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Kurzfassung

Die Lokalisation von Schallquellen ist in vielen Anwendungen von großer Wichtigkeit.
Das menschliche Gehör wertet zur Ortung von Schallquellen sowohl binaurale als auch
monaurale Unterschiede aus. Binaurale Informationen sind interaurale Laufzeit- und
Pegeldifferenzen (ITD und ILD), die dadurch zustande kommen, dass ein Schallquel-
lensignal ein Ohr vor dem anderen, und mit einem höheren Pegel erreicht. Monaurale
Unterschiede hingegen werden durch die Außenohr-Übertragungsfunktion (head-related
transfer function – HRTF) dargestellt. Diese Unterschiede beschreiben die richtungsab-
hängige, spektrale Verfärbung der einfallenden Schallwelle durch Kopf, Schulter, Torso
und Pinna. HRTFs sind für jeden Einfallswinkel unterschiedlich. Dadurch kann von den
einzelnen HRTFs auf die Richtung der Schallquelle rückgeschlossen werden.

Das Ziel dieser Arbeit ist es, mit nur einem Mikrofonsignal einen Sprecher in der
Horizontalebene möglichst genau zu lokalisieren. Die entwickelte Lokalisationsmethode
verwendet zum einen eine Datenbank mit gemessenen HRTFs und zum anderen statisti-
sche Modelle der richtungsunabhängigen Sprache. Dabei werden zunächst Mel-Frequenz
Cepstral Koeffizienten (MFCCs) mit wenigen Dimensionen und Short-Time-Fourier
Transformations Koeffizienten mit vielen Dimensionen als Merkmalsvektoren extrahiert.
Anschließend wird einerseits mit dem Mindestabstandsklassifikator und andererseits mit
Gausschen Mischmodellen (GMMs) und der Maximum Likelihood-Methode (ML) die
Richtung der Schallquelle geschätzt. Die Evaluierung in einer synthetisch hergestell-
ten Testumgebung erzielt ausgezeichnete Ergebnisse. Darum bietet diese Lokalisations-
methode einen guten Ansatz für weitere Untersuchungen in zukünftigen Arbeiten.

Abstract

Sound localization is an important task in many applications such as multimedia appli-
cations. The principles of human sound localization imply binaural (interaural level and
time difference – ILD and ITD) as well as monaural cues. The latter are captured by the
head-related transfer function (HRTF), which describes the direction-dependent, spec-
tral shaping of the incident sound wave by head, shoulders, torso, and pinna. HRTFs are
different for each direction of the incident sound wave. Therefore, they can be exploited
to determine the direction.

The aim of this thesis is to develop an accurate talker localization strategy in the
horizontal plane using the signal of only one microphone. Based on a set of HRTF mea-
surements and statistical models of the direction-independent speech a sound localization
method is developed. Low-dimensional mel-frequency cepstral coefficients (MFCCs) and
high-dimensional spectral features (STFT coefficients) are taken and the direction of the
sound source is evaluated with two different classificators, i.e. a minimum distance (MD)
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classificator and Gaussian mixture models (GMMs) using a maximum likelihood (ML)
framework. An evaluation of the developed method in a synthetic test environment yields
excellent results and leads to a promising approach which can be further investigated in
future research.
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1 Introduction

1.1 Motivation

Sound localization is a task humans as well as animals are confronted with day-by-day.
Since hundreds of years localization of enemies decides on survival. Localization is also
important in many engineering applications such as localization of an active speaker or
improvement of the signal-to-noise ratio (SNR) in hearing aids.

From the human auditory system it is known that the binaural cues, interaural time
and level difference (ITD, ILD) and monaural spectral cues, presented by the head-
related transfer function (HRTF), are used to localize a sound position. In applications
the same cues are exploited. Therefore, often two or more microphones are used. Al-
though, a higher number of microphones results in more accurate estimations of the
sound source, the growing physical dimension is a huge disadvantage. Multiple micro-
phones also result in higher costs.

The literature indicates that binaural cues are primarily important for the horizon-
tal plane (azimuth) and monaural cues for the vertical plane (elevation). The role of
monaural cues for the horizontal plane has not been clarified yet. In [1] the author states
that monaural cues are more important even to determine the azimuth. This fact as well
as the reduced physical size and cost, are good reasons to investigate a single-channel
localization strategy.

1.2 Goals

In this thesis a localization strategy with a single microphone has been developed. Based
on a set of measured head-related impulse responses (HRIRs) and a statistical model
of speech, an estimation of the sound direction has been carried out. The estimation is
performed in the spectral domain by use of a maximum likelihood (ML) based approach.

The resulting estimation strategy should be accurate and applicable in real-time ap-
plications. Furthermore, a speaker-independent strategy is desireable because an appli-
cation should be useable for mass-market products. The advantages of a single-channel

1
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sound source estimation are the lower costs for a single microphone and the possibility
of developing very small gadgets which only contain a single microphone. Single-channel
algorithms are especially useful in car environments or small-device based scenarios such
as smart phones.

1.3 Organization of the Thesis

In chapter 2 the fundamentals of localization are described. Binaural and monaural
cues as well as their function in localization in the horizontal and vertical plane are
discussed. Furthermore, mathematical tools are described which are important for the
simulations in the following chapters. After the description of features which are often
used in computational speech processing, commonly used classificators are introduced.
Afterwards, the Gaussian mixture model and the most popular algorithm to estimate its
parameters, the EM algorithm, as the main statistical model in this thesis, are explained
in more detail. The last section in this chapter deals with related research which also
perform single-channel localization.

In chapter 3 the experimental setup including the speech and HRIR databases are de-
scribed. Then approaches to a localization strategy are presented, whereby an adequate
feature and classification method is chosen.

In chapter 4 numerical results are presented. The problem, introduced by the adapted
GMMs is solved by first constraining the area under investigation, then by training of
direction-dependent GMMs. Afterwards, results of speaker-independent models and the
influence of the segment length in the test scenario are shown.

Chapter 5 concludes this thesis and gives an outlook for future research. Definitions,
abbreviations, and used symbols are explained in appendix A.



2 Fundamentals

2.1 Principles of Localization

Localization is something humans are confronted with day-by-day: When the street is
crossed it has to be known whether a car comes along or not. When somebody calls a
person’s name, the person also needs to localize the sound source. There are hundreds
of moments each day when the brain is forced to localize the source position of an event.
But how humans are doing this? The main point is that humans have two ears. This
fact, as well as the extraordinary shape of the outer ear (pinna) results in an amazing
ability humans are able to localize sound sources.

2.1.1 Binaural and Monaural Cues

To define localization in the three-dimensional space, a coordinate system, as illustrated
in figures 2.1 and 2.2, has to be introduced. The position of the sound source is defined
relative to the head where the horizontal plane defines the left-right direction, also called
azimuth θ. The vertical plane defines the up-down direction and is called elevation φ. In
figure 2.2 the x- and y-axis span the horizontal plane whereas the y- and z-axis represent
the vertical plane. Sound arrives at both ears, but the brain distinguishes between
information gained from binaural signals and information gained from monaural signals.
The signals arriving at the left and right ear deliver information about the interaural
time difference (ITD) and interaural level (intensity) difference (ILD, IID). This means
that the incident sound wave arrives at different times and with different levels at our
ears. As long as the source is not exactly in front of the head, it takes longer for the
sound to get to one ear than to the other one. This information is extracted from signals
of both ears. Therefore, they are named binaural cues. Sound sources which originate
direct in front or behind a human do not deliver ILD and ITD because they are the
same for the left and the right ear. In this case monaural cues are important. Monaural
cues are extracted from the signal of one ear, and represent the spectral shaping of the
incident sound wave by head, shoulders, torso and, most important, the pinna.

The principle of localization based on binaural cues has been first established by Lord
Rayleigh in his Duplex Theory [3]. Horizontal sound localization and vertical sound

3
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Figure 2.1: Coordinate system with different planes: (A) transverse, horizontal
plane (B) coronal, frontal plane (C) sagittal, median, vertical plane [2]

localization work with different cues. Lord Rayleigh has not considered the impact of
the shape of the pinna. This has been investigated in [4] and [5]. The spectrum of an
incident sound wave is changed in a direction-dependent way. On the way from the
sound source to the ear drum of a human, sound is shaped spectrally. This shaping
can be seen as a linear time-invariant filter. Mathematically it is described by the so-
called head-related transfer function (HRTF) and its time domain representation the
head-related impulse response (HRIR). As a result an elementary familiarity with the
sound is necessary because localization is carried out by comparing spectral patterns
[6]. Monaural localization requires prior knowledge of the possible sounds because it
is impossible to know whether a sound appears different because it is coming from a
certain direction or if it was originally like that.

The HRTFs contain information about the spectral shaping of the sound on the way
from the source position to the ear drum, as well as ITD and ILD information. HL(θ, φ, f)
is the HRTF at the left ear and HR(θ, φ, f) at the right ear, respectively. If s(n) is the
source signal and S(f) its Fourier transform representation, the input signals at the left
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azimuth θ

z-axis

x-axis

y-axis

r

elevation φ

Figure 2.2: Coordinate system relative to the head with azimuth θ and elevation
φ

and at the right ear of a human head (or an artificial head) can be written as

SL(f) = HL(θ, φ, f)S(f) and (2.1)

SR(f) = HR(θ, φ, f)S(f). (2.2)

HRTFs depend on the frequency f and the source position including azimuth θ, elevation
φ and range r. The ratio of SR(f) and SL(f) is the so-called interaural transfer function
from which ILD and ITD can be detected. Binaural differences are independent of the
source spectrum but they are inaccurate near the vertical plane because ILD and ITD
are almost the same for both ears. The monaural relation SM(f) can be calculated as

SM(f) = HM(θ, φ, f)S(f) (2.3)

with SM(f) = SL(f) (or SR(f)) and HM(θ, φ, f) = HL(θ, φ, f) (or HR(θ, φ, f)).

In [7] the influence of the pinna is investigated and a simple model is suggested. The
impulse response consists of the direct path to the ear as well as an indirect path where
the sound wave is reflected at the pinna. The author has been measured the impulse
response of an artificial ear and found two significant echos. One echo is related to the
azimuth and the other one to the elevation.

2.1.2 Cues for Localization in the Horizontal and Vertical Plane

Studies have shown that human beings can hear within a frequency range between 16 and
20000Hz whereas the biggest sensitivity is between 2 and 5 kHz, which is reasoned in the



Chapter 2: Fundamentals 6

resonance frequency of the ear canal. Depending on the frequency range of the sound
source different cues contribute to the localization in the horizontal and the vertical
plane. Generally binaural cues are used to estimate the source in the horizontal plane
whereas monaural cues are used in the vertical plane and in the cone of confusion where
ITD and ILD are equal [8]. Depending on the frequency range of the sound source
either ITD or ILD is used. This means that ITD and ILD are not equally effective at all
frequencies. ITD is used in the frequency range where the wavelength is long compared
to the dimensions of the head. Then the sound wave is diffracted around the head. This
ratio of wavelength and head size is responsible for the type of cue which contributes
mostly to the localization of the sound. At high frequencies the wavelength is short
against the head size. Little diffraction occurs and therefore the shadowing effect of the
head attenuates the amplitude of the incident sound wave.

ILD is neglectable below 500Hz for sound sources which are far away. Things change
when they are near the listener. Then ILD is high even at low frequencies [9]. In the
frequency range between 1500Hz – 3000Hz sound localization is more critical than above
and below these limits [4]. Cues for localization also vary depending on the nature of
the sound.

Many studies have shown that spatial sound localization is still possible even if the
test person has one complete blocked ear. Sound localization with only one ear suffers in
the horizontal plane [10]. It is problematic to investigate the influence of the monaural
spectral cues. To examine this influence, experiments are carried out where one ear of a
test subjects is distorted [11] [12].

2.1.3 Distance Hearing

Localization consists of directional hearing as well as distance hearing. The cues for
directional hearing are much better investigated than the cues for distance hearing. Fur-
thermore, it is known that depending on the distance to the sound source, the loudness
of the source plays an important role. In the free field case, the arriving sound wave
can be seen as a plane wave. For such distances the air acts as a lowpass filter and
high frequencies are more damped than low ones. The level of the sound decreases with
−6dB if the distance is doubled. This fact is exploited by the human hearing system
to determine the distance [13]. If the sound source is near, the plane wave assumption
has to be discarded. Then spectral cues are especially important. It is also known that
ILD increases if the distance decreases below 1 meter whereas ITD is independent from
the distance to the source [9]. In a reverberant environment the ratio between the direct
and the reflected sound also offers a distance cue [14].

Moreover the fact whether the sound is familiar or not has an influence on distance
hearing. Familiar sounds can be accurately estimated within 6 – 8 meters whereas
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unfamiliar sound are only accurate within 2 – 4 meters [4].

2.1.4 Minimum Audible Angle

The values of ITDs reach from 0, when the sound source is located in front of the head,
to approximately 690µs, when the sound source is located beside the left or right ear
[15]. Corresponding to the Duplex Theory, localization in the horizontal plane works
well below 1500Hz and above 3000Hz but not in the frequency range in between.

The minimum values for resolution of ITD and ILD are about 10µs and 0.5 dB, re-
spectively [16]. The minimum audible angle (MMA) describes the accuracy of sound
localization, i.e. MAA describes the smallest detectable change in angular position rel-
ative to the subject. For sinusoidal signals MMA is 1 ° in front of the head (θ = 0 °) and
5 ° – 9 ° when the sound is located beside one of the two ears [17]. In case of broadband
signals MAA is 5 ° in front and 20 ° beside one of the ears. Furthermore, head movements
improve the localization task. In [18] MMA thresholds are determined for the horizontal
and vertical plane. Test subjects have been allowed to move their heads. For broadband
sources the mean MAA threshold in the horizontal plane is 0.97 ° whereas in the vertical
plane it is 3.65 °. Sources which are in between, i.e. not directly on the horizontal or
vertical plane, which is realistic, can be located accurately until 80 ° elevation with a
mean MMA which is approximately the same as in the horizontal plane. Only near the
vertical plane the mean MAA increases. Things change under noisy conditions or with
present distractors [19]. In [20] an overview and own results are presented.

2.1.5 Summary

As mentioned before, the human hearing system and the ability to localize sound sources
is amazing. The correctly estimated sound source depends on several aspects. The type
of sound source can reach from very simple clicks, complex narrow- or broadband stimuli
to noise or speech. Localization is well investigated in simple environments such as an
anechoic environment with only little noise and no reflections. Localization cues act
differently in different environments and also the importance of the different cues is
changing depending on the type of the source.

Many localization strategies are based on binaural cues. Binaural source localization
investigates the signals arriving on both ears. There are several computational models
which are used to estimate the sound position. One of the most common principles is
to calculate the cross-correlation between the ear input signals in order to estimate ITD
and ILD. For example in [21] a localization method is proposed which localizes sound
sources in the horizontal plane by jointly estimating ILD and ITD.
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To summarize, localization is most accurate in the vertical plane (sound arrives from
ahead) for sinusoidal tones. Changes in ITD cannot be detected for frequencies above
1500Hz. Therefore, ITD is used for localization in the low frequency range whereas ILDs
are detectable in the whole frequency range, but are of more importance in the higher
frequency range. Monaural spectral cues are mainly responsible for localization in the
vertical plane and in the cone of confusion.

2.2 Mathematical Tools – Statistical Models

In this thesis the angle of an incident sound wave in the horizontal plane is estimated.
The localization method exploits data from a speech database with direction-independent
speech, i.e. speech without direction information, and a database consisting of head-
related impulse responses (HRIRs). This section introduces features to describe speech
efficiently and statistical models for their classification.

2.2.1 Features

Often a large number of input data is not desirable in classification systems. There-
fore, the input data will be transformed into a reduced presentation which contains the
important properties. This smaller number is called feature [22]. Features should have
values which are very similar for objects in the same class, and different for objects in a
different class [23].

MFCCs

Speech production can be modeled by a linear source-filter model where the source signal
(airstream from the lungs, which is either periodically interrupted by the vocal folds, or
white noise produced by open vocal folds) is shaped by the vocal tract, which can be
represented by a linear filter.

Mel-frequency cepstral coefficients (MFCCs) [24] are the most important and popular
features for speech and speaker recognition because they describe the spectral envelope
of speech segments in a compact way. MFCCs are short-term spectral-based features
and they are an effective representation to retain useful direction-independent speech
information. In figure 2.3 the process of creating MFCCs is explained.

First the speech signal is divided into segments. Typically a hamming window, which
removes edge effects is used to produce overlapping segments. Then the DFT is cal-
culated for each segment and the absolute value of the spectrum is taken. Afterwards,



Chapter 2: Fundamentals 9

Speech Signal

Windowing

|DFT|

Mel-Scale Filter Bank

Log

DCT

MFCC
Coefficients

Figure 2.3: Calculation of the mel-frequency cepstral coefficients

the frequency bins are mapped on the mel scale to introduce human perceptual prin-
ciples. The human perception of the frequency contents of a sound does not follow a
linear scale. The mel scale is known to approximate the human auditory system more
accurately. The scale maps each tone with frequency f to a subjective pitch mel on the
mel scale:

mel = 2595 log10

(

1 +
f

700

)

. (2.4)

The mel scale can be represented by a filter bank of e.g, triangular windows, where
the bandwidth is approximately linear below 1 kHz and increases towards the higher
frequencies.

Afterwards, the logarithm of the coefficients is taken. The last step is to apply a
transform which reduces the feature dimensionality. Typically the discrete cosine trans-
form (DCT) is applied. Afterwards, the higher frequency coefficients are discarded. The
convolution of the source signal with the impulse response of the linear vocal tract filter
is transformed into an addition by calculating the logarithm [25].
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STFT Coefficients

The discrete Fourier transform (DFT) is one of the main tools in signal processing [26].
With the DFT a signal is transferred from the time domain into the frequency domain.
Therein the spectral content of a signal can be analyzed. The DFT is often realized
with the FFT, a fast and efficient implementation. There are several algorithms for an
efficient calculation, but the most well-known is the algorithm of Cooley and Tukey [27],
also known as Radix-2-Algorithm. For this algorithm the signal must have a length of
2n (if not, the signal is zero-padded). Then for the calculation it is subdivided into small
parts of length 2. The advantage is that by this decimation the number of operations
decreases. Therefore, a fast and efficient calculation of the DFT is possible.

The spectral resolution, which means the minimal difference between two frequencies,
is determined by the duration of the signal in time domain. If the duration of the signal
in the time domain is long, also the spectral resolution is good. Equation

T =
1

∆f
(2.5)

defines the relationship between the length T of the signal and the spectral resolution
∆f . Zero-padding can not increase the time resolution because no additional information
is introduced.

When the DFT is calculated the assumption is that the signal properties are constant.
As long as the signals are stationary the calculation of the DFT is valid, but there are
many signals, like speech, which are non-stationary signals. Therefore, usually speech
signals are analyzed with the short-term Fourier transform (STFT) where the changes
of frequencies are revealed over time. STFT extracts segments of the speech signal
with a window in a way that the signal can be seen as wide-sense stationary within
this segment. The windowed segments can be overlapping in a way that the boundaries
are smooth. The window can be chosen arbitrary, i.e. Rectangular, Hann, Hamming,
Kaiser. Usually the analysis is influenced by the window length. A smaller window
leads to a better temporal resolution, but a worse spectral resolution and vice versa:
the longer the window, the better the spectral resolution and the worse the temporal
resolution. Then the DFT can be calculated for each of these segments [26]. The result
is a time-depending Fourier transform, also called short-term Fourier transform (STFT).
For each time index the N -point DFT of a time signal of length L which is shifted by R
samples is calculated.

The segments are gained by multiplying the discrete time signal x[n] with a window
function w[n] of length L. The window is not zero inside 0 ≤ n ≤ L − 1 and zero
elsewhere. Then the STFT for the windowed signal can be written as shown in equation

X[rR, f ] =

L−1
∑

n=0

x[rR + n]w[n]e−j(2π/N)fn. (2.6)
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N is the number of discrete frequency bins, r is an integer and R determines the position
of the window in time domain. The window is shifted R samples. If R < L the segments
overlap and if R > L some samples are discarded. To be able to reconstruct the signal,
equation

N ≥ L ≥ R (2.7)

should hold. Equation

x[rR + n] =
1

Nw[n]

N−1
∑

f=0

X[rR, f ]ej(2π/N)fn (2.8)

allows the reconstruction of the time signal.

2.2.2 Classificators

MFCCs and STFT coefficients are features which are used in this thesis. Given speech
material for training the corresponding features are extracted and saved as feature vec-
tors. Now classificators are described which are able to decide from which direction
an utterance arrives. Statistical pattern recognition is used to find models for data
which belongs together. In [28] three different approaches to design a classificator are
introduced, namely a classificator based on similarity, a classificator based on the prob-
abilistic approach, and a classificator where the decision boundaries are optimized by an
error criterion. The first two approaches shall be compared in this thesis. To make the
equations better readable the used symbols are described in appendix A.

Basically, for a set of feature vectors X = {x1, . . . ,xT} where xl represents a D-
dimensional feature vector, a probability density function P (xl) has to be estimated.
Afterwards, the class-conditional density P (xl|ci) can be estimated for each class ci. In
this thesis, statistical models for each of the 72 directions are available. Each direction
represents a class ci. In [29] classificators are described with discriminant functions
gi(xl). A feature vector xl is assigned to a class ci if

gi(xl) > gj(xl) for all j 6= i. (2.9)

To minimize the probability of misclassification gi(xl) is taken to be equal to the posterior
probability P (ci|xl). The posterior probability cannot be calculated directly, instead
Bayes’s theorem saying that

P (ci|xl) =
P (xl|ci)P (ci)

P (xl)
(2.10)

is used. Therein the posterior probability is calculated with the conditional probability
P (xl|ci) and the prior probability P (ci). The prior probability P (xl) is the probability
that a feature vector occurs and thus a scaling factor.
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With some simplifications the discriminant function can be written as

gi(xl) = ln P (xl|ci) + ln P (ci) (2.11)

The logarithm can be applied because it is a monotonically increasing function which
does not influence the result.

In [22] three alternative approaches to density estimation are suggested. These are
the parametric, the non-parametric and the semi-parametric method. In the parametric
method a specific functional form of the density model is assumed. The density model
contains a fixed number of parameters which are optimized given the feature vectors.
The simplest used parametric model is the normal or Gaussian distribution which is fully
described by the two parameters mean value µ and variance σ2. The non-parametric
method does not assume a specific functional form of the densities. In that case prob-
ability density functions are described in a basic definition. In the broadest sense, the
probability density is defined by the probability that a feature vector falls inside the
volume of some region. The K-nearest-neighbor method, which belongs to the non-
parametric methods, determines this volume and thereby the probability density. For
the classification, a hypersphere around a new feature vector which contains K points is
determined. Then the new feature vector is assigned to the class which has the largest
number of representatives inside the hypersphere. The nearest-neighbor rule is for the
simple case where K = 1. Then the new feature vector is assigned to the class, the near-
est neighbor belongs to. In the semi-parametric method a general form of the density
model is assumed, where the parameters can be adapted and increased systematically.
An example for this method are mixture distributions which will be explained later in
more detail.

Gaussian Distribution

The normal or Gaussian distribution is the most widely used method to model probability
densities. The analytic simplicity is the main reason why it is used so often. The
probability density function of a normal distribution is given by equation

P (x) =
1

σ
√

2π
exp

(

−1

2

(

x − µ

σ

)2
)

(2.12)

in case of an univariate model and by equation

P (xl) =
1

√

det(Σ)(2π)D/2
exp

(

−1

2
(xl − µ)T

Σ
−1(xl − µ)

)

(2.13)

in case of a multivariate model with D dimensions, where T is the transpose.
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Figure 2.4: Univariate Gaussian distribution with µ = 0 and varying σ

In figure 2.4 the univariate Gaussian distribution (D = 1) with µ = 0 and varying
σ is depicted. The mean value µ defines the point where the bell-shaped curve has
its maximum and the variance σ2 defines the width of the curve [30]. If D = 2 the
multivariate Gaussian distribution looks like a cloud of dots where µ defines the “center”
of the cloud and Σ the “width”. In the multivariate case µ = (µ1, . . . , µD)T is a vector
which contains the mean value for each dimension and Σ is a D × D matrix. This
matrix is called covariance matrix and it indicates if the different dimensions (features)
are independent of each other.

Σ can be full, diagonal or spherical. The different types are depicted for the two-
dimensional case (D = 2) in figure 2.5. Full covariance matrices lead to a huge num-
ber of parameters for a high-dimensional input space, but this type of Σ fits the data
best. On the other hand, the risk of over-fitting is given and it can be very costly in a
high-dimensional feature space. Diagonal matrices, on the other hand, do not capture
correlation among the variables. In this case the covariance matrix is Σ = σ2

k I (with I

the identity matrix). σ2
k is the kth of D variances. The contours of constant probability

densities are given by axis-aligned ellipsoids. They present a good compromise between
quality and model size. Spherical covariance matrices, on the other hand, have a single
value of σ2 for the whole covariance matrix (Σ = σ2

I). The contours in this case are
concentric circles. This is the simplest form of Σ and is useful when only few data is
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Figure 2.5: Contours of constant probability density for a covariance matrix which
is (A) full, (B) diagonal and (C) spherical

available or computational speed and storage is an issue. Often Σ is taken to be diag-
onal because of simplicity. In this case an independent Gaussian distribution is in each
dimension.

Minimum Distance Classificator

In this approach, pattern are considered to belong together when they are similar. The
discriminant function (2.11) of the multivariate Gaussian distribution (2.13) can be
written as

gi(xl) = ln P (xl) =

= −1

2
(xl − µi)

T
Σ

−1
i (xl − µi) −

D

2
ln 2π − 1

2
ln det(Σi) + ln P (ci).

(2.14)

In this case µi and Σi are the mean value and covariance matrix for the ith class. If
Σi is taken to be spherical, the terms which are independent from i can be neglected.
Furthermore, the prior probabilities P (ci) are the same for all classes. Then (2.14) can
be written as

gi(xl) = −||xl − µi||2
2σ2

(2.15)

where || · || denotes the Euclidean distance.

Given some set of feature vectors of the training data, a prototype for each class
is calculated. This prototype is the mean value vector of the feature vectors in this
class [29]. The covariance matrix is assumed to be spherical and equal for all classes.
Therefore, σ2 in equation (2.15) can be neglected. If a new, unknown feature vector
needs to be classified, the distance between this feature vector and the prototype of each
class is calculated using the Euclidean distance

d =

√

√

√

√

D
∑

k=1

(xk − µk)2. (2.16)
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This classificator is called minimum distance classificator.

Maximum Likelihood Classificator

In this thesis classification based on a maximum likelihood estimation is used. Because
of the underlying approach the classification is termed maximum likelihood (ML) clas-
sificator. This is a probabilistic approach where a pattern is assigned to the class with
the maximum posterior probability P (ci|xl). P (ci|xl) indicates the probability that a
given feature vector xl belongs to a class ci. The feature vector is assigned to the class
ci with the highest posterior probability, i.e. to the class the feature vector most likely
belongs to. As mentioned before, P (ci|xl) cannot be calculated directly, instead Bayes’s
theorem (2.10) is used. In this thesis, the conditional probability P (xl|ci) is modeled
for each class with a Gaussian mixture model (GMM) which will be discussed later.

Maximum likelihood is a widely used estimator in which λ is set to the value that
maximizes the likelihood function P (X|λ) [29]. A data set X = {x1, . . . ,xl, . . . ,xT} is
given, which is drawn from a distribution P (xl|λ). P (xl|λ) depends on the parameters
specified by λ. Then the likelihood function can be written as

P (X|λ) =

T
∏

l=1

P (xl|λ) =: L(λ|X). (2.17)

Often the so-called log-likelihood

ln (L (λ|X)) = ln
T
∏

l=1

P (xl|λ) (2.18)

is taken because it is easier to calculate. It can happen that there are numerical prob-
lems in calculating the likelihood function. Likelihood values might be too small which
results in a numerical underflow. This problem can be solved by using the log-likelihood
function instead. In the case of GMMs the likelihood function is a product of individual
likelihoods, the log converts the product into a sum. As a result a sum of logarithmic
sums has to be calculated. The inequality

ln (x1 + x2) 6= ln (x1) + ln (x2) (2.19)

describes that the logarithm of a sum is not the same as the sum of the logarithm. There
is a trick to calculate ln (x1 + x2 + · · ·+ xN ) from the log values ln (x1) , . . . , ln (xN ): The
log values are divided by the largest term xl and the scaled terms have to be converted
to a linear term.

ln

(

N
∑

n=1

xn

)

= ln (xl) + ln

(

N
∑

n=1

eln(xn)−ln(xl)

)

(2.20)
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To determine the model which matches best to the given features of a test sentence
X the model is chosen to give the largest posteriori probability. For example, there
are 10 models λ1, λ2, . . . , λ10. Each model is trained with speech material which arrives
from one of 10 possible directions θ. Then a test sentence is spoken from one of the 10
positions and the directions θ have to be estimated. One gets

θ̂ = arg max
1≤i≤10

P (λi|X) = arg max
1≤i≤10

P (X|λi)P (λi)

P (X)
(2.21)

with P (λi) = 1/10. This means that it is equally probable that the test sentence is
spoken from one of the directions. P (X), the prior probability that the sentence is
spoken, is the same for all models and therefore a scaling factor. Now, (2.21) simplifies
to

θ̂ = arg max
1≤i≤10

P (X|λi) . (2.22)

Again, maximization is done in the log domain. The estimation of θ̂ is given by the
maximum likelihood estimation. In practice, estimates of distributions are used in place
of the true densities.

Summary

To summarize, given the feature representation of an input signal a classificator maps this
features to a set of labels, which consists of a number of known classes. In other words,
an input xl is assigned to one of C classes using a certain approach. The classification
process always consists of two steps.

In the first step the classificator is trained to represent a class. The classes of the
given training material can be known (supervised classification) or unknown (unsuper-
vised classification). In this thesis either a prototype is saved for each class, or the
parameters of a density function are estimated. The second step is the test scenario
where a classificator is used to estimate results. Classification can be done by calculat-
ing the minimum distance or the maximum likelihood based on the posterior probability
of the observed data xl given the densities of the different classes. A class can be repre-
sented by a Gaussian mixture model (GMM). GMMs are the main concept in this thesis.
Therefore, they will be described in more detail in the next section.

2.2.3 Gaussian Mixture Models

Mixture models are probabilistic models. They are useful to model arbitrary density
distributions. A Gaussian mixture model (GMM) consists of a linear combination of
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K multivariate Gaussian probability density functions given by equation (2.13). The
mathematical representation is given by equation

P (xl|λ) =

K
∑

m=1

bmPm(xl). (2.23)

K is the number of Gaussian components, xl is a D-dimensional random vector, bm are
the weights for each component and Pm is a single, multivariate Gaussian distribution.
For bm equation

K
∑

m=1

bm = 1 (2.24)

holds. With λ = {(bm, µm,Σm); m = 1, 2, . . . , K} the whole mixture model is described.

The model can differ depending on the appearance of the covariance matrix:

• one Σ per Gaussian component,

• the same Σ for all Gaussian components Σ1 = · · · = ΣK .

Also we can use the same Σ for the model of each class. In this thesis there is a diagonal
Σ for each Gaussian component of the mixture model.

GMMs have the power to evaluate a smooth and good approximation of an arbitrary
formed density. This means, if there is an arbitrary shaped density, and the underlying
density is not known, GMMs are a very good as approximation. Also if the features are
not statistically independent it is allowed to take diagonal Σ, because multiple Gaussians
act together to build the overall probability distribution function.

The parameters λ of a model are estimated from a set of training data. There are sev-
eral techniques available, but the most common is the expectation-maximization (EM)
algorithm which iteratively determines the unknown model parameters. Within this al-
gorithm the likelihood function, which is the probability of the training data given the
parameters of the model, is maximized [31].

The EM algorithm

The EM algorithm maximizes the likelihood of a GMM when a training data set X =
{x1, . . . ,xT} is given. X is assumed to be independent and identically distributed. The
training data set consists of T feature vectors. The log-likelihood function, which is
often calculated, is given by (2.18) and in the GMM case turns into

ln (L (λ|X)) = ln

T
∏

l=1

P (xl|λ) =

T
∑

l=1

ln

(

K
∑

m=1

bmPm (xl)

)

. (2.25)
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The algorithm is a general solution to the problem of finding the optimal parameters in
the maximum likelihood sense. The maximization is done iteratively because the likeli-
hood function is a nonlinear function of the model parameter and it is not possible to
estimate the parameters directly. The algorithm finds the maximum posteriori proba-
bility for a given observed feature vector. P (xl|λ) is the probability that the vector xl is
produced by the model which is specified in λ. Furthermore, a model λi will be trained
for each class i.

The EM algorithm works iterative which means that the algorithm has to be initialized
with a start model λ. Then a new model λ̃ is estimated such that P (X|λ̃) ≥ P (X|λ).
Then the new model λ̃ is used for the next iteration step. This is continued as long
as a convergence threshold is not reached. Every dimension of the mixture model is
a multivariate Gaussian distribution and has its own mean values µm and covariance
matrices Σm. The problem is that it is not known which training vector contributes to
which Gaussian.

• Estimation Step:

P (m|xl, λ) =
P (m, λ)P (xl|m, λ)

P (xl, λ)
=

bmPm (xl)
∑K

m=1 bmPm (xl)
(2.26)

• Maximization Step:

b̃m =
1

T

T
∑

l=1

P (m|xl, λ) (2.27)

µ̃m =

∑T
l=1 P (m|xl, λ) · xl
∑T

l=1 P (m|xl, λ)
(2.28)

and

Σ̃m =

∑T
l=1 P (m|xl, λ) · xlx

T
l

∑T
l=1 P (m|xl, λ)

− µ̃mµ̃T
m (2.29)

with

Σ̃m =







σ̃2
1,1 · · · σ̃2

1,D
...

. . .
...

σ̃2
D,1 · · · σ̃2

D,D






(2.30)

In the estimation step the posteriori probability for the mth Gaussian component is
calculated by equation (2.26). Then the mth Gaussian mixture component parameters
µm and Σm are estimated in the maximization step by equations (2.27) - (2.29).

P (m|xl, λ) is the probability for xl to belong to the mth component of the mixture
model. Each training vector contributes to the new parameter but the probability of
the mixture should be higher, to belong to one component m than to another. This



Chapter 2: Fundamentals 19

means that for all training vectors xl there are corresponding probabilities P (m|xl, λ)
to belong to the components.

Within the EM algorithm the initialization is important because the results depend
on the initial values. In this thesis mixture weights are initialized by bm = 1

K
, µm’s are

initialized randomly and Σm’s are initialized with the variance of the input training data
for each dimension and is equal for each component. The number of iterations is set to
eight. If the number of components is too large and the number of training data is too
small covariance matrices become singular or ill-conditioned [32]. Moreover, the optimal
number of components strongly depends on the available training data.

Number of Components of the GMM

The goal of a statistical model is to describe the given training data set in an optimal
way. On the other hand the model should also fit to unknown data, received from the
same unknown distribution. The case of underfitting, where the statistical model does
not match optimally to the training data, as well as the case of overfitting, where the
model fits “only” or “too well” to the training data should be avoided.

Let the number of components in GMMs be K. For high values of K, the GMM can
describe an arbitrary distribution, but we force the danger of overfitting which is easily
reached. There are several methods to calculate the optimal number of components. If
components are added to the GMM, the likelihood will always increase. Therefore, the
maximum likelihood principle will score at the highest number of components.

Analytic methods, like the Akaike information criterion (AIC) [33] or the Bayesian
information criterion (BIC) [34] investigate the value of the likelihood as well as the
number of parameters and the amount of training data. In [35] the number of components
in a text-independent speaker recognition system is investigated. Well known criteria,
like the BIC and the AIC, are compared. Furthermore, the Goodness of Fit (GOF) is
investigated and proved to reach comparable results. The Goodness of Fit (GOF) is a
measure for the limit of the amount of components in the GMM. To calculate it, the
data vectors which contribute to the mixtures must be known. Another method, which
is also used in this thesis, is the empirical method, where the whole data set is divided
into a training data set and a test data set. The model is trained using the EM algorithm
and the performance is evaluated on the test data set.
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2.3 Related Work

Sound source localization is a challenging task and many authors address this problem in
their research. Typically sound localization algorithms are based on processing signals
received by multiple, spatially separated sensors.

These approaches typically use either a beamformer and maximize its steered response
power or use methods based on the time difference of arrival [36]. Only few tried to
exploit HRTFs to reach a strategy for a single-channel method.

In [37] a sound localizer with two microphones, two artificial ears and a HRTF database
is derived. HRTF measurements are taken and interpreted as linear time-invariant FIR
(finite impulse response) filters. To use the HRTF efficiently and to fasten the algorithm
of source localization the length is truncated using several techniques. A diffuse-field
equalization, which shortens the HRTF from 512 to 128 samples, a balanced model
truncation, which separates the FIR filter into a low-order IIR (infinite impulse response)
filter, and a principal component analysis are carried out. The localization strategy is
the following: First the inverse filters of the HRTF data set are calculated offline by a
simple exchange of numerator and enumerator. The localization is made via the inverse
filters of the reduced HRTFs. The original signal is filtered with the original HRTF in
order to generate a direction-dependent signal. Afterwards, the resulting signal, which
contains a certain direction information is convolved with the inverse, reduced HRTF to
gain the original signal. These calculations are made for the left as well as for the right
ear. The correlation between the left ear signal and the right ear signal is calculated and
the filter which produces the maximal autocorrelation is taken as the direction of the
source. Furthermore, to verify the result, also the minimum distance between the two
signals is calculated. The diffuse-field equalized HRTF set reaches the best results with
a localization accuracy of 96%. As a next step the previous authors concentrate on the
problem of filter inversion. A simple filter inversion makes a filter unstable. In [38] an
inversion algorithm based on outer-inner factorization is presented.

In [39] again two microphones, one placed inside and one placed outside the ear canal
are used to determine the sound localization in the three-dimensional space. In this pa-
per the sought HRTFs are estimated using the self splitting competitive learning (SCCL)
clustering technique, a well-known technique in image processing. The basic idea is to
isolate the HRTFs from the two microphone signals. This is possible because the first
signal contains the HRTF and the second does not. HRTFs depend on the source posi-
tion. Ideally they are different for each position. Both signals are divided in the spectral
domain. The result represents the effect of the pinna, head and torso and should cluster
at each frequency around the corresponding complex HRTF value. Then the algorithm
clusters the data in all frequency bins over several time frames separately. The last
step is to find the HRTF from the database which corresponds to the estimated HRTF.
From 100 measurements with a required speech signal length of 4.7 seconds, 62% of the
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azimuth angles and 71% of the elevation angles are estimated correctly. The remaining
38% and 29% deviate 5.5 ° and 10.5 ° on average. The SSCL clustering technique is
replaced in [40] by a simple correlation mechanism, using a set of HRTFs. The above
mentioned division result is correlated with each HRTF from a database and outputs
the normalized correlation coefficients. The following decision device gives an estimation
of the sound source location by identifying the maximum correlation coefficient. From
1000 measurements 60% of the speech sources are correctly estimated in the free space
with 2.5 ° azimuth deviation and 5 ° elevation deviation.

Although the localization strategies mentioned above use monaural cues for localizing
azimuth and elevation, two microphones are needed. The following procedures use only
one microphone but, as a drawback, they are limited to a plane.

In [41] a system is introduced which localizes sound in the vertical plane with a single
microphone. A so-called neuromorphic microphone is used which copies the structure of
the outer ear. This means that it introduces time delays like the convoluted structure of
the pinna. As a simplified model, the artificial pinna is designed as a parabolic structure
with a single microphone. The microphone represents the ear canal. The recorded sound
consists of the direct sound and an echo. Therefore, localization is possible because of
the analysis of the echo times. Then the recorded signal is processed with a gamma
filter. The original HRTFs are more complex than the simplified versions. The gamma
filter approximates the recorded signal with a FIR filter. Different coefficients represent
different angles of the incident sound wave. After that a multilayer perceptron neural
network is trained to reach final localization results. Localization within a range of 8 °
is possible.

A later paper of the same authors is [42]. In this paper a localization method using
one microphone is developed and implemented. A CMOS integrated circuit is designed
and fabricated. The algorithm is inspired by the fact that direction is encoded in the
time delay between the direct sound and the reflected sound. A microphone is located
between a special reflection surface and the sound source. The time delay between the
direct sound and the reflected sound is calculated based on an onset detecting circuitry
which detects the energy change in the sound signal. For the testing scenario only pulses
are allowed. The sound source is moved along a line and the time delays are computed.
Then different LEDs are activated depending on the calculated time delays. Localization
is made indirectly via the time delays.

Also in [43] localization with a single microphone is carried out. First a GMM is
trained with clean speech. Afterwards, the acoustic transfer function is estimated by
maximizing the likelihood with the clean speech GMM and test material uttered from
each position. Then a GMM for each position is trained with the estimated acoustic
transfer function. The last step is to find the GMM with the maximum likelihood among
the estimated GMMs corresponding to each position. As features cepstral coefficients
are taken because they are assumed to effectively represent clean speech information.
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Experiments are taken with synthesized, reverberant speech. One, five and ten training
sentences which are uttered from 10, 30, 50, 70, . . . , 150 and 170 degrees (nine directions)
are used to train the acoustic transfer function GMMs. The evaluation is carried out on
three directions (30, 90 and 130 degrees). With five sentences to estimate the acoustic
transfer function and in the task where three different directions have to be estimated
the direction accuracy is almost 100%. Additionally, tests are carried out with GMMs
trained with the observed speech instead of GMMs trained with the acoustic transfer
functions. The accuracy of the estimation decreases. In the follow-up paper [44] the
same approach is evaluated in (a) a simulated reverberant environment, (b) a simulated
noisy reverberant environment using a speaker-independent speech model and (c) in a
real environment using a speaker-dependent speech model. The localization accuracy
increases when the number of mixtures, the amount of training data as well as the
test segment length is increased. In (a) 3, 5, 7 and 9 positions are evaluated with a
localization accuracy of 51.3% for 9 positions. In (c) 5 positions are used for training
and 2 for the test which results in a localization accuracy of 94.8% for the first position
and 79% for the second.

In [45] sound localization is carried out with a single microphone and an “artificial
pinna”. In this paper the prior distribution of sound as well as the direction-dependent
transfer function of the pinna are modeled. A signal, recorded by one microphone,
is given as the convolution of the sound source and the direction-dependent transfer
function plus additive white Gaussian noise. Then the source signal is modeled using a
Hidden Markov Model (HMM) with training material of different sounds (speech, animal
sounds and natural sounds). The transfer functions are estimated with standard noise
excitation methods. The most likely value for θ is estimated by a ML framework. Four
different “artificial pinnas” were constructed to record transfer functions that depend
strongly on the direction of the sound. Then the transfer functions for angles between
0 ° and 345 ° in steps of 15 ° are estimated and the values are interpolated for finer angles.
The best results for mixed human speech is delivered by a pinna where a plastic-cast,
that has smooth grooves build on it in various directions, is used. In this case an average
error of 7.7 ° occurs.

Finally, in [46] the distance of a sound source is estimated using a single microphone
recording in a room environment. A number of statistical and source specific features are
computed from speech signals. With pattern recognition techniques a robust distance
estimator is developed. Features, based on the source signal which depend on the dis-
tance between source and receiver are introduced. These features consider the fact that
temporal and spectral characteristics of speech in reverberant environments depend on
the distance. The presented features are (1) the ratio of the 0.9 percentile of a linear pre-
diction residual and the root mean square values, (2) the kurtosis of the linear prediction
residual, (3) the skewness of the spectrum and (4) the skewness of energy differences.
The first two features are calculated from the linear prediction residual (LP residual).
The amplitudes of the LP residual give information about the reverberations in a signal.
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Therefore, they are related to the distance. Reverberation increases when the distance
to the microphone increases. Then the kurtosis of the LP residual takes lower values.
The third feature takes into account that reverberation smears energy across frequen-
cies. Additionally, the four features are also extracted from a bandlimited version of the
signal. GMMs are trained and evaluated for each distance (0m, 1m, 1.5m, 2.5m, and
3.5m). All features together deliver the best results with 85% localization accuracy.
For a close distance the system works best whereas the performance decreases with the
distance. Moreover, a speaker-dependent scenario outperforms the speaker-independent
case.



3 Numerical Experiments

In this chapter approaches to estimate a sound position in the horizontal plane based on a
set of measured head-related impulse responses (HRIRs) are developed. For training and
test a database with direction-independent speech samples and a database with 72 HRIRs
is available. Therefore, first a statistical model is developed and afterwards a classificator
is chosen to localize a speech sound. A signal, received at a single microphone, has to
be classified to a certain azimuth θ.

3.1 Experimental Setup

3.1.1 The Speech Database

The database consists of utterances spoken by four female and four male speakers at
a sampling frequency fs = 16 kHz. The utterances are direction-independent which
means that they do not contain any direction information. It is divided into two data
sets, one for training and one for the test. The different utterances of each speaker
are not identical and as a result also the length changes. The duration of an utterance
influences the performance of the estimation of the correct angle of the incident sound
wave. In table 3.1 and 3.2 the durations of the utterances for each speaker are listed in
the training as well as in the test set. The presumption is that the error rate depends on

Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8

Gender m f f m f f m m
No. of utterances 65 67 65 65 66 65 70 66
Duration [min] 10.03 9.91 8.78 9.47 9.24 8.09 9.42 9.54

Table 3.1: Duration of all training utterances for female (f) and male (m) speakers

the length of the speech material used to train the statistical models, and on the length
of the test utterance. If different test utterances are used and their length is variable, the
performance will also change depending on the length of the utterance. Furthermore, as
shown later, the model depends on the initial values of the EM algorithm.

24
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Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8

Gender m f f m f f m m
No. of utterances 15 15 15 15 15 15 15 15
Duration [min] 1.82 1.73 2.01 2.14 2.02 1.43 1.74 1.72

Table 3.2: Duration of all test utterances for female (f) and male (m) speakers

3.1.2 The HRIR Database

The HRIR database has been downloaded from the internet [47]. The recordings were
made in an anechoic room with the KEMAR-mannequin from Bill Gardner and Keith
Martin at MIT Media Lab. KEMAR is designed for making HRTF measurements. Its
dimensions are motivated by a natural human being. The impulse responses were gen-
erated using maximum length pseudo-random binary sequences at a sampling frequency
fs = 44.1 kHz. Impulse responses for 710 source locations were generated. For this
thesis, the sampling frequency is reduced to fs = 16 kHz and only the horizontal plane
is considered. This means that at an elevation of 0 ° all positions for the azimuth are
taken which results in 72 HRIRs (0 ° – 355 ° in steps of 5 °). The range between the
KEMAR and the sound source is 1.4m. The 72 HRIRs are depicted in figure 3.1, where
the values are calculated in a logarithmic scale. Figure 3.2 shows the different HRTFs.
Here the values of each HRTF are also logarithmic. It is eye-catching that the main peak
is around 2200Hz for nearly all HRTFs. Figure 3.3 shows the correlation of HRTFs with
each other. It can clearly be seen that HRTFs of some angles are correlated to other
ones, e.g., 0 ° and 5 °. On the other hand, some are clearly uncorrelated, e.g., 110 °. The
assumption is that the estimation works good for HRTFs which are uncorrelated and
bad for the others.

3.1.3 Pre-Processing, Training and Test

The experiments are carried out with Matlab. The basic scheme is depicted in figure
3.4. There is a pre-processing step where speech material for training and test is syn-
thesized and features are extracted. After the pre-processing the training is carried out,
where speech material from the training set is taken to train a statistical model. The
statistical model can be speaker-dependent or speaker-independent. The main difference
is that different input material is taken to train the statistical models. The principles
which are explained in the next sections hold for the speaker-dependent and the speaker-
independent case. Then the results are evaluated in the test scenario.
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Figure 3.1: Head-related impulse responses for elevation φ = 0 and azimuth θ

between 0 ° and 355 ° in steps of 5 °

Synthesis of the Input

As shown in figure 3.4 and mentioned in the previous section, the speech database is
divided into a training and a test set. The training set is used to train a statistical model.
This can be done either by training of a direction-independent or a direction-dependent
statistical model. The same data set can be used to train each of the two models. Speech
input for the training of direction-dependent statistical models and the test is realized
in a synthetic way whereas the input for the direction-independent statistical model
remains unchanged. Utterances are synthesized with the speech database and the head-
related impulse responses of a HRIR database. This is also shown in figure 3.4. Given a
direction-independent speech signal xdi(t) and one of the HRIRs hθ(t), where θ defines
the azimuth of the HRIR, a direction-dependent signal xθ(t) can be calculated. xθ(t)
can be described mathematically by a linear convolution of the direction-independent
speech signal and the HRIR.

xθ(t) = xdi(t) ∗ hθ(t) (3.1)

As explained in [26] the Fourier transform turns a convolution in the time domain into
a multiplication in the frequency domain. Let Xθ(f), Xdi(f) and Hθ(f) be the Fourier
transforms of xθ(t), xdi(t) and hθ(t), respectively. Then equation (3.1) turns into equa-



Chapter 3: Numerical Experiments 27

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

200

250

300

350
−3

−2.5

−2

−1.5

−1

−0.5

0
A

zi
m

u
th

θ
[°
]

Frequency [Hz]

Figure 3.2: Head-related transfer functions for elevation φ = 0 and azimuth θ

between 0 ° and 355 ° in steps of 5 °

tion
Xθ(f) = Xdi(f) · Hθ(f). (3.2)

In fact, if the DFT is used in equation (3.2) the multiplication is a circular convolution,
whereas the convolution in the time domain is linear.

Feature Extraction

MFCCs and STFT coefficients are well known and widely used features in speech pro-
cessing.

The calculation of MFCCs is depicted in figure 2.3. A hamming window with the
length 256 is used. Furthermore, 29 mel filterbanks are taken. The feature vector finally
consists of 20 coefficients per time step. STFT coefficients are calculated in two different
ways. First (type 1) a hamming window with the block length of 512 samples, 50%
overlap and a 1024-point FFT is used. Afterwards the logarithm of the absolute values
of the coefficients is taken. The second variant (type 2) is to replace the hamming
window with a rectangular window with the length of 1024 samples. No overlapping
is applied, but the 1024-point FFT is unchanged. Also the last step, to calculated the
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Figure 3.3: Autocorrelation of HRTFs

logarithm of the absolute values of the coefficients is carried out. This variant is shown
in figure 3.5.

MFCCs as well as STFT coefficients are calculated for each time step. This means
that the result is a matrix where each column represents a feature vector for a given
period of time. This period of time is defined by the time window used.

Evaluation – the Absolute Error Angle |ǫ|

After the training of the statistical models the test is carried out. Speech utterances
from each direction are synthesized and tested in order to estimate the direction. Then
the error angle ǫ is calculated and saved. To define ǫ a coordinate system, which is shown
in figure 3.6, is defined. The head can be replaced by a microphone which captures the
incident sound wave. The elevation is 0 ° and the angles increase clockwise. θ = 0 ° is in
front of the subject, θ = 90 ° beside the right ear and θ = 270 ° beside the left ear. Based
on this consideration the error angle always lies between −175 ° and +180 °, e.g., if the
test utterance origins at θ = 5 ° and the estimated angle θ̂ = 345 °, the error angle ǫ is
−20 °. Afterwards, the absolute value of ǫ is taken and the mean value µ|ǫ| and standard
deviation σ|ǫ| is calculated for the whole test set.
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3.1.4 Summary

To summarize, speech utterances from each of the 72 directions in the horizontal plane
are synthesized by a convolution of the speech utterance with each of the 72 HRIRs
from the database. This means that each sentence is uttered from each direction. After-
wards, features are extracted. Then either direction-independent utterances or synthe-
sized direction-dependent utterances are used to train a statistical model. Finally the
test is carried out and results are evaluated. This is shown in figure 3.4. For the test 15
test utterances from each of the 72 directions (0 ° – 355 ° in steps of 5 °) are synthesized
and evaluated. The angle θ̂ is estimated and the error angle ǫ is saved. Then the absolute
error angles |ǫ| for each direction, all 15 utterances and all eight speakers, are averaged
and result in a mean absolute error angle µ|ǫ|. Furthermore, the standard deviation σ|ǫ|

of the absolute error angles are calculated.

3.2 Approaches for Estimating the Angle

3.2.1 MFCCs with Minimum Distance

The production of human speech can be seen as a linear filtering of an excitation signal
by the vocal tract. In the cepstral domain this convolution turns into an addition.
Therefore, it is possible to separate the impulse response and the excitation signal. As
mentioned before the HRIRs act as a filter on the direction-independent speech signal.
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Figure 3.6: Absolute error angle |ǫ| relative to the head

Based on this consideration MFCCs are chosen to be the feature.

Training and Test

MFCC features are extracted from the direction-independent training set. Then the
statistical model is trained with these features. For the training temporal averaging
over the whole training data set of each speaker is applied to achieve a 20-dimensional
prototype vector µ̂s for each speaker s. These prototypes are saved. In the test scenario
the direction-dependent test utterance is also converted into MFCCs with the same cri-
teria as in the training scenario. Again, temporal averaging over all feature vectors are
applied to gain a 20-dimensional feature vector µ̂θ. Moreover, each direction can be seen
as a different class. To determine the class, the test utterance belongs to, a minimum
distance classificator is used. So as to do, the prototype feature vectors are subtracted
from the feature vector of the test utterance. The result is assumed to yield the con-
tribution of the HRIR. Then the result is compared to the MFCC representation of the
HRIR database via minimal distance calculation as shown in figure 3.7. In other words,
the nearest neighbor is assumed to be the filter with which the direction-independent
speech signal is convolved. By knowing the filter, the direction of the sound source is
also known.
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3.2.2 STFT Coefficients with Minimum Distance

As a next step high-dimensional spectral features are used. As described in 3.1.3 STFT
features of type 1 are calculated.

Training, Test and Conclusion

Again one statistical model for each speaker is trained by averaging the STFT coefficients
over time which results in a 512-dimensional feature vector µ̂s. This vector is saved as
a prototype for each of the eight speakers. The test scenario stays the same as before
except that the STFT coefficients of the test utterance µ̂θ are divided by the prototype
feature vectors. This is presented in figure 3.7.
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As shown later this very simple statistical model delivers reasonable good results.
To reach more accurate classification results another classification method has to be
investigated.

3.2.3 STFT Coefficients using ML based single GMM

Again high-dimensional spectral features are taken. This time, STFT features of type
2 are taken. Moreover, the statistical model as well as the classification method are
changed.

Training, Test and Conclusion

A GMM are used to model the speaker-dependent, direction-independent speech samples.
Principles of GMMs are explained in chapter 2. A speaker-dependent GMM is trained
using the EM algorithm. As a statistical model for each speaker the parameters of
the GMM are saved, namely, a vector of weights b, a matrix of mean values µ (for
each component one vector) and the covariance matrix Σ (each column represents the
diagonal of the covariance matrix of one component). The feature vectors of the input
data are calculated as shown in figure 3.5. The result is a T × D matrix (in this thesis
D = 513) where each row represents a D-dimensional feature vector.

The GMM is trained with speech material which is direction-independent. Therefore,
the GMM is direction-independent. To create direction-dependent GMMs from the
direction-independent GMM the statistical models are adapted with each feature vector
of the HRIR database. This is shown in figure 3.8 and is explained in more detail in
section 3.2.3. Afterwards, classification is carried out via ML calculation.

Adaption of Speaker Model

It is assumed that a single direction-independent model is trained in the training sce-
nario. Afterwards, direction-dependent models are created from the single direction-
independent model. For the adaption the model parameters of the GMM are adapted.
The direction information is brought in by shifting the vector µ of each mixture compo-
nent of the statistical model with the HRIRs. To be more specific, the feature coefficients
of the HRIRs are added to the µ’s of each component of the GMM. The addition results
from the fact that the calculations are done in the log domain. 72 GMMs with direc-
tion information can be calculated with little computational effort as shown in figure
3.8. The big advantage of this statistical model is that only a single statistical model
for direction-independent speech has to be trained. The direction-dependent manipula-
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tion will be calculated afterwards by a simple addition. Although the simple statistical
model adaption is an advantage, it also brings along some problems. Due to the calcu-
lation of the Fourier transform with the DFT, the adaption of the direction-dependent
model is consistent with a circular convolution, whereas the synthesized test utterances
correspond to a linear convolution (3.1).

3.2.4 Matched and Mismatched Test Environment and

Consequences

For the test scenario the direction-dependent test utterances are produced in a synthetic
way. In the real world a recording of speech from a certain direction is assumed by
a linear convolution of the direction-independent speech with the impulse response of
the room (including the spectral shaping from the pinna). Mathematically it can be
calculated by equation (3.1). The problem is that the adaption of the single, direction-
independent model results in a circular convolution. This does not match the case where
speech material for the test is synthesized with a linear convolution of the test utterance
and the HRIRs. Therefore, a decreased performance is expected.

For the evaluation a matched environment as well as a mismatched environment are
used to calculate results. In the matched environment speech material for the test is
produced by a multiplication instead of a convolution. More precisely, the HRTFs and
the spectra of the speech utterances are multiplied. Note that a DFT is used to get
the HRTFs from the HRIRs and the spectra from the time domain speech signals. The
matched case is depicted in figure 3.9. The mismatched environment is the real world
scenario as described before where test utterances are created by a convolution. This
is shown in figure 3.10. In the real case, where the signals are convolved in the time
domain, the influence of the window creates serious problems which cannot be corrected.
Because of the DFTs to calculate HRTFs and speech spectra, the hamming window is
applied to both time domain signals. In the test scenario, on the other hand, the test
utterance is convolved with one of the HRIRs and then the STFT features are extracted.
The result is cut into segments by a hamming window and the DFT is carried out. In
this case, the window is only applied once. Therefore, a mismatch is predictable. To
get acceptable results nevertheless, the hamming window is replaced by a (inevitable)
rectangular window. Therefore, in the GMM based approach features are calculated
according to type 2 of section 3.1.3. As a consequence three different approaches are
investigated:

1. adaption of HRTFs

2. restriction to a limited area

3. direction-dependent GMMs
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These three approaches are introduced to handle the problems caused by the circular
effects.
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Adaption of HRTFs

As mentioned before, the adaption of the GMM1 to obtain direction-dependent GMMs
from the direction-independent GMM prototypes introduces circular effects. The HRTFs
in the feature domain are taken to adapt the GMMs. Therefore, the HRTFs need to
be transformed in a way that a linear manipulation is applied instead of the circular
manipulation. This is done with a system identification where each HRTF is linear
approximated through a block adaptive method. In figure 3.11 the block diagram of the
system identification is shown. The unknown coefficients of the linear adapted HRTF
hθ,circ are changed to match as closely as possible the desired signal d which is the DFT
of the output of the linear system with the impulse response hθ. The adapted HRTFs
are calculated in the feature domain. Then these HRTFs are taken to manipulate the
direction-independent GMM instead of the conventional HRTFs and tests are carried
out with the same 15 utterances of all 8 speakers from each of the 72 directions.

1Note: Adaption of the GMMs and adaption of the HRIRs are two different things!
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Limitation of the Models

A second consequence to eliminate the circular effects is to limit the area of investigation.
First, the hamming window in the calculations of the feature vectors is discarded. The
usage of a window has serious effects on the performance. The localization accuracy is
expected to decrease in a mismatched case, but the circular influences are not assumed
to effect all angels equally. The used HRIRs are very short in time domain. High
energy peaks appear early in time domain and at low frequencies in frequency domain,
respectively. Therefore, the HRTFs have a low-pass characteristic with high amplitudes
in the low frequency domain and many values near zero at higher frequencies, which can
also be seen in figure 3.2. HRIRs approximate minimum-phase filters. That is the reason
why it is expected that the linear convolution with the speech signal is approximately
the same as the circular multiplication of their spectra. To get around the problems only
a limited area is investigated. This is acceptable because it depends on the application
whether the whole horizontal plane is needed or not. Accurate localization in a half
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plane is also worth pursuing.

Direction-Dependent GMMs

A third consequence to eliminate the introduced circular influences is to train direction-
dependent GMMs. The reason for the circular effects is the adaption of the direction-
independent GMM to produce direction-dependent GMMs. Therefore, the adaption is
discarded and replaced by a direct training of direction-dependent GMMs. This time
synthesized speech material, which contains direction information (fig. 3.4), is used
to train 72 direction-dependent GMMs (one GMM for each angle of θ). As a result
localization should work in the whole range between 0 ° and 355 °.

Number of Components in the GMMs

The training data set is assumed to originate from a certain, unknown distribution. This
distribution should be described in an optimal way by a statistical model. As described
in the previous chapter, the optimal number of components in a GMM can be determined
in different ways. The method, which will be used in this thesis, is the empirical method.
For this method the model is trained using the EM algorithm and the performance is
evaluated on the test data set. For different numbers K of components the absolute
error angles |ǫ| are calculated. Afterwards, the mean value µ|ǫ| and standard deviation
σ|ǫ| of |ǫ| are determined. These values will give information on the performance of the
statistical model depending on the numbers K of components. Above a certain number
of K the performance changes insignificantly or even decreases. Looking at the results,
a value for K can be chosen. The number of components in the GMM is important in
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view of a correct evaluation and low computational complexity. If the model order is
too low, the mixture model can not accurately model the system. On the other hand,
too many components also influence the performance.

Speaker-Independent Models

It is also important to improve the speaker-dependent case to a more general speaker-
independent case. As indicated earlier, the speech database consists of speech material
of eight different speakers. In the speaker-dependent case statistical models are trained
depending on the speaker, i.e. speech material from a speaker is taken to train a model
for this speaker. Also in the test scenario speech material is taken from the corresponding
speaker. Now, the speech material from five speakers (male as well as female) is taken
to train one speaker-independent model. Then tests are carried out on the remaining
three speakers to assure that the training and the test is not realized based on the same
speech material. All methods mentioned above remain the same for speaker-dependent
and speaker-independent models.

Influence of the Segment Length

Besides the amount of the training and test speech material and the choice and training
of the statistical models, a crucial parameter for the performance is the segment length
of the input utterance before a classification result is obtained. Especially for real-
time applications it is important to shorten the input segments. On the one hand, the
estimation of the direction of the source signal should be as accurate as possible. On the
other hand, the update of the estimations should be as fast as possible. Although these
two demands contradict each other, an optimal tradeoff has to be found. To examine the
influence of the length of the input signal on the localization accuracy, the input speech
utterances are cut into pieces. Then test and evaluation are carried out as explained
above.



4 Discussion of the Numerical

Results

In this chapter numerical results based on the previous considerations and developed ap-
proaches are presented. For the evaluation databases with direction-independent speech
samples and with 72 HRIRs are used. Tests are carried out with 15 test utterances.
Training utterances and test utterances are strictly separated in a way that no overlap-
ping is possible and the test material is unknown by the model.

4.1 The Minimum Distance Approach

First MFCC features, then STFT features (type 1) are extracted and the direction of the
sound source is estimated with a minimum distance approach as explained in sections
3.2.1 and 3.2.2.

For MFCC features the evaluation results are µ|ǫ| = 107.31 ° and σ|ǫ| = 49.54 ° whereas
µ|ǫ| = 22.93 ° and σ|ǫ| = 42.2 ° for STFT features. In this case STFT coefficients clearly
outperform MFCCs. In figure 4.13 µ|ǫ| and σ|ǫ| is depicted as a function of the angle to
estimate for the STFT coefficients. This means that for a speech utterance arriving from
a fixed angle θ the error angle for all utterances and speakers is calculated and averaged,
i.e. the histogram shows the error which is made at each sound source direction. It can
be seen that the estimation works better for some angles than for others. Between 55 °
and 70 ° and between 115 ° and 135 ° the localization accuracy is very good, i.e. the mean
absolute error angle is small. This can be explained by the MD classificator. Looking
at figure 3.1 it can be seen that the HRTFs in this regions are unique. They are not
likely to be confused with other HRTFs. This can also be seen in figure 4.1 where the
hard-decision confusion matrix is shown. Along the x-axis there is the angle to estimate
and on the y-axis the estimated angle, e.g., if the sound arrives from an angle of 0 °
how often 0 °, 5 °, 10 °, . . . is estimated. In other words, all absolute error angles of all
speakers and all utterances are investigated. The absolute errors are a function of the
true angle. All absolute errors for a true angle of, e.g., 0 °, are taken into account where
the amount of each estimated angle at a given true angle is counted. The occurrence
of the estimated angles is indicated by the color. With 8 speakers and 15 utterances

40
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from 72 directions, the number of estimations is 15 · 8 · 72 = 8640. If all angles would be
estimated correctly, this would result in a value of about 8640 (highest value, brightest
color – deep red). In the best case the highest value is along the main diagonal.

Although MFCCs are used to separate a filter impulse response from the excitation
signal this feature can not be used to identify HRIR in a minimum distance approach.
MFCCs describe the envelope of a spectra, i.e. the vocal tract resonance frequencies
(in speech production). HRIRs depend on the fine structure of a spectrum. Therefore,
important information is lost. To further improve the estimation accuracy STFT features
are evaluated with a ML framework.
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Figure 4.1: Hard-decision confusion matrix between true angles and estimated
angles; STFT coefficients (type 1) with MD classificator
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No. of Components
Matched Case Mismatched Case
µ|ǫ| σ|ǫ| µ|ǫ| σ|ǫ|

1 11.56 29.33 29.02 44.38
8 1.66 8.69 15.69 35.89
16 0.94 5.92 17.09 39.15
32 0.38 1.95 19.78 42.82
64 0.27 2.50 21.09 44.92

Table 4.1: µ|ǫ| and σ|ǫ| for the absolute error angle |ǫ| for matched case and
mismatched case and for different numbers of components; STFT coefficients (type
2) and ML classificator

4.2 The Maximum Likelihood Approach

4.2.1 Matched and Mismatched Case

As explained in section 3.2.3 test utterances are compared to adapted direction-
independent GMMs via a ML framework. The adaption introduces circular effects.
To minimize them first the hamming window is discarded and feature vectors of type 2
are taken.

First, to build a matched case with the circular effects due to the adaption of the
GMMs, “synthetic” synthesized test utterances are taken to evaluate the method. These
“synthetic” synthesized test utterances are produced by the multiplication of the spec-
trum of the test utterance and the HRTF. As presented in table 4.1 results are very
accurate which is not a surprise because a matched case scenario has been simulated.
In the mismatched case the estimation accuracy decreases. The results are depicted
in figure 4.2. In the mismatched case the error increases when the number of used
components increases. The number of used components also influences the amount of
training material, which has to be larger the more components are used. If the amount
of training material is too small, results are not reliable any more. To give insight, the
hard-decision confusion matrix and the soft-decision confusion matrix for both cases are
shown in figure 4.4. The soft-decision confusion matrix shows the likelihood values for a
true angle and that one compared to each of the 72 adapted models. After calculating
the likelihood values a decision is made. The angle with the maximum likelihood is taken
as the estimated angle. The hard-decision confusion matrix is calculated and depicted
as explained before.

In figure 4.4 most of the values are off the main diagonal. This means that there are
similar models for different angles. In figure 4.3 it is depicted that the maxima are well
suited on the main diagonal. This can also be followed from figure 4.13, 4.14, 4.15 and
4.16. The mean value and the standard deviation are very high for the true angles with
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Figure 4.2: Comparison between matched case (red) and mismatched case (blue)
as a function of the number of components; STFT coefficients (type 2) and ML
classificator; the height of the bars indicates the µ|ǫ| and the black lines σ|ǫ|

incorrect estimations. The problem in the mismatched case is that a right-left confusion
has been introduced. Angles between 5 ° – 45 ° get confused with angles in the range
315 ° – 355 ° (symmetrically around 0 °) (fig. 4.4).

4.2.2 Adaption of HRTFs

To eliminate the effects of the circular adaption of the direction-independent GMMs,
HRTFs are adapted as explained in the last chapter. For this case the average error for
all sentences and all speakers has µ|ǫ| = 15.69 ° and σ|ǫ| = 35.89 ° for the non-adapted
case and µ|ǫ| = 15.42 °, σ|ǫ| = 35.35 ° for the adapted case.

In 7707 of the 8640 test cases the absolute error is the same for both models, which is
89.20%. 84 times (0.97%) the absolute error is the same but had a different sign. 444
times (5.12%) the absolute error is smaller for the adapted model and 489 times (5.66%)
the absolute error of the non-adapted model is smaller. This results in the knowledge
that an adaption is not necessary.
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Figure 4.3: Confusion matrix of matched case: soft-decision (left) and hard-
decision (right)
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Figure 4.4: Confusion matrix of mismatched case: soft-decision (left) and hard-
decision (right)
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Figure 4.5: Confusion matrix of direction-dependent GMMs (GMM+HRTF): soft-
decision (left) and hard-decision (right)
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Figure 4.6: Mean value of absolute error angle µ|ǫ| and standard deviation σ|ǫ| as
a function of the angle to estimate; true HRTFs (left) and adapted HRTFs (right)

In figure 4.6 the error is shown as a function of the true angle for results with the
conventional HRTFs and the adapted HRTFs. The conclusion is that a circular adaption
of the HRTFs has no influence on the performance.

4.2.3 Limitation of the Model to 90° – 270°

As shown before, the absolute error of the mismatched case increases because of the
adaption of the model. As a constraint only a half plane is taken into account. Thus, the
critical area can be avoided. In figure 4.4 and 4.15 it can be seen that the problematic
areas are approximately around 0 ° – 70 ° and 300 ° – 355 °. Many errors result in a
confusion around 0 °. Therefore, a restriction to the area in between is made. The
evaluation of a limited area (LimArea) is carried out.

The trained GMMs are the same as before and also tests are carried out with the same
adapted GMMs. The mean absolute error has µ|ǫ| = 4.03 ° and σ|ǫ| = 7.5 °.

Selection of the Number of Components in the GMMs

As described in 3.2.4 the number of components in the GMM is chosen empirically. In
figure 4.7 the results of the evaluation are plotted. The results are also depicted in table
4.2. The number K of components is varied from 1, 2, . . . , 16, 32, 64 components per
model. Then the model is tested on the test data set, and µ|ǫ| and σ|ǫ| for the absolute
error are calculated. The results show that the performance only improves very little
above two components. Because of computational advantages the number of components
is chosen to be eight. It would also be possible to choose the number of components
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individually for each speaker. In this way, the model optimally fits to a speaker.
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Figure 4.7: Comparison between different numbers of components in the GMM

4.2.4 Direction-Dependent GMMs

In the previous sections it is shown that the adaption of the direction-independent speech
GMM introduces circular effects. GMMs for speech arriving from each of the 72 positions
are available. GMMs are trained from speech uttered from a certain direction. The mean
absolute error has µ|ǫ| = 5.86 ° and σ|ǫ| = 15.92 °. In figure 4.5 the soft-decision and hard-
decision confusion matrix substantiate this good result.

4.2.5 Speaker-Independent GMMs

To generalize the results a speaker-independent model is trained. In this case the training
is carried out with speech material of speaker 1 to speaker 5 and the test with the
remaining 3 speakers (case 1; fig. 4.8). Additionally, a model with speech material of
speaker 3 to speaker 8 is trained where tests are carried out with speaker 1 to speaker 3
(case 2; fig. 4.8). For the limited area the mean absolute error angle has (case 1) µ|ǫ| =
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Figure 4.8: µ|ǫ| and σ|ǫ| of |ǫ| for a limited area – on the left: tested on speaker 6
(female), 7 (male) and 8 (male); on the right: tested on speaker 1 (male), 2 (female)
and 3 (female)
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Figure 4.9: µ|ǫ| and σ|ǫ| of |ǫ| for direction-dependent GMMs – tested on speaker
6 (female), 7 (male) and 8 (male)
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No. of Components
Mismatched Case

µ|ǫ| σ|ǫ|

1 12.61 19.96
2 5.82 10.02
3 5.08 9.33
4 4.88 9.22
5 4.77 8.92
6 4.92 9.16
7 4.10 7.55
8 4.03 7.50
9 4.15 7.50
10 4.17 7.79
11 4.05 7.70
12 3.94 7.49
13 3.86 7.38
14 4.00 7.99
15 3.73 7.09
16 3.66 6.98
32 3.80 7.16
64 3.68 7.05

Table 4.2: µ|ǫ| and σ|ǫ| for the absolute error angle |ǫ| for mismatched case and
for different numbers of components

9.04 ° and σ|ǫ| = 14.73 ° and (case 2) µ|ǫ| = 2.24 ° and σ|ǫ| = 6.52 ° (fig. 4.9). A speaker-
independent model is also trained for the direction-dependent GMMs (GMM+HRTF)
where the mean absolute error angle results in µ|ǫ| = 17.51 ° and σ|ǫ| = 37.31 °. In
this case the mean absolute error of speaker 6 is bigger than for the speakers 7 and 8.
Therefore, also the averaged mean absolute error is high.

In figure 4.8 it is shown that the model works better for speaker 7 and 8, than for
speaker 6. The speaker-independent model is trained with 3 female speakers and 2 male
speakers. The speaker who reaches worse results is female. In figure 4.8 the training is
carried out with speaker 4 to 8 (3 male and 2 female). In the test scenario again the male
speaker reaches better results. In figure 4.8 (right) and 4.9, where the model is based
on the same speakers, both times speaker 7 and 8 reach better results than speaker 6.
The length of the training utterances as well as the test utterances are the shortest for
speaker 6. The durations of test and training utterances are listed in table 3.1 and 3.2.
This might be a reason why the other speaker outperform this speaker. Furthermore,
as mentioned before, the performance of a GMM strongly depends on the initial values.
Therefore, a GMM sometimes works better for some speakers than for others.
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µ|ǫ| σ|ǫ|

STFT-MD 22.93 ° 42.2 °
STFT-ML (mismatched case) 15.69 ° 35.89 °
STFT-ML (adapted HRTFs) 15.42 ° 35.35 °
STFT-ML (GMM+HRTF) 5.86 ° 15.92 °

SI (LimArea) 9.04 ° 14.73 °
SI (GMM+HRTF) 17.51 ° 37.31 °

Table 4.3: Comparison between different approaches: STFT coefficients with
minimum distance classification (STFT-MD) and with maximum likelihood classi-
fication (STFT-ML) for the mismatched case, the case with adapted HRTFs and
the case with direction-dependent GMMs (GMM+HRTF); speaker-independent
(SI) model for limited area (LimArea) case and direction-dependent GMMs
(GMM+HRTF)

4.2.6 Influence of the Segment Length

The performance is now evaluated as a function of the input segment length. So far,
test utterances from each speaker arriving from each angle are taken as input. Now, all
data is taken and cut into equally long segments of 1 second, 2.5 seconds, 5 seconds, 7
seconds and finally 10 seconds. Results are evaluated for the speaker-dependent as well
as for the speaker-independent case and for the model with limited area (LimArea) and
the direction-dependent GMMs (GMM+HRTF) (fig. 4.10, 4.11). The mean values are
collected in table 4.4. Figure 4.12 compares both results. The error decreases when the
segment length increases.

Some applications are delay sensitive. Therefore, an estimation of the direction is
needed within a certain time. At a segment length of 2.5 seconds the mean error is
6.92 ° for the limited area case which is acceptable. For the direction-dependent GMMs
the error is a bit higher with a value of 11.05 °. The error increases further in the
speaker-independent case to 11.07 ° (LimArea) and 21.09 ° (GMM+HRTF) (tab. 4.4).

4.2.7 Summary

In this chapter the different approaches are evaluated and compared. The matched
case, where the spectrum of the speech signal is multiplied with the HRTF to synthesize
speech from a certain direction, delivers optimal results in a “perfect” world scenario.
Naturally the localization accuracy in this case is very high, but this method is not
inherent in a real world scenario. In the mismatched case, where a linear convolution
of the speech signal and the HRIR results in the direction-dependent utterance, the
localization accuracy decreases dramatically. As a consequence the HRTFs are adapted,
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Figure 4.10: Error angle depending on the segment length (LimArea) – speaker-
dependent case (left) and speaker-independent case (right)
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Figure 4.11: Error angle depending on the segment length (GMM+HRTF) –
speaker-dependent case (left) and speaker-independent case (right)
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Figure 4.12: Comparison between speaker-independent and speaker-dependent
case for LimArea (left) and GMM+HRTF (right)
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SL
LimArea GMM+HRTF LimArea GMM+HRTF

(SD) (SD) (SI) (SI)
µ|ǫ| σ|ǫ| µ|ǫ| σ|ǫ| µ|ǫ| σ|ǫ| µ|ǫ| σ|ǫ|

1 10.49 18.51 18.65 36.59 15.94 24.20 26.50 43.74
2.5 6.92 13.19 11.05 27.10 11.07 18.25 21.09 39.89
5 4.17 8.18 6.08 17.28 8.80 14.61 16.49 35.77
7 4.82 14.44 4.55 11.91 7.85 13.56 15.44 35.12
10 2.90 5.15 3.97 11.41 7.73 14.05 14.74 35.19

Table 4.4: µ|ǫ| and σ|ǫ| depending on the segment length (SL) – comparison
between model with limited area (LimArea) and model with direction-dependent
GMMs (GMM+HRTF) for speaker-dependent (SD) and speaker-independent (SI)
case

so as they neglect the circular effects. This does not increase the performance. In the next
step the investigated area (LimArea) is restricted. In this case the problematic area is
not considered. Therefore, also the localization accuracy increases. The disadvantage is
that only a half plane is evaluated. Therefore, as a last consequence direction-dependent
GMMs are trained (GMM+HRTF). In this case the localization accuracy increases, but
the value is not directly comparable with the LimArea case because the investigated
area differs. To generalize the results the tests are also carried out on the speaker-
independent (SI) models of the limited area (LimArea-SI) and the direction-dependent
GMMs (GMM+HRTF-SI).

The values for µ|ǫ| and σ|ǫ| for all models are listed in table 4.3. Furthermore, a
comparison is shown in figure 4.17 where the localization accuracy for each model is
plotted. The localization accuracy is calculated by putting the number of investigations
where the error is zero in relation to the total number of investigations. The different
models are (1) the matched case, (2) the mismatched case, (3) the case with adapted
HRTFs, (4) the case with direction-dependent GMMs (GMM+HRTF), (5) the case with
limited area (LimArea) and the speaker-independent cases for (6) (GMM+HRTF) and
(7) (LimArea). (1) – (4) use the same number of investigations, whereas in (5) the
number is only the half (half of the area is investigated). Also in (6) and (7) the amount
of investigations is smaller because in the speaker-independent case there are fewer test
utterances. The two different curves in this figure represent different precisions. The
red line indicates that an error lies within ±2.5 °, whereas the error is within ±7.5 °
for the blue line. Then the influence of the input segment length is investigated. The
segment length is changed between 1 s, 2.5 s, 5 s, 7 s and 10 s. The localization accuracy
of LimArea and GMM+HRTF is depicted in figure 4.18 for a resolution of ±2.5 ° and in
figure 4.19 for a resolution of ±7.5 °. Furthermore, also the speaker-independent models
are shown.

LimArea and GMM+HRTF are two different approaches to estimate the angle of
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incident sound. Both models are promising depending on the type of application. The
localization accuracy decreases when shorter input segments are taken, but still good
results are reached for segments which are 1 second long. Furthermore, the performance
decreases slightly when speaker-independent models are trained.
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Figure 4.13: Mean value of absolute error angle µ|ǫ| and standard deviation σ|ǫ|

as a function of the angle to estimate; STFT coefficients with MD classificator
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Figure 4.14: Mean value of absolute error angle µ|ǫ| and standard deviation σ|ǫ|

as a function of the angle to estimate; STFT coefficients with ML classificator –
matched case
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Figure 4.15: Mean value of absolute error angle µ|ǫ| and standard deviation σ|ǫ|

as a function of the angle to estimate; STFT coefficients with ML classificator –
mismatched case
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Figure 4.16: Mean value of absolute error angle µ|ǫ| and standard deviation σ|ǫ|

as a function of the angle to estimate; STFT coefficients with ML classificator –
direction-dependent GMMs
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Figure 4.17: Comparison between all methods: (1) matched case, (2) mismatched
case, (3) adapted HRTFs, (4) GMM+HRTF, (5) LimArea, (6) GMM+HRTF-SI,
(7) LimArea-SI



Chapter 4: Discussion of the Numerical Results 56

1 2.5 5 7 10
25

30

35

40

45

50

55

60

65

70

 

 LimArea

GMM+HRTF

LimArea−SI

GMM+HRTF−SI

Segment Length [s]

P
er

ce
n
ta

ge
of

C
or

re
ct

L
o
ca

li
za

ti
on

[%
]

Figure 4.18: Comparison between all methods as a function of the segment length
– localization accuracy (%) - resolution ±2.5°
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Figure 4.19: Comparison between all methods as a function of the segment length
– localization accuracy (%) - resolution ±7.5°



5 Conclusion and Outlook

In this thesis a method to estimate the direction of an incident sound wave is investigated.
Localization strategies based on microphone-arrays often are not suitable due to their
cost and size. Therefore, as a principle constraint, only one receiver is allowed.

Localization is not only based on the time differences and level differences of the
incident sound wave between the right and left ear. It also depends strongly on the
spectral shaping due to the shape of the pinna. Localization is also possible with one
ear. The underlying strategy is described by the so-called head-related impulse responses
(HRIR) or their spectral representations, the head-related transfer functions (HRTF).
Monaural sound localization is a difficult estimation problem because the incident angle
of the sound is ambiguous. The source signal sounds different if it arrives from a different
position. The problem is that for such a knowledge a basic familiarity with the sound is
necessary.

Experiments for this thesis have been carried out with a set of HRIR measurements
and a speech database. The HRIRs used have been recorded with a KEMAR dummy
head microphone by Bill Gardner and Keith Martin at MIT Media Lab. The speech
database consists of speech material of eight different speakers. MFCCs, the most pop-
ular feature in speech and speaker recognition, are a good representation of direction-
independent speech. However, these features turned out to be not good enough for the
investigations in a minimum distance approach. Monaural localization primarily de-
pends on the fine structure of the HRIRs. Therefore, a higher resolution in the spectral
domain is preferable. As features the logarithmic absolute STFT coefficients turned
out to perform well. An incident sound wave from a certain direction is compared to
GMMs in the feature domain. A hard decision obtained by the values of a log-likelihood
calculation gives the estimation of the sound source. The GMMs are first trained with
direction-independent speech. Then, in order to gain direction-dependent GMMs, the
direction-independent speech models are adapted with the HRIRs, which contain the di-
rection information. Thus, with a simple mathematical addition in the feature domain,
the direction-dependent GMMs are calculated from the direction-independent GMMs.
The negative consequence is that circular effects are introduced which destroy the lo-
calization accuracy. To get rid of these side effects three conclusions are drawn. First,
HRTFs are adapted in a way that the circular effects are neglectable. This turned out to
be insufficient to improve the localization accuracy. The second conclusion is to restrict
the area of investigation. Problematic areas are skipped and the localization accuracy

57
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increases, but with the drawback of the limit area. In case where a restriction is not
allowed by an application, direction-dependent GMMs have to be trained. Then inves-
tigations in the whole horizontal plane are allowed. Additionally, speaker-independent
models are trained for the limited area case and the case with the direction-dependent
GMMs. Furthermore, the influence of the input segment is investigated for both cases
as well as for speaker-dependent and speaker-independent models. For the limited area
and the direction-dependent GMMs as well as for the speaker-independent cases excellent
localization results, for a synthetic test scenario, can be presented.

The features used in this thesis are high-dimensional spectral features. Preliminary
tests are carried out either with low-dimensional MFCCs (13 coefficients) or high-
dimensional STFT coefficients (513 coefficients). To reduce the computational load,
experiments with feature vectors with dimensions in between have to be carried out.
Lower dimensions may perform as well as 513-dimensional STFT coefficients. MFCCs
are only investigated with the minimum distance approach where they did not perform
well. In additional evaluations it turned out that MFCCs (with low-dimensions) per-
form well in a ML framework. A comparison between MFCCs and STFT coefficients
depending on the number of needed coefficients, is suggested. Although the number of
components of the GMMs is 8, it is possible to increase or decrease this number to get
more or less accurate results.

For further investigations in future research the localization strategies have to be
verified in a real test environment. Reverberant rooms with echoes and noise complicate
the task of localization. Additionally, a device with a single microphone and an “artificial
pinna” has to be built. This pinna needs to be shaped irregularly and asymmetrically.
The transfer function must strongly depend on the direction of the sound source. In [45]
four designs were introduced. Maybe a suitable shape can be found based on the results
presented in this paper.

In this thesis, sound localization is limited to the horizontal plane, i.e. the azimuth
of the sound source. The focus and interaction of humans is primarily located on this
plane. The used HRTFs only depend on the azimuth and elevation. The range is fixed
at 1.4 meters. However, that is a crucial drawback because HRTFs also depend on the
distance. This aspect should be taken into account in further studies. Nevertheless, the
presented localization strategy outlines a promising approach.



A Definitions, Abbreviations and

Symbols

A.1 Definitions and Abbreviations

AIC

Akaike Information Criterion; criterion to determine the optimal number of mix-
ture components in a GMM

azimuth

Angle in the horizontal plane

BIC

Bayesian Information Criterion; criterion to determine the optimal number of
mixture components in a GMM

binaural

Concerning both ears, i.e. binaural cues are exploited from the signals at both ears

CMOS

Complementary Metal-Oxide-Semiconductor; technology for constructing inte-
grated circuits

DCT

Discrete Cosine Transform

DFT

Discrete Fourier Transform

Duplex Theory

Theory about localization with ITD and ILD which was established by Lord
Rayleigh; does not consider spectral cues

elevation

Angle in the vertical plane

EM algorithm

Expectation-Maximization algorithm; algorithm to find the maximum likelihood
in a statistical model
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FFT

Fast Fourier Transform; efficient algorithm to compute the discrete Fourier trans-
form

FIR

Finite Impulse Response; type of filter whose impulse response is of finite length

GMM

Gaussian Mixture Model; parametric probability density function – consists of a
linear combination of weighted multivariate Gaussian distributions

GMM+HRTF

Approach with STFT coefficients, multiple, direction-dependent GMMs and ML
classificator

GOF

Goodness Of Fit; criterion to determine the optimal number of mixture compo-
nents in a GMM

HMM

Hidden Markov Model; generalization of a mixture model

horizontal plane

Also called transverse plane; plane parallel to the ground; in this thesis: parallel
to the ground and at the height of the ears

HRIR

Head-Related Impulse Response; path from a sound source to the ear drum is
described by a linear filter (=HRIR – time domain)

HRTF

Head-Related Transfer Function; path from a sound source to the ear drum is
described by a linear filter (=HRTF – frequency domain)

IID

See ILD

IIR

Infinite Impulse Response; type of filter whose impulse response is of infinite length

ILD

Interaural Level Difference (also called interaural intensity difference); sound
which is not located in front of the head are disturbed by the head and there-
fore have different levels at the two ears

ITD

Interaural Time Difference; sound which is not located in front of the head has
different running times to one ear than to the other one

KEMAR

Knowles Electronics Mannequin for Acoustics Research; dummy head microphone
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LED

Light-Emitting Diode; light source

Likelihood

Conditional density as a function of its parameters

LimArea

Approach where a limited area is investigated with STFT coefficients, adapted
GMMs and ML classificator

Log-Likelihood

Logarithm of likelihood due to a more simple calculation

LP

Linear Prediction; mathematical operation

MD

Minimum Distance classificator; classificator based on similarity

MFCC

Mel-Frequency Cepstral Coefficient; commonly used feature

MIT

Media laboratory of Massachusetts Institute of Technology

ML

Maximum Likelihood; procedure of finding the maximum of a known likelihood
distribution for a given statistic

MMA

Minimum Audible Angle; smallest detectable change in angular position relative
to the subject

monaural

Concerning one ear, i.e. monaural cues are exploited from the signal at one ear

pinna

Outer part of the ear; spectrally shapes incident sound waves

SCCL

Self Splitting Competitive Learning; clustering technique in image processing

SD

Speaker-Dependent

SI

Speaker-Independent

SL

Segment Length

SNR

Signal to Noise Ratio
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STFT

Short-Term Fourier Transform; frequency representation of a signal over time

STFT-MD

Model with STFT coefficients and minimum distance approach

STFT-ML

Model with STFT coefficients and maximum likelihood approach

vertical plane

Also median or sagittal plane; plane perpendicular to the ground
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A.2 Symbols

b Mixture weights of a GMM

d Euclidean distance

f Frequency [Hz]

fs Sampling frequency

gi Discriminate function

GMMs,θ GMM of speaker s and direction θ

hθ(t) HRIR from direction θ (time domain)

hθ,circ Circular adapted HRIR from direction θ

Hθ(f) HRTF from direction θ (frequency domain)

HL,R(θ, φ, f) HRTF of the left/right ear (depends on θ, φ and f)

i Index for classes ci ∈ C

I Identity matrix

k Index for dimensions of the feature vector; 1 ≤ k ≤ D

l Index for the feature vector; 1 ≤ l ≤ T

L Likelihood function

m Index for Gaussian components; 1 ≤ m ≤ K

mel Subjective pitch [mel]

N Number of frequency bins

P (x) Probability density function of an univariate Gaussian distri-
bution
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P (x) Probability density function of a multivariate Gaussian dis-
tribution

P (ci),P (λ),P (xl) Prior probability that ci, λ respectively xl occurs

P (ci|xl) Posterior probability; probability that observation xl belongs
to class ci

P (λ|xl) Posterior probability; probability that observation xl belongs
to GMM λ

P (xl|ci) Conditional probability; probability that class ci created ob-
servation xl

P (xl|λ) Conditional probability; probability that GMM λ created ob-
servation xl

r Range: distance between ear drum and sound source; also:
integer number

R Number of samples a window is shifted

s Index for the speaker; 1 ≤ s ≤ 8

s(n) Arbitrary source signal in time domain

SL,R(f) Arbitrary source signal in frequency domain which arrives at
the left/right ear

Sps Speaker s

w[n] Window of length L

x[n] Time discrete signal

xdi(t) Direction-independent speech signal without direction infor-
mation in time domain

xθ(t) Direction-dependent speech signal from direction θ in time
domain

Xdi(f) Direction-independent speech signal without direction infor-
mation in frequency domain



Chapter A: Definitions, Abbreviations and Symbols 65

Xθ(f) Direction-dependent speech signal from direction θ in fre-
quency domain

xl Feature vector

X Set of feature vectors X = {x1, . . . ,xT}

X[rR, f ] STFT of a windowed time discrete signal

∆f Frequency resolution

ǫ Error

|ǫ| Absolute error

θ, θtrue Azimuth

θ̂ Estimated azimuth

λ Parameter of a GMM λ = {(bm, µm,Σm); m = 1, 2, . . . , K}

µ Mean value of an univariate Gaussian distribution

µ Mean value vector of a multivariate Gaussian distribution

µ̂s Mean value vector of feature vectors – prototype vector of
speaker s

µ̂θ Mean value vector from STFT coefficients from direction θ

µ|ǫ| Mean value of |ǫ|

σ Standard deviation

σ2 Variance

σ|ǫ| Standard deviation of |ǫ|

Σ Covariance matrix of a multivariate Gaussian distribution

φ Elevation
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e Euler constant

T Transpose operator

| · | Absolute value

|| · || Euclidean distance

÷ Division operator

· Multiplication operator

∗ Linear convolution operator
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