

Diplomarbeit

Vergleichende Formations- und Fingerprintmessungen an ein- und mehrlagigen Papieren mit verschiedenen On- und Offline-Messgeräten

Vorgelegt von Wolfgang Johann Fischer

In Zusammenarbeit mit IBS Paper Performance Group Austria GmbH

Begutachter Ao. Univ.-Prof. Dipl. Ing. Dr. techn. Rudolf Eichinger

> Betreuer Dipl. Ing. Hannes Haspel

Institut für Papier-, Zellstoff- und Fasertechnik Technische Universität Graz Kopernikusgasse 24/II 8010 Graz

Graz/Judenburg, 8. Jänner 2010

Sperrvermerk

Auf Wunsch der Firma IBS Paper Performance Group Austria ist die vorliegende Diplomarbeit für die Dauer von zwei Jahren für die öffentliche Nutzung zu sperren.

Die Veröffentlichung, Vervielfältigung und Einsichtnahme sind ohne ausdrückliche Genehmigung der Firma IBS Paper Performance Group Austria und des Verfassers bis 8. Jänner 2012 nicht gestattet.

Graz/Judenburg 08.01.2010

Unterschrift

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Ich versichere, dass ich dieses Diplomarbeitsthema bisher weder im In- noch Ausland (einem Beurteiler oder einer Beurteilerin) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

Graz/Judenburg 08.01.2010

Unterschrift

Danksagung

An dieser Stelle möchte ich all jenen Personen danken, die mich bei der Entstehung dieser Diplomarbeit unterstützt haben.

Mein Dank gilt Herrn Univ.-Prof. Dipl. Ing. Dr. Rudolf Eichinger für die engagierte Betreuung und freundliche Unterstützung, sowie den Professoren und dem gesamten Laborteam des Institutes für Papier-, Zellstoff- und Fasertechnik.

Ich bedanke mich bei der Firma IBS Paper Performance Group Austria für die Möglichkeit in ihrem Auftrag diese interessante Arbeit zu verfassen, insbesondere meinem Firmenbetreuer Herrn Dipl. Ing. Hannes Haspel, der mir im Laufe der Arbeit bei allen technischen und wissenschaftlichen Fragen zur Seite gestanden ist, Herrn Dipl. Ing. Rudolf Ruck, der mir im Rahmen dieser Arbeit Aufenthalte im Ausland ermöglicht hat und Herrn Johann Pirker, der mir in der Untersuchungsphase geholfen hat. Ich danke auch dem Schlosserteam der Firma IBS, das mich bei den technischen Adaptierungsarbeiten an der Versuchsanlage immer tatkräftig unterstützt hat. Für die Messungen mit dem Ambertec danke ich der Firma Sappi Gratkorn.

Besonders danke ich meinen Eltern, die mir das Studium ermöglicht und mich stets unterstützt haben.

Ich danke meiner Freundin und meinen Geschwistern, die mir immer den Rücken gestärkt, mich moralisch unterstützt und mich immer wieder zum Arbeiten angespornt haben. In besonderer Weise danke ich Dr. Margit Ergert die mir von Beginn an zur Seite gestanden ist.

Kurzfassung

Bis zum heutigen Tag wurde eine Vielzahl von unterschiedlichen Formationsmessgeräten entwickelt, doch konnte sich keines von diesen als Standardmethode durchsetzen. Allgemein werden zur Formationsanalyse Durchstrahlungsverfahren (Betastrahlen, sowie optische Verfahren (Durchlässigkeit Röntgenstrahlen) von sichtbarem Licht) herangezogen, wobei jedes Gerät individuelle, nicht standardisierte Indizes liefert.

Die vorliegende Arbeit vergleicht eine Vielzahl unterschiedlicher Formationsindizes von Papiermustern verschiedener Formationsmessgeräte. Im Speziellen wird auf das neue Instrument Iploner und die Möglichkeit der Fingerprintmessung einer Papiermaschine eingegangen.

Weiters wird der grundsätzlichen Frage nachgegangen, inwieweit die verschiedenen Messgeräte untereinander vergleichbar sind und welche Methode angewendet werden muss, um Korrelationen der Werte darzustellen. Dies gelang mittels Regressions- und Korrelationsanalysen. Über diese statistischen Verfahren wurde ein so genanntes Prädiktionsintervall erstellt, das letztendlich als Transformationsschlüssel für die Vergleichbarkeit von Werten verschiedener Geräte angesehen werden kann.

Abstract

Till the present day a large variety of different measurement devices has been developed, but nevertheless no standard method could have been established so far. Generally, radiation methods (beta rays, X-rays) as well as optical (visible light transmittance) are used for formation analysis, whereas each device provides individual, non-standardised indices.

This thesis compares formation indices of a wide range of paper samples obtained by using different formation measurement devices. In particular the new instrument Iploner and the possibility of measuring a fingerprint of a paper machine are examined.

Furthermore the fundamental question gets clarified, to what extent the different devices are comparable and which method is suitable to constitute correlations between the measured values. Significant results could be obtained by using regression and correlation analyses. With the help of these statistical methods, a so called prediction interval was developed, which finally can be defined as a transformation tool to compare the data of different devices.

Inhaltsverzeichnis

1		Einleitung			3
2		Der	Beg	griff Formation	6
	2	.1	Def	inition der Formation	7
	2.2 Th		The	oretische Beschreibung der Formation	7
		2.2	.1	Flockenbildung	11
		2.2	.2	Selbstvergleichmäßigungseffekt	12
		2.2	.3	Turbulenz und gerichtete Scherströmung	13
3		Sta	nd d	ler Technik	16
	3	.1	Iplo	oner (IPN Optoelectronic System)	17
		3.1	.1	Messprinzip	18
		3.1	.2	Technische Daten (Herstellerangaben)	20
	3	.2	MK	-Tester	20
	3	.3	Tec	hPap	22
		3.3	.1	Das Prinzip	22
		3.3	.2	Das Gerät	23
		3.3	.3	Bildauswertung	23
		3.3	.4	Technische Daten (Herstellerangaben)	23
	3	.4	Kaj	aani	24
		3.4	.1	Messprinzip	25
		3.4	.2	Technische Daten (Herstellerangaben)	25
	3	.5	Am	bertec	26
		3.5	.1	Technische Daten (Herstellerangaben)	27
	3	.6	Am	bertec versus optische Formationsmessgeräte	28
4		Iplo	oner	- Funktion und Analysen	29
	4	.1	Ver	suchsanlage	29
	4	.2	Stä	rken und Schwächen des Iploner	35
		4.2	.1	Einfluss der Platte(n)	35
		4.2	.2	Einfluss der Geschwindigkeit	41
		4.2	.3	Messung bei Lichteinfluss und Abdunkelung	43
		4.2	.4	Einfluss von Erschütterungen	45

	4.2.5	Einfluss des Flatterns	46
	4.2.6	Einfluss warmer Luft	48
4.2.7		Grenzen des Iploner	50
4.2.8		Einfluss der Asche (Füllstoffe)	52
	4.2.9	Einfluss der Feuchtigkeit	55
	4.2.10	Messung der Formation von gefärbten Papieren	58
	4.2.11	Vergleich von PM- und Labormessungen	60
4	.3 Fin	gerprint einer Papiermaschine	60
4	.4 For	mationsmessungen in der Siebpartie	62
4	.5 Ver	gleich verschiedener Formationsmessgeräte	62
	4.5.1	Der Begriff Regressionsanalyse	63
4.5.2		Der Begriff Korrelationsanalyse	65
4.5.3		Ergebnisse der Untersuchung	68
	4.5.4	Berechnung	75
	4.5.5	Anwendungsbeispiel	77
5	Schlus	sfolgerung und Ausblick	82
6	Literat	urverzeichnis	85
7	Abbildungs- und Tabellenverzeichnis8'		
8	8 Anhang		
9 Abkürzungsverzeichnis			144

1 EINLEITUNG

Bis zum heutigen Tag gibt es keine allgemein gültige Definition des Begriffes Formation.

Zwar finden sich verschiedene Bezeichnungen (ISO-Definition oder Definition nach Dodson), die mehr oder weniger auf die Normung des Begriffes Formation abzielen, unter Papiermachern sind jedoch Begriffe wie "Durchsicht" oder "Variation der Massenverteilung im kleinen Maßstab" ebenso gebräuchlich. Vielfältig wie die Begrifflichkeit ist die Palette an Formationsmessgeräten. Auch ihnen fehlt naturgemäß ebenso eine einheitliche Basis bezogen auf die Messgröße und damit eine objektive Vergleichbarkeit der Messdaten. Jedes Gerät verfügt über einen individuellen Formationsindex, welcher vom jeweiligen Hersteller definiert ist. In der Praxis ist man daher oftmals mit Ergebnissen verschiedener Formationsmessgeräte konfrontiert. Die Einschätzung dieser Daten unterliegt im Wesentlichen der eigenen Erfahrung und einer gehörigen Portion Bauchgefühl.

Aus dieser unbefriedigenden Situation heraus stellte sich die Frage, inwieweit gängige Formationsmessgeräte bzw. gängige Formationsmessmethoden in objektiver Weise überhaupt miteinander vergleichbar sind: Gibt es eine Möglichkeit, verschiedene Indizes durch eine qualitative Methode vergleichbar zu machen und sind Korrelationen feststellbar?

Formation ist als Papiereigenschaft ein essentielles Element, mit dem der Papiermacher ständig konfrontiert wird. Wesentliche Papiereigenschaften wie zum Beispiel Bedruckbarkeit oder Verdruckbarkeit werden von der Formation beeinflusst: Eine klare Darstellung des Drucks ist ebenso von der Formation abhängig wie die Aufbringung eines gleichmäßigen Striches. Formation ist in Produktion und Weiterverarbeitung von Papier grundsätzlich immer ein wichtiges und aktuelles Thema. Hersteller und Kunden sind gleichermaßen daran interessiert, dass Papier an jeder Stelle die gleichen Eigenschaften aufweist und so gleichmäßig wie möglich ist. Es wird ständig daran gearbeitet, die Formation zu verbessern. Um dies zu erreichen, müssen auch am Sektor der Formationsmessung fortwährend Optimierungen vorgenommen werden. Dies betrifft sowohl die Entwicklung immer besserer, höher auflösender Messgeräte als auch verlässlichere Verfahren zur Datenanalyse.

Zur Verbesserung der Formation liefern Entwässerungselemente einen wesentlichen Beitrag. Die IBS Paper Performance Group Austria in ist einer der führenden Hersteller Teufenbach solcher Entwässerungselemente. Immer wieder ist die Firma mit Kundenanfragen zu einer möglichen Verbesserung der Formation ihrer Papiersorten und unterschiedlichsten damit einhergehend mit Formationsindizes konfrontiert. Die IBS ist daher in höchstem Maße an objektiven Verfahren interessiert, die rasche und verlässliche Umrechnung verschiedener Daten zulassen. Außerdem ist die Firma auch im Bereich Technical Support diesem Zusammenhang müssen tätig. In häufig Messungen an Papiermaschinen vorgenommen werden, um Optimierungen in der Produktion zu erreichen. Ein neues Messgerät, der Iploner von Bumtechno dient dabei als Trouble Shooting Tool zur Lokalisierung von Störfaktoren verschiedenen diversen in den Bereichen einer Papiermaschine. Der Iploner weist jedoch noch eine weitere Besonderheit auf, nämlich seine Einsetzbarkeit als Formationsmessgerät.

Die IBS Paper Performance Group stellte im Rahmen dieser Arbeit die Aufgabe, die Stärken und Schwächen des Iploner zu untersuchen, sämtliche offenen Fragen im Zusammenhang mit den Supportanforderungen zu beantworten, um so eine weltweite Markteinführung vorzubereiten.

Ziel dieser Arbeit ist es daher – nach einer allgemeinen Einführung des Begriffes Formation – einen Überblick über die in Österreich aktuell verwendeten Formationsmessgeräte zu geben. In einem weiteren Abschnitt soll der Iploner in seinen Stärken und Schwächen definiert werden. Die von der Firma IBS in der Aufgabenstellung geforderte Untersuchung des Nachweises des Fingerprints und die Feasabilitätsstudie zu Formationsmessung in der Siebpartie soll in der Folge behandelt werden. Der Vergleich der verschiedenen Formationsmessgeräte im Hinblick auf mögliche Korrelation ihrer Formationsindizes bildet den Hauptbereich der wissenschaftlichen Untersuchungen. Hier soll herausgefunden werden, ob anhand von statistischen Prozeduren ein für die Praxis zuverlässiges Verfahren entwickelt werden kann, das eine Umrechnung von Index A in Index B erlaubt und somit auch eine Prädiktion für zu erwartende Formationswerte.

Methodisch soll in der Weise vorgegangen werden, dass zunächst in erster Linie Kontakt mit dem Iploner-Hersteller Bumtechno aufgenommen wird, um sich über den aktuellen Stand der Gerätetechnik bzw. der Software zu informieren. Damit will man bereits obsolete Testreihen vermeiden.

Anschließend wird die für die Durchführung der Versuche notwendige Anlage in ihrem Aufbau und ihrer Funktionsweise genau beschrieben. Sie soll die bestmögliche Simulation einer Maschinenmessung ermöglichen.

Besonders interessant für die Ermittlung möglicher Korrelationen sowie für die Umrechnung der Formationsindizes ist die Wahl eines adäquaten Analyse- und Berechnungsverfahrens. Die Umsetzbarkeit für die Praxis soll letzten Endes möglichst pragmatisch und einfach handhabbar gemacht werden, um sowohl für den Technical Support als auch für Optimierungen in der Produktion konkrete Umrechnungsrichtlinien zu bieten.

2 DER BEGRIFF FORMATION

Der Wertstoff Papier besteht nicht nur aus Fasern allein, sondern enthält noch weitere Bestandteile. Diese sind:

- mineralische Füllstoffe
- Feinstoffe
- Faserfragmente und
- chemische Zusätze wie zum Beispiel Retentions- und Bindemittel

All diese Inhaltsstoffe setzen sich während des Blattbildungsvorganges stochastisch ab. Aus der sich ergebenden ungleichmäßigen Verteilung der Partikel resultiert schlussendlich die Formation. Um etwas genauer zu sein, versteht man unter Formation die örtliche Schwankung der flächenbezogenen Masse von Papier.

Die uneinheitliche Struktur von Papier ist bereits mit bloßem Auge erkennbar. Erklärt wird diese Uneinheitlichkeit, die sich auch als Variabilität des Flächengewichtes definiert, einerseits durch die Verteilung der Einzelfasern und andererseits durch die Flockenbildung, die Faserinteraktionen sowie durch die hydrodynamischen Kräfte während der Blattbildung. Ein wesentlicher Punkt dabei ist, dass durch die Flockenbildung die Schwankungen der flächenbezogenen Masse noch weiter verstärkt werden. Um der Flockenbildung entgegen zu wirken bzw. um diese zu verringern, wird gezielt Turbulenz eingebracht. Mittels Turbulenz werden Flocken zerstört. Weiters kann durch den so genannten Selbstvergleichmäßigungseffekt ("hydrodynamic smoothing") die Gleichmäßigkeit des Papierblattes verbessert werden.

Der Grund, warum der Schwankung der flächenbezogenen Masse (Formation) große Beachtung geschenkt wird, liegt darin, dass durch sie wesentliche Papiereigenschaften beeinflusst werden. Als Beispiele für solche Eigenschaften seien die Bruchfestigkeit und das Cockling (Blasigkeit + Welligkeit) genannt. Farbe und Weiße von Papier sind wiederum unabhängig von der Formation.¹

2.1 Definition der Formation

Der Begriff Formation wird als die Variation der Massenverteilung in kleinem Maßstab innerhalb der Blattebene definiert. Anders ausgedrückt versteht man darunter, wie gleichmäßig die Fasern verteilt sind. Oftmals wird Formation auch als die "Durchsicht von Papier" bezeichnet. Traditionell wird Formation als der optische Eindruck, welchen man bei der Betrachtung eines Blattes im Durchlicht erhält, definiert. Diese Untersuchung wird als Durchsicht bezeichnet.

Als weitere Bezeichnungen wären noch: "Massenformation", "Massenverteilung" oder "Verteilung der Massendichte" anzuführen.

Formation ist wohl eine der wesentlichsten Eigenschaften von Papier, welche von der Art des Stoffeintrags, der Stoffzusammensetzung, den Eigenschaften der Papiermaschine und den Parametern der Papierherstellung abhängig ist und ihrerseits weitere Papiereigenschaften wie Festigkeit, Verdruckbarkeit oder Bedruckbarkeit beeinflusst.²

2.2 Theoretische Beschreibung der Formation

Am besten kann Formation durch die Parameter

- $\sigma_b \Rightarrow$ Standardabweichung der flächenbezogenen Masse und
- $f_N \Rightarrow$ spezifische Formation

beschrieben werden. Anders ausgedrückt versteht man unter der spezifischen Formation die "normalisierte Standardabweichung der flächenbezogenen Masse". Diese kann durch folgende Gleichung beschrieben werden:

¹ Vgl. Niskanen, 1998, Kapitel 1.3

² Vgl. Niskanen, 1998, Kapitel 1.3.1

$$f_N = \frac{\sigma_b}{\sqrt{b}} \left[\sqrt{\frac{g}{m^2}} \right]$$

Gleichung 1

wobei **b** die durchschnittliche flächenbezogene Masse ist.

Neben diesen beiden Werten ist auch der Variationskoeffizient der flächenbezogenen Masse **COV(b)** ein weiterer nützlicher Parameter. Er wird wie folgt definiert:³

$$COV(b) = \frac{\sigma_b}{b}$$

Gleichung 2

Die Formation hat aber auch räumliche Eigenschaften: die Wolkigkeit der Formation und die Größe der Flocken. Der so genannte "length scale" ist dabei die wichtigste dieser Eigenschaften. Beschrieben wird er durch den *"microscale*" und den spezifischen Umfang (*"specific perimeter"*)⁴. Der *"specific perimeter"* ist definiert als das Verhältnis der Summe aller Umfänge der Flocken zur gesamten untersuchten Fläche.⁵

Definiert werden diese beiden Werte durch die beiden Gleichungen:

Specific perimeter =
$$\sum_{i} \frac{P_i}{L^2}$$

Gleichung 3

 $Microscale = average of l_i$

Gleichung 4

Die folgende Abbildung liefert eine anschauliche Darstellung der Begriffe "microscale" und "specific perimeter".

³ Vgl. Niskanen, 1998

⁴ Vgl. Eichinger, 2005, Folie 135

⁵ Vgl. Laleg, Nguyen, 1995, S. 356

Abb. 2-1 Microscale und specific perimeter

Mit Hilfe der Theorie von Corte und Kallmes lässt sich die Formation eines zufällig verteilten Fasernetzwerkes beschreiben. Grundvoraussetzung hierfür ist die Annahme, dass freie Entwässerung vorliegt, wobei sich jede Faser zufällig und unabhängig von anderen Fasern absetzen kann. Dies wird jedoch im Realfall niemals zutreffen.

Die Faseranzahl N in einer Fläche A errechnet sich für eine bestimmte flächenbezogene Masse b nach folgender Gleichung:

$$N = \frac{b \cdot A}{l_f \cdot \omega_f}$$

Gleichung 5

- N Anzahl der Fasernb flächenbezogene Masse
- **l**_f mittlere Faserlänge
- *ω*f längenbezogene Masse [g/m]

Die spezifische Formation \mathbf{f}_{N} kann durch folgende Beziehung beschrieben werden:

$$f_{N} = \frac{\sigma_{b}}{\sqrt{b}} = \frac{\sqrt{N} \cdot m_{f} \cdot \sqrt{A}}{A \cdot \sqrt{N} \cdot \sqrt{m_{f}}} \implies f_{N} = \frac{\sigma_{b}}{\sqrt{b}} = \sqrt{\frac{m_{f}}{A}}$$

Gleichung 6

m_f mittlere Fasermasse

A Fläche

σ_b Standardabweichung der flächenbezogenen Masse

Anhand der Gleichung 6 wird ersichtlich, dass die spezifische Formation eines zufällig verteilten Fasernetzwerkes lediglich von der mittleren Fasermasse bestimmt wird. Veranschaulichen lässt sich dieser Einfluss anhand von Laborblättern, jedoch nur solange die Stoffdichte niedrig genug ist, um die Bildung von Flocken ausschließen zu können.

Abb. 2-2 Spezifische Formation f_N über mittlere Fasermasse m_f

Allerdings wurde bei dieser theoretischen Beschreibung der Formation angenommen, dass alle Fasern dieselbe Masse und Länge besitzen und das Blatt isotrop ist. Dies gilt jedoch ausschließlich im theoretischen Fall. Eine Übereinstimmung von theoretischer und tatsächlicher Formation wird niemals vorliegen⁶. Dies ist auf folgende Mechanismen zurückzuführen, die während der realen Blattbildung vorherrschen und in der Theorie nicht berücksichtigt werden⁷:

- Flockenbildung
- Selbstvergleichmäßigungseffekt (hydrodynamic smoothing)
- Turbulenz / gerichtete Scherströmung

Im folgenden Abschnitt sollen diese Begriffe sowie deren Auswirkung auf die Formation kurz beschrieben werden.

⁶ Vgl. Niskanen, 1998, Kapitel 1.3.2

⁷ Vgl. Eichinger, 2005, Folie 140

2.2.1 Flockenbildung

Unter dem Begriff Flocken wird der Zusammenschluss von Fasern verstanden. Flockenbildung ist der Hauptfaktor für schlechte Formation. Es gilt: Je größer die Flocken, desto schlechter die Formation, je höher die Konzentration, desto mehr und desto größere Flocken⁸. Starke Flockung führt zu Wolkigkeit, das heißt ungleichmäßiger Dichteverteilung.

Um ein besseres Verständnis hierfür zu bekommen, werden Flocken verschiedenster Fasern als Grundbestandteile von Papier betrachtet. Errechnet wird die Standardabweichung der flächenbezogenen Masse proportional zur Quadratwurzel der Masseneinheit. Aus diesem Grund nimmt σ_b mit der Flockenbildung, welche als $\sqrt{n_f}$ definiert ist, zu. Wichtig ist hierbei zu erwähnen, dass unter n_f die mittlere Anzahl der Fasern in einer Flocke zu verstehen ist. Nach Dodson kann diese mittlere Faseranzahl nach folgender Beziehung abgeschätzt werden⁹:

$$\boldsymbol{n}_{f} \approx \left(\frac{\boldsymbol{\sigma}_{b,measured}}{\boldsymbol{\sigma}_{b,random}}\right)^{2}$$

Gleichung 7

Gültig ist diese Annahme bei der Verwendung eines Messfensters der Größe

$A \approx l_f^2$

Gleichung 8

Unmittelbaren Einfluss auf die Flockenbildung in der Suspension hat die Stoffdichte c, angegeben in **[kg/m³]**. Während bei hoher Stoffdichte eine intensive Flockenbildung stattfindet, ist sie bei niedriger gering. Begründet wird dies dadurch, dass bei höherer Stoffkonzentration - durch die

⁸ Vgl. Eichinger, 2005, Folie 141

⁹ Vgl. Niskanen, 1998, Kapitel 1.3.3

größere Nähe der Fasern zueinander - Flockenbildung begünstigt wird und somit die Wahrscheinlichkeit von Faserkollisionen ansteigt.

Nach Kerekes und Schell (1992) kann für den Einfluss der Stoffdichte auf die Formation die so genannte *Crowdingzahl* für eine dimensionslose Abschätzung herangezogen werden. Diese Zahl wird durch nachstehende Gleichung beschrieben:

$$n_{crowd} = \frac{\pi \cdot c \cdot l_f^{2}}{6 \cdot \omega_f}$$

Gleichung 9

Mit Hilfe von n_{crowd} wird angegeben, wie viele Fasern sich innerhalb eines Wirkungskreises, dessen Durchmesser der Faserlänge l_f entspricht, befinden. Während große Werte auf schlechte Formation hinweisen, entsprechen kleinere guter Formation. Gemäß Kerekes und Schell liegt der Grenzwert der Flockenbildung bei einem Wert von n_{crowd} = 60. Zum Beispiel ist dies bei 2 mm langen Fasern der Masse 0,2 mg/m bei einer Stoffdichte von $c = 5 \text{ kg/m}^3$ bzw. einer Massenkonzentration von 0,5 % der Fall.¹⁰

2.2.2 Selbstvergleichmäßigungseffekt

Aufgrund des Suspensionsflusses während der Entwässerung kann die Formation der Papierbahn verbessert werden. Auf diese Tatsache stützt sich das so genannte "hydrodynamic smoothing". Die Durchflussmenge durch die bereits gebildete Fasermatte ist immer dort am größten, wo der Strömungswiderstand am geringsten ist, d.h. die Suspension geht den Weg des geringsten Widerstandes¹¹. Aufgrund dieses Stoffverhaltens gelangen Fasern stets an jene Stellen, an denen die flächenbezogene Masse ein Minimum aufweist. Eine weitere Folge dieses Verhaltens ist, dass Fasern gleichmäßiger verteilt werden.

¹⁰ Vgl. Niskanen, 1998, Kapitel 1.3.3

¹¹ Vgl. Bauer, 2008, Folie 15

Bezeichnet wird dieser Mechanismus als so genannter *Selbstvergleichmäßigungseffekt.* Auf ihn ist auch die bessere Formation von Laborblättern gegenüber vollkommen zufälligen Fasernetzwerken zurückzuführen.¹²

2.2.3 Turbulenz und gerichtete Scherströmung

Von großer Bedeutung für die Formation ist Turbulenz im Bereich des Stoffauflaufes und der Siebpartie, da durch diese - in entsprechender Größe eingebracht - Flocken zerstört werden¹³. Allerdings darf der Begriff Turbulenz nicht im Reynold`schen Sinne verstanden werden.

Turbulenz spielt an Papiermaschinen aufgrund der vorhandenen Stoffdichten eine wichtige Rolle. Entlang der Siebpartie – innerhalb einer Papiermaschine - nimmt die Konsistenz ständig zu. Ohne Turbulenz würden sich nun ungehindert Flocken ausbilden, welche sich wiederum nachteilig auf die Formation auswirken können. Besonders wichtig ist die Einbringung von Turbulenz im Bereich der Blattbildung. Sie kann unter anderem in der Siebpartie durch Einstellung der Entwässerungselemente gesteuert werden.

Während auf Langsiebmaschinen die erreichbaren Formationsverbesserungen gering sind, liegen diese bei Hybrid- und Gapformern wesentlich höher.

¹² Vgl. Niskanen, 1998, Kapitel 1.3.3

¹³ Vgl. Eichinger, 2005, Folie 143

Neben Turbulenz spielt auch der Geschwindigkeitsunterschied zwischen Strahl und Sieb eine wesentliche Rolle. Aufgrund dieses Unterschiedes wird in der Faserstoffsuspension ein Scherfeld gebildet, durch welches wiederum Flocken zerstört werden. Zusätzlich wird dadurch weitere Turbulenz eingebracht.

Bei Langsiebmaschinen und Hybridformern liegt die beste Formation oftmals bei einem Geschwindigkeitsunterschied von Null bzw. nahe Null vor. Bei Gapformern können die Unterschiede größer sein.

Abb. 2-4 Einfluss des Sieb/Strahl-Verhältnisses auf die Formation beim Gapformer (Optimum der Formation bei größeren Geschwindigkeitsunterschieden; niedrige Werte kennzeichnen bessere Formation)

Abb. 2-5 Einfluss des Sieb/Strahl-Verhältnisses bei Hybridformer (beste Formation oft bei Geschwindigkeitsunterschieden gleich 0 bzw. nahe 0; niedrige Werte kennzeichnen bessere Formation)

Der Geschwindigkeitsunterschied lässt sich dadurch einstellen, dass man die Sieb- bzw. die Strahlgeschwindigkeit verändert. Bei festgelegter Produktionsrate und festgelegter flächenbezogener Masse kann die Strahlgeschwindigkeit ausschließlich durch eine Veränderung der Lippenöffnung oder der Stoffauflaufmenge geändert werden. Der Unterschied hierbei liegt im vorhandenen Turbulenzniveau im Bereich des Stoffauflaufes.

Allgemein gilt jedoch, dass bei zu großen Geschwindigkeitsunterschieden schlechte Formation vorliegt. Das ist vermutlich darauf zurückzuführen, dass die vorhandenen Scherkräfte zwischen Sieb und Stoffsuspension so groß werden, dass die bereits gebildete Fasermatte wieder bricht. Bestätigt wird dies durch die sich verschlechternde Bruchfestigkeit bei großen Geschwindigkeitsunterschieden.¹⁴

¹⁴ Vgl. Niskanen, 1998, Kapitel 1.3.3

3 STAND DER TECHNIK

Papiermacher sind an der Formation nicht als Papiereigenschaft an sich interessiert, sondern daran, dass Formation wichtige Eigenschaften der zu produzierenden Papiersorte beeinflusst.

Da die Formation eine der wenigen Papiereigenschaften ist, welche visuell bewertet werden kann, vertrauten Papiermacher lange Zeit auf diese optische Bewertung, um die Qualität ihrer Produkte abzuschätzen. Bis heute wurden die verschiedensten Formationsmessgeräte entwickelt, doch konnte sich keines von diesen als Standard durchsetzen.

Die Bestimmung der Formation erfordert eine Quantifizierung der Schwankungen der Masseverteilung innerhalb des Papiers in einem Hierzu ein Abbild zweistufigen Prozess. muss der örtlichen flächenbezogenen Masse des Papiers analysiert werden. Um diese Abbildung zu erhalten, verwendet man Durchstrahlungsverfahren (Betastrahlen, Röntgenstrahlen). Diese Verfahren sind jedoch zeitaufwendig, teuer und schwierig zu handhaben. Folglich nutzen kommerzielle Formationsmessgeräte (Kajaani, M/K usw.) eher die Durchlässigkeit des Papiers für sichtbares und unsichtbares Licht als die Radiographie. Damit liefern diese Instrumente allerdings eher ein Abbild der örtlichen Opazität, als das der örtlichen flächenbezogenen Masse. Diese - auf der Opazität basierende - Bestimmung der Formation wird oft auch als "optische Formation" bezeichnet.

Das Verhältnis zwischen der lokalen Opazität und der lokalen flächenbezogenen Masse ist von den optischen Eigenschaften des Papiers abhängig. Instrumente, welche auf der Durchlässigkeit von sichtbarem Licht basieren, sind daher für gefärbte Papiere, Papiere mit einem hohen Anteil an anorganischen Füll- oder Feinstoffen, stark kalandrierte sowie gestrichene Papiere (abhängig von der Zusammensetzung der Strichfarbe) aufgrund ihrer Lichtstreuungseigenschaften ungeeignet. Die meisten Formationsmessgeräte lösen die Daten der Abbildung der örtlichen Opazität in eine einzelne Zahl auf, zum Beispiel in den Variationskoeffizienten. Diese unausgereifte Vorgehensweise kann jedoch nicht die Komplexität der Struktur eines Papierblattes beschreiben, da wichtige Informationen verloren gehen. Eine einzelne Zahl als Formationsindex, wie etwa der Variationskoeffizient, ist zu einfach, um die Formation auf eine realistische und brauchbare Art zu beschreiben.¹⁵

Im folgenden Abschnitt werden nun einige Formationsmessgeräte, vorgestellt und miteinander verglichen.

Iploner MK-Tester TechPap Kajaani Ambertec

3.1 Iploner (IPN Optoelectronic System)

Der Iploner wurde einerseits zur Formationsmessung und andererseits zur Qualitätsbewertung einer Papierbahn entwickelt. Dieses Messgerät dient weiters auch zur Optimierung der Papiermaschine und der Fehlersuche.

Abb. 3-1 Iploner

¹⁵ Vgl. Bernié, 2004, S. 5ff

Mit dem Iploner können folgende Operationen durchgeführt werden:

- langfristige Online-Formationsmessungen
- Analyse von Qualitätsänderungen
- Beurteilung der Einflüsse von verschiedenen Betriebsparametern der Papiermaschinen auf die Papierbahnqualität (Optimierung des Betriebes der Papiermaschine)
- Vergleich der Qualität verschiedener Papiersorten hinsichtlich der Formation
- Ermittlung von Ungleichmäßigkeiten (Online) der Dicke und der flächenbezogenen Masse der Papierbahn in Maschinenrichtung sowie Feststellung der Ursachen dieser Unregelmäßigkeiten

3.1.1 Messprinzip

Der Sender projiziert ein Lichtbündel normal auf die Oberfläche der Papierbahn, wodurch auf dieser ein Lichtpunkt mit einem Durchmesser von 1,8mm entsteht. Der Strahlungsfluss, der durch die Papierbahn tritt und somit dessen optische Dichte abtastet, wird im gegenüberliegenden Fotodetektor empfangen. Dieser Detektor leitet das Signal zur anschließenden Analyse weiter. Die spezielle Konstruktion des Senders und des Detektors erlaubt ein mögliches Flattern der Papierbahn innerhalb Bereiches 8mm ohne Auswirkung auf das eines von Messergebnis.

Als Lichtquelle dient ein Infrarot LED mit einem schmalen Spektralband, welches dem Frequenzbereich von Wasser entspricht. Auf diese Weise wird der Einfluss des unregelmäßigen Feuchtigkeitsgehalts der Papierbahn auf die Messgenauigkeit nahezu beseitigt, und somit werden ausschließlich Struktureigenschaften sowie Änderungen der Dicke der Papierbahn analysiert.

Um den Einfluss von möglichen Störsignalen zu vermeiden, wird das LED-Signal mit einer Frequenz, die zugleich als Trägerfrequenz für Messinformation dient, moduliert. Weiters ist der Kanal für die Fotoerkennung mit einem Lichtfilter ausgestattet, der eine Selektion des Strahlungsflusses im Spektralbereich sicherstellt.

Die Verarbeitung und Selektion der Messinformation basiert auf einer Schmalbandfilterung der Trägerfrequenz, welche vom Fotodetektor wird. erkennt empfangen Diese automatisch Normalisierungen hinsichtlich des Mittelwertes entsprechend der Dicke und der Dichte von Papier, weiters erfolgt eine Analogdigitalumwandlung. Die Online-Datenanalyse ermöglicht dem System eine Darstellung des Graphen, welcher auf den empfangenen Messdaten basiert und proportional zu den momentanen Werten der optischen Dichte von Papier, der mittleren quadratischen Abweichung (RMS) und dem räumlich-zeitlichen Spektrum ist. Die Wiederholfrequenz der Messinformation (Zeit: Intervall, in dem Daten analysiert werden) und die Auflösung der Frequenz (Anzahl der Punkte innerhalb eines bestimmten Intervalls) werden vom Bediener festgelegt.

Der Iploner gestattet durch die Auflösung der Frequenz die Bildung eines Wertes Δf , welcher für die Analyse und Berechnung der Signalspektren im Bereich von 0,01 Hz bis 30 kHz dient. Er erlaubt die Darstellung der Bandbreite innerhalb des festgelegten Frequenzbereiches sowie die Einstellung der erforderlichen Anzahl der Spektrumsmittelungen innerhalb von N Perioden der sich wiederholenden Informationszyklen (N = 1-50). Die Dauer der Periode Tp wird entsprechend dem folgenden Verhältnis gewählt:

$$Tp = \frac{1}{N}$$

Gleichung 10

Die Gesamtperiode der Messwiederholung ist definiert als:

$$T = Tp \cdot N$$

Gleichung 11

Die Mittelung der Spektren ermöglicht eine Steigerung der Zuverlässigkeit der stationären harmonischen Komponenten des Signals um bis zu N1/2 Mal.

Aufgrund der oben genannten Eigenschaften kann der Iploner zusammen mit renommierten Diagnosewerkzeugen eingesetzt werden. Auf diese Weise kann die Abstimmung einer Papiermaschine optimiert und die Qualität des zu produzierenden Papiers gesteigert werden. Weiters ist der Iploner auch noch bei der Fehlerbehebung äußerst hilfreich.¹⁶

3.1.2 Technische Daten (Herstellerangaben)

Der Iploner kann sowohl weiße als auch braune Papiere ohne Pigmentfärbung in einem Flächengewichtsbereich von 30 bis 200g/m², bei Maschinengeschwindigkeiten von 50 bis 2000m/min, vermessen. Der maximale Abstand vom Rand der Papierbahn liegt bei 40cm. Der Durchmesser des Messpunktes beträgt 1,8mm.

3.2 MK-Tester

Abb. 3-2 MK-Tester

Der M/K Systems Inc. Microformation Tester misst die örtlichen Schwankungen der optischen Dichte eines Blattes auf eine Art, welche sehr gut mit den Punkt-zu-Punkt- Abweichungen der flächenbezogenen Masse korrelieren.

¹⁶ Vgl. BumTechno: Iploner Handbuch

Das Messgerät besteht aus zwei Komponenten, einem Scanner und einem elektronischen Bediengerät. Die zu untersuchende Probe wird auf der Pyrextrommel im Scanner befestigt. Das Blatt wird durch ein auf der Längsachse montiertes verstellbares Weißlicht (Lampe) beleuchtet. Während die Trommel rotiert, fährt diese Lampe axial über die Probe. Eine auf der Außenseite der Trommel montierte Fotozelle bewegt sich dabei zusammen mit der Lichtquelle. Durch eine Blende mit kleinem Durchmesser, die sich direkt vor der Fotozelle befindet, wird die Fläche festgelegt, die pro Messung untersucht wird.

Während des Scanvorganges werden bis zu 100.000 Datenpunkte gesammelt und im Datenspeicher in bis zu 64 Klassen abgespeichert. Der Unterschied der optischen Dichte zwischen benachbarten Klassen liegt ungefähr bei 1%. Durch Justierung der Lichtstärke wird sichergestellt, dass alle Arten von Papier untersucht werden können. Am Ende des Scanvorganges ist im Speicher ein Histogramm vorhanden, welches die Anzahl der Datenpunkte jeder Dichteklasse widerspiegelt. Drei Merkmale des Histogramms werden digital angezeigt oder ausgedruckt. Der erste Parameter ist der so genannte *"Peak Height"*, d.h. die größte Anzahl von Datenpunkten in irgendeiner Klasse. Der zweite vermittelt die Anzahl der benachbarten Klassen mit mindestens 100 Datenpunkten.

Die Gleichmäßigkeit des Blattes, d.h. seine Formation, wird wie folgt definiert:

Formation sin dex = $\frac{PeakHeight}{Anzahl der Klassen}$

Je gleichmäßiger das Blatt ist, umso größer ist der "Peak Height". Je kleiner die Anzahl der Flächengewichtsklassen, umso besser der Formationsindex und je flockiger ein Blatt, desto niedriger ist der Index. Weiters wurde festgestellt, dass der Formationsindex generell sehr gut mit den visuellen Betrachtungen korreliert.¹⁷

Gleichung 12 Berechnung des Formationsindex des MK-Testers

¹⁷ Vgl. MK Systems Inc., 1982

3.3 TechPap

Abb. 3-3 TechPap

3.3.1 Das Prinzip

Eine CCD-Kamera macht Durchlichtaufnahmen einer Probe, die auf der Rückseite mit einem Stroboskop beleuchtet wird. Die Intensität des Lichtes wird dabei reguliert, um stets die gleiche durchschnittliche Graustufe eines Bildes zu erhalten. Dadurch ist es möglich, die Formation von Papierproben mit verschiedenen flächenbezogenen Massen oder unterschiedlicher Opazität zu vergleichen.

Mit diesem Messgerät lässt sich ein sehr weiter Bereich der flächenbezogenen Masse von 5 g/m² Tissue, Druck-, Schreibpapier, bis hin zu Testliner abdecken. Bei reinem Karton und ungefärbtem Stoff können Messungen sogar bis über $600g/m^2$ durchgeführt werden.

Das Bild wird durch einen integrierten Computer ausgewertet, und das Ergebnis wird auf dem Bildschirm dargestellt.

3.3.2 Das Gerät

Das Gerät ist für stabilen und kontinuierlichen Gebrauch ausgelegt. Es gibt zwei Arten der Probenaufnahme:

- mit Milchglas für Feinpapiere bis 50g/m²
- mit normalem Glas für mittlere bis schwere Papiere und Kartonsorten

3.3.3 Bildauswertung

Bei der Verwendung von zusätzlicher Software, wie z.B. Photoshop, kann das Bild der Papierprobe schattiert werden. So werden die größeren Flocken betont, und man kann sie leichter sehen. Nadellöcher oder Schwachstellen in der Probe können durch eine Bearbeitung des Bildes einfach identifiziert werden. Auf der Oberseite des Bildes sind zusätzlich auch noch der Formationsindex mit den sechs Größenklassen sowie die Anisotropie der durchschnittlichen Flocke angegeben.¹⁸

3.3.4 Technische Daten (Herstellerangaben)

Messmethode	B&W CCD Kamera			
Messfläche	120 x 120mm			
Messfrequenz	2 Bilder pro Sekunde			
Flächenbezogene Masse	5 bis 700g/m ²			
(die flächenbezogene Masse ist auch von der Opazität abhängig)				
Auflösung	250µm			
Abweichung der Reproduzierbarkeit	< 1%			

¹⁸ Vgl. Techpap Inc

3.4 Kajaani

Das Kajaani-Formationsmessgerät ist eine vollautomatische optische Vorrichtung, welche die Formation des Papiers misst.

Die Gleichmäßigkeit des Papiers wird festgestellt, indem man die Variation des Gradienten der Intensität des Lichtes misst, das durch das Papier transmittiert. Mit diesem Messgerät können sowohl Proben in MD und CD gemessen werden, um Abweichungen der flächenbezogenen Masse und folglich der Formation zu erfassen. Solche Abweichungen können durch Längs-, Quer- oder zufällige Schwankungen (z.B. Schleim auf Papier) auftreten.

Es ist möglich, eine Schrittlänge zwischen 5 und 1000cm auszuwählen. Die Probengröße, welche in einer Messung analysiert wird, liegt im Bereich von 47mm x 77mm. Die Dauer einer Messung liegt annähernd im Bereich von einer Minute. Das Messgerät druckt den jeweiligen Bericht nach jeder Messung oder Probe automatisch aus.

Der Report-Mode wird im Hauptmenü mittels der Pfeiltasten der Tatstatur ausgewählt.

- INDEX Formationsindex und Histogrammabweichung (HstDev.).
 Auch die Minima und Maxima sowie der Mittelwert des Formationsindex werden angegeben.
- HISTOGRAMM Histogramm und Formationsindex
- FLOCKEN & LEERSTELLEN Flocken- und Leerstellenanalyse

Verschiedene Kombinationen des Hauptberichtes sind verfügbar. Alle Berichte enthalten außerdem noch folgende Daten:

- Nummer der Messposition
- Gesamtzahl der Tests
- Abstand zwischen den Messungen

3.4.1 Messprinzip

Die CCD Kamera des Messgerätes erfasst eine 47mm x 77mm große Abbildung der Probe, teilt diese in 480 x 512 Pixel und speichert sie dann. Jedes Pixel wird anschließend in 256 diskrete Graustufen aufgelöst. Der Computer kalkuliert statistisch ein Histogramm und den Formationsindex der gemessenen Probe. Hard- und Software kompensieren automatisch Unterschiede in der Papierdichte. Vor jeder neuen Probe wird die durchschnittliche Intensität des Durchlichts auf Graustufe 128 eingestellt, indem die Lichtstärke der Lampe verändert wird.

Um Intensitätsveränderungen durch die Lampenalterung zu kompensieren, kalibriert sich das Messgerät während des Hochfahrens automatisch. Eine Stunde nach dem Hochfahren führt es eine Autokalibrierung durch und eine weitere nach 5 Stunden. Danach findet alle 8 Stunden eine Autokalibrierung statt. Der Formationsindex liegt im Größenordnungsbereich von 20-122,4 - wobei ein höherer Wert eine bessere, gleichmäßigere Formation bezeichnet.

Das Ergebnis einer Messung ohne Probe liegt bei 122,4.19

3.4.2 Technische Daten (Herstellerangaben)

Messbereiche					
Formationsindex	20-122,4				
Standardabweichung Histogramm	0-100				
Flocken- und Leerstellenanteil	0-100				

Obwohl das Kajaani-Formationsmessgerät dem heutigen Stand der Technik entspricht, konnte es nicht in diese Arbeit integriert werden. Der Grund hierfür liegt darin, dass dieses Gerät nur von wenigen Betrieben eingesetzt wird und man daher nur schwer Zugang erlangt.

¹⁹ Vgl. Mönttinen, Willey, Nygard, 1996, S. 1.1ff

3.5 Ambertec

Abb. 3-4 Ambertec-Beta-Formations-Tester

Der Ambertec-Beta-Formations-Tester erlaubt eine genauere Messung der Formation als jeder andere Tester, welcher auf optischen Methoden basiert. Der Grund hierfür liegt darin, dass dieses Messgerät unabhängig von zahlreichen Schwankungen der optischen Eigenschaften des Papiers ist. Solche Schwankungen können durch die Stoffzusammensetzungen (Faser, Füllstoff, Farbe, Strich) oder durch Prozessvariable (Mahlen, Nasspressen, Kalandrieren) hervorgerufen werden.

Weiters ist es sogar möglich, die Formation von bedruckten Proben festzustellen, was bei optischen Formationsmessgeräten völlig unmöglich ist.

Proben verschiedener Papiersorten, welche durch unterschiedliche Prozesse erzeugt wurden und verschiedene Rohmaterialien verwenden, können direkt und zuverlässig miteinander verglichen werden. Ergebnisse aus verschiedenen Forschungsprojekten weisen eine gute Beziehung zwischen Beta-Formation, Festigkeit, Porosität und Bedruckbarkeit des Papiers auf.

Der Ambertec-Beta-Formations-Tester wurde konstruiert, um automatische Messungen von Querrichtungsprobestreifen oder Probenblättern durchzuführen. Bei den üblichen Standardmessungen wird die flächenbezogene Masse der Probe über 400 Punkte auf einer Fläche von 70 x 70mm innerhalb von 5 Minuten gemessen. Nachdem die Messung beendet ist, wird das Ergebnis in eine Datenbank gespeichert und automatisch in den Computer der Fabrik oder zum Netzwerkdrucker gesendet.²⁰

3.5.1 Technische Daten (Herstellerangaben)

Arbeitsprinzip: Absorptionsfähigkeit von Beta-Strahlung, Stufenscanner (Probe ruht während der Vermessung) Flächenbezogene Masse: 0 bis 350g/m² Genauigkeit der Flächengewichtsbestimmung: gleich bleibende Genauigkeit (wählbar), unabhängig vom Flächengewicht Probenart: Einzelmuster, mehrlagige Muster, Querprofilmuster Probenbreite: 210mm max. (ISO DIN A4 Format) Probenlänge: unbegrenzt Messfläche: Standardmessfläche 70 x 70mm (auswählbar) Distanz zwischen den Messpunkten: 3,5mm (Standard), frei wählbar in Xund Y Richtung Anzahl der Messpunkte je Messung: 400 (Standard), auswählbar

²⁰ Vgl. Ambertec Oy

3.6 Ambertec versus optische Formationsmessgeräte

In der nachstehenden Tabelle sind die Unterschiede zwischen dem Ambertec-Beta-Formations-Tester und optischen Formationsmessgeräten angeführt.²¹

	Ambertec	optisch
Genauigkeit	ausgezeichnet	schlecht
Kalibrierung	ja	nein
Papiersorten	alle	begrenzt
- kalandriert	ja	nein
- gefärbt	ja	nein
- gestrichen	ja	nein
- bedruckt	ja	nein
- dicke Blätter	ја	Dicke begrenzt

Tabelle 3.1 Vergleich Ambertec mit optischen Formationsmessgeräten

²¹ Vgl. Ambertec Oy

4 IPLONER – FUNKTION UND ANALYSEN

In diesem Kapitel werden die durchgeführten Versuche und die daraus erhaltenen Ergebnisse genauer erläutert. Das Hauptaugenmerk liegt dabei einerseits auf den wesentlichen Zielsetzungen für die Einsetzbarkeit des Messgerätes Iploner. Wobei speziell auf folgende Bereiche eingegangen wird:

- Stärken und Schwächen des Iploner
- Fingerprint einer Papiermaschine
- Formationsmessung in der Siebpartie

Andererseits wird auf ein Thema eingegangen, das besonders im wirtschaftlichen Kontext von Bedeutung ist, nämlich auf den Vergleich verschiedener Formationsmessgeräte.

Um Vorgänge auf einer Papiermaschine zu simulieren, war der Bau einer Versuchsanlage erforderlich. Laufende Erkenntnisse aus den Untersuchungsreihen führten dazu, durch ständige Adaptierungen die Versuchsanlage immer wieder zu optimieren.

4.1 Versuchsanlage

Wie schon im Abschnitt 4.0 erwähnt wurde, war zur Durchführung von Formationsmessungen der Bau einer Simulationsanlage erforderlich. Ein bereits bestehender Versuchsaufbau konnte dafür verwendet und weiter optimiert werden.

Grundsätzlich bestand diese Anlage aus folgenden Bestandteilen:

- einem Plexiglaszylinder, auf dem die zu untersuchende Probe befestigt wird und somit eine Bewegung in Maschinenrichtung simuliert wird
- einem Motor zum Antrieb des Zylinders
- einer Halterung, auf der der Motor horizontal montiert ist

- einer Vorrichtung zur Fixierung des Iploner
- einer Schiene, auf der die Aufnahmevorrichtung für den Iploner fahrbar montiert ist
- einer Reglereinheit zur Steuerung und f
 ür die Stromversorgung des Motors

Die gesamte Anlage ruht auf zwei quaderförmigen Stützsockeln.

Abb. 4-1 Gesamtanlage

Ursprünglich war diese Vorrichtung nur zum Nachweis von möglichen "Fingerprints" gedacht. Dabei ergab sich von Anfang an das Problem, dass bei der Fixierung der Proben die Papierenden entweder überlappten oder sich zwischen den Enden eine freie Stelle ergab (je nach Durchmesser des Plexiglaszylinders). Dies führte unweigerlich zu Fehlern in den Messungen.

Abb. 4-2 Vorrichtung zur Fixierung des Iploner

Abb. 4-3 Reglereinheit

Um repräsentative Formationsmessungen durchführen zu können, war eine Modifizierung der Anlage notwendig. Dazu wurden folgende Änderungen durchgeführt:

- Der Motor wurde nicht mehr horizontal, sondern vertikal montiert
- Für den Motor wurde aus zwei Stützen, einem Winkel und einer Platte eine neue Aufnahmevorrichtung konstruiert
- Anstelle des Zylinders wurde eine Plexiglasscheibe als Trägerfläche für die Muster eingesetzt. Diese Scheibe wird durch den Motor in Rotation versetzt.

Abb. 4-4 Vertikale Lagerung des Motors

Abb. 4-5 Aufnahmevorrichtung neu

Abb. 4-6 Plexiglasplatte

Nachdem die Neugestaltung der Anlage abgeschlossen war, begannen die Untersuchungen, um die Stärken und Schwächen des Iploner auszuloten. Während dieser Versuche wurden ständig neue Erkenntnisse (vgl. 4.2) gewonnen, die dazu motivierten, auch die Versuchsanlage ständig weiter zu entwickeln. Der Grund für den Einsatz einer zweiten oben liegenden Platte war, dass das Probemuster dadurch gleichmäßiger aufliegt und somit störende Einflüsse wie beispielsweise Erhöhungen durch Wellen ausgeschlossen werden können. Die zu untersuchende Probe konnte bei den weiteren Untersuchungen zwischen die beiden Platten gelegt werden.

Weitere Probleme bei den Versuchen traten auf, weil außer den Papierproben auch stets die Platten mitgemessen wurden: Der Strahl durchdrang Platte 1, Papier und Platte 2 und gelangte erst dann zum Empfänger. Obwohl sich im Nachhinein erwies, dass der Einfluss der Platten auf die Messung nur marginal war (vgl. 4.2.1), wurde entschieden, die bisher verwendeten achteckigen Platten auf Grund folgender potenzieller Einflussgrößen auszutauschen:

- Abschwächung des Strahles
- Streuung des Strahles
- Reflexion des Strahles
- Messung von Fehlern auf bzw. in der Platte (z.B. Kratzer)

Die achteckigen Platten sollten also durch kreisförmige ersetzt werden. Durch diese Veränderungen wurde ein erster Umbau der Anlage erforderlich. Dadurch veränderte sich der Abstand des Messpunktes zur Wellenachse, was eine Neuberechnung der Geschwindigkeiten notwendig (vgl. 4.2.2) machte.

0

Abb. 4-7 Vorrichtung zur Aufnahme der runden Platte

Abb. 4-8 Runde Platte

Anstelle der bisher eingesetzten rechteckigen Muster (Format DIN A4) wurden runde mit einem Durchmesser von 210mm verwendet. Um zu gewährleisten, dass nur noch ausschließlich die Papierprobe vermessen wird, wurde darauf geachtet, dass das Muster einen regelmäßigen Überstand von 20mm im Verhältnis zur Platte aufweist.

Wie bei den ersten Versuchen mit der einzelnen achteckigen Platte wurden wieder Unebenheiten beobachtet. Der Überstand des Blattes führte außerdem zum Flattern. Eine zweite, runde Platte wurde angebracht. Nach diesem Umbau liegt das Muster wiederum zwischen zwei Platten. Dies ist erforderlich, um ein Flattern auszuschließen und zu gewährleisten, dass die Probe so nah wie möglich beim Empfänger des Messstrahles liegt (vgl. 4.2.5).

Abb. 4-9 Platten übereinander

Bei der Messung kleinerer Proben ergab sich das Problem, dass der Messstrahl zum Teil nicht mehr auf der Probe war. Um zu gewährleisten, dass der Strahl mit Sicherheit auf der Probe liegt, wurde eine Einfräsung in der Trägerplatte der Motorhalterung vorgenommen.

Abb. 4-10 Einfräsung

Durch diese Einfräsung können auch mit dem Blattbildner erzeugte Muster vermessen werden, die einen kleineren Durchmesser haben als jene, die normalerweise verwendet werden. Diese Überlegung ist auch deshalb von Bedeutung, weil sich daraus die Möglichkeit ergibt, die Durchmesser der Probemuster auf den Durchmesser von Laborblättern quasi zu "normen".

Für einen schnelleren Zuschnitt der Proben wurde außerdem noch eine Schablone angefertigt.

Abb. 4-11 Schablone

Somit waren sämtlichen Optimierungsarbeiten an der Versuchsanlage abgeschlossen und es konnten störungsfrei Messungen vorgenommen werden. Dies war die Grundbedingung dafür, dass in weiterer Folge auch die Messungen für die Korrelationsanalyse durchgeführt werden konnten.

4.2 Stärken und Schwächen des Iploner

Von Anfang an stellte sich die Frage, wo die Grenzen, Stärken und Schwächen dieses Messgerätes liegen. Um dieser Frage nachzugehen, wurde eine Reihe von Untersuchungen durchgeführt:

- 1. Einfluss der Platte(n)
- 2. Einfluss der Geschwindigkeit
- 3. Messung bei Lichteinfluss und Abdunkelung
- 4. Einfluss von Erschütterungen
- 5. Einfluss des Flatterns
- 6. Einfluss warmer Luft
- 7. Grenzen des Iploner
- 8. Einfluss der Asche (Füllstoffe)
- 9. Einfluss der Feuchtigkeit
- 10. Messung der Formation von gefärbten Papieren
- 11. Vergleich von PM- und Labormessungen

4.2.1 Einfluss der Platte(n)

Da für die Messungen im Labor die Papierprobe auf einer Plexiglasscheibe bzw. zwischen zwei Plexiglasscheiben fixiert wurde, ergab sich natürlich die grundsätzliche Frage, ob die Messergebnisse durch die Platte/Platten beeinflusst werden.

Zahlreiche Untersuchungen wurden also explizit zu dieser Fragestellung gemacht. Zunächst wurde eine Messung der Luft durchgeführt, um zu sehen, wie sich das Messgerät verhält. Außerdem wurden bei diesen Versuchen auch noch unterschiedliche Einstellungen in der Software vorgenommen.

Iploner-Messungen, nur Luft gemessen (abgedunkelt)						
Anzahl Messungen		Einstellung		Einstellung		
1	0,277		0,276			
2	0,277		0,276			
3	0,277		0,275			
4	0,277	2000-20-1	0,275	2000-20-1		
5	0,277	0g/m²	0,276	100g/m²		
6	0,276		0,275			
7	0,277		0,275			
8	0,276		0,275			
Mittelwert	0,277		0,275			
Maximum	0,277		0,276			
Minimum	0,276		0,275			
Standardabweichung	0,000		0,001			
Konfidenzintervall	0,0003		0,0004			

Tabelle 4.1 Ergebnisse bei der Messung von Luft

Wie aus Tabelle 4.1 ersichtlich, haben die verschiedenen Einstellungen keinen Einfluss auf die Messergebnisse. Außerdem sind die Ergebnisse bei einer reinen Luftmessung sehr klein. Diese dienen jedoch als Referenzwerte, um den Einfluss der Platte/Platten bestimmen zu können. Im Folgenden wurden dann die Platte/Platten mit und ohne Probe sowie im Stillstand und in Bewegung vermessen.

Abb. 4-12 Ergebnisse der Messung im Stillstand (ohne Probe)

In Abbildung 4-12 werden die Ergebnisse bei der Messung von Luft, der Messung einer und zweier Platten, ohne Probe verglichen. Während der gesamten Messung findet keine Bewegung der Platten statt. Wie man sehen kann, liegen die Messwerte der Platte/Platten sehr nah bei jenen von Luft.

Mittelwerte

Luft = 0,245 Eine Platte = 0,249 Zwei Platten = 0,272

Differenz der Mittelwerte

Eine Platte – Luft = 0,249-0,245 = **0,004** Zwei Platten – Luft = 0,272-0,245 = **0,027**

Anhand dieses Versuches wird ersichtlich, dass die Platten sich nur unwesentlich auf das Messergebnis auswirken, und somit kann eine Beeinflussung durch die Platten ausgeschlossen werden.²²

Anschließend wurde derselbe Versuch erneut - jedoch diesmal mit Probe durchgeführt. Außerdem wurde hier auch noch das Papiermuster alleine vermessen.

Abb. 4-13 Messung im Stillstand mit Probe (Muster KL 17-TS, 123,5g/m², Kraftliner)

²² Signifikante Änderungen der Messergebnisse werden erst bei Bewegung festgestellt, vgl. Abbildung 24 ff.

In Abbildung 4-13 sind die Ergebnisse dieses Versuches dargestellt. Wie nur unschwer zu erkennen ist, weichen die Messwerte der Platte(n) auch hier nicht allzu stark von den Ergebnissen der Luftmessung ab.

Mittelwerte

Luft = 0,245 Eine Platte = 0,256 Zwei Platten = 0,262 Probe = 0,320

Differenz der Mittelwerte

Eine Platte – Luft = 0,256-0,245 = 0,011 Zwei Platten – Luft = 0,262-0,245 = 0,017 Nur Probe – Luft = 0,320-0,249 = 0,075

Auch nach dieser Untersuchung kann man sagen, dass der Einfluss der Platten vernachlässigt werden kann. Zu sehen ist jedoch, dass die Werte bei einer Messung der Probe (ohne Platte) deutlich höher liegen als bei jenen mit einer bzw. zwei Platten. Dies könnte darauf zurückzuführen sein, dass das Papiermuster bei dieser Messung direkt auf dem Messgerät auflag (Kontakt der Probe mit Iploner). Aber auch hier ist die Abweichung zum Ergebnis der Luftmessung nur minimal.

Um zu sehen, wie sich die Platte/Platten bei Bewegung verhalten, wurden die oben angeführten Versuche anschließend auch noch bei Rotation durchgeführt.

Abb. 4-14 Einfluss der Bewegung

In Abbildung 4-14 ist dargestellt, wie sich die Platte/Platten, nun wiederum ohne Probe, unter Bewegung verhalten. Vergleicht man diese Werte wiederum mit den Ergebnissen der Luftmessung, so liegen auch hier die Werte sehr nahe beieinander.

Mittelwerte

Luft = 0,245 Eine Platte = 0,301 Zwei Platten = 0,307

Differenz der Mittelwerte

Eine Platte - Luft = 0,301-0,245 = 0,056 Zwei Platten - Luft = 0,307-0,301 = 0,062

Anschließend wurde dieser Versuch auch noch mit einer Probe durchgeführt.

Abb. 4-15 Einfluss der Bewegung (Muster KL 17-TS, 123,5g/m², Kraftliner)

Abbildung 4-15 zeigt das Ergebnis bei der Messung einer Probe mit einer bzw. zwei Platten. Interessant an diesem Beispiel ist, dass nun erstmals höhere Messwerte auftreten. Aus diesem Ergebnis kann man schließen, dass eine Bewegung der Probe zur Bestimmung der Formation unumgänglich ist. Bei der Vermessung einer Probe wird ein Mittelwert aus den jeweiligen Maxima und Minima des Messspektrums gebildet. Ist keine Bewegung vorhanden, gibt es weder Maxima noch Minima, und folglich kann auch kein Mittelwert gebildet werden. Das ist auch der Grund dafür, dass beinahe keine Unterschiede zwischen einer Stillstandsmessung der Platte/Platten/Probe und der Luft festzustellen sind.

Abb. 4-16 Prinzip der Messauswertung bei Bewegung

Damit eine Beeinflussung der Platte/Platten zu 100% ausgeschlossen werden kann, werden die achteckigen Platten, wie bereits in Abschnitt 4.1 erwähnt, durch kreisförmige ersetzt.

4.2.2 Einfluss der Geschwindigkeit

Zu Beginn wurden Versuche bei unterschiedlichen Motorfrequenzen durchgeführt. Der Frequenzbereich lag bei 3 bis 25Hz (Steigerung in 2er-Schritten).

Nachdem ermittelt wurde, wie weit der Messpunkt vom Zentrum der Scheibe - und somit von der Probenmitte - entfernt lag, wurde von den Frequenzen auf die Geschwindigkeiten zurückgerechnet. Bei den unterschiedlichen Messungen wurde immer der kleinstmögliche Abstand zum Zentrum, - \mathbf{r} -, herangezogen.

Umrechnung von Hz auf m/min:

```
\mathbf{r} = 0,091[\text{m}]
z.B. 1[Hz] = 1[1/sec]

\omega = 2 \cdot \pi \cdot Frequenz \quad d.h. \quad 2 \cdot \pi \cdot 3 = 18,85[rad/sec]
Gleichung 13

n = 60 \cdot Frequenz \quad d.h. \quad 60 \cdot 3 = 180[min^{-1}]
Gleichung 14

v = 2 \cdot \pi \cdot r \cdot n \quad d.h. \quad 2 \cdot \pi \cdot 0,091 \cdot 180 = 102,92[m/min]
Gleichung 15
```

Später wurde dann der Frequenzbereich eingegrenzt und zwar auf jene Geschwindigkeiten, welche auch tatsächlich auf einer Papiermaschine vorkommen.

f[Hz]	ω	Einheit	n	Einheit	v	Einheit
15	94,25	rad/sec	900	1/min	514,59	m/min
17	106,81	rad/sec	1020	1/min	583,21	m/min
19	119,38	rad/sec	1140	1/min	651,82	m/min
21	131,95	rad/sec	1260	1/min	720,43	m/min
23	144,51	rad/sec	1380	1/min	789,04	m/min
25	157,08	rad/sec	1500	1/min	857,65	m/min

 Tabelle 4.2 Eingrenzung des Frequenzbereiches

Nach dieser Eingrenzung wurden Versuche innerhalb des festgelegten Bereiches durchgeführt.

Muster:

- VP II/3; 190g/m², Gipskarton
- ARH Papiermuster 1; 175g/m², Kraftliner
- VP Muster I; 204,9g/m², Kraftliner
- VP Muster II; 205,4g/m², Kraftliner

Abb. 4-17 Einfluss der Geschwindigkeit bei verschiedenen Flächengewichten

In Abbildung 4-17 ist das Ergebnis der Untersuchung dargestellt. Die Versuche zeigen, dass die Messung mit dem Iploner nur unwesentlich von der Geschwindigkeit beeinflusst wird. Die getesteten Papiersorten zeigen alle die gleiche Tendenz; und zwar unabhängig vom Flächengewicht und der Farbe. Die Unterschiede zwischen dem jeweils größten und dem kleinsten Messwert lagen im Bereich von 0,27 bis 0,53.

Aufgrund dieser Versuche kann man sagen, dass der Einfluss der Geschwindigkeit mit ziemlicher Sicherheit vernachlässigt werden kann.

Wie bereits in Abschnitt 4.1 erwähnt, wurden die achteckigen Platten durch runde ersetzt, wodurch eine Neuberechnung der Geschwindigkeiten erforderlich wurde. In der nachfolgenden Tabelle sind die Ergebnisse dieser Kalkulation angeführt.

f[Hz]	ω	Einheit	n	Einheit	v	Einheit
14	87,96	rad/sec	840	1/min	527,79	m/min
16	100,53	rad/sec	960	1/min	603,19	m/min
18	113,10	rad/sec	1080	1/min	678,58	m/min
20	125,66	rad/sec	1200	1/min	753,98	m/min
22	138,23	rad/sec	1320	1/min	829,38	m/min
24	150,80	rad/sec	1440	1/min	904,78	m/min

Tabelle 4.3 Neuberechnung der Geschwindigkeiten für die runden Platten

4.2.3 Messung bei Lichteinfluss und Abdunkelung

Zu Beginn der Arbeit wurden die Messungen bei sehr unterschiedlichen Lichtverhältnissen vorgenommen. Da das Messgerät direkt neben einem Fenster positioniert war, zeigten sich je nach Lichtverhältnissen (bewölkt, bei Dämmerung, direkter Sonneneinstrahlung) sehr unterschiedliche Messergebnisse. Daraus gewann man die Erkenntnis, dass direkte Sonneneinstrahlung einen Einfluss auf das Messergebnis haben muss. Aus diesem Grund wurde eine Vorrichtung zur Abdunkelung des Messgerätes gebaut, um relativ konstante Lichtbedingungen simulieren zu können.

Im Anschluss wurden dann Messungen bei Abdunkelung, direkter Sonneneinstrahlung und Bestrahlung mit künstlichem Licht durchgeführt.

Abb. 4-18 Unterschied Sonneneinstrahlung und Abdunkelung (Muster KL 17-TS, 123,5g/m², Kraftliner)

In Abbildung 4-18 sind die Ergebnisse der Messungen bei direkter Sonneneinstrahlung und bei Abdunkelung des Messgerätes dargestellt. Aus diesen Versuchen zeigte sich, dass die Messergebnisse durch direkte Sonneneinstrahlung verfälscht wurden. Die Messwerte bei Sonneneinstrahlung waren im Schnitt um **2,79%** höher als jene bei Abdunkelung.

Mit dem Nachweis des Einflusses von Sonnenlicht auf die Messungsergebnisse ergab sich die Frage, wie sich ein Lichtereignis, wie z.B. ein Blitz, auf das Resultat auswirken würde. Für diesen Versuch wurde der Blitz eines herkömmlichen Fotoapparates verwendet. Um konstante Verhältnisse zu simulieren, war der Messkopf auch während des Blitzens abgedunkelt.

Abb. 4-19 Auswirkung eines Lichtblitzes auf die Messung (Muster NS IIIB, 45g/m², Newsprint)

In Abbildung 4-19 wird die Auswirkung des Blitzes auf das Messergebnis veranschaulicht.

Wie man sieht, hat starkes künstliches Licht wie z.B. ein Blitz, einen relativ starken Einfluss auf das Resultat. Bereits während der Messung sind deutliche Ausschläge im Messfenster ersichtlich.

Bei der Messung ohne Abdunkelung fand zwar keine direkte Sonneneinstrahlung statt, aber es war doch heller als in der Halle einer Papierfabrik (in Fabrikshallen erfolgt die Beleuchtung fast ausschließlich durch künstliche Lichtelemente). Man muss aber trotz allem berücksichtigen, dass nicht an allen Stellen der Papiermaschine, an denen Messungen durchgeführt werden sollen, die gleichen Lichtverhältnisse vorliegen, d.h. an manchen Stellen ist es heller, an anderen dunkler.

Fi	le History Contro	I Settings Spectrum	Cursors Windows	Language Help			
ĺ	3 6 (0 🕐 🗐 🖻		
	Went Ashannan	Mound And Allan	NWISSAM MANYA MANUALA	Marine	And philospania and	April and marine more have	1 AN MANANA MANANA ANA
	- Tr VI	" ", v	· · · · ·		1. D 1. M.	ν· γ·	0

Abb. 4-20 Messspektrum ohne Lichtblitz

Abb. 4-21 Messspektrum mit Lichtblitz

Durch diese Versuche wird bestätigt, dass eine Messung mit Abdunkelung erforderlich ist, um repräsentative Ergebnisse zu erhalten. Nur durch die Abdunkelung werden relativ konstante Lichtverhältnisse simuliert! Anhand der Ergebnisse aus diesen Versuchen wurde festgelegt, dass die Messungen ab diesem Zeitpunkt nur noch bei Abdunkelung vorgenommen werden.

4.2.4 Einfluss von Erschütterungen

Da innerhalb einer Papiermaschine eine Vielzahl von Schwingungen, Vibrationen und Erschütterungen auftreten, wurden auch Versuche angestellt, um abzuklären, inwieweit sich solche äußeren Einflüsse auf das Messergebnis auswirken. Um Erschütterungen zu simulieren, wurden gezielte Stöße mit der Hand gegen den Tisch und das Messgerät ausgeübt. Die Messung fand wiederum bei Abdunkelung statt.

Abb. 4-22 Unterschied der Messergebnisse mit und ohne Erschütterung (Muster KL 17-TS, 123,5g/m², Kraftliner)

Wie aus der Abbildung 4-22 ersichtlich, wirken sich weder bewusst noch unbewusst eingebrachte Erschütterungen wesentlich auf das Messergebnis aus. Die Messergebnisse sind nahezu identisch.

Aus diesem Versuch geht hervor, dass Erschütterungen keinen Einfluss auf die Messungen mit dem Iploner haben.

4.2.5 Einfluss des Flatterns

Eine weitere wichtige Frage ist, wie sich das Flattern einer Papierbahn auf das Messergebnis auswirkt. Um das herauszufinden, wurde die Plexiglasplatte zum Taumeln gebracht. Hierzu wurde unter dieser (einseitig) ein Stück Taschentuchpapier angebracht, sodass die Platte eine Schräglage aufwies und es somit bei einer Rotation zu einer Taumelbewegung kam. Diese Bewegung kann annähernd mit dem Flattern einer Papierbahn verglichen werden, das schließlich auch nur eine Auf- und Abbewegung ist. Es soll getestet werden, ob es zu Unterschieden in den Messergebnissen bei einer taumelnden und einer normal laufenden Platte (mit Probe) kommt.

Abb. 4-23 Einfluss des Flatterns auf die Messung (Muster Kl 17-TS, 123,5g/m², Kraftliner)

Aus Abbildung 4-23 ist ersichtlich, dass das Flattern doch erhebliche Auswirkungen auf die Messergebnisse hat. Dies ist darauf zurückzuführen, dass sich durch die Taumelbewegung der Abstand zwischen Platte und dem Austrittspunkt des Strahles ändert. Um repräsentative Werte zu erhalten, muss aber ständig ein konstanter Abstand eingehalten werden. Nur so wird garantiert, dass der Infrarotstrahl fokussieren kann. Mit verändertem Abstand ändert sich auch die Größe des Messpunktes. Besteht also zwischen Probe und Unterseite des Iploner kein Kontakt, geht etwas vom Messsignal verloren: Ein Teil des Strahles geht links und rechts am Empfänger vorbei (siehe Abbildung 4-24).

Abb. 4-24 Strahlverhalten bei unterschiedlicher Lage der Probe

Dies ist auch ein weiterer Grund für den Umbau der Versuchsanlage, da das Muster so weit wie möglich vom Austrittspunkt des Strahles entfernt liegen soll, was wiederum heißt, dass das Papier auf der Unterseite des Iploner aufliegen muss.

4.2.6 Einfluss warmer Luft

Da Infrarotlicht, welches eine Form von Wärmestrahlung ist, für die Messung zum Einsatz kommt, stellt sich die Frage, ob Störungen auch durch eine externe Wärmequelle verursacht werden können. Dies ist vor allem ein wichtiger Punkt hinsichtlich der Messungen an einer Papiermaschine, welche eine Vielzahl solcher externen Wärmequellen (z.B. die Trockenpartie) besitzt.

Für die Durchführung dieser Untersuchung wurden die Probe sowie der Infrarotstrahl während der Messung mit warmer Luft bestrahlt.

Abb. 4-25 Einfluss von warmer Luft auf die Messung (KL 17-TS, 123,5g/m², Kraftliner)

Abbildung 4-25 zeigt die Auswirkung der Bestrahlung mit warmer Luft mittels eines handelsüblichen Haarföhns. Wie man sieht, liegen die Messwerte zu Beginn (bei niedrigen Frequenzen) relativ weit auseinander. wird dieses Phänomen dadurch, Erklärt dass bei niedrigeren Drehfrequenzen die Papierprobe durch den externen Luftstrahl zum Teil von der Plattenoberfläche abgehoben wurde und sich somit mehr Grenzflächen (Glas-Luft-Probe) bildeten. Bei höheren Geschwindigkeiten war dies nicht mehr zu beobachten, wodurch es - wie aus dem Diagramm ersichtlich - zu einer Annäherung der Werte kam.

Grundsätzlich kann gesagt werden, dass eine Beeinflussung der Föhnluft auf den Strahl nicht stattfand. Dennoch ist mit Sicherheit eine Störung Infrarotlichtes bei höheren des Temperaturen erwarten. Auf zu Papiermaschinen dürfte die Messung trotzdem kein Problem darstellen, da jene Stellen mit den höchsten Temperaturen für Messungen nicht zugänglich sind. Außerdem ist es wenig wahrscheinlich, dass Temperaturen, welche zu Störungen führen könnten, an Papiermaschinen anzutreffen sind.

4.2.7 Grenzen des Iploner

Begrenzende Faktoren für die Durchführbarkeit einer Messung mit dem Iploner sind das Flächengewicht und die Geschwindigkeit der Papierbahn bzw. der Probe auf der Versuchsanlage. Findet hier keine eindeutige Festlegung der Grenzen statt, kann dies zu Problemen bei der Messung in Papierfabriken sowie im Labor führen. Laut Hersteller liegt die obere Grenze der flächenbezogenen Masse bei 200g/m² und die untere bei 30g/m². Die Begrenzungen der Geschwindigkeit liegen bei 50 und 2000m/min.

Um die genauen Bereiche einzugrenzen, wurden Papierproben mit unterschiedlichen Flächengewichten sowie bei maximaler Geschwindigkeit vermessen. Der Grund, warum nur die maximale und nicht die minimale Geschwindigkeit betrachtet wird, liegt darin, dass in der Praxis niemals Geschwindigkeiten von nur 50m/min anzutreffen sind.

Um zu überprüfen, ob der Iploner bei Geschwindigkeiten über 2000m/min tatsächlich keine repräsentativen Messergebnisse mehr liefert, startete die Simulation bei einer arbiträren Geschwindigkeit von 2036m/min. Überraschenderweise zeigten sich nahezu identische Werte zu Messergebnissen bei niedrigeren Geschwindigkeiten. Dies motivierte zu weiteren Versuchen mit bis zu 2262m/min, der definitiven Geschwindigkeitsgrenze der Versuchsanlage (60Hz), die bei einer optimalen Einstellung in Relation zur Probengröße die geringste Fehlerquote aufweist.

Geschwindigkeit [m/min]	Drehfrequenz [Hz]	Messwert	Muster	Sorte
528	14	3,719		
2036	54	3,799	SL 11	Schreib- /
2111	56	3,797	80g/m²	Druckpapier
2262	60	3,805		

 Tabelle 4.4 Grenzen des Iploner (Geschwindigkeitsgrenzen)

Die Werte aus Tabelle 4.4 bestätigen mit einer Messwertabweichung von 0,086 die Erkenntnis aus Abschnitt 4.2.2.

Neben den Herstelleraussagen zur Geschwindigkeit sollten auch die angegeben Referenzwerte der flächenbezogenen Masse geprüft werden. Die Palette der zur Verfügung stehenden einzelnen weißen Probeblätter reichte von 42,2²³ bis 300g/m². Bis zu diesem Gewicht war eine uneingeschränkte Messleistung zu erkennen. Um höhere flächenbezogene Massen zu simulieren, wurden mehrere Blätter übereinander geschichtet. Auch bei diesen Messungen lieferte der Iploner bis zu 478g/m² Ergebnisse. Und erst bei einem Wert von 548g/m² war keine Messbarkeit mehr gegeben.

Anders bei den braunen Sorten: Hier konnte keine einheitliche Obergrenze beobachtet werden. Je nach Aufbau und Oberflächenbeschaffenheit der Probe war auch schon bei 175g/m² die zur Messung notwendige Lichtdurchlässigkeit nicht gegeben, während andere Sorten auch noch bei 205g/m² messbar waren.

Sorte	flächenbezogene Masse [g/m ²]	messbar (+) / nicht messbar (-)
	300	+
	320	+
Schreib- /	360	+
Druckpapier	390	+
Draonpupioi	428	+
	478	+
	548	-

 Tabelle 4.5 Grenzen des Iploner (Flächengewichtsgrenzen weißer Muster)

²³ Für die Untersuchungen standen keine Proben mit geringerer flächenbezogener Masse zur Verfügung. Aus diesem Grund wurde keine zusätzliche Überprüfung des unteren Herstellerreferenzwertes durchgeführt.

Sorte	flächenbezogene Masse [g/m ²]	messbar (+) /
		nicht messbar (-)
kraftliner	175	+
kraftliner	205	+
kraftliner	337	-
kraft top liner	115	+
performance medium	160	+
white top liner	275	-
white top liner	150	+
KLB	175	-
KLB	150	+
СМ	125	+
KA	185	-

Tabelle 4.6 Grenzen des Iploner (Flächengewichtsgrenzen brauner Muster)

Zusammenfassend kann man sagen, dass eine verlässliche Eingrenzung der flächenbezogenen Masse möglicherweise nur bei weißen Sorten möglich ist, jedoch nicht im Bereich der braunen Papiere.

4.2.8 Einfluss der Asche (Füllstoffe)

Mit Hilfe dieses Versuches soll - bei anschließender Veraschung - der Einfluss der Asche festgestellt werden. Es soll gezeigt werden, wie bzw. ob die Messung durch den Aschegehalt (575°C) beeinflusst wird.

Proben:

- I. Kopierpapier mit 90g/m² (M3)
- II. Feinpapier 2fach gestrichen; mit Strich $115g/m^2$ und ohne Strich $85g/m^2$ (Muster 5)
- III. Sackpapier 90g/m²

Abb. 4-26 Einfluss der Asche bei verschiedenen Papiersorten

Probe	Aschegehalt [%]
Sackpapier 1	1,40
Sackpapier 2	1,37
Kopierpapier 1	18,39
Kopierpapier 2	18,22
Feinpapier 1	26,57
Feinpapier 2	26,94

 Tabelle 4.7 Aschegehalt unterschiedlicher Proben

Die oben angeführten Proben wurden verascht und die somit erhaltenen Daten ausgewertet. Dabei wurde festgestellt, dass die vorliegenden Ergebnisse nicht wirklich repräsentativ für den Einfluss der Asche auf das Messergebnis sind. Dies wird dadurch begründet, dass für diese Untersuchung Proben unterschiedlicher Sorte und Beschaffenheit herangezogen wurden.

Um repräsentative Ergebnisse zu erhalten, wurden in Zusammenarbeit mit der TU-Graz Laborblätter mit unterschiedlichem Füllstoffanteil auf dem Blattbildner produziert, damit bei der Herstellung dieser Blätter stets gleiche Bedingungen garantiert werden konnten.

Eingesetzt wurden folgende Stoffe:

- Faserstoff \Rightarrow Fichte-Magnefit
- Füllstoff \Rightarrow CaCO₃ (HC60)
- Retentionsmittel \Rightarrow Percol (0,1%ige Lösung), Anteil liegt bei 0,06%

Um sicher zu stellen, dass der Füllstoff im Blatt gehalten wird, wurde eine Mahlung in der PFI-Mühle mit 4000 Umdrehungen durchgeführt. Der Mahlgrad lag bei 28,4SR und die flächenbezogene Masse der Blätter lag bei 80g/m².

Folgende Blätter wurden gebildet:

- 0% FS (an der Luft getrocknet)
- 0% FS (im Trockner getrocknet)
- 10%, 20% und 30% FS (jeweils im Trockner getrocknet)

Anschließend wurde die Formation mit dem Iploner gemessen. Dabei zeigten sich folgende Ergebnisse:

% FS	Trocknungsart	Formationsindex		
0	Luft	4,078		
0	Trockner	3,329		
10	Trockner	3,814		
20	Trockner	3,687		
30	Trockner	3,180		

Tabelle 4.8 Formationsindex bei unterschiedlichen Füllstoffanteilen

Tabelle 4.8 zeigt die Ergebnisse der Formationsmessungen mit dem Iploner bei unterschiedlichem Füllstoffgehalt. Wie daraus ersichtlich ist, beeinflussen Füllstoffe, wie dies auch bei den anderen Formationsmessgeräten der Fall ist und daher zu erwarten war, das Ergebnis der Iplonermessung. Die unterschiedlichen Messergebnisse sind darauf zurückzuführen, dass die Trocknungsart das spezifische Volumen beeinflusst, was wiederum Auswirkungen auf die Formation hat.

Fazit dieser Untersuchung ist, dass bei der Bestimmung der Formation mit dem Iploner stets auf den jeweiligen Füllstoffgehalt zu achten ist.

NYANY WAN UNTRANK	C have a second for	ANNO AND ANN AND AND AND AND AND AND AND AND	APPART HAAT HANDAR PLANTA	No. AN AN AND AN AND AN AND AN	AN WATER AND AND AND AND	*1.4716*170*********************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		-					

Abb. 4-27 Messspektren bei unterschiedlichen Füllstoffanteilen

Wie in Abbildung 4-27 dargestellt, ist ein Einfluss des Füllstoffanteiles bereits im Messfenster ersichtlich.

Schwarz:	Lufttrocknung, 0% FS
Rot:	Trockner, 0% FS
Grün:	Trockner, 10% FS
Orange:	Trockner, 20% FS
Blau:	Trockner, 30% FS

Abschließend wurden die erzeugten Laborblätter bei einer Temperatur von 575°C verascht, um den exakten Anteil der anorganischen Stoffe zu bestimmen. Die Ergebnisse der Veraschung sind in Tabelle 4.9 angeführt.

Bezeichnung	Trocknungsart	Aschegehalt [%]
0% FS	Lufttrocknung	0,7825
0% FS	Trockner	0,4426
10% FS HC60	Trockner	10,1324
20% FS HC60	Trockner	21,1542
30% FS HC60	Trockner	28,4241

Tabelle 4.9 Aschegehalt der Laborblätter

4.2.9 Einfluss der Feuchtigkeit

Ein weiterer entscheidender Faktor ist, welchen Einfluss das Vorhandensein von Feuchtigkeit auf den Iploner hat. Begründet wird diese Bedeutung dadurch, dass an einer Papiermaschine sehr unterschiedliche Feuchtigkeitsgehalte der Papierbahn auftreten. Aus diesem Grund wurde eine zunächst trockene und anschließend befeuchtete Papierprobe vermessen.

Probe:

Kopierpapier der Firma X 90[g/m²] Gewicht in trockenem Zustand: 5[g] Gewicht in feuchtem Zustand: 10[g] (FG 50%)

Abb. 4-28 Einfluss der Feuchte bei Labormessung

In Abbildung 4-28 ist das Ergebnis dieses Versuches dargestellt. Wie man sieht, ist im trockenen Zustand die Messung sehr konstant und gleichmäßig. Findet jedoch eine Befeuchtung des Papiers statt, so wird die Messung sehr unregelmäßig. Die Messwerte sind nach der Befeuchtung um mehr als das Zehnfache größer als jene der trockenen Probe. Weiters steigen die Werte innerhalb einer Reihe im Laufe der Messung ständig an. Außerdem hatte es den Anschein, dass sich nach der Befeuchtung Schmutz (eventuell Staub) vom Papier ablöste. Man konnte dies auf der Platte sehen (weiße/graue Schmutzschicht; eine mögliche Verfälschung?). Nach der Messung war Kondenswasser auf der Platte zu sehen. Das Wasser wurde durch die Wärmeentwicklung des Motors verdampft und kondensierte auf der oberen Platte. Das Wasser ging an manchen Stellen beinahe vollständig auf die Platte über. An jenen Stellen war das Papier nahezu trocken. Dadurch erhielt man ein sehr unregelmäßig feuchtes Papier. Außerdem lag die Raumtemperatur außerhalb des genormten Bereichs, in dem Papierprüfungen durchgeführt werden sollten. Um bei Untersuchungen vergleichbare Ergebnisse zu erhalten, benötigt man ein konstantes Klima (23°C \pm 1°C; 50% \pm 2% relative Luftfeuchtigkeit).

Dies führte zur Annahme, dass diese Konstruktion bei der Anwesenheit von Feuchtigkeit nicht für eine repräsentative Messung einsetzbar zu sein scheint.

Um den genauen Einfluss der Feuchte zu ermitteln, sind Versuche an verschiedenen Bereichen einer Papiermaschine, bei unterschiedlichen Trockengehalten, unumgänglich. Trotzdem ergaben sich Zweifel, ob eine repräsentative Messung bei einem höheren Feuchtigkeitsgehalt überhaupt möglich ist.

Es wurden daher Messungen an der Maschine eines namhaften Papierproduzenten durchgeführt. Die Ergebnisse widerlegten überraschenderweise die im Labor erlangte Annahme, dass Messungen unter der Anwesenheit von Feuchtigkeit nicht möglich sind.

Die Messungen an dieser Papiermaschine wurden vor und direkt nach dem Befeuchter, innerhalb der Trockenpartie, vollzogen. Weiters wurde zum Vergleich auch eine Messung unmittelbar vor der Aufrollung gemacht.

	vor Befeuchter	nach Befeuchter	vor Aufrollung	Sorte
TG [%]	90	89,91	93	
FG [%]	10	10,09	7	Newsprint
Formationsindex	4,608	5,222	7,154	

 Tabelle 4.10 Formationswerte bei unterschiedlichen Feuchtegehalten

Wie Tabelle 4.10 zeigt, lieferte diese Untersuchung keine verlässlichen Ergebnisse. Die Feuchtigkeitssteigerung nach dem Befeuchter liegt bei nur 0,09%. Gegenüber den Versuchen im Labor zeigte sich, dass die Formationswerte bei höherem Feuchtigkeitsanteil niedriger waren als jene bei höheren TG. Als Grund wird angenommen, dass bei einem höheren FG des Papiers mehr Licht durch das Blatt dringen kann und sich somit ein besserer Formationswert ergibt. Im Labor konnte durch die Wärmeentwicklung des Motors kein konstanter Feuchtigkeitsgehalt während der Messung gehalten werden (siehe oben).

Bei dieser Papiermaschine erfolgte innerhalb der Trockenpartie eine Rückbefeuchtung der Papierbahn, um einer Schrumpfung vorzubeugen. Dazu wurde Wasser mittels einer Düse auf das Papier gesprüht. Das wiederum erzeugte in diesem Bereich eine sehr hohe Luftfeuchtigkeit. Dadurch lagerte sich am Empfänger des Iploner Wasser und Schmutz an. Dies ist mit ziemlicher Sicherheit der Grund für die unterschiedlichen Formationswerte. Wie sich später herausstellte, ist nämlich im Normalfall bei diesen Feuchtigkeitsgehalten eine weniger starke Änderung der Formationswerte zu erwarten.

Leider waren im Rahmen der vorliegenden wissenschaftlichen Arbeit keine weiteren Versuchsreihen bezüglich des Einflusses der Feuchtigkeit auf die Messergebnisse des Iploner möglich.

Es kann daher vom derzeitigen Standpunkt aus kein eindeutiges Fazit gezogen werden. Auszuschließen ist eine Beeinflussung der Messergebnisse durch Feuchtigkeit jedoch nicht zur Gänze. Aus diesem Grund sollte die Beantwortung der offenen Fragen Thema weiterführender Arbeiten sein.

4.2.10 Messung der Formation von gefärbten Papieren

In der Papierindustrie werden meist zwar nur weiße und braune Papiersorten produziert. Auf dem Markt gibt es allerdings auch eine breite Palette von gefärbten Papieren. Ob die jeweilige Färbung Einflüsse auf die Messergebnisse des Iploner hat, ist daher von großem Interesse.

In einer Versuchsreihe wurden Muster mit unterschiedlicher Färbung herangezogen. Um verlässliche Vergleichswerte zu erzielen, wurden zuerst Messungen mit TechPap durchgeführt, da für dieses Formationsmessgerät bereits diesbezügliche Erkenntnisse vorlagen. Anschließend wurden die Messungen mit dem Iploner wiederholt. In der Auswertung der

Hersteller	Muster	Sorte	[g/m ²]
ТК	Weiß		
TK	Pink	Schreih-/	
TK	Blau	Drucknanier	50
TK	Grün	Druckpapier	
TK	Gelb		

Messergebnisse beider Geräte zeigte sich eine eindeutige tendenzielle Übereinstimmung.

Tabelle 4.11 Muster, die bei der Untersuchung verwendet wurden

Abb. 4-29 Vergleich von Formationswerten gefärbter Papiere

Wie aus Abbildung 4-29 hervorgeht ist keine Beeinflussung der Formationswerte durch die Färbung der Papiere nachzuweisen. Die einzige Ausnahme bilden schwarze Papiere. Dies hat jedoch allgemein physikalische Ursachen, denn schwarze Körper²⁴ schlucken Infrarotlicht zur Gänze (abhängig von der flächenbezogenen Masse). Ohne Lichttransmission ist eine Messung unmöglich.

²⁴ Physik schwarzer Körper

4.2.11 Vergleich von PM- und Labormessungen

Nachdem die Untersuchungen über die Stärken und Schwächen des Iploner abgeschlossen waren, stellte sich eine letzte wichtige Frage: Inwieweit sind Formationswerte, die bei Messungen an Papiermaschinen auftreten, mit jenen von Labormessungen vergleichbar?

In Untersuchungen sollte festgestellt werden, ob anhand von Laborwerten eine Aussage über mögliche an Papiermaschinen zu erwartende Formationswerte getätigt werden kann. Aus diesem Grund wurden Muster zweier Papiermaschinen, welche Papiere von unterschiedlicher Sorte produzieren, nochmals im Labor vermessen. Im Anschluss an die Laborversuche wurden die jeweiligen Formationsindizes gegenübergestellt.

Hersteller	Sorte	[g/m ²]	PM-Messung	Labormessung
MÄ	Feinpapier (2-fach gestrichen)	115	2,581	2,751
NS	Zeitungsdruckpapier	45	6,537	6,965

Tabelle 4.12 Vergleich der Messergebnisse von Labor und PM

Tabelle 4.12 zeigt die Ergebnisse dieser Untersuchung. Wie man erkennen kann, unterscheiden sich die Werte nur geringfügig voneinander. Aufgrund dieser Erkenntnis kann man sagen, dass man eine ungefähre Abschätzung von möglichen Formationswerten der Papiermaschinen machen kann. Man braucht hierzu nur schon vorab ein Probemuster der Papiermaschine. Weitere Untersuchungen zur genaueren Abklärung wären mit Sicherheit sinnvoll, sind jedoch im Zuge dieser Arbeit nicht möglich.

4.3 Fingerprint einer Papiermaschine

Wie bereits im Kapitel 3.1 erwähnt, kann der Iploner nicht nur zur Formationsanalyse herangezogen werden. Dieses Messgerät dient auch zur Optimierung der Papiermaschine und der Fehlersuche. So können beispielsweise Unwuchten von Walzen und daraus resultierende Markierungen erkannt werden. Durch diese Eigenschaft des Iploners drängt sich die Frage auf, ob es möglich ist, anhand von Messergebnissen eines A4-Blattes im Labor, Markierungen herauszulesen und in der Folge Muster jenen Papiermaschinen zuzuordnen, auf welchen sie produziert wurden. Dies ergäbe eine Art von Identifikationsmerkmal, quasi einen "Fingerprint", der bei Reklamation über die Qualität jegliche Zweifel über die Herkunft des Papiers aus dem Weg räumt.

Versuche auf unterschiedlichen Papiermaschinen in Österreich und Finnland zeigten keine Übereinstimmung der Frequenzspektren mit den Ergebnissen im Labor. Die Erklärung dafür liegt darin, dass im Labor niemals gleiche Bedingungen wie an Papiermaschinen simuliert werden können, denn Messungen im Labor finden immer unter idealen Verhältnissen statt, während in der Produktion stets mechanische Einflüsse zu erwarten sind. Wie aus Abbildung 4-30 ersichtlich, ergeben sich unterschiedliche Frequenzspektren bei der Gegenüberstellung der Messung im Labor versus jenen auf der Papiermaschine.

Abb. 4-30 Vergleich Frequenzspektrum Labor- und PM-Messung

Die Schlussfolgerungen aus dieser Untersuchung sind, dass Probeblätter in den handelsüblichen DIN-Formaten (z.B. A5 und größer) definitiv zu klein sind, um etwaige Markierungen von Papiermaschinenteilen anzeigen zu können. Walzen und andere Elemente einer Papiermaschine haben große Abmessungen, sodass periodisch auftretende Markierungen in Abständen von mehreren Metern zu beobachten sind. Die Aussicht, bei einem Probeblatt vom Format DIN A4 eine solche Störung zu erkennen, ist demnach höchst unwahrscheinlich.

Den Fingerprint einer Papiermaschine im Labor nachzuweisen, ist mit dem derzeitigen Stand der Technik nicht möglich.

4.4 Formationsmessungen in der Siebpartie

In der industriellen Fertigung werden aber nicht immer nur Papier- bzw. Kartonsorten erzeugt, die aus einer einzelnen Lage bestehen. So ist zum Beispiel eine Messung der Formation der Produkte von Mehrlagenmaschinen mit den derzeitigen Messgeräten gar nicht möglich. Begründet wird dies dadurch, dass diese Sorten so dick bzw. so dicht sind, dass keine Transmission von Licht/Betastrahlen mehr erfolgen kann. Messungen sollten daher nur in der Siebpartie von solchen Mehrlagenmaschinen durchgeführt werden.

Die Formation der einzelnen Lagen sollte gemessen werden, um bei Formationsproblemen sofort reagieren zu können.

Bevor jedoch mit diesen Versuchen begonnen wurde, war eine Abklärung mit dem Hersteller des Iploner erforderlich, ob solche Messungen in der Siebpartie überhaupt möglich sind. Dabei stellte sich heraus, dass bei zu großen Wassermengen das Rauschen des Wassers vom Iploner mit aufgezeichnet und somit das Ergebnis verfälscht wird. Eine Messung innerhalb der Siebpartie wird also niemals repräsentative Werte liefern und ist somit hinfällig. Aus diesem Grund wurden auch weitere Untersuchungen zu diesem Themengebiet verworfen.

4.5 Vergleich verschiedener Formationsmessgeräte

Einer der wohl wesentlichsten Punkte dieser Arbeit ist die Bildung von Korrelationskoeffizienten und den entsprechenden Korrelationskurven zwischen den unterschiedlichen Formationsmessgeräten. Dies ist deshalb wichtig, da mit Hilfe dieser Koeffizienten/Kurven, Werte eines Messgerätes aus den Messergebnissen eines anderen Gerätes vorausberechnet bzw. umgerechnet werden könnten.

Falls Korrelation zwischen den Messgeräten vorliegt, stellt sich natürlich die Frage, wie signifikant diese ist. Um das herauszufinden, werden sowohl die Regressionsanalyse, als auch die Korrelationsanalyse herangezogen. Zur Feststellung, wo und wann die größte Korrelation auftritt, werden verschiedene Arten der Regression herangezogen.

Diese sind:

Einfache lineare Regression	$y = a \cdot x + b$
Nichtlineare Regression:	
Logarithmische Regression	$y = a + b \cdot \ln x$
Potentielle Regression	$y = a \cdot x^b$
Exponentielle Regression	$y = a \cdot e^{b \cdot x}$
Multiple lineare Regression:	
Polynomische Regression	$y = a_n \cdot x^n + \dots + a_1 \cdot x + a_0$

Entscheidend für die Auswahl eines dieser Regressionsmodelle sind das erhaltene Bestimmtheitsmaß und der daraus resultierende Korrelationskoeffizient. Das Modell, bei dem diese Werte am größten sind, ist für weitere Auswertungen heranzuziehen. Anhand der daraus erhaltenen Gleichung soll - wie oben erwähnt - aus gemessenen Werten eines **Gerätes A** eine Prognose für Werte eines **Gerätes B** abgegeben werden.

Im nun folgenden Abschnitt werden die Begriffe *Regression* und *Korrelation* sowie deren Aussagen genauer erläutert.

4.5.1 Der Begriff Regressionsanalyse

Unter dem Begriff Regressionsanalyse versteht man ein statistisches Verfahren, dessen Aufgabe es ist, die Änderung einer Variablen, welche durch die Änderung einer zweiten Variablen ausgelöst wird, durch eine möglichst einfache mathematische Funktion zu beschreiben. Das Ziel dabei ist, einen Zusammenhang zwischen diesen Variablen zu erhalten.

$$Y = f(X) + \varepsilon$$

Y erklärende (endogene) Variable \Rightarrow Regressand

X erklärende (exogene) Variable \Rightarrow Regressor

 ϵ Fehler \Rightarrow Störkomponente

Grundsätzlich wird bei dieser Art von Analyse angenommen, dass eine abhängige Variable **Y** von einer unabhängigen Variablen **X** erklärt werden kann. Weiters soll eine Funktion **f(X)** gefunden werden, die einen Großteil der Variabilität der Daten erklärt und den Fehler ε vernachlässigt.

Aufgrund so genannter latenter Variablen kann die Beziehung Y = f(X) in der Praxis nicht unmittelbar beobachtet werden, wodurch die Parameter der gesuchten Regressionsfunktion abgeschätzt werden müssen. Daher wird der Regressand besonders gekennzeichnet.

 $\hat{Y} = f(X)$ YX-Regressionsfunktion

Aus der Definitionsbeziehung

$$\hat{\varepsilon} = Y - \hat{Y}$$

folgt der Schätzansatz

$$Y = \hat{Y} + \hat{\varepsilon}$$

Da sich die zu quantifizierende Beziehung immer auf einen empirischen Datensatz (**x**_i, **y**_i), wobei **i** gleich **1**, **2**,, **n**, bezieht, wird folgende Schreibweise gewählt:

$$\hat{y}_i = f(x_i)$$
 yx-Regressionsfunktion

bzw.

$$y = \hat{y}_i + e_i$$

 e_i Residuum \Rightarrow Abweichung des tatsächlichen vom berechneten (angepassten) Wert

Um nun geeignete Funktionen zu erhalten, sind nachfolgende Schritte erforderlich: ²⁵

- Ableitung eines vermuteten Zusammenhangs aus fachbezogener Theorie
- Auswahl der geeigneten Funktion
- Schätzung der Funktionsparameter
- Prüfen der Ergebnisse anhand von Streudiagrammen
- Neuspezifikation des Ansatzes (sofern notwendig)
- Prognose
- Ermittlung des Bestimmtheitsmaßes

4.5.2 Der Begriff Korrelationsanalyse

Mit Hilfe der Korrelation bzw. des Korrelationskoeffizienten R kann der lineare Zusammenhang zwischen zwei Merkmalen beschrieben werden. Ziel dieser Art von Analyse ist es, etwaige Beziehungen zwischen Variablen aufzudecken, zu quantifizieren und schließlich zu testen.

Bei dieser Analyse sind beide Variable "gleichberechtigt", d.h. es gibt keine Unterscheidung zwischen abhängigen (endogenen) und unabhängigen (exogenen) Variablen.

Das Interesse der Korrelationsanalyse liegt im Grad des Zusammenhangs, wobei darauf geachtet werden muss, dass der Korrelationskoeffizient stets auf das **Intervall [-1, +1]** beschränkt ist. Somit handelt es sich um ein normiertes Maß für den linearen Zusammenhang.

²⁵ Vgl. Pinnekamp, Siegmann, 2001, S. 133f

Es gilt:

 $-1 \le R \le 1$

je näher $|\mathbf{R}|$ bei 1, umso weniger stark ist die Abweichung der Einzelwerte von der gedachten Geraden. ²⁶

- **R** = $\mathbf{0}$ \Rightarrow kein Zusammenhang der beiden Merkmale erkennbar
- **R** = $1 \Rightarrow$ perfekte positive Korrelation
- **R** =-1 \Rightarrow perfekte negative Korrelation
- $\mathbf{R} > \mathbf{0} \Rightarrow Y$ steigt mit zunehmendem X_i
- $\mathbf{R} < \mathbf{0} \Rightarrow Y$ sinkt mit zunehmendem X_i

Im Falle einer linearen Regression $R^2 \approx 0$ bedeutet dies nicht, dass zwischen den beiden Merkmalen X und Y kein Zusammenhang besteht. Es weist lediglich darauf hin, dass die Beziehung zwischen den beiden Variablen nicht linear ist.²⁷ Anstelle der einfachen linearen Regression kommen dann die in Abschnitt 4.5 erwähnten Modelle zum Einsatz.

Trägt man die einzelnen Werte $(\mathbf{x}_i, \mathbf{y}_i)$ in ein Koordinatensystem ein, so erhält man ein so genanntes Streudiagramm. Durch ein solches Diagramm erhält man einen relativ guten Eindruck der jeweiligen Korrelation.²⁸

Abb. 4-31 Beispiel für ein Streudiagramm

27 Vgl. Friedl, 2008, Folie 28

²⁶ Vgl. Stiefl, 2006, S. 34

²⁸ Vgl. Reichardt, Reichardt 2002, S. 72
Das Streudiagramm ist die Grundlage der graphischen Darstellung der Funktion und in der Folge der Visualisierung der Korrelation. Der Schnittpunkt der Mittelwerte von X und Y liegt immer auf der Kurve bzw. Geraden (je nach Regressionstyp). Anhand der gegebenen Grunddaten errechnet sich die Gleichung für die Berechnung der Erwartungswerte E(Y_i), die je nach Regressionsart eine Kurve oder Gerade beschreibt. Weiters kann durch diese Werte eine statistische Auswertung erfolgen, mit deren Hilfe der Korrelationskoeffizient ermittelt wird.

Prädiktionsintervall

Unter dem Begriff Prädiktionsintervall (Prognose- oder auch Vorhersageintervall) versteht man ein Intervall, in dem zukünftige Ereignisse mit einer Wahrscheinlichkeit von $1-\alpha$ an der Stelle X₀ anzutreffen sind.²⁹ Dies ist die Eingrenzung eines Bereiches, der zukünftige Werte unter Annahme bestimmter Prädiktoren mit 95% bzw. 99% Wahrscheinlichkeit enthält. ³⁰

Gegensatz einem Konfidenzintervall wird bei Im zu einem Prädiktionsintervall ein Bereich angegeben, in welchem sich die Werte der jeweiligen Zielgröße befinden und nicht ein Bereich für den Erwartungswert der entsprechenden Größe an der vorgegebenen Stelle X₀. Durch diese Tatsache sich. ergibt dass der Bereich eines Prognoseintervalls größer ist als jener des Konfidenzintervalls. Eine sinnvolle Prädiktion von zukünftigen Ereignissen oder Aussagen über Prädiktionsintervalle ist also nur dann möglich, wenn sich die zur Bestimmung zukünftiger Werte vorgegebene Größe X₀ innerhalb des verwendeten Messdatenbereichs von X befindet, also

$$X_0 \in \left[X_{\min}, X_{\max}\right]$$

sein muss. Liegt jedoch der Fall vor, dass

²⁹ Vgl. Rudolf, Kuhlisch 2008, S.248

³⁰ Vgl. Krause, 2003, S. 13

$X_{0} \notin \left[X_{\min}, X_{\max}\right]$

ist, müsste man unterstellen, dass keine Veränderung der Parameter sowie des Funktionstyps der Regressionsgeraden/-kurve vorliegt. Dies kann in der Praxis jedoch nur selten begründet angenommen werden.³¹

4.5.3 Ergebnisse der Untersuchung

Bereits zu Beginn dieses Kapitels wurde darauf hingewiesen, dass die Bildung Korrelationskurven und die Bestimmung der von Korrelationskoeffizienten eine bedeutende Zielsetzung in dieser Arbeit darstellt, auf deren Basis ein Indexvergleich zwischen gängigen Formationsmessgeräten möglich wird und letzten Endes ein Umrechnungsverfahren zwischen den verschiedenen Indizes: ein Schritt in Richtung eines Instrumentariums Vereinheitlichung in der zur Formationsmessung.

Die in der Folge besprochenen Ergebnisse beziehen sich ausschließlich auf die bei den Untersuchungen erhaltenen Gesamtkurven, welche Werte von weißen als auch braunen Papiersorten beinhalten und einen breiten Bereich der flächenbezogenen Masse (40 bis 300g/m²) abdecken.

³¹ Vgl. Rudolf, Kuhlisch 2008, S.248

Korrelationskurve TechPap/Iploner

Korrelationskurve Iploner/MK-Tester

Korrelationskurve Iploner/Ambertec

Korrelationskurve TechPap/Ambertec

Korrelationskurve TechPap/MK-Tester

Korrelationskurve MK-Tester/Ambertec

Auf die für die Praxis interessante Distinguierung der Flächengewichtsbereiche – die einen realistischen Vergleich zwischen Sorten erst zulässt – wurde gesondert eingegangen (siehe Anhang). Außerdem wurden Kurven für eine bestimmte Sorte, sozusagen ein "Sortenüberblick" von Kopierpapieren erstellt.

Abb. 4-32 Vergleich verschiedener Kopierpapiere (Beispiel für Sortenvergleich)

4.5.4 Berechnung

Die für die Auswertung notwendige Verfahrensweise und die für die Berechnung erforderlichen Formeln werden im Detail im Anhang dargestellt. Es handelt sich um ein statistisches Auswertungsverfahren, das dem Skriptum "Datenanalyse" (Friedl, 2008) entnommen wurde. Der Grund für die Wahl dieses Skriptums lag darin, dass damit Berechnungsvorgänge transparent und nachvollziehbar dargestellt werden können.

In der Sammlung der gegebenen Formeln befindet sich auch jene für die Berechnung des Prädiktionsintervalls. Es wird dazu benötigt, Vorhersagen zu treffen und den Bereich eingrenzen zu können, in dem die tatsächlichen Werte liegen werden. In der Berechnung des Prädiktionsintervalls bei linearer Regression bzw. polynomischer - also multipler linearer Regression - ergeben sich keinerlei Schwierigkeiten. Komplikationen ergeben sich beim potentiellen, logarithmischen und exponentiellen Regressionsmodell:

Wenn reale Messwerte, z.B. Formationsindex des MK-Testers, auf der Y-Achse in der vorliegenden Form (einer der drei angeführten Typen) normalverteilt sind, kann eine weitere statistische Auswertung nicht durchgeführt werden.

Für eine repräsentative Berechnung war es daher notwendig, die genannten Regressionstypen in eine lineare Form zu transformieren.

Linearisierung

potentielle	$Y^* = ln Y$	$X^* = \ln X$
logarithmische	$Y^* = Y$	$X^* = \ln X$
exponentielle	$Y^* = ln Y$	$X^* = X$

Es wurde davon ausgegangen, dass die linearisierten Werte normalverteilt sind. Erst auf der Basis dieser Annahme wurde die statistische Auswertung potentieller, logarithmischer und exponentieller Regressionstypen möglich.

Eine erhebliche Schwierigkeit bei diesen Regressionstypen ergab sich bei der Rücktransformation des Prädiktionsintervalls in die Grundform.

potentielle	$b_0 = e^{b_0^*}$	$b_1 = b_1^*$
logarithmische	$b_0 = b_0^{*}$	$b_1 = b_1^*$
exponentielle	$b_0 = e^{b_0^*}$	$b_1 = b_1^{*}$

Offensichtlich wurde bei der Rückführung des Intervalls auch an der Wahrscheinlichkeit 1-α eine Veränderung durchgeführt.

Das heißt: Wenn man 95% Prädiktionsintervall angibt und diesen Wert in die Grundform einer potentiellen, logarithmischen oder einer exponentiellen Regression zurückführt, liegt der Wert nicht mehr genau bei 95%, sondern in der Nähe davon. Dies bedeutet, dass mehr oder weniger Werte innerhalb des Intervalls liegen. Speziell an den Kurvenenden, den so genannten Schwänzen der Kurve, kann es passieren, dass das Intervall "explodiert".

Um diesem Problem vorzubeugen und Fehler auszuschließen, soll die Schätzung zukünftiger Werte ausschließlich im linearisierten Zustand erfolgen.

Schlussfolgernd kann gesagt werden, dass Schätzungen zukünftiger Formationswerte mit Hilfe der Korrelationskurven und des Prädiktionsintervalls möglich sind. "Ausreißer" sind jedoch nicht völlig auszuschließen, auch wenn bei allen vorliegenden Auswertungen *mindestens* 90% der Werte innerhalb des Intervalls liegen.

4.5.5 Anwendungsbeispiel

Für eine bessere Verständlichkeit dieser Verfahren und Kurven dient das nachfolgende Anwendungsbeispiel. In diesem soll anhand eines tatsächlich gemessen Wertes X_{neu} des Messgerätes A eine Prognose bzw. eine Umrechnung in den entsprechenden Index (Y_{neu}) des Messgerätes B durchgeführt werden. Die Prognose erfolgt sowohl mittels graphischer als auch rechnerischer Auswertung.

Abb. 4-33 Diagramm weißer Muster bei linearer Regression

Abbildung 4-33 zeigt das Ergebnis der Untersuchung von weißen Mustern in einem Bereich der flächenbezogenen Masse von 42 bis 300 [g/m²]. Dabei handelt es sich um eine lineare Regression, d.h. es liegt ein linearer Zusammenhang zwischen den untersuchten Proben vor.

Bestimmt wurde der Formationsindex X_{neu} eines beliebigen Musters mit dem TechPap.

$$X_{neu} = 55,25$$

Graphische Auswertung:

Der erste Schritt der Auswertung ist die Ermittlung des Erwartungswertes $E(Y_{neu})$.

Abb. 4-34 Graphische Ermittlung des Erwartungswertes

Abbildung 4-34 veranschaulicht die graphische Ermittlung des Erwartungswertes anhand der erhaltenen Kurve, bzw. der Gerade, wobei der Erwartungswert $E(Y_{neu}) = 3,5$ ist.

Der Erwartungswert allein liefert jedoch keine qualitative Vorhersage oder Bestimmung des wahren Wertes von Y_{neu} . Aus diesem Grund wird nun mit Hilfe des Prädiktionsintervalls ein Bereich eingegrenzt, in dem der reale Wert zu erwarten ist.

Abb. 4-35 Graphische Ermittlung der Intervallsgrenzen

Abbildung 4-35 zeigt die Ermittlung des oberen und unteren Grenzwertes des Prädiktionsintervalls. Das Beispiel veranschaulicht, dass der tatsächliche Wert im Bereich von **2,6** bis **4,4** anzutreffen sein wird.

Rechnerische Auswertung:

Wie bereits bei der graphischen Prognose erwähnt, liegt in diesem Fall ein linearer Zusammenhang der Daten vor, d.h. dass bei dieser Art der Regression eine Beschreibung durch eine Geradengleichung erfolgt.

$$E(Y_{neu}) = b_0 + b_1 \cdot X_{neu}$$

Die Parameter b_0 und b_1 werden mittels statistischer Auswertung bestimmt. Die genauen Formeln zur Berechnung dieser Parameter sind im Anhang zu finden.

Im hier vorliegenden Fall ergeben sich für diese:

$$b_0 = 0,4869$$

 $b_1 = 0,0547$

Setzt man diese beiden Werte zusammen mit dem Wert X_{neu} in die Gleichung ein, so erhält man den Erwartungswert.

$$E(Y_{neu}) = 0,4869 + 0,0547 \cdot 55,25 \implies E(Y_{neu}) = 3,509$$

Weiters ist auch eine rechnerische Beurteilung des Prädiktionsintervalls notwendig. Die nachstehende Formel gilt grundsätzlich für den linearen Fall. Bei multipler linearer Regression (Polynom zweiter, dritter und vierter Ordnung) wird die Berechnung etwas aufwendiger (siehe Anhang).

$$\pm t(1-\alpha/2;n-2)\cdot \sqrt{MSE\left\{1+\frac{1}{n}+\frac{\left(X_{neu}-\overline{X}\right)^{2}}{S_{XX}}\right\}}$$

Diese Gleichung beinhaltet sowohl bekannte Daten, wie zum Beispiel die Anzahl der Messwerte n, X_{neu} , als auch unbekannte wie den mittleren quadratischen Fehler **MSE**. Die Auswertung der unbekannten Werte erfolgt auch hier wiederum mittels statistischer Auswertung (siehe Formeln im Anhang).

Durch Einsetzten der Werte erhält man:

$$\pm 1,9901 \cdot \sqrt{0,2074833 \left\{ 1 + \frac{1}{82} + \frac{(55,25 - 59,48)^2}{6,6952 \cdot 10^4} \right\}} \quad \Rightarrow \quad \pm 0,912$$

Um nun den oberen und den unteren Grenzwert zu erhalten, wird der Wert 0,912 zum zuvor ermittelten Erwartungswert addiert bzw. subtrahiert.

Auf diese Weise ergibt sich für die beiden Grenzwerte folgendes:

```
oberer Grenzwert = 4,421
unterer Grenzwert = 2,597
```

Abschließend sollen nun die graphisch und rechnerisch ermittelten Werte mit dem tatsächlichen Formationswert des Iploner verglichen werden. Tabelle 4.13 zeigt die Ergebnisse der verschieden Auswertungen zusammengefasst. Quod erat demonstrandum, liegt der tatsächliche Messwert innerhalb der Grenzen des Prädiktionsintervalls: In diesem Fall ist es gelungen, eine grobe Schätzung des wahren Wertes **Y**_{neu} abzugeben.

Auswertung	Y _{neu}	E(Y _{neu})	oberer Grenzwert	unterer Grenzwert
graphisch	-	3,5	4,4	2,6
rechnerisch	-	3,509	4,421	2,597
Messung	3,609	-	-	-

Tabelle 4.13 Vergleich von theoretisch ermitteltem und realem Formationsindex

Prinzipiell erfolgt die Auswertung bei allen Arten der Regression auf gleiche Weise. Die Unterschiede bei der jeweiligen Auswertung liegen in der Art der vorliegenden Regressionsgleichung sowie in der Berechnung des Prädiktionsintervalls. Wichtig ist noch zu erwähnen, dass eine graphische Prognose bzw. die Umrechung von Formationswerten niemals so genau wie die rechnerische Auswertung sein wird. Die Berechnung von Werten auf graphischem Wege ist sicherlich für praktische Anwendungsfälle, bei denen rasche Umrechnungen erforderlich sind, äußerst hilfreich. Um jedoch genauere Daten zu erhalten, sollte man stets auf die rechnerische Auswertung zurückgreifen.

5 SCHLUSSFOLGERUNG UND AUSBLICK

Sowohl in der wissenschaftlichen als auch in der praktischen Diskussion ist Formation ein umstrittenes Thema. Dies gilt einerseits für die Tatsache, dass es keine allgemein gültige eindeutige Definition des Begriffes Formation gibt und andererseits dafür, dass auf Grund der Vielzahl von Messgeräten - mit jeweils eigenem Formationsindex - eine einheitliche Basis zur Messung der Formation fehlt.

Die hauptsächliche Zielsetzung dieser Arbeit war, über eine Studie der Einsetzbarkeit des Messgerätes Iploner in besonderer Weise eine Korrelation zwischen gängigen Messverfahren nachzuweisen und statistisch zu dokumentieren.

Der Iploner ist ein universell einsetzbares Messgerät. Diese und Schlussfolgerung erlauben Laborergebnisse insbesondere Praxisversuche: Der Iploner ist nicht nur ein gutes Trouble-shooting-tool, sondern auch ideal zur Formationsmessung geeignet. Ein großer Vorteil ist die Handlichkeit des Gerätes. Es ist, im Vergleich zu anderen Geräten, rasch an verschiedenen Orten einsetzbar.

Die Laborversuche zeigten, dass die Funktionalität des Iploner als optisches Messgerät gut mit gängigen anderen Formationsmessgeräten vergleichbar ist. Typischerweise zeigten sich in der Arbeit mit dem Iploner die gleichen Störeinflüsse wie bei anderen Geräten, sodass grundsätzlich die Annahme der zu erwartenden Einflüsse bestätigt wurde. Weiters konnte gezeigt werden, dass Online- und Offlinemessungen miteinander vergleichbar sind. Der Iploner stellt also sowohl im Labor als auch in der Praxis ein repräsentables Messinstrument dar und wird auf Grund seiner positiven Eigenschaften in Zukunft sicherlich noch mehr Marktpräsenz aufweisen.

In der Untersuchung der Stärken und Schwächen dieses Messgerätes wurden die gesteckten Ziele erreicht. In der Problematik der Fingerprintmessung allerdings konnte kein befriedigendes Ergebnis erzielt werden, da im Labor nicht die gleichen Bedingungen simuliert werden können, wie sie auf Papiermaschinen auftreten. Außerdem kommen mögliche Markierungen auf Papiermaschinen in zu großen Abständen vor, als dass diese auf einem DIN A4 Blatt nachgewiesen werden könnten. Der Fingerprint einer Papiermaschine ist mit dem derzeitigen Stand der Technik nur unter großem Aufwand feststellbar (Längsstreifen TAPIO). Ein weiteres Objekt der Betrachtung war die Formationsmessung in der Siebpartie. Hier trat als unüberwindbares Problem das Rauschen des Wassers auf, das repräsentative Messergebnisse unmöglich machte.

Ein Erfolg versprechender Problemlösungsansatz im Bereich der Vergleichbarkeit von Formationsindizes verschiedener Messgeräte ist die Berechnung eines Korrelationskoeffizienten. Anhand von Analysen konnte gezeigt werden, dass eine Übertragbarkeit der Ergebnisse verschiedener Formationsmessgeräte möglich ist. Durch die Erstellung von Korrelationskurven wird sogar eine grobe graphische bzw. rechnerische Abschätzung von zukünftigen Formationswerten erreicht. Für die Praxis ist dies ein unschätzbarer Vorteil. Prinzipiell messen alle Messgeräte die gleiche Eigenschaft von Papier - nämlich die Formation. Die gewonnenen Daten sind jedoch auf Grund der verschiedenen Hersteller und der spezifischen Indexdefinierung bis heute nicht vergleichbar. Anstatt sich auf einen kodifizierten Umrechnungsmodus verlassen zu können, ist es in der Praxis so, dass man sich im Vergleich von zwei Indizes auf sein Gefühl verlassen muss.

Die vorliegende Arbeit schlägt ein praktikables Umrechnungsverfahren zwischen den verschiedenen Indizes vor, bei dem nur unter konsequenter Beachtung eines Prädiktionsintervalls eine qualitative Umrechnung von Index A in Index B und in der Folge eine Vorhersage zu erwartender Werte möglich wird.

Dies ist letzen Endes ein Schritt in Richtung eines Instrumentariums zur Vereinheitlichung der Formationsmessung.

In Zukunft sollte es möglich sein, anhand der hier vorliegenden Kurven rasche Umrechnungen durchzuführen. Indem ein Sortenüberblick hergestellt wird – also Korrelationskurven für eine spezifische Sorte – erhält man einen Überblick über entsprechende Formationswerte der verschiedenen Produzenten. Dies wäre nicht nur zur nachhaltigen Qualitätssicherung in der Produktion von Bedeutung, sondern auch für den Bereich des Druckes und im weitesten Sinne auch für den Großhandel.

dieser Arbeit sollen als Grundlage für Die Ergebnisse weitere wissenschaftliche Untersuchungen dienen. Sie sind von besonderer für die Praxis. da der Hauptfokus Relevanz der bisherigen Untersuchungen hauptsächlich auf den weißen Papieren liegt und besonders Analysen brauner Papiersorten interessant wären. Weiters sind detailliertere Sortenüberblicke notwendig und eine Distinguierung von Messdaten gestrichener und ungestrichener Papiere. Für die Zukunft und die Verlässlichkeit der hier vorgestellten Korrelationsanalyse gilt in jedem Fall: Je mehr Daten, desto besser!

6 LITERATURVERZEICHNIS

BAUER, Wolfgang: Papier- und Kartonherstellung – 5. Einheit: Siebpartie (Blattbildungstheorie). Skriptum zur Vorlesung. Technische Universität, Graz 2008.

BERNIÉ, Jean-Philippe: Measuring Formation of Paper – PaperPerfectMethod. Lorentzen & Wettre, Kista 2004.

BUMTECHNO (Hrsg.): Iploner Handbuch, St. Petersburg

EICHINGER, Rudolf: Skriptum zur Vorlesung: Papierphysik. In Papierstruktur – Formation. Technische Universität, Graz 2005.

FRIEDL, Herwig.: Datenanalyse. Skriptum zur Vorlesung. Technische Universität, Graz 2008.

KEREKES, R.J.; SCHELL, C.J.: Characterization of Fibre Flocculation Regimes by a Crowding Factor. In: Journal of Pulp and Paper Science 18 (1992), Nr. 1, S. 32 – 38

KRAUSE, Stefan : Statistische Forschungsmethoden. Skriptum zum Seminar. Technische Universität, Graz 2003.

LALEG, M.; NGUYEN, N.: The Specific Perimeter of Fibre Flocs – A Criterion of Paper Formation. In: Journal of Pulp and Paper Science 21 (1995), Nr. 10, S. 356 – 361

MK SYSTEMS INC. (Hrsg.): Produktbroschüre: The Microformation Tester. Danvers Massachusetts 1982.

MÖNTTINEN A., WILLEY R., NYGARD M.: Kajaani Formation Analyzer User's Manual, Seite(n) 1.1, A1.1, Valmet Automation Kajaani LTD., Kajaani 1996.

NISKANEN, Kaarlo (Hrsg): Fapet Book 16: Paper Physics, 1.3 Formation. Fapet, Helsinki 1998.

PINNEKAMP, Heinz-Jürgen; SIEGMANN, Frank: Deskriptive Statistik: mit einer Einführung in das Programm SPSS. 4. Auflage, Oldenburg, München 2001.

REICHARDT, Helmut; REICHARDT, Ágnes: Statistische Methodenlehre für Wirtschaftswissenschaftler. 11. Auflage. Gabler, Wiesbaden 2002.

RUDOLF Matthias, KUHLISCH Wiltrud: Biostatistik: Eine Einführung für Biowissenschaftler, Pearson Studium, Zug 2008.

STIEFL, Jürgen: Wirtschaftsstatistik. Oldenburg, München 2006.

TECHPAP INC. (Hrsg.): Produktbroschüre: 2D Laboratory Formation Sensor. Norcorss

Internetquelle:

Ambertec Beta Formation Tester. Typenblatt. <u>http://www.ambertec.fi/content/view/1/9/</u>, Espoo. Download: 29.11.2008; 15:59

7 ABBILDUNGS- UND TABELLENVERZEICHNIS

Abb. 2-1 Microscale und specific perimeter	9
Abb. 2-2 Spezifische Formation $f_{\rm N}$ über mittlere Fasermasse $m_{\rm f}$. 10
Abb. 2-3 Typische Formationswerte bei verschiedenen Formern	. 13
Abb. 2-4 Einfluss des Sieb/Strahl-Verhältnisses auf die Formation beim Gapformer	. 14
Abb. 2-5 Einfluss des Sieb/Strahl-Verhältnisses bei Hybridformer	14
Abb. 3-1 Iploner	17
Abb. 3-2 MK-Tester	20
Abb. 3-3 TechPap	22
Abb. 3-4 Ambertec-Beta-Formations-Tester	26
Abb. 4-1 Gesamtanlage	30
Abb. 4-2 Vorrichtung zur Fixierung des Iploner	30
Abb. 4-3 Reglereinheit	31
Abb. 4-4 Vertikale Lagerung des Motors	31
Abb. 4-5 Aufnahmevorrichtung neu	31
Abb. 4-6 Plexiglasplatte	31
Abb. 4-7 Vorrichtung zur Aufnahme der runden Platte	33
Abb. 4-8 Runde Platte	33
Abb. 4-9 Platten übereinander	33
Abb. 4-10 Einfräsung	34
Abb. 4-11 Schablone	34
Abb. 4-12 Ergebnisse der Messung im Stillstand (ohne Probe)	36
Abb. 4-13 Messung im Stillstand mit Probe	37
Abb. 4-14 Einfluss der Bewegung	39
Abb. 4-15 Einfluss der Bewegung	40
Abb. 4-16 Prinzip der Messauswertung bei Bewegung	. 40
Abb. 4-17 Einfluss der Geschwindigkeit bei verschiedenen Flächengewichten	42
Abb. 4-18 Unterschied Sonneneinstrahlung und Abdunkelung	43
Abb. 4-19 Auswirkung eines Lichtblitzes auf die Messung	44
Abb. 4-20 Messspektrum ohne Lichtblitz	45
Abb. 4-21 Messspektrum mit Lichtblitz	45
Abb. 4-22 Unterschied der Messergebnisse mit und ohne Erschütterung	. 46
Abb. 4-23 Einfluss des Flatterns auf die Messung	47
Abb. 4-24 Strahlverhalten bei unterschiedlicher Lage der Probe	. 48
Abb. 4-25 Einfluss von warmer Luft auf die Messung	. 49
Abb. 4-26 Einfluss der Asche bei verschiedenen Papiersorten	. 53
Abb. 4-27 Messspektren bei unterschiedlichen Füllstoffanteilen	55

bb. 4-28 Einfluss der Feuchte bei Labormessung	56
bb. 4-29 Vergleich von Formationswerten gefärbter Papiere	59
bb. 4-30 Vergleich Frequenzspektrum Labor- und PM-Messung	61
bb. 4-31 Beispiel für ein Streudiagramm	66
bb. 4-32 Vergleich verschiedener Kopierpapiere	75
bb. 4-33 Diagramm weißer Muster bei linearer Regression	77
bb. 4-34 Graphische Ermittlung des Erwartungswertes	78
bb. 4-35 Graphische Ermittlung der Intervallsgrenzen	79

Tabelle 3.1 Vergleich Ambertec mit optischen Formationsmessgeräten	28
Tabelle 4.1 Ergebnisse bei der Messung von Luft	36
Tabelle 4.2 Eingrenzung des Frequenzbereiches	41
Tabelle 4.3 Neuberechnung der Geschwindigkeiten für die runden Platten	43
Tabelle 4.4 Grenzen des Iploner (Geschwindigkeitsgrenzen)	50
Tabelle 4.5 Grenzen des Iploner (Flächengewichtsgrenzen weißer Muster)	51
Tabelle 4.6 Grenzen des Iploner (Flächengewichtsgrenzen brauner Muster)	52
Tabelle 4.7 Aschegehalt unterschiedlicher Proben	53
Tabelle 4.8 Formationsindex bei unterschiedlichen Füllstoffanteilen	54
Tabelle 4.9 Aschegehalt der Laborblätter	55
Tabelle 4.10 Formationswerte bei unterschiedlichen Feuchtegehalten	57
Tabelle 4.11 Muster, die bei der Untersuchung verwendet wurden	59
Tabelle 4.12 Vergleich der Messergebnisse von Labor und PM	60
Tabelle 4.13 Vergleich von theoretisch ermitteltem und realem Formationsindex	81

8 ANHANG

Einfluss der Platte(n)

Messung im Stillstand ohne Probe

Messung Luft			
Anzahl Messungen		Einstellung	
1	0,244		
2	0,245		
3	0,245		
4	0,245	2000-20-1	
5	0,245	0g/m²	
6	0,245	_	
7	0,245		
8	0,245		
Mittelwert	0,245		
Maximum	0,245		
Minimum	0,244		
Standardabweichung	0,000		
Konfidenzintervall	0,0002		

Messung Luft mit 2 Platten		
Anzahl Messungen		Einstellung
1	0,272	
2	0,272	
3	0,272	
4	0,272	2000-20-1
5	0,272	0g/m²
6	0,272	
7	0,271	-
8	0,271	
Mittelwert	0,272	
Maximum	0,272	
Minimum	0,271	
Standardabweichung	0,000	
Konfidenzintervall	0,0003	

Messung Luft mit 1er Platte		
Anzahl Messungen		Einstellung
1	0,248	
2	0,248	
3	0,249	
4	0,249	2000-20-1
5	0,249	0g/m²
6	0,250	
7	0,250	
8	0,250	
Mittelwert	0,249	
Maximum	0,250	
Minimum	0,248	
Standardabweichung	0,001	
Konfidenzintervall	0,0006	

Messung im Stillstand mit Probe

Firma: KL

Muster: 17-TS nach Umbau

Flächengewicht: 123,5g/m²

Sorte: Kraftliner

Messung nur Probe ohne Platte		
Anzahl Messungen		Einstellung
1	0,314	
2	0,315]
3	0,315]
4	0,317	2000-20-1
5	0,321	123g/m²
6	0,324	1
7	0,327]
8	0,328	
Mittelwert	0,320	
Maximum	0,328]
Minimum	0,314]
Standardabweichung	0,006	
Konfidenzintervall	0,004	

Messung mit 1er Platte + Probe		
Anzahl Messungen		Einstellung
1	0,256	
2	0,256	
3	0,255	
4	0,256	2000-20-1
5	0,256	123g/m ²
6	0,256	
7	0,255	
8	0,256	
Mittelwert	0,256]
Maximum	0,256	
Minimum	0,255	
Standardabweichung	0,000	
Konfidenzintervall	0,0003	

Messung mit 2 Platten + Probe			
Anzahl Messungen		Einstellung	
1	0,262		
2	0,262		
3	0,262		
4	0,261	2000-20-1	
5	0,261	123g/m²	
6	0,262		
7	0,262		
8	0,261		
Mittelwert	0,262		
Maximum	0,262		
Minimum	0,261		
Standardabweichung	0,001]	
Konfidenzintervall	0,0004		

Messung bei Bewegung ohne Probe

Messung mit 1er Platte ohne Probe									
Anzahl Messungen	15[Hz]	19[Hz]	23[Hz]	Einstellung					
1	0,301	0,301	0,300						
2	0,301	0,301	0,300						
3	0,300	0,301	0,300						
4	0,301	0,301	0,300	2000-20-1					
5	0,300	0,301	0,299	100g/m ²					
6	0,300	0,301	0,300						
7	0,301	0,301	0,300						
8	0,300	0,301	0,301						
Mittelwert	0,301	0,301	0,300						
Maximum	0,301	0,301	0,301						
Minimum	0,300	0,301	0,299						
Standardabweichung	0,001	0,000	0,001						
Konfidenzintervall	0,0004	-	0,0004						

Messu	ng mit 2 P	latten ohn	e Probe	
Anzahl Messungen	15[Hz]	19[Hz]	23[Hz]	Einstellung
1	0,307	0,309	0,307	
2	0,307	0,308	0,307	
3	0,306	0,308	0,307	
4	0,307	0,308	0,307	2000-20-1
5	0,307	0,308	0,307	0g/m²
6	0,307	0,308	0,307	
7	0,307	0,309	0,307	
8	0,307	0,308	0,307	
Mittelwert	0,307	0,308	0,307	-
Maximum	0,307	0,309	0,307	
Minimum	0,306	0,308	0,307	
Standardabweichung	0,0004	0,0005	0,0000	
Konfidenzintervall	0,0002	0,0003	-	

Messung bei Bewegung mit Probe

Firma: KL

Muster: 17-TS nach Umbau

Mess	Messung mit 1er Platte + Probe									
Anzahl Messungen	15[Hz]	19[Hz]	23[Hz]	Einstellung						
1	7,780	7,824	7,863							
2	7,779	7,823	7,863							
3	7,776	7,824	7,864							
4	7,771	7,822	7,861	2000-20-1						
5	7,775	7,823	7,865	123g/m ²						
6	7,775	7,825	7,863							
7	7,785	7,829	7,861							
8	7,776	7,820	7,865							
Mittelwert	7,777	7,824	7,863	-						
Maximum	7,785	7,829	7,865							
Minimum	7,771	7,820	7,861							
Standardabweichung	0,004	0,003	0,002							
Konfidenzintervall	0,003	0,002	0,001							

Messi	Messungen mit 2 Platten + Probe									
Anzahl Messungen	15[Hz]	19[Hz]	23[Hz]	Einstellung						
1	7,405	7,475	7,538							
2	7,398	7,475	7,535							
3	7,399	7,470	7,535							
4	7,399	7,467	7,532	2000-20-1						
5	7,401	7,470	7,533	123g/m²						
6	7,397	7,474	7,533							
7	7,401	7,475	7,535							
8	7,400	7,476	7,533							
Mittelwert	7,400	7,473	7,534	-						
Maximum	7,405	7,476	7,538							
Minimum	7,397	7,467	7,532							
Standardabweichung	0,002	0,003	0,002							
Konfidenzintervall	0,002	0,002	0,001							

Einfluss der Geschwindigkeit

Firma: VP

Muster: II/3

Flächengewicht: 190g/m²

Sorte: Gipskarton

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	20,869	20,971	21,064	21,236	21,318	21,385	
2	20,857	20,970	21,129	21,222	21,281	21,386	
3	20,896	20,936	21,162	21,249	21,356	21,425	
4	20,899	20,980	21,175	21,238	21,322	21,434	2000-20-1
5	20,906	21,023	21,159	21,248	21,347	21,465	190g/m²
6	20,929	21,000	21,173	21,274	21,367	21,495	
7	20,926	20,976	21,198	21,238	21,355	21,435	
8	20,940	20,987	21,157	21,255	21,368	21,441	
Mittelwert	20,903	20,980	21,152	21,245	21,339	21,433	
Maximum	20,940	21,023	21,198	21,274	21,368	21,495	
Minimum	20,857	20,936	21,064	21,222	21,281	21,385	
Standardabweichung	0,029	0,025	0,041	0,015	0,030	0,037	
Konfidenzintervall	0,0180	0,0156	0,0252	0,0096	0,0186	0,0228	

Firma: ARH

Muster: Papiermuster 1 Flächengewicht: 175g/m² Sorte: Kraftliner

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	16,809	16,862	16,931	17,004	17,062	17,116	
2	16,799	16,866	16,930	17,009	17,061	17,115	
3	16,799	16,865	16,939	17,003	17,062	17,118	
4	16,806	16,865	16,929	17,005	17,060	17,119	2000-20-1
5	16,804	16,868	16,933	17,008	17,069	17,116	175g/m²
6	16,798	16,866	16,941	17,007	17,066	17,124	
7	16,796	16,865	16,932	17,009	17,070	17,121	
8	16,791	16,866	16,938	17,011	17,063	17,119	
Mittelwert	16,800	16,865	16,934	17,007	17,064	17,119	
Maximum	16,809	16,868	16,941	17,011	17,070	17,124	
Minimum	16,791	16,862	16,929	17,003	17,060	17,115	
Standardabweichung	0,006	0,002	0,005	0,003	0,004	0,003	
Konfidenzintervall	0,0036	0,0010	0,0028	0,0017	0,0023	0,0018	

Firma: VP Muster: Muster I Flächengewicht: 204,9g/m² Sorte: Kraftliner

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	15,486	15,553	15,645	15,708	15,778	15,842	
2	15,485	15,558	15,650	15,710	15,774	15,845	
3	15,475	15,569	15,659	15,713	15,781	15,846	
4	15,491	15,567	15,638	15,711	15,780	15,848	2000-20-1
5	15,487	15,574	15,645	15,709	15,775	15,845	205g/m²
6	15,496	15,578	15,649	15,713	15,779	15,844	
7	15,478	15,573	15,646	15,725	15,786	15,852	
8	15,488	15,575	15,655	15,725	15,776	15,850	
Mittelwert	15,486	15,568	15,648	15,714	15,779	15,847	
Maximum	15,496	15,578	15,659	15,725	15,786	15,852	
Minimum	15,475	15,553	15,638	15,708	15,774	15,842	
Standardabweichung	0,007	0,009	0,007	0,007	0,004	0,003	
Konfidenzintervall	0,0042	0,0054	0,0040	0,0043	0,0024	0,0020	

Firma: VP

Muster: Muster II Flächengewicht: 205,4g/m² Sorte: Kraftliner

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	14,256	14,323	14,377	14,422	14,475	14,525	
2	14,269	14,318	14,376	14,426	14,481	14,529	
3	14,262	14,313	14,365	14,429	14,482	14,528	
4	14,272	14,313	14,367	14,423	14,475	14,539	2000-20-1
5	14,254	14,329	14,368	14,427	14,487	14,540	205g/m²
6	14,266	14,322	14,364	14,435	14,487	14,537	
7	14,256	14,331	14,370	14,434	14,486	14,535	
8	14,267	14,322	14,378	14,440	14,486	14,530	
Mittelwert	14,263	14,321	14,371	14,430	14,482	14,533	
Maximum	14,272	14,331	14,378	14,440	14,487	14,540	
Minimum	14,254	14,313	14,364	14,422	14,475	14,525	
Standardabweichung	0,007	0,007	0,006	0,006	0,005	0,006	
Konfidenzintervall	0,0042	0,0041	0,0035	0,0039	0,0031	0,0035	

Messung bei Lichteinfluss und Abdunkelung

Messung bei Sonneneinstrahlung

Firma: KL

Muster: 17-TS nach Umbau

Flächengewicht: $123,5g/m^2$

Sorte: Kraftliner

Anzahl Messungen	3[Hz]	5[Hz]	7[Hz]	9[Hz]	11[Hz]	Einstellung
1	7,920	7,977	8,022	8,080	8,120	
2	7,921	7,980	8,037	8,091	8,125	
3	7,904	7,994	8,020	8,088	8,131	
4	7,924	8,001	8,033	8,096	8,131	2000-20-1
5	7,931	8,004	8,026	8,084	8,130	123g/m²
6	7,930	7,995	8,038	8,089	8,129	
7	7,909	8,006	8,030	8,084	8,133	
8	7,891	7,999	8,039	8,087	8,136	
Mittelwert	7,916	7,995	8,031	8,087	8,129	
Maximum	7,931	8,006	8,039	8,096	8,136	
Minimum	7,891	7,977	8,020	8,080	8,120	
Standardabweichung	0,014	0,011	0,007	0,005	0,005	
Konfidenzintervall	0,0096	0,0074	0,0051	0,0034	0,0034	

Anzahl Messungen	13[Hz]	15[Hz]	17[Hz]	19[Hz]	21[Hz]	Einstellung
1	8,163	8,213	8,254	8,310	8,459	
2	8,164	8,219	8,260	8,320	8,432	
3	8,158	8,215	8,261	8,321	8,452	
4	8,167	8,220	8,261	8,326	8,519	2000-20-1
5	8,168	8,221	8,263	8,330	8,546	123g/m²
6	8,170	8,227	8,262	8,334	8,564	
7	8,166	8,227	8,268	8,346	8,580	
8	8,175	8,224	8,269	8,340	8,594	
Mittelwert	8,166	8,221	8,262	8,328	8,518	
Maximum	8,175	8,227	8,269	8,346	8,594	
Minimum	8,158	8,213	8,254	8,310	8,432	
Standardabweichung	0,005	0,005	0,005	0,012	0,063	
Konfidenzintervall	0,0035	0,0036	0,0033	0,0081	0,0436	

Messung bei Abdunkelung

Firma: KL

Muster: 17-TS nach Umbau

Flächengewicht: 123,5g/m²

Sorte: Kraftliner

Anzahl Messungen	3[Hz]	5[Hz]	7[Hz]	9[Hz]	11[Hz]	Einstellung
1	7,744	7,796	7,833	7,885	7,927	
2	7,748	7,806	7,828	7,889	7,930	
3	7,749	7,784	7,835	7,885	7,932	
4	7,746	7,792	7,844	7,888	7,935	2000-20-1
5	7,761	7,800	7,850	7,890	7,932	123g/m²
6	7,753	7,797	7,837	7,885	7,934	
7	7,755	7,797	7,837	7,894	7,931	
8	7,752	7,797	7,844	7,890	7,934	
Mittelwert	7,751	7,796	7,839	7,888	7,932	
Maximum	7,761	7,806	7,850	7,894	7,935	
Minimum	7,744	7,784	7,828	7,885	7,927	
Standardabweichung	0,005	0,006	0,007	0,003	0,003	
Konfidenzintervall	0,0038	0,0044	0,0049	0,0022	0,0018	

Anzahl Messungen	13[Hz]	15[Hz]	17[Hz]	19[Hz]	21[Hz]	Einstellung
1	7,971	8,012	8,053	8,078	8,102	
2	7,973	8,014	8,052	8,075	8,105	
3	7,972	8,011	8,055	8,083	8,105	
4	7,972	8,015	8,057	8,077	8,105	2000-20-1
5	7,968	8,015	8,055	8,080	8,101	123g/m²
6	7,971	8,016	8,054	8,077	8,103	
7	7,974	8,014	8,053	8,079	8,105	
8	7,973	8,017	8,056	8,082	8,105	
Mittelwert	7,972	8,014	8,054	8,079	8,104	
Maximum	7,974	8,017	8,057	8,083	8,105	
Minimum	7,968	8,011	8,052	8,075	8,101	
Standardabweichung	0,002	0,002	0,002	0,003	0,002	
Konfidenzintervall	0,0013	0,0014	0,0012	0,0019	0,0011	

Messung mit und ohne Blitz

Firma: NS

Muster: IIIB

Flächengewicht: 45g/m²

Sorte: Newsprint

Messung bei Abdunkelung ohne Blitz						
Anzahl Messungen	15[Hz]	Einstellung				
1	6,948					
2	6,950					
3	6,950					
4	6,951	2000-20-1 45g/m²				
5	6,942					
6	6,950					
7	6,945					
8	6,948					
Mittelwert	6,948					
Maximum	6,951					
Minimum	6,942					
Standardabweichung	0,003					
Konfidenzintervall	0,0021					

Messung bei Abdunkelung mit Blitz							
Anzahl Messungen	15[Hz] Einstellu						
1	7,136						
2	7,209						
3	7,143						
4	7,121	2000-20-1					
5	7,155	45g/m²					
6	7,160]					
7	7,193]					
8	7,150						
Mittelwert	7,158						
Maximum	7,209						
Minimum	7,121]					
Standardabweichung	0,029]					
Konfidenzintervall	0,0203						

Messung ohne Abdunkelung, ohne Blitz						
Anzahl Messungen	15[Hz] Einstellu					
1	7,060					
2	7,069					
3	7,068					
4	7,064	2000-20-1				
5	7,070	45g/m²				
6	7,073					
7	7,073					
8	7,082					
Mittelwert	7,070					
Maximum	7,082					
Minimum	7,060					
Standardabweichung	0,007					
Konfidenzintervall	0,0046					

Einfluss von Erschütterungen

Firma: KL

Muster: 17-TS nach Umbau Flächengewicht: 123,5g/m²

Sorte: Kraftliner

Messung bei Erschütterung

Anzahl Messungen	3[Hz]	5[Hz]	7[Hz]	9[Hz]	11[Hz]	Einstellung
1	7,735	7,781	7,839	7,895	7,936	
2	7,735	7,777	7,843	7,901	7,935	
3	7,744	7,783	7,854	7,888	7,939	
4	7,752	7,801	7,838	7,897	7,938	2000-20-1
5	7,715	7,797	7,839	7,893	7,938	123g/m²
6	7,742	7,782	7,840	7,892	7,939	-
7	7,758	7,781	7,839	7,905	7,942	
8	7,706	7,772	7,842	7,903	7,941	
Mittelwert	7,736	7,784	7,842	7,897	7,939	
Maximum	7,758	7,801	7,854	7,905	7,942	
Minimum	7,706	7,772	7,838	7,888	7,935	
Standardabweichung	0,018	0,010	0,005	0,006	0,002	
Konfidenzintervall	0,0122	0,0068	0,0036	0,0041	0,0016	

Anzahl Messungen	13[Hz]	15[Hz]	17[Hz]	19[Hz]	21[Hz]	Einstellung
1	7,979	8,021	8,054	8,082	8,104	
2	7,979	8,021	8,052	8,081	8,101	
3	7,982	8,021	8,050	8,078	8,102	
4	7,983	8,023	8,055	8,084	8,105	2000-20-1
5	7,983	8,019	8,052	8,081	8,104	123g/m²
6	7,984	8,027	8,054	8,082	8,102	
7	7,985	8,024	8,052	8,084	8,104	
8	7,987	8,023	8,055	8,081	8,105	
Mittelwert	7,983	8,022	8,053	8,082	8,103	
Maximum	7,987	8,027	8,055	8,084	8,105	
Minimum	7,979	8,019	8,050	8,078	8,101	
Standardabweichung	0,003	0,002	0,002	0,002	0,002	
Konfidenzintervall	0,0019	0,0017	0,0012	0,0013	0,0010	

Anzahl Messungen	3[Hz]	5[Hz]	7[Hz]	9[Hz]	11[Hz]	Einstellung
1	7,744	7,796	7,833	7,885	7,927	
2	7,748	7,806	7,828	7,889	7,930	
3	7,749	7,784	7,835	7,885	7,932	
4	7,746	7,792	7,844	7,888	7,935	2000-20-1
5	7,761	7,800	7,850	7,890	7,932	123g/m²
6	7,753	7,797	7,837	7,885	7,934	
7	7,755	7,797	7,837	7,894	7,931	
8	7,752	7,797	7,844	7,890	7,934	
Mittelwert	7,751	7,796	7,839	7,888	7,932	
Maximum	7,761	7,806	7,850	7,894	7,935	
Minimum	7,744	7,784	7,828	7,885	7,927	
Standardabweichung	0,005	0,006	0,007	0,003	0,003	
Konfidenzintervall	0,0038	0,0044	0,0049	0,0022	0,0018	

Messung ohne Erschütterung

Anzahl Messungen	13[Hz]	15[Hz]	17[Hz]	19[Hz]	21[Hz]	Einstellung
1	7,971	8,012	8,053	8,078	8,102	
2	7,973	8,014	8,052	8,075	8,105	
3	7,972	8,011	8,055	8,083	8,105	
4	7,972	8,015	8,057	8,077	8,105	2000-20-1
5	7,968	8,015	8,055	8,080	8,101	123g/m²
6	7,971	8,016	8,054	8,077	8,103	
7	7,974	8,014	8,053	8,079	8,105	
8	7,973	8,017	8,056	8,082	8,105	
Mittelwert	7,972	8,014	8,054	8,079	8,104	
Maximum	7,974	8,017	8,057	8,083	8,105	
Minimum	7,968	8,011	8,052	8,075	8,101	
Standardabweichung	0,002	0,002	0,002	0,003	0,002	
Konfidenzintervall	0,0013	0,0014	0,0012	0,0019	0,0011	

Einfluss des Flatterns

Firma: KL PM3

Muster: 17-TS nach Umbau

Flächengewicht: 123,5g/m²

Sorte: Kraftliner

Messung bei taumeInder Platte						
Anzahl Messungen	9 [Hz]	11[Hz]	13[Hz]	15[Hz]	17[Hz]	Einstellung
1	7,814	7,846	7,870	7,896	7,930	
2	7,821	7,845	7,866	7,899	7,930	
3	7,811	7,840	7,871	7,896	7,933	
4	7,821	7,844	7,871	7,894	7,929	2000-20-1
5	7,816	7,844	7,871	7,895	7,931	123g/m²
6	7,821	7,848	7,874	7,897	7,929	
7	7,826	7,842	7,869	7,905	7,930	
8	7,806	7,843	7,878	7,899	7,938	
Mittelwert	7,817	7,844	7,871	7,898	7,931	
Maximum	7,826	7,848	7,878	7,905	7,938	
Minimum	7,806	7,840	7,866	7,894	7,929	
Standardabweichung	0,007	0,002	0,004	0,003	0,003	
Konfidenzintervall	0,0045	0,0017	0,0024	0,0024	0,0021	

Messung bei normalem Lauf der Platte						
Anzahl Messungen	9[Hz]	11[Hz]	13[Hz]	15[Hz]	17[Hz]	Einstellung
1	7,158	7,212	7,250	7,286	7,319	
2	7,169	7,214	7,251	7,293	7,319]
3	7,166	7,216	7,248	7,285	7,318]
4	7,160	7,209	7,252	7,280	7,319	2000-20-1
5	7,163	7,211	7,254	7,285	7,318	123g/m ²
6	7,163	7,215	7,252	7,287	7,319	
7	7,169	7,211	7,255	7,279	7,323	
8	7,169	7,216	7,258	7,290	7,330	
Mittelwert	7,165	7,213	7,253	7,286	7,321	
Maximum	7,169	7,216	7,258	7,293	7,330	
Minimum	7,158	7,209	7,248	7,279	7,318]
Standardabweichung	0,004	0,003	0,003	0,005	0,004]
Konfidenzintervall	0,0030	0,0018	0,0022	0,0032	0,0028	
Einfluss warmer Luft

Firma: KL PM3 Muster: 17-TS nach Umbau Flächengewicht: 123,5g/m² Sorte: Kraftliner

Messung unter Wärmeeinwirkung (mittels Föhn)

Anzahl Messungen	3[Hz]	5[Hz]	7[Hz]	9[Hz]	11[Hz]	13[Hz]	Einstellung
1	7,689	8,215	8,164	8,203	8,253	8,184	
2	7,864	8,223	8,342	8,100	8,215	8,183	
3	7,847	8,128	8,329	8,310	8,256	8,235	
4	7,887	8,094	8,350	8,307	8,254	8,205	2000-20-1
5	7,948	8,090	8,288	8,304	8,269	8,240	123g/m ²
6	7,954	8,116	8,247	8,296	8,210	8,275	
7	7,957	8,103	8,311	8,324	8,218	8,213	
8	7,997	8,119	8,285	8,317	8,241	8,277	
Mittelwert	7,893	8,136	8,290	8,270	8,240	8,227	
Maximum	7,997	8,223	8,350	8,324	8,269	8,277	
Minimum	7,689	8,090	8,164	8,100	8,210	8,183	
Standardabweichung	0,097	0,053	0,061	0,079	0,022	0,037]
Konfidenzintervall	0,067	0,037	0,042	0,055	0,015	0,026	

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	8,279	8,229	8,142	8,140	8,120	8,133	
2	8,272	8,227	8,188	8,142	8,122	8,121	
3	8,264	8,246	8,197	8,139	8,111	8,128	
4	8,288	8,249	8,185	8,144	8,131	8,126	2000-20-1
5	8,264	8,257	8,201	8,121	8,119	8,119	123g/m²
6	8,226	8,248	8,191	8,139	8,124	8,125	_
7	8,262	8,297	8,158	8,130	8,112	8,128	
8	8,296	8,258	8,160	8,130	8,102	8,122	
Mittelwert	8,269	8,251	8,178	8,136	8,118	8,125	
Maximum	8,296	8,297	8,201	8,144	8,131	8,133	
Minimum	8,226	8,227	8,142	8,121	8,102	8,119	
Standardabweichung	0,021	0,022	0,021	0,008	0,009	0,005]
Konfidenzintervall	0,015	0,015	0,015	0,005	0,006	0,003	

Anzahl Messungen	3[Hz]	5[Hz]	7[Hz]	9[Hz]	11[Hz]	13[Hz]	Einstellung
1	7,496	7,909	7,943	7,950	7,969	8,004	
2	7,468	7,936	7,944	7,941	7,959	8,001	
3	7,472	7,891	7,947	7,934	7,954	7,995	
4	7,523	7,924	7,925	7,946	7,954	7,998	2000-20-1
5	7,521	7,898	7,937	7,934	7,952	7,993	123g/m ²
6	7,524	7,898	7,933	7,938	7,944	7,992	
7	7,509	7,928	7,937	7,939	7,940	7,989	
8	7,499	7,894	7,920	7,932	7,943	7,986	
Mittelwert	7,502	7,910	7,936	7,939	7,952	7,995	1
Maximum	7,524	7,936	7,947	7,950	7,969	8,004	
Minimum	7,468	7,891	7,920	7,932	7,940	7,986	
Standardabweichung	0,022	0,017	0,009	0,006	0,010	0,006	
Konfidenzintervall	0,0153	0,0120	0,0065	0,0043	0,0066	0,0042	

Messung ohne Wärmeeinwirkung

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	8,019	8,045	8,066	8,083	8,092	8,103	
2	8,015	8,044	8,069	8,082	8,087	8,102	
3	8,017	8,042	8,065	8,080	8,087	8,105	
4	8,015	8,043	8,060	8,083	8,088	8,107	2000-20-1
5	8,008	8,042	8,066	8,086	8,090	8,108	123g/m²
6	8,013	8,042	8,064	8,078	8,089	8,106	
7	8,007	8,045	8,065	8,081	8,091	8,108	
8	8,011	8,044	8,059	8,079	8,093	8,115	
Mittelwert	8,013	8,043	8,064	8,082	8,090	8,107	
Maximum	8,019	8,045	8,069	8,086	8,093	8,115	
Minimum	8,007	8,042	8,059	8,078	8,087	8,102	
Standardabweichung	0,004	0,001	0,003	0,003	0,002	0,004	
Konfidenzintervall	0,0029	0,0009	0,0023	0,0018	0,0016	0,0028	

Grenzen des Iploner

Firma: SL

Muster: Muster 11

Flächengewicht: 80g/m²

Geschwindigkeitsgrenzen								
Anzahl Messungen	14[Hz]	54[Hz]	56[Hz]	60[Hz]	Einstellung			
1	3,742	3,799	3,801	3,804				
2	3,733	3,800	3,797	3,804				
3	3,728	3,799	3,797	3,805				
4	3,726	3,797	3,796	3,805				
5	3,720	3,799	3,796	3,805	2000-30-1			
6	3,714				80g/m²			
7	3,708							
8	3,709							
9	3,706							
10	3,703							
Mittelwert	3,719	3,799	3,797	3,805				
Maximum	3,742	3,800	3,801	3,805				
Minimum	3,703	3,797	3,796	3,804				
Standardabweichung	0,013	0,001	0,002	0,001				
Konfidenzintervall	0,008	0,001	0,002	0,000				

Einfluss der Asche (Füllstoffe)

Firma: X

Muster: M3

Flächengewicht: 90g/m²

Sorte: Kopierpapier

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	1,525	1,536	1,542	1,553	1,563	1,581	
2	1,522	1,534	1,544	1,554	1,562	1,586	
3	1,525	1,537	1,546	1,553	1,563	1,586	
4	1,525	1,538	1,546	1,551	1,566	1,593	2000-20-1
5	1,525	1,538	1,549	1,556	1,568	1,598	90g/m²
6	1,527	1,540	1,547	1,553	1,569	1,601	
7	1,527	1,539	1,548	1,553	1,572	1,607	
8	1,528	1,541	1,550	1,557	1,577	1,615	
Mittelwert	1,526	1,538	1,547	1,554	1,568	1,596	
Maximum	1,528	1,541	1,550	1,557	1,577	1,615	
Minimum	1,522	1,534	1,542	1,551	1,562	1,581	
Standardabweichung	0,002	0,002	0,003	0,002	0,005	0,012	
Konfidenzintervall	0,0011	0,0014	0,0016	0,0012	0,0032	0,0072	

Firma: MÄ

Muster: Muster 5

Flächengewicht: 115g/m², 2fach gestrichen

Sorte: Feinpapier

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	2,058	2,127	2,147	2,198	2,197	2,196	
2	2,065	2,129	2,153	2,199	2,198	2,197	
3	2,077	2,133	2,160	2,198	2,199	2,196	
4	2,081	2,132	2,159	2,199	2,199	2,197	2000-20-1
5	2,092	2,138	2,161	2,201	2,200	2,197	115g/m²
6	2,101	2,143	2,165	2,203	2,202	2,199	
7	2,106	2,144	2,169	2,206	2,199	2,199	
8	2,112	2,150	2,170	2,206	2,202	2,200	
Mittelwert	2,087	2,137	2,161	2,201	2,200	2,198	
Maximum	2,112	2,150	2,170	2,206	2,202	2,200]
Minimum	2,058	2,127	2,147	2,198	2,197	2,196	
Standardabweichung	0,020	0,008	0,008	0,003	0,002	0,002	
Konfidenzintervall	0,0121	0,0050	0,0048	0,0021	0,0011	0,0009	

Firma: OC

Muster: Muster I

Flächengewicht: 90g/m²

Sorte: Sackpapier

Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	8,381	8,411	8,446	8,472	8,505	8,536	
2	8,379	8,413	8,438	8,472	8,504	8,540	
3	8,375	8,404	8,445	8,477	8,507	8,542	
4	8,382	8,408	8,450	8,473	8,508	8,545	2000-20-1
5	8,380	8,414	8,446	8,470	8,508	8,548	90g/m²
6	8,373	8,408	8,447	8,479	8,509	8,550	
7	8,379	8,418	8,451	8,474	8,511	8,550	
8	8,377	8,418	8,453	8,477	8,514	8,551	
Mittelwert	8,378	8,412	8,447	8,474	8,508	8,545	
Maximum	8,382	8,418	8,453	8,479	8,514	8,551	
Minimum	8,373	8,404	8,438	8,470	8,504	8,536	
Standardabweichung	0,003	0,005	0,005	0,003	0,003	0,005	
Konfidenzintervall	0,0019	0,0031	0,0028	0,0019	0,0020	0,0034	

Muster: 0% FS (HC60), Muster II, Trockner

Flächengewicht: 80g/m²

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,500	
2	3,489	
3	3,497	
4	3,497	
5	3,496	2000-30-1
6	3,496	80g/m²
7	3,498	
8	3,497	
9	3,498	
10	3,498	
Mittelwert	3,497	
Maximum	3,500	
Minimum	3,489	
Standardabweichung	0,003	
Konfidenzintervall	0,002	

Muster: 0% FS (HC60), Muster III, Trockner Flächengewicht: 80g/m²

Sorte: Laborblatt, Fichte-Magnefit

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,181	
2	3,172	
3	3,167	
4	3,160	
5	3,156	2000-30-1
6	3,156	80g/m²
7	3,155	
8	3,154	
9	3,153	
10	3,151	
Mittelwert	3,161	
Maximum	3,181	
Minimum	3,151	
Standardabweichung	0,010	
Konfidenzintervall	0,006	

Muster: 0% FS (HC60), Muster I, Lufttrocknung

Flächengewicht: 80g/m²

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,983	
2	3,996	
3	4,008	
4	4,017	
5	4,024	2000-30-1
6	4,031	80g/m²
7	4,037	
8	4,044	
9	4,049	
10	4,055	
Mittelwert	4,024	
Maximum	4,055	
Minimum	3,983	
Standardabweichung	0,024	
Konfidenzintervall	0,015	

Muster: 0% FS (HC60), Muster II, Lufttrocknung

Flächengewicht: 80g/m²

Sorte: Laborblatt, Fichte-Magnefit

Anzahl Messungen	28,5[Hz]	Einstellung
1	4,126	
2	4,118	
3	4,141	
4	4,149	
5	4,151	2000-30-1
6	4,135	80g/m²
7	4,123	
8	4,124	
9	4,126	
10	4,127	
Mittelwert	4,132	
Maximum	4,151	
Minimum	4,118	
Standardabweichung	0,011	
Konfidenzintervall	0,007	

Muster: 10% FS (HC60), Muster III, Trockner

Flächengewicht: 80g/m²

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,674	
2	3,674	
3	3,673	
4	3,673	
5	3,675	2000-30-1
6	3,676	80g/m²
7	3,677	
8	3,682	
9	3,683	
10	3,687	
Mittelwert	3,677	
Maximum	3,687	
Minimum	3,673	
Standardabweichung	0,005	
Konfidenzintervall	0,003	

Muster: 10% FS (HC60), Muster II, Trockner Flächengewicht: 80g/m² Sorte: Laborblatt, Fichte-Magnefit

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,916	
2	3,941	
3	3,947	
4	3,951	
5	3,951	2000-30-1
6	3,954	80g/m²
7	3,958	
8	3,962	
9	3,965	
10	3,967	
Mittelwert	3,951	
Maximum	3,967	
Minimum	3,916	
Standardabweichung	0,015	
Konfidenzintervall	0,009	

Muster: 20% FS (HC60), Muster II, Trockner

Flächengewicht: 80g/m²

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,784	
2	3,791	
3	3,816	
4	3,830	
5	3,839	2000-30-1
6	3,847	80g/m²
7	3,856	_
8	3,865	
9	3,870	
10	3,874	
Mittelwert	3,837	
Maximum	3,874	
Minimum	3,784	
Standardabweichung	0,032	
Konfidenzintervall	0,020	

Muster: 20% FS (HC60), Muster I, Trockner Flächengewicht: 80g/m² Sorte: Laborblatt, Fichte-Magnefit

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,488	
2	3,501	
3	3,514	
4	3,528	
5	3,540	2000-30-1
6	3,546	80g/m²
7	3,555	
8	3,563	
9	3,569	
10	3,568	
Mittelwert	3,537	
Maximum	3,569	
Minimum	3,488	
Standardabweichung	0,029	
Konfidenzintervall	0,018	

Muster: 30% FS (HC60), Muster II, Trockner

Flächengewicht: 80g/m²

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,167	
2	3,166	
3	3,167	
4	3,170	
5	3,171	2000-30-1
6	3,173	80g/m²
7	3,176	
8	3,177	
9	3,180	
10	3,181	
Mittelwert	3,173	
Maximum	3,181	
Minimum	3,166	
Standardabweichung	0,005	
Konfidenzintervall	0,003	

Muster: 30% FS (HC60), Muster I, Trockner Flächengewicht: $80g/m^2$

Sorte: Laborblatt, Fichte-Magnefit

Anzahl Messungen	28,5[Hz]	Einstellung
1	3,200	
2	3,191	
3	3,186	
4	3,184	
5	3,183	2000-30-1
6	3,183	80g/m²
7	3,184	
8	3,184	
9	3,184	
10	3,186	
Mittelwert	3,187	
Maximum	3,200	
Minimum	3,183	
Standardabweichung	0,005	
Konfidenzintervall	0,003	

0% FS	0% FS Lufttrocknung	10% FS	20% FS	30% FS
3,497	4,024	3,677	3,537	3,173
3,161	4,132	3,951	3,837	3,187
3,329	4,078	3,814	3,687	3,180

Veraschung

	EW [g] otro	AW [g]	Asche [%]
Sackpapier 1	Sackpapier 1 2,533		1,40
Sackpapier 2	2,484	0,03403	1,37
Kopierpapier 1	Kopierpapier 12,650		18,39
Kopierpapier 2	2,656	0,48387	18,22
Feinpapier 1	3,192	0,84797	26,57
Feinpapier 2	3,167	0,85331	26,94

Veraschung Laborblätter						
Bezeichnung	EW [g] otro	AW [g]	Asche [%]	MW		
0% FS II, Trockner	2,416	0,01087	0,4499	0 4 4 2 6		
0% FS III, Trockner	2,405	0,01047	0,4353	0,4420		
0% FS I, Lufttrocknung	2,398	0,01915	0,7986	0 7925		
0% FS II, Lufttrocknung	2,388	0,0183	0,7663	0,7625		
10% FS II	2,418	0,25157	10,4041	10 1224		
10% FS III	2,405	0,23715	9,8607	10,1324		
20% FS I	2,489	0,54041	21,7119	21 15/2		
20% FS II	2,439	0,50235	20,5966	21,1342		
30% FS I	2,413	0,68235	28,2781	20 1211		
30% FS II	2,398	0,68511	28,5701	20,4241		

Einfluss der Feuchtigkeit

Firma: X

Muster: M1

Flächengewicht: 90g/m²

Sorte: Kopierpapier

Messung der trockenen Probe							
Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	1,435	1,443	1,447	1,451	1,453	1,454	
2	1,435	1,444	1,447	1,451	1,454	1,455	
3	1,437	1,443	1,448	1,453	1,454	1,454	
4	1,437	1,444	1,447	1,452	1,455	1,455	2000-20-1
5	1,438	1,445	1,447	1,453	1,454	1,455	90g/m²
6	1,437	1,444	1,448	1,453	1,454	1,455	
7	1,439	1,445	1,449	1,453	1,455	1,454	
8	1,439	1,444	1,449	1,454	1,455	1,455	
Mittelwert	1,437	1,444	1,448	1,453	1,454	1,455	
Maximum	1,439	1,445	1,449	1,454	1,455	1,455	
Minimum	1,435	1,443	1,447	1,451	1,453	1,454	
Standardabweichung	0,002	0,001	0,001	0,001	0,001	0,001	
Konfidenzintervall	0,0010	0,0005	0,0005	0,0007	0,0004	0,0003	

Messung der feuchten Probe							
Anzahl Messungen	15[Hz]	17[Hz]	19[Hz]	21[Hz]	23[Hz]	25[Hz]	Einstellung
1	14,844	15,217	16,142	17,265	18,390	19,393	
2	14,851	15,283	16,228	17,369	18,488	19,498	
3	14,846	15,381	16,349	17,465	18,590	19,613	
4	14,880	15,482	16,465	17,581	18,701	19,720	2000-20-1
5	14,905	15,565	16,577	17,679	18,809	19,839	90g/m²
6	14,972	15,643	16,690	17,790	18,911	19,952	
7	14,974	15,765	16,802	17,894	19,027	20,077]
8	15,065	15,864	16,914	18,006	19,146	20,198	
Mittelwert	14,917	15,525	16,521	17,631	18,758	19,786	
Maximum	15,065	15,864	16,914	18,006	19,146	20,198	
Minimum	14,844	15,217	16,142	17,265	18,390	19,393	
Standardabweichung	0,080	0,228	0,274	0,259	0,264	0,282	
Konfidenzintervall	0,0494	0,1413	0,1701	0,1606	0,1638	0,1748	

Messung an PM der Firma NS (ohne Berührung Iploner und Papierbahn)

Flächengewicht: 45g/m² Sorte: Newsprint

Vor Aufrollung (bei Scanner)					
Anzahl Messungen	Test	Einstellung			
1	7,310	2000 50 1			
2	7,060	2000-50-1 45g/m²			
3	7,091	45g/11-			
Mittelwert	7,154				

Vor Befeuchter				
Anzahl Messungen	Einstellung			
1	4,684	2000-50-1		
2	4,531	45g/m²		
Mittelwert	4,608			

Nach Befeuchter				
Anzahl Messungen Test Einstellung				
1	5,265	2000-50-1		
2	5,178	45g/m²		
Mittelwert	5,222			

Messung der Formation von gefärbten Papieren

Firma: VP

Muster: Weiß

Flächengewicht: 50g/m²

Sorte: Druck-/Schreibpapier

Anzahl Messungen	14[Hz]	Einstellung	TechPap			
1	3,658					
2	3,664					
3	3,673					
4	3,671					
5	3,669	2000-30-1	64 56			
6	3,666	50g/m ²	04,00			
7	3,663					
8	3,656					
9	3,656	5 5 5				
10	3,656					
Mittelwert	3,663					
Maximum	3,673					
Minimum	3,656					
Standardabweichung	0,007					
Konfidenzintervall	0,004					

Firma: VP

Muster: Pink

Flächengewicht: 50g/m²

Anzahl Messungen	14[Hz]	Einstellung	TechPap			
1	4,211	-				
2	4,203					
3	4,200					
4	4,198					
5	4,197	2000-30-1	96.14			
6	4,195	50g/m²	00,14			
7	4,193	3 3 1				
8	4,193					
9	4,191					
10	4,187					
Mittelwert	4,197					
Maximum	4,211					
Minimum	4,187					
Standardabweichung	0,007					
Konfidenzintervall	0,004					

Firma: VP

Muster: Blau

Flächengewicht: 50g/m²

Sorte: Druck-/Schreibpapier

Anzahl Messungen	14[Hz]	Einstellung	TechPap		
1	3,692				
2	3,684				
3	3,679				
4	3,673				
5	3,669	2000-30-1	72.25		
6	3,666	50g/m²	12,35		
7	3,668				
8	3,671				
9	3,670)			
10	3,668				
Mittelwert	3,674				
Maximum	3,692				
Minimum	3,666				
Standardabweichung	0,008				
Konfidenzintervall	0,005				

Firma: VP

Muster: Grün

Flächengewicht: 50g/m²

Anzahl Messungen	14[Hz]	Einstellung	TechPap			
1	4,610					
2	4,606					
3	4,611					
4	4,616					
5	4,617	2000-30-1	04.00			
6	4,622	50g/m²	94,00			
7	4,628					
8	4,627					
9	4,627					
10	4,626					
Mittelwert	4,619					
Maximum	4,628					
Minimum	4,606					
Standardabweichung	0,008					
Konfidenzintervall	0,005					

Firma: VP

Muster: Gelb

Flächengewicht: 50g/m²

Anzahl Messungen	14[Hz]	Einstellung	TechPap
1	3,794		
2	3,799		
3	3,800		
4	3,795		
5	3,790	2000-30-1	01.06
6	3,790	50g/m²	01,20
7	3,793		
8	3,795		
9	3,798	_	
10	3,799		
Mittelwert	3,795		
Maximum	3,800		
Minimum	3,790		
Standardabweichung	0,004		
Konfidenzintervall	0,002		

Vergleich von PM- und Labormessungen

Firma: MÄ

Flächengewicht: 115g/m², 2-fach gestrichen

Sorte: Feinpapier

PM-Messung				
Anzahl Messungen	PM	Einstellungen		
1	2,549	2000 50 1		
2	2,680	2000-50-1 115g/m²		
3	2,515	115g/m		
Mittelwert	2,581			
Maximum	2,680			
Minimum	2,515			
Standardabweichung	0,087			
Konfidenzintervall	0,099			
speed at reel	951,00	[m/min]		
speed at press part	940,00	[m/min]		
speed at wire	910,00	[m/min]		

Firma: MÄ

Muster: Muster I

Flächengewicht: 115g/m², 2-fach gestrichen

Sorte: Feinpapier

Labormessung			
Anzahl Messungen	14[Hz]	Einstellung	
1	2,762		
2	2,754		
3	2,749		
4	2,747		
5	2,749	2000-30-1	
6	2,749	115g/m²	
7	2,749	_	
8	2,750		
9	2,750		
10	2,752		
Mittelwert	2,751		
Maximum	2,762		
Minimum	2,747		
Standardabweichung	0,004		
Konfidenzintervall	0,003		

Firma: NS Flächengewicht: 45g/m² Sorte: Newsprint

PM-Messung (mit Berührung)				
Anzahl Messungen	PM	Einstellungen		
1	6,634	2000 50 1		
2	6,607	2000-50-1		
3	6,370	439/11		
Mittelwert	6,537			
Maximum	6,634			
Minimum	6,370			
Standardabweichung	0,145			
Konfidenzintervall	0,164			
speed at reel	1130,00	[m/min]		
speed at press part	1084,70	[m/min]		
speed at wire	1073,00	[m/min]		

Firma: NS

Muster: IB

Flächengewicht: $45g/m^2$

Sorte: Newsprint

Labormessung			
Anzahl Messungen	14[Hz]	Einstellung	
1	6,963		
2	6,965		
3	6,978		
4	6,974		
5	6,976	2000-30-1	
6	6,976	45g/m²	
7	6,976		
8	6,950		
9	6,938		
10	6,952		
Mittelwert	6,965		
Maximum	6,978		
Minimum	6,938		
Standardabweichung	0,014		
Konfidenzintervall	0,009		

Korrelationskurven

Iploner Y _i	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
5,261	87,18	1-34,1	SK	Weiß	80,0	1
5,564	91,52	2-31,8	SK	Weiß	80,0	2
6,056	90,47	3-30,5	SK	Weiß	80,0	3
5,439	91,76	4-32,4	SK	Weiß	80,0	4
3,608	51,47	Cyan	NPI	Weiß	44,5	5
4,317	59,06	Grün	NPI	Weiß	48,0	6
4,413	71,43	Pink	NPI	Weiß	42,2	7
5,494	97,19	Orange	NPI	Weiß	42,2	8
5,064	77,12	Violett	NPI	Weiß	48,5	9
4,732	79,47	Yellow	NPI	Weiß	46,5	10
5,891	106,93	I/4	KK	Weiß	81,1	11
5,310	104,69	I/6	KK	Weiß	80,5	12
6,531	114,83	II/4	KK	Weiß	80,4	13
6,250	117,68	II/6	KK	Weiß	80,2	14
5,080	73,26	1	SL PM3	Weiß	65,0	15
3,388	53,34	2	SL PM3	Weiß	80,0	16
5,619	85,16	3	SL PM3	Weiß	50,0	17
4,850	59,69	4	SL PM3	Weiß	60,0	18
4,325	61,04	5	SL PM3	Weiß	70,0	19
5,014	67,27	6	SL PM3	Weiß	80,0	20
3,473	55,00	7	SL PM3	Weiß	50,0	21
3,944	56,74	8	SL PM3	Weiß	60,0	22
4,091	59,53	9	SL PM3	Weiß	60,0	23
4,242	56,71	10	SL PM3	Weiß	70,0	24
3,719	60,91	11	SL PM3	Weiß	80,0	25
3,344	51,89	12	SL PM3	Weiß	90,0	26
3,132	49,84	13	SL PM3	Weiß	90,0	27
4,939	81,83	14	SL PM3	Weiß	98,0	28
3,243	60,94	15	SL PM3	Weiß	120,0	29
4,848	81,69	IF 0288/25	М	Weiß	75,2	30
4,554	84,82	II	TK PM9	Weiß	70,0	31
8,948	127,72	2	SD PM1	Weiß	70,0	32
2,478	31,37	GP1	GP	Weiß	70,0	33
2,316	51,02	MO6	MBP	Weiß	140,0	34
3,911	74,88	MO7	MBP	Weiß	170,0	35
2,660	57,27	MO8	MBP	Weiß	190,0	36
3,169	63,59	MO9	MBP	Weiß	250,0	37
3,037	53,59	MOW3	F	Weiß	170,0	38
6,965	118,54	IB	NS	Weiß	45,0	39
2,870	32,66	GP6	GP	Weiß	130,0	40
2,569	35,43	GP9	GP	Weiß	200,0	41
11,524	276,20	5	SD PM1	Braun	70,0	42
8,879	146,22	II/1	SUP PM6	Weiß	47,9	43
8,099	137,55	II/3	SUP PM6	Weiß	47,9	44
21,535	359,48	4	SD PM1	Braun	70,0	45
2,546	31,57	GP4	GP	Weiß	100,0	46
2,566	32,64	GP5	GP	Weiß	115,0	47

TechPap vs. Iploner (Gesamtkurve)

Iploner Y _i	TechPap X_i	Muster	Hersteller	Farbe	g/m²	Nr.
3,169	48,21	GP11	GP	Weiß	250,0	48
3,609	55,25	X1	Х	Weiß	90,0	49
3,323	48,09	MOW1	F	Weiß	90,0	50
3,211	52,11	MCOW1	F	Weiß	100,0	51
3,136	48,82	MOW2	F	Weiß	115,0	52
4,104	65,62	MO1	MBP	Weiß	70,0	53
3,786	69,05	MO2	MBP	Weiß	80,0	54
4,190	72,55	MO3	MBP	Weiß	90,0	55
3,561	58,01	MO4	MBP	Weiß	100.0	56
3,670	69,67	MO5	MBP	Weiß	120,0	57
2,577	33,05	GP1-1	GP	Weiß	70,0	58
1.972	28.76	GP2-1	GP	Weiß	80.0	59
1.735	23.96	GP3-1	GP	Weiß	90.0	60
2.232	30.71	GP4-1	GP	Weiß	100.0	61
2.372	30.79	GP5-1	GP	Weiß	115.0	62
4.777	84.39	S/W 0.98 II	M	Weiß	73.5	63
4.679	74.75	S/W 0.95 II	М	Weiß	75.2	64
2.644	42.24	SCO60	SAL	Weiß	60.0	65
2.902	42.48	SCO56	SAL	Weiß	56.0	66
2.746	37.84	SCO52	SCO52 SAL V		52.0	67
3.011	37.38	SCO49	SAL	Weiß	49.0	68
2.370	33.11	TD49	SAL	Weiß	49.0	69
3.101	32.54	TD52	SAL	Weiß	52.0	70
2,791	35,32	TD56	SAL	Weiß	56,0	71
2.709	39.28	TD60	SAL	Weiß	60.0	72
1,483	21,04	MAS1-1	SEO	Weiß	90,0	73
1,643	23,34	MAS2-1	SEO	Weiß	100.0	74
1,207	19,72	MAS3-1	SEO	Weiß	115,0	75
2,751	39,03	Muster I	MÄ	Weiß	115,0	76
1,680	23,13	MAS4-1	SEO	Weiß	130,0	77
1,711	33,44	MAS5-1	SEO	Weiß	150,0	78
1,801	36,93	MAS6-1	SEO	Weiß	170,0	79
1,993	37,32	MAS7-1	SEO	Weiß	200,0	80
1,637	22,83	MAS8-1	SEO	Weiß	250,0	81
1,934	25,43	MAS9-1	SEO	Weiß	300,0	82
2,445	45,53	GP8-1	GP	Weiß	170,0	83
2.406	37.60	GP10-1	GP	Weiß	230.0	84
2,515	38,84	GP7-1	GP	Weiß	150,0	85
13,476	239.81	Kraftliner 1	KL PM6	Braun	175.0	86
16,553	292.89	Kraftliner 2	KL PM6	Braun	205.0	87
13,593	261.29	kraft top liner 3	KL PM6	Braun	115.0	88
16.890	331.48	performance medium 4	KL PM6	Braun	160.0	89
8.892	206.10	white top liner 5	KL PM6	Braun	150.0	90
27.639	402.37	KLB II	CCP	Braun	150.0	91
32,087	430,84	CM III	CCP	Braun	125.0	92

Regressions-Statistik	
Multipler Korrelationskoeffizient R	0,9929
Bestimmtheitsmaß R ²	0,9858
Beobachtungen	92

Koeffizienten					
b ₄	b ₃	b ₂	b₁	b ₀	
1,4297E-09	-5,5390E-07	1,1843E-05	0,05799	0,3848	

MK Y _i	Iploner X _i	Muster	Hersteller	Farbe	g/m²	Nr.
22,70	5,261	1-34,1	SK	Weiß	80,0	1
20,70	5,564	2-31,8	SK	Weiß	80,0	2
19,30	6,056	3-30,5	SK	Weiß	80,0	3
21,50	5,439	4-32,4	SK	Weiß	80,0	4
38,90	3,608	Cyan	NPI	Weiß	44,5	5
35,80	4,317	Grün	NPI	Weiß	48,0	6
27,60	4,413	Pink	NPI	Weiß	42,2	7
12,40	5,494	Orange	NPI	Weiß	42,2	8
21,70	5,064	Violett	NPI	Weiß	48,5	9
19,20	4,732	Yellow	NPI	Weiß	46,5	10
16,90	5,891	I/4	KK	Weiß	81,1	11
16,70	5,310	I/6	KK	Weiß	80,5	12
14,70	6,531	II/4	KK	Weiß	80,4	13
14,70	6,250	II/6	KK	Weiß	80,2	14
26,70	5,080	1	SL PM3	Weiß	65,0	15
44,80	3,388	2	SL PM3	Weiß	80,0	16
18,00	5,619	3	SL PM3	Weiß	50,0	17
34,10	4,850	4	SL PM3	Weiß	60,0	18
32,30	4,325	5	SL PM3	Weiß	70,0	19
29,20	5,014	6	SL PM3	Weiß	80,0	20
33,40	3,473	7	SL PM3	Weiß	50,0	21
42,70	3,944	8	SL PM3	Weiß	60,0	22
40,50	4,091	9	SL PM3	Weiß	60,0	23
44,60	4,242	10	SL PM3	Weiß	70,0	24
40,40	3,719	11	SL PM3	Weiß	80,0	25
53,20	3,344	12	SL PM3	Weiß	90,0	26
54,70	3,132	13	SL PM3	Weiß	90,0	27
26,50	4,939	14	SL PM3	Weiß	98,0	28
45,50	3,243	15	SL PM3	Weiß	120,0	29
29,40	4,554		TK PM9	Weiß	70,0	30
7,33	8,948	2	SD PM1	Weiß	70,0	31
3,18	11,524	5	SD PM1	Braun	70,0	32
10,90	8,879	II/1	SUP PM6	Weiß	47,9	33
11,00	8,099	II/3	SUP PM6	Weiß	47,9	34
1,28	21,535	4	SD PM1	Braun	70,0	35
46,78	3,609	X1	Х	Weiß	90,0	36
45,33	3,323	MOW1	F	Weiß	90,0	37
48,83	3,211	MCOW1	F	Weiß	100,0	38
50,30	3,136	MOW2	F	Weiß	115,0	39
41,18	4,104	MO1	MBP	Weiß	70,0	40
42,95	3,786	MO2	MBP	Weiß	80,0	41
36,15	4,190	MO3	MBP	Weiß	90,0	42
44,05	3,561	MO4	MBP	Weiß	100,0	43
45,80	3,670	MO5	MBP	Weiß	120,0	44
69,45	2,577	GP1-1	GP	Weiß	70,0	45
83,90	1,972	GP2-1	GP	Weiß	80,0	46
95,60	1,735	GP3-1	GP	Weiß	90,0	47
86,25	2,232	GP4-1	GP	Weiß	100,0	48
82,75	2,372	GP5-1	GP	Weiß	115,0	49

Iploner vs. MK-Tester (Gesamtkurve)

MK Y _i	Iploner X _i	Muster	Hersteller	Farbe	g/m²	Nr.
24,03	4,777	S/W 0,98 II	М	Weiß	73,5	50
26,95	4,679	S/W 0,95 II	М	Weiß	75,2	51
78,85	2,644	SCO60	SAL	Weiß	60,0	52
76,13	2,902	SCO56	SAL	Weiß	56,0	53
75,88	2,746	SCO52	SAL	Weiß	52,0	54
72,28	3,011	SCO49	SAL	Weiß	49,0	55
73,63	2,370	TD49	SAL	Weiß	49,0	56
73,48	3,101	TD52	SAL	Weiß	52,0	57
81,65	2,791	TD56	SAL	Weiß	56,0	58
81,80	2,709	TD60	SAL	Weiß	60,0	59
133,58	1,483	MAS1-1	SEO	Weiß	90,0	60
96,88	1,643	MAS2-1	SEO	Weiß	100,0	61
159,88	1,207	MAS3-1	SEO	Weiß	115,0	62

Regressions-Statistik	
Multipler Korrelationskoeffizient R	0,9655
Bestimmtheitsmaß R ²	0,9322
Beobachtungen	62

Koeffizienten			
b ₁	b ₀		
-1,6865	354,1870		

lploner X _i	Ambertec spez. Formation V	Formation (SD)	Muster	Hersteller	Farbe	g/m²	Nr.
5 261	0.602	5.38	1-34 1	SK	Weiß	80.0	1
5 564	0,609	5 45	2-31.8	SK	Weiß	80.0	2
6.056	0.651	5.82	3-30.5	SK	Weiß	80.0	3
5,439	0.625	5.59	4-32.4	SK	Weiß	80.0	4
3.608	0.391	2.61	Cvan	NPI	Weiß	44.5	5
4.317	0.445	3.08	Grün	NPI	Weiß	48.0	6
4,413	0.471	3.06	Pink	NPI	Weiß	42.2	7
5,494	0.585	3.80	Orange	NPI	Weiß	42.2	8
5,064	0,514	3.58	Violett	NPI	Weiß	48,5	9
4,732	0,565	3.85	Yellow	NPI	Weiß	46,5	10
5,891	0,711	6,40	I/4	KK	Weiß	81,1	11
5,310	0,691	6,20	I/6	KK	Weiß	80,5	12
6,531	0,743	6,66	II/4	KK	Weiß	80,4	13
6,250	0,753	6,74	II/6	KK	Weiß	80,2	14
5,080	0,504	4,06	1	SL PM3	Weiß	65,0	15
3,388	0,416	3,72	2	SL PM3	Weiß	80,0	16
5,619	0,612	4,33	3	SL PM3	Weiß	50,0	17
4,850	0,489	3,79	4	SL PM3	Weiß	60,0	18
4,325	0,441	3,69	5	SL PM3	Weiß	70,0	19
5,014	0,483	4,32	6	SL PM3	Weiß	80,0	20
3,473	0,457	3,23	7	SL PM3	Weiß	50,0	21
3,944	0,432	3,35	8	SL PM3	Weiß	60,0	22
4,091	0,436	3,38	9	SL PM3	Weiß	60,0	23
4,242	0,424	3,55	10	SL PM3	Weiß	70,0	24
3,719	0,452	4,04	11	SL PM3	Weiß	80,0	25
3,344	0,431	4,09	12	SL PM3	Weiß	90,0	26
3,132	0,406	3,85	13	SL PM3	Weiß	90,0	27
4,939	0,568	5,62	14	SL PM3	Weiß	98,0	28
3,243	0,508	5,56	15	SL PM3	Weiß	120,0	29
4,848	0,521	4,52	IF 0288/25	M	Weiß	75,2	30
4,554	0,564	4,72		TK PM9	Weiß	70,0	31
8,948	0,896	7,50	2	SD PM1	Weiß	70,0	32
2,478	0,306	2,56	GP1	GP	Weiß	70,0	33
2,316	0,381	4,51	MO6	MBP	Weiß	140,0	34
3,911	0,539	7,03	MO7	MBP	Weiß	170,0	35
2,660	0,478	6,59	MO8	MBP	Weiß	190,0	36
3,169	0,466	7,37	MO9	MBP	Weiß	250,0	37
3,037	0,547	7,13	MOW3	F	Weiß	170,0	38
6,965	0,565	3,79	IB	NS	Weiß	45,0	39
2,870	0,323	3,68	GP6	GP	Weiß	130,0	40
2,569	0,371	5,24	GP9	GP	Weiß	200,0	41
11,524	0,943	7,89	5	SD PM1	Braun	70,0	42
8,879	0,610	4,22	II/1	SUP PM6	Weiß	47,9	43
8,099	0,565	3,91	II/3	SUP PM6	Weiß	47,9	44
21,535	1,202	10,06	4	SD PM1	Braun	70,0	45
2,546	0,274	2,74	GP4	GP	Weiß	100,0	46
2,566	0,369	3,96	GP5	GP	Weiß	115,0	47

Iploner vs. Ambertec (Gesamtkurve)

Iploner X _i	Ambertec spez. Formation Y _i	Formation (SD)	Muster	Hersteller	Farbe	g/m²	Nr.
3,169	0,476	7,53	GP11	GP	Weiß	250,0	48
3,609	0,476	4,52	X1	Х	Weiß	90,0	49
3,323	0,449	4,26	MOW1	F	Weiß	90,0	50
3,211	0,444	4,44	MCOW1	F	Weiß	100,0	51
3,136	0,487	5,22	MOW2	F	Weiß	115,0	52
4,104	0,386	3,23	MO1	MBP	Weiß	70,0	53
3,786	0,553	4,95	MO2	MBP	Weiß	80,0	54
4,190	0,471	4,47	MO3	MBP	Weiß	90,0	55
3,561	0,421	4,21	MO4	MBP	Weiß	100,0	56
3,670	0,458	5,02	MO5	MBP	Weiß	120,0	57
1,972	0,246	2,20	GP2	GP	Weiß	80,0	58
1,735	0,222	2,11	GP3	GP	Weiß	90,0	59
2,232	0,274	2,74	GP4	GP	Weiß	100,0	60
2,372	0,369	3,96	GP5	GP	Weiß	115,0	61
1,483	0,243	2,31	MAS1	SEO	Weiß	90,0	62
1,643	0,218	2,18	MAS2	SEO	Weiß	100,0	63
1,207	0,207	2,22	MAS3	SEO	Weiß	115,0	64

Regressions-Statistik	
Multipler Korrelationskoeffizient R	0,9207
Bestimmtheitsmaß R ²	0,8477
Beobachtungen	64

Koeffizienten					
b ₃	b ₂	b ₁	b ₀		
0,00017	-0,00728	0,12989	0,06868		

Ambertec	Formation						
spez.	(SD)	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
Formation <i>Y_i</i>	(02)						
0,476	4,52	55,25	X1	Х	Weiß	90,0	1
0,555	4,76	85,22	IF 0288/24	M	Weiß	73,5	2
0,521	4,52	81,69	IF 0288/25	M	Weiß	75,2	3
0,368	3,95	37,39	Muster 1	MÂ	Weiß	115,0	4
0,406	4,35	43,92	Muster 3	MÄ	Weiß	115,0	5
0,565	3,79	118,54	IB	NS	Weiß	45,0	6
0,559	3,75	117,28	IIB	NS	Weiß	45,0	7
0,543	3,99	82,77	I/1	SD PM1	Weiß	54,0	8
0,552	4,06	78,48	l/2	SD PM1	Weiß	54,0	9
0,611	4,10	81,21	1	SD PM1	Weiß	45,0	10
0,896	7,50	127,72	2	SD PM1	Weiß	70,0	11
0,708	6,27	105,98	1	PCH	Weiß	78,4	12
0,571	5,07	81,57	2	PCH	Weiß	78,8	13
0,627	5,55	87,06	3	PCH	Weiß	78,3	14
0,556	4,95	72,59	4	PCH	Weiß	79,3	15
0,504	4,06	73,26	1	SL PM3	Weiß	65,0	16
0,416	3,72	53,34	2	SL PM3	Weiß	80,0	17
0,612	4,33	85,16	3	SL PM3	Weiß	50,0	18
0,489	3,79	59,69	4	SL PM3	Weiß	60,0	19
0,441	3,69	61,04	5	SL PM3	Weiß	70,0	20
0,483	4,32	67,27	6	SL PM3	Weiß	80,0	21
0,457	3,23	55,00	7	SL PM3	Weiß	50,0	22
0.432	3.35	56.74	8	SL PM3	Weiß	60.0	23
0,436	3,38	59,53	9	SL PM3	Weiß	60,0	24
0.424	3.55	56.71	10	SL PM3	Weiß	70.0	25
0,452	4,04	60,91	11	SL PM3	Weiß	80,0	26
0.431	4.09	51.89	12	SL PM3	Weiß	90.0	27
0.406	3.85	49.84	13	SL PM3	Weiß	90.0	28
0.568	5.62	81.83	14	SL PM3	Weiß	98.0	29
0.508	5.56	60.94	15	SL PM3	Weiß	120.0	30
0.659	7.80	72.01	16	SL PM3	Weiß	140.0	31
0,400	3.35	56.22	1	TK PM9	Weiß	70.0	32
0.564	4.72	84.82		TK PM9	Weiß	70.0	33
0.585	3.80	97.19	Orange	NPI	Weiß	42.2	34
0.565	3.85	79.47	Yellow	NPI	Weiß	46.5	35
0.445	3.08	59.06	Grün	NPI	Weiß	48.0	36
0.391	2.61	51.47	Cvan	NPI	Weiß	44.5	37
0.471	3.06	71.43	Pink	NPI	Weiß	42.2	38
0.514	3.58	77.12	Violett	NPI	Weiß	48.5	39
0.359	2.41	70.51	SLK PM2	SLK	Weiß	45.0	40
0.351	3.33	38.38	CC1	MBP	Weiß	90.0	41
0.365	3,65	36,68	CC2	MBP	Weiß	100.0	42
0.418	4.58	36.81	CC3	MBP	Weiß	120.0	43
0,386	3 23	65.62	MO1	MRP	Weiß	70.0	44
0.553	4 95	69.02	MO2	MRP	Weiß	80.0	45
0 471	4 47	72 55	MO3	MRP	Weiß	90.0	46
0.421	4.21	58.01	MO4	MBP	Weiß	100.0	47

Ambertec							
spez.	Formation	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
Formation Y _i	(30)	-				-	
0,458	5,02	69,67	MO5	MBP	Weiß	120,0	48
0,381	4,51	51,02	MO6	MBP	Weiß	140,0	49
0,513	4,59	81,34	Muster 1	SK	Weiß	80,0	50
0,602	5,38	87,18	1-34,1	SK	Weiß	80,0	51
0,609	5,45	91,52	2-31,8	SK	Weiß	80,0	52
0,651	5,82	90,47	3-30,5	SK	Weiß	80,0	53
0,625	5,59	91,76	4-32,4	SK	Weiß	80,0	54
0,729	6,55	107,52	l/2	KK	Weiß	80,7	55
0,711	6,40	106,93	I/4	KK	Weiß	81,1	56
0,691	6,20	104,69	I/6	KK	Weiß	80,5	57
0,781	6,99	122,77	II/2	KK	Weiß	80,2	58
0,743	6,66	114,83	II/4	KK	Weiß	80,4	59
0,753	6,74	117,68	II/6	KK	Weiß	80,2	60
0,243	2,31	21,55	MAS1	SEO	Weiß	90,0	61
0,218	2,18	22,77	MAS2	SEO	Weiß	100,0	62
0,207	2,22	19,52	MAS3	SEO	Weiß	115,0	63
0,254	2,90	24,88	MAS4	SEO	Weiß	130,0	64
0,449	4,26	48,09	MOW1	F	Weiß	90,0	65
0.444	4.44	52.11	MCOW1	F	Weiß	100.0	66
0.487	5.22	48.82	MOW2	F	Weiß	115.0	67
0.306	2.56	31.37	GP1	GP	Weiß	70.0	68
0.246	2.20	29.96	GP2	GP	Weiß	80.0	69
0.222	2.11	24.32	GP3	GP	Weiß	90.0	70
0.274	2.74	31.57	GP4	GP	Weiß	100.0	71
0.369	3.96	32.64	GP5	GP	Weiß	115.0	72
0.323	3.68	32.66	GP6	GP	Weiß	130.0	73
0.470	5.95	38.03	CC4	MBP	Weiß	160.0	74
0.496	7.02	42.80	CC5	MBP	Weiß	200.0	75
0.539	7.03	74.88	MO7	MBP	Weiß	170.0	76
0.478	6.59	57.27	MO8	MBP	Weiß	190.0	77
0.255	3.12	26.80	MAS5	SEO	Weiß	150.0	78
0.298	3.89	35.81	MAS6	SEO	Weiß	170.0	79
0.312	4.41	38.89	MAS7	SEO	Weiß	200.0	80
0.547	7.13	53.59	MOW3	F	Weiß	170.0	81
0.373	4.57	36.84	GP7	GP	Weiß	150.0	82
0.456	5.94	47.76	GP8	GP	Weiß	170.0	83
0.371	5.24	35.43	GP9	GP	Weiß	200.0	84
0.466	7.37	63.59	MO9	MBP	Weiß	250.0	85
0.521	9.02	63.36	MO10	MBP	Weiß	300.0	86
0.259	4.10	22.62	MAS8	SEO	Weiß	250.0	87
0.293	5.07	22,15	MAS9	SEO	Weiß	300.0	88
0.517	8 17	51 20	MOW4	F	Weiß	250.0	89
0.453	6.87	37,43	GP10	GP	Weiß	230.0	90
0 476	7 53	48.21	GP11	GP	Weiß	250.0	91
0 700	4 95	203 27	3	SD PM1	Braun	50.0	92
1 202	10.06	359 48	<u> </u>	SD PM1	Braun	70.0	92
0.943	7 89	276 20	5	SD PM1	Braun	70.0	94
0.868	6 14	272 79	Muster 4	SD PM1	Braun	50.0	95
1 045	8 74	317.08	Muster 5	SD PM1	Braun	70.0	96
1,010	5,7 1	011,00			Diaun	,.	50

Ambertec spez. Formation <i>Y_i</i>	Formation (SD)	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
0,583	4,02	139,06	I/1	SUP PM6	Weiß	47,6	97
0,551	3,78	149,73	l/2	SUP PM6	Weiß	47,0	98
0,585	4,05	141,35	I/3	SUP PM6	Weiß	47,9	99
0,610	4,22	146,22	II/1	SUP PM6	Weiß	47,9	100
0,554	3,80	135,46	II/2	SUP PM6	Weiß	47,1	101
0,565	3,91	137,55	II/3	SUP PM6	Weiß	47,9	102
1,003	11,15	234,12	17-TS n.U.	KL	Braun	123,5	103

Regressions-Statistik	
Multipler Korrelationskoeffizient R	0,9282
Bestimmtheitsmaß R ²	0,8615
Beobachtungen	103

Koeffizienten						
b_4 b_3 b_2 b_1 b_0						
-2,9607E-10	2,7194E-07	-8,3279E-05	0,0118	0,0193		

MK Y _i	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
4,23	234,12	17-TS n.U.	KL	Braun	123,5	1
21,10	81,34	Muster 1	SK	Weiß	80,0	2
80,83	40,87	M3	Х	Weiß	90,0	3
3,40	237,74	Muster 1	OC	Braun	90,0	4
38,90	51,47	Cyan	NPI	Weiß	44,5	5
35,80	59,06	Grün	NPI	Weiß	48,0	6
27,60	71,43	Pink	NPI	Weiß	42,2	7
12,40	97,19	Orange	NPI	Weiß	42,2	8
21,70	77,12	Violett	NPI	Weiß	48,5	9
19,20	79,47	Yellow	NPI	Weiß	46,5	10
54,62	45,81		MÄ	Weiß	115,0	11
16,70	107,52	I/2	KK	Weiß	80,7	12
16,90	106,93	I/4	KK	Weiß	81,1	13
16,70	104,69	I/6	KK	Weiß	80,5	14
13,70	122,77	II/2	KK	Weiß	80,2	15
14,70	114,83	II/4	KK	Weiß	80,4	16
14,70	117,68	II/6	KK	Weiß	80,2	17
48,98	70,51	SLK PM 2	SLK	Weiß	45,0	18
9,15	139,06	I/1	SUP PM6	Weiß	47,6	19
9,70	149,73	I/2	SUP PM6	Weiß	47,0	20
9,53	141,35	I/3	SUP PM6	Weiß	47,9	21
10,90	146,22	II/1	SUP PM6	Weiß	47,9	22
9,55	135,46	II/2	SUP PM6	Weiß	47,1	23
11,00	137,55	II/3	SUP PM6	Weiß	47,9	24
48,70	56,22	I	TK PM9	Weiß	70,0	25
29,40	84,82	II	TK PM9	Weiß	70,0	26
12,20	105,98	1	PCH	Weiß	78,4	27
14,10	81,57	2	PCH	Weiß	78,8	28
14,90	87,06	3	PCH	Weiß	78,3	29
15,00	72,59	4	PCH	Weiß	79,3	30
12,50	82,77	I/1	SD PM1	Weiß	54,0	31
12,80	78,48	I/2	SD PM1	Weiß	54,0	32
10,90	81,21	1	SD PM1	Weiß	45,0	33
7,33	127,72	2	SD PM1	Weiß	70,0	34
4,85	203,27	3	SD PM1	Braun	50,0	35
1,28	359,48	4	SD PM1	Braun	70,0	36
3,18	276,20	5	SD PM1	Braun	70,0	37
26,70	73,26	Edit 65g	SL PM3	Weiß	65,0	38
44,80	53,34	Edit 80g	SL PM3	Weiß	80,0	39
18,00	85,16	Serica 50g	SL PM3	Weiß	50,0	40
34,10	59,69	Serica 60g	SL PM3	Weiß	60,0	41
32,30	61,04	Serica 70g	SL PM3	Weiß	70,0	42
29,20	67,27	Serica 80g	SL PM3	Weiß	80,0	43
33,40	55,00	Sevres 50g	SL PM3	Weiß	50,0	44
42,70	56,74	Sevres 60g	SL PM3	Weiß	60,0	45
40,50	59,53	Sevres 60g	SL PM3	Weiß	60,0	46
44,60	56,71	Sevres 70g	SL PM3	Weiß	70,0	47
40,40	60,91	Sevres 80g	SL PM3	Weiß	80,0	48
53,20	51,89	Sevres 90g	SL PM3	Weiß	90,0	49

TechPap vs. MK-Tester (Gesamtkurve)

MK Y _i	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
54,70	49,84	Sevres 90g	SL PM3	Weiß	90,0	50
26,50	81,83	Sevres 98g	SL PM3	Weiß	98,0	51
45,50	60,94	Sevres 120g	SL PM3	Weiß	120,0	52
33,50	72,01	Sevres 140g	SL PM3	Weiß	140,0	53
2,78	272,79	Muster 4	SD PM1	Braun	50,0	54
2,63	317,08	Muster 5	SD PM1	Braun	70,0	55
22,70	87,18	1-34,1	SK	Weiß	80,0	56
20,70	91,52	2-31,8	SK	Weiß	80,0	57
19,30	90,47	3-30,5	SK	Weiß	80,0	58
21,50	91,76	4-32,4	SK	Weiß	80,0	59
46,78	55,25	X1	Х	Weiß	90,0	60
83,65	38,38	CC1	MBP	Weiß	90,0	61
88,08	36,68	CC2	MBP	Weiß	100,0	62
41,18	65,62	MO1	MBP	Weiß	70,0	63
42,95	69,05	MO2	MBP	Weiß	80,0	64
36,15	72,55	MO3	MBP	Weiß	90,0	65
44,05	58,01	MO4	MBP	Weiß	100,0	66
45,33	48,09	MOW1	F	Weiß	90,0	67
48,83	52,11	MCOW1	F	Weiß	100,0	68
50,30	48,82	MOW2	F	Weiß	115,0	69
45,80	69,67	MO5	MBP	Weiß	120,0	70
24,03	84,39	S/W 0,98 II	М	Weiß	73,5	71
26,95	74,75	S/W 0,95 II	М	Weiß	75,2	72
69,45	33,05	GP1-1	GP	Weiß	70,0	73
83,90	28,76	GP2-1	GP	Weiß	80,0	74
95,60	23,96	GP3-1	GP	Weiß	90,0	75
86,25	30,71	GP4-1	GP	Weiß	100,0	76
82,75	30,79	GP5-1	GP	Weiß	115,0	77
133,58	21,04	MAS1-1	SEO	Weiß	90,0	78
96,88	23,34	MAS2-1	SEO	Weiß	100,0	79
159,88	19,72	MAS3-1	SEO	Weiß	115,0	80
78,85	42,24	SCO60	SAL	Weiß	60,0	81
76,13	42,48	SCO56	SAL	Weiß	56,0	82
75,88	37,84	SCO52	SAL	Weiß	52,0	83
72,28	37,38	SCO49	SAL	Weiß	49,0	84
73,63	33,11	TD49	SAL	Weiß	49,0	85
73,48	32,54	TD52	SAL	Weiß	52,0	86
81,65	35,32	TD56	SAL	Weiß	56,0	87
81,80	39,28	TD60	SAL	Weiß	60,0	88

Regressions-Statistik					
Multipler Korrelationskoeffizient R	0,9669				
Bestimmtheitsmaß R ²	0,9348				
Beobachtungen	88				

Koeffizienten				
b ₁	b ₀			
-1,5483	19829,5428			

Spez. Formation Y, Instant MK X, Muster Hersteller Farbe g/m² Nr. 1,003 11,15 4,23 17-TS n.U. KL Braun 123,5 1 0,391 2,61 38,90 Cyan NPI Weiß 44,5 2 0,445 3,08 35,80 Grün NPI Weiß 42,2 4 0,585 3,80 12,40 Orange NPI Weiß 42,2 5 0,514 3,58 21,70 Violett NPI Weiß 46,5 7 0,729 6,55 16,70 I/2 KK Weiß 80,7 8 0,711 6,40 16,90 I/4 KK Weiß 80,2 11 0,743 6,66 14,70 II/4 KK Weiß 80,2 13 0,400 3,35 48,70 I TK PM9 Weiß 70,0 14 0,556 4,95 15,00	Ambertec	Formation						
Formation Y, (35)	spez.	Formation	MK X _i	Muster	Hersteller	Farbe	g/m²	Nr.
1,00311,154,2317-TS n.U.KLBraunI12,510,3912,6138,90CyanNPIWeiß44,520,4453,0835,80GrünNPIWeiß42,240,5853,8012,40OrangeNPIWeiß42,240,5853,8519,20YellowNPIWeiß48,560,5653,8519,20YellowNPIWeiß46,570,7296,5516,70I/2KKWeiß81,190,6916,2016,70I/6KKWeiß80,5100,7816,9913,70II/2KKWeiß80,2130,4003,3548,70ITK PM9Weiß80,2130,4003,3548,70ITK PM9Weiß70,0140,5644,7229,40IITK PM9Weiß78,4160,5715,0714,102PCHWeiß78,3180,5664,9515,004PCHWeiß78,3180,5644,3744,802SL PM3Weiß60,0210,4163,7244,802SL PM3Weiß60,0220,4893,7934,104SL PM3Weiß60,0220,4413,6932,305SL PM3Weiß60,0220,4834,3	Formation Y _i	(30)					_	
0.391 2.61 38,90 Cyan NPI Weiß 44,5 2 0.445 3,06 35,80 Grün NPI Weiß 42,2 4 0,585 3,80 12,40 Orange NPI Weiß 42,2 5 0,514 3,58 21,70 Violett NPI Weiß 46,5 6 0,565 3,85 19,20 Yellow NPI Weiß 46,5 7 0,729 6,55 16,70 I/2 KK Weiß 80,7 8 0,711 6,40 16,90 I/4 KK Weiß 80,2 11 0,743 6,66 14,70 II/6 KK Weiß 80,4 12 0,753 6,74 14,70 II/6 KK Weiß 70,0 14 0,564 4,72 29,40 II TK PM9 Weiß 78,3 18 0,556 14,90 3 PCH W	1,003	11,15	4,23	17-TS n.U.	KL	Braun	123,5	1
0.445 3.08 35.80 Grün NPI Weiß 48.0 3 0.471 3.06 27,60 Pink NPI Weiß 42.2 4 0.585 3.80 12.40 Orange NPI Weiß 42.2 5 0.514 3.58 21,70 Violett NPI Weiß 48.5 6 0.565 3.85 19.20 Yellow NPI Weiß 46.5 7 0.729 6.55 16.70 I/2 KK Weiß 80.7 8 0.711 6.40 16.90 I/4 KK Weiß 80.1 10 0.743 6.66 14.70 II/2 KK Weiß 80.2 13 0.400 3.35 48.70 I TK PM9 Weiß 70.0 14 0.564 4.72 29.40 II TK PM9 Weiß 78.1 17 0.627 5.55 14.90 3 <td< td=""><td>0,391</td><td>2,61</td><td>38,90</td><td>Cyan</td><td>NPI</td><td>Weiß</td><td>44,5</td><td>2</td></td<>	0,391	2,61	38,90	Cyan	NPI	Weiß	44,5	2
0,471 3,06 27,60 Pink NPI Weiß 42,2 4 0,585 3,80 12,40 Orange NPI Weiß 48,5 6 0,565 3,85 19,20 Yellow NPI Weiß 48,5 6 0,729 6,55 16,70 I/2 KK Weiß 80,7 8 0,711 6,40 16,90 I/4 KK Weiß 80,7 1 0,781 6,99 13,70 II/2 KK Weiß 80,2 11 0,743 6,66 14,70 II/4 KK Weiß 80,2 13 0,400 3,35 48,70 I TK PM9 Weiß 70,0 14 0,564 4,72 29,40 II TK PM9 Weiß 78,3 18 0,571 5,07 14,10 2 PCH Weiß 78,3 18 0,564 4,95 15,00 4 PCH </td <td>0,445</td> <td>3,08</td> <td>35,80</td> <td>Grün</td> <td>NPI</td> <td>Weiß</td> <td>48,0</td> <td>3</td>	0,445	3,08	35,80	Grün	NPI	Weiß	48,0	3
0,585 3,80 12,40 Orange NPI Weiß 42,2 5 0,514 3,58 21,70 Violett NPI Weiß 46,5 7 0,729 6,55 16,70 I/2 KK Weiß 80,7 8 0,711 6,40 16,90 I/4 KK Weiß 80,7 1 0,743 6,66 14,70 II/2 KK Weiß 80,2 11 0,743 6,66 14,70 II/4 KK Weiß 80,2 11 0,400 3,35 48,70 I TK PM9 Weiß 7,00 14 0,564 4,72 29,40 II TK PM9 Weiß 78,3 18 0,556 4,95 15,00 4 PCH Weiß 78,3 18 0,556 4,95 15,00 4 PCH Weiß 70,0 22 0,416 3,72 44,80 2 SL PM3	0,471	3,06	27,60	Pink	NPI	Weiß	42,2	4
0.5143.5821.70ViolettNPIWeiß48.560.5653.8519.20YellowNPIWeiß46.570.7296.5516.70I/2KKWeiß80.780.6916.2016.70I/6KKWeiß80.710.7816.9913.70II/2KKWeiß80.2110.7436.6614.70II/6KKWeiß80.2130.4003.3548.70ITK PM9Weiß70.0150.7086.2712.201PCHWeiß70.0150.7086.2712.201PCHWeiß78.4160.5715.0714.102PCHWeiß78.3170.6275.5514.903PCHWeiß78.3180.5564.9515.004PCHWeiß79.3190.5044.0626.701SL PM3Weiß80.0220.4163.7244.802SL PM3Weiß80.0220.4893.7934.104SL PM3Weiß60.0230.4413.6932.305SL PM3Weiß60.0230.4323.3542.708SL PM3Weiß60.0270.4323.3542.708SL PM3Weiß60.0270.4323.3544.60<	0,585	3,80	12,40	Orange	NPI	Weiß	42,2	5
0,5653,8519,20YellowNPIWeiß46,570,7296,5516,701/2KKWeiß80,780,7116,4016,901/4KKWeiß81,190,6916,2016,701/6KKWeiß80,2110,7816,6614,70II/2KKWeiß80,2130,7536,7414,70II/4KKWeiß80,2130,4003,3548,701TK PM9Weiß70,0140,5644,7229,40IITK PM9Weiß78,810,6275,0714,102PCHWeiß78,8170,6275,5514,903PCHWeiß78,8180,5564,9515,004PCHWeiß79,3190,5044,0626,701SL PM3Weiß60,0220,4163,7244,802SL PM3Weiß60,0220,4893,7934,104SL PM3Weiß60,0220,4834,3229,206SL PM3Weiß80,0250,4573,2333,407SL PM3Weiß60,0280,4543,5544,6010SL PM3Weiß80,0330,4063,8554,7013SL PM3Weiß80,0330,4524,0440	0,514	3,58	21,70	Violett	NPI	Weiß	48,5	6
0,729 $6,55$ $16,70$ $1/2$ KKWeiß $80,7$ 8 $0,711$ $6,40$ $16,90$ $1/4$ KKWeiß $81,1$ 9 $0,691$ $6,20$ $16,70$ $1/6$ KKWeiß $80,5$ 10 $0,781$ $6,99$ $13,70$ $11/2$ KKWeiß $80,2$ 11 $0,743$ $6,66$ $14,70$ $11/4$ KKWeiß $80,2$ 11 $0,753$ $6,74$ $14,70$ $11/6$ KKWeiß $80,2$ 13 $0,400$ $3,35$ $48,70$ 1 TK PM9Weiß $70,0$ 14 $0,564$ $4,72$ $29,40$ 11 TK PM9Weiß $70,0$ 15 $0,708$ $6,27$ $12,20$ 1 PCHWeiß $78,3$ 18 $0,571$ $5,07$ $14,10$ 2 PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4 PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4 PCHWeiß $80,0$ 21 $0,416$ $3,72$ $44,80$ 2 SL PM3Weiß $80,0$ 22 $0,489$ $3,79$ $34,10$ 4 SL PM3Weiß $80,0$ 22 $0,483$ $4,32$ $29,20$ 6 SL PM3Weiß $80,0$ 25 $0,434$ $3,55$ $44,60$ 10 SL PM3Weiß $60,0$ 27 $0,436$ $3,38$ $40,50$ 9 SL PM3<	0,565	3,85	19,20	Yellow	NPI	Weiß	46,5	7
0,711 $6,40$ $16,90$ $1/4$ KKWeiß $81,1$ 9 $0,691$ $6,20$ $16,70$ $1/6$ KKWeiß $80,5$ 11 $0,781$ $6,99$ $13,70$ $11/2$ KKWeiß $80,2$ 11 $0,743$ $6,66$ $14,70$ $11/4$ KKWeiß $80,2$ 13 $0,400$ $3,35$ $48,70$ 1 TK PM9Weiß $70,0$ 14 $0,564$ $4,72$ $29,40$ 11 TK PM9Weiß $70,0$ 15 $0,708$ $6,27$ $12,20$ 1 PCHWeiß $78,4$ 16 $0,571$ $5,07$ $14,10$ 2 PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4 PCHWeiß $78,3$ 19 $0,504$ $4,06$ $26,70$ 1 SL PM3Weiß $80,0$ 21 $0,612$ $4,33$ $18,00$ 3 SL PM3Weiß $60,0$ 23 $0,449$ $3,79$ $34,10$ 4 SL PM3Weiß $60,0$ 23 $0,443$ $4,32$ $29,20$ 6 SL PM3Weiß $60,0$ 27 $0,432$ $3,35$ $42,70$ 8 SL PM3Weiß $60,0$ 27 $0,436$ $3,38$ $40,50$ 9 SL PM3Weiß $80,0$ 31 $0,406$ $3,85$ $54,70$ 13 SL PM3Weiß $80,0$ 31 $0,424$ $3,55$ $44,60$ 10 <td< td=""><td>0,729</td><td>6,55</td><td>16,70</td><td>I/2</td><td>KK</td><td>Weiß</td><td>80,7</td><td>8</td></td<>	0,729	6,55	16,70	I/2	KK	Weiß	80,7	8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,711	6,40	16,90	I/4	KK	Weiß	81,1	9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,691	6,20	16,70	I/6	KK	Weiß	80,5	10
0,743 6,66 14,70 II/4 KK Weiß 80,4 12 0,753 6,74 14,70 II/6 KK Weiß 80,2 13 0,400 3,35 48,70 1 TK PM9 Weiß 70,0 14 0,564 4,72 29,40 II TK PM9 Weiß 78,4 16 0,571 5,07 14,10 2 PCH Weiß 78,3 18 0,627 5,55 14,90 3 PCH Weiß 78,3 18 0,556 4,95 15,00 4 PCH Weiß 78,3 19 0,504 4,06 26,70 1 SLPM3 Weiß 60,0 23 0,416 3,72 44,80 2 SLPM3 Weiß 60,0 23 0,443 4,32 29,20 6 SLPM3 Weiß 60,0 25 0,457 3,23 33,40 7 SLPM3 <td>0,781</td> <td>6,99</td> <td>13,70</td> <td>II/2</td> <td>KK</td> <td>Weiß</td> <td>80,2</td> <td>11</td>	0,781	6,99	13,70	II/2	KK	Weiß	80,2	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,743	6,66	14,70	II/4	KK	Weiß	80,4	12
0,400 $3,35$ $48,70$ ITK PM9Weiß $70,0$ 14 $0,564$ $4,72$ $29,40$ IITK PM9Weiß $70,0$ 15 $0,708$ $6,27$ $12,20$ 1PCHWeiß $78,4$ 16 $0,571$ $5,07$ $14,10$ 2PCHWeiß $78,3$ 18 $0,627$ $5,55$ $14,90$ 3 PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4 PCHWeiß $79,3$ 19 $0,504$ $4,06$ $26,70$ 1 SL PM3Weiß $65,0$ 20 $0,416$ $3,72$ $44,80$ 2 SL PM3Weiß $80,0$ 21 $0,612$ $4,33$ $18,00$ 3 SL PM3Weiß $60,0$ 23 $0,441$ $3,69$ $32,30$ 5 SL PM3Weiß $80,0$ 25 $0,443$ $4,32$ $29,20$ 6 SL PM3Weiß $80,0$ 25 $0,457$ $3,23$ $33,40$ 7 SL PM3Weiß $60,0$ 28 $0,424$ $3,55$ $44,60$ 10 SL PM3Weiß $60,0$ 28 $0,424$ $3,55$ $44,60$ 10 SL PM3Weiß $80,0$ 30 $0,431$ $4,09$ $53,20$ 12 SL PM3Weiß $80,0$ 33 $0,568$ $5,62$ $26,50$ 14 SL PM3Weiß $90,0$ 31 $0,406$ $3,85$ $54,70$ 13	0,753	6,74	14,70	II/6	KK	Weiß	80,2	13
0,564 $4,72$ $29,40$ IITK PM9Weiß $70,0$ 15 $0,708$ $6,27$ $12,20$ 1PCHWeiß $78,4$ 16 $0,571$ $5,07$ $14,10$ 2PCHWeiß $78,8$ 17 $0,627$ $5,55$ $14,90$ 3PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4PCHWeiß $79,3$ 19 $0,504$ $4,06$ $26,70$ 1SL PM3Weiß $65,0$ 20 $0,416$ $3,72$ $44,80$ 2SL PM3Weiß $60,0$ 22 $0,489$ $3,79$ $34,10$ 4SL PM3Weiß $60,0$ 22 $0,489$ $3,79$ $34,10$ 4SL PM3Weiß $60,0$ 22 $0,489$ $3,79$ $34,10$ 4SL PM3Weiß $60,0$ 22 $0,483$ $4,32$ $29,20$ 6 SL PM3Weiß $80,0$ 24 $0,483$ $4,32$ $29,20$ 6 SL PM3Weiß $60,0$ 27 $0,436$ $3,38$ $40,50$ 9 SL PM3Weiß $60,0$ 28 $0,424$ $3,55$ $44,60$ 10 SL PM3Weiß $60,0$ 28 $0,424$ $3,55$ $44,60$ 10 SL PM3Weiß $80,0$ 33 $0,568$ $5,62$ $26,50$ 14 SL PM3Weiß $80,0$ 32 $0,554$ $5,66$ $45,50$ 15 SL PM3 <t< td=""><td>0,400</td><td>3,35</td><td>48,70</td><td>I</td><td>TK PM9</td><td>Weiß</td><td>70,0</td><td>14</td></t<>	0,400	3,35	48,70	I	TK PM9	Weiß	70,0	14
0,708 $6,27$ $12,20$ 1PCHWeiß $78,4$ 16 $0,571$ $5,07$ $14,10$ 2PCHWeiß $78,3$ 18 $0,627$ $5,55$ $14,90$ 3PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4PCHWeiß $79,3$ 19 $0,504$ $4,06$ $26,70$ 1SL PM3Weiß $65,0$ 20 $0,416$ $3,72$ $44,80$ 2SL PM3Weiß $80,0$ 21 $0,612$ $4,33$ $18,00$ 3SL PM3Weiß $60,0$ 23 $0,449$ $3,79$ $34,10$ 4SL PM3Weiß $60,0$ 23 $0,441$ $3,69$ $32,30$ 5SL PM3Weiß $80,0$ 24 $0,483$ $4,32$ $29,20$ 6SL PM3Weiß $80,0$ 25 $0,457$ $3,23$ $3,40$ 7SL PM3Weiß $60,0$ 28 $0,443$ $3,35$ $42,70$ 8SL PM3Weiß $60,0$ 28 $0,424$ $3,55$ $44,60$ 10SL PM3Weiß $80,0$ 30 $0,452$ $4,04$ $40,40$ 11SL PM3Weiß $80,0$ 31 $0,406$ $3,85$ $54,70$ 13SL PM3Weiß $90,0$ 32 $0,568$ $5,62$ $26,50$ 14SL PM3Weiß $90,0$ 32 $0,568$ $5,56$ $45,50$ 15SL PM3Weiß $40,0,0$ 35 <tr< td=""><td>0,564</td><td>4,72</td><td>29,40</td><td> </td><td>TK PM9</td><td>Weiß</td><td>70,0</td><td>15</td></tr<>	0,564	4,72	29,40		TK PM9	Weiß	70,0	15
0,571 $5,07$ $14,10$ 2 PCHWeiß $78,8$ 17 $0,627$ $5,55$ $14,90$ 3 PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4 PCHWeiß $79,3$ 19 $0,504$ $4,06$ $26,70$ 1 SL PM3Weiß $65,0$ 20 $0,416$ $3,72$ $44,80$ 2 SL PM3Weiß $80,0$ 21 $0,612$ $4,33$ $18,00$ 3 SL PM3Weiß $60,0$ 23 $0,441$ $3,69$ $32,30$ 5 SL PM3Weiß $80,0$ 24 $0,483$ $4,32$ $29,20$ 6 SL PM3Weiß $80,0$ 25 $0,441$ $3,69$ $32,30$ 5 SL PM3Weiß $80,0$ 25 $0,441$ $3,69$ $32,30$ 5 SL PM3Weiß $80,0$ 25 $0,441$ $3,69$ $32,30$ 5 SL PM3Weiß $80,0$ 25 $0,457$ $3,23$ $33,40$ 7 SL PM3Weiß $60,0$ 27 $0,436$ $3,38$ $40,50$ 9 SL PM3Weiß $60,0$ 27 $0,436$ $3,38$ $40,50$ 9 SL PM3Weiß $80,0$ 30 $0,452$ $4,04$ $40,40$ 11 SL PM3Weiß $80,0$ 31 $0,466$ $3,85$ $54,70$ 13 SL PM3Weiß $90,0$ 32 $0,568$ $5,62$ $26,50$ 14 <	0,708	6,27	12,20	1	PCH	Weiß	78,4	16
0,627 $5,55$ $14,90$ 3 PCHWeiß $78,3$ 18 $0,556$ $4,95$ $15,00$ 4 PCHWeiß $79,3$ 19 $0,504$ $4,06$ $26,70$ 1 SL PM3Weiß $65,0$ 20 $0,416$ $3,72$ $44,80$ 2 SL PM3Weiß $80,0$ 21 $0,612$ $4,33$ $18,00$ 3 SL PM3Weiß $60,0$ 22 $0,489$ $3,79$ $34,10$ 4 SL PM3Weiß $60,0$ 23 $0,441$ $3,69$ $32,30$ 5 SL PM3Weiß $80,0$ 25 $0,483$ $4,32$ $29,20$ 6 SL PM3Weiß $80,0$ 25 $0,457$ $3,23$ $33,40$ 7 SL PM3Weiß $60,0$ 27 $0,436$ $3,38$ $40,50$ 9 SL PM3Weiß $60,0$ 28 $0,424$ $3,55$ $44,60$ 10 SL PM3Weiß $60,0$ 28 $0,441$ $3,69$ $53,20$ 12 SL PM3Weiß $90,0$ 31 $0,466$ $3,85$ $54,70$ 13 SL PM3Weiß $90,0$ 32 $0,658$ $5,62$ $26,50$ 14 SL PM3Weiß $90,0$ 32 $0,568$ $5,56$ $45,50$ 15 SL PM3Weiß $54,0$ 37 $0,659$ $7,80$ $33,50$ 16 SL PM3Weiß $54,0$ 37 $0,651$ $4,59$ $21,10$ <t< td=""><td>0,571</td><td>5,07</td><td>14,10</td><td>2</td><td>PCH</td><td>Weiß</td><td>78,8</td><td>17</td></t<>	0,571	5,07	14,10	2	PCH	Weiß	78,8	17
0.556 4.95 15.00 4 PCHWeiß 79.3 19 0.504 4.06 26.70 1SL PM3Weiß 65.0 20 0.416 3.72 44.80 2SL PM3Weiß 80.0 21 0.612 4.33 18.00 3SL PM3Weiß 50.0 22 0.489 3.79 34.10 4SL PM3Weiß 60.0 23 0.441 3.69 32.30 5 SL PM3Weiß 80.0 21 0.483 4.32 29.20 6 SL PM3Weiß 80.0 25 0.457 3.23 33.40 7 SL PM3Weiß 60.0 27 0.436 3.35 42.70 8 SL PM3Weiß 60.0 27 0.436 3.38 40.50 9 SL PM3Weiß 60.0 28 0.424 3.55 44.60 10 SL PM3Weiß 80.0 23 0.452 4.04 40.40 11 SL PM3Weiß 80.0 32 0.452 4.04 40.40 11 SL PM3Weiß 90.0 31 0.406 3.85 54.70 13 SL PM3Weiß 90.0 32 0.568 5.62 26.50 14 SL PM3Weiß 140.0 35 0.568 5.56 45.50 15 SL PM3Weiß 54.0 37 0.6611 4.06 12.80	0.627	5.55	14.90	3	PCH	Weiß	78.3	18
0,504 4,06 26,70 1 SL PM3 Weiß 65,0 20 0,416 3,72 44,80 2 SL PM3 Weiß 80,0 21 0,612 4,33 18,00 3 SL PM3 Weiß 50,0 22 0,489 3,79 34,10 4 SL PM3 Weiß 60,0 23 0,441 3,69 32,30 5 SL PM3 Weiß 70,0 24 0,483 4,32 29,20 6 SL PM3 Weiß 80,0 25 0,457 3,23 33,40 7 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 28 0,424 3,55 44,60 10 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14	0.556	4.95	15.00	4	PCH	Weiß	79.3	19
0,416 3,72 44,80 2 SL PM3 Weiß 80,0 21 0,612 4,33 18,00 3 SL PM3 Weiß 50,0 22 0,489 3,79 34,10 4 SL PM3 Weiß 60,0 23 0,441 3,69 32,30 5 SL PM3 Weiß 70,0 24 0,483 4,32 29,20 6 SL PM3 Weiß 80,0 25 0,457 3,23 33,40 7 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 28 0,424 3,55 44,60 10 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 80,0 33 0,508 5,56 45,50 15 SL PM3 Weiß 140,0 35 0,659 7,80 33,50 16	0.504	4.06	26.70	1	SL PM3	Weiß	65.0	20
0,612 4,33 18,00 3 SL PM3 Weiß 50,0 22 0,489 3,79 34,10 4 SL PM3 Weiß 60,0 23 0,441 3,69 32,30 5 SL PM3 Weiß 60,0 23 0,441 3,69 32,30 5 SL PM3 Weiß 80,0 24 0,483 4,32 29,20 6 SL PM3 Weiß 80,0 25 0,457 3,23 33,40 7 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 28 0,424 3,55 44,60 10 SL PM3 Weiß 60,0 30 0,452 4,04 40,40 11 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14	0.416	3.72	44.80	2	SL PM3	Weiß	80.0	21
0,012 1,00 0<	0.612	4.33	18.00	3	SL PM3	Weiß	50.0	22
0,441 3,69 32,30 5 SL PM3 Weiß 70,0 24 0,441 3,69 32,30 5 SL PM3 Weiß 80,0 25 0,483 4,32 29,20 6 SL PM3 Weiß 80,0 25 0,457 3,23 33,40 7 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 28 0,424 3,55 44,60 10 SL PM3 Weiß 60,0 28 0,452 4,04 40,40 11 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 90,0 31 0,406 3,85 54,70 13 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14 SL PM3 Weiß 90,0 33 0,508 5,56 45,50 15	0.489	3,79	34.10	4	SL PM3	Weiß	60.0	23
0,113 3,30 32,00 6 SL PM3 Weiß 80,0 25 0,457 3,23 33,40 7 SL PM3 Weiß 50,0 26 0,432 3,35 42,70 8 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 28 0,424 3,55 44,60 10 SL PM3 Weiß 70,0 29 0,452 4,04 40,40 11 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 90,0 31 0,406 3,85 54,70 13 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14 SL PM3 Weiß 120,0 34 0,659 7,80 33,50 16 SL PM3 Weiß 140,0 35 0,513 4,99 12,50 I/1 <td>0.441</td> <td>3,69</td> <td>32.30</td> <td>5</td> <td>SL PM3</td> <td>Weiß</td> <td>70.0</td> <td>24</td>	0.441	3,69	32.30	5	SL PM3	Weiß	70.0	24
0,457 3,23 33,40 7 SL PM3 Weiß 50,0 26 0,432 3,35 42,70 8 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 28 0,424 3,55 44,60 10 SL PM3 Weiß 80,0 30 0,452 4,04 40,40 11 SL PM3 Weiß 80,0 30 0,452 4,04 40,40 11 SL PM3 Weiß 90,0 31 0,406 3,85 54,70 13 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14 SL PM3 Weiß 120,0 34 0,659 7,80 33,50 16 SL PM3 Weiß 140,0 35 0,552 4,06 12,80 I/2 <td>0.483</td> <td>4.32</td> <td>29.20</td> <td>6</td> <td>SL PM3</td> <td>Weiß</td> <td>80.0</td> <td>25</td>	0.483	4.32	29.20	6	SL PM3	Weiß	80.0	25
0,432 3,35 42,70 8 SL PM3 Weiß 60,0 27 0,436 3,38 40,50 9 SL PM3 Weiß 60,0 28 0,424 3,55 44,60 10 SL PM3 Weiß 80,0 29 0,452 4,04 40,40 11 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 90,0 31 0,406 3,85 54,70 13 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14 SL PM3 Weiß 98,0 33 0,508 5,56 45,50 15 SL PM3 Weiß 140,0 35 0,543 3,99 12,50 1/1 SD PM1 Weiß 54,0 36 0,552 4,06 12,80 1/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 <td>0.457</td> <td>3.23</td> <td>33.40</td> <td>7</td> <td>SL PM3</td> <td>Weiß</td> <td>50.0</td> <td>26</td>	0.457	3.23	33.40	7	SL PM3	Weiß	50.0	26
0,102 0,05 12,10 2 0 28 0,424 3,55 44,60 10 SL PM3 Weiß 70,0 29 0,452 4,04 40,40 11 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 90,0 31 0,406 3,85 54,70 13 SL PM3 Weiß 98,0 33 0,508 5,62 26,50 14 SL PM3 Weiß 120,0 34 0,659 7,80 33,50 16 SL PM3 Weiß 140,0 35 0,543 3,99 12,50 1/1 SD PM1 Weiß 5	0 432	3.35	42 70	8	SL PM3	Weiß	60.0	27
0,100 10,00 10,00 10 SL PM3 Weiß 70,0 29 0,424 3,55 44,60 10 SL PM3 Weiß 70,0 29 0,452 4,04 40,40 11 SL PM3 Weiß 80,0 30 0,431 4,09 53,20 12 SL PM3 Weiß 90,0 31 0,406 3,85 54,70 13 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14 SL PM3 Weiß 98,0 33 0,508 5,56 45,50 15 SL PM3 Weiß 140,0 35 0,543 3,99 12,50 I/1 SD PM1 Weiß 54,0 36 0,552 4,06 12,80 I/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 </td <td>0.436</td> <td>3.38</td> <td>40.50</td> <td>9</td> <td>SL PM3</td> <td>Weiß</td> <td>60.0</td> <td>28</td>	0.436	3.38	40.50	9	SL PM3	Weiß	60.0	28
0,121 0,02 11,00 10 012 100	0.424	3 55	44 60	10	SL PM3	Weiß	70.0	29
0,102 1,01 10,10 11 011	0.452	4 04	40.40	11	SL PM3	Weiß	80.0	30
0,101 1,50 05,20 12 011 0115 50,0 011 0,406 3,85 54,70 13 SL PM3 Weiß 90,0 32 0,568 5,62 26,50 14 SL PM3 Weiß 98,0 33 0,508 5,56 45,50 15 SL PM3 Weiß 120,0 34 0,659 7,80 33,50 16 SL PM3 Weiß 140,0 35 0,543 3,99 12,50 I/1 SD PM1 Weiß 54,0 36 0,552 4,06 12,80 I/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 SD PM1 Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8	0.431	4 09	53 20	12	SL PM3	Weiß	90.0	31
0,160 0,568 5,62 26,50 14 SL PM3 Weiß 98,0 33 0,508 5,56 45,50 15 SL PM3 Weiß 120,0 34 0,659 7,80 33,50 16 SL PM3 Weiß 140,0 35 0,543 3,99 12,50 I/1 SD PM1 Weiß 54,0 36 0,552 4,06 12,80 I/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 SD PM1 Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,5	0,406	3.85	54 70	13	SL PM3	Weiß	90.0	32
0,000 0,02 20,00 14 OL TWO Weiß 50,0 30 0,508 5,56 45,50 15 SL PM3 Weiß 120,0 34 0,659 7,80 33,50 16 SL PM3 Weiß 140,0 35 0,543 3,99 12,50 I/1 SD PM1 Weiß 54,0 36 0,552 4,06 12,80 I/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 SD PM1 Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 4-32	0,100	5.62	26 50	14	SL PM3	Weiß	98.0	33
0,600 0,600 16,600 16 612 FM8 Weiß 120,6 614 0,659 7,80 33,50 16 SL PM3 Weiß 140,0 35 0,543 3,99 12,50 I/1 SD PM1 Weiß 54,0 36 0,552 4,06 12,80 I/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 SD PM1 Weiß 70,0 39 0,513 4,59 21,10 Muster 1 SK Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 <t< td=""><td>0,508</td><td>5 56</td><td>45 50</td><td>15</td><td>SL PM3</td><td>Weiß</td><td>120.0</td><td>34</td></t<>	0,508	5 56	45 50	15	SL PM3	Weiß	120.0	34
0,500 1,60 30,60 16 62,110 110,6 36 0,543 3,99 12,50 1/1 SD PM1 Weiß 54,0 36 0,552 4,06 12,80 1/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 SD PM1 Weiß 70,0 39 0,513 4,59 21,10 Muster 1 SK Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 4-32,4 SK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45	0,659	7.80	33 50	16	SL PM3	Weiß	140.0	35
0,010 0,00 12,00 11 010 010 01,0 00 0,552 4,06 12,80 I/2 SD PM1 Weiß 54,0 37 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 SD PM1 Weiß 70,0 39 0,513 4,59 21,10 Muster 1 SK Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 4-32,4 SK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45	0.543	3 99	12 50	I/1	SD PM1	Weiß	54.0	36
0,002 1,00 12,00 102 00 FM1 Weiß 01,0 01 0,611 4,10 10,90 1 SD PM1 Weiß 45,0 38 0,896 7,50 7,33 2 SD PM1 Weiß 70,0 39 0,513 4,59 21,10 Muster 1 SK Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 4-32,4 SK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45 0,351 3.33 82.65 CC1 MPD Weiß 00.0 46	0,540	4.06	12,00	1/2	SD PM1	Weiß	54.0	37
0,011 1,10 10,30 1 000 mm 1000 mm 10000 mm 1000	0,602	4,00	10.90	1	SD PM1	Weiß	45.0	38
0,050 1,00 1,00 1,00 33 0,513 4,59 21,10 Muster 1 SK Weiß 80,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 4-32,4 SK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45 0,351 3.33 83,65 CC1 MPD Weiß 90,0 45	0,011	7 50	7 33	2	SD PM1	Woiß	70.0	30
0,515 4,55 21,10 Master 1 5K Weils 50,0 40 0,602 5,38 22,70 1-34,1 SK Weiß 80,0 41 0,609 5,45 20,70 2-31,8 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 4-32,4 SK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45 0,351 3.33 83.65 CC1 MPD Weiß 90,0 45	0,030	1,50	21 10	Z Mustor 1	SDTWT	Woiß	80.0	10
0,602 0,002 <th< td=""><td>0,010</td><td>т,33 5 3 2</td><td>27,10</td><td>1_2/ 1</td><td></td><td></td><td>80.0</td><td><u>−</u>∪ //1</td></th<>	0,010	т,33 5 3 2	27,10	1_2/ 1			80.0	<u>−</u> ∪ //1
0,605 5,45 20,70 2-31,6 SK Weiß 80,0 42 0,651 5,82 19,30 3-30,5 SK Weiß 80,0 43 0,625 5,59 21,50 4-32,4 SK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45 0,351 3.33 82.65 CC1 MPD Woil 00.0 46	0,002	5,50	20,70	2-31 Q			80.0	+1 12
0,625 5,59 21,50 4-32,4 SK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45	0,009	5,45	10 20	2-31,0			80.0	<u>+∠</u> ∕\2
0,020 0,030 21,00 4-02,4 OK Weiß 80,0 44 0,476 4,52 46,78 X1 X Weiß 90,0 45 0,351 3.33 82.65 CC1 MPD Woll 00.0 46	0.625	5,02	21 50	<u> </u>	SIX SIX	Weiß	80.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020	1.52	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u>		Y SIX		<u>an n</u>	<u>1</u> 4
	0,470	, ,८८ २,२२	83.65			Weiß	90,0 90 0	40
0.365 3.65 88.08 CC2 MRD Weiß 100.0 40	0,001	3,55	88 08		MRD		100.0	<u>4</u> 7

Ambertec spez. Formation <i>Y</i> _i	Formation (SD)	MK X _i	Muster	Hersteller	Farbe	g/m²	Nr.
0,386	3,23	41,18	MO1	MBP	Weiß	70,0	48
0,553	4,95	42,95	MO2	MBP	Weiß	80,0	49
0,471	4,47	36,15	MO3	MBP	Weiß	90,0	50
0,421	4,21	44,05	MO4	MBP	Weiß	100,0	51
0,449	4,26	45,33	MOW1	F	Weiß	90,0	52
0,444	4,44	48,83	MCOW1	F	Weiß	100,0	53
0,487	5,22	50,30	MOW2	F	Weiß	115,0	54
0,458	5,02	45,80	MO5	MBP	Weiß	120,0	55
0,583	4,02	9,15	I/1	SUP PM6	Weiß	47,6	56
0,551	3,78	9,70	I/2	SUP PM6	Weiß	47,0	57
0,585	4,05	9,53	I/3	SUP PM6	Weiß	47,9	58
0,610	4,22	10,90	II/1	SUP PM6	Weiß	47,9	59
0,554	3,80	9,55	II/2	SUP PM6	Weiß	47,1	60
0,565	3,91	11,00	II/3	SUP PM6	Weiß	47,9	61
0,359	2,41	48,98	SLK PM 2	SLK	Braun	45,0	62
0,700	4,95	4,85	3	SD PM1	Braun	50,0	63
1,202	10,06	1,28	4	SD PM1	Braun	70,0	64
0,943	7,89	3,18	5	SD PM1	Braun	70,0	65
0,868	6,14	2,78	Muster 4	SD PM1	Braun	50,0	66
1,045	8,74	2,63	Muster 5	SD PM1	Braun	70,0	67

Regressions-Statistik				
Multipler Korrelationskoeffizient R	0,8833			
Bestimmtheitsmaß R ²	0,7802			
Beobachtungen	67			

Koeffizienten			
b ₁	b ₀		
-0,2743	1,2706		

Iploner Y _i	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
2,478	31,37	GP1	GP	Weiß	70,0	1
2,316	51,02	MO6	MBP	Weiß	140,0	2
3,911	74,88	MO7	MBP	Weiß	170,0	3
2,660	57,27	MO8	MBP	Weiß	190,0	4
3,169	63,59	MO9	MBP	Weiß	250,0	5
3,037	53,59	MOW3	F	Weiß	170,0	6
2,870	32,66	GP6	GP	Weiß	130,0	7
2,569	35,43	GP9	GP	Weiß	200,0	8
2,546	31,57	GP4	GP	Weiß	100,0	9
2,566	32,64	GP5	GP	Weiß	115,0	10
3,169	48,21	GP11	GP	Weiß	250,0	11
3,609	55,25	X1	Х	Weiß	90,0	12
3,323	48,09	MOW1	F	Weiß	90,0	13
3,211	52,11	MCOW1	F	Weiß	100,0	14
3,136	48,82	MOW2	F	Weiß	115,0	15
4,104	65,62	MO1	MBP	Weiß	70,0	16
3,786	69,05	MO2	MBP	Weiß	80,0	17
4,190	72,55	MO3	MBP	Weiß	90,0	18
3,561	58,01	MO4	MBP	Weiß	100,0	19
3,670	69,67	MO5	MBP	Weiß	120,0	20
2,577	33,05	GP1-1	GP	Weiß	70,0	21
1,972	28,76	GP2-1	GP	Weiß	80,0	22
1,735	23,96	GP3-1	GP	Weiß	90,0	23
2,232	30,71	GP4-1	GP	Weiß	100,0	24
2,372	30,79	GP5-1	GP	Weiß	115,0	25
1,483	21,04	MAS1-1	SEO	Weiß	90,0	26
1,643	23,34	MAS2-1	SEO	Weiß	100,0	27
1,207	19,72	MAS3-1	SEO	Weiß	115,0	28
1,680	23,13	MAS4-1	SEO	Weiß	130,0	29
1,711	33,44	MAS5-1	SEO	Weiß	150,0	30
1,801	36,93	MAS6-1	SEO	Weiß	170,0	31
1,993	37,32	MAS7-1	SEO	Weiß	200,0	32
1,637	22,83	MAS8-1	SEO	Weiß	250,0	33
1,934	25,43	MAS9-1	SEO	Weiß	300,0	34
2,445	45,53	GP8-1	GP	Weiß	170,0	35
2,406	37,60	GP10-1	GP	Weiß	230,0	36
2,515	38,84	GP7-1	GP	Weiß	150,0	37

TechPap vs. Iploner Sortenüberblick

Regressions-Statistik	
Multipler Korrelationskoeffizient R	0,9089
Bestimmtheitsmaß R ²	0,8261
Beobachtungen	37

Koeffizienten					
b ₃ b ₂ b ₁ b ₀					
2,1267E-05	-0,0032	0,1901	-1,2901		

Daten Berechnungsbeispiel (Inklusive Muster X1)

Iploner Y _i	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
5,261	87,18	1-34,1	SK	Weiß	80,0	1
5,564	91,52	2-31,8	SK	Weiß	80,0	2
6,056	90,47	3-30,5	SK	Weiß	80,0	3
5,439	91,76	4-32,4	SK	Weiß	80,0	4
3,608	51,47	Cyan	NPI	Weiß	44,5	5
4,317	59,06	Grün	NPI	Weiß	48,0	6
4,413	71,43	Pink	NPI	Weiß	42,2	7
5,494	97,19	Orange	NPI	Weiß	42,2	8
5,064	77,12	Violett	NPI	Weiß	48,5	9
4,732	79,47	Yellow	NPI	Weiß	46,5	10
5,891	106,93	I/4	KK	Weiß	81,1	11
5,310	104,69	I/6	KK	Weiß	80,5	12
6,531	114,83	II/4	KK	Weiß	80,4	13
6,250	117,68	II/6	KK	Weiß	80,2	14
5,080	73,26	1	SL PM3	Weiß	65,0	15
3,388	53,34	2	SL PM3	Weiß	80,0	16
5,619	85,16	3	SL PM3	Weiß	50,0	17
4,850	59,69	4	SL PM3	Weiß	60,0	18
4,325	61,04	5	SL PM3	Weiß	70,0	19
5,014	67,27	6	SL PM3	Weiß	80,0	20
3,473	55,00	7	SL PM3	Weiß	50,0	21
3,944	56,74	8	SL PM3	Weiß	60,0	22
4,091	59,53	9	SL PM3	Weiß	60,0	23
4,242	56,71	10	SL PM3	Weiß	70,0	24
3,719	60,91	11	SL PM3	Weiß	80,0	25
3,344	51,89	12	SL PM3	Weiß	90,0	26
3,132	49,84	13	SL PM3	Weiß	90,0	27
4,939	81,83	14	SL PM3	Weiß	98,0	28
3,243	60,94	15	SL PM3	Weiß	120,0	29
4,848	81,69	IF 0288/25	М	Weiß	75,2	30
4,554	84,82		TK PM9	Weiß	70,0	31
8,948	127,72	2	SD PM1	Weiß	70,0	32
2,478	31,37	GP1	GP	Weiß	70,0	33
2,316	51,02	MO6	MBP	Weiß	140,0	34
3,911	74,88	MO7	MBP	Weiß	170,0	35
2,660	57,27	MO8	MBP	Weiß	190,0	36
3,169	63,59	MO9	MBP	Weiß	250,0	37
3,037	53,59	MOW3	F	Weiß	170,0	38
6,965	118,54	IB	NS	Weiß	45,0	39
2,870	32,66	GP6	GP	Weiß	130,0	40
2,569	35,43	GP9	GP	Weiß	200,0	41
8,879	146,22	II/1	SUP PM6	Weiß	47,9	42
8,099	137,55	II/3	SUP PM6	Weiß	47,9	43
2,546	31,57	GP4	GP	Weiß	100,0	44
2,566	32,64	GP5	GP	Weiß	115,0	45
3,169	48,21	GP11	GP	Weiß	250,0	46
3,609	55,25	X1	Х	Weiß	90,0	47

TechPap vs. Iploner (weiße Muster)

Iploner Y_i	TechPap X _i	Muster	Hersteller	Farbe	g/m²	Nr.
3,323	48,09	MOW1	F	Weiß	90,0	48
3,211	52,11	MCOW1	F	Weiß	100,0	49
3,136	48,82	MOW2	F	Weiß	115,0	50
4,104	65,62	MO1	MBP	Weiß	70,0	51
3,786	69,05	MO2	MBP	Weiß	80,0	52
4,190	72,55	MO3	MBP	Weiß	90,0	53
3,561	58,01	MO4	MBP	Weiß	100,0	54
3,670	69,67	MO5	MBP	Weiß	120,0	55
2,577	33,05	GP1-1	GP	Weiß	70,0	56
1,972	28,76	GP2-1	GP	Weiß	80,0	57
1,735	23,96	GP3-1	GP	Weiß	90,0	58
2,232	30,71	GP4-1	GP	Weiß	100,0	59
2,372	30,79	GP5-1	GP	Weiß	115,0	60
4,777	84,39	S/W 0,98 II	М	Weiß	73,5	61
4,679	74,75	S/W 0,95 II	М	Weiß	75,2	62
2,644	42,24	SCO60	SAL	Weiß	60,0	63
2,902	42,48	SCO56	SAL	Weiß	56,0	64
2,746	37,84	SCO52	SAL	Weiß	52,0	65
3,011	37,38	SCO49	SAL	Weiß	49,0	66
2,370	33,11	TD49	SAL	Weiß	49,0	67
3,101	32,54	TD52	SAL	Weiß	52,0	68
2,791	35,32	TD56	SAL	Weiß	56,0	69
2,709	39,28	TD60	SAL	Weiß	60,0	70
1,483	21,04	MAS1-1	SEO	Weiß	90,0	71
1,643	23,34	MAS2-1	SEO	Weiß	100,0	72
1,207	19,72	MAS3-1	SEO	Weiß	115,0	73
2,751	39,03	Muster I	MÂ	Weiß	115,0	74
1,680	23,13	MAS4-1	SEO	Weiß	130,0	75
1,711	33,44	MAS5-1	SEO	Weiß	150,0	76
1,801	36,93	MAS6-1	SEO	Weiß	170,0	77
1,993	37,32	MAS7-1	SEO	Weiß	200,0	78
1,637	22,83	MAS8-1	SEO	Weiß	250,0	79
1,934	25,43	MAS9-1	SEO	Weiß	300,0	80
2,445	45,53	GP8-1	GP	Weiß	170,0	81
2,406	37,60	GP10-1	GP	Weiß	230,0	82
2,515	38,84	GP7-1	GP	Weiß	150,0	83

Regressions-Statistik	
Multipler Korrelationskoeffizient R	0,9610
Bestimmtheitsmaß R ²	0,9234
Beobachtungen	83

Koeffizienten			
b ₁	b ₀		
0,0547	0,4885		

ANOVA					
	Freiheitsgrade (df)	Quadratsummen	mittlere Quadratsummen		
Regression	1	200,3283	200,3283		
Residue	81	16,6085	0,2050		
Gesamt	82	216,9368			

Messung	Xi	Y _i	E(Y _i)	Residuen e	t(0,975;81)	95%-PI	+PI	-PI
1	87,18	5,261	5,257	0,004		0,912	6,168	4,345
2	91,52	5,564	5,494	0,070		0,913	6,407	4,581
3	90,47	6,056	5,437	0,619		0,913	6,349	4,524
4	91,76	5,439	5,507	-0,068		0,913	6,420	4,594
5	51,47	3,608	3,304	0,304		0,907	4,210	2,397
6	59,06	4,317	3,719	0,598		0,906	4,625	2,812
7	71,43	4,413	4,395	0,018		0,907	5,303	3,488
8	97,19	5,494	5,804	-0,310		0,916	6,720	4,888
9	77,12	5,064	4,706	0,358		0,908	5,615	3,798
10	79,47	4,732	4,835	-0,103		0,909	5,744	3,926
11	106,93	5,891	6,337	-0,446		0,921	7,258	5,416
12	104,69	5,310	6,214	-0,904		0,920	7,134	5,294
13	114,83	6,531	6,769	-0,238		0,927	7,696	5,842
14	117,68	6,250	6,925	-0,675		0,929	7,854	5,996
15	73,26	5,080	4,495	0,585		0,908	5,403	3,588
16	53,34	3,388	3,406	-0,018		0,907	4,312	2,499
17	85,16	5,619	5,146	0,473		0,911	6,057	4,235
18	59,69	4,850	3,753	1,097		0,906	4,660	2,847
19	61,04	4,325	3,827	0,498		0,906	4,733	2,921
20	67,27	5,014	4,168	0,846		0,907	5,075	3,261
21	55,00	3,473	3,497	-0,024		0,907	4,403	2,590
22	56,74	3,944	3,592	0,352	1,990	0,906	4,498	2,685
23	59,53	4,091	3,744	0,347		0,906	4,651	2,838
24	56,71	4,242	3,590	0,652		0,906	4,497	2,684
25	60,91	3,719	3,820	-0,101		0,906	4,726	2,913
26	51,89	3,344	3,327	0,017		0,907	4,233	2,420
27	49,84	3,132	3,214	-0,082		0,907	4,121	2,307
28	81,83	4,939	4,964	-0,025		0,910	5,874	4,054
29	60,94	3,243	3,822	-0,579		0,906	4,728	2,915
30	81,69	4,848	4,956	-0,108		0,910	5,866	4,047
31	84,82	4,554	5,128	-0,574		0,911	6,038	4,217
32	127,72	8,948	7,474	1,474		0,937	8,411	6,537
33	31,37	2,478	2,204	0,274		0,912	3,116	1,293
34	51,02	2,316	3,279	-0,963		0,907	4,186	2,372
35	74,88	3,911	4,584	-0,673		0,908	5,492	3,676
36	57,27	2,660	3,621	-0,961		0,906	4,527	2,714
37	63,59	3,169	3,966	-0,797		0,906	4,873	3,060
38	53,59	3,037	3,420	-0,383		0,907	4,326	2,513
39	118,54	6,965	6,972	-0,007		0,929	7,901	6,042
40	32,66	2,870	2,275	0,595		0,911	3,186	1,364
41	35,43	2,569	2,426	0,143		0,910	3,337	1,516
42	146,22	8,879	8,486	0,393		0,955	9,441	7,530
43	137,55	8,099	8,012	0,087		0,946	8,958	7,065
Messung	X	Y:	E(Y _i)	Residuen e	t(0.975:81)	95%-PI	+PI	-PI
---------	-------	-------	--------------------	------------	-------------	--------	-------	-------
44	31.57	2.546	2.215	0.331		0.912	3.127	1.304
45	32.64	2.566	2.274	0.292		0.911	3.185	1.363
46	48.21	3.169	3.125	0.044		0.907	4.033	2.218
47	55,25	3,609	3,510	0,099	-	0,906	4,417	2,604
48	48,09	3,323	3,119	0,204	-	0,907	4,026	2,211
49	52,11	3,211	3,339	-0,128		0,907	4,245	2,432
50	48,82	3,136	3,159	-0,023		0,907	4,066	2,252
51	65,62	4,104	4,077	0,027		0,907	4,984	3,171
52	69,05	3,786	4,265	-0,479	-	0,907	5,172	3,358
53	72,55	4,190	4,457	-0,267		0,908	5,364	3,549
54	58,01	3,561	3,661	-0,100		0,906	4,568	2,755
55	69,67	3,670	4,299	-0,629		0,907	5,206	3,392
56	33,05	2,577	2,296	0,281		0,911	3,207	1,385
57	28,76	1,972	2,062	-0,090		0,913	2,974	1,149
58	23,96	1,735	1,799	-0,064		0,915	2,714	0,884
59	30,71	2,232	2,168	0,064		0,912	3,080	1,256
60	30,79	2,372	2,173	0,199		0,912	3,084	1,261
61	84,39	4,777	5,104	-0,327		0,911	6,015	4,194
62	74,75	4,679	4,577	0,102		0,908	5,485	3,669
63	42,24	2,644	2,799	-0,155	1 990	0,908	3,707	1,890
64	42,48	2,902	2,812	0,090	1,000	0,908	3,720	1,904
65	37,84	2,746	2,558	0,188	-	0,909	3,468	1,649
66	37,38	3,011	2,533	0,478	-	0,910	3,443	1,623
67	33,11	2,370	2,299	0,071	-	0,911	3,210	1,388
68	32,54	3,101	2,268	0,833	-	0,911	3,179	1,357
69	35,32	2,791	2,420	0,371		0,910	3,331	1,510
70	39,28	2,709	2,637	0,072		0,909	3,546	1,728
71	21,04	1,483	1,639	-0,156		0,916	2,555	0,723
72	23,34	1,643	1,765	-0,122		0,915	2,680	0,850
73	19,72	1,207	1,567	-0,360	-	0,917	2,484	0,650
74	39,03	2,751	2,623	0,128	-	0,909	3,532	1,714
75	23,13	1,680	1,754	-0,074	-	0,915	2,669	0,838
76	33,44	1,711	2,317	-0,606		0,911	3,228	1,407
77	36,93	1,801	2,508	-0,707		0,910	3,418	1,599
78	37,32	1,993	2,530	-0,537		0,910	3,439	1,620
79	22,83	1,637	1,737	-0,100		0,915	2,652	0,822
80	25,43	1,934	1,879	0,055		0,914	2,793	0,965
81	45,53	2,445	2,979	-0,534		0,908	3,886	2,071
82	37,60	2,406	2,545	-0,139		0,910	3,455	1,635
83	38,84	2,515	2,613	-0,098		0,909	3,522	1,704

Lineare Regression

$$\begin{split} E(Y_i) &= \hat{Y}_i = b_0 + b_1 \cdot X_i \\ X_i &= X_1, X_2, \dots, X_n \; (X\text{-Werte}) \\ Y_i &= Y_1, Y_2, \dots, Y_n \; (Y\text{-Werte}) \end{split}$$

Parameter:

$$\begin{split} b_1 &= \sum_{i=1}^n k_i \cdot Y_i = k_1 \cdot Y_1 + k_2 \cdot Y_2 + \ldots + k_n \cdot Y_n \\ b_0 &= \sum_{i=1}^n l_i \cdot Y_i = l_1 \cdot Y_1 + l_2 \cdot Y_2 + \ldots + l_n \cdot Y_n \\ b_0 &= \overline{Y} - b_1 \cdot \overline{X} \end{split} \qquad \begin{aligned} k_i &= \frac{X_i - \overline{X}}{S_{XX}} & \text{z.B.} \quad k_1 = \frac{X_1 - \overline{X}}{S_{XX}} \\ l_i &= \frac{1}{n} - k_i \cdot \overline{X} & \text{z.B.} \quad l_1 = \frac{1}{n} - k_1 \cdot \overline{X} \\ b_1 &= \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} \end{split}$$

Mittelwerte:

$$\overline{X} = \frac{\sum X_i}{n} = \frac{X_1 + X_2 + \ldots + X_n}{n} \qquad \qquad \overline{Y} = \frac{\sum Y_i}{n} = \frac{Y_1 + Y_2 + \ldots + Y_n}{n}$$

 $S_{XX:}$

Quadratsummen:

$$S_{XX} = \sum (X_i - \overline{X})^2$$

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

$$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$$

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Fehler:

$$MSR = \frac{SSR}{df} \qquad \qquad df = p - 1$$

$$MSE = \frac{SSE}{df} \qquad \qquad df = n - p$$

Bestimmtheitsmaß und Korrelationskoeffizient:

$$R^{2} = \frac{SSR}{SSTO} \qquad \qquad R = \sqrt{R^{2}}$$

Potentielle Regression

$$\mathbf{E}(\mathbf{Y}_i) = \mathbf{b}_0 \cdot \mathbf{X}_i^{\mathbf{b}_1}$$

Linearisierung der X- und Y-Werte:

 $Y_{i}^{*} = \ln Y_{i}$ $X_{i}^{*} = \ln X_{i}$

Die Berechnung der linearisierten Parameter b_0^* und b_1^* wie b_1 und b_0 bei der linearen Regression oben!

Rücktransformation von b₀* und b₁*:

$$b_0 = e^{b_0^*}$$
 $b_1 = b_1^*$

Exponentielle Regression

 $E(Y_i) = b_0 \cdot e^{X_i \cdot b_1}$

Linearisierung der X- und Y-Werte:

$$\mathbf{Y}_{i}^{*} = \ln \mathbf{Y}_{i} \qquad \qquad \mathbf{X}_{i}^{*} = \mathbf{X}$$

Die Berechnung der linearisierten Parameter b_0^* und b_1^* wie b_1 und b_0 bei der linearen Regression oben!

Rücktransformation von b₀* und b₁*:

$$b_0 = e^{b_0^*}$$
 $b_1 = b_1^*$

Logarithmische Regression

$$\mathbf{E}(\mathbf{Y}_i) = \mathbf{b}_0 + \mathbf{b}_1 \cdot \ln \mathbf{X}_i$$

Linearisierung der X- und Y-Werte:

$$Y_{i}^{*} = Y_{i}$$
 $X_{i}^{*} = \ln X_{i}$

Die Berechnung der linearisierten Parameter b_0^* und b_1^* wie b_1 und b_0 bei der linearen Regression oben!

Rücktransformation von b₀* und b₁*:

$$b_0 = b_0^*$$
 $b_1 = b_1^*$

Prädiktionsintervall für lineare Regression sowie für die linearisierten Fälle

$$\hat{\mathbf{Y}}_{i} \pm \mathbf{t}_{(1-\alpha/2;n-2)} \cdot \sqrt{\mathbf{MSE} \left\{ 1 + \frac{1}{n} + \frac{\left(\mathbf{X}_{i} - \overline{\mathbf{X}}\right)^{2}}{\mathbf{S}_{XX}} \right\}}$$

Polynomische Regression

Hierbei sei erwähnt, dass man bei der Analyse mittels polynomischer Regression nur bis zur 4ten Ordnung geht.

SSTO, SSR, SSE und R^2 bzw. R sind gleich zu berechnen wie bei der linearen Regression!

2ter Ordnung

 $E(Y_i) = b_2 \cdot X_i^2 + b_1 \cdot X_i + b_0$ In diesem Fall hat man drei Parameter (b2, b1 und b0), d.h. p = 3

$$\begin{aligned} \mathbf{b}_{3x1} &= \begin{bmatrix} \mathbf{b}_{0} \\ \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\ \mathbf{X}' &= \begin{bmatrix} \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{X}_{1} & \mathbf{X}_{2} & \cdots & \mathbf{X}_{n} \\ \mathbf{X}_{1}^{2} & \mathbf{X}_{2}^{2} & \cdots & \mathbf{X}_{n}^{2} \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{X}_{1} & \mathbf{X}_{1}^{2} \\ \mathbf{1} & \mathbf{X}_{2} & \mathbf{X}_{2}^{2} \\ \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{X}_{n} & \mathbf{X}_{n}^{2} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \\ \vdots \\ \mathbf{Y}_{n} \end{bmatrix} \\ \mathbf{E}(\mathbf{Y}_{1}) &= \mathbf{X}\mathbf{b} = \begin{bmatrix} \mathbf{E}(\mathbf{Y}_{1}) \\ \mathbf{E}(\mathbf{Y}_{2}) \\ \vdots \\ \mathbf{E}(\mathbf{Y}_{n}) \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{X}_{1} & \mathbf{X}_{1}^{2} \\ \mathbf{1} & \mathbf{X}_{2} & \mathbf{X}_{2}^{2} \\ \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{X}_{n} & \mathbf{X}_{n}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{0} \\ \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{1} + \mathbf{b}_{2}\mathbf{X}_{1}^{2} \\ \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{2} + \mathbf{b}_{2}\mathbf{X}_{2}^{2} \\ \vdots & \vdots & \vdots \\ \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{n} + \mathbf{b}_{2}\mathbf{X}_{n}^{2} \end{bmatrix} \end{aligned}$$

3ter Ordnung

 $E(Y_i) = b_3 \cdot X_i^{3} + b_2 \cdot X_i^{2} + b_1 \cdot X_i + b_0$ In diesem Fall hat man vier Parameter (b3, b2, b1 und b0), d.h. p = 4

$$\mathbf{b}_{4x1} = \begin{bmatrix} \mathbf{b}_{0} \\ \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$\mathbf{X}' = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{X}_{1} & \mathbf{X}_{2} & \cdots & \mathbf{X}_{n} \\ \mathbf{X}_{1}^{2} & \mathbf{X}_{2}^{2} & \cdots & \mathbf{X}_{n}^{2} \\ \mathbf{X}_{1}^{3} & \mathbf{X}_{2}^{3} & \cdots & \mathbf{X}_{n}^{3} \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{X}_{1} & \mathbf{X}_{1}^{2} & \mathbf{X}_{1}^{3} \\ \mathbf{1} & \mathbf{X}_{2} & \mathbf{X}_{2}^{2} & \mathbf{X}_{2}^{3} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{X}_{n} & \mathbf{X}_{n}^{2} & \mathbf{X}_{n}^{3} \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \\ \vdots \\ \mathbf{Y}_{n} \end{bmatrix}$$

$$\mathbf{E}(\mathbf{Y}_{i}) = \mathbf{X}\mathbf{b} = \begin{bmatrix} \mathbf{E}(\mathbf{Y}_{1}) \\ \mathbf{E}(\mathbf{Y}_{2}) \\ \vdots \\ \mathbf{E}(\mathbf{Y}_{n}) \end{bmatrix} = \begin{bmatrix} 1 & X_{1} & X_{1}^{2} & X_{1}^{3} \\ 1 & X_{2} & X_{2}^{2} & X_{2}^{3} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n} & X_{n}^{2} & X_{n}^{3} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{0} \\ \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{0} + \mathbf{b}_{1}X_{1} + \mathbf{b}_{2}X_{1}^{2} + \mathbf{b}_{3}X_{1}^{3} \\ \mathbf{b}_{0} + \mathbf{b}_{1}X_{2} + \mathbf{b}_{2}X_{2}^{2} + \mathbf{b}_{3}X_{2}^{3} \\ \vdots & \vdots & \vdots \\ \mathbf{b}_{0} + \mathbf{b}_{1}X_{n} + \mathbf{b}_{2}X_{n}^{2} + \mathbf{b}_{3}X_{n}^{3} \end{bmatrix}$$

4ter Ordnung

 $E(Y_i) = b_4 \cdot X_i^4 + b_3 \cdot X_i^3 + b_2 \cdot X_i^2 + b_1 \cdot X_i + b_0$ In diesem Fall hat man fünf Parameter (b4, b3, b2, b1 und b0), d.h. p = 5

$$\begin{split} \mathbf{b}_{5x1} &= \begin{bmatrix} \mathbf{b}_{0} \\ \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \\ \mathbf{b}_{4} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\ \mathbf{X}' &= \begin{bmatrix} \mathbf{I} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{X}_{1} & \mathbf{X}_{2} & \cdots & \mathbf{X}_{n} \\ \mathbf{X}_{1}^{2} & \mathbf{X}_{2}^{2} & \cdots & \mathbf{X}_{n}^{2} \\ \mathbf{X}_{1}^{3} & \mathbf{X}_{2}^{3} & \cdots & \mathbf{X}_{n}^{3} \\ \mathbf{X}_{1}^{4} & \mathbf{X}_{2}^{4} & \cdots & \mathbf{X}_{n}^{4} \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{I} & \mathbf{X}_{1} & \mathbf{X}_{1}^{2} & \mathbf{X}_{1}^{3} & \mathbf{X}_{1}^{4} \\ \mathbf{I} & \mathbf{X}_{2} & \mathbf{X}_{2}^{2} & \mathbf{X}_{2}^{3} & \mathbf{X}_{2}^{4} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{I} & \mathbf{X}_{n} & \mathbf{X}_{n}^{2} & \mathbf{X}_{n}^{3} & \mathbf{X}_{n}^{4} \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \\ \vdots \\ \vdots \\ \mathbf{Y}_{n} \end{bmatrix} \\ \mathbf{E}(\mathbf{Y}_{1}) &= \mathbf{X}\mathbf{b} = \begin{bmatrix} \mathbf{E}(\mathbf{Y}_{1}) \\ \mathbf{E}(\mathbf{Y}_{2}) \\ \vdots \\ \mathbf{E}(\mathbf{Y}_{n}) \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{X}_{1} & \mathbf{X}_{1}^{2} & \mathbf{X}_{1}^{3} & \mathbf{X}_{1}^{4} \\ \mathbf{I} & \mathbf{X}_{2} & \mathbf{X}_{2}^{2} & \mathbf{X}_{2}^{3} & \mathbf{X}_{2}^{4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{I} & \mathbf{X}_{n} & \mathbf{X}_{n}^{2} & \mathbf{X}_{n}^{3} & \mathbf{X}_{n}^{4} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{0} \\ \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \\ \mathbf{b}_{4} \end{bmatrix} = \\ &= \begin{bmatrix} \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{1} + \mathbf{b}_{2}\mathbf{X}_{1}^{2} + \mathbf{b}_{3}\mathbf{X}_{1}^{3} + \mathbf{b}_{4}\mathbf{X}_{1}^{4} \\ \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{2} + \mathbf{b}_{2}\mathbf{X}_{2}^{2} + \mathbf{b}_{3}\mathbf{X}_{n}^{3} + \mathbf{b}_{4}\mathbf{X}_{n}^{4} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{n} + \mathbf{b}_{2}\mathbf{X}_{n}^{2} + \mathbf{b}_{3}\mathbf{X}_{n}^{3} + \mathbf{b}_{4}\mathbf{X}_{n}^{4} \end{bmatrix}$$

Prädiktionsintervall für polynomische (multiple lineare) Regression

$$\hat{Y}_{i} \pm t_{(1-\alpha/2;n-p)} \cdot \sqrt{MSE \cdot \{1 + X_{h} ' (X'X)^{-1} X_{h}\}}$$

9 ABKÜRZUNGSVERZEICHNIS

B&W	••••	Black & White
CCD	••••	Charge Coupled Device
CD	••••	Cross Direction (Querrichtung)
df	••••	Freiheitsgrade
fbM	••••	flächenbezogene Masse
FG	••••	Feuchtegehalt
FX	••••	Formationsindex
IR	••••	Infrarot
LED	••••	Light-emitting diode (lichtemittierende Diode)
MBq	••••	Megabecquerel
mCi	••••	Millicurie
MD	••••	Machine Direction (Maschinenrichtung / Längsrichtung))
MSE	••••	mittlerer quadratischer Fehler (error mean square)
MSR	••••	mittlere Quadratsumme der Regression
n	••••	Anzahl der Messungen
otro	••••	ofentrocken
р	••••	Anzahl der Parameter (bei linearer Regression ist p = 2)
R	••••	Korrelationskoeffizient
\mathbb{R}^2	••••	Bestimmtheitsmaß
SD	••••	Standardabweichung (standard deviation)
SSE	••••	Restvariabilität (error sum of squares)
SSR	••••	erklärte Datenvariabilität (regression sum of squares)
SSTO	••••	Gesamtvariabilität (total sum of squares)
TG	••••	Trockengehalt