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Zusammenfassung

Diese Diplomarbeit behandelt die Entwicklung eines Testautomatisie-
rungsprogramms und die Änderung von bestehenden Arbeitsprozessen bei
der Softwareentwicklung und Testtätigkeit. Sie entstand in Zusammenarbeit
mit der Firma RunningBall Sports Information GmbH. Der praktische Teil
wurde in Kooperation mit dieser Firma umgesetzt. Das Kerngeschäft des
Unternehmens besteht aus der Echtzeit-Datenübertragung von Sportereig-
nissen über das Internet. Der operative Standpunkt von RunningBall befin-
det sich in Graz. Die Firma ist ein junges Unternehmen und es gibt nicht
viele Softwareprodukte, die mit umfassenden Tests ausgestattet sind. Daher
bietet sich hier das perfekte Umfeld um ein Testautomatisierungsprogramm
zu entwickeln.

Den Zugang zu dem Wissensgebiet bilden Nachforschungen über den
theoretischen Hintergrund von Softwaretests, Testautomatisierung und Me-
triken. Viele Werkzeuge, welche zu einer automatisierten Testumgebung bei-
tragen, sind bereits verfügbar; die geeignetsten wurden ausgewählt und un-
tersucht. Die gesammelte Erfahrung und ausgewählte Werkzeuge wurden in
der Folge in einem Praxisprojekt angewendet.

Teil eins dieser Diplomarbeit behandelt den theoretischen Hintergrund
von Softwaretests - Testbereiche und -methoden werden erläutert. Danach
folgt ein umfassendes Kapitel über Metriken. Metriken stellen ein unver-
zichtbares Instrument für das Testen und vor allem zur Ermittlung des
Fortschritts und der Qualität von Tests dar. Das Kapitel über Testautomati-
sierung endet mit einem Abschnitt über die Kriterien, wann ein Test beendet
ist und ausreichend getestet wurde. Im nächsten Kapitel werden Werkzeu-
ge für eine Continuous Integration Umgebung beschrieben. Werden diese
Werkzeuge entsprechend ihres Verwendungszweckes eingesetzt, können sie
in eine leistungsfähige Continuous Integration Umgebung zusammengefügt
werden.

Der zweite Teil gliedert sich in drei Hauptkapitel. Das erste Kapitel
erläutert den Projekthintergrund. Das umfasst eine Beschreibung der Firma
RunningBall, einen Abschnitt über Fachbegriffe aus diesem Anwendungsge-
biet und den Status Quo bezüglich Testaktivitäten bei der Firma. Weiters
werden die Projektzieldefinition erklärt und ein Firmenprofil von Running-
Ball erstellt. Das zweite Kapitel zeigt die Evolutionsschritte des Testauto-
matisierungsprogramms und schildert die Hintergründe, warum das Projekt
in diesen Phasen abgewickelt wurde. Das dritte Kapitel beinhaltet die Re-
sultate und beleuchtet diese von unterschiedlichen Standpunkten: quantifi-
zierbare Ergebnisse, beobachtete Veränderungen des Entwicklungsprozesses
bei RunningBall und Rückmeldung der vom Testautomatisierungsprogramm
betroffenen Personen.



Abstract

This diploma thesis deals with the implementation of a test automation
program, and the change of existing work processes of software development
and test activities. It came into life in cooperation with the company Run-
ningBall Sports Information GmbH. The practical part was implemented at
the company. The company focuses on sport live data transferred over the
internet, and its operational site is located in Graz. RunningBall and its
software development department are young, and there are not many appli-
cations that benefit from an extensive test coverage. So this is the perfect
environment to implement an automated test tool.

The approach to the knowledge field is to do research on the theoret-
ical background of software testing, test automation and metrics at the
beginning. There are many tools that contribute to an automated test envi-
ronment. The most suitable ones are selected and investigated. The gained
knowledge as well as the chosen tool set are then applied to a real-life project.

This document is divided into two parts. The first part of this thesis
deals with the theoretical background of software testing. Test scopes and
test methods are discussed. After that follows a comprehensive chapter
about metrics. Metrics are vital for testing, and most of all for assessing the
progress and quality of tests. At the end of the chapter dealing with test
automation there is a section dealing with the criteria when a test is over and
if it has been tested enough. Later on tools for a good continuous integration
environment are listed. Using these tools in a way that meets their purpose
they can be combined into a continuous integration environment.

In part two there are three main chapters. The first one presents the
project background. This gives a description of the company RunningBall,
a section about special terms used in this application area, and the sta-
tus quo at the company regarding testing. Also, the project goals will be
defined and explained, and a company profile of RunningBall is provided.
The second chapter shows the evolution of the Automated Test Environ-
ment project and the reasons why the described project phases have been
chosen. The third chapter contains the outcome of the project and outlines
it from different perspectives: quantifiable results, observed changes in the
development process at RunningBall, and feedback from people affected by
the Automated Test Environment.
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Chapter 1

Introduction

In a world of modern software development the number of requested features
increases and the complexity of software products rises. Besides that the
opportunities of tools and libraries used by software developers have got
more powerful in recent years. Fast changes are provided by third party
tools and demanded from software developers in many fields of expertise.
The only factor that remains constant in software development is the human
being. He has to keep up and be able to compete in this environment.

This diploma thesis addresses this fact in many aspects. The challenges
of changing an existing work process from scratch and developing a software
tool that drives that change have to be addressed.

The reader of this work can expect detailed descriptions in the important
areas of this thesis. Furthermore links and hints for additional reading are
provided whenever needed. The main goals of this thesis are to improve
software quality and a better working together of all persons involved in the
development process.
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Part I

Theoretical Background
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Chapter 2

Software Test

According to the Oxford Dictionary [19, p. 332] a test is “something done
to discover a person’s or thing’s qualities or abilities”.

The basic process of software testing can be described in three steps [15,
p. 36]:

• Test preparation

• Test execution

• Test evaluation

In the following sections software tests are explained by their scope and
by their method. Additionally test metrics are described that are used to
assess the progress and the results of the executed tests.

2.1 Test Scopes

The scope of a test refers to a certain abstraction level. The number of
abstraction levels is a measure of the complexity of a software product.
Software tests can be set up on different abstraction levels as seen in Figure
2.1.

A program is formed by several program units which unite to a subsys-
tem. A system consists of several subsystems.

2.1.1 Program Test

The test strategy reflects the development strategy of a program. If top-
down-development is used then top-down-testing is recommended. This is
mostly the case if a program is put together from previously existing mod-
ules. Top-down-development strategy means that at first only the façade of
a program will exist without any functionality behind it. After creating a
skeleton of the program fully functional program parts will be implemented

3



Figure 2.1: Test Scopes of a Hierarchical Software Project [15]
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and tested step by step. Development and test accompany each other from
the root of the call hierarchy down to the leaves of the call tree of the
program.

A big advantage of that strategy is that the interfaces between software
and test as well as the interfaces between program units, are clearly defined
from the beginning on. This means little effort for the specification and
implementation of test adapters. All that remains to be done is the creation
of test data and the connection of the adapters with the tested program
interfaces. The disadvantage is that there is often no functionality behind
the program façade. This requires the implementation of simulated program
behavior for the test to be executed.

When using bottom-up-development the implementation starts at the
leaves of the call tree. These are small program units or functions. Later
on bigger units are put together until the root of the call tree is reached.
In this case no simulated functionality for testing purpose is needed. When
development and test move up one level of abstraction all lower program
parts are already implemented and tested. For the lowest program entity
unit tests are recommended.

As a general rule it can be stated that for iterative development processes
the top-down strategy is more promising than the bottom-up strategy [15,
p. 75].

2.1.2 Program System Test

To test a system of programs the perspective of top-down or bottom-up
testing is inadequate. Program systems are specified by their communica-
tion channels and protocols. There is no pure tree structure visible. It is
more common to talk about program system chains or subsystem chains.
Depending on the application, sensible network paths have to be chosen for
the tests.

Test data can be infused into a program system using the communication
protocols between separate programs. This results in well defined starting
points for test adapters that send and receive test data.

The test is chasing development and its strategy. Implemented compo-
nents are tested after they are available. Testing and development have to
be coordinated in a predefined time schedule. This practice is called avail-
ability strategy because testing must stick to the availability of the tested
programs. The disadvantage of that procedure is that you must be better
organized and well prepared.

Often development is directed by changing priorities. These can be cus-
tomer requirements or the examination of the highest risks. It means for
the test that all software parts that contribute to a certain function are in-
tegrated and tested. This is called thread testing because an entire system
function is distributed to several programs in a system. All program parts

5



that represent that function are called thread.

A criterion for test prioritisation is often combined from more than one
factor. For finding test priorities it is important to consider the whole con-
text of a software product. The experience of the developers as well as the
complexity of several program parts play an important role. Perceptibility
of failures, severity and the probability of a failure should be taken into
consideration as well [9, p. 14].

2.1.3 The Right Test Scope at the Right Time

A module test executes a test of a single program unit. For doing this a
specialized test tool is needed that uses the program unit’s input interface
to send data into it. The output interface of the program unit under test is
monitored to read the resulting data. After the test execution the obtained
results are evaluated and assessed.

The so called system test or alpha test takes place when the entire soft-
ware system has to be tested. At the development company a realistic
simulation of the expected production environment is set up for the test
execution. The next test step is beta testing which means the distribution
of the software to some selected customers. The customers are asked to
use the program in production like conditions and give feedback about the
program’s behavior.

There are two types of integration tests. In the first some units of one
program are put together and tested. By doing this the correctness of one
program can be verified. The second integration test uses more than one
program unit combined in a system. Programs can also be integrated into
this test one by one. With that procedure the localization of errors is sim-
plified.

2.2 Test Methods

A test method should be chosen depending on the intended scope and ab-
straction level of the test to be implemented. A good guideline for many
possible test targets can be found in the often cited ISO 9126 which ad-
dresses software quality criteria. Since this document is aimed to describe
the introduction of a test automation tool to prove functional correctness,
only the aspects of functionality of ISO 9126 are touched here. See Figure
2.2, taken from [36] and [20].

2.2.1 Functional Tests

In functional testing the overall complexity of an entire program is split into
smaller and less complicated so called functions. It is a good practice to
do this because it eases discussion, communication and documentation of a

6



Figure 2.2: ISO 9126 Software Quality Criteria
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single test case [25, p. 35].
Functional testing can prove the following quality criteria [4]:

• Correctness

• Suitability

• Interoperability

• Functional security

Functional testing ensures that a software program does what it is in-
tended to do. What a software should do is defined on the basis of require-
ments and specifications, the knowledge of the tester and implicit require-
ments of the customer. Implicit requirements are requirements that arise
out of the context of other requirements.

The size of the functional test changes with the complexity of the tested
software. If unit tests are executed the focus lies upon the functionality of
a single component. During integration tests interfaces are tested to ensure
that the software has been put together successfully. When doing system
tests the end-to-end functionality of an entire system is in the forefront.

Functional testing is also called black-box testing because it is based on
the specifications of a program and not on the internals of the developed
code [33]. It is a testing technique that has a very wide area of application.
Thinking about functional tests already during the formulation of the speci-
fications can enrich the quality of the specifications which will consequently
ease the understanding of the software’s context and size.

Test for Correctness

The criteria for test correctness can be deducted from the program require-
ments. In the requirements a lot of the desired behavior of the software
is described. Each of the statements is a starting point for a correctness
test case. Therefore it is rather easy to generate test cases if there is a
well-written requirement document.

Functional tests for correctness can be very detailed (such as the pro-
voking of a special error message in a complicated context) or only aimed
at some very top-level use cases like the filling out of a registration form
or a login process. Test for correctness touches many areas in software
development. Calculations, graphical user interface representation, data ac-
cessibility and data correctness are only some of them. The test cases are
written quite easily and there can be a lot of them [4].

If there is only an imprecise or even no requirement document the ex-
pertise of the tester is the basis for generating useful correctness test cases.
In this case the tester has a much bigger responsibility for the success of the
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project since the project targets are not defined that clearly in the require-
ments document. Therefore the tester has to investigate suitable situations,
usages of the program in production and he has to think of adequate test
cases all by himself. After asking experienced developers, analysts and users
of similar programs the tester needs to have common sense and creativity
as well to generate well-directed test cases.

Test for Suitability

To execute tests for suitability the planned or expected application of a
software product must be known. As the name indicates, this method tests if
the set of functions are suitable for the specified tasks. Normally suitability
tests are based on use cases and usage scenarios to judge if the software
complies with the requirements of the users [4].

The plausibility of the use cases is of great importance for the effective-
ness of such tests. The suitability can be proven if the use cases mirror the
real interaction of the users with the system. No conclusion about suitability
can be given if the use cases do not represent the real user behavior. Given
the situation that there are no use cases available the tester has to gather
knowledge about the expected utilization of the software and generate use
cases.

It is not sufficient to do automated testing. There are concepts like
keyword driven testing that support test automation and the suitability of
tests. Still it is necessary to collect detailed information about the purpose
of the tested system to implement effective and well-directed tests [36].

The in-depth knowledge of the tester is crucial for suitability tests. In
most cases the requirements are not sufficient to define suitability test sce-
narios. It happens very often that shipped programs do not fulfill the ex-
pectations of their users. Programs consume too much hard-disk space, are
too slow and too complicated to use for the purpose of the user. This is
why it is a good idea to include some designated future users into the test
process.

Test for Interoperability

Interoperability means the program’s ability to communicate. With an inter-
operability test it is shown that the software to be tested works as expected
in several environments. These environments comprise of hardware, soft-
ware, middle ware, operating systems, and other connected applications or
network architectures. Portability and compatibility are other terms that
describe interoperability. The degree of interoperability of a software is de-
fined by the number of necessary configuration parameters that have to be
adapted when changing the context of a software’s runtime environment.
Interoperability is better if the number of configuration parameters is lower.
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A further feature of a software regarding interoperability is the ability of
a software to recognize its system requirements automatically. Requirements
are system parameters, environment variables or platform singularities. The
higher the manual configuration effort is to get a software running the lower
is its interoperability. The keyword plug-and-play is a synonym for very
high interoperability [4].

Interoperability tests are mandatory for a software that shares an envi-
ronment with other software. Commercial off-the-shelf (COTS) software has
to undergo severe compatibility tests. These tests also contain tests about
data transfer between different environments and circumstances.

Test for Functional Security

Security tests are divided into functional and technical security tests. The
purpose of this test is to assure that access to certain areas is granted for
authorized users only and that access is denied for unauthorized users. If it
is possible to break into a system without authorization a technical security
problem exists. If an authorized user detects that he has the rights to
perform steps that a user with his role should not be able to perform a
functional security problem exists.

A security concept affects the whole software system. This is why per-
forming security tests requires a detailed knowledge of the software being
tested. Only by doing that, can all possible access points to a software can
be identified and tested. Functional security tests are limited to all known
legal access points because all other access points are tested by technical
security tests.

One aspect is to test if an authorized user can use all functions and
access all data that a user with his role should be able to access. The other
aspect is to test that all of the content not allowed is inaccessible for that
user. To create such test scenarios the tester must understand the security
concept and the security standards of the software. That means that user
accounts with different privileges representing the different user roles must
be created for the test. To ensure a suitable coverage of security tests they
have to be considered in the test concept [4].

2.2.2 Combinatorial Testing

Software requirements are written in natural language. This is the most
flexible and understandable way to communicate information. On the other
hand it is hard to analyze natural language automatically and derive test
input from it. This is why the first step for combinatorial testing is manually
going through the specification, and structuring it into a set of properties
and attributes. This leads to the main advantage of doing combinatorial
testing, namely the separation of the analysis of the problem (which is done

10



manually) and the synthesis of test cases (usually automatically) [33].
Combinatorial testing is well suited for tool support. The main three

techniques of combinatorial testing are described in the following sections.

Category-Partition Testing

The category-partition method tries to identify input spaces by separating
possible values into complete test cases. This gives a fast estimate about
the number of test cases. Three steps have to be performed for category-
partition testing [33]:

1. Independently testable features have to be found. Categories are in-
troduced which contain the elementary parameter characteristics. The
goal is that the generated test cases can later be combined in any order
and do not influence each other. This means that one test case must
not be the precondition of the next one.

2. The next step is to select values isolated from other parameter char-
acteristics. The distribution of this classification of values is called
partitioning the categories into choices. This step gives the method
its name.

3. In the last step some limitations have to be introduced to generate
useful test cases. The values are restricted by forbidden value ranges
and also useless combinations of values are eliminated.

The obtained categories, choices and constraints are then put into a test
case generation tool to automatically generate realistic test case sequences.

Pairwise Combination Testing

Pairwise combination testing tries to find pairs of values and combines them
into test cases. This is a stricter form of the category-based testing described
in Section 2.2.2. The number of test cases is relatively small.

A tester who has performed the category-based method will soon be
stunned by the large number of test cases that it produces. The number is
calculated as the product of the number of classes for each parameter and
therefore grows exponentially because each allowed combination is generated
into a test case. Pairwise combination on the other hand tries to find pairs
and triplets of combinations which reduces the number of test cases dramat-
ically. The test case count does not grow exponentially but logarithmically
which saves a lot of effort and increases efficiency.

Since it is very exhausting to perform the generation of all reasonable
combinations manually, automation is used. To simplify the automatic gen-
eration again limitations are imposed to avoid pointless combinations. These
combinations in pairs are avoided by the so-called omit instruction [33].
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Catalogue-Based Testing

A catalog is a group of attributes that contains values of one type. By sort-
ing demanded features and grouping them it eases the step of specification
analysis. To create catalogs, needs experience which comes with a longer
examination of a particular area. Using that experience a test engineer can
define types of a variable that embody logical inputs, outputs and status of
the computation. If an integer variable is used, a catalog would define the
following cases [33, p. 194]:

1. The element immediately preceding the lower bound of the interval

2. The lower bound of the interval

3. A non-boundary element within the interval

4. The upper bound of the interval

5. The element immediately following the upper bound

It is easy to see that in this catalog the cases 1 and 5 identify erroneous
conditions, 2 and 4 the boundary conditions and 3 the normal conditions.

Elementary items of the specification are identified into sets in step one.
These basic sets are preconditions, postconditions, variables, operations and
definitions. This excerpt will be rather informal at first as it is written in
informal language.

Secondly a set of test case specifications is generated from preconditions,
postconditions and definitions. So called validated preconditions are defined
that consist of simple boolean expressions. Assumed preconditions should
be avoided. They are only applicable if a condition is a logical disjunction
of more elementary conditions. Postconditions are treated like validated
preconditions i.e. with possible values true (if the condition is met) or false
(if the condition does not apply). Definitions set the values for the variables.
They are again treated like validated preconditions with values that meet
the specification and values that don’t.

In the third and last step the values defined in the catalog are transferred
into the specification. All values from the catalog are connected to cases in
the specification. For each catalog entry, a list of types of elements that can
occur in a specification is generated. For example, if we have an entry for
boolean variables two test cases are necessary - one resulting in true an one
resulting in false. A good trick is to use wrong values for testing the input
behavior of a system and correct values to test its output behavior.

2.2.3 Structural Testing

Compared to functional testing discussed in Section 2.2.1 structural test-
ing is not aimed at the program specifications but at the program itself.
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Function testing checks if a function is fulfilled, structural testing checks
that as many control flow elements as possible are tested. Control flow el-
ements are statements, paths, branches and conditions. Program parts not
executed can result from the inherent difference between specification and
implementation of a program. A big influence on that gap has to do with the
experience and understanding of the developer, as well as the chosen pro-
gramming language and the program environment. An aspect that arises
with structural testing is coverage. Coverage means the part of a program
that has been executed by the test, expressed as a percentage value. With
coverage we have a measure of test accuracy and also a measure about test
progress.

At first glance structural testing is closely connected to the source code
for doing module or unit tests. On the other hand there are some reasons
why it is furthermore good to look at structural testing as detached from
the code [4]:

• The tester thinks that the tests are only useful for the developers and
not for themselves.

• We exclude opportunities that arise if we perform structural testing in
other areas.

The most elementary structural testing technique is statement testing.
Statements are represented by the nodes in the control flow graph. The
technique demands that each statement is executed at least once by the
test. The result is the statement coverage CStatement [33, p. 215].

CStatement =
number of executed statements

number of statements
(2.1)

It is obvious that if CStatement = 1 then the coverage has reached its
maximum value.

To demonstrate the three structural testing methods I will include an
example which is based on Armin Beer’s lecture notes [10].

1 public void coverMe ( int a , int b) {
2 System . out . p r i n t l n ( ”A” ) ;
3 i f ( a < 1) {
4 System . out . p r i n t l n ( ”B” ) ;
5 }
6 System . out . p r i n t l n ( ”C” ) ;
7 i f (b < 2) {
8 System . out . p r i n t l n ( ”D” ) ;
9 }

10 System . out . p r i n t l n ( ”E” ) ;
11 }

Listing 2.1: A simple Java Program
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Figure 2.3: Statement Coverage

To fulfill maximum statement coverage we need exactly one test case as
shown in Figure 2.3.

As we can see in the example control flow graph in Figure 2.3 it is possible
that the same statement can be called by different branches. Therefore just
the testing of all statements is insufficient. There are not all branches covered
in the tests that can cause the execution of one statement. Branch testing
goes one step further than statement testing. Branch testing requires all
possible paths of a program being executed by at least one test case. A
branch stands for an edge in the control flow graph. If we test for branch
coverage we ensure that each statement is called by each possible preceding
statement. In other words this means that all edges that lead to one node
should be executed by the test.

The branch coverage CBranch is defined as follows [33, p. 217]:

CBranch =
number of executed branches

number of branches
(2.2)

Figure 2.4 shows the example from above with test cases that cover all
branches.

A path is one possible way through the control flow graph of a program
from start to end. Therefore path testing is the technique that demands the
generation of test cases that execute each individual possible path through
a program. CPath is defined as [33, p. 222]:

CPath =
number of executed paths

number of paths
(2.3)
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Figure 2.4: Branch Coverage

Figure 2.5: Path Coverage

Figure 2.5 shows our example with test cases that cover all possible
paths.

In theory path testing sounds tempting but in praxis it is almost never
applicable. This is because if a program contains for- or while-loops, the
number of paths and therefore the number of test cases to cover them is
limitless. So path testing can only be applied to a program if it has no loops
in it. One possibility to avoid this knock-out criterion of path testing is to
divide the program’s execution path into sub-paths.

2.2.4 Data Flow Testing

Data flow testing means to test how one syntactic element affects the com-
putation of another. On contrary to control flow testing discussed in Section
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2.2.3 data flow testing does not focus on all possible execution paths of a
program but on the data used in the program. If a wrongly computed vari-
able is not used later on, this does not lead to a program error. Control flow
testing ignores that aspect and produces a lot of test failures although the
computed data may never be used.

DU Pairs and DU Paths

A program variable has two important facets: Its definition, meaning the
assignment of a value and its uses. Therefore it is important to track these
two aspects of data flow information. For example if we look at the statement
++var we can see that it contains a usage of the variable var and then a
definition. ++var is the same as writing var = var + 1. At first var + 1 is
computed (usage) and then it is assigned to var again (definition) [33].

For a detailed data flow description it is suitable to use definition-use
pairs (DU pairs). These are written as variable name plus <definition line
number, usage line number>. To obtain a DU pair there must be at least
one path without definitions on its way from definition to usage (the value of
the variable must not be changed from definition to usage). Such a path is
called definition-use path (DU path). Since a definition is a write operation
and a usage is a read operation on the variable it is possible to have multiple
uses on a DU path because uses do not change the value of the variable.

To obtain information about DU pairs and DU paths it is necessary to
perform a static code analysis. Definitions and uses that only exist during
the runtime of the program are not taken into consideration.

DU Test Definitions

Another perspective is that an error that exists in a computation and is
assigned to a variable first shows in the usage of the variable. From this it
follows, that definition errors are not revealed until the use of a variable is
evaluated in a test. The all DU pairs coverage CDUpairs is defined as [33,
p. 239]:

CDUpairs =
number of exercised DU pairs

number of DU pairs
(2.4)

To extend the test accuracy it is important to know that one DU pair
can be executed by several different DU paths. Therefore a metric has to
be introduced as well. CDUpaths is defined [33, p. 240]:

CDUpaths =
number of exercised simple DU paths

number of simple DU paths
(2.5)
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Chapter 3

Metrics as a Measure for
Software Quality

Software development is essentially chaotic and so is the derived science
of testing. Metrics are needed to make processes transparent, controllable
and measurable. With their help it is possible to simplify the planning of
software development and testing.

3.1 Step Size of Metrics

To assess a development process and to derive measurement values from
it the level of the metric should be defined. For example, to measure the
quality of software tests one could use a five step scale that displays the
test effectiveness or event percentage values to define the test coverage of an
entire program. Sometimes a concrete graduation is very evident, sometimes
different other systems could be used.

3.1.1 Nominal Scale

The simplest possibility of division is the nominal classification. We need
predefined categories that fulfill two properties [24]:

• At first these categories should be mutually exclusive which means
that one measured value can only be exactly in one category and not
in any other.

• Secondly the set of all possible categories must contain all appearing
possible values. If we encounter a value that does not have a matching
category we have to create a new category.

Example:
Sitting at the curb of a street we would like to classify all passing persons
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according to their nationality. We define ’German’ and ’Italian’ as possible
categories. These are exactly definable and mutually exclusive (Property
one is fulfilled).
Germans and Italians walk by at the test point and can be sorted exactly into
’Germans’ and ’Italians’. An Austrian passes. That means that property
two is not met. The possible categories have to be extended with ’Austrian’
and the evaluation can be continued.

For the nominal scale order and ranking of the categories is arbitrary. There
is neither information about importance nor their relation among each other.

3.1.2 Ordinal Scale

In addition to the properties of the nominal scale we demand the categories
to have an order. By doing this we obtain comparability. Cars for exam-
ple can be subdivided by their size (micro-car, sub-compact, compact car,
medium-sized car, luxury class). Logical asymmetry (if A > B then also
B < A) and transitivity (if A > B and B > C then A > C) are valid. The
step size from one category to the next is not defined exactly though. This is
why one should only apply comparison operators to the measuring value and
no mathematical operations such as addition or subtraction. These could
lead to wrong interpretations.

3.1.3 Interval and Ratio Scales

The interval scale specifies a unit which defines exactly the distance between
measuring points. This scale unit should be defined as common standard
which is traceable and reproducible. Making these prerequisites it is pos-
sible to apply mathematical operations to measuring values, and the data
becomes evaluable and interpretable.

If there is an absolute and not random zero-point on an interval scale it
is called ratio scale. This is the most precise arrangement, and as a result all
mathematical operations are applicable, even division and multiplication.

To give an example we have a look at the temperature scales of Fahren-
heit and Celsius. Both have different zero points which are defined at random
and are not related to the point of absolute zero. Therefore the scales of
Fahrenheit and Celsius are interval scales. That is a problem and because of
that the scale of Kelvin was introduced. It is related to the point of absolute
zero temperature and therefore a ratio scale.

Summing up, it can be said that the system of scales is hierarchical. Each
higher scale includes the same properties as the one below and some ad-
ditional properties. The higher the type of scale the more powerful and
significant are its interpretation possibilities of measuring values. A higher
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scale type can always be simplified to a lower one (for example for a better
understanding and transparency) but not vice versa.

3.2 Software Quality Metrics

Software quality metrics can be divided into three categories: product met-
rics, project metrics and in-process quality metrics. Product metrics de-
scribe the product itself in terms of design features, size, complexity, per-
formance and quality level.

Project metrics accompany the implementation of a project and deal
with the number of developers, cost, time schedules and productivity during
the project runtime.

In this chapter in-process metrics are described. They are used to doc-
ument and improve development as well as maintenance. Among them are
the defect density during automated tests, the defect arrival pattern during
automated tests and the defect removal effectiveness (DRE).

In-process metrics start their work in the area where a lot of errors hap-
pen: in the software development process. These metrics are not defined
precisely, and their usage varies with the structure and size of the develop-
ment project.

3.2.1 Defect Density during Automated Tests

When doing automated test runs, it is important to produce as many errors
as possible. The defect density during testing can be interpreted in several
ways though. Finding many errors and fixing them does not automatically
result in a good product. It can also indicate too intensive and too precise
or wrong test cases.

A good starting point is to observe and document the defect density per
kilo lines of code (KLOC) of a product over more than one release cycles
in one and the same development department. In doing so we can nearly
exclude all external factors that would distort the result. Two things are
important:

• If the defect density stagnates over a longer time period or if it even
declines compared to a former release we should pose the question:
Have the test cases deteriorated for the current release?

– If no, then the product quality increases.

– If yes, then additional and better tests have to be created.

• I the defect density rises significantly compared to the last release then
we should ask: Did the test effectiveness improve?
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– If the answer is no, then the product quality has become worse.
The only way out is to test more and more intense. This will
initially boost the defect density as well but on the long term
help to improve the quality of the product.

– If yes, then the product quality has remained the same or has
become even better.

3.2.2 Defect Arrival Patterns during Automated Tests

A defect density is just an average value for one entire test-run. More precise
analysis can be generated if we try to find similarities between frequent
errors. By grouping these errors it is possible to find defect patterns. An
example is the duration between defects. In the end we would like to achieve
a stable error ratio on a low level or to keep the times between erroneous
behavior called mean time to failure (MTTF) as long as possible.

As a time unit for the investigation of defect arrival patterns normally a
week is taken, sometimes also a month. These three slightly different aspects
should be taken into consideration simultaneously:

• Reported errors during the test phase per time unit: These are all
errors, which consist of real errors and non real errors.1

• The pattern in the arrival of real errors: these are the important ones.

• Extra work because of backlogs: It is of no use to document all errors,
if there are insufficient resources in the development team to fix them.

3.2.3 Defect Removal Effectiveness

The defect removal effectiveness (DRE) is defined as [24, p. 103]:

DRE =
Defects removed during a development phase

defects latent in the product
× 100% (3.1)

Since we do not know the total latent defects in the product this value is
approximated as:

defects removed during the phase + defects found later (3.2)

This value can be computed at different times. The early defect removal
effectiveness is calculated before the code integration and the phase defect
removal effectiveness is calculated for one particular project phase. The
higher the value is the better is the development process because less errors
are carried forward from one project phase to the next.

1A real error is a program related error. On contrary a non real error is a program
error that has emerged because of the wrong usage of a program, a test tool or a wrong
test case.
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Figure 3.1: Test Progress Curve, modified from [24]

3.3 Process Metrics for Software Tests

In this section the most important process metrics for the management of
software tests are described.

3.3.1 Test Progress Curve

The number of test cases is displayed in a graph over a time axis. The shape
of the resulting chart often has the outline of an S - that is why the test
progress curve often is called S-curve. To make this metric sensible we need
this information in it:

• Planned test progress (number of planned successful test cases)

• Number of executed test cases per week

• Number of successful executed test cases per week

The goal of this metric is to compare the progress of the real test to the
progress of the planned test. By doing this it is possible to recognize signifi-
cant deviations and to react on them. Interpretations about the development
progress related to the development schedule can be made as well. Figure
3.1 shows an example of a test progress curve.

There is also the option to combine more than one test progress curve of
different releases into one chart and compare them as shown in Figure 3.2.
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Figure 3.2: Comparison of Test Progress Curves of different Releases,
modified from [24]
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Figure 3.3: Number of reported Defects over Time, modified from [24]

3.3.2 Time Elapsed of found Errors

It is recommended to collect found errors per time unit and per development
phase. These instructions should be considered:

• Data with a comparable time basis has to be used, for example data
of some former releases.

• The unit of the X-axis is weeks before product ship.

• The unit of the Y-axis is the number of found errors. Figure 3.3 shows
an example of how to plot defects over time for different releases.

3.3.3 Testing Defect Backlog over Time

The testing defect backlog is represented by the cumulated number of the
differences between reported errors minus fixed errors. If this list is quite
long before the product shipping there is the possibility that errors that
are already on the list are reported again by customers. This is why the
backlog should be kept as short as possible to avoid duplicate error entries.
To achieve a high product quality as fast as possible errors with the highest
priority have to be fixed first. This approach is recommended:
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• If there is a test plan then the test progress should enforce an early
rise in the S-curve.

• One should keep an eye on error messages and the causing problems
should be analyzed. This should not be done automatically because an
experienced tester can derive important knowledge about the overall
state of the system out of its error messages.

• The defect backlog should be monitored strictly.

3.3.4 Product Size over Time

Lines of code (see Section 3.4.1) or other product size metrics are well-
suited indicators for the development team. Product size rises during each
development phase and increases with the number of implemented features.
Well-directed refactoring can bring down product size from time to time.
Towards the end of a project sometimes features with lowered priority are
removed from the product. Some product size metrics are lines of code,
function points or even the memory usage of a program.

3.3.5 CPU Usage Trend over Time

For systems with the demand for high availability and high stability the
CPU usage is an important indicator. CPU usage represents the load of the
used hardware. Stress tests2 should start during the component test phase
and should be performed up to the system test phase. Prior to this it is
important to define the targets of the planned CPU usage. Doing stress
tests significant limitations of a product can be found out like the maximum
number of concurrent users.

3.3.6 System Crashes and System Hangs

This metric is connected tightly to the above mentioned CPU usage in Sec-
tion 3.3.5. It is represented by the number of unplanned initial program
loads (IPLs). To detect problems of that kind the system has to be put un-
der high utilization to generate a high CPU load. If defects of that kind are
found and fixed the system’s stability improves over time. If an unplanned
IPL is found, a classification and codification is recommended [24, p. 290]:

• 001 Hardware problem (unplanned)

• 002 Software problem (unplanned)

• 003 Other problem (unplanned)

• 004 Load fix (planned)

2A stress test is a technique to detect the hardware limits and the program’s efficiency
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3.3.7 Mean Time to Unplanned Initial Program Load (IPL)

It is useful to test for mean time to unplanned initial program load (MTI) not
before the system test phase. At that stage the program is finally completed
sufficiently [24, p. 291].

Weekly MTI =

n∑
i=1

Wi ∗
(

Hi

Ii + 1

)
(3.3)

where
n = Number of weeks that testing has been performed
H = Total of weekly CPU run hours
W = Weighting factor
I = Number of weekly (unique) unplanned IPLs (due to software failures)

3.3.8 Showstopper

Severe errors that render a program unusable are called show-stoppers. Ac-
cording to IBM researchers all defects must be put on the show-stopper-list
that impede the development or the testing process or even prevent a cus-
tomer from working with a product [3]. The usage of that metric normally
starts during the component test phase. All entries on the show-stopper-list
have top priority and must be solved before a release.

3.4 Code Complexity Metrics

All metrics that have been discussed so far treat source code as a black box.
The exact connections between design, implementation and quality have not
been touched. Complexity metrics are closely connected to source code and
therefore provide the possibility for the developers to improve the quality of
their work directly.

3.4.1 Lines of Code

The name of this metric misleads to the perspective that it only measures
the number of written source code lines. Indeed it is a bit more complicated
because there are a number of definitions for lines of code. There are more
than one for the same programming language and again different ones for
different programming languages. These are the possibilities of counting
LOC [22]:

• Only executable lines

• Executable lines plus data definitions

• Executable lines, data definitions and comments
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Table 3.1: Curvilinear Relationship between Defect Rate and Module Size
Maximum Source Lines of Modules Average Defect per KLOC

63 1,5
100 1,4
158 0,9
251 0,5
398 1,1
630 1,9
1000 1,3
>1000 1,4

• Executable lines, data definitions, comments and command language

• Lines as physical lines on the input screen (depending on screen size)

• Lines that are terminated by a logical separator like ;

Due to the many different definitions of lines of code this metric can be hard
to use. To obtain usable and comparable data there has to be a standard of
how to count the lines.

If one wants to compare lines of code of two different products that
are implemented in different programming languages it is recommended to
normalize the lines of code at first. The reference language for that is As-
sembler. Conversion factors to Assembler for lines of code exist for nearly
all common programming languages. By doing this the counted values are
almost comparable.

Example:
For the release of a software product it is rather simple following the defini-
tion of lines of code to declare its quality level: ’The product has 50 KLOC.
The latent defect rate of that product is 2.0 defects per KLOC within the
next four years.’

One other perspective is trying to find a link between lines of code and
defect density. The logical conclusion is that there must be a higher defect
rate for more lines of code because the complexity is higher.

Early studies at the beginning of the eighties have found out the opposite.
The more lines of code a product had the lower was the defect density in
it [2]. Later investigations concluded that the characteristics is curved. Very
small program modules have a higher defect density and so do very big
ones. In average sized programs the error density is lower [51]. The relation
between lines of code and program module size can be seen in Table 3.1 [24,
p. 313].
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3.4.2 Halstead’s Software Science

Maurice Halstead coined the term Token which represents a unit with which
a developer can combine programs of bigger size. The primitive measures
of Halstead are [18]:

n1....Number of different operators in a program
n2....Number of different operands in a program
N1....Number of usages of operators
N2....Number of usages of operands

Based on that primitive units Halstead developed a number of equations.
Vocabulary (n)

n = n1 + n2 (3.4)

Length (N)

N = N1 + N2 = n1 ∗ log2(n1) + n2 ∗ log2(n2) (3.5)

Volume (V)
V = N ∗ log2(n) = N ∗ log2(n1 + n2) (3.6)

Level (L)

L =
V ∗
V

=

(
2

n1

)
∗
(
n2

N2

)
(3.7)

Difficulty (D) = inverse of level

D =
V

V ∗
(3.8)

Effort (E)

E =
V

L
(3.9)

Faults (B)

B =
V

S∗
(3.10)

V* means the minimum volume of an included function to fulfill the purpose
of the entire program and S* is the average number of mental decisions
between errors (S* is 3000 according to Halstead [18]).

3.4.3 Cyclomatic Complexity

Cyclomatic complexity was introduced by Thomas McCabe to measure the
testability and the understandability of a program [30]. The execution paths
of a program are drawn into a graph. The formula is:

M = V (G) = e− n + 2p (3.11)
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V (G)....Cyclomatic number of G
e....Number of edges
n....Number of nodes
p....Number of unconnected parts of the graph

This metric displays the number of binary decision points. Experience
has shown that a cyclomatic complexity of 10 should not be exceeded. How-
ever if the number is exceeded one should think of refactoring the affected
program part or even arrange a re-design.

3.4.4 Syntactic Constructs

This is an extension to the cyclomatic complexity and watches closely which
loop construct has the highest defect probability. In the research work of
Lo came to light that while loops caused the most problems for program-
mers [27]. The number of while loops was reduced in a program and subse-
quently the defect rate decreased.

3.5 Metrics in Object-Oriented Projects

Nowadays a lot of software projects are realized with object-oriented (OO)
programming languages. Therefore it is necessary to introduce specialized
metrics that aim for OO projects. The basic understanding of object orien-
tation will not be discussed in that section. All other metrics can be applied
to OO projects plus the following specialized ones. Rules of thumb are listed
in Table 3.2.

3.6 Metrics for Extreme Programming Projects

Related to extreme programming there are three preeminent metrics that
help with the planning and controlling of a project. Until a product can be
declared finished there are some phases called release. A release typically
lasts one up to two months. Each release consists of more than one iteration
which can last one to two weeks.

The detailed planning is only done for the current iteration at its begin-
ning. At a planning meeting so called stories are written that represent one
feature or one task. These are relatively small work assignments. Develop-
ment takes place in form of pair programming. If a story content is defined
exactly enough, all of the three values discussed in the following sections are
written down on to the story sheet [6].
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Table 3.2: Object-Oriented Metrics and Rules of Thumb according to
Mark Lorenz, modified from [28]

Metric Rules of Thumb and Comments

1. Average Method Size (LOC) Depends on language, <24 LOC for
C++

2. Average Number of Methods
per Class

<20

3. Average Number of Instance
Variables per Class

<6

4. Class Hierarchy Nesting Level
(Depth of Inheritance Tree,
DIT)

<6

5. Number of Subsystem/Sub-
system Relationships

Should be less than the number in
metric 6

6. Number of Class/Class Rela-
tionships in each Subsystem

Should be relatively high.

7. Instance Variable Usage If groups of methods use separated
sets of variables, the class should be
split in subclasses

8. Average Number of Comment
Lines (per Method)

>1

9. Number of Problem Reports
per Class

Should be as low as possible.

10. Number of Times Class Is
Reused

If a class is not reused it might be re-
designed

11. Number of Classes and Meth-
ods Thrown Away

Should be relatively high in following
the idea of an evolutionary design pro-
cess.
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3.6.1 Priority

For each story a priority is defined at the planning meeting together with
the customer. The scale of a priority is arbitrary but should remain the
same standard for one project to ensure comparability among the different
releases. As an example we could define a priority scale from 1 to 10. 1
means highest priority of a story. A priority of one does not only mean
exceptional importance but also that this story has to be developed before
others with lower priority.

Extreme programming demands that priority determines also the im-
plementation sequence. By doing that we ensure that the most important
program parts are completed in the beginning and that the development
progress is not impeded by topics of low importance.

3.6.2 Risk

At the end of a planning meeting the written stories are distributed to devel-
opment pairs. The pair that works on a story assigns a risk value following
their assessment to that story before they begin their implementation work.
The risk value embodies the probability that the story can be implemented
at all. The scale for risk - like the priority scale - can be chosen at project
start. For example if we use a scale from 1 to 10, 10 would mean the highest
risk.

3.6.3 Effort

Again at the beginning of the work for a story the development pair has to
give an estimation of effort. The unit for effort can be hours, but we can also
use a virtual unit as long as all team members stick to the same agreement.
At the end of an iteration the sum of the efforts of all finished stories in
that iteration is calculated. This sum represents the project speed for that
iteration.

During a project the different project speeds can be compared for each
iteration in each release. A past project speed value can then be used to
estimate the amount of stories that can be implemented for future iterations.
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Chapter 4

Test Automation

Test automation is the execution of otherwise manual test activities by a
machine. It can be applied to all operations that assess software quality
during different stages of the development process. Test automation is lim-
ited by the fact that it can only perform the manual operations of a tester,
and not the creative and intelligent dimension of that role.

There is a number of standards that describe processes connected to soft-
ware development or even software quality (e.g. ISO 9126). Test automation
is a fairly young area compared to other established engineering sciences.
This is a reason for the lack of generally used standards.

It is not true that software producing companies do not want to imple-
ment all the same standards for test automation. On the one hand they
choose to use certain development and quality standards company-wide but
it is also a tolerated practice to ignore standards for some projects because
they are different. The “Not Invented Here” - syndrome (NIH) is and re-
mains a steady companion in many software development projects [26]. In
test automation the technical concepts do not fulfill general norms as they
are often subject to commercial manufacturers or open-source-communities.

According to Mauro Pezzè and Michal Young [33] test automation should
be seen as a support for testers to get rid of time consuming simple and often
repeated activities. The aim is to make the best use of human resources.
Introducing automation the testers gain time for more creative test activi-
ties. A side effect is also that people are more motivated to work, if work is
not a repetition of always the same steps.

People tend to make errors and therefore are not well suited to perform
regression tests because the results of such a test may differ [20]. Besides
that human resources are limited and expensive. Often business needs to
run tests faster and more frequently, for example in the case of an emergency
hot-fix.

Depending on the type of testing activity the matching document should
be edited. IEEE 829 gives an overview which test documents exist and how
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they interact [13, p. 189] as seen in Figure 4.1.

4.1 Use Case Definition

One way to generate data that is fed into automated tests is to define use
cases. The first step is to translate informal use cases from the software’s
requirements. There are two ways to write use cases [12]:

• Casual use cases are written in normal language following no number-
ing criterion and no predefined structure.

• Fully dressed use cases follow a fixed procedure. There exists a tem-
plate that contains the actors (stakeholders), the context and the ex-
ecuted steps.

As the number and complexity of use cases grow it is a good idea to think
about a way to keep track of them. Use cases should be linked together. A
possibility is to split a very large use case into sub use cases and create one
master use cases that refers to them.

An important point is the style of a use case. Depending on the nature
of the project a use case style has to be selected. Details on each style can
be found in Alistair Cockburn’s book on use cases [12, p. 132]. The five
project situations are:

1. Supporting the generation of requirements.

2. Modeling the business process.

3. Estimating system requirements.

4. Writing functional requirements on a short, high-pressure project.

5. Generating detailed functional requirements at the beginning of a
larger project.

One really valuable aspect of use case testing is the separation between
actor and action [13]. An actor is a user and embodies the user’s privileges
and its role. This is the perspective seen from a real person that uses the
software and not from a technical perspective. An action is a step performed
by the user when working with the software. It is possible to derive test cases
directly from use cases.
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Figure 4.1: The IEEE 829 Test Documents
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4.2 Test Data Description

When test data should be generated automatically one possibility is to use a
formal specification language. The extended Backus-Naur Form (eBNF) is a
good method to define test data. Valid and invalid inputs can be generated
automatically from such a specification [36]. Listing 4.1 is an example of
how such a definition would look like for a simple user input form.

address = name , newline , l i v i n g add r e s s , newline , c i t y ;
name = surname , ” , ” , f i r s tname ;
l i v i n g a dd r e s s = s t r e e t , ” ” , number ;
c i t y = c i ty−name , ” , ” , area code ;

Listing 4.1: Extended Backus-Naur Form

Another good practice is to use XML as descriptive language. XML has
the advantage that it has a well-defined standard provided by W3C [48] and
it is widely spread. XML is simple to read and edit manually, and simple
to parse automatically. It also has mature mechanisms for definition and
validation which is good to detect errors already during the parsing of an
XML document.

4.3 Automatic Test Execution

Automated tests are repeatable and therefore perfectly suitable for regres-
sion tests. One should think about the background of automated tests for
the correct development phase. Depending on the situation there are several
types of automated testing. When using sequential development models it
is good to do occasional testing. For projects that use any form of an agile
development technique and continuous integration the focus should be put
on permanent test execution.

Permanent automatic test execution is important to give developers fast
feedback about their code. If the practice of continuous build is used it
is inevitable to test each build. Continuous build means that a build is
triggered after every code contribution of each developer. The main goal of
this type of test execution is not to test for new features but it represents a
regression test, namely to test that all functionality covered by tests is still
working after a code change.

Frequent automatic test execution embodies tests that are too compli-
cated or too time-consuming to be executed after each build. The interval
of the test execution can be a few days from one test to the other. In this
category we have large unit test suites as well as automated integration or
system tests. A prerequisite for automatic integration testing is that the de-
ployment of the software modules is automated as well. It should be taken
into consideration that complex automatic test frameworks are complex to
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maintain. It is therefore sometimes better to execute them not on a daily
basis during development but after each development iteration [36].

Occasional execution is done if the testing effort is high. All available test
cases should be executed at least once for each release. If it is not possible
for whatever reason to execute all defined test cases the most important
ones should be selected for execution using risk analysis.

4.3.1 Development of an Automatic Test Framework

According to Seidl [36] the development of an automatic test framework
is to be considered as a development operation that demands an expert’s
know-how. A member of a test framework development team has to be a
good developer, has to be familiar with the object that will be tested and
has to have some understanding of software testing. A structured approach
is mandatory. One should choose between these methods:

1. Bottom-up: The development begins at the bottom of the layered ar-
chitecture. This part is represented by the interfaces that connect to
the object to be tested. After that the higher levels like data process-
ing, test control and test evaluation are implemented.

2. Top-down: The starting point of this method is the administration
and processing of test data, and test sequences and therefore the layer
of test execution.

It is furthermore good practice to divide the entire test framework into
modules. Each module can then be developed by a different person if nec-
essary. That results in a speed-up in development because all modules can
be developed simultaneously. A test framework consists of modules such
as test data administration and supply, interfaces to the tested object, test
execution, test evaluation and test interpretation.

4.3.2 Automatic Test for Functionality

Depending on the nature of the tested software there are a number of aspects
to be considered which are described in this subsection.

A common type of software architecture is a client-server-system. A
lot of data is held at a central server program that is also responsible to
implement the major part of the system’s functionality. A fat client is a
client with a lot of functionality whereas a thin client is a client with very
little functionality. The first embodies a significant part of the system’s
behavior and the second is often only seen as a means of user interaction or
input mask.

An important aspect for automated tests of such systems is the point if
it is useful to test the graphical user interface (GUI) automatically. Testing
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GUIs automatically is very error-prone and difficult. GUIs can change over
time and depend very much on the user’s environment such as the operating
system or the screen resolution. If there is not much functionality in the
GUI and the layer below can be accessed quite easily by test adapters it is
recommended to inspect the graphical user interface manually and perform
automated tests of the functional layer below it [36].

An aspect worth mentioning is the presence of concurrency in client-
server-systems. The first approach here is to simulate multiple clients on
one test system. That means to start several test clients on one physical
computer. This method is often limited by the fact that a client is intended
to be used only once per computer and only once per user. Therefore it
can happen, that making such a client testable in a concurrent way is very
difficult.

The second way to produce concurrency is to simulate several clients on
multiple physical machines. The challenge of such a set-up is the manage-
ability of several distributed clients and their control.

The most common concept is to use several virtual test environments on
one physical device. This has the advantage that one defined test configura-
tion can be easily transferred to a new virtual instance. Many development
and test teams underestimate the administrative effort for such a project.
Activities such as configuration changes and software updates have to be
performed on each virtual machine. It is a good idea to think about an
automation of such operations as well to keep the effort as low as possible.

Defined input-output-pairs are a good way to prove the correct behavior
of a tested system. This method is applicable for all tested objects where it is
possible to assign defined output data to defined input data. The advantage
is that this is easy to be implemented and the test coverage is guaranteed.
The downsides are that the test case number can be very high, and that the
target system and the original system have to have the same data format.

4.3.3 Capture and Replay

The capture and replay technique is well-suited for testing graphical user in-
terfaces. Sometimes recording the steps performed by a person when using
a program is the easiest way to generate repeatable test cases. The advan-
tage of that method is that once recorded the test sequence can be replayed
automatically and does not consume human resources [33].

It is to mention that this method is limited by changes to the tested
software. The recorded test steps will not work anymore if the software has
been changed in a significant way. The number of development cycles and
therefore changes to the user interface of the software must be rather low so
that capture and replay pays off.

There is a possibility though to make capture and replay more resistant
to changes in the graphical user interface. This is applicable if there is
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a certain logic, a server, data processing or data persistence behind the
graphical user interface program (which in many cases is). One can perform
the desired user steps and afterwards generate test cases out of the persisted
data. Then those test cases can be used to perform automated test steps
using the interfaces that are below the graphical user interface layer. To
control the interfaces adapters are needed. The effort needed to convert data
and to implement the adapters is compensated by the improved robustness
of the test environment against changes in the graphical user interface.

4.4 When to Stop Testing

Gerald M. Weinberg explains the banana principle in his book [50]. Accord-
ing to it, a little boy comes home from school and his mother asks him what
he had learned that day. The boy answers that he had learned how to spell
the word banana but that he did not learn when to stop.

It is not easy to give certain numbers when software testing is finished or
a software has been tested enough. There are too many variables in software
environment to do that. A common practice is to declare the tests finished.
In the following sections a set of useful test end criteria is described [13].

4.4.1 Coverage Goals

The term coverage means the amount of tested software parts compared to
the amount of available software. The level of coverage definition can be
made up from code coverage, functional coverage, use case coverage, system
coverage and so on. The coverage percentage of a tested program part can
be connected to the estimated risk of failure of that part. The opinions on
coverage are controversial. Glenford Myers states that coverage is counter-
productive [32]. He thinks that people that want to reach a coverage goal
are likely to design their test cases in a way that the goal is reached as fast
as possible (using so-called quick-wins). This often means that the test cases
are not well-directed and only test the program parts that are the easiest to
test. The more complex and hard to test program parts are not tested.

4.4.2 Defect Discovery Rate

The defect discovery criterion suggests to stop testing when the number of
discovered defects during a defined time period (normally a week) falls below
a certain threshold. There are some factors that can distort the accuracy
of that practice. These can be testers on holiday or new test cases that are
not that effective. Again as mentioned above it gets very clear at this point
that following only one test ending criterion is insufficient. Also the pure
number of discovered defects is not enough to determine the stopping of the
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test. There still can be serious errors in the software that prevent it from
being shipped.

4.4.3 Marginal Cost

If we look at a manufacturing company that produces consumer goods the
term marginal cost is used to describe the cost of adding one unit of produc-
tion. Normally the higher the output of the production plant is, the lower
the marginal cost is. In software engineering things look different. The first
test cases are quite easy to write and the less possibilities are left, the more
effort has to be put into testing them. If we come to the point that finding
a new test case is more expensive, than delaying the release of the software
product would cost, it is reasonable to stop testing.

4.4.4 Team Consensus

As the name indicates this test stopping aspect means that ending of the
test is decided by the development team. The team states that the software
is tested enough and that all major bugs are fixed. It is time to ship the
software now and gather eventual other information about possible defects
out of the production environment.

4.4.5 Ship It!

This is the criterion that is executed mostly in practice. The boss tells you
to ship the software at a fixed date. The decision for that date is driven by
factors like being the first to market. The first to market often has to take
the risk of having a product that is not working correctly but that risk is
compensated by the prospect of entering a new market as the first one and
gaining a lot of customers.

Testers and software developers tend to see their work pessimistically.
This means they only see the possible errors and cannot decide whether the
product is good enough for the market in an objective way. Many of those
people are perfectionists and want to develop the perfect piece of software.
This has the disadvantage that the work is never finished within a reasonable
time span. Therefore sometimes it is very useful that the management of a
company sets goals and demands the meeting of a deadline.
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Chapter 5

Test Environment and
Continuous Integration Tools

A decent set of tools supports a well-structured development and testing
process. In this chapter one possible combination of tools and its interaction
is described. The tool-set should contain tools for source code management,
automated build execution, static code analysis, unit tests, project module
dependency management and storage. Furthermore the tools should be
available for free. Since the Automated Test Environment is implemented
in Java the tools presented here are best suitable for Java projects. The
question of choosing the best source code editor is not discussed here, but
the usage of Eclipse [46] is recommended.

5.1 Subversion

Keeping track of different versions of an evolving software project is essential
in software development. A source code management system should be used
in every case, even if there is only one developer working on a project [11].
A software that is developed to automate testing is in its roots nothing
other than a normal software project. Therefore it has to follow the same
conventions as the software that is tested by the test software. Keeping
track of the test software, test plans, test logs and test cases can be done in
a source code management system as well [33].

Subversion or in short svn is an open source project of the Apache Soft-
ware Foundation [45]. It is a server software for source code management
with basically the same functionality as cvs [14] or bazaar [5]. Subversion
has some handy enhancements compared to cvs [31]. Before the Subversion
project [44] joined the Apache Software Foundation in November 2009 it
was a project hosted by Tigris.org [47].
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5.1.1 Subversion Folder Structure

The root folder of a project in Subversion is called repository. The repository
contains three sub-folders:

• trunk: In the trunk folder all current development source code is man-
aged. Everything that has not been released yet is kept here. It is
the current working directory where in normal development work all
contributors store their code.

• tags: The tags folder contains one folder for each version of the soft-
ware that has been released. A tag folder serves as a backup of exactly
the same code version that is or was running in a production environ-
ment and therefore must not be changed.

• branches: Sometimes a developer is in the unpleasant situation to
make a bug-fix for an older released version of a software that is still
in production. The code from the trunk cannot be used for that be-
cause it contains changed or new functionality that is incompatible
to the older version. In that case a sub-folder of the branches folder
is generated with the content of the tags folder matching the version
of the running software to be fixed. In the branches folder then the
bug-fix is applied and a hot-fix version is released. One other possible
scenario besides the bug-fix is that changed functionality of the trunk
development path is needed in an older software version as a patch.
The same procedure as for bug-fixing is applied here.

5.1.2 Software Version Nomenclature

A good choice of a version nomenclature for an average sized development
project of up to 100.000 lines of code and a few developers is described
here. The version string contains three numbers separated by a dot (x.y.z).
For each release at least one of the numbers is changed. This is what the
variables stand for:

• x is the major version that gets incremented only for major architec-
tural and functional changes. A higher number is not compatible to
the lower major version number.

• y is the minor version number that gets changed whenever a release
with new features is made.

• z is the bug-fix version number that gets increased in case that no new
features are added and only bugs are fixed in a release.

To mark the version of the currently developed and changing source code
the appendix -SNAPSHOT is added to the version. The source code of this
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version is kept in the trunk-svn-folder. A software version that is denoted
as not changing but not ready for release (e.g. because it is not yet tested) is
called a release candidate. A release candidate adds -RC to the software ver-
sion. It is important to test software against a not-changing version to make
the found defects reproducible. For one release there can be more than one
release candidates. This means we can have -RC1, -RC2, -RC3 and so on
for one and the same release version. It is good practice to make one release
candidate per development iteration. An old software version that needs to
be bug-fixed or patched is called hot-fix and adds -hf to the version number.

Example:
The version 2.1.4-RC2 means the second major version with first minor ver-
sion and bug-fix version four - second release candidate.

5.2 Maven

Maven is a tool intended to facilitate build management and can be com-
pared to Ant in some ways [42]. The biggest difference is the way Maven
treats project dependencies. The dependencies are organized hierarchically.
The project meta-data defined in Maven’s build configuration file is called
project object model (POM). Therefore each Maven project has to have a
file called pom.xml (similar to Ant’s build.xml) [43]. The following folders
are the most important in a Maven project:

• src/main/java: The main folder for Java source code.

• src/main/resources: A folder for all resources such as xml or property
files.

• src/test/java: This is where all unit test classes are put.

• src/test/resources: In this folder all resources that are used for unit
tests are found.

• target: The produced artifacts (also known as distributable) are gen-
erated into that folder.

5.2.1 Maven Dependencies

The definition of a required external library is called dependency. A ready
built distributable of a project is called an artifact. A repository is a loca-
tion where Maven looks for artifacts that are defined as dependency in the
pom.xml file. Project dependencies are inherited.

Example:
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Figure 5.1: Maven Dependencies in a small Project

The developer wants to start implementing JUnit tests in his project called
project A. Project A defines a dependency to project B because project A
uses functionality of project B. Project B already contains a dependency
to the JUnit artifact because in project B there are JUnit tests. For the
developer this means that JUnit is also available in project A because it has
inherited the dependency to JUnit from project B. There is no need for the
developer to define a separate dependency to JUnit in project A because
JUnit is already available.

Dependency inheritance works on multiple levels. This keeps the size of
the pom.xml file very low. In a real-life project the dependency hierarchy
looks as shown in Figure 5.1 for a small project, for a bigger project depen-
dency hierarchy illustration see Figure 5.2.

5.2.2 Maven Repository Handling

Maven organizes the sources of artifacts of dependencies on multiple lev-
els. At first there is a local repository on the machine where the build is
executed. Normally this is located in the user-home directory. This is the
first place where Maven looks for a required artifact. If the artifact (or the
correct version of it) is not found in the local repository, Maven looks in
other repositories that are defined in the pom.xml file. The artifact is then
downloaded to the local repository to speed up future builds.
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Figure 5.2: Extract of Maven Dependencies in a bigger Project
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Many open source projects share their Maven artifacts in public repos-
itories. This is sufficient and fine for some time. If there is more than one
Maven project in one organization, and the organization does not want to
upload and share its artifacts onto public repositories, the need for a com-
pany repository arises.

The requirements of a company repository are straightforward. We would
like to store and retrieve artifacts during a Maven build, and have a basic
web interface that displays the available artifacts with some meta informa-
tion. Besides that it would be nice to upload artifacts manually and search
for them on the web interface. A tool that supports all those operations is
Artifactory [21]. Furthermore Artifactory operates as a proxy between the
local build environment and the outside world. That means that it caches
third-party artifacts that are available in a public repository outside the
company network and by doing that, speeds up artifact retrieval and build
times.

5.2.3 Maven Plugins

There is a large number of Maven plugins. Among them, there are plugins
for xml validation, xml bean generation, test execution, artifact distribution,
distributable generation and static source code analysis.

5.3 Jenkins

Jenkins formerly known as Hudson, is a tool to support continuous integra-
tion (CI) in software development. In its core Jenkins is a server software
that can trigger pretty much anything that can execute something on a com-
puter. The application area ranges from automated builds to automated
data manipulation tasks and automated deployment. For each Jenkins task
three steps are important [35]:

1. Determine if a new build is necessary.

2. Execute the build.

3. Process and visualize the collected data.

Configuration of Jenkins is simple but powerful. The most important
configuration settings can be seen in Figure 5.3 and Figure 5.4.

Besides the mentioned configuration options Jenkins supports the possi-
bility to grant different privileges to different users. For example a Jenkins
project can be configured in a way that only the project responsible is al-
lowed to perform releases.
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Figure 5.3: Jenkins Job Configuration Part 1

Figure 5.4: Jenkins Job Configuration Part 2
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Figure 5.5: Jenkins Job Overview

5.3.1 Jenkins as Build Automation Tool

On the Jenkins main page there is a list of all jobs that are known to Jenkins.
The state at which each job is, is indicated by the color of the ball icon (see
Figure 5.5):

• Blue ball means build OK and stable.

• Yellow ball means build OK but test failures.

• Red ball means build failure.

• Grey ball means that this job is deactivated.

The last successful build time and the duration of the last successful build
are displayed as well. Furthermore the tendency of the builds is visualized
using weather icons (See Figure 5.5).

The execution result of a build or any other job that is configured for
Jenkins is called build. The data generated by a build is called build artefact.
One aspect why Jenkins is so well-suited for CI is that Jenkins keeps track
of the build execution results. The user can configure how many artefacts
are archived. So it is possible to monitor a project’s progress. For example,
the last build results as well as the number of executed Unit tests and their
outcome is displayed in a chart as seen in Figure 5.6.

5.3.2 Jenkins as Deployment Automation Tool

One of the key factors of continuous integration and test automation is fast
and easy deployment. Jenkins can be used to execute ant tasks that perform
a deployment with certain parameters such as a version of a program to
be deployed. Also the restoration of a database and its conversion into a
test database can be achieved by using SQL scripts that are executed by a
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Figure 5.6: Jenkins Job Progress

Jenkins-triggered ant task. A Jenkins job can be executed manually by the
user or on a regular schedule. To summarize, Jenkins is a vital tool for test
automation and continuous integration.

5.4 JUnit

JUnit [23] is a unit testing framework for Java. Its intention is to test small
pieces of code uncoupled from its dependencies to other code units. Unit
testing is not integration or system testing where the interaction of code
classes is tested. In the test hierarchy, unit testing is the first step to avoid
the most primitive coding errors in the most primitive code parts.

JUnit was developed by Kent Beck and Erich Gamma to accompany
their method of test-driven-development (TDD) [8].

5.4.1 Annotations in JUnit

Using annotations to test methods the developer is able to control what is
executed and when. The most important annotations for JUnit are [29]

• @Test : Marks a test method that is executed by JUnit.

• @Before: Denotes that the following method is executed before each
test method, to perform test preparations.

• @BeforeClass: The method is executed only once before the test class
is instantiated.
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• @After : This is the counterpart of @Before and is executed after each
test method.

• @AfterClass: This is the counterpart of @BeforeClass and is executed
after all test methods of a test class have been called to perform a
clean-up.

5.4.2 Assertions in JUnit

JUnit differs between two erroneous test result states: failure and error.
A failure is the unsuccessful evaluation of an assertion (i.e. wrong data is
returned by the tested method) and an error is a program error occurred
during the test execution (for example an uncaught exception in the tested
method).

JUnit provides the following assertion methods [8]:

• assertEquals( ... ) tests if the two given objects have the same values.

• assertTrue( ... ) tests if the given boolean is true.

• assertFalse( ... ) tests if the given boolean is false.

• assertNull( ... ) tests if the given object is null.

• assertNotNull( ... ) tests if the given object is not null.

• assertSame( ... ) tests if the two given objects refer to the same
object.

• assertNotSame( ... ) tests if the two given objects refer to different
objects.

It is important to say that the assertion methods always take the ex-
pected object as the first input parameter (if needed) and then the actual
object retrieved from the test execution. There is also the possibility to pro-
vide tolerance values for the assertion of double values to avoid a misleading
failure-test-result because of round-off errors.

5.4.3 Simulated Behavior using Mock-Objects

In the JUnit execution context we have only a very limited amount of con-
nectors to other software parts. Furthermore we do not want the test to
use real database connections or real web-service connections to guarantee
the test’s independence of data changes and to ensure that the test is ex-
ecuted as fast as possible. Therefore the need for simulated environments
arises. Hence, the creation of so-called Mock objects [29]. A Mock object
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can be seen as a mechanism to decouple the test class from any other com-
plex program parts that it depends on. Common modules that are replaced
by Mock objects are persistence layer classes or any other connector classes
that require external infrastructure [41].

The challenge of using Mock objects is that their number grows over
time and that the interfaces implemented in the Mock objects are subject
to change. This means a rather high maintenance for the administration of
Mock objects. One way to solve this issue is the usage of a Mock object
framework that can provide Mock objects automatically. If we would like
to unit-test the functionality of a database persistence layer, one solution is
to replace the required database server with an in-memory database such as
H2 [17].

5.5 Sonar

Last but not least, an important component of the test and development
environment is a tool for static code analysis. Static code analysis means
the assessment of source code without executing it. A tool that performs
static code analysis searches for predefined code patterns that bare the risk
of failure.

In Section 5.2 we talked about Maven which has a plugin called Maven
Site Plugin [1]. This plugin is quite easy to configure and can display some
of the basic project metrics. The biggest limitation is that with the Maven
Site Plugin it is not possible to generate meta-information for more than
one project.

Of the six main aspects of software quality as presented in Figure 2.2
Sonar addresses reliability, efficiency, maintainability and portability.

5.5.1 Overview

Sonar [37] is a platform that provides the following features:

• Produces static analysis project data during the Maven build process
with Maven plugins such as PMD [40], Checkstyle [38] and Cober-
tura [39].

• Writes the data into a database.

• Displays the data on a web interface.

• Configures the applied analysis rules.
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Figure 5.7: Sonar Project Dashboard

5.5.2 Usage

On the Sonar project dashboard you can see a summary of the most im-
portant project metrics. In Figure 5.7 project attributes representing the
project’s size, complexity and quality are shown.

In the Sonar Time Machine the development of a project can be seen
(Figure 5.8). The progress in complexity, rules compliance and code coverage
are visualized.

The code coverage can be displayed in an even more detailed way related
to the analyzed source code as seen in Figure 5.9.

Red lines mean lines of code that are not covered by unit tests. If there
is a number with green background to the left in one line, the number
represents the number of times a line of code has been executed by a unit
test. Yellow lines describe conditions that have not been tested entirely.
A number of 2/8 for example means that only two out of eight possible
conditions have been tested. According to Pezzè and Young [33] the most
important static metrics can be grouped into two categories, code size and
code complexity.

Another advantage of performing static code analysis is to embrace a
coding standard. As Bath and McKay [4] point out in their book, a common
coding standard among a team of developers has a lot of benefits. A code
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Figure 5.8: Sonar Time Machine

sticking to a coding standard can be shared easier between developers, and
improves maintainability and testability.

Sonar should be used to develop a coding standard in a development
team. It should push developers to improve their coding habits. Whenever
an error is found that can be related to a bad coding standard, a new rule
detecting such an error has to be activated in Sonar to avoid future errors of
the same kind. If the rule is activated, all source codes are checked for that
rule and the error should never occur in a production environment again.

5.6 Bringing it all Together

Depending on his role in the development team each person has special
wishes to the CI environment and different perspectives. The combination
and usage of the five tools presented in the last few sections is explained in
this section.

5.6.1 Developer

Figure 5.10 shows the CI environment from the developer’s point of view. A
developer works with an Integrated Development Environment (IDE) and
produces program code that is built locally on the development machine
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Figure 5.9: Sonar Code Coverage
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Figure 5.10: Developer’s point of view
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using Maven. Existing JUnit test cases are executed during that build. At
this stage the developer knows that his changes work with the current JUnit
tests and with the current Maven artifacts found in Artifactory. If no tests
fail and the build is successful the developer stores the new source code into
Subversion.

During each build Jenkins performs a Sonar analysis of the source code
using the Maven code analysis plugins and the activated rules. If all impor-
tant rules and metrics are met by the project it is ready to be released.

At the end of a development cycle the developer responsible for a project
performs a release using Jenkins. Jenkins proposes the new version of the
released artifact, tags 1 the released project and commits the new snapshot
into Subversion.

5.6.2 Tester

As shown in Figure 5.11 a software tester manages the test cases in Sub-
version. He uses Jenkins to execute builds and tests. In Jenkins the test
progress and the test results are shown. Looking into Sonar’s analysis de-
tails, the tester can easily identify potential risks in a project and develop
well-targeted test cases.

5.6.3 Software Architect

The software architect is responsible to keep an overview of the software
architecture. The CI environment provides him with much important in-
formation as shown in Figure 5.12. Jenkins visualizes broken builds and
test failures. The software architect is the person that designs the artifact
landscape in Maven, meaning that he is the one that creates new projects
and manages their dependencies.

The software architect must also act as a coach for the developers. Sonar
helps to maintain and push code quality and the used coding standard.
Jenkins should be configured by the software architect as well.

5.6.4 Project Manager

The project manager retrieves knowledge about the health and quality
progress of a project using Sonar and Jenkins. Figure 5.13 shows the im-
portant aspects of the CI environment for the project manager. He can
watch the graph displayed in the Sonar Time Machine (Figure 5.8). Based
on that information he recognizes possible delays in the development sched-
ule expressed by previously defined coverage and targets that are not yet
met. Furthermore he can observe the number of failed tests in comparison

1In this context ’to tag’ means to create a new folder named after the released version
number in the Subversion tags folder and put the source code there.
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Figure 5.11: Tester’s point of view
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Figure 5.12: Software Architect’s point of view
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Figure 5.13: Project Manager’s point of view
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to the number of executed tests. All other information is too technical and
therefore not usable by a manager for his work.
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Chapter 6

Human Aspects of Software
Testing

In all the previous sections we have talked about the technical aspects of
software testing. One vital factor is missing though: the human being. This
section sketches some of the human aspects connected to software testing
and developing software testing processes.

6.1 The Nature of Testing

Testing is the process of executing a program with the intent of finding er-
rors [32]. That is in short, a very precise definition of testing. There are
many interpretations of testing though that are wrong and should be avoided
in practice.

Testing can be understood by the developer to be meant to find the
developer’s personal errors and to emphasize that developers make mistakes.
Many developers feel annoyed by the thought that tests are only made to
find their errors. They are not. They are meant to support developers to
deliver a product as well functioning as possible.

Testing does not exist to show that a program is working correctly, but it
adds effort and value to the program by increasing its quality and reliability.
If the tester is only driven by the idea to show that a program works correctly,
he will only develop test cases that reflect the expected behavior and the
correct usage. But good testing means much more, to be specific: the
development of test cases that cover many situations of mis-usage of the
program.

Showing that errors exist in a program is not a bad thing. Each test
case that detects an error is a valuable test case, much more than a test case
that works after the first try. Testing is a process that should accompany
the development process. Failed tests must not be seen as a failure but as a
support on the way to a stable software.
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6.2 Breaking with Habits

Introducing an automated test framework that was not there before means
breaking with tradition. At first developers will react very skeptical. They
will feel controlled and agitated in their world. A special role is fulfilled
by the person that introduces test automation. He is the one that has to
establish a reliable test environment and to convince the developers that
testing is a good thing that supports them in their daily work.

Furthermore the test team embodies the following important functions [20]
and will:

• Compensate a lack of analytical skills and management faintness.

• Support junior programmers to learn the context faster.

• Provide a knowledge base stored in the test cases.

• Support the problem solving process.

In my personal opinion testing is:

• A very good way to take some pressure off the developers. They can
concentrate more on the development work without having to fear that
anything breaks if they can rely on good tests.

• The most important factor in ensuring excellent quality and getting
results.

• A very good way to search for the requirements needed for a functional
software.

• Not the answer to every problem. A good tester is creative and can
communicate with the developers.
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Part II

Application to a Project
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Chapter 7

Project Prerequisites

The first chapter in the practical part will give an overview of the context
where the Automated Test Environment is implemented. This comprises
a company profile, test practices and project goals. After that a detailed
description of the project phases and results is given.

7.1 Company Profile

RunningBall Global Sports Data is a company that was founded in the
year 2006 in Graz. It is focused on real-time sport information over the
internet and concentrates on the B2B-market. The idea is to sell the fastest
possible information on running sport events. Among the customers, there
are betting companies and sport analysts as well as sport clubs. RunningBall
coverage is faster than TV coverage which usually is delayed by 5 to 12
seconds because of satellite-transmission [34].

The company’s backbone is its global network of about 1100 scouts.
They are match reporters responsible in attending sport venues all over the
world and collect the information for RunningBall directly on-site. The
information is entered into a smartphone and transferred via internet to the
company’s main server. This server then distributes the data to customers
that use the Trader Client (RunningBall’s graphical client program) or to
the customer’s servers for further automatized data processing as explained
in Figure 7.1.

RunningBall is currently collecting and selling data of approximately
30.000 sport events per year. This makes the company one of the biggest
suppliers in sport live data worldwide. Football was the first sport imple-
mented, then followed basketball, tennis, snooker, darts and ice hockey. The
company headquarters is located in Switzerland, and there are four other
offices, among them, the office in Graz where the software development and
maintenance is situated. In the software development department there are
nine software developers, two testers, one project manager, one requirements
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Figure 7.1: The RunningBall System

engineer, one head of development and one CTO (September 2012).

7.2 Important Terms

Ticker or Sports Ticker
A ticker or sports ticker denotes the digital equivalent to a sport game. It
has a unique identifier and a sport type (one of the sports mentioned above).
Besides that the country, the venue, the league and the competing teams or
players are defined by a ticker.

Event
An event is a clearly recognizable happening during a ticker. For example
if the ticker is of type football, a goal or a red card is an event in it.

Automatically generated event (AGE)
The RunningBall Application Server automatically generates events that
emerge out of the context or combination of other manually entered events.
The reason to generate some events automatically is to ease the usage of the
input devices and to maximize the information content of RunningBall’s
data. Simple examples for automatically generated events of football are:

• When the home team has the ball and attacks the away team, the event
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Attack is entered. If the ball approaches the away team’s penalty box,
the event Danger - which stands for a situation where a goal might
happen within a short time - is entered. Out of the two events Attack
and Danger the application server generates the event Dangerous At-
tack because it can be logically deducted from the previous two events.

• After a Foul by the away team committed on the home team the event
Free kick is generated for the home team. That is because after a foul
in soccer there is always a free kick for the other team.

Scout
A scout is a person that gets paid by RunningBall for collecting data which
means watching a sport game and entering events into a special data input
device.

Trader Client
The Trader Client is an application with a graphical user interface with
which a customer can order and watch events for a ticker. Furthermore
the Trader Client implements the possibility to display an overview of the
upcoming sports tickers, historical information for teams and a billing view
to display the current invoice amount. A customer can order sports tickers
in the trader client that are then optionally transferred to him via the au-
tomatic data transmission service as well.

Master Data
At RunningBall the term Master Data denotes all data related to a ticker
that can be considered static or rarely changing. This means country infor-
mation, leagues, teams, stadiums and season information.

Ticker Statistics
Statistics are best described as the cumulated number of events of one type
up to a specific moment. Statistics do not have to be entered by the scout
because they emerge out of the entered events automatically. For example,
if we have the events Goal Home, Goal Away and Goal Home for soccer,
the corresponding statistics for the last goal event would be 2-1 which is
the current score at the time of the last goal. There is a big set of further
statistic-relevant events, such as corners, free kicks, penalties, red cards, yel-
low cards, etc. A statistic value pair is always connected to an event.

Value Event
An Event can have one or more value events providing it with more detailed
information. The value event is a mechanism to enrich a normal event with
information of any type.
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7.3 Test Practices in the Company

In the company there are two testers responsible for a software system that
is fast growing in complexity and size. The tested applications consist of
different client applications, one server application and administrative web-
sites. Regression tests are performed manually for each release. This means
for a tester to look at the expected event processing order and enter the
events into a client device manually in a way a scout would do it during
his work. After entering events, their output data has to be verified in the
Trader Client. Because of the increasing complexity of the software prod-
ucts regression tests of already existing functionality consume more time
than the tests of the newly added features.

Test cases are written and tests are performed after implementation of
the tested software. Developers have to wait for quite a long time for feed-
back from the test department about the test results. Most features are
not written down in a formal language and only discussed in more detail
if the implemented behavior does not match the expected behavior of the
software.

7.4 Project Goals

During the initial meeting the expected features of the project called Au-
tomated Test Environment were defined and written down. Three priority
categories have been selected to group the desired features.

7.4.1 Very Important Features

• Functional tests of the event processing logic (application server) per-
formed as system test

• Component tests: Integration into the build system, nightly build (use
the Automated Test Framework to be executed as unit test for the
application server)

• Test framework

– System test

– Dynamic data basis: prepare the tested system, create a ticker in
the system, wait until the new ticker is known by all components,
log into the system, execute a simulated game.

– Generate test cases, execute them and evaluate them for each test
run. Monitor test progress.

• Introduction of test failure categories to be used in the evaluation
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• Test case maintenance must be easy (XML format, maybe with an
editor)

• Connection between test cases and use cases via the use case id.

7.4.2 Important Features

• Test all system interfaces that connect from and to the application
server

• Test adapters should support different versions of the tested interfaces

7.4.3 Nice-to-have Features

• Perform a load test with an evaluation of the processing times

• Test the graphical user interface of Android and Swing client applica-
tions and not only their interfaces and protocols below

66



Chapter 8

Project Phases of the
Automated Test
Environment

The Automated Test Environment had to be stable and well functioning
from the beginning on. Furthermore it should show its additional benefits
quite fast. That is why the following phases have been chosen.

8.1 Standalone Application

At RunningBall all events for each ticker are stored in a database. This
is the perfect starting point to generate test data quickly. A test data
generator was implemented that could read ticker data from the database
and store it into an XML file. The file format was defined by the Automated
Test Environment. Later on such a file can be used repeatedly to test
the Automated Test Environment itself by executing it with data parsed
from the XML file. This contributes a lot to the development progress and
stability of the Automated Test Environment itself.

During that phase the test department is taught how to use the Auto-
mated Test Environment. An executable version of the test data generator
as well as the test executor is handed over to them. At first the tester enters
data with an input client and saves the ticker id of that game. Using the
test data generator an XML file can be generated for that ticker. This file
is then used as a regression test each time a release has to be done for the
application server. If new functionality has to be added, the XML file is
modified by the tester and used again. At this time the test case generation
and the test execution are automatized. The evaluation of the test result has
to be done manually by observing the produced data in the Trader Client.

The advantage of shipping the first working version to the test depart-
ment after a rather short development cycle is the collection of a lot of useful
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input to the development activities. Information about existing bugs in the
Automated Test Environment and suggestions for usability improvement
are reported. Shortly after the first release a second release is shipped that
contains a test evaluation module. The results of the tests are written into
a comma separated values (csv) file telling the tester if the test was suc-
cessful (OK ) or not (ERROR). There were some discussions of putting the
test results into a specially designed database. The reason for the decision
against a test result database has to do the big effort of implementing a
database persistence layer and a database schema. Furthermore an existing
database schema is much harder to change than the file format of a csv file
and writing it into a csv file is much easier than writing into a database.

These are the steps a tester has to perform working with the Automated
Test Environment at this time:

1. Create a ticker and enter events with a client a scout would use

2. Generate the test case xml file from the ticker’s database data with
the test case file generator

3. Start the Automated Test environment with the generated test case
xml file

One disadvantage of shipping the Automated Test Environment at that
early stage was the big number of test case XML files generated by the test
department. Suddenly it was very difficult to keep track of the test case
files.

8.1.1 Initial Architecture

The Automated Test Environment is a Maven Project that consists of three
modules: Test Reference, Test Adapter and Test Framework. Each module
is described in more details in this section.

• Test Reference

– XML beans with the definition of the used XML format for test
case files.

– Data classes for event and ticker data

– A class to de-serialize XML test case files

– A class to load event data from the database and serialize it into
XML test case files (Test Case Generator) (0)

– Several utility classes used by the other modules

• Test Adapter
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– Output adapters: send data into the tested system

∗ Old Scout Client (1)

∗ New Scout Client based on Android with a different protocol
(2)

∗ Adapter to test the Feed Adapter which converts third party
data into a format understood by the application server (3)

– Input adapters: to receive data from the tested system

∗ Trader Client Adapter (4)

∗ Java Message Service (JMS) Adapter to test the integrated
customer data supply (5)

– XML beans for the adapter configuration files (server, port, user-
name, password, adapter type)

– Factory classes to load the input and output adapters

• Test Framework

– Test system preparation

– Test execution

– Test evaluation

– Test result generation

The numbers written next to the adapters can be found in Figure 8.1 to
define the linkages into the tested system.

8.1.2 Test Case File Format

The representation of a sent and received event in a test case is implemented
as an input-output-pair as described in Subsection 4.3.2. The simple test
case to test for the automatic generation of the Dangerous Attack event can
be seen in graphical form in Figure 8.2.
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Figure 8.1: The Tested System with Adapter Linkages

Figure 8.2: Test Case to test for Dangerous Attack
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In an XML form that is understood by the Automated Test Environment
this test case looks as seen in Listing 8.1.

1 <e v e n t l i s t>
2 <event even t code id=”1024” event code=”AT1”>
3 <r e s u l t type=” de f au l t ”>
4 <revent even t code id=”1024” event code=”AT1” />
5 </ r e s u l t>
6 </ event>
7 <event even t code id=”1052” event code=”DANGER1”>
8 <r e s u l t type=” de f au l t ”>
9 <revent even t code id=”1052” event code=”DANGER1” />

10 <revent even t code id=”1026” event code=”DAT1” generated=”
post ” />

11 </ r e s u l t>
12 </ event>
13 </ e v e n t l i s t>

Listing 8.1: Test Case XML

The manual editing of XML files is error-prune and not very user-
friendly. Besides that for a tester that edits such an XML test case it would
be very annoying having to wait until the test run is finished to know that
he has made a mistake in the XML file. That is why each XML test case is
validated by the Automated Test Environment before starting the test run
in three steps:

1. The Test for XML well-formedness ensures that the given test case is
of correct and parse-able XML format.

2. The validation against an XSD [49] definition tests that it is of the
correct XML schema.

3. For all important XML attributes there are predefined enumeration
XML data types in the XSD schema.

8.1.3 Test System Preparation

There is quite a number of steps to be performed in the RunningBall database
before a test can be started. Since the database of the tested system has to
be restored with a live database backup quite regularly to keep up with the
latest changes in the schema and the data it is necessary to perform some
data preparation checks before each test run. Responsible for that is a util-
ity class of the Automated Test Environment called TestSystemPrepareUtil.
This class has to check and if necessary adapt the following data:

• The simulated consuming user groups

• The consuming user account

• The scout account with which data is sent into the system
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• Country settings

• League settings: For example, in football some leagues are configured
to have extra-time and a penalty shootout. They show a different event
handling depending on the settings. Further league settings are the
halftime duration, the starting score for darts, the number of periods
for basketball or if a certain type of information is available for that
league like player detail information.

• Team settings

• Stadium settings

8.1.4 Output Adapter Functionality

The main purpose of an output adapter is to hook into the tested system,
use the commands provided by the Automated Test Environment, transform
them into the protocol of the tested system interface and send data to it.
Each output adapter has to implement an interface providing the following
methods:

1. In the Constructor the output adapter is told the ticker id to which
it should send data, the adapter configuration including server, port
and user credentials, and the commands that should be sent.

2. The method connect connects the output adapter to the application
server.

3. login performs a login to the tested server.

4. openGame with the correct ticker id tells the server that this adapter
is going to send events to that ticker.

5. The method sendEvent can send all types of event data and its ad-
ditional information. This includes for example for a football ticker
the ball position coordinates for ball position events, the substituted
players for a substitution event or in a darts game which segment was
hit on the board and if it was a single, double or triple field.

6. logout is used to perform a logout.

7. disconnect interrupts the socket connection to the application server.
This is used to simulate a disconnection that can last for different time
spans to test the reaction of the application in case of a connection
loss.

8. shutdown is used at the end of a test run and responsible to stop the
output adapter in a clean way, namely ending all threads of the client
and all started thread pools.
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8.1.5 Input Adapter Functionality

In short words, an input adapter has to do the opposite of an output adapter.
It has to connect to the tested system, receive data from it, transform it into
the Automated Test Environment data format and pass this data on to the
test evaluation. Besides event data an input adapter also has to handle
ticker statistic data.

For the Trader Client testing statistics is a challenge. The Trader Client
is implemented and optimized for fluent graphical visualization of the event
and statistic data. It is not optimized to be tested easily. Whenever an
event arrives, the event is passed to a GUI thread - this thread also calls the
event reception method in the input adapter. The statistic of that event is
passed to another GUI thread which also calls the statistic reception method
in the input adapter. The Trader Client input adapter has to put together
the statistic and event data because in the test data they are treated as
connected too.

This is why a special logic has been created to be able to pass an event
connected with its statistic from the Trader Client input adapter to the
evaluation class. This procedure is only necessary for the Trader Client input
adapter and not for the other adapters. When the event arrives before the
statistic at the adapter the sequence shown in Figure 8.3 is used, otherwise
the logic in Figure 8.4.

8.2 Test Data Rework

There are three important aspects that demand a rework of the test defini-
tion.

8.2.1 Separation of the Test Data from the Tested System

If the test data is generated using the logic of the tested system as has been
done with the Automated Test System up to this point (see Section 8.1),
all undetected errors of the system propagate into the test data. With that
practice it can happen that some resulting test cases only serve to test the
system if a system’s error is still present. For that reason it is absolutely
necessary not to use the tested system for the test case generation. In the
first phase the only reason to use the tested system for test case generation
was to obtain test data fast.

8.2.2 Organizational Change

It should be possible to set up an organizational and technological stripline
between the development department and the test department. All test cases
should be kept in a separate project that is completely the responsibility of
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Figure 8.3: Event received before Statistic
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Figure 8.4: Statistic received before Event

the test department. There should be no direct link between the tested
system and the test cases.

This task is solved by creating a new Maven project that contains only
test case data XML files. This leads to the next advantage namely that the
version of the test case data is decoupled from the version of the Automated
Test Environment. The testers can decide by themselves when to perform
a release of the test case project and increase the version number.

All the information that the Automated Test Environment needs, is
where to find the test cases and which version to use. The test case artifact
is loaded from a central repository during the execution of the Automated
Test Environment using an URLClassLoader class. There is a Maven [43]
plugin that can perform all the XML validations as described in Subsection
8.1.2 which ensures a comfortable process with test cases for the testers.
Now we can see that a test case file is valid already after the build of the
test case project without starting a test run.

Listing 8.2 shows a way how the Java classpath can be extended to a
resource that is situated at a remote location using an URLClassLoader
class.

1 public stat ic void addURLToPath( St r ing u r l ) throws
MalformedURLException , NoSuchMethodException ,
I l l e ga lAcc e s sExcep t i on , Invocat ionTargetExcept ion {

2 URL u = new URL( u r l ) ;
3 URLClassLoader ur lC las sLoader = (URLClassLoader ) ClassLoader .

getSystemClassLoader ( ) ;
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4 Class u r lC l a s s = URLClassLoader . class ;
5 Method method = ur lC l a s s . getDeclaredMethod ( ”addURL” , new Class [ ]

{ URL. class }) ;
6 method . s e tA c c e s s i b l e ( true ) ;
7 method . invoke ( ur lClassLoader , new Object [ ] { u }) ;
8 }

Listing 8.2: Classpath Extension with an URLCLassLoader

8.2.3 Introduction of a new Test Case File Structure

A further emerging organizational problem should be solved in this step.
Since the testers are very busy they generate a huge number of test case
files within a short time. The major problem is test case maintainability. A
lot of test data is kept redundantly, and therefore changes are expensive and
annoying. If short sequences of events that often occur in the same order
can be isolated and put into a reusable so-called UseCase file this situation
would improve dramatically. To do this, use cases and more importantly use
case ids have to be created. There should be a new test case file structure:

• A file type to define all test preparation settings

• Another file type to contain event sequences for one use case

• A file type called test plan that combines test preparation and use case
files.

The test plan file links to use cases in a defined order via their id. Since
the event code ids differ for the home or the away team of a ticker it would
be nice if one use case file could be used for events of both teams. It should
be possible to pass the team number from the test plan file to the use case
file and convert the correct event code ids depending on the team number.

The newly created Maven project for test data looks as shown in Figure
8.5. On the top part there are folders named after the id of the sport the
test data is for. In them there are test preparation files, test plans and a
folder containing all use case files named UC.
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Figure 8.5: Test Data Maven Project Structure

In Listing 8.3 an extract of the use case project’s pom.xml is shown. The
xml-maven-plugin is responsible to validate all found XML files against the
provided XSD definition.

1 <p lug in>
2 <groupId>org . codehaus . mojo</groupId>
3 <a r t i f a c t I d>xml−maven−p lug in</ a r t i f a c t I d>
4 <execut i on s>
5 <execut ion>
6 <goa l s>
7 <goa l>va l i d a t e</ goa l>
8 </ goa l s>
9 </ execut ion>

10 </ execut i on s>
11 <c on f i gu r a t i on>
12 <va l i d a t i o nS e t s>
13 < !−− check a l l f i l e s in f o l d e r xml f o r we l l formedness −−>
14 <va l i d a t i onS e t>
15 <d i r>s r c /main/ r e s ou r c e s /new xml</ d i r>
16 </ va l i d a t i onS e t>
17 < !−− v a l i d a t e a l l f i l e s in f o l d e r src /main/new xml aga ins t

src /main/xsd/ t e s t d a t a . xsd −−>
18 <va l i d a t i onS e t>
19 <d i r>s r c /main/ r e s ou r c e s /new xml</ d i r>
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20 <systemId>s r c /main/xsd/ t e s t d a t a . xsd</ systemId>
21 </ va l i d a t i onS e t>
22 </ va l i d a t i o nS e t s>
23 </ c on f i g u r a t i on>
24 </ p lug in>

Listing 8.3: Use Case Project pom.xml Extract

Listing 8.4 shows a very short test plan. An important instruction is
found in line four, where the required preparation data is defined. After-
wards the commands for connect, login and start match are entered. After
only one dangerous attack for each team the ticker is stopped.

1 <t e s t d a t a s p o r t i d=”1”
2 xmlns=” ht tp : // r b a l l . com/ t e s t r e f e r e n c e /data/xmlbeans”>
3 <t e s t p l a n>
4 <prepara t i on s path=”new xml/1/masterdata . xml” />
5 < t i c k e r s t a t e l i s t>
6 <t i c k e r s t a t e id=”1” name=”Not Started ”>
7 <usecase path=”new xml/1/UC/UseCase0 . 0 2 0 . xml” name=”

ConnectLogin”
8 group=”Scout” />
9 <usecase path=”new xml/1/UC/UseCase1 . 0 0 2 . xml” name=”

StartGameTeam2”
10 group=”Scout” />
11 </ t i c k e r s t a t e>
12 <t i c k e r s t a t e id=”2” name=”Rt F i r s t Hal f ”>
13 <usecase path=”new xml/1/UC/UseCase1 . 0 1 0 . xml” name=”

DangerousAttack”
14 team=”1” group=”Scout” />
15 <usecase path=”new xml/1/UC/UseCase1 . 0 1 0 . xml” name=”

DangerousAttack”
16 team=”2” group=”Scout” />
17 <usecase path=”new xml/1/UC/UseCase1 . 0 0 3 . xml” name=”

StopF i r s tHa l f ”
18 group=”Scout” />
19 </ t i c k e r s t a t e>
20 <t i c k e r s t a t e id=”4” name=”Rt Pause”>
21 <usecase path=”new xml/1/UC/UseCase1 . 0 0 4 . xml” name=”

StartSecondTeam1”
22 group=”Scout” />
23 </ t i c k e r s t a t e>
24 <t i c k e r s t a t e id=”8” name=”Rt Second Hal f ”>
25 <usecase path=”new xml/1/UC/UseCase1 . 0 0 6 . xml” name=”

StopSecondHalf ”
26 group=”Scout” />
27 </ t i c k e r s t a t e>
28 </ t i c k e r s t a t e l i s t>
29 </ t e s t p l a n>
30 </ t e s t d a t a>

Listing 8.4: Simple Testplan Example

The test case testing for dangerous attack as described in Subsection
8.1.2 had to be changed only slightly to fulfill the new format as seen in
Listing 8.5. This made the conversion and reorganization of the existing
test data files not too time-consuming.
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1 <t e s t d a t a s p o r t i d=”1”
2 xmlns=” ht tp : // r b a l l . com/ t e s t r e f e r e n c e /data/xmlbeans”>
3 <usecase id=” 1.010 ”>
4 <e v e n t l i s t>
5 <event s en t by u s e r=”$P{User}” even t code id=”1024”

event code=”AT1”>
6 <r e s u l t type=” de f au l t ”>
7 <revent even t code id=”1024” event code=”AT1”
8 a f f e c t e d s t a t i s t i c s=”2048=0 1024=+1” />
9 </ r e s u l t>

10 </ event>
11 <event s en t by u s e r=”$P{User}” even t code id=”1052”

event code=”DANGER1”>
12 <r e s u l t type=” de f au l t ”>
13 <revent even t code id=”1052” event code=”DANGER1” />
14 <revent generated=”post ” even t code id=”1026” event code=

”DAT1”
15 a f f e c t e d s t a t i s t i c s=”1026=+1 2050=0”

t i c k e r d an g e r s t a t e=” true ” />
16 </ r e s u l t>
17 </ event>
18 </ e v e n t l i s t>
19 </ usecase>
20 </ t e s t d a t a>

Listing 8.5: Dangerous Attack in the new XML Format

It should be possible to put the same use case at any position in the test
plan. That means that absolute statistic (see Section 7.2) values cannot be
used. Relative statistical values are supplied instead embodying only the
deviation of the statistic value compared to the preceding event.

Furthermore there are no event numbers used to make use cases indepen-
dent of their test plan position. If we write a use case that should delete an
event with a certain number, we define the information which event should
be cleared as “delete the xth last event that has the event code y”. Again
by doing this we can place the same clear use case at various positions in
the test plan.

The Automated Test Environment takes the challenge of transforming
all relatively defined information to absolute values which can only be de-
termined during a test run.

At this stage the tester has to perform these steps to operate the Auto-
mated Test Environment:

1. Write use case xml files and link them in a test plan file

2. Commit the written files into the svn repository and build the use case
project

3. Configure the Automated Test Environment to use the written test
plans and start it
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8.2.4 Test Result Categories

It soon became obvious, that the differentiation of ERROR and OK is not
sufficient for a detailed test result analysis. Besides that, in case of an error
a more detailed test result makes it easier to track down the error. This is
why the following eight erroneous and one correct test result categories are
introduced:

• ERROR MISSING EVENT: An event that was expected has not been
provided by the input adapter

• ERROR UNEXPECTED EVENT: An event has been received at the
input adapter that was not expected

• ERROR WRONG EVENT CODE: The event has the wrong event
code

• ERROR STATISTIC: The statistic connected to an event is wrong

• ERROR ADDITIONAL INFO: Additional event information such as
the substituted player numbers or the exact game conditions are wrong;
category to collect all errors that do not match into any other erro-
neous category

• ERROR VALUE EVENT: One or more value events of an event is
wrong

• ERROR UC PARSE ERROR: Logical parse error of a test case XML
file that cannot be caught by the three step XML parse mechanism
explained in Subsection 8.1.2; an example is a clear event applied to
an event that has not been sent before

• ERROR DELAYED EVENT: An event has taken too long to be re-
ceived

• OK: The event is correct

There is a test result summary Excel file displaying a summarized table
of the test outcome and one sheet for each test plan. In case of errors there
is a clickable file link to the detailed .csv evaluation file per input adapter
and testplan. An example of such a test summary Excel file can be seen in
Figure 8.6.
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Figure 8.6: Test Result Overview

8.3 Automated Test Environment used as JUnit
Test

A new application field arises for the Automated Test Environment for three
reasons:

• A project in the company that enables the user to create an in-memory
H2 [17] database for a unit test run that is completely independent of
a real database has just been finished. Using this project it is possible
to access and manipulate a database with unit tests. This database
only exists in the memory of the machine where the build is executed
and embodies the entire database schema of the used live database.

• The RunningBall Application Server contains all its event processing
logic in one class per sport called EventQueue.
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• The test data is now a separate project at a central location that can
be accessed easily.

The idea is to create a version of the Automated Test Environment that
is executed as a unit test. Therefore a test runner, an output adapter that in-
stantiates the tested EventQueue class and an input adapter that transforms
the event data obtained from the EventQueue class into a correct format for
test evaluation is needed. Many components such as the test system prepa-
ration and the evaluation module of the Automated Test Environment can
be reused.

Normally JUnit recognizes test classes if they have the string Test at the
end of their name. This is done automatically by the JUnit class runner.
Besides that this class runner searches test classes for methods that are
annotated with @Test. This mechanism is used to tell JUnit how to execute
the Automated Test Environment and furthermore to interpret each sent
event as a separate test method. This is an advantage for the test evaluation
because we can see the result of each event represented as one JUnit test
method.

As seen in Figure 8.7 we tell JUnit to execute the class ATEEven-
tQueueTest with our own implementation of the JUnit class runner named
FactoryRunner.

The class FactoryRunner overrides the method computeTests() which
performs three important steps:

1. Firstly tell JUnit that the expected test methods are of type Frame-
workTestFactory, where the name of the method is specified with the
method getName(). This name is then listed in the JUnit test result.
So we put information the about the tested event into that name.

2. Ensure that JUnit searches for all methods annotated with @TestFac-
tory to be executed during a test run.

3. The last step is to tell JUnit that it finds all methods where the actual
test assertions are executed with the annotation @FactoryTest. In
this method the functionality of the test evaluation utility class of
the normal Automated Test Environment is used to test the expected
against the actual event and categorize the result.

When JUnit is executed, the entry point is the method tests() in the class
ATEEventQueueTest. At first all test preparations are done. This means in-
stantiating the memory database, creating the adapters, the tested applica-
tion server event queues and creating all required master data including the
tickers. After that the test is executed. The event processing method in the
EventQueue class is called by the AppServerUnitTestOutputAdapter. The
resulting events are then decoded by the AppServerUnitTestInputAdapter.
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Figure 8.7: Automated Test Environment executed as JUnit Test
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Besides that the input adapter creates a RuntimeTestCase object for each
received event. The expected and actual events are put into the Runtime-
TestCase object. All RuntimeTestCase objects are stored in a list. After
all events have been sent through the event queue, the method tests() in
ATEEventQueueTest returns the list of RuntimeTestCase objects to JUnit.

JUnit finally goes through all RuntimeTestCase objects, executes the
testEvents() method and generates the JUnit test result. This test result is
in XML format and can be displayed in the end by Jenkins (Section 5.3) or
Sonar (Section 5.5). Eclipse has a nice JUnit test result view as well as seen
in Figure 8.8. The test method name is composed of the test plan file name,
the test plan line number, the use case id and a short description.

With Unit tests it is easily possible to measure code coverage and the
progress of code coverage.

8.4 Nightly System Test

After the JUnit test the need for another type of test arises where the system
of RunningBall applications is tested. Jenkins is used for the test execution
because it is easy to configure and provides the perfect functionality for an
automated periodic test runner. There is one Jenkins job for each sport.
The job is started with the following arguments telling Jenkins to start the
Automated Test Environment in the nightly system test mode for the correct
sport:

1 −Pate te s t v e r i f y −DargLine=”−Date spo r t s i d=1”

Additionally to the required build configuration settings the pom.xml of
the Automated Test Environment contains a separate profile defining the
goals for the nightly system test as seen in Listing 8.6. When Maven is
started with the profile named atetest it is told to execute the integration-
test target.

1 <p lug in>
2 <a r t i f a c t I d>maven−f a i l s a f e −p lug in</ a r t i f a c t I d>
3 <ve r s i on>2 .12</ ve r s i on>
4 <groupId>org . apache . maven . p lug in s</groupId>
5 <c on f i gu r a t i on>
6 <s p o r t s i d>1</ spo r t s i d>
7 </ c on f i g u r a t i on>
8 <execut i on s>
9 <execut ion>

10 <goa l s>
11 <goa l>i n t e g r a t i on−t e s t</ goa l>
12 <goa l>v e r i f y</ goa l>
13 </ goa l s>
14 </ execut ion>
15 </ execut i on s>
16 </ p lug in>

Listing 8.6: Maven Plugin Configuration for the Nightly Test
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Figure 8.8: JUnit Test Result in Eclipse
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Maven executed with the integration-test target looks in the test source
folder of the Automated Test Environment for classes with a name starting
with IT. This is why we implement a class named ITATE. This class is
very short, containing only one method that is annotated with @Test. In
this method the Automated Test Environment is started with the sport id
provided by the Maven command line argument and told to write a JUnit-
like test evaluation additionally to the normal evaluations.

For each test plan one JUnit XML evaluation file is written. The JUnit
result is then displayed by Jenkins in the test progress chart (as seen in
Figure 5.6). Furthermore test errors are displayed and when clicked on, the
details of the errors are shown. If the JUnit test evaluation is not sufficient
there is still the possibility to view the test result files generated by the
Automated Test Environment as described in Subsection 8.2.4.
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Chapter 9

Project Results

In this chapter an outline of the project’s results is provided.

9.1 Quantifiable Results

9.1.1 Line Coverage Progress

The first measurable metric is the line coverage that results from the event
queue JUnit tests as explained in Section 8.3. For a better visualization
in Figure 9.1 only some sport types have been chosen. After a fast initial
rise that is related to the fast implementation of new test cases the further
gain in coverage is caused by the implementation of new test methods in the
Automated Test Environment. The coverage of some sports has dropped
recently because new features have been implemented in the tested product,
the test cases are not written for all of them yet.

9.1.2 Number of tested Events

Another interesting number is the number of events that are sent through
the system during a complete test run. This number gives a good estimate
of what support test automation brings to the test department. If all this
data would be entered by hand, each event represents at least one mouse
click by the tester. Table 9.1 lists the number of events per sport type. Since
the test data is the same for JUnit tests and the automated nightly system
test the numbers apply for both types of the Automated Test Environment.

9.1.3 Nightly Test Progress

The test progress diagram of Jenkins (see Section 5.3) is a good way to
illustrate the progress of the nightly automated tests. Figure 9.2 shows the
test outcome of some recent test runs. The blue area represents the total
number of tests executed, the small red areas represent failed tests.
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Figure 9.1: JUnit Line Coverage over Time

Table 9.1: Number of tested Events per Sport Type
Sport Type Number of Events

Soccer 2921
Basketball 8879
Tennis 558
Ice hockey 4910
Snooker 239
Darts 2419
Total 19926
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Figure 9.2: Nightly Test Progress

9.2 Changes in the Development Process

It took a while until the Automated Test Environment was powerful and
stable enough to be used as an everyday development support tool. An
underestimated factor was that people working in the development and test
team had to be brought together to use the new testing tool. This meant
breaking with their familiar working routines and introducing them to some-
thing new. It is in human nature to react skeptical when told about some-
thing so revolutionary. After breaking the ice many of the people involved
understood the benefits of the new working techniques and began to like the
Automated Test Environment.

Whenever an error is reported that relates to a feature that is testable
with the Automated Test Environment the event logic that caused the error
is put into a new use case and a test is executed. The error is fixed and then
the test is performed again. In doing so a large collection of regression tests
has been created.

Architectural changes in the application server project can now be done
easier and with more confidence. The developer can rely on the detailed
tests. The developer has more courage when a refactoring has to be done
because of the good test coverage.

Last but not least the quality of the application server has improved. The
large collection of use cases serves as a detailed knowledge base where all
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event sequence logic is stored in a readable manner. People developing the
event sequence logic are now forced to put the logic into a defined language.
Discrepancies and side effects of new event sequences can be seen at an
earlier development stage now. The event sequence logic is growing fast
with every new sport the company implements. It is not only up to humans
to verify the correct event logic anymore.

9.3 Feedback from People Affected

I have asked some people affected by the Automated Test Environment
project for their feedback and summarize it in the following subsections.

9.3.1 Software Architect

“Using the Automated Test Environment it is now possible to
write automatized tests in the back end. After the first tests were
executed some errors were found that have existed in the software
for a long time but have not been found with manual testing.
With the test definition a repository was created which enables
the developer to perform tests already during the development.
In doing so the developer can avoid that his changes have any
unforeseen side effects. The quality regarding requirements has
improved a lot because the implemented requirements can be
verified easily. The project state can be seen looking at the
successful test cases compared to the unsuccessful.

The communication between testers and developers has changed
in a way that they do not talk about requirements but about test
cases. Based on the requirements the testers create test cases
which are now the foundation for the development. The col-
laboration has improved because the number of misunderstood
requirements has decreased. If something is not clear the test
case is reviewed by the testers and developers, and if necessary
the test case is adapted.

The Automated Test Environment executed as JUnit test gives
the developer the possibility to execute tests fast during each
development phase. Besides that the unit tests are executed with
every nightly build. With that possible negative side effects are
seen quite soon. Code coverage has become a measurable metric.

With the nightly system test all test cases are executed as well.
Defects are detected fast and one can react on them in an early
development phase.

The architecture of the Automated Test Environment can be
described as extensible because many design patterns were im-

90



plemented. Important components have been abstracted with
interfaces and therefore they can be exchanged easily. Using the
adapter pattern in the Automated Test Environment it is en-
sured that it can be used for the testing of further products and
components.

Because the test cases reflect a huge part of our system’s logic
it is obvious that this knowledge base will be used in further
environments. My ideas for the future usage are the creation
of test case documentations and an extension to be able to test
user interfaces such as our Android client.” [translated by the
author]

9.3.2 Project Manager

“The progress of the project was satisfying. The biggest struggle
was to prioritize the Automated Test Environment to a level
high enough that suited its importance and sustainability. The
expectations that were put into that project were fully met from
the project management’s perspective.

Tasks and work packages were designed in cooperation with the
development and the test team. Feedback from the test depart-
ment was considered and implemented according to their vision.
Furthermore the after project phase was started to ensure the
continuous integration of the development within our software
systems.

Regression testing has been facilitated and become much faster.
Bug fixes could be verified quicker and the developers had the
benefit of an immediate feedback if their code was correct. Re-
producible tests and automatized test evaluations led to a big
leap forward of our software quality. In the future, continuous
testing should contribute to a faster detection of errors in the
development phase. With the automation of tests our test team
gained more time for manual testing of other applications which
of course has a positive effect on the quality of these applications.

For the project management it is much easier now to estimate
the current development and test status. An estimate can be
given if the project is within schedule or more resources need to
be added to meet a deadline.” [translated by the author]

9.3.3 Tester

“Before the introduction of the Automated Test Environment
we had a lot more effort to secure that existing functionality
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still worked than effort that could be put into verifying new
features. With the test automation the development iterations
grew a lot in size and complexity because more tests could be
done in a short time, and the developers obtained much faster
feedback from the tests. The product management department
had an unstructured knowledge base containing the event logic
and normally detailed discussions were only made if there were
problems in the logic. With the test automation though the
knowledge base had to be created before the implementation.

My expectations for the Automated Test Environment were pri-
marily the automation of regression tests. Furthermore I ex-
pected that less untested products would come from the devel-
opment into the test department because of the early JUnit tests.
The most important expectations were:

• Reproducibility of tests

• Error categories

• Fail Fast criteria

• Reliability and robustness of the test application itself

• Perform tests in an environment as real as possible

Deviations from the definition of features can now be detected
earlier. The effort to define new features has increased on the
short-term but pays off on the long-term. The biggest challenge
was to verify new features in the Automated Test Environment
itself because it has the requirement to be absolutely correct.

A difficulty was that the Automated Test Environment was un-
derestimated as a source of error itself in the beginning. These
errors could be fixed and the Automated Test Environment is
reliable enough that now there are products that are tested ex-
clusively using automated tests.” [translated by the author]

9.3.4 Application Server Developer

“Before the usage of the Automated Test Environment there
were only a few unit tests available in the application server
project. There were no unit tests that covered functionality, that
was used for more than one sport type. Developers performed
some tests restricted to only one application manually and only
on demand. Testers performed their tests manually as well. In
the beginning I was not thrilled about the introduction of a test
automation tool. That was because I assumed that it would only
be a set of unit tests. At the moment I am even more pleased
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by the Automated Test Environment because it enables us to
implement entire work flows.

For sure the quality of the application server was increased be-
cause a huge number of tests can be performed with little effort
and in short time. Besides that, tests have become reproducible.

As mentioned before, the now implemented solution is quite dif-
ferent to the test automation that I expected. Regarding the
tested product and the extreme detail of the tests my expecta-
tions have been exceeded.” [translated by the author]

9.4 Relation to the Theoretical Part

At the time the theoretical part of this thesis was written, it was not clear
which facts will really be needed in the practical part. Therefore this section
gives an outline of the really implemented knowledge.

9.4.1 Software Test

The three basic steps of testing, test preparation, execution, and evaluation
can be found in the corresponding modules of the Automated Test Environ-
ment. There are two scopes that were implemented: a unit test with the
JUnit mode and a system test with the nightly system test mode.

The chosen test method is functional testing as described in Subsection
2.2.1 and to be said in more detail the test for correctness. The other
described test methods do not suit the requirements of the Automated Test
Environment as well as the test for correctness.

9.4.2 Used Metrics

There is a vast number of available metrics. In my opinion the Automated
Test Environment should be as simple as possible and focused on its purpose.
That means choosing and implementing only as many metrics as absolutely
necessary. Used metrics are:

• The test progress curve provided by Jenkins as seen in Figure 9.2

• The complexity, test coverage and Sonar rules compliance seen in Fig-
ure 5.8. These metrics are used for both the Automated Test Envi-
ronment and the application server project.

Metrics that can be deducted if they are needed without much effort out
of the existing environment:

• Since all found bugs are reported in a bug-tracking system the Time
Elapsed of found Errors can be determined.
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• Many other measurements such as Lines of Code or Cyclomatic Com-
plexity can be displayed using Sonar.

9.4.3 Test Automation

Nearly all of the information presented in Chapter 4 about test automation
is implemented in the Automated Test Environment. A formal language
for test data description was developed and is used. Jenkins is used to
automatically execute both test types, the JUnit nightly build-attached test
and the nightly system test. The practice of continuous build could be
implemented as well.

The development strategy of the Automated Test Environment can be
described as Bottom-up. In the first step only the three modules Test Ref-
erence, Test Adapter and Test Framework were defined. After that the con-
nection points between them and the test data definition was made. Finally
the details of each module were implemented.

The chosen test strategy is testing for functionality, and initially capture
and replay was used to gather test data quickly. From my daily work I can
tell that the test end criteria is either team consensus or a management
directive to ship a product.

9.5 Future Issues of Scale

This section deals with the future challenges of the Automated Test Environ-
ment. Two perspectives are explained: What happens when the number of
sports increases, and what happens if the number of developers and testers
rises for example above ten.

9.5.1 More Sports means more Test Cases

More sports means no big issue for the JUnit test mode of the Automated
Test Environment. At the moment all six sports that are in production
are tested verifying more than 20.000 events with a test execution time
of approximately five minutes. This test is performed at least once a day
during the nightly build of the application server. If the number of sports
rises the number of test cases and the test execution time will rise as well.
Besides that it has to be ensured that the build process has enough memory
available to test more events. I expect the test execution time to rise a little
above straight proportional to the number of test cases because this was the
case whenever a set of test cases was added for a new sport.

For the nightly system test more sports will lead to bottlenecks rather
soon. The first problem is that the hardware where the tests are executed
will soon be at its limits. Secondly it is not possible to run a test with
multiple sports at once. So each sport has to be tested individually. This
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limitation mainly refers to some input adapters that can only handle one
sport at a time. This issue can be categorized as a testability problem of the
tested components. With the current configuration it will become difficult
to schedule tests for more than ten sports each night.

9.5.2 More Developers and Testers

At the moment one to two developers are contributing to the application
server project concurrently. It is easy to manage the division of work and to
avoid a broken build because of test failures. But if the number of developers
rose above five many problems will occur. The first will be the source code
management system Subversion [44] because it does not allow to commit into
a local repository. This situation would improve if a different source code
management system such as Git [16] or Bazaar [5] is used. Then developers
are able to work with a local repository and have more control over what is
committed in the central remote repository.

The number of commits into the central repository will decrease for
one developer but the effort to keep the tests of the build error-free will
increase. The developers will spend more time merging code. Maybe a new
development team role is needed namely a person that is responsible for the
code integration and the tests.

More testers need more hardware resources. Maybe more than one test
system is required. Regarding the test case management the testers face the
same problems as the developers with the source code. Testers will have to
switch to a more powerful source code management system as well.
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Chapter 10

Summary and Next Steps

To sum up, it can be said that the project was a success. The high ex-
pectations put into it have mostly been met. The Automated Test En-
vironment has become indispensable in everyday development work. New
working techniques have emerged that changed existing inefficient processes.
Furthermore the test automation led to a paradigm shift regarding testing.
More effort is put into the requirements specification and the test case im-
plementation before the start of development.

Whenever a new sport has to be implemented, at first the Automated
Test Environment demands a detailed specification of the event sequences to
be implemented. That means that the requirements definition has become
more precise and substantial but also less contradictory than before. From
the detailed specifications, use cases are deducted which then are imple-
mented into test data suitable for the test automation program. The work
and the thinking of all people involved in the development has become more
structured.

The change is not completely finished though. At the moment it can
be said that the development process is not quite test-driven but test-
accompanied. This is not the ideal way as Kent Beck postulates in his
book [7] but a lot better than it was before when nearly no structured test-
ing was done at all.

The Automated Test Environment has some unpredicted positive side-
effects as well. The introduction of the XML test case description schema
has created a language to talk about event sequences. The written down and
stored test cases embody a vast knowledge base for RunningBall. With the
work on the test cases it became more and more clear that the great value
of the company does not only refer to its speed of information transmission
but also in the way the information is processed to provide more value.

The requirements asked from a developer to implement a project like
the Automated Test Environment are various. Solid development skills are
essential. Besides that a good know-how about software testing is beneficial.
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The developer should be able to communicate his progress and changes, and
make them transparent to his colleagues. For me one of the most important
abilities that I gained during this project was the ability to say no. This
means to stay focused and implement the most important features with the
highest priority first. I accepted no creative wishes for additional features
that would have distracted me from the main targets until the high-priority
features were completed.

An aspect that was highly underestimated during this project was hu-
man behavior when confronted with changes. We had long discussions with
the test team when we first told them that we wanted to switch from the
simple recording and generation of test data using the tested application to
real test data definition as described in Subsection 8.2.1. The testers did not
want to change their working techniques and did not want to understand
the disadvantages of generating test data using the tested application. An-
other underestimated fact was the demand for correctness of the Automated
Test Environment application itself. That meant testing it extensively and
writing a lot of unit tests.

For the near future many small add-ons for the Automated Test Envi-
ronment are planned. In addition to the existing adapters new ones have
to be implemented to test more applications in the RunningBall software
system. Whenever a new sport is to be implemented new test cases are
written. This often has the effect that new functionality has to be added
to the Automated Test Environment as well. One bigger topic is usability
which should be improved. The manual editing of XML files is not easy
and error-prone. Another topic is to provide a test evaluation that can be
viewed including more than one test run. Test progress can be seen easier
with such an improvement. Finally there will be some issues of growth as
mentioned in Section 9.5. There is still a lot of work to be done.
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