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Mache die Dinge so einfach wie möglich - aber nicht einfacher.
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Abstract

The accurate simulation of the �ow through a turbomachine often depends on the correct

prediction of boundary layer transition. The development of a transition model that is

compatible with modern general purpose CFD codes has led to the correlation based γ−Reθ
transition model. It is strictly based on local variables and relies on empiric correlations.

In this work, correlations found by di�erent authors (Menter, Langtry, Malan and Kelterer)

are used and compared against each other.

Two CFD codes are used to validate the correlations. The LINARS (inhouse code of

the Institute for Thermal Turbomachinery and Machine Dynamics of Graz University of

Technology) and TRACE (developed by DLR and MTU) codes are Reynolds-averaged

Navier-Stokes solvers. While LINARS uses the k−ω and SST turbulence models, TRACE

only uses the k − ω turbulence model.

The correlations were tested on three �at plate test cases (ERCOFTAC test cases T3A,

T3C2 and T3C4) and two cascade test cases (T160 and T106). All correlations performed

well for the T3A and T3C4 �at plate test cases, only the DLR correlation (Menter cor-

relation to predict the start of transition, Malan correlations to control the start of the

intermittency production and the length of the transition zone) produced a too long sep-

aration bubble in the T3C4 test case. On the other hand, only the Kelterer correlation

(Menter correlation to predict the start of transition, Kelterer correlations to control the

start of the intermittency production and the length of the transition zone) achieved good

results for the T3C2 test case. For the cascade test cases, the Kelterer correlation produced

a too short separation bubble. The Malan correlation (Langtry correlation for start of

transition, Malan correlations for start of the intermittency production and the length of

the transition zone) and the DLR correlation are able to predict a long separation bubble

similar to the experiments. Both correlations are very sensitive to inlet turbulent boundary

conditions (Malan more than DLR correlation).

Since no correlation yielded su�ciently accurate results for a wide range of test cases,

further developments and re�nements of the correlations and perhaps even the γ − Reθ

model itself are recommended.



Zusammenfassung

Die genaue numerische Simulation der Strömungen in einer Turbomaschine bedarf oft der

korrekten Modellierung des laminar-turbulenten Umschlags in der Grenzschicht. Die En-

twicklung eines Transitionsmodells, welches den Standards moderner CFD Codes genügt

und ausschlieÿlich lokale Variablen verwendet, brachte das auf empirischen Korrelationen

beruhende γ−Reθ Transitionsmodell hervor. Es beruht auf empirisch ermittelten Korrela-

tionen, welche die physikalischen Vorgänge abbilden. In dieser Arbeit werden Korrelationen

von verschiedenen Autoren verwendet (Menter, Langtry, Malan und Kelterer).

Zur Validierung der Korrelationen wurden die RANS-CFD-Codes LINARS (Inhouse CFD

Code des Instituts für Thermische Turbomaschinen an der Technischen Universität Graz)

und TRACE (entwickelt von DLR und MTU) verwendet. TRACE verwendet das k − ω
Turbulenzmodell, LINARS enthält zusätzlich noch das SST-Turbulenzmodell.

Die Korrelationen wurden anhand drei ebener Plattentestfälle (ERCOFTAC-Testfälle T3A,

T3C2 und T3C4) und zwei Kaskadentestfällen (T160 und T106) evaluiert. Für die ebe-

nen Plattentestfälle T3A und T3C4 liefern alle Korrelationen zufriedenstellende Ergeb-

nisse, lediglich die DLR Korrelation (Menter Korrelation zur Bestimmung des Transitions-

beginns, Malan Korrelationen zur Berechnung des Produktionsbeginns der Intermittenz

und der Transitionslänge) liefert für den T3C4 Testfall eine zu lange Ablöseblase. Für den

T3C2 Testfall brachte nur die Kelterer Korrelation (Menter Korrelation zur Bestimmung

des Transitionsbeginns, Kelterer Korrelationen zur Berechnung des Produktionsbeginns der

Intermittenz und der Transitionslänge) befriedigende Ergebnisse. Für die Kaskadentest-

fälle berechnet die Kelterer Korrelation eine zu kurze Ablöseblase. Die Malan Korrelation

(Langtry Korrelation zur Bestimmung des Transitionsbeginns, Malan Korrelationen zur

Berechnung des Produktionsbeginns der Intermittenz und der Transitionslänge) und DLR

Korrelation erlauben durch entsprechende Wahl der Randbedingungen die Vorhersage einer

langen Ablöseblase entsprechend der Messung. Es zeigt sich, dass beide Korrelationen sehr

sensibel auf Änderungen der turbulenten Eintrittsrandbedingungen reagieren, wobei die

Malan Korrelation sensibler ist als die DLR Korrelation.

Mit keiner Korrelation gelang es, zufriedenstellende Ergebnisse für alle Testfälle zu erzielen.

Somit zeigt diese Arbeit die Notwendigkeit einer Weiterentwicklung und Verfeinerung der

bestehenden Korrelationen und eventuell des γ −Reθ Transitionsmodells selbst.
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Nomenclature

cf skin friction coe�cient, 2τW
ρU2

∞

cp pressure coe�cient, pwall−p2
ptot∞−p2

Flength parameter that controls length of transi-

tion

Fonset parameter that controls start of transition

H shape factor

I intermittency function

K �ow acceleration parameter, (ν/U2)dU/dx

lm turbulence length scale, mixing length,

lm ∝ k1/2

ω

n̂σ dimensionless turbulent sport production

rate

p pressure

Rẽθt local transition onset momentum thick-

ness Reynolds number (obtained from a

transport equation)

Reθ momentum thickness Reynolds number,
ρθU0

µ

ReL Reynolds number, U∞Lρ
µ

Rex local Reynolds number, xUρµ

Reθc critical momentum thickness Reynolds

number where intermittency �rst starts to

increase

ReθE momentum thickness Reynolds number

where transition ends (Abu-Ghannam and

Shaw [1980] algebraic transition model)

ReθS momentum thickness Reynolds number

where transition starts (Abu-Ghannam

and Shaw [1980] algebraic transition

model)

Reθt transition onset momentum thickness

Reynolds number (obtained from empiric

correlations) where cf �rst starts to in-

crease

Rev vorticity Reynolds number, ρy
2

µ Ω

S Sutherland temperature

t time

Tu turbulent intensity,

√
2
3k

U∞
· 100 [%]

Tu∞ reference turbulence intensity at inlet

U velocity

u′, v′, w′ �uctuating velocities in x, y, z direction

U, V,W mean velocities in x, y, z direction

U0 local free stream velocity

U∞ inlet reference velocity

uτ friction velocity,
√

τwall

ρ

Greek symbols

ε turbulent dissipation rate

γ near wall intermittency factor

λθ pressure gradient parameter, (θ2/ν)dU/dx

µ molecular viscosity

µt turbulent viscosity

ν kinematic viscosity

Ω absolute value of vorticity, (2ΩijΩij)
1/2

ω turbulent frequency, εk

Ωij vorticity tensor, 0.5
(
∂ui

∂xj
− ∂uj

∂xi

)
ρ density

τij Reynolds stresses

θ momentum thickness
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1 Introduction

Thermal turbomachines play a mayor role in energy production. Increasing their e�ciency

leads to a tremendous reduction of costs and also carbon dioxide emissions, for these reasons

it has been a major engineering challenge for decades. For an engineer working in this �eld,

it is essential to know about the �ow features of a machine, which are traditionally obtained

from experiments. This is expensive and takes a great deal of time and as computational

power has become cheaper over the last few decades, it seemed reasonable to use computer

simulations to perform optimization tasks more quickly and cheaply.

Whereas, in the past, a signi�cant amount of progress has been made in the development

of reliable turbulence models to simulate a wide range of fully turbulent �ows, the crucial

e�ects of laminar-turbulent transition still can not be captured due to the absence of tran-

sition models. There are a number of reasons for this circumstance. First, there are several

modes of transition which lack a mathematical description. The �rst transition models were

limited to speci�c geometries and contained numerous nonlocal operations that are di�cult

to implement into a modern Computational Fluid Dynamics (CFD) environment. Another

complication arises from the fact that most CFD codes are based on Reynolds averaged

Navier-Stokes (RANS) equations. The averaging process eliminates the e�ects of linear

disturbance growth and is therefore di�cult to apply to the transition process. Menter

et al. [2004] formulated the γ −Reθ transition model that only uses local variables. It can

be implemented into a general RANS environment. Due to proprietary reasons some cor-

relations, which were required by this model, were published later. Since then the scienti�c

community has developed their own correlations.

In this work two di�erent CFD codes are tested against each other, the LINARS and

TRACE CFD code, in test cases, where di�erent modes of transition occur. TRACE and

LINARS use the same transition model, the γ − Reθ transition model. Unlike TRACE,

LINARS has implemented di�erent correlations for the transition model, which are also

compared against each other, to point out their strengths and weaknesses.

In the �rst part of this work some basic concepts of �ow modelling and the need for

turbulence models are discussed, followed by a brief introduction to two commonly used

turbulence models, the Wilcox k − ω model and the Menter SST model, which are used in

the calculation of the test cases. Then an introduction to the γ − Reθ transition model is

given, where the di�erent correlations are discussed.

The main part of this work was to carry out the simulations on the test cases. Five di�erent
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test cases, three �at plate (T3A, T3C2, T3C4) and two cascade test cases (T160, T106)

are used to validate the TRACE and LINARS code. Their results are compared with

experimental data. Both codes run on a LINUX workstation. They produce data that can

be imported to Tecplot and converted to ASCII data �les. MatLab is then used to evaluate

and visualize the data.
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2 Introduction to Flow and

Turbulence Modelling

In Computational Fluid Dynamics (CFD), there are three key elements:

• Grid Generation

• Algorithm Development

• Turbulence Modelling

Whereas for grid generation and algorithm development very precise mathematical theories

have evolved, turbulence models are still unable to accomplish acceptable accuracy for a

wide range of problems. Since most �ow problems of practical engineering interest are

turbulent, this leaves us in a less than satisfactory situation. The root of the problem lies

in its complexity.

If the Reynolds number, i.e. the ratio of inertia forces to viscous forces, of a �ow exceeds

a certain threshold, it becomes turbulent. Thus the velocity and other �ow properties vary

rapidly in a random and chaotic way. Even with constant imposed boundary conditions, the

motion of a turbulent �ow becomes intrinsically unsteady. These instabilities are a result

of the interaction between nonlinear inertial terms and viscous terms in the Navier-Stokes

equations (see equation 2.2).

In principle, the time dependent, three dimensional Navier-Stokes equations contain all

of the physics of a given turbulent �ow. For an incompressible �ow, the instantaneous

continuity (2.1) and Navier-Stokes (2.2) equations

div u = 0 (2.1)
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∂u

∂t
+ div(uu) = −1

ρ

∂p

∂x
+ ν div(grad(u)) (2.2a)

∂v

∂t
+ div(vu) = −1

ρ

∂p

∂x
+ ν div(grad(v)) (2.2b)

∂w

∂t︸︷︷︸
Unsteady

acceleration

+ div(wu)︸ ︷︷ ︸
Convective
acceleration︸ ︷︷ ︸

Inertial terms

= −1

ρ

∂p

∂x︸ ︷︷ ︸
Pressure
gradient

+ ν div(grad(w))︸ ︷︷ ︸
Viscosity

(2.2c)

form a closed set of four equations, with four unknown u, v, w and p. This can be solved

using DNS (Direct Numerical Simulation), which is considered to be the most accurate

method for a �ow simulation, since no assumptions are made in the continuity and Navier-

Stokes equations.

The drawback, however, is that the grid size for a DNS simulation must be su�ciently

small, to resolve turbulent eddies even at their smallest scale, the Kolmogorov scale, where

turbulent energy dissipates to heat. To meet the requirements of an accurate numerical

simulation, a DNS simulation must be fully time dependent and three dimensional, all

physically relevant scales must be resolved.

Due to these conditions, DNS simulations are not only the most accurate, but also the most

resource-intensive simulations and thus only a few problems have been solved with DNS to

date.

This dilemma leads us to the development of turbulence modelling, where additional equa-

tions are used to calculate turbulence properties.

2.1 Reynolds Decomposition

From an engineering point of view, it is not necessarily required to know every single detail

of turbulent �uctuations. Users are generally satis�ed with information on the mean prop-

erties of the �ow. This basic premise leads to the classical turbulence models approach,

wherein an instantaneous �ow property is decomposed into a time-averaged mean value

and a �uctuating component. Figure 2.1 illustrates a typical point velocity measurement

in a turbulent �ow and shows its mean and �uctuating velocity.

This leads to the Reynolds decomposition

u(t) = U + u′(t) (2.3)

where U is the steady mean velocity and u′ is the statistical property of its �uctuation.
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Figure 2.1: Typical point velocity measurement in turbulent �ow [Versteeg and Malalasekra, 2007]

The same procedure can be applied to decompose the instantaneous pressure:

p(t) = P + p′(t) (2.4)

Using vector notation, equation 2.3 can be written as:

u(t) = U + u′(t) (2.5)

2.2 Reynolds-Averaged Navier-Stokes Equations and

Classical Turbulence Models

We can investigate the e�ects of turbulent �uctuations on the mean �ow by replacing the

variables u (hence u, v, w) and p in the continuity (2.1) and Navier-Stokes (2.2) equations

using Reynolds decomposition and taking the time average [Versteeg and Malalasekra, 2007,

pg. 63].

This yields the continuity equation for the mean �ow

divU = 0 (2.6)

and the time averaged Navier-Stokes equations:

∂U

∂t
+ div(UU) = −1

ρ

∂P

∂x
+ ν div(grad(U)) +

1

ρ

[
∂(−ρ u′2)

∂x
+
∂(−ρ u′v′)

∂y
+
∂(−ρ u′w′)

∂z

]
(2.7a)

∂V

∂t
+ div(VU) = −1

ρ

∂P

∂y
+ ν div(grad(V )) +

1

ρ

[
∂(−ρ u′v′)

∂x
+
∂(−ρ v′2)

∂y
+
∂(−ρ v′w′)

∂z

]
(2.7b)

∂W

∂t
+ div(WU) = −1

ρ

∂P

∂z
+ ν div(grad(W )) +

1

ρ

[
∂(−ρ u′w′)

∂x
+
∂(−ρ v′w′)

∂y
+
∂(−ρ w′2)

∂z

]
(2.7c)

This set of equations is called the Reynolds-averaged Navier-Stokes equations (RANS).
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The extra stresses that appear on the right hand side are what are known as Reynolds

stresses, they can be distinguished into normal stresses

τxx = −ρ u′2 τyy = −ρ v′2 τzz = −ρ w′2 (2.8a)

and shear stresses

τxy = τyx = −ρ u′v′ τxz = τzx = −ρ u′w′ τyz = τzy = −ρ v′w′ (2.8b)

While the time averaged �uctuating velocity becomes zero u′ = 0, the Reynolds stresses are

always non-zero due to the structure of vortical eddies. In turbulent �ows they are usually

very large compared to viscous stresses.

Wilcox [2006, pg.16] states, that herein lies the fundamental problem of turbulence for

the engineer, because before computing the mean �ow properties, a prescription of u′v′ is

needed.

As yet, we have obtained no additional equations for the incompressible three-dimensional

�ow. Instead, we found four unknown mean �ow properties (pressure P and mean velocity

U, hence U , V , W ) and six additional Reynolds stress components, which leaves us with

four equations and ten unknowns. This system is yet unclosed. In order to solve it, we

must �nd additional equations.

The Closure Problem

To obtain additional equations one can take moments of the Navier-Stokes equation [Wilcox,

2006, pg. 17], leading to what is known as the Reynolds-Stress Equation that produces six

additional equations but results in 22 additional independent unknowns. This illustrates

the closure problem. Additional unknowns are generated at every level, as higher and higher

moments are taken due to the nonlinearity of the Navier-Stokes equations. This shows the

need to develop approximations for the unknown correlations so that a su�cient number

of equations exist.

Additional Transport Equations

The turbulence models are normally classi�ed by the number of additional transport equa-

tions that must be solved along with the RANS �ow equations. These additional transport

equations are derived from the general transport equation. The time-averaged transport

equation for any scalar ϕ = Φ + ϕ′ reads as

∂Φ

∂t
+ div(ΦU) =

1

ρ
div(ΓΦ grad Φ) +

[
−∂ u

′ϕ′

∂x
− ∂ v′ϕ′

∂y
− ∂ w′ϕ′

∂z

]
+ SΦ (2.9)
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Table 2.1 lists common RANS models. The computational e�ort rises with the number

of additional transport equations to be solved. So the Reynolds stress model is the most

expensive, while the Spalart-Allmaras model is very simple, stable and still useful.

No. of extra transport equations Name

Zero Mixing length model
One Spalart-Allmaras model
Two k-ε model

k-ω model
Menter SST model

Seven Reynolds stress model

Table 2.1: Overview of RANS models

Eddy Viscosity

Zero-, One- and Two-Equation Models retain the Boussinesq assumption, which introduces

the concept of an eddy viscosity. It is based on the assumption that there is an analogy

between the action of viscous stresses and Reynold stresses on the mean �ow (see equation

2.10). It proposes the introduction of a virtual viscosity, the eddy viscosity or turbulent

viscosity µt, which accounts for the e�ects of turbulence on the �ow. The main e�ect of

turbulence is to cause the �uid to move normal to the main �ow direction. However, this

transports momentum from one layer to another, causing the other layers to decelerate or

to accelerate.

τij = −ρu′iu′j = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(2.10)

The treatment of the turbulent viscosity is one major di�erence of the turbulence models.

2.2.1 Wilcox k − ω Turbulence Model

Whereas the one-equation models are incomplete due to the fact that they relate the turbu-

lence length scale to typical �ow dimensions, the two-equation models provide an additional

equation for the turbulence length scale and are therefore complete [Wilcox, 2006, pg. 73].

The Wilcox k − ω turbulence model uses two additional transport equations, one for the

kinematic energy k and one for the turbulence frequency ω = ε
k
.

The eddy viscosity is given as:

µt =
ρk

ω
(2.11)

The Reynolds stresses are computed using the Boussinesq assumption (see equation 2.10).
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The transport equation for the turbulence kinetic energy reads as:

∂

∂t
(ρk)︸ ︷︷ ︸

Rate of change
in time

+ div (ρkU)︸ ︷︷ ︸
Transport

by convection

= div

[(
µ+

µt
σk

)
grad(k)

]
︸ ︷︷ ︸

Transport by
turbulent di�usion

+ Pk︸︷︷︸
Rate of

production

− βkρkω︸ ︷︷ ︸
Rate of

dissipation

(2.12)

The transport equation for the speci�c dissipation rate is as follows:

∂

∂t
(ρω) + div (ρωU) = div

[(
µ+

µt
σω

)
grad(ω)

]
+ Pω − βωρω2 (2.13)

The production terms of the k and ω transport equations are de�ned as:

Pk =

(
2µtSij · Sij −

2

3
ρk
∂Ui
∂xj

δij

)
(2.14)

Pω = γ

(
2ρSij · Sij −

2

3
ρω
∂Ui
∂xj

δij

)
(2.15)

Here γ, βk, βω, σk and σω are model constants.

One of the advantages of this model is that it does not require wall-damping functions in

low Reynolds number applications as k is set to zero and ω tends to in�nity near the wall.

[Versteeg and Malalasekra, 2007, pg. 91] Turbulent boundary conditions have to be given

at the inlet (normally turbulent intensity and mixing length) to determine k and ω. This

model is known to be too sensitive to these turbulent boundary conditions, which is an

issue since these conditions are not precisely known for many cases. Equation 2.11 in this

model is problematic when boundary conditions are set to k → 0 and ω → 0, which is

common in external aerodynamics and aerospace applications.

2.2.2 Menter SST Model

Menter's SST Model is a modi�ed k − ω model which attempts to avoid the issues of the

k − ω model (as discussed before) by transforming the ε transport equation into the ω

transport equation (ε = kω). Moreover, Menter added blending functions and limiters to

the eddy viscosity and production term. Menter endeavours to add some of the advantages

of the k− ε model (not discussed here), which lie in the treatment of fully turbulent regions

far from the wall. This yields

∂ρω

∂t
+ div (ρωU) = div

[(
µ+

µt
σω,1

)
grad(ω)

]
+ Pω − βρω2 + 2

ρ

σω,2

∂k

∂xk

∂ω

∂xk︸ ︷︷ ︸
cross-di�usion term

(2.16)

When comparing this equation to equation 2.13, an extra term, the cross-di�usion term is
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added, arising from the transformation of ε into the ω transport equation. During the cal-

culation of the k equation, the ω production term Pω and the Reynolds stress computation

do not change compared to Wilcox k−ω model, aside for some slight adjustments of model

constants. Limiting functions are added to the eddy viscosity

µt =
a1ρk

max(a1ω,SF2)
(2.17)

where a1 is a constant, S =
√

2Sij · Sij and F2 is a blending function to achieve a smooth

transition between near wall (k − ω characteristics) and far �ow (k − ε characteristics)

regions.

And the k production term is

Pk = min

(
10βkρkω,2µtSij · Sij −

2

3
ρk
∂Ui
∂xj

δij

)
(2.18)
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3 Transition Modelling

Although several improvements were achieved with the Menter SST turbulence model in

regions near the wall, no turbulence model is capable of predicting transitional bound-

ary layer. While for a wide range of engineering applications the e�ects of a transitional

boundary layer are negligible, they must be considered e.g. in the airfoil and blade design

of a thermal turbomachine as the location and mode of transition have a huge impact on

their e�ciency (see �gure 3.1). On the other hand a precise prediction of the location of

transition on an airfoil can help the blade designers to realize a strong de�ection without

separation of the �ow, which can lead to the development of turbines with fewer stages.

Figure 3.1: Transition on an airfoil and its in�uence on losses [Mayle, 1991]

3.1 Modes of Transition

Natural Transition

In �ows with a low free stream turbulence intensity (Tu∞ < 0.5%), instabilities can occur in

the laminar boundary layer causing disturbances that might eventually result in structures

called Tollmien-Schlichting waves. These waves can amplify and lead to a formation of

turbulent spots, which can merge to obtain a fully turbulent boundary layer. This mode of

transition is called natural transition. Figure 3.2 shows all stages of this mode of transition.

In a thermal turbo engine this kind of transition mode is rarely seen due to the high

turbulence intensity of the �ow.
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Figure 3.2: Process of natural transition in boundary layer �ow over a �at plate [Schlichting and Gersten,
2000]

Bypass Transition

In �ows with a high free stream turbulence intensity (Tu∞ > 0.5%), the production of

the Tollmien-Schlichting waves can be bypassed, so that the turbulent spots are directly

produced in the laminar boundary layer by the in�uence of the free stream disturbances,

causing what is known as the bypass transition. Since the process of transition in this mode

does not involve Tollmien-Schlichting waves, a model of this mode would only be required

to describe the production, growth and convection of turbulent spots.

Separation-Induced Transition

Due to a strong adverse pressure gradient a laminar boundary �ow may separate from the

wall and contact a turbulent layer, which causes the separated �ow to become turbulent

so that it may reattach as a turbulent �ow. The surface bubble, formed in this manner, is

called separation bubble. The length of the separation bubble depends on the transition

process of the separated laminar layer. It is possible that the �ow undergoes all stages of

natural transition. A long bubble produces large losses.

In the test cases used in this work, only bypass and separation-induced transition occurs.

Wake-Induced Transition

A wake, produced by a blade, usually has a high turbulent intensity. The wake of an

upstream blade can promote a quick transition when penetrating a laminar boundary layer.

While this is an important transition mode in actual turbo machines, this mode does not

occur in our test cases, since no multistage test cases were considered.
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3.2 Empirical Transition Modelling

Measurements have shown that a �ow in the transitional zone has partly turbulent and

partly laminar characteristics (see �gure 3.3).

Figure 3.3: Typical point velocity measurement in transitional �ow [Steelant and Dick, 1996]

Therefore, it seems reasonable to describe transition by an intermittency factor γ, which

gives the fraction of time when the �ow is turbulent. Emmons [1951] claims, that a boundary

layer �ow related quantity f in the transitional �ow is a blend of that quantity at a fully

laminar and turbulent �ow respectively.

f = (1− γ)fL + γfT (3.1)

The intermittency factor can easily be derived from the intermittency function I(t), which

can be best described as a Boolean variable, which becomes one if the �ow becomes turbu-

lent and zero if the �ow is laminar. The intermittency factor is de�ned as the time averaged

intermittency function.

I(t) =

1 turbulent

0 nonturbulent
(3.2)

γ = lim
T→∞

1

T

t+T∑
t

I(t)d(t) (3.3)

The intermittency factor can then be used to trigger turbulence in a Navier-Stokes Code.
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There are two basic ideas to implement the intermittency:

µeff = µl + γµt (3.4)

Pk,eff = γPk (3.5)

The �rst possibility is to compute the turbulent viscosity with the intermittency to obtain

the e�ective viscosity. The other concept is to trigger the turbulent energy production term

in the k transport equation of the turbulence model (see equation 2.12) so that Pk is set to

zero in the laminar boundary layer.

3.2.1 Algebraic Transition Modelling

Dhawan and Narasimha [1958] formulated an algebraic transition model along a �xed wall.

In dimensionless form it is given as

γ =

1− e−n̂σ(Rex−Rext)2 x ≥ xtr

0 x < xtr
(3.6)

where n̂σ is the turbulent spot production rate and Rext is the local Reynolds number at

onset of transition. At a �at plate with zero pressure gradient (ZPG, dp
dx

= 0) n̂σZPG is

only a function of the turbulence intensity Tu. Mayle [1991] collected measurement data

of di�erent authors (see �gure 3.4) and calculated n̂σZPG as

n̂σZPG = 1.5 · 10−11Tu7/4 (3.7)

Figure 3.4: Spot production rate as a function of
the free-stream turbulence level for zero
pressure gradient �ows [Mayle, 1991]

Figure 3.5: Momentum thickness Reynolds number
at the onset of transition as a function of
the free-stream turbulence level for zero
pressure gradient �ows [Mayle, 1991]

Now, to calculate Rext, the location of the transition onset is needed. Mayle [1991] found,
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that the transition starts when the momentum thickness reaches a critical value, dependent

on the turbulence intensity Tu. From the collected data (see �gure 3.5) Mayle derived the

following correlation:

Reθt = 400Tu−5/8 (3.8)

In order to get the location of transition onset, the momentum thickness θ must be com-

puted. From this, the momentum Reynolds number is calculated and compared to the

critical momentum Reynolds number Reθt. This procedure however becomes a problem in

a computational environment, since, in order to get the momentum thickness θ an integral

over the boundary layer height must be solved. This involves search algorithms to obtain

the border of the boundary layer and a criterion to distinguish between boundary layer

and free stream, which is a complex computational task and involves the use of nonlocal

variables, which should be avoided in modern CFD environments.

These algebraic models are one dimensional. Implementing them into a three dimensional

CFD environment leads to some issues. One issue is that boundary layer e�ects normal to

the wall can not be resolved, e.g. the γ distribution normal to the wall (see �gure 3.6). To

simulate this, additional functions would have to be used to take the distance to the wall

into account. Another problem is, that e�ects of the free stream turbulence on laminar

boundary layer are not considered. Due to these facts, these models become unusable when

multiple walls appear.

Figure 3.6: Distribution of γ normal to wall [Klebano�, 1955]

Another problem is, that γ is set to zero at x < xtr and is therefore not able to take into

account turbulent spots in that region which do a�ect the transitional process.
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Algebraic Transition Model by Abu-Ghannam and Shaw [1980]

A very popular algebraic transition model was developed by Abu-Ghannam and Shaw

[1980]. Instead of being concerned about the physics of the transition process, their ap-

proach was to relate boundary-layer quantities to external parameters. Resultant correla-

tions were determined experimentally.

Abu-Ghannam and Shaw [1980] related the start of transition ReθS to the turbulence in-

tensity Tu and the pressure gradient parameter λθ.

ReθS = f(Tu, λθ) (3.9)

Relating the end of transition ReθE to the same parameters is not possible due to scatter of

results. Instead the end of transition is related to the start by a transition length Reynolds

number ReLγ as

RexE = RexS +ReL (3.10)

where ReL = 3.36ReLγ (3.11)

ReLγ is based on Lγ, which is the length of the transition region over which the intermittency

factor γ increases from 0.25 to 0.75.

The boundary layer parameters momentum thickness θ, shape factor H, skin friction coef-

�cient cf and intermittency γ during transition are related to a non dimensional distance

from start to end of transition η.

η =
Rex −RexS
RexE −RexS

(3.12)

To calibrate the system, Abu-Ghannam and Shaw [1980] did experiments on a �at plate

with six turbulence levels from 0.5 to 5 % and �ve di�erent pressure gradients (one ZPG,

two FPG and two APG test cases).

The following correlation was found for the start of transition ReθS:

ReθS = 163 + exp(F (λθ)−
F (λθ)

6.91
Tu) (3.13)

where

F (λθ) =

6.91 + 12.75λθ + 63.64λ2
θ λθ ≤ 0

6.91 + 2.48λθ − 12.27λ2
θ λθ > 0

(3.14)

Abu-Ghannam and Shaw [1980] found, that the transition length Reynolds number ReLγ
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can be related to the Reynolds number at start of transition RexS by

ReLγ = 5Re0.8
xS (3.15)

so that equation 3.10 can be rewritten as

RexE = RexS + 16.8Re0.8
xS (3.16)

The following correlations were found for the boundary Layer parameters during transition.

A visualization of these correlations is shown in �gure 3.7

θ′ = η1.35 θ′ =
θ − θS
θE − θS

(3.17)

H ′ = sin(
π

2
· η) H ′ =

HS −H
HS −HE

(3.18)

γ = 1− exp(−5η3) (3.19)

c′f = 1− exp(−5.645η2) c′f =
cf − cfS
cfE − cfS

(3.20)

Figure 3.7: Visualization of the boundary layer parameters of the algebraic transition model by Abu-
Ghannam and Shaw [1980]
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3.2.2 Transition Modelling using Intermittency Transport Equation

The development of an intermittency transport equation to model the transitional process

addresses some of the the issues that arise in the algebraic transition model. The main

enhancements are the ability of implementing the transport equation in a three dimensional

environment and of using it uniformly in the whole �ow �eld.

Steelant and Dick [1996] derived the intermittency transport equation. The �rst step is to

di�erentiate the algebraic intermittency equation 3.6 with respect to x.

dγ

dx
= 2(1− γ) n̂σZPG

U2
∞
ν2

(x− xtr)︸ ︷︷ ︸
β(x)

(3.21)

Multiplying this equation with ρus, us is the velocity along a streamline in the boundary

layer leads to a one dimensional transport equation for γ.

ρus
dγ

dx
= 2(1− γ)β(x)ρus (3.22)

From this equation, a two dimensional, unsteady transport equation can be obtained.

dργ

dt
+
dργ

dx
+
dργ

dy
= 2(1− γ)β(x)ρ

√
u2 + v2︸ ︷︷ ︸

Pγ

(3.23)

Equation 3.23 is the basis for further developments by many authors allowing them to take

into account e�ects of the pressure gradient, distributed breakdown, compressibility and to

simulate the γ distribution normal to the wall (see �gure 3.6).

E�ect of Pressure Gradient

In thermal turbomachines, the blades are almost always exposed to a pressure gradient.

This leads to an acceleration/deceleration of the �ow. To analyze those �ows, a dimension-

less acceleration parameter was de�ned as

K =
ν

U2

dU

dx
(3.24)

Mayle [1991] shows, that the pressure gradient has a great in�uence on both the turbulent

spot production rate n̂σ (see �gure 3.8) as well as the location of transition onset (see �gure

3.9). It is shown, that the turbulent spot production rate is extremely sensitive to the

turbulence intensity Tu at adverse pressure gradients. Figure 3.9 shows also the in�uence

of the turbulence intensity and the acceleration parameter on the mode of transition. The

dotted lines represent the stability criterion. The region between the two dotted lines

represents the zone of natural transition. To the right is the region of bypass transition and
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to the left is the region of separation-induced transition.

Figure 3.8: Suggested correlation of the spot pro-
duction rate with the acceleration pa-
rameter at transition [Mayle, 1991]

Figure 3.9: The Reynolds number of transition as
a function of the acceleration parame-
ter at transition for various free-stream
turbulence levels [Mayle, 1991]

3.3 The γ −Reθ Transition Model

The γ−Reθ transition model is able to predict all transition modes. It is designed to meet

the requirements of modern CFD codes and thus only uses local information of the �ow.

Menter et al. [2004] gives the framework of how to implement such a model, but did not

publish all the correlations in his original work due to proprietary reasons. The proposed

transport equations do not attempt to model the physics of the transition process. The

physics of the transition process is contained entirely in the experimental correlations.

The γ − Reθ transition model uses two transport equations, one for the intermittency γ,

which triggers the transition process (γ = 0 fully laminar, γ = 1 fully turbulent) and one

for the transition momentum thickness Reynolds number R̃eθt.The intermittency is linked

to the turbulence model and is used to turn on the production of the turbulent kinetic

energy (Pk = PkTurbModell · γTransitionModell) downstream of the onset of transition.

The transport equation for the intermittency is formulated as:

∂(ργ)

∂t
+
∂(ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(3.25)

In the case of a separation of the laminar boundary layer, γ is also allowed to become higher

than one, leading to fast production of turbulence and hence a rapid reattachment.

The transport equation for the transition momentum thickness Reynolds number is needed

to capture non local in�uences of the turbulence. It links the empirical correlations to the

onset criteria of the intermittency equation and is needed in order to enable for this model



3 Transition Modelling 19

to be used in general geometries and over multiple blades. It is de�ned as:

∂(ρR̃eθt)

∂t
+
∂(ρUjR̃eθt)

∂xj
= Pθt +

∂

∂xj

[
σθt(µ+ µt)

∂R̃eθt
∂xj

]
(3.26)

where

Pγ = f(Flength, Fonset) (3.27)

Eγ = f(Flength, Fonset) (3.28)

Pθt = f(Reθt) (3.29)

The parameter Fonset controls the start of transition, Flength the length of the transition

zone and Reθt is the local momentum thickness Reynolds number at onset of transition.

Fonset itself is a function of the vorticity Reynolds number Rev and the transition Reynolds

number Reθc Fonset = f(Rev, Reθc), so that in the end three correlations must be found to

close the system.

Reθc = f(R̃eθt) (3.30)

Flength = f(R̃eθt) (3.31)

Reθt = f(Tu, ...) (3.32)

Menter et al. [2004] proposes to link the momentum thickness Reynolds number Reθ to

the vorticity Reynolds number Reν . Normally, the momentum thickness Reynolds number

Reθ is calculated as a function of the momentum thickness θ. The momentum thickness

θ is calculated by an integral over the height of the boundary layer. This procedure is

unfeasible, because it would not agree with the requirements of modern CFD codes to use

only local parameters. The momentum thickness Reynolds number Reθ is linked to the

vorticity Reynolds number Reν as

Reθ =
Reν max
2.193

(3.33)

Model Calibration for Reθc and Flength

Malan et al. [2009] described the calibration process as follows. The development of plausi-

ble forms for Reθc and Reθt is relied on both physical intuition and numerical experiments.

Reθc is the critical momentum thickness Reynolds number at which intermittency �rst

starts to grow. R̃eθt is the momentum thickness Reynolds number at which the skin fric-

tion coe�cient starts to increase. Since the production of γ starts before a rise of the skin
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friction coe�cient can be noticed Reθc ≤ R̃eθt. The simplest mathematical relationship

between Reθc and R̃eθt is a linear one Reθc = aR̃eθt + b where a < 1.

To obtain a viable form for Flength the following numerical experiment was done:

1. Use equation 3.34 or 3.38 to obtain Reθt.

2. Assume that Reθc = Reθt.

3. Adjust Flength to �t the experimental skin friction data.

From this numerical experiment an inverse relationship between Flength and R̃eθt becomes

clear. Since large values of R̃eθt correspond to very small values of Flength, a logarithmic

relationship of the form Flength = A exp (B − CR̃eθt) is suggested by Malan et al. [2009].

The unknown constants a, b, A, B and C are varied to get the best curve �t for a series of

test cases. Every test case corresponds to one calibration point. It is suggested to use test

cases where di�erent modes of transition (natural, bypass and separation induced) occur.

Correlations by Menter

Menter et al. [2004] was the �rst to formulate a Reθt correlation for the γ −Reθ transition
model. He derived this correlation by curve �tting existing correlations, e.g. the correlation

by Abu-Ghannam and Shaw [1980] which is known to behave well for zero and adverse

pressure gradients.

Reθt = 803.73[Tu+ 0.6067]−1.027F (λθ, K) (3.34)

F (λθ, K) =


1− [−10.32λθ − 89.47λ2

θ − 265.51λ3
θ]e

[−Tu/3] λθ ≤ 0

1 + [0.0962[K 106] + 0.148[K 106]2 + 0.0141[K 106]3]

×(1− e−Tu/1.5) + 0.556[1− e−23.9λθ ]e−Tu/1.5 λθ > 0

(3.35)

To obtain correlations for Reθc and Flength, Menter et al. [2004] used nine �at plate test

cases. T3A, T3A-, T3B, S&K (Schubauer and Klebanof), T3C2, T3C3, T3C4, T3C5 and

a relaminarization test case. The T3A, T3A- and T3B test cases are zero pressure gradient

�at plate test cases. The Schubauer and Klebanof (S&K) test case has a low freestream

turbulence intensity and corresponds to natural transition. The T3C2, T3C3, T3C4 and

T3C5 �at plate test cases feature a pressure gradient. The geometry for the T3C* test cases

is the same. The wind-tunnel Reynolds number was varied for the four cases. Thus, the

location of transition moves from the beginning of the plate (favorable pressure gradient)

to the end of the plate (adverse pressure gradient). For the relaminarization test case, the

opposite converging wall imposes a strong favorable pressure gradient that can relaminarize

a turbulent boundary layer.
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Due to proprietary reasons Menter's correlations for Reθc and Flength were published later

than his correlation for Reθt. [Langtry and Menter, 2009]

Reθc =



R̃eθt − (396.035 · 10−2 + (−120.656 · 10−4)R̃eθt

+(868.23 · 10−6)R̃e
2

θt − 696.506R̃e
3

θt

+174.105 · 10−12R̃e
4

θt) R̃eθt ≤ 1870

R̃eθt − (593.11 + 0.482(R̃eθt − 1870)) R̃eθt > 1870

(3.36)

Flength =



398.189 · 10−1 − 119.270 · 10−4R̃eθt

−132.567 · 10−6R̃e
2

θt R̃eθt < 400

263.404− 123.939 · 10−2R̃eθt + (194.548 · 10−5)R̃e
2

θt

−101.695 · 10−8R̃e
3

θt 400 ≤ R̃eθt < 596

0.5− 3.0R̃eθt − 596.0 · 10−4 596 ≤ R̃eθt < 1200

0.3188 1200 ≤ R̃eθt

(3.37)

Correlations by Langtry

Langtry and Menter [2009] revised Menters correlation for Reθt. The main di�erence is,

that the revised correlation does not take into account the �ow acceleration parameter K.

Reθt =


[
1173.51− 589.428Tu+ 0.2196

Tu2

]
F (λθ) Tu ≤ 1.3

331.5 [Tu− 0.5658]−0.671 F (λθ) Tu > 1.3
(3.38)

where

F (λθ) =

1− [−12.986λθ − 123.66λ2
θ − 405.689λ3

θ]e
−[Tu/1.5]1.5 λθ ≤ 0

1 + 0.275[1− e0.35λθ ]e−Tu/0.5 λθ > 0
(3.39)

Correlations by Malan

To �nd suitable correlations for Reθc and Flength, Malan et al. [2009] used four �at plate

zero pressure gradient test cases (T3B, T3A, T3AM and S&K) and �ve �at plate test cases

with pressure gradient (T3C1, T3C2, T3C3, T3C4, T3C5).
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Reθc = min
(

0.615R̃eθt + 61.5, R̃eθt

)
(3.40)

Flength = min
(
exp

(
7.168− 0.01173R̃eθt

)
+ 0.5, 300

)
(3.41)

Correlations by Kelterer

The following correlations for Reθc and Flength were developed by Kelterer et al. [2010], using

the �at plate test cases T3A, T3B, T3C1, T3C2 and T3C4. The calibration procedure is

similar to that proposed by Malan et al. [2009].

Reθc =

1.02R̃eθt − 35 + 36 · tanh
(
− R̃eθt−138

54

)
R̃eθt ≤ 215

45 · tanh
(
R̃eθt−215

15

)
+ 155 R̃eθt > 215

(3.42)

Flength = min

250 · exp

−(R̃eθt
130

)1.7
+ 10, 40

 (3.43)

In �gure 3.10 a visualization of the correlations is shown. While for Reθc the correlations

of Malan and Menter are very similar, the Kelterer correlation di�ers as it is limited. For

the correlation of Flength, all three authors found somewhat di�erent formulations.
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Figure 3.10: Visualization of the correlations for Reθc and Flength
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4 LINARS and TRACE CFD Codes

In this work, the LINARS and TRACE CFD codes are used to calculate transitional �ows.

LINARS Inhouse code of the Institute for Thermal Turbomachinery and Machine Dynam-

ics of Graz University of Technology.

TRACE CFD code developed by the German Aerospace Center (DLR) in cooperation with

MTU - Aero Engines.

LINARS uses the k − ω and SST turbulence models, while TRACE only uses the k − ω
turbulence model. Both codes use the previously mentioned γ − Reθ model to simulate

transition. In LINARS various correlations can be used to solve transitional �ows. An

overview of the models used is given in table 4.1.

Code Turbulence model Reθt Reθc Flength

LINARS corr Kelteer LINARS SST Menter Kelterer Kelterer
LINARS k − ω Menter Kelterer Kelterer

LINARS corr DLR LINARS SST Menter Malan Malan
LINARS k − ω Menter Malan Malan

LINARS corr Malan LINARS SST Langtry Malan Malan
LINARS k − ω Langtry Malan Malan

TRACE TRACE k − ω Menter Malan Malan

Table 4.1: CFD codes implied models

4.1 Numerical Method

In the LINARS code, the compressible Reynolds/Favre-averaged Navier-Stokes (RANS)

equations are solved in conservative form by means of a fully-implicit �nite-volume method

on structured curvilinear grids. The inviscid (Euler) �uxes are discretized with the upwind

�ux-di�erence splitting method by Roe. In order to achieve a high order of spatial accuracy

a total variation diminishing (TVD) scheme with third-order interpolation was applied to

obtain the state vector at each cell interface. The viscid �ux vector at the cell interfaces is

constructed with a second-order accurate central-di�erencing scheme. To obtain a linear set

of the governing equations the Newton-Raphson procedure is applied for the discretization
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in time.

The TRACE code is a density-based Navier-Stokes solver, developed especially for turbo-

machinery use. TRACE is a hybrid solver using structured as well as unstructured grids

and allows the running a parallel simulation using multiple processors. It features a second-

order-accurate upwind spatial discretization by Roe with the MUSCL or linear reconstruc-

tion approach. Another feature is the �rst- or second-order accurate implicit predictor

corrector formulation. TRACE has adopted a wide range of models for turbomachinery

�ows. Some are

• Implicit steady and unsteady nonlinear solvers

• Implicit nonre�ecting boundary conditions

• Higher Order discretization schemes

4.2 Usability

The LINARS code uses three text �les as input �les. The main �le is the control �le,

which speci�es the models used and their parameters. The second, known as the faces �le

speci�es the boundary conditions and the geometry �le the geometric coordinates. The

output �les are a Tecplot �le, which allows the easy visualization of the �ow �eld, as

well as several ASCII data �les, containing �ow parameters at given domains, as speci�ed

in the faces �le. The ASCII data �les are especially useful in analyzing the data in MatLab.

In TRACE, the complete simulation process chain is integrated, including the pre- and post-

processing tools, with a standard interface (CGNS). The pre-processing tool used is called

GMC. GMC provides a graphical user interface that enables the user to assign boundary

conditions to speci�ed interfaces and to set up the solver properties. It allows the use of

input �les to initialize values for interfaces as well as for the whole �ow �eld. GMC allows

the import of a grid from Tecplot, which is useful for the easy application of the same grid

in LINARS and TRACE. GMC stores the grid data, boundary settings and solver settings

in a CGNS �le, which is the input �le for the TRACE solver. The output �le is a CGNS

�le as well, which can be imported to Tecplot. The post-processing tool, called POST45,

was not used to analyze the data, instead a MatLab routine was programmed that allows

the visualization of both, LINARS and TRACE results.

4.3 Sutherland Law

Temperature has an e�ect on the viscosity of a gas. The viscosity increases along with

temperature. While the TRACE code always calculates the viscosity with the Sutherland
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Law, LINARS allows the manual setting of a global viscosity. The Sutherland Law reads

as follows:

µ = µref

(
T

Tref

)3/2
Tref + S

T + S
(4.1)

where the reference viscosity µref is the measured viscosity at the reference temperature

Tref . The constants di�er in LINARS and TRACE (see table 4.2).

µref [Nsm2 ] Tref [K] S

LINARS 1.876e-5 303.15 K 110.4
TRACE 1.7198e-5 273 110.4

Table 4.2: Constants of Sutherland Law in LINARS and TRACE
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5 Ercoftac Flat Plate Test Cases

The main part of this work was to apply the LINARS and TRACE CFD codes to �nd a

solution for a number of test cases.

The results are compared to experimental data and analytical solutions. Since the two codes

run on the same machine, the performance of the two codes, e.g. number of iterations to

converge, is compared.

Since the turbulent intensity and the turbulence length scale are unknown in our models,

they have to be given as input parameters. The approach in the �at plate test cases was to

determine these parameters by �tting the free stream turbulence of the simulation into the

measured data points. Our system is then calibrated and we can proceed with calculating

the distribution of the skin friction coe�cient over the plate length. The results are then

compared to experimental data.

Overview of the test cases

Table 5.1 gives an overview of the test cases and the applied transition models.

T3A T3C2 T3C4

LINARS SST corr Kelteer x x x
LINARS k − ω corr Kelteer x x x

LINARS SST corr DLR x x x
LINARS k − ω corr DLR x x x

LINARS SST corr Malan x x x
LINARS k − ω corr Malan x x x

TRACE x x x

Table 5.1: Flat plate test case overview of the test cases and applied transition models

Figure 5.1 shows a de�nition of the 2D �at plate test cases with boundary conditions.



5 Ercoftac Flat Plate Test Cases 28

Figure 5.1: De�nition of the �at plate test case [Pecnik, 2007]

5.1 T3A Test Case

The �rst test case is the T3A �at plate test without imposed pressure gradient. The

Reynolds number for this case is ReL = 527300. Measurements were done with air as the

�uid on a plate with the length of l = 1.5 m and an inlet velocity of Uinlet = 5.2 m/s.

5.1.1 T3A Test Case with LINARS

Since the LINARS code is optimized for compressible �ows, the inlet velocity is adjusted

so that the Mach number becomes Ma = 0.3, hence treating the �ow as compressible. In

order to achieve the same Reynolds number as in the experiments, the molecular viscosity

is adjusted to µ = 6.743e− 05 kg
s·m . In the simulation, the plate length is lPlate = 0.3 m.

The grid is shown in �gure 5.2. The length is lGrid = 0.33m and the height is hGrid = 0.11m,

split in 80 and 64 cells respectively. Thus the start-up length is ls = 0.03 m.

The boundary conditions for the inlet and outlet are shown in table 5.2.

In order to ensure for LINARS converges, the simulation starts with a very stable turbulence

model, the Spalat Allmaras One-Equation Model. During this step, the inlet boundary

conditions for turbulence intensity and integral turbulent length scale are calibrated, so

that the free stream turbulence distribution �ts to experimental data. The result is used
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Figure 5.2: Grid of T3A test case

Inlet Outlet

ptot = 1.01633932e5 Pa pstat = 0.953e5 Pa
Ttot = 293.15 K

Table 5.2: T3A boundary conditions

as the initial value for the turbulence models. The �nal calculation is done with enabled

γ-Reθ transition model.

In order to �t the distribution of the turbulence intensity to the experimental data, turbulent

boundary conditions as given in table 5.3 are used.

Inlet

Turbulence Intensity = 0.057 Integral Turbulent Length Scale = 2.05e-04 m

Table 5.3: T3A LINARS inlet turbulence boundary conditions

In the following diagrams, the turbulence intensity Tu and the skin friction coe�cient cf
are de�ned as

Tu =

√
2
3
k

U∞
· 100 [%] (5.1)

cf =
2τW
ρU2
∞

(5.2)

Figure 5.3 shows the distribution of the turbulence intensity on the left hand side and

the skin friction coe�cient on the right hand side. All models match the experimental

data quite well. While the correlation of Kelterer predicts the occurrence of transition

somewhat prematurely, the correlation of the DLR with the SST turbulence model matches

the measured data almost perfectly. Generally, we can see that the transitional zone with

the k − ω turbulence model is shorter than with the SST model.
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Figure 5.3: T3A: Free stream turbulence and skin friction coe�cient with various correlations of the tran-
sition model (LINARS)
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5.1.2 T3A Test Case with TRACE

When solving the T3A test case with TRACE, adjusting the boundary conditions to achieve

Reynolds similarity is more complex than in LINARS. This is due to the fact that it is not

possible to change the viscosity of the �uid manually in TRACE, but to calculate it with

the Sutherland Law. In order to get the same Reynolds number other parameters had to

be adjusted. These parameters were the velocity, thus changing the total pressure at inlet

and the static pressure at outlet, and the length of the plate.

Inlet Outlet

ptot = 101634 Pa pstat = 100690 Pa

Global

lplate = 0.2 m

Table 5.4: T3A TRACE parameters

The pressure di�erence between inlet and outlet results in a velocity of U∞ = 39.3m/s.

Thus the Reynolds number for the simulation ReL = 527300 stays the same. The Mach

number drops toMa = 0.12, anyway, it turns out that Mach number similarity is negligible

for this test.

To obtain a solution for this case, TRACE converges after 5000 iterations, with k-ω tur-

bulence and PDE (γ-Reθ) transition mode enabled with no preiterations needed. So the

computational e�ort drops signi�cantly compared to the LINARS code. However, our ap-

proach to calibrate the inlet turbulence parameters fails for these kinds of problems in

TRACE.

When calibrating the inlet turbulence parameters to �t the experimental data (see table

5.5), the calculated skin friction coe�cient diverges from the measured data signi�cantly

(see �gure 5.4). The onset of transition occurs too early. To �t the calculated transition

onset to the measured data, the integral turbulent length scale must be adjusted. As

derived from theory a smaller integral turbulent length scale moves the transition onset

more downstream (see equation 5.3).

lm ∝
k3/2

ε
(5.3a)

k ∝ 1

Reθt
(5.3b)

The e�ect of turbulence is an earlier transition onset. This tendency is predicted correctly

in TRACE, as shown later (see �gure 5.6).

We were unable to �nd settings to �t both, the freestream turbulent intensity and the skin
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Inlet

Tu �t Turbulence Intensity = 0.052 Integral Turbulent Length Scale = 8e-05 m

cf �t Turbulence Intensity = 0.052 Integral Turbulent Length Scale = 1.8e-05 m

Table 5.5: T3A TRACE inlet turbulence boundary conditions to �t Tu and cf distribution

Figure 5.4: T3A: Free stream turbulence and skin friction coe�cient to �t Tu,cf distribution, boundary
conditions as in table 5.5 (TRACE)

friction coe�cient. The rise of the skin friction coe�cient at the end of the plate (see 5.4)

is probably related to the implementation of the boundary conditions. To ensure, we had

made no mistakes with any of the settings in TRACE, the next step was to compare our

results to the results of DLR.

DLR results

Edmund Kügeler, head of the Institute of Numerical Methods at DLR in Cologne, kindly

provided us with his institute's calculation results for this test case. They achieved Reynolds

number similarity on the original grid by dropping the total inlet pressure (see table 5.6)

and thus the density, as predicted by the general gas equation.

Inlet Outlet

ptot = 25408.5 Pa pstat = 23825 Pa
Tu∞ = 5.7 %
lm = 2.25e− 05 m

Global

lPlate = 0.3 m

Table 5.6: T3A TRACE parameters used by DLR

With these settings the inlet velocity U∞ = 102.9 m/s and the mach number Ma = 0.3

remain the same as in the LINARS tests. The Reynolds number ReL = 527300 also stays

the same.
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Figure 5.5: T3A: Free stream turbulence and skin friction coe�cient results provided by DLR, with bound-
ary conditions as in table 5.6 (TRACE)

Their results, as shown in �gure 5.5, are very similar to our results. The DLR too was unable

to �t both, the distribution of the skin friction coe�cient and the free stream turbulence

intensity. Also the rise of the skin friction coe�cient at the end of the plate can be seen.

Transition onset sensitivity

The next test shows the transition onset sensitivity to the inlet turbulent length scale in

TRACE. As predicted by equation 5.3, a smaller turbulent length scale leads to a later

transition onset.

Inlet

Test (1) Turbulence Intensity = 0.052 lm = 2.2e-05 m
Test (2) Turbulence Intensity = 0.052 lm = 1.6e-05 m

Table 5.7: T3A TRACE inlet turbulence boundary conditions for transition onset sensitivity study

Figure 5.6: T3A: Free stream turbulence and skin friction coe�cient with boundary conditions as in table
5.7 (TRACE)
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5.1.3 TRACE and LINARS k-ω with identical turbulence boundary

conditions

Since the LINARS and the TRACE code delivered di�erent results for the T3A test case

with enabled transition model, we were interested in the results of both codes for the same

implied boundary conditions only with the k-ω turbulence model enabled and the transition

model disabled.

The turbulence boundary conditions used are the same as the ones found to �t the skin

friction coe�cient in TRACE (Test(1)) and LINARS (Test(2)) and are stated in table 5.8.

Inlet

Test (1) Turbulence Intensity = 0.052 lm = 1.8e-05 m
Test (2) Turbulence Intensity = 0.057 lm = 2.05e-04 m

Table 5.8: T3A TRACE and LINARS turbulence boundary conditions to compare k-ω turbulence model

In test(1) (�gure 5.7) we can see that in LINARS the free stream turbulence decreases

more sharply than in TRACE shortly after the inlet. However, the skin friction coe�cient

matches over a wide range. The bend at the beginning of the plate in the LINARS results

can be explained by the sharp drop of the free stream turbulence in that region.

In test(2) (�gure 5.8) the skin friction coe�cient of the two codes again match very well,

even though the free stream turbulence, as before, in LINARS drops more sharply than in

TRACE.

Figure 5.7: T3A: Free stream turbulence and skin friction coe�cient with k-ω turbulence model, boundary
conditions of test(1) in table 5.8 (TRACE and LINARS)

Figure 5.9 and 5.10 show the distribution of the turbulent kinetic energy for TRACE with

boundary conditions as given in table 5.8 (1) and 5.8 (2) respectively. While analyzing these
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Figure 5.8: T3A: Free stream turbulence and skin friction coe�cient with k-ω turbulence model, boundary
conditions of test(2) in table 5.8 (TRACE and LINARS)

TRACE results, we noticed that the distribution of the turbulent kinetic energy varies over

the height of the �ow region (especially in �gure 5.10). This behavior is realistic in the

boundary layer, but in a region outside of the boundary layer, this behavior can not be

explained physically.

Since the cause of this behavior was unknown, another test was done in which the plate

was removed. The other boundary conditions were unchanged. This test brought the

same result (see �gure 5.11). The cause of this behavior is unknown, but we assume that

the problem is related to the implementation of the boundary conditions. The DLR was

contacted about this problem. While for turbo engines the preferred method to imply the

boundary conditions is Fourier, they recommended that we use Non-re�ecting boundary

conditions for this kind of problem. All in all, this brought the same result. We also tried

to �x the boundary conditions along the inlet, which can be achieved by providing an inlet

boundary condition �le in TRACE, but that, too, brought the same unphysical result.
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Figure 5.9: T3A: Turbulent kinetic energy distribution with k-ω turbulence model, with plate and boundary
conditions of test(1) in table 5.8 (TRACE)

Figure 5.10: T3A: Turbulent kinetic energy distribution with k-ω turbulence model, with plate and bound-
ary conditions of test(2) in table 5.8 (TRACE)

Figure 5.11: T3A: Turbulent kinetic energy distribution for a �ow without plate and with k-ω turbulence
model, boundary conditions of test(2) in table 5.8 (TRACE)
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5.1.4 T3A Test Case Comparison LINARS and Fluent

Since both codes, LINARS and TRACE, produced such di�erent results for the decay of the

free stream turbulence intensity, we wanted to compare our results with those of another

code. So a Fluent simulation was carried out. The Menter SST turbulence model and

γ −Reθ transition model with correlations by Langtry and Menter [2009] were used in the

Fluent simulation. As shown in �gure 5.12 Fluent con�rms the distribution of the free

stream turbulence as predicted by LINARS. It is interesting to see that the calculated skin

friction coe�cient in Fluent is very similar to the result of the LINARS code.

Figure 5.12: T3A: Free stream turbulence and skin friction coe�cient with boundary conditions as in table
5.8 (2) (LINARS and Fluent)

5.1.5 T3A summary

The LINARS code produced good results for all correlations. It was only the Kelterer

correlation that predicted the start of transition a bit too early. Generally we can say that

correlations coupled with the k−ω turbulence model produce a shorter transition zone than

those coupled with the Menter SST turbulence model. We were unable to �t the turbulence

free stream intensity and the skin friction coe�cient at the same time with TRACE. For

some turbulence boundary conditions, TRACE produces an unrealistic distribution of the

turbulent energy. It would appear that TRACE calculates the decay of turbulence di�er-

ently than LINARS does. To validate the decay of the turbulence, a Fluent simulation was

done, which gives similar results to that of the LINARS code.
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5.2 T3C2 Test Case

The T3C2 test case is a �at plate test with an imposed pressure gradient. The Reynolds

number for this test is Rel = 656000. The characteristic length, the plate length, is pplate =

1.5 m. The start up length is ls = 0.2 m, the height reduces from hgridmax = 0.22 m to

hgridmin = 0.144 m and enlarges up to hgridout = 0.177 m to the outlet. The �ow �eld is

split in 260 × 80 cells. The density of the cells is highest near the wall in the boundary

layer, at the transition zone between start up length and the beginning of the plate and

also at the contour boundary for producing the pressure gradient.

Figure 5.13: Grid of T3C2 test case

Measurements have shown that bypass transition occurs in a transition zone from xtrans ≈
1÷ 1.3 m or at a local Reynolds number between Rex ≈ 500000÷ 620000.

5.2.1 T3C2 Test Case with LINARS

To �t the Reynolds number in the LINARS calculation boundary conditions as given in

table 5.9 were used. In order to �t the free stream turbulence to the measured data,

turbulent boundary conditions as stated in table 5.10 were used.

Inlet Outlet

ptot = 101634 Pa pstat = 95400 Pa
Ttot = 293.15 K

Global

lPlate = 1.5 m
µref = 2.69 e− 04 kg/(s ·m)

Table 5.9: T3C2 LINARS parameters

Figure 5.14 shows the distribution of the turbulence intensity on the left hand side and

the skin friction coe�cient on the right hand side predicted by LINARS with all available

models as given in table 4.1.
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Inlet

Turbulence Intensity = 0.06 Integral Turbulent Length Scale = 6.5e-04 m

Table 5.10: T3C2 LINARS inlet turbulence boundary conditions

Figure 5.14: T3C2: Free stream turbulence and skin friction coe�cient with di�erent correlations of the
transition model (LINARS)
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The best results are achieved by LINARS with the SST turbulence model and the γ −Reθ
transition model with the correlations found by Kelterer. Here the transitional zone starts

at Rex ≈ 500000, as expected, but fully developed turbulent �ow is reached too early, at

Rex ≈ 580000.

LINARS with DLR correlation predicts a separation bubble at the plate end (cf < 0) and

undergoes separation-induced transition. The results obtained with the Malan correlation

are very similar to the results published by Malan et al. [2009]. Here, the transitional zone

starts too late at Rex ≈ 550000 and the transitional zone is too short, but fully developed

turbulent �ow is reached at Rex ≈ 600000 as obtained from the experimental data.

5.2.2 T3C2 Test Case with TRACE

To �t the Reynolds number in the TRACE simulation the inlet and outlet pressure had to

be adjusted. The boundary conditions used are given in table 5.11. Turbulent boundary

conditions for this test are given in table 5.12. Since transition occurred too early, we varied

the integral turbulent length scale.

Inlet Outlet

ptot = 6980 Pa pstat = 6500 Pa
Ttot = 293.15 K

Global

lPlate = 1.5 m

Table 5.11: T3C2 TRACE parameters

Inlet

Turbulence Intensity = 0.06 Integral Turbulent Length Scale = 6.5e-04 m
Turbulence Intensity = 0.06 Integral Turbulent Length Scale = 4.5e-04 m
Turbulence Intensity = 0.06 Integral Turbulent Length Scale = 1.0e-04 m

Table 5.12: T3C2 TRACE inlet turbulence boundary conditions

Figure 5.15 shows the free stream turbulence intensity on the left hand side and the skin

friction coe�cient on the right hand side calculated by TRACE with varying turbulent

boundary conditions. For lm = 6.5e − 4m and lm = 4.5e − 4m the distribution of the free

stream turbulence agrees with the experimental data but the transition happens too early.

For lm = 1e − 4m the turbulence intensity is too low and onset of transition is a little bit

too late, the �ow undergoes separation induced transition.
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Figure 5.15: T3C2: Free stream turbulence and skin friction coe�cient (TRACE)

5.2.3 T3C2 Summary

For this test case the best results are achieved by LINARS with the Kelterer correlation and

SST turbulence model. The Malan and DLR correlations predict the onset of transition too

far downstream. The DLR correlation even predicts separation-induced transition. With

TRACE it was not possible to get a good match. Similar to the T3A test case, we were

unable to �t both, the distribution of the turbulent intensity and the skin friction coe�cient.
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5.3 T3C4 Test Case

This test case uses the same grid as the T3C2 test case but with a lower Reynolds number,

which leads to the development of a separation bubble at x/l ≈ 0.9 or Rex ≈ 170000. The

Reynolds number for this test case is Rel = 183800.

5.3.1 T3C4 Test Case with LINARS

Table 5.13 states the parameter, found to �t the Reynolds number. In Table 5.14 the turbu-

lent boundary conditions to match the free stream turbulence intensity to the experimental

data are given.

Inlet Outlet

ptot = 101634 Pa pstat = 95400 Pa
Ttot = 293.15 K

Global

lPlate = 1.5 m
µref = 9.7e− 04 kg/(s ·m)

Table 5.13: T3C4 LINARS parameters

Inlet

Turbulence Intensity = 0.035 Integral Turbulent Length Scale = 1e-03 m

Table 5.14: T3C4 LINARS inlet turbulence boundary conditions

As seen in �gure 5.16, where the free stream turbulence (left hand side) and the skin friction

coe�cient (right hand side) for several models are plotted, the LINARS code produced

good results with the Kelterer and Malan correlation. Both predicted a separation bubble

as expected. The separation bubble with the Malan correlation is slightly longer than the

one calculated with the Kelterer correlation.

LINARS with DLR correlation did not fully converge. As a result, the distribution of the

skin friction coe�cient and the turbulence intensity at the end of the plate is unphysical.

This is an indicator that the DLR correlation does not work very well in combination with

the LINARS code.
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Figure 5.16: T3C4: Free stream turbulence and skin friction coe�cient with various correlations of the
transition model (LINARS)
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5.3.2 T3C4 Test Case with TRACE

To �t the Reynolds number in the TRACE calculation, parameters as given in table 5.15

are used. The turbulent boundary conditions (see table 5.16) are the same as the ones used

in LINARS.

Inlet Outlet

ptot = 1940 Pa pstat = 1800 Pa
Ttot = 293.15 K

Global

lPlate = 1.5 m

Table 5.15: T3C4 TRACE parameters

Inlet

Turbulence Intensity = 0.035 Integral Turbulent Length Scale = 1e-03 m

Table 5.16: T3C4 TRACE inlet turbulence boundary conditions

Figure 5.17: T3C4: Free stream turbulence and skin friction coe�cient (TRACE)

As seen in �gure 5.17, in this test case the free stream turbulence (left hand side) obtained

from the simulation shows a good agreement with the experimental data. The skin friction

coe�cient (right hand side) is, as calculated by LINARS, slightly too high over a wide

range. A separation bubble occurs, starting at Rex ≈ 160000 as expected, but the length

of the bubble is about twice as long as estimated by experimental data.

5.3.3 T3C4 Summary

As in the T3C2 test case, the best results were obtained by LINARS with the Kelterer cor-

relation, where the separation bubble shows a very good agreement with the experimental
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data. The Malan correlation also produced good results, with a separation bubble that

is slightly too long. For this test case, the DLR correlation did not work well with the

LINARS code, giving unphysical results.

With TRACE this was the only test case in which it was possible to match the distribution

of the turbulent intensity and the skin friction coe�cient well. The predicted separation

bubble is about twice as long as expected.
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6 Cascade Test Cases

The correlations used in the LINARS code were obtained from �at plate test cases, so that

it was unsurprising that the LINARS code produced better results for these test cases.

Since the TRACE code is tuned for turbomachines, it is interesting to see its performance

on cascade test cases.

Overview of the test cases

Table 6.1 gives an overview of the test cases and the applied transition models.

T160 T106
Reynolds number 90k 120k 200k 200k (3D) 150k 300k 500k

LINARS SST corr Kelteer x x x x x x
LINARS k − ω corr Kelteer

LINARS SST corr DLR
LINARS k − ω corr DLR x x x x x x

LINARS SST corr Malan x x x x x x
LINARS k − ω corr Malan

TRACE x x x x

Table 6.1: Cascade test overview of the test cases and applied transition models

6.1 T160 Test Case

The T160 turbine cascade represents a section of a low pressure turbine blade and was

developed by the MTU Aero Engines GmbH. This pro�le features a strong �uid de�ection,

a moderate acceleration and a high blade pitch and is regularly used to validate Navier-

Stokes calculations in order to enhance transition models.

The MTU kindly provided us with the mesh of this test case. In �gure 6.1 the pro�le

and grid is shown. Table 6.2 gives the design parameters. A de�nition of the geometrical

dimensions is stated in �gure 6.2.

In the experimental work, test series were carried out with di�erent Mach and Reynolds

numbers. [Staudacher and Homeier, 2003]

For the validation of our CFD codes, reference conditions of the test case as given in table

6.3 are used.
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Figure 6.1: Grid of the T160 test case from MTU

T160 turbine cascade

t/l = 0.8
angle of attack β1 = 131◦

downstream �ow angle β2 = 25◦

Table 6.2: T160 design parameters

Figure 6.2: De�nitions of the grid geometry [Staudacher and Homeier, 2003]

T160 steady references

Reynolds number ReL = 200000
Mach number Ma2 = 0.6

Table 6.3: T160 reference conditions for respective test case
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In this test case two separation bubbles occur, one on the suction side between xax/lax =

0.85÷ 0.92 and one on the pressure side between xax/lax = 0.05÷ 0.2.

Figure 6.3 shows the de�nition of the measurement layer, e.g. index 2 corresponds to

the measurement layer ME0.4 (see �gure 6.3), where most measurements were done. The

Figure 6.3: T160 de�nition of the measurement planes [Staudacher and Homeier, 2003]

simulations with LINARS and TRACE were done with the �uid conditions of table 6.3.

The turbulent boundary conditions of test(2) in table 6.4 are used by the DLR for this test

case. Varying turbulent inlet boundary conditions are used to study the sensitivity of the

transition models.

Inlet turbulent boundary conditions

Test (1) Tu = 1.5 % lm = 0.00018 m
Test (2) Tu = 3.7 % lm = 0.00018 m
Test (3) Tu = 8.0 % lm = 0.00018 m

Test (4) Tu = 3.7 % lm = 0.00005 m
Test (5) Tu = 3.7 % lm = 0.0005 m
Test (6) Tu = 3.7 % lm = 0.001 m
Test (7) Tu = 3.7 % lm = 0.002 m

Table 6.4: T160 varying turbulent inlet boundary conditions

Since the T160 test case is very demanding in terms of computational e�ort, a detailed

study with all variations of the turbulent boundary conditions is only made for LINARS

with the Kelterer correlation and for TRACE.

Here, the pressure coe�cient is de�ned as

cp =
pwall local − p2

ptot inlet − p2

(6.1)
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where the subscript 2 stands for the averaged value at the measurement layer ME0.4. To

analyze the wake e�ect a local pressure loss coe�cient is calculated as

ζl =
ptot1 − ptot2

q2

(6.2)

q2 = ptot1 − (p2 local − p2 min) (6.3)

where p2 min is the minimum pressure in the measurement layer ME0.4. A maximum of

the local pressure loss coe�cient is reached when the local pressure in measurement layer

ME0.4 p2 local reaches the minimum (where p2 local = p2 min).

The total pressure loss coe�cient is given as

ζ =
ptot1 − ptot2

q2

(6.4)

where q2 is the averaged value of q2.
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6.1.1 T160 Test Case with LINARS, Kelterer correlation

In order to obtain the same Reynolds and Mach number, the boundary conditions had to

be adjusted to match the conditions as given in table 6.3.

Inlet Outlet

ptot = 27041 Pa pstat = 21192.9 Pa
Ttot = 303.15 K

Global

µ = 1.7269e− 05 kg/(s ·m)

Table 6.5: T160 LINARS parameters

Figure 6.4: T160: Pressure coe�cient comparison between pure turbulence model and transition model
with Kelterer correlation (LINARS)

Figure 6.4 shows the di�erence of the pressure coe�cient between a calculating with a pure

turbulence model and with transition model. The results of both models match, except

for the region of transition on the suction side. For the skin friction coe�cient, see �gure

6.5, the di�erence between pure turbulent and transition model is sigi�cant on the suction

side. Transition onset occurs at xax/lax ≈ 0.85 and undergoes bypass transition. The

�ow becomes fully turbulent and thus the skin friction coe�cient of the turbulent and the

transition model match. On the pressure side, the skin friction coe�cient for both models

becomes cf < 0 at xax/lax = 0.05÷0.2, which indicates a separation bubble (see �gure 6.5).

Figure 6.6 shows the wake. Here, u is a coordinate parallel to the outlet in the measurement

layer ME0.4. On the pressure side, the wake develops too late and increases sharper than

measured. The overshoot of the wake is more signi�cant for the pure turbulence model.
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Figure 6.5: T160: Skin friction coe�cient comparison between pure turbulence model and transition model
with Kelterer correlation (LINARS)

Figure 6.6: T160: Local pressure loss coe�cient in measurement layer ME0.4, comparison between pure
turbulence model and transition model with Kelterer correlation (LINARS)
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Figure 6.7: T160: Pressure coe�cient for various Tu levels and �xed lm with Kelterer correlation (LINARS)

Figure 6.8: T160: Skin friction coe�cient for various Tu levels and �xed lm with Kelterer correlation
(LINARS)
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Figure 6.9: T160: Local pressure loss coe�cient in measurement layer ME0.4 for various Tu levels and �xed
lm with Kelterer correlation (LINARS)

When varying the turbulence intensity we expect a change of the transition onset location

on the suction side. A lower turbulence intensity should lead to a shift downstream (see

equation 5.3). Although the onset of transition changed only marginally, this physical rela-

tion is shown correctly. With the lowest inlet turbulence intensity Tu = 1.5% a separation

bubble is predicted on the suction side. On the pressure side a small separation bubble

with Tu = 3.7% and a larger separation bubble with Tu = 1.5% developed (see �gure 6.8).

The wake grows slightly with a higher turbulence intensity (see �gure 6.9).

Also, when varying the mixing length, the change in the transition onset is minimal. Only

with the smallest imposed mixing length lm = 5e − 5 m a separation bubble developed at

the suction and pressure side (see �gure 6.11). The distribution of the pressure coe�cient

hardly changes when varying the turbulence intensity or mixing length (see �gure 6.7 and

6.10). Here, the most signi�cant change is the lower pressure coe�cient along the suction

side with a rising mixing length. However the wake and thus the local pressure loss in

the measurement layer spreads as the mixing length grows (see �gure 6.12), which has a

signi�cant in�uence on the total pressure loss. The total pressure loss of all the test cases

is given in table 6.7.

The spread of the wake grows towards the suction side. It is interesting to discuss the

reason for this behavior. Our �rst guess was that the boundary layer grows as the mixing

length increases. As can be seen in �gure 6.13, this is not the case, but what happens is,

that a larger mixing length leads to higher losses and thus a lower velocity on the suction

side, causing the wake spread towards the suction side.
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Figure 6.10: T160: Pressure coe�cient for various lm levels and �xed Tu with Kelterer correlation
(LINARS)

Figure 6.11: T160: Skin friction coe�cient for various lm levels and �xed Tu with Kelterer correlation
(LINARS)
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Figure 6.12: T160: Local pressure loss coe�cient in measurement layer ME0.4 for various lm levels and
�xed Tu with Kelterer correlation (LINARS)

Figure 6.13: T160: Velocity in boundary layer for test(4) and test(7) with Kelterer correlation (LINARS)

6.1.2 T160 Test Case with LINARS, DLR correlation

LINARS with DLR correlation produces very good results for the pressure coe�cient dis-

tribution with boundary conditions as given in table 6.4 test(2). The �ow undergoes a

separation-induced transition, with a separation bubble starting at xax/lax ≈ 0.82 and dis-

appears at xax/lax ≈ 0.91. The pressure coe�cient drops at xax/lax ≈ 0.88, which is slightly

too early, but still corresponds with the experimental data (see �gure 6.14 and 6.15).

The peak in the pressure coe�cient distribution in the measurement layer is slightly higher

than expected with a delayed but sharper rise on the pressure side and still agrees with the

experimental data (see �gure 6.16).
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Figure 6.14: T160: Pressure coe�cient with DLR correlation (LINARS)

Figure 6.15: T160: Skin friction coe�cient with DLR correlation (LINARS)
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Figure 6.16: T160: Local pressure loss coe�cient in measurement layer ME0.4 with DLR correlation
(LINARS)

6.1.3 T160 Test Case with LINARS, Malan correlation

In order to get a separation bubble with this con�guration a very small mixing length had to

be set. When comparing the results of the pressure coe�cient and skin friction coe�cient

in �gure 6.17 and 6.18 with turbulent boundary conditions as in table 6.4 test(2) and

test(4) we can see that the sensitivity to the mixing length is higher than for the Kelterer

correlation. The pressure drop though occurs too early, thus the separation bubble is too

short.

The peak of the pressure coe�cient distribution in the measurement layer ME0.4 is higher

than measured (�gure 6.19) with a sharper rise on the pressure and suction side.



6 Cascade Test Cases 58

Figure 6.17: T160: Pressure coe�cient with Malan correlation (LINARS)

Figure 6.18: T160: Skin friction coe�cient with Malan correlation (LINARS)
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Figure 6.19: T160: Local pressure loss coe�cient in measurement layer ME0.4 with Malan correlation
(LINARS)

6.1.4 T160 Test Case with TRACE

To achieve Reynolds and Mach number similarity in TRACE, boundary conditions as given

in Table 6.6 are used.

Inlet Outlet

ptot = 27041 Pa pstat = 21197 Pa
Ttot = 303.15 K

Table 6.6: T160 TRACE parameters

With the enabled transition model in TRACE the pressure coe�cient corresponds well with

the experimental data. The onset of transition is correctly predicted. A �at pressure pro�le

indicates a separation bubble in �gure 6.20 at xax/lax = 0.85 ÷ 0.92. The distribution of

the skin friction coe�cient as given in �gure 6.21 shows a distinct di�erence between pure

turbulence and transition model on the suction side. The skin friction coe�cient, thus the

predicted pressure losses of the blades are much higher with the pure turbulence model.

This shows, once again, the importance of a good transition model for turbomachines. With

the enabled transition model a separation bubble also occurs on the pressure side (see �gure

6.21). The overshoot of the wake depression as seen in �gure 6.22 is less distinct than with

the pure turbulence model and corresponds well with the experimental data.

A decreased turbulence intensity leads to a downstream shift of the transition onset as

expected. This trend is more distinctive in TRACE than in LINARS. A high turbulence

intensity leads to a much earlier onset of transition and thus suppresses the formation of a
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Figure 6.20: T160: Pressure coe�cient comparison between pure turbulence model and transition model
(TRACE)

Figure 6.21: T160: Skin friction coe�cient comparison between pure turbulence model and transition model
(TRACE)
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Figure 6.22: T160: Local pressure loss coe�cient in measurement layer ME0.4, comparison between pure
turbulence model and transition model (TRACE)

bubble (see �gure 6.24). This can also be seen in �gure 6.23, where the pressure coe�cient

distribution for a higher inlet turbulence intensity does not form a plateau. Also, the wake

is more distinctive at a high turbulence intensity (see �gure 6.25), which leads to higher

losses (see table 6.7).

Varying the mixing length brings almost the same results. A smaller mixing length delays

the transition onset as expected (see �gure 6.26). For higher values, the transition onset

occurs much earlier, leading to an increased skin friction coe�cient on the suction side

(see �gure 6.27) and greater losses, as can be seen in the rise of the pressure coe�cient

distribution in the measurement layer (see �gure 6.28) and total pressure loss (table 6.7).
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Figure 6.23: T160: Pressure coe�cient for various Tu levels and �xed lm (TRACE)

Figure 6.24: T160: Skin friction coe�cient for various Tu levels and �xed lm (TRACE)
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Figure 6.25: T160: Local pressure loss coe�cient in measurement layer ME0.4 for various Tu levels and
�xed lm (TRACE)

Figure 6.26: T160: Pressure coe�cient for various lm levels and �xed Tu (TRACE)
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Figure 6.27: T160: Skin friction coe�cient for various lm levels and �xed Tu (TRACE)

Figure 6.28: T160: Local pressure loss coe�cient in measurement layer ME0.4 for various lm levels and
�xed Tu (TRACE)
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The total pressure loss of LINARS with Kelterer correlation and TRACE (tabe 6.7) shows

a high bandwidth for di�erent turbulent boundary conditions (table 6.4). In general, the

losses for TRACE are higher. That is because TRACE predicts a larger separation bubble

which leads to higher losses. It can be seen, that a larger separation bubble leads to higher

losses. The measurements of the MTU were done with a inlet turbulence intensity of 4.2 %,

but the mixing length is not know, so that it is not possible to argue which model performs

better.

LINARS TRACE
trans corr Kelterer trans corr Malan

Tu lm [m] ζ [%]

Test (1) 1.5 1.8e-4 2.55 2.92
Test (2) 3.7 1.8e-4 2.64 2.99
Test (3) 8.0 1.8e-4 2.89 4.63

Test (4) 3.7 5e-5 2.52 2.97
Test (5) 3.7 5e-4 3.2 4.72
Test (6) 3.7 1e-3 4.2 5.26
Test (7) 3.7 2e-3 4.73 6.4

Measurement MTU 3.2

Table 6.7: T160 comparison of the total pressure loss coe�cient ζ

6.1.5 Reynolds number variation

In the following section the di�erent models are compared directly for the same turbulent

boundary conditions and varying Reynolds numbers (Re = 120000 and Re = 90000).

We will see that both LINARS transition models based on the SST turbulence model

(correlation Kelterer and Malan) produce similar results of the pressure and skin friction

coe�cient distribution while the LINARS transition model based on the k − ω turbulence

model (correlation DLR) produces results similar to the TRACE code, which also uses a

transition model based on the k − ω turbulence model. Please note, the overview of the

implied models and their underlying correlations in table 4.1 and notice that TRACE uses

the same models as LINARS with DLR transition correlation.

In light of the above, one should not be surprised to obtain similar results with TRACE

and LINARS for the DLR transition correlations. But considering that the main conclusion

of the T3A test case, which is that the TRACE code calculates the decay of turbulence

intensity more di�erently than the LINARS code (even with the same turbulence model),

this result is remarkable.
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Re 120000

Figure 6.29 shows the distribution of the pressure coe�cient. In �gure 6.30 the transitional

zone on the suction side is shown in detail. As stated previously, the same combination of

turbulence and transition model gives similar results. This also holds true for the distribu-

tion of the skin friction coe�cient, shown in �gure 6.31. The details in the transitional zone

are shown in �gure 6.32. The wake depression (see �gure 6.33) is similar for all LINARS

calculations. The overshoot is more distinct for this code and less distinct in the TRACE

code. All codes predict a late and sharp rise of the wake depression on the pressure side.

Figure 6.29: T160: Pressure coe�cient comparison between di�erent correlations for Re = 120000 (LINARS
and TRACE)
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Figure 6.30: T160: Pressure coe�cient comparison between di�erent correlations for Re = 120000 (LINARS
and TRACE) (zoomed)

Figure 6.31: T160: Skin friction coe�cient comparison between di�erent correlations for Re = 120000
(LINARS and TRACE)
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Figure 6.32: T160: Skin friction coe�cient comparison between di�erent correlations for Re = 120000
(LINARS and TRACE) (zoomed)

Figure 6.33: T160: Local pressure loss coe�cient comparison between di�erent correlations for Re = 120000
(LINARS and TRACE)
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Re 90000

As previously stated, the direct comparison of di�erent codes shows that LINARS SST

corr Kelterer and Linars SST corr Malan as well as LINARS k−ω corr DLR and TRACE

obtain similar results considering the beginning and length of the transition zone (similar

pressure plateau and pressure drop in �gure 6.34 and more detailed �gure 6.35) as well as

similar skin friction distribution in �gure 6.36 and more detailed �gure 6.37.

Figure 6.34: T160: Pressure coe�cient comparison between di�erent correlations for Re = 90000 (LINARS
and TRACE)

The di�erence between LINARS SST corr Kelterer and Linars SST corr Malan is that the

Malan correlation is more sensitive to turbulent boundary conditions. Therefore it's possible

to match the pressure coe�cient distribution by varying the inlet turbulence boundary

conditions to develop a separation bubble as predicted by LINARS k − ω corr DLR and

TRACE.
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Figure 6.35: T160: Pressure coe�cient comparison between di�erent correlations for Re = 90000 (LINARS
and TRACE) (zoomed)

Figure 6.36: T160: Skin friction coe�cient comparison between di�erent correlations for Re = 90000
(LINARS and TRACE)
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Figure 6.37: T160: Skin friction coe�cient comparison between di�erent correlations for Re = 90000
(LINARS and TRACE) (zoomed)

Figure 6.38: T160: Local pressure loss coe�cient comparison between di�erent correlations for Re = 90000
(LINARS and TRACE)
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6.1.6 TRACE 3D

So far we have only considered 2D �ows due to computational performance issues. As we

experienced the TRACE code to be very fast (see section 6.1.8: Performance comparison

of LINARS and TRACE), we wanted to test it on the 3D version of the T160 test case.

The MTU kindly provided us with the grid (see �gure 6.39). As for the 2D test case, the

cross section expands in downstream direction.

The pressure coe�cient and the skin friction coe�cient were analyzed in three sections at

50%, 80% and 95% of the total blade height.

Figure 6.39: T160 3D grid by MTU

Figure 6.40 shows the pressure distribution. At 80% the pressure drop happens earlier,

indicating a smaller separation bubble. Near the wall at 95% the pressure rises signi�cantly

on the suction side (notice the inverse ordinate). Figure 6.41 shows the skin friction coe�-

cient. It can be seen that the location of transition moves upstream on the suction side as

the �ow comes closer to the wall. The wake depression is most distinct at 80% of the blade
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height (see �gure 6.42).

Figure 6.40: T160: Pressure coe�cient (TRACE 3D)

Figure 6.41: T160: Skin friction coe�cient (TRACE 3D)



6 Cascade Test Cases 74

Figure 6.42: T160: Local pressure loss coe�cient in measurement Layer ME0.4 (TRACE 3D)

6.1.7 T160 Summary

In the T160 test case, the Kelterer correlation predicted the location of transition too early.

The results were barely a�ected by a change of the turbulent boundary conditions. The

Malan correlation also predicted an early transition onset, but is more sensitive to changes

of the turbulent boundary conditions. The best results were obtained from LINARS with

DLR correlation and TRACE. As seen in the direct comparison, they produced similar

results. As previously mentioned, both codes use the same correlations for the γ − Reθ

transition model. Still, this result is remarkable since the TRACE code produces di�erent

results for the �at plate test cases. The strength of TRACE lies in its computational

e�ciency.

6.1.8 Performance comparison of LINARS and TRACE

With this test case a performance comparison was carried out. For both codes, the time

was taken to calculate 100 iterations. TRACE performed more than three times faster

than LINARS, �nishing after 46 seconds while LINARS takes 166 seconds. To discuss

these results, the solver settings must be known (see table 6.8).

Solver settings LINARS TRACE

implicit implicit
Iteration Method LGS SSOR
Relaxation Parameter 0.5 0.7

Table 6.8: Solver settings in LINARS and TRACE

LINARS uses the Line Gauÿ-Seidel (LGS) iteration method, which is expected to take more
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time for one iteration than the Symmetric Successive Over Relaxation (SSOR) iteration

method. However, the advantage of the LGS method is that it normally takes less iterations

until the simulation converges.

In order to compare the number of iterations of the codes to converge, some factors should

be noted.

The criterion to consider a simulation as converged is ful�lled, if the residuals don't change

anymore. It can be observed that the residuals level out at a value of one in LINARS and

10−6 in TRACE.

In LINARS and TRACE di�erent initial values are used. The simulation started with

LINARS with the Spalart-Allmaras turbulence model, where no initial values were used.

The result was then used as the initial guess for the k − ω or SST turbulence model. This

result was then used as the initial guess for the transition model. This procedure has to be

followed in LINARS for stability reasons. In TRACE it is possible to initialize values at inlet

and outlet. These values are interpolated over the �ow �eld to obtain a good initial guess.

In light of this it seems justi�ed to compare the number of iterations of TRACE to the

number of iterations of LINARS with the transition model, where also good initial values

are used. Still LINARS needs roughly twice as many iterations to converge as TRACE.

The reason for that is a stability problem in LINARS. For the T160 test case, it was not

possible to set a higher CFL number than CFL = 10 due to stability issues. This led to

a slow convergence. Figure 6.43 - 6.45 show the residuals of the LINARS calculation with

Spalart-Allmaras turbulence model, k − ω turbulence model and transition model. Figure

6.46 shows the residuals of the TRACE calculation.
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Figure 6.43: Residual of T160 test case with
Spalart-Allmaras turbulence model
(LINARS)

Figure 6.44: Residual of T160 test case with k − ω
turbulence model (LINARS)

Figure 6.45: Residual of T160 test case with
transition model, DLR correlation
(LINARS)

Figure 6.46: Residual of T160 test case with transi-
tion model (TRACE)
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6.2 T106 Test Case

This test case is used to examine if the tendencies of the LINARS correlations from the

T160 test case hold for another cascade test case.

The developer of this test case intended to produce a blade, where the transition occurs as

late as possible to reduce losses. Experiments on this geometry were carried out by Hoheisel

[1982] with various Reynolds numbers and various inlet turbulent properties. The reference

states used in our simulations are given in table 6.9 and 6.10. The turbulent intensity at

inlet is given by experimental data. The mixing length is set to a reasonable value.

The grid (see �gure 6.47) was generated using the inhouse grid generator 2DAiGrid (Version

February 2010). Figure 6.48 gives an overview of the design parameters of this geometry.

Figure 6.47: Grid of T106 test case

In this test case, the viscosity was calculated with the Sutherland law.

At a low Reynolds number (Rel = 150000) the �ow undergoes separation-induced transition.

A long separation bubble develops, starting at about xax/lax ≈ 0.8 till xax/lax ≈ 0.95. As

shown in the experiments (see 6.49), neither the onset of transition nor the length of the

separation bubble changes appreciably with a variation of the inlet turbulence intensity.
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Figure 6.48: Geometry of T106 test case [Hoheisel, 1982]

T106 reference conditions Rel
150000 300000 500000

ptot inlet 14405 Pa 28661 Pa 47583 Pa
p2 11115 Pa 22116 Pa 36717 Pa
Ttot 313.25 K

Table 6.9: Reference conditions of the T106 test case

Figure 6.49 shows the distribution of the pressure coe�cient on the left hand side and the

distribution of the skin friction coe�cient on the right hand side at a low Reynolds number

of Rel = 150000. For Tu = 0.5%, the Malan and DLR correlation predict a too early

start of the separation bubble (xax/lax ≈ 0.7) but capture the end well, thus the separation

bubble is too long. The correlation by Kelterer shows a good agreement of the calculated

pressure coe�cient with the experimental data on the suction side till the start of the

separation bubble. Then the pressure plateau is too short and the pressure drop happens

too early, thus only a small separation bubble is predicted. When comparing the results

from Tu = 0.5% to the results from Tu = 4% it can be seen that the correlations are very

sensitive to the turbulent boundary conditions. For Tu = 4% the Kelterer correlation still

predicts a small separation bubble. The �ow undergoes bypass transition for the Malan

correlation. The separation bubble predicted by the DLR correlation is still distinct.

Figure 6.50 shows the γ distribution in the region of transition near the wall at the grid line

j = 6. Using the Kelterer correlation, production of turbulence starts up rapidly, shortly
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Inlet turbulent boundary conditions

Test (1) Tu = 0.5 % lm = 0.002 m 2 % chord length
Test (2) Tu = 4 % lm = 0.002 m 2 % chord length

Table 6.10: Turbulent boundary conditions of the T106 test case

Figure 6.49: T106: Pressure coe�cient (LHS) and skin friction coe�cient (RHS) comparison between dif-
ferent correlations for Rel = 150000 (LINARS)
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Figure 6.50: γ distribution of di�erent codes near wall at region of transition, Rel = 150000, Tu = 0.5%

after the laminar boundary layer separates. At xax/l = 0.9 the intermittency reaches its

peak, which is also the point where turbulent reattachment occurs. So the reason for the

short separation bubble predicted by the Kelterer correlation is the sharp increase of γ.

As visualized in �gure 3.10, Reθc is limited to a value of 200 by the Kelterer correlation.

Reθcmax is reached already at R̃eθt ≈ 230 leading to a early and rapid transition onset.

The transition momentum Reynolds number in the zone of transition is very high with

Reθt = 800÷1000, so that we are in a region, where Kelterer correlation di�ers signi�cantly

from the DLR and Malan correlations. In this region, the Flength correlation also di�ers

from the other correlations by a factor of 10.

Figures 6.51 and 6.52 show the pressure coe�cient (left hand side) and skin friction co-

e�cient (right hand side) for higher Reynolds numbers Rel = 300000 and Rel = 500000

respectively. The correlations are very sensitive to the inlet turbulence intensity. For a low

turbulence intensity Tu = 0.5% the separation bubble produced by the Malan and DLR

correlation is too long, while the the �ow with the Kelterer correlation undergoes bypass

transition. At a higher turbulence intensity all three correlations predict bypass transition.

Here it turns out that the Malan correlation is more sensitive to the inlet turbulence in-

tensity than the DLR correlation. All in all, the DLR correlation coupled with the k − ω
turbulence model performed best with this test case.
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Figure 6.51: T106: Pressure coe�cient (LHS) and skin friction coe�cient (RHS) comparison between dif-
ferent correlations for Rel = 300000 (LINARS)
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Figure 6.52: T106: Pressure coe�cient (LHS) and skin friction coe�cient (RHS) comparison between dif-
ferent correlations for Rel = 500000 (LINARS)

6.2.1 T106 Summary

In this test case, too, the DLR correlation coupled with the Wilcox k−ω turbulence model

performed best. The Kelterer correlation predicts a too early onset of transition and the

Malan correlation is very sensitive to the turbulent boundary conditions and gave a too

early onset of transition at higher inlet turbulence levels. The tendencies of the correlations

also hold true for this test case.
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7 Summary and Perspectives

In this work a brief introduction to turbulence and transition modelling is given at �rst.

While details of the model formulations can be found in literature, this work points out that

three empiric correlations are needed to close the γ − Reθ transition model. Correlations

found by Menter et al. [2004], Malan et al. [2009] and Kelterer et al. [2010] are tested against

each other. The CFD codes LINARS (inhouse CFD code of the Institute for Thermal

Turbomachinery and Machine Dynamics of Graz University of Technology) and TRACE

(CFD code developed by the DLR in cooperation with MTU) are used to carry out the

tests.

The main part of this work was to evaluate the results which were obtained by the LINARS

and TRACE code. Five test cases, three �at plate (T3A, T3C2, T3C4) and two cascade

test cases (T160, T106) were used to validate the di�erent models. While no code is capable

of predicting the mode, location and length of transition su�ciently over a wide range of

test cases, the codes have their strengths and weaknesses for speci�c kind of �ow problems.

The TRACE code gave insu�cient results for any �at plate test case, but showed its

strengths in the T160 cascade test case, where it corresponds perfectly to the experimental

data. This may be a consequence of its usage in industry and at universities for turbine

simulations and therefore is tuned for such cases. Also the TRACE code outperforms

the LINARS code in terms of computational e�ciency as it calculates a given number of

iterations up to three times faster than the LINARS code on a single CPU core and only

requires approximately half as many iterations to converge. Its ability to run a simulation

parallel on multiple cores makes it suitable for 3D and even unsteady simulations.

The LINARS inhouse code on the other hand is very �exible due to its ability to implement

various correlations for the transition model and link it to di�erent turbulence models. For

the T3A �at plate test, all three correlations (Kelterer correlation, DLR correlation, Malan

correlation) produced good results. The Kelterer correlation tends to start the transitional

process slightly too far upstream. Generally, we observed that the correlations coupled with

the Wilcox k − ω model produced a shorter transition zone than those coupled with the

SST Model.

The Kelterer correlation produces the best results for the T3C2 and T3C4 �at plate test

cases where the �ow undergoes bypass transition or where the �ow undergoes a separation

induced transition where only a small separation bubble is developed. This may be due

to the tendency of the Kelterer correlation to rapidly start up the production of turbu-
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lence shortly after the laminar boundary layer separates and therefore never shows a long

separation bubble.

The Malan and DLR correlations produce very similar results for a wide range of test cases.

Unlike the Kelterer correlation, they were able to predict a long separation bubble for the

T106 test case at low turbulence intensities. For high Reynolds numbers and low inlet

turbulence intensities the Malan and DLR correlation both predict a too long separation

bubble. It turns out that the Malan correlation is more sensitive to turbulent boundary

conditions than the DLR correlation, predicting an even earlier location of transition on-

set for high turbulence intensities and small mixing lengths than the Kelterer correlation

does. As the Malan and DLR correlations use the same correlations for Reθc and Flength
the sensitivity of the Malan correlation to the turbulent boundary conditions might be due

to variations in the Reθt formulation or the coupling to di�erent turbulence models, as the

Malan correlation is intended to be linked to the SST and the DLR correlation linked to

the Wilcox k − ω model.

As stated by Menter et al. [2004] and Langtry and Menter [2009] the γ − Reθ transition
model gives only a framework of how a transition model can be implemented into a modern

CFD environment, where only local variables are used. However, as shown in this work, the

correlations available yet to close the model are not suitable for a wide range of applications

and do not fully utilize the potential of the γ − Reθ transition model. Also, one must

be careful when implementing correlations to the own CFD code. As pointed out by

Kelterer et al. [2010], the correlations are in�uenced by the code which was used to �nd

the correlations and, therefore, there might be a need of adapting a correlation when it is

implemented into another code. Future work will be dedicated to re�ning the correlations

of Reθt, Reθc, and Flength by considering more test cases.



Bibliography XVII

Bibliography

Abu-Ghannam, B. J. and Shaw, R. [1980], `Natural Transition of Boundary Layer the E�ect

of Turbulent Pressure Gradient and Flow History', Journal of Mechanical Engineering

Science 22.

Dhawan, S. and Narasimha, R. [1958], `Some Properties of Boundary Layer Flow During

Transition from Laminar to Turbulent Motion', Journal of Fluids Engineering 3.

Emmons, R. [1951], `The Laminar-Turbulent Transition in Boundary Layer-Part I', Journal

of the Aeronautical Sciences 18.

Ferziger, J. H. and Peric, M. [2001], Computational Methods for Fluid Dynamics, 3rd edn,

Springer.

Hoheisel, H. [1982], `Entwicklung neuer Entwurfskonzepte für zwei Turbinengitter, Teil III,

Ergebnisse T106', Institut für Entwicklungsdynamik, Braunschweig.

Kelterer, M., Pecnik, R. and Sanz, W. [2010], Computation of Laminar-Turbulent Transi-

tion in Turbomachinery using the Correlation based γ−Reθ Transition Model, in `ASME

Turbo Expo 2009: Power for Land, Sea and Air GT2010 June 14-18, 2010, Glasgow, Scot-

land, GT2010-22207'.

Klebano�, P. S. [1955], `Characteristics of Turbulence in Boundary Layer with Zero Pressure

Gradient', NACA Technical Report 1247.

Langtry, R. and Menter, F. [2009], `Correlation-Based Transition Modeling for Unstructured

Parallelized Computational Fluid Dynamics Codes', AIAA journal 47, 12.

Malan, P., Suluksna, K. and Juntasaro, E. [2009], Calibrating the γ-re transition model for

commercial cfd, in `47th AIAA Aerospace Sciences Meeting including The New Horizons

Forum and Aerospace Exposition'.

Marciniak, V., Kügeler, E. and Franke, M. [2010], Predicting Transition on low-Pressure

Turbine Pro�les, in `V European Conference on Computational Fluid Dynamics ECCO-

MAS CFD 2010', Lisbon, Portugal.

Mayle, R. E. [1991], `The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent

Transition in Gas Turbine Engines', Journal of Turbomachinery 113(4), 509�536.



Bibliography XVIII

Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G. and Völker, S. [2004],

`A correlation-based transition model using local variables: Part i model formulation',

ASME Conference Proceedings 2004(41693), 57�67.

Pecnik, R. [2007], Transition Modelling in Thermal Turbomachinery, PhD thesis, Graz

Unversity of Technology.

Schlichting, H. and Gersten, K. [2000], Boundary-Layer Theory, 8th edn, Springer.

Schook, R., Steenhoven, A. and Dongen, M. [2000], Bypass Transition Experiments in

Subsonic Boundary Layers, PhD thesis, Technische Universiteit Eindhoven.

Staudacher, W. and Homeier, L. [2003], `Untersuchungen am Turbinengitter T160 zur

Bestimmung der Gittercharakteristik bei homogener stationärer und periodisch insta-

tionärer Zuströmung und Anfertigen von Ölanstrichbildern', Universität der Bundeswehr

München.

Steelant, J. and Dick, E. [1996], `Modelling of Bypass Transition with Conditioned Navier-

Stokes Equations coupled to an Intermittency Equation', International Journal for Nu-

merical Methods in Fluids 23.

Versteeg, H. and Malalasekra, W. [2007], An Introduction to Computational Fluid Dynam-

ics: The Finite Volume Method (2nd Edition), 2 edn, Prentice Hall.

White, F. M. [2007], Fluid Mechanics (6th International Edition), McGraw-Hill.

Wilcox, D. [2006], Turbulence modeling for CFD, DCW industries La Canada, CA.


