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Abstract

In this work a new spherical loudspeaker array is developed that allows variable sound-

radiation in all directions, so called spherical beamforming. In addition to the realization of

musical and artistic performances, it can be used for room-acoustical measurements. From

a mathematical point of view, radiating sound fields can be decomposed into spherical

harmonics, which can be played back by the loudspeaker array and hereby reproduce the

desired sound field. The few existing spherical loudspeaker arrays in this field of application

use a regular design with Platonic solids, which on the one hand show convenient behav-

ior due to their mathematical decomposition, but on the other hand use an inefficiently

large number of loudspeakers. In contrast to Platonic solids, this work uses a spherical

geometry, which allows irregular arrangements in favor of an optimal arrangement of the

loudspeakers. The spherical cabinet developed in this work mounts 16 loudspeakers, which

are uniformly distributed over the surface. This arrangement provides controlled playback

of the spherical harmonics up to the third order. As the array is designed for mid-frequency

range, small dimensions of the sphere and loudspeakers are desirable. Therefore a com-

promise between compact dimensions and upper and lower cut-off frequencies must be

achieved. In parti- cular spatial aliasing should be avoided and a feasible dynamic range

shall be enforced by appropiate filtering.

The work starts with the design and construction of the spherical loudspeaker array

including amplification, wiring and mounting. Simulations using the so called sphere cap

model, which models the distribution of the loudspeakers on the sphere analytically, enable

a pre-estimation of the radiation properties. Finally, acoustical measurements with the

complete prototype of the array are made to determine the transfer properties of the

loudspeakers and their mutual interaction in the all-over system. For system control,

an appropriate algorithm using this data is implemented. This control system contains

angular and radial filters. As the latter can use unfeasibly high bass-boosts, an appropriate

filterbank for limitation is developed.



Zusammenfassung

In dieser Arbeit wird eine neue kugelförmige Lautsprecheranordnung entwickelt, mit

der eine variable Schallabstrahlung in alle Raumrichtungen, sog. sphärisches Beamform-

ing, ermöglicht werden soll. Neben der Realisierung von musikalisch-künstlerischen Dar-

bietungen kann ein solches System z.B. für raumakustische Messungen verwendet werden.

Mathematisch gesehen bedient man sich der Zerlegung des Schallfeldes in eine Reihe von

Kugelharmonischen, welche über die Lautsprecheranordnung wiedergegeben werden und so

das gewünschte Schallfeld reproduzieren. Die wenigen existierenden kugelförmigen Laut-

sprecheranordnungen in diesem Einsatzbereich verwenden als Bauform regelmäßige Pla-

tonische Körper, die zwar günstige Eigenschaften bezüglich der mathematischen Zerlegung

besitzen, aber zumeist ineffizient viele Lautsprecher benutzen. Im Gegensatz dazu ver-

wendet diese Arbeit eine kugelrunde Bauform, welche auch unregelmäßige Anordnungen

zugunsten einer optimalen Anordnung von Lautsprechern zulässt. Ins letztendlich ent-

worfene kugelförmige Gehäuse sind 16 Lautsprecher eingebaut, die gleichmäßig auf der

Kugeloberfläche angeordnet sind. Damit lässt sich ein System zur Wiedergabe von Kugel-

harmonischen bis dritter Ordnung realisieren. Da die Anordnung als Mitteltöner konzipiert

wird, sind möglichst kleine Abmessungen der Kugel und der Lautsprecher nötig. Dabei gilt

es einen Kompromiss zwischen kompakten Maßen und der oberen und unteren Grenzfre-

quenz zu finden, räumliches Aliasing zu vermeiden und durch geschickte Filterung einen

möglichst großen Dynamikumfang zu erreichen.

Zu Beginn der Arbeit steht der Entwurf und Aufbau des Kugellautsprechers inklusive

Verstärkung, Verkabelung und Befestigung. Um im Voraus die Abstrahleigenschaften des

Arrays abschätzen zu können, werden Simulationen basierend auf dem sog. Kugelkappen-

modell durchgeführt, welches die Positionen der Lautsprechermembranen auf der Kugelober-

fläche modelliert. Abschließend erfolgen akustische Messungen am fertigen Prototyp des

Kugellautsprechers, um damit die Abstrahlungswirkung aller Lautsprecher und ihrer gegen-

seitigen Beeinflussung im Gesamtsystem zu eruieren. Zur Ansteuerung wird mit diesen

Daten ein geeigneter Algorithmus hergeleitet. Er beinhaltet anguläre und radiale Filter.

Da letztere sehr große Bassüberhöhungen verwenden, wird eine geeignete Filterbank zur

Begrenzung entwickelt.
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Chapter 1

Introduction

Most musical instruments radiate their sound in a highly complex way. This means that

not all frequencies are emitted into the room omnidirectionally or in the same direction.

Rather they produce quite complex radiation patterns. Recording an instrument with only

one or a few microphones and reproducing its sound with a stereo system cannot fully re-

construct the acoustic situation, as the recording-reproduction-system only represents a

small part of the entity of the radiated sound. Therefore, recent research investigates new

ways of recording and reproduction. One scientific approach, that tries to handle this task,

employs spherical arrays of microphones and loudspeakers. Recording an instrument in the

middle of a spherical arrangement of microphones and the reproduction of this recording

with a spherical loudspeaker array could lead to a more accurate acoustical representation

of the instrument. This work deals with a new method of constructing such a spherical

reproduction system.

However, a more natural reproduction of instrumental sound is not the only purpose

of spherical loudspeaker arrays. Moreover, musical and artistic performances in electronic

music can benefit from this interesting form of sound reproduction. Another field of ap-

plication is room acoustics. In general, spherical loudspeaker arrays can produce a sound

beam in a variable, adjustable direction. Therefore, they can excite a room in a specified

direction and be used to obtain directional room impulse responses.
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The investigation of spherical arrays is fairly young and there are not many, but some

pioneering works on the subject. E.g., the work of Kassakian and Wessel [KW04] mainly

regards the error bounds of approximated patterns for different array designs. Some other

publications concerning spherical beamforming have been published in the meantime. Zot-

ter and Noisternig in [ZN07] present a method for dividing the beamforming algorithm into

an angular and a radial part. In his diploma thesis [Pom08], Pomberger derives and im-

plements such a two-step control system. An analytic model based on the so-called sphere

cap model of spherical arrays is given in [ZSH07]. There, one also can find error bounds

for the radiation error of different arrays based on the Platonic solids and in dependence

of the distance to the array. The extended model in the subsequent work [ZH07] also con-

siders the interior and exterior acoustical forces on the membranes and an electro-acoustic

description. Pollow’s Master thesis [Pol07] concerns theoretical and practical issues of

a dodecahedral array. The most detailed work on the topic until now seems to be the

PhD thesis of Zotter [Zot09]. It has a clear theoretical focus and observes many questions

related to spherical sound-radiation comprehensively. Recently, Hohl constructed a micro-

phone array, that consists of 64 microphones lying on the surface of a sphere. In [Hoh09] he

describes, how this array can be used to measure radiation patterns of musical instruments.

Preview of the thesis:

Chapter 2 deals with some important theoretical basics that are necessary for the

understanding of spherical beamforming. A starting point is the solution of the wave

equation in spherical coordinates. This chapter introduces important terms like spherical

harmonics, spherical harmonics transform, spherical harmonics analysis and synthesis and

spatial aliasing.

Chapter 3 shows possibilities of constructing a spherical loudspeaker array, in par-

ticular a new design with 16 loudspeakers. This chapter also investigates the geometrical

properties of the array.

Chapter 4 presents a simulation of the sound radiation of the array. To pre-estimate

the capacity of the array in terms of sound reproduction, the radiation of some particular

kinds of sound fields for testing will be simulated.
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Chapter 5 is dedicated to the implementation of a control system to control a real

array. This control system contains filters that require inaccessibly high bass boosts. There-

fore, this chapter provides a way of limiting and stabilizing these filters using a dedicated

type of filterbank, while maintaining a constant frequency response in the beam direction.

The control system requires a description of the transfer properties of the array. Chap-

ter 6 shows, how this system identification can be measured with a Laser Doppler Vibro-

meter. Finally, the results will be categorized according to the geometrical properties found

in chapter 3.

Chapter 7 points out conclusions that can be made based on the presented results of

the thesis and gives some outlook to future tasks in spherical array processing.
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Chapter 2

Theory

2.1 Solution of the Wave Equation in Spherical Co-

ordinates

The wave equation describes the temporal and spatial expansion of a wave. It is the basis

of all following theoretical considerations (cf.[Wil99], [GW03], [Zot09], [TM07]). The linear

lossless wave equation is a partial differential equation of the second kind, which contains

the second derivatives of the sound pressure with respect to the time and the directions

of propagation [TM07]. Its structure implies that a wave is the spatial propagation of an

oscillation

∇2p =
1

c2

∂2p

∂t2
. (2.1)

Thereby the operator ∇2 contains all second derivatives with respect to the cartesian

coordinates x, y, z. In order to obtain a suitable mathematical description for spherical

problems, the cartesian coordinates are transformed to spherical coordinates according to

the following equations [Wil99]:

r =
√
x2 + y2 + z2,

ϕ = atan2(
y

x
), (2.2)

θ = −atan2(

√
x2 + y2

z
).
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Atan2 denotes the used MATLAB-function returning an angle between −π and π.

Mostly, ϕ is called azimuth and θ is called zenith. The transfomation from spherical back

to cartesian coordinates can be performed by using:

x = r · sinθ · cosϕ,

y = r · sinθ · sinϕ, (2.3)

z = r · cosθ.

The complete wave equation in spherical coordinates is:

1

r2

∂

∂r
(r2∂p

∂r
) +

1

r2sinθ

∂

∂θ
sinθ

∂p

∂θ
+

1

r2sin2θ

∂2p

∂ϕ2
− 1

c2

∂2p

∂t2
= 0. (2.4)

A product ansatz for seperation of variables

p(r, θ, ϕ, t) = R(r)Θ(θ)Φ(ϕ)T (t) (2.5)

yields four ordinary differential equation as general solution [Wil99]:

d2Φ

dϕ2
+m2Φ = 0, (2.6)

1

sinθ

d

dθ
(sinθ

dΘ

dθ
) + [n(n+ 1)− m2

sin2θ
]Θ = 0, (2.7)

1

r2

d

dr
(r2dR

dr
) + k2R− n(n+ 1)

r2
R = 0, (2.8)

1

c2

d2T

dt2
+ k2T = 0. (2.9)

The four solutions. These functions must be individually solved. The first two solutions

describe the angular, the third one the radial and the last one the temporal dependency

of the sound field. The temporal term is not observed closer. Nevertheless, the considered

physical relations are assumed to be causual.
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2.1.1 Angular Term

Legendre-functions. To solve the equations (2.6) and (2.7) the associated Legendre-

functions are necesary. These are well-defined functions, which can be found in literature

(e.g. [Wil99]). Combining the two angular solutions leads to a set of new functions, the so

called spherical harmonics (SH). They are defined as:

Y m
n (θ, ϕ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cosθ)ejmϕ. (2.10)

Pm
n denotes the asociated Legendre-functions, n the order and m the degree. Because

the spherical harmonics are orthonormal base functions, every square integrable function

can be decomposed into a series of spherical harmonics coefficients, also called expansion

coefficients. This basic property is used later for the spherical harmonics transform (cf.

section 2.2).

Figure 2.1 depicts the first 16 real-valued spherical harmonics. It shows, that every

order consists of 2n + 1 degrees. They are numbered from -n to n. Often a linear index

nm is used:

nm = n2 + n+m+ 1. (2.11)

Figure 2.1: the first 16 spherical harmonics [Pom08]
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2.1.2 Radial Term

Spherical Hankel-functions. For the solution of the radial term spherical Hankel- and

Bessel-functions are used. The former describe incoming and the latter outgoing waves.

Since an exterior problem is assumed here (cf. [Ple09]), only the spherical Hankel-function

is considered. Using these functions the solution of the wave equation in the frequency

domain can be determined according to Williams [Wil99] as:

p(r, ϕ, θ, ω) =
∞∑
n=0

n∑
m=−n

Enm(ω)h(2)
n (kr)Y m

n (θ, ϕ), (2.12)

where k = ω
c

denotes the wave number, h
(2)
n the spherical Hankel-functions of the second

kind and Enm is defined by the boundary value problem (cf. chapter 5).

2.2 Spherical Harmonics Transform

As already mentioned in section 2.1.1, a function, which is defined on the sphere (for

example the distribution of the sound pressure on a reference radius) can be expressed

in terms of coefficients of the spherical harmonics. This is called spherical harmonics

transform (SHT) [Pom08]:

S{x(θ, ϕ)} = χnm =

∫
S2

x(θ, ϕ)Y m
n
∗(θ, ϕ)dθ dϕ. (2.13)

Thereby Y m
n
∗(θ, ϕ) denotes the complex conjugate of the spherical harmonics. The

expansion coefficients are denominated with related greek letters. The index nm describes

which spherical harmonic it belongs to.

The inverse spherical harmonics transform (ISHT) is:

S−1{χnm} = x(θ, ϕ) =
∞∑
n=0

n∑
m=−n

χnmY
m
n (θ, ϕ). (2.14)
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Spherical Wave Spectrum. Applying the spherical harmonics transform at a certain

analysis radius ra yields the so called spherical wave spectrum [Pom08], [Wil99]:

χnm(ra) =

∫
S2

x(ra, θ, ϕ)Y m
n
∗(θ, ϕ)dθ dϕ. (2.15)

χnm(ra) represents the spherical components evaluated on the analysis radius ra. The

most fundamental quantities of the sound field are the sound pressure and the sound

particle velocity. Therefore two important terms can be defined:

ψnm(ra): spherical pressure spectrum

νnm(ra): spherical particle velocity spectrum

An alternative description of the spherical harmonics transform can be found in [Pol07].

There the spherical harmonics decomposition can be seen as an inner product of the func-

tion, that should be transformed, and the related spherical harmonics:

χnm = 〈x(θ, ϕ)|Y n
m〉. (2.16)

2.3 Truncated Spherical Harmonics Transform

For an exact calculation of the transformation, theoretically an infinite number of spherical

harmonics is needed, which is not realiseable. Usually only a limited subset of spherical

harmonics can be controlled. For a sensible definition of such a subset it is convenient to

use a truncation. Therefore equation (2.14) can be rewritten as:

S−1{χnm} = x(θ, ϕ) =
N∑
n=0

n∑
m=−n

χnmY
m
n (θ, ϕ). (2.17)

Spatial Frequency. N denotes the maximum order. A band-limited function in general

does not contain high frequency components. Here a spatial frequency is meant. It de-

scribes the change rate of a function over any spatial (or angular) direction. Mathema-

tically, this means that the decomposition of a function is truncated to the maximum order

N and that any higher order coefficient vanishes [Pol07].

Sampling and Matrix Notation. Only a finite number of drivers at discrete positions

on the sphere can be used. The observed spherical function is no more continuous but
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discrete and a sample vector can be built containing the sample values of all the positions

of the loudspeakers Θk = (θk, ϕk) with K being the number of drivers:

x = [x(Θ1) x(Θ2) . . . x(ΘK)]T . (2.18)

The spherical harmonics are evaluated at the driver-positions. Pomberger expresses this

with a compact matrix notation [Pom08]. First let us consider the values of all spherical

harmonics up to the order N evaluated for one driver position and combine them to a

vector:

c
(k)
N = vecN{Y m

n (Θk)} =



Y 0
0 (Θk)

Y −1
1 (Θk)

...

Y −nn (Θk)
...

Y n
n (Θk)

...

Y N
N (Θk)


. (2.19)

This leads to a Matrix CN of the size [K × (N + 1)2] containing the (N + 1)2 spherical

harmonics at the K driver locations:

CN =


c

(1)T
N

c
(2)T
N
...

c
(K)T
N

 . (2.20)

With

χ = vec{χnm}, (2.21)

which combines all coefficients of the (N + 1)2 spherical harmonics, equation (2.17) can be

rewritten as:

x = CN · χ. (2.22)

The decomposition of x in terms of spherical harmonics coefficients requires system

inversion of CN:

χ = CN
−1 · x. (2.23)
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Solvability. Depending on the form of CN (often called coder matrix) this system of

equations shows different behavior [Pom08]:

1. K < (N + 1)2: system is underdetermined, an infinite amount of solutions may exist

if (CNCT
N)−1 exists

2. K = (N + 1)2: exact solution exists if CN
−1 exists

3. K > (N + 1)2: system is overdetermined, no exact solution exists, but an aproxima-

tion can be calculated with the pseudo-inverse if (CNCT
N)−1 exists

2.4 Analysis And Synthesis

SH-analysis (holography) of given sound pressure distributions means the evaluation of

the recording of the concerned sound field with a spherical microphone array. E.g. in

[Hoh09] Hohl describes the construction of a spherical microphone array with 64 micro-

phones for the recording of musical instruments. In this experimental setup, a musician

sits in the middle of the spherical construction and is surrounded by microphones. In

[Ple09], Plessas points out ways of constructing a compact spherical microphone array.

Here the situation is reversed: the array is surrounded by musicians. Figure 2.2 shows a

block diagram for spherical harmonics decomposition of spherical microphone array data:

p1

p2

pM

CN

χ1

χ2

χN

Figure 2.2: basic sound field analysis

The input of the system are the M microphone signals p = [p1 p2 ... pM ]T , CN describes

the geometrical arrangement of the microphones in terms of spherical harmonics and χ =

[χ1 χ2 ... χN ]T are the unknown expansion coefficients:

p = CN · χ⇒ χ = C−1
N · p. (2.24)

This equation was already derived in section 2.3. Equation (2.24) and (2.23) respec-

tively can only have an exact solution if M = (N + 1)2. When M > (N + 1)2 an approxi-
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mation can be calculated using the minimization of the square error (least squares):

e = p−CN · χ,

⇒ ||e||2 = ||p−CN · χ||2 → min. (2.25)

SH-synthesis (holophony) regards the reproduction of a desired sound field given in its

SH expansion coefficients χ = [χ1 χ2 ... χN ]T . The desired quantity is the loudspeaker

signal vector l = [l1 l2 ... lL]T containing the L loudspeaker signals. Again, a SH-matrix CN

describes the geometrical arrangement. Figure 2.3 depicts the principle of SH-synthesis:

χ1

χ2

χN

CN

l1

l2

lL

Figure 2.3: basic sound field synthesis

The discrete points for synthesis are expressed by their SH coefficients CN
T that are linearly

combined by the signals l to one single spherical harmonics expansion χ:

χ = CT
N · l. (2.26)

A matrix inversion must be performed to obtain the required signals l:

l = (CT
N)−1 · χ. (2.27)

Equation (2.27) must not be confused with equation (2.24). By contrast, equation

(2.27) tends to have an exact solution, if L ≥ (N + 1)2. Nevertheless, the solution is only

unique, if L = (N + 1)2. If L > (N + 1)2 there is an infinite number of solutions and

a minimization problem can be specified to obtain a unique solution. For example, the

squared loudspeaker signals could be minimized:

||l||2 → min, (2.28)

under the constraint:

χ
!

= CT
N · l. (2.29)
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2.5 Spatial Aliasing

When a non band-limited signal is sampled with a finite number of sample-points, aliasing

occurs. Functions become ambiguous, as identical sample values may be produced by other

functions as well. In this case we encounter a spatial misinterpretation, i.e. spatial aliasing.

To avoid spatial aliasing and other forms of linear dependency some conditions must be

fulfilled. The most important ones are [Pom08]:

1. K ≥ (N + 1)2: There must be at least as many drivers as spherical harmonics that

shall be controlled.

2. κ(CN) <<∞: The condition number 1 κ of CN should be as close to 1 as possible.

In other words the postitioning of the drivers must be as good as possible according to

these conditions (cf. section 3.1).

According to [ZN07], another criterion to avoid spatial aliasing concerning spherical

beamformers can be given. Zotter and Noisternig give a minimal distance rp for the

projection or target radius to the surface of the sphere being about twice the radius r0 of

the array:

rp ≥ 2r0. (2.30)

They also give an upper cut-off frequency:

fo ≈
c

2 · r0

. (2.31)

1The condition number (cf. [LW]) is the ratio between the biggest and smallest singular value of a
matrix. It determines the invertibility of a matrix. The closer κ is to one the more exact the matrix can
be inverted.
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Chapter 3

The Loudspeaker Array

Originally this thesis was dedicated to designing and constructing an icosahedral loud-

speaker array for high-frequency range. As seen in the previous section 2.4 it is sufficient

to have L = (N + 1)2 loudspeakers to control N spherical harmonics. The icosahedron

with its 20 faces provides 4 loudspeakers more than necessary for a system of order 3.

16 instead of 20 drivers. Hence, a new approach using only 16 instead of 20 drivers

has been chosen. In terms of hardware effort an icosahedral system brings virtually no

advantages, and to control the next higher system-order, at least 25 drivers would be

necessary. As the system shall cover the mid- and high-frequency range, its dimensions

should be as small as possible to minimize diffraction, shadowing effects and spatial aliasing

(cf. equation (2.31)). A system with 25 drivers with the same loudspeaker membrane

diameter would lead to a bigger cabinet and therefore a system with 16 drivers was chosen.

To keep the dimensions small the spacing of the drivers should be as small as possible, too.

3.1 Source Distribution on the Sphere

The remaining question is, how to distribute these 16 drivers on the surface of a sphere.

There is only one kind of bodies with an entirely regular layout: the Platonic solids [Ort09].

They consist of identical faces with all of the center points being equidistant to their neigh-

bors 1. There are only Platonic solids consisting of 4, 6, 8, 12 or 20 faces. Another group of

regular solids are the Archimedian bodies. In contrast to the Platonic solids they consist

of more than one kind of faces. However, there is no Archimedian body with 16 faces either.

1Meaning here all the drivers having the same distance.
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Hyperinterpolation. Another way of distributing the drivers on the sphere must be

found. This is a rather old topic in mathematics. The interested reader is refered to

[Wim92], [HS06] or [SW01]. The paper [Zot08] compares different sampling strategies,

describing the so called extremal points for hyperinterpolation the most elegant choice

for our purpose. It not only uses the same number of sampling nodes as used spherical

harmonics making an exact inversion of CN possible (cf. section 2.3), but also the aliasing

error due to higher order components appears uniformly distributed. Suitably, the extremal

points for hyperinterpolation calculated by Sloan and Womersley according to [SW01] are

used. They are found on [Wom09]:

Nr. X Y Z

1 0 0 1
2 0,8927 0 -0,4505
3 -0,1430 0,9857 -0,0880
4 -0,7321 0,5108 -0,4506
5 0,6574 -0,7483 -0,0880
6 -0,7062 0,4759 0,5240
7 -0,6067 -0,4891 0,6266
8 -0,2949 -0,9381 -0,1815
9 0,2176 -0,7483 0,6266
10 -0,5144 -0,2374 -0,8239
11 0,8515 -0,01378 0,5240
12 0,2860 -0,4891 -0,8239
13 0,1496 0,4759 -0,8666
14 -0,9673 -0,2374 -0,08801
15 0,6813 0,7266 -0,08801
16 0,2284 0,7266 0,6479

Table 3.1: Cartesian coordinates of the extremal points for hyperinterpolation on the unit
sphere due to Womersley for 16 points

With the coordinates given in table 3.1 an exact solution of the analysis problem of

section 2.4 is possible and for the synthesis the equations become unique.
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The second condition given in section 2.5 concerns the condition number of CN and

therefore its invertibility. It was calculated with the MATLAB function cond2 yielding:

κ(CN) = 1, 55.

This means that CN here is rather well conditioned and that the matrix inversion should

go without problems. As will be seen in chapter 5, for the control system a decoder is

necessary that requires system inversion. With a small condition number the entries of the

decoder matrix will be bounded to rather small values, and therefore decoding only has

negligible influence on the accessible dynamic range and playback SNR.

Visualization. A MATLAB-script has been written to visualize the chosen distribution

of points on the sphere. There the loudspeakers are represented by simple circles rotated

from the north pole to the remaining positions of table 3.1. Therefore the cartesian coor-

dinates are transformed to spherical coordinates with equation (2.2) and then two rotation

matrices were applied:

rotz =

 cos(ϕ) −sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1

 , (3.1)

roty =

 cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 . (3.2)

Note, that the center positions of the loudspeakers do not lie on the surface of the sphere.

Rather they must be plunged into the construction. The distance of the loudspeaker center

to the center of the sphere is denominated with rM and depends on the radius of the

loudspeaker membrane. It can be calculated according to figure 3.1

rM =
√
r2

0 − r2
LS, (3.3)

with r0 being the radius of the sphere and rLS the radius of the loudspeaker. Figure 3.2

shows the produced MATLAB-plot with r0 = 8, 5 cm and rLS = 3, 25 cm.

2Note that the second kind condition number is meant.
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rM

rSph

rLS

α

Figure 3.1: The rectangular triangle formed by rm, rLS, and r0

Figure 3.2: MATLAB-plot of the spherical loudspeaker array with the 16 drivers marked
with circles providing a view onto the north pole

3.2 Construction of the Sphere

To give the loudspeakers a volume to operate on and to be able to connect the drivers

in a comfortable way, the sphere was designed to be hollow. However, the construction

of a hollow sphere is not a trivial task. Many approaches were discussed and the most

important ones will be presented here. One of the most challenging experiences was to

provide accurate positioning of the drivers in the final construction. As shown in [Ple09],

even a slight positioning error can already produce a lot of synthesis errors.
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Glass fiber reinforced plastics (GRP). GRP is a common building material. It is

light and rather easy to handle. Webs of glass fiber are soaked in polyester resin and put

on a negative model, which has to be built first. This makes this approach not effective

for the construction of only one sphere, but would be a good choice for serial production.

Furthermore, it is rather difficult to find the centers of the drivers after the construction of

the sphere. Therefore the holes for the drivers should be part of the negative model already.

Plywood construction with circular rings. Another idea was to construct two

hemispheres and cement them together afterwards. This could be made by cutting out

circular rings with decreasing radii with a laser cutter and bonding them together. So an

approximation of the sphere could be realized and the residual wood could be removed

using a turnery. The radii can be calculated as shown in figure 3.3:

1

2

3

4

5

1

2

3

4

5

hr0

ra

Figure 3.3: Cross-section of the approximated hollow sphere

ra =
√
r2

0 − h2. (3.4)

The residual inner and outer radii can be calculated using the same formula. h is

determined by the ring-number times the thickness of one ring. Note, that for the inner

radii the sphere is approximated from the inside and for the outer radii from the outside.

Using thinner boards yields a better approximation of the sphere and less wood has to be

removed.
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Although this is an easy way to construct a hollow sphere, the disadvantage is that the

sphere could be damaged during turning because the wood fibers could frazzle. And we

have again the same problem with finding the centers for the drivers and cut the holes into

the construction.

3D-Plotter. In architecture and design so called 3D-plotters are used to construct a

model of future constructions to be able to estimate their shape in advance. On the basis

of a 3D-CAD-model a 1 to 1 model is created in the plotter. There are several suitable

materials like different kinds of plastics and metal. Here a simple 3D-model of a sphere

with a suitable radius and the holes for the drivers could easily been modeled. But this

attempt was not chosen in favor of the approach described in the following paragraph.

Polyhedron approach. The existing spherical array of the IEM is an icosahedron.

The 20 driver are placed in the center of each face yielding its correct position. The same

approach can be made here. A polyhedron is searched consisting of 16 polygons. This

body can be obtained by dividing the surface in so called Voronoi-cells. Therefore, first a

triangulation is applied connecting all the 16 points on the sphere with one another. The

sphere is now divided into triangles and then the dual body must be found. This is done

by connecting perpendicular bisectors of the sides of the triangles. The center positions of

the triangles thus become the vertices of the obtained dual polyhedron. This is visualized

in figure 3.4:

Figure 3.4: plane Voronoi tesselation: the red dots are the center-positions of the drivers,
the black dots are the vertices of the polygons
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On [Ren09] a little program called STRIPACK can be found that calculates the Voronoi-

points for a given point distribution on the sphere. This was applied to the 16 points giving

back the coordinates of the Voronoi-points on the sphere. As we wanted to start with poly-

hedra consisting of plane polygons, a factor was calculated to multiply the coordinates with

and bring them to the same plane as the drivers.

M

rv1
α

rv2
rm1

rm2

Figure 3.5: Visualization for the calculation of the voronoi points: the vector rv1 must be
stretched to rv2

The angle α can be calculated with the inner product of the vectors rm2 and rv1 :

cosα =
〈~rm2 , ~rv1〉
||~rm2 || · ||~rv1||

=
~r Tm2
· ~rv1
r2

0

, (3.5)

as ||~rm2|| = ||~rv1|| = r0. Due to the Pythagorean Theorem cosα can also be written as

cosα =
rm1

rv2
. (3.6)

By putting (3.5) in (3.6) and with rm1 = rM the wanted segment rV := rv2 can finally be

calculated:

rV = rM ·
r0

~r Tm2
· ~rv1

. (3.7)

This was done for all points yielding the polyhedron shown in figure 3.6.
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Figure 3.6: MATLAB-plot of the plane Voronoi-decomposition of the surface of the spher-
ical loudspeaker array

The MATLAB-coordinates were imported in Rhino3D, a 3D-CAD-program. There a

3D-model of the polyhedron was created. This was done segment by segment. One is

depicted in figure 3.7 assuming a wall thickness of 16 mm.

Figure 3.7: one segment of the modeled sphere

Combining all 16 segments yields the complete polyhedron. It is no more a plane solid,

but the vertices are rounded. This way no more turning is necessary and the body has its

original round form.
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Figure 3.8: The Rhino-3D-Model: on the left consisting of the single elements, on the right
the rendered version

Construction with CNC-machine. The segments were produced using a CNC-

machine (CNC = computerized numeric control). Therefore all of the segments were

brought to the x-y-plain and milled out of an MDF-board (MDF = medium density fiber).

The result is shown in figure 3.9. Normal wood has different vibration behavior in and off

the fiber-direction yielding different resonance-behavior. This is not wanted as the reso-

nances should be as little as possible or at least homogeneous. MDF has the advantage of

being a very homogeneous material 3. Furthermore it is cheap and its handling is rather

comfortable making it a very commonly used material in the construction of loudspeaker

cabinets. After the CNC-machine the segments were then bonded together in the right

order and finished in black. All these workings were done by Hermann Deutscher, a car-

penter located near Graz.

Choosing the drivers. The chosen Peerless 830983 extended frequency range drivers

have a membrane diameter of 2 inches. Their maximum long-term power is indicated

with 60W. The Thiele-Small-Parameters and the frequency response can be found in the

appendix A.

3Here I would like to thank Thomas Andrä and Peter Mörth for the helpful discussions.
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Figure 3.9: left: The milled MDF board with the segments after the CNC-machine; right:
The finished cabinet

3.3 Geometrical Properties

It can be seen that the polyhedron does not have an entirely irregular form, as supposed.

Rather it shows certain kinds of symmetry and repetition. It is constructed of 12 pentagons

and 4 hexagons. As pointed out by the carpenter, ”there is only one kind of pentagon and

one kind of hexagon”. Furthermore, the center positions of the hexagons lie on the vertices

of a tetrahedron. Using the rotation matrices of equations (3.1) and (3.2) the coordinates

given in table 3.1 can be transformed, so that one hexagon comes to lie on the north pole.

The transformed coordinates are given in table 3.2 and figure 3.10 depicts the new arrange-

ment of loudspeakers in the Voronoi-model. Also the drivers are given a new numbering

according to a spiral shaped sequence.

Table 3.2 and figure 3.10 show the nearly perfect symmetry of the polyhedron. The

drivers are arranged in three rings. The first one consists of six loudspeakers (numbers 2 to

7) with the same zenith angle, the second one also contains six speakers (numbers 8 to 13),

but with an alternating zenith angle and the third one has three drivers (numbers 14 to

16) again with a constant zenith. The 8th loudspeaker was chosen to be the front speaker,

meaning it lies on the positive x-axis. Due to the regular arrangement of the hexagons on

the vertices of a tetrahedron, each of them can be chosen as north pole without changing

the geometrical properties.
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Nr. X Y Z Azimuth Zenith

1 0.0000 -0.0000 1.0000 -82.9801 -0.0020
2 0.7302 -0.4383 0.5241 -30.9735 -58.3951
3 -0.0000 -0.8517 0.5240 -90.0000 -58.3959
4 -0.7447 -0.4133 0.5241 -150.9714 -58.3946
5 -0.7376 0.4258 0.5241 150.0008 -58.3927
6 0.0145 0.8515 0.5241 89.0273 -58.3920
7 0.7376 0.4258 0.5241 29.9987 -58.3932
8 0.9834 -0.0083 -0.1815 -0.4860 -100.4577
9 0.4645 -0.8205 -0.3334 -60.4861 -109.4730
10 -0.4989 -0.8474 -0.1815 -120.4866 -100.4590
11 -0.9428 0.0080 -0.3333 179.5130 -109.4710
12 -0.4844 0.8558 -0.1815 119.5135 -100.4557
13 0.4783 0.8125 -0.3333 59.5141 -109.4697
14 0.4989 -0.0042 -0.8666 -0.4830 -150.0716
15 -0.2531 -0.4299 -0.8667 -120.4884 -150.0729
16 -0.2458 0.4342 -0.8666 119.5124 -150.0695

Table 3.2: Cartesian and spherical coordinates for the 16 points after transformation of
coordinates and reordering

Figure 3.10: The Voronoi-model after the transformation: on the left seen from above, on
the right seen frontally
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Final mounting. The final mounting of the loudspeaker array was accomplished regar-

ding the above information. The support was installed at the south pole, which is exactly

the vertex of the three pentagons, formed by the third ring of loudspeakers. For amplifi-

cation two 8-channel Bittner amps are used. They are connected with the array using a

20-channel multicore cable with a MIL-C connector. The outlet of the cables at the sphere

is installed on the opposite side of the 8th loudspeaker. This way front and back of the

array become clear also visually.

Figure 3.11: The final loudspeaker array: on the left seen frontally, on the right seen from
the side
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Chapter 4

Array Simulation

4.1 Spherical Cap Model

Based on the papers [ZSH07] and [ZH07] a simulation of the radiation of the array was

written in MATLAB. Due to these works an analytic model of the spherical array can

be found, using a model of the boundary condition for the radial sound particle velocity

v(ϕ, θ)
∣∣
r0

on the surface of the sphere with radius r0, called spherical cap model. This

distribution can be decomposed into L regions, each one meaning the area of a loudspeaker

membrane with its individual particle velocity vl [ZSH07]:

v(ϕ, θ)
∣∣
r0

=
L∑
l=1

vl · al(ϕ, θ)). (4.1)

Aperture function. al is called aperture function. Its value can be 1 or 0 and they do

not overlap. It describes the part of the array, where sound waves leave the array, meaning

the area of the drivers. Therefore, it can be written as:

al(ϕ, θ) =

{
1 at lth loudspeaker,

0 otherwise.
(4.2)

In other words, the areas, where al = 0 describe the solid part of the array, i.e. v = 0.

First let us consider the aperture function of one loudspeaker, most suitably the one located

at the north pole.
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In the spherical harmonics domain a compact expression for the calculation of the aper-

ture function exists and therefore from this moment on all calculations of this subsection

are done in the spherical harmonics domain 1. In [ZH07] an equation for the calculation of

the l-th aperture function belonging to the l-th loudspeaker is given:

A(l)
nm = SHT{a(l)(ϕ, θ)} = Y ∗nm(ϕl, θl) · 2πNnm

∫ 1

cos(α
2

)

Pn[cos (θ)] · d(cos (θ)), (4.3)

where Nnm are normalization constants, Pn(x) are the Legendre polynomials and α is

the opening angle of one driver. For its calculation let us take a look back to figure 3.1.

According to trigonometry sin(α) can be calculated due to:

sin (α) =
rLS
rSph

=
2, 5 cm

8, 5 cm
≈ 0, 2899, (4.4)

yielding an opening angle of:

α = 2 · arcsin(sin(α)) ≈ 0, 5882 ≈ 33, 7◦. (4.5)

When calculating the aperture function coefficients for the north pole cap the azimuthal

dependence of ϕ can be omitted. This polar cap model Ân is now brought to the remaining

positions by spherical convolution of al [ZSH07] for the north pole with the Dirac distri-

bution in the spatial domain yielding a multiplication with the corresponding conjugate

spherical harmonics Y ∗nm(ϕl, θl) in the spherical harmonics domain due to:

δ(ϕ− ϕl) · δ(θ − θl)
SHT←−→ Y ∗nm(ϕl, θl). (4.6)

In the spherical harmonics domain equation (4.1) can be rewritten as 2:

νnm
∣∣
r0

=
L∑
l=1

vl · Ân · Y ∗nm(ϕl, θl). (4.7)

1Only for the final calculation of the sound pressure the inverse transform is performed to be able to
plot the gained sound pressure distribution.

2Note that the conjugate can be omitted due to the usage of real valued spherical harmonics.
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Setting all the driver velocities to 1 yields the expansion coefficients of the entire spherical

cap model:

Anm =
L∑
l=1

Ân · Y ∗nm(ϕl, θl). (4.8)

This formula was used to plot the spherical cap model (cf. figures 4.1 and 4.2). There

exists an alternative way of calculating the expansion coefficients of the spherical cap

model. This is shown in [ZH07]. The coefficients calculated according to equation (4.3)

can be written in an (N + 1)2 element vector ~A(l):

~A(l) = vec{A(l)
nm} =



A
(l)
0,0

A
(l)
1,−1
...

A
(l)
n,−n
...

A
(l)
n,n

...

A
(l)
N,N


. (4.9)

In a next step all these coefficient vectors for all the L caps can be gathered in one

single matrix A which will be important in the next step when calculating the velocities

of the drivers:

A =
[
~A(1), ..., ~A(L).

]
(4.10)

Simulation of the spherical cap model. The performed simulation calculates the SH-

coefficients for the spherical cap model according to equation (4.8). Therefore the spherical

harmonics must be evaluated at all the driver positions (ϕl, θl). This was done for several

point distributions according to [Wom09] and for different maximum orders nmax. To gain

reasonable values for the plots, an inverse SH-transform according to equation (2.17) must

be performed. Therefore the spherical harmonics must be evaluated for a set of equidistant

points on the sphere (here 10201). Furthermore, one has to take care of using practical

opening angles according to equation (4.4). Note, that for all plots in figures 4.1 and 4.2

v(l) = 1, ∀l. (4.11)
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Figure 4.1: Cap model for 9, 16 and 25 drivers with different values of nmax

Figure 4.2: Cap model for 36, 49 and 64 drivers with different values of nmax
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The above plots show the influence of the maximum order nmax and the number of

drivers. Variation of nmax is only important here to gain different displays. In reality

nmax→∞ and therefore nmax should be as big as possible for all further simulations to

obtain a cap model with a realistic and reasonable shape.

4.2 Calculation of the Driver Velocity Vector

The simulation shall demonstrate how a certain radiation pattern is reproduced by a given

array. As any radiation pattern can be decomposed in a set of spherical harmonics, a

first step could be to simulate, how the spherical harmonics are reproduced by the array.

[Wil99] gives a formula how the expansion coefficients of such a pressure pattern at a

certain distance 3 rp ψnm(krp) can be calculated, when the expansion coefficients of the

particle velocity on the surface r0 of the sphere νnm
∣∣
r0

as a boundary condition are given:

ψnm(krp) = iρ0c ·
hn(krp)

h′n(kr0)
· νnm

∣∣
r0
. (4.12)

with c = 343m
s

the speed of sound at room temperature, i =
√
−1 being the imaginary

unit, the wave number k = ω
c

and ρ0 = 1.2 the density of the air; hn denominates the

spherical Hankel function of the second kind, h′n its derivative. νnm
∣∣
r0

can be obtained by

a spherical harmonics transform of equation (4.1):

ν
∣∣
r0

=
L∑
l=1

~A(l) · v(l) = A ·


v(1)

v(2)

...

v(L)

 = A · v. (4.13)

As in equation (4.12) only the Hankel functions depending on the order n are used, a

convenient notation must be found. This is done as supposed in [ZH07] with a diagonal

matrix. In the diagonal stand the corresponding Hn vector elements repeated (2n + 1)

times. Defining

Hn :=
hn(krp)

h′n(kr0)
, (4.14)

yields:

3Also called projection radius.
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diag(Hn) :=



H0 0 0 0 0 . . . 0

0 H1 0 0 0 . . . 0

0 0 H1 0 0 . . . 0

0 0 0 H1 0 . . . 0

0 0 0 0 H2 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . HN


. (4.15)

Putting equations (4.13) and (4.15) in equation (4.12) yields a compact formula for the

calculation of all the expansion coefficients of the desired spherical wave spectrum of the

sound pressure:

ψ(krp) = iρ0c · diag(Hn) ·A · v, (4.16)

with the dimensions (N: maximum order of spherical harmonics in calculations; L: number

of drivers):

[(N + 1)2 × 1] = [(N + 1)2 × (N + 1)2] · [(N + 1)2 × L] · [L× 1]. (4.17)

To obtain the required input velocity vector v for a specified choice of ψ(krp) a matrix

inversion is required. Thus we define a new [(N + 1)2 × L] matrix Q:

Q := iρ0c · diag(Hn) ·A. (4.18)

So v can easily be calculated as:

v = Q−1 ·ψ(krp) (4.19)

and the dimensions are:

[L× 1] = [L× (N + 1)2] · [(N + 1)2 × 1]. (4.20)

Of course this equation can only be solved, if the inverse Q−1 exists. And if the matrix

Q is not square, the pseudo-inverse must be used. There are two possibilities of calculating

Q−1 [Pom08]:

1. Including the higher order harmonics: All the entries of Q are used for the inversion

and the pseudo inverse must be used.
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2. Nc-subspace: only the entries of Q which actually can be controlled are used for the

inversion yielding an [L× L]-matrix and exact inversion, if the inverse exists. Note,

that in this case also the vector ψ(krp) must be truncated.

Having the correct membrane velocities for the wanted sound pressure distribution

yields its simulated expansion coefficients as:

ψ̂(krp) = Q · v (4.21)

and the sound pressure is obtained by inverse spherical harmonics transform according to

equation (2.22).

4.3 Radiation Simulation of Spherical Harmonics

In general ψ(krp) can be an arbitrary vector describing some kind of sound field. As

here we want the nm-th spherical harmonic to be simulated, this (N + 1)2 vector only

contains one entry unequal zero namely one at the nm-th position. For example, for the

first spherical harmonic:

ψ(krp) =
[
1 0 0 . . . 0

]T
. (4.22)

If we suppose Ψ(krp) to be an identity matrix, the velocity coefficients for all control-

lable spherical harmonics can be calculated in one single step. Note, that if (N + 1)2 > L

only the first L columns of this matrix are used 4. Finally we get an [(N + 1)2×L] matrix

V containing the associated velocity vectors as its columns:

Ψ(krp) = Q ·V, (4.23)

with the dimensions:

[(N + 1)2 × L] = [(N + 1)2 × (N + 1)2] · [(N + 1)2 × L] · [L× L]. (4.24)

Spherical harmonics. As already mentioned, spherical functions can be interpreted as

a series of weighted spherical harmonics. To see how an arbitrary spherical function can be

reproduced by a given array it is helpful to observe the radiation of the spherical harmonics

by this geometry. This can be regarded as an intermediate step. The vector according to

4The remaining spherical harmonics can be simulated, too, but will lead to incorrect display, since only
L spherical harmonics are controllable with L drivers.
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equation (4.22) is used as an ideal coefficients vector and then put into equation (4.19) to

calculate the membrane velocities of the drivers. With (4.21) the coefficients vectors of the

sound field how they are reproduced by the array can be calculated and performing the

inverse spherical harmonics transform yields the pressure values in dependence of azimuth

and zenith, as needed for plotting. Again the inverse transform is performed as multi-

plication with a matrix containing the spherical harmonics evaluated at the 10201 sphere

points, as described before.

Here the spherical harmonics for three important frequencies calculated using the higher

order harmonics up to the order nmax = 30 are shown. For the remaining plots, containing

more frequencies and the calculation in the truncated subspace, the reader is refered to

the appendix C.

Up to 1500 Hz nearly no deviation of the spherical harmonics can be observed. At

2500 Hz spherical aliasing begins to deform the spherical harmonics and in the third plot

they begin to become too inaccurate. To avoid spatial aliasing a spatial anti-aliasing filter

would be necessary for band-limitation.
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Figure 4.3: radiation of the first 16 spherical harmonics using higher order harmonics by
an array with 16 drivers at a distance of 1m and at three different frequencies; the cap
model was calculated using a maximum order nmax = 30
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4.4 Forming a Beam

One of the main purposes of a spherical beamformer is to produce a sound beam in a

desired direction. This beam can be regarded as a Dirac delta-distribution dependent on

the angles azimuth and zenith. It can be written as:

δ(ϕ− ϕb) · δ(θ − θb) =

{
∞ at the position (ϕb,θb),

0 otherwise.
(4.25)

According to equation (4.6) this beam can easily be calculated as an evaluation of the

spherical harmonics at the position (ϕb, θb) yielding the expansion coefficients for the beam:

ψnm = Y m∗
n (ϕb, θb). (4.26)

Theoretically the beam would be infinitely narrow, but as the spherical harmonics order

is bounded, the width of the beam depends on the maximum order. The higher the order,

the more narrow the beam, but also more side lobes are produced. Of course the form

of the beam also depends on the expansion term and therefore on the array geometry,

the frequency and the analysis distance. With higher frequencies and less distance, more

aliasing will occur.

The analytic beam. But first let us look at a so called analytic beam, a beam reproduced

by the desired array, but without any errors, i.e. spatial aliasing. Figure 4.4 shows such

an analytic beam pointing to the left (ϕb, θb) = (π
2
,−π

2
). This analytic beam can only

be obtained, if no higher order harmonics are included in the calculation and therefore

N =
√
L− 1 for all calculations.

Figure 4.4: analytic beam pointing to (ϕb, θb) = (π
2
,−π

2
) displayed in the three planes of

the coordinate system for an array with 16 drivers
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A real beam. Limiting nmax to
√
L−1 is physically wrong for the calculation of the cap

model. So the calculation must be performed as described in the above section. Again first

the velocity coefficients are calculated with equation (4.19) using equation (4.26). Then

v is inserted into (4.21) and with the inverse spherical harmonics transform the plotable

sound pressure values are calculated. It is obvious, that the calculations of Q−1 again can

be performed in the truncated subspace or including higher order harmonics.

For both kinds of calculation the matrix Q and the vector ψ are first calculated with

a maximum order of nmax = 30. The calculation of the velocity vector v according to

equation (4.19) can then be performed in the two ways: with all the entries of Q yielding a

size of [16× 961] for Q−1 and [961× 1] for ψ or with the entries of the upper left [16× 16]

submatrix of Q and a truncated vector ψ with the size [16 × 1]. The final calculation of

the coefficient vector according to equation (4.21) yields a [961× 1]-vector in both cases.

Figures 4.5 and 4.6 depict the results for both kinds of calculation. The figures show,

that for lower frequencies the truncated subspace approach seems to lead to better results,

while for higher frequencies the included higher order harmonics seem to perform better.

Maybe it is recommendable to use a mixture between the two options. Furthermore, the

border for a reasonable aliasing cut off frequency lies somewhere between 2500 and 3000

Hz. Above this frequency, the side lobes become inacceptably huge. This bound must yet

be confirmed according to listening tests. In the case of subspace calculation the beams

with higher frequencies reach a far higher amplitude. This may result from the missing

control of the higher order harmonics.
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Figure 4.5: beam to the left calculated including higher order harmonics

Figure 4.6: beam to the left calculated using the truncated subspace
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Chapter 5

System Control

5.1 Basic Description

Gaining control over the loudspeaker system means being able to provide the drivers with

suitable voltages to obtain a wanted directivity pattern (sound pressure field given e.g. by

the expansion coefficients) at a certain projection radius rp. This pattern can be defined

in two different basic ways:

a) the sound particle velocity distribution on the surface of the sphere r0: v(ϕ, θ)
∣∣
r0

b) the sound pressure distribution at the analysis radius ra: p(ϕ, θ)
∣∣
ra

These two arrangements are shown in figure 5.1. In both cases the pattern, which is

synthesized on ra
1 is projected to rp by a propagation term. Looking back to the solution

of the wave equation in the frequency domain as given in equation (2.12) 2

p(r, ϕ, θ, ω) =
∞∑
n=0

n∑
m=−n

Enm(ω)h(2)
n (kr)Y m

n (θ, ϕ) (5.1)

one remembers, that the definition of Enm is still missing. It will be introduced now as

a term, that is defined by the boundary values. Like defined above this is in the first

case v(ϕ, θ)|r0 and in the second case p(ϕ, θ)|ra . Applying a SHT to equation (5.1) yields

according to [Pom08]:

ψnm(r) =

∫
Ω

p(r, ϕ, θ)Y m∗
n dΩ = Enmhn(kr). (5.2)

1In the case of particle velocity: ra = r0
2The frequency dependency of Enm subsequently will be omitted for better readability.
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Figure 5.1: the two basic synthesis and analysis arrangements [ZN07]

In [Pom08] and [ZN07] the expressions for the boundary conditions can be found 3:

a) velocity approach:

E(v)
nm = iρ0c ·

1

h′n(kr0)
· νnm

∣∣
r0
, (5.3)

⇒ ψnm(r) = iρ0c ·
hn(kr)

h′n(kr0)
· νnm

∣∣
r0
. (5.4)

b) pressure approach:

E(p)
nm =

1

hn(kra)
· ψnm

∣∣
ra
, (5.5)

⇒ ψnm(r) =
hn(kr)

hn(kra)
· ψnm

∣∣
ra
. (5.6)

3Note, that equation (5.4) is the same, as the one, that was used for the simulation performed in chapter
4 (equation (4.12)).
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5.2 Beamformer

With beamformer here the control unit is meant that is necessary for system control. It

can be split up into two parts:

a) angular beamformer:

Its input are the expansion coefficients of the desired pattern. This can be for example

the coefficients of a beam like derived in equation (4.26):

ψnm = Y m∗
n (ϕb, θb). (5.7)

The output of the angular beamformer are the driver voltages, which produce the de-

sired pattern on the analysis radius ra. This pattern control will be examined closer in

section 5.3.

b) radial beamformer:

The pattern produced by the angular beamformer on ra is projected to the projection

radius rp with the radial beamformer. It can be seen like a pre-filtering, which equalizes

the damping of the spherical harmonics according to the propagation term. This filter is

also called radial steering filter (RSF) and will be observed in section 5.4. For equalization

the reciprocal terms of equations (5.3) and (5.5) are used:

H(eq,v)
n (ω) = − 1

ρ0c
· i · h

′
n(kr0)

hn(krp)
, (5.8)

H(eq,p)
n (ω) =

hn(kra)

hn(krp)
. (5.9)

Figure 5.2 shows the structure of the entire beamformer. The input signal x[n] can be

an arbitrary audio signal, like music, noise or any kind of measuring signal, which is than

directed in beam direction.
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Figure 5.2: structure of the beamformer according to [ZN07]

5.3 Pattern Control

To gain control over the loudspeaker system and be able to create a desired pattern it

is necessary to know the active and passive transfer properties of the system (system

identification). These can be determined in two ways:

a) by measuring the velocity distribution at r0 using a Laser Doppler Vibrometer (LDV)

b) by measuring the sound pressure distribution at ra using a microphone array

Here only the first approach will be described step by step. For the measurement with

microphones the interested reader is referred to [Pom08] or [ZPS08].

1. The MIMO-system. The transfer properties of the array can be described as

a MIMO-system4, which is depicted in figure 5.3. There tij(t) denotes the time-domain

transfer-functions from the i-th to the j-th loudspeaker. Transforming it to the frequency-

domain using an FFT yields the frequency response of the active (i = j) and passive (i 6= j)

transfer paths. The passive ones describe the mutual crosstalk and occur because of the

common enclosure of the loudspeakers.

4MIMO = Multiple Input Multiple Output
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u1(t)

u2(t)

uL(t)

LS LDV
tij(t)

v1(t)

v2(t)

vK(t)

1

2

L

2

1

K

Figure 5.3: The LDV-loudspeaker-MIMO-system, L: No of loudspeakers; K: No of LDV
measurement positions

The frequency-domain transfer functions are summarized in a matrix T(ω) 5, the so called

system matrix. As here L = K it results in a square matrix:

T(ω) =


t11(ω) . . . t1L(ω)

...
. . .

...

tL1(ω) . . . tLL(ω)

 . (5.10)

With this definition a vector v containing all the driver velocities can be built out of the

corresponding driving voltage vector u:

v = T · u, (5.11)

with the dimensions:

[L× 1] = [L× L] · [L× 1]. (5.12)

How the measurements with the LDV can be performed, will be shown in chapter 6.

For a first - but highly unrealistic - approach, the system matrix T can be assumed to

be an identity matrix, meaning, that every loudspeaker has a flat frequency response and

there is no crosstalk.

2. SH-transform. According to equation (4.13) v can be written as:

ν = A · v. (5.13)

5The frequency-depencency will be omitted for better readability

47



A contains the expansion coefficients of the cap model for all L drivers as derived in

section 4.1. Putting equation (5.11) into equation (5.13) yields:

ν = A ·T · u, (5.14)

[(N + 1)2 × 1] = [(N + 1)2 × L] · [L× L] · [(N + 1)2 × 1]. (5.15)

Note, that the maximal SH-order is N = 3 and therefore (N + 1)2 = L, which leads to

square matrices and therefore exact invertibility 6.

3. Calculation of the driver voltages in SH. Let us assume the loudspeaker signals

u(Θ) as weighted Dirac delta located in the center of each loudspeaker:

u(Θ) =
L∑
l=1

δ(Θ−Θl) · ul. (5.16)

This is quite similar to the approach to gain the velocity distribution for the cap sphere

model made in sections 4.1 and 4.2. Assuming that the voltage is transfered directly into

velocity one can use equation (4.13) replacing the velocity quantities by voltage quantities

and get:

uSH := Υ = A · u, (5.17)

⇒ u = A−1 ·Υ. (5.18)

As A is square the inverse can be used. A−1 often is called decoder-matrix, because it

decodes the SH-domain voltages to real-world voltages, the drivers can be supplied with.

Putting equation (5.18) into (5.14) yields:

ν = A ·T ·A−1 ·Υ. (5.19)

4. Introduction of a control matrix. Equation (5.19) is already a rather good

description of the overall system. What is still missing is the desired quantity γ given

in spherical harmonics coefficients. As proposed in section 5.2 it can be the expansion

coefficients of a beam according to equation (5.7) or any arbitrary set of coefficients. A

6Of course under the precondition that the inverse exists.
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control matrix B is needed, which transforms γ into a voltage vector:

Υ = B · γ. (5.20)

Putting this equation into (5.19) yields the description of the overall sytem:

ν = A ·T ·A−1 ·B · γ. (5.21)

With the dimensions:

[(N+1)2×1] = [(N+1)2×L]·[L×L]·[L×(N+1)2]·[(N+1)2×(N+1)2]·[(N+1)2×1]. (5.22)

As we want ν
!

= γ in equation (5.21) an identity matrix must be obtained meaning:

A ·T ·A−1 ·B !
= I, (5.23)

⇒ B = (A ·T ·A−1)−1. (5.24)

5. Calculation of the driver voltages. Now we are ready for the final step. Combining

equations (5.18) and (5.20) yields:

u = A−1 ·B · γ. (5.25)

6. Block diagram. Finally a block diagram is given to visualize the transformation of

the quantities.
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Figure 5.4: block diagram of the angular beamformer
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5.4 Radial Steering Filters and Filterbank

According to the propagation term iρ0c · hn(krp)

h′
n(kr0)

in equation (5.4) the SH are attenuated

on their way from the array surface r0 to the projection surface at rp. The attenuation

mainly depends on the design parameter r0, the frequency and the distance to the array

rp. Figure 5.5 shows the frequency response of the propagation term in the far field.
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Figure 5.5: Attenuation of the first four SH due to the propagation term

It can be seen, that the SHs are already immensely attenuated at rather high frequen-

cies. As yet proposed in section 5.2 the attenuation could be avoided applying preposed

inverse filters, the radial steering filters (RSF). They are based on equations (5.8) and

(5.9). A comprehensive filter implementation can be found in [Pom08]. Since these filters

in the far field reach unfeasibly high magnitudes up to 140 dB and more, as seen in figure

5.6, the filter gains must be limited.
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Figure 5.6: far field radial steering filters to compensate the damping of the SH

Limiting the RSF. Let us assume, that the filter curves should be limited to 40dB.

This means, that ideally the curves in figure 5.6 should be cut off at the shown frequency

positions. Only the 0th SH curve must not be bounded. Doing so, a problem occurs:

when coming from high frequencies, for every spherical harmonics order that is omitted,

components are missing for the forming of the beam and therefore the magnitude of the

beam decreases. The magnitude of a beam can be given by:

bN =
(N + 1)2

4π
, (5.26)

where N is the SH-order. The derivation of equation (5.4) is given in appendix B. Ev-

ery time a spherical harmonic is being faded out due to the RSF, the residual spherical

harmonics must be boosted to maintain the magnitude of the beam.

The amplification constants gN conform to the highest used spherical harmonic (here

the 3rd), as using all controllable spherical harmonics defines the maximum magnitude of

the beam, which we want to normalize to 7:

gN =
b3

bN
. (5.27)

7The denominator in equation (5.4) is omitted, as it is the same value for all spherical harmonics
anyway.
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The values for bN and gN are given in table 5.1.

N bN ∗ 4π gN gN [dB]

0 1 16/1 24
1 4 16/4 12
2 9 16/9 5
3 16 16/16 0

Table 5.1: magnitude of a beam depending on the SH-order N and the according gain
values

The Filterbank. As gN depends on the frequency, it is reasonable to use a filterbank,

which amplifies the SH according to the frequency bounds of each filter. The scheme for

the filterbank is shown in figure 5.7.

x[n]

BP1

BP2

BP3

HP *

*

*

*

gBP1

gBP2

gBP3

gHP

+ y[n]

Figure 5.7: schematic configuration of the RSF stabilization filterbank, where the input is
a SH of order N and the output is its filtered version

As each SH order should be faded out when reaching the given 40dB bound, it is clear,

that the SH order must be filtered with different weights. So the gain values of the lower

order SH n < N are set to zero. Table 5.2 shows the complete set of gains for each SH

order:

N gBP1 gBP2 gBP3 gHP

0 16 4 16/9 1
1 0 4 16/9 1
2 0 0 16/9 1
3 0 0 0 1

Table 5.2: list of the gains for each SH order
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What is still missing are the frequency bounds for the filters. Since the flterbank

amplifies each order, the 40dB frequency bounds of figure 5.6 cannot be used, as the 40dB

limit would be exceeded. Therefore the amplification is taken into account before the

filterbank. The borders thus are set gN [dB] below the 40dB-level. This is shown in figure

5.8.
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Figure 5.8: cutoff frequencies for the filterbank according to their gain value

Now all relevant information for the design of the filterbank is collected. In figure 5.9

a possible implementation using 3rd order Butterworth-bandpass-filters and a 5th order

Butterworth-highpass is depicted.
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Figure 5.10 shows the filter curves as employed to each spherical harmonic.
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Figure 5.10: filter curves for the first four SHs

The limited RSF. Finally the filterbank is applied to the RSF. Figure 5.11 shows, that

all SH are bounded to the given 40dB-limit.
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Figure 5.11: limited radial steering filters

The purpose of the derived filters is to obtain a flat frequency response for the beam

amplitude. Referring to appendix B equation for the beam amplitude can be written as:

bN =
N∑
n=0

2n+ 1

4π
. (5.28)
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Let us assume that hn denotes the propagation term and h̃−1
n =

hfb,n
hn

the term for the

filtered radial steering filters, with hfb,n being the filter curves for the SHs, as shown in

figure 5.10. Bringing these terms into equation (5.28) yields:

bN =
N∑
n=0

hnh̃
−1
n

2n+ 1

4π
. (5.29)

Taking into account, that the unfiltered radial steering filters, which are part of h̃−1
n ,

completely equalize the propagation term, only the filter curves for the SHs hfb,n, remain

in equation (5.29) and we obtain:

bN =
N∑
n=0

hfb,n
2n+ 1

4π
. (5.30)

Figure 5.12 shows the frequency response of the beam amplitude. It can be seen, that

it is completely flat above about 700 Hz. From 200 Hz to 700 Hz a slight ripple can be

observed and below 200 Hz the beam amplitude fades out. This means, that the filterbank

is not able to linearize the frequency response of the beam amplitude completely, but above

200 Hz it can be regarded as quasi-constant. Nevertheless, the filterbank provides a reliable

limitation of the filters.
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Figure 5.12: frequency response of the beam amplitude employing the filterbank
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Chapter 6

System Identification using

LDV-Measurements

This chapter deals with the identification of the MIMO-system the spherical loudspeaker

array is representing as shown in figure 5.3, in particular, the determination of the active

and passive transfer paths of the loudspeakers with a Laser Doppler Vibrometer (LDV).

This is a measuring tool that can determine the surface velocity of a vibrating surface -

here the loudspeaker membranes.

6.1 Exponential Sweep Measurement Method

There are several methods of system identification like direct impulse response measure-

ments, one- and two-path-FFT measurements, Time-Delay-Spectrometry (TDS), Maxi-

mum Length Sequence (MLS) and swept sine methods. Basic descriptions of these methods

are found in [Maj07]. Here the logarithmic swept sine technique is used. It has the great

advantage, that the detection of harmonic distortions is easy. Furthermore the generation

of the signal is quite simple. Farina gives a comprehensive description of this method in

[Far00].

Sweep Generation. The sweep signal was generated in MATLAB. The instantaneous

frequency is given by:

ω(t) =
(ω2

ω1

) t
T · ω1, (6.1)

where ω1 and ω2 are the start and stop frequencies of the sweep and T the sweep time.
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Taking the logarithm and rearranging the terms in this formula yields the design equation

for the group delay of the sweep [JR07]:

n(ω) =
ln( ω

ω1
)

ln(ω2

ω1
)
· (N − 1), (6.2)

with N being the sweep length in samples. This group delay is used for a frequency-domain

based sweep design. Furthermore this sweep is filtered with a band-pass to avoid transient

oscillations. Figure 6.1 shows the used sweep with an active length of N = 44100 and the

cut-off frequencies f1 = 80Hz and f2 = 18kHz, in the time and in the frequency domain.

0 1 2 3 4 5 6 7 8 9 10
x 104

−0.01

−0.005

0

0.005

0.01

Time in samples

M
ag

ni
tu

de

logarithmic sweep signal

 

 

logsweep
logsweep filtered

102 103 104
−120

−100

−80

−60

−40

−20

0

20

40

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

logarithmic sweep signal

 

 

logsweep
logsweep filtered

Figure 6.1: time and frequency domain logarithmic sweep signals

Time in sec

to
 fs

/2
 n

or
m

al
ize

d 
fre

qu
en

cy

spectrogram of the filtered logarithmic sweep

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: spectrogram of the logarithmic sweep signal

57



6.2 Measurement Setup

Figure 6.3 shows the setup for the measurements. A PD-patch 1 controls the playback

of the sweep signal that is sent to a digital-analog-converter and then amplified. The

loudspeaker movement is detected with the LDV. The focused laser of the LDV points to

the center of one loudspeaker membrane and the remaining loudspeakers play back the

sweep signal one after another. This is repeated for all loudspeakers. The measured LDV-

output-signal is transformed back to the digital domain with an analog-digital-converter

and finally recorded again in PD.

PD
sweep playback D/A amp LDV A/D

PD
sweep response

recording

Figure 6.3: block diagram of the measurement setup

Figure 6.4: measurement setup in the IEM-library consisting of the spherical loudspeaker
array, the LDV and the rack in the background containing the AD- and DA-converters,
the amplifiers and the computer for PD

1PD is the abbreviation for Pure-Data, a real-time audio programming software by Miller S. Puckette.
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According to the LDV-manual [LDV] the best measurement distances are:

a = 96mm+ n · 138mm;n = 0, 1, 2... . (6.3)

For the measurements a distances of 510 mm was chosen. An advantage of the LDV-

approach is, that the influence of the room on the measurements is more or less negligible,

although a suitable environment should be given, as the LDV is very sensitive to vibrations.

As the LDV only measures the membrane velocity, it does not regard sound radiation.

Therefore, the interpretation is not as straightforward, as for example sound pressure

level frequency responses 2. A disadvantage of the swept sine method is, that transient

disturbances can cause problems.

6.3 Measurement Evaluation

Calculation of the transfer function. The sweep signal x and the measured sweep

responses yij from the j-th to the i-th loudspeaker are first brought to the frequency domain

by FFT:

X(ω) = FFT (x[n]), (6.4)

Yij(ω) = FFT (yij[n]). (6.5)

For the derivation of the transfer function the following nomenclature and definitions

are used 3:

Hij: transfer function

X: unfiltered sweep signal

Yij: measured system response

B: band-pass filter

X̃: band-pass filtered sweep signal (used as playback signal in the measurements)

H̃ij: band-limited transfer function

2Like the one in appendix A
3Note, that all quantities depend on the frequency, which is again omitted for better readability.
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Yij = Hij · X̃, (6.6)

X̃ = B ·X. (6.7)

The transfer function shall be band-limited to limit the duration of the sweep especially

at low frequencies. Furthermore, without the band-pass an overshoot caused by Gibbs

phenomenon could emerge at the lower and higher cut-off frequency. As we want a pink

spectrum, this must be avoided.

H̃ij
!

= Hij ·B =
Hij · (B ·X)

X
(6.8)

Note, that the denominator in equation (6.8) is the unfiltered version of the sweep.

Hence, an amplification of the noise that occurs when dividing by very small numbers

outside the measurement frequency range is avoided.

Cutting the impulse responses. The impulse response (IR) hij is calculated by an

Inverse Fast Fourier Transform (IFFT) of H̃ij using the FFT-length of equation (6.5).

Figure 6.5 depicts the IR of the active transfer path of the first loudspeaker. It shows, that

noise is present in the measurement and that there are harmonic distortions (rear part of

the IR). As we are not interested in these disturbances, the IRs must be windowed.
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Figure 6.5: uncut impulse response for the northpole-speaker with logarithmic y-axis

To avoid transient cutting, the first half of a 200-point Hanning window is used for

fade-in and the second half of a 1500-point Hanning window for fade-out. The remaining

parts outside the fade-in and fade-out area are thrown away. This editing results in an IR

60



of 4501 samples. Figure 6.6 shows the result again for the first loudspeaker. The windowing

was applied to all 256 IRs.
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Figure 6.6: cut impulse response of the northpole speaker with logarithmic (left) and linear
(right) y-axis

The active paths. Figure 6.7 depicts the magnitude of the frequency responses of the

directly driven loudspeakers. They show some peaks at around 1500 Hz, which could be

due to resonances in the cabinet. The leap at about 12 kHz may result from higher modes

of the membrane surface.

Figure 6.8 shows the differences in the magnitudes of the loudspeakers’ frequency re-

sponses as deviation from the first speaker. Accordingly the loudspeakers match rather

well in the frequency range of interest of about 100 Hz to 3000 Hz.

The angular distance classes. Section 3.3 showed the geometrical properties of

the array. It pointed out, that there are several kinds of symmetry and repetition. This

information is useful here as it allows us to classify the measured data into angular distance

classes. An angular distance class contains all pairs of loudspeakers, that have the same

angular distance. These angles can be calculated with the inner product of the direction

vectors of two loudspeakers:

cos(α) =
~a ·~b
|~a| · |~b|

. (6.9)
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Figure 6.7: velocity frequency response of the 16 loudspeakers
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Figure 6.8: spreading in the magnitude of the loudspeaker frequency responses

As normalized vectors are used for calculation and hence |~a| = |~b| = 1, equation (6.9)

simplifies to:

cos(α) = ~a ·~b⇒ α = arccos(~a ·~b). (6.10)

Performing this calculation for all 16 points yields 256 angles. Sorting the results

reveals, that there are 10 angular classes, whereas one is the class of the angle of each

loudspeaker with itself. As this class yields an angle of 0◦ it is denominated as class 0.

The other 9 classes and their angles are:
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class angle polygon to polygon number

1 50◦ 5 to 5 12
2 51◦ 5 to 5 24
3 58◦ 5 to 6 48
4 95◦ 5 to 5 48
5 100◦ 5 to 6 24
6 109◦ 6 to 6 12
7 117◦ 5 to 5 24
8 145◦ 5 to 5 24
9 150◦ 5 to 6 24

Table 6.1: The angular distance classes with their angle, the sort of polygons, containing the
loudspeakers (5: pentagon, 6: hexagon), and the number how many of this constellations
exist

The following plots (figure 6.9) depict the magnitudes of the transfer function for every

angular class. Class 0 contains the active paths for all 16 loudspeakers and the residual

classes the passive paths. All plots are normalized to the maximum of the active paths.

Generally the plots of the passive paths can be divided into four regions with the

approximate limits:

1. lower end to 800 Hz: passive loudspeaker movement according to the movement of

the air in the cabinet caused by the active loudspeaker portioned to the remaining

15 loudspeakers yielding 20 log( 1
15

) = −23.5dB

2. 800 Hz to 1.2 kHz: transition section with rather complicated transfer patterns; no

proper explanation for this behavior could be found until now

3. 1.2 kHz to 3 kHz: range of resonances in the cabinet

4. 3 kHz to upper end: virtually no crosstalk, only noise is present

Note, that in the 4th region there are some configurations that seem to produce

crosstalk. I have not found a good explanation for that. Maybe there was less noise

in the measurement.
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angular class 8: 145°
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Figure 6.9: magnitude of the frequency responses of all 10 angular classes

Figure 6.10 shows the average attenuation of the passive transfer paths with respect to

the average active transfer path. The natural attenuation of the crosstalk is rather good.

There are two minima: the first one with 22.3 dB at 1381 Hz and a second one with 21.7

dB at 1822 Hz. These minima might be the main resonances in the cabinet.
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Figure 6.10: average attenuation of the passive transfer paths
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Chapter 7

Conclusion and Outlook

In this thesis a spherical loudspeaker array with a new kind of loudspeaker arrangement

was developed, built and simulated. It was shown, how an algorithm for system control

can be implemented and how the system can be identified using LDV-measurements.

The array uses 16 loudspeakers and therefore the same number of loudspeakers then

controllable spherical harmonics in a system of order 3. The arrangement of the drivers

was laid out according to a set of extremal points for hyperinterpolation, which solves the

task of sound field synthesis in a unique way. The array has rather small dimensions and

is therefore suitable for the mid-frequency range. Simulations showed, that the chosen

array is able to reproduce the spherical harmonics - and therefore arbitrary band-limited

patterns - rather well up to a frequency of about 2500 Hz. Also a beam in a specified di-

rection was simulated. The developed control system consists of angular and radial filters.

The radial part contains the radial steering filters, which equalize the attenuation of the

spherical harmonics due to radiation. However, these filters come with no stability issues.

Therefore a filterbank was developed that limits these filters to a magnitude of 40dB. For

an appropriate angular control a profound description of the system’s transfer properties is

necessary. The determination of these properties was performed with LDV-measurements.

It turned out that the magnitudes of the frequency responses of the directly driven loud-

speakers in the regarded frequency range of about 100 Hz to 3 kHz match quite well and

that the attenuation of the passive paths is rather good.
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Outlook:

The array’s capability of reproducing a desired pattern was only shown in simulations. It

would be interesting to compare the simulation results with a pattern, that was really re-

produced by the array. For example, this could be done using Hohl’s spherical microphone

array. After recording the created pressure pattern with the microphone array, a spherical

harmonics analysis could be performed. This way, the difference between the simulated

and the measured sound pressure values could be determined.

There are still a lot of other interesting challenges in the field of spherical sound re-

production. To evaluate the quality of the reproduced sound field in comparison with the

original sound, psycho-acoustic tests should be performed. Also the influence of several

factors - e.g. spatial aliasing - on the human perception are of great interest.

Recently efforts were started, how an alternative mathematical description of the sound

field could be made without the usage of spherical harmonics.
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Appendix A

The Peerless 830983 Drivers

Here some Thiele-Small-parameters and electrical data of the used drivers due to the data

sheet [Thy] are given:

Name Value
Moving Mass m 1,5 g
Mechanical Q-factor Qms 3,06
Electrical Q-factor Qes 0,7
Total Q-factor Qts 0,57
Suspension Compliance Cms 0,76 mm/N
Voice Coil Inductance L 0,2 mH
DC Resistance R 3,8 Ω

Table A.1: some data of the Peerless drivers

Figure A.1: Pressure frequency response of the used Peerless drivers [Thy]
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Appendix B

Derivation of the Beam Magnitude

bN

First we will take a look equation (4.26). It points out, that the expansion coefficients of

a beam are the values of the evaluated spherical harmonics at the beam position 1

χmn,B = Y m
n (ϕB, θB). (B.1)

Let us assume a beam that originates from the north pole. Therefore the zenith angle

θB = 0. As the form of the beam may not change in any other direction, the result will

be valid for any beam. As we regard a beam from the north pole, all spherical harmonics

that have no part pointing to the north are zero and therefore m = 0:

χ0
n,BNP = Y 0

n (ϕ, 0). (B.2)

The spherical harmonics can be calculated with equation (2.10):

Y m
n (ϕ, θ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cosθ)ejmϕ. (B.3)

With m = 0 and θ = 0 we obtain:

Y 0
n (ϕ, 0) =

√
2n+ 1

4π
· P 0

n(1) · 1. (B.4)

1Note, that here the conjugate is omitted due to the usage of real-valued spherical harmonics.
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As P 0
n(1) = 1, ∀n (cf. [Wil99]) equation (B.4) simplifies to:

Y 0
n (ϕ, 0) =

√
2n+ 1

4π
. (B.5)

Regarding equation (B.2) yields:

χ0
n,BNP = Y 0

n (ϕ, 0) =

√
2n+ 1

4π
. (B.6)

Finally an inverse spherical harmonics transform according to equation (2.17) must be

performed:

bN = ISHT{χ0
n,BNP} =

=
N∑
n=0

n∑
m=−n

χ0
n,BNP · Y 0

n (ϕ, 0) =

=
N∑
n=0

√
2n+ 1

4π
·
√

2n+ 1

4π
=

=
N∑
n=0

2n+ 1

4π
=

(N + 1)2

4π
q.e.d. (B.7)
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Appendix C

Spherical Harmonics Simulation

As shown in section 4 the radiation of the spherical harmonics can be simulated using

the spherical cap model. The calculation of Q−1 can be performed including higher order

harmonics or in the truncated subspace only including the controllable spherical harmonics.

All calculations where made for nine frequencies: 250Hz, 750Hz, 1500Hz, 2000Hz, 2500Hz,

3000Hz, 5000Hz, 7500Hz and 10000Hz. For the calculation of the cap sphere model a

maximum oder of nmax = 30 was used.

C.1 Higher Order Harmonics Calculation

First the nine plots for the calculation including the higher order harmonics are depicted:
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Figure C.1: Higher order calculation
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C.2 Truncated Subspace Calculation

And now the same for the truncated subspace. Note, that the spherical harmonics in the

first plots seem to be smaller then the ones for the higher order calculation in figure C.1,

but in fact they are not. Only the axis was chosen differently to fit for the big values

obtained for higher frequencies.
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Figure C.2: Truncated subspace calculation
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Appendix D

Active and Passive Transfer Paths of

all 16 Loudspeakers

In chapter 6 the transfer paths are classified by their angular classes. To be able to

see, what was measured at each single loudspeaker, here the plots are sorted by their

loudspeaker number. Therefore one can detect easily the direct and indirect movements of

the membranes. The magnitudes are not normalized to their maximum, rather they show,

what was really measured.

80



102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 1

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 2

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 3

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 4

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 5

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 6

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 7

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 8

81



102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 9

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 10

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 11

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 12

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 13

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 14

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 15

102 103 104
−100

−80

−60

−40

−20

0

20

Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

Loudspeaker 16

Figure D.1: active and passive frequency responses of all 16 loudspeaker
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