
Diploma Thesis

Analysis and implementation of the
position-pitch source localization

algorithm on a
hybrid reconfigurable cpu

Wolfgang Jäger

————————————–

Signal Processing and Speech Communication Lab

Graz University of Technology

Research Lab Computational Technologies and Applications

University of Vienna

Assessor: Univ.-Prof. Dipl.-Ing. Dr.techn.Gernot Kubin

Supervisors: Dipl.-Ing. Dr.sc.ETHHarald Romsdorfer

Dipl.-Ing. Dr.techn.Manfred Mücke

Graz, March 2011

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Graz,

Place, Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz,

Ort, Datum Unterschrift

Abstract

Source localization is an important component in speech processing systems, as auto-

mated source localization in combination with beamforming makes it possible to enhance

the speech of individual speakers in reverberating environments, hence providing signals

with improved signal-to-noise ratio for subsequent speech processing algorithms. The

source localization algorithm used in this thesis consists of four main parts: Gammatone

filterbank, cross correlation, Position-Pitch decomposition and final evaluation with in-

terframe tracking. This thesis presents an analysis of the source localization algorithm

with the aim to find reasonable calibrations for its accuracy and time performance. To

achieve a real-time implementation the algorithm is ported to reconfigurable FPGA

based hardware. The hardware used is a Stretch S6 hybrid reconfigurable CPU, in

which certain computationally expensive parts of the code can be outsourced. The cross

correlation is identified as the most computationally expensive part of source localiza-

tion, and several approaches of it have been implemented at the hardware. In order to

elaborate on advantages and disadvantages of the different approaches, measures of time

performance are compared.

Kurzfassung

Die Lokalisierung von Schallquellen stellt einen wichtigen Baustein im Gebiet der

Sprachsignalverarbeitung dar. Automationsgestützte Schallquellenlokalisierung in Kom-

bination mit Beamforming ermöglicht es, Sprachsignale aus bestimmten Richtungen

zu verstärken und raumbedingte Schallreflexionen, die vorallem in halliger Umgebung

auftreten, zu unterdrücken. Dadurch wird der Signal-Rausch Abstand des Signals für

nachfolgende Sprachsignalverarbeitungsstufen verbessert. Der hier verwendete Algo-

rithmus zur Schallquellenlokalisierung besteht aus vier Hauptbestandteilen: Gammaton

Filterbank, Kreuzkorrelation, Position-Pitch Dekomposition und abschließender Auswer-

tung mit frameübergreifendem Tracking. Um den Schallquellenlokalisierungsalgorithmus

zu kalibrieren, bedarf es einer umfassenden Genauigkeits- und Geschwindigkeitsanalyse.

Der kalibrierte Algorithmus wird anschließend auf eine rekonfigurierbare FPGA basierte

Hardware portiert, um ein echtzeitlauffähiges System zu erhalten. Bei der Hardware

handelt es sich um eine Stretch S6 hybride rekonfigurierbare CPU, auf der recheninten-

sive Programmcodeteile ausgelagert werden können. Für den untersuchten Algorithmus

stellt die Kreuzkorrelation den rechenintensivsten Programmteil dar. Es wurden unter-

schiedliche algorithmische Lösungen für die Kreuzkorrelation auf der zugrundeliegenden

Hardware entwickelt. Die jeweiligen Lösungen wurden in einem abschließenden Schritt

einer Geschwindigkeitsanalyse unterzogen und miteinander verglichen.

Danksagung

Ein besonderer Dank gilt meinen beiden Betreuern Harald Romsdorfer und Manfred

Mücke für die Betreuung und Unterstützung während dieser Diplomarbeit. Bedanken

möchte ich mich auch bei Thang Huynh Viet und Tania Habib, die mir für themenbe-

zogene Fragen jederzeit zur Verfügung standen. Vielen Dank an Boris Clénet für die

wertvolle Zusammenarbeit. Für die freundliche Arbeitsatmosphäre im Labor möchte

ich mich bei Anna Fuchs, Martin Schickbichler, Nikolaus Hammler, Susanne Rexeis und

Florian Krebs bedanken. Ein Dankeschön an Anna, Barbara und Franz für das Gegen-

lesen dieser Arbeit. Ein großer Dank geht an meine Freundin Manuela, die während der

Entstehung dieser Arbeit auf viel gemeinsame Zeit verzichten musste. Besonders danken

möchte ich meinen Eltern, Eva und August, die mir dieses Studium ermöglicht haben.

Graz, March 2011 Wolfgang Jäger

Contents

1 Introduction 11

2 Source localization 13

2.1 Introduction to source localization . 13

2.2 Microphone arrays . 14

2.3 Principle of source localization . 14

2.4 Spatial aliasing . 17

2.5 Near and far field assumptions . 18

2.6 Position-Pitch based source localization 19

2.6.1 Gammatone filterbank . 19

2.6.2 Cross correlation (CC) . 22

2.6.3 Position-Pitch (PoPi) decomposition 24

2.6.4 Evaluation of the PoPi matrix and the tracker 27

2.7 Interaction between parts of the source localization algorithm 29

2.8 The frame mechanism and real-time requirements 30

3 Performance analysis and optimization of the algorithm 32

3.1 Time performance of different implementations 32

3.2 Accuracy vs. time performance . 36

3.2.1 Frame shift . 36

3.2.2 Frame size . 37

3.2.3 Sampling frequency . 39

3.2.4 Filterbank adjustments . 41

3.2.5 Resolution of input data . 42

3.2.6 Number of microphone pairs . 43

4 Stretch S6 hybrid reconfigurable CPU based development 46

4.1 Overview of the S6 Xtensa ISEF board 46

6

4.2 The ISEF Xtensa processor . 47

4.3 S6 Instruction pipeline structure . 48

4.3.1 Issue Rate . 49

4.4 S6 Programming . 50

4.4.1 Defining and using Extension Instructions 50

4.4.2 Handling the wide registers . 51

4.4.3 Handling the IRAM . 51

4.4.4 DMA transfers and resolution . 52

4.4.5 The BIOS . 53

4.5 S6 Software build process . 55

4.5.1 Report files . 56

4.6 Stretch integrated development environment 57

4.6.1 Pipeline view . 57

4.6.2 Profiling . 58

5 Porting the source localization algorithm to reconfigurable hardware 59

5.1 Mathematical description of the CC . 59

5.2 CC decompositions . 61

5.2.1 Square decomposition . 61

5.2.2 Linewise decomposition . 64

5.2.3 Diagonal decomposition . 65

5.3 Data flow of the CC implementations . 67

5.3.1 Straightforward implementation without the ISEF 67

5.3.2 Using the ISEF and WRs . 67

5.3.3 Using the ISEF and IRAM . 69

5.4 Experiments and results . 70

5.4.1 Comparison of 8 bit implementations 71

5.4.2 Comparison of 16 bit implementations 72

5.4.3 Comparison of 24 bit implementations 73

5.4.4 Performance observations of further code parts 74

6 Conclusion 77

A RIFF-WAVE file format 79

B Figures 81

7

B.1 Additional Figures to chapter 4 . 81

C Extension Instructions of the CC 85

C.1 Square Decomposition . 85

C.2 Linewise Decomposition . 86

C.3 Linewise decomposition with IRAM . 87

C.4 Diagonal Decomposition . 88

List of References 93

8

List of abbreviations

ALU Arithmetic Logic Unit

AR ALU’s associated register

AU Arithmetic Units

CC Cross Correlation

CPU Central Processing Unit

D-CACHE Data-Cache

DATARAM Dual Port RAM

DMA Direct Memory Access

DOA Direction Of Arrival

EI Extension Instruction

ERB Equivalent Rectangular Bandwidth

ER Extension Register

EUs Extension Unit cycles

FFT Fast Fourier Transform

FPU Floating Point Unit

FR FPU’s associated register

GCC Generalized Cross Correlation

GIB Generic Interface Bus

GMAC Ethernet Media Access Controller

IDE Integrated Development Environment

IIR Infinite Impulse Response

IRAM Inherent ISEF’s RAM

IR Issue Rate

ISEF Instruction Set Extension Fabric

ISS Instruction Set Simulator

MCC Matlab compiler

9

MU Multiplication Units

PA Processor Array

PE Processor Entities

PoPi Position-Pitch

SBIOS Stretch BIOS

SCC Stretch-C Compiler

SCP Software Configurable Processor

TDOA Time Difference Of Arrival

TOA Time Of Arrival

WR Wide Register

10

1 Introduction

This thesis describes the development process of accelerating a signal processing algo-

rithm to allow for an execution in real-time. Figure 1.1 depicts the flow diagram of the

acceleration development process.

As a first step, the signal processing algorithm is analyzed with regards to time perfor-

mance. The time consuming parts of the algorithm are optimized in order to reduce the

execution time of the algorithm. A further reduction in execution time can be achieved

by investigating the parameters of the algorithm. If it is possible to reduce the complex-

ity of the algorithm without loosing accuracy, computational expenses can be reduced.

A compromise between time and quality performance has to be made.

The resulting algorithm is reduced to its essentials. If a real-time execution is not

Signal processing

algorithm

Analysis of time and

quality performance

Optimization and real-time

capability analysis

Transformation to

hardware related

source code

Algorithm based

configuration of the hybrid

reconfigurable CPU

Analysis of the hybrid

reconfigurable CPU

configuration

Optimization of the hybrid

reconfigurable CPU

configuration

Figure 1.1: Development process of accelerating a signal processing algorithm on
a hybrid reconfigurable CPU

11

1 Introduction

possible at this point the computational power of the signal processing hardware has

to be increased. In this thesis a hybrid reconfigurable Central Processing Unit (CPU)

is used in order to speed-up the most expensive computational part of the algorithm.

Therefore, the algorithm has to be transformed to hardware related source code. A

configuration for the hybrid reconfigurable CPU has to be found where computations

can be carried out in parallel. In order to find an optimal solution, an iterative analysis

and optimization process for the hybrid reconfigurable CPU solution is necessary.

The source localization algorithm serves as a good example for testing the acceler-

ation development process concept. Chapter 2 introduces the principles of the source

localization algorithm and describes constituent sub algorithms. In chapter 3, time/qual-

ity performance analysis and the optimization of the source localization algorithm are

discussed. Chapter 4 explains the hybrid reconfigurable CPU environment used. Ob-

servations discussed in chapter 3 are performed on a hardware abstract layer. The

transformation of the main parts of the algorithm to the hybrid reconfigurable CPU

is shown in chapter 5. To conclude this thesis, results of the acceleration process are

verified.

12

2 Source localization

This chapter provides an overview of the source localization algorithm used in this thesis.

After an introduction to microphone array-based acoustic source localization strategies,

several aspects of microphone array processing that are important for implementation

are discussed in more detail. Section 2.6 introduces the four particular parts of the

source localization algorithm. In section 2.7 the interaction between the parts of the

source localization algorithm is presented. Parallel structures essential for distributed

computations are located. The segmentation of the input data into frames is explained

in section 2.8 together with an exact definition of the real-time constraint. 1

2.1 Introduction to source localization

A source localization system can be placed in a conference room where several speakers

are talking. Ideally, it localizes all of the active speakers and returns the positions of

the sources as output. Audio signals are recorded with microphones, arranged in a

microphone array. Figure 2.1 depicts an exemplary scenario using a circular microphone

array. The process of obtaining the positions of the speakers is called source localization.

Figure 2.1: Exemplary source localization scenario, using a circular microphone
array with M microphones.

1Parts of this chapter have been developed in cooperation with Boris Clénet and appear in his
master thesis too. [1]

13

2 Source localization

The output – the positions of the speakers – can be used to steer a beamforming

algorithm which is able to enhance speech from defined directions and suppress ambient

noise (e.g. there is no need of a personal microphone). [2] [3]

2.2 Microphone arrays

A microphone array is defined as an arrangement of multiple spatially separated micro-

phones. Several configurations exist, which can be divided into three groups: Linear,

planar and volumetric arrays. Each group has its own limitations regarding the covered

spatial range. For example a linear array covers a azimuthal range of 180 ◦ while a planar

array covers a azimuthal range of 360 ◦. [4]

In this thesis a planar array has been used. The circular shape of the planar array,

with a diameter of d = 0.55m consists of 24 equally-spaced microphones and is depicted

in Figure 2.2. The main advantages of this array are that it covers a range of 360 ◦

azimuth, and that it is less affected by spatial aliasing than linear arrays would be (cf.

section 2.4).

Figure 2.2: Array configuration of the applied circular microphone array with
M = 24 equally-spaced microphones.

2.3 Principle of source localization

Microphone arrays can be used to estimate the position of a sound source relative to the

position of the array, especially when a dominant source and several interfering sources

overlap. The cross correlation (CC) operation is the core of this source localization

algorithm. [5]

14

2 Source localization

In order to understand the basic concepts of source localization and why the CC

operation is important for it, a simple scenario is assumed. Two microphones receive

the speech signal from a single source in the far field of an array (cf. section 2.5). No

other source is present. Figure 2.3 depicts this scenario.

Depending on the speaker’s position, the Time Of Arrival (TOA) of the speech’s sound

waves at each microphone is different, because the relative distance to each microphone

is not the same.

From the Time Difference Of Arrival (TDOA)(τM1,M13
) between microphones M1 and

M13, the angular Direction Of Arrival (DOA)(θ) of the speech can be derived, according

to (2.2). Microphone pairs are always chosen between opposite microphones. A straight

line through the origin and M1 of the circular microphone array of Figure 2.2, results

in the opposite microphone M13. Microphone M1 and microphone M13 are forming a

microphone pair. If M1 is fixed as the reference, the wavefront arrives at M13 with a

relative time delay. Therefore τM1,M13
has a negative value and

τM1,M13
= −

(

d

c

)

cos(θ) , hence (2.1)

θ = arccos
(

−τM1,M13

c

d

)

, (2.2)

where c is the speed of sound in the environment of the array (c ≈ 343m/s, at 20 ◦C). The

cosine term in (2.1) can vary in the range of [−1, 1]. Therefore, the maximum possible

value for the TDOA is (d/c). TDOA measurements are performed with discretized

input signals. The sampling frequency (fs) of the discretization has to be considered.

Figure 2.3: Simple scenario of source localization: M1 and M13 are the recording
microphones, separated by the distance d. The DOA θ states the
angular Direction Of Arrival. τM1,M13

is the TDOA of the plane
sound wave between microphone M1 and microphone M13.

15

2 Source localization

−800 −600 −400 −200 0 200 400 600 800

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

C
C
(n
)

(a)

−50 −40 −30 −20 −10 0 10 20 30 40 50

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

C
C
(n
)

(b)

Figure 2.4: (a) Exemplary result vector of the CC between microphone M1 and
M13. Speech signal analysis time = 100ms; Sampling frequency =
8kHz; (b) Enlarged area around sample ±50, with the first peak at
nmax = 12.

The TDOA values are multiples of the sampling period. The discretized maximum

TDOA is (dfs/c).

The CC indicates the likeness of two signals. It reaches its maximum when the signals

match the most. Figure 2.4a shows the CC between the outputs of microphones M1

and M13 when only one speaker is present. In Figure 2.4b the x-axes range between the

samples n = ±50 is depicted in more detail.

The position of the maximum nmax and τM1,M13
are linked by

τM1,M13
=

nmax

fs
. (2.3)

By combining (2.2) and (2.3), the DOA can be derived. In Figure 2.4, nmax = 12, which

results in a DOA of θ ≈ 160 ◦.

Because τM1,M13
can not be greater than (d/c), the first peak of the CC vector has to

lie between [−dfs/c ; dfs/c]. Depending on the sign of nmax, the speaker is closer either

to M1 or M13 (i.e. if θ < 90 ◦ or θ > 90 ◦). Indeed if θ < 90 ◦, as Figure 2.3 shows, the

signal has a time advance at M1. Therefore the CC between the outputs of M1 and M13

has a maximum that is retarded (nmax > 0).

With a linear microphone array, DOAs in the range of [0 ◦; 180 ◦] can be derived.

Nevertheless it is impossible to distinguish if θ or −θ is detected. A source positioned

16

2 Source localization

at θ and a source positioned at −θ return the same CC and the same TDOA (mirrored

source). In the case of a circular array the DOAs range is widened to [0 ◦; 360 ◦], since

uncertainties in the sign are eliminated by the results of further microphone pairs.

2.4 Spatial aliasing

Similar to the Nyquist criterion in temporal sampling [6], which has to be fulfilled in order

to avoid temporal aliasing, there are restrictions for spatial sampling [7]. The studied

scenario of section 2.3 is considered. A sinusoidal signal, with a planar wavefront and

a frequency fmax serves as source signal for investigations presented in this section. To

avoid spatial aliasing the phase difference between the two microphones has to remain in

the range ±π. Otherwise it is not possible to determine whether the calculated τM1,M13

is induced by the actual phase shift, or from a modulo π version of it:

2πfmax
d

c
cos(θ) ≤ π . (2.4)

An ambiguous determination of τM1,M13
results in multiple possibilities for the DOA (θ).

The relation

dmax ≤
c

2 fmax
(2.5)

provides the maximal distance dmax between microphones that will not lead to spatial

aliasing for a known fmax. It assumes the worst case, which is θ = 0 ◦.

In contrary to (2.5), the diameter of the microphone array needs to be large enough

to determine the angular speaker positions accurately. The accuracy in determining a

speaker position increases with increasing values of the term dfs/c (section 2.6.3 gives de-

tailed information about speaker detection accuracy). If the sampling frequency is fixed,

an increasing diameter increases the possible accuracy of speaker detection. Therefore

a compromise between the effects of spatial aliasing and speaker detection accuracy has

to be made by choosing the diameter of the circular microphone array.

The applied microphone array has a diameter of d = 0.55m. In order to be certain

that no spatial aliasing occurs for a single microphone pair of the microphone array, a

maximal frequency of fmax ≈ 312Hz can be derived from (2.5). Speech signals contain

frequencies higher than 312Hz, but for a circular microphone array the DOA is different

17

2 Source localization

for every pair of microphones.

fmax ≤
c

2 d cos(θ)
, (2.6)

considers the DOA. Table 2.1 shows the relationship between the DOA and fmax. The

used microphone array consists of M = 24 equally-spaced microphones (Figure 2.2).

The angular distance between two microphone pairs is 15 ◦. Therefore the worst pos-

sible DOA for a speech signal at the circular microphone array used is 15 ◦/2 = 7.5 ◦.

Subtracting 7.5 ◦ from the best case scenario with θ = 90 ◦ leads to θ = 82.5 ◦ and

fmax = 2389Hz for the used microphone array, which is sufficient for speech processing

purposes.

θ 0 ◦ 15 ◦ 30 ◦ 45 ◦ 60 ◦ 75 ◦ 82.5 ◦

fmax 312Hz 323Hz 360Hz 441Hz 624Hz 1205Hz 2389Hz

Table 2.1: Relationship between the DOA and fmax of a sinusoidal signal in re-
lation to spatial aliasing for the scenario in Figure 2.3.

2.5 Near and far field assumptions

If the distance between a source and the microphone array is significantly larger than

the dimensions of the array, the source is in the far field of the array. In this case the

curvature of the arriving wavefront is negligible. The wavefront appears to be planar

when it arrives at the microphones.

Inversely, the source is said to be in the near field of the microphone array when the

source is so close to the array that the curvature of the arriving wavefront has to be

considered. In this case, the signal arrives at each microphone of the microphone array

with a different DOA.

According to [8], a rule of thumb for the distance r from the origin of the microphone

array to where the far field approximation begins to be valid is

r ≥
2L2

λ
, (2.7)

where L is the largest physical dimension of the microphone array and λ the wavelength

of operation. The main analysis frequency range of the used source localization algorithm

reaches from 50Hz to 600Hz. This frequency range leads to an approximate distance

18

2 Source localization

r = 0.088m – 1.06m, where the far field approximation begins to be valid. Assuming

that speaker recordings are taken at distances of r ≈ 2m, the far field approximation

holds for all implementations considered in this thesis.

2.6 Position-Pitch based source localization

The Position-Pitch (PoPi) based localization algorithm consists of four main parts.

First the recorded audio signals are digitally sampled using A/D converters. Then the

following sequence of analysis steps as shown in Figure 2.5 is applied in a frame wise

manner:

1. Gammatone filterbank: The Gammatone filterbank filters the audio signals into

frequency bands. After the filtering process the following cross correlation is less

affected by wide-band noise.

2. Cross correlation (CC): The CC is the core of the source localization algorithm.

It detects the TDOA between the microphones of one microphone pair. If a

time domain approach is chosen, the CC can be performed directly at the speech

signals. If a frequency domain approach is chosen, a Fourier Transform has to be

made before the CC, and an inverse Fourier Transform after the CC.

3. PoPi decomposition: Transforms the one dimensional CC output vector into a

two dimensional matrix (DOA vs. fundamental frequency).

4. Analysis of the PoPi matrix and the tracker: Smoothing of outliners by tracking

over time using several consecutive PoPi analysis frames.

Figure 2.5: Structure of the PoPi based source localization algorithm.

2.6.1 Gammatone filterbank

The audio signals recorded by the 24 microphones serve as input for the algorithm

(Figure 2.2). A filterbank with 64 filters (cf. Figure 2.6) generates 64 filtered output

signals in order to improve reverberation suppression.

19

2 Source localization

For auditory purposes, [9] recommends a Gammatone filterbank due to its good re-

production of the model for the impulse response function of auditory nerve fibers. The

analytical formula for one channel of the filterbank is given by

g(t) = atn−1 cos
(

2πfct + φ
)

e−2πb(fc)t , (2.8)

where a is the amplitude of the filter, n is the order of the filter, fc is the filter center

frequency, b(fc) is the center frequency dependent bandwidth of the filter and φ is the

phase.

The bandwidth of the filter bank increases with increasing frequency, as shown in

Figure 2.6. The relation between center frequency and bandwidth is defined by the

Equivalent Rectangular Bandwidth (ERB) given by

ERB(f) = 24.7 + 0.108f. (2.9)

0 10 20 30 40 50

100

245

453

754

1186

1810

2707

4000

Time [ms]

C
ha

nn
el

 c
en

te
r

fr
eq

ue
nc

y
[H

z]

(a)

0 1000 2000 3000 4000 5000
−60

−50

−40

−30

−20

−10

0

Frequency [Hz]

M
ag

ni
tu

de
 g

ai
n

[d
B

]

(b)

Figure 2.6: Gammatone filters. (a) Impulse responses for eight Gammatone fil-
ters with center frequencies between 100Hz and 4 kHz. (b) Frequency
responses of the filters shown in panel a. [9]

20

2 Source localization

For a fourth-order implementation the ERB is correlated to the filter bandwidth

b(f) = 1.019 ERB(f) . (2.10)

Cooke [10] derived the time discrete transfer function from the analytical transfer func-

tion by performing an Impulse Invariant transformation [11]. Ma [12] improved the

efficiency further: First the signal is shifted to the base band, where it is filtered by

a Gammatone filter. Then it is shifted back to its original frequency band. Down/up

shifting is performed by the complex exponential functions e∓j2πft. The exponential

functions are calculated using the relations to trigonometric functions:

e−j2πft = cos(2πft)− j sin(2πft) , (2.11)

ej2πft = cos(2πft) + j sin(2πft) . (2.12)

Due to the computational complexity of shifting the actual frequency band to the base

band, the exponential functions are rearranged:

e−j2πft = e−j2πfe−j2πf(t−1) . (2.13)

Rearranging reduces the computational complexity considerably, as exponentials only

have to be calculated once (e−j2πf) and consecutive results can be derived from previous

elements (e−j2πf(t−1)).

Two implementations for the time discrete transfer function of the Gammatone filter

have been available. Implementation 1 uses the inherent Matlab filter function, imple-

mentation 2 has been developed by Ma [12] and uses a MEX subroutine. Implementation

2 is implemented as an Infinite Impulse Response (IIR) filter with a Direct Form II, also

called a Canonic Direct Form structure (cf. [13]). The advantage of Direct Form II is

that in comparison to Direct Form I only one delay line is needed, on the other hand the

number of necessary accumulators doubles in comparison to Direct Form I. The filter

graph of this implementation is depicted in Figure 2.7.

During the course of this thesis, implementation 2 has been modified to be able to

buffer values of the filter delay line and the exponential elements for frequency band

down/up shifting between consecutive frames. An implementation in C-code has been

developed to run on the Stretch board. Ma’s MEX subroutine [12] served as the basic

framework for this procedure.

21

2 Source localization

Figure 2.7: Direct Form II implementation of one Gammatone IIR filter channel.

Due to the fixed point data-type approach of the following computation of the CC,

the result of the filter has to be a fixed point data-type. Therefore a study of the impulse

responses

yM [n] =

∞
∑

k=−∞

hM [k]δ[n− k] , δ[n] =







1, if n = 0

0, if n 6= 0
, (2.14)

of the filter bank is necessary in order to prevent integer overflows (cf. [14]).

Internally the filter bank algorithm is calculated with floating point digits. In order to

get fixed point numbers at the output of the filter bank, the result has to be truncated

appropriately. An evaluation of the output range is possible by adding up the absolute

values of the impulse response at the filter-structures point in question:

c = arg max
M=1...64

∞
∑

n=−∞

|yM [n]| , (2.15)

where M is the number of filterbank channels. Outputs of the filter bank have to be

truncated by the factor c in order to prevent an overflow at the floating–to–fixed point

conversion.

2.6.2 Cross correlation (CC)

Within this thesis the cross correlation has been computed with two different methods.

The straightforward approach computes (2.16), which is the shifted version of the inner

22

2 Source localization

product of two input vectors x[n] and y[n].

CC[n] = 〈x∗[m]y[m+ n]〉 (2.16)

The benefit of this approach is its low mathematical complexity. Therefore it is possible

to estimate the computational expenses exactly which is important to implement the CC

on reconfigurable hardware. Due to the low complexity of the time domain approach

the range of values of the CC vector can also be determined exactly. The value range is

important for the use of fixed-point data types in order to avoid truncations. The time

domain approach is used to investigate solutions regarding the Stretch hardware (the

structure of the source localization algorithm when using the time domain approach is

depicted in Figure 2.13).

A more flexible approach is available with the Generalized Cross Correlation (GCC)

[15] [16]:

GCC(f) = X(f)Y ∗(f) (2.17)

Here the result is computed by multiplications in the frequency domain. However,

algorithms transforming the available microphone signals into the frequency domain,

such as the Fast Fourier Transform (FFT), are necessary.

Brandstein [17] recommends to use the GCC together with the so called “Phase

Transform”

GCCPHAT(f) =
X(f)Y ∗(f)

|X(f)Y ∗(f)|
, (2.18)

where the envelope of the frequency domain signal is constant, and information available

in the phase term only. This approach tends to be more robust, and is used under sub-

optimal conditions (e.g. rooms with a lot of reverberation).

The applied frequency domain CC uses a combined version of GCC and GCCPHAT

in order to increase localization accuracy and pitch estimation reliability (Figure 2.8).

The range of the CC result vector, which is important for the localization of the sound

sources (middle sample ± (dfs/c)), consists of the corresponding result of theGCCPHAT.

The GCCPHAT result vector flattens at its boundaries, and periodicities can not be

determined as well as with the GCC. Therefore, the range of the CC result vector

exceeding the middle sample ± (dfs/c) is important for periodicity and consists of the

corresponding results from the GCC (the structure of the source localization algorithm

when using the frequency domain approach is depicted in Figure 2.14).

23

2 Source localization

delay

periodicity

GCCPHAT GCCGCC

n0

Figure 2.8: PoPi decomposition: First the delay for a certain DOA is set. Then
the value for the pitch is calculated. Therefore, three harmonics of
the signal are evaluated by summing up the samples with the defined
periodicity.

2.6.3 Position-Pitch (PoPi) decomposition

After performing the CC between the 64 corresponding filterbank channels of two mi-

crophones from a microphone pair, the 64 result vectors are summed up into one CC

result vector for each frame (the frame mechanism is explained in section 2.8).

This result vector serves as input for the PoPi algorithm, and contains two important

pieces of information. The delay between the input signals of two microphones affects

the delay of the first peak to the middle sample of the vector. In Figure 2.4 the first peak

is at n = 12. In Figure 2.8 the first peak is at n = −2. Physically, the delay between the

two input signals corresponds to the DOA of the sound waves (cf. section 2.3). Further

0 50 100 150 200 250 300 350

100

150

200

250

300

350

400

450

500

550

600

Direction of arrival [°]

F
re

qu
en

cy
 [H

z]

Figure 2.9: Visualisation of the Position-Pitch matrix.

24

2 Source localization

peaks in the CC result vector represent occurring periodicities in the input signal. In

Figure 2.4 periodicities can be observed for example at n ≈ −40, n ≈ −13, and n ≈ 33.

In Figure 2.8 periodicities can be observed for example at n ≈ −25, n ≈ −13, n ≈ 10,

and n ≈ 26.

The PoPi decomposition creates a matrix

X̂ =









x̂1,1 · · · x̂1,360

...
. . .

...

x̂521,1 · · · x̂521,360









(2.19)

from the CC vector (depicted in Figure 2.8). The PoPi matrix evaluates the angular

DOA over frequency. Instead of detecting peaks directly in the correlation vector, the

PoPi algorithm generates a plot of the current speaker scenario. The DOA is varied

between 1 ◦ and 360 ◦, with a step size of one degree. Frequencies between 80Hz and

600Hz are applied to the y-axis of the plot. The energy intensity is depicted in terms of

color (cf. Figure 2.9).

The procedure of calculating an entry of the PoPi matrix is demonstrated in Figure

2.8: First the delay for a certain angular DOA is set (indicated by a circle in Figure

2.8), and then the value for the pitch is calculated. Therefore, three harmonics of the

signal are evaluated by summing up the defined samples (indicated by crosses in Figure

2.8). The higher the energy of the samples, the more likely a speaker is talking at the

current position and pitch.

Due to the physical dimensions of the circular microphone array used, speakers are

positioned outside of the microphone array. Nevertheless the DOA is projected onto

the interconnection between a microphone pair, and is available as a time difference ∆t.

The projection follows equation

∆t =
cos(θ) fs d

c
, (2.20)

where θ states the angular DOA, d is the distance between the two microphones of one

microphone pair, and c the speed of sound.

The sampling frequency fs rasterizes the time difference, and therefore only a certain

angular accuracy can be achieved. For a first rough estimate, the accuracy is determined

by

∆θ =
180 c

2 fs d
, (2.21)

25

2 Source localization

where the number of possible time lags between the two microphones is distributed

equally over a semi circle. However, the projection includes a cosine term and is therefore

nonlinear. After sampling, the projection is more accurate at the center and not as

accurate at the lateral (Figure 2.10 and Figure 2.11). The relationship between the

angular DOA and the accuracy is associated via

∆θ = arccos

(

τ [n] c

fs d

)

− arccos

(

τ [n− 1] c

fs d

)

, ∆τ [n] = ∆t(nT) , (2.22)

where the difference in angle for two consecutive samples states the accuracy. In Table

2.2 resolutions for given sampling frequencies are listed.

Sampling frequency Rough estimate Accuracy lateral Accuracy central

48 kHz 1.17 ◦ 3.89 ◦ 0.74 ◦

32 kHz 1.75 ◦ 6.66 ◦ 1.12 ◦

16 kHz 3.51 ◦ 7.71 ◦ 2.23 ◦

8 kHz 7.02 ◦ 10.26 ◦ 4.47 ◦

Table 2.2: Angular accuracy for different sampling frequencies.

To recap, as a consequence of thePoPi algorithm the semi circle of theDOA is divided

into segments of one degree. The projection of these segments onto the interconnection

between the microphones would lead to a nonlinear raster. Because sampling is linear

and determined by the sampling frequency, the consequence is a mismatch affecting the

angular accuracy. Resolution is more accurate at the center and less accurate at the

lateral.

1°

Figure 2.10: Projection mismatch between the equally spaced semi circle of DOA
and the sampled interconnection between two microphones.

26

2 Source localization

0 50 100 150 200 250 300 350

100

150

200

250

300

350

400

450

500

550

600

Direction of arrival [°]

F
re

qu
en

cy
 [H

z]

Figure 2.11: PoPi matrix for one microphone pair. The PoPi matrix is symmet-
ric for one microphone pair (mirrored source, cf. section 2.3). The
resolution of the PoPi matrix is higher in the area of 90 ◦, and lower
in the area of 0 ◦ and 180 ◦.

2.6.4 Evaluation of the PoPi matrix and the tracker

For human observers it is relatively easy to evaluate a graphical representation of the

PoPi matrix. Automatic approaches are more demanding. In the course of this thesis a

basic evaluation module has been developed. Research has shown that it is only capable

of detecting a single speaker. Further investigations will be necessary in order to improve

the quality.

The PoPi algorithm delivers a 521×360 sized matrix (2.19), representing frequencies

between 80Hz and 600Hz in one dimension, and the circle (1 ◦ to 360 ◦) for the azimuth

DOA in the other dimension. The evaluation algorithm sums up all frequency elements

of the PoPi matrix

x = xj =
521
∑

i=1

x̂ij , (x̂ij) = X̂ . (2.23)

Hence the vector x, representing the energy intensity at a certain DOA, is the basis for

the detection process.

The first decision to make is, whether a speaker is active or not in the present frame.

Thus, a threshold parameter for the actual speaker scenario is needed. This parameter

needs to be trained before the algorithm can be executed. The current implementation

determines the threshold as a fraction of the maximally available energy intensity. Be-

27

2 Source localization

Figure 2.12: Processing chain of the tracker.

cause the absolute energy intensity is only necessary for thresholding, x is normalized

afterwards

x = xj =
xj

argmaxk=1...360 xk

, j = 1 . . . 360 . (2.24)

Peaks in the vector x which exceed a certain level are marked as active speaker areas,

and are inherited to the tracking.

The tracker analyzes results from consecutive frames. The number of frames which

are considered at the analysis can be varied. If L frames are considered by the tracker,

a certain DOA has to appear in more than L/2 frames to be taken into account at

the evaluation. A 10 ◦ range for each of the tracker’s detected DOAs is considered at

the actual peak detection, where the maximum of the current frame is searched for and

the particular DOA detected. The 10 ◦ range is based on the width of two side by side

standing speakers at a distance of approximately 1.5m to the origin of the microphone

array. Figure 2.12 shows the processing chain.

For the thresholding approach of the tracker, training is necessary in order to get

meaningful results. To avoid the training, another tracker has been developed where

thresholding is not used. The maximal magnitude of the PoPi matrix is tracked over

consecutive frames. If a speaker is active, the angular DOA does not change randomly.

If a certain DOA appears many times within a certain time interval, it can be assumed

that a speaker is positioned at this DOA. The frequency of occurrence for certain DOAs

is evaluated. The advantage of this approach is that no training is necessary. The

constraint is that only single sources can be located.

28

2 Source localization

2.7 Interaction between parts of the source localization

algorithm

Parallelism is important in order to find efficient realizations for a reconfigurable hard-

ware based implementation. This section describes the determination of parallel struc-

tures of the PoPi based source localization algorithm.

Figure 2.13 shows the assembly plan if the CC is performed in the time domain. Ex-

ploring parallel structures shows that Filterbank–CC–PoPi channel strips for different

microphone pairs are independent of each other and may be computed in parallel. The

CC is the most expensive computational operation (cf. Figure 3.2). This is important

knowledge, as channel strips can be computed on different arithmetic units.

Figure 2.14 computes the CC in the frequency domain (GCC (2.18)). In this case

a Fourier Transform with prior windowing is necessary before the CC, and an inverse

Fourier Transform is necessary after the CC. After the inverse Fourier Transform and

before the PoPi decomposition, results around the middle sample of theGCC vector are

replaced by GCCPHAT results (cf. section 2.6.2). The parallel structure is nevertheless

maintained for the frequency domain implementation. Computations can be carried out

on different arithmetic units.

H0
H1

H63

...
mic1

H0
H1

H63

...
mic13

...

CC
CC

CC

+ PoPi

12 microphone pairs
+ Display

H0
H1

H63

...
mic12

H0
H1

H63

...
mic24

...

CC
CC

CC

+ PoPi

Tracker
Analysis

Figure 2.13: Structure of the source localization algorithm, if the CC is per-
formed in the time domain. mic1 – mic24: Microphones of the
circular microphone array; H0 – H63: Filter channels of the Gam-
matone filterbank;

29

2 Source localization

H0
H1

H63

...
mic1

...

W
W

W

...

FFT
FFT

FFT

H0
H1

H63

...
mic13

...

W
W

W

...

FFT
FFT

FFT

...

GCC
GCC

GCC

...

(GCC-)PHAT

...

+ PoPi

12 microphone pairs + Display

(GCC-)PHAT

(GCC-)PHAT

IFFT
IFFT
IFFT

IFFT

IFFT

IFFT

H0
H1

H63

...
mic12

...

W
W

W

...

FFT
FFT

FFT

H0
H1

H63

...
mic24

...

W
W

W

...

FFT
FFT

FFT

...

GCC
GCC

GCC

...

(GCC-)PHAT

...

+ PoPi(GCC-)PHAT

(GCC-)PHAT

IFFT
IFFT
IFFT

IFFT

IFFT

IFFT

Tracker
Analysis

Figure 2.14: Structure of the source localization algorithm, if the CC is per-
formed in the frequency domain. mic1 – mic24: Microphones of the
circular microphone array; W: Hamming window; H0 – H63: Filter
channels of the Gammatone filterbank;

2.8 The frame mechanism and real-time requirements

The source localization algorithm has to be computed as soon as a certain amount of

data (referred to as frame size) is available at the outputs of the A/D converters of the

microphones.

Determining the optimal frame size is essential for the analysis. If the frame size is

too small the DOA can not be obtained, because the frames of the two microphones

do not have correlating samples. In this case the first peak in the CC result vector

does not appear (cf. section 2.6.3 and Figure 2.8). The frame size should not be too

large either, because computational complexity – of the time domain CC algorithm –

rises quadratically with an increasing frame size. In order to get continuous results it

is necessary to overlap the frames. The time which elapses between the start of two

consecutive frames is called the frame shift. Because frame size and frame shift are

specified as time values, they are both dependent on the sampling frequency. A higher

sampling frequency results in larger frames and more computational effort.

Figure 2.15 shows the principle of the frame mechanism, which is used synchronously

for all microphones involved in the source localization algorithm. After splitting the

audio stream into frames with a fixed frame size N , subsequent computations can be

performed.

30

2 Source localization

frame n+2

E
xt

ra
ct

io
n

or
de

r frame n
frame n+1

frame n+k

Time

Frame shift

Frame length

input data

Figure 2.15: The frame mechanism: The input signal data stream is split into
frames of a certain length (frame size). Frames overlap, the time
elapsing between two consecutive frames is the frame shift.

The real-time requirement has no fixed, general definition. It has to be defined for

the PoPi based source localization algorithm, and is related to the frame shift. By the

time the input data completing a frame n is available, the computation of the source

localization algorithm is started. The computation has to be completed until data for

the computation of the next frame n + 1 is available in order to avoid interferences.

The time between frame n and frame n + 1 is the frame shift. Therefore the source

localization result has to be computed within the duration of the frame shift. If this

requirement is not fulfilled the algorithm is not capable of delivering results in real-time.

31

3 Performance analysis and

optimization of the algorithm

Investigations concerning the time performance of different PoPi based source localiza-

tion algorithm approaches are presented in section 3.1 of this chapter. It will be shown

that an optimization of the single parts of the algorithm is not sufficient to perform cal-

culations in real-time. Therefore, the change in accuracy by varying several parameter

of the algorithm are discussed in section 3.2. If it is possible to reduce the parameters

complexity without loosing accuracy the execution time can be reduced further.

Since Matlab is hardware independent and offers comprehensive analysis tools, it has

been used for experiments in this chapter.

3.1 Time performance of different implementations

Different Matlab software approaches for the time consuming parts of the algorithm

result in significantly different execution times. Three parts of the speaker detection

algorithm are the most extensive:

• Gammatone filterbank

• Cross correlation

• PoPi decomposition

The Gammatone filterbank is available as a vector oriented Matlab code, as well as a

MEX subroutine written in C. Matlab provides an inherent CC function (xcorr), which

executes computations in the frequency domain. Additionally, a time domain approach

programmed as a MEX subroutine has been implemented. Three implementations are

available for the PoPi algorithm: A loop based detection algorithm, a vector oriented

approach, and a MEX subroutine.

32

3 Performance analysis and optimization of the algorithm

The simulations took place on an “Intel Core i5-650 Processor (4MB Cache,

3.20GHz)”. In order to explore the Matlab inherent multi threading possibilities, simu-

lations have been carried out once in single thread mode and once in multi thread mode.

In multi thread mode as many threads as arithmetic units available at the processor are

started by Matlab, which is two for the processor used. In order to be able to compare re-

sults, and as a consequence of the available hardware resources, time performance results

for the explicitly parallel approach have been carried out consecutively and extrapolated.

The following approaches have been tested:

Gammatone filterbank Cross correlation Position-Pitch decomposition

Matlab

A MEX xcorr MEX

B Vector based xcorr Vector based

C Vector based xcorr Loop based

D MEX MEX MEX

Matlab runtime environment

E MEX xcorr MEX

Using explicitly parallel threads by calling Matlab via shell script

F MEX xcorr MEX

Table 3.1: Programming methods for Matlab code approaches. The letters in the
left-hand column denote the individual software configurations in the
rest of this chapter.

All simulations are performed with invariant algorithm parameters, listed in the fol-

lowing Table 3.2:

33

3 Performance analysis and optimization of the algorithm

Resolution of input data 16 bit

Number of microphone pairs 12

Sampling frequency 48 kHz

Frame size 0.1 s

Frame shift 0.02 s

Filterbank frequency range 50Hz – 8 kHz

Number of filterbank channels 64

Length of tracker 40

Table 3.2: Parameters for time performance simulation.

Results of the performance tests are depicted in Figure 3.1. The eye-catching ap-

proach D computes the CC in time domain. Apparently there are very efficient Fourier

Transform implementations available, so the frequency domain approaches are more ef-

ficient, especially if they use the FFTW framework [18] as Matlab does. Approaches

A, B, C, E and F are using the same frequency domain based CC. Variations in the

Gammatone filterbank and PoPi decomposition parts (approaches A, B, C) show that

MEX subroutines (A) are faster than vector based solutions (B), which are again faster

than loop based Matlab routines (C).

A B C D E F
0

100

200

300

400

500

600

700

800

900

E
xe

cu
tio

n
tim

e
fo

r
on

e
se

co
nd

 o
f s

pe
ec

h
[s

]

Multi thread
Single thread
Explicitly multi thread

Figure 3.1: Time performance measurements using different programming meth-
ods (Annotations are explained in Table 3.1).

34

3 Performance analysis and optimization of the algorithm

Multiple thread adjustments do not affect MEX implementations (A, E, F), as Matlab

is only aware of parallelizing Matlab inherent functions. Approach E is compiled as

stand alone executable. The compilation process uses the Matlab compiler (MCC) and

at execution time Matlab runtime libraries are also necessary. Contrary to expectations

the stand alone compilation is not faster than approach A.

Approach F separates the initialisation, the computation of each microphone pair

channel (twelve channels), and the terminal analysis stage. Computations of the micro-

phone pair channels are executed in parallel on individual CPUs. A shell script controls

the execution chain. The independence of single microphone pair channels is beneficial

in regard to parallel computing (cf. section 2.7), and allows for easy and efficient code

separation, which is reflected in a significantly shorter execution time.

Matlab’s profiling tool allows to take a closer look at the distribution of time duration

used at certain parts of the code in approaches A, B, C and D (Figure 3.2). In approach

A, most of the time is spent at the CC followed by the Gammatone filterbank and the

PoPi decomposition. Approach B and C demonstrate the sizable computational effort

A B C D
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 e

xe
cu

tio
n

tim
e

pe
r

co
de

 s
eg

m
en

t [
%

]

Gammatone filter
Cross correlation
PoPi decomposition
Tracker

Figure 3.2: Relative time consumption in percent for the Gammatone filterbank,
the cross correlation, the PoPi decomposition, and the tracker (An-
notations are explained in Table 3.1).

35

3 Performance analysis and optimization of the algorithm

when not using MEX subroutines. As shown by the results of approach C, loop based

programming should be avoided and replaced by vector based solutions. Performing the

CC in the time domain exorbitantly increases the computational costs for this section of

code. The measurements in Figure 3.2 are performed with the single thread adjustment.

Figure 3.1 shows that approaches are not able to be carried out in real-time. Never-

theless, an increase in computational efficiency could be achieved. Investigations in the

next section will analyze the acceleration in execution time when changing parameters

of the algorithm.

3.2 Accuracy vs. time performance

This section provides insight into the speaker localization algorithm in regard to accuracy

and time performance when varying single parameters such as: Frame shift, frame size,

sampling frequency, filterbank adjustments, resolution of the input data, number of

microphone pairs, and length of the analysis tracker.

Computational performance is measured as the duration of time needed to calculate

the data for one second of recorded speech. If the result of the variously adjusted

algorithm is within ±5 ◦ of the real result, the output is marked as accurate. The level

of accuracy states the percentage of correctly detected frames within the analyzed voice

recording.

3.2.1 Frame shift

The procedure of analyzing parameters of the algorithm is performed by varying only

single parameters, whereas the other parameters are fixed. Adjustments are listed in the

following table 3.3:

Fixed parameters Varied parameters

Frame size 85.3333ms Frame shift

Sampling frequency 48 kHz Length of tracker

Filterbank frequency range 50Hz – 8 kHz

Number of filterbank channels 64

Resolution of input data 16 bit

Number of microphone pairs 12

Table 3.3: Frame shift: Simulation parameters.

36

3 Performance analysis and optimization of the algorithm

Beginning with the frame shift, it can be observed in Figure 3.3a that in correspon-

dence to decreasing time-lags between the consecutive frames the execution time in-

creases. The time performance curve follows a simple rational function f(x) = 1/x. The

inversion of this function is a linear relationship between the frame shift (in frames per

second [fps]) and the computational speed (Figure 3.3b). The result is expected as a

doubling in frames to calculate, causes a doubling of computational complexity.

The quality of the PoPi matrix is not affected by variations in the frame shift. There-

fore, the accuracy over different frame update intervals should stay the same. Figure 3.4

inspects this behaviour. In Figure 3.4a the accuracy diminishes with increasing frames

per second. This effect is caused by the fixed tracker length. Fixed tracker length means

that the evaluation algorithm always uses the result of the actual and seven elapsed

frames. At an update rate of 100 fps, eight frames are only the 8/100 part of one second,

whereas at an update rate of 20 fps, eight frames are 8/20 parts of a second. Therefore

the tracker has more information over time available (e.g. the pauses between two spoken

words are better covered). Adapting the tracker length with an increasing number of

frames removes this effect. The overall accuracy stays the same (Figure 3.4b).

3.2.2 Frame size

Modifications in the frame size mean that the algorithm is considering more audio sam-

ples for one frame. Therefore pauses between words or phrases are less troublesome for

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

F
ra

m
es

hi
ft

[s
]

Execution time for one second of speech [s]

(a) Frame shift in seconds.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

110

F
ra

m
es

hi
ft

[fp
s]

Execution time for one second of speech [s]

(b) Frame shift in frames per second.

Figure 3.3: Time performance: Variation of frame shift.

37

3 Performance analysis and optimization of the algorithm

10 20 30 40 50 60 70 80 90 100 110
80

82

84

86

88

90

92

94

96

98

100

Frameshift [fps]

A
cc

ur
ac

y
[%

]

fixed length of tracker: 8

(a) Fixed length of tracker.

10 20 30 40 50 60 70 80 90 100 110
80

82

84

86

88

90

92

94

96

98

100

Frameshift [fps]

A
cc

ur
ac

y
[%

]

length of tracker: 8
length of tracker: 10
length of tracker: 14
length of tracker: 20
length of tracker: 28
length of tracker: 40

(b) Adapted length of tracker.

Figure 3.4: Accuracy vs. time performance in regard to the frame shift.

the speaker detection, although the beginnings and endings of speaker active parts are

more blurred.

Fixed parameters Varied parameters

Frame shift 20ms Frame size

Sampling frequency 48 kHz Length of tracker

Filterbank frequency range 50Hz – 8 kHz

Number of filterbank channels 64

Resolution of input data 16 bit

Number of microphone pairs 12

Table 3.4: Frame size: Simulation parameters.

An increase in frame size goes hand in hand with an increase in execution time. The

relationship is linear. This linearity suggests that the calculation of the CC (as shown

in Figure 3.2, execution time is mostly needed during the CC) is performed in the

frequency domain, where the amount of multiplications grows linearly with the length of

the input vectors. Performing the CC in the time domain would quadratically increase

the amount of multiplications in reference to the length of the input vector (cf. section

2.6.2).

Figure 3.5 shows the dependencies of accuracy and time performance with varying

frame sizes. Two different datasets have been used: Dataset A is a recording of a

single professional male speaker without any speaking breaks. In dataset B, two non-

38

3 Performance analysis and optimization of the algorithm

professional speakers (one male and one female) are talking one after another with short

breaks in between.

The detection works considerably better with the professional speaker, and increases

with the growing frame size. Beginning with a frame size between 100ms and 140ms,

saturation in accuracy can be observed. Exploring the differences between tracker lengths

used for computing dataset A leads to the conclusion that for small frame sizes longer

tracking is to preferable, whereas for large frame sizes an increased length of the tracker

does not lead to more accurate results, because boundaries between speaker active and

speaker inactive areas are softened.

3.2.3 Sampling frequency

Performance and accuracy observations have also been carried out with an alternating

sampling frequency.

0 100 200 300 400 500 600
40

50

60

70

80

90

100

110

Execution time for one second of speech [s]

A
cc

ur
ac

y
[%

]

dataset A, length of tracker: 8
dataset A, length of tracker: 40
dataset B, length of tracker: 40
framesize: 40ms
framesize: 60ms
framesize: 80ms
framesize: 100ms
framesize: 140ms
framesize: 200ms
framesize: 400ms

Figure 3.5: Accuracy vs. time performance in regard to the frame size.

39

3 Performance analysis and optimization of the algorithm

Fixed parameters Varied parameters

Frame shift 20ms Sampling frequency

Frame size 100ms Filterbank frequency range

Resolution of input data 16 bit Number of filterbank channels

Number of microphone pairs 12 Length of tracker

Table 3.5: Sampling frequency: Simulation parameters.

Figure 3.6a shows the relationship between increasing sampling frequency and the re-

sulting increase in execution time. The relationship is linear. The 8 kHz case is faster

than expected. This is a consequence of the reduced number of Gammatone filter chan-

nels (32 instead of 64 channels; Nyquist frequency: 4 kHz).

Accuracy in dependence of execution time (Figure 3.6b) shows expected results for

dataset A. Accuracy is low in the 8 kHz case and higher for 16 kHz, 32 kHz and 48 kHz.

As the highest center frequency of the filterbank is at 8 kHz, there are no improvements

for sampling frequencies of 32 kHz and 48 kHz. On the contrary, results from dataset

B are showing unexpected behaviour. The results for a sampling frequency of 8 kHz

are very accurate, whereas the results for the 16 kHz case are very poor. Looking at

result matrices from the PoPi decomposition suggests that a reduced resolution of the

filterbank at higher frequencies leads to a more stable result for the 8 kHz case.

0 20 40 60 80 100 120 140 160 180
5

10

15

20

25

30

35

40

45

50

S
am

pl
in

g
fr

eq
ue

nc
y

[k
H

z]

Execution time for one second of speech [s]

(a) Performance

0 20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

110

Execution time for one second of speech [s]

A
cc

ur
ac

y
[%

]

dataset A, length of tracker: 8
dataset A, length of tracker: 40
dataset B, length of tracker: 40
fs: 8kHz
fs: 16kHz
fs: 32kHz
fs: 48kHz

(b) Accuracy vs. time performance

Figure 3.6: Accuracy vs. time performance in regard to the sampling frequency.

40

3 Performance analysis and optimization of the algorithm

3.2.4 Filterbank adjustments

For higher sampling frequencies results are not getting more accurate because of the

center frequencies range of the filterbank. Therefore, this section analyzes adjustments

of the filterbank.

Fixed parameters Varied parameters

Frame shift 20ms Filterbank frequency range

Frame size 100ms Number of filterbank channels

Sampling frequency 48 kHz

Resolution of input data 16 bit

Number of microphone pairs 12

Length of tracker 40

Table 3.6: Filterbank adjustments: Simulation parameters.

The results from different center frequency ranges are shown in Figure 3.7a. Reducing

the upper limit of the center frequencies to 3 kHz, and lifting the lower limit of the

center frequencies to 100Hz leads to higher accuracy. Figure 3.7b depicts results from

a reduced number of filterbank channels (Range of center frequencies: 50Hz – 8 kHz).

Simulations reveal that 28 channels lead to the same level of accuracy as 64 channels.

It is possible to reduce the number of filterbank channels, with the benefit being saved

computational load. For simulations of Figure 3.8, the center frequencies range of the

filterbank has been reduced to 100Hz – 3 kHz. Simulations have again been performed

for different numbers of filterbank channels. The number of channels can be reduced to

10 without a significant loss of accuracy. The reduction of filterbank channels goes hand

in hand with a tremendous acceleration in execution time.

41

3 Performance analysis and optimization of the algorithm

50−8k 100−8k 200−8k 300−8k 400−8k 50−3k 50−4k 50−6k 50−8k 50−12k
0

10

20

30

40

50

60

70

80

90

100

Center frequency range [Hz]

A
cc

ur
ac

y
[%

]

dataset B, length of tracker: 40, nboffbchn: 64

(a) Accuracy with varied filterbank

frequency range

0 20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

110

Execution time for one second of speech [s]

A
cc

ur
ac

y
[%

]

dataset B, length of tracker: 40
nboffbchn: 16
nboffbchn: 28
nboffbchn: 40
nboffbchn: 52
nboffbchn: 64

(b) Accuracy vs. time performance:

Varied number of filterbank

channels. Filterbank frequency

range: 50Hz – 8 kHz.

Figure 3.7: Accuracy and time performance in regard to filterbank adjustments.

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

110

Execution time for one second of speech [s]

A
cc

ur
ac

y
[%

]

dataset B, length of tracker: 40
nboffbchn: 8
nboffbchn: 10
nboffbchn: 16
nboffbchn: 28

Figure 3.8: Accuracy and time performance in regard to optimized filterbank
adjustments. Filterbank frequency range: 100Hz – 3 kHz.

3.2.5 Resolution of input data

Matlab is working internally with double precision floating point numbers. Therefore

differences in input data resolution can only vary accuracy, not time performance. Simu-

42

3 Performance analysis and optimization of the algorithm

lation results show (Figure 3.9) that a resolution of 16 bit is both necessary and sufficient.

0 20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

110

Execution time for one second of speech [s]

A
cc

ur
ac

y
[%

]

dataset A, length of tracker: 8
dataset A, length of tracker: 40
dataset B, length of tracker: 40
fs: 8bit
fs: 16bit
fs: 24bit

Figure 3.9: Accuracy vs. time performance in regard to the resolution of the input
data.

3.2.6 Number of microphone pairs

Changing the number of microphone pairs linearly increases the execution time for one

second of speech.

Fixed parameters Varied parameters

Frame shift 20ms Number of microphone pairs

Frame size 100ms Length of tracker

Sampling frequency 48 kHz

Filterbank frequency range 50Hz – 8 kHz

Number of filterbank channels 64

Resolution of input data 16 bit

Table 3.7: Number of microphone pairs: Simulation parameters.

Depending on the dataset, results begin to increase in accuracy with at least four

pairs. Using only one pair of microphones results in a symmetric PoPi matrix, and

it is not possible to determine the speaker’s location (mirrored source, cf. section 2.3).

Increasing the number of microphone pairs adds the real source of the source–mirrored

source pair in the PoPi matrix and suppresses the mirrored source. Therefore the ratio

between the real and the mirrored source rises with each additional microphone pair.

43

3 Performance analysis and optimization of the algorithm

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Execution time for one second of speech [s]

A
cc

ur
ac

y
[%

]

dataset A, length of tracker: 8
dataset A, length of tracker: 40
dataset B, length of tracker: 40
micprs: 1
micprs: 2
micprs: 3
micprs: 4
micprs: 6
micprs: 12

Figure 3.10: Accuracy vs. time performance in regard to the number of micro-
phone pairs.

As there is no inactive speaker sequence in dataset A, thresholding does not come into

effect and speaker detection fails as a whole for one and two microphone pairs. Proper

results for four and six microphone pairs of dataset A have not been expected after

a visual interpretation of the PoPi matrix. Instead an increase in accuracy has been

expected such as for the results of dataset B.

Summary

In the preceding sections the effects on time/quality performance by changing parameters

of the source localization algorithm have been analyzed.

Increasing the frame shift linearly increases the computational expenses. Accuracy is

not affected if the length of the tracker is adapted. A shorter frame shift results in a

shorter update interval for the DOA output of the algorithm. Together with real-time

considerations in section 2.8 the frame shift has to be chosen appropriately.

According to simulations in Figure 3.5 a frame size between 100ms and 140ms is

sufficient. Keeping in mind that the computational complexity is increasing quadratically

for the time domain approach of the CC with increasing frame size the lower limit

(100ms) should be chosen.

The adjustments for the filterbank and the sampling frequency are connected. It is

44

3 Performance analysis and optimization of the algorithm

not necessary to sample with a high frequency if the upper boundary of the filterbank

center frequency range is low. The sampling frequency is also affecting the central and

lateral resolution of the PoPi matrix (cf. section 2.6.3). The filterbank adjustments have

to be considered in regard to the used tracker (cf. section 2.12), which is not analyzing

the frequency component of the PoPi matrix in detail. For the actual implementation

of the tracker it is possible to reduce the sampling frequency, the center frequency range

of the filterbank, and the number of filterbank channels. These reductions go hand in

hand with a significant reduction of computational expenses.

Simulations analyzing the resolution of the input data require a resolution of 16 bit.

Simulations varying the number of microphone pairs are inconclusive for 4 and 6 micro-

phone pairs. To be on the save side 12 microphone pairs should be used for computations.

Reductions of computational expenses as a result of varying the parameters of the

PoPi source localization algorithm are significant (cf. Table 3.8). Nevertheless, it is still

not possible to execute the algorithm in real-time. Therefore, the algorithm is ported

to a hybrid reconfigurable CPU, where the most computational expensive part of the

algorithm – the CC – can be computed in parallel. Chapter 4 introduces the hybrid

platform, chapter 5 presents investigations concerning the implementation of the CC on

the hybrid platform.

Parameters

Frame shift 40ms

Frame size 100ms

Sampling frequency 16 kHz

Filterbank frequency range 100Hz – 3 kHz

Number of filterbank channels 10

Resolution of input data 16 bit

Number of microphone pairs 12

Length of tracker 40

Execution time

7.55 s for one second of speech

Accuracy

89.2%

Table 3.8: Simulation with the optimized parameter configuration.

45

4 Stretch S6 hybrid reconfigurable

CPU based development

This chapter introduces the hardware platform which has been used to proof the concept

of accelerating parts of the source localization algorithm on reconfigurable hardware.

In contrast to a pure FPGA based solution a hybrid hardware structure has been

used. The Stretch processing unit has both a classical Arithmetic Logic Unit (ALU),

referred to as “Xtensa”, and a reprogrammable FPGA unit, referred to as “Instruction

Set Extension Fabric” (ISEF). On the ISEF it is possible to parallelize computationally

expensive operations. [19] [20] 1 2

4.1 Overview of the S6 Xtensa ISEF board

This section describes the Stretch S6 PCIe DVR Add-in VRC6416 card that was used

for this thesis. Figure B.1 shows a picture of a similar VRC6016. Figure B.2 additionally

lists chip identification numbers. Figure B.3 gives the block diagram of the board. The

core of the board is the Processor Array (PA). It consists of three S6105 and one S6100

Processor Entity (PE). The S6100 processor has extended features compared to the

S6105, which makes it the master of the PA.

On the left side of the PEs in Figure B.3, A/D converters (Techwell TW2864B) are

connected to each processor. The A/D converters are for video and audio purposes,

but only the audio paths are needed in the application. The main memory of each PE

appears on the right side of Figure B.3. Each PE has 128MB of main memory. Figure

B.4 focuses on the processor. The main blocks that have been used for the application

1Parts of this chapter have been developed in cooperation with Boris Clénet and appear in his
master thesis too. [1]

2Knowledge concerning the design and functionality of the Stretch environment, has been acquired
from the Stretch manual. The manual is part of the Stretch Integrated Development Environment
(IDE). [21]

46

4 Stretch S6 hybrid reconfigurable CPU based development

are the DDR2 controller and the S6SCP Engine. The Quad Dataport (which is for

video applications only), the Low-Speed Peripherals, the Enhanced Generic Interface

Bus (eGIB), and the Ethernet Media Access Controller (GMAC) have not been used.

4.2 The ISEF Xtensa processor

The Xtensa LX Dual-Issue VLIW processor features three parallel data paths, as shown

in Figure 4.1. The Floating Point Unit (FPU) with its corresponding register (FR) and

the Arithmetic Logic Unit (ALU) with its register (AR) are the two classical ones. The

Instruction Set Extension Fabric (ISEF) with the ISEF RAM (IRAM) and the Wide

Registers (WRs) is the reprogrammable part of the chip.

Normal C functions are executed either on the ALU or on the FPU, whereas time

critical or costly parts of the code can be outsourced to the ISEF where specific cal-

culations are performed in parallel. There are several possibilities for providing data to

the three functional unit (FPU, ALU, ISEF).

• When using the ALU or FPU, data can either be transferred over the Data-Cache

(D-CACHE) or over the Dual Port RAM (DATARAM).

• When using the ISEF, data can either be transferred over D-CACHE/WRs,

DATARAM/WRs, or IRAM.

Direct Memory Access (DMA) enables the IRAM to be filled directly from the main

memory. Otherwise data loading has to be accomplished by the WRs. It is also possible

to use the Extension Register (ER) from inside the ISEF. Intermediate results can be

stored there, but no access from outside the ISEF is possible.

47

4 Stretch S6 hybrid reconfigurable CPU based development

Local Memory System

32KB 64KB

I-Cache D-Cache Dual Port RAM

Execution Unit

32-Bit Reg 128-Bit Wide Reg

ISEF IRAM

32KB

FPU ALU

32-Bit Reg

Figure 4.1: Organization of the Xtensa.

4.3 S6 Instruction pipeline structure

The Xtensa processor uses a five stage instruction pipeline. It is possible to launch at

most one instruction in the pipeline per CPU cycle. The pipeline allows for efficient use

of existing instruction latency. The stages are listed in Table 4.1. Figure 4.2 shows the

schedule of the pipeline.

I Instruction fetch

R Register file read and instruction decode

E Execute

M Data cache read

W Register file write

EUn Extension Unit cycles

Table 4.1: Pipeline stages.

An ISEF configuration results in n extra cycles known as Extension Unit cycles (EUs).

These cycles are depicted on the right side of Figure 4.2. The ISEF configuration gives

rise to a pipeline extension. It is possible to add up to 27 EUs to the normal pipeline

stages.

If dependencies between consecutive instructions exist, stalls appear in the pipeline.

Avoiding these time-consuming stalls requires careful programming. Figure B.5 illus-

48

4 Stretch S6 hybrid reconfigurable CPU based development

Figure 4.2: The extended pipeline structure.

trates the effect of dependencies. At address 0x4001c0db, the instruction wraputi requires

the result of the ISEF’s Extension Instruction (EI) at 0x4001c0cd. The EI is not fin-

ished when its result is needed by the wraputi instruction, and therefore the whole pipeline

is stalled for 13 cycles.

4.3.1 Issue Rate

It is important to notice that the Xtensa and the ISEF do not necessarily run at the

same frequency. The cycles of the ALU and the ISEF are linked by the Issue Rate

(IR). It is a number which gives the ratio between the running frequencies of the Xtensa

and the ISEF.

For example, an IR of 1 means that the ISEF issues an instruction every time the

ALU issues one. An IR of 3 means that the ISEF issues an instruction at the beginning

of every group of three instructions from the ALU. The default value for the IR is 1. If

the compiler can not reach the target frequency, it indicates the achieved frequency in a

report file (cf. section 4.6). The IR then has to be increased so that the target frequency

for the ISEF is achievable.

49

4 Stretch S6 hybrid reconfigurable CPU based development

4.4 S6 Programming

The Stretch Software Configurable Processor (SCP) is programmable in ANSI-C, al-

though there are special hardware-related parts of the code (especially those that com-

mand the ISEF) which have to be programmed in Stretch-C. Stretch-C varies from

ANSI-C. There are additional, more width-flexible data types and certain hardware-

related functions, definitions, and intrinsics.

4.4.1 Defining and using Extension Instructions

Apart from the standard ANSI-C files (∗.c), Stretch-C files (∗.xc) are used to define EIs.

The following code example demonstrates the construction of an EI.

1 #include <stretch .h>

2 static se_sint <64> sumver [4];

3 SE_FUNC void CROSSONISEF

4 (SE_INST CC_MAC , SE_INST CC_INIT_MAC , SE_INST CC_FIN_MAC ,

5 WRA A, WRB B, WRA *Y_1 , WRB *Y_2)

6 {

7 se_sint <16> b;

8

9 *Y_1 = (sumver [1], sumver [0]);

10 }

In line 1, the preprocessor includes the standard stretch library for Stretch-C files. It

is necessary to use the WR data type, as well as all of the specific instructions. Line 2

defines a static array. If a variable is defined as static, it is stored in the ERs. The data

type se_sint<64> defines a signed integer with a width of 64 bit.

Lines 3, 4, and 5 define an EI. The keyword SE_FUNC identifies the function as EI, and

SE_INST gives it its name (i.e. how the function can be called from ordinary C code).

Common parts of several EIs can share the same hardware resources of the ISEF. In

this case, the instructions CC_MAC, CC_INIT_MAC and CC_FIN_MAC differ slightly from each other

but the main part is nevertheless the same. Therefore, all three instructions are outlined

in one function.

In total, each EI call can transfer data from 3 WRs to the ISEF and output data

to 2 WRs. Line 5 defines four variables located in the WRs (2 input values, 2 output

values). It is possible to tell the compiler which WR (A or B) should be used. Line 7

defines a local signed integer with a width of 16 bit. Data types se_sint<n> and se_uint<n>

refer to signed and unsigned integers with a bit-width of n respectively. In line 9, the

two return values (of width 64 bit) are stored in one WR (of width 128 bit).

50

4 Stretch S6 hybrid reconfigurable CPU based development

4.4.2 Handling the wide registers

Figure 4.1 shows that the ISEF is accessible over the WRs, as well as over the later-

discussed IRAM via DMA. In order to load the WRs with data to be processed on the

ISEF, it is necessary to use a couple of special functions within the ∗.c file.

1

2 WRGETINIT (0, p_x2);

3 WRGET0I (&wr_x1 , 1);

4

5 WRPUTINIT (0, p_acc);

6 WRAPUTI (wr_y_1 , 4);

7 WRPUTFLUSH0 ();

8 WRPUTFLUSH1 ();

9

Lines 2 and 3 enable data transfer to the WRs. Line 2 initializes the transfer from

a memory place in the DATARAM to the WRs. The zero declares that the source

pointer should be incremented after each access. Line 3 copies the data (1 byte) to the

WR.

Lines 5 to 8 retrieve data from the WRs. Line 5 initializes the transfer from the WR

to the destination located in the DATARAM. Again, the destination pointer should

be incremented after each access. Line 6 copies 4 bytes of data from the WR to the

destination. Lines 7 and 8 are also necessary in order to complete the data transfer.

4.4.3 Handling the IRAM

Figure 4.1 shows the ISEF inherent location of the IRAM. Two data paths to the

IRAM are possible. The first one over the WRs is not efficient. The second one is more

direct and preferable. DMA allows for direct transfer of data from the main memory to

the IRAM.

1 *.c file:

2 se_iram_handle *hA;

3 hA = se_iram_get_handle(crossisef , A, SE_IRAM_ROW_MAJOR , 0);

The IRAM handle hA is an “access gate” to array A (line 3) in the IRAM (crossisef

is the name of the ISEF configuration). If the array has several dimensions, one should

specify along which dimension the increment is first done (with arguments SE_IRAM_ROW_MAJOR

or SE_IRAM_COL_MAJOR). There are 32 banks of IRAM in total. One bank has a size of 2 kB,

which leads to a total IRAM size of 64 kB. Each bank should only be accessed once per

ISEF cycle, otherwise stalls of many cycles may occur. Therefore the distribution of

51

4 Stretch S6 hybrid reconfigurable CPU based development

variables has to be wide spread over the banks. The following code example shows the

possibilities defining variables within the IRAM structure.

1 *.xc file:

2 static se_sint <16> A[1024][8];

3 SE_MEM (A);

4 static se_sint <32> B[1024][4];

5 SE_MEM (B);

6 static se_sint <64> C[1024][2];

7 SE_MEM_LOCAL(C);

8 static se_sint <128> D[1024][1];

9 SE_MEM_LOCAL(D);

The maximum depth of an array is 1024 and only sizes by the power of two are

possible. A group of 8 banks can be used in four different ways: the width of the data

type can vary between 16, 32, 64 and 128 bit. Increasing the width of the data type

decreases the second dimension of the array. After the desired array has been defined,

it has to be mapped into the IRAM by using the intrinsic SE_MEM or SE_MEM_LOCAL. It is not

possible to access the array over DMA with the latter.

4.4.4 DMA transfers and resolution

When using DMA, the resolution of the available audio data can be a problem since

the IRAM can not handle 8 bit and 24 bit data types (cf. section 4.4.3). 16 bit and

32 bit tables are used instead. DMA transfer always considers amounts of bytes, and no

information about data types is delivered.

In order to cast 8 bit data into IRAM’s 16 bit tables when using DMA, the stride and

skip mechanism is used (cf. section 4.4.5). In the IRAM a byte is skipped between each

data-byte coming from the main memory. This is achieved using the following setup of

the DMA channel.

1 (* p_ch1_conf). src_stride = 1;

2 (* p_ch1_conf). src_skip = 0;

3 (* p_ch1_conf). dst_stride = 1;

4 (* p_ch1_conf). dst_skip = 1;

src_stride and dst_stride are equal. They represent the number of data-bytes DMA

transfers within one write operation. Line 2 informs the compiler that no bytes at the

source’s side are skipped. Line 4 tells that one byte will be skipped at the destination

side after each write operation. Therefore, after one stride – skip operation each block of

2Byte in the IRAM can be considered as a 16 bit-casted value.

The configuration is slightly different in regard to the second problem (24 bit). Here

52

4 Stretch S6 hybrid reconfigurable CPU based development

data has to be casted into 32 bit values. Therefore a byte is skipped between each group

of three bytes coming from the source.

1 (* p_ch1_conf). src_stride = 3;

2 (* p_ch1_conf). src_skip = 0;

3 (* p_ch1_conf). dst_stride = 3;

4 (* p_ch1_conf). dst_skip = 1;

dst_skip still skips one byte at the destination after one write operation has been per-

formed.

4.4.5 The BIOS

The Stretch BIOS (SBIOS) provides the fundamental functionality for applications

running on the S6000 family of processors. Its most important parts in terms of the

thesis’s applications are theDMA, the memory management, clock routines, some utility

functions, and the data types. The SBIOS functions used are demonstrated in an

example.

1 #include <sx-misc.h>

2 #include <sx-mm.h>

3 #include <sx-mmdma .h>

4 #include <sx-timer .h>

5 // create memory pools

6 static sx_int8 ddr_pool_space [567] SX_DDR ;

7 static sx_int8 dram_pool_space [567] SX_DATARAM ;

8 sx_mm_pool *ddr_pool ;

9 sx_mm_pool *dram_pool ;

10 ddr_pool = sx_mm_create(ddr_pool_space , sizeof (ddr_pool_space));

11 dram_pool = sx_mm_create(dram_pool_space , sizeof (dram_pool_space));

12 // allocate memory

13 p_samples_1 = sx_mm_zalloc(ddr_pool , framesize_100ms_inbytes);

14 p_frame_1 = sx_mm_zalloc(dram_pool , framesize_100ms_inbytes);

15 // initialize dma channel

16 sx_mmdma_chan *p_channel_1 ;

17 sx_mmdma_chan_config *p_ch1_conf ;

18 p_ch1_conf = (sx_mmdma_chan_config *) sx_mm_zalloc(ddr_pool ,

19 sizeof (sx_mmdma_chan_config));

20 (* p_ch1_conf). chan_num = 5;

21 (* p_ch1_conf). priority = 2;

22 (* p_ch1_conf). src_stride = 0;

23 (* p_ch1_conf). src_skip = 0;

24 (* p_ch1_conf). dst_stride = 0;

25 (* p_ch1_conf). dst_skip = 0;

26 init_ch1_error = sx_mmdma_chan_init(p_ch1_conf , &p_channel_1);

27 // count cycles , copy data

28 count1 = sx_get_ccount ();

29 memcpy_ch1_error = sx_mmdma_memcpy(p_channel_1 ,

30 p_frame_1 , p_samples_1 , framesize_100ms_inbytes , 1);

53

4 Stretch S6 hybrid reconfigurable CPU based development

31 while(sx_mmdma_get_num_pending (p_channel_1) != 0);

32 count2 = sx_get_ccount ();

33 cycles1 = count2 - count1 ;

34 // close dma channel , free memory

35 close_ch1_error = sx_mmdma_chan_close(p_channel_1);

36 sx_mm_free (ddr_pool , p_samples_1);

37 sx_mm_free (dram_pool , p_frame_1);

The four necessary SBIOS ∗.h files are listed below:

sx-misc.h Includes intrinsics and declares stretch data types.

sx-mm.h Manages memory allocation.

sx-mmdma.h Handles DMA.

sx-timer.h Counts cycles in order to evaluate performance.

The available stretch data types are: sx_int8, sx_uint8, sx_int16, sx_uint16, sx_int32, sx_uint32,

sx_int64, and sx_uint64. The numbers specify the bit width of the data type, and a “u”

signifies that the data type is unsigned. In lines 6 and 7 the memory for two memory

pools is reserved. Arrays of sx_int8 are located in the main memory (SX_DDR) and the

DATARAM (SX_DATARAM). The intrinsics SX_DDR and SX_DATARAM are provided by the file sx-

misc.h.

After generating pointers to pools in lines 8 and 9, the memory pools have to be

created in lines 10 and 11. Functions that create memory pools are defined in sx-mm.h.

In lines 13 and 14 two variables of a certain length are initialized, each located in one

pool (zalloc() allocates memory and initializes it with zeros).

The DMA channel now has to be initialized. First the necessary pointers (lines 16–

18) and the configuration’s specifications (lines 20–25) are created. The DMA channel-

number can be chosen between 0 and 11 for the programmer’s use (line 20). Line 21

sets the priority of each channel between 0 and 3 (0 is the highest one). The stride-skip

mechanism in lines 22–25 provides the possibility to skip bytes in a recurrent pattern,

either at the source or at the destination.

In line 26 the channel is initialized, and line 29 realizes the data transfer. A waiting

period is imposed while the DMA transfer is pending (line 31). Afterwards line 35 closes

the DMA channel. The processor cycles are counted between line 28 and line 32 and

calculated in line 33. Finally, the reserved data pools have to be freed (line 37).

54

4 Stretch S6 hybrid reconfigurable CPU based development

4.5 S6 Software build process

Figure 4.3 shows the building process for an ISEF configuration. There are two files:

The ISEF configuration file (fir8.xc) and the corresponding (fir8.c) file from where the

ISEF configuration is called.

The ∗.xc file needs the inclusion of stretch.h in order to use Stretch intrinsics. From

the ISEF’s configuration the Stretch-C Compiler (SCC) generates several files. The

compilation process creates an ∗.xo object file and a ∗.xr report file.

1 scc -c -ms6100 -3- iss fir .xc

2 scc -ms6100 -3- iss -stretch -link -config fir8.xo

Secondly, the linker creates two additional files. libei.h (different names are possible

by specifying the option -o calling SCC) has to be included in the ∗.c file, where the

ISEF EIs are called from. The file libei.a is an archive file and is used for the linking

process of the ISEF configuration and the ∗.c file. The linking process also requires the

object code from the ∗.c file. It is generated by the SCC compiler.

1 scc -c -ms6100 -3- iss fir8.c

The arising executable file can be started with the command st-run. Further compila-

tion options are possible. The most important ones are listed in the following.

Firstly, several compilation modes are available which are called native, simulation

and remote.

Figure 4.3: Building Process of an ISEF configuration.

55

4 Stretch S6 hybrid reconfigurable CPU based development

-ms6-native Compiles the EIs into native code for the host machine. Useful for

executing and debugging EIs quickly before compiling them for the

ISEF.

-ms6100-3-iss Targets the S6SCP Instruction Set simulator for C/C++ and Stretch-C

code.

-ms6100 Targets the S6100 and S6105 SCP processor for C/C++ and Stretch-C

code.

The following commands ask for changes in default modes specificities.

-stretch-effort[0-10] Sets the effort level for compiling EI into bitstreams. This affects

the compilation of Stretch-C files only. In general, a higher effort

level takes more time, but produces better ISEF resource usage.

-stretch-freq Sets target frequency (in MHz). Default value is 300.

-stretch-issue-rate Sets IR. Default value is 1.

-stretch-nobits Compiles EI with no bit-file generation (cf. next section): Only

information required by the Instruction Set Simulator (ISS) to run

the EIs is produced.

The following commands control optimizations for advanced compilation handling.

-OPT[number] Set optimization level to [number].

-OPT:alias = disjoint Assume that memory references through different named pointers

do not alias with each other, nor with any direct memory refer-

ences.

-OPT:Olimit = size Do not optimize functions that exceed the specified size.

-OPT:unroll = times Do not unroll any loop more than the specified number of times.

The default is 8, and unroll=1 disables loop unrolling.

4.5.1 Report files

The size of the ISEF is limited. There are 4096 units of Arithmetic Units (AU) and 8192

units of Multiplication Units (MU). The IRAM has 32 banks, each with 2048Bytes of

memory. The resource usage report of a configuration is located in the ∗.xr file. The

final version of the report can be found at the end of this file.

56

4 Stretch S6 hybrid reconfigurable CPU based development

1 /* ***\

2 * Final resource usage report *

3 *--*

4 * Configuration cross16:

5 * Total AUs = 3512 out of 4096

6 * Total MUs = 5120 out of 8192

7 * Total SHIFTs = 0

8 * Total IRAMs = 0 out of 32

9 * Total PRIENC bits = 0 out of 256

10 * Target Issue Rate = 1

11 * Target chip frequency = 300.0 Mhz

12 * Target ISEF frequency = 300.0 Mhz

13 * Achieved ISEF frequency = 176.1 Mhz

14 * Maximum output write cycle = 11

15 * Warning: ISEF cannot run at the required frequency.

16 * Compile time = 3263 seconds

17 *** */

The IR, the target chip and ISEF frequencies, and the execution cycles of the con-

figuration are listed along with the resources. If the configured ISEF frequency does

not meet the required frequency, a warning occurs and the achieved frequency is printed

instead. The information is only available if a bit-file generation has been requested.

Without the bit-file, values of the report file are rough approximations and there is

absolutely no guarantee that the designed configuration will fit the ISEF.

4.6 Stretch integrated development environment

Stretch provides a graphical Integrated Development Environment (IDE) for code de-

velopment. The IDE integrates several command line tools. For the design of efficient

EIs the two most important features are the pipeline view and profiling.

4.6.1 Pipeline view

Information about possible stalls produced by an ISEF configuration could be found

with the pipeline view (cf. Figure B.5). The lines of code in question are executed

step by step by the debugger after the pipeline view of these lines is generated. If stalls

occur, redesigning parts of the code or parts of the whole underlying model are a possible

solution. Reducing stalls improves the execution speed of an ISEF configuration.

57

4 Stretch S6 hybrid reconfigurable CPU based development

4.6.2 Profiling

Speed of execution is the main information about a configuration’s performance. The

process that measures the execution speed is called profiling (cf. Figure B.6). Profiling

lists particular functions of the code with the number of taken cycles for each of them.

Functions with a great number of cycles are preferred candidates to be implemented on

the ISEF.

58

5 Porting the source localization

algorithm to reconfigurable hardware

Chapter 3 analyzed the source localization algorithm in order to find an optimally ad-

justed set of parameters. It was not possible to execute the optimized implementation

in real-time. In this chapter, parts of the PoPi based source localization algorithm are

ported to reconfigurable hardware to minimize the execution time. The main focus is

set on the core part of the algorithm – the CC.

As already mentioned in chapter 2, the CC operation is used to detect similarities

between two signals. Knowing the relative position of two microphones and computing

the CC between their outputs, it is possible to derive the DOA, the detected speaker’s

direction of emission.

Several CC approaches have been implemented on the ISEF resulting in different

hardware configurations. After the different approaches are introduced, section 5.4 an-

alyzes the performance of the configurations. 1

5.1 Mathematical description of the CC

For two discrete signals x[n] and y[n] defined ∀n ∈ Z, the CC is defined as [13]:

Φxy[n] = 〈x∗[m]y[m+ n]〉 =
∞
∑

m=−∞

x∗[m]y[m+ n] , (5.1)

with ∗ being the complex conjugate operator.

In the case of real, finite, and discrete signals of size N (0 ≤ m ≤ N − 1) the right

1Parts of this chapter have been developed in cooperation with Boris Clénet and appear in his
master thesis too. [1]

59

5 Porting the source localization algorithm to reconfigurable hardware

part of (5.1) becomes a sum between m = 0 and m = N − 1, hence

Φxy[n] =
N−1
∑

m=0

x[m]y[m+ n] . (5.2)

In this case, the CC does not exist for n < −(N − 1) and n > N − 1 and its size is

2N − 1. From now, n will always refer to the index of the CC elements.

In order to have better understanding of what happens during the computation, Figure

5.1 depicts equation (5.2) in the case N = 32. Each dot of the grid represents a product

between one element of x[n] and one element of y[n]. The sum of the dots over a diagonal

is one element of Φxy[n] as it is given by (5.2). For example, the longest diagonal in Figure

5.1 refers to equation (5.3), the result of the CC for n = 0.

Φxy[0] =
N−1
∑

m=0

x[m]y[m] (5.3)

For this thesis the sum (5.2) has been subdivided in order to deal with the specific

hardware architecture of the ISEF. In the following sections, the terms square decomposi-

tion, linewise decomposition and diagonal decomposition refer to the algorithms resulting

from this subdivision.

x

y

N-1
0

N-1

0

R

S
E

Figure 5.1: The cross correlation algorithm: Multiply-accumulate scheme for
input frames x[n] and y[n]. N = 32; Length of result vector:
2N − 1 = 63;

60

5 Porting the source localization algorithm to reconfigurable hardware

5.2 CC decompositions

Three different EIs have been implemented which are using different types of CC decom-

position. During the development process of the different approaches it became obvious

that not only the hardware resources of the ISEF are the limiting factor, but the data

flow from the ISEF is essential. If data has to be stored in the result vector of the CC

after each EI, the execution time increases.

The first EI which has been developed is the square decomposition. The multiplica-

tions depicted in Figure 5.1 are combined to small squares. After the execution of the

EI the results are added to the CC result vector. There are a lot of squares because

of the small size of the squares. Therefore, a considerable amount of data transfer from

the ISEF is necessary.

The second EI which has been developed is the linewise decomposition. Multiplica-

tions in Figure 5.1 are combined to larger squares which are computed in a linewise

manner over several EIs. The results computed by the EI are stored in the CC vector,

partly during the computation of each line of the square, and partly after the linewise

computation of the square. Data transfer from the ISEF is reduced in comparison to

the square decomposition, the execution time decreases.

The diagonal decomposition does not compute squares of multiplications but rhom-

boids. Due to the rhomboid structure of the decomposition, results have to be stored in

the CC result vector only at the end of computing a diagonal of multiplications. The

execution time decreases further.

5.2.1 Square decomposition

The subdivision of the CC vector into small blocks (squares) is the principle of this

algorithm. Figure 5.2 (N = 32) describes this algorithm with a block size b = 4. b

samples per frame are needed in order to compute all of the multiplications included in

one square.

Furthermore, one square also represents the CC between b samples from x[n] and b

samples from y[n]. This function is called ci,j. In order to navigate between the squares,

two further variables are introduced: α =
⌊

|n|
b

⌋

and β = |n| mod b, respectively the

quotient and the remainder of the division of |n| by b. α can be interpreted as a block

61

5 Porting the source localization algorithm to reconfigurable hardware

x

y

R

S
E

0 N-1

N-1

0

bß=0 ß=1

Figure 5.2: Principle of square decomposition: Multiply-accumulate scheme for
input frames x[n] and y[n]. N = 32; Length of result vector: 2N−1 =
63;

index and β as an offset in this block.

ci,j[n] =
b−1
∑

m=0

xi[m]yj [m+ n] = Φxiyj [n] (5.4)

xi[m] =







x[m] if i ≤ m < i+ b

0 otherwise

yj[m] =







y[m] if j ≤ m < j + b

0 otherwise

A diagonal (an element of Φxy) goes through a certain amount of squares depending

on n. When β = 0, n is a multiple of b and the diagonal is the assembly of the main

diagonals of the squares it crosses. Only one square per square-line is crossed. The

expression of the CC for the square decomposition and β = 0 can be written as:

Φxy[n] =



















N
b
−1
∑

i=α

ci,i−α[β] ∀n < 0, β = 0

N
b
−1
∑

j=α

cj−α,j[β] ∀n ≥ 0, β = 0 .

(5.5)

62

5 Porting the source localization algorithm to reconfigurable hardware

Otherwise, for β 6= 0 the diagonal is a combination of small diagonals with two possible

lengths, that are α and b− α. Two squares per square-line are crossed. The β 6= 0 case

adds terms to the sums of (5.5) in order to take all of the extra squares that are crossed

into account. The expression of the CC for the square decomposition and β 6= 0 is:

Φxy[n] =



















N
b
−1
∑

i=α

ci,i−α[β] + ci+1,i−α[−(b − β)] ∀n < 0, β 6= 0

N
b
−1
∑

j=α

cj−α,j[−β] + cj−α,j+1[b− β] ∀n ≥ 0, β 6= 0 .

(5.6)

In order to show the diagonals and the squares that are crossed for different values of

β, two diagonals are pointed in Figure 5.2. They represent the cases β = 0 and β = 1

(β 6= 0).

In (5.5) and (5.6) it can be noticed that i for n < 0 and j for n ≥ 0 have the same

role and inversely. This comes from property (5.7) of the CC (cf. [13]).

Φxy[n] = Φ∗
yx[−n] (5.7)

Figure 5.3 shows the principle of the merging algorithm in the case N = 32 and b = 4.

4 samples

7 samples

32x32 Cross Correlation (63 samples).

+
+

+
+

+
+

+
+

+

+

+
+

+
+

+
+

1 cc 8

1 cc 7

1 cc 6

1 cc 5

1 cc 4

1 cc 3

1 cc 2

1 cc 1

2 cc 8

2 cc 7

2 cc 6

2 cc 1

3 cc 8

3 cc 1

8 cc 8

8 cc 7

8 cc 6

3 cc 7

3 cc 6

8 cc 1

Figure 5.3: Principle of the merging algorithm for square decomposition.

63

5 Porting the source localization algorithm to reconfigurable hardware

Each “i cc j” rectangle represents the result of the CC between the ith b-samples group

of the first frame and the jth b-samples group of the second frame. In other words, it

depicts the non-zero results of ci,j.

5.2.2 Linewise decomposition

The linewise decomposition differs slightly from the square decomposition. The same

number of multiplications are computed, but the arrangement of the block is linear.

Varying the computation flow of the algorithm results in a different data flow which is

more appropriate for the hardware architecture.

A segment of length b represents multiplications between one element of x[n] and b

elements of y[n]. Figure 5.4 depicts this algorithm for a frame of N = 32 and b = 16.

After computing one line of the CC, the input sample x[n] has to be updated and

one final element of the actual subblock from the CC frame is available (due to the

diagonal nature of the result). Repeating this task b times completes the calculation of

one b× b subblock. There are four subblocks present in the actual example (5.4) which

are identified by horizontal dashed lines.

In other words, a b× b CC subblock is derivable from b linear blocks.

x

y

N-1
0

N-1

0

b

R

S
E

Figure 5.4: Principle of linewise decomposition: Multiply-accumulate scheme for
input frames x[n] and y[n]. N = 32; Length of result vector: 2N−1 =
63;

64

5 Porting the source localization algorithm to reconfigurable hardware

Similar to the square decomposition case, let us call li,j the function that gives the

expression of such linear blocks.

li,j[m] =







x[i]y[j +m] if 0 ≤ m < b

0 otherwise
(5.8)

Equation (5.9) gives the expression for the CC of a b × b subblock as a function of

(5.8). The function ci,j is used as it was defined in (5.4).

ci,j[n] =
b−1
∑

k=0

li+k,j[k − n] (5.9)

Finally, replacing ci,j from (5.9) in (5.5) and (5.6) provides the final expression of the

whole CC frame of size 2N − 1, as was done for the square decomposition case.

In the case of linear decomposition, the same multiplications are performed as in (5.2),

only their order of computation changes. Note also that for linewise decomposition, b is

generally greater than the b of other decomposition algorithms.

5.2.3 Diagonal decomposition

The diagonal decomposition is similar to the square decomposition. In this case the

squares are angled so that the merging of a block requires less access to the final result.

Figure 5.5 depicts this algorithm for a frame of N = 32 and b = 4.

For the sake of better understanding, a replication of input frame x[n] is depicted at

the right half of Figure 5.5. In a mathematical sense, the replication can be expressed

as “n mod N” operator for input vector x[n].

Merging the blocks into the final result is simpler here, because each diagonal of a

block belongs to only one diagonal of the final grid. Imagine a block-size of b× b, where

65

5 Porting the source localization algorithm to reconfigurable hardware

x

y

R

S
E

N-1
0

N-1

0

x replication of x

0 N-1

Figure 5.5: Principle of diagonal decomposition: Multiply-accumulate scheme for
input frames x[n] and y[n]. N = 32; Length of result vector: 2N−1 =
63;

N is a multiple of b; (5.10) and (5.11) provide the diagonal decomposition of the CC.

Φxy[n] =

N
b
−1

∑

m=0

b−1
∑

k=0

x[mb+ k + n]y[mb+ k] ,

if



















0 ≤ n ≤ (N − 1) , and

(mb+ k + n) < N , and
(

x[N], . . . , x[2N − 1]
)

=
(

x[0], . . . , x[N − 1]
)

.

(5.10)

Φxy[n−N] =

N
b
−1

∑

m=0

b−1
∑

k=0

x[mb+ k + n]y[mb+ k] ,

if



















0 < n ≤ (N − 1) , and

(mb+ k + n) ≥ N , and
(

x[N], . . . , x[2N − 1]
)

=
(

x[0], . . . , x[N − 1]
)

.

(5.11)

It can be observed that the border of input frame x[n] is crossed for all but the

66

5 Porting the source localization algorithm to reconfigurable hardware

first diagonals. The result vector of equation (5.10) is pictured at this vertical border.

Together with the second result part of equation (5.11), marked with dashed lines in

Figure 5.5 (“bottom right”), the CC of equation (5.2) is completely described.

5.3 Data flow of the CC implementations

The first four sections of chapter 5 gave the mathematical background for computing

the CC on Stretch hardware. This section provides a detailed description of the data

flow for each approach.

5.3.1 Straightforward implementation without the ISEF

This implementation provides a reference for the following versions of the algorithm. It

uses the Xtensa with normal C code without the use of the extra capabilities provided by

the S6 architecture. It is the slowest version, but it is also the easiest to verify. For this

reason, the speed improvement quantifications and the results can always be compared

to it.

The data to work on is placed in the main memory. No use of DMA or DATARAM

is explicitly requested. The actual signal processing part takes place in the ALU. It

computes the CC as described in (5.2), and Figure 5.1.

5.3.2 Using the ISEF and WRs

The best way to improve the performances of the straightforward approach is to move

some computations to the ISEF. One way of providing the ISEF with data is to do it

over the WRs.

The first step is to transfer the data from the main memory of the board to the

DATARAM. This operation is achieved either with or without DMA. Both approaches

have been used and compared. Figure 5.6 depicts the flow of data for all of the solutions

that use the ISEF with the WRs. Depending on the implemented approach, the dashed

arrows may represent data transfer with or without DMA.

Once the data is in theDATARAM, there are several ways to proceed. As announced

in sections 5.1 – 5.2.3, some decompositions of the CC have been developed so that the

ISEF can compute it. For each EI the correct set of samples has to be provided to

the ISEF via the WRs. The choice of this set constitutes the main difference between

67

5 Porting the source localization algorithm to reconfigurable hardware

the algorithms. In addition, the way in which the EI’s outputs are merged into the CC

result vector differs as well.

Using ISEF with the square decomposition

In the square decomposition case the ISEF runs a b× b CC in one EI. This means that

each EI receives b × b inputs via the WRs, and outputs 2b − 1 samples via the WRs.

The operation is repeated (N/b)2 times so that each block is computed. The merging of

a block is done right after its calculation, after it is issued from the WRs.

The handling of the current positions in the input frames (i.e. the indexes i and j of

a “i cc j” rectangle in Figure 5.3) is done by pointers at the outside of the ISEF. The

same principle is used in order to point the right place in the result frame (i.e. where

the current block has to be added). The EI source code of the square decomposition is

discussed in appendix C.1.

Using ISEF with the linewise decomposition

Concerning data flow in memory, the approach here is different. The first step is to

transmit a whole input block from the first frame into the ERs of the ISEF over the

WRs. Then, samples from the second frame are transferred one by one into the ISEF.

Each EI receives one sample. After b iterations, a b× b CC is performed. Note that in

this case b is greater than in the previous decompositions.

At the same time, after each EI one sample of the b × b CC is ready. Therefore its

storage is handled just after the EI. That is b − 1 stored output samples after b − 1

iterations. b samples remain uncomputed in order to reach the 2b− 1 output frame size

of a b×b CC. These samples are stored back in the result vector over the WRs after the

bth iteration. The process of storing back is done alternately over WRA and WRB due

Figure 5.6: Data flow in the case of WRs use.

68

5 Porting the source localization algorithm to reconfigurable hardware

to performance reasons. The EI source code of the linewise decomposition is discussed

in appendix C.2.

Using ISEF with the diagonal decomposition

For the diagonal decomposition (cf. Figure 5.5), the computation of a block requires

2b − 1 samples from the first frame x[n] and b from the second frame y[n]. The first

three samples of a block diagonal from vector x[n] have to be initialized separately,

whereas for further blocks the input samples along the x-dimension overlap and can be

used from one EI to another by using the ER. The b samples from y[n] are transferred

through WRs and stay the same for all the blocks of a block-line. Each time one of

these samples is loaded into the ISEF, a horizontal set of multiplications is done and

the results are added to the right diagonal. Intermediate results from each diagonal of

a block are stored in an ER table of size b. Once the computation of a block is finished,

the value of the current position indicator is incremented.

Once the position indicator equals the input frame size, it means that a border frame

has been reached. In this case b−1 samples from the beginning of x[n] are loaded into the

ISEF, and after computing the border block, b vertical samples are transferred from the

ISEF through the WR to the final result of the CC. After performing computations on

the border block, the diagonal application flow is carried on until the end of a diagonal

has been reached, at which point the horizontal CC results are also stored via WR to the

final result. N/b block diagonals have to be computed in order to reach the final result

of the CC. The EI source code of the diagonal decomposition is discussed in appendix

C.4.

5.3.3 Using the ISEF and IRAM

This solution makes use of the IRAM, a memory space which is placed within the ISEF

and is also accessible from outside the ISEF. Each occurrence of an EI can process data

from and to the IRAM, thus it is an alternative to the previous processing via the

WRs. Furthermore, this memory space reaches 64KB which enables the storage of a

large amount of samples (e.g. entire frames).

Figure 5.7 depicts the flow of data for solutions using the IRAM. The data is trans-

ferred directly from the main memory to the IRAM via DMA. The dashed arrows

represent these transfers. It is important to note that IRAM can not handle 8 bit data

69

5 Porting the source localization algorithm to reconfigurable hardware

types (cf. section 4.4.4), for this reason 16 bit tables are used instead.

Figure 5.7: Data flow in the case of IRAM use.

Using IRAM with the linewise decomposition

Differences to the linewise decomposition using only WRs (cf. section 5.3.2) are small.

Instead of loading the whole input block from the first input frame into the ER, the

same block is loaded from the DATARAM to the IRAM using DMA.

Data transfer from the second input frame is performed via WRs. While calculating

single lines of the result the intermediate results are again stored in the IRAM, whereas

single result samples are transferred outwards by WRs. After b iterations of the algo-

rithm, b in the IRAM remaining result samples are stored back in the final CC result

vector using DMA. The EI source code of the diagonal decomposition with IRAM is

discussed in appendix C.3.

5.4 Experiments and results

This section deals with the performance of the different CC approaches. Experiments

have been performed for different combinations of decompositions and input data res-

olution. For example, the square decomposition has only been executed with an input

resolution of 8 bit, because it became clear that this approach is not fast enough. The

IRAM approach of the linewise decomposition has only been executed for an input reso-

lution of 16 bit, because execution took too long. At the end of the chapter performance

observations of loop unrolling, the DMA transfer, the Gammatone filterbank and the

PoPi decomposition are presented.

The following references have been given in order to refer to the CC solutions easily:

i. Straightforward implementation without using the ISEF.

ii. Square decomposition with ISEF and WR.

iii. Linewise decomposition with ISEF and WR.

70

5 Porting the source localization algorithm to reconfigurable hardware

iv. Linewise decomposition with ISEF, WR and IRAM.

v. Diagonal decomposition with ISEF and WR.

In order to make different approaches easier to compare, some variables for the designing

and simulation process have been fixed:

• EIs are, if possible, always compiled with bitfile generation.

• The issue rate is fixed with 1.

• The chip frequency was tuned until the ISEF was able to meet the target with

the particular EI.

• Fixed point calculations are performed with high resolution, therefore no trunca-

tions at the CC results are necessary.

• EI are designed to use as many ISEF resources as possible.

• For cycle simulations only one microphone pair is used.

• No filterbank is arranged in front of the CC.

• No PoPi decomposition is performed after the CC.

• In order to completely load the EI to the ISEF, one dry run is necessary before

starting the measurements.

• Sampling frequency = 48 kHz

• Frame shift = 20ms

• Frame size = 100ms

5.4.1 Comparison of 8 bit implementations

EI fXtensa
Cycles/Frame tFrame

i 300MHz 75.26M 250.9ms

ii 250MHz 32.62M 130.5ms

iii 170MHz 10.98M 64.6ms

Table 5.1: Performance of 8 bit Stretch simulations.

71

5 Porting the source localization algorithm to reconfigurable hardware

The straightforward approach i does not use the ISEF, hence no chip frequency limita-

tions have to be made. Square decomposition ii has the disadvantage that the merging

loop to add intermediate results to the final CC result has do be called very often, which

slows down the algorithm. Linewise decomposition iii gets rid of some merging loops

therefore performance is better.

5.4.2 Comparison of 16 bit implementations

EI fXtensa
Cycles/Frame tFrame

i 300MHz 207.62M 692.1ms

iii 190MHz 43.91M 231.1ms

iv 300MHz 591.55M 1971.8ms

v 230MHz 29.13M 126.7ms

Table 5.2: Performance of 16 bit Stretch simulations.

Approaches with a data width of 16 bit are already significantly slower due to the in-

creased use of ISEF resources. Nevertheless, accuracy considerations of section 3.2.5

show that it is recommendable to use an input data resolution of 16 bit. For this reason

the results of table 5.2 are the most valuable.

The first approach i again states the straightforward implementation with no limita-

tions to the chip frequency. iii computes the CC blocks linewise, although merging block

results to the overall CC is still necessary.

In approach iv changes of the data flow have been made. One of the two input frames

is stored directly into the IRAM via DMA. Data in the IRAM can be used directly

within an EI. Unfortunately performance measurements using the IRAM are very poor,

and due to an incomprehensible internal error in the Stretch compiler, bitfile generation

was not possible.

Approach v uses diagonal decomposition, therefore no subsuming of CC block results

is necessary any more. This implementation is the second fastest of all the approaches,

with the added benefit of computing 16 bit data. It is the preferred approach.

72

5 Porting the source localization algorithm to reconfigurable hardware

5.4.3 Comparison of 24 bit implementations

EI fXtensa
Cycles/Frame tFrame

i 300MHz 874.71M 2915.7ms

iii 180MHz 98.06M 544.8ms

Table 5.3: Performance of 24 bit Stretch simulations.

24 bit approaches conclude the performance observations with varying input resolutions.

As there are no 24 bit data types available at the Xtensa, type casting is performed by

an extra patch at the Xtensa. The patch slows down the execution time of this approach

and makes it laborious.

Concerning data width the ISEF is very flexible, and consequently a linewise approach

is available. Due to its hardware resource consuming behaviour, the performance of it

is not good.

Summary

Figure 5.8 provides a time performance overview of simulations from tables 5.1, 5.2 and

5.3. Approach vi computes the time domain CC with a MEX subroutine in Matlab. It is

added to allow for comparison between Matlab and Stretch implementations. According

to section 2.8 the real-time requirement is given by the frame shift, which is 20ms/Frame. It

can be observed that no approach is able to execute computations in real-time. Promising

approach v has a speed-up of factor 5.46 in comparison to the 16 bit straightforward

approach.

73

5 Porting the source localization algorithm to reconfigurable hardware

8 bit
16 bit

24 bit
vi

v
iv

iii
ii

i

0

0.5

1

1.5

2

2.5

3
E

xe
cu

tio
n

tim
e

pe
r

fr
am

e
[s

]

Figure 5.8: Summary of the Stretch CC simulations. Nomenclatures i – v are
listed at the beginning of section 5.4. Approach vi computes the time
domain CC with a MEX subroutine in Matlab.

5.4.4 Performance observations of further code parts

Loop unrolling

The speed of an EI is not only determined by its size or architecture. There are tremen-

dous differences depending on the call of the EI. Table 5.4 shows measurements of a

32× 32 CC using diagonal decomposition with different calling functions.

If the repeated call of an EI is performed via a loop, it is called a not unrolled EI

call. If the loop of the EI call is dissolved by hand, it is called an unrolled approach.

Partly unrolled approaches are for example getting rid of the inner loop of two nested

loops. Investigations telling the Stretch compiler to unroll loops automatically (with

compiler options explained in section 4.6) have not been successful, so fully unrolled

means that the loops have to be dissolved by hand. Hence, programs are soon reach an

unmanageable size (for both the programmer and the compiler).

74

5 Porting the source localization algorithm to reconfigurable hardware

EI call fXtensa
Cycles/Frame tFrame

ALU 300MHz 10454 34.8µs

Not unrolled 230MHz 11308 49.2µs

Partly unrolled 230MHz 1675 7.3µs

Fully unrolled 230MHz 1074 4.7µs

Table 5.4: Comparison between different states of loop unrolling of the EI calling
function (approach v; frame size = 32; resolution of the input data
= 16 bit;).

DMA transfer

Simulation data for the EI is loaded from the main memory via DATARAM and WR.

It is possible to load simulation data from the main memory into the DATARAM with

the explicit use of a DMA transfer. Section 4.4.5 illustrates this procedure.

Data transfer fXtensa
Cycles/Frame tFrame

With DMA 190MHz 1.242M 6.5ms

Without DMA 190MHz 1.070M 5.6ms

Table 5.5: Data transfer between the main memory and the DATARAM
with/without an explicit use of the DMA (approach iii; resolution
of the input data = 16 bit; sampling frequency = 8kHz).

Contrary to prior assumptions, performance measurements of Table 5.5 show that the

explicit use of DMA transfers is not efficient.

Gammatone filterbank and PoPi decomposition

Performance measurements of ALU based solutions of the Gammatone filterbank and

the PoPi decomposition are depicted in Table 5.6.

75

5 Porting the source localization algorithm to reconfigurable hardware

Solutions for fXtensa
Cycles/Frame tFrame

Gammatone filterbank 300MHz 869.98M 2899.9ms

(Double precision)

Gammatone filterbank 300MHz 19.22M 64.1ms

(Single precision)

PoPi decomposition 300MHz 773.87M 2579.6ms

Table 5.6: Computational expense of the Gammatone filterbank and the PoPi
decomposition (resolution of the input data = 16 bit).

Concerning the Gammatone filterbank: Stretch does not provide the possibility to

calculate double precision floating point digits on the Floating Point Unit (FPU). Double

precision calculations are emulated on the ALU and are not efficient.

76

6 Conclusion

This thesis investigates the development process of accelerating the PoPi source local-

ization algorithm by parallel computation and by porting it to reconfigurable hardware.

Data recorded by a circular 24 channel microphone array has been processed to de-

liver the DOA for a speaker scenario. The algorithm consists of four parts: Gammatone

filterbank, CC, PoPi decomposition, and evaluation of the PoPi matrix with tracking.

The Gammatone filterbank, the CC and the PoPi decomposition have an independent,

parallel structure for different pairs of microphones. Therefore, parallel computations

at different arithmetic units are possible. Only the final evaluation and the tracking

between interframe position estimates cannot be performed in parallel. An analysis

of the algorithm is necessary in order to locate computational expensive parts. Com-

putational expensive parts of the algorithm have been rewritten in order to increase

efficiency. The cross correlation has been detected as the most computational expensive

code segment. There are two possibilities for computing the CC: Either in time domain

or in frequency domain. The time domain approach has the benefit of low mathematical

complexity, therefore value range estimations are precise and algorithmic restructuring

is flexible. The frequency domain approach is dependent on an efficient implementation

of the Fourier Transform. However, computational complexity grows linearly with the

increasing length of the input vectors. This is in contrast to the time domain approach,

where a quadratical interrelation between complexity and input vector length is given.

In order to find reasonable adjustments for the algorithm, accuracy vs. time performance

measurements were carried out. This was done by changing one parameter of the algo-

rithm after another. After the analysis and optimization, where the trade-off between

accuracy and time performance has been explored, the source localization algorithm has

been ported to a Stretch S6 hybrid reconfigurable CPU. This hardware is a hybrid of a

classical arithmetic unit and a ISEF. It is the choice of the software developer whether

to use the ALU, or the ISEF with its possibility of parallelizing the calculations of com-

putational expensive code parts. For excessive use of the ISEF several approaches have

77

6 Conclusion

been implemented for the most complex part of the algorithm – the CC. Experiments

evaluating the time performance of the different ISEF based approaches conclude this

thesis.

The main goal of this thesis has been to accelerate the execution of the algorithm.

It has been possible to reduce the execution time of the algorithm by optimizing the

Matlab based approaches. A further reduction of the execution time has been possible by

reducing the complexity of the algorithmic parameters. The analysis of the algorithmic

parameters documented that the reduction of execution time goes hand in hand with

a gain in accuracy. An acceleration by the factor 26 could be achieved with a 5%

gain in accuracy. The computational most expensive operation of the algorithm has

been ported to a hybrid reconfigurable CPU, where an acceleration by the factor 5 has

been possible. Nevertheless, it has not been possible to run the algorithm in real-time.

Reasons for this are either the – after optimization still high – computational costs of the

source localization algorithm, or the lack of hardware resources at the ISEF. Another

aim has been, to run the source localization algorithm with the use of the microphone

inputs of the Stretch board. Unfortunately it has not been possible to run applications

at the hardware, only cycle accurate simulations have been possible.

The conclusion of this thesis is also an outlook for further development at the same

time. At the current state of the project further investigations concerning the interframe

speaker tracking are needed. The current implementation is only capable of detecting

one speaker sufficiently exactly. An elaborate probability-based approach should be able

to be more sophisticate. Solving hardware access problems of the Stretch environment

would make it possible to test the algorithm on the hardware in order to gain further

information on data flow and interaction between I/O parts and algorithmic parts of the

application.

78

A RIFF-WAVE file format

Audio inputs have been simulated by audio “Resource Interchange File Format”-

“Waveform Audio File Format” (RIFF-WAVE) files [22] while testing implemented al-

gorithms. Their samples were coded with a resolution of 8 bit, 16 bit, or 24 bit. Possible

sampling frequencies are 8 kHz, 16 kHz, 32 kHz, or 48 kHz.

From byte 0x00 a RIFF-WAVE file begins with the header which describes the file

contents on a size of 44Byte and is composed of three chunks. The elements of each are

listed below in the order in which they appear in the file.

• RIFF chunk (declaration of the RIFF-WAVE format)

Name Bytes Description

FileTypeChunkID 4 “RIFF” (0x52,0x49,0x46,0x46)

FileSize 4 size of the file in byte (minus 8Byte)

FileFormatID 4 “WAVE” (0x57,0x41,0x56,0x45)

• Audio format chunk

FormatChunkID 4 “fmt” (0x66,0x6D, 0x74,0x20)

BlocSize 4 chunk size in byte minus 8Byte (0x10)

AudioFormat 2 storage format (1 for PCM, . . .)

Channels 2 nb. of channels (0 for Mono, 1 for Stereo)

Frequency 4 sampling frequency [Hz]

BytePerSec 4 nb. of byte per second

BytePerSample 2 nb. of byte per sample (among all channels)

BitsPerSample 2 nb. of bit per channel’s sample (8, 16, or 24)

• Data chunk

DataBlocID 4 “data” (0x64,0x61,0x74,0x61)

DataSize 4 nb. of byte of data

79

A RIFF-WAVE file format

After the header, the data is stored in little endian sample after sample (i.e. the kth

sample of channel n is written before the k+1th of channel n-1).

In order to handle RIFF-WAVE files and to retrieve the data stored in the header, a

structure has been created.

1 struct wavefile

2 {

3 // RIFF - CHUNK

4 char riff_name [4];

5 long riff_length ;

6 char riff_type [4];

7 // FMT - CHUNK

8 char fmt_name [4];

9 long fmt_length ;

10 short formattyp ;

11 short canalnb ;

12 long samplerate ;

13 long b_per_sec ;

14 short b_per_sample;

15 short Bits_per_sample;

16 // DATA - CHUNK

17 char data_name [4];

18 long data_length ;

19 }

This information is necessary in order to access the desired parts of the data in the

right way. The following extract from the source code provides an example of how the

structure can be used. It stores a frame of 100ms in the data pool ddr pool at the address

given by p samples 1.

1 struct wavefile wf1;

2 FILE *p_file1 ;

3 void *p_samples_1 ; // pointer to the frame

4

5 p_file1 = fopen ("file.wav", "rb");

6 fread ((void *) &wf1 , sizeof (wf1), 1, pwfile1); // reads the header

7

8 // number of bytes in the frame (corresponds to 100ms)

9 frame_length_in_bytes = (int)(0.1 * wf1 .samplerate * wf1 .bytes_per_sample);

10

11 // allocates memory

12 p_samples_1 = sx_mm_zalloc(ddr_pool , frame_length_in_bytes);

13 fread(p_samples_1 , 1, vefile1 .data_length , pwfile1); // store the frame

It is different if samples from the RIFF-WAVE file are stored with a width of 8 bit. In

this case, retrieved samples are unsigned integers with values in the range [0; 255]. In

order to get the real signed values, it is necessary to subtract 128 from each sample to

achieve the value range of [−128; 127].

80

B Figures

B.1 Additional Figures to chapter 4

Figure B.1: Picture of the VRC6016 card

Figure B.2: VRC6016 board layout

81

B Figures

Figure B.3: VRC6016 board block diagram

Figure B.4: Architecture of the Xtensa processor

82

B Figures

Figure B.5: Pipeline view of the Stretch IDE

83

B Figures

Figure B.6: The profiling functionality

84

C Extension Instructions of the CC

C.1 Square Decomposition

1 static se_sint <32> res [15];

2

3 SE_FUNC void CROSSCORR (WRA wx1 , WRB wx2 , WRA *Y_1 , WRB *Y_2)

4 {...}

5

6 SE_FUNC void GETFROMER (WRA *Y_1 , WRB *Y_2)

7 {...}

8

9 /* ***\

10 * Final resource usage report *

11 *--*

12 * Configuration crosscorr:

13 * Total AUs = 1728 out of 4096

14 * Total MUs = 8192 out of 8192

15 * Total SHIFTs = 0

16 * Total IRAMs = 0 out of 32

17 * Total PRIENC bits = 0 out of 256

18 * Target issue rate = 1

19 * Target chip frequency = 250.0 Mhz

20 * Target ISEF frequency = 250.0 Mhz

21 * Achieved ISEF frequency = 250.3 Mhz

22 * Maximum output write cycle = 18

23 * ISEF can run at the required frequency.

24 * Compile time = 1821 seconds

25 *** */

Two EIs are defined for the 8 bit implementation of the square decomposition. In the

EI CROSSCORR (defined in line 3) a square of the CC is computed in parallel (cf. section

5.2.1). With the EI GETFROMER (defined in line 6) the second part of the CC results is

transferred from the ISEF to the final CC result vector. Input values are transferred to

the ISEF over WRA (wx1) and WRB (wx2) defined in line 3. Intermediate results from

the computation of the CC are stored in the ER res defined in line 1. The results and

the intermediate results have a higher bit width (32 bit) than the input values (8 bit).

Therefore, the data transfer from the ISEF to the CC result vector has to be split and is

85

C Extension Instructions of the CC

performed in two EIs (line 2 and line 6) over WRA (*Y_1) and WRB (*Y_2). In lines 9 to

25 the final resource usage report of the ISEF for the square decomposition is presented.

C.2 Linewise Decomposition

1 static se_sint <24> A[10];

2 static se_sint <64> B[10];

3

4 SE_FUNC void INITSTOREINER(WRA X2_1 , WRB X2_2)

5 {...}

6

7 SE_FUNC void CROSSONISEF (WR X1 , WR *Y)

8 {...}

9

10 SE_FUNC void GETFROMER1 (WRA *Y_1 , WRB *Y_2)

11 {...}

12

13 SE_FUNC void GETFROMER2 (WRA *Y_1 , WRB *Y_2)

14 {...}

15

16 SE_FUNC void GETFROMER3 (WRA *Y_1)

17 {...}

18

19 /* ***\

20 * Final resource usage report *

21 *--*

22 * Configuration cross24:

23 * Total AUs = 2144 out of 4096

24 * Total MUs = 6400 out of 8192

25 * Total SHIFTs = 0

26 * Total IRAMs = 0 out of 32

27 * Total PRIENC bits = 0 out of 256

28 * Target issue rate = 1

29 * Target chip frequency = 180.0 Mhz

30 * Target ISEF frequency = 180.0 Mhz

31 * Achieved ISEF frequency = 180.1 Mhz

32 * Maximum output write cycle = 12

33 * ISEF can run at the required frequency.

34 * Compile time = 2222 seconds

35 *** */

Five EIs are defined for the 24 bit implementation of the linewise decomposition. In

the EI INITSTOREINER (defined in line 4) the first input vector is transferred to the ER A

(defined in line 1) via WRA (X2_1) and WRB (X2_2). In the EI CROSSONISEF (defined in line

7) a line of the square of the CC is computed in parallel (cf. section 5.2.2). One input

value of input vector two is transferred to the ISEF over the WR (X1), and one result

value is transferred from the ISEF to the CC result vector via the WR (*Y). After the

computation of the square is finished, the second part of CC results is stored in the

86

C Extension Instructions of the CC

ER B (defined in line 2) and has to be transferred to the CC result vector by the EIs

GETFROMER1, GETFROMER2, and GETFROMER3 (defined in lines 10, 13, and 16) over the WRs (*Y_1

and *Y_2). In lines 19 to 35 the final resource usage report of the ISEF for the linewise

decomposition is depicted.

C.3 Linewise decomposition with IRAM

1 // Computational Resources

2 // Arithmetic bits640

3 // Logic bits336

4 // Mux bits1160

5 // Register bits0

6 // Pipeline bits1092

7 // AU bits total3228 out of 4096

8 // MU bits total2560 out of 8192

9 // SHIFT bits total0 out of 4096

10 // IRAM total32 out of 32

11 // PRIENC bits total0 out of 256

12 // Extension registers.................0 out of 4096

13

14 static se_sint <16> A[2][8];

15 SE_MEM (A);

16 static se_sint <64> B[4][2];

17 SE_MEM (B);

18 static se_sint <64> C[2][2];

19 SE_MEM (C);

20 static se_sint <64> D[8][2];

21 SE_MEM (D);

22

23 SE_FUNC void CROSSONISEF (WR X1 , WRA *Y)

24 {...}

25

26 SE_FUNC void GETFROMIRAM ()

27 {...}

28

29 /* ***\

30 * Final resource usage report *

31 *--*

32 * Configuration crossisef:

33 * Resource usage is not available - please complete compilation to bitstream.

34 There is no logic in ISEF. no frequency data is available

35 * Compile time = 4 seconds

36 *** */

The 16 bit implementation of the linewise IRAM approach uses a different data flow

than the linewise WR approach described in section C.2. The first input vector and

intermediate results from the computation are not stored in the ER but in the IRAM

(defined in lines 14 to 21). For efficient use of the IRAM variables A, B, C, and D are

87

C Extension Instructions of the CC

distributed over all 32 banks of the IRAM (cf. section 4.4.3). The single load and store

instructions of the results which are computed during the linewise computation of the

squares (cf. section 5.2.2) are transferred via the WRs X1 and *Y (line 23). After the

linewise computation of the square is finished, the second part of CC results is sorted

and stored in the IRAM (EI GETFROMIRAM line 26) and has to be transferred to the CC

result vector by DMA. The compilation with bitfile generation failed due to an internal

error of the Stretch compiler, therefore no final resource usage report is available (lines

29 to 36). An estimated resource usage report is available in lines 1 to 12.

C.4 Diagonal Decomposition

1 static se_sint <64> sumver [4];

2 static se_sint <64> sumhor [4];

3 static se_sint <16> olda [3];

4 static se_uint <16> run;

5

6 SE_FUNC void CROSSONISEF (SE_INST CC_MAC , SE_INST CC_INIT_MAC , SE_INST CC_FIN_MAC ,

7 WRA A, WRB B, WRA *Y_1 , WRB *Y_2)

8 {...}

9

10 SE_FUNC void GETFROMER (WRA *Y_1 , WRB *Y_2)

11 {...}

12

13 /* ***\

14 * Final resource usage report *

15 *--*

16 * Configuration cross200:

17 * Total AUs = 2304 out of 4096

18 * Total MUs = 4096 out of 8192

19 * Total SHIFTs = 0

20 * Total IRAMs = 0 out of 32

21 * Total PRIENC bits = 0 out of 256

22 * Target issue rate = 1

23 * Target chip frequency = 230.0 Mhz

24 * Target ISEF frequency = 230.0 Mhz

25 * Achieved ISEF frequency = 230.7 Mhz

26 * Maximum output write cycle = 22

27 * ISEF can run at the required frequency.

28 * Compile time = 1554 seconds

29 *** */

Four EIs are defined for the 16 bit implementation of the diagonal decomposition. In

the EIs CC_MAC, CC_INIT_MAC, and CC_FIN_MAC (defined in line 6) a rhomboid of the CC is

computed in parallel (cf. section 5.2.3). Input values are transferred to the ISEF over

WRA (A) and WRB (B) defined in line 7. Input values which have to be stored between

the execution of two rhomboids are stored in the ER olda. Intermediate results from the

88

C Extension Instructions of the CC

computation of the CC are stored in the ER sumhor defined in line 2. With the EI GETFROMER

(defined in line 10) the vertical results of the border rhomboids are transferred from the

ISEF to the final CC result vector via WRs *Y_1 and *Y_2. It is shown by the internal

variable run defined in line 4, if the computation of the actual rhomboid is a border

case. Horizontal results are transferred to the CC result vector if the computation of

a diagonal is finished. The results and the intermediate results have a higher bit width

(64 bit) than the input values (16 bit). In lines 13 to 29 the final resource usage report

of the ISEF for the diagonal decomposition is presented.

89

List of Figures

1.1 Development process . 11

2.1 Exemplary source localization scenario 13

2.2 Array configuration of the applied microphone array 14

2.3 Simple scenario of source localization . 15

2.4 CC between M1 and M13 . 16

2.5 Structure of the implementation . 19

2.6 Gammatone filters [9] . 20

2.7 Direct Form II implementation of one Gammatone IIR filter channel. . . 22

2.8 PoPi decomposition . 24

2.9 Visualisation of the Position-Pitch matrix. 24

2.10 Projection mismatch . 26

2.11 PoPi matrix for one microphone pair . 27

2.12 Processing chain of the tracker. 28

2.13 Structure of the time domain implementation 29

2.14 Structure of the frequency domain implementation 30

2.15 The frame mechanism . 31

3.1 Time performance measurements . 34

3.2 Relative time consumption . 35

3.3 Time performance: Variation of frame shift. 37

3.4 Accuracy vs. time performance: Frame shift 38

3.5 Accuracy vs. time performance: Frame size 39

3.6 Accuracy vs. time performance: Sampling frequency 40

3.7 Accuracy and time performance: Filterbank adjustments 42

3.8 Accuracy and time performance: Optimized filterbank adjustments . . . 42

3.9 Accuracy vs. time performance: Input data resolution 43

3.10 Accuracy vs. time performance: Number of microphones 44

90

List of Figures

4.1 Organization of the Xtensa. 48

4.2 The extended pipeline structure. 49

4.3 Building Process of an ISEF configuration. 55

5.1 The cross correlation algorithm . 60

5.2 Principle of square decomposition . 62

5.3 Principle of the merging algorithm for square decomposition. 63

5.4 Principle of linewise decomposition . 64

5.5 Principle of diagonal decomposition . 66

5.6 Data flow in the case of WRs use. 68

5.7 Data flow in the case of IRAM use. 70

5.8 Summary of the Stretch simulations . 74

B.1 Picture of the VRC6016 card . 81

B.2 VRC6016 board layout . 81

B.3 VRC6016 board block diagram . 82

B.4 Architecture of the Xtensa processor . 82

B.5 Pipeline view of the Stretch IDE . 83

B.6 The profiling functionality . 84

91

List of Tables

2.1 Relationship between the DOA and fmax 18

2.2 Angular accuracy for different sampling frequencies. 26

3.1 Programming methods for Matlab code approaches. 33

3.2 Parameters for time performance simulation. 34

3.3 Frame shift: Simulation parameters. 36

3.4 Frame size: Simulation parameters. 38

3.5 Sampling frequency: Simulation parameters. 40

3.6 Filterbank adjustments: Simulation parameters. 41

3.7 Number of microphone pairs: Simulation parameters. 43

3.8 Simulation with the optimized parameter configuration. 45

4.1 Pipeline stages. 48

5.1 Performance of 8 bit Stretch simulations. 71

5.2 Performance of 16 bit Stretch simulations. 72

5.3 Performance of 24 bit Stretch simulations. 73

5.4 Loop unrolling . 75

5.5 Data transfer: With/without DMA . 75

5.6 Performance Gammatone filterbank . 76

92

List of References

[1] B. Clénet, “Circular microphone array based beamforming and source localization

on reconfigurable hardware,” Master’s thesis, Graz University of Technology, 2010.

[2] J. C. Chen, K. Yao, and R. E. Hudson, “Source localization and beamforming,”

IEEE Signal Processing Magazine, vol. 19, no. 2, 2002.

[3] E. Lleida, J. Fernández, and E. Masgrau, “Robust continuous speech recognition

system based on a microphone array,” in Proceedings of the 1998 IEEE International

Conference on Acoustics, Speech, and Signal Processing, 1998.

[4] M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques and

Applications. Springer, 2001.

[5] B. Kwon, Y. Park, and Y. sik Park, “Sound source localization in the non free-

field condition; spherical platform,” in 15th International Congress on Sound and

Vibration, 2008.

[6] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,

vol. 37, no. 1, 1949.

[7] J. Dmochowski, J. Benesty, and S. Affès, “On spatial aliasing in microphone arrays,”

IEEE Transactions on Signal Processing, vol. 57, no. 4, 2009.

[8] R. A. Kennedy, T. D. Abhayapala, and D. B. Ward, “Broadband nearfield beam-

forming using a radial beampattern transformation,” IEEE Transactions on Signal

Processing, vol. 46, no. 8, 1998.

[9] D. Wang and G. J. Brown, Computational Auditory Scene Analysis: Principles,

Algorithms, and Applications. Wiley-IEEE Press, 2006.

[10] M. Cooke, “Modelling auditory processing and organistation,” PhD Dissertation,

University of Sheffield, 1993.

93

List of References

[11] T. J. Cavicchi, “Impulse invariance and multipe-order poles,” IEEE Transactions

on Signal Processing, vol. 44, no. 9, 1996.

[12] N. Ma, “An efficient implementation of gammatone filters,” Website, 2006, Avail-

able online at http://www.dcs.shef.ac.uk/∼ning/resources/gammatone/; visited on

January 27th 2011.

[13] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing.

Prentice Hall International, Inc., 1999.

[14] K. Williston, Digital Signal Processing: World Class Designs. Newnes, 2009.

[15] M. Azaria and D. Hertz, “Time delay estimation by generalized cross correlation

methods,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 32,

no. 2, 2003.

[16] C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation

of time delay,” IEEE Transactions on Acoustics, Speech and Signal Processing,

vol. 24, no. 4, 2003.

[17] M. S. Brandstein and H. F. Silverman, “A robust method for speech signal time-

delay estimation in reverberant rooms,” in Proceedings of the 1997 IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, 1997.

[18] M. Frigo and S. G. Johnson, “Fastest fourier transform in the west,” Information

available online at http://www.fftw.org/; visited on January 27th 2011.

[19] R. E. Gonzalez, “A software-configurable processor architecture,” IEEE Micro,

vol. 26, no. 5, 2006.

[20] M. Mücke, T. V. Huynh, and W. N. Gansterer, “Evaluation of a reconfigurable

hybrid cpu for streaming mixed-precision floating-point algorithms,” ACM Trans-

actions on Embedded Computing Systems, vol. 9, no. 4, 2012.

[21] Stretch Inc., Stretch SCP Programmer’s Reference - Version 1.0, Stretch Incorpo-

ration, 2007.

[22] IBM Corp. and Microsoft Corp., Multimedia Programming Interface and Data Spec-

ifications 1.0, Issued as a joint design by IBM Corporation and Microsoft Corpora-

tion, 1991.

94

http://www.dcs.shef.ac.uk/~ning/resources/gammatone/
http://www.fftw.org/

	Introduction
	Source localization
	Introduction to source localization
	Microphone arrays
	Principle of source localization
	Spatial aliasing
	Near and far field assumptions
	Position-Pitch based source localization
	Gammatone filterbank
	Cross correlation (CC)
	Position-Pitch (PoPi) decomposition
	Evaluation of the PoPi matrix and the tracker

	Interaction between parts of the source localization algorithm
	The frame mechanism and real-time requirements

	Performance analysis and optimization of the algorithm
	Time performance of different implementations
	Accuracy vs. time performance
	Frame shift
	Frame size
	Sampling frequency
	Filterbank adjustments
	Resolution of input data
	Number of microphone pairs

	Stretch S6 hybrid reconfigurable CPU based development
	Overview of the S6 Xtensa ISEF board
	The ISEF Xtensa processor
	S6 Instruction pipeline structure
	Issue Rate

	S6 Programming
	Defining and using Extension Instructions
	Handling the wide registers
	Handling the IRAM
	DMA transfers and resolution
	The BIOS

	S6 Software build process
	Report files

	Stretch integrated development environment
	Pipeline view
	Profiling

	Porting the source localization algorithm to reconfigurable hardware
	Mathematical description of the CC
	CC decompositions
	Square decomposition
	Linewise decomposition
	Diagonal decomposition

	Data flow of the CC implementations
	Straightforward implementation without the ISEF
	Using the ISEF and WRs
	Using the ISEF and IRAM

	Experiments and results
	Comparison of [8]bit implementations
	Comparison of [16]bit implementations
	Comparison of [24]bit implementations
	Performance observations of further code parts

	Conclusion
	RIFF-WAVE file format
	Figures
	Additional Figures to chapter 4

	Extension Instructions of the CC
	Square Decomposition
	Linewise Decomposition
	Linewise decomposition with IRAM
	Diagonal Decomposition

	List of References

