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Abstract

The dispense of a working fluid on a rotating substrate is a key technology in the production
process of microelectronic devices. The present work investigates two new dispenser designs
for this purpose, a multi-hole dispenser and a narrow slot dispenser, both equipped with the
same straight rectangular distribution channel. The layouts of the exits of these two dispenser
types were designed to provide a most uniform outflow distribution along the length of the
dispenser. The flow through the considered dispenser types is computationally investigated
with two alternative concepts, three-dimensional CFD simulation, and a one-dimensional model
approach based on the stream-tube theory. The computationally less costly one-dimensional
model captures the main features of the flow inside the manifold fairly well. Strong deviations
from the results of the three-dimensional CFD simulation mainly appear in regions, where the
flow is dominated by three-dimensional phenomena, which are beyond the scope of the one-
dimensional model. It is further shown that at the lowest investigated volumetric flow rates
the transition from continuous exit jet flow to a discontinuous dripping has to be expected.
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1. Introduction

In the semiconductor industry the production process of microelectronic devices involves vari-
ous cleaning, cleansing and etching substeps, where a working fluid is dispensed on a substrate,
the so called wafer. There exist several methods for wetting the wafer. One method is to ro-
tate the wafer and supply the fluid by a single vertical jet moving across the disk. The steady
drive to increase the production rate of microelectronic devices strongly motivates to extend
the wafers in size. However, larger wafer sizes make it more difficult to ensure the required
wetting of the surface using a single-jet dispenser. This led to the idea of supplying the fluid
via multiple jets or via a thin liquid sheet. The computational investigation of the flow through
a dispenser, where the liquid exits as multiple jets through a multi-hole nozzle, or, alterna-
tively as a continuous liquid sheet, through a narrow slot are subject of the present work.
For this purpose a simplified analytical approach as well as a more comprehensive numerical
concept based on CFD1 are proposed, which both can be used to calculate the flow rates of
the liquid jets through the individual exit holes of the multi-hole dispenser, or, the continuous
exit velocity variation along a thin liquid sheet, when considering a narrow slot dispenser.
The computational investigation considers in particular a dispenser design, whose geometrical
shape and size, inflow and outflow conditions are orientated on the real technical application.
The commercial software Ansys-Fluent is used for the CFD simulation. For the simplified ana-
lytical approach an adequate computational solution algorithm is developed and programmed
in Matlab. The development and testing of the computational tool, which is intended to give
a reduced but still reliable description, represents an important part of this work. In section 3
two different dispenser designs are examined. For the first considered design the flow through
a seven-hole nozzle is calculated using the analytical approach and the CFD concept. For the
second considered design the flow distribution generated with a slot dispenser is investigated
analytically. Computational tools have been developed for the analytical calculations of the
flow through the dispenser. The tools are described in detail in appendix A.

1.1. Objectives

For a first estimation of the performance of a certain nozzle design using a multi-hole or narrow
slot orifice, a quick estimation of the expected variation of the outflow rate along the manifold
is needed. Therefore, an efficient computational tool has to be developed, which represents
an appropriate alternative to computationally expensive CFD simulations. The scope of this
efficient computational tool shall be assessed by a using the CFD approach. Therefore, the
CFD has to give a detailed, reliable description of the flow inside the dispenser. Furthermore, a
three-dimensional CFD simulation shall reveal the effect of the position of the dispenser inlet on
the outflow rate variation. Finally, a criterion shall be formulated to ensure a continuous stable
jet exit flow at the individual outlet ports of the dispenser, without a capillary brakeup of the

1CFD abbreviates “Computational Fluid Dynamics”
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jets right after leaving the dispenser, to avoid the operation of the dispenser in a discontinuous
dripping mode.

1.2. Literature review

One of the first works investigating the distributed dispense of fluid through manifolds for use
in wet process facilities was carried out by Senecal [7]. He stated that the flow distributing
behavior of a dispenser is mainly dependent on:

• the kinetic energy and the streamwise momentum of the main stream inside the distrib-
utor channel, and

• the frictional loss in the distributor.

Beside these two main influences, there exist further ones, which have a significant effect on the
outflow behavior. One of these, mentioned by Senecal [7], are the upstream flow conditions.
Senecal [7] gave a schematic overview, how kinetic energy and momentum, frictional loss and
upstream flow conditions affect the outflow distribution in case of a perforated pipe dispenser.
Thereby, Senecal [7] distinguished four different basic types of outflow distributions along the
pipe as shown in figure 1.1:

1. Uniform distribution. This is the case, if the kinetic energy of the fluid and the frictional
forces in the pipe are in a proper balance (figure 1.1a).

2. Rising outflow rate from the inlet to the end. The streamwise increase in static pressure
caused by the loss of the kinetic energy due to the exiting fluid predominates over the
pressure drop due to frictional losses along the pipe (figure 1.1b).

3. Falling outflow rate from the inlet to the end. The static pressure drop due to frictional
losses predominates over increase in static pressure associated with the reduction of the
kinetic energy of the fluid along the pipe (figure 1.1c).

4. Falling outflow rate near the inlet and rising outflow rate towards the end. In this case the
effect of the streamwise decrease of the kinetic energy of the fluid basically predominates
as in figure 1.1b, but due to perturbed inflow conditions the outflow variation shows a
contradictory trend near the feed (figure 1.1d).

Senecal [7] also investigated the slot type distributor. The basic trends caused by the decrease
of the kinetic energy of the fluid along the main channel and by the frictional losses also
determine essentially the outflow behavior of the slot dispenser. However, whereas the outflow
from the perforated pipe through single holes with relatively small diameter compared to the
pipe’s wall thickness can always be regarded as perpendicular to the pipe axis, the continuous
outflow stream from a slot type dispenser is not forced to be perpendicular to the main channel
axis. Depending on the axial extension of the slot the velocity of the exiting fluid stream may
have a significant component into axial direction, so that the fluid does not leave the dispenser
as a typical planar jet, whose jet exit velocity has no such component into the direction of the
planar orifice.

A first detailed analytical description of the flow inside a pipe dispenser was done by Acrivos
et al.[1]. They derived a set of balance equations, suitable for describing the behavior of the
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(a)

(b)

(c)

(d)

Figure 1.1.: Different types of outflow rate variations of a perforated pipe according to Senecal
[7]. (a) uniform distribution, (b) rising outflow rate from the inlet to the end, (c)
falling outflow rate from the inlet to the end and, (d) non-monotonous variation
of the outflow rates caused by perturbed inflow conditions.
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multi-hole and slot dispenser type. Their theory covers the blowing case, where a single inlet
stream is divided into multiple outlet streams, as well as the sucking case, where multiple
inlet streams are collected to one single outlet stream. The analytical description of the flow
inside a pipe dispenser, developed by Acrivos et al. [1], is based on the balances of momentum,
kinetic energy and mass, rewritten in the one-dimensional streamtube approximation. For the
losses of momentum and kinetic energy, which occur in a real flow due to frictional forces,
secondary flows and other flow phenomena not covered by the model, they introduced model
parameters in the corresponding equations. The model proposed by Acrivos et al. [1] represents
a simplified but still reliable approach, as it essentially describes the main physical mechanisms
determine the flow though the manifold. Furthermore, its mathematical formulation is very
convenient for being programmed in a code yielding a computationally efficient simulation
tool. For both reasons the one-dimensional model of Acrivos et al. [1] was adopted in the
present work as well to provide a appropriate description of the fluid flow inside the dispensers
investigated in this work. The formulation of this model is described in detail in section 2.1.2.
To validate their model Acrivos et al. [1] carried out experiments with a perforated brass
pipe. Their experimental data are also used in the present work to verify the computational
code which is developed for solving the model formulation proposed by Acrivos et al. [1].
Details of this validation are given in section 3.1. The benefit of simplicity certainly brings
about some disadvantage of the model proposed by Acrivos et al. [1]. This model requires
a couple of parameters to account for all flow phenomena which cannot be captured by the
one-dimensional streamtube approximation. The mainly more-dimensional phenomena may
have a significant effect in the investigated dispenser geometries.

A detailed experimental and computational investigation of pipe and ring dispensers was
performed by Kulkarni et al. [3]. They compared the pressure profiles along the distributor
channels and outflow velocities at the exit ports obtained from their experiments against the
results of the model of Acrivos et al. [1], and the results of their CFD calculations, considering
ten different straight-pipe dispensers. Kulkarni et al. [3] found that the model proposed by
Acrivos et al. [1] is most suitable to predict the behavior of the dispensers. Great deviations
between the results obtained with this model and the experimental data were only observed,
when the setting of the model parameters significantly differed from the values extracted from
the real flow measurements. The actual values of these parameters can vary significantly
for different dispenser layouts, as shown by Kulkarni et al. [3]. While Acrivos et al. [1]
determined those parameters only based on experiments to calibrate their model, Kulkarni et
al. [3] extracted those parameters from CFD calculations as well.

An analytical investigation of the prerequisites for a continuous jet flow exiting from a
capillary tube was done by Linblad and Schneider [4]. In their study they examined the
uniformity of liquid droplets, which were produced by the capillary breakup of a circular jet
under the influence of a periodic disturbance. The investigation of such a capillary brakeup
downstream of the nozzle requires a continuous liquid jet flow at the nozzle exit. Linblad
and Schneider [4] developed an analytical expression, which allowed them to determine the
conditions, where a continuous jet flow at the exit of an arbitrary capillary tube is generated.
The expression is derived from an energy balance between the fluid stream inside the tube
upstream of the exit denoted by index 1, and a cross-section of the jet of the exit, denoted by
index 2, as shown in figure 1.2. The conservation of energy reads:

dEkin,1

dt
=

dEkin,2

dt
+

dEsurf,2

dt
, (1.1)
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r0
Ekin,1

r
Ekin,2, Esurf,2

Figure 1.2.: Formation of a single continuous jet at the exit of a capillary tube.

where
dEkin,1

dt = ṁ
v21
2 represents the flow rate of kinetic energy into the jet from the capillary

tube,
dEkin,2

dt = ṁ
v22
2 the flow rate of kinetic energy at the cross-section 2.

dEsurf,2

dt = 2rπσv2

represents the rate of increase of the surface energy associated with the steady formation of
new jet surface. Linblad and Schneider [4] stated that for the formation of a continuous jet
flow the flow rate of kinetic energy of the fluid stream feeding the jet must be greater than the
rate of increase of the jet’s surface energy:

dEkin,1

dt
>

dEsurf,2

dt
. (1.2)

Assuming v2 ≈ v1 for the computation of
dEsurf,2

dt and substituting the mass flow rate ṁ =

r2πρv1 into
dEkin,1

dt the condition 1.2 can be rewritten as a minimum velocity condition for a
continuous jet flow at the exit

v1 > 2

(
σ

rρ

) 1
2

, (1.3)

dependent of the radius of the jet r, the surface tension σ, and the density of the working fluid
ρ. The translation of this criteria into a critical Weber number will be presented in section 2.2.

The stability of an assembly of circular liquid jets against a possible coalescence of individual
neighboring jets, as well as a possible transition from a continuous jet flow to a discontinu-
ous dripping mode was examined by Walzel [9]. Based on experiments, where water and
water-glycerin mixtures are discharged through an orifice plate into the ambiance, he derived
correlations to identify the regime associated with single stable jets without any coalescence of
neighboring jets, nor the occurrence of dripping. The relevant dimensionless quantities used
to demarcate this regime are the Weber number We, written as

We =
ρv2L

σ
, (1.4)

the Ohnesorge number Oh

Oh =
µ√
ρσL

, (1.5)
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∆x

∅d

Figure 1.3.: Coalescence of two neighboring circular liquid jets.

and the pitch T

T =
∆x

d
. (1.6)

The Weber number relates the fluid’s inertia to the surface tension (or capillary) forces,
with L as characteristic length, e.g., the diameter in case of circular jets, or the width in case
of planar jets. The Ohnesorge number (1.5) relates the viscous forces to the surface tension
forces. The pitch represents the ratio between the hole distance and the hole diameter. Walzel
found the following correlation for the critical Weber number required at minimum for the
formation of stable continuous jets at the individual exit holes:

Wecrit = 14.5 Oh0.08. (1.7)

For small values of Oh < 1 · 10−3 Walzel’s correlation (1.7) predicts the formation of a contin-
uous jet in close accordance with relation (1.3) found by Linblad and Schneider [4].

The coalescence of individual neighboring jets is caused by a liquid fillet around each jet,
wetting the outer solid surface of the nozzle from which the jet exits. This can be observed
at appropriate jet exit velocities as done by Pimbley and Rickenbach [5]. Walzel [9] stated
that these fillets can lead to a lamella of liquid between two neighboring jets, if the pitch is
below a critical value. This lamella moves in together the jets which it connects. If the kinetic
energy of the jets is not sufficient to entrain the lamella in flow direction it adheres at the
outer surface of nozzle and leads to a the coalescence of the jets, as shown in figure 1.3. In
experiments with different brass showers containing two holes of either diameter 1 or 2 mm,
and different values for the pitch Walzel did not observe coalescence between the two jet in
any investigated case for a pitch greater than 5. He further stated that a possible coalescence
for smaller pitch values can still be avoided by imposing a minimum outflow velocity, which
is above the dripping limit. Walzel gave the following equation for determine this minimum
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required Weber number, reflecting his experimental results for T < 5:

We = Wecrit + c (T − 1)n . (1.8)

The constants c and n in equation (1.8) are obtained as:

log c = 2− 2.7Oh0.48 (1.9)

n = −
(
1 + 1.6Oh0.4

)
(1.10)
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2. Mathematical formulation

The mathematical formulation presented in this section shall describe the flow of the operating
liquid through the dispenser. The flow of the liquid downstream of the exit ports is excluded,
so that a single-phase formulation can be used. The governing equations of two alternative
approaches, a CFD-based and an appropriate streamtube model based, will be discussed.
The last part of this section is denoted to the formulation of the continuous exit jet stability
criterion.

2.1. Flow through a multi-hole dispenser

The passage of the fluid through a dispenser with a single inlet hole and multiple outlet holes
shall be described here using two different approaches. The first basically most comprehensive
description is based on the numerical solution of the three-dimensional Navier-Stokes equations,
which can describe the local flow conditions inside the dispenser very accurately. The second
computationally less costly approach is based on a one-dimensional description of the flow,
where the underlying equations can be solved analytically. The one-dimensional model covers
two different types of discharge, the discrete discharge, where the fluid leaves the manifold
through multiple individual orifices, and the continuous discharge, where the fluid exits through
a single narrow slot. For the discrete discharge the model is also applicable to multi-branch
dispensers, where the inlet feed stream is distributed among several manifold branches, and
the calculation is done iteratively branch by branch with the overall mass balance as closure
condition.

2.1.1. Three-dimensional numerical solution (CFD-based description)

The equations governing the flow of a Newtonian fluid are the continuity equation and the
momentum equations termed the Navier-Stokes equations. The present work focuses on steady-
state flow of incompressible Newtonian fluids, where the density is constant. In this case the
continuity and Navier-Stokes equations may be written as:

~∇ · ~v = 0, (2.1)(
~v · ~∇

)
~v = −1

ρ
~∇p+ ν∆~v. (2.2)

Equations (2.1) and (2.2) form a system of nonlinear partial differential equations for the three
unknown components u, v and w of the velocity vector ~v and the unknown static pressure p.

In the CFD-based approach, this system is solved numerically using the finite-volume method.
In this method the computational domain is discretized by dividing it into small control vol-
umes defining at the centroid of each volume local nodes, where the unknowns are allocated.
Then the governing equations are integrated over each control volume, where fluxes across
the faces of each volume are approximated by algebraic expressions, which only contain the
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values of the unknowns at the defined nodes. This volumetric integration transforms the gov-
erning partial differential equations into a system of algebraic equations, which can be solved
numerically.

The coupled system of algebraic equations obtained from the finite-volume based discretiza-
tion of equations (2.1) and (2.2) is solved using the SIMPLE1 algorithm. Thereby the momen-
tum and continuity equations are iteratively solved in a segregated manner. Each iterative
step consists of solving first the momentum equation for each component of the velocity vector
separately, using the known values from previous iterations for the fluxes at cell faces and
the pressure. In the second step the predicted velocities are corrected using the continuity
equation, so that the obtained new velocities fulfill the mass balance.

The momentum fluxes appearing in the spatial discretization of the momentum equation
(2.2) are approximated with second-order accuracy using an Upwind scheme for the convection

term
(
~v · ~∇

)
~v and the pressure term −1

ρ
~∇p, and a central-difference scheme for the diffusion

term ν∆~v. Gradients occurring in these approximations are computed based on a least squares
method. The flux terms in the continuity equation are approximated using the Rhie-Chow
interpolation method.

The conservation equations represented by (2.1) and (2.2) are suitable for the computation of
steady state laminar flow. Extended to a transient formulation they are basically also suitable
for describing turbulent flow, but this would require an excessively high number of control
volumes to resolve the turbulent motion on all relevant scales. The huge number of control
volumes needed for the present problem would lead to unfeasible high computational costs.
Therefore, the present work applies the computationally affordable RANS2 approach, which is
widely used for the computation of turbulent flow. The turbulence causes velocity and pressure
fluctuations in time. The RANS approach is based on the Reynolds decomposition, where the
instantaneous flow quantities are decomposed into a statistical mean value and a turbulent
fluctuating contribution written as

~v = ~v + ~v′, (2.3)

p = p+ p′. (2.4)

~v and p represent time independent statistical averages of the velocity and the pressure, and
~v′ and p′ represent their fluctuations, respectively. Replacing ~v and p in equations (2.1) and
(2.2) by their decompositions (2.3) and (2.4), and averaging the equations over an infinitely
long period of time leads to the RANS equations:

~∇ · ~v = 0, (2.5)(
~v · ~∇

)
~v +

(
~v′ · ~∇

)
~v′ = −1

ρ
~∇p+ ν∆~v. (2.6)

The nonlinear second term on the left hand side of equation (2.6) represents the momentum
transfer associated with the turbulent fluctuating motion. This so called Reynolds stress term
involves the nonlinear combination of the velocity fluctuations ~v′, which makes the system of
equations (2.5)–(2.6) underdetermined. The dynamical effect of the Reynolds stresses is very
similar to that caused by the viscous stresses. This led to the Boussinesque “eddy viscosity”
concept, which closes the system of equations (2.5)–(2.6) by calculating the Reynolds stresses

1SIMPLE abbreviates “Semi-Implicit Method for Pressure-Linked Equations”
2RANS abbreviates “Reynolds-Averaged Navier-Stokes”
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like the viscous counterparts using an eddy viscosity νturbulent. This effectively increases the
molecular viscosity ν by the turbulent viscosity νturbulent as follows:

νeffective = ν + νturbulent. (2.7)

The resulting equations for the mean values have the same form as (2.1) and (2.2), with ν being
substituted by νeffective. A closure model for the turbulent viscosity has still to be provided.
The present work applies a well-established standard model, where νturbulent is calculated from
the turbulent kinetic energy k and the turbulent dissipation rate ε as follows:

νturbulent = Cν
k2

ε
. (2.8)

This approach is called the k-ε model, with k representing the kinetic energy contained in the
turbulent motion, and ε representing the specific transfer rate of turbulent kinetic energy from
larger to smaller length scales until its final dissipation into viscous heat. Cν in equation (2.8)
is a model constant, which is commonly set to 0.09. In the standard k-ε model k and ε are
computed from corresponding scalar transport equations written as

~∇ ·
(
k~v
)

= ~∇ ·
[(
ν +

νturbulent

σk

)
~∇k
]

+ Pk − ε, (2.9)

~∇ ·
(
ε~v
)

= ~∇ ·
[(
ν +

νturbulent

σε

)
~∇ε
]

+ Cε,1
ε

k
Pk − Cε,2

ε2

k
. (2.10)

σk and σε are the turbulent Prandtl numbers for the turbulent kinetic energy and turbulent
dissipation rate, and are set to 1.0 and 1.3, respectively. Pk represents the rate at which the
time averaged strain field produces turbulent kinetic energy. It is calculated as

Pk = νturbulent ‖SSS‖2 , (2.11)

where SSS represents the strain rate tensor

SSS =
1

2

[
~∇ ~v +

(
~∇ ~v

)T
]
.

C1,ε and C2,ε in equation (2.10) are model constants, which are set to 1.44 and 1.92, respectively.
Due to the fact that the continuity and the momentum equations for turbulent flow modeled

with the eddy viscosity concept have the same form as (2.1) and (2.2), their numerical solution
is done the same way as described for the laminar case. The solution algorithm has to be
only extended for solving the transport equations for k and ε. In each iteration, after velocity
and pressure are corrected, the transport equations (2.9) and (2.10) are solved. With the
new values for k and ε the effective viscosity gets updated according to (2.8) before the next
iteration starts.

The wall boundaries of the computational domain would basically require no-slip conditions
for the velocity of the fluid. Since the k-ε model is valid only in the fully turbulent flow region,
it cannot be applied down to the viscous sublayer near the wall, where the flow becomes
laminar. The wall boundary condition is therefore imposed in a fully turbulent region above
the viscous sublayer, where the non-zero velocity can be obtained by the logarithmic law of
the wall. Details about the logarithmic law of the wall can be found e. g. in the textbook by
Schlichting and Gersten [6].

In the present work all the CFD calculations are carried out with the commercial software
Ansys Fluent.
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lj

ujpj,in pj,out

Figure 2.1.: Section j of the distributor channel, located between two outlet ports.

2.1.2. Analytical one-dimensional description

The presently used one-dimensional model describing the flow through manifolds was originally
developed by Acrivos et al. [1]. They divide the distributor channel into individual sections
j = 1 . . . J , each one covering the space between two outlet ports, so that no fluid is branched
off within one section, as shown in figure 2.1. The flow inside section j can then be considered
as ordinary straight channel flow, which is associated with a loss of static pressure due to
friction. According to the extended Bernoulli equation for flow with frictional losses, the loss
in static pressure can be written as

pi,in − pj,out = ζjρ
u2
j

2
. (2.12)

According to equation (2.12) the static pressure loss is equal to the dynamic pressure in section

j, ρ
u2j
2 , where uj is the average velocity over the cross section of the channel, multiplied with

the pressure loss coefficient ζj . For the presently considered case of a straight channel flow, the
pressure loss coefficient for section j could be determined as a function of the friction factor
λj , the section length lj and the hydraulic diameter D = 4A

S :

ζi = λj
lj
D
. (2.13)

For hydraulically smooth channels, which are most common in technical applications and are
considered here, the friction factor depends only on the Reynolds number Re = uD

ν . In case
of laminar pipe flow, so called Hagen-Poiseuille flow, where Re < 2300, the relation between
friction factor and Reynolds number can be derived analytically, see e. g., the textbook by
Spurk and Aksel [8]. For turbulent flow Blasius developed an empirical correlation, which is
valid up to Re = 105. According to the flow type in section j the friction factor is calculated
either with the Hagen-Poiseuille or the Blasius relation:

λj =


64
Rej

if Rej < 2300 (Hagen-Poiseuille),

0.3164Re
− 1

4
j if 2300 ≤ Rej ≤ 105 (Blasius).

(2.14)

Between two adjacent sections, j and j + 1, a portion of the main stream is leaving the pipe
through an outlet port. This leads to a rise in the static pressure in the main channel as the
remaining fluid gets decelerated for continuity reasons. This can be described by mass and
momentum balances over a control volume containing the outlet port, as shown in figure 2.2.
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∅
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p0 ∅dj

Figure 2.2.: Control volume at an outlet port, located between sections j and j + 1.

The flow through the control volume containing a discharge exit is governed by the mass
balance and the momentum balance in the axial direction written as

ujA = uj+1A+ vjAj , (2.15)

pj+1,in − pj,out = Kj

(
ρu2

j − ρu2
j+1

)
, (2.16)

respectively, where A = D2π
4 denotes the channel’s cross-sectional area, and Aj =

d2jπ

4 the
cross-sectional area of outlet port j. The momentum balance (2.16) involves the momentum
recovery factor Kj , set within 0 ≤ Kj ≤ 1, to account for momentum losses appearing in a
real flow at the exit hole. Due to these losses the change in axial momentum is not totally
transferred into a change of static pressure.

The flow through an outlet port is driven by the pressure difference between the pressure
inside the channel and the ambient pressure. Based on the extended Bernoulli-equation for
flow with losses, the outflow velocity vj is related to the pressure difference by

vj = Cj

√
2

ρ

(
pj,out + pj+1,in

2
− p0

)
, (2.17)

where the static pressure inside the channel is expressed in terms of the arithmetic mean,
pj,out+pj+1,in

2 . A discharge coefficient Cj , set within 0 ≤ Cj ≤ 1, is introduced, which takes
into account all losses of the flow passing through the orifice, e. g., caused by secondary flows.
These losses effectively reduce the outflow rate for a given pressure difference.

The equations (2.12), (2.15), (2.16) and (2.17), written for each section j = 1 . . . J , constitute
a set of equations for the unknowns uj , vj , pj,in and pj,out. This coupled system of equations can
be solved iteratively either by varying the inlet pressure in the case of a predefined volumetric
inlet flow rate, or by adapting the volumetric flow rate in the case of a fixed inlet pressure.
The closure condition for both methods is the overall mass balance:

J∑
j=1

Qj = Q. (2.18)

Therein, Q is the volumetric flow rate at the entrance of the distributor, and Qj = vjAj is
the volumetric flow rate at the exit hole j. If the dispenser consists of multiple distributor
branches i = 1 . . . I, an additional iterative loop is necessary to fulfill the mass balance over
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Figure 2.3.: Control volume covering a infinitesimal axial length dx of the continuous manifold.

all branches:

J∑
j=1

Qi,j = Qi, (2.19)

I∑
i=1

Qi = Q. (2.20)

The behavior of a spatially continuously dispensing manifold, where the individual outlet
ports are replaced by one continuous slot of width b and height h, can also be described by the
equations (2.12), (2.15), (2.16) and (2.17), if they are rewritten for a control volume covering
an infinitesimal length dx of the manifold as shown in figure 2.3. This leads to the following
differential equations for frictional pressure loss

p(x)− p(x+ dx) = λ(u(x))
dx

D
ρ
u2(x)

2
, (2.21)

mass conservation
u(x)A = u(x+ dx)A+ v(x)bdx, (2.22)

momentum conservation in the axial direction

p(x+ dx)− p(x) = K
[
ρu2(x)− ρu2(x+ dx)

]
, (2.23)

and the local outflow velocity

v(x) = C

√
2

ρ
[p(x)− p0]. (2.24)

As indicated in equation (2.14) λ is a function of Re and therefore of u(x). To simplify the
formulation of the mass balance the outflow velocity v(x) in (2.22) is assumed invariant inside
the control volume. The main difference between the discrete and the continuous formulation is
that in the latter the frictional pressure loss does not occur only between two outlet ports. The
pressure loss due to friction, described by equation (2.21), and pressure rise due to branching-
off of fluid, described by equation (2.23), overlap, so that (2.21) and (2.23) can be combined
to

p(x+ dx)− p(x) = K
[
ρu2(x)− ρu2(x+ dx)

]
− λ(u(x))

dx

D
ρ
u2(x)

2
. (2.25)
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The values at x+ dx can be approximated by Taylor series, truncated after the first order:

u(x+ dx) ≈ u(x) +
du

dx
dx, (2.26)

p(x+ dx) ≈ p(x) +
dp

dx
dx, (2.27)

u2(x+ dx) ≈ u2(x) + 2u(x)
du

dx
dx. (2.28)

Applying these approximations to equations (2.22) and (2.25) leads to:

du

dx
= − b

A
v(x), (2.29)

dp

dx
= −2Kρu(x)− ρ

2D
λ(u(x))u2(x). (2.30)

Equations (2.24), (2.29) and (2.30) constitute a system of equations for the three unknowns
u(x), v(x) and p(x). Equations (2.29) and (2.30) are first-order differential equations, which
need the prescription of boundary values at x = 0. For the case of a prescribed volumetric flow
rate the boundary value u|x=0 is known, and the boundary value p|x=0 is calculated iteratively
with the overall mass balance used as closure condition.

A solution algorithm for the above described one-dimensional calculations of single-branch
multiple hole and slot dispensers, as well as multi-branch multiple hole dispensers has been
programmed in Matlab. A detailed description of the algorithm is given in appendix A.

2.2. Stable exit jet flow

To ensure a continuous exit jet flow of a fluid from an orifice Linblad et al. [4] proposed the
condition (1.2). This condition is used to compute a critical value for the flow rate of kinetic
energy Ekin,crit, which has at minimum to be supplied to cover the rate of the increase of
surface energy of the liquid jet emanating from the orifice producing continuously new surface.

dEkin,crit

dt
=

dEsurf

dt
(2.31)

For a circular liquid jet which exits from a hole of diameter d at constant mean velocity v,
dEkin

dt and dEsurf
dt are obtained as

dEcric
kin, crit

dt
= ṁ

v2

2
, (2.32)

dEcric
surf

dt
= dπσv, (2.33)

with ṁ = ρv d
2π
4 . Using the definition of the Weber number (1.4) together with (2.32) and

(2.33) equation (2.31) gives the following critical limit for the circular jet(
ρv2d

σ

)
crit

= Wecirc
crit = 8 (2.34)

Walzel [9] found that this theoretical minimum Weber number for the formation of a contin-
uous circular liquid jet reflects the results of his experiments with sufficient accuracy, if the
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Ohnesorge number Oh is lower than 1 · 10−3. For the dispenser design investigated in the
present work higher Ohnesorge numbers can be expected. For this the Oh-dependent correla-
tion for the critical Weber number (1.7) presented by Walzel for circular jets will be used in
the present work.

For the plane liquid jet the critical Weber number, required at minimum to avoid a transition
to dripping, can be obtained in an analogous way to the circular jet. The kinetic energy which
is fed into the jet per unit time must be again at minimum equal to the rate of increase of
surface energy. For a plane liquid jet exiting from a slot of length l and width b, where b << l,
at a constant mean velocity v the terms of equation (2.31) are written as

dEplane
kin, crit

dt
= ṁ

v2

2
=

1

2
lbhv3 (2.35)

dEplane
surf

dt
= 2 (l + b)︸ ︷︷ ︸

≈l

vσ (2.36)

Using the definition of the Weber number (1.4) together with (2.35) and (2.36) equation (2.31)
yields (

ρv2b

σ

)
crit

= Weplane
crit = 4 (2.37)

The multiple single hole dispenser design investigated in this work exhibits a pitch value > 5,
so that a possible coalescence of two jets, exiting from neighboring exit holes of the dispenser,
can be excluded according to Walzel [9]. The other investigated dispenser type, the narrow slot
dispenser, contains only one single plane orifice, so that possible coalescence is not relevant.
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3. Test cases and results

At the beginning of this section the developed computational tool for calculating the flow
through a multi-hole or slot dispenser, which is based on the one-dimensional theory proposed
by Acrivos et al.[1] and described in detail in section 2.1.2, is validated against experimental
data. This validation is followed by a presentation and discussion of the computational results
obtained from the one-dimensional model and the three-dimensional CFD simulation for two
particular nozzle designs, a 7-hole nozzle and a narrow slot nozzle. The presented three-
dimensional CFD results are not only used for evaluating the predictions of the one-dimensional
model, they also serve to examine the influence of the position of the inlet port on the outflow
distribution. In addition to the computational description of the flow through the 7-hole and
the slot dispenser, the stability of the individual exiting jets with respect to a possible transition
from continuous jet flow to dripping is examined as well, using the criterion described in section
2.2.

3.1. Validation of one-dimensional model against experiments

The experimental data which are presently used for the validation of the one-dimensional
model are taken from measurements of Acrivos et al. [1]. They investigated the flow through
a perforated pipe. The pipe had a diameter of 26 mm and a length of 1828.8 mm. Twen-
tyfour exit holes of 6.35 mm diameter were drilled into the pipe at a constant axial distance
between of 76.2 mm. The working fluid was the ambient air. Acrivos et al. [1] measured the
variation of the static pressure along the main channel and the flow rates for various outlet
port configurations, ranging from single port discharge to the case with all ports open, for
various inlet flow rates. The single port experiments were carried out to determine appropri-
ate values for the discharge coefficient C and the momentum recovery factor K used in their
one-dimensional model described in section 2.1.2. The computational code developed in the
present work is based on this one-dimensional model. Figure 3.1 shows the experimental data
together with the computational results for a volumetric flow rate of 458.3 l min−1 imposed at
the entrance into the manifold with all twentyfour ports being open. Subfigure 3.1a shows the
streamwise variation of the relative static pressure inside the pipe, ∆p = p − p0, plotted over
the axial coordinate x. The subfigure illustrates that ∆p is somewhat underestimated by the
one-dimensional model. The overall tendency of the static pressure observed in the experiment
is still predicted satisfactorily well by the simulation. It has to be noted that agreement could
be basically improved by decreasing the discharge coefficient C, whose value was presently
adopted directly from the work of Acrivos et al. [1]. The gain in static pressure along the pipe
due do the decrease of the mean velocity downstream of each outlet port evidently overcom-
pensates the frictional pressure loss. The variation of the outflow rates is shown in subfigure
3.1b in terms of the relative outflow rate ∆Qj at each orifice:

∆Qj =
Qj − Q̄
Q̄

. (3.1)
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Figure 3.1.: Computational results of present one-dimensional model compared against exper-
imental data of Acrivos et al. [1]. (a) streamwise variation of the relative static
pressure ∆p = p − p0; (b) relative outflow rates ∆Qj at the individual exit ports
j = 1 . . . 24 (counted from left).

22



∆Qj represents the relative difference between the outflow rate Qj actually obtained at each
exit hole j and a reference value, which represents the uniform distribution and is defined as

Q̄ =
Q

J
, (3.2)

where J denotes the total number of exit holes. The maximum deviation of the values for ∆Qj
predicted by the simulation from the corresponding experimental data is about 8% indicating
a very good agreement. Both the experiment and the computational model exhibit nearly the
same streamwise variation of the outflow rate, deviating at maximum about ±20% from the
uniform reference flow rate Q̄.

3.2. Type A: 7-hole dispenser

The following computational investigations focus a particular dispenser design, which was laid
out in cooperation with Lam Research in Villach such that it is readily applicable in the
real spinning devices. The dispenser consists of a prismatic main body and an exchangeable
orifice plate mounted at the bottom of the body, as shown in figure 3.2. The computational
investigation involves two different dispenser configurations. In the first one, denoted with A,
the dispenser is equipped with a 7-hole plate. In the second configuration, denoted with B, the
7-hole plate is substituted with a narrow slot plate. These two particular layouts were chosen
to serve as a first test bed for the wetting of the wafer with multiple single jets, or a single
plane jet. The principle goal of the design was to provide a most uniform distribution of the
exit flow rates along the dispenser. Details about the investigation of the dispenser type B are
given in section 3.3.

For the type A dispenser, the circular inlet of 5.5 mm diameter is placed alternatively on the
top, left, or front face of the dispenser to investigate the influence of the inlet position on the
outflow distribution. The distributing main channel is 154 mm long and has a rectangular cross
section of 6 mm width and 20 mm height. The dispenser type A is equipped with an orifice
plate of 2 mm thickness containing seven holes with a uniform exit diameter dj = 1.5 mm.
The distance between adjacent holes is 22.5 mm. The computational flow domain with the
alternatively considered inlet ports is depicted in figure 3.3.

The computational investigations are based on the two different approaches, the three-
dimensional CFD-based approach, and the one-dimensional model based approach, as de-
scribed in sections 2.1.1 and 2.1.2, respectively. The one-dimensional model requires the dis-
charge coefficient and the momentum recovery factor as input parameters. The discharge
coefficients for the two considered orifice layouts are determined from separately performed
two-dimensional CFD simulations. The momentum recovery factor is set to K = 1.0, which
represents the theoretical upper limit, where the increase in the static pressure due to the
branching-off of fluid through the exit holes, as described in section 2.1.2, is highest. The
outflow distributions determined with the one-dimensional method for the 7-hole nozzle plate
are compared against the corresponding results obtained from the three-dimensional CFD cal-
culation. The working fluid is always liquid water at 20 ◦C, as the working fluids used in
the various spin processing steps applied to the wafers in the real device are mainly aqueous
solutions. The total volumetric flow rate Q introduced at the inlet of the dispenser is also
chosen to match typical values met in the real process. Accordingly, Q is varied from 500 to
2000 ml min−1 with a step size of 500 ml min−1. The boundary condition at the outlets is the
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Figure 3.2.: Dispenser body with three alternative inlet positions.

Q Type A: 7-hole plate
ml min−1 inlet top inlet left inlet front

500 A1t A1l A1f
1000 A2t A2l A2f
1500 A3t A3l A3f
2000 A4t A4l A4f

Table 3.1.: Dispenser type A: considered test cases

static pressure at ambient atmospheric conditions. All considered cases for the dispenser type
A are summarized in table 3.1.

The solution of the flow through the dispenser using the one-dimensional approach requires
the discharge coefficient C as input parameter. In the present work this parameter is deter-
mined from a separate CFD simulation of the outflow from a reservoir through a single orifice.
The reservoir is represented by a cylinder of Dreservoir = 20 mm diameter and 10 mm height,
as shown in figure 3.4. The orifice has a cone-shaped entrance section with a 90◦ cone angle.
For this particular configuration the flow field can be assumed axisymmetric, which allows for
a two-dimensional simulation. The top face of the reservoir, which is marked yellow in figure
3.4, represents the inlet boundary. The outlet is the exit cross-section of the orifice, which is
marked green in figure 3.4. At the inlet the velocity normal to the boundary is set to a constant
value vin. For each total volumetric flow rate prescribed in the cases A1–A4, a corresponding
value for vin is computed as

vin =
Q

JAreservoir
,

assuming a uniform volumetric exit flow rate at all J = 7 orifices. Areservoir =
D2

reservoirπ
4 is the

cross-sectional area of the reservoir. At the outlet the gauge pressure is set to 0 Pa. For all cases
the flow at the inlet is assumed laminar. In the cases A3 and A4 the flow inside the orifice
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Figure 3.3.: Computational flow domain for the dispenser type A with the alternatively con-
sidered three inlet ports ( inlet, outlet).
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Figure 3.4.: Computational flow domain of the 2D-CFD calculation of the flow from a reservoir
through a single outlet orifice ( inlet, outlet).

Case C

A1 0.82
A2 0.86
A3 0.87
A4 0.89

Table 3.2.: Dispenser type A: discharge coefficient C for a single orifice obtained from the
2D-CFD simulation.

becomes turbulent, which is taken into account by using the turbulent model described in
section 2.1.1. With the data obtained from this 2D-CFD simulation, the discharge coefficient
for the single orifice was calculated according to equation (2.17). The resulting discharge
coefficients for the cases A1–A4 are listed in table 3.2. The shown values are used for the
setting of the discharge coefficients C in the computations of the corresponding cases with the
one-dimensional model.

3.2.1. Cases A1t–A4t: Inlet on the top face

For the one-dimensional calculation the dispenser is divided into two branches, with the first
one including the orifices number 1–4 to the left of the inlet, and the second one covering the
orifices number 5, 6 and 7 to the right of the inlet, as shown in figure 3.3.

The results for the cases A1t–A4t are illustrated in figures 3.5–3.8, with the red lines and
red bars referring to the one-dimensional calculation, and the blue lines and blue bars referring
to the CFD simulation. The upper subfigures 3.5a–3.8a show the relative static pressure in
the main channel averaged over the cross section, ∆p = p − p0, as a function of the axial
coordinate x. The static pressure level obtained from the CFD simulation is always higher as
the one obtained from the one-dimensional model. This particular feature will be observed in
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all further considered cases for the 7-hole dispenser as well. It makes evident that the discharge
coefficients computed from a separate axisymmetric simulation (see table 3.2) for use in the
one-dimensional model are generally higher than the values which could be extracted from the
cross-sectional averages of the pressure and the exit flow rates of the CFD. It is conceivable that
the more complex three-dimensional flow conditions immediately upstream of the exit holes,
which can be only captured by a three-dimensional CFD, may effectively reduce the outflow
through the orifices leading to smaller discharge coefficients. For all cases A1t–A4t the one-
dimensional calculation predicts that the static pressure level is stepwise increased from the
inlet towards both ends at each exit hole. This indicates that the increase in pressure at each
individual outlet always overcompensates the frictional pressure loss in the channel sections
between the outlets. A local increase in the pressure at the outlets can also be seen in the CFD
results, but the increase is generally less pronounced than in the one-dimensional analytical
solution, which can be attributed to the more complex three-dimensional flow pattern in the
main channel. The most obvious discrepancy between the one-dimensional model and the
CFD simulation is the peak in the pressure profile near x = 77, where the inlet is located.
This significant peak is caused by the incoming flow which enters the domain like a vertical
submerged jet. The strong vertical inflow hits the bottom of the main channel, so that a
stagnation point with a high local static pressure occurs. For the case A3t this vertical jet like
inflow is exemplarily illustrated by velocity contours in figure 3.9.

Subfigures 3.5b–3.8b show the calculated outflow distribution in terms of the relative outflow
rate ∆Qj at each orifice as defined in equation 3.1. The red bars in figures 3.5b–3.8b represent
the results obtained from the one-dimensional calculation, and the blue ones those obtained
from the CFD simulation. The outflow variations obtained from the one-dimensional model
for the cases A1t–A4t essentially reflect the tendencies of the static pressure. So the stepwise
increase of the pressure level between the exit ports always leads to an increase of the relative
outflow rates through the exit holes downstream. This behavior has to be expected in the one-
dimensional approach, as can be directly seen from the mathematical formulation in section
2.1.2, where the outflow at each exit hole is computed only as a function of the relative static
pressure. The CFD calculation basically exhibits the same behavior, as streamwise increase
of the static pressure is again followed by streamwise increase of the relative outflow rates
through the exits. For all cases A1t–A4t the CFD results exhibit a peak in the relative high
static pressure at the stagnation point opposed to the inlet port, located at x = 77. This
always leads to a significantly higher outflow rate at the orifice 4, which is closest to this point.
The observed strongly increased outflow rate through the exit beneath the inlet port is also
the reason for a higher degree of non-uniformity in the outflow distribution exhibited by the
CFD results. Quantitatively, the relative deviation from a uniform outflow rate is still fairly
small in both computational results. For all cases A1t–A4t the maximum relative difference
of the outflow rates is approximately 1% and 5% for the one-dimensional model and the CFD
results, respectively.

The minimum Weber number required for the formation of a stable continuous jet flow at
the exit holes was calculated according to equation (1.7) using the material properties of the
working fluid and the orifice diameter as input parameters. This gave a critical Weber number
Wecrit = 9.1. The Weber numbers obtained from the CFD results for each exiting jet from the
7-hole dispenser for the cases A1t–A4t are listed in table 3.3. For the case A1t the obtained exit
Weber numbers come very close to the critical value. This small Weber number regime also
implies that a capillary breakup of the jets soon after leaving the outlets has to be expected
for this case.
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Figure 3.5.: Case A1t: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.6.: Case A2t: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.7.: Case A3t: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.8.: Case A4t: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.9.: Case A3t: contours of velocity magnitude in m s−1 at the midplane of the channel
at z = 0 obtained from CFD.

Case We
1 2 3 4 5 6 7

A1t 9.3 9.0 9.5 9.9 9.1 9.2 9.6
A2t 37.2 36.4 38.1 38.4 36.5 37.0 38.7
A3t 82.1 81.6 85.9 90.4 83.2 82.7 84.7
A4t 145.2 145.8 152.7 161.0 146.8 147.4 150.9

Table 3.3.: Cases A1t–A4t: jet exit Weber numbers We at the orifices 1–7 obtained from the
CFD results.

3.2.2. Cases A1l–A4l: Inlet on the left side

Assuming the inlet on the left side as shown by figure 3.3 the dispenser can be calculated
in the one-dimensional approach using a single branch, which contains all seven orifices. The
results for the cases A1l–A4l are illustrated in figures 3.10–3.13 the same way as in the previous
section for the cases with the top inlet. The relative static pressures obtained from the CFD
simulation are again always higher than those obtained from the one-dimensional model. For
the cases A1l–A4l the one-dimensional calculation predicts again a stepwise increase of the
static pressure level in the streamwise direction caused by the branching-off of fluid at the
individual exits. A streamwise increase of the pressure can also be seen in the CFD results,
although the stepwise changes at the individual exit ports are considerably blurred by the
complex three dimensional flow effects especially near the inlet. As seen from the velocity
contours in figure 3.14, the fluid enters the domain again in a jet-like manner, which leads
to a region of separated flow with a local minimum in the pressure at the corner near the
inlet. Due to the vertical outflow through the exit holes the initially horizontal jet stream

32



is directed towards the bottom leading to an increase in the pressure to a local maximum.
Subfigures 3.10b–3.13b show the calculated outflow distribution. The variations of the relative
outflow rate obtained from the one-dimensional model for the cases A1l–A4l clearly follow
the streamwise increase of the corresponding static pressure level. This behavior was already
seen and explained by the formulation of the one-dimensional approach for the cases with the
inlet on the top in section 3.2.1. The results of the 3D-CFD do not show such a monotonous
streamwise increase in the relative outflow rates. This is due to the aforementioned horizontal
jet-like inlet stream, which is deflected downwards by the vertical exit streams. The local
maximum in the static pressure occurring in the region, where the deflected inlet jet stream
hits the bottom, always leads to a significantly increased outflow rate at the exit hole nearest by.
The occurrence of such a local maximum flow rate at the exits 2 or 3 prohibits a steady increase
of the outflow rates in the streamwise direction featured by the one-dimensional computation,
which by definition cannot account for the more-dimensional flow phenomena near the inlet
like the 3D-CFD. The maximum quantitative variation of the relative outflow rates is for all
cases A1l–A4l approximately 2% and 6% for the one-dimensional model and the CFD results,
respectively.

The minimum Weber number required for the formation of a stable continuous jet flow at
the exit holes is calculated from equation (1.7) and remains the same as for the cases with
the inlet on the top, Wecrit = 9.1, as the nozzle diameter is the same. The Weber numbers
obtained from the CFD results for each exiting jet from the 7-hole dispenser for the cases
A1l–A4l are listed in table 3.4. For the case with the lowest inlet flow rate A1l the obtained
Weber numbers come closest to the critical value Wecrit, so that a capillary breakup of the
jets right after leaving the outlets has to be expected here.

Case We
1 2 3 4 5 6 7

A1l 8.9 9.6 10.0 9.4 9.2 9.3 9.8
A2l 35.2 39.3 37.5 37.2 36.5 37.4 39.4
A3l 81.0 84.5 87.2 83.3 84.3 86.5 90.0
A4l 142.2 148.8 154.0 146.6 148.1 152.0 158.2

Table 3.4.: Cases A1l–A4l: jet exit Weber numbers We at the orifices 1–7 obtained from the
CFD results.
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Figure 3.10.: Case A1l: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from
left).
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Figure 3.11.: Case A2l: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from
left).
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Figure 3.12.: Case A3l: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from
left).
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Figure 3.13.: Case A4l: (a) streamwise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from
left).
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Figure 3.14.: Case A3l: contours of velocity magnitude in m s−1 at the midplane of the channel
at z = 0 obtained from the CFD.

3.2.3. Cases A1f–A4f: Inlet on the front face

The inlet on the front face has exactly the same axial position as for the cases with the inlet
on the top of the channel. In the one-dimensional computation the dispense of the incoming
liquid is again divided into two branches. The results for the cases A1f–A4f are illustrated in
figures 3.15–3.18. The results of the one-dimensional calculation are exactly the same as for
the cases with the inlet on the top, because the the one-dimensional approach only accounts
for the the position of the inlet in the streamwise direction, which is for both inlet types the
same. In contrast, the effect of the horizontal inflow into the dispenser becomes very evident
in the three-dimensional CFD results. The horizontally injected fluid hits the back wall of the
channel leading to a significant peak in the pressure in the impingement region. Otherwise, the
static pressure exhibits a increasing trend towards both ends of the channel similar to the one-
dimensional results. The jet-like inlet stream and the impingement on the opposed back wall
are illustrated by the velocity contours in figure 3.19 for the case A3f. Subfigures 3.15b–3.18b
show the calculated outflow distribution for inlet on the front face. While the one-dimensional
results are exactly the same as for the cases with the inlet on the top, the CFD results differ
significantly. At x = 77, where the static pressure has a maximum, the outflow rate at the
nearest exit shows a minimum, which is completely different to the cases A1t–A4t, where the
peak pressure always led to a maximum outflow in this section. The horizontally orientated
motion of the inlet stream does evidently not translate into a strong motion downwards towards
the exit holes beneath the inlet. For all cases A1f–A4f the outflow rates obtained from the
one-dimensional model and from the CFD very within a range of approximately 1% and 3%,
respectively.

The jet exit Weber numbers obtained from the CFD results at the individual orifices are
summarized in table 3.5. As already observed for the previous inlet types, the case with lowest
flow rate A1f yields exit Weber numbers closest to the critical value Wecrit = 9.1.
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Figure 3.15.: Case A1f: (a) streamwise variation of the relative static pressure ∆p = p−p0; (b)
relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.16.: Case A2f: (a) streamwise variation of the relative static pressure ∆p = p−p0; (b)
relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.17.: Case A3f: (a) streamwise variation of the relative static pressure ∆p = p−p0; (b)
relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.18.: Case A4f: (a) streamwise variation of the relative static pressure ∆p = p−p0; (b)
relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from left).
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Figure 3.19.: Case A3f: contours of velocity magnitude in m s−1 on a horizontal cutting plane
at y = 10 obtained from the CFD simulations.

Case We
1 2 3 4 5 6 7

A1f 9.4 9.3 9.7 9.1 9.1 9.3 9.7
A2f 37.8 37.4 38.7 36.3 35.9 37.4 38.8
A3f 85.4 84.5 87.6 83.2 84.2 84.5 87.4
A4f 150.5 149.2 154.1 144.8 147.4 149.0 154.5

Table 3.5.: Cases A1f–A4f: jet exit Weber numbers We at the orifices 1–7 obtained from the
CFD results.

3.2.4. One-dimensional model with modified parameter setting based on 3D-CFD
results

The results of the one-dimensional approach presented so far always assume a unity momentum
recovery factor K = 1, and the values listed in table 3.2 for the discharge coefficient C, which
have been obtained from separate CFD simulations of axisymmetric flow from a reservoir
through one single exit hole. The assumption of these values shall be validated against their
counterparts extracted from the results of the three-dimensional CFD calculations for all cases
A1–A4.

The values of the discharge coefficient which are extracted from the three-dimensional CFD
results for all three different inlet positions (top, left, and front) at the investigated flow rates
are listed in table 3.6. It can be seen that the discharge coefficients do not vary much from hole
to hole, so that the assumption of a uniform discharge coefficient for all exit holes appears to be
justified. On the other hand, the shown values lie generally somewhat below the corresponding
values used in the one-dimensional model listed in table 3.2. This explains the fact that the
mean level of the static pressure inside the dispenser observed in the one-dimensional results
is always lower than the corresponding level seen in the three-dimensional CFD results. The
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Case Discharge coefficient C
1 2 3 4 5 6 7

A1t 0.77 0.76 0.79 0.80 0.77 0.77 0.78
A2t 0.80 0.79 0.82 0.82 0.80 0.79 0.81
A3t 0.81 0.81 0.83 0.85 0.81 0.81 0.82
A4t 0.82 0.83 0.85 0.86 0.83 0.83 0.84

A1l 0.76 0.80 0.80 0.77 0.76 0.76 0.78
A2l 0.79 0.82 0.81 0.81 0.79 0.79 0.81
A3l 0.76 0.77 0.78 0.76 0.76 0.77 0.78
A4l 0.77 0.78 0.79 0.77 0.77 0.78 0.79

A1f 0.77 0.77 0.78 0.76 0.76 0.77 0.78
A2f 0.80 0.79 0.81 0.79 0.78 0.79 0.81
A3f 0.81 0.80 0.82 0.80 0.80 0.80 0.82
A4f 0.82 0.82 0.83 0.81 0.81 0.82 0.83

Table 3.6.: Cases A1–A4: discharge coefficient obtained from the three-dimensional CFD re-
sults.

increase of C with increasing flow rates is observed in the values extracted from the three-
dimensional CFD results as well.

The values for the momentum recovery factor K extracted from the three-dimensional CFD
simulations of the 7-hole dispenser are listed in table 3.7. As discussed in section 2.1.2, K
has theoretically to be within a range from 0 to 1. Some of the values for K determined from
the CFD results are outside this interval and therefore discarded in table 3.7. This mainly
affects the values of K for the holes number 1 and 4 in all cases with inlet on the top plane,
A1t–A4t, and hole number 1 in all cases with the inlet located on the left side of the dispenser
body, A1l–A4l. Near these holes the complex three-dimensional structure of the flow leads to
pressure gradients, which predominate over the change in the static pressure expected at the
outlet ports, which is caused by the loss of the axial momentum carried by the portion of liquid
exiting the dispenser. This is evidently the case for A1t–A4t with the inlet on the top plane
of the dispenser, where the jet like inflow impinges on the orifice plate closely downstream of
hole number 4 as exemplarily shown in figure 3.9 for case A3t. This leads to a stagnation point
next to the hole number 4 with a local maximum in static pressure resulting in a high pressure
gradient into the streamwise direction. This gradient prevails over the expected pressure rise
due to the branching-off of fluid through the exit port. The conditions which lead to unrealistic
values of K at outlet number 1 for the cases A1t–A4t can be exemplarily seen in figure 3.9
for case A3t. Not the hole amount of fluid reaching the cross-section upstream outlet number
1 leaves the dispenser through this exit port. A portion of the fluid remains inside and gets
redirected at the closed end of the dispenser, leading to a reverse flow. This redirection of
the flow at the closed end, downstream of outlet number 1, causes a stronger increase of the
static pressure there as it would be the case, when all oncoming liquid would exit the dispenser
through the hole number 1. As seen from figure 3.14 the region near the horizontal inlet in
the cases A1l–A4l exhibits as well considerable reverse flow near the hole number one, which
finally leads to values of K outside the allowed range.

The configuration with the inlet on the left side of the dispenser body, represented by the
cases A1l–A4l, yielded the best agreement between the results of the one-dimensional model
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Case Momentum recovery factor K
1 2 3 4 5 6 7

A1t – 0.58 1.00 – 0.35 0.26 0.50
A2t – 0.57 0.03 – 0.21 – –
A3t – 0.39 0.33 – 0.27 0.39 0.64
A4t – 0.38 0.31 – 0.25 0.37 0.66

A1l – 0.69 0.90 0.08 0.67 – 0.74
A2l – 0.77 – 0.41 0.89 0.71 –
A3l – 0.23 0.56 0.64 0.57 0.50 0.36
A4l – 0.22 0.52 0.61 0.57 0.51 0.39

A1f 0.48 0.34 0.32 0.07 0.59 0.63 0.42
A2f 0.47 0.39 0.50 – 0.47 0.61 0.19
A3f 0.35 0.33 0.35 0.52 0.53 0.40 0.22
A4f 0.34 0.31 0.35 0.54 0.56 0.40 0.19

Table 3.7.: Cases A1–A4: momentum recovery factors obtained from the three-dimensional
CFD results.

and the three-dimensional CFD, as it has been shown in the variations of the static pressure
and outflow rate in figures 3.10 to 3.13. This can be attributed to the fact that with the inlet
on the left side the three-dimensional flow phenomena associated with the jet-like inflow affect
only a comparatively limited region near the inlet. Thus, in the larger remaining part further
downstream the flow conditions are fairly close to the one-dimensional approximation. This
particular inlet configuration is reconsidered to exemplarily show for the case A3l the poten-
tial to further improve the predictions of the one-dimensional model by using the discharge
coefficients and the momentum recovery factors extracted from the three-dimensional results
at each exit hole. Figure 3.20 shows the results for the variation of the static pressure and
the outflow rate computed from the one-dimensional model using the modified parameter set-
tings for C and K compared against the corresponding results of the three-dimensional CFD.
Except for the region near the inlet at the left hand side, where the flow is strongly affected
by three-dimensional effects, the agreement in the pressure profiles is markedly improved in
comparison to the results obtained with the original parameter setting shown in figure 3.12.
The improved agreement is also clearly seen in the prediction for the outflow distribution by
comparing figure 3.20b against 3.12b.
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Figure 3.20.: Case A3l: (a) stream-wise variation of the relative static pressure ∆p = p − p0;
(b) relative outflow rate ∆Qj at the individual exits j = 1 . . . 7 (counted from
left); Parameter setting for discharge coefficient C and recovery factor K based
on three-dimensional CFD results.
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3.3. Type B: Slot dispenser

The dispenser type B has the same body as type A, described in section 3.2. Instead of the 7-
hole plate used for the type A dispenser, dispenser type B is equipped with a narrow slot plate
of the same thickness as the 7-hole plate. The slot has a length lslot = 120 mm and a width
bslot = 0.1 mm. The dispenser type B was computed only with the one-dimensional approach
assuming always the inlet on the left hand side of the dispenser body. The flow domain is
illustrated in figure 3.21. The working fluid, the investigated flow rates at the inlet boundary
and the outlet boundary conditions are the same as for the type A dispenser, discussed in
section 3.2. All considered cases for the dispenser type B are summarized in table 3.8.

The discharge coefficient required as input to the one-dimensional approach was obtained
from a two-dimensional CFD simulation of the outflow from a reservoir through a narrow slot.
The computational domain used for this CFD simulation is shown in figure 3.22. The reservoir
has a rectangular cross section of breservoir = 6 mm width, and 10 mm height. Both the reservoir
and the slot are assumed to be of infinite length into the x-direction, so that the flow is planar
allowing for a two-dimensional simulation. The inlet is located at the upper boundary of the
reservoir. A uniform normal inlet velocity vin is imposed as boundary condition here. Its value
is determined from the volumetric flow rates in the considered cases B1–B4 (see table 3.8) and
the cross-sectional area of the slot written as

vin =
Q

lslotbreservoir
.

A pressure-outlet boundary condition is imposed at the exit cross-section of the slot, prescribing
a gauge pressure of 0 Pa. For the considered cases B1–B4 the simulated flow from the reservoir
through the slot can be assumed as laminar. Based on the results of the CFD simulation the
discharge coefficient for the slot was calculated according to equation (2.17). The values of the
discharge coefficient obtained for all cases B1–B4 are listed in table 3.9. They were further used
as inputs into the one-dimensional computations of the flow through the considered dispenser
type.

3.3.1. Cases B1–B4: Inlet on the left side

The streamwise variations of the static pressure produced by the one-dimensional computation
shown in subfigures 3.23a–3.26a are essentially determined by the counterplaying effects of the
pressure rise due to fluid branching-off and the pressure loss due to frictional forces in the
dispenser channel. In all cases B1–B4 the static pressure is increased from the inlet on the
left hand side to the end of the channel on the right hand side, which implies that the effect
of pressure rise dominates over frictional pressure loss. The variation of the outflow along the

Q Type B: Slot plate
ml min−1

500 B1
1000 B2
1500 B3
2000 B4

Table 3.8.: Dispenser type B: considered test cases
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Figure 3.21.: Flow domain for dispenser type B ( inlet, outlet).

Case C

B1 0.34
B2 0.44
B3 0.49
B4 0.53

Table 3.9.: Dispenser type B: discharge coefficient C for a single orifice obtained from the
2D-CFD.
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Figure 3.22.: Computational domain for the 2D-CFD calculation of the outflow from a reservoir
through a slot infinitely extended into the x-direction. ( inlet, outlet).
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exit slot for each case is presented in subfigures 3.23b–3.26b in form of the deviation of the
local outflow velocity v(x) from a mean reference value v̄ written as

∆v =
v(x)− v̄

v̄
100 [%].

The mean reference value reads

v̄ =
Q

Aslot

with Aslot = bslotlslot being the cross-sectional area of the slot. Analogously to the one-
dimensional results for the dispenser type A with discrete exit holes, the variations of the
relative outflow velocity for the continuous case with the exit slot follow exactly the trend of
static pressure in the main channel, as it is laid down in the one-dimensional model formula-
tion. The streamwise variations of the Weber number for the plane liquid exit jet based on
the local exit velocity v(x) and the slot width bslot as characteristic velocity and length scales,
respectively, are shown in the subfigures 3.23c–3.26c. The critical value required for a stable
continuous outflow given by equation (2.37) is Weplane

crit = 4. Only in cases B3 and B4 the
criterion for the formation of a stable jet is evidently met. In both cases the Weber numbers
are still in a relatively low range (approximately 6 and 10.7), where a capillary breakup of
the jets near downstream of the exit slot has to be expected. For the cases B1 and B2 the
resulting Weber numbers are well below the critical value, so that the formation of a stable
exiting planar jet is very unlikely in these cases.
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Figure 3.23.: Case B1: (a) relative pressure ∆p = p − p0, (b) relative outflow velocity
∆v = (v − v̄) /v̄ [%], and (c) Weber number We over the axial distance x.
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Figure 3.24.: Case B2: (a) relative pressure ∆p = p − p0, (b) relative outflow velocity
∆v = (v − v̄) /v̄ [%], and (c) Weber number We over the axial distance x.
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Figure 3.25.: Case B3: (a) relative pressure ∆p = p − p0, (b) relative outflow velocity
∆v = (v − v̄) /v̄ [%], and (c) Weber number We over the axial distance x.
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Figure 3.26.: Case B4: (a) relative pressure ∆p = p − p0, (b) relative outflow velocity
∆v = (v − v̄) /v̄ [%], and (c) Weber number We over the axial distance x.
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3.3.2. Comparison of the results with the 7-hole dispenser

The results from the calculation of the slot dispenser for case B3 are compared to the cor-
responding results obtained from the one-dimensional model for the 7-hole dispenser for case
A3l. In both cases the inlet is located at the left side as illustrated in figure 3.2. The volumetric
flow rate at the inlet is the same for both cases. Figure 3.27 shows the cumulative outflow
rate along the dispenser axis for both types of discharge. The step-like profile in figure 3.27
represents the cumulative outflow rate of the 7-hole dispenser, and the continuous profile the
cumulative outflow rate of the slot dispenser. Beside the discrepancy caused by the discrete
discharge in the one case and the continuous one in the other both dispenser type show similar
outflow behavior near the ideal uniform distribution.

The continuous discharge from the slot dispenser evidently follows perfectly the ideal uniform
outflow distribution. The discrete discharge through the seven-hole dispenser shows some
deviation from the ideal uniform distribution at both ends of the dispenser. For the most part
of the channel, it still comes very close to the ideal distribution.
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Figure 3.27.: Comparison of the cumulative outflow rates along the dispenser axis for a flow
rate at the inlet of 1500 ml min−1 between the type B slot type dispenser (case
B3) and the type A 7-hole dispenser (case A3l).
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4. Summary and conclusions

The present work computationally investigated the flow through a multi-hole nozzle to lay
the ground for a novel distributed dispense concept as an alternative to the presently used
single-hole dispensers.

The computations were carried out using fully three-dimensional CFD-simulations as well as
a well-established one-dimensional approach proposed in the literature for flows though mani-
folds. The obtained computational results lead to the following conclusions for the considered
multi-hole and slot nozzle design:

• The gain in static pressure due to the successive branching-off of fluid through the exit
ports generally overcompensates the losses in pressure due to frictional forces. This
behavior is particularly seen in the results of the one-dimensional computations, where
the level of the static pressure clearly shows an increasing tendency downstream from
the position of the nozzle inlet port.

• For all considered inlet flow rates the investigated design produced fairly uniform dis-
tributions of the flow rates at the individual exits. The maximum deviation from the
total-exit-area based average value is only 6%

• The seven-hole dispenser type and the slot dispenser type show both similar cumulative
outflow rates along the dispenser axis. The slot dispenser follows almost exactly the ideal
uniform distribution. The discrete dispense of the seven-hole nozzle deviates somewhat
from the ideal distribution at both ends of the dispenser.

• Three-dimensional flow phenomena associated with the different alternatively considered
nozzle inlet configurations have a quantitatively small but notable effect on the outflow
rates through the individual exit holes. The effect manifests in a generally higher varia-
tion in the exit flow rates predicted by the three-dimensional CFD, as compared to the
predictions of the one-dimensional approach, which by definition cannot account for any
three-dimensional flow phenomena.

• The results of the one-dimensional model are shown to be significantly affected by the
setting of the discharge coefficients at the individual exit holes. Setting these parameters
to values which are extracted from the three-dimensional CFD results can significantly
improve the predictions of the one-dimensional model. The influence of the momentum
recovery factor on the computational results is comparatively small.

• The considered cases with the lowest inlet flow rate led to nozzle exit based Weber
numbers, which come close to the critical lower limit for a transition from stable liquid jet
flow to a discontinuous dripping. The occurrence of capillary breakup closely downstream
of the exits has to be expected for these cases.

The numerical algorithm developed for the solution of the one-dimensional approach and pro-
grammed in Matlab was proven as a computationally very efficient tool for a first evaluation
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of different multi-hole nozzle designs. A further version of this routine was extended to the
case with a continuous distributed dispense, where the liquid leaves the nozzle through a long
narrow exit slot.
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A. Program descriptions

A.1. Manifold-1D: Discrete (multi-hole) dispense

The program Manifold-1D, consisting of the Matlab file “manifold 1d 2 1 0.m”, calculates the
outflow distribution of a blowing multi-hole dispenser with one or more branches based on
the formulation for the multi-hole dispenser described in section 2.1.2. The calculation of the
outflow rates is done iteratively going from cell j = 1 . . . Ji for each branch i = 1 . . . I. The
solution algorithm for a single cell is described in detail in section A.1.1. To fulfill the mass
balance for each branch and over all branches, two iterative loops are introduced, which are
described in detail in section A.1.2. Figures A.1 and A.2 illustrate the logical structure of the
program.

A.1.1. Cell calculation algorithm

The static pressure and the velocity at the left face of cell j in branch i, pi,j,in and ui,j , are
known from the precursively done calculation of the cell on the left hand side. For the first
cell of branch i, pin and ui,1 are guessed at the program start and subsequently recalculated
until the mass balance is satisfied as described in section A.1.2. The unknowns of the current
cell calculation are ui,j+1, vi,j , pi,j+1,in and pi,j,out. pi,j,out can be calculated solely according
to equation (2.12). ui,j+1, vi,j and pi,j+1,in are described by the equations (2.15), (2.16) and
(2.17), which can be combined to one single expression for ui,j+1

ui,j+1 =
−c2 ±

√
c2

2 − 4c1c3

2c1
, (A.1)

with c1, c2 and c3 evaluated as:

c1 = 1 +Ki,jC
2
i,jα

2
i,j , (A.2)

c2 = −2ui,j , (A.3)

c3 =
(
1−Ki,jC

2
i,jα

2
i,j

)
u2
i,j −

2C2
i,jα

2
i,j

ρpi,j,out
. (A.4)

As stated by equation (A.1), there are two solutions for ui,j+1. The first one represents the
blowing and the second one the sucking manifold. This program focuses on the blowing case,
where ui,j+1 has to be smaller than ui,j . Equation (A.1) can therefore be rewritten as

ui,j+1 =
−c2 −

√
c2

2 − 4c1c3

2c1
. (A.5)

With the solution for ui,j+1 the remaining unknowns, vi,j and pi,j+1,in, can be calculated:

vi,j =
1

αi,j
(ui,j − ui,j+1) , (A.6)

pi,j+1,in = pi,j,out +Ki,jρ
(
u2
i,j − u2

i,j+1

)
. (A.7)
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A.1.2. Iterative solution algorithm for the mass balances

The solution algorithm for the mass balances involves two different iterative loops. An inner
loop n to satisfy the mass balance for a single branch, and an outer loop m to satisfy the total
mass balance summed over all branches.

Within the inner loops the volumetric inflow rate into each branch is kept constant, and the
inlet pressure is varied until the local mass balance for the branch is satisfied. The iteration
method is derived from Bernoulli’s equation for loss-free flow through the orifices. The motion
of the fluid inside the dispenser body is thereby disregarded. The pressure at the inlet of
branch i, pi,1,in, can then be approximated as a function of the actually obtained mean outflow
velocity ṽm,ni

p̃m,ni,1,in = ρ
(ṽm,ni )

2

2
, (A.8)

with

ṽm,ni =

∑Ji
j=1Q

m,n
i,j∑Ji

j=1Ai,j
. (A.9)

According to the mass balance for each branch i the mean outflow velocity can also be described
as

v̂m,ni =
Qmi∑Ji
j=1Ai,j

, (A.10)

which leads to another approximation for the inlet pressure

p̂m,ni,1,in = ρ
(v̂m,ni )

2

2
. (A.11)

The volumetric flow rate error of branch i in the current step n, ∆Qm,ni , can be written as

∆Qm,ni = Qmi −
Ji∑
j=1

Qm,ni,j .

Using equations (A.8)–(A.11) the difference ∆Qm,ni can now be transformed into a correspond-
ing pressure difference ∆pm,ni

∆pm,ni = ρ
(Qmi )2 −

(∑Ji
j=1Q

m,n
i,j

)2

2
(∑Ji

j=1Ai,j

)2 . (A.12)

Using this pressure difference the inlet pressure at each branch for the next step n + 1 is
computed as

pm,n+1
i,1,in = pm,ni,1,in + γp∆p

m,n
i . (A.13)

Due to the fact that ∆pm,ni is just an approximation the pressure correction must be under-
relaxed by γp to ensure convergence. Test calculations turned out that a value of γp = 0.7
represents a good compromise between numerical stability and calculation speed.

Within each outer iteration loop m the flow rate at the inlet of each branch is varied to
finally get a distribution of the inflow into all branches, where the static pressure at the inlet

60



of each branch is the same. To this end the inlet flow rate for each branch i after m outer
steps is approximated using the equation

Qmi = vmi

Ji∑
j=1

Ai,j , (A.14)

where vmi is computed dependent on the inlet pressure according to Bernoulli’s equation for
loss-free flow

vmi =

√
2

ρ
pmin,i,1. (A.15)

The target of the outer iterative loop is a uniform inlet pressure for all branches. For each
outer step m this value is approximated by the arithmetic mean of the values of the static
pressure actually obtained at each branch inlet p̄min,1

p̄min,1 =

∑I
i=1 p

m
in,i,1

I
.

This arithmetic mean pressure is used to approximate a corresponding inlet flow rate for each
branch i written as

Q̄mi = v̄mi

Ji∑
j=1

Ai,j , (A.16)

where the mean inlet velocity is obtained from the Bernoulli equation

v̄mi =

√
2

ρ
p̄min,1. (A.17)

The deviation of the static pressure at each branch inlet from the targeted uniform value can
be written as

∆pmi = p̄min,1 − pmin,1
Using equations (A.14)–(A.17) the deviation ∆pmi is transformed into a correction for the inlet
flow rate for each branch i

∆Qmi =

√
2

ρ

Ji∑
j=1

Ai,j

(√
p̄min,1 −

√
pmin,i,1

)
(A.18)

The corrected inlet flow rates at each branch i for the next outer step m+ 1 are obtained as

Qm+1
i,1 = Qmi,1 + γQ∆Qmi . (A.19)

Due to the fact that ∆Qmi is just an approximation, the flow rate correction must be un-
derrelaxed by γQ to ensure convergence. Test calculations revealed that a value of γQ = 0.5
represents a good compromise between numerical stability and calculation speed. The sum of
the corrected inlet flow rates Qm+1

i,1 over all branches i = 1 . . . I would not match the given
total inflow rate. Therefore, the correction (A.19) is applied only to the branches i = 1 . . . I−1.
The inlet flow rate into the remaining branch is set to a value, so that the total inflow rate is
satisfied.
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start

guess pin, ui,1
m = 1

calculate outflow distribution

print interim results

Qm+1
i,1 = Qmi,1 + γQ∆Qmi

m = m+ 1

(∣∣∣∆pmip̄min,1

∣∣∣ < ep

)
or (m > M)

print results

plot results

end

true

false

Figure A.1.: Main routine of Manifold-1d
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start

j = 1
i = 1
n = 1

calculate
pm,ni,j,out

vm,ni,j

pm,ni,j+1,in

um,ni,j+1

j = j + 1 j > Ji

pm,n+1
i,1 = pm,ni,1 − γp∆p

m,n
i

n = n+ 1

j = 1

(∣∣∣∆Qm,n
i

Qm
i

∣∣∣ < eQ

)
or (n > N)

i = i+ 1

n = 1
i > I

end

true

false

true

false

true

false

Figure A.2.: Manifold-1d subroutine “calculate outflow distribution”
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A.2. Manifold-1D Continuous: Continuous (slot) dispense

The program Manifold-1D Continuous, consisting of the Matlab files “manifold 1d ode 1 0.m”
and “manifold 1d continuous 1 0.m”, calculates the outflow distribution of a continuously
blowing dispenser based on the formulation described in section 2.1.2. The solution algo-
rithm of the underlying equation system is described in section A.2.1. To fulfill the overall
mass balance an iterative loop is introduced, which is described in detail in section A.2.2.
Figure A.3 illustrates the logical structure of the program.

A.2.1. Differential equation solution algorithm

The behavior of the continuous dispenser is described by equations (2.24), (2.29) and (2.30) for
the unknowns u(x), v(x) and p(x). These three equations can be reduced to a system of two
first-order differential equations by substituting v(x) in (2.29) and (2.30) according to (2.24):

du

dx
= −bC

A

√
2

ρ
p(x) (A.20)

dp

dx
=
KbC

A
u(x)

√
8ρp(x)− ρ

2
ζ(u(x))u2(x) (A.21)

Equations (A.20) and (A.21) are solved numerically using an explicit Runge-Kutta formula
derived by Dormand and Prince [2]. The initial value for u(x), u|x=0, is given by the prescribed
volumetric flow rate at the dispenser inlet. The initial value for p(x), p|x=0, is guessed at the
program start and subsequently adjusted until the overall mass balance is satisfied as described
in section A.2.2.

A.2.2. Iterative solution for the mass balance

The solution algorithm involves a loop to compute the mass in balance. The mass balance at
step m can be written as:

Q =

∫ l

0
vm(x)bdx+QmE . (A.22)

QmE in equation (A.22) is the error in the global volumetric flow rate. The inlet volumetric flow

rate Q is prescribed. Disregarding the motion of fluid in the dispenser the outflow
∫ l

0 v
m(x)bdx

is a function of the static pressure at the inlet p|x=0, according to equation (2.17). To eliminate
the error in the volumetric flow rate, the inlet pressure is corrected for the next step m+ 1:

pm+1
∣∣
x=0

= pm|x=0 + ∆pm|x=0 . (A.23)

According to Bernoulli’s equation, the pressure correction ∆pm|x=0 can be expressed by the

difference between the targeted mean outflow velocity Q∫ l
0 bdx

and the current mean outflow

velocity
∫ l
0 v

m(x)bdx∫ l
0 bdx

:

∆pm|x=0 =
ρ

2
(∫ l

0 bdx
)2

[
Q2 −

(∫ l

0
vm(x)bdx

)2
]
. (A.24)

Substituting ∆pm|x=0 into equation (A.23) by (A.24) finally allows to calculate the inlet pres-
sure for the next step pm+1

∣∣
x=0

.
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start

guess p|x=0

m = 1

calculate
um(x)
pm(x)
vm(x)

calculate ∆pm|x=0

pm+1
∣∣
x=0

= pm|x=0 + ∆pm|x=0

m = m+ 1

(∣∣∣ ∆pm|x=0
pm|x=0

∣∣∣ < e
)

or (m > M)

plot results

end

true

false

Figure A.3.: Main routine of Manifold-1d Continuous

65



Nomenclature

A Cross-sectional area in m2

b Slot width in m

C Discharge coefficient

D Hydraulic diameter in m

d Diameter in m

E Energy in J

e Maximum relative error

f Fanning friction factor

g Gravitational acceleration in m s−2

h Slot height in m

I Number of branches

i Branch counter

J Number of cells

j Cell counter

K Momentum recovery factor

k Turbulent kinetic energy in m2 s−2

l Length in m

M Maximum number of outer iterations

m Outer iteration counter

N Maximum number of inner iterations

n Inner iteration counter

Oh Ohnesorge number

P Dimensionless static pressure

p Static pressure in Pa
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Q Volumetric flow rate at the inlet in m3 s−1

r Radial distance in m

Re Reynolds number

S Wetted perimeter in m

T Pitch in m

U Dimensionless velocity

u Axial velocity component in m s−1

v Vertical velocity component in m s−1

We Weber number

x Cartesian coordinate in m

y Cartesian coordinate in m

z Cartesian coordinate in m

α Fraction of the internal area of the dispenser which is occupied by the orifices

Γ Model parameter

γ Under-relaxation factor

ε Turbulent kinetic energy dissipation rate in m2 s−3

ζ Pressure loss coefficient

λ Friction factor

µ Viscosity in Pa s

ν Kinematic viscosity in m s−2

ρ Density in kg m−3

σ Surface tension in N m−1
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