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Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht

habe.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material

which has been quoted either literally or by content from the used sources.

Graz, May 2011 ...........................

(signature)





iii

Abstract

The ability to store information and to retain this information at a later point in

time is probably one of the most essential functions of one of the most fascinating

systems evolution has developed - the brain. Working memory is used to maintain

information for relatively brief time intervals, usually on the time scale of up to

several seconds. This thesis investigates several aspects of working memory and

provides new insights to the formation of memory traces in the brain. Two ap-

proaches to this topic are covered by the present work. The first approach studies

the phenomenon of working memory formation from the perspective of electrophys-

iological data analysis and signal processing, while in the second approach working

memory traces and memory-dependent computations are generated through reward-

modulated learning in a computational model of a recurrent neural network.

The first part, comprised of two chapters, reveals local interaction patterns

between neural populations within extrastriate visual area V4 as well as long-range

interactions between two distant cortical areas, V4 and the lateral prefrontal cortex

(lPF) of macaque monkeys that perform a visual short-term memory task. The

analysis is based on simultaneous recordings of local field potentials (LFP) and

spiking activity of single units obtained from extracellular recordings in the awake

and behaving monkey, provided by my collaborators from the MPI for Biological

Cybernetics in Tübingen. Within V4, analysis with multivariate autoregressive

models reveals new insights into the patterns of directed information flow between

neural populations on the level of the local field potential which are most prominent

in the theta frequency band, and moreover shows that these interaction patterns

are a rather local phenomenon. Between V4 and lPF, results from Wavelet-based

methods for phase synchronization analysis suggest that the synchronization of

oscillatory activity in the theta range between these distant cortical sites is likely

to provide the basis for the coordination of spiking activity in both areas during

the memory phase of the task.

The second part tries to extend and modify previous results from the field of

reservoir computing and provides experimental evidence for the ability of a rate-

based recurrent neural network with trained readout units to learn to produce

coherent patterns of activity, memory traces and to carry out memory-dependent

computations by employing a purely local reward-modulated Hebbian learning rule.

In contrast to the traditionally used fully supervised methods, learning in the pro-

posed model is solely based on correlations between the presynaptic activity and

postsynaptic noise perturbations, modulated by a global binary signal that provides

the system with information whether the overall system performance has recently

increased. In this way, the present results provide a new perspective for the emer-

gence of complex computations through learning in biological neural systems.

Keywords: Neural data analysis, oscillatory synchrony, autoregressive models,

computational neuroscience, reservoir computing, reward-modulated learning
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Zusammenfassung

Die Fähigkeit, Informationen zu speichern und diese zu einem späteren Zeitpunkt

wieder abzurufen, ist wahrscheinlich eine der entscheidendsten Funktionen eines der

wohl faszinierendsten Systeme, die die Evolution hervorgebracht hat - des Gehirns.

Das Arbeitsgedächtnis wird benötigt, um Informationen für relativ kurze Zeitinter-

valle in Erinnerung zu behalten, üblicherweise auf einer Zeitskala von einigen Sekun-

den. Diese Dissertation untersucht verschiedene Aspekte des Arbeitsgedächtnisses

und liefert neue Einsichten in die Entstehung von Gedächtnisspuren im Gehirn.

Zwei Ansätze zu diesem Thema werden in der vorliegenden Arbeit behandelt.

Der erste Ansatz untersucht das Phänomen der Entstehung von Arbeitsgedächtnis

aus der Perspektive der Analyse elektrophysiologischer Daten und der Signalver-

arbeitung, während im zweiten Ansatz Gedächtnisspuren und gedächtnisabhängige

Berechnungen durch belohnungsmoduliertes Lernen in einem Computermodell eines

rekurrenten neuralen Netzes erzeugt werden.

Der erste Teil, bestehend aus zwei Kapiteln, deckt lokale Interaktionsmuster

zwischen neuralen Populationen im extrastriären visuellen Areal V4 sowie In-

teraktionen zwischen zwei voneinander weit entfernten kortikalen Arealen, V4

und dem lateralen präfrontalen Kortex (lPF) von Rhesusaffen, die eine visuelle

Kurzzeitgedächtnis-Aufgabe durchführen, auf. Die Analyse basiert auf simultanen

Aufzeichnungen von lokalen Feldpotentialen (LFP) und Spike-Aktivität einzelner

neuraler Einheiten, die mittels extrazellulärer Messungen im wachen Affen erzeugt

wurden. Diese Daten wurden von meinen Kollegen vom MPI für Biologische Ky-

bernetik in Tübingen zur Verfügung gestellt. Innerhalb von V4 liefert die Anal-

yse mittels multivariaten autoregressiven Modellen neue Einsichten in die Muster

gerichteten Informationsflusses zwischen neuralen Populationen auf der Ebene des

LFP, die am stärksten im Theta-Frequenzbereich ausgeprägt sind. Darüber hinaus

wird gezeigt, dass es sich dabei um ein eher lokales Phänomen handelt. Zwischen

V4 und lPF legen die Resultate aus Analysen mittels Wavelet-basierten Methoden

nahe, dass die Synchronisation von oszillatorischer Aktivität im Theta-Band zwis-

chen diesen voneinander weit entfernt liegenden kortikalen Arealen vermutlich die

Basis für die Koordination von Spike-Aktivität in den beiden Arealen während der

Gedächtnisphase der Aufgabe bietet.

Der zweite Teil versucht, frühere Resultate aus dem Bereich des Reservoir Com-

puting zu erweitern und zu modifizieren und experimentelle Evidenz dafür zu liefern,

dass ein ratenbasiertes rekurrentes neurales Netzwerk mit trainierten Readout-

Einheiten unter Zuhilfenahme einer rein lokalen belohnungsmodulierten Hebb’schen

Lernregel fähig ist, kohärente Aktivitätsmuster und Gedächtnisspuren zu erzeugen

und gedächtnisabhängige Berechnungen durchzuführen. Im Unterschied zu tradi-

tionell benutzen vollständig überwachten Verfahren basiert Lernen im vorgeschlage-

nen Modell rein auf Korrelationen zwischen präsynaptischer Aktivität und postsy-

naptischem Rauschen, moduliert durch ein globales binäres Signal, welches das Sys-

tem mit Information darüber versorgt, ob die Gesamtleistung des Systems kürzlich

zugenommen hat. Auf diese Weise liefern die vorliegenden Resultate eine neue
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Perspektive für die Entstehung von komplexen Berechnungen durch Lernen in bi-

ologischen neuronalen Systemen.

Schlüsselwörter: Neurale Datenanalyse, oszillatorische Synchronizität, autore-

gressive Modelle, computerorientierte Neurowissenschaften, Reservoir Computing,

belohnungsmoduliertes Lernen
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Chapter 1

Introduction

Memory is the mother of all wisdom.

— Aeschylus, 5th century BC

As Aeschylus already expressed with the above quote in ancient Greece, the ability

to retain information and to reconstruct this information at a later point in time

is a major component of our personhood, even though we usually do not notice its

substantial influence in everyday life unless we explicitly reflect on it. Memory is

involved in virtually every act that we perform. For example, we use memory of

the temporal patterns of muscle activations in order to perform specific motions,

memory of the consequences of our previous actions in particular contexts in order

to choose future actions, memory of consistent observations that we made previously

to infer general principles, and we construct entire worlds based on our memories

while dreaming. Since memory is so fundamental for us, the question of how the

nervous system is able to store information in a way that allows us to selectively

access it at a later point in time has attracted a large number of scientists in various

disciplines, from philosophers via biologists and psychologists through to computer

scientists.

Some fundamental principles that form the basis of our contemporary under-

standing of the mechanisms that underlie learning and memory have been proposed

by Donald Hebb. He concluded from his studies of the impact of brain tissue re-

moval on memory and intelligence that the neural substrate of memory has to be

widely distributed in the brain rather than strictly localized because intelligence

was only influenced little even if large amounts of brain tissue were removed (Klein,

1999). The same conclusion had been drawn earlier based on animal lesion studies

by his former PhD advisor, Karl Lashley (Lashley, 1929).

A question of particular interest within the scope of this thesis that is raised

by the above conclusion is how spatially distant neural populations that are in-

volved in memory processes are able to communicate with each other. Since the

German researcher Hans Berger provided the first evidence for oscillatory processes

in human electroencephalogram recordings (Berger, 1929), researchers have been

interested in the function of oscillatory processes in the brain. Oscillatory pro-

cesses have been related to memory in many studies, both in animals and humans.

Analysis of electrophysiological data of intracortically recorded local field poten-

tials (LFP) as well as noninvasive electroencephalogram (EEG) and magnetoen-

cephalogam (MEG) recordings revealed two classes of memory-related oscillations,



2 Chapter 1. Introduction

low frequency theta oscillations and high frequency gamma oscillations. For exam-

ple, it has been found that spiking activity in prefrontal cortex of rodents is syn-

chronized with theta oscillatory activity in the Hippocampus during spatial memory

(Siapas et al., 2005; Jones and Wilson, 2005; Buzsaki, 2006), suggesting that these

low frequency oscillations are used to coordinate the mediation of information be-

tween distant cortical sites. A recent review of the relation of brain oscillations and

memory is provided in Duezel et al. (2010). Also, the introductory sections of chap-

ters 2 and 3, which investigate interaction patterns within extrastriate visual area

V4 and between V4 and lateral prefrontal cortex during visual short-term memory,

respectively, provide an overview on the relations of theta oscillatory activity and

memory in the recent literature.

Besides his and Lashley’s conclusion about the distributed nature of intelligence

and memory, Donald Hebb also postulated a widely influential concept in his book

“The organization of behavior” in 1949, known as “Hebbian learning”. More specif-

ically, Hebb postulated the ability of synaptic connections to increase their efficacy

if the activity of a pre- and a postsynaptic neuron is correlated. In other words,

Hebb’s postulate states that the strength of a synaptic connection between two neu-

rons is increased if the pre- and the postsynaptic neuron repeatedly fire together

(Hebb, 1949).

In computational neuroscience, the idea of Hebbian learning is reflected in a

large set of learning rules that have been developed for rate-based as well as for

spiking neuron models and modify and extend the basic concept. One prominent

example of such an extension that is a topic of current research is the concept of spike

timing dependent plasticity (STDP). Assuming that an asymmetric STDP function

like the one in Bi and Poo (1998) is used, the synaptic connection between a pre-

and a postsynaptic neuron is strengthened if the postsynaptic neuron repeatedly

fires shortly after the presynaptic neuron, resulting in long term potentiation (LTP).

On the other hand, if the postsynaptic neuron repeatedly fires shortly before the

presynaptic neuron, the synaptic connection is weakened, resulting in long term

depression (LTD). A recent review of STDP and the experimental evidence for its

implementation in biological nervous systems can be found in Caporale and Dan

(2008), and a theory linking STDP and working memory has been provided in

Szatmary and Izhikevich (2010).

In addition to unsupervised learning rules, extensions have been developed in

which the learning process is modulated by external reward signals. For STDP,

such a learning rule has been proposed for example by Izhikevich (2007) and further

investigated in subsequent studies (Legenstein et al., 2008; Fremaux et al., 2010).

Another reward modulated learning mechanism that is based on Hebbian learning

has been developed in the lab of Sebastian Seung (Xie and Seung, 2004; Fiete

and Seung, 2006) and successfully applied in a model of birdsong learning (Fiete

et al., 2007). In their approach, instead of pairing pre- and postsynaptic spikes that

occur with a small temporal delay to each other, presynaptic spikes are paired with

simultaneously occuring spikes from a noise source that spikes at random points

in time. These noise spikes are also projected to the postsynaptic neuron, and
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whenever a positive reward is given in response to a noise spike, the projections from

the presynaptic neurons that spiked together with the noise input are strengthened.

Similarly, the projections from presynaptic neurons that spiked in absence of a

simultaneous spike in the noise input are weakened if a negative reward is given

in response. The learning rule I employ in chapter 4 is similar to this kind of

learning rule, but instead of employing a spiking neural network, I focus on reward-

modulated Hebbian learning of memory-related computational functions in a rate-

based recurrent neural network model which is based on the reservoir computing

paradigm (Maass et al., 2002; Jaeger, 2003) and its extensions that incorporate

feedback projections from trained readout units into the recurrent neural network

and let them contribute substantially to the recurrent network dynamics (Jaeger

and Haas, 2004; Maass et al., 2007; Sussillo and Abbott, 2009).

While we have substantial evidence nowadays that the brain stores information

in a highly distributed way, involving plasticity mechanisms that regulate the ef-

ficacy of the synaptic connections, and a vast amount of both experimental and

computational neuroscience studies that try to resolve some aspects of the puzzle,

the exact mechnisms that underlie the storage and retrieval of memory contents

still remain a mystery.

In this thesis, a few pieces are added to the puzzle. The work presented in the

subsequent chapters considers some aspects of memory formation, both from the

perspective of electrophysiological data analysis (chapters 2 and 3) and computa-

tional modelling (chapter 4). In this work, I focus on working memory, i.e. memory

that maintains information for relatively brief time intervals up to a few seconds

(Purves et al., 2008). In the literature, three types of memory are distinguished from

each other: long-term memory, short-term memory and working memory. While all

the definitions of these three types of memory are still controversial, the distinction

between short-term and working memory is probably the most subtle one. A recent

attempt to clarify the differences has been conducted by Cowan (2008), who char-

acterizes short-term memory by temporal decay and chunk capacity limits, while

subsuming short-term memory and the mechanisms to process short-term memory

in order to make use of it in a particular context under the more general term work-

ing memory. However, in the work presented here, I do not rigorously distinguish

between the terms “working memory” and “short-term memory”.

1.1 Organization of the Thesis

This thesis is comprised of this introduction and three chapters which are based

on papers to which I contributed during my PhD studies. Chapters 2 and 3 fo-

cus on results which I obtained by analyzing electrophysiological data and were

carried out in collaboration with the Max Planck Institute for Biological Cybernet-

ics in Tübingen, Germany, where the monkey experiments and electrophysiological

recordings were designed and performed by my collaborators, Gregor Rainer and

Stefanie Liebe. In contrast to these chapters, chapter 4 focuses on a novel mech-
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anism for reward-modulated learning in computational models of recurrent neural

networks and its application to computational tasks that involve working memory.

Note that since the papers on which the subsequent chapters are based were con-

ducted in collaboration with others, my contributions to each paper are indicated

at the beginning of each chapter.

In chapter 2, I explore functional coupling patterns in the extrastriate visual

cortical area V4 of macaque monkeys performing a delayed matching to sample

(DMS) task in which they had to discriminate whether two visual stimuli presented

briefly with a delay of approximately 1.5s between them were identical or not. Dur-

ing the delay period, the monkeys therefore had to retain a memory trace of the

first stimulus in order to be able to compare it to the second one. In the analysis,

I compared the functional coupling between the activities of neural populations,

reflected in the local field potential (LFP) recorded simultaneously at several parts

of V4, during this delay period to the period before the presentation of the sample

stimulus. In order to gain insights into the specific functional connectivity patterns

that arise during short-term memory, I fitted multivariate autoregressive models to

the simultaneously recorded data. Based on these models, I analyzed the interac-

tions between different LFP traces using coupling measures that are based on the

model parameters and build upon the concept of “Granger causality” (Granger,

1969). These coupling measures reveal transient interactions between neural pop-

ulations by means of oscillatory activity in the frequency domain. I found that

these interactions during visual short-term memory predominantly arise within the

theta frequency band and are strongly directed rather than symmetric. Moreover,

the strength of these interactions decreases with increasing distance between the

recording sites. Taken together, the presented results give some important insights

into the spatiotemporal connectivity patterns that arise between local populations

of neurons in V4 during visual short-term memory.

In chapter 3, I further analyze interactions in electrophysiological data. Specif-

ically, I explore the synchronization of local field potentials (“LFP phase locking”)

between two distant brain areas, namely the extrastriate visual area V4, which I

also investigated in chapter 2, and the lateral prefrontal cortex (lPF) of macaque

monkeys during a visual memory task. The task the monkey performed was the

same DMS task as described in the previous paragraph. Moreover, I investigate

coupling of the spiking activity from single units within both areas to the phase of

the local field potentials in the respective other area (“spike phase locking”). Other

than in the previous chapter, I use Wavelet-based methods to extract the instanta-

neous phase of the LFP oscillations, and employ several analysis techniques based

on this phase information to measure long range interactions. The analysis reveals

that the local field potential oscillations within the theta range exhibit an increase

in phase locking between V4 and lPF during the delay period of the task that is ac-

companied by an increase in spike phase locking between these areas. Interestingly,

the findings show that the degree of inter-cortical interactions in the theta range

between both areas is correlated with task performance, suggesting that oscillatory

synchrony on the level of the LFP provides the basis for the coordination of the
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timing of spiking activity in both areas during visual short-term memory.

In contrast to chapters 2 and 3, I explore some aspects of working memory

formation from a different perspective in chapter 4. In this chapter, I focus on com-

putational models of recurrent networks of rate-based neurons with feedback from

trained readouts. Modifying and extending previous results in the field of reservoir

computing, I provide a novel approach for the training of recurrent networks in

which the weights of the synaptic connections from the network to the readouts

are adapted using a reward-modulated Hebbian learning rule. More precisely, the

weight adaptations are based on the correlations of the presynaptic activity with

random perturbations of the readout’s output in the presence of a global modula-

tory signal that indicates in a binary fashion whether or not the performance of the

system has recently improved due to these perturbations. In the simulations, I show

that after an appropriate training time, one or several readouts are able to compute

specific oscillatory patterns of activity, persistent memory of previously observed

stimuli, and other memory-dependent computations. Therefore, reward-modulated

Hebbian learning is a viable alternative to fully supervised learning methods which

are traditionally employed in the reservoir computing approach that is based on

biologically more plausible mechanisms.





Chapter 2

Directed coupling in LFPs of

macaque V4 during visual

short-term memory

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

This chapter is based on the paper “Directed coupling in local field potentials

of macaque V4 during visual short-term memory revealed by multivariate autore-

gressive models”, which was published in the journal “Frontiers of Computational

Neuroscience” in May 2010. The work was conducted in collaboration with Ste-

fanie Liebe (SL), Gregor Rainer (GR) and Nikos Logothetis (NL), affiliated with

the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, and

Alois Schlögl (AS), affiliated with the Institute for Human-Computer Interfaces at

TU Graz, Austria, at the time the presented work was conducted. The monkey

experiments and electrophysiological recordings were designed by SL and GR and

conducted by SL. The data analysis was performed by myself and SL. Specifically, I

provided the multivariate autoregressive modelling work including the coupling anal-

ysis and contributed to the statistical evaluation and the interpretation of the results.

The paper was written by myself and SL, with additional input from AS, NL and

GR. The results of this work, in which for the first time these analysis techniques

are applied to simultaneously recorded V4 LFP data from the macaque monkey per-

forming a visual memory task, reveal new insights into the interaction patterns of

populations of neurons within extrastriate visual area V4 during visual short-term

memory.
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Processing and storage of sensory information is based on the interaction be-

tween different neural populations rather than the isolated activity of single neurons.

In order to characterize the dynamic interaction and transient cooperation of sub-

circuits within a neural network, multivariate autoregressive (MVAR) models have

proven to be an important analysis tool. In this study, I apply directed functional

coupling based on MVAR models and describe the temporal and spatial changes of

functional coupling between simultaneously recorded local field potentials (LFP) in

extrastriate area V4 during visual memory. Specifically, I compare the strength and

directional relations of coupling based on Generalized Partial Directed Coherence

(GPDC) measures while two rhesus monkeys perform a visual short-term memory

task. In both monkeys I find increases in theta power during the memory period

that are accompanied by changes in directed coupling. These interactions are most

prominent in the low frequency range encompassing the theta band (3-12 Hz) and,

more importantly, are asymmetric between pairs of recording sites. Furthermore,

it is shown that the degree of interaction decreases as a function of distance be-

tween electrode positions, suggesting that these interactions are a predominantly

local phenomenon. Taken together, the results show that directed coupling mea-

sures based on MVAR models are able to provide important insights into the spatial

and temporal formation of local functionally coupled ensembles during visual mem-

ory in V4. Moreover, the findings suggest that visual memory is accompanied not

only by a temporary increase of oscillatory activity in the theta band, but by a

direction-dependent change in theta coupling, which ultimately represents a change

in functional connectivity within the neural circuit.

2.1 Introduction

Cortical oscillatory activity measured from local field potential recordings (LFP) or

electroencephalogram (EEG) is a wide-spread neuronal phenomenon and is consid-

ered to underlie the communication of local and distant neural populations through-

out the brain (Fries, 2005). Different parameters of oscillations in distinct frequency

bands often show correlations with various aspects of sensory information processing

(Buzsaki and Draguhn, 2004). A prominent example is the modulation of gamma

synchrony in visual cognition, for example in tasks involving the manipulation of

visual attention (Fries et al., 2001), binocular rivalry (Gail et al., 2004) or object

recognition (Supp et al., 2007).

In contrast to visual processing, several studies revealed a specific role of theta

oscillations (3-12 Hz) in mnemonic processing, for example in spatial memory in

rodents (O’Keefe, 1993; Buzsaki, 2005), working memory in humans (Klimesch,

1999; Raghavachari et al., 2001, 2006) and visual short term memory in non-human

primates (Rainer et al., 2004; Lee et al., 2005). In the latter study, neuronal oscil-

lations in the theta band in extrastriate area V4 have been shown to mediate the

coding and maintenance of relevant visual information within short-term memory.

Thus, theta oscillations in V4 could provide a possible mechanism for supporting
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and coordinating cross-neuronal interactions within neuronal ensembles during vi-

sual memory. However, physiological evidence for directed oscillatory interactions

in the theta frequency range during short-term memory has not been obtained yet.

A description of the interaction patterns of oscillatory processes is provided

by different measures that quantify various aspects of functional coupling. For

example, some measures such as the phase locking value (Lachaux et al., 1999,

2000) provide insights into the instantaneous phase-relationship between two oscil-

latory processes and are derived from Wavelet- or Hilbert transform-based methods.

In contrast, coupling measures derived from multivariate autoregressive (MVAR)

models are becoming increasingly important as they capture not only instantaneous

interactions between neural signals, but can give insights into the causal relation-

ship between oscillations as well as the direction of their interaction. Thus, MVAR

models are powerful in capturing the complex nature of oscillatory interactions and

their role in neural processing.

MVAR models are a generalization of univariate autoregressive (AR) models,

which were among the first methods that were applied to EEG data to reveal the

spectral properties of brain signals already in the late 1960s (Zetterberg, 1969).

MVAR models are able to take the interactions of multiple simultaneously recorded

brain signals into account. A large set of coupling measures in the frequency domain

such as coherency (Nunez et al., 1997, 1999), Directed Transfer Function (DTF,

(Kaminski and Blinowska, 1991)) or Partial Directed Coherence (PDC, (Baccala

and Sameshima, 2001)) as well as variants of these and similar measures can be

derived using the MVAR model parameters (Schlögl and Supp, 2006; Porcaro et al.,

2009) and the implementation of coupling analyses is readily achieved by various

toolboxes (Schlögl and Brunner, 2008; Cui et al., 2008).

Importantly, DTF and PDC, unlike coherency, assess the directionality of cou-

plings between signals, i.e. they measure the direction of information flow between

different channels. Both measures are based on the concept of Granger causality

(Granger, 1969), which can be informally stated as follows: If the observation of

a time series x(t) significantly improves the prediction of a time series y(t), x(t)

”Granger-causes” y(t). PDC differs from DTF by having the ability to reveal ex-

clusively direct couplings, which means that it does not assess indirect couplings

via intermediate sites. For example, if the model incorporates three observed chan-

nels, with a connection structure A → B → C, PDC is not expected to show a

connection from A to C. It is important to note that Granger causality is not iden-

tical to physical causality, but is a statistial measure reflecting the improvement of

predictability of one signal based on the information of another.

Previously, autoregressive models have been applied to EEG data and LFP data

for various brain areas and frequency bands of interest and have revealed impor-

tant insights into the functional relations between neuronal assemblies involved in

sensorimotor behavior, sensory integration and visual attention (Supp et al., 2007;

Bressler et al., 1999; Liang et al., 2000, 2001; Brovelli et al., 2004; Bressler et al.,

2007; Chen et al., 2006; Liang et al., 2003; Kayser and Logothetis, 2009; Anderson

et al., 2009).
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In the present study, I applied multivariate autoregressive modelling to simul-

taneous LFP recordings from multiple electrodes in V4 while monkeys performed

a visual identification task. MVAR models have been used previously to examine

causal influences in area V4 in order to elucidate physiological mechanisms under-

lying neuronal oscillations in the alpha frequency range (i.e. 10-15Hz) (Bollimunta

et al., 2008).

In this study, my goal was to exploit the advantages of MVAR models in order to

investigate the directed functional relationship between multiple sources underlying

theta oscillations during visual memory in V4. In order to gain insights into the

direct interaction between multiple oscillatory components (i.e. bypassing coupling

due to indirect influences) our MVAR models incorporated LFP activity of more

than two simultaneously recorded channels. In addition, I evaluated the temporal

and spatial dynamics of these direct interactions and provide a first description of

causal and directed oscillatory coupling in the theta frequency range during visual

memory.

2.2 Materials and Methods

In the following, I describe the procedure that was used for the analysis. Afterwards,

the experimental procedures for the data aquisition are described.

2.2.1 Preprocessing

LFP data was preprocessed using standard techniques, as described for example

in (Ding et al., 2000). First, I resampled the data to a frequency fs of 200 Hz.

This sampling rate is low enough to be able to use a sufficiently low MVAR model

order while being high enough for an adequate representation of the frequency

bands of interest. Then, I used a 50 Hz notch filter to suppress the electrical

supply line noise. Afterwards, the data was normalized by subtracting the mean

waveform across trials (grand-averaged mean waveform) from each single trial and

subsequently dividing the result by the standard deviation across trials. This is

necessary to remove first order instationarities from the data and to set the ensemble

mean of the resulting data set to zero. I did not apply the same normalization

procedure using the temporal mean and standard deviation for each separate trial,

which is also frequently proposed, because this can lead to an underestimation of

the low frequency components in which we were particularly interested.

2.2.2 Multivariate Autoregressive Modelling

To assess coupling between different LFP channels, I separately generated linear

multivariate autoregressive (MVAR) models of the data for each recording session

and each time interval of interest. The MVAR model can be expressed as
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y(t) =

P
∑

p=1

Apy(t − p) + x(t).

The model tries to predict the data at sample t from a linear combination of the

P previous samples of all M channels. Here, y(t) is the vector of M simultaneously

observed LFP recordings, P is the model order stating the number of preceding

samples that are used to predict the data at sample t, and the innovation process

x(t) (sometimes addressed as the “residual error” or “prediction error”, see (Supp

et al., 2007; Schlögl, 2000) for comments) is assumed to be a multivariate white

noise process and is equal to the difference between the model prediction and the

actual data. In order to estimate the model parameter matrices Ap that weight the

previous samples of the time series to predict the current one such that the mean

quadratic error is minimized, I use the Burg-type method of Vieira-Morf (Marple,

1987) which, according to (Schlögl, 2006), is expected to provide the most accurate

estimates of the model parameters. I used 250 ms windows for the time-frequency

analysis, with an overlap of 200 ms for subsequent time intervals ((Ding et al., 2000)

called this procedure an Adaptive MVAR or AMVAR approach), and 1 s windows

for the assessment of statistical significance of coupling and change in coupling

between the two investigated task conditions (cf. section on the experimental task).

Note that the model assumes the data to be stationary, which is usually not the case

for longer time segments of electrophysiological data, but for the short time intervals

that are investigated in this study, the data is assumed to be quasi-stationary. I

used the freely available open source Matlab implementation of the BioSig Toolbox

for biomedical signal processing (Schlögl and Brunner, 2008) for the analysis, which

can be found at http://biosig.sf.net/.

There exists a number of criteria for estimating the optimal model order for

each data set such as the Akaike Information Criterion (AIC, (Akaike, 1974)) or

Schwarz’s Bayesian Information Criterion (BIC, (Schwarz, 1978)) which try to es-

timate the optimal model order for the MVAR model.

Both criteria take the goodness of fit to the empirical data into account, but also

penalize for increasing numbers of free parameters to avoid overfitting to the data.

Note that smaller values indicate better model orders. Unfortunately, the optimal

model order is usually not consistent for different criteria and different data sets. I

tried to estimate the optimal model order (in the range between 1 and 50, which

reflects the length of the 250 ms windows we used for the time-frequency analysis)

by using these measures, but the results did not show consistent local minima and

qualitatively decreased with increasing model order instead (see Figure 2.1).

I compared models of order 20 and 40 for the 250 ms windows and found the

resulting average power spectra and couplings to be qualitatively consistent. There-

fore, I used a model order P of 20 for every data set, which corresponds to a time

window of 100 ms given the sampling frequency of 200 Hz. This model order reflects

a tradeoff between spectral resolution (specifically, I make clear that the model or-

der does not determine the spectral resolution, which is in fact infinite, but instead
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Figure 2.1: Evaluation of model orders using Akaike Information Criterion (AIC) and

Schwarz’s Bayesian Information Criterion (BIC), normalized between maxima and minima

of each session for the 1s data from the delay condition. Gray lines indicate single sessions,

black lines correspond to the average over all sessions. Criteria did not show consistent local

minima, but qualitatively decreased with increasing model order up to P=50. Smaller values

indicate better model orders. For the data from both animals and all sessions, the model

order P=20 was chosen as a tradeoff between frequency resolution and overparametrization.

it determines the number of observed frequency components for each pair of chan-

nels, which is P/2, and relates to the “frequency resolution” in this sense (Schlögl

and Supp, 2006)) and overparametrization and approximately corresponds to the

model orders used in similar approaches. For example, (Brovelli et al., 2004) used

a model order of 10 (corresponding to a 50 ms window) for analyzing beta oscilla-

tions, (Supp et al., 2007) revealed couplings in the gamma frequency range using

a model order of 15 (30 ms), and (Kayser and Logothetis, 2009) and (Anderson

et al., 2009) studied oscillations including the theta range using model orders of 6

(60 ms) and 17 (85 ms), respectively. Additionally, this model order fulfills all the

requirements stated in (Schlögl and Supp, 2006) to obtain a sufficient model of the

data. Furthermore, one should note that slight changes in the model order do not

lead to arbitrarily large changes in the prediction error, but it is still an important

parameter for the correct estimation of the couplings (Schlögl et al., 2000).

2.2.3 Generalized Partial Directed Coherence (GPDC)

As mentioned earlier, I used Generalized Partial Directed Coherence (GPDC, (Bac-

cala et al., 2007)) for the analysis, which is a slightly adapted version of PDC with

better variance stabilization properties. Analysis of the validity of this coupling

measure using simulated and real data for which the ground truth is known as well

as a comparison to DTF and other measures can be found elsewhere (Baccala and

Sameshima, 2001; Kus et al., 2004; Pereda et al., 2005; Gourevitch et al., 2006;

Porcaro et al., 2009). Moreover, (Porcaro et al., 2009) indicated that PDC is the

most suitable method for this kind of analysis based on their results on MEG data.

GPDC is derived by first transforming the MVAR model from the time domain

into the frequency domain to obtain the frequency representation of the model
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parameters

A(f) = I −
P

∑

p=1

Ape
−2πip(f/fs),

where I refers to the M -dimensional identity matrix and fs is the sampling

frequency. Note that in this equation, i2 = −1.

Then, GPDCij (which reflects the coupling from channel j to channel i) is

calculated to be

GPDCij(f) =
1
σi
|Aij(f)|

√

∑M
k=1

1
σk

2 |Akj(f)|2
,

where σ2
i refers to the variance of the innovation process xi(t). GPDCij is

normalized in the interval [0, 1], with increasing values for stronger interactions at

particular frequencies, and sums up to one for each frequency component over all

destination channels including the channel itself. The idea is to calculate the de-

gree of influence of channel j to channel i with respect to the total influence of j

on all channels. Note that this normalization procedure of (G)PDC was recently

critizised (Schelter et al., 2009) because of some difficulties in comparing interac-

tion strengths for different frequencies. As the values Aij(f) and Aji(f) are not

necessarily identical, directionality of coupling is obtained. As GPDCjj has to be

interpreted as the remaining amount of coupling that can not be assigned to the

influence on other channels, I excluded self-coupling of channel j to itself for the

subsequent analysis.

2.2.4 Experimental Task

Note that I did not contribute to the monkey experiments, which were designed by

SL and GR and conducted by SL. However, the subsequent paragraph is stated here

for the sake of completeness.

Two adult male rhesus monkeys (Macacca mulatta) participated in the experi-

ments. All studies were approved by local authorities and were in full compliance

with applicable guidelines (EUVD 86/609/EEC) for the care and use of laboratory

animals. The behavioral task of the monkeys was a delayed matching to sample

task. The monkey was seated in front of a screen at a distance of approximately

110 cm. An initial tone indicated the potential start of a trial. The monkey initi-

ated a trial-start by grasping a lever and fixating on a small fixation spot on the

center of the screen (baseline period). After 1500 ms, a first stimulus appeared

on the screen for 250 ms, the so-called sample stimulus. As sample stimuli we

used different natural images. The stimuli that were used in all of the experiments

were chosen from the Corel-Photo-CD ”Corel Professional Photos” comprising a

collection of natural images showing birds, flowers, monkeys and butterflies in their

natural surroundings. The images used in this study were randomly selected. All

images were manipulated by Fourier techniques that have been described in detail
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elsewhere (Liebe et al., 2009). The sample stimulus was followed by a delay period

of 1500 ms during which the monkey held fixation. After the delay, a second stim-

ulus, the so-called test stimulus, was presented. The monkeys were rewarded for a

lever release whenever the test stimulus matched the sample stimulus. Whenever

the test stimulus did not match the sample, the monkeys’ task was to withhold the

lever release until, after a brief delay of 200 ms, a second test stimulus appeared,

that always matched the sample. This procedure ensured that the monkey had to

initiate a behavioral response on every trial. The monkeys were rewarded with juice

for every correct trial. Within one session, the different trial types were randomly

interleaved. Stimuli were 7◦x7◦ in size, at 24-bit color depth, and presented at

the center of gaze on a 21 inch monitor (ViewSonic P810) with linear luminance

response as well as linear response at separate color channels (gamma corrected).

2.2.5 Electrophysiology

Note that I did not contribute to the electrophysiological recordings, which were

conducted by SL. However, the subsequent paragraph is stated here for the sake of

completeness.

Local field potentials (LFP) were recorded from recording chambers placed on

the surface of the skull based on stereotaxic coordinates allowing vertical access

to the dorsal region of extrastriate area V4. The Hoarsley-Clark coordinates for

the center of the recording chambers for monkey 1 were AP: -6.5, ML: -29.7. For

monkey 2 the chamber coordinates were AP: -5.2, ML: -29.9. The implantation

as well as surgical procedures used are described in detail in (Lee et al., 2005).

Neural signals were measured using two custom made micro drives mounted on a

plastic grid (Crist Instruments, Hagerstown, MD, USA). In each recording session

4-6 tungsten microelectrodes (UEWLGDSMNN1E, FHC Inc., Bowdoinham, ME,

USA) were manually lowered down into the cortex in pairs with a minimal sepa-

ration between electrodes of 0.5 mm. The impedance of the microelectrodes was

approximately 1MΩ. The signal from each electrode was preamplified (factor 20,

Thomas Recording, Giessen, Germany) using the recording chamber as the external

reference. The analog signal was then filtered and amplified (BAK electronics, Ger-

mantown, MD, USA) to extract the local field potential (LFP) responses. After an

additional waiting period of at least 1 hour the recordings were started. The LFP

was obtained by band-pass filtering the signal between 0.1 and 300 Hz and digitiz-

ing with a sampling rate of 4464 Hz. One unit of the analog-to-digital converter

corresponds to 5µV .

LFP activity was recorded from 44 channels in 10 sessions from monkey 1 and 86

channels in 20 sessions from monkey 2. This resulted in 202 channel pairs for monkey

1 and 398 channel pairs for monkey 2. For each monkey, the minimum number of

channels per session was 3, the maximum number of channels was 6. The spatial

distribution of all recorded channels for monkey 1 and 2 can be found in Figure

2.2. For each recording site, its location is defined by two dimensions (anterior

to posterior, and medial to lateral) based on the recording grid placed within the
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Figure 2.2: Recording locations along the medial - lateral and anterior posterior direction

for monkey 1 and 2. 1 unit corresponds to 1/2 mm. Note that symbols are are slightly

jittered at their recording locations for better visualization.

recording chamber. In order to measure coupling as a function of distance between

recording sites, the Euclidian distance between two sites was calculated based on

their respective locations along the two dimenions. The minimal distance between

sites was 0.5 mm (i.e. sites directly neighbouring each other within the grid), the

maximal distance we obtained was 4 mm.

2.2.6 Statistical Analysis

In order to be able to calculate confidence intervals that can be used to evaluate

the significance of differences in coupling between different time intervals, I used

a bootstrapping procedure that samples with replacement from the original trial

set in order to generate bootstrap samples of the same size as the original data,

but with different subsets of trials in them (Efron and Tibshirani, 1993). For each

regarded data set of 1 second (last second of baseline and delay period), a set of

1000 bootstrap samples was generated. These bootstrap samples were then inde-

pendently used to calculate the MVAR models as stated above and to estimate

the couplings between the simultaneously recorded LFP channels with their respec-

tive confidence intervals. Change in coupling was considered significant if both the

0.01st and 99.9th percentile of the bootstrap distribution was above (increase) or

below (decrease) the average baseline level.

Significance of coupling strength compared to the hypothesis that there was

no coupling at all was assessed using a shuffling procedure. For each recording

channel, trials were independently permuted repeatedly to obtain 1000 shuffled

samples. MVAR model estimation was then also applied to these data sets.

For assessing the statistical significance of the effects of coupling as a function

of distance between recording sites, I used a shuffling procedure that randomly

shuffles the coupling values over distances to obtain 104 shuffled samples. Statistical

significance of the real rank correlation was then calculated with respect to this
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Figure 2.3: Enhanced power in the theta band during the delay period of the task. (A)

Amplitude spectrum of LFP activity (median across all recorded channels in V4, N = 44/86

for monkeys 1/2, respectively) during the pre-stimulus baseline period (gray) and the delay

period (black) of the delayed matching to sample task for frequencies from 1 to 40 Hz.

Enhanced power in the theta band (4-10Hz) during the delay period is present for both

monkeys. (B) Boxplots showing the distribution of power at the peak frequency within the

theta range for the baseline vs. delay period. Both monkeys show a significant increase in

theta power from baseline to delay (Wilcoxon signed rank test Z = 6.95/4.47, p < 0.01 for

monkey 1/2, respectively).

distribution.

2.3 Results

2.3.1 Power Spectra

First, I examined the frequency content of induced oscillations during different

periods of the visual memory task. Previously it had been found that there is

enhanced power in the theta band during the delay period of the task in V4 (Rainer

et al., 2004; Lee et al., 2005). I first sought to confirm these findings and compared

the power spectrum for the delay period (i.e. across last 1000 ms before the onset of

the test stimulus) to the power spectrum obtained from the 1000 ms time interval

preceding the onset of the sample stimulus (”baseline”). Figure 2.3 shows the

median amplitude spectra of LFP activity across all recorded channels (panel (A))

derived using a Morlet wavelet based approach (Tallon-Baudry and Bertrand, 1999;

Graimann and Pfurtscheller, 2006). In both monkeys, the power spectra showed

a local peak in the theta frequency range during the delay period (black) which

is absent during the pre-stimulus baseline period (gray). Figure 2.3 (B) shows the

distribution of power at the peak frequency within the theta range for the baseline

vs. delay period and illustrates a significant change in theta power during the delay

compared to the baseline.
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Figure 2.4: GPDC coupling in theta band during the delay period of the task. (A) Median

degree of coupling (GPDC) as a function of frequency during the delay period (black)

across all pairs in V4 for monkeys 1 and 2 for non-shuffled (black) and shuffled pairs. For

both monkeys the results show a peak in coupling in the theta frequency range (3-12 Hz),

although peak coupling occurred at slightly different frequencies (around 5 Hz for monkey 1,

around 9 Hz for monkey 2). Dashed lines correspond to ±34th percentiles of values around

the median. Note that for the shuffled data, overall coupling was found to be around

0.02 for the whole frequency range. (B) Median absolute difference in degree of coupling

(GPDC) (left) and proportion of pairs showing a significant change (p < 0.001) in coupling

between pre-stimulus baseline and delay period for different frequency bands (right). Error

bars correspond to ±34th percentiles around the median. In both monkeys, the median

change in coupling between baseline and delay is highest in the theta band (non-parametric

ANOVA Kruskal Wallis Test, χ2 = 11.4/4.23, p < 0.01). Likewise, the proportion of pairs

showing significant changes in coupling is also highest in the theta band compared to the

other frequency bands (χ2 test for comparison of proportions, χ2 > 8.2, p < 0.001 for all

comparisons).

2.3.2 General Coupling Analysis

Based on the occurence of enhanced theta power during the delay period, I analyzed

coupling strength between the different recording sites using generalized partial

directed coherence (GPDC) obtained from multivariate autoregressive modelling. I
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was interested in whether the enhanced theta power we observed during the delay

period of the task coincides with directed coupling in the theta band. Thus, I first

examined GPDC coupling as a function of frequency during delay (see Figure 2.4

(A)). Similar to the power spectra, I observed local peaks in GPDC coupling within

the theta range (3-12 Hz) for both monkeys, albeit at slightly different frequencies.

For monkey 1 the average peak frequency for highest coupling within the theta

range was 4.33±3.6 Hz (mean across sessions, ± 1 SD) and was located well within

the range of the maximum power peak frequency at 5.86±0.81 Hz (see Figure 2.3).

For the second monkey the average peak frequency for highest coupling was larger

(8.35 ± 3.8 Hz), and also higher than the average peak of power (5.51 ± 1.77 Hz),

but not significantly higher (p > 0.05). Similarly, inspection of Figure 2.3 shows

that although the peak in power for monkey 2 is around 5 Hz, power is elevated

during the delay up to 10 Hz. Thus, the peak frequencies at theta power and theta

coupling were overall similar. Note that these and subsequent results are based on

the models that were fitted to 1 s time intervals in baseline and delay conditions

(equivalent time intervals as for power spectra).

Subsequently, I assessed changes in coupling between the baseline and the delay

period for several frequency bands that have been traditionally implicated in the

interaction of oscillatory components during sensation and cognition and also follow

conventional definitions of theta and beta bands (theta (3-12 Hz), beta (20-35 Hz),

gamma (40-80 Hz), (Buzsaki, 2006)). Figure 2.4 (B) shows the median absolute

difference in coupling between baseline and delay period (left). The graph shows

that the degree of change significantly decreases with increasing frequencies with the

largest coupling change occuring in the theta band. Likewise, the proportion of pairs

that show significant changes in coupling is highest in the theta range compared

to the other frequency bands (right). In the theta band, 116 of 202 pairs showed

significant changes in coupling (57%, p < 0.001) in monkey 1, in monkey 2 235 pairs

showed significant changes in coupling (59%, p < 0.001). In both monkeys, I found

significant increases as well as decreases in theta coupling during the delay when

compared to the baseline. Specifically, in monkey 1 74 pairs showed significant

increases, and 42 pairs showed significant decreases in coupling. In contrast, in

monkey 2 89 pairs showed increases and 146 pairs decreases. Thus, monkey 1 shows

significantly more increases than monkey 2 and vice versa ( χ2 = 18.5, p < 0.01).

One factor that might contribute to this difference is the different distribution of

electrode spacing between the animals, with monkey 1 showing significantly larger

distances between electrodes than monkey 2 (mean [median] distance 4.6 [4] / 3.5

[3] for monkey 1/2, respectively; ranksum-test, Z = 5.23, p < 0.01). This is

supported by several facts. First, for the smallest distance between electrodes,

i.e. the distance that is identical and therefore comparable between the animals

(unit 1, or 0.5 mm), the proportion of increases vs decreases is similar between

the monkeys, i.e. statistically identical (50%/27% increases, Z=3.6, p > 0.05).

Second, for the smallest distance we find an identical proportion of increases and

decreases (i.e. 50/50) in monkey 1. Third, the proportion of significant decreases

is slightly enhanced for smaller distances (50% at distance 1 vs. 20% at distance 4
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Figure 2.5: Single example LFP channel pairs showing significant changes in coupling during

the delay period compared to baseline. Panel (A) shows one example for each monkey in

which there is significant increase in coupling in the direction from channel 1 to 2 (left).

Panel (B) plots two examples in which there is significant decrease in theta in one direction

(left). The opposite directions show less strong or even opposing trends, indicating that

coupling is not symmetric between sites. Dashed lines represent the on- and offset of the

sample stimulus, as well as the onset of the first test stimulus during the trials, from left to

right, respectively. This convention is also used in the subsequent figures.

for monkey 1, and 72% vs. 53% for distances 1 and 3 for monkey 2) and likewise

the proportion of increases reduced at smaller distances. As the distances between

electrodes are significantly lower in monkey 2 compared to monkey 1, the percentage

of decreases should be higher in monkey 2, and vice versa. Ultimately, due to the

limitations in spatial sampling, the differences in spatial configuration can only give

an indication of why we find differences in the proportion of significantly increased

vs. decreased coupling between the monkeys. In summary, our findings demonstrate

that significant directed interactions between local field potentials within V4 during

visual memory predominantly occur in the theta frequency range and the frequencies

at which highest coupling occurs are comparable to the freqency range of power

increases during the delay period. Based on these results we further investigated

the time course and directionality of theta coupling during the delay period.

2.3.3 Time course and directionality of coupling

To illustrate the time course of theta coupling during the task, I used moving

windows comprising time intervals of 250 ms (with an overlap of 200 ms) and fitted
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Figure 2.6: Grand-Median directed coupling across all pairs showing significant increase

(A) or decrease (B) during delay compared to baseline (p < 0.001, left column) as well as

the median coupling for the opposite direction of channel pairs (right column). Note that

if there is significant increase (decrease) in both directions (i.e. from x to y and vice versa),

both channel pair directions will contribute to the median for both directions of interaction.

Otherwise, if all pairs would show significant increase (decrease) in both directions, left and

right plots would be identical.

MVAR models to these individual windows. Figure 2.5 shows representative time

courses of theta coupling in single recording pairs as well as the time course of

coupling in the opposite direction (left/right graphs, respectively). These examples

represent channel pairs with a significant (p < 0.001) increase or decrease in GPDC

during the delay period compared to the baseline period and were chosen based on

the previous analyses using coupling measures obtained from 1 s windows (see also

Methods).

In all examples, theta increases and decreases occur shortly after the offset of

the sample stimulus and are sustained throughout the entire 1500 ms long delay

period. Interestingly, in all selected pairs I find differences in coupling strength and

even opposing effects between pair directions, for example a significant increase in

theta coupling in one, and a significant decrease in theta coupling in the opposite

direction (see graph B example for monkey 1). To investigate this assymmetry

across all channel pairs in more detail, I first computed the median coupling across

all pairs showing significant increases or decreases in the theta band. I subsequently

selected all pairs with the respective opposite direction and computed the median

coupling across these pairs. The reasoning behind the procedure is as follows: If

all channels show significant changes in theta coupling in both directions (i.e. from
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channel X to channel Y and from channel Y to channel X), each channel pair will be

represented in both groups. Consequently the median coupling across the channel

pairs would be the same.

However, this is not the case. Figure 2.6 displays the resulting median coupling

strength over all site pairs showing significant couplings within the theta range

(left) and their respective opposite direction (right): For both monkeys we find

assymmetrical, i.e. more unidirectional increases and decreases in theta coupling

during the delay. This result is further illustrated in Figure 2.7 that shows the

ratio of median coupling between pairs of channels and their opposite directions

separately for each monkey (panels (A) and (B)). Furthermore, panel (C) shows

coupling strength in the delay for sites with significant changes from baseline to

delay in the theta band versus the couplings in the opposite direction. Similarly

to the observed assymmetries in coupling values, significant proportions of pairs

(64/48% monkey 1/2, Z > 15.4, p < 0.001) show significant increases in one

direction only and significant proportions of pairs (57/58% monkey 1/2, Z > 18.6,

p < 0.001) of the pairs show significant decreases in only one direction. Overall, in

3 out of 4 cases, the majority of pairs showed significant changes of coupling in one

channel pair direction, but not the other.

Taken together, these findings illustrate that theta coupling during the delay

is not symmetric between channel pairs and provide evidence for a complex inter-

action involving both directionally dependent increases and decreases in coupling

during visual memory. In the following, I examine a different aspect of these cou-

pling phenomena, namely their dependence on the spatial layout of the different

oscillatory components. Our recording setup allowed us to simultaneously measure

the activity of up to 6 LFP electrodes that were spatially distributed across a corti-

cal surface area of approximately 6x6 mm. Therefore, within one session, electrode

locations varied in spatial position and distance to each other.

2.3.4 Relation of Coupling Strength and Distance between Record-
ing Sites

Figure 2.8 illustrates the dependence of absolute directed coupling and changes of

coupling on the distance between electrodes, with higher direct coupling occuring

at lower distances (both monkeys: ρS = −0.52/ − 0.32, p < 0.0001). Similar effects

were found for the changes in coupling (i.e. decrease M1: rank correlation coefficient

ρS = −0.24, p < 0.05, M2: ρS = −0.31, p ≪ 0.01 and increase M1: ρS = −0.12, p =

0.1, M2: ρS = −0.2, p < 0.05) during delay with respect to the baseline). Note that

the decrease of change in coupling with higher distance in monkey 1 does not reach

a significance level of p < 0.05 for increases in coupling, but is at trend level.

The results indicate that both the strength of coupling and the change in cou-

pling from the baseline to the delay condition are stronger for smaller distances

between site pairs. This dependence could be found despite the differences in elec-

trode spacing between the animals (see also section 3.2). Thus, not only absolute

coupling but also the dynamic changes in coupling are a local phenomenon within
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Figure 2.7: Ratio of median coupling between pairs showing significantly enhanced (A)

and reduced (B) directed coupling during baseline and their opposite pairs (i.e. coupling

in opposite direction). Plots a-b show the ratio of median coupling across the time course

of the trial for different frequencies for monkey 1 and 2, respectively. A ratio larger (or

smaller) than one indicates a stronger median coupling in one than the opposite direction,

thus the ratio is an indicator of how “directed” or “symmetric” the coupling is between pairs

of channels. Graphs (C) plot the degree of coupling of significant pairs and their opposite

directions (y-axis pairs chosen based on sign difference between delay and baseline, x-axis

shows opposite direction) in the theta band. If the degree of coupling is not symmetric

between directions, data points deviate from the diagonal. Also note that if there was a

significant increase (decrease, respectively) in both directions for a single pair, two data

points are shown (one below, one above the diagonal if the respective increase/decrease is

not fully symmetric).

the neural network. These findings are consistent with earlier reports for example

from V1 recordings of in the macaque showing that pairwise spectral coherence in

LFP activity between electrodes decreases as a function of receptive field distance

(which is related to spatial distance, (Frien and Eckhorn, 2000)) and from record-

ings of several sites of the human cortex (Raghavachari et al., 2006) and extend

these previous results using directed coupling measures.



2.4. Discussion 23

distance (mm)

a
b

s
 c

o
u

p
lin

g

0

0.2

0.4

0.6

0.8

distance (mm)

a
b

s
 c

o
u

p
lin

g

A

B

M1 M2

0.5 1.5 30.5 2 4

1 3 6

0.1

0.2

0.3

0.4

0.5

distance (1/2mm)

c
h

a
n

g
e

 i
n

 c
o

u
p

lin
g

 (
d

e
c
re

a
s
e

)

4 8

0.1

0.2

0.3

0.4

1 3 6

0.1

0.2

0.3

0.4

0.5

distance (1/2 mm)

4 8

0.1

0.2

0.3

0.4

c
h

a
n

g
e

 i
n

 c
o

u
p

lin
g

 (
in

c
re

a
s
e

)M2
M1

M2
M1

0

0.2

0.4

0.6

0.8

Figure 2.8: Dependence of GPDC in theta band on distance between simultaneously

recorded channels. (A) absolute coupling as a function of Euclidian distance across all

recorded pairs. Open symbols denote coupling values for single pairs, closed symbols rep-

resent the mean ±1 standard deviation across pairs within three bins. For both monkeys,

absolute coupling decreases with increasing distance. (B) Dependence of increases and

decreases in GPDC during delay relative to baseline in theta band on distance between

simultaneously recorded channels. Absolute decrease (left) and increase (right) in coupling

as a function of Euclidian distance across all recorded pairs showing decreases (left) or in-

creases (right) in coupling. In both cases, changes in coupling during delay are higher for

smaller distances. Note that we shifted the data points for M1 (blue) and M2 (red) slightly

to the left and to the right, respectively for better visual discriminability.

2.4 Discussion

Oscillatory activity in neural networks as measured by EEG or LFP recordings

is a widespread phenomenon of neural behavior and is thought to arise from the

synchronous activity of neuronal populations at various spatial and temporal scales

(Buzsaki and Draguhn, 2004; Fries, 2005; Salinas and Sejnowski, 2001). In many

studies it has been shown that oscillations in different frequency bands are im-

portant for neural computations. Synchronous activity can, for example, establish
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and support temporal relationships between different elements within a neural net-

work depending on context, stimulus or behavioral state (Uhlhaas et al., 2009;

Tallon-Baudry, 2009) or represent information about sensory events that can not

be inferred from spiking activity alone (Montemurro et al., 2008). Thus, oscillatory

activity serves the precisely timed cooperation between neural ensembles and could

also provide temporal windows that allow for the selective routing and gating of

information in an efficient manner (Fries et al., 2001; Salinas and Sejnowski, 2001;

Mizuseki et al., 2000). Another important characteristic of neuronal oscillations is

that oscillations at different frequencies are thought to subserve different behavioral

and cognitive functions. Prominent examples are the involvement of gamma oscil-

lations (>40 Hz) in visual and attention-related processes (Fries et al., 2001; Keil

et al., 2001), the role of beta oscillations (15-35 Hz) in sensorimotor tasks (Murthy

and Fetz, 1992) and the importance of theta oscillations in memory-related pro-

cessing (O’Keefe, 1993; Rainer et al., 2004; Raghavachari et al., 2006; Lee et al.,

2005).

The quantification of neural synchrony has traditionally been carried out using

measures that assess the pairwise and instantaneous correlation in either amplitude

or phase between two neural signals, for example using cross-correlation analysis

between spike trains of multiple neurons (Aertsen and Arndt, 1989), spike-field

coherence between the spiking activity of neurons and LFP activity (Pesaran et al.,

2002; Fries et al., 2001) or phase-locking analysis of simultaneously recorded LFP

or EEG data (Lachaux et al., 1999, 2000). However, despite the fact that these

measures assess the strength with which two neural processes are coupled, they fail

to provide information on several aspects of synchronization that can be important

to fully describe their interaction, for example the direction of coupling between

neural elements.

Here, multivariate autoregressive (MVAR) models have proven to be efficient

tools for assessing the direction of coupling and can be more appropriate to capture

the complexity of oscillatory dynamics as synchrony between neuronal ensembles

changes across time or behavioral conditions. However, it is important to note

that unipolar signals are vulnerable to volume conducted far-field effects and is-

sues related to the usage of a common reference against which all differences in

electrical potential are measured. Both factors might lead to adversely affected

measures of coupling strengths, and elaborate methods for resolving these issues

completely (besides using bipolar signals) need still be found (Schlögl and Supp,

2006; Bollimunta et al., 2009). Nevertheless, the application of coupling measures

based on MVAR models has revealed important insights into neural interactions

in many studies (Bressler et al., 1999; Brovelli et al., 2004; Kayser and Logothetis,

2009; Supp et al., 2007). For example, (Brovelli et al., 2004) analyzed interaction

patterns in monkey sensorimotor cortex and found unidirectional couplings from

somatosensory areas to motor areas within the beta frequency range that might be

used to control motor output. In a different study (Kayser and Logothetis, 2009)

investigated interactions of monkey auditory and superior temporal cortices related

to sensory integration and found that while interactions from auditory cortex to
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superior temporal regions prevail below 20 Hz, interactions in the other direction

are more pronounced at frequencies above 20 Hz. A third example are the findings

of the study by (Supp et al., 2007) in which the authors demonstrated that visual

processing of familiar and unfamiliar objects engages different cortical networks at

different degrees of directionality via interactions in the gamma frequency range. In

all these studies, MVAR models revealed insights into the directed spatio-temporal

dynamics of multiple cortical areas during cognitive processing that went beyond

the description of synchrony between these areas.

In the present study I used MVAR models to provide a description of the di-

rected coupling of theta oscillations during short-term memory. This oscillatory

phenomenon has been described in a number of studies in relation to short term

memory processes both in humans and animals. There are mainly two lines of re-

search that focus on the role of these oscillations for memory-related processes. A

large set of studies provides strong evidence on a connection between theta oscilla-

tions and (especially spatial) memory for the rat hippocampus, revealing that the

timing of spikes both within hippocampus and within regions like prefrontal cortex

is strongly connected to the hippocampal theta rhythm (O’Keefe, 1993; Buzsaki and

Draguhn, 2004; Mizuseki et al., 2000; Siapas et al., 2005). A second line of research

has concentrated on the importance of theta oscillations for memory performance

in primates with the focus on EEG and LFP recordings in various cortical areas.

Using EEG in human subjects, multiple studies have shown that there are increases

as well as decreases in theta power that can depend on the specific nature of the

memory task demand (Klimesch, 1999; Raghavachari et al., 2001, 2006). For exam-

ple, (Raghavachari et al., 2001, 2006) showed an increase in theta power during the

delay period of a memory task that co-varied with delay period length in multiple

cortical regions, including frontal, temporal and occipital areas. Very recently, one

study also incorporated MVAR modelling to reveal directional influences between

different cortical regions (Anderson et al., 2009), providing evidence for memory-

related theta-frequency interactions between prefrontal and medial temporal sites

in the human brain. In contrast to human studies, only few studies have investi-

gated the relation between theta oscillations and visual memory in the non-human

primate. Here, research has focused on the extrastriate visual area V4, in which

theta oscillations occur during the memory phase of the task, are modulated by

task difficulty (Rainer et al., 2004) and are involved in the coding of visual stimuli

during visual memory (Lee et al., 2005). In summary, research on theta synchrony

during short term memory has thus far provided evidence for the hypothesis that

memory processing is accompanied by increased theta power and synchrony.

However, as previously mentioned, measures of directed coupling based on

MVAR modelling have shown to be useful for investigating the complex interac-

tion patterns in LFP during cognitive processing. Thus I applied these coupling

measures to analyze neural interactions in the theta band during visual short term

memory within V4. The analyses firstly confirmed earlier results, showing en-

hanced theta power during the delay period. Using the coupling measures based

on MVAR models, I additionally found increases as well as decreases in coupling
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between recording sites in the delay period with respect to the baseline period that

were most prominent in the theta band. This was evident in the coupling value

estimates as well as in the proportion of site pairs showing significant changes in

coupling. More importantly, however, I showed that these changes in coupling tend

to be asymmetric between sites, i.e. they depend on the considered direction be-

tween site pairs. This finding suggests that not the mere occurrence of oscillatory

activity or coherence in the theta band correlates with memory processing. Instead,

the selective and direction-dependent change in theta coupling, which ultimately

represents a change in functional connectivity within the neural circuit, plays an

important role in this process. My results on the asymmetrical nature of directed

interaction during memory also favors the hypothesis that theta oscillations and

therefore coupling arise locally within the V4 network. In contrast, if coupling

would be a phenomenon due to common input, one would expect bidirectional cou-

pling with similar strength in both directions if the data from the neural elements

producing the common input is not incorporated by the model. When interpreting

the results from MVAR models, one should keep in mind that the model is based

on data from only a small subset of the whole neural system (Stevenson et al.,

2008). In addition, I was able to confirm earlier work on the relations of interac-

tion strength and spatial distance that showed decreasing coherence of signals with

increasing distance between sites and extended their results by measuring direct

causal interactions instead of coherence (Frien and Eckhorn, 2000; Raghavachari

et al., 2006).

Taken together, these effects would not have been revealed using more tradi-

tional methods that incorporate only phase synchronization or coherence. There-

fore, the present work clearly shows the advantage of using directed coupling mea-

sures based on MVAR models for studying functional connectivity patterns within

the brain and highlights the importance of direction-dependent modulations of local

interactions between neural populations for studying sensory and cognitive process-

ing.

Finally, I would like to point out that while the methods that I applied provide

important insights into the functional connectivity patterns within the brain, their

power is still limited because they can only assess linear interactions. While some

extensions to nonlinear MVAR models (together with all the issues of nonlinear

optimization) have been proposed (Pereda et al., 2005; Sun, 2008; Jachan et al.,

2009), there is still work to be done to further improve these methods. In addition,

the findings provide only the elementary description of the pattern of interaction

between different oscillatory processes during visual memory. Further investigation

will be needed to assess the specific role of directed coupling in relation to various

cognitive parameters, for example task difficulty, performance or memory load. In

addition, MVAR analysis can also be used to assess the interactions of LFP and

spiking activity if the spike trains are properly preprocessed for this purpose. Here,

it seems to be interesting to see how oscillations at the level of the LFP exert an

influence on neuronal firing directly measured from the spiking activity of single

neurons.
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Figure 2.9: The average normalized amplitude spectra obtained from both analysis methods

(MVAR and Wavelet Analysis) per monkey during the delay period in which the coupling
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both analyses yield similar peak frequencies within the theta band. Note that the spectra

were normalized between their respective minimum and maximum values within the shown

frequency range after averaging.
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This chapter is based on the manuscript “Long range theta coupling between V4

and lateral prefrontal cortex predics visual short-term memory performance” which

has been submitted to the journal “Nature Neuroscience” and is currently under

review. The work was conducted in collaboration with Stefanie Liebe (SL), Gregor

Rainer (GR) and Nikos Logothetis (NL), affiliated with the Max Planck Institute

for Biological Cybernetics in Tübingen, Germany, at the time the presented work

was conducted. The monkey experiments and electrophysiological recordings were

designed by SL and GR and conducted by SL. The data analysis was performed

by myself and SL. Specifically, I contributed to the Wavelet-based analysis of LFP

oscillations and subsequent estimation of phase locking and spike-phase locking as

well as to the statistical evaluation by providing versions of the analysis that were

then usually extended by SL. Moreover, I contributed to the interpretation of the

results. The paper was written by myself and SL, with additional input from NL

and GR. The results of this work, in which for the first time these analysis techniques

are applied to simultaneously recorded data from V4 and the lateral prefrontal cortex

of the macaque monkey performing a visual memory task, reveal new insights into

the synchronization and long-range interactions of populations of neurons between

extrastriate visual area V4 and the lateral prefrontal cortex during visual short-term

memory.
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Short-term memory requires the communication between multiple brain regions

that collectively mediate encoding and maintenance of sensory information. Oscil-

latory synchronization has been suggested to underlie inter-cortical communication

between regions mediating these processes. Yet, whether and how distant cortical

areas cooperate during visual memory remains elusive. Here, neural interactions

between visual area V4 and the lateral prefrontal cortex (lPF) based on simulta-

neous recordings of local field potentials (LFP) and single unit activity (SUA) in

monkeys performing a visual short-term memory task are reported. During the

memory period enhanced between-area phase synchronization in the theta band

(3-9Hz) of LFPs together with elevated phase locking of SUA to theta oscillations

across regions could be observed. Most importantly, however, it is shown for the

first time that the strength of inter-cortical locking is predictive of the animals’

memory performance. This suggests that theta-band synchronization may provide

the basis for the timely coordination of spiking output between V4 and prefrontal

cortex and may well reflect facilitated communication of visual information during

visual memory.

3.1 Introduction

Every cognitive act entails the participation of multiple brain regions. In visual

short-term memory, for example, visual information is initially encoded in sensory

brain areas and then communicated to regions that mediate the retention, manip-

ulation and retrieval of information. One prominent hypothesis that addresses the

question of how communication between neural ensembles is achieved claims that

neuronal oscillations support the timely coordination of neural activity between

different brain regions (Buzsaki and Draguhn, 2004; Fries, 2005; Womelsdorf et al.,

2007; Hipp et al., 2011). Specifically, neuronal oscillations in the theta frequency

band (3-9Hz) have been suggested to underlie the interaction between neural en-

sembles during mnemonic processing (Buzsaki and Draguhn, 2004; Fries, 2005; Fell

and Axmacher, 2011).

One line of evidence supporting this hypothesis stems from studies investigat-

ing the role of hippocampal theta in memory formation in rodents (O’Keefe, 1993;

Buzsaki, 2002; Jones and Wilson, 2005; Siapas et al., 2005; Lisman and Buzsaki,

2008). For example, phase locking of prefrontal spiking to the hippocampal theta

rhythm is enhanced during task periods with enhanced memory demands (Jones and

Wilson, 2005). Additional evidence stems from studies measuring surface-based or

intracortical electroencephalogram in human subjects. Here, memory performance

correlates with an increase in theta power (Klimesch, 1996; Kahana et al., 1999;

Tesche and Karhu, 2000; Raghavachari et al., 2001; Sederberg et al., 2003) or en-

hanced theta synchrony between electric potentials recorded from memory-related

areas, for example within and between prefrontal cortex and medial temporal lobe

regions (Anderson et al., 2009; Rutishauser et al., 2010), as well as between frontal

and occipital regions (Sarnthein et al., 1998; Stam et al., 2002).



3.2. Materials and Methods 31

These findings raise the question whether theta synchrony measured at the

mesoscopic level of electric potentials provide a basis for the timely coordination of

spiking output between distant cortical areas that have been traditionally associ-

ated with the sensory encoding of visual information on the one hand and mnemonic

processing on the other. Moreover, is the precision of coordination between these

regions associated with changes in memory performance? To answer these ques-

tions, I studied neuronal interactions between the extrastriate visual area V4 and

the lateral prefrontal cortex (lPF) while monkeys performed a visual memory task.

While neural activity in V4 has been mostly related to color and shape pro-

cessing of visual objects (Zeki, 1980; Schein and Desimone, 1990; Pasupathy, 2006;

Orban, 2008; Tanigawa et al., 2010) and attentional modulation of visual activity

(Fries et al., 2001; Gregoriou et al., 2009), neural responses in lPF have been tra-

ditionally associated with “working memory”, i.e. the short-term maintenance and

manipulation of sensory information in memory tasks (Fuster and Alexander, 1971;

Baddeley, 1986; Petrides, 1996; Miller and Cohen, 2001). More recently, however,

an increasing number of studies have shown that the neural circuitry underlying

short-term retention of sensory information likely entails earlier sensory cortical ar-

eas as well; for a review see (Pasternak and Greenlee, 2005). Consistent with this,

both prefrontal regions (Pesaran et al., 2002; Pipa et al., 2009) and V4 have been

linked to memory-related oscillatory synchrony. Specifically, theta oscillations are

enhanced during the delay period of memory tasks in both lateral prefrontal cortex

and V4 (Rainer et al., 2004; Hoerzer et al., 2010) and increased oscillatory theta

synchrony is accompanied by a phase dependent coding of visual stimuli retained

in short-term memory (Lee et al., 2005; Siegel et al., 2009).

Here, enhanced phase locking between local field potentials recorded in V4 and

lPF (“inter-area LFP-phase locking”) that occurs in the theta range (∼3-9Hz) dur-

ing the memory period of a visual short-term memory task is reported. Increased

LFP phase locking is associated with greater locking of spikes to the phase of the

theta oscillations in the respective other area (“inter-area spike-phase locking”).

Both inter-area LFP- and spike-phase locking was significantly higher for subse-

quent correctly remembered stimuli and was also predictive of session-to-session

variations in task performance.

3.2 Materials and Methods

3.2.1 Animals and Recordings

Note that I did not contribute to the electrophysiological recordings, which were

conducted by SL. However, the subsequent paragraphs are stated here for the sake

of completeness.

Two adult male monkeys (macaca mulatta) participated in the experiments.

All studies were approved by the local authorities (Regierungspräsidium, Tübingen,

Germany) and were in full compliance with the guidelines of the European Com-

munity for the care and use of laboratory animals (European Union Directive
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86/609/EEC). Single-unit activity and the local field potentials (LFP) were recorded

from two recording chambers placed on the surface of the skull based on stereotaxic

coordinates allowing access to the subjacent brain areas on the left hemisphere. The

Horsley-Clarke coordinates for the centers of the recording chambers for monkey 1

were: V4: AP: -6.5, ML: -29.7, lPF: AP: -33, ML: -23.7. For monkey 2 the coordi-

nates for the chambers were: V4: AP: -5.2, ML: -29.9, lPF: AP: -34.5, ML: -22.6.

The implantation as well as surgical procedures used are described in detail in (Lee

et al., 2005).

Neural signals were measured using two custom made micro drives mounted on

a plastic grid (Crist Instruments, Hagerstown, MD, USA). In each recording session

4-6 tungsten microelectrodes (UEWLGDSMNN1E, FHC Inc., Bowdoinham, ME,

USA) were manually lowered in pairs with a minimal separation of 0.5mm between

the electrodes. The impedance of the microelectrodes was approximately 1MΩ at

1kHz. The signal from each electrode was preamplified (factor 20, Thomas Record-

ing, Giessen, Germany) using the recording chamber as the external reference. The

analog signal was split into two signals and filtered and amplified separately (BAK

electronics, Germantown, MD, USA) to extract single unit activity (SUA) as well

as the local field potential (LFP) responses.

The spiking activity was obtained by bandpass filtering the signal between 300Hz

and 4kHz and digitizing with a sampling rate of 22.231kHz. Single units were

extracted from the spiking activity using standard spike sorting routines (Offline

Sorter, Plexon, Dallas, TX, USA). In each recording session the electrodes were

advanced until one or more single neurons could be reliably isolated. Neurons were

not selected based on task selectivity. After an additional waiting period of at least

1 hour the recordings were started. The LFP was obtained by band-pass filtering

the signal between 0.1Hz and 300Hz and digitizing with a sampling rate of 4464Hz.

One unit of the analog-to-digital converter corresponds to 5µV.

3.2.2 Behavioral Paradigm

Note that I did not contribute to the monkey experiments, which were designed by

GR and SL and conducted by SL. However, the subsequent paragraphs are stated

here for the sake of completeness.

3.2.2.1 Task

The behavioral task of the monkeys was a delayed matching to sample task. The

monkey initiated a trial-start by grasping a lever and fixating on a small fixation

spot on the center of the screen. After successful fixation of 1000ms a first stimulus

appeared on the screen for 250ms, the so-called sample stimulus. The sample stimu-

lus was followed by a delay period of 1500ms during which the monkey held fixation.

After the delay, a second stimulus, the so-called test stimulus, was presented. The

monkeys were rewarded for a lever release whenever the test stimulus matched the

sample stimulus. Whenever the test stimulus did not match the sample, the mon-
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keys’ task was to withhold the lever release until, after an additional brief delay of

200ms, a second test stimulus appeared that always matched the sample. This pro-

cedure ensured that the monkey had to initiate a behavioral response on every trial.

The monkeys were rewarded with juice for every correct trial. In each experiment,

50% of the trials were “match” trials, 50% were “non-match” trials.

3.2.2.2 Stimuli

A detailed description of the behavioral paradigm and the stimuli used is given in

a previous study (Liebe et al., 2009). In brief, for each experiment a set of three or

four natural images was presented as visual stimuli. The stimuli were 7◦x7◦ in size,

with 24-bit color depth and presented at the center of gaze on a monitor (Inter-

graph 21sd107) with linear luminance response (gamma corrected) at a distance of

approximately 110cm from the monkeys. Prior to the recording sessions, the mon-

keys had been familiarized with the images and it had been ensured that monkeys

did not show performance changes due to learning anymore, for details see (Liebe

et al., 2009). The images were chosen from the Corel-Photo-CD “Corel Professional

Photos” comprising a collection of natural images showing birds, flowers, monkeys

and butterflies in their natural surroundings and were degraded with visual noise

to various degrees, including showing stimuli that only contained “visual noise” on

approximately only 10% of the trials, to ensure motivation of the animals. The tri-

als were presented in a pseudo-randomized fashion to ensure that the animal would

perform a minimum number of trials for every condition.

3.2.3 Data Analysis

All of the data analyses were performed with custom software written in Matlab

(The MathWorks Inc., 2007). Circular statistics were computed using the Circular

Statistics Toolbox written for Matlab (Berens, 2009).

3.2.3.1 Derivation of the analytic signal using Wavelets

All of the spectral analyses were based on the same time-frequency decomposition

using complex Morlet wavelets. The LFP was first resampled from 4464Hz to 200Hz

and normalized by subtracting the mean waveform over trials and subsequently

dividing the result by the standard deviation over trials. Afterwards I extracted the

instantaneous amplitude and analytical phase as a function of time and frequency

by convolving the raw real-valued time series x(t) with the complex Morlet wavelet

w(t, f0) to obtain the complex output signal y(t, f0), also denoted as the “analytic

signal”:

y(t, f0) = x(t) ∗ w(t, f0) =

∫ +∞

−∞

x(τ)w(τ, f0)dτ (3.1)

Here, f0 denotes the desired center frequency of the wavelet function
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w(t, f0) = Ae−t2/(2σt
2)ei2πf0t (3.2)

composed of a Gaussian and a sinusoidal component, where A = (σt

√
2π)−1 is

a scaling factor, σt = (2πσf0
)−1 defines the width of the Gaussian component in

the time domain, and σf0
= f0/c defines the position and width of the peak in the

frequency domain. Note that the higher the value of c, the better the frequency

resolution, but the poorer the time resolution. I used a value of c=7 as proposed

in the literature (Tallon-Baudry and Bertrand, 1999; Graimann and Pfurtscheller,

2006). Note that the Hilbert transform is another approach that is commonly

used to extract the instantaneous phase of a time series, see (Le Van Quyen et al.,

2001) for a comparison of the two approaches, that leads to similar results. I

chose to use the Wavelet transform because it already provides the necessary band-

pass characteristics while the Hilbert transform has to be preceded by filtering the

data using a narrow band-pass filter to obtain physically meaningful results. I did

not want to restrict our analysis to specific frequency bands and thus I used a

logarithmic frequency scale and obtained the instantaneous amplitude and phase of

27 frequency components ranging from 2Hz to 97Hz.

I first examined the frequency content of induced oscillations during different

periods of the task (see Figure 3.1A). Here, in order to discard stimulus-evoked

components of the oscillations, the data was normalized by subtracting the (evoked)

mean waveform across trials from every single trial before applying Wavelet trans-

form filters to obtain a time-frequency representation of the data. Subsequently

the amplitude spectra were computed by averaging the spectra across all individual

sites recorded in V4 and lPF for each monkey separately. To compare the frequency

content of the LFPs between baseline and delay period, the amplitude spectra were

averaged within a 1000ms window preceding the sample stimulus (“baseline”) and

across the last 1000ms preceding the test stimulus, leaving out the first 500ms after

sample onset. The latter time window was chosen to ensure that the frequency

content was not contaminated by stimulus-evoked activity. For all analyses, unless

otherwise stated, the same time windows were chosen for “baseline” and “delay”.

3.2.3.2 Phase locking analysis between LFP sites

Phase locking was quantified between individual pairs of LFP sites (m,n) by com-

puting the phase locking value (Lachaux et al., 1999) across the entire trial period.

The PLV for two recording channels m and n at a particular center frequency f0

and time t is defined as

PLVmn(t, f0) =
1

K

∣

∣

∣

∣

∣

K
∑

k=1

ei(ϕm

k
(t,f0)−ϕn

k
(t,f0))

∣

∣

∣

∣

∣

(3.3)

where K denotes the number of trials and ϕm
k (t, f0) and ϕn

k (t, f0) denote the

instantaneous phases of the k-th trial of the two channels that were computed using

the Wavelet transform with center frequency f0. Therefore, the PLV measures
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the degree of similarity of the phase difference Φmn
k (t, f0) = (ϕm

k (t, f0) − ϕn
k(t, f0))

across different trials k and ranges in the interval [0, 1]. The higher the similarity

of phase differences across trials, the higher is the PLV. Note also that the PLV is

symmetric for pairs of channels, i.e. PLVmn = PLVnm.

Since the phase locking measure yields a single value, which is obtained across

multiple trials, significance between baseline and delay in single electrode pairs was

tested using a bootstrapping procedure. Specifically, in order to obtain confidence

intervals that can be used to evaluate the significance of differences in phase locking

between the baseline and delay period, I sampled (with replacement) from the

original trial set and generated 1001 bootstrap samples of the same size as the

original data, but containing different subsets of trials (Efron and Tibshirani, 1993).

For each subset, the PLV was calculated separately. The distribution of PLVs for

the baseline period was derived using the average PLV across the baseline interval

(see above) for each bootstrap sample. A PLV was considered significantly different

from baseline only if the average PLV over all bootstrap samples was above or below

the 99.9th percentile of baseline distribution of the PLV. To obtain the proportion

of significantly phase locked LFP pairs in each frequency band, the proportions of

significant pairs were averaged across frequencies within the band of interest, i.e.

3Hz to 9Hz for theta, 16Hz to 36Hz for beta, and 47Hz to 97Hz for gamma.

In order to compare phase locking between delay and baseline across the pop-

ulation of LFP pairs, the mean phase locking during baseline was subtracted from

every phase locking value across the entire trial period per pair, divided by the

standard deviation across pairs and subsequently averaged across all pairs. This

procedure was done separately for each monkey and resulted in the normalized

Z-score transformed phase-locking values.

3.2.3.3 Locking of spikes to the LFP

To investigate spike-phase locking within each area, LFP-unit pairs recorded at

the same electrode site were excluded. Thereby, 601 spike-LFP pairs within V4

(M1: 426, M2: 175), and 397 pairs within lPF (M1: 216, M2: 181) were obtained.

In order to examine inter-area locking 110 lPF LFP channels (M1: 67, M2: 43) were

paired with the spiking activity of 167 simultaneously recorded V4 units (M1: 114,

M2: 53) and 124 V4 LFP channels (M1: 79, M2: 45) with the spiking activity of

130 simultaneously recorded lPF units (M1: 69, M2: 61). This resulted in 660 lPF

LFP-V4 unit pairs (M1: 458, M2: 202) and 593 V4 LFP-lPF unit pairs (M1: 335,

M2: 258). No channels or units were selected based on any criteria, for example

task-related activity or visual responsiveness in any of our analyses. Thus, the data

represent a completely unbiased sample of LFP and single-unit activity in both

regions.

Circular non-uniformity of the distribution of spikes with respect to the phase of

the theta oscillation, i.e. for frequencies between 3Hz and 9Hz, was tested for each

pair of simultaneously recorded LFP signal and single unit activity. Specifically,

each spike was assigned its respective phase value of the simultaneous LFP oscilla-
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tion (the phase was obtained per frequency using the same Wavelet decomposition

as used for calculating the frequency spectra and PLV). Due to the fact that the

window usually is no integer multiple of the oscillation length of 1/f0s, some phase

values can occur more often than others, which results in non-uniformity “per se”.

In order to account for possible non-uniform distribution of phases, the spike counts

were normalized for each bin using the number of occurrences of each particular

phase bin during the considered window for each trial. If spikes occur more often

at particular phases, this procedure results in a non-uniform distribution of phase

values across phase bins. Then, the Rayleigh Test for circular uniformity (Siapas

et al., 2005; Zar, 2008) was applied to test whether the spikes were significantly

locked to the theta oscillation. Phase locking was defined to be present for pairs for

which a value of at least ln(Z) = 1.09 was obtained, which approximately corre-

sponds to a value of p = 0.05 for distributions containing at least 50 spikes (Siapas

et al., 2005).

In order to estimate concentration parameter κ and mean direction µ during the

baseline, spike trains were cut out within a 500ms window preceding the sample

stimulus (“baseline”) and a 500ms window during the delay period that were cen-

tered on the maximal troughs of the filtered theta oscillations to characterize the

locking properties of individual units (frequencies ranging from 3Hz to 9Hz). The

central 500ms of the delay period were chosen in order to not contaminate spiking

activity by either the sensory response after sample stimulus onset or spiking ac-

tivity related to test stimulus, thus keeping spike rates between baseline and delay

as comparable as possible. Within these windows, spikes were binned according to

the phase of a sine wave of frequency f0 mapped onto the extracted cycle. This

procedure was repeated for each trial and the resulting windows were subsequently

stacked up to form theta triggered spike train rasters (as for example shown in

Figure 3.5). Spikes were then summed across trials in order to obtain histograms

containing the spike counts as a function of phase bin. Subsequently, von Mises

density functions with mean direction µ and concentration parameter κ were fitted

to the spike distribution across phase bins. The von Mises density function is a

circular analog of the one-dimensional normal distribution and has two parameters

µ and κ, where µ describes the mean direction or preferred phase of firing and κ in-

dicates the concentration of firing as a function of phase, i.e. how peaked the firing

distribution is around the preferred phase. Both procedures (Rayleigh Test, von

Mises function) have been extensively used to describe phase locking characteristics

of individual neurons (Siapas et al., 2005; Zar, 2008).

The median concentration parameter κ was compared between groups of neurons

that could potentially vary with respect to mean spike rate. In order to account

for these differences, κ was also compared between groups of units whose mean

firing rate was matched. To create two sets of prefrontal and V4 neurons with

(approximately) the same mean firing rate, the most active cells from V4 and the

same number of least active cells from lPF were selected. The number of cells

selected was chosen such that the mean firing rates in the two selections were

as similar as possible. For monkey 1 the mean rates did not differ significantly
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between V4 and lPF during delay (mean rate V4: 18.3Hz, mean rate lPF: 18.9Hz,

independent sample T-test t = 0.43, p > 0.05). Thus, it was not necessary to

correct for mean rates for units from this monkey. In contrast, for monkey 2 the

mean spike rate during delay was significantly larger for prefrontal than for V4

units (mean rate V4=23.4Hz, mean rate lPF=33.7Hz, independent sample t-test

t = 4.9, p < 0.01). After the selection, the mean rates for units from V4 were

25.3Hz and for lPF 25.4Hz (independent sample t-test t = 0.05, p > 0.05). The

same procedure was applied when to compare the median κ values for the baseline

vs. the delay period within the group of prefrontal and V4 units. Prefrontal unit

activity tended to be higher during the delay than during the baseline (mean rate

delay: 20.8Hz, mean rate baseline: 19.6Hz), but was only significant in monkey 1 (t-

test, M1: t = 5.8, M2: t = 1.6, M1: p < 0.01, M2: p > 0.05). In V4 mean spike rates

tended to be lower during the delay than the baseline (mean rate delay: 16.6Hz,

mean rate baseline: 21.5Hz). The difference was significant in both animals (t-test,

M1: t = 4.0, M2: t = 5.6, p < 0.01). In order to create two data sets for baseline

and delay periods with (approximately) the same mean firing rate, the most active

cases from the baseline group were selected and paired with the least active cases

from the delay group. Again, the most active units from the baseline group were

chosen and paired with the least active units from the delay group in order to obtain

data sets with approximately the same (i.e. not significantly different) firing rate.

For all analyses involving single unit activity and LFP signals from the same area

(cf. Figure 3.4), only signals recorded simultaneously from neighboring electrodes

were analyzed, i.e. at least 0.5mm away, in order to avoid artifacts do to spillover of

signals from single unit activity into the LFP signal recorded at the same electrode

and in order to have comparable settings for interactions within and between the

areas (Siapas et al., 2005; Siegel et al., 2009).

3.2.3.4 Analysis of coupling for correct and incorrect trials

For this analysis only trials were chosen for which stimuli were shown at a high

degradation level (45% coherence) as for this condition animals made enough errors

to reliably estimate phase locking from both correct and incorrect trials. Correct

trials were defined as trials in which the animals correctly identified the previously

shown stimulus (“hit”), and non-correct trials were defined as trials in which the

animals did not (“miss”). As the performance of animals for this stimulus condition

was above chance level, there were typically more correct than non-correct trials. To

avoid confounding the phase locking measurements with differences in trial numbers,

phase locking between LFPs as well as locking of spiking activity to LFP phase was

computed only across the minimum number of trials in each condition.

Whether phase locking significantly differed between correct and incorrect trials

was assessed by computing the d-prime value between correct and incorrect sets of

trials per pair. To estimate how variable PLV values would be for correct vs. incor-

rect sets of trials, first the phase-locking for different sub-samples of trials for both

conditions (199 repetitions) was computed and then the mean across subsampled
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PLVs from correct trials was subtracted from the mean across PLVs from incorrect

trials. Subsequently, the difference was divided by the standard deviation across all

PLVs. D-prime values were computed for original data sets and datasets in which

the trials were randomly exchanged between the correct and incorrect condition

(shuffled). The p-values represent the average proportion of cases in which the

shuffled d-prime averaged across pairs during delay was higher than the original

d-prime, see Figure 3.7, panel D.

To compare spike-phase locking between correct and incorrect trials, the same

analyses were performed as described above, again taking only the subset of cor-

rect and incorrect trials. In order to correlate the difference in phase locking be-

tween correct and incorrect responses (d-prime) with session-to-session variations

in performance, each V4 LFP pair was assigned its respective proportion of cor-

rect performance value of the session in which the pair was recorded. Subsequently

Spearman’s rank correlation coefficient was computed across all sessions/pairs from

bootstrapped samples drawn with replacement from the original data set (see also

Figure 3.9 panels A and C). The mean and 95th percentile confidence intervals of

correlations across the bootstrapped samples (N = 999) are reported. To illus-

trate the dependency of d-prime and performance further,d-prime data points were

binned using six equally spaced bins for the proportion of correct responses and

averaged across d-primes per bin (Figure 3.9, panel B).

3.3 Results

Local field potentials (LFP) and spiking activity in V4 and lPF were simultaneously

recorded while monkeys performed a delayed matching-to-sample (DMS) task. Dur-

ing the task, the animals had to retain information about a briefly presented visual

stimulus (250ms) over the course of a delay period (1500ms). The sample stimuli

consisted of a set of natural images that were shown at different levels of image

degradation. The stimulus conditions that were used have been described in detail

in a previous study (Liebe et al., 2009). The task sequence is depicted in Figure

3.1A (see also Methods).

The task design allowed (1) to evaluate neural synchrony between the areas

as measured by phase locking of simultaneously recorded LFP signals during the

memory period of the task, (2) to determine whether changes in neural synchrony

between both areas at the level of the LFP are accompanied by changes in the

locking of spiking activity to LFP oscillations in the respective other area and (3)

to examine whether differences in memory performance are associated with changes

in phase locking between LFP sites and between LFP and spiking activity across

the areas.

First, I and my collaborators sought to confirm previous results on increased

theta oscillations during visual memory by analyzing LFPs from a total of 131 sites

recorded in V4 (M1: 86, M2: 45) and 117 sites in lPF cortex (M1: 74, M2: 43) and

comparing the amplitude spectra of LFPs during the delay period of the task to a
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Figure 3.1: Behavioral paradigm used during experiments and amplitude spectra in areas

V4 and lPF during baseline and delay. A: Events and their respective duration during

the delayed matching-to-sample task (DMS task). Monkeys had to fixate a small fixation

spot (2◦) on the screen, subsequently a sample stimulus was shown for 250ms, which was

followed by a delay period during which the animals had to retain fixation. Afterwards, a

test stimulus was shown that either matched or did not match the sample stimulus (50%

match, 50% non-match trials). B,C: Enhanced amplitude of theta oscillations during the

delay period of the task both in V4 (B) and lPF (C). Both plots show mean amplitude

spectra of LFP activity during the pre-stimulus baseline period (gray) and the delay period

(black) for frequencies from 1 to 40Hz (log scale).

baseline period prior to the sample stimulus onset (“fixation”). Figures 3.1B and C

show the mean amplitude spectra of LFP activity across all recorded channels per

monkey in V4 and lPF, respectively. In both animals, the frequency spectra showed

local peaks in the theta band (3-9Hz) in V4 as well as in lPF cortex during the delay

period that were significantly higher than during the baseline period (Wilcoxon

signed rank test, V4: Z > 4.3, p < 0.01, lPF: Z > 5.4, p < 0.01 for both animals).

These findings are consistent with previous reports on increases in the amplitude of

theta band oscillations during visual memory tasks in both humans and non-human

primates (Klimesch, 1996; Raghavachari et al., 2001; Sederberg et al., 2003; Rainer

et al., 2004; Lee et al., 2005; Raghavachari et al., 2006; Anderson et al., 2009).
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3.3.1 Phase synchrony in the theta band between V4 and lPF sites
is enhanced during the delay period of the memory task

Based on the observation of increased theta power during the memory period, the

next question was whether there is increased theta-band synchronization between

V4 and lPF LFP sites during the delay period. To address this question, all simul-

taneously recorded V4 and lPF channels (N = 332 for M1 and N = 175 for M2)

were paired and the phase locking value (PLV) was computed between all these

pairs for frequencies ranging between 1 and 100Hz (for details see Method section).

The phase locking value provides a description of the consistency in the phase re-

lationship between two oscillatory signals and has been used in a wide variety of

studies to get insights into the strength and timing of synchronized interactions of

electric potentials (Lachaux et al., 1999; Varela et al., 2001).

Figure 3.2A shows an example V4-lPF LFP channel pair showing increased

phase locking during the delay period in theta frequency (illustrated at 6.8Hz).

Specifically, panel A shows that theta oscillations in V4 and lPF exhibit a consistent

phase relationship across the different trials shown during the delay period that

is absent during the baseline period of the task. Figure 3.2B displays the PLV of

several representative example pairs that exhibit significantly enhanced PLV during

the delay period in the theta range, including the pair illustrated in Figure 3.2A

(upper left).

The results show increases in theta phase locking during the delay not only for

single pairs, but generally across all recorded LFP pairs. This effect is illustrated in

Figure 3.3A, which depicts the average change in phase locking (Z-Score, normalized

to pre-stimulus baseline) as a function of time and frequency for all recorded pairs

(grand average across means per animal). In general, an increase in phase lock-

ing during the delay period could be observed that was most prominent between

3Hz and 9Hz, which corresponds well to both the frequency range in which we ob-

served amplitude increases during the delay and the frequency range traditionally

associated with the theta band. As can be seen in Figure 3.3A, phase locking in

theta starts to increase towards the end of the sample stimulus presentation and is

maintained throughout the entire delay period for 1.5s.

In addition to the population analysis I and my collaborators also assessed

phase locking for individual LFP pairs during the baseline and the delay for several

frequency bands. Across all frequencies tested, 168 of 507 pairs showed significantly

elevated phase locking during the delay phase compared to baseline (p < 0.001 based

on permutation tests, see Methods for details; M1: 135/332, M2: 33/175 pairs, Z-

Test for significant proportion, p < 0.001). The proportion of pairs showing elevated

phase locking during the delay was highest in the theta band (3-9Hz) with 29% and

13% for monkey 1 and 2, respectively (Z-Test for significant proportion, p < 0.01).

Although theta phase locking was generally increased during the delay, there were

also significant decreases in theta locking in a small number of pairs (M1: 13/332,

M2: 12/175 pairs). However, this proportion was not significant (Z-Test, Z < 1.21,

p > 0.05) and thus the further analysis focuses on pairs showing elevated theta
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synchrony.

During the delay, no other frequency bands seemed to show systematic changes

in phase locking. Consistent with this, only a small proportion of pairs showed

a significant increase in PLV during the delay in the beta (16-36Hz) and gamma

(42-97Hz) frequency range (cf. Figure 3.3B). These proportions were significantly

smaller than for theta in both monkeys (Proportions M1: Pθ = 0.29 vs. Pβ = 0.07,

Pγ = 0.12, M2: Pθ = 0.13 vs. Pβ = 0.04, Pγ = 0.06, χ2 Test, χ2 > 12.3, p < 0.001

for all comparisons).

Interestingly, there was also a transient increase in phase locking around 16-

20Hz between V4 and lPF during the sample stimulus presentation (see Figure

3.3A), which was significant in 29% of the pairs in monkey 1 and 20% of the pairs

in monkey 2 (p < 0.001, Z-Test). The transient nature of this effect suggests that

it is related to stimulus-locked visual evoked potentials that typically arise during

the presentation of a visual stimulus. Since this increased phase locking, however,

did not extend into the memory period, the subsequent analyses focus on memory-

related theta phase locking.

In addition to assessing the magnitude of phase locking, also the timing re-

lationship of theta synchrony between V4 and lPF was examined as it provides

insights into the nature of the interaction between different regions: while oscilla-

tory synchrony through common input is often associated with a zero-degree phase

lag between oscillatory signals, non-zero degree phase shifts may imply more direct

interactions between oscillatory processes (Fries, 2005). Nevertheless, the possibil-

ity of synchrony through common input with non-zero phase lags due to different

latencies from the source to the different target regions cannot be completely ruled

out.

When assessing the distribution of time shifts during the delay for theta fre-

quencies (3-9Hz), I and my collaborators found a prominent peak of time differences

around 15ms (Figure 3.3C) which could imply that synchrony between V4 and lPF

is mediated via interactions between both areas rather than common input to these

regions. Moreover, the time shift estimates are similar to a previous study measur-

ing phase synchrony between V4 and a different prefrontal region, the frontal eye

fields (FEF) (Gregoriou et al., 2009). In addition, these findings fit well with esti-

mates of response latencies between different anatomically connected visual areas

(Nowak and Bullier, 1997). Thus, time shifts between many V4-lPF pairs could

potentially be explained by conduction times and synaptic delays via direct inter-

actions between our recording sites. Nevertheless, it should be noted that there was

also a high variance in time shifts across LFP pairs. This is reflected in a higher

median time shift (25ms) and a relatively large inter-quartile range of 36ms (time

shifts were computed per frequency and then averaged across frequencies). Thus,

while conduction- and synaptic related delays could mediate direct interactions be-

tween pairs showing small shifts in phase locking (10-15ms), it might be possible

that larger time shifts in phase locking are mediated by multi-synaptic connections

involving intermediate cortical regions connected to both V4 and lPF, for example

inferior temporal cortex.
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Figure 3.2: Phase-locking between V4 and lPF in theta band. A: Example of theta-filtered

(at 6.8Hz) single-trial LFP traces from two simultaneously recorded V4 (green) and lPF

(blue) channels. Both channels show a consistent phase relationship during the delay period

but not during the baseline (red vertical lines are for illustration purposes only). Grey

regions indicate the presentation intervals of the sample and test stimulus, respectively. B:

Representative examples of theta phase locking as measured by the phase locking value

(PLV) as a function of time for monkey 1 (left column) and monkey 2 (right column). In

all shown pairs there is a significant increase in phase locking in the theta range. Note that

the upper left trace corresponds to the example shown in A.

Taken together, the results show that local field potentials recorded in extras-

triate area V4 and the lateral prefrontal cortex show enhanced oscillatory phase

locking in the theta frequency range during the memory period of a visual memory

task. These findings provide new evidence for the emergence of a reliable tim-

ing relationship between distant cortical areas during visual memory and support

previous reports on the importance of theta oscillations in mediating long-range

interactions between different cortical and sub-cortical areas during memory pro-

cessing (Klimesch, 1996; Sarnthein et al., 1998; Stam et al., 2002; Fell et al., 2003;

Jones and Wilson, 2005; Pasternak and Greenlee, 2005; Cashdollar et al., 2009).

Next I and my colleagues analyzed whether increases in theta-band phase locking
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Figure 3.3: Phase-locking between V4 and lPF in theta band. A: Time-frequency repre-

sentation of the averaged normalized PLV difference (Z-score) between baseline and delay

across all recorded pairs. Dashed vertical lines indicate the on- and offset of the sample

stimulus. B: Proportion of significantly locked pairs during delay as a function of frequency

band for both animals. Significance thresholds are based on a bootstrapping procedure com-

paring baseline and delay using p < 0.001. C: Distribution of time shifts between all V4-PF

pairs during the delay period in the frequency range of 3Hz to 9Hz.

between oscillatory LFP activity was associated with increases in spike-phase lock-

ing. To assess spike-phase locking, each spike was assigned its respective analytic

phase value of the simultaneous LFP oscillation during the baseline and delay pe-

riod. Subsequently Rayleigh’s Z score was used as a test statistic to assess whether

spiking of individual units was significantly locked to particular theta phases. In

addition, histograms were generated containing the spiking probability as function

of phase bins and fitted von Mises density functions to yield estimates of the mean

direction µ (i.e. preferred phase) and the concentration κ of spiking (i.e. how

peaked the spiking distribution is around the preferred phase). After normalizing

for differences in spike rates between baseline and delay (see Methods for details),

the proportion of significantly locked units as well as median κ between these task

periods was compared. Both approaches have been extensively used to describe

phase locking characteristics of individual neurons (Siapas et al., 2005; Zar, 2008).

3.3.2 Spike phase locking in theta increases during the delay within
and between areas

Within-area spike phase locking of V4 and prefrontal neurons was first examined

during baseline and delay (number of simultaneously recorded unit-channel pairs

in V4 M1: 426, M2: 175 and lPF M1: 216, M2: 181). Note that channels or units
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were not selected based on any criteria, for example task-related activity or visual

responsiveness. Thus, the data represent a completely unbiased sample of LFP and

single-unit activity in both regions.

It can be observed that across all recorded units in V4 and lPF, theta-band

spike-phase locking was significantly higher during the delay than during baseline

(Ranksum Test comparing median κ, Z > 2.7, p < 0.01 in both areas). Also, V4

units showed a greater enhancement in theta locking than prefrontal units (V4:

23% vs. lPF:14% increase in locking). While this effect was observable across all

theta frequencies (3Hz to 9Hz) for one animal (Z > 9.4, p < 0.001 for both regions),

in the other animal the increase in spike-phase locking was mainly present below

6Hz (Z > 2.5, p < 0.01 for both regions). In addition, similar to the general

increase in theta locking at the population level, there was a significant increase

in the proportion of significantly coupled units from baseline to delay in V4 (17%

increase) and lPF (30% increase, Z > 2.1, p < 0.05 for both regions and animals).

Figure 3.4 shows the median concentration parameters for all V4 and prefrontal

units during baseline and delay as well as the phase of firing probability histograms

averaged across all significantly locked units in both regions (p < 0.01).

Taken together, the results on enhanced spike-phase synchrony during visual

memory within each region are similar to previous studies investigating spike-phase

locking in V4 (Lee et al., 2005) and prefrontal regions (Siegel et al., 2009) during

memory tasks. The more interesting question, however, is whether spiking in V4

and lPF is phase locked to theta oscillations in the respective other area and whether

this effect is enhanced during the memory period of the task. If phase synchrony

at the level of LFPs provides the timely basis to coordinate spiking output between

both regions, the present findings on increased LFP-phase locking between V4 and

lPF during visual memory suggest that this could be the case.

To address spike-phase locking between V4 and lPF, the activity of 660 simulta-

neously recorded lPF LFP-V4 unit pairs (M1: 458, M2: 202) and 593 V4 LFP-lPF

unit pairs (M1: 335, M2: 258) was analyzed. Panels A and B of Figure 3.5 show sev-

eral example units from V4 and lPF whose spike rate is significantly modulated as a

function of theta phase during the delay in the respective other area (p < 0.01, see

Figure caption for estimates of preferred phase, κ and Z scores of all example units).

Similarly, at the population level a significant enhancement in inter-area spike-phase

locking in theta frequencies during the delay compared to baseline across all V4 and

prefrontal units could be observed (Wilcoxon signed rank test, V4 units: Z > 3.5,

p < 0.01, lPF units: Z > 3.4, p < 0.01 for both animals). Moreover, the increase in

inter-area coupling was larger than the effect we observed within the regions. Dur-

ing visual memory, spike-phase locking between V4 units and prefrontal LFPs was

enhanced by 31% and between prefrontal units and V4 LFPs by 19%. Consistent

with this effect at the population level, the proportion of significantly locked V4

and prefrontal units was higher during delay than during baseline with an average

increase of 32% for V4 units (χ2 test, p < 0.01) and an average increase of 29% for

lPF units (χ2 test, p < 0.01). Figure 3.6A shows the distribution of log transformed

Rayleigh’s Z scores as well as the median κ parameters for baseline and delay.
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Red and gray symbols mark the average preferred phase across the units and lines show

the circular 95% confidence intervals for V4 and prefrontal units, respectively. Plots depict

two cycles for illustration purposes. C,D: Median kappa values for baseline and delay for

V4 and prefrontal units.

I and my collaborators next compared the strength and timing of phase locking

between V4 units locked to lPF theta and lPF units locked to V4 theta. Figure

3.6B shows the average phase of firing probability histogram across all significantly

locked V4 and lPF units along with the von Mises fits and the referenced oscillation

cycle (p < 0.01, V4: N = 125, upper plot, lPF: N = 86, lower plot). While V4

units tended to fire towards the beginning of the theta peak, lPF units had preferred

phases towards the second half of the peak and the falling edge of the theta cycle.

This difference was well reflected in the distribution of preferred phases of V4 and

lPF units, which were significantly different (Watson-Williams test, mean preferred

phase 72◦ for V4 units and 108◦ for lPF units, F = 8.41, p < 0.01, see also Figure

3.6C).

Finally, the distribution of the concentration parameter κ obtained from von

Mises fits was compared for each unit-LFP pair along with the median estimates

of κ across all significantly coupled pairs (p < 0.01) between V4 and lPF units

(panel D). Interestingly, significantly higher concentration parameters for V4 units

locked on lPF theta could be observed than the other way around (both: Z = 5.9,

M1: Z = 4.01, M2: Z = 1.99, p < 0.05).

In summary, the analyses revealed that V4 neurons exhibit significant phase

locking to theta rhythms in lPF cortex and likewise, lPF neurons exhibit phase

locking to V4 theta oscillations. More importantly, the degree of phase locking was
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Figure 3.5: Inter-area theta phase locking of V4 and prefrontal neurons during visual mem-

ory. A: Spiking activity of single units in V4 significantly locked to the theta rhythm in lPF

(p < 0.01). Raster plots show spike trains centered at the trough of the theta oscillation

during the delay period. The resulting segments were stacked up across individual trials.

Also shown are the von Mises fits for each example unit parameterized by mean direction

µ and concentration parameter κ. The parameters of the von Mises fits (from left to right)

are as follows (µ, κ): (-0.68, 0.39), (0.09, 0.22), (-2.6, 0.46) and (-0.39, 0.34). The first two

plots correspond to examples from monkey 1, the latter two from monkey 2. The corre-

sponding log transformed Rayleigh’s Z scores are: 2.17, 2.08, 2.76 and 2.71. Spike trains

and histograms are plotted for two cycles for visual clarity. Phase values in degrees on the

horizontal axes refer to the mapping onto a sine wave. B: Spiking activity of single units in

lPF significantly locked to the theta rhythm in V4 (p < 0.01). Comparable plots as in (a).

The parameters of the von Mises fits (from left to right) are as follows (µ, κ): (1.78, 0.29),

(0.96, 0.21), (-0.24, 0.27) and (0.28, 0.25). The corresponding log transformed Rayleigh’s

Z Scores are 1.99, 1.72, 2.06 and 1.64.

dependent on the task period: during the memory period of the task spikes in V4

as well as in prefrontal cortex tended to occur more concentrated around particular

theta phases in the respective other area as compared to the pre-stimulus fixation

period. The increase in spike-phase locking during the delay period is in good agree-

ment with enhanced inter-cortical locking at the level of LFPs between the regions.

Thus, theta synchrony at the mesoscopic level of electric potentials may provide

a mechanism by which spiking activity becomes more reliably coordinated in time

across two distant cortical areas that are both involved in visual working memory.

These findings support the notion that visual memory comprises multiple memory

systems that not only include regions that have been traditionally associated with

the storage of information, such as the prefrontal cortex, but also include sensory

cortical areas, such as V4 (Pasternak and Greenlee, 2005). These findings further

suggest that theta oscillations play an important role in mediating memory-related
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Figure 3.6: (see next page for Figure caption)

long-range interaction and communication between these systems (Fries, 2005; Fell

and Axmacher, 2011).

3.3.3 Inter-cortical theta coupling is significantly higher for cor-
rectly remembered stimuli and correlates well with session-
to-session variations in memory performance

Thus far the analyses revealed an increase in inter-cortical theta coupling both at

the level of LFPs and of spiking activity that is specific for the memory period

of the task. Based on these results, I and my collaborators were interested in the

functional significance of this effect and thus we asked whether changes in phase

locking are also associated with changes in memory performance. The task design

allowed us to investigate this particular question, as the animals did not only have

to remember non-degraded stimuli, for which task performance is almost perfect,

but also natural images that were degraded with visual noise. Thus, phase locking

between trials in which the animals committed a substantial amount of errors could

be compared.

First, phase locking between LFP pairs and spike-LFP pairs was computed

separately for correct and incorrect trials. The findings are summarized in Figures

3.7 and 3.8. Panel A of Figure 3.7 shows the average raw phase-locking value across

all V4-lPF LFP pairs obtained from incorrect (left) and correct (right) trials as a

function of frequency and time. Phase locking between V4 and lPF showed to be

increased for correct compared to incorrect responses during the delay and that this
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Figure 3.6: Inter-area theta phase locking of V4 and prefrontal neurons during visual mem-

ory. A: Histograms showing the distribution of log transformed Rayleigh’s Z scores during

the baseline as well as during the delay. The upper histogram corresponds to V4 units,

the lower histogram to prefrontal units. The red line indicates the significance associated

with the corresponding log Z-score ln(Z) > ln(−ln(p)) at p = 0.05. To the right of each

histogram median κ values from von Mises fits of spike-phase distributions during baseline

(gray) and delay (black) are shown. Error bars indicate the ±34% confidence intervals

around the median obtained using a bootstrapping procedure. Prefrontal phase locking on

V4 theta as well as V4 phase locking on prefrontal theta is significantly elevated during the

delay compared to the baseline period when comparing κ. B: Phase of firing probability

averaged across significantly locked V4 and prefrontal neurons along with von Mises fits (red

V4, gray lPF, with mean direction µ and concentration parameter κ for V4 units µ=1.26

and κ=0.08, prefrontal units µ=1.86 and κ=0.06). Between histograms the reference LFP

waveform is shown. Red and gray symbols mark the average preferred phase across the units

and thick red/gray lines show the circular 95% confidence intervals for V4 and prefrontal

units, respectively. C: Circular distribution of preferred phases of V4 (red) and prefrontal

(black) neurons. The mean directions were significantly different (Watson-Williams test,

F = 8.4, p < 0.01). D: Distribution of concentration parameter κ for all pairs of simul-

taneously recorded V4 units and prefrontal LFPs as well as prefrontal units and V4 LFPs

and median κ values for V4 units locked to lPF theta and vice versa plotted across units

from both animals and per animal (for pairs statistically significant at p < 0.05). Median κ

values were significantly higher for V4 units locked on prefrontal theta than the other way

around.

effect occurred again predominantly in the theta band. This is further illustrated

in panel B, which shows the normalized difference between the two conditions (d-

prime) averaged across all recorded pairs as a function of frequency during the delay

period. Interestingly, the difference in phase locking between correct and incorrect

trial conditions varied across time, with larger differences occurring during the early

period of the delay and again during the later phase.

To test whether the increase in phase locking for correct trials is significant,

d-prime values using the original data sets were compared with d-prime values

obtained from shuffled data sets, i.e. in which phase locking was computed between

groups of trials for which the “correct” or “incorrect” conditions had been randomly

assigned. Panel C shows the normalized difference in phase locking between correct

and incorrect trial groups from the original (green) and shuffled (gray) data sets

per frequency averaged across the delay period. In both animals, phase locking was

significantly elevated in theta frequencies (p < 0.01 for frequencies averaged within

3-9Hz, for both animals, see also panel D for p-values of individual frequencies)

during the delay phase of trials in which the animals would later correctly identify

the previously shown stimulus compared to trials in which the animals would fail

to do so.

The increase in LFP phase locking was also associated with an increase in spike-

phase locking for correct compared to incorrect trials. Interestingly, this effect

seemed to be stronger for V4 units than for prefrontal units. While median κ
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Figure 3.7: Phase locking during the delay is higher for correct compared to incorrect trials

in theta. A: Phase locking (average across all pairs) per frequency during the course of the

task. Phase locking is increased during correct (right) compared to incorrect trials (left) for

theta frequencies, peaking between 5 to 9Hz. B: Normalized difference (d-prime) of correct

minus incorrect trials during the delay period shows increases during the early delay phase

(around 250ms after stimulus offset) and again during the late delay phase (around 250ms

prior to test stimulus onset). C: Normalized difference (d-prime) in phase locking between

correct and incorrect trials averaged across the delay per frequency for pairs from monkey

1 (left), monkey 2 (middle). In both animals, there was a systematic increase in phase

locking for theta frequencies. Error bars correspond to ±1SD. D: Level of significance

(1-log(p-value)) for comparison between d-primes from original and shuffled data sets per

frequency.

values were significantly higher for correct compared to incorrect trials in V4 in

both animals (Signed rank test, Z > 2.95, p < 0.001 for both animals), this was

only true in one animal, but not in the other in lPF (Signed rank test M1: Z = 0.37,

p > 0.05, M2: Z = 2.1, p < 0.05). To further investigate whether the difference in

spike phase locking between correct and incorrect responses is larger in V4 neurons

than in prefrontal neurons, d-prime values (normalized difference in κ between

correct and incorrect trials) were compared between reciprocally matched pairs: d-

prime values of V4 neurons recorded at V4 site X that were locked on prefrontal LFP

site Y were paired with d-prime values of prefrontal neurons recorded at site Y that

were locked at V4 site X. In a significant majority of pairs, V4 neurons exhibited

higher d-prime values, i.e. larger differences in locking between correct and incorrect

responses than their matched prefrontal neurons recorded at the respective other
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Figure 3.8: Phase locking during the delay is higher for correct compared to incorrect

trials in theta. A: Median κ estimates from phase-of-firing probabilities of correct and

incorrect trials for V4 neurons (left) and prefrontal neurons (right, locking was calculated

for significantly locked pairs, p < 0.01). Spike concentration κ was significantly enhanced

in correct trials for both animals in V4, whereas there was no systematic effect in prefrontal

neurons. Error bars correspond to the ±34th percentile around the median. B: Phase of

firing probability histogram of V4 neurons (upper) and prefrontal neurons for correct trials

aligned to preferred phase per neuron and then averaged across neurons. Lines correspond

to von Mises fits to correct (green) and incorrect (gray) spike histograms. C: Distribution

of preferred phase of V4 neurons and prefrontal neurons in correct and incorrect trials.

Preferred phases were significantly different in correct vs. incorrect trials for V4 neurons,

whereas we found no difference for prefrontal neurons.

LFP site (Binomial Test, p < 0.02, for both animals).

In addition to an increase in spike phase locking during correct trials, there were

also differences in the timing relationship between spiking and theta oscillations

between correct and incorrect trial types. To illustrate this effect, panel B of Figure

3.8 shows the phase of firing probability histograms across V4 and prefrontal units

aligned to their preferred phase and panel C depicts the circular distribution of

preferred phases for both conditions and areas. In both animals, differences in

preferred phase between correct and incorrect trials were significantly larger for V4

units than for prefrontal units (Watson-Williams Test, F > 5.3, p < 0.05 for both

animals). In other words, preferred phases were significantly different in correct

vs. incorrect trials for V4 neurons (mean phase correct 71.5◦, incorrect 103.5◦,

F = 16.69, p < 0.001), but not prefrontal neurons (mean phase correct: 105.1◦,

incorrect 94.4◦, F = 2.1, p > 0.05). Interestingly, preferred phases of V4 and

prefrontal neurons showed a higher similarity during correct compared to incorrect
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Figure 3.9: Correlation of phase locking with performance across single sessions. A: Scatter

plot showing normalized difference between correct and incorrect responses (y-axis) as a

function of the proportion of correct responses per session. For every session, the perfor-

mance measure was pairs with d-primes of all pairs recorded during that session. Black

symbols correspond to monkey 1, gray symbols to monkey 2. B: d-prime values binned

into equally spaced percentiles of proportion of correct responses for three frequency bands

(theta: black, beta: dark gray and gamma: light gray). Error bars correspond to ±1SE.

C: Rank correlation coefficients estimated from raw data as shown in A for three frequency

bands and each monkey separately. Both monkeys show a significant positive correlation

between performance and d-prime values of phase locking in theta, whereas no significant

effect was found for the other frequency bands. Error bars correspond to 95th percentile

confidence intervals.

trials.

For the previous analyses, correct and incorrect responses averaged across dif-

ferent sessions were compared. On average, correct identification was shown to be

associated with increases in theta-band phase locking for correct compared to in-

correct responses. Does this difference in phase locking also co-vary with changes

in performance across single sessions? To address this question, d-prime values

(correct minus incorrect) were correlated per pair with the proportion of correct

responses across sessions. The results are summarized in Figure 3.9. Indeed, the

d-prime values were positively correlated with the proportion of correct responses,

i.e. larger (positive) d-primes occurred during sessions with higher performance (see

panel A). This effect was again most dominant in the theta frequency range and

can be seen more clearly in panel B, which presents pooled d-prime values across

different percentiles of the proportion of correct responses for the three tested fre-

quency bands. Consistent with this, significant positive rank correlation coefficients

for theta frequencies, but not in beta or gamma frequency bands could be observed

(panel C, average rank correlations: M1 and M2: ρθ=0.18 and 0.14, p < 0.05,

ρβ=0.11 and -0.06, p > 0.05 and ρθ=0.01 and 0.11, p > 0.05).
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3.4 Discussion

The goal of this study was to investigate the interaction between two distant cor-

tical brain regions that have both been previously linked to memory processing.

Specifically, simultaneously recorded LFPs as well as single unit activity (SUA)

from ensembles of neurons in the extra-striate visual area V4 and the lateral pre-

frontal cortex were analyzed and it was examined whether neural synchrony based

on oscillatory components of the LFP and concurrently measured spiking activity

is associated with the retention of visual information during the delay period of a

delayed-match to sample task.

To assess neural interaction, first the phase relationship between LFP oscil-

lations in both areas was examined. LFP signals from V4 and lPF exhibited a

consistent phase relationship during the delay period of the memory task that was

significantly reduced during the baseline period. The consistent phase relationship

was reflected in a significant increase in the phase locking value (Lachaux et al.,

1999) and occurred predominantly in the theta frequency range (3-9Hz). In addi-

tion, the increase in phase locking during the delay was accompanied by an overall

increase in theta power in both areas during the delay interval compared to the

baseline condition.

These results suggest that neural interactions based on oscillatory synchrony

between two distant cortical regions are related to the maintenance and possible

communication of visual information during visual short-term memory. Our findings

are consistent with previous studies recording human EEG or intra-cortical local

field potentials that also showed increased theta power in either frontal or occipital

regions during memory processing (Kahana et al., 1999; Raghavachari et al., 2001;

Schack et al., 2002; Sederberg et al., 2003; Rainer et al., 2004; Lee et al., 2005;

Siegel et al., 2009) as well as previous observations of increased coherence between

EEG signals from frontal and occipital regions in human subjects (Sarnthein et al.,

1998; Weiss et al., 2000; Stam et al., 2002). Taken together these findings support

the notion that prefrontal and visual cortical areas are part of a large scale network

involved in visual memory processing in primates (Klimesch, 1996; Pasternak and

Greenlee, 2005).

For many V4-lPF pairs the synchronous theta oscillations in V4 and lPF were

shifted in time by about 10-15ms, which is roughly consistent with previously re-

ported time shifts between LFPs recorded in V4 and the frontal eye fields, a different

prefrontal region (Gregoriou et al., 2009). In addition, the observed time shift is

about an order of magnitude shorter than the cycle lengths of the underlying theta

oscillations (120-250 ms) which is similar to what has been reported for example for

gamma or beta coupling (Fries, 2005; Gregoriou et al., 2009). It has been suggested

that phase shifts occur in this time range in order to account for the conduction

delays and integration times between different areas, such that presynaptic firing

affects postsynaptic neurons at their peak depolarization phase, i.e. during their

most excitable state (Nowak and Bullier, 1997; Volgushev et al., 1998; Fries, 2005;

Tiesinga et al., 2008; Gregoriou et al., 2009). This could also be the case in the
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present study, where for example V4 spiking is structured to affect downstream

areas including the lPF during their most excitable period or vice versa.

To determine whether changes in neural synchrony at the level of the LFP are

indeed accompanied by changes in the locking of spiking activity to oscillations in

the respective other area, I and my collaborators measured spike-phase locking of

V4 units to prefrontal theta and vice versa. An increase in locking of V4 single

unit activity to the phase of the prefrontal theta rhythm (“spike-phase locking”)

across areas could be observed: prefrontal and V4 spikes occurred around distinct

phases within the theta cycle of the respective other area. Again, this effect was

significantly stronger during the memory phase of the task. This finding, however,

might not be that surprising given that spikes within each area appeared to be

phase-locked to their “own” theta rhythm. Thus, if theta oscillations between the

areas become synchronized during the delay, spike phase locking across areas is

likely to occur. Nevertheless, our findings suggest that the increase in LFP-based

theta synchrony mediates this increased spike-phase locking between the regions,

and thus influences the timely coordination of neuronal activity from distant brain

areas during memory processing. This is further supported by the fact that memory-

related enhancement in theta spike-phase locking was stronger between areas than

within areas.

In addition to the general increase in inter-area spike phase locking during the

delay, spiking activity in V4 was more strongly locked to prefrontal theta than vice

versa. This could imply that prefrontal regions are more involved in generating and

sustaining theta oscillations during memory processing as V4 spiking appears to

be more sensitive to prefrontal theta than the other way around. However, given

the idea that phase alignment of presynaptic spikes to postsynaptic membrane

potential oscillations is a mechanism that establishes synchronous input into an

area and therefore may increase the probability of postsynaptic firing (Klimesch,

1996; Volgushev et al., 1998; Singer, 1999; Salinas and Sejnowski, 2001; Fries, 2005;

Womelsdorf et al., 2007; Haider and McCormick, 2009), the observations in this

study could indicate that V4 spiking may be consequently more effective in driving

prefrontal activity than vice versa. Taken together, the asymmetry in spike-phase

locking between the regions implies a possible directedness in the interaction and

communication pattern between the regions, of which the exact nature and timing

relationship remains to be established.

Another important observation was that theta synchrony of LFPs between V4

and lPF predicted subsequent recognition of visual stimuli within each session and,

in addition, correlated well with session-to session variations in memory perfor-

mance. These findings are consistent with recent observations relating strength

of theta coupling to memory performance in humans using magneto- or electroen-

cephalography (Sederberg et al., 2003; Guderian and Duzel, 2005; Sato and Ya-

maguchi, 2007; Fell et al., 2008; Cashdollar et al., 2009; Fuentemilla et al., 2010).

More importantly, successful recognition was associated with tighter coordination of

spike timing with theta oscillations in the respective other region. This effect is sim-

ilar to a previous report of locally enhanced spike-phase locking within the medial
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temporal lobe during successful retention in humans (Rutishauser et al., 2010). Our

findings thus not only confirm a direct functional link between spike timing relative

to theta oscillation and memory performance but also - at least to my knowledge

- for the first time extend this principle to long-range interactions between distant

cortical areas. In addition, the findings are consistent with the hypothesis that

phase alignment between rhythmically active neural ensembles promotes effective

communication between these ensembles (Fries, 2005; Fell and Axmacher, 2011).

Thus, theta phase synchronization may lead to enhanced memory performance by

facilitating communication between V4 and lPF.

Interestingly, both V4 and prefrontal units had their preferred phase shortly

before and after the peak of the theta oscillations, respectively, i.e. near the de-

polarized phase of the oscillation. These conditionsare ideal to induce long-term

potentiation (LTP) (Pavlides et al., 1988), which is a synaptic mechanism that

promotes the encoding of sensory information into memory, see also Martin et al.

(2000); Fell and Axmacher (2011). Thus, theta band across-area synchronization

between V4 and lPF coordinates spiking output in a way that is ideal for the stim-

ulus to undergo memory encoding. This effect is enhanced during the retention

period of correctly remembered stimuli since inter-area coupling is greater for cor-

rect compared to incorrect trials. Thus, higher memory performance could reflect

facilitated encoding of visual information into memory.

A remaining question is how theta-based synchrony between V4 and prefrontal

cortex is generated. One hypothesis is that V4 and lPF directly interact and entrain

each other’s rhythms through cortico-cortical connections. The non-zero phase shift

between synchronous LFP oscillations we found across areas supports this view.

Direct entrainment could, for example, be easily established through monosynaptic

and reciprocal connections between V4 and the lateral prefrontal cortex. However,

to my knowledge, only one monosynaptic, reciprocal connection between V4 and a

very localized area of the prefrontal cortex, the frontal eye field (FEF), has been

reported thus far (Ungerleider et al., 2008). Since the used recordings were not

located in this area but in the lateral part of the prefrontal cortex (area 46) anterior

to the FEF (Walker, 1940; Barbas and Pandya, 1989) and given that it is unclear

whether direct anatomical connections exist between our recording regions, it is

questionable whether direct entrainment of theta synchrony via direct reciprocal

connections between V4 and lPF lead to the increase in phase locking between the

two regions.

A different way by which phase synchronization between V4 and lPF could

be established is through indirect polysynaptic connections involving intermediate

areas. For example, synchronized theta activity in V4 could entrain and/or synchro-

nize intermediate areas such as the inferior temporal cortex (IT) and subsequently

synchronize with local rhythms in prefrontal regions or vice versa. This hypothesis

is consistent with reports on working memory-related theta frequency oscillations

that have been observed in human infero-temporal areas (Sederberg et al., 2003;

Raghavachari et al., 2006; Rizzuto et al., 2006) and is also supported by the anatom-

ical connectivity between V4 and lPF: the major feedforward output from V4 goes
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to IT (Ungerleider et al., 2008) and the major feedforward output from IT reaches

lateral prefrontal cortex, especially its ventral portion (Ungerleider et al., 1989).

Another possibility is that neural ensembles in V4 and prefrontal cortex become

synchronized by receiving common input from a third region (Basar and Bullock,

1992; Buzsaki, 2006). Although the non-zero degree phase shift argues against this

hypothesis, differences in conduction delays between V4 and lPF and a third region

could account for the lags in phase shift. A prominent candidate in synchronizing

neuronal ensembles via oscillations in the theta band is the hippocampal formation

including the surrounding parahippocampal region (Sirota et al., 2008). This com-

pound structure is located in the medial temporal lobe of the primate brain and

its major substructures are the hippocampus and the perirhinal, enthorhinal and

parahippocampal cortices (Andersen et al., 2007).

Theta rhythms are a well-known characteristic in the hippocampal LFP of non-

human primates, rats and humans (Green and Arduini, 1954; Winson, 1972; Arnolds

et al., 1980; Kahana et al., 1999; Tesche and Karhu, 2000; Cashdollar et al., 2009)

and the functional role of theta oscillations observed in the hippocampal forma-

tion is closely related to memory processing. For example, in the hippocampus,

theta oscillations are associated with the generation and enhancement of long-term

potentiation (LTP) and depression (LTD), a synaptic mechanism relevant for the

encoding and retrieval of new information into and from memory (Buzsaki, 2002,

2006). In addition, hippocampal and cortical theta oscillations show similar modu-

lations in response to cognitive demands in memory tasks (Klimesch, 1996; Tesche

and Karhu, 2000). Moreover, it has been shown that theta-phase dependent firing

within the hippocampus and several cortical regions (Winson, 1978; Lisman, 1999;

Buzsaki, 2002; Lee et al., 2005; Siegel et al., 2009) but also between the hippocam-

pus and cortical areas (Jones and Wilson, 2005; Siapas et al., 2005) is related to

memory processes.

Based on the extensive bidirectional projections to many neocortical areas in

non-human primates, including the lateral prefrontal cortex and V4 (Felleman and

Van Essen, 1991; Miller, 1991; Suzuki and Amaral, 1994; Burwell, 2000; Ungerleider

et al., 2008) and the functional similarity between hippocampal and cortical theta

it has been suggested that theta oscillations synchronize widely distributed cortical

areas during memory processing via (para-)hippocampal-cortical feedback loops

(Miller, 1991; Buzsaki, 1996; Klimesch, 1996; Sarnthein et al., 1998; Kahana et al.,

2001; Anderson et al., 2009). This could also be the case in the present study,

where V4 and the lateral prefrontal cortex become synchronized in the theta band

via cortico-hippocampal connections during memory processing.

Finally, the presented findings are also compatible with computational models

proposing phase-dependent coding as a means to store and retrieve information in

and from memory (Jensen and Lisman, 2005; Lisman and Buzsaki, 2008) as well

as with more recent models on synaptic mechanisms that underlie working memory

(Mehta et al., 2000; Mongillo et al., 2008; Verduzco-Flores et al., 2009). According

to these models, visual information about an item held in memory is not exclusively

stored by selective and sustained spiking activity during the delay period, a type of
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response pattern that has been traditionally associated with maintaining informa-

tion during memory (Fuster and Alexander, 1971; Miller and Cohen, 2001). Instead,

information is thought to be maintained by calcium-mediated short-term synaptic

facilitation and read out or reactivated by population spikes, i.e. synchronously

spiking neural ensembles, at a rate corresponding to theta oscillations (Mongillo

et al., 2008). Along these lines, oscillatory synchrony has been recently linked to

the ability to flexibly route information between neural populations (Akam and

Kullmann, 2010).

Taken together, the findings suggest that theta synchrony mediates the timed

cooperation between neural ensembles in distant cortical areas. Increased coupling

during successful retention may thus reflect more efficient and selective routing

and gating of information during short-term memory and also promote encoding of

information into memory. Ultimately, the observations are in agreement with the

proposition that oscillatory synchrony, and in particular phase synchronization, is

a general principle of integrating information within and between different cortical

and subcortical areas during memory processing (Buzsaki and Draguhn, 2004; Fries,

2005; Fell and Axmacher, 2011).
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This chapter is based on the manuscript “Emergence of Complex Computa-

tional Structures from Chaotic Neural Networks through Reward-modulated Hebbian

Learning” which is curently in preparation and will be submitted in 2011. The work

was conducted together with Robert Legenstein (RL) and Wolfgang Maass (WM).

The experiments were designed by myself, RL and WM. All the simulations and

statistical evaluations were conducted by myself, and the paper was written by my-

self, RL and WM. This work proposes a novel framework for online training of

recurrent neural networks which builds upon the reservoir computing paradigm and

is based on mechanisms that are biologically more plausible than the traditionally

applied fully supervised methods.
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In spite of substantial research efforts, it has remained a mystery how com-

plex computational structures can emerge in a biological neural system without an

intelligent “supervisor” that masterminds connection patterns of networks of neu-

rons, the synaptic weights of their connections, and the resulting network dynamics.

Some progress has recently been made by showing that complex computations can

be carried out by randomly connected neural circuits with chaotic dynamics, pro-

vided that an intelligent supervisor controls the evolution of the synaptic weights to

readout neurons. Here I show that this surprising capability can also emerge with-

out a supervisor, just on the basis of global signals that carry information whether

the computational performance for a given task has recently improved. More pre-

cisely, random perturbations of neuronal activity suffice to steer - in the presence

of global reward signals - randomly connected networks of neurons through trial

and error to network configurations where they can carry out a diverse set of com-

plex computations with high precision. In particular, the network can learn in this

“self-supervised” fashion to maintain selected information in working memory, to

adjust the processing of input streams in dependence of the current content of such

working memory, and to route incoming information to other networks in a state-

dependent manner. This demonstrates that complex computational structures can

emerge from initially chaotic neural networks through experimentally supported

reward-modulated synaptic plasticity mechanisms.

4.1 Introduction

Biological networks of neurons have to be able to carry out a large set of com-

plex computational functions that involve memory in several ways. One example

is the memory - and in turn the capability of production - of specific oscillatory

activation patterns, which are a necessity for a large variety of body functions such

as breathing and mastication or locomotive actions such as walking or swimming.

Those functions are often associated with neural circuits that act as so-called “cen-

tral pattern generators” (CPGs), which have been found primarily in the spinal

cord and the brain stem (Marder and Bucher, 2001), but there is also evidence for

movement-related rhythmic activity in primary motor cortex. For example, rhyth-

mic activity related to jaw and tongue movements has been recorded in primary

motor cortex of primates (Yao et al., 2002), an area that has been shown to be in-

volved in motor skill learning (Molina-Luna et al., 2009; Hosp et al., 2011). Another

example is short-term memory of previously observed input stimuli that is involved

in virtually every type of higher cognitive process, e.g. while comparing subsequent

visual stimuli or during processing of grammatical information. For example, it has

been observed that single neurons in the prefrontal cortex of macaque monkeys re-

spond to specific visual stimuli with a persistent increase or decrease of their firing

rates for time intervals in the range of seconds during the delay period of delayed

matching-to-sample tasks, suggesting that this behavior is a neuronal correlate of

working memory (Fuster and Alexander, 1971; Goldman-Rakic, 1995; Miller et al.,
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1996).

Evidence for CPG networks that produce rhythmic activity has been reported

in a large variety of species (Wolf and Pearson, 1987; Baessler and Bueschges, 1998;

Marder and Bucher, 2001; Prinz et al., 2004; Marder and Goaillard, 2006; Bueschges

et al., 2008; Guertin, 2009), subserving body functions such as breathing, chewing

and swallowing and locomotive actions such as walking, running or swimming. For

the role of CPG networks for locomotion, see for example the reviews by MacKay-

Lyons (2002); Grillner (2006) and Ijspeert (2008) as well as the references therein.

One well-known example of the function of a CPG network that has been thoroughly

studied is the pyloric rhythm of the crustacean stomatogastric nervous system. This

network produces a stereotyped rhythmic activity with a cycle length of more than

a second that controls the function of the constrictor muscles of the lobster’s stom-

ach. Previous results suggest that while the pyloric rhythm itself is similar across

different individuals, the network parameters, e.g. synaptic strengths, may be quite

diverse. Moreover, electrophysiological recordings in juvenile and adult lobsters

have shown that the pyloric rhythm is maintained during growth, indicating that

instead of genetically predetermined network parameters, the network activity is

regulated by homeostatic mechanisms that are capable of searching for any attain-

able parameter setting that allows the system to generate the required periodic

signal (Marder and Bucher, 2001; Prinz et al., 2004; Marder and Goaillard, 2006).

How, i.e. by means of which mechanisms, these networks can learn to accom-

plish these functions is one of the major issues being investigated in the field of

computational neuroscience, but in spite of substantial research efforts and some

major advances in the field, it remains poorly understood how neurons can learn to

solve complex computational tasks in the face of ubiquitous plasticity of synapses,

changes in neuronal excitability, and a host of other plasticity processes on dif-

ferent time scales. This becomes especially difficult when there is no intelligent

“supervisor” that guides the learning process. However, the introduction of such a

mechanism poses a problem because it is unclear how such a supervisor could be

implemented in a biological system. Since neural networks in biological systems are

highly recurrent, a learning mechanism that is capable of finding an appropriate

setting for the synaptic weights in recurrently connected neural networks has to be

employed for the tasks mentioned above.

The approach of “reservoir computing” has introduced a simple but computa-

tionally powerful paradigm for the training of recurrent neural networks. The two

major exponents, Liquid State Machines (LSMs, (Maass et al., 2002)) and Echo

State Networks (ESNs, (Jaeger, 2003)) were simultaneously and independently de-

veloped by Wolfgang Maass and Herbert Jaeger, respectively and share the same

concept. Both approaches are based on the idea of using large networks (or “reser-

voirs”) of sparsely interconnected neurons to which one or multiple input streams

are provided. The reservoir then hosts a large variety of nonlinear functions of the

interaction of the input stream(s) and the internal state of the recurrent network.

While recurrent connections are usually generated randomly and stay constant,

learning is restricted to the synaptic weights from the circuit to one or multiple
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readout neurons. Each readout is trained to produce a particular target function.

While ESNs focus more on the engineering approach, including applications in

nonlinear signal processing and machine learning, LSMs were developed from the

background of computational neuroscience and focus on the investigation of com-

putational properties of neural microcircuits in the brain, usually using biologically

realistic spiking neuron and synapse models (see Buonomano and Maass (2009);

Lukosevicius and Jaeger (2009) for recent reviews).

More recently, this approach was extended by adding feedback loops that project

the output of the readout neuron(s) back into the neural circuit and therefore make

it take part in the system dynamics (Jaeger and Haas, 2004; Maass et al., 2007),

the latter reference showing that in the idealized case without noise such a system

can carry out any conceivable digital or analog computation on time-varying inputs.

This huge repertoire of possible computations places even more weight on the open

problem of how these networks can be “programmed” by a biological neural system,

i.e., how a particular computation can be selected from an infinite repertoire of

possible computations.

In these traditional approaches, the feedback is replaced by a noisy version of

the target function during training, a method also known as “teacher forcing”. This

ensures that the network is driven to and stays within the correct regime during

training and that the system is robust to imprecisions in the feedback. However, I

am not aware of any biologically plausible mechanism that would serve as the basis

of such a teacher signal. In fact, this would require a second independent network

that is already able to generate the desired function. Moreover, the weights of

the readout neurons are traditionally trained using batch regression, which means

that the system is simulated for a substantial amount of time without a learning

process that takes place online, and after sufficiently many snapshots of the network

activity have been taken in order to properly represent the temporal dynamics of the

network, the weights are estimated on the basis of these samples. As an alternative

to batch regression, online regression mechanisms such as least mean squares (LMS)

or recursive least squares (RLS) regession (Haykin, 2001) are also frequently used

to train the readout neurons.

Modifying and extending these models, Sussillo and Abbott (2009) provided an

online learning procedure for rate-based reservoirs which they called “FORCE learn-

ing”. This method uses the online regression techniques stated above and feeds back

the actual output of the readout neurons to the network also during training, which

is more natural than using a teacher signal. The trained feedback is used to drive

a chaotic network into a non-chaotic state in order to produce coherent patterns of

activity. Chaoticity is an important aspect of their approach. In their experiments,

they use spontaneously active networks of neurons that exhibit chaotic dynamics,

i.e. irregular activity that is exponentially dependent to the initial conditions, in a

way that exploits these dynamics for learning (Sussillo and Abbott, 2009). In con-

trast to their approach, the strength of the recurrent connections is traditionally

scaled in order to avoid chaotic activity while staying close to the “edge of chaos” in

order to yield maximal computational performance for a large set of computational
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tasks in which the system is driven by time-varying inputs (Legenstein and Maass,

2007). However, due to the fact that Sussillo and Abbott predominantly take tasks

into account in which there is no input provided to the system, chaotic activity is

crucial in order to have a system that produces rich enough dynamics for gener-

ating the desired rhythmic activity. I adopt the idea of using chaotic networks in

combination with feeding back the actual readout output during training (i.e., no

teacher forcing) in our model. However, since Sussillo and Abbott apply standard

online regression methods to train the readouts, their procedure relies on explicit

information on the error of each readout unit, making it a fully supervised learning

mechanism. This makes their FORCE learning procedure problematic in terms of

biological plausibility.

An alternative line of research in computational neuroscience is concerned with

learning on the basis of correlations of pre- and postsynaptic activity, better known

as “Hebbian learning”, named after Donald Hebb, who postulated in 1949 that the

synaptic strengh between two interconnected neurons is increased if the pre- and

the postsynaptic neuron fire together (Hebb, 1949). Besides unsupervised learning

mechanisms which are solely based on pre- and postsynaptic correlations, several

learning rules have been proposed that modulate correlation-based learning using

a global modulatory signal. Based on this concept, a large family of learning rules

has been proposed, both for rate-based (Barto et al., 1988; Mazzoni et al., 1991;

Williams, 1992; Legenstein et al., 2010) and spiking (Xie and Seung, 2004; Fiete

and Seung, 2006; Pfister et al., 2006; Izhikevich, 2007; Farries and Fairhall, 2007;

Legenstein et al., 2008) neural network models in various contexts. Most of these

models, however, take only network structures into account that are largely feed-

forward, or are employed in less complex computational tasks like the enhancement

of the rate of a single neuron within a recurrent network while keeping the rates of

other neurons approximately stable.

Here, I employ a variant of a reward-modulated Hebbian learning rule pro-

posed by Legenstein et al. (2010) in order to produce oscillatory activity as well as

memory-dependent computations from initially chaotic recurrent neural networks

through feedback from trained readout neurons without the need for an intelligent

supervisor that lets the readout neurons know explicitly about their error. Instead,

the synaptic weight changes are based solely on local variables and a global binary

modulatory signal. In the proposed model, I do not use teacher forcing of the

feedback, but use the actual output of the readout also during the training phase.

This approach represents an alternative to the fully supervised learning procedures

that are commonly used in reservoir computing and is based on more biologically

plausible mechanisms. Instead of knowing explicitly about the error, it suffices to

know whether or not the overall performance of the system has recently improved

due to random noise perturbations. Moreover, with the specific rule employed here,

the readout neuron does not have to know about the noise either, but estimates the

noise from its own output (Legenstein et al., 2010).

In the following sections, I show that reward-modulated Hebbian learning ap-

plied to the weights of a readout neuron with feedback to the recurrent circuit
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is able to induce the production of a specific rhythmic activity pattern with high

precision in a recurrent network without additional input. Moreover, I show that

using this method, multiple independent traces of persistent memory about the

identity of previously observed stimuli can be learned on the basis of a common

binary modulatory signal. Similarly, I show that such memory traces and other

complex computational functions that rely on these memory traces, such as state-

dependent routing of information and other nonlinear computations, can be aquired

simultaneously by such a learning mechanism.

In summary, the results of this article provide a new perspective and framework

for the emergence of complex computations in biological neural systems.

4.2 Materials and Methods

4.2.1 Recurrent neural network model

For the recurrent network, I use a set of N leaky integrator neurons that are sparsely

connected in a recurrent fashion. The output of neuron i at time t, which is in-

terpreted as its current firing rate, is denoted by ri(t). The neurons within the

network receive additional projections from M inputs uj(t) and also from L linear

noisy readouts with output zξ,j(t).

The network dynamics is given by

τ ẋi(t) = −xi(t) + λ

N
∑

j=1

W rec
ij rj(t) +

M
∑

j=1

W in
ij uj(t) +

L
∑

j=1

W fb
ij zξ,j(t), (4.1)

where xi(t) is the state of the i-th neuron and represents its somatic activation

potential at time t, and τ is the membrane time constant. The neuronal output is

given by ri(t) = tanh(xj(t))+ξstate
j (t), where ξstate

j (t) models zero-mean noise drawn

from a uniform distribution in the interval [−θstate, θstate]. Since the sigmoidal

tanh(·) function nonlinearly maps the neuron’s state xj(t) onto the interval [−1, 1],

the neuronal output rj(t) can take values in the interval [−1 − θstate, 1 + θstate].

Parameters W rec
ij , W in

ij and W fb
ij denote the weights for recurrent connections

within the network, connections from inputs to the network, and feedback connec-

tions from readout neurons to the network neurons respectively. The parameter λ

scales the strength of the recurrent connections. If λ is smaller than one, the net-

work tends to dampen its activity, as usual in a traditional reservoir, while values of

λ greater than one lead to networks that tend to produce chaotic activity (Sussillo

and Abbott, 2009). Especially in the case where the actual feedback is used during

training without any additional input, a value of λ > 1.0 is crucial for successful

learning, because the readout needs sufficiently rich initial dynamics to produce the

target function.

Neurons in the recurrent network are connected with a probability p. In other

words, each connection strength W rec
ij is set and held to zero with probability (1−p).

The weights of the network connectivity matrix W rec are drawn from a Gaussian
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distribution with zero mean and a variance of 1/(pN). The input weights W in and

feedback weights W fb are drawn from a uniform distribution in the interval [−1, 1].

The output weights wi, which I adapt during training, are initialized to zero in my

experiments, but can also be set to nonzero values. However, these values need to

be relatively small in order to avoid that the readout output is too sensitive to noise

on the network state because large values need to cancel each other out in order to

obtain a small readout output. Note also that while the readouts with feedback in

our experiments receive input and also project their output to all neurons within

the network, each readout neuron could in principle also be substituted by multiple

neurons with sparse connectivity.

4.2.2 Comparison to FORCE Learning

Because I compare the performance of the reward modulated learning rule to the

performance of the FORCE learning rules proposed by Sussillo and Abbott (2009),

I state them here in short. In contrast to the learning rule used here, the two

variants of the FORCE learning mechanism use the exact error ei(t) = zi(t)− fi(t)

of the i-th readout to update its weights wi. In the local least mean squares (LMS)

based FORCE rule, readout weights are adapted according to

∆wi(t) = −η(t)ei(t)r(t). (4.2)

The more powerful recursive least squares (RLS) based FORCE rule is defined

as

∆wi(t) = −ei(t)P (t)r(t), (4.3)

the matrix P (t) being a running estimate of the inverse of the correlation matrix

of the network output r(t) plus a regularization term (cf. Sussillo and Abbott

(2009); Haykin (2001) for details). Therefore, the RLS-based FORCE rule uses

global information about the whole presynaptic state of the readout to modify the

learning rate of an individual synapse. This procedure makes the learning rule

more powerful than the simple LMS-based rule, but at the expense of locality and

simplicity of the rule, which involves some rather complicated computations to

generate the matrix P (t).

4.2.3 Teacher forcing versus usage of the actual feedback during
training

I consider in this work network architectures where one or several readout neurons

project their output back into the neural circuit (cf. panels A of Figures 4.2, 4.6 and

4.7). There are two approaches to deal with this feedback loop during training. In

the traditional method called “teacher forcing” (Jaeger and Haas, 2004; Maass et al.,

2007) instead of the actual output of the readout a teacher signal f̂i(t) = fi(t)+ξtf
i (t)

is fed back into the network during training. Here, f̂i(t) is a noisy version of the

target function fi(t) with zero-mean noise ξtf
i (t). This guarantees that the network

dynamics stay in the expected regime during training. However, I am not aware of
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any biologically plausible mechanism that would provide the basis for the teacher

signal.

In this work, I employ the other option, as proposed by Sussillo and Abbott

(2009) for their “FORCE learning” procedure, where the actual output zξ,i(t) of

readout i is used as the feedback signal also during training. In this setup, it is nec-

essary that the weight adaptation is fast enough such that the readout reproduces

the target function (with slight variations that are necessary for stable performance)

quickly after the beginning of training in order to mimic the desired effect of the

teacher signal. During training, ongoing weight updates keep the deviation between

the readout output and the target output small until a set of time-independent

weights is found that lets the readout follow the target function without further

weight adaptation (Sussillo and Abbott, 2009).

4.2.4 Performance evaluation

To evaluate the performance of the trained system for different parameter settings in

the periodic trajectory production experiment below, I use the following procedure.

Since there are no input signals in this experiment (cf. Figure 4.2A), the readout

has no reference during the testing period, and small errors in the frequencies of

the trained signal components therefore lead to a varying shift between the target

and the readout output over time, i.e. the actual cycle of the output of the readout

is slightly longer or shorter than the target signal’s cycle. To see whether the shape

of the target signal is nevertheless accurately reproduced by the readout’s output, I

cut the readout’s output during the testing interval into successive time slices of one

second, which is the cycle length of the target function f(t). Then, I calculate the

minimum mean squared error (MSE) between each time slice and circularly shifted

versions of a one-cycle slice of the target signal instead of just calculating the MSE

between the target function f(t) and the readout’s output z(t) directly.

In the comparative experiments employing the FORCE learning procedures, I

conducted experiments with and without adding exploration noise during training.

In any case, the error ei of the i-th readout that was used for weight adaptation

was based on the readout output without exploration noise in these experiments.

To evaluate the performance of the memory units in the “persistent memory”

and the “switchable routing” experiment, I calculate the percentage of time steps

during the testing interval in which the absolute difference between the target func-

tion and the output of the readout neuron exceeds a certain threshold, which I set

to 0.5 (half the difference between the two target values for the two different states).

4.2.5 Parameter settings for the simulations

In my simulations, I used the following parameter settings: network size N = 1000

units, internal connectivity p = 0.1, time constant τ = 50ms for the first and

τ = 10ms for the other experiments, chaoticity level λ = 1.5 for the first experi-

ment (without input) and λ = 1.2 for the other (partly input driven) experiments,
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simulation time step ∆t = 1ms, state noise ξstate(t) is drawn from a uniform distri-

bution in the interval [−0.05, 0.05], exploration noise ξ(t) is drawn from a uniform

distribution in the interval [−0.5, 0.5].

I use a decaying learning rate of η(t) = ηinit/(1 + t/T ) with initial learning rate

ηinit and a constant parameter T . The initial learning rate ηinit = 0.0005 for the

reward modulated Hebbian learning rule, and the initial learning rate ηinit = 0.0001

for the LMS-based FORCE rule, with learning rate decay constant T = 20s. The

running average of the noisy readout output is given by z̄ξ,i(t) = 0.8z̄ξ,i(t − ∆t) +

0.2zξ,i(t), and the running average of the overall reward is given by R̄(t) = 0.8R̄(t−
∆t) + 0.2R(t), where ∆t is the simulation time step.

The periodic function which has to be produced in the first experiment is

f(t) = 1.3/1.5 sin(2π1t) + 1.3/3 sin(2π2t) + 1.3/9 sin(2π3t) + 1.3/3 sin(2π4t).

Pulses in the input streams of the second and third experiment have an amplitude

of 0.4 and a duration of 100 ms (before smoothening), smoothening filter time

constant is 50ms, target values for the memory units are -0.5 for the “off” state

and 0.5 for the “on” state. Temporally correlated noise inputs u3(t) and u4(t) in

the third experiment are drawn from a uniform distribution, filtered with a time

constant of 0.5s and then scaled to have a standard deviation of 0.25. Moreover, bias

values of 0.3 and 0.15 are added to these inputs, respectively. With the nonlinear

computation unit, I compute the function

f3(t) = 0.5
(

u3(t)
2 + u4(t)

2 + u3(t)u4(t)
)

.

4.3 Results

In this section, I provide an overview of the proposed learning procedure, and

show that three typical computational tasks in the context of rhythmic activity

and memory dependent processing can be acquired by recurrent neural networks

through reward-modulated Hebbian learning.

I employed in my experiments a network model consisting of N recurrently

connected neurons, where the output of each individual neuron is described by its

firing rate rj(t). The recurrent network model is generic in the sense that it is not

designed for a particular computational function. Instead, connections within the

network are randomly drawn such that neurons are sparsely connected by excitatory

and inhibitory synapses (cf. Materials and Methods). Similar network models have

been used previously to model the dynamics of recurrent biological networks of

neurons (Amari, 1972; Hopfield, 1984; Haykin, 1999; Sussillo and Abbott, 2009),

including work in the context of CPG networks (Doya and Yoshizawa, 1992). If

necessary for the experimental task, the circuit neurons receive projections from

additional input steams uj(t). Specific computational functions are aquired through

synaptic modification of the weights from the network to so-called readout neurons

(Maass et al., 2002; Jaeger, 2003). These readout neurons can also feedback their
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Figure 4.1: Schematic of the basic network topology. A recurrent network of sparsely

interconnected neurons receives input from M input streams uj(t) at time t, assembled

into a column vector u(t). The firing rates of N individual neurons within the network,

denoted by rj(t), are assembled into a column vector r(t). The network activity r(t) is

then projected to a set of readout neurons. Some readouts feed back their output into the

network (see zξ,1(t)), others do not feed back their output (see zξ,2(t)). Only the weights

from the network to the readout neurons, denoted by red arrows, are trained.

activity into the recurrent neural network (Jaeger and Haas, 2004; Maass et al.,

2007). See Figure 4.1 for a schematic of the basic network topology.

In the presented model, the state xj(t) of neuron j within the network (cf. Ma-

terials and Methods) represents its somatic activation potential at time t resulting

from excitatory and inhibitory inputs with regard to its resting state (Hopfield,

1984; Haykin, 1999). The output of the j-th neuron in the recurrent network is

given by

rj(t) = tanh(xj(t)) + ξstate
j (t), (4.4)

where ξstate
j (t) models zero-mean noise on the firing rate of the neuron. I assemble

the activities of the network neurons at time t and a bias term with value one into

a column vector r(t). Assembling the weights connecting these neurons to readout

neuron i into a column vector wi, this readout computes the function

zi(t) = wT
i r(t). (4.5)

Reward-modulated Hebbian learning of readout weights demands the readout neu-

rons to be noisy (Legenstein et al., 2010). The output of the i-th readout is therefore

modeled by

zξ,i(t) = zi(t) + ξi(t), (4.6)

where ξi(t) models zero-mean exploration noise on the readout firing rate. This

noisy readout signal is also fed back to the circuit neurons if the readout provides

feedback into the recurrent circuit. Exploration noise ξi(t) is only applied during

training, hence zξ,i(t) = zi(t) during testing.
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Biological networks of neurons operate under substantial amounts of noise and

trial-to-trial variability. Therefore, stability of the learned network trajectories

is crucial in such systems, because the readouts have to learn to react properly to

perturbations. Such stability can be promoted by training in noisy conditions. Two

sources of noise in the network play a role in this context. First, the exploration

noise ξ(t) in the readout output (cf. Equation 4.6), which is primarily the driving

force of learning, also perturbs the network dynamics via the feedback loop. Due to

the slow dynamics of the neurons within the network, leading to a lowpass filtering

effect, these perturbations are rather small even for high levels of exploration noise.

Second, the state noise ξstate(t) on the output activity of the neurons within the

network (cf. Equation 4.4) can have a positive effect on the robustness of the trained

system if also applied during the training period. The latter type of perturbations

has been used as an alternative to perturbations of the teacher signal by Jaeger and

Haas (2004) to stabilize learning, but has turned out to be less effective (Sussillo

and Abbott, 2009).

Following the approach of Sussillo and Abbott (2009), and in contrast to tra-

ditional reservoirs, the dynamics of the recurrent network used in our simulations

tend to be in the chaotic regime prior to training. Different dynamic regimes,

from nonchaotic to chaotic, can be accomplished by scaling the recurrent synaptic

connections within the network by an appropriate constant λ (cf. Materials and

Methods). It is important to note that during training, the readout neurons drive

the network activities into a nonchaotic state via the feedback pathway, even though

the recurrent weights within the network are in principle scaled to support chaotic

dynamics (Sussillo and Abbott, 2009).

4.3.1 Reward-modulated learning rule

In contrast to Sussillo and Abbott (2009), who use a fully supervised online learning

rule to train the network, I investigate the capabilities of a biologically more plau-

sible reward-modulated online learning rule. Since synaptic plasticity in biological

systems can only rely on imperfect error signals, I use a minimal global modulatory

signal stemming from an external critic for the training of the synaptic weights

of the readout neurons. This signal is minimal in the sense that it communicates

in a binary fashion whether the common performance of all readouts has recently

increased instead of providing full information on the sign and magnitude of the

error. Importantly, this modulatory signal is shared among all readouts and does

not contain any information on the amount of improvement or the identity of the

readout(s) responsible for the reward increase.

Specifically, the global binary modulatory signal at time t

M(t) =

{

1 if R(t) − R̄(t) > 0,

0 if R(t) − R̄(t) ≤ 0,
(4.7)

depends on the the momentary reward R(t) compared to a temporal average of the

reward over the recent past R̄(t) (cf. Materials and Methods). Therefore, R(t)−R̄(t)
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indicates the amount of increase or decrease of the reward.

The reward R(t), as calculated by the external critic, depends on the differences

between the readout outputs zξ,i(t) and their respective target functions fi(t) and

is given by

R(t) = −
L

∑

i=1

(zξ,i(t) − fi(t))
2 (4.8)

in my experimental setup. It is important to note that the specific values of R(t)

and R̄(t) are only visible to the external critic, while the readout neurons only

receive the binary modulatory signal M(t).

In order to produce oscillatory activity as well as memory-dependent computa-

tions, this binary modulatory signal guides adaptation of readout weights wi via a

reward-modulated Hebbian learning rule. I employ a variant of the rule proposed

by Legenstein et al. (2010), where the weight change ∆wi(t) of readout i at time t

is given by

∆wi(t) = η(t)(zξ,i(t) − z̄ξ,i(t))M(t)r(t). (4.9)

Here, η(t) is a small learning rate that can either be constant or decaying over

time such that learning is slowed down as training progresses. I use a decaying

learning rate in our experiments. Moreover, z̄ξ,i(t) is a running average of the noisy

output of the readout during the previous time steps (cf. Materials and Methods).

If one assumes that zi(t) changes only slightly within the time scale of the filter

and the noise is only weakly correlated over time, then the term zξ,i(t) − z̄ξ,i(t)

approximates the noise ξi(t). Therefore, the rule does not need explicit information

on the exploration noise part of the output signal, but instead estimates the noise

from the output itself (Legenstein et al., 2010).

While traditional Hebbian learning rules use the correlation between the presy-

naptic and the postsynaptic activity for learning, this learning rule is Hebbian in

the sense that it uses the correlation of the postsynaptic noise and the activity of

the presynaptic neuron together with a global binary modulatory signal in order

to train the local weights. I want to point out that the exploration noise ξi(t) is

the driving force of learning. Without perturbations of the readouts’ output, no

learning process would take place.

In all of the following experiemnts, I used N = 1000 neurons in the recurent

network. Each pair of these neurons was connected with a probaility p = 0.1.

These and other basic network parameters were chosen such that they correspond

to the values used by Sussillo and Abbott (2009). Other parameters, such as the

amplitudes of the exploration noise ξ(t) and state noise ξstate(t) as well as the initial

learning rate ηinit were manually tuned to produce considerably accurate results.

Note that I used the same values for the parameters above for all experiments

and did not perform a rigorous parameter search in order to find the setup with

optimal performance for each experiment, see Materials and Methods for details on

the parameter settings used in my experiments.
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4.3.2 Emergence of a periodic trajectory through reward-
modulated Hebbian learning

Biological neural networks produce many different types of rhythmic activities for

various purposes such as muscle activations for breathing, mastication or loco-

motion. I studied whether reward-modulated Hebbian learning can lead to au-

tonomously generated rhythmic activity in recurrent neural circuits. I simulated

a network that receives no inputs besides the feedback projections from a single

readout neuron (see also Figure 4.2A). The task of the readout neuron was to pro-

duce a specific periodic trajectory and to repeat this periodic trajectory in a stable

manner.

In contrast to teacher forcing, which is problematic from the perspective of

biological plausibility since the actual output of the readout is replaced by the

desired target value, I always used the actual output of the readout neuron to drive

the network dynamics via the feedback loop. In order to keep the network dynamics

in the expected regime, the readout output has to resemble the target computational

function already shortly after the beginning of training. To accomplish this, the

synapses of the readout neuron have to adapt rapidly during training, such that the

readout approximately follows the target trajectory until a set of time-independent

weights is found that lets the readout produce the target function without further

weight adaptations (Sussillo and Abbott, 2009). Therefore, the first step was to

see whether the proposed reward-modulated Hebbian learning rule is able to adapt

the readout weights quickly enough in order to fulfill this requirement. This is a

prerequisite for using the actual activity of the readout during training instead of

a teacher signal.

Figure 4.2B shows a representative example of the readout activity at the onset

of the learning procedure. Within less than 50ms, the readout is able to adapt its

activity in order to reach the desired target, and to approximately follow the target

signal henceforth. Since the network dynamics are slow compared to the update

rate of the learning procedure, the input to the readout as well as the desired

target only change slightly on the time scale of the learning procedure. Therefore,

the readout is able to adapt its output to move closer to the target output each

time the applied noise leads to an increase in the reward. Hence, in spite of the

general belief that reward-modulated Hebbian learning is slow as compared to other

supervised learning rules, these results indicate that it is fast enough to ensure quick

convergence of the readout output to the current target value.

The goal of training is to find a set of time-independent weights such that the

system is able to keep producing the target function when the learning mechanism

is switched off after an appropriate training time. Figure 4.2C shows that this

goal is accomplished by reward-modulated Hebbian learning. After a training time

of 400s, which corresponds to 400 cycles of the periodic trajectory, the readout

keeps producing the desired trajectory in spite of the lack of any further weight

adaptation. The rhythmic activity of the readout, which drives the network via the

feedback pathway, has a strong influence on the internal network dynamics. Figures
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Figure 4.2: Emergence of periodic activity through reward-modulated learning. A: A

recurrent network receives feedback from a readout neuron, but no other inputs. The

readout is trained to produce a periodic trajectory composed of four sinusoids with an overall

period of one second. B: Beginning of the training interval (first quarter period shown).

The dashed blue line indicates the onset of training. After less than 50ms, the readout

output without exploration noise z(t) (red) approximately follows the target function f(t)

(black), a prerequisite for learning without teacher forcing. The actual feedback signal

zξ(t) (light red) that is provided to the network includes the exploration noise ξ(t), which

is the driving force of learning. C: Beginning of the testing interval where synaptic weights

remain fixed (last training cycle and first two testing cycles shown). The dashed green line

indicates the beginning of the testing period. After an appropriate training time (400s for

the presented example), the readout continues to approximately produce the target function

without further weight adaptation.

4.3A and 4.3B show a subset of 10 random units from within the network at the

onset of training and at the transition from training to testing, respectively. Before

the system is being trained, the network exhibits chaotic dynamics and produces

rich spontaneous activity. Shortly after the onset of learning, a stable periodic

pattern emerges due to the driving force of the feedback loop (panel A). This stable

periodic pattern persists during the testing interval when there is no further weight

adaptation (panel B).

Based on these encouraging results, I further evaluated the performance of the

system. First, I investigated how much training is needed before the network reli-

ably reproduces the oscillatory pattern. To address this question, I conducted 50

independent simulation trials for each of several considered training times. Training

was followed by a testing interval of 500s, which also corresponds to 500 cycles of

the periodic trajectory. Figure 4.4A shows the trial-averaged performance of the

system for varying training times between 10s and 400s. The performance of the

system increases with increasing training time. Importantly, for training times of

200s or more, the error stays approximately constant throughout the whole testing

interval, with only a slight increase during the first 50 cycles of testing due to a few
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Figure 4.3: Emergence of a stable periodic pattern of the network state through learning.

A: Beginning of the training interval (first six cycles shown). The dashed blue line indicates

the onset of training. While the network produces spontaneous activity before learning, a

stable periodic pattern emerges shortly after the onset of training due to the drive of the

feedback loop of the readout. B: Beginning of the testing interval (last six training cycles

and first six testing cycles shown). The dashed green line indicates the beginning of the

testing period. After sufficiently long training, the stable periodic pattern keeps being

produced during the testing interval.

trials in which the readout diverges from the desired trajectory after some time (cf.

also Figure 4.4C, showing that the majority of trials has a very small test error,

indicating that the desired trajectory is in fact stably produced until the end of the

testing period).

To further evaluate the performance of the system in comparison to FORCE

learning (cf. Materials and Methods for a brief description of the FORCE learn-

ing rules), I compared the performance of the system which employs the reward-

modulated Hebbian rule with the performance of systems employing the two dif-

ferent FORCE learning rules (Sussillo and Abbott, 2009), again for training times

between 10s and 400s. For the FORCE-trained systems, I did not apply explo-

ration noise during training. However, control simulations with noise showed that

this noise does not significantly change the system behavior.

Figure 4.4B shows the result of this comparison. The RLS-based FORCE rule

(green) performs best, leading to a good approximation of the target signal after as

few as 10 training cycles. This is not surprising since the RLS-based rule is known

to be superior to the LMS-based rule with respect to performance, but uses non-

local information on the whole presynaptic state of the readout neurons to adapt

the learning rates of the single synapses individually, which seems to be problematic
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Figure 4.4: Evaluation of the testing performance of the reward modulated Hebbian learning

rule for the periodic signal production experiment and comparison to FORCE learning. A:

Test performance (average mean squared error over 50 independent trials per training time)

for varying training times of 10s to 400s. The test error deceases for increasing training

time. Importantly, for large training times, the error stays approximately constant during

the whole testing interval, with only a slight increase during the first 50 cycles due to a few

unstable trials. Shaded areas around the mean squared error (MSE) indicate the standard

error of the mean (SEM). B: Comparison of the average test error for three different learning

rules. While the non-local RLS-based FORCE rule (green) is able to approximate the target

function well after only 10 training cycles, the employed reward-modulated Hebbian learning

rule (red) and local LMS-based FORCE rule (blue) perform similar to each other, but take

approximately 100 cycles to reach a considerable level of performance. C: Distribution of

the MSE at the end of testing (last testing cycle, log scale) over all 50 trials for the reward

modulated Hebbian learning rule and 400s of training. Most of the trials keep producing

the target function properly until the end of testing, resulting in a small MSE. Only in

a few trials the readout diverges from the desired trajectory after some time, causing the

slight increase in the MSE during the first 50 cycles of testing (cf. panel A).

from the point of biological plausibility. However, the reward modulated Hebbian

learning rule (red) is able to perform similar to the local LMS-based FORCE rule

(blue). With both local rules, the network needs to be trained for approximately

100 cycles before a good performance level is reached.

In order to see whether a certain level of chaoticity - which I regulate by the

parameter λ that scales the weights of the recurrent circuit - is necessary for accurate

results, I tested the system performance for different values of λ. Figure 4.5A shows
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Figure 4.5: (see next page for Figure caption)

the results of this evaluation for training intervals of 400s, and indicates that a

certain level of chaoticity is indeed necessary for an accurate performance of the

system. On the other hand, if the chaoticity exceeds a certain level, the drive from

the feedback loop becomes too weak to drive the network dynamics into a stable

regime. This is in line with the results of Sussillo and Abbott (2009). Initial chaotic

dynamics are needed because the network has to initially produce sufficiently rich

dynamics in order to properly generate the target function if no further input is

provided to the system.

Biological networks of neurons have to be able to operate under the influence

of substantial amounts of noise and strong trial-to-trial variability. Therefore, an-

other important aspect that needs to be ensured for this type of system is whether

it is robust to strong noise perturbations during the testing interval. In order to

test this, I perturbed the network in two different ways, for a time interval of one

second each. First, the system was perturbed with strong noise in the feedback

signal of the same amplitude as the exploration noise applied during training. Af-

terwards, it was perturbed with state noise on the network output that was ten

times stronger than the state noise usually used in the simulations. Figures 4.5B

and C show that the trained system is robust against perturbations of the feedback

signal (panel B) that affect the readout only via the network, and perturbations of

the network output (panel C), which directly affect the input to the readout neuron

itself. While perturbations of the feedback signal have no visible effect on the out-

put of the readout since they are filtered by the slow dynamics of the network, the
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Figure 4.5: Relation between network performance and chaoticity of the network and ro-

bustness of the system against perturbations. A: Performance of the network after 400s of

training for different values of λ. The network needs a certain level of chaoticity, leading

to rich enough dynamics, in order to generate the target function without further input.

The system performs best for λ values between 1.3 and 1.5. B, C: Noise robustness of the

trained trajectory. In order to test the robustness of the system to strong noise pertur-

bations applied during testing, we added uniformly distributed noise to the output of the

readout z(t) (panel B, noise added in the shaded 1s interval, we show the output before

adding noise) as well as to the network output r(t), which is in turn the input to the readout

unit (panel C, noise added in the shaded 1s interval). Noise on the readout output does not

produce any visible deviations of the readout output, because the noise influence is small

due to the lowpass filtering properties of the leaky integrator units within the network.

On the other hand, noise on the network output directly affects the input to the readout

and produces deviations that fluctuate around the desired trajectory. However, the desired

trajectory is quickly restored after the noise is removed again. D: To further evaluate the

robustness to perturbations, I clamped the readout output to a constant value for a time

interval of 500ms. After unclamping the output of the readout, the system is able to restore

the desired trajectory within a few cycles.

strong perturbations of the network output do have a visible effect on the readout

output. However, while this type of noise lets the readout fluctuate around the

desired trajectory during the time interval in which the system is perturbed, the

desired trajectory is restored shortly after the noise is removed again. Interestingly,

the network is able to restore the desired trajectory even after extremely severe

perturbations of the readout output. For example, I clamped the readout output

such that it remained constant for 500ms. After unclamping of the readout output,

the system is able to recover the desired trajectory within a few cycles (see panel

D of Figure 4.5).

4.3.3 Simultaneous learning of multiple persistent memory traces

High-level cognitive processing in the brain demands working memory in the sense

that neuronal circuits are able to temporarily store contextual information such as

the identity of previously observed stimuli. Neuronal correlates of working memory

have been observed for example in single neuron recordings from the prefrontal

cortex of macaque monkeys during visual working memory in delayed matching-

to-sample tasks (Fuster and Alexander, 1971; Goldman-Rakic, 1995; Miller et al.,

1996). In these experiments, it was observed that prefrontal cortex neurons hold

information of previously observed stimuli by a persistent increase or decrease of

their firing rates for a time period in the range of seconds.

I tested whether such memory-dependent processing can emerge in my model

through reward-modulated learning in a generic working memory task. In this task,

the network should hold information about two independent contextual variables

in its network state and make this state visible through the activity of two readout

neurons, one for each variable. The current state of each of these variables is
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Figure 4.6: Learning of independent persistent memory traces based on a common modula-

tory signal. A: In this task, two readouts are trained by adapting their weights (red arrows

in panel A) using a common binary modulatory signal. Each readout zξ,i(t) is trained to

produce a memory trace (red trace in panel B, the black trace represents the target func-

tion fi(t)) by changing its firing rates depending on the activity of the two input streams

it is associated with. If the associated “on” input (uon,i(t), green inputs in panel A, and

green traces above the readout output zi(t) and target function fi(t) in panel B) is briefly

activated, the readout is trained to switch to a high firing rate. If the associated “off”

input (uoff,i(t), blue inputs in panel A, and blue traces below zi(t) and fi(t) in panel B) is

activated, it is trained to switch to a low firing rate. B: After a training time of 500s, the

system is tested for another 500s. The last 30s of the testing period are shown for both

readouts, aligned with the respective readout neurons in the schematic in panel A. Both

readouts nicely produce the desired memory traces.

defined by the past activity in two input streams, an “on”-stream and an “off”-

stream (see Figure 4.6A). The task of each readout neuron is to learn to change

its firing rate depending on the pulses in the two associated input streams. A brief

(100ms) activation of the “on” input demands the readout to switch to a high firing

rate, while a brief activation of the “off” input demands the readout to switch to a

low firing rate. If pulses occur subsequently in the same input stream without an

intermediate pulse in the other input stream, the readout is expected to keep the

same rate. Moreover, the readout has to remain independent of the inputs that are

associated with the respective other readout and also of the feedback of the state

of the other readout itself. Figure 4.6A shows the network setup for this persistent

memory experiment.

Figure 4.6B shows a representative example of the result of training the network

for 500s and subsequent 500s without further weight adaptation. The last 30s of the

testing interval are presented. The firing rates of the two readouts correctly change

depending on the associated inputs. Note that the system learned the correct

behavior for both readouts based on a single modulatory signal that indicated only

whether the combined performance of both readouts recently improved.
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In order to evaluate how much time the system spends in the correct state during

a 500s testing interval, I performed 50 independent simulations and calculated the

percentage of time in which the readouts are in the wrong rate. The average fraction

of time in the wrong state is 4.57±0.73 percent of the testing time, with an even

lower median fraction of 2.9 percent (based on 50 trials, average proportion over

both readouts per trial).

In summary, this experiment shows that such a circuit is able to hold information

about recently observed inputs for at least several seconds and both readouts are

able to learn to stay independent of each other despite the fact that both readouts

strongly modulate the network dynamics and do only learn on the basis of a common

binary reward signal.

4.3.4 Simultaneous learning of memory traces and state-dependent
computations such as switchable routing

Solely having a working memory trace does not suffice for complex cognitive pro-

cesses, for example during the task of processing grammatical information or during

action selection based on contextual information sensed previously. We therefore

address the question whether the proposed model can simultaneously generate mem-

ory traces of preceding inputs, like in the previous experiment, and perform different

complex computational functions on the basis of these memory traces by employing

reward-modulated Hebbian learning.

In my experimental setup (see Figure 4.7A), I simulated a network that receives

input from four input streams. Two inputs, u1(t) and u2(t), are series of short

pulses occurring at random points in time, like in the persistent memory experiment

above. The other two inputs, u3(t) and u4(t), are temporally correlated noise

signals. Moreover, the network projects to three readout units that are expected

to solve three different computational tasks using the common modulatory signal.

The first readout, the “memory unit”, feeds its output signal zξ,1(t) back into the

network. Its function is the same as the function of each readout in the “persistent

memory” experiment. The other two readouts, which do not feed back to the

network, have different target functions. The second readout, the “routing unit”

with output zξ,2(t), is trained to output the first noise input u3(t) if the memory

unit is in the “on” state, and to output the second noise input u4(t) if the memory

unit is in the “off” state. With respect to this readout, the system can thus be

viewed as a switchable routing network that routes information from one of the two

input channels depending on its memory about a contextual variable. The third

readout, the “nonlinear computation unit” with output zξ,3(t), is trained to compute

a nonlinear function of the noise inputs u3(t) and u4(t) which is independent of the

state of the memory unit.

Figures 4.7B and C show the readout outputs of the final system after 500s of

training. Figure 4.7B shows an example in which the transition of the memory unit

from the “on” state to the “off” state is correctly executed. At the time of this state

transition, the routing unit also changes its output from approximately representing
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Figure 4.7: Simultaneous learning of memory traces and state-dependent computations.

A: Three readouts are trained using a common modulatory signal. The “memory unit”

zξ,1(t) provides feedback to the circuit and switches between two firing rates based on the

pulses in the two “pulse inputs” (cf. persistent memory experiment). The “switchable

routing unit” zξ,2(t) routes one of two temporally correlated “noise inputs” through the

network, depending on the state of the memory unit. The third readout zξ,3(t) computes

a nonlinear function of the two noise inputs independent of the state of the memory unit.

B: Output traces of the three readout units at the end of a 500s testing period after 500s

of training, aligned with the corresponding readout units in the schematic in panel A. The

memory unit zξ,1(t) (red, upper trace) switches properly from the “on” state to the “off”

state. The routing unit’s output zξ,2(t) (red, middle trace) also switches from approximately

reproducing the input u3(t) (blue) to reproducing the input u4(t) (green). The third readout

zξ,3(t) properly computes a nonlinear function of the two correlated noise inputs u3(t) and

u4(t). C: Improper switch of the memory unit’s state. The memory unit’s output zξ,1(t)

(upper trace) switches back to the “off” state while its target state f1(t) is the “on” state.

As expected, the routing unit’s output zξ,2(t) (middle trace) also reproduces the wrong

input, in this case u4(t) (green) instead of u3(t) (blue), since its output depends on the

memory unit’s state. As soon as the memory unit is again in the correct state, also the

routing unit reproduces the correct input. The nonlinear computation unit zξ,3(t) remains

largely unaffected by the wrong switch state.

the first noise input u3(t) (blue) to representing the second noise input u4(t) (green).

The third readout is not affected by the state switch and correctly computes the
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nonlinear function of both noise inputs throughout. This shows that the same

circuit is able to perform concurrently complex memory-dependent operations and

memory-independent nonlinear computations. Figure 4.7C shows an example from

the same trial approximately 50s earlier in which a switch of the memory unit to

the “on” state fails. Similar to the previous experiment, the memory unit is in the

wrong state for as few as 5.75±0.38 percent of the whole training time (average over

50 trials). The routing unit behaves as expected, i.e. since the memory unit is in the

wrong state, the routing unit also represents the “wrong” input u4(t) (green) instead

of u3(t) (blue), which is in turn the correct behavior of the routing unit because its

activity depends on the memory unit’s state. As soon as the memory unit switches

to the “on” state accurately, also the routing unit switches to representing u3(t)

(blue) again. The additional readout unit that computes the nonlinear function of

the noise inputs u3(t) and u4(t) remains largely unaffected by the wrong state of

the memory unit.

4.4 Discussion

In extension and modification of previous results (Jaeger and Haas, 2004; Maass

et al., 2007; Sussillo and Abbott, 2009; Legenstein et al., 2010), I have shown that

a simple reward-modulated online learning rule that is used for the training of a

set of readout neurons with feedback projections is able to steer the dynamics of an

initially chaotic recurrent neural network in order to produce patterns of oscillatory

activity as well as persistent memory and memory-dependent computations.

In contrast to previous results, a system that is trained with the presented

method is able to learn to perform complex computations without the need for

an intelligent “supervisor”. Instead, it suffices that a global modulatory signal is

present which indicates whether or not the overall performance of the system has

recently improved due to random noise perturbations. The learning procedure does

only incorporate local synapse-specific information (i.e., the output of the readout

itself and the output of the neuron that is presynaptic to the readout via that

specific synapse) as well as a global binary modulatory signal. Since it does not

depend on exact information on the error, the learning rule proposed here is more

biologically plausible than the fully supervised learning rules that are traditionally

used to train such networks.

I want to stress the importance of the globality of this signal to biological plau-

sibility of the system. In traditional error-based learning approaches involving mul-

tiple readouts, each readout has to be supervised individually by providing it with

its exact error. In the proposed system, it is not necessary that an individual mod-

ulatory signal is present for each readout that indicates whether the performance

has increased or not. Instead, I use the same modulatory signal for all readouts,

indicating only whether the common performance of all readouts has increased due

to random noise perturbations. I therefore propose to experimentally test this by si-

multaneously measuring responses of multiple neural populations that are involved
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in coding for the persistent memory of multiple independent cues, probably within

prefrontal cortex, together with the local concentrations of neuromodulatory signals

during the entrainment of a memory task. If the local concentration of these sig-

nals would show to be only correlated with changes in the performance of the local

neural population at the same location, but not with changes in the performance of

the other populations at different locations, this would suggest multiple individual

performance-related signals. However, the presented model predicts that the con-

centration of neuromodulatory signals would be correlated not only with changes in

the local population’s performance, but with changes in the performance of several

populations with individual tasks each.

Moreover, since I always use the actual feedback of the readout neurons, the

model does not need a teacher signal that already resembles the target activity of

the readout and thereby drives the network activity into the expected regime during

training. This approach is adopted from Sussillo and Abbott (2009) and increases

the biological plausibility of such a system in comparison to the traditional teacher-

forced systems Jaeger and Haas (2004); Maass et al. (2007), since the teacher signal

would require the existence of another circuit that is already able to perform the

desired function, reducing the task of the network to merely reproducing the behav-

ior of the other circuit. Moreover, assuming that such an additional circuit would

already exist, the network would still have to switch from the “open loop” topology

using the teacher signal to a “closed loop” topology using the actual readout output

as soon as the desired target function is obtained by the readout, either gradually or

instantaneously. This would require another involved rewiring mechanism that de-

tects that the readout has acquired a considerable level of performance and induces

the transition from the “open loop” to the “closed loop” topology.

CPG networks, recurrent neural structures which autonomously produce rhyth-

mic activity, have been found to be located in the spinal cord, associated with

reflexes and locomotion patterns, and in the brain stem, associated with breathing,

chewing, swallowing and eye movements. Those regions receive projections from

the basal ganglia, a structure that is known to be important for the control and

coordination of CPGs, including tonic inhibition of CPG networks during resting

conditions. Also, the basal ganglia are thought to be highly involved in reward-based

learning. I therefore suggest that synaptic modification within CPG networks that

are involved in locomotion might be modulated by signals stemming from the basal

ganglia in order to steer the activity towards entrainment of specific rhythms. After

training, the modulatory signals are not required to produce the entrained rhythms,

which is consistent with results from lesion studies showing that the adaptatability

of CPG networks is impaired after lesions of the basal ganglia, while individual

CPGs can still be activated through stimulation. Also, the responsiveness of these

systems to enhanced or reduced dopaminergic input may point towards this hy-

pothesis (Grillner, 2006). The question whether our hypothesis holds has to be

addressed by experimental studies that focus on the availability of modulatory sig-

nals during the entrainment of activation patterns by CPGs. Specifically, it has to

be tested whether the concentration of these signals is correlated with changes in
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network performance.

Moreover, movement-related rhythmic activity patterns related to jaw and

tongue movements have been found in the primary motor cortex of primates (Yao

et al., 2002), which has been shown to be involved in learning of fine motor skills

(Molina-Luna et al., 2009). Also, traces of persistent memory reflected in sus-

tained firing activity of single neurons in response to specific visual stimuli have

been recorded in prefrontal cortex (Fuster and Alexander, 1971; Goldman-Rakic,

1995; Miller et al., 1996). Primary motor cortex and prefrontal cortex both receive

input projections from midbrain dopaminergic neurons, and dopamine has been re-

lated to the expression of synaptic plasticity in these areas (Descarries et al., 1987;

Lewis et al., 1987; Molina-Luna et al., 2009; Hosp et al., 2011). I therefore suggest

that the entrainment of such movement-related activity patterns in primary motor

cortex and persistent memory traces in prefrontal cortex may also be guided by

modulatory input from midbrain neuromodulatory signals.

Assuming that the proposed tasks are performed using such a learning mecha-

nism, the presented model predicts that the synaptic adaptations that keep the de-

sired trajectories stable during learning depend on the availability of global signals,

such as specific neuromodulators. Without the presence of such signals, adaptation

would not be possible. This is consistent with studies showing that both working

memory performance and motor skill learning are impaired if the dopaminergic sys-

tem of the brain is degenerated, as in patients with Parkinson’s disease (Durstewitz

and Seamans, 2002; Doyon, 2008; Molina-Luna et al., 2009), and also with studies

showing that working memory performance is is impaired if dopaminergic input to

the prefrontal cortex is blocked (Durstewitz and Seamans, 2002). Moreover, our

simulation results are also consistent with results indicating that dopaminergic sig-

naling in primary motor cortex is involved in learning new motor skills, but not in

executing a previously learned skill (Molina-Luna et al., 2009; Hosp et al., 2011).

However, further experiments remain to be conducted to explore how the per-

formance of such learning rules scales with larger sets of readouts. Moreover, it

is an open question to which extent variants of this mechanism can be applied to

spiking neural networks to solve such tasks. In summary, reward-modulated learn-

ing rules provide an interesting alternative to the fully supervised rules that are

commonly used in reservoir computing approaches. My results give an indication

how stable rhythmic patterns as well as persistent memory and memory-dependent

computatations can be formed from initially chaotic recurrent networks and also

are in line with the hypothesis that noise plays a crucial role for learning instead of

only being a disturbing factor.
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The first publication, Extraction of Information about the Behavioral State of Mon-

keys from Neuronal Recordings with Methods from Machine Learning, is my master’s

thesis, which was jointly supervised by Wolfgang Maass and Gregor Rainer and pro-

vided the basis for the collaboration during my doctoral studies which resulted in

most of the publications above (except for publications 4 and 8). The results from

my master’s thesis are not contained in this thesis.

The publication Directed coupling in local field potentials of macaque V4 during

visual short-term memory revealed by multivariate autoregressive models was a joint

paper with Stefanie Liebe (SL), Gregor Rainer (GR) and Nikos Logothetis (NL)

from the Max Planck Institute for Biological Cybernetics in Tübingen, Germany1,

and Alois Schlögl (AS) from the Institute for Human-Computer Interfaces at TU

Graz, Austria2. The monkey experiments and electrophysiological recordings were

designed by SL and GR and performed by SL, the data analysis was performed by

myself and SL, and the paper was written by myself and SL with input from AS,

NL and GR. This paper is the basis for Chapter 2 of this thesis.
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2010 and was accepted for an oral presentation. The experiments were performed

and the paper was written by myself. The results from this publication are not
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the paper Emergence of Complex Computational Structures from Chaotic Neural

Networks through Reward-modulated Hebbian Learning.

The publications Long Range Coupling between V4 and PF in Theta Band dur-

ing Visual Short-Term Memory as well as Oscillatory Neuronal Synchronization

between Prefrontal and Extrastriate Visual Cortex during Visual Memory and Long

range coupling in theta between V4 and prefrontal cortex predicts visual memory

performance are posters which present results from joint work with Stefanie Liebe

(SL), Nikos Logothetis (NL) and Gregor Rainer (GR). The posters were prepared

by SL and myself with input from NL and GR, and presented by SL at the An-

nual Meeting of the Society for Neuroscience (SfN) in 2009 and 2010 as well as

at the Computational and Systems Neuroscience Conference (COSYNE) in 2011,

respectively.

The paper Long range theta coupling between V4 and lateral prefrontal cortex

predics visual short-term memory performance is based on joint work also pre-

1Stefanie Liebe is currently affiliated with the Department of Physiology, Pharmacology and

Neuroscience at the University College London, United Kingdom, and Gregor Rainer is currently

the head of the Visual Cognition Laboratory of the Department of Medicine at the University of
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2Alois Schlögl is currently affiliated with the Institute of Science and Technology Austria in

Maria Gugging, Austria.
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sented in the posters at SfN and COSYNE (see previous paragraph). The monkey

experiments and electrophysiological recordings were designed by SL and GR and

performed by SL, the data analysis was performed by myself and SL, and the pa-

per was written by myself and SL with input from NL and GR. This paper has

been submitted to “Nature Neuroscience” in February 2011 and is currently under

review. This paper is the basis for Chapter 3 of this thesis.

The paper Emergence of Complex Computational Structures from Chaotic Neu-

ral Networks through Reward-modulated Hebbian Learning is a joint paper with

Robert Legenstein (RL) and Wolfgang Maass (WM) and extends the work pre-

sented in the workshop contribution Reward-modulated Hebbian Learning is able

to induce Coherent Patters of Activity and Simple Memory Functions in initially

Chaotic Recurrent Neural Networks. The experiments were designed by myself, RL

and WM, performed by myself, and the paper was written by myself, RL and WM.

This paper is in preparation and will be submitted in 2011. This paper is the basis

for Chapter 4 of this thesis.
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