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Kurzfassung

Radio Frequency Identification (RFID)-Tags existieren bereits seit Jahren. Dies
sind meistens passive Transponder, die für die kontaktlose Kommunikation verwen-
det werden. RFID-Tags werden versorgt mit einem elektromagnetischen Feld des
RFID-Lesers. Der Ausgangspunkt dieser Arbeit war SLE78CLxxxP Dual 16-Bit-
Sicherheits-Controller von der Infineon, der CCEAL6 + high/EMV Co zertifiziert
ist. Daher ist es ideal für höchste Sicherheitsanwendungen wie digitale Signaturen
(z.B. ePassport, eHealth-Karte, eDriver License, eVisa, eSignature).

Diese Arbeit beschreibt die Implementierung eines angepassten Direct Anony-
mous Attestation (DAA) Algorithmus, sodass das Authentifizierung, Anonymität
und Unverfolgbarkeit des RFID-Tags zur Verfügung gestellt ist. Dies ist ein op-
timiertes anonymes Authentifizierungsschema, die Limitierungen eines RFID-Tags
in Speicherbedarf und Berechnungs-Leistung angepasst ist. Das System wird auf
Basis elliptischer Kurven-Kryptographie (ECC), die Public-Key-Kryptographie mit
kleinen Schlüssel-Grössen beruht, entwickelt. Das ermöglicht, dass genug Speicher
für Algorithmen-Berechnung vorhanden ist und damit wird die Ausführungszeit
verbessert.

Diese Arbeit stellt die Umsetzung des DAA Unterschrifts Protokol für einen
RFID-Tag dar. Der Signatur-Generation-Algorithmus wurde mit µKeil, einer Mod-
ellierungssprache für effiziente Low-Level-Programmierung in C, implementiert.

Dieser implementierte Algorithmus hat keine eingebaute Unterstützung für den
Widerruf der Sicherheits-Parameter.

Prüfung und Evaluierung hat ergeben, dass dieser DAA-Schema erfolgreich ausge-
fürt wird und damit auch, dass es auf einem RFID-Tag implementiert werden kann.
Mit diesem Ergebnis wurde ein grosser Schritt, um anonyme RFID-Kommunikation
zu sichern, getan.

Stichwörter: RFID, Elliptic Curve Cryptography, Direct Anonymous Attestation,
Digitale Signatur, Authentifizierung, Anonymität, Datenschutz

5



Abstract

Radio frequency identification (RFID) tags already exist for years. They are mostly
passive devices which are used for contactless communication. RFID tags derive
its power from the electromagnetic field of the RFID reader. The starting point
of this thesis was Infineon’s SLE78CLxxxP dual 16-bit security controller, which
is certified CCEAL6 + high/EMV Co. That makes it ideal for highest security
applications like digital signatures (e.g. ePassport, eHealth card, eDriver’s License,
eVisa, eSignature).

This thesis describes an implementation of a lightweight direct anonymous attes-
tation (DAA) scheme, which provides authentication, anonymity and untraceabil-
ity of RFID tags. This version is an optimized anonymous authentication scheme
adapted for memory and computing constraints of the RFID tag. The scheme is
based on elliptic curve cryptography (ECC) (which is public-key cryptography with
small key-sizes). That results in a small memory requirements, which is important
for tag’s computation performance.

This work presents an implementation of the DAA signature generation protocol
for RFID tags. The signature generation algorithm has been implemented using
µKeil, a modeling language for efficient low-level programming in C. This scheme
has no built-in support for revocation of security parameters.

Verification and evaluation has shown that the DAA algorithm is feasible for
RFID tag.
With this result a big step to secure anonymous RFID communication has been
done.

Keywords: RFID, Elliptic Curve Cryptography, Direct Anonymous Attestation,
Digital Signature, Authentication, Anonymity, Privacy
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Chapter 1

Introduction

The importance of devices that use RFID and security technology has grown over

the last few years. The reader communicates with the tag through electromagnetic

field of radio waves, which is powering the tag. The communication is contactless,

and the reader with the help of a software, which runs on a PC or a server con-

nected to the reader, identifies the object. RFID tags have been embedded into

different products like student cards, library books, health cards, citizen cards and

even passports. Furthermore, the increased involvement of the tags in government

and billing procedures increases need for secure communication.

A person and/or object who carries a device equipped with RFID tags is poten-

tially traceable by an adversary. This would violate the person’s privacy. Therefore,

designing RFID protocol, which is privacy friendly, is a major concern before this

technology becomes even more widespread. Privacy-friendly in this context means

that the identity of the tags cannot be interferred from the protocol messages (i.e.

anonymity), and that two tags cannot be linked (i.e. untraceability).

A possible privacy-friendly RFID protocol is Direct Anonymous Attestation (DAA).

The DAA [2] algorithm plays an important role in privacy enhanced technologies.

It allows an entity (e.g., a user, or a hardware device) to create a signature without

revealing its identity. Anonymous signatures also enable anonymous entity authen-

tication. There are various DAA algorithm implementations on Trusted Computing

Platforms [13] or Java enabled platforms [8]. These implementations are made on

standardized hardware, which is providing remarkable preformance in processing

power and storage.
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Chapter 1 Introduction

To run a complex DAA algorithm on a RFID tag, with passive power, several

implementation optimizations need to be made. Reasearch showed that Elliptic

Curve Cryptography (ECC) is well suited for such an optimization. It is based on

difficult mathematical problems, so that ECC sytems with much smaller key size,

provide equivalent security as the other existing public-key schemes. Due to short

key length processing and memory requirements are much smaller. DAA based

on ECC is very attractive for RFID tag implementation, where chip in processing

power and storage is strongly limited.

The core component of Infineon’s SLE78CLxxxP family RFID tag is a dual 16-bit

processor. It has a Contactless Security Controller called Integrity Guard. This tag

has purpose built co-processors for RSA/ECC and DES/AES operations, which are

used to accelerate time-consuming cryptographic computations. For the implemen-

tation Infineon CryptoLibrary (CryptoLibSLE70) designed for this co-processors

has been used.

This thesis presents an anonymous authentication scheme tailored to the resource

constraints of RFID tags. Anonymous authentication means that RFID tag authen-

ticates to Verifier V as a member of a DAA group created by an issuer I, but V

does not learn the actual identity of the tag.

The DAA implementation was made on Infineon SLE78 RFID tag with Cryp-

toLibSLE70 modeled in µVision (Keil), a modeling language based on C that com-

bines source code editing, program debugging and complete simulation.

1.1 Thesis Outline

The thesis starts with a short introduction to number theory in Chapter 2. This

chapter deals with symmetric and asymetric cryptography and their comparison,

digital signatures and hash functions.

Chapter 3 builds up on the basics of public-key cryptography introduced in Chap-

ter 2 and discusses the area of elliptic curves and ECC. Operations over elliptic

13



Chapter 1 Introduction

curves and a comparison of different implementation variations are described here.

Special attention is paid to finte fields arithmetic, which is necessary to understand

ECC.

Chapter 4 deals with the theory of anonymous authentication. The concept of

DAA and concrete DAA scheme based on RSA and Lightweight Anonymous Au-

thentication Scheme for Embedded Mobile Devices are presented.

Chapter 5 gives an overview of the design flow for developing a software imple-

mentation. It starts with description of the actual state in hardware and software.

The second part is about the parameters which were included in software implemen-

tation. Finally, the integration of the parameters and the software implementation

are presented.

Chapter 6 presents the implementation results of the propsed protocol measured

with the tag in the strong electromagnetic field. The Results are discussed and

compared to preformance evaluation of the related work. Their possible solutions

are then presented.

Conclusions and achievements of this work are drawn in Chapter 7 with sugges-

tions for future work to improve the protocol implementation.

An appendix completes the work with a glossary and a bibliography.
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Chapter 2

Theoretical Background

2.1 Cryptography

Cryptography is defined [7],[23] as the study of mathematical methodes to allow

secure communication over a non-secure channel. Main goals related to aspects of

information security are:

Confidentiality stands for secrecy and privacy. This means that no third party

should be able to access the unencrypted information.

Data integrity is about the unauthorized change or alteration of data. It must

be possible to detect manipulation of data by unauthorized parties. Manipulation

can be the insertion, deletion or substitution of data.

Authentication and identification go hand in hand. Two different forms of au-

thentication can be distinguished: Entity authentication is about proving ones au-

thenticity using certain information about oneself to a second party. Origin au-

thentication proves that the provided data/message/Information is from a certain

sender.

Nonrepudiation prevents an entity from denying previous commitments or ac-

tions, In the case of a signed contract, this attribute makes sure that a party

cannot back out, by denying that the contract was signed.

15



Chapter 2 Theoretical Background

2.2 Symmetric cryptography

In this cryptographic scheme a secret is shared between communications partners.

Its history goes back to ancient Egypt (1900 b.c.), over Caesar cipher and the

Vignere cipher , which was the first to use passphrase for encryption. A special case

of symmetric cryptography is a one-time-pad , which allows perfect security but the

usability of this scheme is restricted. However, it is used in quantum cryptography

where the key is exchanged over a photon beam and it is provably secure.

The Kerckhoff principle from 19th century is still of great importance and it says

that a security of cryptosystem must only rely on the secrecy of the keys (the shared

secret) and never on the secrecy of used algorithm.

Nowadays the most used algorithm is probably the Advanced Encryption Stan-

dard (AES) wich was chosen by US National Institute of Standard and Technology

(NIST) to replace the older Data Encryption Standard (DES).

Symmetric encryption still plays an important role in secure communication,

because of the much higher performance as asymmetric cryptography.

2.3 Asymmetric Cryptography

Asymmetric or Public - key cryptography is called asymmetric because instead of

a one shared key for all participants, each of them has a key pair . There is a

public key, which is available to the public and the private key which is kept secret

and altough different, the two parts of the key pair are mathematically linked.

Public key is used to encrypt the plaintext for its owner and only owner of the

corresponding private key can decrypt ciphertext and read the encrypted message.

Public - key cryptography uses mathematical functions also called trapdoor one-

way functions. These functions presumably have no efficient solution. It is compu-

tationally easy to generate public and private key, encrypt plaintext and decrypt

ciphertext, but it is infeasible for anyone to derive the private key.

Currently three classes of mathematical problems are used for asymmetric crypto-

systems:
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Chapter 2 Theoretical Background

1. The integer factorization problem in RSA [25]

2. The dicrete logarithm problem in ElGamal [11]

3. The elliptic curve discrete logarithm problem (ECDLP) in ECC [7]

This thesis is based on ECC system. Only this system is described in detail in

Chapter 3.

2.4 Comparison of Symmetric and Asymmetric

Cryptography

At this point it is interesting to compare the two previously introduced crypto-

graphic systems.

Advantages of symmetric - key cryptography:

• High performance implementations are possible

• Short key lengths

• Can be used as pseudo - random number generators

• Symmetric - key ciphers can be combined. This results in strong product

ciphers.

Disadvantage of symmetric - key cryptography:

• The key must remain secret within all participating parties

• Too many keys: a lot of key pairs need to be managed in large network

• Need for secure channel for secret key exchange

• Cryptographic practice dictates that the key is changed frequently. If possible

it should be even within communication sessions

Advantages of public - key cryptography:

• The private key must be kept secret by one entity only (authenticity)

17
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• There is no problem of key distribution. Everyone publishes thier public keys

• The key pair can remain unchanged for long periods of time. This depends

on the mode of usage.

• There are many efficient digital signature mechanisms. They mostly only

require small public keys.

• The total number of required key pairs in a large network is much smaller

then in a symmetric - key scenario.

Disadvantages of public - key encryption:

• In comparison to symmetric - key schemes, the pubic - key schemes are com-

putationally much more intensive.

• The required key size is larger compared to symmetric - key encryption meth-

ods.

Optimally one should use the advantages of both worlds. Use the asymmetric

- key cryptography for establishing a secure communication channel by sharing a

secret key. Then use symmetric - key cryptography for the real communication and

transfer of the data, bacause of the much higer performance.

2.5 Digital Signatures

Fundamental components on cryptography are digital signatures. They are used

for signing documents and they are a method for providing authenticity, authoriza-

tion and nonrepudiation. Therefore it can be determined whether a document was

signed with a valid signature and if it was or was not changed after signing. A

wide spread algorithm for digital signatures which is standardized by the National

Institute of Standards and Technology (NIST) in 1991 is specified in the Digital

Signature Standard (DSS) [7], [24] and called Digital Signature Algorithm (DSA).

The purpose is to bind an entity to a piece of information. During the process of

signing, some secret information held by the signing entity is used to generate a

signature.

18
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Digital signatures are perfect applications for public - key cryptography and the

signing and verification procedure can be distinguished. The private key, one which

is only known by the owner, is used by a digital signature algorithm to calculate the

signature. The signature can now be sent with the signed document. The receiver

uses the public key of the signer to check the validity and authenticity of this signed

document.

One standardized algorithm based on ECC is Elliptic Curve Digital Signature

Algorithm (ECDSA), which is the Digital Signature Algorithm (DSA)-analogue for

elliptic curves.

2.6 Hash Functions

The book [1], [27] states that a hash function is a computationally efficient function

mapping binary strings of arbitrary length to binary strings of some fixed length,

called hash - values. A hash value can be seen as a compact representation of an

input string. During this compression, the number of bits (from input to hash)

gets reduced. This means that it is theoretically possible to find two input strings

that generate the same hash value. This is called a collision. Hash algorithms are

designed in a way that it is hardly possible to find a collision. It should be also

computationally infeasible to find an input x for predefined hash value y so that

h(x) = y.

In cryptography, hash algorithms play a very important role for digital signatures

and data - integrity checks. During a signature generation, not the whole message

is signed, but the hash value of the message. So finding a message with the same

hash value as the originally signed message should be computationally infeasible.

To check the validity of a signature, the hash function must be publicly known.

According to [7], a hash function is an one-way function h which has at least two

of these following properties:

• An input m of arbitrary finite bit-length is mapped by h to an output h(m)

with finite bit-length n (compression).

• Given the input m and h it should be easy to compute h(m) (ease of compu-

tation). The following three conditions must hold if the hash function is to
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be used for cryptographic applications.

• Given the output h(m) of a hash function it should be computationally in-

feasible to find any input m′ which hashes to the same output h(m′) = h(m)

(preimage resistance).

• Given an input m and the output h(m) of a hash function it should be com-

putationally infeasible to find a second input m′ which has the same output

h(m) = h(m′) (2nd preimage resistance).

• It should be computationally infeasible to find any two distinct inputs m and

m’ which hash to the same output h(m) = h(m′) (collision resistance).

Common representative of hash function is the SHA-1 algorithm (SHS) with an

160-bit output which is standardized by the NIST. There are also hash functions

with an output of 256 bits (SHA-256) and 512 bits (SHA-512). For an in-depth

discussion of hash functions see [27].
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Chapter 3

Elliptic Curve Cryptography

The use of elliptic curves in cryptography was proposed first by Victor Miller [20]

and Neal Koblitz [16] in 1985. Since back then the popularity for elliptic curves

grew more and more. In the work [21] by Nils Gura et al. different RSA and ECC

algorithms on embeded processors are compared. [7] states that a 224-bit elliptic

curve and 2048-bit RSA algorithm have the same level of security. NIST P-224

curve arithmetic and RSA-2048 algorithm have been implemented on ATmega128

(8-bit processor). The code size of both algorithms is very similar, but the big

difference is in the required size of data memory: RSA-2048 data memory has to be

more than three times larger then the 224-bit elliptic curve memory. This clearly

shows that the elliptic curve algorithms have advantage over other asymmetric

algorithms, altough cryptographic operations relying on elliptic curves are more

complex to calculate.

3.1 The Elliptic Curve Discrete Logarithm Problem

(ECDLP)

The mathematical basis for the security of elliptic curve cryptosystems is the compu-

tational intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP)

leading to smaller key-sizes which make elliptic curves attractive. The difficulty

to solve ECDLP on E is the problem of finding an integer k (if such an integer k

exists) such that kP = Q for a given point Q ∈ E.

Q and P are points on the elliptic curve E wich is a group defined over a finite

field GF (p) and k is an integer. The operation kP is called point multiplication.
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The calculation of the point multiplication over the curve E(Fp) involves several

mathematical operations. For an easier understanding of these calculations it is

important to keep in mind that there are two levels of abstraction which must be

strictly kept apart:

1. The higher level of abstraction with regard to the elliptic curve itself, the

points on the curve and the operations which can be performed with these

points.

2. The lower level of abstraction (the ”basic”) concerns the underlying algebraic

structure (for cryptographic applications: a finite field) of the elliptic curve.

Performing a point operation on the elliptic curve involves multiple operations

in the underlying finite field which often is GF (p) or GF (2m). Therefore,

basics in finite field arithmetic are crucial for understanding elliptic curves

and elliptic curve cryptography.

The remainder of this chapter is organized as follows. After a mathematical

definition of elliptic curves, two different point representations are discussed along

with elliptic curves over different (finite) fields and the operations defined on them.

Good introductions and references of the comprehensive area of application of

finite fields, elliptic curves and ECC can be found in [19], [18], [17], [7].

3.2 Elliptic Curve Arithmetic

3.2.1 Weierstrass Equation

A Weierstrass equation which defines an elliptic curve over a field is a homogeneous

equation of degree 3 of the form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 a1, a2, a3, a4, a6 ∈ K (3.1)

This equation is behind every elliptic curve. For convenience, this equation is

written using non-homogeneous (affine) coordinates ( x = X/Z, y = Y/Z). There

is exactly one point in E with Z -coordinate equal to 0, namely (0 : 1 : 0). This

point is called point at infinity and is denoted by O.
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Chapter 3 Elliptic Curve Cryptography

In order to ensure that the curve is ”smooth”, there is also the discriminant ∆ 6= 0

to consider. ∆ is the discriminant of E. It is defined as follows:

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6

d2 = a21 + 4a2

d4 = 2a4 + a1a3

d6 = a23 + 4a6

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

The smoothness of the elliptic curve E is necessary, so that there are no points

on the curve with two or more distinct tangent lines.

As allready stated E is defined over K. K is called the underlying field and it

is written E(K). That is because the coefficients in Equation 3.1 are elements of

K. Choices for underlying fields are prime fields GF (p) and binary extension fields

GF (2m). For both of the fields there are recommended parameters in the FIPS

186-3 standard [24].

An elliptic curve point is a tuple of integers (x, y), which fullfills the 3.1 and so

lies on the curve. The Weierstrass equation can be simplified. For prime fields

GF (p) or for all fields with char char(K) 6= 2, 3 special form is obtained:

E : y2 = x3 + ax+ b a, b ∈ K (3.2)

The constraint char(K) 6= 2, 3 must hold, otherwise there would be a division

by zero in the equations used for performing the transformations. 3.1 represents an

elliptic curve defined over R or E(R).

The equation which defines a non-supersingular elliptic curve over a binary ex-

tension field GF (2m) is

E : y2 + xy = x3 + ax2 + b a, b ∈ K (3.3)

In 3.2 elliptic curve over GF (23) is presented

The points on an elliptic curve form a group. The group operations as point

addition, point doubling are described in the following sections. The neutral element

of the group is the point at infinity O.
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Figure 3.1: Elliptic curve over R, y2 = x3 − 4x+ 0.67

Figure 3.2: Elliptic curve over GF (23): y2 = x3 + x
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Figure 3.3: Graphical point addition R = P +Q

3.2.2 Point Addition

When E(R) is an elliptic curve over R the addition of two distinct points P =

(xP , yP ) and Q = (xQ, yQ) is defined graphically as shown in 3.3. Addition is done

by placing a straight line through the points P and Q which will be extended until

it intersects the elliptic curve in exactly one point −R. The point of intersection

is mirrored along the x-axis, which leads to the resulting point R = (xR, yR).

Performing the addition geometrically may be easier to remember. Unfortunately,

no geometric approach exists for elliptic curves over GF (p) and GF (2m).

Analytically, addition of P and Q is accomplished by

R = (xR, yR) = P +Q

which is calculated in the following way:

xR = λ2 − xP − xQ
yR = λ(xP − xR)− yP

With λ denoting the slope of the straight line:
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λ =
yQ−yP
xQ−xP

The equation for GF (2m) is:

xR = λ2 + λ+ xP + xQ + a

yR = λ(xP + xR) + yP

with λ:

λ =
yQ+yP
xQ+xP

This formulas cannot be used if xP equals xQ. Calculation of the addition always

takes place in the underlying field. For E(R) these are the real numbers leading to

floating-point calculations.

3.2.3 Point Doubling

If the two points, P and Q, are equal (P = Q), no conventional point addition as

described in the previous section can be performed because a straight line through

P and Q is not defined (λ undefined). A doubling algorithm has to be applied

instead. In this case the tangent to the curve at the point P is used instead and

everything else is similar to the addition, as shown in 3.4.

Analytically, doubling of P is accomplished by

R = (xR, yR) = P + P = 2P

For prime fields GF (p) is calculated in the following way:

xR = λ2 − 2xP

yR = λ(xP − xR)− yP

with λ denoting the slope of the tangent to the curve at point P :

λ =
3x2

P+a

2yP

The equation for GF (2m) fields is:

xR = λ2 + λ+ a

yR = x2P + (λ+ 1) + xR
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Figure 3.4: Graphical point doubling R = 2P

with λ:

λ = xp + yP
xP

If P = −P then the result is the point at infinity O for both prime GF (p) and

binary GF (2m) fields, what is represented in 3.5.

3.2.4 Point Multiplication

The point addition and doubling formula can now be used to derive a multiplication

method. A multiplication method is in Algorithm 1.

The scalar k is scanned bitwise, and depending if the current bit is set, the inter-

mediate result Q is only doubled or doubled and added to the base point P . If k is

chosen randomly, on average t point doubling and t/2 point additions are required

to calculate the point multiplication. Here, t is the number of bits of k.

In order to optimize Algorithm 1, the succeeding point addition and doubling

can be merged into a single function that calculates both results at the same time.
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Figure 3.5: Graphical presentation of P + (−P ) = O

Algorithm 1 Point Multiplication

Require: k = (kt−1, ..., k1, k0)2, kt−1 = 1 P ∈ E(Fp).
Ensure: k · P.
1: Q[0]← P
2: Q[1]← 2P
3: for i← t− 2 to 0 do
4: Q[1⊗ ki]← Q[ki] +Q[1⊗ ki]
5: Q[ki]← 2Q[ki]
6: end for
7: return (Q)
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Various optimizations can be done to reduce the number of elliptic curve oper-

ations preformed in the point multiplication. In [7] mentioned are window meth-

ods, non-adjacent form (NAF), simultaneous point multiplication, joint sparse form

(JSF) and others.

For elliptic curves over binary fields GF (2m) the Montgomery Method is more

efficient algorithm to calculate the point multiplication. For prime fields it is less

efficient. Another advantage of the Montgomery method is that in every step both

point addition and a point doubling are preformed. This gives a certain protection

against side channel attacks, which use timing or power analysis to recover all bits

of private integer k.

3.2.5 Finite Fields Arithmetic

A finite field or Galois field (GF) is a field F, which contains a finite number

of elements. The order  lFl is the number of elements in F and it contains two

operations (+, ·). The finite field over which elliptic curve E is defined is a prime

field GF (p) or binary extension field GF (2m). Finite field compiles the following

arithemtic operations:

1. (F, +), is an anbelian group with the neutral element 0

2. (F/0, ·) is an anbelian group with the neutral element 1

3. The distributive law (a+ b) · c = a · c+ b · c for a, b, c ∈ F holds true

The finite field is defined as the ”normal” fields like N, Z or R, with the difference

that its set is finite. The number of elements in field is called order of the group.

Finite fields only exists if the order is a pk, with p as a prime number and k ∈
N. If k = 1 , the field is a prime field and if k > 2, the field is then called an

extension field. Extension fields with an order of 2m are called binary extension

fields or characteristic - two finite fields. This two type of fields are most used in

ECC applications.

Prime field elements can be represented by integers and the arithmetic is per-

formed modulo the prime modulus p. With extension fields various representations

exist.
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3.2.6 Mathematical Operations

A prime field GF (p) is a finite field with p elements, where p has to be a prime

number, otherwise the elements only define a ring instead of a field. The basic

mathematical operations applicable in the prime field GF (p) are addition, sub-

traction, multiplication and inversion, which are performed modulo this prime p.

Simple addition and multiplication algorithms result into majority of the runtime

of the DAA Algorithm. For inversion algorithms, the reader is encouraged to read

the Chapter 2.2.5 in the Guide to Elliptic Curve Cryptography [7].

3.2.6.1 Reduction

Given any integer z, then z mod p (the integer remainder in the range [0, p - 1]

after z is divided by p) is called the modular reduction of z with respect to modulo

p. This can also be achieved by multiple subtractions.

Modular reduction is needed to ensure that results of prime field operations will

stay in [0, p - 1 ] range. In general, modular reduction is an expensive operation,

and should be avoided whenever possible. There are two prominent reduction algo-

rithms available: Barrett and Montgomery reduction. Barrett reduction is a direct

replacement for classical modular reduction, whereas Montgomery reduction is only

useful when a sequence of multiple modular operations is calculated. Both are de-

scribed in the book [7]. The Montgomery Multiplication is, as the name suggests,

not a pure modular reduction, but a field multiplication wich includes efficient re-

duction. Details can be found in the following section.

The advanage of NIST primes, used as modulo are their special forms. They can

be expressed as sum or difference of small numbers and powers of 2. The FIPS

186-3 standard defines several primes in the size of 192-bit to 521-bit [24]:

p192 = 2192 − 264 − 1

p224 = 2224 − 296 + 1

p256 = 2256 − 2224 + 2192 + 296 − 1

p384 = 2384 − 2128 − 296 + 232 − 1

All the numbers are written this way for the efficient software implentations. The

exponents are chosen to fit exactly multiples of 32-bit words. These primes, rep-

30



Chapter 3 Elliptic Curve Cryptography

resented as exponents of 2, allow very efficient reduction: only a few subtractions

and additions are needed.

This thesis uses the NIST - P256 parameters. Algorithm for the fast reduction,

shows how the upper 256-bit of the multiplication must be added to the lower

256-bit in order to preform a reduction.

Algorithm 2 Fast reduction modulo p256 = 2256 − 2224 + 2192 + 296 − 1

Require: An integer c = (c15, c14, c13, c12, c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, c0) in
base 232, with 0 ≤ c ≤ p2256.

Ensure: c(mod p256).
1: s1 ← c7, c6, c5, c4, c3, c2, c1, c0
2: s2 ← c7, c6, c5, c4, c3, c2, c1, c0
3: s3 ← c7, c6, c5, c4, c3, c2, c1, c0
4: s4 ← c7, c6, c5, c4, c3, c2, c1, c0
5: s5 ← c7, c6, c5, c4, c3, c2, c1, c0
6: s6 ← c7, c6, c5, c4, c3, c2, c1, c0
7: s7 ← c7, c6, c5, c4, c3, c2, c1, c0
8: s8 ← c7, c6, c5, c4, c3, c2, c1, c0
9: s9 ← c7, c6, c5, c4, c3, c2, c1, c0

10: return (s1 + 2s2 + 2s3 + 2s4 + s5 − s6 − s7 − s8 − s9(mod p256)

3.2.6.2 Addition and Subtraction

Operation called addition modulo p is a + b = r for each a, b ∈ GF (p) where r is

the remainder of (a+ b)/p. By replacing b with its inverse element (−b) regarding

addition leads to the definition of subtraction: a + (−b) = a − b = r for each

a, b ∈ GF (p) where r is the remainder of (a+ (−b))/p = (a− b)/p . This operation

is also called subtraction modulo p.

The addition and subtraction algorithms are fast and efficient and a lot easier

to implement then the multiplication algorithms, which are handled in the next

section.

Algorithm 3 shows the addition procedure. To understand this Algorithm, very

important is the carry propagation. When two W -wide words are added, the result

has W + 1 bits. The extra, most significant bit is stored in the carry bit ε. The

algorithm first adds a and b, and when the sum is larger than or equal to p, p is
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Algorithm 3 Prime field addition in GF (p)

Require: Two integers a, b ∈ [0, p− 1] and a modulus p
Ensure: c = (a+ b)(mod c).
1: (ε, C)← A[0] +B[0]
2: for i from 1 to t− 1 do
3: (ε, C)← A[i] +B[i] + ε
4: end for
5: if ε = 1 or c ≥ p then
6: (ε, C[i])← C[0]− P [0]
7: for i from 1 to t− 1 to 0 do
8: (ε, C[i])← C[i]− P [i]− ε
9: end for
10: end if
11: return (C)

subtracted from the intermediate result stored in c. In the case of the subtraction,

preformed within lines 6 - 9, ε is used as a borrow bit.

3.2.6.3 Multiplication

Modular multiplication is the most important operation in an ECC, as it has the

most significant impact on performance. It defines to a large extent the amount of

resources needed for a hardware implementation. Multiplication is a heavy-weight

operation that cannot be calculated in a single step, especially if a and b are of

cryptographic size. It has to be split into several smaller operations. Modular

multiplication a ·b (mod p) can be calculated by conventional integer multiplication

of a and b followed by a modular reduction. There is an algorithm for MSB-to-LSB

or from LSB-to-MSB bit serial multiplication. The product a · b is calculated by

multiplying the multiplicand a by the individual bits of multiplicand b.

3.2.6.4 Montgomery Multiplication

Peter Lawrence Montgomery presented a lot of different methods to improve ECC

related operations. One of those improvements is a technique which allows imple-

menting modular arithmetic s in prime field, so that all arithmetic operations can

be executed in the Montgomery domain. We can multiply two numbers and reduce

them at the same time, by introducing a third term (r):
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c = a · b · r−1(mod p)
There are two requirements for r:

• r > p

• gcd(r, p) = 1

Usually p is prime and r a multiple of 2, so that those requirements are fullfilled

by default.

This method is even more effective when a lot of multiplications are needed. Only

initial multiplication with r need to be done.

ã = a · r mod p and b̃ = b · r mod p, so that montgomery multiplication results

in:

Mont(ã, b̃) ≡ ã · b̃ · r−1(mod p)
≡ (a · r) · (b · r) · r−1(mod p)
≡ (a · b) · r (mod p)

The result is also multiplied with r. To recover the result, a multiplication with

it is needed:

Mont(ã, 1) ≡ ã · 1 · r−1(mod p)
≡ (a · r) · 1 · r−1(mod p)
≡ a (mod p)

For the Motgomery multiplication implementation, an extra parameter (p′) is

needed, which can be calculated using the extended Euclidean algorithm . It is

defined as r · r−1− p · p−1 = 1. Algorithm 4 is known as Finley Integrated Product

Scanning Form (FIPS) from the paper [12]. For the multiplication only the storage

of the lower W bits of p′ are needed (p′0 = p (mod 2W )).
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Algorithm 4 FIPS Montgomery Multiplication

Require: Two integers a, b ∈ [0, p− 1] and precomputed p′0
Ensure: c = a · b · r−1(mod p).
1: ACC ← 0
2: for i from 1 to t− 1 to 0 do
3: for j from 0 to i− 1 to 0 do
4: ACC ← ACC + A[j] ·B[i− j]
5: ACC ← ACC + C[j] · P [i− j]
6: end for
7: ACC ← ACC + A[i] ·B[0]
8: C[i]← ACC[0] · p′0 (mod 2W )
9: ACC ← ACC + C[i] · P [0]
10: ACC ← ACC >> W
11: end for
12: for i from t to 2t− 1 do
13: for j from i− t+ 1 to t− 1 to 0 do
14: ACC ← ACC + A[j] ·B[i− j]
15: ACC ← ACC + C[j] · P [i− j]
16: end for
17: C[i− s]← ACC[0]
18: ACC ← ACC >> W
19: end for
20: if ε = 1 or c ≥ p then
21: c← c− p
22: end if
23: return (c)
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Direct Anonymous Attestation

(DAA)

Anonymous credential systems [2], [5], [3] enable the authentication without dis-

closing users identity. In an anonymous credential system, users authenticate them-

selves by proving the possession of credentials from a credential issuer. However,

without additional countermeasures, users could copy and share their credentials.

Then the unauthorized users could access services. A service provider cannot de-

tect if a credential has been copied, and credentials cannot be revoked. Therefore,

security measures are necessary to protect authentication secrets. Since anonymous

authentication introduction by Chaum [5], various anonymous credential systems

have been studies and proposed. For this thesis, the Camenisch- Lysyanskaya (CL)

credential system [3] is of particular importance since it is the basis for most of

DAA schemes. Several variants of CL credentials exist, which are based on the

strong RSA assumption [5], [9] or on pairings over elliptic curves [4].

The concept of DAA, and a concrete scheme, were first introduced by Brickell,

Camenisch, and Chen [2]. For a historical perspective, the reader is encouraged

to read [9]. This RSA-based Direct anonymous attestation (RSA-DAA) [2] is an

anonymous credential scheme, which was adopted by the Trusted Computing Group

(TCG) and included in version 1.2 of the TPM specification [13]. DAA has been

specified by the TCG [13]. DAA is a remote authentication method for a special

module, called the Trusted Platform Module (TPM). A TPM can be authenticated

without recovering the privacy of the user, who uses the harware with a TPM plat-
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form. TCG is an industry standardization body that aims to develop and promote

an open industry standard for trusted computing hardware and software to enable

more secure data storage, online business practices, and online transactions while

protecting privacy and individual rights.

Anonymity of a DAA signature is not revocable, because it is a group signature,

which cannot be opened. The user of a device in agreement with the recipient, can

decide if the signatures will be linkable. To do so one has to use pseudonyms, which

are available in DAA. Even more, DAA allows device revocation. If any device has

been compromised, i.e. the key from TMP has been extracted and published, a

verifier can detect a rogue signature, which was computed with a compromised key.

Compromised keys are known and available in the revocation lists.

The computation of the DAA protocols is split between the resource-constrained

TPM chip and the software running on the platform, e.g. PC. The TCG specified

a Mobile Trusted Module (MTM) [18] for mobile devices with optional support for

DAA. However, RSA-DAA is complex and computationally intensive, and thus not

suitable for the hardware protection mechanisms of mobile embedded devices such

as smartcards, or special-purpose processor extensions with very limited computa-

tional power and memory capacity.

The scheme that retain the same functionality as RSA-DAA but is more efficient

is the DAA scheme based on elliptic curves and pairings. The advantage of using

DAA based on ECC is obvious: both the key and signature length can be much

shorter, and computational load placed on the TPM less severe. As a result, DAA

based on ECC is typically more efficient in computation, storage and communica-

tion cost than RSA-DAA [28], [8], [21].

In this thesis, an optimized adaptation of an existing elliptic curve and pair-

ings based lightweight anonymous authentication scheme for RFID tag and its

implementation is presented. It is based on lightweight anonymous authentication

scheme for mobile embedded devices on a common mobile hardware platform pre-

sented in [28]. This scheme is tailored to the hardware resource constraints and it

provides anonymity, untraceability and secure device authentication. The TPM is
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a secure microcontroller or an additional security extension of a processor, which

provides a concrete set of standardized functions. TPM on Infineon SLE78CLxxxP

familiy RFID tag is not available, but RSA/ECC co-processor and Secure Memory

(EEPROM) are available and those will be used for, in TCG standardized, TMP

operations.

This chapter explains the anonymous attestation scheme, as the method for re-

mote authentication of a device, while preserving the privacy od the user of the

device. In the first part, definitions and formal specifications are given. In the

second part of this chapter, lightweigt anonymous authentication scheme, with its

advantages, is presented.

4.1 Introduction to DAA

Assume that the user of trusted hardware module (TPM) which is integrated into

a platform such as a laptop or a mobile phone, communicates with a verifier who

wants to be assured that the user indeed uses a platform that can be trusted,

i.e., the verifier wants TPM to authenticate itself. This problem is called remote

attestation.

On the other hand, privacy of the user has to be protected. The verifier should

only know that the TPM and its key are not corrupted (valid), but it cannot know

which TPM the user has. If that was the case, all signatures of the user, who

used one TPM would be linkable to each other. This problem can be solved using

any public-key signature (or an authentication) scheme. Every asymmetric cryp-

tography scheme computation has a key pair as a result: a secret key, which is

embedded into each TPM and a public key. Both keys are then used for authen-

tication protocol, which is used by a verifier and a TPM platform. The problem

is, that each TPM would use the same private key and in that case if one TPM

with its key is compromised, every other TPM with the same key would be com-

promised too. That means, the TPM would be indistinguishable and the verifier

using a revocation list could no longer distinguish between honest TMPs and the

fake ones. That is why a detection of rogue TPMs needs to be a further requirement.
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The solution first developed by TCG uses a trusted third party, privacy certifi-

cation authority (Privacy CA). A key pair generated using a RSA for each TPM

is called an Endorsment Key (EK) and all EKs of (valid) TPMs are known to the

Privacy CA.

A TPM can generate a second key pair called an Attestation Identity Key (AIK),

to identify itself to a verifier. By sending the AIK public key w.r.t. the EK to the

Privacy CA, TMP authenticates itself, by authenticating the AIK. If the EK is

valid, the Privacy CA issues a certificate to the TPMs AIK. Verifier can verify the

signature w.r.t. AIK and the issued certificate. More detailed description is in [3].

This solutions has the obvious drawback that the Privacy CA needs to be involved

in every transaction. If the Privacy CA and the verifier collude, or the Privacy CA’s

transaction records are revealed to the verifier in any other way, the verifier will

still be able to uniquely identify a TPM.

4.2 Formal Specification of Direct Anonymous

Attestation

This section provides the formal model of DAA using real-system/ideal-system as

in [10]. In the real system cryptographic protocol run a number of players. They

are an Adversary A, who controls some of the players, and an Environment E,

which provides the input data to the legitimate players. The E receives an output

of the legitimate players, too and interacts arbitrarily with all dishonest players,

wich are assumed to be the A.

Same players are available in the ideal system. Only difference is that they do

not run cryptographic protocols, but receive all they input and output data from an

ideal all-trusted party T . This player uses the other players inputs and computes

the output, realizing the functionality of a cryptographic protocols which are used

in a real system.

A cryptographic protocol implements securely a functionality for every adversary

A and every environment E, if there exists a simulator S, which is controlling the
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same parties in the ideal system as A does in the real system. By using S, it is pos-

sible that E cannot know whether it is run in the real or ideal system. That means,

E does not know if it interacts with A (from real system) or if it interacts with the S

In the functionality of DAA the following kinds of players can be distinguished:

• issuer I,

• trusted platform module (TPM) Mi with identity IDi,

• host Hi that has TPM Mi ”built in”

• rogue detection oracle O notifying which TPMs should be revoked,

• verifiers Vj.

The issuer is a trusted third party, a Privacy Certification Authority (Privacy

CA). It grants certificates to users, allowing them to authenticate themselves to-

wards a verifier. A device consists of a TPM and a host, which are both needed for

authentication. The host is not able to authenticate without being connected to

a valid TPM. Just together, the host and TPM can authenticate by proving they

have a certificate and know all the secret values the certificate was built on.

A verifier is the entity to whom the device wants to authenticate. Uptil now

it is clear that, before the device can authenticate towards a verifier, it first has

to obtain valid credentials from an issuer and to do so, it cannot be on a rogue

detection list.

In Figure 4.1 this description of the DAA scheme, showing the different entities

involved, as well as the protocols executed between them is visualised.

In the following specification ,a counter value cnt allows TPM to generate multiple

DAA keys from a sigle secret. A basename bsn is used for the property of a possible

link between multiple DAA signatures signed under the same DAA key. Basename

bsn is controlled by a signer and a verifier. By Join, the procedure in which the

TMP gets issued an anonymous certificate is denoted. Then it ”joins” the group of

certified or attestes TPMs. In DAA-Sign/Verify procedure, the TPM and its host

Hi can convince a verifier that the TMP is certified. The word ”sign” is used as
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Figure 4.1: Overview of the DAA protocol with the different entities and protocols
involved.

the verifier gets the result of the procedure, a piece of information that can be used

as a proof that he or she was communicating with certified TPM. It can also be

used to sign messages, in particular, AIK generated by the same TPM. The rogue

tagging operation corresponds to the event when someone finds a TPM’s DAA keys

and want to publish those as invalid. The ideal system supports these operations:

Setup Each player indicates to issuer I whether or not it is corrupted. Each Mi

sends its IDi to T who forwards it to the respective host Hi.

Join Join protocol runs between a device and the issuer to build a certificate.

The host Hi contacts I and requests to become a member with respect to a counter

value cnt. I sends the corresponding Mi the counter value cnt and asks if it wants

to become a member w.r.t. cnt. If I agrees, and if Mi was not tagged rogue w.r.t.

some counter value, Hi can become a member.
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DAA-Sign/Verify This protocol runs between a device and a verifier where the

device performs a proof of knowledge. A host Hi wants to sign a message m for Vj

with respect to some basename bsn and some counter value cnt for verifier Vj . Hi

sends m, bsn and cnt to I. If Hi/Mi are not ”joined” (a member), then I denies the

request w.r.t. cnt. If it is not the case, I sends a message m and cnt to the device

with Mi on it and asks whether it wants to sign. If yes, I asks it with respect to

wich basename bsn is Mi signing, or if it wants to abort. If the platform with TPM

decides to sign, I proceeds as follows:

• If Mi has been tagged rogue with respect to counter value cnt, I lets Vj know

that a rogue TPM has signed m.

• If signature is done w.r.t. no basename then I informs Vj that m has been

signed w.r.t. bsn.

• If signature is done w.r.t. bsn then I checks if it is signed from a Hi/Mi

and if the message m is signed w.r.t. bsn and cnt. Then I chooses the

corresponding pseudonym P from its database. If the m is not signed w.r.t.

bsn and cnt, I looks up a new random pseudonym choosing corresponding

security parameters. At the end, I informs Vj that a platform with a valid

TMP signed m using a pseudonym P .

Rogue Tagging: A Oracle O informs I that he platform with identity IDi with

respect to cnt as a rogue. If the TPM with IDi is not corrupted, I denies the

request. Otherwise, I marks the Mi with IDi as rogue w.r.t. counter value cnt.

The ideal system model captures unforgeability and anonymity/pseudonymity. A

signature can only be produced with the platform which has a valid TPM built in.

That means, that the TPM is not tagged roggue and it has to be a member (”join”).

The signing w.r.t. the same basename, which was done by the same TPM can be

and are linkable to each other through a pseudonym P . By signing a message with

different basenames or, when TPM does not use any basename during signing, the

signatures cannot be linked. These properties stand, even if the host Hi wich has

TPM buit in is corrupted. But only if both, the host Hi and the platform Mi which
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is built in are honest, anonymity/pseudonymity can be guaranteed. Otherwise not,

because a dishonest party can announce its identity.

4.3 Lightweight Anonymous Authentication Scheme

for Embedded Mobile Devices

Due to resource constraints of mobile devices, a lightweight anonymous authentica-

tion scheme was introduced in [28]. This scheme optimizes and adapts DAA scheme

from [6]. This protocol has features which are important for practical applications.

Device can authenticate to a verifier without sharing any informations which could

reveal its identity or to allow to a verifier the tracking of a device. It ensures that

adversaries cannot impersonate legitimate devices to a honest verifier. And the

protocol supports revocation list which makes roggue tagging anf it is there for

revocation of authentication credentials.

A formal security model for anonymous authentication of mobile devices is a

random oracle model. The scheme is secure under the decisional Diffie-Hellman

(DDH), the discrete logarithm (DL) and the bilinear LRSW assumption, which

is a dicrete-logarithm-based assumption proposed in [8]. For the detailed security

aspects of this scheme and proof-of-concepts, the reader is encouraged to read [28]

from page [4] to page [15] and [22].

How the lightweight anonymous authentication scheme works, is presented in

Figure 4.3.

Verifier Vj outsources the accounting and billing, with subscription and other

fees, to the issuer I. To access service, device Ri has to subscribe this service at I,

which then issues an anonymous credential cred for Ri on behalf of Vj. Ri can now

use cred to anonymously authenticate to Vj and get access to services provided by

Vj. The requirements to an anonymous authentification are:

• Correctness : Users with valid credentials must be able to (anonymously)

authenticate to the Verifier Vj.

• Unforgeability : Users must not be able to forge an authentication, i.e., they
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Figure 4.2: Anonymous authentication scheme communication model.

must not be able to authenticate without having obtained a valid credential.

• Unclonability : Valid credentials cannot be copied (cloned).

• Unlinkability : Sessions must be unlinkable (full anonymity).

• Revokability : It must be possible to revoke users.

• Practicability : All protocols should be efficient and based on well-established

standards. The implementation should be fast and based on widely used soft-

and hardware.

4.3.1 Protocol Specification

The players in the scheme are a credential issuer I, a set of verifiers Vj, and a set of

devices Ri. This anonymous authentication scheme is a three party protocol that

is executed between a verifier and a device, which is composed of a semi-trusted

Host Hi and a Secure Component Si [14], [28].
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Figure 4.3: Protocol owerview.

The goal of the protocol is to authenticate Ri to Vj, so that Vj only learns that

Ri is legitimate without allowing Vj to identify or trace Ri. Ri is called legitimate

if it has been initialized by issuer I. The goal of this protocol is to split the com-

putations which have to be preformed by Ri between Si and Hi. In Si, at least all

security critical operations are preformed and if there is sufficient computing power,

then all computations can be preformed by Si. Hi preforms all privacy-related com-

putations.

In Figure 4.3 is a protocol overview.

System initialization With a security parameter l = (lq, lh, le, ln) ∈ N4 the issuer

I generates the secret key skI and the corresponding public parameters pkVI , which

is associated with verifier Vj and the revocation list RL. I uses GenPair [28]

algorithm, which generates three Groups G1, G2, GT of large prime exponent q ≈
2lq, and their generators P1 and P2, and an admissible pairing e : G1x G2 → GT .

The secret key of I, skI are two secrets x, y ∈ Zq. By multiplication of the secret

with generator of a G, I generates X ← xP2 and Y ← yP1, with P1 as a generator
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of G1 and P2 a generator of G2 and it chooses a collision resistant one-way hash

function Hash. At the end, issuer I initializes the revocation list RL ← 0. The

public parameters pkVI are: l, q, G1, G2, GT , P1, P2, e,X, Y, Hash and RL.

Device initialization The issuer I generates a secret signing key f and a corre-

sponding anonymous credential cred = (D,E, F,W ) on behalf of V . That means,

I chooses f, r ∈ Zq and generates D ← rP1, E ← yD, F ← (x + xyf)D and

W ← fE. Finally, the device Ri is initialized with secret signing key f and creden-

tials cred. The signing key f has to be securely stored in Secure Component Si.

The credential cred can be stored in and used by the (semi-trusted) host Hi of Ri.

Anonymous authentication A mobile device Ri anonymously authenticates to a

verifier V in this protocol, as shown in 4.3. The verifier V challenges Ri to sign a

random message N . After the device receives N , Hi randomizes the credential cred

to cred′ and computes the hash digest h of cred′. After computation, Hi passes to

the secure component Si the result of hash digest h, the value E ′ of cred′ and N .

Si then computes a signature of knowledge σ′ in a similar way as in [6] and returns

it to Hi. The host Hi composes the final anonymous signature σ (σ′, cred′) and

sends it to V .

Upon receipt of σ, V verifies if cred′ has not been revoked, if cred′ is a valid

(randomized) credential w.r.t. pkVI , and if σ′ is a valid signature of knowledge on

N w.r.t. cred′ and pkVI . If the verification is successful, then V accepts Ri as a

legitimate device and returns 1. Otherwise V rejects Ri and returns 0.

Device revocation To revoke a device Ri, I adds the signing secret f of Ri to

the revocation list RL, and sends the updated revocation list RL to V using an

authentic channel.

This lightweight DAA protocol for mobile devices [28] has been implemented in

C on ARM TrustZone. For all cryptographic functions and operations MIRACLE

(Multiprecisional Integer and Rational Arithmetic C/C++ library) [15] crypto li-

brary has been used. The preformance evaluation will be discussed in Chapter

6.

45



Chapter 4 Direct Anonymous Attestation (DAA)

4.3.2 Pairings

Elliptic curves suitable for constructing pairings are called pairing-friendly elliptic

curves. For practical purposes, curves with small embedding degrees are suitable,

because they guarantee the trade-off between efficiency and security. This leads to

the use of supersingular curves. Supersingular curves have been proven to be the

most eficient curves for pairing [26]. Barreto and Naehrig [1] defined a new type of

pairing-friendly curves which are known as BN-Curves. These are elliptic curves of

the form:

E : y2 = ax3 + ax+ b

for a = 0 and b 6= 0, where the curve order and the finite field are defined by the

polynomials q(s) and p(s):

q(s) = 36s4 − 36s3 + 18s2 − 6s+ 1,

p(s) = 36s4 − 36s3 + 24s2 − 6s+ 1.

To generate such curves, random values of s of the correct form have to be

searched, until q(s) and p(s) are both prime. Based on this curve groups G1,

G2 and GT are selected. Using these groups, the pairings over elliptic curve is

implemented. BN-curves are most suitable for 128-bit security, corresponding to

3.072-bit RSA and 256-bit ECC.
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Implementation

In this chapter, all the details of the first implementation of a (simplified) lightweight

DAA protocol suitable for RFID tags is presented. It includes the complete de-

scriptions of two new functions and their classes including their properties. These

functions implement the computations on a RFID tag with pairing friendly types

of curves.

Because a RFID tag contains a small chip with limited resources and it has

no TPM, a requirement for my implementation is that the operations, which are

computed on the tag, are minimal. The Infineon SLE78CLxxxP chip has a dual

16-bit processor, RSA/ECC co-processors and an EEPROM memory unit, which

can be used for securely storing of the signing key. Based on protocol presented in

[28], a DAA scheme suitable for a RFID tag is implemented. Of course, security

must be maintained, but the security aspects of this scheme are out of scope of this

thesis.

5.1 Analysis of Actual State

5.1.1 Hardware

The starting point of this thesis were Infineon’s SLE78CLxxxP dual 16-bit secu-

rity controllers, which are equipped with a security concept called Integrity Guard,

which provides a security controller with comprehensive error-detection capabilities
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and full encryption along the entire the data path, including the two CPUs, mem-

ories (EEPROM, Flash, ROM and RAM), caches and buses. User RAM (000000-

001FFF) has 8kb.

The core of these tags are two cetral processing units (CPU). They check one

another continuosly. They cross-check all arithmetic operations and detect if they

are executed correctly. If an attack or error is detected, the security controller

triggers an alarm and it aborts all operations. Another advantage of the Integrity

Guard is that it enables that all computations are made with encrypted data. Usu-

ally, processing of data on a conventional security controllers, can only be made on

decrypted data. This fact is targeted in some attack scenarios. Due to Integrity

Guard, this vulnerability is eliminated. All security sensitive operations are en-

crypted durinng processing and transmission along the whole data path.

The tag is equipped, among many other modules, with two co-processors. These

hardware modules accelerate DES/AES operations for symmetric cryptography and

support RSA up to 4096-bit and ECC up to 521-bit operations used in asym-

metric cryptography. The Infineon SLE78CLxxxP is also certified CCEAL6 +

high/EMV Co, which makes it ideal for highest security applications like banking

and digital signature (e.g. ePassport, eHealth card/eSocial card, eDriver’s License,

eVisa, eResidence Permit, Vehicle Registration Card/eCar Registration, eSigna-

ture).

5.1.2 Software

The software used for implementation is Infineon’s SLE70 CryptoLibrary, which can

be differentiated into: the cryptographic libraries with implemented RSA, ECC and

Hash functions and library’s Toolbars. Also avilable for this thesis is a software for

Issuer with its credentials. In ECC Library there are different parameters, classes

and RSA and ECC functions. DAA scheme implementation uses some of them,

which are described in detail in Section 5.6.

The CryptoLibrary is using a CLONG structure to represent very long unsigned in-

teger numbers. This coding scheme is used internally as well as externally. A CLONG

object always contains an unsigned integer, with maximum of CLONG.BitLength bits.
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The significant bitlength corresponds to the CLONG.BitLength value minus number

of leading zero bits. Therefore, the TrueBitLength value depends on the content

of the currently represented integer number. All CLONG parameters of a High Level

API are checked using IsValidInputClong or IsValidOutputClong for validity.

The library handles the local variables via the stack. The overlaying function of

the Keil compiler for local parameters is not used. If a function requires a large

working memory area (> 50 bytes) to store long parameters temporarily (e.g. ran-

domized key parameters), the CLONG parameter has to be provided, which is giving

a reference to the temporary working area. Before proceeding with the description

of the implementation, a general issue that needs to be considered throughout has

to be noted. Specifically, every group element received by any entity needs to be

checked for validity, i.e., that it is within the correct group. In particular, it is

important that the element does not lie in some larger group which contains the

group in question. This strict stipulation avoids numerous attacks such as those

related to small subgroups. In CryptoLibrary available operations IsValidInput

and IsValidOutput check if the ECC parameter are valid given ECC equation,

discussed in Section 5.6.

5.2 Goals to Achieve

The goal of this thesis is to create a fully working implementation of DAA on a

RFID tag. The main requirement for a practical implementation of the (lightweight)

DAA scheme is an acceptable execution time. This is opposed to a RFID tag’s

limited resources, in particular computational performance, so that the execution

time can be achieved. The DAA protocol require complex computations on very

large numbers (long integers). That is why efficient low-level programming in C

was necessary.

For an implementation, several complex (cryptographic) operations are needed:

secure random number generation and cryptographic hashing, which are directly

available through the cryptolibrary. Large number multiplication and modular

multiplication are available as well. For effective implementation ECC parameters

together with best suitable functions have to be chosen.

The main challenge is to save public and secret parameters and to implement the
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scheme, so that the execution time is not longer than 450ms.

5.3 Elliptic Curve Cryptography

To implement the scheme, the curve parameters a and b, and domain parameters

must be agreed on by both parties involved in secured and trusted communication

using ECC. The domain parameters for prime fields are described below. The gen-

eration of domain parameters is out of scope of this thesis. Generally the protocols

implementing the ECC specify the domain parameters to be used. There are several

standard domain parameters defined by NIST [24].

Domain parameters for ECC over field GF (p) The domain parameters defining

an elliptic curve over GF (p) are p, a, b, G, n and h. p is a prime number of finite

field GF (p) . a and b are the parameters defining the curve: y2 mod p = x3 +ax+b

mod p. G is the generator point, i.e. a point on the elliptic curve chosen for cryp-

tographic operations. n is the order of the elliptic curve. The scalar, which is used

in a point multiplication, have to be chosen as a number between 0 and n− 1. h is

the cofactor of the elliptic curve.

For an efficient hardware implementation, the curves over GF (2m) are used more

often. Two main advantages regarding the Binary Finite Field GF (2m) are that

the bit additions are performed mod 2 and represented in hardware by simple XOR

gates and the bit multiplications are represented in hardware by AND gates. The

main drawback of GF (p) in hardware implementation is the carry propagation

for addition which results in a long critical path. For GF (2m) no carry chain is

requred because addition is performed by a bit by bit XOR operation. For software

implementations, which is the case in this thesis, GF (p) fields are better suited,

because most processors support integer multiplication efficiently.

In this thesis a pairing-friendly curve must be implemented, so that the compu-

tations with given issuer credentials could be fulfilled.

Affine coordinates Affine coordinates help to reduce the size, as they do not

need to store a third coordinate during calculation, like projective coordinates. A

point is directly represented by the X and Y coordinates as integer numbers. This
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method gives an initial advantage when thinking of the final computation and mem-

ory allocation on the tag. Projective coordinates need a different amount of field

operations for a point addition and a point duplication. To be as fast as projective

coordinates, the overall operation cost for a point operation should be the same in

affine coordinates. The computation time for a field multiplication is the same for

both coordinate systems. Using affine coordinates instead of projective coordinates

results in a smaller code size because calculation with affine coordinates take less

steps than calculation with projective coordinates.

Based on these facts, parameters for DAA scheme implementation on RFID tag

are chosen. All mentioned points are interesting for a small and efficient firmware

implementation of elliptic curve operations as they are desired in this thesis.

5.4 Free choice of domain parameters

Choosing appropriate parameters for pairing-based cryptography is still an active

area of research. Both prime and binary extension fields are used in real world ap-

plications. The implementation of pairing based ECC solutions is highly dependent

on the problem being solved, the implementation platform and the level of security

intended to be achieved. For efficient implementation of ECC, it is important for

the point multiplication algorithm and the underlying field arithmetic to be efficient.

Selection of a proper coordinate system also affects the performance of ECC

system as computational cost of addition and multiplication operations depends

on the coordinate system used. All feasible domain parameters for elliptic curves

are supported by this device and CryptoLibrary. The criteria for choosing curve

parameters is discussed above. The chosen pairing-friendly elliptic curve has the

form y2 = x3 + 3 over a prime field.

5.4.1 Hash Function

In principle, any collision-resistant hash function is suitable for use in the imple-

mented DAA protocol. To facilitate interoperability, the SHA-256 with 256-bit

output has been recognized as best suitable. This hash function is defined in [24].
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Figure 5.1: Implemented DAA protocol.

The number of bits in the output of the hash used, should be equal or close to the

number of bits needed to represent the group order.

5.5 ECC and Pairing Based DAA Scheme

In Section 4.3 the implementation of a simplified version of the DAA scheme on

mobile devices is described, together with an extensive description of the simpli-

fications made to the protocols, including motivations for them. The protocol for

DAA for RFID is based on lightweight anonymous authentication scheme presented

in Figure 5.1.

A DAA scheme involves a set of issuers, devices, and verifiers. An Issuer is in

charge of verifying the legitimacy of devices, and of issuing a DAA credentials to

each device. A device can prove membership to a Verifier by providing a valid

DAA signature. To do so, it requires that the device holds a valid DAA credentials.

The Verifier can verify the membership credential from the signature, but it cannot
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learn the identity of the signer. The ECC-based commitments and DAA rely on

the discrete logarithm assumption and Camenisch Lysyanskaya (CL) credential

system, which are described in detail in [4]. Based on these definitions, the rest of

this section describes implemented DAA scheme, which is based on the one in [28]

and relies on its security proof.

5.5.1 The Setup Algorithm

To initialise the system, one needs to select parameters for each protocol, as well

as the parameters for each Issuer. Prior to initialization each device has a private

secret key embedded into it and each Issuer has access to the corresponding public

parameters.

Each device has a single set of credentials, but it can create multiple signatures,

even associated with a single issuer. This is allowed by randomization of orginal

credentials, which is later on sent in addition to the computed signature.

5.5.2 The Join Protocol

This is a protocol between a given device Ri and an Issuer I. The protocol is

virtually identical to that of [28]. The issuer implementation was not the assignment

of this thesis. Issuer-algorithm with secret and credentials was diposed for this

thesis and one part of it with its issued credentials is presented in Appendix A.

This credential set has been used for this feasibility study.

5.5.3 The Sign/Verify Protocols

This is a protocol between a given device Ri and a Verifier Vj and it is identical to

that shown in Figure 5.1. The main difference between implemented version and

the protocol in [28] is the device revocation. The Verifier does not verify if cred′

has been revoked. An Implementation for a complete Verifier is out of scope of this

thesis, and with it is the fact, that the revocation list was not a priority task. An

implementation of verifier’s pairing operations, which are time-consuming and have

to be implemented for roggue tagging, is avoided.
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With given signing key and credentials, from I, tag can anonymously sign a

random message N , received from Verifier Vj.

Due to Integrity Guard and EEPROM where signing key is stored, some of the

computations can be implemented on a ”Secure Element”. The Secure Element

Si contains of a secure EEPROM on a tag and encrypted communication and

computation of values with private signing key. Implementation of this scheme

will be divided between Secure Element Si and a Host Hi. Communication and

computation of host’s calculations can be, but it does not have to be encrypted. For

better preformance evaluation, the computation is not implemented with encrypted

values.

The Host Hi computes all privacy-related operations. One set of credentials cred,

Hi can randomize in cred′ and use the same credentials for different messages from

the same verifier Vj. To randomize credentials, four multiplications with random

number have to be implemented. A random number generator (RNG) is available

on SLE78CLxxxP and will be used for every random number generation.

The Secure Element Si stores signing key and computes all security critical

operations. For computing a signature on a random message N, one multiplication

with random number, one hash function and one modular multiplication have to

be implemented.

5.6 Implementation Details

To instantiate the DAA scheme, parameters have to be chosen and they are com-

puted with pairing groups based on Barreto-Naehrig (BN) curves [1]. As already

mentioned the issuer was implemented and credentials were prepared for this fea-

sibility study. Based on these facts, a pairing-friendly elliptic curve was chosen:

256-bit elliptic curve with a = 0 and b = 3: y2 = x3 + 3. In Figure 5.2 the main

hierarchy is represented.

For this thesis very large integer numbers are needed for scheme implementation.

The CryptoLibrary is using the CLONG structure to represent very long unsigned

integer numbers. A CLONG object always contains an unsigned integer, with maxi-

mum of CLONG.BitLength bits. Functions ECC DH() and CryptoModAdd were used
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Figure 5.2: DAA scheme hierarchy
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for point multiplication and modular multiplication in Si and Hi. Hash function

SHA-256 was available in CryptoLibrary, too. All Issuer parameters are presented

in A.

Implemented scheme hierarchy is graphically presented in Figure 5.3.

5.6.1 Includes

clToolbox.h is a part of Infineon Library. Functions ECC DH() and CryptoMod-

Mult which were used for point multiplication and modular multiplication in Si

and Hi are defined in this include-file. The operation ECC DH() executes a skalar

multiplication and the operation CryptoModMult executes Result = (OperandA X

OperandB) mod Modulus. In both cases, operands must point to a CLONG that

contains valid parameters, and a Result is the pointer where the result will be

stored.

cl70Types.h is also a part of Infineon CryptoLibrary where types definitions for

unsigned integers (e.g., UINT8), global variables and its pointers and function dec-

larations are defined.

In LightweightMemoryManagment.h pointers for allocated working memory are

defined. Especially Pointers for currently used CLONG structure and AffinePoint-

tupel (X, Y ).

RNG.h defines getRandomBytes command from integrated RNG register.

Sha256.h defines SHA-256 function with its parameters (pointer to buffer, to

message and length of a buffer), description for calculations and buffer for final

hash calculation.

ECCCurve.h defines ECC curve parameters. ECCCPARM, from CryptoLibrary con-

tains all parameters relevant to an elliptic curve and supports ECC curves over

prime fields GF (p) as well as over GF (2m) fields. Objects within ECCCPARM are

AFFINEPoint Basepoint, which is a point lying on the curve, CLONG BasePointOrder,

UINT8 Characteristic (0 for GF (p) and 1 for GF (2m)), CLONG CoefA, CLONG CoefB,
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Figure 5.3: Implemented source code hierarchy
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coefficients of the elliptic curve equation and CLONG Modulus, which is defining

prime field number p or irreducible polynom f(x) of degree n. Class ECCC-

PARM defines ECC curve parameters. All members of ECCCPARM will reflect a

valid ECC curve which satisfies one of the equations:

ECC curves over GF (p): y2 = x3 + ax+ b, and 4a3 + 27b2 6= 0.

ECC curves over GF (2m): y2 + xy = x3 + ax2 + b, and b 6= 0.

Inherited from CryptoLibrary structure ECCCPARM, ECCCurve structure is defined,

which contains all parameters, so that selected pairing-friendly curve can be imple-

mented.

Daa.h is a structure with pointers for CLONG where private signing key and affine

points (AFFINEPOINTS credentials) lying on the curve must be stored. Private key

and credentials build DAAPARM.

DAACredentials.h defines a superclass of DAAPARM. With this h-file, different is-

suer credentials can be used (e.g., for different verifiers).

memory.h is an optional h-file. Before creating DAAPARM superclass, memory con-

tainers were implemented, with fixed parameters from issuer. As explained before,

DAAPARM is much better option, because not just one but more different credential

sets issued from different or one issuer are used in one DAA scheme.

5.6.2 Source

In RNG.c is the implementation of a main true RNG register. This source code

is tag-related and included in tag-software.

Sha256.c is Infineon SLE78CLxxxP SHA-256 function. In this file all hash cal-

culations are implemented.

LightweightMemoryManagment.c provides needed memory depending on global

variables. For every CLONG, UNIT8, UNIT16, AFFINEPOINT and other variables

memory and pointers are assigned. During computation, a pointer of the memories

where needed parameters are stored, can be called for processing.

58



Chapter 5 Direct Anonymous Attestation Implementation

ECCCurve.c calls ECC curve parameters. Sturucture ECSET sets pointer to struc-

ture containing ECC curve parameter set and over ArithmeticMode (eModN = 0

for GF (p) and eGF2 for GF (2m)) the type of the curve is defined. With static

const UNIT8 Curve parameters are defined, as shown in Appendix B.

Using this option, different curves can be implemented. Chosen curve param-

eters ECCCurve are then allocated in working memory. Bitlength values have to

be corrected, so that Modulus, Coefficient, Basepoint and BasepointOrder

Bitlength are valid and PECCCurve GetEccCurve returns pointer for memory con-

taining valid ECC curve parameters.

DAACredentials.c defines DAA credentials structure. A structure DAASET con-

tains pointer to structure containing DAA credentials and size of an array pointed

to by DAAPARM. Arithmetic Mode definition has to be the same as in ECCCurve.c,

because all operations on the tag have to be performed on the same curve, using

same curve parameter. Using static const UINT8 DAACred, Characteristic,

Modulus (elliptic curve based), Private key and Credentials (D.X, D.Y , E.X, E.Y ,

F.X, F.Y , W.X, W.Y ) from issuer are assigned to DAACREDPARM set. More different

DAA sets can be defined and used. After correcting a Bitlength value of parame-

ters, it returns a pointer to DAACredentials. By implementing an issuer, this part

should be redesigned.

memory.c is optional helper file for loading a CLONG structure with UINT8 huge

containers. Before implementing DAACredentials.c, memory.c was used as test

implementation.

ProcessDaaCommands.c is a main file. All Secure Element Si and Host Hi com-

putations are implanted here. In Appendix C the main parts of the source code are

shown. Validity of all parameters have to be checked with a function PreformEcc-

SelfTest, which calls all parameters pointers and memories. If the test fails, new

curve parameters are called and set.

Hi stores credentials and computes all privacy-related operations. Using RNG

host chooses a random prime number used for credential randomization, blinding.

After choosing a random number, host calculates blinding of every affine point rep-
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resenting credentials using ECC DH() CryptLibrary function, with TrueBitLength

of scalar and TrueBitLength of PECCCPARM as input. The necessary temporary

working memory required in bytes, for passing CLONG of this function, can be cal-

culated by using the GET MIN TEMP MEM ECC DH macro. This function is used

to implement a scalar multiplication of a random number with an AffinePoint.

ECC curves over prime field GF (p) as well as over GF (2m) finite field are sup-

ported. New credential values (D1(X, Y ), E1(X, Y ), F1(X, Y ), W1(X, Y )) are

then hashed with SHA-256 and ready for Secure Element Si computations. All Hi

functions and computations are under CLIB STAUTS performDaaHostCalculation

as a new CryptoLib function defined.

All Secure Element Si computations are under CLIB STAUTS performDaaSECal-

culation as a new CryptoLib function defined. First, Si gets random number from

RNG and preforms scalar multiplication with its random number z and E1(X, Y )

received from the Hi with same ECC DH() function, described before. After cal-

culating a hash digest from SHA-256, modular multiplication is used for signature

calculation: s = (z + v · f)(mod q). This is a CryptoLibrary function CryptoMod-

Mult and its implementation is presented in Appendix C.

In this chapter, implementation of the signing protocol on the RFID tag is pre-

sented. In Appendix C are some of the main parts of the implemented source

code.
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Results

The chapter illustrates the testing of the software implementation, which covers

computational and performance testing. The testing results proved that the DAA

algorithm is feasible and it can be a implemented on a RFID tag. The protocol

between entities has to be computational, and a given result are indicative only.

The implementation of the scheme was constructed using µKeil based on C. Both,

Secure Element Si and Host Hi, use SHA-256 as an underlying hash and RNG

function, and implementation uses the Infineon SLE70 CryptoLibrary.

To evaluate the implemented DAA scheme, and compare it with lightweight DAA

[28], some concrete experimental results are presented. The results do not include

hidden costs such as parameters generation and verification, and that is why, the

results are only indicative. Only signing protocol has been implemented and its

results are discussed.

6.1 Implementation Result

The idea was to provide an anonymous authentication system based on the existing

lightweight DAA scheme using CryptoLibrary and to include new DAA functions

in the library.

CLONG class holds the large numbers such that it can be used in this implemen-

tation. The protocol view of the DAA scheme is shown in Figure 5.1. A new Cryp-

toLibrary functions CLIB STAUTS performDaaHostCalculation and CLIB STAUTS
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Host Secure Element Total

288 ms 0.85 ms 373 ms

Table 6.1: Timings of the implemented DAA Sign Protocol

Host Secure Element

12154880 3524224

Table 6.2: System clock for the implemented DAA Sign Protocol

performDaaSECalculation, contain all computations of the implemented system.

They depend on the elliptic curve and DAA parameters, which are used to define

the elliptic curves and their related operations and the arithmetic of the finite field

associated with them. The parameters will wrap all the essential components in-

cluding: specific characteristic which defines the finite field over which the elliptic

curve is defined (GF (p) or GF (2m)), Modulus, Coefficients a and b of the Equation

3.1, Basepoint, the smallest positive integer n such that n times Basepoint results

in the point-at-infinity, and the Basepointorder.

This DAA scheme based on ECC only provides performance for the RFID tag,

but the Issuer and Verifier are not implemented and evaluated. It is implemented

with pairing-friendly elliptic curve y2 = x3 + 3 over prime field and affine coordi-

nates. Signing protocol was computed with given issuer parameters: signing key

and credentials. A produced signature was verified with Verifier Vj, which was dis-

posed for this thesis. No revocation list and rogue tagging were activated.

Contactless measurements on a Infineon device with 48MHz were made in a

strong field with external clock fixed at 1.7MHz. Average timings in milli-seconds

are presented in Table 6.3.

System clocks are given in Table 6.2.

Although the total signing time is over 300 ms, the signature is computed under

maximum execution time of 450ms. The results indicate that this DAA scheme is

feasible for a RFID tag.
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DAA Sign Host Secure Component Total

ARM 94.8 ms 23.75 ms 118.75ms
ARM Thumb 92.57 ms 23.16 ms 115.73 ms

Table 6.3: Performance of the DAA Sign Protocol

6.1.1 Related Work

There exists many different RFID authentication protocols in the literature. To the

best of my knowledge, this is the first scheme that proposes DAA signing protocol

implementation on the RFID tag.

In [28] Dietrich implemented a lightweight anonymous authentication scheme on

an ARM11 CPU of a mobile device, which runs at a clock speed of 600MHz. In

Table 6.3 its average performance over 100 test-runs is presented. ARM Thumb in

Table 6.3 represents a highly optimized performance implementation. This protocol

implementation is represented in Section 4.3.

As it can be noticed, ARM processor has, as expected, much better execution

time, due to its 600MHz clock speed, while SLE78CLxxxP’s CPU can run at maxi-

mal 48MHz clock speed (just in a strong field). That is why the measurement were

made in a strong field.
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Conclusion

RFID tags must continuously handle increasing capacities and process higher data

rates, while at the same time, there is a rising demand for reduced size, cost and

power consumption. In this thesis an anonymous authentication scheme based on

pairing-friendly elliptic curve cryptography has been presented. A DAA sign proto-

col is implemented on a SLE78CLxxxP RFID tag, without formal security analysis

and with no built-in support for tag-revocation. Security parameters and assump-

tions are based on [28], which is equivalent to a 128-bit AES or 256-bit ECC security

level.

The computational performance of the implemented scheme has been evaluated

using the µKeil software. This software incorporates a tool that enables the real-

time simulation of Infineon SLE78CLxxxP. The µKeil also includes source code

editor, project build environment and debugger. These tools enable users to pro-

duce an efficient code for their applications employing C.

RFID tags offer an ideal identification method by means of digital signatures.

The anonymous authentication scheme based on elliptic curves is commonly used

for achieving anonymity and authenticity. Elliptic curve cryptography allows the

use of small key sizes which is necessary when targeting RFID tags. Within this

thesis a co-processor was used for accelerating all operations involved in a DAA

signature generation calculation. This was achieved by a fast software implementa-

tion of point and modular multiplication. Implemented scheme uses the standard

includes support for large numbers and their addition, and point and modular mul-

tiplication.
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It is now possible to perform a DAA signature generation calculation on a RFID

tag in 373ms at a clock frequency of 48MHz. However, speed-up should be possible.

7.1 Future Work

Future work should be focused on implementing the complete lightweight anony-

mous authentication scheme for the RFID tags. The issuer and verifier are not

implemented here yet, but outsorced for this thesis. On the one hand because of

the lack of time and on the other hand, the pairing based cryptography and ef-

ficient algorithm for its implementation could be a work for itself, because of its

complexity. A DAA scheme with pairing-based issuer and verifier, which allows a

tag revocation, should be proposed as possible topic for future thesis. One could

then implement the whole system and evaluate real-system performance with dif-

ferent verifiers and tags.

Another interesting work would be the evaltuation of the implementation using a

GF (2m) arithmetics and comparing this within this thesis implemeted scheme based

on pairing-friendly curve based on GF (p) arithmetics. A research in construction

of the pairing-friendly curves are still in progress. This and the comparison with

real-system performance could give estimates for possible improvements.

On the next generations of RFID tags with reengineered co-processors, the scheme

should be implemented and the resulting performance should be analyzed. Future

software should be designed for speeding up implemented operations. One could try

to implement these operations more efficiently, possibly by using more developed

hardware and implementing even more state-of-the-art scheme.
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Issuer and System Parameters

Issuer Source Code in C++

//brief Lightweight ECC-DAA basic issuer

//file ecdaa.cpp

/// New issuer initialization

sys params(bn)

ZZn2 frobenius X;

sys params.bn.setup(frobenius X);

// Construct generators

sys params.P1 = bn.generator();

sys params.P2 = bn.generator2();

// Fast multiplication of P2 with cofactor (p - 1 + t)

bn.cofactor(sys params.P2, frobenius X);

// Pick random x and y values (secret key)

x = rand(sys params.bn.q);

y = rand(sys params.bn.q);

// Generate public key

sys params.X = x∗ sys params.P2;

sys params.Y = y∗ sys params.P2;

/// Issuer initialization from parmeters.

issuer::issuer(const EC* P1, const ECn2* P2, const Big* x,

// Activate the issuer curve

sys params.bn.setup();
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sys params.P1 = P1;

sys params.P2 = P2;

sys params.X = x ∗ P2;

sys params.Y = y ∗ P2;

/// Generate a new Mobile Device credential

void issuer::generate(Big* f, ECn* D, ECn* E, ECn* F, ECn* W) const

// Activate the issuer curve

sys params.bn.setup();

// Pick random f and r

f = rand(sys params.bn.q);

Big r = rand(sys params.bn.q);

D = r∗ sys params.P1;

E = y ∗D;

Big tmp = modmult(x, y, sys params.bn.q);

mad(tmp, f, x, sys params.bn.q, tmp);

F = tmp ∗D;

W = f ∗ E;
generate(se-cred.f, host-cred.D, host-cred.E, host-cred.F, host-cred.W);

System Parameters

Public System Parameters:

P1 =

(919E34F0F01F364EC20E9DE76C8A819E7175762E5480A6653F09817EB831D94,

6FCA2CC3F9F2CBD6C9F10D6EF1EA84B129C864DAAE4A951D95FDD17F41FA68C)

P2 =

([5269AC04EB0CB657D4B7D4CE25018BC8803C776C4750624FC16E683C2CED9035,

2B499CDFFEAD4A348A9C713CCA7D1CDD7ABAF6E4A00198E30D7FB7B79A7F9F02],

[B43D94DE1D3B71F88F11472D2D8EDF922A6F3361AFD2AC3D0C39D45C687442CF,

848C3265BC0DCA81A8D7F90D27F7C18F7F1CCB9F22668AE43B88CD093DAD10BF])

X =

([1F6AD2365B025DEDCA56655D996745053AACEB4281C49305F1FE1EAF484CBF70,
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23FAE00AB66FFC82D856E497ACA939B76CF1527427917EFFF74601A19D97C4B6],

[71EAD7A6B17AAD88100521668A753DF75A0E0B81AD54CAE9962F41D7A57FB596,

3C47CE6379895FEC2BCBB7DE65C34898605E0466224208535F9290FCE1C8B214])

Y =

([61902CEADE19BE2016F8640B696D94F3040A38358A12406552359ED4BEC06FB4,

39017B035EA836654E3BA72E9C8384891DC1C2518CA6121750273D36E2E841E8],

[594C22038DCC872FE56D8E1D6F3460A0BD8A7BEEEEA9C5A8A7D55C843514D270,

A1EAF8AA1D7EF712DD654EF7CCEE00032C62D36B0BDFCDC16A572CF051324EC6])

Curve: Baretto-Naehrig:

x = 600000000000219B

twist = sextic (D)

p =

B64000000000FF2F2200000085FD5480B0001F44B6B88BF142BC818F95E3E6AF

t =

D800000000009739800000001A77F717

q =

B64000000000FF2F2200000085FD547FD8001F44B6B7F4B7C2BC818F7B6BEF99

cofactor =

B64000000000FF2F2200000085FD548188001F44B6B9232AC2BC818FB05BDDC5

Credentials

Private Parameters: (SE credential)

f =

587652595EAF8B82B72E2E246573A4252A86E5B94F16C2A441C7348C7659E1F4

Private Parameters: (Host credential)

D =

(9696A7F852BFCE2B557B974F0B34B522B8A3806AD9CCA5E83998B12FAABE3456,

31735DE41D1895339A9FB30567B6C455FE70C2D5C1967471FF0C364704D0DD3A)
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E =

(4E8E71686BD2E45CABEA740ED3F72238EA2B2A61FC75DE5959928DE2E64BAAF5,

31AFB7EBE23FFC0DBF9E2FECDD15B0C9978C54690849ED112DFAB942F894A779)

F =

(175127A12A69A59EBE0ACB30B3D52A91F31318B8FA9D7119A4FE129B0ECCE448,

A10468F80397B4E4FB0B8EF1155A9F6C9B974BF7B046C86F665EC3794FCB66D0)

W =

(627CF3B64EE73ECF52E8C408D9F909AFCFB61756ABF4FCEF77C8507B983CA81F,

CE03DA5A4C7FEED604E1F7CD2E972066699237CC2D1A6FC14ED23466467658A)
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Implementation of Pairing-Friendly

Elliptic Curve

//@brief Pairing-friendly: 256-bit ECC with A = 0; B = 3:y2 = x3 + 3

static const UINT8 N-256[] =

// Characteristic //

eModN,

// Modulus p //

0x00, 0x20, // BytesAllocated

// Data field

0xB6, 0x40, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x2F, 0x22, 0x00, 0x00, 0x00,

0x85, 0xFD, 0x54, 0x80,

0xB0, 0x00, 0x1F, 0x44, 0xB6, 0xB8, 0x8B, 0xF1, 0x42, 0xBC, 0x81, 0x8F,

0x95, 0xE3, 0xE6, 0xAF,

// CoefA a //

0x00, 0x02, // BytesAllocated

0x00, 0x00, // Data field

// CoefB b //

0x00, 0x02, // BytesAllocated

0x00, 0x03, // Data field

// Basepoint.X //

0x00, 0x20, // BytesAllocated

// Data field
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0x09, 0x19, 0xE3, 0x4F, 0x0F, 0x01, 0xF3, 0x64, 0xEC, 0x20, 0xE9, 0xDE,

0x76, 0xC8, 0xA8, 0x19,

0xE7, 0x17, 0x57, 0x62, 0xE5, 0x48, 0x0A, 0x66, 0x53, 0xF0, 0x98, 0x17,

0xEB, 0x83, 0x1D, 0x94,

// Basepoint.Y //

0x00, 0x20, // BytesAllocated

// Data field

0x06, 0xFC, 0xA2, 0xCC, 0x3F, 0x9F, 0x2C, 0xBD, 0x6C, 0x9F, 0x10, 0xD6,

0xEF, 0x1E, 0xA8, 0x4B,

0x12, 0x9C, 0x86, 0x4D, 0xAA, 0xE4, 0xA9, 0x51, 0xD9, 0x5F, 0xDD, 0x17,

0xF4, 0x1F, 0xA6, 0x8C,

// BasepointOrder //

0x00, 0x20, // BytesAllocated

// Data field

0xB6, 0x40, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x2F, 0x22, 0x00, 0x00, 0x00,

0x85, 0xFD, 0x54, 0x7F,

0xD8, 0x00, 0x1F, 0x44, 0xB6, 0xB7, 0xF4, 0xB7, 0xC2, 0xBC, 0x81, 0x8F,

0x7B, 0x6B, 0xEF, 0x99,

// szName[] of curve //

"N-256"
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Processing DAA Commands

In the first part of the presented code are global definitions and declarations. Par-

ticularly important is the global declaration static const UNIT8 VERIFIER-N[]

which contains the expected values of a valid signature. Comparing this and com-

puted values, it was possible to know if the tag executed all functions and if it

computed a valid signature of knowledge on a random challenge N .

Implemented DAA Scheme on a RFID Tag

// global definitions

define PERFORM-SELFTESTS 0 // 0-no self tests; 1-perform self tests

define CURVE-INDEX 1 // Ellliptic Curve Index to be used

define CREDENTIAL-INDEX 0 // Credential Index to be used

define HASH-SIZE 32 // hash size in byte for SHA-256

// global declarations (verifier side)

static const UINT8 VERIFIER-N[] =

0x06, 0x40, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x2F, 0x22, 0x00,0x00,

0x00, 0x85, 0xFD, 0x54, 0x80, 0xB0, 0x00, 0x1F, 0x44, 0xB6,0xB8,

0x8B, 0xF1, 0x42, 0xBC, 0x81, 0x8F, 0x95, 0xE3, 0xE6, 0xAF

// global declarations

PAFFINEPOINT hostD1, hostE1, hostF1, hostW1; // blinded credentials

UINT8 host-hash[HASH-SIZE]; // hash value over cred’

PCLONG se-v; // hash generated by the secure element

PCLONG se-s;
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UINT16 GetSignificantBitLength(PCLONG pcl) reentrant;

UINT8 cryptoDAATests();

void computeHash(UINT8 *hash, UINT8 *message, UINT8 message-length);

/// helper for initially loading a clong structure

define LOADCLONG(var, MyBYTES, MyBITLEN, MyPMEM)

var.BytesAllocated = (MyBYTES);

var.BitLength = (MyBITLEN);

var.Data = ((UINT8 *)(MyPMEM));

Implemented Credential Randomization

//@brief Perform DAA host calculation part

CLIB STATUS performDaaHostCalculation(PECURVEPARM pEccCurve,

PDAACREDPARM pDAACredentials, UINT16 ln, PUINT8 pHash)

PCLONG mem; // working memory

PCLONG r; // random number used for blinding

UINT8 hash buffer[size buffer]; // temporary hash buffer

CLIB STATUS ret val; // Status Information

UINT16 byteLen; // reserve memory space for calculations

byteLen = 2*((ln + datalength -1 ) / datalength);

r = LmmAllocAssignClong( byteLen );

mem = LmmAllocAssignClong( GET MIN TEMP MEM ECC DH

( GetSignificantBitLength( r ), ln ));

// generate random number for blinding

ret val = getRandomBytes(r->Data, r->BitLength/8);

if (ret val != 0x00)

return ret val;

// calculate blinding D1 = r*D

do

hostD1->X.BitLength = hostD1->X.BytesAllocated * 8;

ret val = ECC DH( ((PECCCPARM)pEccCurve), r, *

((PDAAPARM)pDAACredentials)->D, mem, hostD1);

return ret val;

// calculate blinding E1 = r*E
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// calculate blinding F1 = r*F

// calculate blinding W1 = r*W

Implemented Hash Calculation

// calculate hash = SHA-256(D1, E1, F1, W1)

sha256init(hash buffer);

sha256update(hash buffer, hostD1->X.Data, byteLen);

sha256update(hash buffer, hostD1->Y.Data, byteLen);

sha256update(hash buffer, hostE1->X.Data, byteLen);

sha256update(hash buffer, hostE1->Y.Data, byteLen);

sha256update(hash buffer, hostF1->X.Data, byteLen);

sha256update(hash buffer, hostF1->Y.Data, byteLen);

sha256update(hash buffer, hostW1->X.Data, byteLen);

sha256update(hash buffer, hostW1->Y.Data, byteLen);

sha256final(hash buffer);

memcpy(pHash, hash buffer, HASH-SIZE);

return ret val;

Implemented Secure Element calculation

//@brief Perform DAA secure element calculation part

CLIB STATUS performDaaSECalculation

(PECURVEPARM pEccCurve, PDAACREDPARM pDAACredentials, UINT16 ln)

PCLONG mem; // working memory

PCLONG z; // random number

PCLONG tmp; // intermediate result

PAFFINEPOINT TAU;

UINT8 hash buffer[size buffer]; // temporary hash buffer

CLIB STATUS ret val; // Status Information

UINT16 byteLen; // reserve memory space for calculations

byteLen = 2*((ln + datalength -1 ) / datalength);

z = LmmAllocAssignClong( byteLen );

tmp = LmmAllocAssignClong( byteLen );
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mem = LmmAllocAssignClong( GET MIN TEMP MEM ECC DH

( GetSignificantBitLength( z ), ln ));

TAU = LmmAllocAssignAffinePoint( byteLen, byteLen );

// generate random number for blinding/randomization

ret val = getRandomBytes(z->Data, z->BitLength/8);

if (ret val != 0x00)

return ret val;

// calculate TAU = z*E1

do

TAU->X.BitLength = TAU->X.BytesAllocated * 8; //right alligned

ret val = ECC DH( ((PECCCPARM)pEccCurve), z, hostE1, mem, TAU);

return ret val;

// calculate se v = SHA-256(host hash, TAU, verifier-n)

sha256init(hash buffer);

sha256update(hash buffer, host hash, sizeof(host hash));

sha256update(hash buffer, TAU->X.Data, byteLen);

sha256update(hash buffer, TAU->Y.Data, byteLen);

sha256update(hash buffer, VERIFIER-N, sizeof(VERIFIER-N));

sha256final(hash buffer);

memcpy(se-v->Data, hash buffer, HASH SIZE);

// calculate s = z + v*f mod q

ret val = CryptoModMult(se-v, *((PDAAPARM)pDAACredentials)->pf,

*((PDAAPARM)pDAACredentials)->Modulusq, mem, tmp);

if (ret val != CLIB STATUS SUCCESS UNSPECIFIC)

return ret val;

ret val = CryptoModMult(z, tmp,

*((PDAAPARM)pDAACredentials)->Modulusq, mem, se-s);

return ret val;
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Glossary

Abbreviation Description

AES Advanced Encryption Standard

AIK Attestation Identity Key

BN Barreto-Naehrig Curve

CL Camenisch Lysyanskaya credential system

CPU Central Processor Unit

CAD Computer Aided Design

DAA Direct Anonymous Attestation

DES Data Encryption Standard

DSA Digital Signature Algorithm

DSS Digital Signature Standard

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

EEA Extended Euclidean Algorithm

EEPROM Electrically Erasable Programmable Read-Only Memory

EK Endorsement Key

FIPS Federal Information Processing Standard

GF Galois (finite) field

LSB Least Sgnificant Bit

MIRACLE Multiprecisional Integer and Rational Arithmetic C/C++ Library

MSB Most Sigificant Bit

NIST National Institute of Standards and Technology

Privacy CA Privacy Certification Authority
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RAM Random Access Memory

RFID Radio Frequency IDentification

RNG Random Number Generator

RSA Rivest-Shamir-Adleman (public-key encription technology)

TCG Trusted Computing Group

TPM Trusted Platform Module
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J. López, and R. Dahab. TinyPBC: Pairings for Authenticated Identity-Based

Non-Interactive Key Distribution in Sensor Networks. Computer Communica-

tions, 34(3):485–493, 2011.

[23] A Certicom White Paper. The elliptic curve cryptosystem for smart cards.

[24] FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION.

Digital signature standard (dss).

[25] R. L. Rivest, A. Shamir, and L. M. Adelman. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Massachusetts Institute of Tech-

nology, Laboratory for Computer Science, 1977.

[26] Masaaki Shirase. Barreto-naehrig curve with fixed coefficient - efficiently con-

structing pairing-friendly curves -. IACR Cryptology ePrint Archive, pages

134–134, 2010.

[27] W. Trappe and L. Washington. Introduction to Cryptography with Coding

Theory. Prentice Hall, 2nd edition, 2004.

[28] Christian Wachsmann, Liqun Chen, Kurt Dietrich, Hans Löhr, Ahmad-Reza
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