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Preface

The first investigations into the Wiener index were made by Harold Wiener in 1947 who
realized that there are correlations between the boiling points of paraffin and the structure
of the molecules (see [23]). In particular, he mentions in his article that the boiling point
tB can be quite closely approximated by the formula

tB = aw + bp+ c,

where w is the Wiener index, p the polarity number and a, b and c are constants for a
given isomeric group. Since then it has become one of the most frequently used topological
indices in chemistry, as molecules are usually modelled as undirected graphs, especially
trees. For example, in the drug design process, the aim is the construction of chemical
compounds with certain properties, which not only depend on the chemical formula but
also strongly on the molecular structure, as one can easily see when considering cocaine
and scopolamine, both having the chemical formula C17H21NO4.

Furthermore, there are many situations in communication, facility location, cryptology,
architecture etc. where the Wiener index of the corresponding graph or the average dis-
tance is of great interest. One of these problems, for example, is to find a spanning tree
with minimum average distance.

In the first chapter we define the Wiener index and some properties of graphs, par-
ticularly trees, that we will require later on. The second chapter deals with a variety of
formulas for computing the Wiener index of trees. Some of those formulas can also be
applied to connected graphs.

Since calculating the Wiener index of a graph can be computationally expensive, we
give some cheaply computable lower and upper bounds for the Wiener index – given certain
graph properties – in chapter 3. In particular, we focus on trees with further constraints,
such as a given maximum degree or degree sequence.

Finally, in chapter 4, we consider the inverse problem – Which numbers are Wiener
indices? – for a number of classes of graphs and trees.
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Chapter 1

Introduction - Basic notations and
definitions

Throughout the whole diploma thesis, all graphs will be finite, simple, connected and
undirected, and in most cases we will consider trees.

Definition 1.1. Let G be a graph with vertex set V (G) and edge set E(G). The distance
dG(u, v) between two vertices u, v ∈ V (G) is the minimum number of edges on a path in
G between u and v.

Definition 1.2. Let G be as before. The Wiener index W (G) of G is defined by

W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

and the average distance µ(G) between the vertices of G by

µ(G) =
W (G)(|V (G)|

2

) .
Definition 1.3. Let G be as before. The distance dG(v) of a vertex v is the sum of all
distances between v and all other vertices of G.

Thus, one can define the Wiener index also in a slightly different way:

W (G) =
1

2

∑
v∈V (G)

dG(v) ,

where 1
2

compensates for the fact that each path between u and v is counted in dG(u) as
well as in dG(v).

Definition 1.4. Let G be a graph. The diameter d(G) of G is defined as

d(G) = min
{u,v}⊆V (G)

dG(u, v).

6



CHAPTER 1. INTRODUCTION - BASIC NOTATIONS AND DEFINITIONS 7

Definition 1.5. The degree degG(v) of a vertex v ∈ V (G) is the number of edges incident
to v.

The degree sequence of G is a vector (degG(v1), degG(v2), . . . , degG(vn)) with degG(v1) ≥
degG(v2) ≥ · · · ≥ degG(vn) and n = |V (G)|.

Furthermore we will need the following definitions:

Definition 1.6. Let T be a tree. A vertex v ∈ V (T ) is called branching point of T , if
degT (v) ≥ 3. If degT (v) = 1, the vertex v is named leaf of T .

The path with n vertices, of which exactly 2 are leaves, is written as Pn, and the star
with exactly n− 1 leaves and 1 branching point is denoted by Sn.

Remark 1.1. It is easy to see that every tree on n vertices has at least 2 leaves and at
most n−2

2
branching points.

Remark 1.2. As we will need the Wiener index of both the path and the star on several
occasions, we compute their Wiener index in advance:

W (Sn) = n− 1︸ ︷︷ ︸
branching point to leaves

+ 2
n−2∑
i=1

i︸ ︷︷ ︸
between all pairs of leaves

= (n− 1)2,

W (Pn) =
n∑
i=1

i−1∑
j=1

j =
n∑
i=1

(
i

2

)
=

(
n+ 1

3

)
.

The last equation can be easily shown by induction.

Definition 1.7. Let T be a tree. A segment S of T is a path-subtree whose terminal
vertices are branching points or leaves and internal vertices v have degree degT (v) = 2.
The length of a segment S is equal to the number of edges in S and is denoted by lS. The
set of all vertices being terminal vertices of a segment is named by SP(T ). Moreover let
S∗ be a subpath of S containing lS vertices, i.e. S∗ = S\{v} where v is a terminal vertex
of S, and let S0 be S without both its terminal vertices.

Remark 1.3. Since each edge of a tree T on n vertices is used in exactly one segment, it
is clear that ∑

S seg. of T

lS = n− 1.

To illustrate the above definitions let us examine the following two short examples:

Example 1.4. Let G be the graph shown in Figure 1.1. The distance e.g. between v4

and v6 is dG(v4, v6) = 2 using the path (v4, v7, v6), and the distance e.g. of v1 is dG(v1) =
1 + 2 + 3 + 4 + 2 + 3 + 4 = 19. The Wiener index of G can be computed as follows:

W (G) =
7∑
i=1

8∑
j=i+1

dG(vi, vj)
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v1 v2 v3 v4 v5

v6 v7

v8

Figure 1.1: A graph G used in Example 1.4.

= (1 + 2 + 3 + 4 + 2 + 3 + 4) + (1 + 2 + 3 + 1 + 2 + 3)+

+ (1 + 2 + 1 + 2 + 2) + (1 + 2 + 1 + 1)+

+ (3 + 2 + 2) + (1 + 3) + 2

= 57.

Thus the average distance of G is

µ(G) =
57(
8
2

) =
57

28
≈ 2.0357.

Furthermore the degree sequence of G is (4, 3, 3, 3, 2, 1, 1, 1).

v1 v2 v3 v4 v5 v6

v7 v8 v9 v10 v11

v12

v13

Figure 1.2: A tree T used in Example 1.5.

Example 1.5. Now let us consider the tree T as shown in Figure 1.2. For example v1 is
a leaf and v2 a branching point, but notice that v9 is neither a leaf nor a branching point
since degT (v9) = 2.

A segment of T is e.g. S1 = (v2, v9, v12) with length lS1 = 2. Furthermore S∗1 can either
be the path (v2, v9) or the path (v9, v12), and S0

1 is the path only containing the vertex v9.
Another segment would be S2 = (v3, v13) with S∗2 either (v3) or (v13) and S0

2 empty.



Chapter 2

Different ways to compute the
Wiener index of trees

As the path and therefore the distance between two vertices of a tree is unique, the Wiener
index of a tree is much easier to compute than that of an arbitrary graph. In the following,
we will show different formulas for computing the Wiener index, in the first part direct
ones and in the second part recursive ones that require certain characteristics of the trees
but in case their requirements are satisfied may make the calculation of the Wiener index
easier by far.

2.1 Direct formulas

The first formula we are going to show is a very basic one and was found by H. Wiener in
1947 (see [23]). While the definition of the Wiener index puts its stress on how far one has
to go from each vertex to reach all other vertices, this formula counts how often one has
to pass each edge.

Definition 2.1. Let e = (u, v) ∈ E(T ) be an edge of the tree T . The subtrees Tu and Tv
are defined as the connected components of T containing u and v, respectively. The order
of the subtrees is denoted by nu(e) = |V (Tu)| and nv(e) = |V (Tv)|.

Theorem 2.1. Let T be a tree. Then

W (T ) =
∑

e=(u,v)∈E(T )

nu(e)nv(e). (2.1)

Proof. As T is a tree, the unique path between a vertex x ∈ V (Tu) and a vertex y ∈ V (Tv)
must contain e. If x and y are chosen in a different way, e is not part of the path between
them. Therefore nu(e)nv(e) is exactly the number of times how often e belongs to a path
between two vertices of T . Then the sum of nu(e)nv(e) over all edges of T must be the
Wiener index of T .

9



CHAPTER 2. DIFFERENT WAYS TO COMPUTE... 10

Remark 2.2. Dobrynin and Gutman give another proof of Theorem 2.1 in a more general
way in [6]. In addition to that they show for what types of graphs equation (2.1) holds and
that for all other cases the right-hand side of equation 2.1, which is denoted as the new
graph invariant W ∗ called Szeged index, is greater than the corresponding Wiener index.
To be able to define W ∗ one has to generalize the definition of Tu and Tv first, which we
are going to show in the following definition to give an idea of this closely related graph
invariant before continuing with our original topic.

Definition 2.2. Let e = (u, v) ∈ E(G) be an edge of the graph G. The sets Bu(e) and
Bv(e) of vertices of G are defined as

Bu(e) = {x ∈ V (G) : dG(x, u) < dG(x, v)}

Bv(e) = {y ∈ V (G) : dG(y, v) < dG(y, u)}.

The cardinalities of the sets are denoted by nu(e) = |Bu(e)| and nv(e) = |Bv(e)|.

v1 v2 v3 v4 v5 v6 v7

v8 v9
v10 v11 v12

v13

Figure 2.1: An arbitrary tree T .

Example 2.3. Since each edge e = (u, v) of a tree is a bridge, it is obvious that nu(e) +
nv(e) = n and thus one only needs to count the vertices lying on one side of e. Therefore,
by using Theorem 2.1, we can easily compute the Wiener index of the tree T of order
n = 13 shown in Figure 2.1:

W (T ) = 7 · 1 · 12 + 2 · 2 · 11 + 2 · 5 · 8 + 1 · 6 · 7 = 250.

Within the same paper, Dobrynin and Gutman also show the following:

Theorem 2.4. Let T be a tree on n vertices. Then the Wiener index can be computed in
the following way:

W (T ) =
1

4

[
n2(n− 1)−

∑
(u,v)∈E(T )

[dT (v)− dT (u)]2
]
.
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Proof. As mentioned in Example 2.3, n = nu(e) + nv(e) for all edges e = (u, v). Further
we obtain

dT (v)− dT (u) =

( ∑
x∈Bu(e)

dT (v, x) +
∑

y∈Bv(e)

dT (v, y)

)

−
( ∑
x∈Bu(e)

dT (u, x) +
∑

y∈Bv(e)

dT (u, y)

)
=

∑
x∈Bu(e)

(dT (v, x)− dT (u, x))−
∑

y∈Bv(e)

(dT (u, y)− dT (v, y))

=
∑

x∈Bu(e)

1−
∑

y∈Bv(e)

1

= nu(e)− nv(e).

Thus together we obtain 2nu(e) = n+ (dT (v)− dT (u)) and 2nv(e) = n− (dT (v)− dT (u)).
Substituting this into equation (2.1) we get

W (T ) =
∑

(u,v)∈E(T )

1

2
(n+ dT (v)− dT (u))

1

2
(n− dT (v) + dT (u))

=
1

4

∑
(u,v)∈E(T )

[
n2 − (dT (v)− dT (u))2

]
=

1

4

[
n2(n− 1)−

∑
(u,v)∈E(T )

(dT (v)− dT (u))2

]
,

which completes the proof.

Example 2.5. Let T again be the tree in Figure 2.1. To apply Theorem 2.4 we make use
of the fact that

dT (v)− dT (u) = nu(e)− nv(e)

for all edges e = (u, v) as we showed within the proof of Theorem 2.4. This simplifies the
calculation by far and we obtain

W (T ) =
1

4
[132 · 12− (7 · 112 + 2 · 92 + 2 · 32 + 12)] = 250.

Corollary 2.6. Let T be a tree on n vertices. Then

W (T ) =
1

4

[
n(n− 1) +

∑
v∈V (T )

degT (v)dT (v)

]
.



CHAPTER 2. DIFFERENT WAYS TO COMPUTE... 12

v

u1

T1

u2

T2

um

Tm

Figure 2.2: Tree with branching point v and subtrees Ti, where m = degT (v)

Proof. Let N(v) be the set of all neighbours of the vertex v in T . It is obvious that
|N(v)| = degT (v). Then we can rewrite the sum in Theorem 2.4 as follows

W (T ) =
1

4

[
n2(n− 1)−

∑
(u,v)∈E(T )

[dT (v)− dT (u)]2
]

=
1

4

[
n2(n− 1)− 1

2

∑
v∈V (T )

∑
u∈N(v)

(dT (v)2 − 2dT (v)dT (u) + dT (u)2)

]

=
1

4

[
n2(n− 1)− 1

2

∑
v∈V (T )

(
dT (v)2 degT (v)

− 2
∑

u∈N(v)

dT (v)dT (u) + dT (v)2 degT (v)
)]

=
1

4

[
n2(n− 1)−

∑
v∈V (T )

dT (v)
(
dT (v) degT (v)−

∑
u∈N(v)

dT (u)
)]
.

To compute dT (ui) with ui ∈ N(v) we choose the path ui → v → x for every x ∈ V (T ).
Now we counted two edges too many for each vertex in Ti, where Ti is defined as the
connected component of T including ui after deleting v (as shown in Figure 2.2). Therefore
we get

dT (ui) = n+ dT (v)− 2|Ti|,
and altogether we obtain∑

u∈N(v)

dT (u) = degT (v)n+ dT (v) degT (v)− 2(n− 1).

Substituting this into W (T ) leads to

W (T ) =
1

4

[
n2(n− 1)−

∑
v∈V (T )

(2(n− 1)dT (v)− ndT (v) degT (v))

]

=
1

4

[
n2(n− 1)− 4(n− 1)W (T ) + n

∑
v∈V (T )

dT (v) degT (v)

]
.

Solving the equation for W (T ) leads to the desired statement.
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Example 2.7. Now we apply Corollary 2.6 to the tree T of Figure 2.1:

W (T ) =
1

4
[13 · 12 + (1 · 42 + 4 · 31 + 2 · 28 + 3 · 27 + 4 · 30 + 2 · 39 + 1 · 50

+ 1 · 42 + 2 · 40 + 1 · 38 + 1 · 41 + 1 · 41 + 1 · 51)] = 250.

Remark 2.8. Examples 2.5 and 2.7 illustrate quite well that the formulas used there are
more of theoretical than of practical interest.

2.1.1 Branching points, segments and the Wiener index

Another very important formula is given by Doyle and Graver in [7]. But at first, we need
the following definition:

Definition 2.3. Let G be a connected graph. The vertices v1, v2, v3 ∈ V (G) are called
collinear if there exists an ordering of the three vertices such that

dG(vi, vj) + dG(vj, vk) = dG(vi, vk).

The number of 3-subsets of V (G) which are not collinear is denoted by τ(G).

Theorem 2.9 (Doyle-Graver formula). Let T be a tree of order n. Then

W (T ) =

(
n+ 1

3

)
−
∑

v∈V (T )

∑
1≤i<j<k≤degT (v)

|V (Ti)| |V (Tj)| |V (Tk)| (2.2)

with Tl defined as in the proof of Corollary 2.6.

Proof. Let C be the set of all collinear 3-subsets of V (T ). As the path between two
vertices u and v is unique, the only vertices w being collinear with u and v, such that
dT (u,w) + dT (w, v) = dT (u, v), are the vertices on the path between u and v. This means
that for each pair u and v there exists exactly dT (u, v)− 1 vertices that are collinear with
them in this manner. Therefore we get

|C| =
∑

{u,v}⊆V (T )

(dT (u, v)− 1) = W (T )−
(
n

2

)
.

Since all vertices u, v, w can be either collinear or non-collinear, we obtain

|C|+ τ(T ) =

(
n

3

)
.

Combining these two formulas leads to

W (T ) =

(
n

3

)
+

(
n

2

)
− τ(T ) =

(
n+ 1

3

)
− τ(T ). (2.3)
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Now, considering three non-collinear vertices u1, u2, u3 it is obvious that there must
exist a vertex v such that v lies on the paths between each pair of u1, u2, u3. Count-
ing the number of non-collinear 3-subsets of V (T ) with v on their paths we get exactly∑

1≤i<j<k≤degT (v) |V (Ti)| |V (Tj)| |V (Tk)|. Thus

τ(T ) =
∑

v∈V (T )

∑
1≤i<j<k≤degT (v)

|V (Ti)| |V (Tj)| |V (Tk)|.

Substituting this into equation (2.3) completes the proof.

Remark 2.10. Notice that the first summation in equation (2.2) actually goes just over all
branching points of T . Furthermore notice that the first term in equation (2.2) is exactly
the Wiener index of the path of length n.

Example 2.11. The tree T shown in Figure 2.1 has the three branching points v2, v4

and v5. Since degT (v4) = 3, the vertex v4 contributes just one addend to the Doyle-
Graver formula, whereas both v2 and v5, have degree 4, which leads to

(
4
3

)
= 4 different

combinations of their subtrees. This leads to the Wiener index

W (T ) =

(
14

3

)
− [1 · 1 · 2 + 1 · 1 · 8 + 1 · 2 · 8 + 1 · 2 · 8︸ ︷︷ ︸

obtained from v2

+ 6 · 1 · 5︸ ︷︷ ︸
obtained from v4

+ 8 · 1 · 1 + 8 · 1 · 2 + 8 · 1 · 2 + 1 · 1 · 2︸ ︷︷ ︸
obtained from v5

] = 250,

which is once again the same number.

On the following pages some further formulas based on either branching points or
segments are examined (see [4]).

Theorem 2.12. Let T be a tree on n vertices. Then

W (T ) =
∑

S seg. of T

n1(S)nlS+1(S)lS +
1

6

∑
S seg. of T

lS(lS − 1)(3n− 2lS + 1) (2.4)

where n1(S) and nlS+1(S) are the number of vertices of the two connected components
obtained by deleting all internal vertices of S and the corresponding edges (compare Defi-
nition 2.1).

Proof. In order to prove this theorem we use formula (2.1) and rewrite it in terms of
segments. Let S = (v1, v2, . . . , vlS , vlS+1) be a segment of T and ei = (vi, vi+1). Then we
obtain nvi

(ei) = n1(S) + (i− 1) and nvi+1
(ei) = nlS+1(S) + (lS− i) for i ∈ {1, 2, . . . , lS} and

clearly n1(S) + nlS+1(S) + lS − 1 = n. Thus the contribution of the edges of S to W (T ) is

lS∑
i=1

nvi
(ei)nvi+1

(ei) =

lS∑
i=1

(n1(S) + i− 1)(nlS+1(S) + lS − i)



CHAPTER 2. DIFFERENT WAYS TO COMPUTE... 15

=

lS∑
i=1

[n1(S)nlS+1(S) + (n1(S)− 1)lS − nlS+1(S)

+ (nlS+1(S)− n1(S) + lS + 1)i− i2]

= lSn1(S)nlS+1(S) + (n1(S)− 1)l2S − nlS+1(S)lS

+ (nlS+1(S)− n1(S) + lS + 1)
lS(lS + 1)

2
− lS(lS + 1)(2lS + 1)

6

= lSn1(S)nlS+1(S) +
1

2
(n1(S) + nlS+1(S) + lS − 1)l2S

+
1

2
(−n1(S)− nlS+1(S)− lS + 1 + 2lS)lS −

1

6
(2l2S + 3lS + 1)lS

= lSn1(S)nlS+1(S) +
1

2
nl2S +

1

2
(−n+ 2lS)lS −

1

6
(2l2S + 3lS + 1)lS

= lSn1(S)nlS+1(S) +
1

6
lS(3nlS − 3n− 2l2S + 3lS − 1).

Summing this over all segments of T leads to the desired equation.

Example 2.13. The tree shown in Figure 2.1 has nine segments. As the segments
S1 = (v1, v2), S2 = (v2, v8), S3 = (v4, v10), S4 = (v5, v11) and S5 = (v5, v12) are equiva-
lent according to their length lSi

and the number of vertices n1(Si) and nlSi
+1(Si), we get

n1(Si)nlSi
+1(Si)lSi

= 12 for i = 1, . . . , 5. In the same manner we obtain for both segments
S6 = (v2, v9, v13) and S7 = (v5, v6, v7) that the term n1(S)nlS+1(S)lS is 22. Further-
more we have n1(S8)nlS8

+1(S8)lS8 = 40 for S8 = (v4, v5) and n1(S9)nlS9
+1(S9)lS9 = 70 for

S9 = (v2, v3, v4). Thus according to equation (2.4) we obtain

W (T ) = 5 · 12 + 2 · 22 + 40 + 70 +
1

6
· 3 · [2 · 1 · (3 · 13− 2 · 2 + 1)] = 250.

Theorem 2.14. Let T be a tree of order n. Then the Wiener index can be computed by

W (T ) =
1

12

[
(3n2 + 1)(n− 1)− 3

∑
S seg. of T

1

lS
[dT (v1)− dT (vlS+1)]2 −

∑
S seg. of T

l3S

]
with v1 and vlS+1 being the terminal vertices of S.

Proof. In order to apply equation (2.4) we have to further investigate the product
n1(S)nlS+1(S). Let T1(S) and TlS+1(S) with n1(S) and nlS+1(S) vertices, respectively,
be the two connected subtrees obtained by deleting all inner vertices of S. Thus we get

dT (v1)− dT (vlS+1) =
∑

x∈T1(S)

(dT (v1, x)− dT (vlS+1, x))

+
∑

y∈TlS+1(S)

(dT (v1, x)− dT (vlS+1, x))
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=
∑

x∈T1(S)

(−lS) +
∑

y∈TlS+1(S)

lS

= lS[nlS+1(S)− n1(S)].

Furthermore we know that n1(S) + nlS+1(S) = n− lS + 1. Together we obtain

n1(S)nlS+1(S) =
1

4
([n1(S) + nlS+1(S)]2 − [n1(S)− nlS+1(S)]2)

=
1

4

[
(n− lS + 1)2 − [dT (v1)− dT (vlS+1)]2

l2S

]
and substituting this into equation (2.4) leads to

W (T ) =
1

4

∑
S seg. of T

(n− lS + 1)2lS −
1

4

∑
S seg. of T

1

lS
[dT (v1)− dT (vlS+1)]2

+
1

6

∑
S seg. of T

lS(lS − 1)(3n− 2lS + 1)

=
1

12

[∑
S

(3n2 + 1)lS −
∑
S

l3S − 3
∑
S

1

lS
[dT (v1)− dT (vlS+1)]2

]
=

1

12

[
(3n2 + 1)(n− 1)− 3

∑
S

1

lS
[dT (v1)− dT (vlS+1)]2 −

∑
S

l3S

]
.

Example 2.15. Since dT (v1) − dT (vlS+1) = (nlS+1(S) − n1(S))lS with notation as in
Theorem 2.14, we obtain for the tree in Figure 2.1 by using Theorem 2.14

W (T ) =
1

12
[(3 · 132 + 1)12− 3(5 · 112 + 2 · 102 · 2 + 32 + 22 · 2)− (6 · 13 + 3 · 23)] = 250.

Next we are going to rewrite Theorem 2.6 in terms of segments and generalized stars.
Therefore we need the following definition and lemma:

Definition 2.4. A generalized star associated with a vertex v ∈ V (T ), T a tree, consists
of v and all segments beginning at v, and qv denotes its number of edges.

Remember that S∗ is the segment S without one, and S0 the segment S without both
terminal vertices. Furthermore we define SP(T ) to be the set of all terminal vertices of
segments of the tree T .

Lemma 2.16. Let S = (v1, v2, . . . , vlS+1) be a segment of the tree T on n vertices. Then

lS∑
i=2

dT (vi) =
1

2
(lS − 1)[dT (v1) + dT (vlS+1)]− 1

6
lS(l2S − 1)
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Proof. Let T1(S), TlS+1(S), n1(S) and nlS+1(S) be defined as before. Then the sum of all
distances of vi for i ∈ {2, 3, . . . , lS} is

dT (vi) =
∑

x∈V (T1(S))

[dT (vi, v1) + dT (v1, x)]

+
∑

y∈V (TlS+1(S))

[dT (vi, vlS+1) + dT (vlS+1, y)] + dS0(vi)

=
∑

x∈V (T1(S))

dT (v1, x) +
∑

y∈V (TlS+1(S))

dT (vlS+1, y)

+ n1(S)(i− 1) + nlS+1(S)(lS − i+ 1) + dS0(vi).

For the two terminal vertices we obtain

dT (v1) =
∑

x∈V (T1(S))

dT (v1, x) +
∑

y∈V (TlS+1(S))

[dT (v1, vlS+1) + dT (vlS+1, y)] + dS∗(v1)

=
∑

x∈V (T1(S))

dT (v1, x) +
∑

y∈V (TlS+1(S))

dT (vlS+1, y) + nlS+1(S)lS +

(
lS
2

)

and analogously

dT (vlS+1) =
∑

x∈V (T1(S))

dT (v1, x) +
∑

y∈V (TlS+1(S))

dT (vlS+1, y) + n1(S)lS +

(
lS
2

)
.

Therefore we get

dT (v1) + dT (vlS+1) = 2
∑

x∈V (T1(S))

dT (v1, x) + 2
∑

y∈V (TlS+1(S))

dT (vlS+1, y)

+ [n1(S) + nlS+1(S)]lS + lS(lS + 1)

which leads to∑
x∈V (T1(S))

dT (v1, x) +
∑

y∈V (TlS+1(S))

dT (vlS+1, y) =
1

2
[dT (v1) + dT (vlS+1)− lS(lS − 1)

− [n1(S) + nlS+1(S)]lS]

Finally we can calculate

lS∑
i=2

dT (vi) =
1

2

lS∑
i=2

[dT (v1) + dT (vlS+1)− lS(lS − 1)− [n1(S) + nlS+1(S)]lS]

+ n1(S)

lS∑
i=2

(i− 1) + nlS+1(S)

lS∑
i=2

(lS − i+ 1) +

lS∑
i=2

dS0(vi)
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=
1

2
(lS − 1)[dT (v1) + dT (vlS+1)]− 1

2
lS(lS − 1)2 + 2W (S0)

− 1

2
lS(lS − 1)[n1(S) + nlS+1(S)] + [n1(S) + nlS+1(S)]

(
lS
2

)
=

1

2
(lS − 1)[dT (v1) + dT (vlS+1)]− 1

2
lS(lS − 1)2 + 2

(
lS
3

)
=

1

2
(lS − 1)[dT (v1) + dT (vlS+1)]− 1

6
lS(lS − 1)(3lS − 3− 2lS + 4)

=
1

2
(lS − 1)[dT (v1) + dT (vlS+1)]− 1

6
lS(l2S − 1).

Theorem 2.17. Let T be a tree on n vertices. Then

W (T ) =
1

12

[
(3n+ 1)(n− 1) + 3

∑
v∈SP(T )

qvdT (v)−
∑

S seg. of T

l3S

]
Proof. As a vertex v can either have degree equal to 2 (then it is an inner vertex of a
segment S) or degree greater than 2 (then it is a terminal vertex of S) we can rewrite the
formula in Corollary 2.6 as follows:

W (T ) =
1

4

[
n(n− 1) +

∑
v∈SP(T )

degT (v)dT (v) +
∑
S∈T

lS∑
i=2

2dT (vi)

]

=
1

4

[
n(n− 1) +

∑
v∈SP(T )

degT (v)dT (v)

+ 2
∑
S∈T

(1

2
(lS − 1)[dT (v1) + dT (vlS+1)]− 1

6
lS(l2S − 1)

)]
=

1

12

[
3n(n− 1) + 3

∑
v∈SP(T )

degT (v)dT (v)

+ 3
∑
S∈T

(lS − 1)[dT (v1) + dT (vlS+1)]−
∑
S∈T

l3S +
∑
S∈T

lS

]
=

1

12

[
3n(n− 1) + 3

∑
v∈SP(T )

degT (v)dT (v)

+ 3
∑

v∈SP(T )

(qv − degT (v))dT (v)−
∑
S∈T

l3S + (n− 1)

]

=
1

12

[
(3n+ 1)(n− 1) + 3

∑
v∈SP(T )

qvdT (v)−
∑
S∈T

l3S

]
.
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v1 v2 v3 v4 v5 v6 v7

v8

v9

v10

Figure 2.3

Example 2.18. Let us consider the tree T shown in Figure 2.3. As T consists of three
segments and because of symmetry, we only need to compute the distances of two vertices
in T . Thus it makes sense to use Theorem 2.17 to calculate the Wiener index of T and we
obtain

W (T ) =
1

12
[(3 · 10 + 1)9 + 3(3 · 3 · 36 + 9 · 18)− 3 · 33] = 138.

2.1.2 Laplacian Eigenvalues and their influence on the Wiener
index

A completely different way to compute the Wiener index of a tree is by using the eigenvalues
of its Laplacian matrix. The formula for computing the Wiener index, which I am going
to present in this subsection, was published independently in several papers around 1990,
but I will confine myself here to mentioning the proof given by Merris in [17].

Definition 2.5. Let G be a graph. The Laplacian matrix LG is given by

L(G) = D(G)− A(G)

where D(G) is the diagonal matrix of the vertex degrees and A(G) the adjacency matrix.

v1 v2 v3 v4

v5 v6

v7 v8

Figure 2.4
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Example 2.19. Let T be the tree shown in Figure 2.4. Its Laplacian matrix is

L(T ) =



1 −1 0 0 0 0 0 0
−1 3 −1 0 −1 0 0 0
0 −1 3 −1 0 −1 0 0
0 0 −1 1 0 0 0 0
0 −1 0 0 −1 0 0 0
0 0 −1 0 0 3 −1 −1
0 0 0 0 0 −1 1 0
0 0 0 0 0 0− 1 0 1


.

A very important statement involving the Laplacian matrix is the celebrated matrix-tree
theorem, also called Kirchhoff’s theorem after Gustav Kirchhoff who implicitly mentioned
it in 1847 (see [13]).

Theorem 2.20 (Matrix-tree theorem). Let L(G) be the Laplacian matrix of the graph G
on n vertices and Li,j denote the submatrix of L formed by crossing out row i and column
j. Then the number of spanning trees τ(G) is obtained by

τ(G) = (−1)i+j det(Li,j)

for all i, j ∈ {1, 2, . . . , n}.

For a proof of the matrix-tree theorem see e.g. [15].

Lemma 2.21. Let G be an oriented graph with |E(G)| = m and Q = Q(G) = (qij) its
vertex-edge incidence matrix defined in the following manner

qij =


1 if vi is the positive end of ej,

−1 if vi is the negative end of ej,

0 otherwise.

Then
L(G) = QQt.

Proof. Let R = (rij) be the matrix on the right side. Then rij =
∑m

a=1 qiaqja.
Case i 6= j: The product qiaqja is not 0, if vi and vj are both terminal vertices of ea.

Because of the orientation of G we get qiaqja = −1 and thus rij = −aij.
Case i = j: Here we obtain rii =

∑m
a=1 q

2
ia with q2

ia = 1 if vi is a terminal vertex of ea
and q2

ia = 0 otherwise. This means rii = degG(vi).

Remark 2.22. Note that although the entries of Q depend on the chosen orientation, the
Laplacian matrix L(G) is independent of it. L(G) is unique up to permutation which also
means that the eigenvalues of L(G) do not depend on the orientation of G or the order of
its vertices.
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Unlike L(G) its “edge version” K(G) = QtQ depends on the orientation for the signs
of its off-diagonal entries. Due to the singular value decomposition of Q, the eigenvalues
not equal to 0 of K(G) and L(G) are the same.

Denote the eigenvalues of L(G) by λ1 ≥ λ2 ≥ · · · ≥ λn, then, as the sum over the
entries of each row and column is 0, λn = 0 and, following from the matrix-tree theorem,
λn−1 > 0 if and only if G is connected.

Lemma 2.23. Let T be a tree on n vertices and K(T ) as before. Then

det(K(T )) = n.

Proof. According to Remark 2.22 we obtain

det(K(T )) =
n−1∏
i=1

λi

with λi, i ∈ {1, 2, . . . , n − 1}, the eigenvalues of L(T ) not equal to 0. Considering the
characteristic polynomial of L(T ) it is easy to see that the coefficient coeffλ of λ is

coeffλ = (−1)n−1

n−1∏
i=1

λi.

On the other hand, it is well known (see e.g. [14]) that

coeffλ = (−1)n−1

n∑
i=1

det(Li,i).

Thus we get

det(K(T )) =
n∑
i=1

det(Li,i) = n

since Li,i = 1 due to the matrix-tree theorem.

A C B

ei eju

Figure 2.5

Definition 2.6. Let T be a tree and ei, ej two edges of T . Furthermore let T ′ =
(V (T ), E(T )\{ei, ej}) be the forest with three components A, B and C, where A and
B are on opposite sides of ei and ej such that a path in T from any vertex of A to any ver-
tex of B contains ei and ej (see Figure 2.5). Then we define n(ei, ej) = |A| |B|. Analogously
we use n(ei) = nu(ei)nv(ei) for ei = (u, v).

A vertex u of C is called between ei and ej if every path from a vertex of A to a vertex
of B passes through u. The number of vertices between ei and ej is denoted by sij.
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Lemma 2.24. Let T be a tree on n vertices and orient T such that K(T ) is not negative.
Let X = (xij) be the adjugate of K(T ). Then

xij =

{
n(ei) if i = j

(−1)sijn(ei, ej) otherwise.

Proof. Denote by Ki,j the submatrix of K(T ) obtained by deleting row i and column j,
corresponding, respectively, to edge ei and ej and, analogously, by Qpq,i the submatrix of
Q after deleting the rows p and q, corresponding to the vertices vp and vq, and column i,
corresponding to edge ei. Then

xij = (−1)i+j detKi,j

= (−1)i+j
n−1∑
p=1

n∑
q=p+1

detQt
i,pq detQpq,j

= (−1)i+j
n−1∑
p=1

n∑
q=p+1

detQpq,i detQpq,j. (2.5)

The second equality we get by using the Binet-Cauchy formula as Ki,j = Qt
i, Q ,j. Thus we

have to compute the determinant for any (n− 2)-square submatrix of Q. Remember that
in each column of Q there are just two non-zero elements. If we delete a row p of Q which
means removing vertex vp but not any edges from T , there is exactly one permutation π

such that
n∏
l=1
l 6=p

qlπ(l) 6= 0. This can easily be seen, as choosing qlπ(l) means to assign edge

eπ(l) to its terminal vertex vl. Analogously we obtain for Qpq,i that there exists exactly one
permutation if and only if the edge ei lies on the path between vp and vq. Therefore we get

detQpq,i =

{
±1 if ei is between vp and vq,

0 otherwise.

Considering the case i = j we obtain

xii = (−1)2i

n−1∑
p=1

n∑
q=p+1

detQpq,i detQpq,i

=
n−1∑
p=1

n∑
q=p+1

(detQpq,i)
2

= n(ei)

since xii counts the pairs p, q, p < q, such that ei lies on the path between vp and vq, which
means that xii is the product of the numbers of vertices on each side of ei.
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Now we assume i 6= j and, without loss of generality, we can further assume i < j.
In order for a product detQpq,i detQpq,j to be non-zero of course both factors must be
non-zero, which is only possible if the vertices vp and vq lie on opposite sides of ei as well
as on opposite sides of ej. Thus |xij| ≤ n(ei, ej), and equality is attained only if the signs
of all summands are the same. Recall that we are assuming the orientation of the edges
has been chosen such that K(T ) is entry-wise non-negative, i.e.

kab =
n∑
c=1

qcaqcb ≥ 0 ∀a, b.

It is obvious that qcaqcb 6= 0 if and only if ea and eb have vc as their common terminal
vertex. Since T is a tree, each pair of edges can have at most one common terminal vertex,
i.e. at most one summand can be non-zero. Therefore kab = 0 if ea and eb have no common
terminal vertex, and kab = 1 otherwise. In the second case both edges are oriented the
same way according to their common terminal vertex. This implies that all entries of a row
of Q have the same sign. Hence the only difference between the permutations making a
contribution to the computation of detQpq,i and detQpq,j is that for the non-zero elements
of column i and column j one has to choose another non-zero element of the same row. Thus
the only factor to influence the sign of detQpq,i detQpq,j are the signs of the permutations.
Let the permutations be denoted by πpq,i and πpq,j and their signs sgn(pq, i) and sgn(pq, j).
It is easily seen that the signs depend on both the arbitrary ordering of the vertices and
of the edges, but their product only depends on how the edges are ordered since K is
independent of the numbering of the vertices. Thus, we may assume that the vertices
between ei and ej are consecutively numbered, say k + 1, k + 2, . . ., k + s with s = sij,
and vk+1 is a terminal vertex of ei and vk+s a terminal vertex of ej. The only difference
between the two permutations πpq,i and πpq,j is the assignment of the edges lying on the
path between ei and ej to their terminal edges. If ei is deleted, we obtain the assignment
vk+s ↔ ej and vk+l ↔ (vk+l, vk+l+1) for l = 1, . . ., s−1. On the other hand, if ej is deleted,
we get the assignment vk+1 ↔ ei and vk+l ↔ (vk+l−1, vk+l) for l = 2, . . ., s. This means,
for getting the permutation πpq,i by changing permutation πpq,j, we perform the following
matrix operations: move column i past j − i− 1 columns and row k + 1 past s− 1 rows.
Therefore

sgn(pq, i) = (−1)j−i−1(−1)s−1sgn(pq, j)

and thus every non-zero product in equation (2.5) has the same sign, namely (−1)sij+j−i.
Hence, the absolute value of xij is n(ei, ej) and altogether we obtain

xij = (−1)i+j(−1)sij+j−in(ei, ej)

= (−1)sijn(ei, ej).

Now we have all tools needed to prove the following main statement:
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Theorem 2.25. Let T be a tree on n vertices and λ1 ≥ · · · ≥ λn−1 > λn = 0 the eigenvalues
of the corresponding Laplacian matrix. Then the Wiener index can be computed as

W (T ) = n

n−1∑
i=1

1

λi
.

Proof. We choose an orientation of T such that K(T ) is not negative. According to
Lemma 2.24 the trace of the adjugate X of K(T ) is

tr(X) =
n−1∑
i=1

xii =
∑

e∈E(T )

n(ei).

As shown in Theorem 2.1, the last sum is equal to the Wiener index of T . On the other
hand we know that the trace of a matrix can also be computed by using its eigenvalues.
For all λi, i = 1, . . . , n− 1, we obtain that n 1

λi
is an eigenvalue of X = nK−1(T ). Thus

tr(X) =
n−1∑
i=1

n
1

λi
,

which completes the proof.

Example 2.26. Let T again be the tree in Figure 2.4. Then the non-zero eigenvalues of
L(T ) are approximately

λ1 = 4.81361,

λ2 = 3.73205,

λ3 = 2.52932,

λ4 = λ5 = 1,

λ6 = 0.657077,

λ7 = 0.267949

and according to Theorem 2.25 we obtain W (T ) = 8
∑7

i=1
1
λi

= 65.

2.2 Recursive formulas

Up to now we have just seen explicit formulas for computing the Wiener index. In some
cases it may be easier not to compute the Wiener index of the tree itself but of special
subtrees and get the Wiener index of the whole tree as a combination of these subtrees,
e.g. when the tree T is obtained by connecting several copies of the tree T ′ at a vertex u,
always using the same vertex v′ ∈ V (T ′). Thus, in the following some recursive formulas
will be shown.

Maybe the first idea that occurs if one wants to calculate the Wiener index recursively
is to take a tree, delete a leaf and compute the Wiener index of the remaining subtree.



CHAPTER 2. DIFFERENT WAYS TO COMPUTE... 25

Theorem 2.27. Let T be a tree on n ≥ 2 vertices and v ∈ V (T ) a leaf of T . Furthermore
let (u, v) ∈ E(T ) and T ′ = T − v be the subgraph of T after deleting v. Then

W (T ) = W (T ′) + dT ′(u) + n− 1.

Proof. Let x and y be two vertices of T . If v 6= x and v 6= y, the distance between x and
y does not change after deleting v. Therefore the sum of all these distances is the Wiener
index of T ′. If one of the two vertices is v, w.l.o.g. v = x, then dT (x, y) = dT ′(u, y) + 1.
Thus the sum of all n−1 pairs {x, y} equals dT ′(u)+n−1, which completes the proof.

Example 2.28. Consider a tree T with n vertices, obtained by taking Sn−1 and connecting
a further vertex v to a leaf u of Sn−1. Using Theorem 2.27 we easily compute

W (T ) = W (Sn−1) + dSn−1(u) + n− 1

= (n− 2)2 + (n− 3)2 + 1 + n− 1

= n2 − n− 2.

Since the fact, that T is a tree, was just used for counting the number of vertex pairs
{v, y}, it is obvious that Theorem 2.27 can also be generalized for connected graphs. We
state this formula in the next theorem because of completeness.

Theorem 2.29. Let G be a connected graph and v ∈ V (G) a leaf. Besides let (v, u) ∈ E(G)
and G′ = G− v be the subgraph of G after deleting v. Then

W (G) = W (G′) + dG′(u) + |V (G′)|.

A generalization of Theorem 2.27, where not only a leaf but an arbitrary vertex can be
deleted, is given in [3]:

Theorem 2.30. Let T be a tree of order n ≥ 2 as shown in Figure 2.2. Then

W (T ) =
m∑
i=1

[W (Ti) + (n− |V (Ti)|)dTi
(ui)− |V (Ti)|2] + n(n− 1).

Proof. To compute dT (x, y) with x ∈ Ti fixed, we have to consider two cases, according to
whether y ∈ Ti or not. If y ∈ Ti, we have dT (x, y) = dTi

(x, y) and the sum of all such pairs
is equal to W (Ti).

In case y ∈ Tj, i 6= j, we obtain

dT (x, y) = dTi
(x, ui) + dT (ui, v) + dT (uj, v) + dTj

(y, uj).

Thus we get

W (T ) =
m∑
i=1

[
W (Ti) +

1

2

∑
x∈Ti

∑
y∈Tj

j 6=i

(dTi
(x, ui) + dT (ui, v) + dT (uj, v) + dTj

(y, uj))

]
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=
m∑
i=1

[
W (Ti) +

∑
x∈Ti

∑
y∈Tj

j 6=i

(dTi
(x, ui) + dT (ui, v))

]

=
m∑
i=1

[
W (Ti) +

∑
x∈Ti

(dTi
(x, ui) + dT (ui, v))(n− |V (Ti)|)

]

=
m∑
i=1

[
W (Ti) + (n− |V (Ti)|)(dTi

(ui) + |V (Ti)|)
]

=
m∑
i=1

[
W (Ti) + (n− |V (Ti)|)dTi

(ui)− |V (Ti)|2)

]
+ n

m∑
i=1

|V (Ti)|

=
m∑
i=1

[
W (Ti) + (n− |V (Ti)|)dTi

(ui)− |V (Ti)|2)

]
+ n(n− 1).

Example 2.31. Let T be a tree on n vertices, obtained by taking the path Pl+1 and
attaching n− l−1 vertices to one of its leaves v. To compute W (T ) we apply Theorem 2.30
with vertex v as the separating point and therefore with n− l − 1 single vertices and one
path of length l as the subtrees. Thus we obtain

W (T ) =
n−l−1∑
i=1

[0 + (n− 1)0− 12]

(
l + 1

3

)
+ (n− l)

(
l

2

)
− l2 + n(n− 1)

=

(
l + 1

3

)
+ (n− l)

(
l

2

)
− (n− 1− l)− l2 + n(n− 1)

=

(
l

3

)
+ (n− l − 1)

(
l

2

)
+ (n− 1)2.

u

Tu

v

Tv

Figure 2.6: The trees Tu and Tv connected by a path of k new vertices.

In [5] the following formula for the Wiener index of a tree which arises from two trees
by connecting them by a path can be found:

Theorem 2.32. Let Tu and Tv be two trees with nu = |V (Tu)| and nv = |V (Tv)| and
u ∈ V (Tu) and v ∈ V (Tv) two vertices. T arises from Tu and Tv by connecting u and v by
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a path on k new vertices (see Figure 2.6). Then

W (T ) = W (Tu) +W (Tv) + (nu + k)dTv(v) + (nv + k)dTu(u) + (k + 1)nunv

+
1

2
(k2 + k)(nu + nv) +

1

6
(k3 − k).

Proof. Let x, y be two vertices of T . Then we distinguish the following cases:
Case 1: x, y ∈ V (Ti), i = u, v. It is obvious that dT (x, y) = dTi

(x, y).
Case 2: x ∈ V (Tu) and y ∈ V (Tv), then dT (x, y) = dTu(x, u) + dT (u, v)︸ ︷︷ ︸

=k+1

+dTv(v, y).

Case 3: x and y are both new vertices. The contribution of all such vertices is the
Wiener index of a path of length k − 1.

Case 4: x ∈ V (Ti), i = u, v, and y is one of the new vertices. In this case we obtain
dT (x, y) = dTi

(x, i) + dT (i, y).
Therefore we get

W (T ) =
∑

{x,y}⊆V (Tu)

dTu(x, y) +
∑

{x,y}⊆V (Tv)

dTv(x, y)

+
∑

x∈V (Tu)

∑
y∈V (Tv)

(dTu(x, u) + k + 1 + dTv(v, y)) +

(
k + 1

3

)

+
∑
y new
vertex

( ∑
x∈V (Tu)

(dTu(x, u) + dT (u, y)) +
∑

x∈V (Tv)

(dTv(x, v) + dT (v, y))

)

= W (Tu) +W (Tv) + dTu(u)nv + nunv(k + 1) + dTv(v)nu +
1

6
(k3 − k)

+ kdTu(u) + (nu + nv)
k∑
i=1

i+ kdTv(v)

= W (Tu) +W (Tv) + (nu + k)dTv(v) + (nv + k)dTu(u) + (k + 1)nunv

+
1

2
(k2 + k)(nu + nv) +

1

6
(k3 − k),

which completes the proof.

Example 2.33. Let T be the tree arising from S14 and S19 by connecting the branching
point u of S14 with the branching point v of S19 by a path on 12 new vertices. It is easy
to see that dS14(u) = 13 and dS19(v) = 18. Furthermore we know that W (Sl) = (l − 1)2.
Thus we obtain

W (T ) = 132 + 182 + (14 + 12)18 + (19 + 12)13 + 13 · 14 · 19

+
1

2
(122 + 12)(19 + 14) +

1

6
(123 − 12) = 7682.

Remark 2.34. Since nowhere in the proof of Theorem 2.32 the fact that Tu and Tv are
trees has been used, it is obvious that the formula remains the same for Tu and Tv arbitrary
graphs.
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Corollary 2.35. Let Tu and Tv be two trees of orders nu and nv, respectively, and vertices
u ∈ V (Tu), v ∈ V (Tv). If T arises from Tu and Tv by connecting u and v by an edge,

W (T ) = W (Tu) +W (Tv) + nudTv(v) + nvdTu(u) + nunv.

Proof. Evidently this formula is exactly the formula of Theorem 2.32 with k = 0.

In the same paper they suggest a different way of connecting two trees: To take a path
of each tree containing no branching points and to identify these vertices in the same order
as they appear within the paths. This leads to the following theorem:

Theorem 2.36. Let T1 and T2 be two trees with n1 = |V (T1)| and n2 = |V (T2)|. Fur-
thermore let p1 = (u1, u2, . . . , uk) be a path in T1 and p2 = (v1, v2, . . . , vk) a path in T2,
both without branching points. Then the Wiener index of the tree T , which is obtained by
identifying ui and vi, i = 1, . . . , k, can be computed as

W (T ) = W (T1) +W (T2) + (n1 − k)dT2(v1) + (n2 − k)dT1(u1)

+ 2(k − 1)[nuk
(p1) + nvk

(p2)− nuk
(p1)nvk

(p2)]

− 1

2
k(k − 1)(n1 + n2) +

1

6
(k − 1)(5k2 − k − 12),

where nuk
(p1) is the number of vertices in the connected component of T1 containing uk

after deleting all edges of p1 and nvk
(p2) is defined analogously.

Proof. Let T ′1, T ′′1 , T ′2 and T ′′2 be defined as shown in Figure 2.7. Then |V (T ′′1 )| = nuk
(p1)−1,

|V (T ′′2 )| = nvk
(p2) − 1 and with that, we trivially get |V (T ′1)| = n1 − nuk

(p1) − k + 1,
|V (T ′2)| = n2 − nvk

(p2)− k + 1.

T ′1

T ′2

u1 = v1 u2 u3 uk−1

v2 v3 vk+1

T ′′1

T ′′2

uk = vk

Figure 2.7

To calculate the Wiener index of T we once again distinguish between some different
types of vertex pairs:

Of course all the distances between vertices of T1 keep being the same, for which
reason the contribution of these vertices is W (T1). Under the same considerations, the
contribution of vertex pairs of T2 is W (T2). As the vertices of p1 and p2 are identified we
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have to subtract all distances between these vertices once (they are counted once in W (T1)
and once in W (T2)), which is

(
k+1

3

)
.

Next we calculate the distances within T2 between vertices of T ′1 and vertices of T2−p2.
Clearly each vertex of T ′1 contributes dT2(v1)−

(
k
2

)
where the second term compensates for

the fact that dT2(v1) also includes the distances to the vertices of p2. In the same manner
we obtain dT1(u1)−

(
k
2

)
for the distance within T1 between a vertex of T ′2 and all vertices

of T1 − p1.
Using also v1 as the point of reference we get dT2(v1) −

(
k
2

)
− (k − 1)(nvk

(p2) − 1) as
the distances within T2 between a vertex of T ′′1 and all vertices of T2 − p2. The third term
occurs because for all vertices of T ′′2 the (not needed) path between v1 and vk is counted
in dT2(v1). Analogously we obtain dT1(u1) −

(
k
2

)
− (k − 1)(nuk

(p1) − 1) for the distances
within T2 between a vertex of T ′′2 and all vertices of T1 − p1.

Combining all cases we get

W (T ) = W (T1) +W (T2)−
(
k + 1

3

)
+ (n1 − nuk

(p1)− k + 1)

(
dT2(v1)−

(
k

2

))
+ (n2 − nvk

(p2)− k + 1)

(
dT1(u1)−

(
k

2

))
+ (nuk

(p1)− 1)

(
dT2(v1)−

(
k

2

)
− (k − 1)(nvk

(p2)− 1)

)
+ (nvk

(p2)− 1)

(
dT1(u1)−

(
k

2

)
− (k − 1)(nuk

(p1)− 1)

)
= W (T1) +W (T2)− 1

6
(k − 1)(k2 + k) + (n1 − k)dT2(v1) + (n2 − k)dT1(u1)

− 1

2
k(k − 1)(n1 + n2 − 2k)− 2(k − 1)(nuk

(p1)− 1)(nvk
(p2)− 1)

= W (T1) +W (T2) + (n1 − k)dT2(v1) + (n2 − k)dT1(u1)

+ 2(k − 1)[nuk
(p1) + nvk

(p2)− nuk
(p1)nvk

(p2)]

− 1

2
k(k − 1)(n1 + n2 − 2k) +

1

6
(k − 1) (−k2 − k + 6k2 − 12)︸ ︷︷ ︸

=5k2−k−12

,

which completes the proof.

Example 2.37. Let T , T1 and T2 be the trees shown in Figure 2.8. Furthermore let
p1 = (u1, u2, u3) and p2 = (v1, v2, v3). Then we have n1 = 11, n2 = 8, k = 3, dT1(u1) = 25,
dT2(v1) = 15, nu3(p1) = 4 and nv3(p2) = 1. Besides we easily compute W (T1) = 186 and
W (T2) = 71 by using e.g. the Doyle-Graver formula. According Theorem 2.36 we obtain

W (T ) = 186 + 71 + (11− 3)15 + (8− 3)25 + 2 · 2(4 + 1− 4)

− 1

2
· 3 · 2(11 + 8) +

1

6
· 2(5 · 32 − 3− 12) = 459.
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u1 u2 u3

(a) Tree T1 with path p1 = (u1, u2, u3).

v1 v2 v3

(b) Tree T2 with path p2 = (v1, v2, v3).

u1 u2 u3

v1 v2 v3

(c) Tree T which arose from T1 and T2 by identifying p1 and
p2.

Figure 2.8

Corollary 2.38. Let T1 and T2 be two trees on n1 and n2 vertices, respectively, and vertices
u ∈ V (T1) and v ∈ V (T2). Furthermore let T be the tree arising from T1 and T2 by
identifying u and v. Then

W (T ) = W (T1) +W (T2) + (n1 − 1)dT2(v2) + (n2 − 1)dT1(v1).

Proof. Obviously we get this formula by using Theorem 2.36 with k = 1.

u v u v u v u v

T T T T T

Figure 2.9: Fasciagraph F with generating tree T .

The above formulas just deal with a tree obtained by connecting only two trees. In
the following theorem, which can be found in [18], we are considering a tree F obtained
by connecting copies of the same graph T in a chain such that the vertex u of one copy of
T is linked to the vertex v of the next copy of T by an edge. An example of a so called
fasciagraph F is shown in Figure 2.9.
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Theorem 2.39. Let F be the fasciagraph formed by m copies of a tree T on n vertices,
m,n ≥ 1, and u, v ∈ V (T ) be the vertices by which the copies of T are linked. Then

W (F ) = mW (T ) +
1

2
nm(m− 1)[dT (u) + dT (v)]

+
1

6
n2m(m− 1)[(m− 2)dT (u, v) +m+ 1].

Proof. There are two different ways of choosing a pair of vertices: either they both lie in
the same copy of T or they lie in different ones. If they are in the same copy of T , the
contribution of all these pairs is mW (T ), which can easily be seen.

So let x be a vertex of the i-th copy of T and y of the (i + j)-th one. For better
readability we will write Tk for the k-th copy of T . Then the distance between x and y is
dF (x, y) = dT (x, u) + j+ (j−1)dT (v, u) +dT (v, y), where the second term on the right side
stands for the number of edges connecting all copies of T on the way from Ti to Ti+j. The
third term describes the number of edges one has to pass within the other j − 1 copies of
T on the way from x to y.

Together, we obtain

W (T ) = mW (T ) +
m−1∑
i=1

m−i∑
j=1

∑
x∈Ti

∑
y∈Ti+j

[dT (x, u) + j + (j − 1)dT (v, u) + dT (v, y)]

= mW (T ) + n
m−1∑
i=1

m−i∑
j=1

[dT (u) + dT (v)] + n2

m−1∑
i=1

m−i∑
j=1

j

+ n2

m−1∑
i=1

m−i∑
j=1

(j − 1)dT (u, v)

= mW (T ) + n[dT (u) + dT (v)]
m−1∑
i=1

(m− i) + n2

m−1∑
i=1

(m− i+ 1)(m− i)
2

+ n2dT (u, v)
m−1∑
i=1

(m− i)(m− i− 1)

2

= mW (T ) + n
m(m− 1)

2
[dT (u) + dT (v)] + n2

m−1∑
i=1

(
i+ 1

2

)

+ n2dT (u, v)
m−2∑
i=1

(
i+ 1

2

)
= mW (T ) +

1

2
nm(m− 1)[dT (u) + dT (v)] + n2

(
m+ 1

3

)
+ n2dT (u, v)

(
m

3

)
= mW (T ) +

1

2
nm(m− 1)[dT (u) + dT (v)]
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+
1

6
n2m(m− 1)[(m− 2)dT (u, v) +m+ 1].

Remark 2.40. Notice that nowhere in the proof of Theorem 2.39 the fact that T is a tree
was used. Thus the formula holds also for T an arbitrary connected graph.

Example 2.41. To illustrate Theorem 2.39 we consider the fasciagraph Fn,m obtained by
connecting m copies of the star Sn such that both u and v are the vertex with degree
degSn

(u) = n− 1. Thus we obtain

W (Fn,m) = m(n− 1)2 +
1

2
nm(m− 1)2(n− 1) +

1

6
n2m(m− 1)(m+ 1)

= m[(n− 1)(nm− 1) +
1

6
n2(m2 − 1)].

2.2.1 The Wiener index of a thorn tree

A completely different concept of reducing the Wiener index of a tree T1 to the Wiener
index of another tree T2 is to add some new leaves to T2:

Definition 2.7. Let T be a tree of order n. Then T ∗ is called thorn tree of T if T ∗ arises
form T by attaching ni new vertices to the vertex vi of T , i = 1, 2, . . ., n.

Remark 2.42. It is obvious that the number of vertices of T ∗ is n∗ = n +
∑n

i=1 ni and
degT ∗(vi) = degT (vi) + ni.

Furthermore notice that neither the thorn tree of a given tree nor the tree from which
the thorn tree has arisen is unique.

Figure 2.10: A tree and its thorn tree.

Example 2.43. An example of a tree T and one of its possible thorn trees T ∗ is given in
Figure 2.10, where the dashed edges indicate the new ones of T ∗. As one can see not all
vertices of T have to be connected with a new vertex.

The following formula for computing the Wiener index of the thorn tree T ∗ by using
the Wiener index of the corresponding tree T was given by Gutman in 1998 [10]:
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Theorem 2.44. Let T be a tree on n vertices and T ∗ its thorn tree. Then

W (T ∗) = W (T ) +
∑

1≤i<j≤n

(ni + nj)dT (vi, vj) +
∑

1≤i<j≤n

ninjdT (vi, vj)

+

( n∑
i=1

ni

)2

+ (n− 1)
n∑
i=1

ni

=
∑

1≤i<j≤n

(ni + 1)(nj + 1)dT (vi, vj) +

( n∑
i=1

ni

)2

+ (n− 1)
n∑
i=1

ni

with ni the number of new vertices connected to vi.

Proof. Let V (T ) = {v1, v2, . . . , vn}. For each pair of vertices x, y ∈ V (T ∗) we distinguish
between four cases:

Case 1: x ∈ V (T ) and y ∈ V (T ). It is obvious that dT ∗(x, y) = dT (x, y) and therefore
the contribution to the Wiener index of T ∗ of all such vertex pairs is W (T ).

Case 2: x ∈ V (T ), e.g. x = vj, and y ∈ V (T ∗) \ V (T ) with y attached to a vertex vi.
Then we obtain for all ni pairs {x, y} that dT ∗(x, y) = dT (x, vi) + 1.

Case 3: x, y ∈ V (T ∗) \ V (T ) with x attached to a vertex vi and y attached to a vertex
vj, i 6= j. Then dT ∗(x, y) = dT (vi, vj) + 2, and there are exactly ninj such pairs {x, y}.

Case 4: x, y ∈ V (T ∗) \ V (T ) with both attached to a vertex vi. Then dT ∗(x, y) = 2
and the number of such pairs is

(
ni

2

)
.

Altogether we get

W (T ∗) = W (T ) +
n∑
i=1

n∑
j=1

ni(dT (vi, vj) + 1) +
∑

1≤i<j≤n

ninj(dT (vi, vj) + 2) +
n∑
i=1

2

(
ni
2

)

= W (T ) +
∑

1≤i<j≤n

(ni + nj)dT (vi, vj) +
n∑
i=1

n∑
j=1

ni +
∑

1≤i<j≤n

ninjdT (vi, vj)

+

( n∑
i=1

ni

)2

−
n∑
i=1

n2
i +

n∑
i=1

ni(ni − 1)

= W (T ) +
∑

1≤i<j≤n

(ni + nj)dT (vi, vj) +
∑

1≤i<j≤n

ninjdT (vi, vj)

+

( n∑
i=1

ni

)2

+ (n− 1)
n∑
i=1

ni.

Since W (T ) =
∑

1≤i<j≤n
dT (vi, vj), we can also write the Wiener index of T ∗ as

W (T ∗) =
∑

1≤i<j≤n

(ni + 1)(nj + 1)dT (vi, vj) +

( n∑
i=1

ni

)2

+ (n− 1)
n∑
i=1

ni,

which completes the proof.
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v1 v2 v3 v4 v5

Figure 2.11

Example 2.45. Let us consider the thorn tree T ∗ shown in Figure 2.11. To use Theo-
rem 2.44 for computing the Wiener index of T ∗ we choose the path (v1, v2, v3, v4, v5) to be
the tree T and therefore n1 = 4, n2 = 1, n3 = 3, n4 = 0 and n5 = 2. Thus we obtain

W (T ∗) =
5∑
i=1

5∑
j=i+1

(ni + 1)(nj + 1)|j − i|+
( 5∑
i=1

ni

)2

+ 4
5∑
i=1

ni

= 186 + 100 + 40 = 326.

Remark 2.46. It is easily seen that in Theorem 2.44 the graph T need not be a tree, but
only a finite, connected and simple graph.

Now let us consider some special cases of Theorem 2.44:

Corollary 2.47. Let T be a tree on n vertices v1, v2, . . . , vn, and T ∗ its thorn tree with
ni = k, i = 1, 2, . . . , n. Then

W (T ∗) = (k + 1)2W (T ) + nk(nk + n− 1).

Proof. Simple substituting leads to

W (T ∗) = W (T ) +
∑

1≤i<j≤n

2kdT (vi, vj) + k2
∑

1≤i<j≤n

dT (vi, vj)

+

( n∑
i=1

k

)2

+ (n− 1)
n∑
i=1

k

= (1 + 2k + k2)W (T ) + k2n2 + kn(n− 1)

= (k + 1)2W (T ) + nk(nk + n− 1).

Example 2.48. Let T ∗ arise from the tree T of Figure 2.11 by connecting 3 vertices to
each vertex of T . According to Example 2.45 the Wiener index of T is 326. Therefore we
easily get

W (T ∗) = 4 · 326 + 15 · 3(15 · 3 + 15− 1) = 3959.

To obtain two further corollaries we first have to prove the following lemma:
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Lemma 2.49. Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. Then∑
1≤i<j≤n

(degT (vi) + degT (vj))dT (vi, vj) = 4W (T )− n(n− 1) (2.6)

and ∑
1≤i<j≤n

degT (vi) degT (vj)dT (vi, vj) = 4W (T )− (n− 1)(2n− 1). (2.7)

Proof. To prove the two equations we use equation (2.1) in a more generalized form, which
means that every pair {vi, vj} is associated with a weight ωij. Since equation (2.1) can be
rewritten as

W (T ) =
∑

e=(va,vb)∈E(T )

∑
vi∈V (Ta)

∑
vj∈V (Tb)

1

using the notation defined in Theorem 2.6, we obtain by similar considerations

Wω(T ) :=
∑

1≤i<j≤n

ωijdT (vi, vj) =
∑

e=(va,vb)∈E(T )

∑
vi∈V (Ta)

∑
vj∈V (Tb)

ωij.

Let ωij = degT (vi) + degT (vj). Then∑
1≤i<j≤n

(degT (vi) + degT (vj))dT (vi, vj) =

=
∑

e=(va,vb)∈E(T )

( ∑
vi∈V (Ta)

∑
vj∈V (Tb)

degT (vj) +
∑

vi∈V (Ta)

∑
vj∈V (Tb)

degT (vj)

)

=
∑

e=(va,vb)∈E(T )

(
nvb

(e)
∑

vi∈V (Ta)

degT (vi) + nva(e)
∑

vj∈V (Tb)

degT (vj)

)
=

∑
e=(va,vb)∈E(T )

(nvb
(e)[2(nva(e)− 1) + 1] + nva(e)[2(nvb

(e)− 1) + 1])

=
∑

e=(va,vb)∈E(T )

[4nva(e)nvb
(e)− (nva(e) + nvb

(e))]

= 4W (T )− n(n− 1).

The third equation holds as
∑

v∈V (G) degG(v) = 2|E(G)| for all finite graphs G, and fur-

thermore we use the fact that degT (v) = degTl
(v) for all vertices v ∈ V (Tl \ {vl}) and

degT (vl) = degTl
(vl)− 1, l = a, b.

Now let ωij = degT (vi) degT (vj). Then∑
1≤i<j≤n

(degT (vi) degT (vj))dT (vi, vj) =
∑

e=(va,vb)∈E(T )

( ∑
vi∈V (Ta)

degT (vi)
∑

vj∈V (Tb)

degT (vj)

)
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=
∑

e=(va,vb)∈E(T )

[2(nva(e)− 1) + 1][2(nvb
(e)− 1) + 1]

=
∑

e=(va,vb)∈E(T )

[4nva(e)nvb
(e)− 2(nva(e) + nvb

(e)) + 1]

= 4W (T )− (n− 1)(2n− 1),

which completes the proof.

Corollary 2.50. Let T be a tree of order n and T ∗ its thorn tree with parameters ni =
degT (vi), i = 1, 2, . . ., n. Then

W (T ∗) = 9W (T ) + (n− 1)(3n− 5).

Proof. Using Theorem 2.44 and Lemma 2.49 we obtain

W (T ∗) = W (T ) +
∑

1≤i<j≤n

(degT (vi) + degT (vj))dT (vi, vj)

+
∑

1≤i<j≤n

degT (vi) degT (vj)dT (vi, vj) +

( n∑
i=1

degT (vi)

)2

+ (n− 1)
n∑
i=1

degT (vi)

= W (T ) + 4W (T )− n(n− 1) + 4W (T )− (n− 1)(2n− 1)

+ 4(n− 1)2 + 2(n− 1)2

= 9W (T ) + (n− 1)(3n− 5).

Corollary 2.51. Let T be a tree on n vertices and T ∗ its thorn tree with parameters
ni = m− degT (vi) ≥ 0, i = 1, 2, . . ., n. Then

W (T ∗) = (m− 1)2W (T ) + [(m− 1)n+ 1]2.

Proof. In the same manner as in Corollary 2.50 we compute

W (T ∗) = W (T ) +
∑

1≤i<j≤n

(2m− degT (vi)− degT (vj))dT (vi, vj)

+
∑

1≤i<j≤n

(m− degT (vi))(m− degT (vj))dT (vi, vj)

+

( n∑
i=1

(m− degT (vi))

)2

+ (n− 1)
n∑
i=1

(m− degT (vi))

= W (T ) + 2mW (T )− (4W (T )− n(n− 1)) +m2W (T )



CHAPTER 2. DIFFERENT WAYS TO COMPUTE... 37

−m(4W (T )− n(n− 1)) + 4W (T )− (n− 1)(2n− 1)

+ (mn− 2(n− 1))2 + (n− 1)(mn− 2(n− 1))

= (m− 1)2W (T ) + (mn)2 − 2mn(n− 1) + (n− 1)2

= (m− 1)2W (T ) + [(m− 1)n+ 1]2.

Another special case of thorn trees are the so-called caterpillars. In [2] a formula for
regular caterpillars is presented.

Definition 2.8. If T is a path, its thorn tree T ∗ is called a caterpillar.
We denote a caterpillar by T ∗(a, b) if all vertices which are not leaves have the same

degree a > 1 and b > 0 is the number of non-leaves.

Corollary 2.52. Let T ∗(a, b) be as before. Then

W (T ∗(a, b)) =
(a− 1)b

6
[(a− 1)(b− 1)(b+ 7) + 6(a+ 1)] + 1.

Proof. Substituting into the formula of Corollary 2.51 we get

W (T ∗(a, b)) = (a− 1)2W (Pb) + [(a− 1)b+ 1]2

= (a− 1)2

(
b+ 1

3

)
+ (a− 1)2b2 + 2(a− 1)b+ 1

= (a− 1)b

[
(a− 1)

(
b2 − 1

6
+ b

)
+ 2

]
+ 1

=
(a− 1)b

6
[(a− 1)(b2 + 6b− 1) + 12] + 1

=
(a− 1)b

6
[(a− 1)(b− 1)(b+ 7) + 6(a+ 1)] + 1.

2.2.2 A k-subdivision of a tree and its Wiener index

By increasing the length of the segments in a tree we obtain another concept of growing
trees (see [5]):

Definition 2.9. Let T be a tree. T ′ is called k-subdivision of T if T ′ arises from T by
replacing every edge of T by a path of length k + 1.

Notice that the order of T ′ is n′ = k(n − 1) + n and the degree of each new vertex is
exactly 2, whereas degT ′(v) = degT (v) for all v ∈ V (T ).
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Theorem 2.53. Let T be a tree on n vertices and T ′ its k-subdivision. Then

W (T ′) = (k + 1)3W (T ) +

(
n′ + 1

3

)
− (k + 1)3

(
n+ 1

3

)
with n′ the order of T ′.

Proof. Applying formula 2.2 to T ′ we get

W (T ′) =

(
n′ + 1

3

)
−

∑
v∈V (T ′)

∑
1≤i<j<l≤degT ′ (v)

|V (T ′i )| · |V (T ′j)| · |V (T ′l )|

=

(
n′ + 1

3

)
−
∑

v∈V (T )

∑
1≤i<j<l≤degT (v)

(k + 1)3|V (Ti)| · |V (Tj)| · |V (Tl)|

=

(
n′ + 1

3

)
+ (k + 1)3W (T )− (k + 1)3

(
n+ 1

3

)
.

Example 2.54. Let T be the tree shown in Figure 2.1 and T ′ its 3-subdivision. As we
already know that W (T ) = 250 we can easily compute the Wiener index of T ′ by using
Theorem 2.53. Thus we obtain

W (T ′) = 43 · 250 +

(
50

3

)
− 43

(
14

3

)
= 12304.

In [18] Polansky and Bonchev also consider a tree T1 which is obtained from T by
1-subdividing only one edge e = (u, v) of T :

Theorem 2.55. Let T be a tree of order n and e = (u, v) ∈ E(T ). Furthermore let T1 be
the tree as described above. Then

W (T1) = W (T ) +
1

2
[dT (u) + dT (v) + nu(e) + 2nu(e)nv(e) + nv(e)].

Proof. Let the new vertex between u and v be denoted by w. Considering two vertices x
and y ∈ V (T1) we distinguish between three cases:

If x, y ∈ V (Tl), l = u, v, we have dT1(x, y) = dT (x, y).
If x ∈ V (Tu) and y ∈ V (Tv), we obtain dT1(x, y) = dT (x, y) + 1.
If x ∈ V (Tl), l = u, v, and y = w, we get dT1(x, y) = dT (x, l) + 1.

Furthermore it is easy to see that

dT (u) = dTu(u) +
∑

x∈V (Tv)

dT (u, v) = dTu(u) + dTv(v) + nv(e)

and analogously
dT (v) = dTu(u) + dTv(v) + nu(e).
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Altogether we obtain

W (T1) =
∑

{x,y}⊆V (Tu)

dT (x, y) +
∑

{x,y}⊆V (Tv)

dT (x, y) +
∑

x∈V (Tu)

∑
y∈V (Tv)

(dT (x, y) + 1)

+
∑

x∈V (Tu)

(dT (x, u) + 1) +
∑

x∈V (Tv)

(dT (x, v) + 1)

= W (T ) + nu(e)nv(e) + dTu(u) + nu(e) + dTv(v) + nv(e)

= W (T ) + nu(e)nv(e) +
1

2
[dT (u) + dT (v)− nu(e)− nv(e)] + nu(e) + nv(e)

= W (T ) +
1

2
[dT (u) + dT (v) + nu(e) + 2nu(e)nv(e) + nv(e)].

Example 2.56. We again choose T to be the tree in Figure 2.1. Furthermore let T1 be
the tree which is obtained by 1-subdividing e = (v4, v5). Since dT (v4) = 27, dT (v5) = 30,
nv4(e) = 8 and nv5(e) = 5, we get

W (T1) = 250 +
1

2
(17 + 30 + 8 + 2 · 8 · 5 + 5) = 325

according to Theorem 2.55.



Chapter 3

Lower and upper bounds

Since calculating the Wiener index of a graph can be computationally expensive, it is
of some interest to know the extreme values of the Wiener index, particularly of graphs
belonging to certain classes.

3.1 Bounds for general graphs

Some very basic bounds for the Wiener index are given in [11]. The first inequality men-
tioned here shows how the Wiener index of a graph and of its subgraph are related.

Theorem 3.1. Let G be a connected graph and e ∈ E(G). Furthermore let G′ be the graph
with vertex set V (G) and edge set E(G) \ {e}. Then

W (G) < W (G′).

Proof. Let e = (u, v). Then for each vertex pair x, y with e lying on the shortest path
between x and y we obviously have dG(x, y) ≤ dG′(x, y). Since dG(u, v) < dG′(u, v), we
obtain W (G) < W (G′).

This immediately leads to the following theorem about graphs and their spanning trees:

Theorem 3.2. Let G be a connected graph and T its spanning tree. Then

W (G) ≤ W (T )

with equality if and only if G is a tree.

A lower bound for the Wiener index of an arbitrary graph is given by the next theorem:

Theorem 3.3. Let G be a connected graph. Then

W (G) ≥ n(n− 1)

2
.

40
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Proof. The Wiener index of the complete graph Kn on n vertices can be easily computed
as

W (Kn) =
n−1∑
i=1

i =
n(n− 1)

2
.

According to Theorem 3.1 each subgraph G of Kn with E(G) ⊂ E(Kn) has Wiener index
less than the Wiener index of Kn. Since each graph of order n is a subgraph of the complete
graph, the inequality holds.

In [8] closer bounds are given if the number of edges is fixed.

Theorem 3.4. Let G be a connected graph with n vertices and m edges. Then

n(n− 1)−m ≤ W (G) ≤ n3 + 5n− 6

6
−m.

Proof. In order to prove the first inequality we consider the distance between two vertices
u and v. If u and v are neighbours, we obtain dG(u, v) = 1 and otherwise dG(u, v) ≥ 2.
Since |E(G)| = m, there are exactly m unordered vertex pairs with distance 1 and

(
n
2

)
−m

unordered vertex pairs with distance greater than 1. Thus we obtain

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) ≥ m+ 2

[(
n

2

)
−m

]
= n(n− 1)−m.

The second inequality is shown by induction on n and n− 1 ≤ m ≤
(
n
2

)
. For n = 2 the

inequality holds since K2 is the only connected graph and W (K2) = 1 ≤ 8+10−6
6
− 1 = 1.

Now let us assume that the second inequality holds for all connected graphs of order n.
Let T be a tree on n + 1 vertices and v a leaf of T . Furthermore let T ′ be the subtree of
T induced by V (T ) \ {v}. Then the inequality holds for T ′ and we obtain

W (T ) = W (T ′) + dT (v) ≤ n3 + 5n− 6

6
− (n− 1) +

n∑
i=1

i

=
(n+ 1)3 + 5(n+ 1)− 6

6
− n.

Let us assume that the inequality holds for all connected graphs with n vertices and
m ≥ n−1 edges. We consider the connected graph G with n vertices and m+1 edges. Since
G is no tree, it contains an edge e such that G′ with vertex set V (G) and edge set E(G)\{e}
is a connected subgraph of G. According to Theorem 3.1 we obtain W (G) ≤ W (G′) − 1.
As the assumption holds for G′ we have

W (G) ≤ W (G′)− 1 ≤ n3 + 5n− 6

6
−m− 1,

which completes the proof.
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Corollary 3.5. Among all connected graphs of order n the path Pn maximizes the Wiener
index.

Proof. Let G be a connected graph with n vertices and m edges. Since G is connected, we
have n− 1 ≤ m. Due to Theorem 3.4 we have

W (G) ≤ n3 + 5n− 6

6
−m ≤ n3 + 5n− 6

6
− (n− 1)

=
n3 − n

6
=

(
n+ 1

3

)
= W (Pn).

3.2 Bounds for trees

Because of Corollary 3.5 we already have an upper bound for the Wiener index of trees.
By Corollary 3.6 we also obtain a lower bound.

Corollary 3.6. Among all trees of order n the star Sn minimizes the Wiener index.

Proof. Since the number of edges in a tree of order n is m = n−1, we obtain by Theorem 3.4

(n− 1)2 ≤ W (T ).

Thus, as W (Sn) = (n− 1)2, the star Sn has the minimal Wiener index among all trees of
order n.

Another question that immediately arises is: Which extremal values of the Wiener
index can be obtained if the order of the tree and its maximum degree or even its entire
degree sequence is given? In the following two subsections we will take a closer look at
these problems.

3.2.1 Trees with given maximum degree

As the maximum degree in Pn is 2, it is obvious that Pn still maximizes the Wiener index
among all trees of order n and maximum degree at most ∆ ≥ 2. Therefore this subsection
will be mainly devoted to solve the following problem:

Problem 3.1. What trees minimize the Wiener index among all trees of given order n
and maximum degree at most ∆ ≥ 2?

Remark 3.7. If ∆ = 2, the only tree with degree at most 2 and therefore the optimal
solution is the path Pn. Also if n ≤ ∆+1, the problem gets trivial and the optimal solution
is the star Sn+1. Thus Problem 3.1 is only of interest if ∆ ≥ 3 and n > ∆ + 1.
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In order to discuss Problem 3.1 we have to consider a special class of trees described in
the definition below (see [9] ).

Definition 3.2. Let ∆ ≥ 3 and R ∈ {∆ − 1,∆}. Then T (R,∆) is defined as the set of
all trees T which can be embedded in the plane as follows:

Let n = |V (T )|, M0(R,∆) = 1 and Mi(R,∆) = 1 + R

k−1∑
j=0

(∆ − 1)j for all i ≥ 1.

Furthermore let
Mk(R,∆) ≤ n < Mk+1(R,∆)

for some k ≥ 0 and
n−Mk(R,∆) = m(∆− 1) + r

with m ≥ 0 and 0 ≤ r < ∆− 1. Then

1. all vertices of T lie on some line R× {i} with 0 ≤ i ≤ k + 1,

2. on line R × {0} there is just one single vertex which has exactly min{n − 1, R}
neighbours lying all on line R× {1},

3. on line R×{i}, 1 ≤ i ≤ k−1, every vertex has a unique neighbour on line R×{i−1}
and ∆− 1 neighbours on line R× {i+ 1},

4. if v1, . . . , vm+1 are the m + 1 leftmost vertices on line R × {k} such that va lies left
of vb for a < b, then vj has ∆ − 1 neighbours on line R × {k + 1}, 1 ≤ j ≤ m, and
vm+1 has r neighbours on line R× {k + 1}.

Figure 3.1: The tree T ∈ T (3, 3) with n = 27.

Example 3.8. An example of an element of T (R,∆) with R = ∆ = 3 is shown in
Figure 3.1.

Remark 3.9. For every n ∈ N the set T (R,∆) contains a unique tree T of order n up to
isomorphism.

Notice that Mi(R,∆) is the number of vertices being assigned to the lines 0 up to i.
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Definition 3.3. Let T be a tree on n vertices and v ∈ V (T ). A maximal subtree B
containing v as a leaf is called a branch of T at v. The weight bw(B) of B is defined as the
number of edges in B and the branch-weight bw(v) of v is the maximum of the weights of
all branches at v. Then it is easy to see that n =

∑k
i=1 bw(Bi) with Bi, i = 1, . . . , k, being

the k branches of T at v.
Furthermore the centroid C(T ) of T is the set of vertices in T with minimum branch-

weight.

In [5] the following characterisation of centroids is mentioned:

Theorem 3.10. Let T be a tree of order n and C(T ) its centroid. Then one of the following
holds:

(i) C(T ) = {c} and bw(c) ≤ n−1
2

,

(ii) C(T ) = {c1, c2} and bw(c1) = bw(c2) = n
2
.

Proof. Assume that |C(T )| ≥ 3, then there exist pairwise distinct c1, c2, c3 ∈ C(T ). It is
obvious that bw(c1) = bw(c2) = bw(c3). Let B1 be the branch of c1 with bw(B1) = bw(c1).
Then we distinguish the following cases:

(i) c2, c3 /∈ V (B1),

(ii) c2 /∈ V (B1) and c3 ∈ V (B1) (the case c2 ∈ V (B1) and c3 /∈ V (B1) is the same due to
symmetry),

(iii) c2, c3 ∈ V (B1).

For cases (i) and (ii) we immediately obtain that there exists a branch B2 of c2 with
V (B1) ∪ {c1} ⊆ V (B2). Thus we have bw(B2) > bw(B1) = bw(c1) = bw(c2) which is a
contradiction.

Now let c2, c3 ∈ V (B1) (case (iii)). If there exists another branch B′1 of c1 with bw(B′1) =
bw(B1), we obviously have c2, c3 /∈ V (B′1) and therefore we can use the argumentation of
cases (i) and (ii) to obtain a contradiction. Thus for all branches B′1 6= B1 of c1 we have
bw(B′1) < bw(B1). Since c2 and c3 are in the same branch of c1, there exists a vertex v
which is a neighbour of c1 and lies on the paths from c1 to c2 and from c1 to c3. That
indicates that v ∈ V (B1) and either v 6= c2 or v 6= c3. W.l.o.g. v 6= c2. Since there
exists a path c1 → v → c2, we obtain that there also exists a branch B2 of c2 with
c1, v ∈ V (B2). Let Bv be a branch of v. If c1 ∈ V (Bv), we get V (Bv) ⊂ V (B2) and
thus bw(Bv) < bw(B2) ≤ bw(c2) = bw(c1). If c1 /∈ V (Bv), we have V (Bv) ⊂ V (B1)
and therefore bw(Bv) < bw(B1) = bw(c1). Hence we obtain bw(v) < bw(c1), which is a
contradiction to the assumption that c1 ∈ C(T ).

Therefore |C(T )| ≤ 2. Let C(T ) = {c} and furthermore we assume bw(c) > n−1
2

. Let
B1, B2, . . ., Bk be the branches at c and w.l.o.g. let bw(B1) = bw(c). Furthermore we
denote the vertex of B1 connected with c by u. As E(T ) = n− 1, we get that

k∑
i=2

bw(Bi) <
n− 1

2
.
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Considering the branch Ba of u containing B2, . . ., Bk and c we obtain bw(Ba) <
n−1

2
+ 1

and therefore
bw(Ba) ≤ bw(c).

On the other hand, as the other branches of u are subtrees of B1 without c, their branch-
weight is smaller than bw(B1). Altogether we get

bw(u) ≤ bw(c),

which is a contradiction to C(T ) = {c}.
In case C(T ) = {c1, c2} it is easy to see that for ci the branch Bi with maximum weight

has to contain cj with i 6= j. Furthermore there are no further vertices on the path between
c1 and c2 (as otherwise such a vertex would lie in both B1 and B2 and therefore the weight
of such a vertex would be less than bw(c1)). Since all edges except (c1, c2), which is counted
twice, are counted exactly once, we get

bw(c1) + bw(c2) = n− 1 + 1 = n

and thus bw(c1) = bw(c2) = n
2
, which completes the proof.

In order to find a solution to Problem 3.1 we have to prove the following lemma, which
can be found in [9], first.

Lemma 3.11. Let T ∈ T (R,∆) be of order n with Mk(R,∆) < n < Mk+1(R,∆) for
some k ≥ 1. Furthermore let T0 ∈ T (R,∆) be of order Mk(R,∆) and T arise from T0 by
attaching n −Mk(R,∆) new vertices which lie on the line R × {k + 1} to the vertices of
T0 lying on the line R× {k}. Then either W (T ) < W (T ′) or T and T ′ are isomorphic.

Proof. Let T ′ be the tree with minimum Wiener index among all trees which arise from
T0 in the manner described above. Then we show that T ′ and T are isomorphic.

Let v ∈ V (T0) lie on the line R × {i} with 0 ≤ i ≤ k. Furthermore the subtree of T ′

containing v and only vertices lying on a line R×{j} with j > i is denoted by Tv. We call
Tv full (empty) if all vertices of Tv on line R× {k} have degree ∆ (1).

We choose the following planar embedding of T ′: For each v lying on line R × {i},
i ≤ k − 1, beginning with i = k − 1 we consider the subtrees of all neighbours of v on
line R × {i + 1}. We arrange the subtrees according to the number of their vertices in a
decreasing manner, the subtree with most vertices lying leftmost.

Claim: Let the vertex v lie on line R × {i}, i ≤ k − 1. Furthermore we denote the
neighbours of v on line R×{i+ 1} by v1, . . ., vl. Then there exists at most one tree among
Tv1 , . . ., Tvl

which is neither full nor empty.
If the claim holds, with this particular planar embedding of T ′ it is easy to see that T ′

and T are isomorphic.
Proof of the claim: In order to prove the claim by contradiction we assume that there

exists a vertex v lying on line R × {i} with maximum i, i ≤ k − 1, such that v has at
least two neighbours v1 and v2 on line R × {i + 1} with Tv1 , Tv2 being neither full nor



CHAPTER 3. LOWER AND UPPER BOUNDS 46

v1 v2

v

v1 v2

v

(a) Case p = (∆− 1)k−i − |V1|.

v1 v2

v

v1 v2

v

(b) Case p = |V2|.

Figure 3.2: How T ′′ arises from T ′.

empty. W.l.o.g. we assume that |V (Tv1)| ≥ |V (Tv2)|, which also means that v1 lies left of
v2 according to the embedding described above. Since the claim holds for all j > i, there
is at most one vertex in V (Ta), a = 1, 2, on line R× {k} of degree 6= 1, ∆.

Furthermore we define

V1 = {x ∈ Tv1 : x lies on line R× {k + 1}}

and V2 analogously. Thus we get

1 ≤ |V1| ≤ |V2| < (∆− 1)k−i.

Let p = min{(∆ − 1)k−i − |V1|, |V2|}, then obviously 1 ≤ p. The idea is to take p vertices
of V2 and to rearrange them such that they are in V1 \ V2. Therefore let x1, . . . , xp be the
leftmost vertices of V2, and furthermore with q = d p

∆−1
e let y1, . . . , yq be the rightmost

vertices in V (Tv1) on line R× {k} and z1, . . . , zq be the leftmost vertices in V (Tv2) on the
same line, all counted from left to right. Then we define the tree T ′′ with vertex set V (T ′)
and edge set(

E(T ′) \ {(xj, zd j
∆−1
e) : 1 ≤ j ≤ p}

)
∪ {(xj, yd j+b

∆−1
e) : 1 ≤ j ≤ p}

with b = degT ′(y1)− 1 (see Figure 3.2).
If x, y ∈ V (T ′) \ {x1, . . . , xp}, the distance between x and y is the same in T ′′ as in

T ′. Moreover the sum of the distances between all vertex pairs x ∈ {x1, . . . , xp} and
y ∈ (V (T ′) \ (V1 ∪ V2)) ∪ {x1, . . . , xp} is also the same in T ′′ as in T ′. Thus we get

W (T ′)−W (T ′′) =
∑

x∈{x1,...,xp}
y∈(V1∪V2)\{x1,...,xp}

(dT ′(x, y)− dT ′′(x, y)).
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Considering the subtree of T ′′ induced by V (Tv1) ∪ {x1, . . . , xp} it is easy to see that it
contains a tree T ∗v2

∼= Tv2 such that {x1, . . . , xp} ⊆ V (T ∗v2
). Let V ∗1 = V1 \ V (T ∗v2

), then∑
x∈{x1,...,xp}

y∈(V1\V ∗1 )∪V2\{x1,...,xp}

(dT ′(x, y)− dT ′′(x, y)) = 0.

Thus we obtain

W (T ′)−W (T ′′) =
∑

x∈{x1,...,xp}
y∈V ∗1

(dT ′(x, y)− dT ′′(x, y))

≥
∑

x∈{x1,...,xp}
y∈V ∗1

(2(k + 1− i)− 2(k − i)) > 0,

which is a contradiction to the assumption concerning the Wiener index of T ′ and therefore
the claim holds.

In Lemma 3.12 we use the following notation: Let v ∈ V (T ) with T a tree. If the
centroid C(T ) 6= {v}, then let Tv be the subtree of T induced by

{u ∈ V (T ) : dT (u, c) = dT (u, v) + dT (v, c) for all c ∈ C(T )}

(compare definition of collinear). If C(T ) = {v}, then Tv = T .

Lemma 3.12. Let T be a tree on n vertices and maximum degree at most ∆, ∆ ≥ 3,
such that W (T ) ≤ W (T ′) for all trees T ′ on n vertices and maximum degree at most ∆.
Furthermore let v ∈ V (T ). Then Tv ∈ T (∆− 1,∆) if C(T ) 6= {v}, and Tv ∈ T (∆,∆) if
C(T ) = {v}.

Proof. If n ≤ ∆ + 1, the tree with minimum Wiener index is the star Sn, as mentioned in
Remark 3.7, and hence the lemma holds in this case.

Thus let n > ∆ + 1. In order to prove the lemma by induction, we define h(Tv) as the
maximum distance of v to a leaf of Tv. In case h(Tv) = 0, we have V (Tv) = {v} and thus
Tv ∈ T (∆,∆). If h(Tv) = 1, Tv is a star with degTv

(v) ≤ ∆−1 and, as a result, the lemma
holds too.

Now let h(Tv) ≥ 2.
Claim: Let (x1, x2, . . . , xl) be a path in Tv such that x1 = v ∈ C(T ). Then we get

degT (xj) = ∆ for all 1 ≤ j ≤ l − 2.
If the claim holds, we distinguish two different cases:

• Case 1: There exist two leaves w1 and w2 in Tv such that dT (v, w2) ≥ dT (v, w1) + 2.

• Case 2: For all leaves w1 and w2 in Tv their distance to v differs by at most 1.
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Ad case 1: We assume that w1 has minimum distance d1 from v among all leaves of
Tv and d2 := dT (w2, v) = h(Tv). As for all x 6= v the subtree Tx of Tv is in T (R,∆) with
R ∈ {∆ − 1,∆} by induction, the distance between x and a leaf of Tx differs by at most
1. Therefore the only subtree containing w1 and w2 is Tv itself. Let v1 and v2, v1 6= v2,
be two neighbours of v in Tv such that vi lies on the path between v and wi, i = 1, 2. By
induction, Tvi

∈ T (∆− 1,∆) for i = 1, 2. Furthermore let u be the neighbour of v2 which
lies on the path between v2 and w2. Therefore we obtain that in the planar embedding of
Tv1 and Tv2 according to Definition 3.2 v1 and v2 lie on line R×{0}, u lies on line R×{1},
wi lies on line R × {di − 1} for i = 1, 2 and all other vertices in V (Tv1) and V (Tv2) lie on
the lines R× {j} with 1 ≤ j ≤ d1 and 1 ≤ j ≤ d2 − 1, respectively. W.l.o.g. let w2 be the
vertex lying leftmost on line R× {d2 − 1} in Tv2 . Furthermore let V1 be the set of vertices
on line R × {d1} in Tv1 , let V2 be the set of vertices on line R × {d2 − 1} in Tv2 and let
V3 = V (Tv2) \ V (Tu).

Then we easily obtain

|V (Tu)|+ |V3| = |V (Tv2)| ≤ bw(v) ≤ bw(v2) = |V (T ) \ V (Tv2)|.

Hence if |V (Tv1)| < |V (Tu)|, we get

|V3| < |V (T ) \ V (Tv2)| − |V (Tv1)| = |V (T ) \ (V (Tv2) ] V (Tv1))|.

Now we consider the tree T ′ with vertex set V (T ) and edge set

(E(T ) \ {(v, v1), (v2, u)}) ∪ {(v, u), (v2, v1)}.

Then

W (T )−W (T ′) = (|V (Tu)| − |V (Tv1)|) (|V (T ) \ (V (Tv1) ∪ V (Tv2))| − |V3|) > 0,

which is a contradiction.
Therefore |V (Tv1)| ≥ |V (Tu)|. Thus we obtain

d2−3∑
i=0

(∆− 1)i < |V (Tu)| ≤ |V (Tv1)| <
d1∑
i=0

(∆− 1)i,

which implies d1 > d2 − 3. According to the definition of d1 and d2, we get d1 = d2 − 2.
Hence Tv1 − V1

∼= Tu − V2.
As w2 is the leftmost vertex lying on line R× {d1 + 1} of Tv2 , Tu must be full if there

is any vertex of V2 lying in V3, which would be a contradiction to |V (Tv1)| ≥ |V (Tu)| and
Tv1 not full. Thus we obtain V2 ⊆ V (Tu), and furthermore |V1| ≥ |V2|. This implies that

|V3| ≤ 1 + (∆− 2)

d1−1∑
i=0

(∆− 1)i.

In order to construct a tree T ′ such that W (T ) > W (T ′), analogously to the proof of
Lemma 3.11 we define p = min{(∆− 1)d1−|V1|, |V2|} ≥ 1. Let x1, . . . , xp be the p leftmost
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vertices in V2. For q = d p
∆−1
e let y1, . . . , yq be the rightmost q vertices on line R×{d1− 1}

of Tv1 and z1, . . . , zq be the leftmost q vertices on line R×{d1} of Tv2 , all counted from left
to right. Then we define T ′ to be the tree with vertex set V (T ) and edge set(

E(T ) \ {(xj, zd j
∆−1
e) : 1 ≤ j ≤ p}

)
∪ {(xj, yd j+b

∆−1
e) : 1 ≤ j ≤ p}

with b = degT ′(y1) − 1. It is obvious that the sum of the distances between all pairs of
vertices in V (T ) \ {x1, . . . , xp} is the same in T and T ′, and analogously the sum of the
distances between all vertex pairs in {x1, . . . , xp}. Thus

W (T )−W (T ′) =
∑

x∈{x1,...,xp}
y∈V (T )\{x1,...,xp}

(dT (x, y)− dT ′(x, y)).

If x ∈ {x1, . . . , xp} and y ∈ V (T ) \ (V (Tv1) ∪ V (Tv2)), we get dT (x, y) − dT ′(x, y) = 1. If
x ∈ {x1, . . . , xp} and y ∈ V3, we get dT (x, y)− dT ′(x, y) = −1.

In case C(T ) = {v}, we get degT (v) = ∆ by using the claim. Thus

|V (T ) \ (V (Tv1) ∪ V (Tv2))| ≥ 1 + (∆− 2)

d1−1∑
i=0

(∆− 1)i ≥ |V3|.

In case C(T ) 6= {v}, we also get

|V (T ) \ (V (Tv1) ∪ V (Tv2))| > |V (T ) \ V (Tv)| ≥ |V (Tv)| > |V3|.

Altogether we obtain∑
x∈{x1,...,xp}

y∈V (T )\(V (Tv1 )∪V (Tu))

(dT (x, y)− dT ′(x, y)) = p(|V (T ) \ (V (Tv1) ∪ V (Tv2))| − |V3|) ≥ 0,

since V (Tu) ∪ V3 = V (Tv2).
Considering the subtree of T ′ induced by the vertex set V (Tv1)∪ {x1, . . . , xp} it is easy

to see that it contains a subtree T ∗u
∼= Tu with {x1, . . . , xp} ⊆ V (T ∗u ). Let V ∗1 = V1 \V (T ∗u ),

then obviously V ∗1 6= ∅. Thus we get∑
x∈{x1,...,xp}

y∈(V (Tv1 )∪V (Tu))\V ∗1

(dT (x, y)− dT ′(x, y)) = 0

and finally ∑
x∈{x1,...,xp}

y∈V ∗1

(dT (x, y)− dT ′(x, y)) ≥ p|V ∗1 |((2d1 + 3)− 2d1) > 0.
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Therefore we get
W (T )−W (T ′) > 0,

which is a contradiction to the choice of T .
Ad case 2: Let Mk(R,∆) ≤ |V (Tv)| < Mk+1(R,∆) for some k ≥ 1. Since in this case

the distance from two leaves of Tv to v differs by at most 1 and the claim implies that all
vertices of T except the leaves and their neighbours have degree ∆, T arises from a tree
T0 ∈ T (R,∆) of order Mk(R,∆) by attaching n−Mk(R,∆) new vertices which lie on line
R× {k + 1} to the vertices of T0 lying on line R× {k}. Using Lemma 3.11 we obtain the
desired result.

Proof of the claim: Since xi ∈ V (Tv), 2 ≤ i ≤ l, we obtain from the definition of Tv that
xi /∈ C(T ). To prove the claim by contradiction, let degT (xj) < ∆ for some 1 ≤ j ≤ l − 2.
Furthermore we define Vj+2 = V (Txj+2

), Vj+1 = V (Txj+1
) \ Vj+2 and Vj = V (T ) \ (Vj+1 ∪

Vj+2). Because of the definition of the centroid and Tv, it is easy to see that |Vj| > |Vj+1|.
Let T ′′ be the tree with vertex set V (T ) and edge set (E(T )\{(xj+1, xj+2)})∪{(xj, xj+2)}.
Then we obtain

W (T )−W (T ′′) = |Vj+2| (|Vj| − |Vj+1|) > 0,

which is a contradiction to the definition of T .

Now we can give the solution to Problem 3.1:

Theorem 3.13. Let T be a tree of order n and maximum degree at most ∆ with ∆ ≥ 3.
Then W (T ) ≤ W (T ′) for all trees T ′ of order n and maximum degree at most ∆ if and
only if T ∈ T (∆,∆).

Proof. If C(T ) = {c}, it immediately follows from Lemma 3.12 that T ∈ T (∆,∆).
If C(T ) = {c1, c2}, we know from Theorem 3.10 that |V (Tc1)| = |V (Tc2)| = n

2
. Further-

more by Lemma 3.12 we obtain Tc1 , Tc2 ∈ T (∆ − 1,∆). Therefore Tc1 and Tc2 must be
isomorphic. Because of Lemma 3.11 we get that |V (Tc1)| = |V (Tc2)| = Mk(∆ − 1,∆) for
some k ≥ 0, which implies that T ∈ T (∆,∆).

Since the number of possible trees is finite, there has to be an optimal tree and, as we
have already shown, it has to be in T (∆,∆). Thus if T ∈ T (∆,∆), it is the optimal tree,
which completes the proof.

The solution to Problem 3.1 leads to another question:

Problem 3.4. Which trees maximize the Wiener index among all trees of given order n
(with n ≡ 2 mod (∆− 1)) whose vertices are either leaves or of degree ∆?

A solution to this problem was also given in [9], but since it is just a special case of
Problem 3.7, we will deal with it later on.
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3.2.2 Trees with given degree sequence

Minimizing the Wiener index

On the following pages we consider the problem described below (see [21]).

Problem 3.5. Given an integer sequence (d1, . . . , dn) with

d1 ≥ d2 ≥ · · · ≥ dk ≥ 2 > 1 = dk+1 = · · · = dn

and
n∑
i=1

di = 2(n− 1),

we want to find a tree with degree sequence (d1, . . . , dn) which minimizes the Wiener index
among all trees of the same degree sequence.

Definition 3.6. Let (d1, . . . , dn) be the degree sequence of the tree T with

d1 ≥ d2 ≥ · · · ≥ dk ≥ 2 > 1 = dk+1 = · · · = dn.

Then T is called greedy tree if it can be embedded in the plane as follows:

1. take the vertex v with degree d1 as root,

2. each vertex u lies on some line i where i is the distance between the root v and u,

3. each line is filled up with vertices in decreasing degree order from left to right.

v

Figure 3.3: A greedy tree.

Example 3.14. Let (4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) be the given degree se-
quence. Then its corresponding greedy tree using the plane embedding of Definition 3.6 is
shown in Figure 3.3.

An equivalent definition of a greedy tree is given in the lemma below.

Lemma 3.15. A rooted tree T with a given degree sequence is a greedy tree if the following
holds:
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1. Its root v has the largest degree.

2. For all leaves of T their distance to v differs by at most 1.

3. For any two vertices u1 and u2 with distance to the root dT (v, u1) > dT (v, u2) follows
that degT (u1) ≤ degT (u2).

4. Let u1, u2 be two vertices with dT (v, u1) = dT (v, u2) and degT (u1) > degT (u2). Fur-
thermore let w1 and w2 be two more vertices with dT (v, wi) = dT (v, ui) + dT (ui, wi),
i = 1, 2, and dT (v, w1) = dT (v, w2). Then we have degT (w1) ≥ degT (w2).

5. Let u1, u2 be two vertices with dT (v, u1) = dT (v, u2) and degT (u1) > degT (u2). Be-
sides let u′1, u′2 be two more vertices with dT (v, u′i) = dT (v, ui) and N(u′i)∩N(ui) 6= ∅,
i = 1, 2; here N(a) denotes the set of neighbours of the vertex a. Then we have
degT (u′1) ≥ degT (u′2).

For all vertices u′′1, u′′2 with dT (v, u′′1) = dT (v, u′′2) and dT (v, u′′i ) = dT (v, u′i)+dT (u′i, u
′′
i ),

i = 1, 2, we also have degT (u′′1) ≥ degT (u′′2).

Before being able to show that the greedy tree is the optimal solution to Problem 3.5
we have to give some characteristics of paths and the longest path in particular of the
optimal tree. In order to do so, we use the following notation:

Let T be an optimal tree according to Problem 3.5 and P be a path of T . If P is of
odd length, let z be the vertex of P that separates P into two sub-paths of equal length m.
Then we denote the vertices of P on the right side of z by x1, x2, . . . , xm and on the left
side by y1, y2, . . . , ym, in both cases the counting starts at z. In case P is of even length,
an edge e takes the place of z and the vertices of P are labelled analogously.

Let Xi, Yi and Z be the connected components containing xi, yi and z, respectively,
after deleting all edges of P . Besides let X>k and Y>k denote the subtrees induced by
the vertex sets V (Xk+1) ∪ V (Xk+2) ∪ . . . ∪ V (Xm) and V (Yk+1) ∪ V (Yk+2) ∪ . . . ∪ V (Ym),
respectively.

W.l.o.g. we assume that |V (X1)| ≥ |V (Y1)|.

Lemma 3.16. Let T be a tree with minimum Wiener index among all trees of the same
degree sequence. Furthermore let P be a path of T with |V (Xi)| ≥ |V (Yi)| for i = 1, 2, . . . , k
and k = 1, . . . ,m. Then we can assume

|V (X>k)| ≥ |V (Y>k)|.

Proof. If k = m, we have V (X>k) = V (Y>k) = ∅ and the lemma holds. So, let k < m. To
show the lemma by contradiction, let us assume that |V (X>k)| < |V (Y>k)|. Let T ′ be the
tree which arises from T by switching X>k and Y>k. It is obvious that T ′ and T have the
same degree sequence. Furthermore we show that W (T ′) ≤ W (T ). In order to do so we
have to distinguish between two cases according to whether P contains a vertex z or not.

Considering the case that there is no such vertex z, the distance between two vertices
in T ′ is as follows:
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• If x, y ∈ V (X>k) ∪ V (Y>k), we get dT ′(x, y) = dT (x, y).

• If x, y ∈ V (T ) \ (V (X>k) ∪ V (Y>k)), we have dT ′(x, y) = dT (x, y).

• If x ∈ V (A>k) and y ∈ V (Ai), we get dT ′(x, y) = dT (x, y) + 2i − 1 for i = 1, . . . , k
and A = X, Y .

• If x ∈ V (X>k) and y ∈ V (Yi) or x ∈ V (Y>k) and y ∈ V (Xi), i = 1, . . . , k, we obtain
dT ′(x, y) = dT (x, y)− (2i− 1).

Thus

W (T ′)−W (T ) =
k∑
i=1

(2i− 1)|V (Xi)||V (X>k)|+
k∑
i=1

(2i− 1)|V (Yi)||V (Y>k)|

−
k∑
i=1

(2i− 1)|V (Xi)||V (Y>k)| −
k∑
i=1

(2i− 1)|V (Yi)||V (X>k)|

=
k∑
i=1

(2i− 1)(|V (Xi)| − |V (Yi)|︸ ︷︷ ︸
≥0

)(|V (X>k)| − |V (Y>k)|︸ ︷︷ ︸
<0

) ≤ 0.

In case there is a vertex z ∈ V (P ), the distance between two vertices in T ′ can be
calculated as follows:

• If x, y ∈ V (X>k) ∪ V (Y>k), we get dT ′(x, y) = dT (x, y).

• If x, y ∈ V (T ) \ (V (X>k) ∪ V (Y>k)), we have dT ′(x, y) = dT (x, y).

• If x ∈ V (Z) and y ∈ V (A>k) with A = X, Y , we obtain dT ′(x, y) = dT (x, y).

• If x ∈ V (A>k) and y ∈ V (Ai), we get dT ′(x, y) = dT (x, y) + 2i for i = 1, . . . , k and
A = X, Y .

• If x ∈ V (X>k) and y ∈ V (Yi) or x ∈ V (Y>k) and y ∈ V (Xi), i = 1, . . . , k, we obtain
dT ′(x, y) = dT (x, y)− 2i.

Analogously we get

W (T ′)−W (T ) =
k∑
i=1

2i(|V (Xi)| − |V (Yi)|)(|V (X>k)| − |V (Y>k)|) ≤ 0,

which completes the proof.

Lemma 3.17. Let T be a tree with minimum Wiener index among all trees of the same de-
gree sequence. Furthermore let P be a path of T with |V (Xi)| ≥ |V (Yi)| for i = 1, 2, . . . , k−1
and |V (X>k)| ≥ |V (Y>k)|, k = 1, . . . ,m− 1. Then we can assume

|V (Xk)| ≥ |V (Yk)|.
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Proof. Let us assume that |V (Xk)| < |V (Yk)|. Furthermore let T ′ be the tree obtained
from T by switching Xk and Yk. We show that W (T ′) ≤ W (T ) by the same case distinction
as in the proof of Lemma 3.16. Thus we obtain for z /∈ V (P )

W (T ′)−W (T ) =
k−1∑
i=1

(2i− 1)(|V (Xi)| − |V (Yi)|)(|V (Xk)| − |V (Yk)|)

+ (2k − 1)(|V (X>k)| − |V (Y>k)|)(|V (Xk)| − |V (Yk)|) ≤ 0,

and for z ∈ V (P )

W (T ′)−W (T ) =
k−1∑
i=1

2i(|V (Xi)| − |V (Yi)|)(|V (Xk)| − |V (Yk)|)

+ 2k(|V (X>k)| − |V (Y>k)|)(|V (Xk)| − |V (Yk)|) ≤ 0.

Lemma 3.18. Let T be a tree with minimum Wiener index among all trees of the same de-
gree sequence. Furthermore let P be a path of T with |V (Xi)| ≥ |V (Yi)| for i = 1, 2, . . . , k−1
and V (X>k−1)| ≥ |V (Y>k−1)|, k = 1, . . . ,m. Then we can assume

degT (xk) ≥ degT (yk).

Proof. For contradiction let us assume that a = degT (xk) < degT (yk) = a+b with a, b ≥ 1.
Thus deleting yk leads to a + b connected components. We choose C1, . . . , Cb to be such
components that no vertex of V (P ) is one of their elements. Furthermore let u1, . . . , ub be
the neighbours of yk lying in C1, . . . , Cb and let B be the set of all vertices in C1, . . . , Cb.
Then we define T ′ to be the tree with vertex set V (T ) and edge set

(E(T ) \ {(yk, ui) : i = 1, . . . , b}) ∪ {(xk, ui) : i = 1, . . . , b}.

Thus T ′ and T have the same degree sequence and, similar to the previous proofs, we get
for z /∈ V (P )

W (T ′)−W (T ) =
k−1∑
i=1

(2i− 1) |B|︸︷︷︸
>0

(|V (Yi)| − |V (Xi)|)︸ ︷︷ ︸
≤0

+ (2k − 1) |B|︸︷︷︸
>0

(|V (Y>k−1)| − |B| − |V (X>k−1)|)︸ ︷︷ ︸
≤0

≤ 0,

and for z ∈ V (P )

W (T ′)−W (T ) =
k−1∑
i=1

2i|B|(|V (Yi)| − |V (Xi)|)

+ 2k|B|(|V (Y>k−1)| − |B| − |V (X>k−1)|) ≤ 0.

Therefore in both cases the Wiener index of T ′ is at most as great as the Wiener index of
T , although degT ′(xk) ≥ degT ′(yk).
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Remark 3.19. If at least one inequality in the conditions of Lemma 3.16, Lemma 3.17 or
Lemma 3.18 is strict, the assumptions in the conclusions become forced.

Up to now we have considered arbitrary paths in a tree T which is an optimal solution
to the Problem 3.5. Now, let P ∗ be a maximal path of T . If P ∗ has odd length 2m− 1, we
label its vertices as vl1 , . . . , v1, u1, . . . , ul2 in this order with l1 + l2 = 2m. If P ∗ has even
length 2m, we label them as vl1 , . . . , v1, u1, . . . , ul2+1 in this order with l1 + l2 + 1 = 2m+ 1.

Analogously we label the connected components of T which are obtained by deleting
all edges of P as Ui and Vi, respectively. We choose the labelling such that U1 is the
component with most vertices.

Lemma 3.20. Let T be a tree with minimum Wiener index among all trees of the same
degree sequence. Furthermore let P ∗ be a maximal path of T . Then we can assume that

|V (U1)| ≥ |V (V1)| ≥ |V (U2)| ≥ |V (V2)| ≥ · · · ≥ |V (Um)| = |V (Vm)| = 1

for P ∗ having odd length 2m− 1 and

|V (U1)| ≥ |V (V1)| ≥ |V (U2)| ≥ |V (V2)| ≥ · · · ≥ |V (Vm)| = |V (Um+1)| = 1

for P ∗ having even length 2m. In both cases we have l1 = l2 = m.

Proof. We show the lemma by induction. So, let P ∗ be of odd length. Since U1 is the
component with most vertices, we have |V (U1)| ≥ |V (V1)| and |V (U1)| ≥ |V (U2)|. If
|V (U2)| > |V (V1)|, we just need to switch U2 and V1 to get

|V (U1)| ≥ |V (V1)| ≥ |V (U2)|.

Now suppose that we have

|V (U1)| ≥ |V (V1)| ≥ |V (U2)| ≥ |V (V2)| ≥ · · · ≥ |V (Vk−1)| ≥ |V (Uk)|

for some k ≤ min{l1, l2}. To show that we can assume |V (Uk)| ≥ |V (Vk)| we suppose that
|V (Uk)| < |V (Vk)| must hold. According to Lemma 3.16 applied to the labelling xi = ui
and yi = vi, i = 1, . . . , k − 1, we have |V (U>k−1)| ≥ |V (V>k−1)|. Together we obtain

|V (U>k)| = |V (U>k−1)| − |V (Uk)| > |V (V>k−1)| − |V (Vk)| = |V (V>k)|.

Thus we can apply Lemma 3.17 and we get |V (Uk)| ≥ |V (Vk)|, which is a contradiction.
Therefore we have

|V (U1)| ≥ |V (V1)| ≥ |V (U2)| ≥ |V (V2)| ≥ · · · ≥ |V (Uk)| ≥ |V (Vk)|.

Analogously we show that |V (Vk)| ≥ |V (Uk+1)| for k < min{l1, l2} by assuming that
|V (Vk)| < |V (Uk+1)|. Using the labelling z = u1, xi = vi and yi = ui+1, i = 1, . . . , k − 1,
we get

|V (V>k−1)| = |V (X>k−1)| ≥ |V (Y>k−1)| = |V (U>k)|
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by Lemma 3.16. If |V (Yk)| = |V (Uk+1)| > |V (Vk)| = |V (Xk)| holds, we get

|V (U>k+1)| = |V (U>k)| − |V (Uk+1)| > |V (V>k−1)| − |V (Vk)| = |V (V>k)|.

Applying Lemma 3.17 shows that |V (Vk)| ≥ |V (Uk+1)| must hold, which is a contradiction.
Thus we have

|V (U1)| ≥ |V (V1)| ≥ |V (U2)| ≥ |V (V2)| ≥ · · · ≥ |V (Vk)| ≥ |V (Uk+1)|.

Altogether we have

|V (U1)| ≥ |V (V1) ≥ · · · ≥ |V (Uk)| ≥ |V (Vk)|

with k = min{l1, l2}. If k = l2, we obtain that |V (U>k)| = 0 since P ∗ is maximal. According
to Lemma 3.16 we have |V (V>k)| = 0 and thus l1 = l2 = m. If k = l1 < l2 we analogously
get that |V (V>k)| = 0. Using the labelling z = u1, xi = vi and yi = ui+1, i = 1, . . . , k,
we obtain |V (U>k+1| = 0 by Lemma 3.16. Therefore we have l1 ≤ l2 ≤ l1 + 1. In case
l2 = l1 + 1, we get l1 + l2 = 2l1 + 1, which is a contradiction to the assumption that P ∗ has
odd length. Thus

l1 = l2 = m

and, since P ∗ is maximal,
|V (Um)| = |V (Vm)| = 1.

If P ∗ has even length, the proof is analogous.

Lemma 3.21. Let T be a tree with minimum Wiener index among all trees of the same
degree sequence. Furthermore let P ∗ be a maximal path of T with labelling such that
Lemma 3.20 holds. Then we have

degT (u1) ≥ degT (v1) ≥ degT (u2) ≥ degT (v2) ≥ · · · ≥ degT (um) = degT (vm) = 1

for P ∗ having odd length 2m− 1 and

degT (u1) ≥ degT (v1) ≥ degT (u2) ≥ degT (v2) ≥ · · · ≥ degT (vm) = degT (um+1) = 1

for P ∗ having even length 2m.

Proof. In case P ∗ has odd length, we have according to Lemma 3.20

|V (U1)| ≥ |V (V1)| ≥ |V (U2)| ≥ |V (V2)| ≥ · · · ≥ |V (Um)| = |V (Vm)| = 1.

Thus we obtain

|V (U>i−1)| =
m∑
k=i

|V (Uk)| ≥
m∑
k=i

|V (Vk)| = |V (V>i−1)|
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for i = 1, . . . ,m. Applying Lemma 3.18 to P ∗ in the setting that xi = ui and yi = vi for
i = 1, . . . ,m leads to degT (xi) ≥ degT (yi), which means

degT (ui) ≥ degT (vi) i = 1, . . . ,m.

On the other hand we have

|V (V>i−1)| =
m∑
k=i

|V (Vk)| ≥
m∑

k=i+1

|V (Uk)| = |V (U>i)|

for i = 1, . . . ,m. Using the assignment z = u1, xi = vi and yi = ui+1 with i = 1, . . . ,m−1,
we get degT (xi) ≥ degT (yi) by applying Lemma 3.18, which means

degT (vi) ≥ degT (ui+1) i = 1, . . . ,m− 1.

As |V (Um)| = |V (Vm)| = 1, we further have

degT (um) = degT (vm) = 1.

Altogether we obtain

degT (u1) ≥ degT (v1) ≥ degT (u2) ≥ degT (v2) ≥ · · · ≥ degT (um) = degT (vm) = 1.

It is easy to see that the proof of the second case is analogous.

Finally we once again need the concept of the centroid of a tree and one further char-
acteristic of centroids which can be found in [24]:

Theorem 3.22. Let T be a tree and C(T ) its centroid. Then we have dT (c) ≤ dT (v) for
all c ∈ C(T ) and v ∈ V (T ).

Proof. Let v ∈ V (T ) with v 6= c and P be the path between v and c. Furthermore let
B1, . . . , Bk be the branches of c such that v ∈ V (B1). Let l ≥ 1 be the length of P and let
B′i be the subtree of T induced by V (Bi) \ {c}. Then we have the following three cases:

• If x ∈ V (
k⋃
i=2

B′i), we get dT (v, x) = dT (c, x) + l.

• For all x ∈ V (P ) the sums over their distances to v and c, respectively, cancel each
other out.

• If x ∈ V (B′1) \ V (P ), we have dT (c, x) ≤ dT (v, x) + l.

If |C(T )| = 1, we have n−1
2
≥ bw(B1) = |V (B′1)| according to Theorem 3.10 and thus

we get n+1
2
≤ |V (

k⋃
i=2

Bi)| = |V (
k⋃
i=2

B′i)|+ 1. Therefore we have

|V (B′1) \ V (P )| ≤ n− 1

2
− l ≤ n− 3

2
<
n− 1

2
≤ |V (

k⋃
i=2

B′i)|
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and we obtain

dT (v)− dT (c) ≥
∑

x∈V (
kS

i=2
B′i)

l −
∑

x∈V (B′1)\V (P )

l > 0.

If |C(T )| = 2 and v ∈ C(T ), we have n
2

= bw(B1) = |V (B′1)| according to Theorem 3.10

and therefore we obtain n
2

= |V (
k⋃
i=2

Bi)| = |V (
k⋃
i=2

B′i)|+ 1. Furthermore we have l = 1 and

thus
dT (v) = dT (c).

If |C(T )| = 2, v /∈ C(T ) and C(T ) ∩ V (B1) 6= ∅, we again have n
2

= bw(B1) = |V (B′1)|

according to Theorem 3.10 and therefore n
2

= |V (
k⋃
i=2

Bi)| = |V (
k⋃
i=2

B′i)| + 1. Furthermore

in this case we have l ≥ 2 and thus

dT (v)− dT (c) > 0.

If |C(T )| = 2, v /∈ C(T ) and C(T )∩V (B1) = ∅, we get n
2
> bw(B1) = |V (B′1)| according

to Theorem 3.10 and n
2
< |V (

k⋃
i=2

Bi)| = |V (
k⋃
i=2

B′i)|+ 1, as n has to be even. With this and

l ≥ 1 we obtain
dT (v)− dT (c) > 0,

which completes the proof.

Lemma 3.23. Let T be a tree. Considering any maximal path P ∗ of T with labelling as
in Lemma 3.20, then

dT (u1) ≤ dT (x)

for all x ∈ V (P ∗).

Proof. If u1 ∈ C(T ) everything is done according to Theorem 3.22. Thus let us assume
that u1 /∈ C(T ).

Let c ∈ C(T ) with c /∈ V (P ∗). Then it is obvious that there must be a branch B1 of
c such that V (P ∗) ⊆ V (B1). As |V (B1)| ≤ n

2
according to Theorem 3.10 and U1 is the

component with most vertices, there must be a path between u1 and c such that no other
vertex of P ∗ lies on it. Thus dT (u1) ≤ dT (x) for all x ∈ V (P ∗).

Now, let C(T ) ⊆ V (P ∗) and c ∈ C(T ). Hence there exists a k such that c = uk or
c = vk. We consider the case that c = uk, the other one is similar. As u1 /∈ C(T ), we
have c 6= u1. For the distance between u1 and a vertex x we distinguish the following three
cases:

• For x ∈ V (V>0) ∪ V (U1) we obtain dT (u1, x) = dT (uk, x)− (k − 1).

• If x ∈ V (U>k−1), we get dT (u1, x) = dT (uk, x) + (k − 1).
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• If x ∈ V (Ui), 2 ≤ i ≤ k − 1, we have dT (u1, x) = dT (uk, x) + (2i− k − 1).

Thus we obtain for k ≥ 2

dT (u1)− dT (uk) =
∑

x∈V (V>0)∪V (U1)

−(k − 1) +
∑

x∈V (U>k−1)

(k − 1)

+
k−1∑
i=2

∑
x∈V (Ui)

(2i− k − 1)

= − (k − 1)(|V (V>0)|+ |V (U1)|) + (k − 1)|V (U>k−1)|

+
k−1∑
i=2

|V (Ui)|(2i− k − 1)

≤ − (k − 1)|U1| − (k − 1)
k−2∑
i=1

|V (Vi)|

+
k−1∑
i=2

|V (Ui)|(2i− k − 1)

≤ 0,

where the first inequality holds due to |V (Vi)| ≥ |V (Ui+1)| and the second one holds as
k − 3 ≥ 2i − k − 1 for i ≤ k − 1 and hence −(k − 1)|V (Vi)| + (2i − k + 1)|V (Ui+1)| ≤ 0.
But this is a contradiction to the fact that u1 /∈ C(T ). Thus, according to Theorem 3.22,
we obtain dT (u1) ≤ dT (x) for all x ∈ V (P ∗).

Now we can prove the following theorem given in [21] which settles Problem 3.5:

Theorem 3.24. Let (d1, . . . , dn) be an integer sequence with

d1 ≥ d2 ≥ · · · ≥ dk ≥ 2 > 1 = dk+1 = · · · = dn

and
n∑
i=1

di = 2(n− 1).

Then the greedy tree with degree sequence (d1, . . . , dn) minimizes the Wiener index among
all trees with same degree sequence.

Proof. Let T be the tree which minimizes the Wiener index among all trees with degree
sequence (d1, . . . , dn). To show that T is the greedy tree, we show that T fulfils Lemma 3.15.
We distinguish two cases: either |C(T )| = 1 or |C(T )| = 2. If there is only one vertex in
the centroid, we choose it as root v. If there are two vertices in C(T ), we choose one as root
v and the other one as its leftmost neighbour. According to Lemma 3.21 and Lemma 3.23
v is the vertex with largest degree in T . Thus 1. of Lemma 3.15 is satisfied.
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Let l1 and l2 be two leaves of T . If v lies on the path between l1 and l2, we obtain
|dT (l1, v)− dT (l2, v)| ≤ 1 since u1 = v using the labelling of Lemma 3.20. Otherwise there
is a vertex u lying on the path between l1 and l2 such that li is connected with v via u,
i = 1, 2. As the path is of maximal length, we can apply Lemma 3.20 to it and obtain
u = u1 through similar considerations as made in Lemma 3.23. Thus we have

|dT (l1, v)− dT (l2, v)| = |dT (l1, u)− dT (l2, u)| ≤ 1

and 2. of Lemma 3.15 is satisfied.
Let x and y be two vertices with dT (x, v) < dT (y, v). If v, x and y are collinear, we just

choose a path of maximal length such that v, x, y ∈ V (P ). It follows immediately from
Lemma 3.21 that degT (x) ≥ degT (y). If v, x and y are not collinear, there exists a vertex
u lying on the path P between x and y such that a is connected with v via u, a = x, y. We
prolong P on both sides to gain a path P ′ of maximal length. Again we get that u = u1

and, by using Lemma 3.20, we obtain that x = ui+1, y = vj or x = vi, y = uj+1 with
i = dT (x, v)− dT (u, v) and j = dT (y, v)− dT (u, v). Since i < j, we get degT (x) ≥ degT (y)
according to Lemma 3.21. Hence 3. of Lemma 3.15 is satisfied.

Now, let x and y be two non-leaves with dT (x, v) = dT (y, v) and degT (x) > degT (y).
Moreover let x′ and y′ be two further vertices with

dT (x′, v) = dT (x′, x) + dT (x, v) = dT (y′, y) + dT (y, v) = dT (y′, v).

Let us consider a path P with maximal length and x, y, x′, y′ ∈ V (P ). Applying Lemma 3.20
we obtain that there exists a vertex u ∈ V (P ) such that both x and y are connected with
v via u and therefore u = u1. Furthermore, as degT (x) > degT (y), we get x = vi,
y = ui+1, x′ = vj and y′ = uj+1 with i = dT (x, u) and j = dT (x′, u). Thus we have
degT (x′) ≥ degT (y′) and 4. of Lemma 3.15 is satisfied.

Again, let x and y be two non-leaves with dT (x, v) = dT (y, v) and degT (x) > degT (y)
and let u be the vertex lying on the path between x and y such that both x and y
are connected with v via u. Furthermore let x′ and y′ be two vertices with dT (x′, v) =
dT (y′, v) = dT (x, v) such that a′ and a have a0 as common neighbour, a = x, y. Moreover
let x′′ and y′′ be two further vertices with

dT (x′′, v) = dT (x′′, x′) + dT (x′, v) = dT (y′′, y′) + dT (y′, v) = dT (y′′, v).

Since 4. of Lemma 3.15 holds, we have degT (x0) ≥ degT (y0). Therefore considering the
path P of maximal length with u, x0, y0, x

′, y′, x′′, y′′ ∈ V (P ), we again obtain u = u1,
x0 = vi, y0 = ui+1, x′ = vi+1, y′ = ui+2, x′′ = vj and y′′ = uj+1 with i = dT (x0, u) and j =
dT (x′′, u) by applying Lemma 3.20. According to Lemma 3.21 we get degT (x′) ≥ degT (y′)
and degT (x′′) ≥ degT (y′′) and 5. of Lemma 3.15 is satisfied.

Finally, by Lemma 3.15, T is the greedy tree.

Maximizing the Wiener index

Problem 3.7. Given an integer sequence (d1, . . . , dn) with

d1 ≥ d2 ≥ · · · ≥ dk ≥ 2 > 1 = dk+1 = · · · = dn
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and
n∑
i=1

di = 2(n− 1),

we want to find a tree with degree sequence (d1, . . . , dn) which maximizes the Wiener index
among all trees of the same degree sequence.

Since it is an open problem whether or not finding an optimal solution is NP-hard, we
can only give some characteristics of the optimal solution. The first of these characteristics,
which reduces the set of possible solutions to the set of caterpillars, was published by Shi
in 1993 (see [19]).

Lemma 3.25. Let (d1, d2, . . . , dn) be a degree sequence with
∑n

i=1 di = 2(n − 1). Fur-
thermore let Tmax be the tree with maximal Wiener index over all trees which have this
particular degree sequence. Then Tmax is a caterpillar.

Proof. We prove this theorem by contradiction. So, let us assume that Tmax is not a
caterpillar. Then there exists a path of length l ≥ 4.

T1

x1 x2 x3 xk

T2

xk+1 xlP

T3

y

z1 zs

Figure 3.4

Let P = (x1, x2, . . . , xlP ) be a longest path of Tmax. As Tmax is not a caterpillar, there
exists an xk, 2 < k < lP − 1, such that xk is the endpoint of a path P1 not containing any
other vertex of P and having length lP1 ≥ 2. We denote the vertex connected with xk on
P1 by y. Then let N(y) = {xk, z1, . . . , zs}, s ≥ 1, be the neighbours of y. Furthermore
let T1 be the subtree of Tmax after deleting the edges (xk, xk+1) and (xk, y) containing
xk. By the same operations we get T2 as the subtree containing xk+1 and T3 as the one
containing y, as illustrated in Figure 3.4. Without loss of generality we can also assume
that |V (T1)| > |V (T2)|.

Now we are going to construct a tree T ′ 6= Tmax, such that W (T ′) > W (T ). In order
to do so we replace each edge (y, zi) of Tmax by the new edge (xlP , zi), i = 1, . . . , s. Hence
we obtain

degT ′(y) = 1 = degTmax
(xlP )
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degT ′(xlP ) = degTmax
(y)

degT ′(zi) = degTmax
(zi)

with i = 1, . . . , s, and therefore the degree sequence of T ′ and Tmax is the same.
Now we consider the distance between two vertices. It is easy to see that the distance

within Tmax and T ′ is the same in the following five cases:

• u, v ∈ V (T1)

• u, v ∈ V (T2)

• u, v ∈ V (T3) \ {y}

• u ∈ V (T1), v ∈ V (T2)

• u ∈ V (T1) ∪ V (T2) and y.

Furthermore, as for the degree, xlP takes the place of y and vice versa, concerning the
distance to a vertex in V (T3) \ {y}. The only two cases in which the distance really differs
are the ones where u ∈ V (T3) \ {y} and v ∈ V (T1) or v ∈ V (T2) \ {xlP }. In case v ∈ V (T1)
we obtain

dTmax(u, v) = dTmax(u, y) + 1 + dTmax(xk, v)

dT ′(u, v) = dTmax(u, y) + dTmax(xlP , xk) + dTmax(xk, v),

and in case v ∈ V (T2) \ {xlP } we get

dTmax(u, v) = dTmax(u, y) + 1 + dTmax(xk, v)

dT ′(u, v) = dTmax(u, y) + dTmax(xlP , v).

Since, at the beginning of the proof, we assumed that P is a longest path in Tmax, we
obtain that dTmax(xk, v) ≤ dTmax(xk, xlP ) for all v ∈ V (T2).

Thus we get

W (T ′)−W (Tmax) =
∑

u∈V (T3)\{y}

[ ∑
v∈V (T1)

(dTmax(xk, xlP )− 1)

+
∑

v∈V (T2)\{xlP
}

(dTmax(v, xlP )− dTmax(xk, v)− 1)

]

>
∑

u∈V (T3)\{y}

[ ∑
v∈V (T2)\{xlP

}

dTmax(v, xlP )

+ dmax(xk, xlP )︸ ︷︷ ︸
≥2

(|V (T1)| − |V (T2)|+ 1)

− (|V (T1)|+ |V (T2)| − 1)

]
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≥
∑

u∈V (T3)\{y}

[ ∑
v∈V (T2)\{xlP

}

dTmax(v, xlP )

+ |V (T1)| − (|V (T2)| − 1)︸ ︷︷ ︸
≥2 due to assumption

−2(|V (T2)| − 1)

]
≥ 0,

where the last inequality holds as dTmax(v, xlP ) ≥ 2 for all v ∈ V (T2) \ {xlP−1, xlP }. But
this is a contradiction to the condition that Tmax has maximal Wiener index.

Now, by using Lemma 3.25 we are also able to solve Problem 3.4:

Theorem 3.26. The tree Tmax maximizes the Wiener index among all trees of order n,
n ≡ 2 mod (∆ − 1), with all vertices of either degree 1 or ∆ if and only if Tmax is a
caterpillar.

Proof. Let (∆, . . . ,∆︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

) be the degree sequence of T with some k. Then

n∑
i=1

degT (vi) = k∆ + n− k = 2(n− 1).

But this is just equivalent to
n ≡ 2 mod (∆− 1),

which means that a tree T with order n and all vertices being either leaves or of degree
∆ exists and, since the number of possible trees is finite, also a tree Tmax with maximum
Wiener index exists. According to Lemma 3.25 Tmax is a caterpillar.

On the other hand let T be a caterpillar. If Tmax is an optimal solution to Problem 3.4,
we have already shown that Tmax is a caterpillar. As the caterpillar with vertices of either
degree 1 or ∆ is unique, we get T = Tmax, which completes the proof.

Figure 3.5: A caterpillar with n = 14 and ∆ = 4.

Example 3.27. Let n = 14 and ∆ = 4. Then n ≡ 2 mod (∆ − 1) and the tree with
maximum Wiener index among all trees with vertex degree either 1 or ∆ is the caterpillar
shown in Figure 3.5.
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As we have seen in Lemma 3.25, the optimal solution of Problem 3.7 is a caterpillar in
all cases. Therefore, in the following we show a formula for computing the Wiener index of
caterpillars and discuss how to arrange the vertices on the longest path of the caterpillar
in order to maximize its Wiener index (see [25]).

Lemma 3.28. Let T be a caterpillar on n vertices and (degT (v1), degT (v2), . . . , degT (vn))
its unordered degree sequence, where degT (vi) ≥ 2, 1 ≤ i ≤ k, belongs to the i-th vertex of
the path formed by all k non-leaves. Then

W (T ) = (n− 1)2 +
k−1∑
i=1

( i∑
j=1

(degT (vj)− 1)

)( k∑
j=i+1

(degT (vj)− 1)

)
.

Proof. In order to use formula (2.1) we have to calculate the number of vertices of the two
connected components of T after deleting ei = (vi, vi+1), i = 1, . . . , k − 1:

nvi
(ei) =

i∑
j=1

(degT (vj)− 1) + 1

nvi+1
(ei) =

k∑
j=i+1

(degT (vj)− 1) + 1.

Furthermore we obtain for each of the remaining (n−k) edges which have a leaf as pendant
vertex that one of its subtrees contains one vertex and the other one n− 1 vertices.

Thus we can easily calculate

W (T ) =
∑

e=(u,v)∈E(T )

nu(e)nv(e)

= (n− 1)(n− k) +
k−1∑
i=1

( i∑
j=1

(degT (vj)− 1) + 1

)( k∑
j=i+1

(degT (vj)− 1) + 1

)

= (n− 1)(n− k) + (k − 1)

(
1 +

k∑
j=1

(degT (vj)− 1)

)

+
k−1∑
i=1

( i∑
j=1

(degT (vj)− 1)

)( k∑
j=i+1

(degT (vj)− 1)

)

= (n− 1)2 +
k−1∑
i=1

( i∑
j=1

(degT (vj)− 1)

)( k∑
j=i+1

(degT (vj)− 1)

)
,

where the last equation holds since
∑k

j=1(degT (vj)− 1) + 1 = n− 1.

Now, we can characterize the tree with maximum Wiener index by the following theo-
rem:
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Theorem 3.29. Let T be a tree and (d1, d2, . . . , dn) its degree sequence with di ≥ 2 for
i = 1, . . . , k and dk+1 = · · · = dn = 1. Then T has the maximum Wiener index of all
trees with the same degree sequence if and only if T is a caterpillar with (d′1, . . . , d

′
k) being

the permutation of (d1, . . . , dk) such that d′j is the degree of the j-th vertex on the path of
non-leaves in T and (d′1, . . . , d

′
k) maximizes

k−1∑
i=1

( i∑
j=1

(d′′j − 1)

)( k∑
j=i+1

(d′′j − 1)

)
,

where (d′′1, . . . , d
′′
k) is a permutation of (d1, . . . , dk).

Proof. If T is the tree with maximum Wiener index of all trees with the same degree
sequence, we already know from Lemma 3.25 that T must be a caterpillar, and, from
Lemma 3.28, that it must maximize the sum above.

Now, let T be a caterpillar with degT (vj) = d′j, j = 1, . . . , k, in which vj is the j-th
vertex on the path of non-leaves and (d′1, . . . , d

′
k) maximizes the sum above. Furthermore

let T1 be an arbitrary tree which fulfils the given degree sequence. Due to Lemma 3.25 there
exists a caterpillar T2 with the same degree sequence, (d̃1, . . . , d̃k) being its permutation
of (d1, . . . , dk) and W (T1) ≤ W (T2). Because of Lemma 3.28 and the choice of T we also
obtain the inequality

W (T2) = (n− 1)2 +
k−1∑
i=1

( i∑
j=1

(d̃j − 1)

)( k∑
j=i+1

(d̃j − 1)

)

≤ (n− 1)2 +
k−1∑
i=1

( i∑
j=1

(d′j − 1)

)( k∑
j=i+1

(d′j − 1)

)
= W (T ),

and therefore W (T1) ≤ W (T ), which completes the proof.

Another characteristic of the optimal tree, which is a very important criterion for
eliminating candidates for optimal trees, is given in the following lemma:

Lemma 3.30. Let x1 ≥ x2 ≥ · · · ≥ xk ≥ 1 be integers with k ≥ 5. Further let Sk be the
set of all permutations of {1, . . . , k} and suppose that (y1, . . . , yk) is a permutation in Sk
such that w.l.o.g. y1 ≥ yk and

k−1∑
i=1

( i∑
j=1

yj

)( k∑
j=i+1

yj

)
= max

π∈Sk

k−1∑
i=1

( i∑
j=1

xπ(j)

)( k∑
j=i+1

xπ(j)

)
.

Then there exists a 2 ≤ t ≤ k − 2 such that

y1 ≥ y2 ≥ · · · ≥ yt−1 ≥ yt ≤ yt+1 ≤ · · · ≤ yk.
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Proof. We define the function

f(s) =
s−2∑
i=1

yi −
k∑

i=s+1

yi

for 2 ≤ s ≤ k − 1. Obviously

f(2) = −
k∑
i=3

yi < 0

and

f(k − 1) =
k−3∑
i=1

yi − yk > 0,

since y1 ≥ yk. Besides, f is strictly increasing. Therefore there exists a 2 ≤ t1 ≤ k − 2
such that

f(t1) ≤ 0 and f(t1 + 1) > 0.

This means that

t1−2∑
j=1

yj ≤
k∑

j=t1+1

yj (3.1)

t1−1∑
j=1

yj >
k∑

j=t1+2

yj. (3.2)

Now, let us consider the permutation (z1, . . . , zk) = (y1, y2, . . . , yi−1, yi+1, yi, yi+2, . . . , yk).
Since (y1, . . . , yk) is the optimal permutation, we obtain

k−1∑
i=1

( i∑
j=1

yj

)( k∑
j=i+1

yj

)
−

k−1∑
i=1

( i∑
j=1

zj

)( k∑
j=i+1

zj

)

=

( i−1∑
j=1

yj + yi

)( k∑
j=i+2

yj + yi+1

)
−
( i−1∑
j=1

yj + yi+1

)( k∑
j=i+2

yj + yi

)

= (yi+1 − yi)
( i−1∑
j=1

yj −
k∑

j=i+2

yj

)
≥ 0.

Due to equation (3.1) and the fact that f is strictly increasing we get

i−1∑
j=1

yj <
k∑

j=i+2

yj for 1 ≤ i ≤ t1 − 2,

and because of equation (3.2) we have

i−1∑
j=1

yj >

k∑
j=i+2

yj for t1 ≤ i ≤ k − 1.
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Thus altogether we obtain

yi+1 − yi ≤ 0 for 1 ≤ i ≤ t1 − 2

yi+1 − yi ≥ 0 for t1 ≤ i ≤ k − 1,

which means
y1 ≥ · · · ≥ yt1−1 and yt1 ≤ · · · ≤ yk.

If t1 = 2, then f(2) < 0 and therefore y1 ≥ y2 and t = 2.
If t1 ≥ 3, we obtain either yt1−1 ≥ yt1 and t = t1 or yt1−1 ≤ yt1 and t = t1 − 1.

Remark 3.31. Note that for k ≤ 3 the tree T with maximum Wiener index is just the
greedy caterpillar, which means that in this case there is also a t like in Lemma 3.30. A
caterpillar is called greedy if the i-th vertex on the path of non-leaves has degree d2i−1 for
i ≤ k+1

2
and degree d2(k+1−i) for i > k+1

2
. For k = 4, the degree permutation (d1, d4, d3, d2)

gives the optimal solution.

Proof. Case k = 1, 2: It is obvious.
Case k = 3: Let T1 be the optimal caterpillar with degree sequence (y1, y2, y3), such

that w.l.o.g. y1 ≥ y3 and degT1
(vi) = yi with vi being the i-th vertex of the path formed by

the non-leaves of T1. Furthermore let T2 be the caterpillar with degree sequence (y1, y3, y2).
Then

0 ≤ W (T1)−W (T2) = (y1 + y2)y3 − (y1 + y3)y2 = y1(y3 − y2).

Thus we obtain y3 ≥ y2 and altogether we get y1 ≥ y3 ≥ y2, which leads to

(y1, y2, y3) = (d1, d3, d2).

Case k = 4: Let T1 again be the optimal caterpillar with degree sequence (y1, y2, y3, y4)
analogously. Furthermore let T2 be the caterpillar with degree sequence (y1, y3, y2, y4) and
T3 with (y1, y2, y4, y3). Then

0 ≤ W (T1)−W (T2) = (y1 + y2)(y3 + y4)− (y1 + y3)(y2 + y4) = (y1 − y4)(y3 − y2)

and

0 ≤ W (T1)−W (T3) = (y1 + y2 + y3)y4 − (y1 + y2 + y4)y3 = (y1 + y2)(y4 − y3).

Therefore we obtain y3 ≥ y2 and y4 ≥ y3, and together with the assumption y1 ≥ y4 we get

(y1, y2, y3, y4) = (d1, d4, d3, d2).

This reduces the number of different possible trees to quite a high extent, which leads
to the algorithm described below.
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Algorithm for finding the optimal solution

The input is an unsorted list of all degrees di ≥ 2, i = 1, . . . , k. Then the algorithm
works as follows:

1. First the input needs to be prepared: sort the given degree sequence decreasingly,
collect all equal degrees and save them as a list of lists l, in which the first number
of each sub-list is the degree −1 and the second number tells how often the degree
occurs.

2. In case the degree sequence is constant, there is nothing left to do but to compute
the Wiener index and return it.

3. Otherwise the optimal solution is constructed in a recursive manner by filling up the
path from both ends. To do so, construct a left list ll and a right one lr. Due to
Lemma 3.30 the largest degree has to belong to the leftmost or rightmost vertex.
W.l.o.g. assign it to the leftmost vertex, delete it from l and invoke the recursive
function:

(a) Take the first element (di, ni) from l, where di is the biggest degree not assigned
yet, and delete it.

(b) For all possible a, b ∈ N0 such that a+ b = ni assign a times di to ll and b times
di to lr, such that the new elements are the rightmost of ll and the leftmost of
lr. Go back to (3a) until l contains only one element.

(c) Join ll, the not yet assigned degrees and lr in this order.

(d) Compare the Wiener index of the currently constructed caterpillar and the
largest Wiener index found so far. If the Wiener index of the current cater-
pillar is greater, save it as the new largest Wiener index found so far.

Since the recursion is handled in a depth-first manner, all possible caterpillars are
constructed and compared.

Let d1 = · · · = dk1 > dk1+1 = · · · = dk1+k2 > · · · > dk1+···+kl+1 = · · · = dk ≥ 2. Then the
number of the different caterpillars to consider is k1(k2 + 1) · · · (kl + 1), since the leftmost
vertex has always degree d1 and the last block of equal degrees is just assigned to the last
free positions. The worst case occurs if all degrees are pairwise different, which means that
there are 2n−2 different caterpillars to consider.

Although this algorithm finds the optimal solution, it is not very satisfactory because
of its running time. Therefore a polynomial heuristic which may find a caterpillar with
Wiener index equal or close to the Wiener index of the optimal solution is of interest.
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A heuristic

The input once more is an unsorted list of all degrees di ≥ 2, i = 1, . . . , k. The main
idea is to arrange the vertices such that they are concentrated equally at both ends of the
path. Then the algorithm works as follows:

1. Sort the given degree sequence −1 decreasingly and save it as list l.

2. In case the degree sequence is constant, there is nothing left to do but to compute
the Wiener index and return it.

3. Otherwise construct a left list ll and a right one lr. Take the first (second) element of
l and assign it to the leftmost (rightmost) vertex which means to save it as leftmost
(rightmost) element in ll (lr).

Take the biggest non-assigned element of l and save it as the rightmost element of
ll if the sum over all elements of ll is smaller than the sum over all elements of lr.
Otherwise save it as the leftmost element of lr. Continue until all elements of l are
assigned.

4. Join ll and lr in this order and save it as l1.

5. Compute the number of vertices of the left (right) half of the so far constructed
caterpillar and save it as sum l (sumr).

In case sum l = sumr, there is nothing left to do but to compute the Wiener index
and return it together with the caterpillar.

Otherwise start with the rightmost vertex of the left half and the leftmost one of the
right half and compare the vertex pairs until one end is reached: swap a vertex u
belonging to the heavier side and a vertex v belonging to the other side if

• Lemma 3.30 is not violated,

• the position of v is at least as near to its closer end as the position of u to its
closer end,

• the difference |sum l − sumr| does not increase.

Compute this changing of positions once allowing that |sum l − sumr| can stay the
same after each changing of position and saving it as l2, and once demanding the
decrease of |sum l − sumr| after each changing of position and save it as l3.

6. Compare the Wiener index of l1, l2 and l3 and return their maximum.

Because of the running time of the first algorithm I was only able to test the heuristic
for smaller values of k, in particular I did so for k ≤ 30. In order to create degree sequences
for testing I used the random number generator of Mathematica 7.0. Furthermore I only
considered uniform distributed numbers.
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The heuristic seems to find either an optimal solution or a solution whose Wiener index
is quite close to the Wiener index of the optimal solution. In particular the results of the
testing are:

• The smaller the length of the interval from which the degrees were chosen the likelier
it was that the heuristic found an optimal solution.

• When the interval length was about 100, the heuristic did not find the optimal
solution in almost half the cases.

• When the heuristic did not find an optimal solution, the mean percentage error was
smaller than 0.007%.

• The mean percentage error decreased for greater values of k or when the length of
the interval from which the degrees were chosen increased.

An example for not finding the optimal solution is the sequence

(15, 14, 13, 12, 12, 9, 9, 8, 8, 7, 4, 3).

The sequence returned by the heuristic is H = (15, 12, 9, 9, 8, 4, 3, 7, 8, 12, 13, 14) which has
Wiener index 34329, whereas an optimal solution is OS = (15, 13, 9, 9, 7, 4, 3, 8, 8, 12, 12, 14)
with Wiener index 34333. Notice that the sum over all vertices in the left half of H (resp.
OS ) equals the sum over all vertices in the right half of H (resp. OS ).



Chapter 4

Inverse problems - forbidden values

In this chapter we are going to deal with a more elementary question: which natural
numbers are Wiener indices? In more detail the problem can be stated as follows:

Problem 4.1. Given a w ∈ N, we want to find a graph G from a certain class, such that
its Wiener index fulfils

W (G) = w.

As mentioned before, some chemical characteristics of a substance and the Wiener index
of its molecular graph correlate. Thus it is of some interest to find a graph from a certain
class with a particular Wiener index.

Over the years Problem 4.1 has been considered for different types of graphs. In the
following sections we are going to study the solutions for some special graph classes.

4.1 Connected graphs

In case G is only a connected graph, a solution of Problem 4.1 was given by Gutman et al.
in 1994 (see [12]).

Lemma 4.1. Let G be a connected graph with |V (G)| = n and |E(G)| = m. Furthermore
let the length of all paths in G be less than three. Then

W (G) = n(n− 1)−m.

Proof. Since G consists of m edges, there are m pairs of vertices having distance one.
Furthermore we assumed that the length of all paths is less than three. Thus the remaining(
n
2

)
−m vertex pairs are at distance two. Together we obtain

W (G) = 1 ·m+ 2 ·
[(
n

2

)
−m

]
= n(n− 1)−m.

71
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As a result we can state the following lemma.

Lemma 4.2. For every integer value w, such that
(
n
2

)
≤ w ≤ (n− 1)2, n ≥ 1, there exists

a connected graph G of order n and diameter d(G) ≤ 2, such that W (G) = w.

Proof. Let m = |E(G)|. As G is connected, we have m ≥ n − 1. It is obvious that the
only graph with m = n− 1 and diameter less than three is the star Sn, which has Wiener
index (n− 1)2. If we add k further edges to Sn, we obtain m = n− 1 + k and the length of
each path still is less than three. According to Lemma 4.1, the Wiener index of this graph
is (n− 1)2− k. The maximal value of k is

(
n
2

)
− (n− 1), which is reached for the complete

graph Kn. Thus for every m, n− 1 ≤ m ≤
(
n
2

)
, there exists a connected graph of order n

with maximum path-length less than three and Wiener index

n(n− 1)−
(
n

2

)
=

(
n

2

)
≤ W (G) ≤ (n− 1)2 = n(n− 1)− (n− 1).

Theorem 4.3. Let w ∈ N0. Then there exists a connected graph G with W (G) = w if and
only if w ∈ N0 \ {2, 5}.

Proof. The main idea of the proof is to show that for n ≥ 4 the upper bound of the Wiener
index of a graph on n vertices is smaller than the lower bound of the Wiener index of
a graph on n + 1 vertices in Lemma 4.2 by at most 1. This means that the inequality
(n− 1)2 ≥

(
n+1

2

)
− 1 holds for n ≥ 4. This can be easily seen since

(n− 1)2 −
(
n+ 1

2

)
+ 1 =

1

2
(n2 − 5n+ 4) =

1

2
(n− 4)(n− 1) ≥ 0

for n ≥ 4. Thus we have that all w ≥
(

4
2

)
= 6 are Wiener indices of some connected graphs.

Applying Lemma 4.2 to n = 1, 2, 3 we obtain that also 0, 1, 3 and 4 are Wiener indices.
Therefore it only remains to be shown that there is also no graph with diameter greater

than two, which has Wiener index 2 or 5. Let G be a connected graph and P a path of G
with length greater than two. This means that |V (P )| ≥ 4 and hence W (P ) ≥ 10. Since
P is a sub-graph of G, we obtain W (G) ≥ 10, which completes the proof.

4.2 Bipartite graphs

Definition 4.2. Let G be a graph with vertex set V (G) and edge set E(G). Then G is
called bipartite if there exist two subsets V1(G) and V2(G) such that V (G) = V1(G)]V2(G)
and all edges in E(G) have exactly one endvertex in V1(G) and one in V2(G).

Furthermore let |V1| = a and |V2| = b. Then G is called a bipartite graph on a + b
vertices.
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v1 v2 vn−2

vn−1

vn

Figure 4.1: Qn.

In 1995, Gutman and Yeh published a solution to Problem 4.1 for bipartite graphs (see
[11]). They showed that all but 14 numbers are Wiener indices of bipartite graphs. In
order to understand their proof, we have to consider some special graphs.

Let us denote the tree of order n which arises from the path Pn−2 by connecting two
further vertices as leaves to one of the two pendant vertices of Pn−2 by Qn (see Figure 4.1).

Furthermore we denote the circuit with n vertices by Cn and the complete bipartite
graph on a+ b vertices by Ka,b.

v1

v2

vk

v′1

v′2

v′k

vnew
v1

v2

vk

v′1

v′2

v′k
vk+1

vnew

Figure 4.2: Cn+1 arising from Cn with n even on the left and with n odd on the right.

Lemma 4.4. The Wiener index of a circuit Cn of order n can be computed as

W (Cn) =

{
n3

8
if n is even,

n3−n
8

if n is odd.

Proof. We show this formula with induction. It is easy to see that W (C3) = 3 = 33−3
4

and

W (C4) = 8 = 43

8
. So let the formula be true for n ≤ 2k, k ∈ N \ {1}. Then C2k+1 arises

from C2k by adding vertex vnew to C2k as shown in Figure 4.2. Thus, using the labelling
from Figure 4.2 we distinguish the following cases:

• For vi and vj with 1 ≤ i < j ≤ k the distance in C2k+1 and C2k is the same.
Analogously for v′i and v′j.

• For vnew and vi, i = 1, . . . , k, we have dC2k+1
(vnew, vi) = i. Analogously for vnew and

v′i.
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• For vi and v′j with 1 ≤ i ≤ k and k ≥ j ≥ k + 1− i the distance in C2k+1 and C2k is
the same.

• For vi and v′j with 1 ≤ i ≤ k and 1 ≤ j ≤ k−i we have dC2k+1
(vi, v

′
j) = dC2k

(vi, v
′
j)+1.

Therefore we obtain for n = 2k

W (Cn+1) =
n3

8
+ 2

k∑
i=1

i+
k−1∑
i=1

i

=
n3

8
+ k(k + 1) +

k(k − 1)

2

=
n3

8
+

3k2 + k

2
=
n3

8
+

3n2 + 2n

8

=
(n+ 1)3 − (n+ 1)

8
.

With similar considerations we get for n = 2k + 1 (see Figure 4.2)

W (Cn+1) =
n3 − n

8
+ 2

k∑
i=1

i+ k + 1 +
k∑
i=1

i

=
n3 − n

8
+ k(k + 1) + k + 1 +

k(k + 1)

2

=
n3 − n

8
+

3k2 + 5k + 2

2
=
n3 − n

8
+

3n2 + 4n+ 1

8

=
(n+ 1)3

8
.

Lemma 4.5. The tree Qn maximizes the Wiener index among all trees of order n ≥ 4 that
are different from Pn.

Proof. According to Theorem 2.9 we have to maximize(
n+ 1

3

)
−
∑

v∈V (T )

∑
1≤i<j<k≤degT (v)

|Vi| |Vj| |Vk| (4.1)

over all trees T different from Pn. Obviously the first sum goes over all branching points
of T and, since T is different from Pn, there must be at least one branching point. Thus,
in order to maximize (4.1), T has to contain exactly one branching point. Let v be the
branching point of T and Vl, 1 ≤ l ≤ degT (v), the vertex sets of the subtrees gained by
deleting v. Then we have to fulfil the condition

|V1|+ |V2|+ · · ·+ |VdegT (v)| = n− 1
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for |Vl| ≥ 1 with 1 ≤ l ≤ degT (v). Thus there exists a Vi such that |Vi| ≥ n−1
degT (v)

. Evidently

degT (v) ≤ n−1. In case degT (v) = 3, it is easy to see that the maximum in (4.1) is obtained
by |V1| = n− 3, |V2| = |V3| = 1, which means that T = Qn and

|V1| |V2| |V3| = n− 3.

If degT (v) ≥ 5, we obtain∑
1≤i<j<k≤degT (v)

|Vi| |Vj| |Vk| ≥
n− 1

degT (v)

(
degT (v)− 1

2

)
+

(
degT (v)− 1

3

)

=
(degT (v)− 3)(n− 1)

2
+

n− 1

degT (v)
+

(
degT (v)− 1

3

)
≥ (n− 1) + 1 + 4 = n+ 4 > n− 3.

Thus degT (v) ≤ 4. In case degT (v) = 4, and hence n ≥ 5, it is easy to compute that the
maximum in (4.1) is obtained by |V1| = n− 4, |V2| = |V3| = |V4| = 1. Therefore we get∑

1≤i<j<k≤4

|Vi| |Vj| |Vk| = (n− 4)3 + 1 = 3n− 11,

which is greater than n− 3 for n ≥ 5.
Altogether we obtain that degT (v) = 3 and T = Qn.

Lemma 4.6. The tree Qn maximizes the Wiener index among all connected graphs of
order n ≥ 4 that are different from Pn.

Proof. Because of Lemma 4.4 we immediately get that

W (Cn) < W (Qn) =

(
n+ 1

3

)
− (n− 3)

for n ≥ 4. Let G be a connected graph of order n different from Pn and Cn. Then G has
a spanning tree T that is different from Pn. According to Theorem 3.2 and Lemma 4.5 we
obtain

W (G) ≤ W (T ) ≤ W (Qn).

Furthermore we need some propositions about bipartite graphs:

Lemma 4.7. Let G be a connected bipartite graph on a+ b vertices. Then

W (G) ≥ (a+ b)(a+ b− 1)− ab

with equality if and only if G = Ka,b.
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Proof. If G is a bipartite graph on a+ b vertices different from Ka,b, it arises from Ka,b by
deleting some edges. Thus we obtain by Theorem 3.1

W (G) > W (Ka,b) = ab+ 2
a−1∑
i=1

i+ 2
b−1∑
i=1

i

= ab+ a(a− 1) + b(b− 1)

= (a+ b)(a+ b− 1)− ab.

With Lemma 4.7 we immediately obtain the following corollary for n = a+ b:

Corollary 4.8. Let G be a connected bipartite graph on n vertices, n ≥ 1. Then

W (G) ≥

{
n(n− 1)− n2

4
if n is even,

n(n− 1)− n2−1
4

if n is odd.

Lemma 4.9. Let G be a connected bipartite graph on a+ b vertices. Then W (G) is odd if
and only if both a and b are odd.

Proof. Let V1, V2 be the two vertex sets such that E(G) = {(x, y) : x ∈ V1, y ∈ V2} and
|V1| = a, |V2| = b. If x, y ∈ Vi, i = 1, 2, it is easy to see that dG(x, y) ≡ 0 mod 2. Thus we
have

1

2

∑
x,y∈Vi

dG(x, y) ≡ 0 mod 2.

For x ∈ V1 and y ∈ V2 we get dG(x, y) ≡ 1 mod 2 and therefore

∑
x∈V1

∑
y∈V2

dG(x, y) ≡

{
1 mod 2 if ab ≡ 1 mod 2,

0 mod 2 if ab ≡ 0 mod 2.

Hence W (G) =
∑

x∈V1

∑
y∈V2

dG(x, y)+ 1
2

∑
i=1,2

∑
x,y∈Vi

dG(x, y) is odd if and only if ab ≡ 1
mod 2, which again is equivalent to both a and b being odd.

To find bipartite graphs to solve Problem 4.1 we mainly use four different types of
graphs:

Definition 4.3. Let a ≥ 1 and 1 ≤ l ≤ k ≤ j ≤ i ≤ a. Then we denote the bipartite
graph with vertex set {v1, . . . , va} ] {w1, w2} and edge set

{(vb, w1) : 1 ≤ b ≤ a} ∪ {(vb, w2) : 1 ≤ b ≤ i}

by Ga,2(i). Furthermore we obtain the bipartite graph Ga,3(i, j) on a + 3 vertices by
introducing a new vertex w3 to Ga,2(i) such that the vertex set becomes

E(Ga,2(i)) ∪ {(vb, w3) : 1 ≤ b ≤ j}.
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Analogously the bipartite graph Ga,4(i, j, k) on a + 4 vertices arises from Ga,3(i, j) by
connecting a new vertex w4 to it such that the vertex set becomes

E(Ga,3(i, j)) ∪ {(vb, w4) : 1 ≤ b ≤ k}.

Finally we get the bipartite graph Ga,5(i, j, k, l) on a + 5 vertices by introducing a new
vertex w5 to Ga,4(i, j, k) such that the vertex set becomes

E(Ga,4(i, j, k)) ∪ {(vb, w5) : 1 ≤ b ≤ l}.

Lemma 4.10. Let a ≥ 1 and 1 ≤ l ≤ k ≤ j ≤ i ≤ a. Then

W (Ga,2(i)) = a2 + 3a+ 2− 2i,

W (Ga,3(i, j)) = a2 + 6a+ 6− 2(i+ j),

W (Ga,4(i, j, k)) = a2 + 9a+ 12− 2(i+ j + k),

W (Ga,5(i, j, k, l)) = a2 + 12a+ 20− 2(i+ j + k + l).

Proof. We first show the formula for W (Ga,2(i)) using the notation of Definition 4.3. The
distance between w1 and vb, 1 ≤ b ≤ a, is 1 and the distance between w1 and w2 is 2.
Furthermore it is easy to see that the sum of all distances between x, y ∈ {v1, . . . , va}
is 2

∑a−1
b=1 b. At last the distance between w2 and vb is one for 1 ≤ b ≤ i and three for

i+ 1 ≤ b ≤ a. Therefore we obtain

W (Ga,2(i)) = a+ 2
a−1∑
b=1

b+ i+ 3(a− i) + 2

= a2 + 3a+ 2− 2i.

Analogously we get

W (Ga,3(i, j)) = W (Ga,2(i)) + j + 3(a− j) + 4

= a2 + 6a+ 6− 2(i+ j).

The proof of the remaining formulas is similar.

Notice that the Wiener index of Ga,5(i, j, k, l) as well as that of the other bipartite
graphs of Definition 4.3 does not depend on the values of i, j, k and l, respectively, but
only on their sum. Thus it is obvious that with a ∈ N we have the further condition that
2 ≤ i+ j ≤ 2a for Ga,3(i, j), 3 ≤ i+ j + k ≤ 3a for Ga,4(i, j, k) and 4 ≤ i+ j + k + l ≤ 4a
for Ga,5(i, j, k, l).

Lemma 4.11. Let w, a, i, j, k, l ∈ N such that 4 ≤ i+ j + k + l ≤ 4a. Then there exists a
graph Ga,5(i, j, k, l) with W (Ga,5(i, j, k, l)) = w if and only if

w ∈ N \ {0, 1, 2, . . . , 24, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 42, 44, 46, 48, 50, 59, 61, 63, 78}.
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Proof. First notice that W (Ga,5(i, j, k, l)) ≡ 1 mod 2 if and only if a ≡ 1 mod 2. Fur-
thermore we obtain from Lemma 4.10 that

W (Ga,5(i, j, k, l)) ∈ Wa = {a2 + 4a+ 20, a2 + 4a+ 22, a2 + 4a+ 24, . . . , a2 + 12a+ 12}

where the first value is W (Ga,5(a, a, a, a)) and the last is W (Ga,5(1, 1, 1, 1)). Now we try
to show that Wa ∩Wa+2 6= ∅ for a big enough. Therefore we compute

W (Ga,5(1, 1, 1, 1))−W (Ga+2,5(a+ 2, a+ 2, a+ 2, a+ 2))

= a2 + 12a+ 12− ((a+ 2)2 + 4(a+ 2) + 20)

= 4a− 20.

Hence W (Ga,5(1, 1, 1, 1)) ≥ W (Ga+2,5(a + 2, a + 2, a + 2, a + 2)) for a ≥ 5. This means
that all odd numbers w1 ≥ 65 = W (G5,5(5, 5, 5, 5)) and all even numbers w0 ≥ 80 =
W (G6,5(6, 6, 6, 6)) are Wiener indices of some Ga,5(i, j, k, l). Moreover we obtain

W (G1,5(i, j, k, l)) ∈ {25},
W (G2,5(i, j, k, l)) ∈ {32, 34, 36, 38, 40},
W (G3,5(i, j, k, l)) ∈ {41, 43, 45, . . . , 57},
W (G4,5(i, j, k, l)) ∈ {52, 54, 56, . . . , 76},

which completes the proof.

With this we can state the solution to Problem 4.1 for bipartite graphs:

Theorem 4.12. Let w ∈ N0. Then there exists a connected bipartite graph G with Wiener
index W (G) = w if and only if w ∈ N0 \ {2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 33, 37, 39}.

Proof. Direct calculation of W (Ga,2(i)) with a = 1, 2, 3, 4, 6 shows that 4, 8, 10, 14, 16,
18, 22, 24, 26, 28, 44, 46,48, 50 and 78 are Wiener indices of connected bipartite graphs.
Furthermore by computing W (Ga,3(i, j)) for a = 1, 3, 4 we obtain that 9, 21, 23, 27, 29, 30
and 42 are Wiener indices of connected bipartite graphs. Since each tree is bipartite and
W (P1) = 0, W (P2) = 1, W (P5) = 20 and W (P6) = 35, we get that 0, 1, 20 and 35 are
Wiener indices of connected bipartite graphs too. Finally the four bipartite graphs shown
in Figure 4.3 are examples of graphs with Wiener index 31, 59, 61 and 63. Thus together
with Lemma 4.11 we obtain that there exist bipartite graphs with Wiener index equal to
any natural number including zero except those 14 numbers listed above.

Therefore it remains to be shown that none of these 14 numbers can be Wiener indices
of bipartite graphs. Because of Corollary 4.8 a bipartite graph G with W (G) < 8 must have
less than four vertices. The only connected bipartite graphs with less than four vertices
are P1, P2 and P3. As their Wiener index is not equal to 2, 3, 5, 6 or 7, these numbers are
no Wiener indices of any bipartite graph.

Furthermore Corollary 4.8 implies that the number of vertices of a bipartite graph G
with W (G) < 14 must be less than five. On the other hand, according to Corollary 3.5 the
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(a) Tree with Wiener index 31. (b) Tree with Wiener index 63.

(c) Bipartite graph
with Wiener index
59.

(d) Bipartite graph with
Wiener index 61.

Figure 4.3

maximal Wiener index of a graph with less than five vertices is W (P4) = 10. Thus we get
w 6= 11, 12, 13.

Again with Corollary 4.8 we obtain that a bipartite graph G with W (G) < 20 must
have less than six vertices. Furthermore, as Lemma 4.9 implies that the Wiener index of
a bipartite graph is even if the number of vertices is odd, we get that a bipartite graph
with five vertices can never have Wiener index 15, 17 or 19. But as we already know the
maximal Wiener index of a graph with less than five vertices is 10. Therefore 15, 17 and
19 are not Wiener indices of any bipartite graph.

Analogously we obtain by Corollary 4.8 and Lemma 4.9 that a bipartite graph with
Wiener index less than 40 must have less than seven vertices. According to Corrollary 3.5
the maximal Wiener index of a graph with less than seven vertices is W (P6) = 35. Hence
w 6= 37, 39.

Finally, as 33 is odd and less than 40, a bipartite graph with Wiener index 33 must have
less than seven vertices. On the other hand, we have W (P5) = 20, which means that the
number of vertices must be six. As W (Q6) = 32 and W (P6) = 35, we obtain by Lemma 4.6
that there exists no bipartite graph with Wiener index 33, which completes the proof.

4.3 Trees

In this section we are going to deal with the question which natural numbers can be Wiener
indices of trees. In 1994 Gutman et al. [12], after making some numerical testing, stated
the conjecture that there is some bound M ∈ N such that for all w ≥M one can find a tree
T with W (T ) = w. Some further checking of all possible trees with 20 and less vertices
showed that of all natural numbers up to 1206 there are only 49 numbers which are not
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Wiener indices of trees (see [16]). Thus in [16] the conjecture was made that all natural
numbers except these 49 numbers are Wiener indices of trees. This was supported by a
computational investigation by Ban et al. (see [1]) where they showed that every integer
n ∈ [103, 108] is the Wiener index of some caterpillar.

Finally, in 2006 Wang and Yu (see [22]) and Wagner (see [20]) independently proved
this conjecture. In order to do so Wang and Yu showed that for every integer w > 108 there
exists a short caterpillar with at most six non-leaf vertices such that its Wiener index is w.
Wagner, considering another class of trees, was able to give a somehow stronger statement:
he could show that every integer ≥ 470 is the Wiener index of some star-like tree.

In the following we will give the proof provided by Wagner.

v

v1 v2 vd

Figure 4.4: The star-like tree S(c1, . . . , cd).

Definition 4.4. A tree S(c1, . . . , cd) with n = c1 + · · · + cd edges is called star-like if it
arises from the stars Sc1+1, . . . , Scd+1 by taking exactly one leaf of each Sci+1, i = 1, . . . , d,
and identifying them with each other. (See Figure 4.4 where the vertex in common is
denoted by v and the vertex with degree ci by vi, i = 1, . . . , d.)

Lemma 4.13. Let S(c1, . . . , cd) be a star-like tree with n = c1 + · · ·+ cd. Then

W (S(c1, . . . , cd)) = 2n2 − (d− 1)n−
d∑
i=1

c2
i .

Proof. Let us denote the vertex in the center by v, its neighbours by v1, . . . , vd and the
leaves by w1, . . . , wn−d. According to the construction of S(c1, . . . , cd) the star Sci+1 is a
subtree of S(c1, . . . , cd), i = 1, . . . , d. We already know that W (Sci+1) = c2

i . Furthermore
we have to consider the distance of the following vertex pairs:

• For all
(
d
2

)
pairs vi, vj with 1 ≤ i < j ≤ d, the distance is 2.

• For vi, i = 1, . . . , d, the sum over its distances to all wj with i 6= j is 3(n− ci−d+1).

• The sum over the distances between all pairs of leaves which have no neighbour in

common is 4
((

n−d
2

)
−

d∑
i=1

(
ci−1

2

))
.
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Altogether we obtain

W (S(c1, . . . , cd)) =
d∑
i=1

c2
i + 2

(
d

2

)
+ 3

d∑
i=1

(n− ci − d+ 1)

+ 4

((
n− d

2

)
−

d∑
i=1

(
ci − 1

2

))

=
d∑
i=1

c2
i + d(d− 1) + 3(n− d+ 1)d− 3n

+ 2(n− d)(n− d− 1)− 2
d∑
i=1

(c2
i − 3ci + 2)

= 2n2 − nd− 5n+ 4d−
d∑
i=1

c2
i + 6n− 4d

= 2n2 − (d− 1)n−
d∑
i=1

c2
i .

Lemma 4.14. Let S(c1, . . . , cd) be the star-like tree with n = c1 + · · · + cd. Furthermore
let ci = cj = c for some 1 ≤ i, j ≤ d, i 6= j. Then

W (S(c1, . . . , cd)) > W (S(c′1, . . . , c
′
d))

for the star-like tree S(c′1, . . . , c
′
d) with

c′k =


c− 1 if k = i,

c+ 1 if k = j,

ck otherwise.

Proof. Obviously n and d remain unchanged. Thus according to Lemma 4.13 we obtain

W (S(c1, . . . , cd))−W (S(c′1, . . . , c
′
d)) = (c− 1)2 + (c+ 1)2 − 2c2 = 2 > 0.

Definition 4.5. The star-like tree with c1 = · · · = cl = 2 and cl+1 = · · · = cl+k = 1 is
denoted by S(2l, 1k). Besides we refer to the Wiener index of S(2l, 1k) as w(l, k).

It is easy to see that for S(2l, 1k) we get n = 2l + k and d = l + k. Thus we have

w(l, k) = 2(2l + k)2 − (l + k − 1)(2l + k)− 4l − k = 6l2 + (5k − 2)l + k2.
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l 2 3 4 5 6 7 8 9 10 11 12 13
s(l) 1 1 3 4 4 7 9 10 10 14 17 19

l 14 15 16 17 18 19 20 21 22 23 24 25
s(l) 20 20 25 29 32 34 35 35 41 46 50 53

Table 4.1: s(l) for all star-like trees S(2l, 1k) with 2 ≤ l ≤ 25.

Definition 4.6. Let S(c1, . . . , cd) be the star-like tree with ci = cj = c for some indices
1 ≤ i, j ≤ d, i 6= j. Replacing ci by c+ 1 and cj by c− 1 is called a splitting step.

The number of splitting steps one can perform starting with S(2l, 1k) is denoted by s(l)
(which is independent of the number of 1’s occurring in S(2l, 1k)).

Example 4.15. Let us consider the star-like tree S(2l, 1k) with l = 5. Then we can
perform the following splitting steps

S(25, 1k) ↪→ S(3, 3, 2, 1k+2) ↪→ S(4, 2, 2, 1k+2) ↪→ S(4, 3, 1k+3).

Thus we have s(5) = 4.
A list of all s(l) for 2 ≤ l ≤ 25 is given in Table 4.1.

Obviously s(l) is a non-decreasing function and we have s(l + 7) ≥ s(l) + s(7) and
s(l + 8) ≥ s(l) + s(8). Using Table 4.1 we see that s(l) ≥ l + 5 for 12 ≤ l ≤ 18 and
s(l) ≥ l + 9 for 16 ≤ l ≤ 24. Thus we obtain s(l) ≥ l + 5 for l ≥ 12 and s(l) ≥ l + 9 for
l ≥ 16.

Now, starting with S(2l, 1k), we can construct star-like trees with Wiener index w(l, k),
w(l, k)− 2, . . ., w(l, k)− 2s(l) by using splitting steps and applying Lemma 4.14.

Proposition 4.16. For every even integer w ≥ 1506 there exists a star-like tree S(c1, . . . , cd)
such that W (S(c1, . . . , cd)) = w.

Proof. Let us consider the star-like tree S(2l, 1k) with k = 0, 2, 4, . . . , 10 and l = x+ 1− k
2
.

Then according to Lemma 4.13 we obtain

W (l, k) = 6

(
x+ 1− k

2

)2

+ (5k − 2)

(
x+ 1− k

2

)
+ k2

= 6x2 + (10− k)x+ 4.

Let x ≥ 16. Then we have l ≥ 16 + 1− 10
2

= 12 and therefore

s(l) ≥ l + 5 ≥ l +
k

2
= x+ 1.

Thus

6x2 + (10− k)x+ 4− 2s(l) ≤ 6x2 + (10− k)x+ 4− 2(x+ 1)
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= 6x2 + (8− k)x+ 2

and hence all even numbers in the interval

[6x2 + (8− k)x+ 2; 6x2 + (10− k)x+ 4]

are Wiener indices of star-like trees. Since 6x2 +(10−(k+2))x+4 = [6x2 +(8−k)x+2]+2
we obtain⋃

k=0,2,...,10

[6x2 + (8− k)x+ 2; 6x2 + (10− k)x+ 4] = [6x2 − 2x+ 2; 6x2 + 10x+ 4].

As 6x2 + 10x+ 4 = 6(x+ 1)2 − 2(x+ 1), we get⋃
x≥16

[6x2 − 2x+ 2; 6x2 + 10x+ 4] = [1506;∞),

which means that all even integers w ≥ 1506 are Wiener indices of star-like trees.

Proposition 4.17. For every odd integer w ≥ 2385 there exists a star-like tree S(c1, . . . , cd)
such that W (S(c1, . . . , cd)) = w.

Proof. We use the same idea as in the proof of Proposition 4.16. So let us consider the
star-like trees S(2l, 1k) with the pairs (l, k) = (x − 6, 15), (x, 1), (x − 4, 11), (x − 8, 21),
(x− 2, 7), (x− 6, 17) for x = 2a, a ∈ N. Then according to Lemma 4.13 we obtain

w(x− 6, 15) = 6x2 + x+ 3,

w(x, 1) = 6x2 + 3x+ 1,

w(x− 4, 11) = 6x2 + 5x+ 5,

w(x− 8, 21) = 6x2 + 7x+ 1,

w(x− 2, 7) = 6x2 + 9x+ 7,

w(x− 6, 17) = 6x2 + 11x+ 7.

If x = 2a ≥ 20, we have for all cases that l ≥ 12. Thus s(l) ≥ l + 5 and therefore we get
that all odd numbers in the intervals

[6x2 − x+ 5; 6x2 + x+ 3],

[6x2 + x− 9; 6x2 + 3x+ 1],

[6x2 + 3x+ 3; 6x2 + 5x+ 5],

[6x2 + 5x+ 7; 6x2 + 7x+ 1],

[6x2 + 7x+ 1; 6x2 + 9x+ 7],

[6x2 + 9x+ 9; 6x2 + 11x+ 7]
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are Wiener indices of some star-like trees, which means that all odd numbers in the interval
[6x2 − x+ 5; 6x2 + 11x+ 7] for x = 2a ≥ 20 are Wiener indices of some star-like trees.

Now, let us consider the star-like trees S(2l, 1k) with the pairs (l, k) = (x − 1, 3),
(x− 5, 13), (x− 9, 23), (x− 3, 9), (x− 7, 19), (x− 1, 5) for x = 2a− 1, a ∈ N. Analogously
we obtain by Lemma 4.13

w(x− 1, 3) = 6x2 + x+ 2,

w(x− 5, 13) = 6x2 + 3x+ 4,

w(x− 9, 23) = 6x2 + 5x− 2,

w(x− 3, 9) = 6x2 + 7x+ 6,

w(x− 7, 19) = 6x2 + 9x+ 4,

w(x− 1, 5) = 6x2 + 11x+ 8.

If x = 2a− 1 ≥ 21, we have for all cases that l ≥ 12. Thus s(l) ≥ l + 5. Furthermore, for
l = x − 3 ≥ 18 we have s(x − 3) ≥ (x − 3) + 90x + 6, and therefore we get that all odd
numbers in the intervals

[6x2 − x− 6; 6x2 + x+ 2],

[6x2 + x+ 4; 6x2 + 3x+ 4],

[6x2 + 3x+ 6; 6x2 + 5x− 2],

[6x2 + 5x; 6x2 + 7x+ 6],

[6x2 + 7x+ 8; 6x2 + 9x+ 4],

[6x2 + 9x; 6x2 + 11x+ 8]

are Wiener indices of some star-like trees, which means that all odd numbers in the interval
[6x2 − x− 6; 6x2 + 11x+ 8] for x = 2a− 1 ≥ 21 are Wiener indices of some star-like trees.

Combining those two results, we obtain that for any x ≥ 20 all odd numbers in the
interval

[6x2 − x+ 4; 6x2 + 11x+ 8]

are Wiener indices of some star-like trees. Since 6x2 + 11x + 8 = 6(x + 1)2 − (x + 1) + 3,
we obtain ⋃

x≥20

[6x2 − x+ 4; 6x2 + 11x+ 8] = [2384;∞),

which means that all odd integer w ≥ 2384 are Wiener indices of star-like trees.

Furthermore Wagner checked via computer that all integers 470 ≤ w ≤ 2384 are Wiener
indices of star-like trees with less then 41 edges. Thus, together with [12], the following
theorem holds:

Theorem 4.18. Let w ∈ N0. Then there exists a tree T with W (T ) = w if and only if
w ∈ N0 \ {2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33, 34, 37, 38, 39, 41,
43, 45, 47, 51, 53, 55, 60, 61, 69, 73, 77, 78, 83, 85, 87, 89, 91, 88, 101, 106, 113, 147, 159}.
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