Andreas Sanbach

Thermophysikalische Daten von Legierungen - Schwerpunkt thermische Expansion

DIPLOMARBEIT

zur Erlangung des akademischen Grades Diplom-Ingenieur

Diplomstudium Technische Physik

Technische Universität Graz

Betreuer:

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Pottlacher Institut für Experimentalphysik

Graz, Oktober 2010

Deutsche Fassung: Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, am

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared sources / resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

date

(signature)

Meiner Oma^\dagger und meinem Papa gewidmet

Kurzfassung

Im Rahmen dieser Diplomarbeit, welche in der Arbeitsgruppe Subsekunden Thermophysik am Institut für Experimentalphysik der Technischen Universität Graz durchgeführt wurde, sind Expansionsdaten für die Legierungen W95Re5, W74Re26, Mo52Re47, Ni55Ti45 und MoLa gemessen worden.

Die ohmsche Pulsheizung ermöglicht es, aufgrund der Aufheizrate von etwa 10^8 K/s, Untersuchungen bis in die flüssige Phase an Metallen und Legierungen durchzuführen. Von besonderem Interesse ist dabei die gleichzeitige Untersuchung der Probenexpansion während des Experiments. Dies liefert, zusätzlich zu den thermophysikalischen Daten, die Grundlage für die Berücksichtigung der Querschnittsänderung im Verlauf des Experiments. Damit wird der spezifische elektrische Widerstand nicht nur für den ursprünglichen Querschnitt, sondern auch unter Berücksichtigung der thermischen Ausdehnung berechnet. Die Ergebnisse werden mit den entsprechenden Reinmetallen verglichen und Unterschiede deutlich gemacht.

Abstract

In the context of this diploma thesis, which has been accomplished at the Workgroup for Subsecond Thermophysics at the Institute of Experimental Physics, Graz University of Technology, expansion measurements have been carried out for the alloys W95Re5, W74Re26, Mo52Re47, Ni55Ti45 and MoLa.

Fast ohmic pulse-heating allows to investigate thermophysical properties of metals and alloys far into the liquid phase. Simultane expansion measurements are performed, which were of special interest. They provide, in addition to the thermophysical data, the basis for the consideration of the cross-sectional change of the rapidly heated wire sample during the experiment. With these data one can calculate specific electrical resistivity not just for the original cross-section, but also taking into account the process of expansion. The results are compared with the corresponding pure metals.

Inhaltsverzeichnis

A	bbild	ungsverzeichnis	8
Ta	abelle	enverzeichnis	10
A	bkür	zungen	11
1	Ein	leitung	13
	1.1	Legierungen, ein kurzer geschichtlicher Rückblick	. 13
	1.2	Motivation und Ziele	. 13
2	Mes	ssapparaturen	15
	2.1	Aufbau	. 15
	2.2	Experimentablauf	. 22
		2.2.1 Starten der Messaparaturen	. 22
		2.2.2 Vor dem Experiment \ldots	. 22
		2.2.3 Start des Experiment	. 25
		2.2.4 Nach dem Experiment	. 26
3	Unt	ersuchte Proben	27
4	Ver	wendete Formeln	30
	4.1	Spezifischer Widerstand	. 30
	4.2	Spezifische Enthalpie	. 32
	4.3	Enthalpieänderung beim Schmelzen	. 33
	4.4	Temperatur	. 33
	4.5	Volumsänderung	. 35
	4.6	Optische Dichte	. 36
	4.7	Molare Wärmekapazität bei konstantem Druck C_p	. 36
	4.8	Wärmeleitfähigkeit	. 37
	4.9	Temperaturleitfähigkeit	. 38
5	Aus	swertung	39
	5.1	W95Re5	. 41
		5.1.1 Expansion für W95Re5 \ldots	. 41
		5.1.2 Spezifische Enthalpie für W95Re5	. 44
		5.1.3 Spezifischer elektrischer Widerstand für W95Re5	. 44
		5.1.4 Wärmeleitfähigkeit für W95Re5	. 47
		5.1.5 Temperaturleitfähigkeit für W95Re5	. 47

\mathbf{Li}^{r}	terat	ur		106
8	Anł	nang		88
7	Zus	ammer	nfassung und Ausblick	83
6	Uns	icherh	eit	82
		5.5.5	Temperaturleitfähigkeit für MoLa	80
		5.5.4	Wärmeleitfähigkeit für MoLa	77
		5.5.3	Spezifischer elektrischer Widerstand von MoLa	77
		5.5.2	Spezifische Enthalpie von MoLa	74
		5.5.1	Expansion von MoLa	74
	5.5	MoLa		74
		5.4.5	Temperaturleitfähigkeit für Ni55Ti45	71
		5.4.4	Wärmeleitfähigkeit für Ni55Ti45	71
		5.4.3	Spezifischer elektrischer Widerstand für Ni55Ti45	68
		5.4.2	Spezifische Enthalpie für Ni55Ti45	68
		5.4.1	Expansion für Ni55Ti45	66
	5.4	Ni55T	i45	66
		5.3.5	Temperaturleitfähigkeit für Mo52Re47	64
		5.3.4	Wärmeleitfähigkeit für Mo52Re47	61
		5.3.3	Spezifischer elektrischer Widerstand für Mo52Re47	61
		5.3.2	Spezifische Enthalpie von Mo52Re47	58
	0.0	5.3.1	Expansion	58
	5.3	Mo52F	Re47	58
		525	Temperaturleitfähigkeit für W74Re26	56
		5.2.5	Wärmeleitfähigkeit für $W74Re26$	53
		523	Spezifischer elektrischer Widerstand für W74Be26	53
		5 2 2	Spezifische Enthalpie für W74Re26	50
	5.2	591	Expansion für $W74Ba26$	50
	5.2	W74R	e26	50

Abbildungsverzeichnis

1	Schematischer Aufbau des Pulsheizkreises	15
2	Parameter Pulsgeber	16
3	Übersicht über verwendeten Pulsheizkreis	19
4	Übersicht der Expansionsmessanlage	20
5	Probenhalterung	23
6	Messka thetometer und Lasermikrometer $\hdots \hdots $	24
7	Phasendiagramm für Wolfram-Rhenium	28
8	Phasendiagramm für Nickel-Titan	28
9	Phasendiagramm für Molybdän-Rhenium	29
10	Graphische Darstellung eines Experiments durch Insight	40
11	Heißbild eines Ni55Ti45 Drahtes	40
12	Spannungschneidenschwingen beim Programm Insight	41
13	Abdampfen von der Probenoberfläche von W95Re5	42
14	Expansion $\left(\frac{d(T)}{d_0}\right)^2$ für W95Re5 in Abhängigkeit von der Temperatur T	43
15	Spezifische Enthalpie ${\cal H}$ für W95Re5 in Abhängigkeit von der Temperatur ${\cal T}$	45
16	Spezifischer Widerstand ϱ für W 95 Re5 in Abhängigkeit von der Temperatur T	46
17	Wärmeleitfähigkeit λ für W95Re5 in Abhängigkeit von der Temperatur T .	48
18	Temperaturleitfähigkeit a für W95Re5 in Abhängigkeit von der Temperatur T	49
19	Expansion $\left(\frac{d(T)}{d_0}\right)^2$ für W74Re26 in Abhängigkeit von der Temperatur T.	51
20	Spezifische Enthalpie H für W74Re26 in Abhängigkeit von der Temperatur T	52
21	Spezifischer Widerstand ϱ für W74Re26 in Abhängigkeit von der Tempera-	
	tur T	54
22	Wärmeleitfähigkeit λ für W74Re 26 in Abhängigkeit von der Temperatur T	55
23	Temperaturleitfähigkeit a für W74Re26 in Abhängigkeit von der Tempera-	
	tur T	57
24	Expansion $\left(\frac{d(T)}{d_0}\right)^2$ für Mo52Re47 in Abhängigkeit von der Temperatur T .	59
25	Spezifische Enthalpie H für Mo 52 Re 47 in Abhängigkeit von der Temperatur T	60
26	Spezifischer Widerstand ϱ für Mo52Re47 in Abhängigkeit von der Tempe-	
	ratur T	62
27	Wärmeleitfähigkeit λ für Mo52Re 47 in Abhängigkeit von der Temperatur T	63
28	Temperaturleitfähigkeit a für Mo52Re47 in Abhängigkeit von der Tempe	
	ratur T	65
29	Expansion $\left(\frac{d(T)}{d_0}\right)^2$ für Ni55Ti45 in Abhängigkeit von der Temperatur T .	67
30	Spezifische Enthalpie ${\cal H}$ für Ni55 Ti 45 in Abhängigkeit von der Temperatur ${\cal T}$	69

31	Spezifischer Widerstand ϱ für Ni55Ti45 in Abhängigkeit von der Tempera-	
	tur T	70
32	Wärmeleitfähigkeit λ für Ni55Ti45 in Abhängigkeit von der Temperatur T .	72
33	Temperaturleitfähigkeit a für Ni55Ti 45 in Abhängigkeit von der Tempera-	
	$\operatorname{tur} T \dots $	73
34	Expansion $\left(\frac{d(T)}{d_0}\right)^2$ für MoLa in Abhängigkeit von der Temperatur T	75
35	Spezifische Enthalpie ${\cal H}$ für MoLa in Abhängigkeit von der Temperatur ${\cal T}$.	76
36	Spezifischer Widerstand ϱ für MoLa in Abhängigkeit von der Temperatur T	78
37	Wärmeleitfähigkeit λ für MoLa in Abhängigkeit von der Temperatur T	79
38	Temperaturleitfähigkeit a für MoLa in Abhängigkeit von der Temperatur ${\cal T}$	81

Tabellenverzeichnis

1	Verwendete Pyrometer	18
2	Verfügbare Graufilter	26
3	Physikalische Details zu den verwendeten Legierungen	27
4	Ergebnisse der Expansionsmessung für W95Re5	42
5	Ergebnisse der spezifischen Enthalpie in Abhängigkeit von der Temperatur	
	für W95Re5	44
6	Ergebnisse des spezifischen Widerstands in Abhängigkeit von der Tempe-	
	ratur für W95Re5	44
7	Wärmeleitfähigkeit in Abhängigkeit von der Temperatur für W95Re 5	47
8	Temperaturleitfähigkeit in Abhängigkeit von der Temperatur für W95Re5 $% =1000000000000000000000000000000000000$	47
9	Ergebnisse der Expansionsmessung für W74Re26 \ldots	50
10	Enthalpiepolynome in Abhängigkeit von der Temperatur für W74Re26	50
11	Berechnete Widerstandspolynome in Abhängigkeit von der Temperatur für	
	W74Re26 \ldots	53
12	Wärmeleitfähigkeit in Abhängigkeit von der Temperatur für W74Re26 $\ .$.	53
13	Temperaturleitfähigkeit in Abhängigkeit von der Temperatur für W74 $\mathrm{Re26}$	56
14	Ergebnisse der Expansionsmessung für Mo52Re47	58
15	Berechnete spezifische Enthalpie in Abhängigkeit von der Temperatur für	
	Mo52Re47	58
16	Berechnete Widerstandspolynome in Abhängigkeit von der Temperatur für	
	Mo52Re47	61
17	Wärmeleitfähigkeit für Mo52Re47	61
18	Temperaturleitfähigkeit in Abhängigkeit von der Temperatur für Mo $52 Re47$	64
19	Ergebnisse der Expansionsmessung für Ni55Ti45	66
20	Berechnete Enthalpiepolynome in Abhängigkeit von der Temperatur für	
	Ni55Ti45 \ldots	68
21	Berechnete Widerstandspolynome in Abhängigkeit von der Temperatur für	
	Ni55Ti45	68
22	Wärmeleitfähigkeit in Abhängigkeit von der Temperatur für Ni $55\mathrm{Ti}45$	71
23	Temperaturleitfähigkeit in Abhängigkeit von der Temperatur für Ni $55 Ti45$.	71
24	Ergebnisse der Expansionsmessung für MoLa	74
25	Berechnete spezifische Enthalpie in Abhängigkeit von der Temperatur für	
	MoLa	74
26	Ergebnisse des spezifischen Widerstands in Abhängigkeit von der Tempe-	
	ratur für MoLa	77

27	Wärmeleitfähigkeit in Abhängigkeit von der Temperatur für MoLa	77
28	Temperaturleitfähigkeit in Abhängigkeit von der Temperatur für MoLa $.$.	80
29	Unsicherheit der Umwandlungsenthalpie für W95Re5, W74Re26, Mo52Re47	
	und Ni55Ti45	82
30	Unsicherheit für Expansion, spezifische Enthalpie, Wärmekapazität, korri-	
	gierten Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit $\ . \ . \ .$	82
31	Ergebnisse für W95Re5 von Expansion, spezifischer Enthalpie, spezifischen	
	Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit	83
32	Ergebnisse für W74Re26 von Expansion, spezifischer Enthalpie, spezifischen	
	Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit	84
33	Ergebnisse für Mo $52\mathrm{Re}47$ von Expansion, spezifischer Enthalpie, spezifi	
	schen Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit \hdots	85
34	Ergebnisse für Ni $55\mathrm{Ti}45$ von Expansion, spezifischer Enthalpie, spezifischen	
	Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit	86
35	Ergebnisse für MoLa von Expansion, spezifischer Enthalpie, spezifischen	
	Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit	87

Abkürzungen

- a ... Temperaturleitfähigkeit in W· K⁻¹·m⁻¹
- a_1 ... Temperaturleitfähigkeit bei T_1
- $a_{\rm s}$... Temperaturleitfähigkeit bei $T_{\rm s}$
- Δa_{s-1} ... Sprung der Temperaturleitfähigkeit beim gesamten Phasenübergang von fest nach flüssig $(a_s - a_l)$ einer Legierung
- at. wt. ... Atommasse
 - c_p ... spezifische Wärmekapazität bei konstantem Druck in J·kg^{-1}·K^{-1}
 - c_p^* ... genäherte spezifische Wärmekapazität bei konstantem Druck in J·kg^{-1}·K^{-1}knapp vor $T_{\rm s},$ zur Berechnung von a
 - C_p ... spezifische molare Wärmekapazität bei konstantem Druck in J·mol⁻¹·K⁻¹
 - d ... Durchmesser
 - d_0 ... Durchmesser bei ursprünglichem Querschnitt
 - H ... spezifische Enthalpie in kJ·kg⁻¹
 - H_1 ... Enthalpie bei T_1 im festen Bereich
 - $H_{\rm s}$... Enthalpie bei $T_{\rm s}$ im flüssigen Bereich
 - ΔH ... Enthalpieänderung $(H_1 H_s)$ beim gesamten Phasenübergang von fest nach flüssig einer Legierung
 - λ ... Wärmeleitfähigkeit in $10^{-6} \cdot m^2 \cdot s^{-1}$
 - λ_{l} ... Wärmeleitfähigkeit bei T_{l}
 - $\lambda_{\rm s}$... Wärmeleitfähigkeit bei $T_{\rm s}$
- $\Delta \lambda_{s-1}$... Sprung der Wärmeleitfähigkeit beim gesamten Phasenübergang von fest nach flüssig ($\lambda_s \lambda_l$) einer Legierung
 - ρ ... Dichte
 - ϱ ... spezifischer elektrischer Widerstand in $\mu\Omega$ ·m
- ρ_{IG} ... spezifischer elektrischer Widerstand bei ursprünglichem Querschnitt
- $\varrho_{IG,l}$... spezifischer elektrischer Widerstand bei T_l und bei ursprünglichem Querschnitt
- $\varrho_{\rm IG,s}$... spezifischer elektrischer Widerstand bei $T_{\rm s}$ und bei ursprünglichem Querschnitt
- $\Delta \rho_{\mathrm{IG,s-l}}$... Widerstandsänderung beim gesamten Phasenübergang von fest nach flüssig $(\rho_{\mathrm{IG,l}} \rho_{\mathrm{IG,s}})$ bei ursprünglichem Querschnitt einer Legierung
 - $\varrho_1 \quad \dots$ spezifischer elektrischer Widerstand bei T_1
 - $\varrho_{\rm s}$... spezifischer elektrischer Widerstand bei $T_{\rm s}$
- $\Delta \rho_{s-1}$... Widerstandsänderung beim gesamten Phasenübergang von fest nach flüssig $(\rho_1 \rho_s)$ einer Legierung

- T ... Temperatur in K (Kelvin)
- T_1 ... Liquidustemperatur; Temperatur einer Legierung bei gerade vollständiger Verflüssigung
- T_m ... Schmelztemperatur
- $T_{\rm s}$ $\ \ldots$ Solidustemperatur; Temperatur einer Legierung bei gerade vollständiger Erstarrung
- V/V_0 ... volumetrische Expansion
- wt.~% \ldots Massen prozent
- W95Re5 ... Die Buchstaben kennzeichnen chemische Elemente; die nachfolgende Zahl gibt die Massenprozent des zuvor genannten Elements

1 Einleitung

1.1 Legierungen, ein kurzer geschichtlicher Rückblick

Eine der ersten uns bekannten Legierung, welche der Mensch hergestellt hat, war Bronze¹. Diese Legierung wird schon seit ein paar Jahrtausenden vom Menschen produziert. Allerdings war es ein weiter Weg von der reinen "Versuch und Irrtum"-Methode bis hin zur wissenschaftlich fundierten Legierungsforschung². Einzig der Zufall³ spielt heute wie damals eine wichtige Rolle.

Erste Anfänge der wissenschaftlichen Untersuchung gab es bereits im alten Griechenland, als Archimedes das nach ihm benannte Archimedische Prinzip entdeckte. Er bekam vom König⁴ den Auftrag herauszufinden, ob seine bestellte Goldkrone tatsächlich aus reinem Gold besteht. Mit einem gleich schweren Goldbarren konnte Archimedes beweisen, dass die Krone mehr Wasser verdrängte als der Barren. Er folgerte daraus, dass die Krone nicht aus reinem Gold, sondern aus einer Legierung mit geringerer **Dichte** gefertigt wurde.

Eine weiter wichtige Eigenschaft von Legierungen und Reinmetallen ist der **elektrische Widerstand**. Eine besondere Rolle bei den Legierungen nimmt z. B. Manganin[®] ein. Diese Legierung besteht aus über 86% Kupfer, über 12% Mangan sowie einem geringen Anteil von 2% Nickel und hat einen weitgehend konstanten Widerstandsverlauf bis zu $100^{\circ}C^{5}$. Diese Eigenschaft macht z. B. diese Legierung interessant für Messwiderstände.

1.2 Motivation und Ziele

In der Arbeitsgruppe Subsekunden Thermophysik am Institut für Experimentalphysik der Technischen Universität Graz werden schon seit Jahrzehnten Messungen mit der ohmschen Pulsheizmethode durchgeführt. Ein Experiment ist in Bruchteilen einer Sekunde vorbei und bietet die Möglichkeit, thermophysikalische Daten von Metallen und Legierungen zu erfassen und auszuwerten, die auf andere Weise ungemein komplizierter zu erhalten sind. Legierungen verursachen dabei oft noch zusätzliche Probleme, da viele von ihnen einen Schmelzbereich⁶ haben. Daraus resultiert ein "schiefes" Schmelzplateau.

Eine Legierung kann weiters Inhomogenitäten aufweisen, wenn die Legierungspartner keinen Mischkristall⁷ bilden. Liegen Inhomogenitäten vor, dann schmilzt das Material ungleichmäßig und kann zu stark streuenden Ergebnissen führen.

¹siehe unter Bronzezeit [1] Band 4 S. 707-711

²siehe [1] Band 9 (wissenschaftliche) Forschung S. 483-485

 $^{^{3}}$ siehe [2]

⁴aus [3] S. 30-31

⁵aus [4], siehe Anhang S. 89

 $^{{}^{6}}_{-}$ siehe [5] S. 109

⁷siehe [6] S. 174

Im Experiment werden folgende Daten erfasst⁸:

- Spannung der Spannungsschneiden U_{HOT} und U_{COLD} ,
- Strom I induktiv,
- Strahlungsintensität mit Pyrometer,
- und die Expansion über die Kamera.

Unter Verwendung der Schmelztemperatur (oder des Schmelzbereichs) und der Dichte bei Raumtemperatur lässt sich daraus

- Expansion $\left(\frac{d(T)}{d_0}\right)^2$,
- spezifische Enthalpie H,
- unkorrigierter spezifischer elektrischer Widerstand ρ_{IG} ,
- und in weiter Folge korrigierter spezifischer elektrischer Widerstand $\varrho,$
- Wärmeleitfähigkeit λ ,
- \bullet und Temperaturleitfähigkeit a berechnen.

 $[\]overline{^8}$ für Details siehe Kapitel 2

2 Messapparaturen

Der wichtigste Teil des Messaufbaus ist der Pulsheizekreis. Es wird der Strom durch die gesamten Drahtprobe, sowie der Spannungsabfall zwischen 2 Stellen des Drahtes während des Experiments gemessen. Gleichzeitig erfasst ein Pyrometer die Strahlungstemperatur der Oberfläche des Drahtes. Die Ausdehnung des Drahtes während des Aufheizens wird mit einem System aus Foto-Blitz, Blende, IR⁹-Filter (Details siehe S. 90), Probe, Linse und Kamera erfasst. Der Draht erwärmt sich und dehnt sich während des Experiments aus und "schattet" somit mehr und mehr das Blitzlicht ab, was von der Kamera erfasst wird.

2.1 Aufbau

Abbildung 1: Schematischer Aufbau des Pulsheizkreises, entnommen und angepasst aus [7] S. 5.

S: Schalter; R_{CROW} : Kurzschlusswiderstand; $IG_{1,2}$: Start-, Löschignitron; R_V : Vorschaltwiderstand; R_L , L_L : ohmscher, induktiver Lastwiderstand; PP: Strommesssonde (Pearson-Probe); HG: Hochspannungsgenerator; C: Kondensatorbank; PY: Pyrometer; IF: Interferenzfilter; L: Linse; R_{1-4} : Spannungsteilerwiderstände¹⁰; SS_{1,2}: Spannungsschneiden; R_P , L_P : ohmscher, induktiver Widerstand der Probe; PG: Pulsgenerator; A: Verstärker; F: Lichtwellenleiter; D: Detektor; AD: Analog/Digital Konverter (Messkarte); I: Strom; U_{HOT} , U_{COLD} : Spannungsabfall an der Probe; J: Pyrometersignal

 $^{^9 \}mathrm{Infrarot};$ Wellenlängenbereich von 0,78 $\mu\mathrm{m}$ bis 1000 $\mu\mathrm{m}$

Abbildung 2: Einzustellende Zeitwerte in μ s beim Verzögerungs-Pulsgeber (in Abb. 1 PG):

- Input ... Start des Experiments
- T 1-2 ... Vorlaufzeit für Blitz
- T 2-3 ... Zeitversatz (Shift) für Bildaufzeichnung und Start des Pulzheizens
- T 3-4 ... Ende des Experiments
- T 4-5 ... ungenutzter Pulsgeber

Details zum zeitlichen Ablauf des Experiments anhand der Einstellungen in Abb. 2:

Der Beginn des Experiments wird durch Drücken des **Input**-Knopfes eingeleitet. Er startet die elektronische Datenerfassung bei PC1 und den Blitz (siehe Abb. 4 A).

Die Vorlaufzeit (**T** 1-2) ist ein konstanter Wert, der abhängig vom verwendeten Blitz ist. Sie gibt an, nach welcher Zeit mit der Aufnahme der Bilder begonnen werden soll. Denn erst nach dieser Zeit kann ein gleichmäßiges Helligkeitsplateau (etwa 100 μ s lang) gewährleistet werden.

Ist die Vorlaufzeit vergangen, startet die Kameraaufzeichnung. Abhängig vom Aufbau der (Expansions-)Kamera benötigt der CCD-Chip¹¹ (576 × 384 Pixel, aus [8] S. 38) mehr oder weniger Zeit zum Speichern der Daten. Die diesem Versuchsaufbau zugrundeliegende Kamera ist für 32, 16 oder 8 Zeilenaufnahmen ausgelegt, wobei der restliche Chip als

¹⁰Unter einem Spannungsteiler versteht man mindestens zwei in Serie geschaltete Widerstände, die die anliegende Spannung entsprechend dem Verhältnis der Widerstände aufteilen. Das ist z. B. dann sinnvoll, wenn Bauteilspezifikationen eingehalten werden müssen.

¹¹CCD-Sensoren: lichtempfindliche, elektronische Bauelemente; beruhend auf innerem Photoeffekt

schneller Zwischenspeicher dient. Bei 32 Zeilen vergeht nach jedem Bild 10 μ s, bei 16 Zeilen 5 μ s und bei 8 Zeilen 2,5 μ s. Entsprechend dieser Zeitintervalle wird das sukzessive Ausdehnen des Drahtes aufgenommen. Um Zwischenpunkte der Expansion und damit einen aussagekräftigeren Kurvenverlauf zu erhalten, verwendet man bei 16 und 32-Zeilen Konfiguration den Zeitversatz (Shift **T 2-3**, bei 16 Zeilen in 1 μ s Schritten, analoges gilt für 32 Zeilen). Bei 8 Zeilen ist ein Shift prinzipiell nicht mehr notwendig, der optische Aufbau ist aber wesentlich schwieriger zu justieren als bei den beiden anderen Konfigurationen, weshalb sich 16 Zeilen besser bewährt haben.

Der nächste Impuls erfolgt nach Ablauf des Shifts **T** 2-3. Das Signal gelangt zu einem sogenannten Krytron¹² (siehe Abb. 3 A) und erzeugt einen Hochspannungsimpuls (hier: mit 3 kV geladener Kondensator der Kapazität 0.25 μ F¹³). Ein galvanisch getrennter Triggertransformator schaltet durch diesen Impuls das Ignitron IG₁ (siehe Abb. 1 IG₁ und Abb. 3 B) ein. Erst jetzt beginnt das Entladen der Kondensatorbank (Abb. 1 C) über die Drahtprobe.

Der letzte Wert T3-4 gibt an, wie lange der Draht geheizt wird. Nach Ablauf der Zeit wird die restliche Spannung gegen Erde abgeleitet.

T 4-5 ist bei diesem Aufbau ungenutzt.

Der Pulsheizkreis in Abbildung 1 umfasst:

- Hochspannungsgenerator (variabel von 0-10 kV, HG),
- Kondensatorbank (500 μ F, max 10 kV; C),
- Schalter des Hochspannungsgenerators (S),
- zwei Ignitrons¹⁴ Type BK508 der Firma EEV, England ¹⁵ (IG₁, IG₂; Abb. 3 B),
- den Kurzschlusswiderstand¹⁶ ($R_{CROW} = 0.2 \Omega$; Abb. 3 D),
- den Vorschaltwiderstand (1/2 oder $1/4 \Omega$; R_V),
- den eingespannten Draht (Abb. 5 C),
- Erdung,
- sowie den ohmschen und induktiven Widerstand der Leitungen (R_L, L_L) .

¹²Das ist ein schneller Schalter, einer auf der Grundlage von Ni-63 vorionisierten Entladungsstrecke, bei uns vom Typ KN-6, Fa. EG&G, Salem, MA, USA.

¹³[8] S. 29

¹⁴Per Zündelektrode gesteuerter Quecksilberdampfgleichrichter, der in 500 ns Ströme bis zu 100 kA schalten kann und hier eine Durchbruchsspannung höher als 50 kV besitzt (aus [8] S. 29).
¹⁵aus [8] S. 29

¹⁶hier als Crowbar Widerstand (= parallel und seriell angeordnete Graphitstäbe) ausgeführt

Mit dem Schalter (S) schaltet man den Hochspannungsgenerator (HG) ein und lädt die Kondensatorbank (C) für ein Experiment auf, gleichzeitig wird die Ladespannung mit einem Digitalvoltmeter (die Anzeige enspricht dem ¹/276-ten Teil der Ladespannung) laufend mitgemessen.

Das erste Ignitron (IG_1) startet das Heizen des Drahtes, das zweite Ignitron (IG_2) beendet das Experiment nach einer wählbaren Zeit (in Abb. 2 T 3-4), indem es Kondensator und den Vorwiderstand kurzschließt. Der Vorteil des zweiten Ignitrons liegt u. a. darin, Verschmutzungen der Probenkammer zu minimieren, Plasmaentladungen zu unterbinden, sowie in der Schonung der Bauteile.

Weiters besteht die Möglichkeit beim Vorschaltwiderstand zwischen $1/2 \Omega$ und $1/4 \Omega$ zu wählen. Dies dient zur Regulierung der Geschwindigkeit des Heizens, da die (variable Länge der) Drahtprobe meist einen vergleichsweise niedrigen Widerstand besitzt. Somit hat man einen größeren Einfluss auf die Anzahl der Bilder in der flüssigen Phase.

Die Messungen und Datenaufnahme erfolgen durch folgende Komponenten:

- Strommesssonde (in Abb. 1 PP, Abb. 3 I)
- Erfassen von U_{HOT} und U_{COLD} über Spannungsteiler $R_{1,2}$, $R_{3,4}$ (Abb. 3 J)
- Pyrometer mit Lichtwellenleiter, Photodiode und Verstärker (in Abb. 1 PY, F, D, A) an PC1 (siehe Abb. 1; Spezifikation des Pyrometers siehe Tabelle 1; Abb. 4 G)
- Die im Schema 1 nicht ausgeführte Expansionsmessung (siehe Abb. 4)
- Zwei Messkarten
- PC1 mit Software Insight V2.38d, zur Erfassung von Strom I, Spannungen $U_{\rm HOT}$ und U_{COLD} sowie Pyrometersignal J und Triggerstart
- PC2 mit Software *WinSIS6* V6.02a, zum Erfassen der Bilder des CCD-Chips

Tabelle 1: Verwendete Pyrometer, eingeteilt nach ihren Interferenzfiltern (Filterdaten aus Datenblättern) bzw. Einsatzbereichen¹⁷

$\Delta \lambda$ Halbwertsbreite (FWHM) des Filters							
Bezeichnung	λ_0	$\Delta\lambda$	Temperaturbereich				
	nm	nm	Κ				
650	649.7	37.2	2100 < T < 5500				

83.6

1100 < T < 2500

1569.5

 $\lambda_0 \ldots$ Zentrale Wellenlänge

1570

¹⁷entnommen und angepasst aus [9] S. 38

19

A ... Blitz B ... Blende C ... IR-Filter D ... Probenkammer E ... Kamera

I ... Einschaltknopf J ... einstellbarer Verstärkungsfaktor

2.1 Aufbau

Aufgrund der sehr kurzzeitigen, starken Veränderungen der Ströme während des Experimentes sind alle Messleitungen durch geschirmte Kupferrohre geführt, um elektromagnetische Einstreuungen in die Messsysteme zu verhindern.

Die Strommesssonde ist eine sogenannte Pearson-Probe¹⁸, hergestellt und kalibriert durch die Firma Pearson Electronics¹⁹. Durch einen eingebauten Integrator und Spannungsteiler wird der Strom induktiv gemessen (aus [9] S. 35) und an PC1 gesendet. Entlang der Drahtprobe gibt es zwei Messkontaktstellen (U_{HOT} , U_{COLD} , Abb. 5 B). Dort wird der jeweilige Spannungswert abgenommen, den Spannungsteilern zugeführt (Abb. 5 A und Abb. 3 J) und dann zum PC1 weitergeschickt.

Ein Pyrometer (verwendet wurden 650 nm oder 1570 nm²⁰) detektiert die Strahlungsintensität der Drahtoberfläche und sendet ein optisches Signal an eine Photodiode (siehe Abb. 1 D), deren Signal über einen nachgeschalteten Verstärker zur Messkarte des PC1 gelangt. PC1 ist in einem Faradyraum untergebracht, ebenfalls um Einflüsse elektromagnetischer Strahlung auf die Messung zu verhindern. Über die bereits erwähnten geerdeten Kupferrohre werden sämtliche Messleitungen in den Faradyraum geführt.

Bei der Expansionsmessung wird zu Beginn des Experiments ein (handelsüblicher Foto-) Blitz mit ausgelöst. Eine nachfolgende Blende (Abb. 3 E bzw. Abb. 4 B) stellt ein parallel gerichtetes Strahlenbündel sicher. Blitz und Blende sind auf die Probe auszurichten. Anschließend eliminiert ein IR-Filter²¹ (Abb. 3 F bzw. Abb. 4 C) unerwünschte Frequenzen des Blitzspektrums. Der Drahtschatten wird gemeinsam mit dem verbleibenden Licht auf das Kamerasystem mit einer Linse (f = 60 mm; Abb. 3 H) fokussiert.

Das Kamerasystem besteht aus:

- Multichannelplate (Elektronenvervielfacher)
- Phosphorschicht
- Objektiv mit einer 1:1 Abbildung
- CCD-Chip
- Ansteuerung

Dieses wird durch die Kamerasteuerung (siehe Abb. 4) bedient, an der sich der Verstärkungsfaktor (in Abb. 4 J) der Multichannelplate und die Bildfrequenz einstellen lassen. Die

¹⁸komplette Spezifikation des verwendeten Modells 3025 bei [10] verfügbar bzw. im Anhang auf S. 91
¹⁹Homepage der Firma Pearson Electronics: http://www.pearsonelectronics.com

²⁰Entsprechend dem Schmelzpunkt des Materials wählt man das passende Pyrometer (siehe Tabelle 1). Prinzipiell gilt, je niedriger der Schmelzpunkt des Materials, desto höher die Wellenlänge.

 $^{^{21}\}mathrm{Der}$ Durchlassbereich liegt bei etwa 300-800 nm und fällt bei 900 nm auf etwa 8%. (siehe S. 90)

Belichtungszeit von 600 ns wird extern (Abb. 4 H) der Kamerasteuerung zugeführt. Am Ende jedes Versuchs wird der CCD-Chip ausgelesen und die Daten an PC2 übermittelt.

Mit der Software *Insight* der Firma Dewetron am PC1 werden die Signale der beiden Messkarten grafisch dargestellt und können als mdf-Datei sowie als ASCII-Datei gespeichert und weiterverarbeitet werden.

Am PC2 wird die Software *WinSIS6* der Firma Theta System Elektronik GmbH verwendet. Nach erfolgreichen Messungen können die Daten als SIS, ASCII, oder JPG-Datei abgespeichert werden. Bei jeder Messung ist zuerst ein Kaltbild (kurz vor dem Pulsheizen des Drahtes) und dann ein Heißbild (während des Experiments) aufzunehmen, um die Ausdehnung des Drahtes zu den gleichen Zeitpunkten vergleichen und auswerten zu können.

2.2 Experimentablauf

2.2.1 Starten der Messaparaturen

Schalter betätigen für:

- Strom für HG (siehe Abb. 1) und Faraday Raum (mit PC1 und Pyrometer)
- Einschalten des PC1
- Strom des Pulsgenerator
- IR-Lampen zum Heizen der Ignitrons
- Einschalten des PC2
- Blitz und Lampe
- Kamerasteuerung

Weiters sind noch die Software *Insight* und *WinSIS6* zu starten, das Ventil des Inertgases²² (meist Stickstoff, manchmal auch Argon) zu öffnen - um das Druckrohr unter Druck zu setzen - und der Netzadapter für die Belichtungssteuereinheit einzustecken.

2.2.2 Vor dem Experiment

Zuerst werden alle Parameter am Pulsgenerator eingestellt. Dann schließt man das verwendete Pyrometer an und wählt den passenden Messbereich für die 4 Messkanäle am PC1 vom Programm *Insight* aus, wobei ein Bereich von 100 mV bis 5 V zur Verfügung

 $^{^{22}{\}rm chemisch}$ reaktionsträges Gas

Abbildung 5: Probenhalterung mit Spannungsschneiden:

- A ... geschirmte Messleitung für U_{HOT} und U_{COLD}
- B ... Spannungsschneiden (unten U_{HOT} , oben U_{COLD} gegen Masse)
- C ... Drahtprobe

Abbildung 6: Messgeräte zur Längen- und Durchmesserbestimmung:

- A ... Einspannvorrichtung B ... Messkathetometer
- C ... diversen Durchmesserhalterungen
 - D ... Lasermikrometer der Firma Keyence²³
 - E ... Steuereinheit des Lasermikrometer

steht. Die Elektronik des 650 nm Pyrometer ist für einen Aussteuerbereich von max. 1 V ausgelegt, während das 1570 nm Pyrometer für 5 V konzipiert ist.

Die Präparation der Drahtprobe umfasst folgende Schritte:

- 1. Ablängen der benötigten Drahtprobe
- 2. Zuschneiden von 2 Molybdänspannungsschneiden (mit V-Kerbe für $U_{\text{HOT}}, U_{\text{COLD}}$)
- 3. Einseitiges Einspannen in die Drahthalterung
- 4. Reinigen und Glätten der Oberfläche mittels Schmirgelpapier (1200er-Körnung)
- 5. Reinigen der Oberfläche mit Aceton von Fett und verbliebenen Metallspänen
- 6. Messreihe des Drahtdurchmessers mit Lasermikrometer²³ erstellen (siehe Abb. 6 D)
- 7. Einspannen des Drahtes in die Probehalterung
- 8. Isolieren der Probenhalterung gegen Entladungen mit Plastilin (bei Bedarf)
- 9. Anbringen der Spannungsschneiden
- Messen der Distanz²⁴ zwischen den beiden Spannungsschneiden mit Messkathetometer (Skalenteiler ²/100 mm; siehe Abb. 6 B)

²³Hersteller: Keyence, Steuergerät: Modell: LS-7001, Messgerät: 7010R, Details siehe S. 92-93

 $^{^{24}}$ benötigt man u. a. für die Berechnung des spezifischen Widerstands, siehe Gl. 4.2

Die nichtleitende Probenhalterung (Abb. 5) verschraubt man mit der schwarz²⁵ eloxierten Probenkammer (Abb. 3 G) und verriegelt die Verkabelung für U_{HOT} , U_{COLD} mit einem Bajonettverschluss (Abb. 3 J) an der Probenhalterung.

Danach erfolgt das Fluten der Probenkammer für etwa 8 Sekunden mit einem Inertgas (Abb. 3 K), um mögliche chemische Reaktionen des Umgebungsgases mit der Probe - insbesondere während der Messung - sowie mögliche Entladungen zwischen Probe und Probenhalterung zu unterbinden. Ein Absperrventil stellt dabei sicher, dass die Kammer unter 1.3 bar Überdruck bleibt und keine anderen Gase zurück in die Probenkammer gelangen.

Zur Fokussierung des Pyrometers klappt man einen (Kipp-)Spiegel um und bestrahlt den Draht mit einer gesonderten Lichtquelle durch ein Glas in der Probenkammer. Bei den im Versuchsaufbau zugrundeliegenden Pyrometern befindet sich die optimale Position bei der Stelle 1.0 auf der Okularskala. Dies gewährleistet bestmögliche Intensitätsmessungen und vergleichbare Resultate. Durch Zurückklappen des Spiegels ist das Pyrometer für Messungen bereit. Bei Bedarf montiert man noch einen Graufilter²⁶ aus dem Graufiltersatz (siehe Tabelle 2) zur Reduktion der Intensität des Lichts und damit zur Änderung des zu messenden Temperaturbereichs.

Im rechten Winkel zur Pyrometeranordnung wird die Expansionsmessung durchgeführt. Der Blitz ist auf höchstmögliche Helligkeit einzustellen. Die Blende garantiert ein paralleles Strahlenbündel durch das Eintrittsfenster auf den Draht. Dabei ist darauf zu achten, dass keine Vignettierung durch Verkippung oder Verdrehung auftritt. Unerwünschte Anteile des Blitzlichtes, die das Pyrometer stören können, werden durch einen IR-Filter unterdrückt. Die Abbildung des Drahtes erfolgt durch das Austrittsfenster über eine Linse auf die Kamera. Mit einer Mikrometerschraube erfolgt die Feinjustierung der Abbildungslinse. Jede Überprüfung der Justage erfolgt durch Aktivierung der Aufzeichnung am PC2 und dem Start des Experiments, allerdings ohne geladenen Kondensator. Um Streulicht zu minimieren erfolgt dies bei ausgeschalteter Deckenbeleuchtung. Ist man mit der Justierung zufrieden, speichert man das entstandene Bild als Kaltbild der Probe ab.

2.2.3 Start des Experiment

Zuerst stellt man beide PC's auf Empfangsbereitschaft und schließt die Tür zum Faradayraum. Man unterbricht den Kontakt jenes Bügels, der die Kondensatorplatten verbindet, sowie den Erdungsbügel. Die Krytrons schaltet man ein und aktiviert den Zeitschalter, der die IR-Lampen deaktiviert sowie den Hochspannungsgenerator aktiviert.

 $^{^{25}{\}rm zur}$ Verminderung von Streulicht

²⁶auch Neutralfilter genannt

Der Generator ist jetzt betriebsbereit und der Kondensator lässt sich auf die gewünschte Spannung laden. Ist die Spannung erreicht, schaltet man den Generator aus und startet das Experiment.

Tabelle 2: Verfügbare Graufilter

D^*	$\frac{I_T}{I_0}$ in %	D^*	$\frac{I_T}{I_0}$ in %	D^*	$\frac{I_T}{I_0}$ in $\%^{27}$
0.1	79.43	0.5	31.62	0.9	12.59
0.2	63.09	0.6	25.12	1.0	10.00
0.3	50.11	0.7	19.95	1.3	5.01
0.4	39.81	0.8	15.85	2.0	1.00

 $I_{\rm T}$... durchgelassene Intensität; I_0 ... einfallende Intensität; D^* ... optische Dichte

2.2.4 Nach dem Experiment

Nun hat man wieder alle Sicherheitsmaßnahmen aktivieren - Schließen des Bügels der Kondensatorplatten und Anschluss der Erdung. Dann schaltet man die Krytrons wieder aus und spült die Probenkammer wieder etwa 8 Sekunden lang mit frischem Inertgas, um sie von entstandenen Schwebepartikel zu reinigen und diese im nachfolgenden Wasserbad zu binden. Die Messergebnisse sind an beiden PCs zu speichern. Es erfolgen noch die Reinigung von Probenkammer und Probenhalterung mit Alkohol sowie das Entfernen von Metallresten mittels Schmirgelpapier (Körnung 240).

Sind keine weiteren Messungen geplant ist das Ventil des Inertgases zu schließen und das Druckrohr zu entlüften. Alle unter Punkt 2.2.1, *Starten der Messapparaturen*, angeführten Schalter sind nun wieder in umgekehrter Reihenfolge auszuschalten.

²⁷ berechnet nach Formel 4.15

3 Untersuchte Proben

Die Legierungen Mo25Re
47 und Ni55Ti45 wurden von Goodfellow²⁸, die Legierungen W74Re
26, W95Re5 sowie Mo-La₂O₃ von Plansee²⁹ bezogen. Alle Proben haben einen runden Querschnitt.

Tabelle 3: Physikalische Details zu den verwendeten Legierungen

 $T_m, T_s - T_1 \dots$ Schmelzpunkt oder Solidus-/Liquidus-Temperatur

- Dichte ... Dichte der Legierung bei Raumtemperatur (20 $^{\circ}$ C)
 - \varnothing ... Durchmesser laut Angabe des Herstellers
 - PD ... Phasendiagramm
 - GF ... Goodfellow Cambridge Limited
 - Diss. ... entnommen aus Dissertation von Boris Wilthan [11] S. 29
 - CRC ... CRC Handbook of Chemistry and Physics

Bezeichnung	Zusammensetzung	$T_m, T_s - T_l$	Dichte	Ø	Quelle
	in Massen- $\%$	in K	in kg/m^3	in mm	T, Dichte
W95Re5	95% W 5% Re	3570 - 3650	19400	0.5	PD[12], GF[13]
W74Re26	74% W 26% Re	3313 - 3423	19700^{30}	0.5	GF[13], GF[13]
Ni55Ti45	55% Ni 45% Ti	1583	6500	0.8	PD[12], GF[13]
Mo52Re47	52% Mo $47%$ Re	2798 - 2823	13500	0.5	PD[12], Diss.
Mo-La ₂ O ₃	99%+ Mo <1% La ₂ O ₃	2896^{31}	10220^{31}	0.5	CRC[14], GF[13]

W-Re: Wolfram, als Reinmetall mit der höchsten Schmelztemperatur, findet insbesondere in den Bereichen Anwendung, wo hohe Temperaturbeständigkeit gefragt ist. Durch Zulegieren von Rhenium, einem weiteren hochschmelzendem Metall, erreicht man Eigenschaften wie höhere Warmfestigkeit und verbesserte Kriechfestigkeit. Anwendungen findet man in Luft- und Raumfahrt, Medizintechnik und im Ofenbau als Thermoelement (siehe [15]).

Das Phasendiagramm (Abb. 7) zeigt, dass Wolfram und Rhenium nicht beliebig mischbar sind.

Ni55Ti45: Es handelt sich dabei um die älteste und bekannteste Formgedächtnislegierung, besser bekannt unter seinem Markennamen Nitinol[®]. Formgedächtnislegierungen werden unter anderem in der Medizin eingesetzt, zum Beispiel für Stents [16]. Das Phasendiagramm von Ni-Ti (Abb. 8) zeigt das für Legierungen seltene Auftreten eines Schmelzpunktes, man bezeichnet das Material an dieser Stelle kongruent schmelzend (aus [17] S. 46).

²⁸Homepage der Firma Goodfellow GmbH http://www.goodfellow.com/

²⁹Homepage der Firma Plansee: http://www.plansee.at/

³⁰entspricht der Dichte für W75Re25, wird hier auch für W74Re26 verwendet, da Dichte für z. B. W95Re5 kaum geringer ist und da nur ein Unterschied 1% besteht

 $^{^{31}}$ Schmelzbereich unbekannt, geringer Anteil von La₂O₃ rechtfertigt Werkstoffdaten von Mo

Abbildung 7: Phasendiagramm für Wolfram-Rhenium aus [12].

Abbildung 8: Phasendiagramm für Nickel-Titan aus [12].

Abbildung 9: Phasendiagramm für Molybdän-Rhenium aus [12].

Mo52Re47: Dies ist eine weitere Hochtemperaturlegierung, die z. B. bessere Schweißeigenschaften besitzt als reines Molybdän, sowie größere Festigkeit. Es hat ähnliche Anwendungsgebiete wie W-Re: Luft- und Raumfahrt, als Thermoelement und bei Schweißkonstruktionen [18].

Wiederum sind diese Elemente nicht miteinander in beliebigen Verhältnissen mischbar (siehe Abb. 9), sondern in Mo leichter lösbar als umgekehrt. Der relativ geringe Temperaturunterschied zwischen Solidus- und Liquidustemperatur ändert sich im Bereich von reinem Molybdän - bei 2896 K - bis etwa 66 Massen-% Rhenium bei 2778 K nur geringfügig.

Mo-Lanthanoxid: Durch Dotierung von Molybdän mit weniger als ein Massen-% La₂O₃ ergibt sich für diese Legierung insbesondere verbesserte Kriecheigenschaften [19] als für reines Molybdän. Anwendungsgebiete gibt es wiederum im Hochtemperatur-Ofenbau [20]. Durch den geringen Legierungsanteil werden die Werkstoffkenndaten von Molybdän verwendet und dafür erhöhte Fehler bei der Unsicherheitsanalyse angenommen.

4 Verwendete Formeln

Die Auswertung der Messdaten erfolgt mit dem Programm *Hotwire*, das in der Diplomarbeit von Sachsenhofer F., siehe [7] ab Seite 26, ausführlich beschrieben ist. Zu berücksichtigen ist, ob bei der Expansion ein IR-Filter vor dem Blitzlicht verwendet wird oder nicht. Für das 650 nm Pyrometer macht die Verwendung des Filters keinen Sinn, da der Filter für diese Frequenzen fast vollständig durchlässig ist. Es hat sich bewährt³² die Nulllinie der Messgrößen in diesem Fall zwischen 180 μ s und 230 μ s zu ermitteln. Für alle anderen vorhanden Pyrometer ist dies nicht notwendig, da die Durchlässigkeit ab 900 nm unter 8% fällt.

4.1 Spezifischer Widerstand

Aus dem Experiment erhalten wir die Daten I, U_{HOT} und U_{COLD} . U_{HOT} bezeichnet die Spannung am Spannungsteiler, die vom längeren Drahtstück gegen Erde abfällt, U_{COLD} dementsprechend vom kürzeren (siehe Abb. 1). Die Differenz der beiden liefert dann den Spannungsabfall für die zuvor gemessene Drahtlänge l. Ausgehend vom Ohmschen Gesetz (4.1) lässt sich der Widerstand berechnen.

$$R = \frac{U}{I} \tag{4.1}$$

R ... Widerstand

U ... Spannung

 $I \ldots Strom$

In dieser Arbeit handelt es sich um zylindrische Drähte, deshalb berechnet sich der spezifische Widerstand ϱ zu:

$$\varrho = \frac{U}{I} \cdot \frac{d^2 \cdot \pi}{4} \cdot \frac{1}{l} \tag{4.2}$$

- $\varrho \ \dots$ spezifischer Widerstand
- U ... gemessene Spannung zwischen U_{HOT} und U_{COLD}
- $I \ldots$ gemessener Strom
- $d \ldots$ gemessener Durchmesser
- $l_{-}\ldots$ mit Messkathetometer gemessene Länge des Drahtstücks

 $^{^{32}}$ siehe [8] S. 37

Da sich der Querschnitt der Probe während des Experiments ausdehnt, lässt sich ohne zusätzliche Messungen der Widerstand nur auf den ursprüngliche Durchmesser³³ beziehen:

$$\varrho_{\rm IG}(T) = \frac{U(T)}{I(T)} \cdot \frac{d_0^2 \cdot \pi}{4} \cdot \frac{1}{l}$$

$$\tag{4.3}$$

 $\varrho_{\rm IG}(T)$... spezifischer Widerstand bezogen auf den ursprünglichen Durchmesser

 d_0 ... ursprünglich gemessener Durchmesser

U(T) ... gemessene Spannung zwischen U_{HOT} und U_{COLD}

I(T) ... gemessener Strom

l ... mit Messkathetometer gemessene Länge des Drahtstücks

Liegen Expansionsmessungen vor, besteht die Möglichkeit das Verhältnis der Volumsänderung zu berücksichtigen. Das Experiment erfolgt so rasch, dass sich der Draht nur in 2 Dimensionen - und zwar entlang des Querschnitts - ausdehnt. Deshalb kann man beim Verhältnis die Länge l kürzen. Nach weiterem Kürzen und Umformen von $\frac{\varrho}{\rho_{IG}}$ erhält man:

$$\varrho(T) = \varrho_{\rm IG}(T) \cdot \left(\frac{d(T)}{d_0}\right)^2 \tag{4.4}$$

 $\varrho(T)$... spezifischer Widerstand mit Berücksichtigung der Temperaturänderung $\varrho_{IG}(T)$... spezifischer Widerstand bezogen auf den ursprünglichen Durchmesser d(T) ... Durchmesser mit Berücksichtigung der Temperaturänderung d_0 ... ursprünglich gemessener Durchmesser

³³Der Index IG steht für **initial geometry**, frei übersetzt ursprünglicher Durchmesser. In früheren Arbeiten am Institut auch als ρ_0 bezeichnet.

4.2 Spezifische Enthalpie

Ebenso wie der Widerstand ändert sich auch die Enthalpie. In dem von uns untersuchten Zeitbereich kann man das Pulsheizen in guter Näherung als isobaren Prozess annehmen. Aus diesem Grund lässt sich die spezifische Energie der Änderung der spezifischen Enthalpie gleichsetzen. Sie lässt sich berechnen aus:

$$H(t) - H_{298} = Q(t) = \frac{1}{m} \cdot \int_{0}^{t} U(t') \cdot I(t') dt'$$
(4.5)

- H(t) ... spezifische Enthalpie zur Zeit t
- H_{298} ... spezifische Enthalpie bei Raumtemperatur (25°C = 298 K) und Umgebungsdruck (101325 Pa)
- Q(t) ... spezifische Energie zur Zeit t
- m ... Masse des Drahtes
- U(t') ... Spannung zur Zeit t'
- I(t') ... Strom zur Zeit t'

Der Bezugspunkt H_{298} wird i. d. R. Null gesetzt.

Für die Masse eines Zylinders gilt:

$$m = \rho \cdot V = \rho \cdot l \cdot \frac{d^2}{4} \cdot \pi \tag{4.6}$$

m . . . Masse

 $\rho~\ldots$ Dichte

V ... Volumen

- d ... Durchmesser
- l ... Länge

Weiterführend lässt sich daraus die spezifische Wärmekapazität bei konstantem Druck aus der partiellen Ableitung von H nach T berechnen:

$$c_p = \left(\frac{\partial H}{\partial T}\right)_{\text{p=const.}} \tag{4.7}$$

- $c_p\,\ldots$ spezifische Wärmekapazität bei konstantem Druck
- H ... Enthalpie
- T ... Temperatur

4.3 Enthalpieänderung beim Schmelzen

Anders als bei Metallen gibt es bei Legierungen meist einen Schmelzbereich³⁴. Daher ist die Berechnung der Enthalpieänderung komplizierter. Der aus den Messdaten ermittelte Kurvenverlauf der Enthalpie einer Legierung über die Temperatur ist darzustellen. Nun werden Fitkurven im festen wie im flüssigen³⁵ Bereich berechnet und eingezeichnet. T_s und T_l bilden die linken und die rechten Grenzen der Fitkurven. Für die Umwandlungsenthalpie ΔH ergibt sich:

$$\Delta H = H_{\rm l,Fit} - H_{\rm s,Fit} \tag{4.8}$$

 ΔH ... Enthalpie
änderung beim Schmelzvorgang $H_{{\rm l},Fit}$... Enthalpie für den Fit in vollständig flüssiger Phase $H_{{\rm s},Fit}$... Enthalpie für den Fit in vollständig fester Phase

4.4 Temperatur

Pyrometer nutzen das Prinzip des Planck'schen Strahlungsgesetzes für schwarze Körper zur Ermittlung der Temperatur.

$$L_{\lambda,S}(\lambda,T) = \frac{c_1}{\lambda^5 \cdot \pi} \left[e^{\left(\frac{c_2}{\lambda \cdot T}\right)} - 1 \right]^{-1}$$
(4.9)

 $L_{\lambda,S}$... spektrale Strahldichte eines schwarzen Körpers

 λ ... Wellenlänge

T ... Temperatur

 $c_1, c_2 \dots$ erste und zweite Planck'sche Konstante

Eine Drahtprobe entspricht nur im Idealfall einem schwarzen Strahler. Da wir ein solches Verhalten allein wegen der Oberflächenrauigkeit nie erreichen, ist noch der Emissionskoeffizient $\varepsilon(\lambda, T)$ zu berücksichtigen:

$$L_{\lambda,P}(\lambda,T) = \varepsilon(\lambda,T) \cdot L_{\lambda,S}(\lambda,T) \tag{4.10}$$

 $L_{\lambda,P}$... spektrale Strahldichte der Probe

 $L_{\lambda,S}$... spektrale Strahldichte eines schwarzen Körpers

 $\varepsilon(\lambda, T)$... spektraler Emissionskoeffizient

 $^{^{34}\}mathrm{eine}$ solche Ausnahme stellt z. B. Ni
55 Ti
45 dar

 $^{^{35}\}mathrm{im}$ flüssigen Bereich verwendet man lediglich lineare Fits

Von Interesse ist die Intensität, die das Pyrometer erreicht. Die Probe selbst strahlt homogen in alle Raumwinkel. Das Pyrometer empfängt nur einen kleinen Ausschnitt davon. Da einerseits zuvor der Strahl, z. B. aufgrund des Probenkammerglases und der Linse des Pyrometers etwas abgeschwächt wird, und andererseits der Interferenzfilter nur eine schmale Bandbreite der Wellenlängen durchlässt (siehe Tab. 1 dritte Spalte). Für diesen engen Bereich kann man vollständige Transmission annehmen. Berücksichtigt man all diese Punkte ergibt sich die Intensität zu:

$$I_P(T) = G \cdot \varepsilon(\lambda, T) \cdot L_{\lambda, S}(\lambda, T) \cdot T_{MS} \cdot S(\lambda_0) \cdot \Delta \lambda_0 \tag{4.11}$$

- I_P ... Pyrometersignal
- *G* ... Geometriefaktor des Pyrometers
- $\varepsilon(\lambda, T)$... spektraler Emissionskoeffizient
- $L_{\lambda,S}$... spektrale Strahldichte eines schwarzen Körpers
- $T_{MS} \quad \dots$ Transmissionskoeffizient aller Medien zw. Proben
oberfläche und Pyrometerdetektor
- $S(\lambda_0)$... Detektorempfindlichkeit bei der zentralen Wellenlänge λ_0
- $\Delta \lambda_0$... Durchlassbandbreite des Interferenzfilters

Zur Vereinfachung fasst man alle approximativ temperaturkonstanten Größen zur Pyrometerkonstante K zusammen.

$$K = G \cdot T_{MS} \cdot S(\lambda_0) \cdot \Delta \lambda \cdot \frac{c_1}{\lambda_0^5 \cdot \pi}$$
(4.12)

- K ... Pyrometerkonstante
- G ... Geometriefaktor des Pyrometers
- $T_{MS} \ \ldots$ Transmissionskoeffizient aller Medien zw. Proben
oberfläche und Pyrometerdetektor
- $S(\lambda_0)$... Detektorempfindlichkeit bei der zentralen Wellenlänge λ_0
- $\Delta \lambda_0$... Durchlassbandbreite des Interferenzfilters
- c_1 ... erste Planck'sche Konstante
- $\lambda \qquad \dots$ Wellenlänge

Man erhält die Temperatur durch Einsetzten von Gleichung 4.9 in Gleichung 4.11 und Auflösen nach der Temperatur:

$$T(\lambda) = \frac{c_2}{\lambda \cdot \ln\left(\frac{\varepsilon(\lambda_0, T) \cdot K}{I_P(T)} + 1\right)}$$
(4.13)

 c_2 ... zweite Planck'sche Konstante

 λ ... Wellenlänge

 $\varepsilon(\lambda, T)$... spektraler Emissionskoeffizient

K ... Pyrometerkonstante

 I_P ... Pyrometersignal

Ist K bekannt, lässt sich mit obiger Gleichung die Temperatur berechnen. Die Pyrometerkonstante kann auf folgende zwei Arten ermitteln werden:

- Direkte Kalibrierung am Schwarzkörper
- Indirekte Kalibrierung über Schmelzplateau

Das Programm Hotwire verwendet letztere Bestimmungsmethode.

4.5 Volumsänderung

Zur Berechnung wird das Programm *Wiredia*³⁶ eingesetzt. Wie schon erwähnt, werden für die Expansionsberechnung zwei Bilder benötigt - das "Kaltbild" nach vollendeter Justierung kurz vor dem Pulsheizexperiment und das "Heißbild" während des Experiments. Das Programm stellt die Photonendichte je Aufnahme graphisch dar. Es ist darauf zu achten, dass man vor der Auswertung die Anzahl der Zeilen (32, 16 oder 8) auswählt, mit der die Aufnahmen entstanden sind. Ziel ist es, den mittleren Durchmesser jeder Aufnahme eines CCD-Bildes (siehe Abb. 11) zu bestimmen. Dabei hat sich bewährt, zuerst das Heißbild auszuwerten und das letzte auswertbare Bild zu bestimmen (in Abb. 11 Bild 14). Das Kaltbild wird dann ebenfalls nur bis zu diesem Bild ausgewertet.

³⁶entwickelt unter *Matlab R2007a* von H. Reschab, basierend auf Density [8] S. 46

Mit dem Ergebnis ist es möglich, die Änderung der Dichte in Abhängigkeit der Temperatur wie folgt zu berechnen:

$$\rho(T) = \rho_0 \cdot \left(\frac{d_0}{d(T)}\right)^2 \tag{4.14}$$

 $\rho(T)$... Änderung der Dichte in Abhängigkeit der Temperatur

 ρ_0 ... Dichte bei Raumtemperatur, laut Hersteller

 d_0 ... ursprünglicher Durchmesser, aus Kaltbild

d(T) ... Durchmesser in Abhängigkeit der Temperatur, aus Heißbild

4.6 Optische Dichte

Ein Graufilter dient dazu, jede Wellenlänge im gleichen Maße abzuschwächen. Damit lassen sich mit einem Pyrometer, wegen der indirekten Kalibrierung, auch höhere Temperaturen messen.

$$-D^* = \lg \frac{I_{\rm T}}{I_0} \qquad \Longrightarrow \qquad I_T = I_0 \cdot \frac{1}{10^{D^*}} \tag{4.15}$$

 $I_{\rm T}$... durchgelassene Intensität

 $I_0 \ldots$ einfallende Intensität

 D^* ... optische Dichte

4.7 Molare Wärmekapazität bei konstantem Druck C_p

Für die Umrechnung von der spezifische Wärmekapazität bei konstantem Druck (c_p) in die spezifische molare Wärmekapazität bei konstantem Druck (C_p) benötigt man die Atommasse. Für eine binäre Legierung lautet die Atommasse:

$$at. wt.(\text{Legierung}) = at. \% A \cdot at. wt. A + at. \% B \cdot at. wt. B$$
(4.16)

at. wt.(Legierung) ... Atommasse einer binären Legierung

- at. % ... Stoffmengenanteil
- A, B ... A und B sind Komponenten der Legierung
Der Stoffmengenanteil ergibt sich:

$$at. \% A = \frac{\frac{wt. \% A}{at. wt. A}}{\frac{1 - wt. \% A}{at. wt. B} + \frac{wt. \% A}{at. wt. A}} \implies at. \% B = 1 - at. \% A \quad (4.17)$$

at. % ... Stoffmengenanteil

A, B ... A und B sind Komponenten der Legierung

 $wt. \% \dots$ Massenprozent

at. wt. ... Atommasse einer Komponente

Mit den nun erhaltenen Daten lässt sich die spezifische Wärmekapazität bei konstantem Druck c_p auf die molare Wärmekapazität C_p umrechnen:

$$C_p = \frac{c_p}{1000} \cdot at. \ wt.(AB) \tag{4.18}$$

 C_p ... spezifische molare Wärmekapazität bei konstantem Druck in J·mol⁻¹·K⁻¹ c_p ... spezifische Wärmekapazität bei konstantem Druck in J·kg⁻¹·K⁻¹ *at. wt.*(AB) ... Atommasse einer binären Legierung aus den Komponenten A und B

4.8 Wärmeleitfähigkeit

Unter der Annahme, dass bei den verwendeten Legierungen der Beitrag zur Wärmeleitung überwiegend durch Elektronenleitung erfolgt, kann das Wiedemann-Franz-Gesetz zur Berechnung der Wärmeleitfähigkeit herangezogen werden.

$$\lambda = \frac{L \cdot T}{\varrho} \tag{4.19}$$

- λ ... Wärmeleitfähigkeit
- L ... Lorenz-Zahl³⁷

 $T \qquad \dots \text{ Temperatur} \\ \varrho(T)\left(=\frac{1}{\sigma}\right) \dots \text{ spezifischer elektrischer Widerstand mit Berücksichtigung der Temperaturänderung (bzw. spezifische elektrische Leitfähigkeit <math>\sigma$)

³⁷Theoretischer Wert für Metalle bei nichttiefen Temperaturen: $L = 2.45 \times 10^{-8} \text{ V}^2 \cdot \text{K}^{-2}$, aus [6] S. 324

4.9 Temperaturleitfähigkeit

Weiterführend kann man aus der Wärmeleitfähigkeit die Temperaturleitfähigkeit a bestimmen:

$$a = \frac{\lambda}{c_p \cdot \rho} = \frac{L \cdot T}{\varrho_{\rm IG} \cdot c_p \cdot \rho_0} \tag{4.20}$$

- a ... Temperaturleitfähigkeit
- λ ... Wärmeleitfähigkeit
- $c_p \ \ldots$ spezifische Wärmekapazität bei konstantem Druck in ${\rm J\cdot kg^{-1} \cdot K^{-1}}$
- ρ ... Dichte
- L ... Lorenz-Zahl³⁸
- T ... Temperatur
- ϱ_{IG} ... spezifischer Widerstand bezogen auf den ursprünglichen Durchmesser
- $\rho_0 \ \ldots$ Dichte bei Raumtemperatur

³⁸Theoretischer Wert für Metalle bei nichttiefen Temperaturen: $L = 2.45 \times 10^{-8} \text{ V}^2 \cdot \text{K}^{-2}$, aus [6] S. 324

5 Auswertung

Mit den erfassten Messdaten Zeit, Intensitätssignal, Strom und den beiden Spannungssignalen der Spannungsschneiden (siehe Abb. 10) lassen sich folgende Werte berechnen:

- Unkorrigierter spezifischer elektrischer Widerstand ϱ_{IG}
- Spezifische Enthalpie H
- Umwandlungswärme beim Schmelzen ΔH
- Spezifische Wärmekapazität c_p
- Temperaturleitfähigkeit a

Die indirekte Kalibrierung der Temperatur erfolgt am Schmelzpunkt bzw. in der Mitte zwischen Solidus- und Liquiduspunkt unter Zuhilfenahme von *Hotwire*.

In allen Graphen wird der Schmelzbereich durch zwei senkrechte, strichlierte Linien dargestellt, im Falle eines Schmelzpunktes nur durch eine strichlierte Linie.

Die Berechnung der Ausdehnung erfolgt über den mittleren Durchmesser für Warm- und Kaltbild und liefert Daten für die Expansion sowie zur Korrektur des spezifischen elektrischen Widerstands ρ und der daraus berechneten Wärmeleitfähigkeit λ .

Als Randbedingung für den festen Bereich der Expansion ergibt sich bei Raumtemperatur das Verhältnis $\left(\frac{d(T)}{d_0}\right)^2 = 1$, der jeweils in den Ausgleichsgeraden verwendet wird. Generell kann gesagt werden: je langsamer geheizt wird, desto mehr Expansionsbilder erhält man, aber umso problematischer erweist sich dabei oft die Erfassung aller elektrischen Daten, da die Wahrscheinlichkeit steigt, dass der Kontakt zwischen Draht und einer Spannungsschneide (siehe Abb. 12) verloren geht.

In den folgenden Abbildungen werden auch Vergleiche der Legierungen mit den entsprechenden Reinmetallen durchgeführt. Dabei entsprechen strichlierte Linien immer der Komponente mit dem höheren Schmelzpunkt. Beim spezifischen elektrischen Widerstand werden ausschließlich die unkorrigierten Werte ρ_{IG} miteinander verglichen.

Außerdem werden alle Fitgeraden in rot dargestellt.

Abbildung 10: Graphische Darstellung eines W95Re5-Draht Experiments durch *Insight*. Schön zu erkennen ist das Schmelzplateau im Pyrometersignal sowie der ähnliche Verlauf der beiden Spannungsschneidensignale.

Bild 1			
Bild 2			
Bild 3			
Bild 4			
Bild 5			
Bild 6			
Bild 7			
Bild 8			
Bild 9			NUMBER OF THE OWNER
Bild 10			Support and a support of the
Bild 11			STATISTICS STATISTICS
Bild 12			
Bild 13			Constant of the All
Bild 14			and the second second second
A second s	- Mainerine and	and a liter to a liter of	
	State of the supplicity of the	And the second second second second	
and the second second	and the second second second	and the second	
L			and the state

Abbildung 11: Heißbild eines Ni55Ti
45 Drahtes. Der Draht expandiert - bei den in 5 μs Schritten aufgenommen
en Bildern - bis Bild 14 merklich.

Abbildung 12: Graphische Darstellung eines MoLa-Draht Experiments durch *Insight*. Auffallend ist die schwingende Spannungsschneide U_{HOT} des MoLa-Drahts. Daraus resultieren unbrauchbare Spannungswerte für U_{HOT} und somit ist keine Aussage über den Spannungsabfall zwischen U_{HOT} und U_{COLD} möglich.

5.1 W95Re5

Die Expansionsmessung für W95Re5 gestaltetet sich insbesondere im Heißbild schwierig, da aus zwei Gründen weniger Bilder im flüssigen Bereich aufgenommen wurden: So begann der Draht ab etwa 4300 K heller zu leuchten als das Blitzlicht. Aber das weitaus größere Problem war, dass in etwa der Hälfte der Versuche ein Ausdampfen (siehe Abb. 13) aus der Probenoberfläche auftrat. Dadurch kam es zu verfälschenden Querschnittsflächenänderungen. Um trotzdem mehr Punkte in der flüssigen Phase zu erhalten, wurde versucht, die Geschwindigkeit des Aufheizvorgangs zu drosseln. So konnte ein Abheben der Spannungsschneiden bei langsameren Heizraten (gesenkt von 5.0 kV auf 4.6 kV) durch Verwendung von dünneren Spannungsschneiden aus Tantal meist verhindert werden. Diese Schwierigkeiten betreffen jedoch nur den Heißbereich der Expansion und den daraus berechneten korrigierten Widerstand für die flüssige Phase.

5.1.1 Expansion für W95Re5

Aus den oben genannten Gründen ist die Expansion im flüssigen Bereich mit höheren Fehlern behaftet, da nur vier Datensätze im flüssigen Bereich mindestens zwei Datenpunkte lieferten, während für die Auswertung im festen Bereich zwölf Einzelmessungen

Abbildung 13: Zweimal von der Oberfläche ausgedampfter W95Re5-Draht bei einer vollständigen Expansionsmessung.

verwendet werden konnten. Die Ergebnisse sind in Tabelle 4 sowie in Abbildung 14 zusammengefasst. Die Legierung bewegt sich bei der Querschnittsveränderung innerhalb der Schwankungsbreite der beiden Reinmetalle.

Tabelle 4:	Ergebnisse	der	Expansionsmessung	fiir	W95Re5
тарсис ч.	Ligeomose	uci	Expansionsincesung	rur	W 30100

	$T_{\rm s} = 3570 \text{ K}, T_{\rm l} = 3650 \text{ K} [12], \rho = 19400 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$(d/d_0)^2 = 0.999 + 4.270 \times 10^{-6} \cdot T + 4.954 \times 10^{-9} \cdot T^2$	1950 K < $T < 3570$ K
flüssig	$(d/d_0)^2 = 0.705 + 1.212 \times 10^{-4} \cdot T$	3650 K < $T < 4300$ K

Temperatur (°C)

Abbildung 14: Querschnittsflächenänderung $\left(\frac{d(T)}{d_0}\right)^2$ in Abhängigkeit von der Temperatur *T* im Verlauf des Experiments für W95Re5 (rot). Jedes gefüllte Quadrat entspricht einem Messpunkt. Die senkrechten, schwarz strichlierten Linien kennzeichnen Beginn und Ende des Schmelzübergangs. Zum Vergleich werden weitere Querschnittsflächenänderungen für Wolfram (orange strichliert)[21] und Rhenium (blau gepunktet)[22] angegeben.

5.1.2 Spezifische Enthalpie für W95Re5

Aus zehn Einzelmessungen wurde der mittlere Kurvenverlauf für W95Re5 bestimmt und daraus gesondert die Ausgleichskurven für Fest und Flüssig ermittelt. Alle Ergebnisse findet man in Tabelle 5 und Abbildung 15. Für die spezifische Enthalpie im festen Bereich zeigt sich für die Legierung nur ein geringer Unterschied zu den entsprechenden Reinmetallen. Die Werte für Wolfram liegen über den gesamten, untersuchten Temperaturbereich innerhalb der Fehlertoleranz. Eine deutliche Abweichung gibt es allerdings für Rhenium im flüssigen Bereich im Vergleich mit W95Re5.

Tabelle 5: Ergebnisse der spezifischen Enthalpie H in $\rm kJ\cdot kg^{-1}$ in Abhängigkeit von der Temperatur Tfür W95Re5

	$T_{\rm s} = 3570 \text{ K}, T_{\rm l} = 3650 \text{ K} [12], at. wt. = 175.7872^{39}$	
fest	$H(T) = 170.1 - 0.045 \cdot T + 4.704 \times 10^{-5} \cdot T^2$	2500 K < $T < 3570$ K
flüssig	$H(T) = -134.4 + 0.286 \cdot T$	3650 K < T < 4750 K
	$c_p = 286 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 50.275 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
	$H_{\rm s} = 609, H_{\rm l} = 910, \Delta H = 301$	

5.1.3 Spezifischer elektrischer Widerstand für W95Re5

Acht Einzelmessungen dienten zur Bestimmung des mittleren Kurvenverlaufs des unkorrigierten Widerstands, jeweils für fest und flüssig. Auffällig ist, dass sich der flüssige spezifische Widerstand im Vergleich mit Wolfram (siehe Abb. 16, orange gestrichelt) kaum ändert. Sehr wohl aber ändert sich die "Schmelztemperatur". Im Festen verläuft die Kurve zwischen den beiden Reinmetallen. Die Resultate sind in Tabelle 6 zusammengefasst.

Tabelle 6: Ergebnisse des unkorrigierten ρ_{IG} sowie korrigierten ρ spezifischen Widerstands in $\mu\Omega$ ·m in Abhängigkeit von der Temperatur T für W95Re5

	$T_{\rm s} = 3570$ K, $T_{\rm l} = 3650$ K [12]	
fest	$\varrho_{\rm IG}(T) = 0.023 + 3.048 \times 10^{-4} \cdot T$	2600 K < T < 3570 K
	$\varrho(T) = -0.056 + 3.486 \times 10^{-4} \cdot T$	
flüssig	$\varrho_{\rm IG}(T) = 2.069 - 3.704 \times 10^{-4} \cdot T + 3.528 \times 10^{-8} \cdot T^2$	3650 K < T < 4500 K
	$\varrho(T) = 1.692 - 1.984 \times 10^{-4} \cdot T + 2.950 \times 10^{-8} \cdot T^2$	
	$ \varrho_{\rm IG,s} = 1.111, \varrho_{\rm IG,l} = 1.187, \Delta \varrho_{\rm IG,s-l} = 0.075 $	
	$ \varrho_{\rm s} = 1.189, \varrho_{\rm l} = 1.361, \Delta \varrho_{\rm s-l} = 0.172 $	

³⁹berechnet aus den Atommassen [23] nach Formel 4.16

Abbildung 15: Spezifische Enthalpie H in Abhängigkeit von der Temperatur T (schwarz) für W95Re5. In rot ist dazu die Ausgleichskurve eingezeichnet. Die senkrechten, schwarz strichlierten Linien kennzeichnen Beginn und Ende des Schmelzübergangs. Zum Vergleich sind spezifische Enthalpie für Wolfram (orange strichliert)[23] und Rhenium (blau gepunktet)[22] angegeben.

Abbildung 16: In schwarz wird der Verlauf des spezifischen Widerstands ρ_{IG} in Abhängigkeit von der Temperatur *T* für W95Re5 dargestellt, wobei rot (jeweils) den gefitteten Verlauf darstellt. Orange strichliert spiegelt die Entwicklung für Wolfram wieder (gemessen durch [23]) und gleiches in blau gepunktet für Rhenium (gemessen durch [22]). Die senkrechten, schwarz strichlierten Linien kennzeichnen den Beginn und das Ende des Schmelzbereichs. Der korrigierte Widerstand ρ ist in dunkelgelb gehalten.

5.1.4 Wärmeleitfähigkeit für W95Re5

Bei nur 5% Rheniumanteil verläuft die Wärmeleitfähigkeit von flüssigem W95Re5 noch ähnlich wie für reines Wolfram. In Abbildung 17 wird Rhenium dunkelblau gepunktet dargestellt, sowie Wolfram orange strichliert. Die berechneten Polynome sind in Tabelle 7 zusammengefasst.

Tabelle 7: Wärmeleitfähigkeit λ in Abhängigkeit von der Temperatur Tfür W95Re5 in $10^{-6} \cdot {\rm m}^2 \cdot {\rm s}^{-1}$

	$T_{\rm s} = 3570$ K, $T_{\rm l} = 3650$ K [12]	
fest	$\lambda(T) = 106.455 - 1.958 \times 10^{-2} \cdot T + 2.933 \times 10^{-6} \cdot T^2$	2600 K < T < 3570 K
flüssig	$\lambda(T) = 9.569 + 1.546 \times 10^{-2} \cdot T$	3650 K < T < 4600 K
	$\lambda_{\rm s} = 73.926, \ \lambda_{\rm l} = 65.998, \ \Delta \lambda_{\rm s-l} = 7.928$	

5.1.5 Temperaturleitfähigkeit für W95Re5

Die Temperaturleitfähigkeit von flüssigem W95Re5 ähnelt der für reines Wolfram. Reines Rhenium hat ebenfalls nur eine leicht niedrigere Temperaturleitfähigkeit im flüssigen Bereich als die Legierung. Einen etwas unterschiedlichen Verlauf gibt es jedoch im festen Bereich, der sich jedoch nur kurz mit reinem Wolfram vergleichen lässt. In Abbildung 18 wird Rhenium dunkelblau gepunktet dargestellt sowie Wolfram orange strichliert. Die Resultate zur Temperaturleitfähigkeit sind in Tabelle 8 zusammengefasst.

Tabelle 8: Temperaturleitfähigkeit a in Abhängigkeit von der TemperaturTfür W95Re5 in W· ${\rm K}^{-1}{\cdot}{\rm m}^{-1}$

	$T_{\rm s} = 3570 \text{ K}, T_{\rm l} = 3650 \text{ K} [12], \rho = 19400 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$a(T) = 21.790 - 3.800 \times 10^{-3} \cdot T + 6.297 \times 10^{-7} \cdot T^2$	2600 K < $T < 3570$ K
flüssig	$a(T) = -4.485 + 4.960 \times 10^{-3} \cdot T$	3650 K < $T < 4600$ K
	$a_{\rm s} = 16.249, \ a_{\rm l} = 13.619, \ \Delta a_{\rm s-l} = 2.630$	

Temperatur (°C)

Abbildung 17: Wärmeleitfähigkeit λ für W95Re5 in Abhängigkeit von der Temperatur T. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Beginn und das Ende des Schmelzbereichs. Zum Vergleich Wolfram (orange strichliert) und Rhenium (dunkelblau gepunktet), jeweils aus [23] mit Gl. 4.19 berechnet.

Abbildung 18: Temperaturleitfähigkeit a für W95Re5 in Abhängigkeit von der Temperatur T. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Beginn und das Ende des Schmelzbereichs. Zum Vergleich Wolfram (orange strichliert) und Rhenium (dunkelblau gepunktet), jeweils aus [23] mit Gl. 4.20 berechnet.

5.2 W74Re26

Als Ladespannung erwies sich 4.5 kV als günstig.

5.2.1 Expansion für W74Re26

Für die Expansion konnten insgesamt elf Messungen von W74Re26 herangezogen werden. Wiederum begrenzte das Eigenleuchten ab etwa 4100 K die Auswertbarkeit weiterer Datenpunkte. Alle Ergebnisse der Expansion sind in Tabelle 9 und Abbildung 19 zu sehen. Besonders schön zu sehen ist der Schmelzbereich und dass sich die Ausdehnung im Flüssigen unterhalb von Wolfram (orange strichliert) und oberhalb von Rhenium (blau gepunktet) befindet.

Tabelle 9: Ergebnisse der Expansionsmessung für W74Re26

	$T_{\rm s} = 3313 \text{ K}, T_{\rm l} = 3423 \text{ K} [12], \rho = 19700 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$(d/d_0)^2 = 0.996 + 1.504 \times 10^{-5} \cdot T + 2.404 \times 10^{-9} \cdot T^2$	1800 K < $T < 3313$ K
flüssig	$(d/d_0)^2 = 0.886 + 7.091 \times 10^{-5} \cdot T$	3423 K < $T < 4100$ K

5.2.2 Spezifische Enthalpie für W74Re26

Die Enthalpie für W74Re26 ergab sich aus acht eigenständigen Messungen. Abbildung 20 zeigt ein ähnliches Bild wie schon zuvor bei Abbildung 14. Für den festen Bereich liegt die Enthalpie ein paar Dekaden oberhalb von Wolfram und Rhenium während die Kurve im flüssigen Bereich zwischen beiden liegt. Die Enthalpie der Legierung in der flüssigen Phase liegt nun jedoch signifikant unterhalb jener von reinem Wolfram. Die berechneten Polynome können Tabelle 10 entnommen werden.

Tabelle 10: Berechnete spezifische EnthalpieHin Abhängigkeit von der Temperatur Tfür W74Re26 in $\rm kJ\cdot kg^{-1}$

	$T_{\rm s} = 3313$ K, $T_{\rm l} = 3423$ K [12], at. wt. = 148.4722^{40}	
fest	$H(T) = -203.5 + 0.226 \cdot T$	2000 K < T < 3313 K
	$c_p = 226 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 33.555 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
flüssig	$H(T) = -161.8 + 0.282 \cdot T$	3423 K < T < 4450 K
	$c_p = 282 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 41.869 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
	$H_{\rm s} = 545, H_{\rm l} = 1127, \Delta H = 582$	

⁴⁰berechnet aus den Atommassen [23] nach Formel 4.16

Abbildung 19: Berechnete Querschnittsflächenänderung $\left(\frac{d(T)}{d_0}\right)^2$ in Abhängigkeit von der Temperatur *T* im Verlauf des Experiments für W74Re26 (rot). Jedes gefüllte Quadrat entspricht einem Messpunkt. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Start und das Ende des Schmelzübergangs. Zum Vergleich werden wiederum die Querschnittsflächenänderungen für Wolfram (orange strichliert)[21] und Rhenium (blau gepunktet)[22] angegeben.

Abbildung 20: Spezifische Enthalpie H in Abhängigkeit von der Temperatur T für W74Re26 (schwarz). In rot dazu der Fit der Kurve. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Start und das Ende des Schmelzübergangs. Dazu im Vergleich die spezifische Enthalpie für Wolfram (orange strichliert)[23] und Rhenium (blau gepunktet) [22].

5.2.3 Spezifischer elektrischer Widerstand für W74Re26

Für die Bestimmung des Widerstands wurden acht unabhängige Messungen verwendet. Mit Hilfe des bei der Expansion berechneten Verlaufs der Ausdehnung (siehe Tab. 11) wird in Abbildung 21 der tatsächliche spezifische Widerstand (dunkelgelb) dargestellt. Mit steigenden Anteilen von Rhenium nähert sich die Kurve immer mehr jener von Rhenium an. So liegt der unkorrigierte Widerstand ρ_{IG} bei 3000 K für W95Re5 bei 0.937 $\mu\Omega$ ·m während W74Re26 schon 1.028 $\mu\Omega$ ·m hat.

Tabelle 11: Berechnete Widerstandspolynom
e ϱ in Abhängigkeit von der Temperatur Tfür W
74 Re26 in $\mu\Omega{\cdot}{\rm m}$

	$T_{\rm s} = 3313$ K, $T_{\rm l} = 3423$ K [12]	
fest	$\varrho_{\rm IG}(T) = 0.304 + 2.412 \times 10^{-4} \cdot T$	2600 K < T < 3313 K
	$\varrho(T) = 0.224 + 2.892 \times 10^{-4} \cdot T$	
flüssig	$\varrho_{\rm IG}(T) = 1.815 - 2.682 \times 10^{-4} \cdot T + 2.434 \times 10^{-8} \cdot T^2$	3423 K < T < 4500 K
	$\varrho(T) = 1.736 - 2.010 \times 10^{-4} \cdot T + 2.448 \times 10^{-8} \cdot T^2$	
	$\varrho_{\rm IG,s} = 1.103, \varrho_{\rm IG,l} = 1.182, \Delta \varrho_{\rm IG,s-l} = 0.079$	
	$\varrho_{\rm s}=1.182, \varrho_{\rm l}=1.335, \Delta \varrho_{\rm s-l}=0.153$	

5.2.4 Wärmeleitfähigkeit für W74Re26

In der flüssigen Phase steigt die Wärmeleitfähigkeit der Legierung parallel zu reinem Wolfram. In Abbildung 22 wird Rhenium dunkelblau gepunktet und Wolfram orange strichliert dargestellt. Die errechneten Wärmeleitfähigkeitspolynome sind in Tabelle 12 zusammengefasst.

Tabelle 12: Wärmeleitfähigkeit λ in Abhängigkeit von der Temperatur Tfür W74Re26 in $10^{-6} \cdot {\rm m}^2 \cdot {\rm s}^{-1}$

fest	$\lambda(T) = 51.694 + 5.179 \times 10^{-3} \cdot T$	2250 K < $T < 3313$ K
flüssig	$\lambda(T) = -1.607 + 1.889 \times 10^{-2} \cdot T$	3423 K < $T < 4450$ K
	$\lambda_{\rm s} = 68.852, \ \lambda_{\rm l} = 63.053, \ \Delta \lambda_{\rm s-l} = 5.799$	

Abbildung 21: Spezifischer Widerstand ρ_{IG} in Abhängigkeit von der Temperatur *T* für W74Re26 (schwarz aus zugehörigen Daten und zugehöriger Fitkurven in rot dargestellt). Zum Vergleich: orange gestrichelt Wolfram (aus [23]), blau gepunktet für Rhenium (aus [22]). Die senkrechten, schwarz strichlierten Linien kennzeichnen den Beginn und das Ende des Schmelzbereichs. Dunkelgelb gibt den tatsächlichen Verlauf des spezifischen Widerstands ρ an.

Abbildung 22: Wärmeleitfähigkeit λ für W74Re26 in Abhängigkeit von der Temperatur T. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Beginn und das Ende des Schmelzbereichs. Zum Vergleich Wolfram (orange strichliert) und Rhenium (dunkelblau gepunktet), jeweils aus [23] mit Gl. 4.19 berechnet.

5.2.5 Temperaturleitfähigkeit für W74Re26

Die Temperaturleitfähigkeit von flüssigem W74Re26 liegt noch näher an reinem Wolfram als für W95Re5, wobei beide annähernde eine Parallele zu Wolfram bilden. Reines Rhenium hat ebenfalls nur eine leicht niedrigere Temperaturleitfähigkeit im flüssigen Bereich als die Legierung. In fester Phase lässt sich die Legierung kaum mit Wolfram vergleichen, da sich nur ein kurzer Teil der Legierung mit dem Reinmetall schneidet. In Abbildung 23 wird Rhenium dunkelblau gepunktet dargestellt sowie Wolfram orange strichliert. Die Resultate sind in Tabelle 13 zusammengefasst.

Tabelle 13: Temperatur
leitfähigkeitain Abhängigkeit von der Temperatur
 Tfür W74Re26 in W· $\rm K^{-1} \cdot m^{-1}$

	$T_{\rm s} = 3313 \text{ K}, T_{\rm l} = 3423 \text{ K} [12], \rho = 19700 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$a(T) = 11.376 + 1.550 \times 10^{-3} \cdot T$	2100 K < $T < 3313$ K
flüssig	$a(T) = -3.908 + 4.870 \times 10^{-3} \cdot T$	3423 K < $T < 4750$ K
	$a_{\rm s} = 16.511, \ a_{\rm l} = 12.762, \ \Delta a_{\rm s-l} = 3.749$	

Temperatur (°C)

Abbildung 23: Temperaturleitfähigkeit a für W74Re26 in Abhängigkeit von der Temperatur T. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Beginn und das Ende des Schmelzbereichs. Zum Vergleich Wolfram (orange strichliert) und Rhenium (dunkelblau gepunktet), jeweils aus [23] mit Gl. 4.20 berechnet.

5.3 Mo52Re47

Die Messungen wurden bei einer Ladespannung von 4.7 kV durchgeführt.

5.3.1 Expansion

Aus acht unkorrelierten Messungen ergaben sich die Ergebnisse aus Tabelle 14 für die Molybdän Rhenium Legierung. Die grafische Darstellung erfolgt in Abbildung 24. Aus dem Phasendiagramm (Abb. 9) erkennt man deutlich, dass der Schmelzbereich der Legierung unterhalb der der Reinelemente liegt (Mo = 2896 K, Re = 3459 K).

Tabelle 14: Ergebnisse der Expansionsmessung für Mo52Re47

	$T_{\rm s} = 2798 \text{ K}, T_{\rm l} = 2823 \text{ K} [12], \rho = 13500 \text{ kg} \cdot \text{m}^{-3} [11]$	
fest	$(d/d_0)^2 = 0.993 + 2.294 \times 10^{-5} \cdot T$	1950 K < $T < 2798$ K
flüssig	$(d/d_0)^2 = 0.893 + 7.670 \times 10^{-5} \cdot T$	$2823 \ {\rm K} < T < 3750 \ {\rm K}$

5.3.2 Spezifische Enthalpie von Mo52Re47

Der schwarzen Kurve liegen neun verschiedene Mo52Re47 Messungen zu Grunde. Die zwei linearen Ausgleichsgeraden (in Abb. 25 rot) wurden aus dieser Kurve bestimmt. Die Resultate sind in Tabelle 15 zusammengefasst.

Tabelle 15: Berechnete spezifische EnthalpieHin Abhängigkeit von der Temperatur Tfür Mo52Re47 in $\rm kJ\cdot kg^{-1}$

	$T_{\rm s} = 2798 \text{ K}, T_{\rm l} = 2823 \text{ K} [12], at. wt. = 124.6402^{41}$	
fest	$H(T) = -419.4 + 0.392 \cdot T$	2050 K < T < 2798 K
	$c_p = 392 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 48.859 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
flüssig	$H(T) = -265.9 + 0.423 \cdot T$	2823 K < T < 3650 K
	$c_p = 423 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 52.723 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
	$H_{\rm s} = 677, H_{\rm l} = 928, \Delta H = 251$	

⁴¹berechnet aus den Atommassen [23] nach Formel 4.16

Temperatur (°C)

Abbildung 24: Berechnete Querschnittsflächenänderung $\left(\frac{d(T)}{d_0}\right)^2$ in Abhängigkeit von der Temperatur *T* im Verlauf des Experiments für Mo52Re26 (rot). Zum Vergleich Rhenium (dunkelblau gestrichelt, gemessen durch [22]) und Molybdän (cyan gepunktet, gemessen durch [24]. Den Schmelzbereich stellen die beiden senkrechten, schwarz strichlierten Linien dar. Die einzelnen Messpunkte sind durch schwarze Quadrate abgebildet.

Abbildung 25: Spezifische Enthalpie H als Funktion der Temperatur T für Mo25Re47 (schwarz). Dazu die Ausgleichsgeraden für den festen und flüssigen Bereich in rot. Den Schmelzbereich stellen zwei senkrecht strichlierte Linien in schwarz dar. Zum Vergleich Rhenium (dunkelblau gestrichelt, gemessen durch [22]) und Molybdän (cyan gepunktet, gemessen durch [25].

5.3.3 Spezifischer elektrischer Widerstand für Mo52Re47

Der spezifische Widerstand der Legierung wurde aus acht unabhängigen Kurven gemittelt (schwarz). In der folgenden Tabelle 16 sind wiederum die Näherungsgeraden der spezifischen Widerstände für unkorrigierten und korrigierten Widerstand angegeben (in Abb. 26 schwarz und dunkelgelb). Abschließend ist zu bemerken, dass der spezifische Widerstand der Legierung sich zwischen den Reinmetallen bewegt (in Abb. 26 Rhenium in dunkelblau; Molybdän in cyan).

Tabelle 16: Berechnete Widerstandspolynom
e ϱ in Abhängigkeit von der Temperatur Tfür Mo
52Re47 in $\mu\Omega{\cdot}{\rm m}$

	$T_{\rm s} = 2798$ K, $T_{\rm l} = 2823$ K [12]	
fest	$ \varrho_{\rm IG}(T) = 0.137 + 2.663 \times 10^{-4} \cdot T $	2200 K < $T < 2798$ K
	$\varrho(T) = 0.092 + 2.999 \times 10^{-4} \cdot T$	
flüssig	$\varrho_{\rm IG}(T) = 1.082 - 3.171 \times 10^{-5} \cdot T$	2823 K < $T < 3650$ K
	$\varrho(T) = 0.992 + 3.891 \times 10^{-5} \cdot T$	
	$ \varrho_{\rm IG,s} = 0.882, \varrho_{\rm IG,l} = 0.992, \Delta \varrho_{\rm IG,s-l} = 0.110 $	
	$\varrho_{\rm s} = 0.931, \varrho_{\rm l} = 1.102, \Delta \varrho_{\rm s-l} = 0.171$	

5.3.4 Wärmeleitfähigkeit für Mo52Re47

Die Wärmeleitfähigkeit für die Legierung liegt in der Mitte der beiden Reinmetalle Molybdän und Rhenium. In Abbildung 27 ist Molybdän cyan gepunktet und Rhenium in dunkelblau strichliert dargestellt. In Tabelle 17 sind die Wärmeleitfähigkeitspolynome zusammengefasst.

Tabelle 17: Wärmeleitfähigkeit λ in Abhängigkeit von der Temperatur Tfür Mo52Re47 in $10^{-6} \cdot {\rm m}^2 \cdot {\rm s}^{-1}$

fest	$\lambda(T) = 63.603 + 3.648 \times 10^{-3} \cdot T$	2300 K < $T < 2798$ K
flüssig	$\lambda(T) = 8.050 + 1.942 \times 10^{-2} \cdot T$	2823 K < $T < 3650$ K
	$\lambda_{\rm s} = 73.807, \ \lambda_{\rm l} = 62.873, \ \Delta \lambda_{\rm s-l} = 10.934$	

Abbildung 26: Unkorrigierter (schwarz) ρ_{IG} und korrigierter (dunkelgelb) ρ Widerstand als Funktion der Temperatur *T* für Mo52Re47. Linearfits zu den unkorrigierten und korrigierten Widerständen für fest und flüssig (rot). Die senkrechten, schwarz strichlierten Linien kennzeichnen den Start und das Ende des Schmelzübergangs. Widerstandspolynome für Reinmetalle (beide aus [23] entnommen) in blau (gestrichelt) für Rhenium sowie in cyan (gepunktet) für Molybdän.

Abbildung 27: Wärmeleitfähigkeit λ für Mo52Re47 in Abhängigkeit von der Temperatur T. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Start und das Ende des Schmelzübergangs. Zum Vergleich Moblybdän (cyan gepunktet) aus [25] und Rhenium (dunkelblau strichliert) aus [23] mit Gl. 4.19 berechnet.

5.3.5 Temperaturleitfähigkeit für Mo52Re47

In weiten Bereichen liegt die Temperaturleitfähigkeit *a* von der Legierung unterhalb der Wärmeleitfähigkeit der Reinmetalle. In Abbildung 28 ist Molybdän cyan gepunktet und Rhenium in dunkelblau strichliert dargestellt. Die berechneten Polynome sind in Tabelle 18 ersichtlich.

Tabelle 18: Temperatur
leitfähigkeit a in Abhängigkeit von der Temperatu
rTfür Mo52Re47 in W· ${\rm K}^{-1}{\cdot}{\rm m}^{-1}$

	$T_{\rm s} = 2798 \text{ K}, T_{\rm l} = 2823 \text{ K} [12], \rho = 13500 \text{ kg} \cdot \text{m}^{-3} [11]$	
fest	$a(T) = 11.859 + 1.020 \times 10^{-3} \cdot T$	2200 K < $T < 2798$ K
flüssig	$a(T) = -1.462 + 4.830 \times 10^{-3} \cdot T$	2823 K < $T < 3650$ K
	$a_{\rm s} = 14.713, \ a_{\rm l} = 12.173, \ \Delta a_{\rm s-l} = 2.540$	

Abbildung 28: Temperaturleitfähigkeit *a* für Mo52Re47 in Abhängigkeit von der Temperatur *T*. Die senkrechten, schwarz strichlierten Linien kennzeichnen den Start und das Ende des Schmelzübergangs. Zum Vergleich Molybdän (cyan gepunktet, aus [25]) und Rhenium (dunkelblau strichliert) aus [23] mit Gl. 4.20 berechnet.

5.4 Ni55Ti45

Für die Messungen musste statt Stickstoff Argon verwendet werden, da aufgrund des hohen Titananteils der Stickstoff während des Experiments mit der Drahtoberfläche reagieren⁴² konnte und so die Expansion beeinflusste. Dies äußerte sich durch ein längeres Verbleiben in der flüssigen Phase, was in weiterer Folge zu verfälschten Expansionsdaten führt. Interessant in diesem Zusammenhang sind besonders die schwankenden Resultate der Einzelmessung, trotz ansonsten gleichbleibender Einstellung. Von diesem Problem ist aber nur die Expansionsmessung betroffen, der Vergleich mit anderen elektrischen Daten resultiert in keiner nennenswerten Abweichung. Alle für die Auswertung herangezogenen Messwerte wurden mit einer Ladespannung von 5.0 kV durchgeführt. In den folgenden Vergleichen mit Titan besteht eine Lücke in den elektrischen Daten zwischen 1400 K und 1700 K weshalb sich die grünen Titanlinien in 3 Kurven aufteilen.

5.4.1 Expansion für Ni55Ti45

Die Messergebnisse aus zehn verschiedenen Messungen zu NI55Ti45 wurden in Abbildung 29 dargestellt.

Auffallend ist, dass die Ausdehnung für die Legierung größer ist als für die einzelnen Legierungsbestandteile. Die berechneten Polynome können Tabelle 19 entnommen werden.

	$T_m = 1583 \text{ K} [12], \rho = 6500 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$(d/d_0)^2 = 0.983 + 5.495 \times 10^{-5} \cdot T$	1100 K < $T < 1583$ K
flüssig	$(d/d_0)^2 = 0.900 + 1.228 \times 10^{-4} \cdot T$	1583 K < $T < 2900$ K

Tabelle 19: Ergebnisse der Expansionsmessung für Ni55Ti45

⁴²Der genaue Hergang steht noch zur Diskussion. Aufgrund der goldenen Farbe der Rückstände wird Titannitrid vermutet. Titannitrid (TiN) besitzt einen um über 1000 Grad höheren Schmelzpunkt

Abbildung 29: Querschnittsflächenänderung $\left(\frac{d(T)}{d_0}\right)^2$ in Abhängigkeit von der Temperatur *T* im Verlauf des Experiments für Ni55Ti45 (rot). Jedes gefüllte schwarze Quadrat entspricht einem Messpunkt. Die senkrechte, schwarz strichlierte Linie kennzeichnet den Schmelzpunkt. Zum Vergleich werden weitere Querschnittsflächenänderungen für Nickel (violett gepunktet)[26] und Titan (grün gestrichelt)[26] angegeben.

5.4.2 Spezifische Enthalpie für Ni55Ti45

Der aus sechs Einzelmessungen bestimmte Mittelwert ist in Abbildung 30 in schwarz abgebildet. Die Enthalpie ist im festen Zustand in der Nähe des Elements Nickel (violett gepunktet) und später im Flüssigen in der Nähe von Titan (grün gestrichelt). Die Gleichungen für die Fitkurven sind in Tabelle 20 festgehalten.

Tabelle 20: Berechnete Enthalpiepolynome in Abhängigkeit von der Temperatur Tfür Ni55Ti45 in $\rm kJ\cdot kg^{-1}$

	$T_m = 1583 \text{ K} [12], at. wt. = 53.2715^{43}$	
fest	$H(T) = 832.0 - 0.992 \cdot T + 6.044 \times 10^{-4} \cdot T^2$	1200 K < $T < 1583$ K
flüssig	$H(T) = -691.4 + 1.074 \cdot T$	1583 K < $T < 2600$ K
	$c_p = 1074 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 57.214 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
	$H_{\rm s} = 776, H_{\rm l} = 1009, \Delta H = 233$	

5.4.3 Spezifischer elektrischer Widerstand für Ni55Ti45

Aus sechs gemittelt Einzelmessungen entstand die schwarze Kurve in Abbildung 31. Der unkorrigierte Widerstand ρ_{IG} der Legierung liegt für den festen Bereich zwischen dem der Legierungspartner. Im flüssigen Intervall nähert sich ρ_{IG} sehr schnell der Titankurve (grün strichliert) an. Die Berücksichtigung der Volumsausdehnung ist in der Abbildung wiederum dunkelgelb eingezeichnet und alle zugehörigen Fits sind in rot eingezeichnet. In Tabelle 21 sind die Ergebnisse für den elektrischen spezifischen Widerstand zusammengefasst.

Tabelle 21: Berechnete unkorrigierte $\varrho_{\rm IG}$ und korrigierte ϱ Widerstandspolynome in Abhängigkeit von der Temperatur T für Ni55Ti45 in $\mu\Omega\cdot m$

	$T_m = 1583 \text{ K} [12]$	
fest	$\varrho_{\rm IG}(T) = 2.562 - 2.200 \times 10^{-3} \cdot T + 8.794 \times 10^{-7} \cdot T^2$	1300 K < T < 1583 K
	$\varrho(T) = 2.848 - 2.590 \times 10^{-3} \cdot T + 1.049 \times 10^{-6} \cdot T^2$	
flüssig	$\varrho_{\rm IG}(T) = 2.105 - 3.476 \times 10^{-4} \cdot T + 4.900 \times 10^{-8} \cdot T^2$	1583 K < $T < 2500$ K
	$\varrho(T) = 1.951 - 1.352 \times 10^{-4} \cdot T + 3.974 \times 10^{-8} \cdot T^2$	
	$ \varrho_{\rm IG,s} = 1.283, \varrho_{\rm IG,l} = 1.678, \Delta \varrho_{\rm IG,s-l} = 0.394 $	
	$ \varrho_{\rm s} = 1.377, \varrho_{\rm l} = 1.837, \Delta \varrho_{\rm s-l} = 0.460 $	

 $[\]overline{}^{43}$ berechnet aus den Atommassen [23] nach Formel 4.16

Abbildung 30: Spezifische Enthalpie H für Ni55Ti45 (schwarz) als Funktion der Temperatur T. Dazu die errechneten Fitgeraden in rot. Außerdem sind die Enthalpiekurven der Reinmetalle der Legierung enthalten: (drei mal) grün strichliert Titan sowie violett gepunktet Nickel (beide aus [23]). Die senkrechte, schwarz strichlierte Linie entspricht dem Schmelzpunkt der Legierung.

Abbildung 31: Unkorrigierter ρ_{IG} (schwarz) und korrigierter ρ (dunkelgelb) Widerstand in $\mu\Omega$ ·m in Abhängigkeit von der Temperatur *T* für Ni55Ti45. Die dazugehörigen Fitkurven werden in rot dargestellt. Weitere Widerstandspolynome: Titan grün strichliert, Nickel violett gepunktet (beide aus [23]). Die senkrechte, schwarz strichlierte Linie entspricht dem Schmelzpunkt der Legierung.

5.4.4 Wärmeleitfähigkeit für Ni55Ti45

Die Wärmeleitfähigkeit λ von Ni55Ti45 ist zwischen 1943 K und 2500 K in der Nähe von Titan (in Abb. 32 grün gestrichelt). Ansonsten liegt λ der Legierung durchgehend unterhalb von λ des Reinmetalls Nickel (siehe Abb. 32 violett gepunktet). Die berechnete Wärmeleitfähigkeit ist in Tabelle 22 zusammengefasst.

Tabelle 22: Wärmeleitfähigkeit λ in Abhängigkeit von der Temperatur Tfür Ni55Ti45 in $10^{-6} \cdot {\rm m}^2 \cdot {\rm s}^{-1}$

	$T_m = 1583 \text{ K} [12]$	
fest	$\lambda(T) = -39.285 + 8.264 \times 10^{-2} \cdot T - 2.526 \times 10^{-5} \cdot T^2$	1300 K < $T < 1500$ K
flüssig	$\lambda(T) = 1.000 + 1.280 \times 10^{-2} \cdot T$	1650 K < $T < 2500$ K
	$\lambda_{\rm s} = 28.235, \ \lambda_{\rm l} = 21.262, \ \Delta \lambda_{\rm s-l} = 6.973$	

5.4.5 Temperaturleitfähigkeit für Ni55Ti45

In der festen Phase liegt die Temperaturleitfähigkeit *a* innerhalb jener der einzelnen Legierungskomponenten während *a* im festen Bereich unterhalb der beiden Reinmetallen liegt. In Abbildung 33 ist Nickel violett gepunktet und Titan dunkelgrün strichliert dargestellt. Die berechnete Temperaturfähigkeit ist in Tabelle 23 zusammengefasst.

Tabelle 23: Temperaturleitfähigkeit a in Abhängigkeit von der TemperaturTfür Ni55Ti45 in W· $\rm K^{-1} \cdot m^{-1}$

	$T_m = 1583 \text{ K} [12], \rho = 6500 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$a(T) = 162.639 - 0.349 \cdot T + 2.563 \times 10^{-4} \cdot T^2 - 6.214 \times 10^{-8} \cdot T^3$	1300 K < $T < 1500 {\rm ~K}$
flüssig	$a(T) = -0.841 + 2.610 \times 10^{-3} \cdot T$	1650 K < $T < 2500$ K
	$a_{\rm s} = 5.933, \ a_{\rm l} = 3.291, \ \Delta a_{\rm s-l} = 2.642$	

Abbildung 32: Wärmeleitfähigkeit λ für Ni55Ti45 in Abhängigkeit von der Temperatur T. Die senkrechte, schwarz strichlierte Linie kennzeichnet den Schmelzpunkt. Zum Vergleich Nickel (violett gepunktet) und Titan (dunkelgrün strichliert) jeweils aus [23] mit Gl. 4.19 berechnet.

Abbildung 33: Temperaturleitfähigkeit a für Ni55Ti45 in Abhängigkeit von der Temperatur T. Die senkrechte schwarz strichlierte Linie kennzeichnet den Schmelzpunkt. Zum Vergleich Nickel (violett gepunktet) und Titan (dunkelgrün strichliert) jeweils aus [23] mit Gl. 4.20 berechnet.

5.5 MoLa

Hier stellte sich die Messung der elektrischen Daten als schwierig dar. Nur selten war kein Schwingen der Spannungsschneiden zu verzeichnen. So konnte leider kein optimales Verhältnis zwischen Ladespannung und Heißbildern gefunden werden. Alle Abbildungen werden mit reinem Molybdän aus Publikation [25] oder [23] verglichen.

5.5.1 Expansion von MoLa

Aus 13 unkorrelierten Messungen ergab sich die Ausdehnung des Drahtes (siehe Abb. 34 und Tab. 24). In der flüssigen Phase ist für die Mikrolegierung nur ein geringer Unterschied im Vergleich mit dem Reinmetall Molybdän festzustellen.

Tabelle 24: Ergebnisse der Expansionsmessung für MoLa

	$T_m = 2896 \text{ K} [14], \rho = 10220 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$(d/d_0)^2 = 0.991 + 2.384 \cdot 10^{-5} \cdot T$	2100 K < T < 2896 K
flüssig	$(d/d_0)^2 = 0.889 + 8.270 \cdot 10^{-5} \cdot T$	2896 K < $T < 3900$ K

5.5.2 Spezifische Enthalpie von MoLa

Trotz zahlreicher Messungen konnten nur 5 vollständige Datensätze zum Auswerten verwendet werden. Der Einfluss von La₂O₃ auf Molybdän scheint trotz des relativ geringen Anteils nicht unwesentlich zu sein (siehe Abb. 35). Er ist besonders groß im flüssigen Bereich, wo ein um etwa 100 kJ·kg⁻¹ höherer Wert gemessen wurde als bei Messungen (siehe [25]) an reinem Molybdän. Die berechneten Polynome können Tabelle 25 entnommen werden.

Tabelle 25: Berechnete Enthalpie H in Abhängigkeit von der Temperatur T für MoLa in $\rm kJ\cdot kg^{-1}$

	$T_m = 2896$ K, [14], at. wt. = 95.94^{44}	
fest	$H(T) = -618.9 + 0.551 \cdot T$	2000 K < T < 2896 K
	$c_p = 551 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 52.863 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
flüssig	$H(T) = -54.2 + 0.504 \cdot T$	2896 K < $T < 4150$ K
	$c_p = 504 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 48.354 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
	$H_{\rm s} = 977, H_{\rm l} = 1405, \Delta H = 429$	

 $^{^{44}}$ berechnet aus der Atommasse von Molybdän entnommen aus [14], da der Anteil von La₂O₃ weniger als 1% beträgt, deshalb erfolgt direkt die Anwendung der Formel 4.18

Abbildung 34: Querschnittsänderung $\left(\frac{d(T)}{d_0}\right)^2$ für MoLa (rot) in Abhängigkeit von T. Der Schmelzpunkt von Molybdän ist als senkrechte, schwarze strichlierte Linie eingezeichnet. Die schwarzen Quadrate geben die Messpunkte von MoLa wieder. Die cyan gestrichelte Linie gibt die Querschnittsänderung für Molybdän an, entnommen aus [23].

Abbildung 35: Spezifische Enthalpie H als Funktion der Temperatur T für MoLa (schwarz). Dazu die Fitgeraden in rot. Im Vergleich dazu reines Molybdän (cyan strichliert) entnommen aus [23]. Die senkrechte, schwarz strichlierte Linie gibt den Schmelzpunkt von reinem Molybdän an.

5.5.3 Spezifischer elektrischer Widerstand von MoLa

Für den spezifischen Widerstand folgt aus dem direkten Vergleich von MoLa mit Molybdän, dass beide ähnliche Resultate liefern (siehe Abb. 36). Aus den fünf unkorrelierten Messungen ergaben sich für unkorrigierten und korrigierten elektrischen Widerstand die Werte von Tabelle 26.

Tabelle 26: Berechnete unkorrigiert
e $\varrho_{\rm IG}$ und korrigierte ϱ Widerstandspolynome für Mo
La in $\mu\Omega{\cdot}{\rm m}$

	$T_m = 2896 \text{ K} [12]$	
fest	$\varrho_{\rm IG}(T) = -0.159 + 3.273 \times 10^{-4} \cdot T$	2250 K < T < 2896 K
	$\varrho(T) = -0.208 + 3.606 \times 10^{-4} \cdot T$	
flüssig	$\varrho_{\rm IG}(T) = 0.909 + 4.331 \times 10^{-7} \cdot T$	2896 K < $T < 4150$ K
	$\varrho(T) = 0.779 + 8.472 \times 10^{-5} \cdot T$	
	$ \varrho_{\rm IG,s} = 0.789, \varrho_{\rm IG,l} = 0.910, \Delta \varrho_{\rm IG,s-l} = 0.121 $	
	$\varrho_{ m s}=0.836, \varrho_{ m l}=1.024, \Delta \varrho_{ m s-l}=0.188$	

5.5.4 Wärmeleitfähigkeit für MoLa

Im festen Bereich schneiden sich die Wärmeleitfähigkeiten λ des Reinmetalls und der Mikrolegierung bei etwa 2500 K. Im Gegensatz dazu vergrößert sich die Abweichung im Laufe höherer Temperaturen in der flüssigen Phase. In Abbildung 37 ist Moblybdän cyan strichliert dargestellt. Die berechneten Polynome für λ sind aus Tabelle 27 entnehmbar.

Tabelle 27: Wärmeleitfähigkeit λ in Abhängigkeit von der Temperatur Tfür MoLa in $10^{-6} \cdot {\rm m}^2 \cdot {\rm s}^{-1}$

fest	$\lambda(T) = 115.936 - 1.094 \times 10^{-2} \cdot T$	2250 K < $T < 2896$ K
flüssig	$\lambda(T) = 20.098 + 1.704 \times 10^{-2} \cdot T$	2896 K < $T < 4150$ K
	$\lambda_{\rm s} = 84.254, \ \lambda_{\rm l} = 69.446, \ \Delta \lambda_{\rm s-l} = 14.808$	

Abbildung 36: Unkorrigierter ρ_{IG} und korrigierter ρ spezifischer Widerstand für MoLa (dunkelgelb bzw. schwarz) in Abhängigkeit von der Temperatur *T*. Dazu die Fitgeraden in rot. Senkrecht dazu - schwarz, strichliert - der Schmelzpunkt von Molybdän. Cyan stichliert (fast auf der unteren Kurve) zeigt den unkorrigierten spezifischen Widerstand von Molybdän an; entnommen aus [23].

Temperatur (°C)

Abbildung 37: Wärmeleitfähigkeit λ für MoLa in Abhängigkeit von der Temperatur T. Die senkrechte, schwarz strichlierte Linie gibt den Schmelzpunkt von reinem Molybdän an. Zum Vergleich Moblybdän (cyan strichliert) entnommen aus [25].

5.5.5 Temperaturleitfähigkeit für MoLa

Obwohl MoLa weniger als 1% La₂O₃ enthält, sind für die Temperaturleitfähigkeit *a* in beiden Aggregatzuständen große Unterschiede im Vergleich mit reinem Molybdän festzustellen. Beide Male ist der Wert für die Mikrolegierung kleiner. In Abbildung 38 wird Molybdän cyan strichliert dargestellt. Zur Berechnung von *a* wird Gl. 4.20 verwendet. Die Resultate sind in Tabelle 28 zusammengefasst.

Tabelle 28: Temperaturleitfähigkeit a in Abhängigkeit von der TemperaturTfür MoLa in W· ${\rm K}^{-1}{\cdot}{\rm m}^{-1}$

	$T_m = 2896 \text{ K} [14], \ \rho = 13500 \text{ kg} \cdot \text{m}^{-3} [13]$	
fest	$a(T) = 15.669 - 1.260 \times 10^{-3} \cdot T$	2250 K < $T < 2896$ K
flüssig	$a(T) = 0.045 + 3.940 \times 10^{-3} \cdot T$	2896 K < $T < 4150 {\rm ~K}$
	$a_{\rm s} = 12.020, \ a_{\rm l} = 11.455, \ \Delta a_{\rm s-l} = 0.565$	

Abbildung 38: Temperaturleitfähigkeit a für MoLa in Abhängigkeit von der Temperatur T. Die senkrechte, schwarz strichlierte Linie gibt den Schmelzpunkt von reinem Molybdän an. Zum Vergleich Molybdän (cyan strichliert) aus aus [25].

6 Unsicherheit

In der Dissertation von Boris Wilthan [11] wurden bereits die Unsicherheiten⁴⁵ in der Tabelle 29 angeführten Legierungen für die spezifische Enthalpie H und den unkorrigierten spezifischen elektrischen Widerstand ρ_{IG} (siehe Tab. 30, Spalte $\rho_{IG}(T)$) ermittelt und hier nicht neu berechnet.

Tabelle 29: Unsicherheit der Umwandlungsenthalphie
 ΔH für W95Re5, W74Re26, Mo52Re47 und Ni55Ti
45 in %

Legierung	W95Re5	W74Re26	Mo52Re47	Ni55Ti45
ΔH	12.9	16.0	16.5	22.3

Die Unsicherheiten der weiteren Größen Expansion $\left(\frac{d(T)}{d_0}\right)^2$, Wärmeleitfähigkeit λ , Temperaturleitfähigkeit *a* und korrigierter spezifischer Widerstand ρ werden hier mit typischen Werten (mit Erweiterungsfaktor⁴⁶ k=2) aus den neuesten Publikationen der Arbeitsgruppe (siehe Tab. 30) abgeschätzt. Für MoLa wird noch zusätzlich ρ_{IG} abgeschätzt. Zusätzlich zu den Unsicherheiten wird auch die Anzahl der Messungen in Klammer angegeben.

Tabelle 30: Unsicherheit für Expansion, spezifische Enthalpie, Wärmekapazität, unkorrigierten und korrigierten Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit in % für k=2

		feste Phase						
	$\left(\frac{d(T)}{d_0}\right)^2$	H(T)	$c_p(T)$	$\varrho_{\rm IG}(T)$	$\varrho(T)$	$\lambda(T)$	a(T)	
W95Re5	3.0 (12)	7.0 (10)	6.5(10)	3.0	4.5(8)	6.0(8)	9.0(8)	
W74Re26	3.0 (11)	8.0 (8)	7.0(8)	2.5	4.5(8)	6.0(8)	9.0(8)	
Mo52Re47	3.0(8)	7.0(9)	6.5(9)	4.0	4.5(8)	6.0(8)	10.0(8)	
Ni55Ti45	3.0(10)	7.5(6)	7.0(6)	3.0	4.5(6)	6.0(6)	11.0(6)	
MoLa	4.0 (13)	10.0(5)	9.0(5)	3.5(5)	10.0(5)	7.0(5)	12.0(5)	

	flüssige Phase						
	$\left(\frac{d(T)}{d_0}\right)^2$	H(T)	$c_p(T)$	$\varrho_{\rm IG}(T)$	$\varrho(T)$	$\lambda(T)$	a(T)
W95Re5	6.0 (4)	4.5(10)	3.0(10)	2.5	8.0(8)	9.5(8)	6.0(8)
W74Re26	4.0 (11)	5.0(8)	3.0(8)	2.5	4.5(8)	6.0(8)	5.0(8)
Mo52Re47	4.0 (8)	5.0(9)	3.0(9)	3.0	4.5(8)	6.0(8)	5.5(8)
Ni55Ti45	5.0(10)	5.5(6)	3.5~(6)	3.0	5.0(6)	6.5(6)	6.5(6)
MoLa	5.0(13)	7.0(5)	5.0(5)	3.5(5)	7.0(5)	7.0(5)	7.0(5)

 $^{^{45}\}mathrm{b}\mathrm{e}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{e}\mathrm{t}$ mittels GUM, siehe[11]ab Seite 69

 $^{^{46}\}mathrm{siehe}$ [27] ab S. 104

7 Zusammenfassung und Ausblick

W95Re5

Die Ergebnisse für die Expansion in der flüssigen Phase sind die derzeit besten Resultate und könnten sich in zukünftigen Veröffentlichungen noch ändern. Alle berechneten Fitfunktionen sind in Tabelle 31 zusammengefasst.

Tabelle 31: Ergebnisse für W95Re5 von Expansion, spezifischer Enthalpie, spezifischen Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit

Η	spezifische Enthalpie	$kJ\cdot kg^{-1}$
$\varrho_{\rm IG}$	unkorrigierter spezifischer elektrischer Widerstand	$\mu\Omega{\cdot}{ m m}$
ϱ	korrigierter spezifischer elektrischer Widerstand	$\mu\Omega\cdot\mathrm{m}$
λ	Wärmeleitfähigkeit	$10^{-6} \cdot m^2 \cdot s^{-1}$
a	Temperaturleitfähigkeit	$W \cdot K^{-1} \cdot m^{-1}$

$T_{\rm s} = 35$	$T_{\rm s} = 3570 \text{ K}, T_{\rm l} = 3650 \text{ K}, \rho = 19400 \text{ kg} \cdot \text{m}^{-3}, at. wt. = 175.7872, c_p^* = 251 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$				
fest	$(d/d_0)^2 = 0.999 + 4.270 \times 10^{-6} \cdot T + 4.954 \times 10^{-9} \cdot T^2$	1950 K < $T < 3570 {\rm ~K}$			
flüssig	$(d/d_0)^2 = 0.705 + 1.212 \times 10^{-4} \cdot T$	3650 K < $T < 4300$ K			
fest	$H(T) = 170.1 - 0.045 \cdot T + 4.704 \times 10^{-5} \cdot T^2$	2500 K < $T < 3570 {\rm ~K}$			
flüssig	$H(T) = -134.4 + 0.286 \cdot T$	3650 K < T < 4750 K			
	$c_p = 286 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$				
	$C_p = 50.275 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$				
	$H_{\rm s} = 609, H_{\rm l} = 910, \Delta H = 301$				
fest	$\varrho_{\rm IG}(T) = 0.023 + 3.048 \times 10^{-4} \cdot T$	2600 K < $T < 3570 {\rm ~K}$			
	$\varrho(T) = -0.056 + 3.486 \times 10^{-4} \cdot T$				
flüssig	$\varrho_{\rm IG}(T) = 2.069 - 3.704 \times 10^{-4} \cdot T + 3.528 \times 10^{-8} \cdot T^2$	3650 K < T < 4500 K			
	$\varrho(T) = 1.692 - 1.984 \times 10^{-4} \cdot T + 2.950 \times 10^{-8} \cdot T^2$				
	$ \varrho_{\rm IG,s} = 1.111, \varrho_{\rm IG,l} = 1.187, \Delta \varrho_{\rm IG,s-l} = 0.075 $				
	$\varrho_{ m s} = 1.189, \varrho_{ m l} = 1.361, \Delta \varrho_{ m s-l} = 0.172$				
fest	$\lambda(T) = 106.455 - 1.958 \times 10^{-2} \cdot T + 2.933 \times 10^{-6} \cdot T^2$	2600 K < $T < 3570 {\rm ~K}$			
flüssig	$\lambda(T) = 9.569 + 1.546 \times 10^{-2} \cdot T$	3650 K < T < 4600 K			
	$\lambda_{\rm s} = 73.926, \ \lambda_{\rm l} = 65.998, \ \Delta \lambda_{\rm s-l} = 7.928$				
fest	$a(T) = 21.790 - 3.800 \times 10^{-3} \cdot T + 6.297 \times 10^{-7} \cdot T^2$	2600 K < $T < 3570 {\rm ~K}$			
flüssig	$a(T) = -4.485 + 4.960 \times 10^{-3} \cdot T$	3650 K < $T < 4600$ K			
	$a_{\rm s} = \overline{16.249}, \ a_{\rm l} = 13.619, \ \Delta a_{\rm s,l} = 2.630$				

W74Re26

Die Ergebnisse für spezifische Enthalpie und spezifischen unkorrigierten Widerstand bei Wolfram mit 26 wt. % Rhenium liegen innerhalb der zu erwartenden Unsicherheitsangaben anderer Messungen⁴⁷. In Tabelle 32 sind alle Ergebnisse zusammengefasst.

Tabelle 32: Ergebnisse für W74Re26 von Expansion, spezifischer Enthalpie, spezifischen Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit

H	spezifische Enthalpie	$kJ\cdot kg^{-1}$
$\varrho_{\rm IG}$	unkorrigierter spezifischer elektrischer Widerstand	$\mu\Omega{\cdot}{ m m}$
ρ	korrigierter spezifischer elektrischer Widerstand	$\mu\Omega{\cdot}{ m m}$
λ	Wärmeleitfähigkeit	$10^{-6} \cdot m^2 \cdot s^{-1}$
a	Temperaturleitfähigkeit	$W \cdot K^{-1} \cdot m^{-1}$

	$T_{\rm s} = 3313$ K, $T_{\rm l} = 3423$ K, $\rho = 19700$ kg·m ⁻³ , at. wt	. = 148.4722
fest	$(d/d_0)^2 = 0.996 + 1.504 \times 10^{-5} \cdot T + 2.404 \times 10^{-9} \cdot T^2$	1800 K < $T < 3313$ K
flüssig	$(d/d_0)^2 = 0.886 + 7.091 \times 10^{-5} \cdot T$	3423 K < $T < 4100 {\rm ~K}$
fest	$H(T) = -203.5 + 0.226 \cdot T$	2000 K < $T < 3313$ K
	$c_p = 226 \ \mathrm{J} \cdot \mathrm{kg}^{-1} \cdot \mathrm{K}^{-1}$	
	$C_p = 33.555 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
flüssig	$H(T) = -161.8 + 0.282 \cdot T$	3423 K < $T < 4450$ K
	$c_p = 282 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 41.869 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
	$H_{\rm s} = 545, H_{\rm l} = 1127, \Delta H = 582$	
fest	$\varrho_{\rm IG}(T) = 0.304 + 2.412 \times 10^{-4} \cdot T$	2600 K < $T < 3313$ K
	$\varrho(T) = 0.224 + 2.892 \times 10^{-4} \cdot T$	
flüssig	$\varrho_{\rm IG}(T) = 1.815 - 2.682 \times 10^{-4} \cdot T + 2.434 \times 10^{-8} \cdot T^2$	3423 K < $T < 4500$ K
	$\varrho(T) = 1.736 - 2.010 \times 10^{-4} \cdot T + 2.448 \times 10^{-8} \cdot T^2$	
	$ \varrho_{\rm IG,s} = 1.103, \varrho_{\rm IG,l} = 1.182, \Delta \varrho_{\rm IG,s-l} = 0.079 $	
	$ \varrho_{\rm s} = 1.182, \varrho_{\rm l} = 1.335, \Delta \varrho_{\rm s-l} = 0.153 $	
fest	$\lambda(T) = 51.694 + 5.179 \times 10^{-3} \cdot T$	2250 K < $T < 3313$ K
flüssig	$\lambda(T) = -1.607 + 1.889 \times 10^{-2} \cdot T$	3423 K < $T < 4450$ K
	$\lambda_{\rm s} = 68.852, \ \lambda_{\rm l} = 63.053, \ \Delta \lambda_{\rm s-l} = 5.799$	
fest	$a(T) = 11.376 + 1.550 \times 10^{-3} \cdot T$	2100 K < $T < 3313$ K
flüssig	$a(T) = -3.908 + 4.870 \times 10^{-3} \cdot T$	3423 K < $T < 4750$ K
	$a_{\rm s} = 16.511, \ a_{\rm l} = 12.762, \ \Delta a_{\rm s-l} = 3.749$	

47siehe [11]

Mo52Re47

In Tabelle 33 sind alle Ergebnisse für Mo52Re47 zusammengefasst. Die Annahme, dass die thermophysikalischen Daten einer Legierung mit annähernd gleichen Massenprozenten der Komponenten sich zwischen jener der Reinsubstanzen aufhält, wird hier durchwegs bestätigt.

Tabelle 33: Ergebnisse für Mo52Re47 von Expansion, spezifischer Enthalpie, spezifischen Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit

H	spezifische Enthalpie	$kJ\cdot kg^{-1}$
$\varrho_{\rm IG}$	unkorrigierter spezifischer elektrischer Widerstand	$\mu \Omega \cdot { m m}$
ρ	korrigierter spezifischer elektrischer Widerstand	$\mu \Omega \cdot { m m}$
λ	Wärmeleitfähigkeit	$10^{-6} \cdot m^2 \cdot s^{-1}$
a	Temperaturleitfähigkeit	$W \cdot K^{-1} \cdot m^{-1}$

T _s	$T_{\rm s} = 2798~{\rm K}, T_{\rm l} = 2823~{\rm K}, \rho = \!\! 13500~{\rm kg}{\cdot}{\rm m}^{-3}$, at. wt. = 124.6402							
fest	$(d/d_0)^2 = 0.993 + 2.294 \times 10^{-5} \cdot T$	1950 K < $T < 2798$ K						
flüssig	$(d/d_0)^2 = 0.893 + 7.670 \times 10^{-5} \cdot T$	$2823~{\rm K} < T < 3750~{\rm K}$						
fest	$H(T) = -419.4 + 0.392 \cdot T$	$2050 \ {\rm K} < T < 2798 \ {\rm K}$						
	$c_p = 392 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$							
	$C_p = 48.859 \ \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$							
flüssig	$H(T) = -265.9 + 0.423 \cdot T$	2823 K < T < 3650 K						
	$c_p = 423 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$							
	$C_p = 52.723 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$							
	$H_{\rm s} = 677, H_{\rm l} = 928, \Delta H = 251$							
fest	$\varrho_{\rm IG}(T) = 0.137 + 2.663 \times 10^{-4} \cdot T$	2200 K < $T < 2798$ K						
	$\varrho(T) = 0.092 + 2.999 \times 10^{-4} \cdot T$							
flüssig	$\varrho_{\rm IG}(T) = 1.082 - 3.171 \times 10^{-5} \cdot T$	$2823 \ {\rm K} < T < 3650 \ {\rm K}$						
	$\varrho(T) = 0.992 + 3.891 \times 10^{-5} \cdot T$							
	$ \varrho_{\rm IG,s} = 0.882, \varrho_{\rm IG,l} = 0.992, \Delta \varrho_{\rm IG,s-l} = 0.110 $							
	$ \varrho_{\rm s} = 0.931, \varrho_{\rm l} = 1.102, \Delta \varrho_{\rm s-l} = 0.171 $							
fest	$\lambda(T) = 63.603 + 3.648 \times 10^{-3} \cdot T$	2300 K < $T < 2798$ K						
flüssig	$\lambda(T) = 8.050 + 1.942 \times 10^{-2} \cdot T$	$2823 \ {\rm K} < T < 3650 \ {\rm K}$						
	$\lambda_{\rm s} = 73.807, \ \lambda_{\rm l} = 62.873, \ \Delta \lambda_{\rm s-l} = 10.934$							
fest	$a(T) = 11.859 + 1.020 \times 10^{-3} \cdot T$	2200 K < $T < 2798$ K						
flüssig	$a(T) = -1.462 + 4.830 \times 10^{-3} \cdot T$	$2823~{\rm K} < T < 3650~{\rm K}$						
	$a_{\rm s} = 14.713, \ a_{\rm l} = 12.173, \ \Delta a_{\rm s-l} = 2.540$							

Ni55Ti45

Der Einfluss einer N_2 -Atmosphäre auf unterschiedliche N_2 -reaktive Proben wird noch Gegenstand weiterer Untersuchungen sein.

Für Nitinol[®] kann gesagt werden, dass die N₂-Atmosphäre sich auf die Expansion wesentlich auswirkt, jedoch nur geringen bis keinen Einfluss auf die elektrischen Daten hat. Trotz ähnlichem Mischungsverhältnis wie zuvor bei Mo52Re47, besitzt die Legierung grundlegend anderes Verhalten im Vergleich zu den Eigenschaften der Reinmetalle. Die Ergebnisse sind in Tabelle 34 zusammengefasst.

Tabelle 34: Ergebnisse für Ni55Ti45 von Expansion, spezifischer Enthalpie, spezifischen Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit

Η	spezifische Enthalpie	$kJ\cdot kg^{-1}$
ϱ_{IG}	unkorrigierter spezifischer elektrischer Widerstand	$\mu\Omega{\cdot}{ m m}$
ϱ	korrigierter spezifischer elektrischer Widerstand	$\mu\Omega{\cdot}{ m m}$
λ	Wärmeleitfähigkeit	$10^{-6} \cdot m^2 \cdot s^{-1}$
a	Temperaturleitfähigkeit	$W \cdot K^{-1} \cdot m^{-2}$

	$T_m = 1583 \text{ K}, \ \rho \ = 6500 \text{ kg} \cdot \text{m}^{-3}, \ at. \ wt. = 53.2715, \ c_p^* = 709$	$J \cdot kg^{-1} \cdot K^{-1}$
fest	$(d/d_0)^2 = 0.983 + 5.495 \times 10^{-5} \cdot T$	1100 K < $T < 1583$ K
flüssig	$(d/d_0)^2 = 0.900 + 1.228 \times 10^{-4} \cdot T$	1583 K < $T < 2900 {\rm ~K}$
fest	$H(T) = 832.0 - 0.992 \cdot T + 6.044 \times 10^{-4} \cdot T^2$	1200 K < $T < 1583$ K
flüssig	$H(T) = -691.4 + 1.074 \cdot T$	1583 K < $T < 2600 {\rm ~K}$
	$c_p = 1074 \ \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	$C_p = 57.214 \ \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
	$H_{\rm s} = 776, H_{\rm l} = 1009, \Delta H = 233$	
fest	$\varrho_{\rm IG}(T) = 2.562 - 2.200 \times 10^{-3} \cdot T + 8.794 \times 10^{-7} \cdot T^2$	1300 K < $T < 1583$ K
	$\varrho(T) = 2.848 - 2.590 \times 10^{-3} \cdot T + 1.049 \times 10^{-6} \cdot T^2$	
flüssig	$\varrho_{\rm IG}(T) = 2.105 - 3.476 \times 10^{-4} \cdot T + 4.900 \times 10^{-8} \cdot T^2$	1583 K < $T < 2500 {\rm ~K}$
	$\varrho(T) = 1.951 - 1.352 \times 10^{-4} \cdot T + 3.974 \times 10^{-8} \cdot T^2$	
	$ \varrho_{\rm IG,s} = 1.283, \varrho_{\rm IG,l} = 1.678, \Delta \varrho_{\rm IG,s-l} = 0.394 $	
	$ \varrho_{\rm s} = 1.377, \varrho_{\rm l} = 1.837, \Delta \varrho_{\rm s-l} = 0.460 $	
fest	$\lambda(T) = -39.285 + 8.264 \times 10^{-2} \cdot T - 2.526 \times 10^{-5} \cdot T^2$	1300 K < $T < 1500$ K
flüssig	$\lambda(T) = 1.000 + 1.280 \times 10^{-2} \cdot T$	$1650 \ {\rm K} < T < 2500 \ {\rm K}$
	$\lambda_{\rm s} = 28.235, \ \lambda_{\rm l} = 21.262, \ \Delta \lambda_{\rm s-l} = 6.973$	
fest	$a(T) = 162.639 - 0.349 \cdot T + 2.563 \times 10^{-4} \cdot T^2 - 6.214 \times 10^{-8} \cdot T^3$	1300 K < $T < 1500$ K
flüssig	$a(T) = -0.841 + 2.610 \times 10^{-3} \cdot T$	1650 K < $T < 2500$ K
	$a_{\rm s} = 5.933, \ a_{\rm l} = 3.291, \ \Delta a_{\rm s-l} = 2.642$	

MoLa

Obwohl MoLa weniger als 1% La₂O₃ beinhaltet, sind einige Unterschiede im direkten Vergleich mit der Publikation [25] ersichtlich. Die Expansion und der unkorrigierte spezifische elektrische Widerstand sind mit reinem Molybdän vergleichbar, während spezifische Enthalpie, Wärmeleitfähigkeit (in der flüssigen Phase) und Temperaturleitfähigkeit deutliche Abweichungen zeigen. Die erhaltenen Resultate sind in Tabelle 35 zusammengefasst.

Tabelle 35: Ergebnisse für MoLa von Expansion, spezifischer Enthalpie, spezifischen Widerstand, Wärmeleitfähigkeit und Temperaturleitfähigkeit

H	spezifische Enthalpie	$kJ\cdot kg^{-1}$
$\varrho_{\rm IG}$	unkorrigierter spezifischer elektrischer Widerstand	$\mu\Omega{\cdot}{ m m}$
ρ	korrigierter spezifischer elektrischer Widerstand	$\mu \Omega \cdot { m m}$
λ	Wärmeleitfähigkeit	$10^{-6} \cdot m^2 \cdot s^{-1}$
a	Temperaturleitfähigkeit	$W \cdot K^{-1} \cdot m^{-1}$

	$T_m = 2896$ K, $\rho = \! 10220 \ \mathrm{kg} \cdot \mathrm{m}^{-3}$, at. $wt. = 95.94$							
fest	$(d/d_0)^2 = 0.991 + 2.384 \cdot 10^{-5} \cdot T$	2100 K < $T < 2896$ K						
flüssig	$(d/d_0)^2 = 0.889 + 8.270 \cdot 10^{-5} \cdot T$	2896 K < $T < 3900$ K						
fest	$H(T) = -618.9 + 0.551 \cdot T$	2000 K < $T < 2896$ K						
	$c_p = 551 \ \mathrm{J} \cdot \mathrm{kg}^{-1} \cdot \mathrm{K}^{-1}$							
	$C_p = 52.863 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$							
flüssig	$H(T) = -54.2 + 0.504 \cdot T$	$2896 \ {\rm K} < T < 4150 \ {\rm K}$						
	$c_p = 504 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$							
	$C_p = 48.354 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$							
	$H_{\rm s} = 977, H_{\rm l} = 1405, \Delta H = 429$							
fest	$\varrho_{\rm IG}(T) = -0.159 + 3.273 \times 10^{-4} \cdot T$	2250 K < $T < 2896$ K						
	$\varrho(T) = -0.208 + 3.606 \times 10^{-4} \cdot T$							
flüssig	$\varrho_{\rm IG}(T) = 0.909 + 4.331 \times 10^{-7} \cdot T$	2896 K < $T < 4150$ K						
	$\varrho(T) = 0.779 + 8.472 \times 10^{-5} \cdot T$							
	$ \varrho_{\rm IG,s} = 0.789, \varrho_{\rm IG,l} = 0.910, \Delta \varrho_{\rm IG,s-l} = 0.121 $							
	$\varrho_{ m s} = 0.836, \varrho_{ m l} = 1.024, \Delta \varrho_{ m s-l} = 0.188$							
fest	$\lambda(T) = 115.936 - 1.094 \times 10^{-2} \cdot T$	2250 K < $T < 2896$ K						
flüssig	$\lambda(T) = 20.098 + 1.704 \times 10^{-2} \cdot T$	2896 K < $T < 4150$ K						
	$\lambda_{\rm s} = 84.254, \ \lambda_{\rm l} = 69.446, \ \Delta \lambda_{\rm s-l} = 14.808$							
fest	$a(T) = 15.669 - 1.260 \times 10^{-3} \cdot T$	$2250~{\rm K} < T < 2896~{\rm K}$						
flüssig	$a(T) = 0.045 + 3.940 \times 10^{-3} \cdot T$	2896 K < $T < 4150$ K						
	$a_{\rm s} = 12.020, \ a_{\rm l} = 11.455, \ \Delta a_{\rm s-l} = 0.565$							

8 Anhang

- Datenblatt zu Manganin (Seite 89)
- UV-IR-Sperifiter (Seite 90)
- Datenblatt zur Pearson Probe (Seite 91)
- Datenblatt zu Keyence (Seite 92-93)
- Legierungsdaten von der Goodfellow Homepage zu:
 - W95Re5 (Seite 94)
 - W75Re25 (Seite 95)
 - W74Re26 (Seite 96)
 - Mo52Re47 (Seite 97)
 - Ni55Ti45 (Seite 98)
 - reines Molybdän (Seite 99-100)
- Legierungsinformationen von der Plansee Homepage zu:
 - Mo-La Legierungen (Seite 101)
 - Mo-Re-Legierungen (Seite 102)
 - W-Re-Legierungen (Seite 103)

MANGANIN®

Marke	1	MANGANIN ^{® 1)}			
Werkstoff	-	2.1362			
Kurzzeichen CuMn12Ni					
Chemische Zusammensetzung (Massenanteile) in % Mittelwerte der Legierungselemente					
Cu Mn Ni					
Rest	12	2			

Lieferart

MANGANIN[®] wird in Form von Drähten im Abmessungsbereich von 8,0 bis 0,02 mm Ø in blanker oder lackierter Ausführung und/oder mit Seidenumspinnung geliefert. Außerdem fertigen wir Bleche, Bänder, Flachdrähte, Stäbe und Rohre.

Merkmale und Anwendungshinweise

Die von der Isabellenhütte entwickelte Präzisions-Widerstandslegierung MANGANIN[®] zeichnet sich besonders aus durch einen kleinenTemperaturkoeffizienten des elektrischen Widerstandes zwischen 20 und 50 °C mit parabelförmigem Verlauf der R(T)-Kurve, eine hohe Langzeitstabilität des elektrischen Widerstandes, extrem niedrige Thermokraft gegen Kupfer und gute Verarbeitbarkeit. Aufgrund dieser Eigenschaften ist MANGANIN® der klassische Werkstoff zur Herstellung von Präzisions-, Standard- und Shunt-Widerständen. MANGANIN[®] dient als Basis für die Herstellung von ISA-PLAN*- und ISA-WELD*-Widerständen. Die maximale AnwendungstemperaturanLuft beträgt 140 °C. Es sind jedoch auch höhere thermische Belastungen in nicht-oxidierender Umgebung möglich. Beim Einsatz in Präzisionswiderständen mit höchsten Anforderungen sollten die Widerstände sorgfältig stabilisiert werden, die Anwendungstemperatur sollte 60 °C nicht überschreiten. Ein Überschreiten der maximalen Anwendungstemperatur an Luft kann eine Widerstandsdrift, erzeugt durch Oxidationsprozesse, zur Folge haben. Auf diese Weise kann die Langzeitstabilität negativ beeinflusst werden, und sowohl der Widerstandswert als auch der Temperaturkoeffizient des elektrischen Widerstandes können sich leicht verändern. MANGANIN® wird auch verwendet als kostengünstiges Ersatzmaterial für Silberlote zur Hartmetall-Montage.

Elektrischer Widerstand in weichgeglühtem Zustand

	J - J -					
Temperaturkoeffizient des elektrischen Widerstandes zwischen	Spezifischer elektrischer Widerstand in: μ Ω x cm (Zeile 1) und Ω/CMF (Zeile 2) Richtwerte					
20 °C und 50 °C	20 °C	100 °C	200 °C	300 °C	400 °C	500 °C
10 ⁻⁶ /K	Toleranz ±5 %					
-10 bis +10	43	43	-	-	-	-
	259	259	-	-	-	-

Physikalische Eigenschaften (Richtwerte)

Dich 20	ite bei) ℃	Schmelz- punkt	Spezifische Wärme bei 20 °C	Wärmeleit- fähigkeit bei 20 °C	Mittlerer linearer Wärmeaus- dehnungskoeffizient zwischen 20 °C und		Thermokraft gegen Kupfer bei 20 °C
g/cm ³	lb/cub in	°C	J/g K	W/m K	100 °C 10⁻⁵/K	400 ℃ 10 ⁻⁶ /K	μV/K
8,4	0,30	960	0,41	22	18	19,5	Stand.: -1 Spezial: ±0,2

Festigkeitseigenschaften bei 20 °C in weichgeglühtem Zustand²⁾

Zugfest	igkeit ³⁾	Bruch	dehnung (L ₀ = 100) mm) % bei Nenr	ndurchmesser in	mm
MPa	psi	0,02 bis 0,063	> 0,063 bis 0,125	> 0,125 bis 0,5	> 0,5 bis 1	> 1
390	56550	≈12	≈ 18	≈ 20	≥ 20	≥ 25

1) MANGANIN[®] ist ein eingetragenes Warenzeichen der Isabellenhütte Heusler GmbH & Co. KG.

2) Weitere Daten sind: Elastizitätsmodul 1,3 · 10⁵ MPa, Druckkoeffizient des elektrischen Widerstandes 2,3 · 10-7 cm²/N.

3) Der Wert gilt für einen Durchmesser von 2,0 mm. Bei dünneren Drähten liegen die Mindestwerte je nach Abmessung erheblich höher.

Besondere Hinweise zum Temperaturkoeffizienten (siehe auch die Hinweise in Teil 2)

Die folgenden Grafiken zeigen die Änderung des elektrischen Widerstands in Abhängigkeit von der Temperatur für verschiedene Temperaturbereiche. Aufgrund des parabelförmigen Verlaufs der R(T)-Kurven im Bereich der Raumtemperatur (siehe Grafik 1) müssen die Werte des Temperaturkoeffizienten mit dem entsprechenden angewandten Temperaturbereich spezifiziert werden. Die typischen Kurven 1 bis 5 in Grafik 1 stellen verschiedene gelieferte Qualitäten dar, die durch die Legierungszusammensetzung eingestellt werden. Eine bessere und eindeutigere Charakterisierung der MANGANIN^{*}-R(T)-Kurve ist daher der zweite Nullübergang. Dieser gibt die Temperatur an, bei der der Widerstand die Nulllinie zum zweiten Mal schneidet und somit dem Wert bei 20 °C entspricht. Die gepunkteten geraden Linien a und b gelten für einen Temperaturkoeffizienten des elektrischen Widerstands von +10 ppm/K.

Verarbeitungshinweise

MANGANIN^{*} lässt sich gut verarbeiten. Die Legierung kann gelötet werden, sie entwickelt aber an Luft eine dünne Oxidschicht, die vor Verarbeitung entfernt werden muss. Mit einem passenden Flussmittel ist MANGANIN^{*} auch geeignet zum Tauchverzinnen. Zudem ist es möglich, MANGANIN^{*} hartzulöten und zu schweißen. Widerstände aus MANGANIN^{*} müssen zum Abbau von mechanischen Spannungen gealtert werden. Weitere Einzelheiten entnehmen Sie bitte Teil 2, Technische Informationen^e.

PEARSON ELECTRONICS, INC.

PEARSON[™] CURRENT MONITOR MODEL 3025

Sensitivity
Output resistance
Maximum peak current
Maximum rms current
Droop rate
Useable rise time
Current time product
Low frequency 3dB cut-off
High frequency 3dB cut-off
I/f figure
Output connector
Shielding
Operating temperature
Weight

0.025 Volt/Ampere +1/-0% 50 Ohms 20,000 Amperes 325 Amperes 0.004 %/microsecond 100 nanoseconds 3 Ampere-second 7 Hz (approximate) 4 MHz (approximate) 20 peak Amperes/Hz UHF (SO-239) Double 0 to 65 °C 15.8 pounds

© 1999 Pearson Electronics, Inc. 3025.SPX_990506

Pearson Electronics, Inc. • 4009 Transport Street • Palo Alto, CA 94303 Telephone 650-494-6444 • FAX 650-494-6716 • www.pearsonelectronics.com

Technische Daten

Messkopf (Modell mit breitem Lichtband/Standardmodell)

Тур	Modell mit bre	item Lichtband	Standardmodell		
Kategorie	mit CMOS-Monitorkamera	ohne CMOS-Monitorkamera	mit Monitorkamera	ohne CMOS-Monitorkamera	
Modell	LS-7070M	LS-7070	LS-7030M	LS-7030	
Messbereich	0,5 bis	65 mm	0,3 bis	30 mm	
Kleinstes erfassbares Objekt	0,5	mm	0,3	mm	
Abstand zw. Sender und Empfänger	250 ±	50 mm	160 ± 4	40 mm	
Lichtquelle	Grüne G	aN-LED	Grüne GaN-LED		
CCD-Abtastbereich	ca. 69	9 mm	ca. 33 mm		
Messgenauigkeit	± 3 μm ^{-1.} ± 2 μm ^{-3.}				
Wiederholgenauigkeit	± 0,2	μ m ² .	± 0,15 μm 4.		
Anzahl der Abtastungen 7.	2.400 Abtas	tungen/Sek.	2.400 Abtast	2.400 Abtastungen/Sek.	
CMOS-Monitorkamera	Enthalten	Nicht enthalten	Enthalten	Nicht enthalten	
Gehäuseschutzart 8.	IP	64	IPe	64	
Umgebungstemperatur	0 bis +	50° C	0 bis + 50° C		
Relative Luftfeuchtigkeit	35 bis 85 % (Keir	ne Kondensation)	35 bis 85 % (Keine Kondensation)		
Gewicht	Sender : ca. 540 g Empfänger: ca. 770 g Unterbau : ca. 660 g	Sender : ca. 540 g Empfänger: ca. 730 g Unterbau : ca. 660 g	Sender : ca. 420 g Empfänger: ca. 570 g Unterbau : ca. 430 g	Sender : ca. 420 g Empfänger: ca. 470 g Unterbau : ca. 430 g	

Messkopf (Modell mit schmalem Lichtband)

Тур	Modell mit schmalem Lichtband	
Kategorie	mit CMOS-Monitorkamera	ohne CMOS-Monitorkamera
Modell	LS-7010M	LS-7010
Messbereich	0,04 bis	s 6 mm
Kleinstes erfassbares Objekt	0,04	mm
Abstand zw. Sender und Empfänger	60 ± 5	5 mm
Lichtquelle	Grüne GaN-LED	
CCD-Abtastbereich	ca. 7 mm	
Messgenauigkeit	± 0,5 μm ^{δ.}	
Wiederholgenauigkeit	± 0,06 μm ^{6.}	
Anzahl der Abtastungen 7.	2.400 Abtastungen/Sek.	
CMOS-Monitorkamera	Enthalten Nicht enthalten	
Gehäuseschutzart 8.	IP64	
Umgebungstemperatur	0 bis + 50°C	
Relative Luftfeuchtigkeit	35 bis 85 % (keine Kondensation)	
Gewicht	Sender : ca. 140 g Empfänger: ca. 380 g Unterbau : ca. 220 g	Sender : ca. 140 g Empfänger: ca. 340 g Unterbau : ca. 220 g

- Fehler beim Vermessen einer beweglichen Stange mit 20 mm Durchmesser in einem Messbereich von 20 x 40 mm.
 Der Wert ± 2 σ beim Vermessen des Außendurchmessers einer Stange mit 20 mm Durchmesser wird in der Mitte des Messbereichs gemessen, während die Anzahl der Mittelungsmessungen auf 512 gesetzt ist.
 Fehler beim Vermessen einer beweglichen Stange mit 20 mm Durchmesser in einem Messbereich von 10 x 40 mm.
- Der Wert ± 2 or beim Vermessen des Außendurchmessens einer Stange mit 10 nm Durchmesser wird in der Mitte des Messbereichs gemessen, während die Anzahl der Mittelungsmessungen auf 512 gesetzt ist.
- Wahrend die Anzahl der Mittelungsmessungen auf 512 gesetzt ist.
 5. Fehler beim Vermessen einer beweglichen Stange mit 1 mm Durchmesser in einem Messbereich von 2 x 4 mm.
 6. Der Wert ± 2 or beim Vermessen des Außendurchmessers einer Stange mit 1 mm Durchmesser wird in der Mitte des Messbereichs gemessen, während die Anzahl der Mittelungsmessungen auf 512 gesetzt ist.
 7. 1.200 Abstaungerl/Sek., wenn die gegenseitige Störunterdrückungsfunktion verwendet wird.
- 8. Ohne Steckerabschnitt.

Peripheriegeräte

Luftreinigungsgerät OP-79428 [für LS-7030(M)]

Luftreinigungsgerät Netzgerät mit Halterung OP-79429 LS-S11 [für LS-7070(M)]

Modell		LS-S11
Geeignetes Steuergerät		LS-7001/LS-7601
Nonnworto	Versorgungsspannung	100 bis 240 VAC ± 10% 50/60 Hz
wennwerte	Stromaufnahme	max. 110 AC
Umaebunasbe-	Umgebungstemperatur	0 bis + 40°C
ständigkeit	Relative Luftfeuchtigkeit	35 bis 85% (keine Kondensation)
Gewicht		ca. 1,7 kg

Verlängerungskabel

Kabel zwischen Steuergerät und Messkopf

Modell	LS-C3A	LS-C10A	LS-C30A
Kabellänge	3 m	10 m	30 m
Gewicht	ca. 250 g	ca. 700 g	ca. 2.000 g

* Es können maximal zwei Kabel angeschlossen werden, sofern deren Gesamtlänge nicht mehr als 40 m beträgt.

Kabel zwischen Empfänger und Sender

Modell	OP-42182	OP-42183
Kabellänge	1 m	3 m
Gewicht	ca. 50 g	ca. 120 g

* Es können maximal zwei Kabel angeschlossen werden, sofern deren Gesamtlänge nicht mehr als 6 m beträgt.

Kabel für CMOS-Monitorkamera

Modell	LS-C3AM	LS-C10AM	LS-C30AM
Kabellänge	3 m	10 m	30 m
Gewicht	ca. 150 g	ca. 450 g	ca. 1.250 g

* Es können maximal zwei Kabel angeschlossen werden, sofern deren Gesamtlänge nicht mehr als 40 m beträgt.

Steuergerät

Тур			Hohe Leistuna	Standard	
Modell			LS-7601	LS-7001	
Anzahl der anschließbaren Messköpfe		aren Messköpfe	2 (voll kompatibel mit allen Messkopftypen)	2 (kompatibel mit allen Messkopftypen außer den Monitorkameramodellen (M))	
	Messanzeige		TFT 5,5" LCD-Display, Hintergrundbeleuchtung: CCFL (durchschnittl, Lebensdauer: 40.000 Betriebsstunden)	Hauptdisplay: 7-teilige rote LED (Zeichenhöhe: 20,3 mm) Subdisplay: 7-teilige rote LED (Zeichenhöhe: 9.9 mm) x 3	
ay	Kleinste Anzeigeeinheit		0.01 bis 100 um (7 Stufen wählbar)		
ispl	Anzeigebereich		+ 99.99999 bis + 9999.9 mm (Verknüpft mit Einstellung für kleinste Anzeigeeinheit, mm/um auswählbar)		
-	Messpositionsüberwachung		Monitorbild (wenn der Messkopf mit der Monitorfunktion verbunden ist.)	7-stufige Anzeige mit roter LED	
	Anzeige des Tole	ranzprüfausgangs	5-stufige LCD-Anzeige	Grüne LED (GO), Rote LED x 2 (HI, LO)	
	Alarmausgang		NPN-Arbeitskollektorausgang (Öffner)		
	5-stufiger Kompa	aratorausgang	NPN-Arbeitskollektorausnann für OLIT1		
	"Komparator-Be	reit"-Ausgang			
iste	Taktimpulsausga	ing			
alle	Synchroneingan]			
m	Reset-Eingang (2	Zurücksetzen)	Spannungsfreier	Eingang für OUT1	
llen	Auto-Zero-Einga	ng			
-	Programmwähle	ingang	Spannungsfreier Ei	ingang x 4 Eingänge	
	Eingang für die Verarbe	itung von statistischen Werten	Spannungsloser Eingang für OUT1	-	
	Analogausgang		± 10 V x 2	2 Ausgänge	
		5-stufiger Komparatorausgang			
		"Komparator-Bereit"-Ausgang	NPN-Arbeitskollektorausgang für OUT2		
	SUB-Modus ^{1.}	Taktimpulsausgang			
		Ausgang für die Verarbeitung von statistischen Werten	NPN Arbeitskollektor-Ausgang x 2 Ausgänge	_	
A.	Funktionsausgang		Wählbar: Fokus, Flächenprüfung und Differenz, NPN Arbeitskollektorausgang x 2 Ausgänge		
ssE	BCD-Ausgang		Messdatenausgang (Vorzeichen + 7 Stellen), OUT1/OUT2 wählbar, NPN-Arbeitskollektorausgang		
hlu	BCD-Modus ^{1.}	BCD-Auswahlausgang	NPN-Arbeitskollektorausgang		
nsc		BCD-Auswahleingang	Spannungsloser Eingang		
4	Synchroneingan]			
	Reset-Eingang (2	Zurücksetzen)	Spannungsfreier Eingang für OUT2		
	Auto-Zero-Einga	ng			
	Eingang für die Verarb	eitung von statistischen Werten	Spannungsfreier Eingang für OUT2	_	
RS-232C Schnittstelle			Messdatenausgang und Steuer-E/A, Drucker (die Bau	udrate kann auf bis zu 115.200 bps eingestellt werden.)	
Videoausgang Hauptfunktionen			NTSC-System (PIN-Stecker)	-	
			Gleichzeitige Messung, Flächenfestlegung, Berechnung, Mittelung, Kalibrierung, 16-Programm-Speicher, Messmodi, Auto-Zero (autom. Nullsteilung), Ausdruck, Eliminierung nicht akzeptabler Werte, Messung transparenter Objekte, Messpunktanzeige, Gruppenvergleich, Historie nicht akzeptabler Werte, Trend-Display, Verarbeitung von statistischen Werten, Interferenzunterdrückung, Anwendungsfunktion, usw.	Simultanmessung, Flächenfestlegung, Berechnung, Mittelung, Kalibrierung, 16-Programm-Speicher, Messmodi, Auto-Zero, Ausdruck, Elmininierung nicht akzeptabler Werte, Messung transparenter Objekte, Interferenzunterdrückung, usw.	
Nor	nloiotung ?	Versorgungsspannung	24 VDC ± 10%		
Nen	mensionly -	Stromaufnahme	max. 1,2 A	max. 0,7 A	
IIme	ohungoho	Gehäuseschutzart	IP64 (Nur	Frontfläche)	
stän	diakeit	Umgebungstemperatur	0 bis + 40°C		
		Relative Luftfeuchtigkeit	35 bis 85%, (kei	ne Kondensation)	
Gewicht			ca 1 010 g	ca 820 g	

1. Zur Auswahl steht entweder der SUB-Modus oder der BCD-Modus.

2. Das AC-Netzteil kann verwendet werden, wenn das LS-S11 (Netzgerät-Halterung) angeschlossen ist.

Nennleistung des NPN Arbeitskollektors im Klemmenblock: max. 100 mA (max. 40 V), Restspannung: max. 0,5 V Nennleistung des NPN Arbeitskollektors im Anschluss-E/A: max. 30 mA (max. 30 V), Restspannung: max. 0,5 V Nennleistung des spannungsfrieier Eingangs: max. 1 V Einschaltspannung, max. 0,6 mA Ausschaltspannung

I Voraussetzungen für die Verwendung der LS-Navigator Einstellungssoftware

Modell	LS-H1W
CPU	Pentium III 400 MHz oder besser
	Windows Vista
Betriebssystem	Windows XP Professional Edition /Home Edition
	Windows 2000 Professional
RAM-Speicher	mindestens 64 MB
Display	VGA (800 x 600 Pixel) oder mehr, 256 Farben oder mehr
Freier Festplattenspeicher	mindestens 10 MB
Cobrittatello	RS-232C (serieller Port) oder USB zu RS-232C-Adapter (OP-51643)
Schinitisterie	Schnittstelle erforderlich
Excel	Excel 2003/2002/2000

Windows Vista, Windows XP Professional Edition/Home Edition, Windows 2000 Professional, Excel 2003/2002/2000 sind eingetragene Warenzeichen der Fa. Microsoft Corporation, USA.

CE-Markierung

Das Modell LS-7000 entspricht den folgenden europäischen Normen: EMV-Norm: EN61326-1 Niederspannungsrichtlinie: EN60825-1 (LED-Klasse 1)/EN61010-1 (Überspannungskategorie II, Verschmutzungsgrad 2)

Goodfellow	15. Oktober 2010 12:04:19 CET	
Eigenschaften - Wolfram/Rhenium	Schliessen	

Wolfram/Rhenium W 95/Re 5 Standart Produkte verfügbar in diesen Formen

Draht

Allgemeine Beschreibung Bei gleichzeitiger Verwendung mit Wolfram ist diese Legierung ein wichtiges Material für Hochtemperatur-Thermoelementdrähte. Die Legierung kann auch für Glühfäden genutzt werden.

Physikalische Eigenschaften Dichte ($g \text{ cm}^{-3}$)

19,4

Alle technischen Angaben sind unverbindlich. Für ihre Richtigkeit und Vollständigkeit übernimmt Goodfellow keine Gewähr. Irrtümer und Änderungen behalten wir uns vor.

Drucken Sie diese Seite

Schliessen

1 von 1

Goodfellow	15. Oktober 2010 12:03:17 CET	
Eigenschaften - Wolfram/Rhenium	Schliessen	

Wolfram/Rhenium
W 75/Re25
Standart Produkte verfügbar in diesen Formen

Draht

Allgemeine Beschreibung Bei gleichzeitiger Verwendung mit Wolfram ist diese Legierung ein wichtiges Material für Hochtemperatur-Thermoelementdrähte. Die Legierung kann auch für Glühfäden genutzt werden.

Elektrische Eigenschaften	
Elektrisch spezifischer Widerstand (µOhmcm)	29
Mechanische Eigenschaften	
Elastizitätsmodul (GPa)	370-430
Reißdehnung (%)	<20
Zugfestigkeit (MPa)	1310-2100
Physikalische Eigenschaften	
Dichte ($g cm^{-3}$)	19,7
Schmelzpunkt (C)	3100
Thermische Eigenschaften	
	6 1

Linearer Wärmeausdehnungskoeffizient bei 0-500C ($x10^{-6} K^{-1}$)4,48

Alle technischen Angaben sind unverbindlich. Für ihre Richtigkeit und Vollständigkeit übernimmt Goodfellow keine Gewähr. Irrtümer und Änderungen behalten wir uns vor.

Drucken Sie diese Seite

Goodfellow Eigenschaften - Wolfram/Rhenium

15. Oktober 2010 12:02:15 CET

Schliessen

Wolfram/Rhenium W 74/Re26 Standart Produkte verfügbar in diesen Formen

Draht

Allgemeine Beschreibung Bei gleichzeitiger Verwendung mit Wolfram ist diese Legierung ein wichtiges Material für Hochtemperatur-Thermoelementdrähte. Die Legierung kann für Glühfäden genutzt werden.

Alle technischen Angaben sind unverbindlich. Für ihre Richtigkeit und Vollständigkeit übernimmt Goodfellow keine Gewähr. Irrtümer und Änderungen behalten wir uns vor.

Drucken Sie diese Seite

Goodfellow		15. Oktober 2010 12:06:28 CET
Eigenschaften - Molybdän/Rhenium		Schliessen
Molybdän/Rhenium Mo52.5/Re47.5 Standart Produkte verfügbar i	n diesen Formen	
Draht	Folie	Röhrchen
Allgemeine Beschreibung	Durch Zusatz von Rhenium werden Gußeisen verformbarer. Molybdän/Rhenium-Legierungen wurden als Schweißzusatzwerkstoffe für Molybdän und Molybdänlegierungen entwickelt.	

Alle technischen Angaben sind unverbindlich. Für ihre Richtigkeit und Vollständigkeit übernimmt Goodfellow keine Gewähr. Irrtümer und Änderungen behalten wir uns vor.

Drucken Sie diese Seite

Goodfellow		15. Oktober	15. Oktober 2010 12:01:00 CET			
Eigenschaften - Nitinol		Schliessen				
Nitinol Ni55/Ti45						
Standart Produkte verfügbar i	n diesen Formen					
Draht		Röhrchen				
Allgemeine Beschreibung	Diese Gruppe von Metallen, die sich durch die Fähigkeit auszeichnen, nach Unterziehung unter den richtigen Wärmeprozessen in zuvor bestimmte Formen oder Größen zurückzukehren, wird als Gruppe der Legierungen mit "Formgedächtniseffekt" bezeichnet. Anwendungsbereiche: U.a. Blutgerinnselfilter, Zangenringe für Tieftemperaturen, Proportional- Reglerventile und zahnorthopädische Maßnahmen.					
Elektrische Eigenschaften Elektrisch spezifischer Wider	stand (µOhmcm)	Au: 100, Ma: 80				
Mechanische Eigenschaften E-modul im Zugversuch (GPa) Elastizitätsmodul (GPa) Reißdehnung (%) Zugfestigkeit (MPa)		60 - 90 60 - 90 15 - 40 1140				
Physikalische Eigenschaften Dichte (g cm ⁻³) Schmelzpunkt (C)		6,5 1310				
Thermische Eigenschaften Linearer Wärmeausdehnungs Temperature - Austenitische (Temperature - Martensitische Wärmeleitfähigkeit bei 23C (koeffizient bei Au: 11, (C) (C) W m ⁻¹ K ⁻¹)	Ma: 6.6C (x10 ⁻⁶ K ⁻¹) 18, 36 2, -15 Au: 18, Ma: 8,6			

Alle technischen Angaben sind unverbindlich. Für ihre Richtigkeit und Vollständigkeit übernimmt Goodfellow keine Gewähr. Irrtümer und Änderungen behalten wir uns vor.

Drucken Sie diese Seite

Goodfellow

Goodfellow Eigenschaften - Molybdän		15. Oktober 2010 12:05:19 CET Schliessen			
Molybdän Mo Standart Produkte verfügbar ir Molybdän Draht Einkristall Folie Granul	n diesen Formen - 🔽 🔊 at Isolierdraht Mikrofolie	Netz Pul	ver Röhrchen Sputte	ertarget Stab	
Allgemeine Beschreibung	 1871 in Uppsala, Schwed Molybdän ist ein glänzer der Erdkruste mit einer I vorkommt. Es ähnelt Wo es in der Übergangsreihe gepaart wird. Die chemis Elemente unterscheidet zunächst erwartet. Molybdän hat einen hoh macht man sich bei der V zunutze. So wird Reinmo Material in Öfen, als Hat elektrischen Lampen um Quecksilberdampfleucht Molybdän als Legierung Sonderstählen, nämlich I verwendet. Hierbei hand Legierungen, die zu unter und Mo enthalten, sehr I 	, Schweden, von P.J. Hjelm entdeckt. n glänzendes, silberweißes Metall, das in it einer Häufigkeit von 1,5 ppm nelt Wolfram in vieler Hinsicht, mit dem ngsreihe des Periodensystems häufig e chemische Zusammensetzung der beiden cheidet sich jedoch viel stärker, als man et. nen hohen Schmelzpunkt; diese Tatsache bei der Verwendung des Reinmetalls I Reinmolybdän z.B. als feuerfestes a, als Halterung für Glühfäden in npen und als Elektrode in pfleuchten eingesetzt. Außerdem wird egierungszusatz in bestimmten nämlich Permalloys und Stellite, bei handelt es sich um eine Reihe von e zu unterschiedlichen Anteilen Cr, Co, W en, sehr hart sind und für			
	senneidewerkzeuge sow gegenüber starkem Vers	chleiß gen	utz von Oberfläche utzt werden.	n	
Atomische Eigenschaften Atomgewicht (amu) Atomradius - Goldschmidt (nr Elektronenstruktur Ionisationspotential	n)	95.94 0.140 Kr 4d ⁵ 5s ¹ Nr. 1 2 3 4 5 6	eV 7.10 16.15 27.2 46.4 61.2		
Kristallstruktur Natürliche Isotopenverteilung		Body centred cubic Massenzahl% 92 14.8 94 9.3			

	95	15.9		
	96	16.7		
	97	9.6		
	98	24.1		
	100	9.6		
Ordnungszahl	42			
Photoelektrische Austrittsarbeit (eV)	4.2			
Thermischer Neutronenabsorptionsquerschnitt (Barn	s)2.65			
angegebene Valenzen	2, 3, 4, 5, 6			
Elektrische Eigenschaften				
Elektrischer Widerstand bei 20C (µOhmcm)	5,7			
Temperaturkoeffizient bei 0-100C (K ⁻¹)	0,00435			
Supraleitfähigkeit kritische Temperatur (K)	0,915			
Therm. EMK gegenüber Pt (kalt 0C warm 100C) (m)	V)+1,45			
Mechanische Eigenschaften				
Materialzustand	weich	hart	nolykristallin	
E-modul im Zugversuch (GPa)	weich	nurt	324 8	
Härte - Vickers	200	250	<i>c</i> _ ., <i>c</i>	
Kompressionsmodul (GPa)			261,2	
Poissonsche Konstante			0,293	
Streckgrenze (MPa)	415-450	550	-	
Zugfestigkeit (MPa)	485-550	620-690		
Physikalische Eigenschaften				
Dichte bei 20C ($g \text{ cm}^{-3}$)	10 22			
Schmelzpunkt (C)	2617			
Siedepunkt (C)	4612			
Thermische Eigenschaften				
Let a Charles and the second s		200		
Latente Schmelzwarme (Jg ⁺)		290		
Latente Verdampfungswärme (J g ⁻¹)		6153		
Linearer Wärmeausdehnungskoeffizient bei 0-100C ($x10^{-6} \text{ K}^{-1}$)5,1		
Spezifische Wärme bei 25C ($J K^{-1} kg^{-1}$)		251		
Wärmeleitfähigkeit bei 0-100C ($W m^{-1} K^{-1}$)		138		

Alle technischen Angaben sind unverbindlich. Für ihre Richtigkeit und Vollständigkeit übernimmt Goodfellow keine Gewähr. Irrtümer und Änderungen behalten wir uns vor.

Drucken Sie diese Seite

Copyright 2010 PLANSEE SE All rights reserved.

🖨 🕂 🗗

AGB | Impressum | Sitemap

Copyright 2010 PLANSEE SE All rights reserved.

🖨 🕂 🗗

AGB | Impressum | Sitemap

Copyright 2010 PLANSEE SE All rights reserved.

🖨 🕂 🗗

AGB | Impressum | Sitemap

Übernahme von Wolfra Tech: PLANSEE verstärkt Engagement in Indien [08.07.2010] →

Newsarchiv

1 von 1

Literatur

- [1] ZWAHR, A. (Hrsg.): Brockhaus. FA Brockhaus GmbH, Leibzig, Mannheim, 2005
- [2] SCHNEIDER, M.: Teflon, Post-it und Viagra. Große Entdeckungen durch kleine Zufälle. Wiley-vch, 2002
- [3] GERLAND, E.: Geschichte der Physik. Webers Naturwissenschaftliche Bibliothek, 1892
- [4] ISABELLENHÜTTE HEUSLER GMBH & CO. KG: Manganin. Homepage. http: //www.isabellenhuette.de/de/widerstandslegierung/. Version: Oktober 2010.
 http://www.isabellenhuette.de/pdf/WIDER_LEG/DE/MANGANIN.pdf
- [5] GOTTSTEIN, G.: Physikalische Grundlagen der Materialkunde. 3. Springer, 2007
- [6] WEISSMANTEL, Ch.; HAMANN, C.: Grundlagen der Festkörperphysik. 4. Johann Ambrosius Barth Verlag, 1995
- [7] SACHSENHOFER, F.: Data evaluation for pulse heating experiments combined with emissivity measurements using a division-of-amplitude photopolarimeter, Institut für Experimentalphysik der Technischen Universität Graz, Diplomarbeit, 2000
- [8] RESCHAB, H.: Thermophysikalische Daten von X2CrNiMo18-14-3 in der festen und flüssigen Phase, Institut für Experimentalphysik der Technischen Universität Graz, Diplomarbeit, 2008. http://portal.tugraz.at/portal/page/portal/TU_Graz/ Einrichtungen/Institute/Homepages/i5110/forschung/thermophysik/diplom
- [9] CAGRAN, C.: Untersuchung des Emissionsverhaltens flüssiger Metalle mittels Photopolarimetrie und Mehrwellenlängenpyrometrie, Institut für Experimentalphysik der Technischen Universität Graz, Diss., 2004
- [10] PEARSON ELECTRONICS, Inc.: PEARSON CURRENT MONITOR MODEL 3025. Homepage. http://www.pearsonelectronics.com/. - http://www. pearsonelectronics.com/datasheets/standard-ct/3025.pdf
- [11] WILTHAN, B.: Verhalten des Emissionsgrades und thermophysikalische Daten von Legierungen bis in die flüssige Phase mit einer Unsicherheitsanalyse aller Messgrößen, Institut für Experimentalphysik der Technischen Universität Graz, Diss., 2005
- [12] MASSALSKI, T. B. (Hrsg.): ASM Binary Alloy Phase Diagrams. second edition, plus updates, version 1.0. ASM International, 1996

- [13] GOODFELLOW: Legierungsdaten. Homepage, 2010. https://www.goodfellow. com/homee.aspx?LangType=1031
- [14] LIDE, D. R. (Hrsg.): CRC Handbook of Chemistry and Physics. 88th. CRC Press, 2007-2008
- [16] HOLZAPFEL, G. A.: Virtuelle Dilatation von atherosklerotischen Blutgefäßen: Hintergrund, Stand der Forschung und Ausblick. In: Forum Technik und Gesellschaft 3 (2004), S. 108-116. http://www.biomech.tugraz.at/files/publications/Holzapfel%20-%20Forum%20Technik%20und%20Gesellschaft%20-%202004.pdf
- [17] BARGEL, H.-J.; SCHULZE, G.; BARGEL, H.-J. (Hrsg.); SCHULZE, G. (Hrsg.): Werkstoffkunde. 5. VDI Verlag, 1988
- [19] PLANSEE: Mo-La2O3. Homepage. http://www.plansee.at/index.htm. Version: 2010. - http://www.plansee.at/lib/Molybdenum_530DE.pdf
- [20] PLANSEE: Mo-La2O3. Homepage. http://www.plansee.at/index.htm. Version: 2010. - http://www.plansee.at/molybdaen-ml-mlr-mls.htm
- [21] KASCHNITZ, E.; POTTLACHER, G.; WINDHOLZ, L.: High-pressure, High-temperature thermophysical measurements on tungsten. In: *High Pressure Research* 4 (1990), S. 558–560
- [22] HÜPF, T.; CAGRAN, C.; LOHÖFER, G.; POTTLACHER, G.: Electrical resistivity of high temperature metallic melts - Hf3%Zr, Re, Fe, Co and Ni. In: *High Temperatures* - *High Pressures* 37 (2008), S. 239–246
- [23] POTTLACHER, G.; HÜPF, T. (Hrsg.): High temperature thermophysical properties of 22 pure metals. Edition Keiper, 2010
- [24] POTTLACHER, G. ; KASCHNITZ, E. ; JÄGER, H.: High-pressure, high-temperature thermophysical measurements on molybdenum. In: J. Phys.: Condens. Matter 3 (1991), S. 5783–5792
- [25] CAGRAN, C. ; WILTHAN, B. ; POTTLACHER, G.: Normal spectal emissivity at a wavelength of 684.5 nm and thermophysical properties of liquid Molybdenum. In: *International Journal of Thermophysics* 25 (2004), S. 1551–1566

- [26] HÜPF, T.: New measurements (unpublished) to complete existing data. 2008-2009. –
 Ni, Ti
- [27] ADUNK, F.: Messunsicherheiten Theorie und Praxis. Bd. 3. Vulkan, 2007

Danksagung

Diese Arbeit wurde am Institut für Experimentalphysik der Technischen Universität Graz unter Anleitung meines Diplomvaters Herrn Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Pottlacher durchgeführt, welcher vor allem in der Fertigstellungsphase immer für mich Zeit gehabt hat und mir mit Verbesserungvorschlägen zur Seite stand.

In dieser Hinsicht möchte ich auch Dipl.-Ing. Dr. techn. Thomas Hüpf, MA und Dipl.-Ing. Harald Reschab, die ihren Erfahrungsreichtum mit mir teilten, für ihre Unterweisungen bei der Messapparatur danken.

Allen anderen Kollegen der Arbeitsgruppe gebührt Anerkennung für sämtliche Hilfestellungen und ihren permanenten Beitrag zur Aufrechterhaltung des wunderbaren Arbeitsklimas.

Weiters bedanke ich mich bei allen MitarbeiterInnen des Instituts für Experimentalphysik unter der Leitung von Herrn Univ.-Prof. Mag. Dr. Wolfgang Ernst, dabei insbesondere den beiden Sekretärinnen, Frau Bettina Gsöls-Bedenik und Frau Sandra Brunner, die immer hilfsbereit waren und mit ihrer freundlichen Art zwischendurch immer wieder für Auflockerung sorgten.

Einen besonderen Dank an Herrn Dr. Wolfram Knabl von der Firma Plansee für die Bereitstellung der W74Re26 Legierung.

Meiner Familie, vor allem meinem Vater und meiner Schwester Sylvia, danke ich für die moralische Unterstützung während meiner gesamten Studienzeit, meinen Studienkollegen für viele Stunden feucht fröhlicher Ablenkung. Meinem Kollegen und Freund Gerald Reif gebührt besonderer Dank: Er unterstützte mich während des gesamten Studiums bei technischen wie fachlichen Fragen und trug auch bereitwillig die ihm von mir auferlegte Last, der Korrektur der vorliegenden Diplomarbeit. Diese Arbeit wurde im Rahmen des Projects (817084) Metallic Melts 2 - Electrical Resistivity Measurement of High Temperature Metallic Melts 2 - Part 2 durch das Austrian Space Applications Programm (ASAP) der FFG, Sensengasse 1, 1090 Wien unterstützt.

Andreas Sanbach