h <- model$block.scores

where super.scores.h is a h × numberofcomponents matrix of su-
per scores of the clean h-subset and block.scores.h results in a h ×
numberofblocks × numberofcomponents array of block scores of the
clean h-subset. The numberofblocks × numberofcomponents matrix
super.loadings is a matrix of robust multi-block KPCA super load-
ings.

8. The function mbkpca() also returns robust block coefficient matrices
for each variable block, i.e.

A.h <- model$block.coeff

where A.h is a h× numberofblocks× numberofcomponents array.

9. Based on the super and block statistics of the clean subset of h we
can now derive robust super and block statistics for all I observations.
For this purpose we first compute full and unscaled I× h block kernel
matrices for each block. These are stored in the I×h×numberofblocks
array kernel.matrices.full.unscld. For block b we use the function
kernelMatrix(krnl,x,y) with the chosen kernel function krnl. Its
argument x is X.unfold.s[,block.b.columns] and its argument y is
X.unfold.s[h.subset,block.b.columns].

10. These kernel matrices can now again be autoscaled in the feature space.
This results in a I × h × numberofblocks array kernel.matrices of
robust and robustly autoscaled kernel matrices.

11. For observation i (i = 1, . . . , I), functional variable block b (b =
1, . . . , numberofblocks) and extracted principal component c (c =
1, . . . , numberofcomponents) we can now compute full robust block
scores via

block.scores[i,b,c] <- kernel.matrices[i,,b]%*%A.h[,b,c]

where block.scores is an array of dimension I× numberofblocks×
numberofcomponents. With this, full robust super scores can be com-
puted via
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super.scores[i,c] <- block.scores[i,,c]%*%super.loadings[,c]

where super.scores is a matrix with I rows and numberofcomponents

columns.

12. We can now compute the phase 1 T 2 and SPE statistics. For the T 2

statistics we use the RMCD estimator for robust estimation of the
covariance matrix of both block scores and super scores. It can be
computed using the function covRob() along with its control func-
tion covRob.control() and the option estim="weighted" from the
robust package (see Wang et al. (2014)). The T 2 values can then be
computed using the function mahalanobis().

The phase 1 SPE statistics can be computed analogously to the SPE
statistics for test data given in section 4.2. Here, xtestb has to be replaced
with the training data equivalent xb.

13. For the computation of the upper control limits for the T 2 statistics
we use the nonparametric bootstrapping approach. For this purpose,
a general function t2limit() has been written that determines T 2

control limits using different methods. The call

limit <- t2limit(hds=super.scores, type="bootstrap",

alpha=0.05, ci.type="basic",

center=FALSE, cov=score.est)

determines a bootstrapping based UCL as 1 − alpha quantile for the
T 2 statistic using the matrix super.scores as historic data set (hds).

By using the option type="bootstrap" the function uses the function-
alities of the package boot (see Canty and Ripley (2014)) to compute
a UCL based on 1000 bootstrap replicates. Other options for type

are "mvn" for a UCL determination based on the assumption of mul-
tivariate normality of the underlying hds, i.e., the 1 − alpha of the
corresponding F distribution (see section 2.1) and "chebyshev" for a
UCL estimation based on Chebyshev’s inequality (see section 2.5). For
type="bootstrap" the option ci.type determines the type of the cor-
responding bootstrap confidence interval. Its options are the same as
for the argument type of the boot function boot.ci(), i.e., "norm"
for normal approximation, "basic" for basic bootstrap confidence lim-
its, "stud" for studentized limits, "perc" for a bootstrap percentile
interval and "bca" for BCa confidence limits.
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With the options center and cov estimates for multivariate location
(center) and the covariance matrix (cov) can be specified. Here,
score.est denotes the RMCD estimate of the covariance matrix of
the multi-block KPCA super scores stored in super.scores.

Analogously, an upper control limit for the block T 2 statistic of variable
block b can be determined via

limit.b <- t2limit(hds=block.scores[,b,], type="bootstrap",

alpha=0.05, ci.type="basic",

center=FALSE, cov=block.b.est)

where block.b.est denotes the covariance estimate of the block scores
of variable block b.

Finally, upper control limits for the super SPE and block SPE statis-
tics can be determined by directly using the functions boot() and
boot.ci() from the boot package.

5.3.2 Phase 2 in R

1. We assume that a matrix of unfolded test data of dimension I.test×
J ∗ K is stored in Xtest.unfold. It is again autoscaled using the robust
estimates of phase 1. This leads to the matrix Xtest.unfold.s.

2. Based on the kernel function krnl we construct test data block ker-
nel matrices using the function kernelMatrix(krnl,x,y). The ar-
gument x is the matrix Xtest.unfold.s[,block.b.columns] where
block.b.columns again denotes the columns of Xtest.unfold.s cor-
responding to variable block b. The argument y is set to the h-subset
of the training data, i.e., X.unfold.s[h.subset,block.b.columns].
This results in the array kernel.matrices.test.unscld of dimension
I.test× h× numberofblocks of robust unscaled test data kernel ma-
trices.

3. The proposed robust autoscaling in the feature space is applied to these
block kernel matrices of test data using the corresponding kernel ma-
trices. This results in an array of autoscaled block kernel matrices
kernel.matrices.test of dimension I.test× h× numberofblocks.

4. For test observation i (i = 1, . . . , I.test), functional variable block
b (b = 1, . . . , numberofblocks) and extracted principal component c
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(c = 1, . . . , numberofcomponents) we can now compute robust test
block scores via

block.scores.test[i,b,c] <-

kernel.matrices.test[i,,b]%*%A.h[,b,c]

where block.scores.test is the array of test block scores of dimen-
sion I.test×numberofblocks×numberofcomponents. With this, full
robust test super scores can be computed via

super.scores.test[i,c] <-

block.scores.test[i,,c]%*%super.loadings[,c]

where super.scores.test is a I.test×numberofcomponents matrix.

5. T 2 and SPE statistics of the test block scores and test super scores can
now be computed straightforwardly using training data estimates.

6. Each of the I.test batches can now be monitored using the determined
control limits.

5.3.3 On-line Monitoring in R

Given the steps from phase 2 the on-line monitoring procedure can be ap-
plied straightforwardly. For an unfolded and robustly autoscaled single batch
testbatch.unfold.s that is in the middle of production, i.e., unfinished, the
fill-up strategy allows a straightforward computation of super T 2 values and
super SPE values as well as block T 2 values and block SPE values every time
a new measurement is conducted, e.g., each second.

For each time point the fill-up of future measurements, the computation
of the kernel matrix via kernelMatrix(), the robust autoscaling of the ker-
nel matrices and the subsequent computation of super and block scores can
be performed instantly. Thus, with an appropriate automated framework
the monitoring statistics are available within one second. This makes the
procedure suitable for the actual application in on-line monitoring.
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Chapter 6

Monitoring of a Plasma Etch
Process Via RobMBMWKPCA

6.1 Motivation

The ever growing process complexity on the one hand and the installation of
fault detection and classification (FDC) systems for data recording, manage-
ment and monitoring on the other hand lead to growing amounts of data for
each of several hundred production stages of a semiconductor manufactur-
ing line. In order to monitor the performance of these single manufacturing
stages, suitable analysis methods are needed to adequately handle the gener-
ated data. However, most FDC applications only rely on univariate control
charts for monitoring process variables individually. Thus, complex and in-
herently multivariate problems or processing failures are easily missed. Multi-
variate monitoring techniques such as PCA and Hotelling’s T 2 are capable of
advanced process monitoring. However, such advanced FDC applications re-
quire data pretreatments. For instance, summarized statistics such as means
or maxima over specific temporal windows of the wafer processing time are
needed. This can lead to a large number of different indicators. With such
indicators information of the variation over time of the process variables can
often be lost and anomalies in the process variable trajectories can possibly
be overlooked. Due to the complex production environment, such anomalies
can accumulate in subsequent processing steps and can lead to yield prob-
lems and even scrapped wafers. Furthermore, anomalies in the trajectories
of certain process variables can point at problems with the wafer processing
or the manufacturing equipment itself. Thus, in addition to overall process
performance measures, information on the performance during production

67



68 CHAPTER 6. PLASMA ETCH PROCESS MONITORING

can serve as an indicator for the equipment health. For such applications,
advanced process control procedures based on multi-way considerations are
suitable.

In this chapter we exemplarily apply the presented robust nonlinear multi-
way multi-block approach on a single manufacturing stage. With the ap-
proach all of the recorded temporal data information can be considered.
Possible nonlinear process behaviour and process faults with nonlinear char-
acteristics can also be taken into account. By grouping the involved process
variables in blocks created based on engineering knowledge, an interpretable
root cause analysis is enabled. The presented on-line monitoring technique
further allows process engineers to get in-depth information on the process
condition during the actual processing, both overall and on variable block
level. This results in performance monitoring statistics from the beginning
to the end of the processing of each wafer. Furthermore, special attention is
paid on robustness. This allows an adequate assessment of the production
reference and an estimation of the true normal operating condition of the
production process unaffected by outlying measurements, first wafer effects
or other anomalies.

6.2 Process Data

We apply the presented methodology on a plasma etch process. Plasma
etching is a crucial, highly complex and repeatedly applied operation during
semiconductor manufacturing. In general, the goal is to selectively remove
unwanted solid material from the substrate by means of a chemical reaction
and plasma, i.e., ionized gas. The process allows the creation of very small
profiles in the sub-micron range on the wafer surface with high precision and
selectivity.

The case study is related to a failure of the magnetic field on a plasma etch
tool that occured in June 2011 at ams AG (see Hayderer (2012)). Process
engineers observed a sudden decrease in the etch rate of the tool as the elec-
tromagnetic field, which is created by inductors and should exist permanently
around the wafer during the process, failed to work properly. Consequently,
the impedance and the electric resistance of the etch chamber changed. As
a result, the radio frequency (RF) power had to be adapted in order to deal
with the changed conditions. However, a univariate analysis did not show
any severe out-of-control alarms.

During the processing of each wafer, data information for every process
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variable is recorded by sensors with a fixed frequency of one data point per
second. Thus, as is the case with most single manufacturing steps, the total
recorded data information can be arranged in a three-way data array of
dimension I × J ×K for I wafers, J variables and K time points.

In total, I = 390 wafers were selected as reference data set. The wafers
were processed during several days before the occurence of the magnetic field
failure. Pressure anomalies, not related to the magnetic field failure, were
known to occur from time to time on the etch tool during that production
period. Thus, the use of robust estimation is crucial to model the normal
operating condition.

A number of process variables are measured during the course of the etch
process. After discussion with the process engineers, the J = 10 most infor-
mative variables are chosen and grouped in B = 3 functional variable blocks,
namely pressure, helium and RF power. Other process variables were either
constant or near constant during the processing (e.g., gas flow variables) or
not informative for the immediate condition of the process or the tool (e.g.,
etch endpoint variables). Table 6.1 gives an overview of the used variables
and their block membership.

Variable Description Block
Foreline Pressure pressure in the foreline between

turbo pump and foreline pump
pressure

Pressure pressure in the etch chamber pressure
Throttle Valve Step adjustable valve for chamber

pressure control
pressure

He Flow helium gas flow for wafer cooling helium
He Pressure pressure of helium helium
Outer He Leak Rate leak rate of helium helium
RF Forward power for plasma stimulation RF power
RF Load Position setting of matching coil for RF

power
RF power

RF Reflected reflected RF power RF power
RF Tune Position setting of matching capacity for

RF power
RF power

Table 6.1: Overview of the variables used for monitoring a plasma etch pro-
cess.

For each wafer, the process variables are measured each second during
its processing. Typically, the first few and last few seconds are stabilization
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phase and shut down phase, respectively. After removing these phases, K =
178 relevant time points remain. Figure 6.1 shows a typical trajectory of the
variable Pressure during the processing of one wafer.
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Figure 6.1: Typical trajectory of the variable Pressure (autoscaled) over the
course of the processing of one wafer on a plasma etch tool (minus stabiliza-
tion and shut down phase).

Furthermore, we only use data from a single production recipe that was
affected by the fault. For a global monitoring approach, a normalization of
the data separately for each recipe is recommended. Alternatively, process
monitoring approaches that are independent of the underlying production
recipe can also be proposed, e.g., see Chen and Blue (2009) and Blue et al.
(2013).

In summary, the final reference data set to model the normal operating
condition of the process consists of

• I = 390 wafers,

• J = 10 continuous variables grouped in B = 3 blocks,

• K = 178 time points.
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6.3 Phase 1: Modeling

We begin with phase 1, i.e., the modeling stage. The first step is to unfold
the 390 × 10 × 178 array to a two-dimensional matrix of dimension 390 ×
1780. Then this matrix is autoscaled. We use the L1-median as defined in
equation (3.6) for robust estimation of the multivariate center. It is computed
using the nonlinear minimization routine as implemented in the function
l1median NLM() from the R package pcaPP (see Filzmoser et al. (2014)).

For robust estimation of the standard deviation of each column the me-
dian absolute deviation (MAD) can be used. However, several columns have
a MAD of 0 as some variables have very small variation at certain time
points. For example, for more than 70% of the wafers in the reference set the
variable RF Forward has a starting value of 1002, i.e., the value in the first
second of the observed processing period. The result is a very low variation
among the values in the respective column of the unfolded matrix. Whereas
the classical and non-robust empirical standard deviation results in a value
of 0.46, the MAD becomes 0. Also the interquartile range (IQR) and several
alternatives to the MAD given in Rousseeuw and Croux (1993) have been
checked, but all result in a robust scale value of 0 for several columns. Thus,
in order to be able to perform robust autoscaling a trade-off in the degree
of robustness has to be made. We chose a quantile range analogously to the
IQR as estimator of univariate scale. For each column of the unfolded data
matrix, the range of the inner 95%, the estimator QR95, was found to work
in this setting. It is given by

σ̂ = QR95 =
x0.975 − x0.025

2q0.975
=
x0.975 − x0.025

3.92
. (6.1)

where x0.975 and x0.025 denote the 97.5% and 2.5% quantiles of the data,
respectively, and q0.975 denotes the 97.5% quantile of the normal distribution.
However, it has a very low degree of robustness with a breakdown point of
only 0.05.

The behaviour of the variable Pressure as shown in figure 6.1 suggests
the presence of nonlinearities and possible nonlinear relationships in the data.
Thus, in order to capture possible nonlinear structures in the data we use
the kernel approach. As a kernel function valid for multiblock analysis we
chose the Gaussian kernel of the form

k(x,y) = exp
(
− σ‖x− y‖2

)
. (6.2)

After testing the monitoring performance for various values of the parameter
σ, we found σ = 0.00001 to be appropriate in this setting. In order to choose
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the number of principal components to extract we use kernel parallel analysis
(kPA) for the chosen value of σ as a guideline due to its simplicity. Thus,
for our training set of I = 390 wafers the resulting number of components q
is 16.

We applied the proposed robust multi-way multi-block KPCA procedure
to determine robust scores and loadings of this model. We compare two
different robust approaches, i.e., with two different sizes of the h-subset of
clean observations for both kernel ROBPCA (determined by αKPCA) and
the RMCD estimator (determined by αRMCD), with a classical non-robust
approach. The classical approach is based on autoscaling the input data with
the sample mean and the sample standard deviation, classical kernel PCA
of the multi-way and multi-block data and T 2 values based on the sample
covariance matrix. The resulting T 2 charts of the I = 390 training data
scores is shown in figure 6.2.

Overall, the robust chart with αKPCA = αRMCD = 0.8 describes best the
behaviour of the process at the observed time. Strong single peaks indicate
exactly the pressure anomalies known to occur during that production period.
Due to robust estimation of both the KPCA results and the T 2 values, these
excursions do not affect our estimation of the normal operating condition.
This is considered crucial for adequate process monitoring as future wafers are
compared to this reference. However, the abnormal wafers have an undesired
effect on the estimation of the reference in the non-robust case. Thus, the
overall T 2 level is much lower and the discrimination between normal and
abnormal process behaviour is worse than in the robust cases. In summary,
the classical non-robust approach does not depict the process behaviour as
accurate and differentiated as the robust models.

Figure 6.3 shows the distributions of these three sets of T 2 values com-
pared to the beta distribution that results from the multivariate normal case.

The deviations from the beta distribution for the robust models highlight
the need of distribution-free procedures to determine the UCL. We use the
discussed bootstrapping approach. For computation we use the R package
boot. For a false alarm rate of α = 0.05 this results in UCLs of 97.83
for αKPCA = αRMCD = 0.9 and 91.31 for αKPCA = αRMCD = 0.8. As
expected, the distribution of the classical T 2 values is closer to the theoretical
beta distribution than in the robust case. For comparison, the UCL as 0.95
quantile of the beta distribution is 25.95, its bootstrapped alternative is
29.77.

In summary, we use the robust model with αKPCA = αRMCD = 0.8 as
reference.
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Figure 6.2: Classic (non-robust) and robust T 2 values of classic and robust
KPCA scores.
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Figure 6.3: Histograms of I = 390 scaled T 2 values of KPCA scores (q = 16
PCs) along with the respective beta distribution (blue).
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6.4 Phase 2: Test Data Results

For phase 2, we apply the proposed approach to an independent test data
set of Itest = 454 wafers from the production period of interest in June 2011.
The test scores where determined as proposed, based on the reference model
with q = 16 extracted principal components. The resulting robust T 2 chart
of robust test super scores is shown in figure 6.4 along with the respective
bootstrap UCL (α = 0.05) and its 95% BCa confidence limits.

robust T2, αKPCA=0.8, αRMCD=0.8, q=16 PCs
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Figure 6.4: Robust T 2 chart of robust KPCA super scores of I = 390 refer-
ence wafers (green) and Itest = 454 test wafers (blue) along with the boot-
strapped UCL (dashed) and its BCa confidence interval (dotted).

Along with the UCL of 87.05 as determined by bootstrapping (1000 boot-
strap resamples) the corresponding BCa confidence interval [69.15, 109.46] is
also shown. In comparison, the corresponding basic bootstrap interval is
given as [66.64, 105.50].

Exactly the wafers affected by the magnetic field failure (wafers 412 to 469
of the 845 analyzed wafers) are correctly identified as highly abnormal. Fur-
thermore, several single abnormalities are also identified. The corresponding
squared prediction error (super SPE) chart that measures the deviations of
the observations from the kernel PCA model space is shown in figure 6.5. In
addition, the control limit for a false alarm rate α = 0.05 and its 95% BCa
confidence interval is shown.

Again, the bootstrap control limit value 6.75 along with its BCa confi-
dence interval [6.08, 8.27] is shown. In comparison, the corresponding basic
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Figure 6.5: SPE chart of I = 390 reference wafers (green) and Itest = 454
test wafers (blue) along with the bootstrapped control limit (dashed) and its
BCa confidence interval (dotted).

bootstrap interval is [5.47, 7.46].

The detected faults can now be diagnosed to find out the groups of vari-
ables that contribute to the abnormal behaviour. This is done by inspect-
ing the block statistics. Figure 6.6 exemplarily shows the robust block T 2

charts for all three variable blocks along with the respective bootstrap UCLs
(α = 0.05).

Clearly, the magnetic field failure is mainly observable in the RF power
block. This coincides with the nature of the fault as the RF power unit had to
be adapted due to the breakdown of the magnetic field. Helium and pressure
unit are not or only slightly affected. However, the pressure faults that also
occured in the considered time frame are identified correctly as the related
wafers are mainly observable as single excursions in the pressure group.

The faults can be further analysed by inspecting the on-line monitoring
charts. These can give information on the exact time point of the occurence
or start of a fault during the processing of an affected wafer. Figure 6.7
exemplarily shows robust on-line monitoring T 2 charts for three different
test wafers out of the considered time frame.

The first wafer was a normal production run with no observed fault and
an overall T 2 of the super scores of 8.10. Thus, from the beginning to the
end of its processing time it shows no sign of abnormal behaviour. Only two
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insignificant exceedings of the UCL at seconds 10 and 20 can be observed.
The second wafer with an out-of-control super T 2 value of 352.72 was affected
by the magnetic field failure. Right from the start this wafer is out-of-control.
Thus, with the proposed model implemented, the failure could have been
detected at a very early stage of wafer processing. Information like this can
lead to fewer scrap wafers or reworkings. The third wafer is related to the
pressure failures. Again, it is out-of-control already from the beginning of its
processing. Here, the actual fault seems to have occured during the first 30
seconds of the observed processing time. Afterwards, the T 2 value settles at
a steady but still out-of-control level.

A simplification of the on-line monitoring can be achieved by summarizing
the produced information, e.g., by computing means or medians over 5 or 10
seconds. This would result in values of the monitoring statistics every 5 or
10 seconds which is still considered sufficient for the task of monitoring the
actual wafer processing. Furthermore, this would also smooth the resulting
monitoring statistics.

In summary, the occured faults can be detected and diagnosed in every
data dimension, i.e., our model detects which wafers are affected, which vari-
able groups contribute and at what processing time the abnormality started
or occured.
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Figure 6.6: Robust T 2 charts of robust KPCA block scores along with the
respective bootstrapped control limits.
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Figure 6.7: On-line monitoring T 2 charts for three wafers over their process-
ing time along with the upper control limit (dashed).
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6.4.1 Comparisons

The number q = 16 of extracted PCs of our KPCA model is chosen based
on kernel parallel analysis. This is only a guideline. Figure 6.8 shows the
resulting robust T 2 charts (αRMCD = 0.8) of training and test data for q = 16,
2q = 32 and 3q = 48 extracted robust principal components (αKPCA = 0.8).

Clearly, the robust KPCA models based on 2q = 32 and 3q = 48 principal
components display the process behaviour in more detail. We also compared
the kernel PCA based models to linear PCA based models for both classic and
robust approaches. For the linear PCA based models of the same training
data, the number of principal components is again determined by parallel
analysis. This results in qlinear = 22 extracted PCs. In general, kernel
PCA can potentially utilize more principal components to map structure
rather than noise (see Schölkopf et al. (1998), Lee et al. (2004a)). KPCA
based on the Gaussian kernel extracts information from an infinitely high-
dimensional feature space whereas linear PCA extracts information from the
finite dimensional input space. Thus, the number of principal components
to extract for KPCA models is larger than that for linear PCA models.

For comparison we use KPCA models with 2q = 32 PCs and linear PCA
models with qlinear = 22 PCs. Figure 6.9 shows the resulting T 2 charts for
classic and robust approaches along with their respective UCLs.

The magnetic field error is captured correctly by all models. However,
the proposed robust kernel approach captures the process behaviour the best
as it identifies best all the occured faults. When compared to the robust
linear PCA based model, the robust kernel PCA approach is able to detect
more faults (e.g., around wafer 500). This suggests that the corresponding
pressure fault is of nonlinear nature that the linear PCA model fails to cap-
ture. Abnormalities that are identified correctly by both robust approaches
are better discriminated in the kernel case. This suggests that the robust
kernel approach is more likely to identify faulty behaviour.

Overall, the proposed robust kernel PCA approach seems the most suit-
able for monitoring, fault detection and diagnosis of this plasma etch process.
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Figure 6.8: Comparison of robust kernel PCA models for different numbers
of extracted principal components.
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Figure 6.9: Comparison of linear and kernel PCA approaches.
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6.5 Summary

We exemplarily applied the proposed robust multi-way multi-block kernel
PCA approach to monitor the wafer processing of a plasma etch equipment.
The case study is related to a failure of the magnetic field that occured on
the equipment in June 2011 at ams AG. During the observed time frame
several faults related to the pressure unit of the equipment also occured.
The proposed model is able to detect all occured faults correctly. The multi-
block approach then allows a diagnosis of the detected faults. The magnetic
field failure can be correctly assigned to the RF power unit of the plasma
etch equipment whereas the pressure faults can be correctly traced down to
the pressure unit. This allows a fault interpretation and an identification
of the involved process variable groups. Furthermore, on-line monitoring
charts allow the identification of the exact time point of the occurence of
each fault during the processing of the affected wafer. This enables an in-
depth monitoring of the plasma etch process.

In comparison with non-robust and linear PCA based alternatives, the
proposed model performs superior. The robust kernel approach allows the
detection of faults of nonlinear nature that would have been overlooked by
more traditional approaches. Thus it is most suitable for the sensitive task
of monitoring such complex production processes.

The proposed approach can be applied to monitor the health and per-
formance of any semiconductor production equipment that is of batch type,
i.e., that produces multi-way wafer data.

In future research, more efficient ways to determine the adequate number
of principal components as well as the most appropriate and problem-specific
kernel function and its parameters can be examined.
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Chapter 7

Multivariate Monitoring of
Wafer Acceptance Tests Via
Robust T 2

7.1 Motivation

In order to evaluate the quality and functionality of fabricated chips on a
wafer the wafer acceptance test (WAT) serves as a crucial post-production
check in semiconductor manufacturing. For each wafer, a large number of
test parameters (WAT parameters) are measured electrically to check specifi-
cations and basic chip functionalities. These tests reflect the results of single
process steps as well as of the whole manufacturing process and give impor-
tant information on its long-term stability. Product performance and product
yield are usually strongly related to the WAT data. In addition, the tests give
information if the chips on a wafer fulfill the specifications as defined by the
chip designers. The WAT data also provide a data base for the models used
by chip designers to design chip functionality. Such design models are often
multivariate, i.e., they consider the correlation structure among the param-
eters. Chip designers use this information to construct the functioning of a
chip and specify operational ranges of parameters for a process variant prior
to fabrication. However, standard univariate statistical tools like statistical
process control (SPC) charts are used to monitor the univariate performance
of WAT parameters after fabrication. These SPC charts do not reflect the
fact that WAT parameters are interrelated and correlated, i.e., do not behave
independently of each other. This makes the overall WAT data inherently
multivariate. Classical univariate monitoring approaches fail to capture the

85
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multivariate structure. For example, deviations due to changes in the corre-
lation structure can be missed. However, changes in the correlation can have
serious effects on the functionality of a chip. Thus, even if all parameters are
within their respective univariate SPC limits, non-observed abnormal multi-
variate relationships of the WAT parameters can cause significant yield losses
of a product or even a complete malfunction.

WAT data monitoring or wafer test data analysis and modeling has been
considered in the past (see, e.g., Fan et al. (2000), Skinner et al. (2002)).
However, the monitoring of changes in the multivariate relationship structure
was never considered explicitely. However, in order to better detect potential
yield problems, gain more detailed insight into wafer fabrication results and
ensure higher production quality information on the relationship structure
of WAT data is crucial.

In order to take this structure into account and to identify outliers due to
flawed relationships multivariate control charts have to be implemented. We
propose the use of a robust Hotelling’s T 2 statistics to monitor multivariate
deviations from a reference situation of historic WAT data. Robust estima-
tion of the T 2 statistic is crucial due to various sources of variation coming
from the actual manufacturing process, measurement site-to-site variation,
product-to-product variation, different measurement equipments or the pres-
ence of measurement errors. Fault diagnosis is achieved by applying an MYT
decomposition of the robust T 2 values.

Furthermore, the T 2 statistic can be used not only as a tool to identify
single abnormalities of WAT data but also to monitor the multivariate de-
velopment of the wafer acceptance tests over time. An observed process drift
or shift does not necessarily have to mean a change to the worse. It can
rather be a confirmation that implemented process changes have an actual
effect on the data or that the overall process behaviour developed or even im-
proved over time. Such information is considered highly valuable for process
engineers.

Multivariate relationships can be of bivariate order, i.e., correlations be-
tween two variables, and also of higher order. However, in our practical
experience with WAT parameter relationships and the related T 2 analysis
along with the MYT decomposition, trivariate or higher order relationships
among variables were never observed. Abnormal behaviour that could be
traced back to a flawed multivariate relationship was always observed to be
of a bivariate nature. Thus, for monitoring WAT data it suffices to narrow
our consideration of multivariate behaviour down to the case of bivariate
relationships.
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For multivariate monitoring models to be useful and applicable in a semi-
conductor production environment we constructed a novel software solution
based on R and TIBCO Spotfire. The proposed implementation is able to
connect advanced statistical modeling in the background with an easy-to-use
and familiar user interface for process engineers.

7.2 WAT Data

The common approach to performance monitoring of a semiconductor man-
ufacturing process is to fabricate a set of test structures on a wafer appro-
priate to give feedback on the process behaviour. These so called scribe line
monitors (SLMs) cover the main process parameters and result in a few hun-
dred parameters to be monitored. After the manufacturing process these
parameters are electrically measured on pre-defined patterns on each wafer
to generate the data set of WAT parameters.

WAT parameters can be grouped according to their physical relations
and functional similarities. These groups are called devices. Devices describe
basic functionalities of a chip. Chip designers use the devices as building
blocks when constructing a process variant for a new product. Thus, pro-
duction process variants differ in terms of the devices they are composed of,
i.e., functionalities that are required for the application of a chip. For multi-
variate monitoring via Hotelling’s T 2 several process variants with different
sets of available historical samples and variables were considered. Models
were constructed for process variants with the same devices for 0.35µ CMOS
(complementary metal oxide semiconductor) and high-voltage CMOS pro-
cess technologies . Mostly, a process variant is applicable for more than one
product type, i.e., chips with different final applications can share the same
process variant when manufactured.

Out of the various constructed models we exemplarily discuss a model for
one process variant of 0.35µ CMOS manufacturing technology composed of 12
devices. The process variant is applicable to 10 product types. However, only
the four most frequently manufactured products are considered for modelling.
The resulting initial data set consists of

• n = 1430 measurements from 286 wafers

• p0 = 40 WAT parameters.

The measurements are given in chronological order. Only in-control wafers
with all parameters being within their respective univariate control limits are
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considered. The parameters are measured on three different test equipments
at five sites on each wafer. Only full and regular five-site-measurements
were considered. One line in the data set represents the multivariate WAT
measurement conducted at one site of one wafer. The data was measured
between January and August 2012.

Typical WAT parameters are electrical resistances, threshold voltages or
film thicknesses. The variables are denoted as x1, . . . , x40. Due to confi-
dentiality reason, individual measurement vectors, descriptions of parameter
meanings or their original operational ranges can not be provided.

7.3 Phase 1: Construction of the Reference

Set

7.3.1 Overall Autoscaling

We exemplarily discuss a model for monitoring 40 WAT parameters denoted
x1, . . . , x40 for a single process variant. The variables are autoscaled.

A theoretical nonlinear relationship between x1 and x23 is known. The
distribution of x1 is right-skewed. After a log-transformation of x1 its dis-
tribution becomes symmetric and the relationship with x23 becomes linear.
Thus, we continue with ln(x1) in our model.

Analysis of the correlation structure of the initial data set shows evi-
dence of several colinearities among the WAT parameters, i.e., redundant
information. In cooperation with process engineers redundant variables were
removed in a stepwise fashion until the corresponding maximum condition
number of the correlation matrix was smaller than 30. Table 7.1 shows the
order of variable removal and the corresponding condition numbers based on
classicaly and robustly autoscaled data, and classical and RMCD correlation
estimates. The robust autoscaling is based on the L1-median for robust mul-
tivariate location estimation and the MAD for robust estimation of scale.
Figure 7.1 depicts the results graphically.

Analysis of the robust condition number suggests to remove variables
x32, x22, x6 and x23 from the initial data set due to their high correlations
with other variables. By using the robust RMCD method to estimate the
correlation matrix more variables have to be removed. Hence, the robust
model becomes simpler. Figure 7.2 shows the corresponding scatterplots.
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initially Pass 1 Pass 2 Pass 3 Pass 4
removed variable (classic) x32 x11 x6

max. classical condition 35.32 34.41 33.58 29.46
removed variable (robust) x32 x22 x6 x23

max. robust condition 41.06 40.08 32.37 31.78 21.69

Table 7.1: Condition number of the classically and robustly (RMCD) esti-
mated correlation matrix under step-by-step removal of variables with high-
est absolute correlation. The variable pair (x28, x32) has the highest absolute
value of both sample correlation (0.9274) and robust RMCD-based correla-
tion (0.9302).

However, further analysis shows evidence that product type and mea-
surement equipment are influential for some WAT variables. After robust
autoscaling using the L1-median and the MAD the influence becomes ob-
vious. Figure 7.3 depicts the evidence exemplarily for robustly autoscaled
variables x10 and x24.

Differences in different product types are common. The boxplots of x24
on the right panel of figure 7.3 shows its overall bimodal distribution. While
measurement equipments M1 and M2 are similar, equipment M3 behaves
differently. This is also confirmed by process engineers and is due to M3

being of newer technology than M1 and M2.

After removing variables x32, x22, x6 and x23 as suggested by the robust
condition number analysis, T 2 statistics using classical as well as RMCD es-
timates for multivariate location and scatter were computed. Both statistics
are shown in figure 7.4.

Only the robust T 2 chart shows a shift of the process between measure-
ment 750 and 850. Further analysis of the data affected by the shift shows
that it is only visible for a certain combination of product type and measure-
ment equipment.

7.3.2 Combination-Based Autoscaling

There are 7 different combinations of product type and measurement equip-
ment in the data. Table 7.2 gives an overview of the number of observations
for each combination.

Figure 7.5 shows the robust T 2 chart colored by these combinations.

Observations of product P3 on measurement equipment M1 are clearly
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Figure 7.1: Graphical depiction of the change in the condition number of the
classically and robustly (RMCD) estimated correlation matrix under removal
of variables with highest absolute correlation. The threshold for a acceptable
condition number of 30 is proposed in the literature.

different from the remaining observations in terms of T 2. By performing
robust autoscaling of the initial data separately for each product-equipment
combination, this effect can be filtered out. Furthermore, the combination-
based autoscaling results in a covariance matrix based on all 40 variables with
a smaller maximum robust condition number of 18.47. Thus, the T 2 statistic
can be computed based on all 40 variables. A histogram of the resulting T 2

statistic is shown in figure 7.6.

As depicted in figure 7.6, the assumption of the beta distribution does
not hold for the T 2 statistic based on robust estimates. Thus, in order
to determine the upper control limit the parametric assumption has to be
dismissed in favour of nonparametric methods. We use the nonparametric
bootstrapping approach as discussed in chapter 2. The resulting T 2 control
chart is shown in figure 7.7.

The resulting UCL based on 5000 bootstrap resamples is 175.70 for a
false alarm rate α = 0.01. The associated BCa bootstrap confidence interval
is [157.52, 192.49]. In comparison, the associated basic bootstrap interval is
[160.77, 194.65].
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Product type Measurement equipment measurements
P1 M1 125
P2 M1 470
P2 M2 245
P2 M3 125
P3 M1 120
P3 M3 125
P4 M3 220

Table 7.2: Number of observations for all 7 combinations of product type
and measurement equipment in the data set.

In summary, only the T 2 statistic based on robust estimates and au-
toscaling based on each product-equipment combination reflects the normal
operating condition of the WAT data without the undesired influence of dif-
ferent products or measurement equipments. The underlying data set of
n = 1430 observations and p = 40 variables is now used as reference data set
for further analysis.
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Figure 7.2: Scatterplots of variables with the highest correlations in the data
set. After discussions with process engineers, variables x32, x22, x6 and x23
are removed.
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Figure 7.3: Graphical depiction of the influence of product type and measure-
ment equipment on WAT variables. Boxplots of robustly autoscaled x24 for
each measurement equipment (left panel) and boxplots of robustly autoscaled
x10 for each product type (right panel).
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Figure 7.4: T 2 charts based on classical sample estimation (above) and robust
RMCD-based estimation of the covariance matrix.
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Figure 7.6: Histogram of the robust T 2 statistic based on data autoscaled
separately for each product-equipment combination and RMCD estimation
of the covariance matrix. The statistic is scaled with n/(n− 1)2 to compare
it to the beta distribution B(p/2,(n−p−1)/2) (blue line).
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Figure 7.7: T 2 control chart based on data autoscaled separately for each
product-equipment combination and RMCD estimation of the covariance ma-
trix. The UCL as determined via bootstrapping is shown as dashed blue line,
the corresponding BCa confidence limits are shown as dotted blue lines.
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7.4 Phase 2: Test Data Results

The constructed reference model is tested using an independent test data set
(phase 2). The test data set consists of ntest = 360 measurements conducted
on wafers produced between January and May 2014 based on the same 0.35µ
CMOS process technology variant and the same p = 40 variables as the
reference model. In the considered time frame products P2 and P3 were
manufactured and measured on equipments M1, M2 and M3.

The data is autoscaled separately for each observed product-equipment
combination using the robust estimates determined from the reference data
set. A T 2 control chart of the test data set based on the robust reference
covariance matrix is shown in figure 7.8.
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Figure 7.8: Robust T 2 values for the test data set.

The T 2 chart of the test data shows a first peak between measurement
40 and 45 and a process shift between observation 76 and 301. Then, the
remaining observations remain on a shifted level.

The first peak is formed by 6 measurements. Figure 7.9 shows the robust
RMCD-based MYT-decompositions of observations 42 (T 2

RMCD = 268.08)
and 44 (T 2

RMCD = 432.18) as barplots. The values are relative to the UCL.

Clearly, variables x27 and x30 are both strongly related to the changed
behaviour in both decompositions. For observation 44, x24, x12 and the
bivariate relationship between x1 and x23 also contribute. Due to the complex
correlation structure of the data, several other variables also show more or less
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contribution. The corresponding scatterplots shown in figure 7.10 confirm the
conclusions drawn from the MYT decompositions. In summary, the peak is
mainly univariate.

A longer lasting process shift between observation 76 and 301 follows.
Figure 7.11 exemplarily shows the MYT decomposition of observation 147.

The decomposition clearly identifies variables x30, x5 and x19 as the main
contributors to the abnormality of this observation. Further analysis of the
observations affected by the shift shows that x2 also contributes, again,
among others that contribute more or less due to the underlying relation-
ship structure. Figure 7.12 shows the associated scatterplots. In all variables
identified by the MYT decomposition univariate shifts in the test data are
clearly observable.

The remaining data from observation 301 onwards still show changed
behaviour. While minor abnormalities in x30 and x5 can still be identified,
the main drivers are often abnormalities in correlations among variables.
Figure 7.13 shows the MYT decomposition of observation 321.

Variables x21 and x4 are identified as having a correlation abnormality.
While their values are acceptable in univariate terms, their bivariate rela-
tionship is out of tolerance as both conditional terms signal in terms of T 2.
Distances to the respective regression lines are too large given the reference
situation, i.e., observations on either variable are not where they are expected
to be relative to the position of the other variable. Figure 7.14 depicts the
abnormality.

Further analysis identifies more observations where correlation problems
are the main contributors to an out-of-control T 2 value. Thus, a robust T 2

statistic along with the corresponding robust MYT decomposition seems to
be a reliable tool to identify these measurements as abnormal.

Furthermore, the T 2 analysis gives valuable information on the change of
the multivariate WAT parameter behaviour between the reference set mea-
sured in 2012 and the test data set measured in 2014.
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Figure 7.9: Barplots of the MYT decomposition of observations 42 (above)
and 44 (below). For each term, the values are divided by the corresponding
control limit for better comparability (false alarm rate α = 0.01).
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Figure 7.10: x27 versus x30 from the reference data set along with test obser-
vation 42 in red (left panel) and reference data variables x24 versus x12 and
test observation 44 in blue (right panel).
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Figure 7.11: Barplot of the MYT decomposition of observation 147. For each
term, the values are divided by the corresponding control limit for better
comparability (false alarm rate α = 0.01).
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Figure 7.12: x30 versus x5 (left panel) and x19 versus x2 (right panel) from
the reference data set along with test observation 76 to 301 (red).
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Figure 7.13: Barplot of the MYT decomposition of observation 321. For each
term, the values are divided by the corresponding control limit for better
comparability (false alarm rate α = 0.01).
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Figure 7.14: Scatterplot of reference data variables x21 versus x4 along with
test observation 321 (red).
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7.5 Implementation

For the presented multivariate monitoring approach to be useful and ap-
plicable in a fast and simple way an appropriate software environment was
implemented. The implementation is able to connect the statistical mod-
elling in the background with an easy-to-use graphical user interface (GUI).
This allows process engineers to apply advanced statistical models to a cho-
sen set of new test data in a familiar software environment. The results offer
new and advanced insights into wafer acceptance tests and allow an improved
assessment of the quality of each wafer.

Figure 7.15 shows a screenshot of the created Spotfire GUI.

Figure 7.15: Screenshot of the TIBCO Spotfire user interface for presenting
results of multivariate monitoring models of wafer acceptance tests.

The implementation runs all model computations in the background us-
ing R. Then, the results are presented in a novel graphical and interpretable
user interface created in the commercially available software TIBCO Spot-
fire. This is enabled through the possibility to connect Spotfire with R and
Spotfire’s ability to interpret R code.
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In a first step a data selection mask is shown where the user can load
WAT data from the data base for a specified process variant and time frame.
Then the multivariate monitoring model corresponding to the data selection
is automatically applied in the background. When the application is finished
the results are presented in the user interface shown in figure 7.15.

The upper left panel of this interface shows logistic details of the loaded
wafer samples and measurements along with their computed robust T 2 val-
ues. In the upper right panel the T 2 control chart is shown. The respective
UCL is determined via the nonparametric bootstrapping approach as dis-
cussed in chapter 2. The false alarm rate in the example is α = 0.01. Single
outlying wafers as well as process shifts and drifts can be detected in a fast
and simple way. By clicking on a measurement (upper left panel) or a T 2

value (upper right panel) of interest its MYT-decomposition is shown as bar
chart along with respective control limits in the bottom left panel. It works in
real-time and immediately informs which single WAT parameters or correla-
tions among WAT parameters are responsible for an out-of-control T 2 value.
Finally, by clicking on a bar of interest in the MYT decomposition chart,
the corresponding scatterplot of the involved WAT parameters is shown in
the bottom right panel where the chosen measurement is automatically high-
lighted. Data from the underlying reference data set used to construct the
T 2 is shown as dark gray points whereas the new test data points are high-
lighted in different colors. This allows a more detailed graphical inspection
of single out-of-control measurements or process shifts of any kind.

The presented information is considered novel and highly valuable for
process engineers. The multivariate approach allows a more detailed evalua-
tion of process shifts and possibly earlier detection of drifts that can lead to
future parameter shifts. Faults in the relationships among WAT parameters
can be evaluated and important correlations can be monitored. Violations
in the correlations that can lead to significant yield loss can be catched for
the first time. This also allows an improved assessment of the agreement of
actual production with the multivariate specifications formulated by the chip
designers.

As Spotfire is a popular tool for data analysis in semiconductor fabrication
and especially at ams AG, the implementation can also serve as a guideline
for future applications of statistical analysis and modelling for various types
of wafer fabrication data.
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7.5.1 Implementation in R

For the implementation the models are first constructed in R. Then an R

workspace is created that contains the robust estimation of the mean vector,
i.e., m, the robust estimation of the covariance matrix, i.e., S, the determined
UCL (ucl) as well as the reference data set as data frame xtrain. Moreover,
the respective false alarm rate is stored as alpha and the model name is
stored as model.

Furthermore, the MYT decomposition was implemented as R function
myt.dcmp(). For the ith test observation vector out of a Itest× p data frame
xtest of independent test data it is called by

myt.dcmp(hds=xtrain, center=m, cov=S, test.vector=xtest[i,],

limits=ucl.list, plot.it=TRUE)

for a reference data set (hds) xtrain with mean vector estimate m and
covariance estimate S. The logical argument plot.it then determines if the
result of the MYT decomposition for test observation xtest[i,] is plotted
as barplot. For plot.it=FALSE, only the values are computed and no plot
is generated.

The argument limits takes a list containing control limits for all uncon-
ditional as well as conditional terms. In order to generate these limits, a
function t2limit.gen() has been written and called beforehand via

ucl.list <- t2limit.gen(hds=xtrain, alpha=alpha, center=m,

cov=S, type="bootstrap")

for a fixed false alarm rate alpha. The argument type specifies the type of
UCL determination. Here, "bootstrap" leads to UCL computation based on
nonparametric bootstrapping for the corresponding quantile of the T 2 values
based on m and S. Other options are "mvn" for UCL determination based on
the assumption of multivariate normality of xtrain and "chebyshev" for a
distribution-free UCL determination based on Chebyshev’s inequality.

The generation of ucl.list can take several minutes of computation time
depending on the chosen type option. However, this object is generated
once and also saved in the R workspace. The computation of the actual
MYT decomposition values based on the generated limits can then performed
within seconds.
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Then, TIBCO Spotfire uses its integrated analytic engine TIBCO En-
terprise Runtime for R (TERR) to interpret the R workspace. This way,
the constructed models can be deployed to TERR in the usual R format for
model objects. Within TERR, a wrapper has been created that calls the
functions mahalanobis() and myt.dcmp() with the option plot.it=FALSE

on new test observations. The resulting T 2 value as well as the results of the
MYT decomposition are passed to the created Spotfire user interface shown
in figure 7.15 to create the graphical output.

7.6 Summary

We applied a robust Hotelling’s T 2 statistic to assess the outcome of wafer
acceptance tests in a multivariate way. In contrast to traditional univariate
checks, the multivariate approach allows the identification of problems with
correlations among WAT parameters. This is considered crucial as specifica-
tion limits and operational scope of WAT parameters are initially designed
based on their relationship structure. Due to a variety of measurement equip-
ments and product types as well as in-line production variation, the use of
robust statistics is essential to adequately estimate the reference situation
to which the WAT measurements are compared via T 2. By using the MYT
decomposition based on robust estimates of center and covariance complete
information on the variables or variable relationships involved in an out-of-
control T 2 value can be given and abnormality profiles can be constructed.

A T 2 model was constructed based on a reference data set measured in
2012. In order to test the approach we analysed WAT data measured between
January and May 2014. We detected peaks and shifts due to univariate
abnormalities as well as out-of-control signals mainly driven by correlation
abnormalities. The results also highlight the potential of Hotelling’s T 2 as a
tool to analyse changes and developments in the WAT parameters over time.

The constructed T 2 models for WAT data monitoring were implemented
in R. The outcome is presented in a novel graphical and interpretable user
interface created in TIBCO Spotfire. The constructed interface offers process
engineers a multivariate assessment of WAT data in a fast and simple way.
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Lopuhaä, H.P. and Rousseeuw, P.J. Breakdown points of affine equivariant
estimators of multivariate location and covariance matrices. The Annals
of Statistics, 19:229–248, 1991.

Louwerse, D.J. and Smilde, A.K. Multivariate statistical process control of
batch processes based on three-way models. Chemical Engineering Science,
55(7):1225–1235, 2000.

Lu, C.-D.; Zhang, T.-Y.; Du, X.-Z., and Li, C.-P. A robust kernel PCA
algorithm. In Proceedings of the 2004 International Conference on Machine
Learning and Cybernetics, pages 3084–3087. IEEE, 2004.

MacGregor, J.F. and Kourti, T. Statistical process control of multivariate
processes. Control Engineering Practice, 3(3):403–414, 1995.

Mason, R.L. and Young, J.C. Multivariate Statistical Process Control with
Industrial Applications. ASA-SIAM, Philadelphia, PA, 2002.

Mason, R.L.; Tracy, N.D., and Young, J.C. Decomposition of T 2 for mul-
tivariate control chart interpretation. Journal of Quality Technology, 27:
99–108, 1995.

Mason, R.L.; Tracy, N.D., and Young, J.C. A practical approach for inter-
preting multivariate T 2 control chart signals. Journal of Quality Technol-
ogy, 29(4):396–406, 1997.

Meng, X.; Morris, A.J., and Martin, E.B. On-line monitoring of batch pro-
cesses using a PARAFAC representation. Journal of Chemometrics, 17(1):
65–81, 2003.



113

Mercer, J. Functions of positive and negative type, and their connection
with the theory of integral equations. Philosophical Transactions of the
Royal Society of London. Series A, containing papers of a mathematical or
physical character, pages 415–446, 1909.

Miller, P.; Swanson, R., and Heckler, C. Contribution plots: a missing link in
multivariate quality control. Applied Mathematics and Computer Science,
8:775–792, 1998.

Nguyen, M.H. and De La Torre, F. Robust kernel principal component
analysis. In Advances in Neural Information Processing Systems 21, pages
1185–1192. Curran Associates, Inc., 2009.

Nomikos, P. and MacGregor, J.F. Monitoring batch processes using multi-
way principal component analysis. American Institute of Chemical Engi-
neers Journal, 40(8):1361–1375, 1994.

Nomikos, P. and MacGregor, J.F. Multivariate SPC charts for monitoring
batch processes. Technometrics, 37(1):41–59, 1995.

Palus, M. and Dvorak, I. Singular-value decomposition in attractor recon-
struction: pitfalls and precautions. Physica D, 55(1-2):221–234, 1992.

Phaladiganon, P.; Kim, S.B.; Chen, V.C.P., and Baek, J.-G. Bootstrap-based
T 2 multivariate control charts. Communications in Statistics - Simulation
and Computation, 40(5):645–662, 2011.

Phaladiganon, P.; Kim, S.B.; Chen, V.C.P., and Jiang, W. Principal com-
ponent analysis-based control charts for multivariate nonnormal distribu-
tions. Expert Systems with Applications, 40:3044–3054, 2013.

Pison, G.; Van Aelst, S., and Willems, G. Small sample corrections for lts
and mcd. Metrika, 55(1-2):111–123, 2002.

Pravdova, V.; Estienne, F.; Walczak, B., and Massart, D.L. A robust version
of the Tucker3 model. Chemometrics and Intelligent Laboratory Systems,
59(1):75–88, 2001.

Qin, S.J. Statistical process monitoring: basics and beyond. Journal of
Chemometrics, 17(8-9):480–502, 2003.

Qin, S.J. Survey on data-driven industrial process monitoring and diagnosis.
Annual Reviews in Control, 36(2):220–234, 2012.



114 BIBLIOGRAPHY

Qin, S.J.; Valle, S., and Piovoso, M.J. On unifying multiblock analysis with
application to decentralized process monitoring. Journal of Chemometrics,
15:715–742, 2001.

Qin, S.J.; Cherry, G.; Good, R.; Wan, J., and Harrison, C.A. Semiconduc-
tor manufacturing process control and monitoring: a fab-wide framework.
Journal of Process Control, 16:179–191, 2006.

R Core Team, . R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014. URL
http://www.R-project.org/.

Rousseeuw, P. and Croux, C. Alternatives to the median absolute deviation.
Journal of the American Statistical Association, 88(424):1273–1283, 1993.

Rousseeuw, P.J. Least median of squares regression. Journal of the American
Statistical Association, 79(388):871–880, 1984.

Rousseeuw, P.J. and Van Driessen, K. A fast algorithm for the minimum
covariance determinant estimator. Technometrics, 41(3):212–223, 1999.

Rousseeuw, P.J. and Van Zomeren, B.C. Unmasking multivariate outliers
and leverage points. Journal of the American Statistical Association, 85
(411):633–639, 1990.

Schölkopf, B. and Smola, A.J. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT press, Cambridge,
MA, 2002.

Schölkopf, B.; Smola, A.J., and Müller, K.R. Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319,
1998.

Shevlyakov, G. and Smirnov, P. Robust estimation of the correlation co-
efficient: an attempt of survey. Austrian Journal of Statistics, 40(1&2):
147–156, 2011.

Skinner, K.R.; Montgomery, D.C.; Runger, G.C.; Fowler, J.W.; McCarville,
D.R.; Rhoads, T.R., and Stanley, J.D. Multivariate statistical methods
for modeling and analysis of wafer probe test data. IEEE Transactions on
Semiconductor Manufacturing, 15(4):523–530, 2002.

Smilde, A.; Bro, R., and Geladi, P. Multi-Way Analysis with Applications in
the Chemical Sciences. Wiley, Chichester, UK, 2004.



115

Stahel, W.A. Robuste Schätzungen: Infinitesimale Optimalität und
Schätzungen von Kovarianzmatrizen. PhD thesis, Eidgenössische Tech-
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