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Abstract

In order to be comparative in electric power production an optimal scheduling of power plants,
minimizing the costs, is necessary. The first step during optimization is long-term scheduling,
considering a whole year and dividing it into multiple stages. As the input information for long-
term scheduling also depends on erratic environmentally caused values, stochastic optimization has
to be used to achieve best results. Especially in stochastic optimization the number of variables can
get enormous when using a linear problem formulation. Depending on the solver it can therefore
take a very long time to get a result, or solving the problem can even get impossible.

The thesis deals with multi-stage stochastic optimization applied to hydro scheduling. Dynamic
programming, a method to find an optimal solution for multistage stochastic optimization prob-
lems based on an approximation of the expected future cost function expressed as a piecewise linear
function, is used. This approximated function is composed out of the dual solutions of the opti-
mization problem for each stage and can be interpreted as a Benders optimality cut in a nested
decomposition algorithm. Despite of slow convergence for certain cases this approach has proven
to be performing satisfactorily.

Due to the rising use of renewable energy the optimal use of hydro power plants is getting increas-
ingly important. Special practical examples show the applicability of the program for these modern
environmental-relevant tasks.

Kurzfassung

Um wettbewerbsfähig in der elektrischen Energieerzeugung zu sein ist eine kostenminimierende
Fahrplanerstellung für die Kraftwerke nötig. Der erste Schritt der Optimierung ist die Langzeit-
fahrplanerstellung. Dabei wird ein gesamtes Jahr in mehrere Stufen unterteilt. Die Daten für
eine Langzeitfahrplanerstellung hängen von unregelmäßigen, umweltbedingten Einflüssen ab. Aus
diesem Grund wird, um die besten Ergebnisse zu erzielen, eine stochastische Optimierung einge-
setzt. Dabei kann für die lineare Formulierung die Anzahl der Variablen sehr groß werden. Abhängig
vom Solver kann es sehr lange dauern, bis man Ergebnisse erhält. Es kann auch vorkommen, dass
das Problem gar nicht gelöst werden kann.

Anhand der Einsatzplanung von Speicherkraftwerken beschäftigt sich diese Diplomarbeit mit der
mehrstufigen stochastischen Optimierung. Die dabei angewandte Methode zur Lösung eines mehrstu-
figen Optimierungsproblems basiert auf der Annäherung der zukünftigen Kosten durch eine stückweise
lineare Funktion. Diese Approximationsfunktion wird aus den dualen Ergebnissen jeder Opti-
mierungsaufgabe der verschiedenen Zeitabschnitte zusammengesetzt und kann als optimaler Ben-
ders Cut in einem verschachtelten Zerlegungsalgorithmus verstanden werden. Abgesehen von einer
langsamen Konvergenz in speziellen Fällen konnte gezeigt werden, dass der Algorithmus zufrieden-
stellend ausgeführt werden kann.

Durch die stärkere Nutzung erneuerbarer Energieträger gewinnt der optimierte Einsatz von Spe-
icherkraftwerken immer mehr an Bedeutung. Entsprechende Anwendungsbeispiele zeigen die An-
wendbarkeit des Programms für diese modernen umweltrelevanten Aufgabenstellungen.
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1. Introduction

In the deregulated energy markets the optimal use of the power production as well as the reduction
of costs are very important in order to be competitive. The electrical power system is divided into
power production, transmission and distribution. Each subsystem is controlled, monitored and
optimized by itself, but they are connected and depend on each other. The main function of all
three parts is the economical supply with electric energy, within the constraints of service security,
power quality and environmental impact. [1]

In the majority of power systems various energy sources are used. These are fossils for thermal
plants (coal, oil, gas) and renewables for hydro, solar and wind power plants and biomass plants.
In the classical power systems predominantly the hydro-thermal interconnected operation is used.

Nowadays shares of wind and solar power are growing pretty rapidly. This is not least caused
by energy political pressure, as the 20-20-20-goals of the European Union and national laws (for
example the EEG, Erneuerbare-Energien-Gesetz in Germany and the ÖSG, Ökostromgesetz in
Austria). However, these new energy forms are highly stochastic with strongly varying power
inputs, which can cause real technical transmission problems in the grids and high efforts for
regulation and compensation of possible outages and bottlenecks. Also the distribution between
the control areas has to be taken into account. Thus the scheduling of the different power plants
depends on the well known economical demand of cheapest generation cost considering an increasing
effort for managing the technical conditions like availability, security and quality of supply.

To solve this complex problem several approaches can be used. One important part in this area is the
computerized optimization of scheduling different kinds of power plants. During these optimizations
economical aspects are mostly contained in the main function and the technical conditions are taken
into account using constraints. The purpose is to find an optimal solution which can be computed
as fast as possible. Because of the complexity of the exact model and the limitations of calculation
power and run time, approximations have to be used in most cases. [2, p.8,11]

Typically there exist three time intervals with characteristic load curves: years, weeks and days.
Therefore the optimization is mostly divided into these three parts. In this thesis the optimization
is done for one year and named long term scheduling as no consistent naming for the different
planning horizons is defined in literature. [2, p.7,15]

Usually in long term scheduling it can be distinguished between deterministic and stochastic opti-
mization. Especially in hydro-thermal distributed systems the load forecasts, the availabilities of
the generating units, the fuel prices and the inflows have a stochastic uncertainty. The even more
stochastic power input from renewable energy, like wind and solar power, causes new requirements
(i.e. a more flexible power plant portfolio), whereby the main concept of optimization did not
change. [2, p.27,28] [27, p.3]

Long-term scheduling can be used especially to find the optimal strategy for large hydroelectric
systems management.

3



1. Introduction

Because of the stochastic natural variations of the inflows, using yearly planning horizons and de-
composing them into different stages can be advantageous. The approach which is used for deter-
ministic dual dynamic programming (DDDP) and stochastic dual dynamic programming (SDDP)
is based on an approximation of a future cost function by a piecewise linear function.

1.1. Objectives and requirements

The objectives and requirements for this project were:

• The optimization software should be written in C++, using a linear programming solver of
the XA optimization library.

• The program should be able to deal with input data varying in size.

• Linear Programming (LP), Stochastic Dual Dynamic Programming (SDDP) and Determin-
istic Dual Dynamic Programming (DDDP) should be compared with each other.

In a first step, the dual dynamic programming is performed for the deterministic case. In a
second and third step, the stochastic dual dynamic programming and the linear programming
are performed subsequently. As the sizes of the problems can lead to several millions of elements
taking part in the optimization, a special class in C++, being both, flexible, fast and memory
saving, is implemented.

In chapter 2 an overview of the most important types of power plants, being of relevance for this
work, is given. These are thermal and hydro power plants as well as wind and solar power stations.
Additionally some information regarding the costs of power production and the market conditions
is given. At the end of the chapter the basics of long term and short term scheduling are described.

An overview of several fields in which optimization problems can occur and techniques to solve
them is given in chapter 3. The basics of the fields in which the problem can be used and the
techniques to solve are explained in general and with short examples.

The implementation of the whole system is presented in the first part of chapter 4. The Decom-
position Approach and Benders decomposition are described in the second and third parts. The
fourth part describes the flexible array class used to deal with the problem of the variable size of
the optimization problem when working with C++. The XA optimisation library is described in
the last part.

The inputs for the simulations and their solutions are presented in chapter 5, followed by a final
discussion in chapter 6.
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2. Technical, economical and scheduling basics

2.1. Power Plants

Different methods to produce electrical energy have been invented in the past. Some of the most
used power plants are for example:

• Thermal Power Plants

– Fossil Burning Power Stations

– Gas and Steam Power Stations

– Nuclear Electrical Power Plants

– Biomass Power Plants

• Hydro Power Plants

– Run-of-River Power Plants

– Storage Power Plants

– Pump Storage Power Plants

• Wind Power Stations

• Solar Power Plants

Still most of the electrical energy world wide is produced in thermal power plants. [4, p.271]

Another way to categorize power plants is based on their use for covering different load conditions:
[6, p.5]

• Minimum Load Power Plants,
which can supply energy during the whole year with a large number of full load hours

• Medium Load Power Plants,
their production is reduced or turned off in times of lesser load

• Maximum/High Load Power Plants,
which are used to cover the peak load

The base load is covered with thermal and run-of-river power plants. In the last years the share
of wind power was increased, so that also wind power stations can be used to cover a part of the
base load. The economy of wind power depends on the intensity and the regularity of available
wind. In countries with hydro resources run-of-river power plants and storage power plants are
more important. As the power can fluctuate, back-up power plants are needed to compensate this.
Thermal power plants can do that up to a certain amount, but in this type of power stations changes
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2. Technical, economical and scheduling basics

in the production lead to higher costs and cause higher fuel consumption. Therefore the use of
storage power plants is preferred for this purpose, as the variable costs are less. But due to the
restricted storage capacity only a certain amount of electrical energy can be produced continuously.
Thus storage power plants are mostly used for short periods in times which allow a high profit to
be generated. [3, p.114] [13, p.325] [4, p.13]

2.1.1. Thermal Power Plants

Thermal power plants transform thermal energy into electrical energy. As mentioned before thermal
power plants can be classified by the type of fuel they use. That can be fossil fuel, like coal, oil
or gas, nuclear or biomass fuel. But also solar thermal electric, geothermal and waste incineration
plants are thermal power plants.

Most of the thermal power plants are based on the Clausius-Rankine process. The condensed water
is pumped out of a condenser and flows through a feed water pump, which increases the pressure
up to the high-pressure level. During this stage there are nearly no changes in the temperature (T)
and the volume. The water is then pre-heated up to its boiling point using feed water heaters to
increase the efficiency.

The steam (S) is produced in a steam boiler. During this stage the temperature stays nearly the
same. To further enhance the efficiency the steam is overheated in a re-heater, increasing the
temperature and the specific volume. The steam flows through a high pressure steam turbine. In
the turbine the enthalpy change is transformed into kinetic energy. Afterwards the steam is again
reheated and flows through a middle-pressure and a low-pressure turbine. The turbines and the
generator are connected through a shaft. In the generator the kinetic energy is transformed in
electrical energy. The cooled and expanded steam flows through a condenser and the cyclic process
starts again. [14, p.37-38] [4, p.272-274]

The power produced by the turbine depends on the efficiency ηth, the mass flow of the steam ṁ
and the enthalpy change ∆H:

Pth = ηth · ṁ ·∆H (2.1)

The change of the enthalpy primarily depends on the change of the steam temperature in the
turbine. [17, p.68]

Gas and steam turbines are often used side-by-side or in a tandem construction inside a thermal
power plant. In this case the exhaust gases of a natural gas fired turbine pass through a heat
exchanger and are used to heat up water in order to produce steam inside a steam boiler. This
combined process enhances the efficiency of the thermal power plant. [14, p.58] [4, p.282]

The degree of efficiency η is dependent on the temperature gradient between the high temperature
input Thigh to the turbine and the low temperature output Tlow. It can be regulated by the mode
the steam producer is operated. Normally the value is between 30% and 60%. [19, 2/p.6]

η = 1−
Thigh
Tlow

(2.2)
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2. Technical, economical and scheduling basics

Figure 2.1.: Scheme of a steam power plant with its associated S/T-diagram [14, p.37]
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Figure 2.2.: Carnot cycle, illustrated by the temperature-entropy (T/S) diagram [19, 2/p.6]

Even if the efficiency of modern gas- and steam power plants is 58%, more than 40% are not used,
so it is important to use the remaining thermal energy. It can be used for example to provide
facility or community heating. This way the efficiency is increased up to 75% to 85%. [19, 8/p.14]
[18, p.5]

The time to raise the temperature in the steam boiler from cold up to the operating temperature
is several hours, so thermal power plants are usually used to cover the base load (except for plants
using gas turbines). Also the shut down is executed in a certain time so that the turbine and other
elements do not create cracks because of too rapid drops in temperature. The starting time of
nuclear power plants can take days. [6, p.42]

If thermal power plants are used for covering fast load changes, different techniques are used.
Because the temperature changes should be small and the change of the enthalpy depends on the
change of the steam temperature, the control of the output can be done by changing the flow rate
of the steam, which is proportional to the cross section of the inflow. Depending on the technique
this can be done fast, whereby the efficiency is lower, or it can take up to 60 seconds. [17, p.68]

The advantage of thermal power plants is the deterministic continuous production of electricity
in comparison to storage power plants, wind turbines or solar photovoltaic power plants, which
depend on natural, erratic and discontinuous values.

On the other hand the disadvantages are the long start and stop times of the plants, the dependency
on price increases of fossil fuels or the need of fuel imports. Also the emissions pose big problems
for the environment.

2.1.2. Hydroelectric Power Plants

Hydroelectricity is a way of producing electrical energy by using the potential and kinetic energy
of water.

The potential energy of the water is contained in the reservoir, except for run-of-river power plants,
where little or no water is stored. For both the same method is used: the water is running down a
pipe and driving a water turbine connected to a generator which generates the electrical energy.

8



2. Technical, economical and scheduling basics

Figure 2.3.: Schematic of a hydroelectric power plant (storage power plant)

The electrical output can be calculated by formulas 2.3 and 2.4,

P = Q · h · c (2.3)

c = g · ρ · η (2.4)

where Q is the flow rate of the water, h is its head and c is a coefficient composed of the gravitational
acceleration g, the water density ρ and the overall efficiency of the system η. [3, p.31-32]

The normal output of a hydroelectric power plant is in between several kWs and MWs.

The energy which can be generated depends not only on the available volume but also on the
height difference between the source and the water outflow (called head). The potential energy
of the water is directly proportional to the head. That is the main reason for building the dams
of storage power plants as high as possible to maximize the generation of electrical energy. The
second dependent variable is the water flow rate through the turbine.

The main advantage of hydro systems is their independence of fossil fuel, eliminating fuel costs and
dependencies on changing prices and imports. So they give a hand in reducing CO2 emissions, an
aspect which got more important with the Kyoto Protocol. [3, p.24]

Hydro power plants have a higher expected useful lifetime than fuel fired power plants. Since the
generating units can be started and stopped quickly, they can follow fast rising system load changes
efficiently. The starting time is divided into the run-up time of the turbine and the time needed
for synchronization with the grid. [6, p.42]

Hydro power plants can be categorized differently, for example depending on the head:

• low head hydroelectric power plants
with a head up to 15 meters

• medium head hydroelectric power plants
with a head between 15 and 50 meters

• high head hydroelectric power plants
with a head of more than 50 meters

9



2. Technical, economical and scheduling basics

Low head hydroelectric power plants

They are directly built in the course of a river, a little storage can be created in the head water.
The energy yield is maximized if the whole useful height of a river is divided into several stages.
In most cases multiple hydro power plants cascaded on the same river influence each other, as the
outflow of one power plant increases the inflow in the following reservoir. So their operation has
to be balanced. This controlling occurs automatically, based on complex control- and simulation
models using stochastic and deterministic algorithms. Also a certain depth of water has to be
provided for shipping traffic and fish way (European Water Framework Directive). [3, p.99-103]

Figure 2.4.: Schematic of a chain of run-of-river power plants

Medium head hydroelectric power plants

These can be storage power plants with low dams or run-of-river power plants with high weirs. The
facilities can be differentiated by their way of use. Besides being exclusively used for producing
electrical energy they are often also used for example for high-water protection, to provide a drinking
water reservoir, for shipping or to create recreational areas. [3, p.110]

High head hydroelectric power plants

Storage power plants have a smaller flow rate, they mainly use the high head to produce energy.
The compensation of the stochastic inflow can be done by appropriate scheduling using one or
more storages. The main advantage of using a storage is that the amount of energy which can
be produced is not directly depending on the current inflow. Because of environmental reasons a
direct flow of the water into the lower courses is not allowed, the water has to be latched first. [3,
p.111-114]

The natural inflow depends on the rivers that feed the reservoir which follows the four seasons
over the year. For example in spring and summer the inflow is higher, because of the snow melt
and higher rainfall. The storages can be daily-, weekly-, yearly- or long-term-storages, being used
even over multiple years. For the construction of all hydro power plants the amount of available
water is very important. The amount is fluctuating over the year, so like for storage power plants,
also for run-of-river plants built in alpine water, caused by the snow-melt, the amount of water
being available during summer is much higher than during winter. This can be compensated by
using yearly storages, but even in this case a specific amount of water, defined by the responsible
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authorities, has to flow downstream. Additionally there are long-term fluctuations of the amount
of water available, resulting in dry, normal and wet years. [4, p.221-228]

Pumped storage power plants

Pumped storage power plants do not produce additional electricity, except if there is an additional
natural inflow. Their main purpose is a balancing of the load with an optimal efficiency. In this
type of power plants water is also stored in a lower elevation reservoir. During periods of low-cost
electric power, water is pumped to a higher elevation reservoir, while the stored water is used to
produce electrical energy during periods of high demand. [3, p.115]

Each storage power plant has a minimum spillage for different reasons. The spillage can be uncon-
trollable, as the evaporation and the seepage in the reservoir, or it can be controlled by humans,
as to have a minimum flow in the river to maintain the ecology of the environment.

Keeping a minimum storage also can be of relevance for different reasons, for example environmental
or touristic ones.

2.1.3. Wind Power Station

In the last years wind power got more important, as it was discussed together with climate changes,
the Kyoto protocol and the EU’s climate targets. Wind power stations transform the kinetic energy
of the wind into mechanic energy by the rotor blades and the rotor. Via a gear drive the generator
is powered and transforms this mechanic power into electric power. [14, p.35,48]

The theoretical maximum generation capacity is

P0 =
1

2
·A · % · v30 (2.5)

where % is the density of the air, v0 is the wind velocity and A is the surface the wind is passing
through. [4, p.341]

Global winds can be explained by the different solar radiation, the rotation of the earth and the
different distribution of land and water masses. Local winds are influenced from the different types
of surface, i.e. mountain and valley breezes, sea-land breezes and katabatic winds. [14, p.34]

For an optimal performance constant wind conditions are necessary. In reality, especially near
ground level, wind power is extremely stochastically changing. This can be influenced for example
by surrounding buildings and woods. [14, p.34-35]

When choosing a site for wind power stations, to define the nominal power, the frequency distri-
bution of wind velocity (daily, weekly and monthly distribution) has to be known [14, p.35]. The
potential of wind power can be evaluated using a local wind-atlas.

As the economy of wind power stations depends on the intensity and regularity of the wind velocity
medium wind speeds of 5-6 m/s are necessary, these conditions are available especially in coast
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and mountain regions. On-shore and off-shore wind power stations are used, whereby off-shore
installations have an higher usage factor. [4, p.13]

The way wind power plants are constructed is also influenced by the fact that winds get more
constant as well as stronger with rising height. Therefore increasing the hub height together with
the rotor diameter increases the generation capacity.

The correlation between wind velocity and electrical output is shown in figure 2.5.

Figure 2.5.: Wind turbine power output over wind speed [35]

During the first phase the wind velocity is less than the cut-in speed, the electrical output therefore
is zero. In the next phase the converter starts, the electrical output increases with v3 until the
nominal speed is reached. During the third phase higher wind velocities are compensated, the
converter therefore generates constant output until the cut-off velocity is reached. With wind
strengths higher than the cut-off velocity the converter needs to be retarded and the rotor blades
have to be turned out of the wind. Based on a 1.5 MW exemplary values would be 2.5 to 3.5 m/s
for the cut-in speed, 12 to 14 m/s for the nominal speed and 25 to 30 m/s for the cut-out speed.
[14, p.50]

Stall and pitch regulation are two methods which are used to adapt to winds of different strength.
The first one is used together with fixed rotor blades, with natural stalling occuring at defined
windspeeds. When using pitch regulation, being more common, the blades are actively turned into
or out of the wind depending on its strength. [14, p.51-53]

2.1.4. Solar power plants

Solar power plants convert the solar radiation into electrical energy either directly or indirectly.

The solar radiation is strongly fluctuating temporally as well es regionally. Besides the day and
night rhythm this is caused by the elliptic orbit of the earth and its slightly inclined axis. On the
outer border of the earth’s atmosphere the average solar radiation is 1367 W/m2. In July (greatest
sun distance) the value is 1235 W/m2, in January (smallest sun distance) 1420 W/m2. [15, p.4]

The density of the solar energy is decreasing until reaching the earth surface, where the maximum
is 1 kW/m2. The radiation is influenced by diffusion and absorption. Diffusion is caused by air
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molecules, steam and dust, which lead to reflection into space and diffuse solar radiation. Parts
of the sun light are also absorbed by ozone in the ultraviolet range and by steam in the infrared
range. [16, p.7]

In Austria, for example in Graz, 2/3 of the radiation arrive between May and September and only
around 13 % between November and February. [16, p.11]

The solar radiation can also fluctuate caused by the weather, i.e. the clouds, which can also cause
fluctuations in a very short time when passing over a power plant. Reflection and diffuse radiation
are also influenced by the snow.

Solar thermal power plants

To produce electrical energy through a steam process parabolic troughs, or solar power towers for
greater power, are used.

Using parabolic mirrors the direct part of the solar radiation is focused (diffuse solar radiation can
not be used). Parabolic trough power plants reach temperatures of 100-400 ◦C. The water is heated
up in a pipe which is located in the focal axis of the trough. For higher temperatures paraboloids
or heliostats are used.

For solar power towers the radiation is concentrated to the top of the tower using flat mirrors
(heliostats). These are moved continuously to always have the right angel to the sun. The receiver
transfers the heat to a working fluid (steam, helium, liquid natrium). Temperatures of 500 -
1200 ◦C can be reached, this allows to drive gas and steam turbines, which produce electricity in
conventional form. [4, p.15]

Photovoltaic power plants

In photovoltaic power plants the solar radiation is directly transformed to electric energy through
solar cells, which are made of semiconducting material, which absorbs a part of the photon flux
of the sunlight and transforms this energy into electrical energy. This is called photovoltaic effect.
[15, p.11]

2.2. Cost Account

For production, transforming, transmission and distribution of energy costs are developed. [4, p.58]

Some costs tend to remain the same even during busy periods (fixed costs), while others rise and
fall depending on the volume of work (variable costs).

The fixed costs are associated with the business administration and do not change during quiet or
busy times:

• amortization costs, interests

• fixed operating costs

– taxes
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– insurances

– personnel costs

– costs of repairs

– disposal costs

Variable costs are associated with productive work, and naturally rise and fall with business activity:

• fuel costs

• auxiliaries

• labour-related part for service and maintenance

• labour-related part for disposal

• CO2 certificates

The investment related part of the fixed costs for each year can be calculated using the annuity
method. The annuity factor for the plant costs αcap depends on the interest factor q or the interest
i respectively, where q = (1 + i), as well as on the expected lifetime:
[4, p.54-58]

αcap =
qn · (q − 1)

qn − 1
=

i

1− 1
(1+i)n

(2.6)

The annual capital costs then result in being the product of the initial investment cost cplant and
the annuity factor αcap:

ccap/a = cplant · αcap (2.7)

The fuel costs can be calculated based on the fuel price in e/kg, the lower heating value LHV in
kcal/kg combined with an conversion of factor 860 kcal/kWh, the efficiency η of the power plant
and W , the amount of energy produced:

fuel costs = 860 kcal/kWh · fuel price

LHV · η
·W (2.8)

Run of river power plants and storage power plants nearly don’t have variable costs. In pumped
storage power plants the purchased energy for pumping is creating costs. This pumping incurred
costs in relation to the energy produced afterwards depend on the purchase price for the electrical
energy used for pumping in e/kWh, the efficiency of the pumping operation ηp as well as the
operation of the turbine ηt, and of course the amount of energy produced:

pumping costs =
purchase price

ηt · ηp
·W (2.9)
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Construction costs including all related costs can be quite different. They depend on the gross
electrical output, the location and the market situation. [13, p.232]

Electricity production costs are based on the power which can be sold, so the own use and the
losses are not included. They depend on the type of power plant, the fuel and the size of the power
plant. [13, p.234]

An example of a detailed calculation of electricity production costs for some fossile fired thermal
power plants is shown in table 2.1 (german market, 2005). [13, p.237]

unit brown coal hard coal gas- and steam turbine gas turbine

technical parameters
gross electrical output MW 1100 600 400 150
net electrical power MW 1040 556 394 149
firing thermal capacity MW 2558 1333 727 441
gross electrical efficiency % 43.0 % 45.0 % 55.0 % 34.0 %
net electrical efficiency % 40.6 % 41.7 % 54.2 % 33.7 %
emissions / MWh fuel kg/MWhfuel 410 342 202 202
emissions / MWh electricity kg/MWhel 1009 821 373 600
technical and economical data
time of construction months 48 36 24 12
calculated active life a 35 35 25 25
calculated interests real % 7.5 7.5 7.5 7.5
fuel price in LHV e/MWh 3.97 9.12 20.01 23.76
petroleum tax (exempt from tax because of mineral oil tax act) ct/KWh Hu 0 0 0 0
operating personnel persons 80 70 30 5
personnel costs ke/man-year 90 90 90 90
maintenance (fix, relating to investment) %/a 1.6 1.5 0.7 0.5
maintenance (variable) e/MWhel 0 0 3 3
auxiliaries and disposal e/MWhel 1.65 1.3 0.5 0.5
insurance and overheads %/a 0.5 0.5 0.5 0.5
allocations CO2 emissions t/MWhel 750 750 365 580
certificate costs e/t 18 18 18 18
capital expenditure
engineering/procurement/construction price (EPC-price) Me 1210.0 540.0 180.0 45.0
builder/engineer/misc price Me 90.8 40.5 13.5 3.4
decommissioning costs Me 6.1 2.7 0.9 0.2
interest of EPC-price Me 120.4 41.7 8.9 1.2
sum Me 1427.2 624.9 203.3 49.8
energy and emission balance
full load hours h/a 7500 5500 5000 1250
electricity generation GWh/a 7796 3056 1970 186
fuel consumption GWh/h 19186 7333 3636 551
CO2 emission in total kt/a 7866 2508 735 111
CO2 emission for certificate kt/a 2019 216 15 4
electricity production costs - fixed costs
capital cost Me/a 116.3 50.9 18.2 4.5
maintenance Me/a 21.5 9.0 1.4 0.2
personal (1%/a rate of increase real) Me/a 8.0 7.0 2.9 0.5
insurance and overheads Me/a 6.1 2.7 0.9 0.2
sum Me/a 151.9 69.6 23.5 5.4
electricity production costs - variable costs typical for the time of usage
fuel costs Me/a 76.1 66.9 72.8 13.1
petrol tax costs Me/a 0.0 0.0 0.0 0.0
maintenance for gas turbine Me/a 0.0 0.0 5.9 0.6
auxiliaries and disposal Me/a 12.9 4.0 1.0 0.1
CO2-certificates Me/a 36.3 3.9 0.3 0.1
sum Me/a 125.3 74.8 79.9 13.8
sum of annual costs Me/a 277.20 1444.40 103.40 19.20
specific costs for the typical time of usage e/MWh 35.55 47.26 52.48 103.69
power costs e/(kW*a) 146.11 125.34 59.52 36.54
energy costs e/MWh 16.07 24.47 40.57 74.46

Table 2.1.: Example of a detailed calculation of electricity production costs [13, p.237]

Great uncertainties are the fuel prices, which do not have a trend. They can leap up and down.
Also the CO2-certificates can not be foreseen. [13, p.239,241]

For hydro power plants the investment costs depend on topographical and geological facts, the
building technique, the amount of water, the height of the head and the type of the turbine. The
costs can be quite different. The technical lifetime of the turbine and the electrical parts is around 40
years, the lifetime of the dam is usually estimated with 80 years. An additional part of the operation
costs which are not to be neglected are the fees for water usage. The electricity production costs
can also be quite different and depend on the investments and the local conditions.[13, p.265-266]
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head turbine output costs in e/kW

30 m Francis 20 - 80 MW 3530 - 4970
8 m Kaplan <15 MW 4600 - 6200

15 - 50 MW 3750 - 4950
>50 MW 2690 - 3720

Table 2.2.: Examples for investment costs for large run-of-river power plants [13, p.266]

2.3. Market Conditions

Most of the energy is sold by long-term contracts on the forward marked. This contracts are based
on the results of long-term scheduling. Just a part of the energy is sold in the spot or intra-day
market.

The merit order is a curve sorted by the marginal costs of energy production. Based on this curve
it is always possible to see which power plants can cover the needed load economicly. [7, p.1-2]

The sequence in the merit order is related to the variable costs of production, in an ideal case they
are the marginal costs of the power plants. So they are just the production costs without fixed
costs. [6, p.35]

The marginal costs are:
[7, p.1,3]

marginal costs =
fuel price

η
+ certificate · specific emission factor

η
+ variable costs (2.10)

For each hour of the next day an auction is done on the day-ahead spot market of the EEX.
All offers for sale are sorted ascending by the marginal costs and all offers for buying are sorted
descending. The intersection of the two curves defines the market price and the amount of energy
traded. [7, p.2]

All winning bids get or have to pay the same market clearing price. If the market clearing price
is higher than the marginal costs, a profit contribution to the fixed costs is achieved. The profit
contribution is the difference between the offered price and the market price. The last used power
plant can only cover the variable costs. [6, p.37]

While producers and power traders are in competition with each other, the grid is still a natural
monopoly. This is because it is not possible to build several high voltage lines and substations for
each provider. The costs for transmission and distribution are cleared with regulated prices by an
authority. [24, p.48]

For the optimization of costs different models and techniques can be used. Some examples are
described in the following chapter.
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Figure 2.6.: Example of marginal costs as a function of load power, with the colours indicating the
plant types used for production according to their merit order [7, p.3]
nuclear power: yellow, brown coal: brown, hard coal: dark gray, gas and steam: light gray, gas: green,

oil: orange

2.4. Scheduling of Power Plants

Power production, transmission and distribution have the task to supply electrical energy within
several technical, quality and environmental constraints. The objective function for system opti-
mization is the cost effectiveness. To solve such a complex model, it has to be divided into different
domains. The graph below shows the main classification. [2, p.8-9]

While scheduling focuses on economic aspects, the operational management concentrates on the
power quality which has to be provided.

In scheduling the resource planning is decided, so that the load can be covered. Also the exchange
between the trading zones or control areas has to be taken into account. The scheduling includes
constraints that cross over all time intervals, for example minimum downtimes, so an optimization
has to be run for at least some days. If storage power plants or delivery contracts are included,
the time horizon should be extended to the accordant interval. Most power plants have long-term
contracts for primary energy. [2, p.8-10]

In scheduling a compromise between detailed models, approximations and available calculation
power should be found. [2, p.10]

In Austria the transfer power is given in 30 minutes averages, so a model for one year would
have 17.520 time intervals. The number of variables and the necessary calculating time would be
enormous. [5, p.6]

As a consequence the constraints have to be restricted. However, this might create infeasibilities
in the short term scheduling. [2, p.33]

The optimization can be split into three main parts: days, weeks and years.
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Figure 2.7.: Overview of tasks in planning and operation [2, p.9]

The optimization objective and its mathematical formulation can use different approaches. The
costs can be minimized or the profits maximized.

At first one possible scheduling approach in a vertically integrated energy company is explained,
afterwards the differences to the liberalised energy marked are mentioned.

In vertically integrated energy companies (old monopolies) the production as well as the grid were
managed by the same organisation.

The different stages of scheduling can be categorized for example by the relevant time horizons:
[4, p.607]

• Long Term Scheduling
scheduling for periods of one year or more

• Middle Term Scheduling
scheduling for weeks or months

• Short Term Scheduling
scheduling for one or more days
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• Instantaneous Optimization

Long Term Scheduling

The objective of long term scheduling is to run a group of power plants with minimal costs, including
the management of yearly and multi-year storage reservoirs and the scheduling of thermal power
plants. [4, p.626-627]

Long term scheduling is used for a planning period of one year or even longer and the planning
periods are usually divided into months or weeks (12 or 52 stages). In this scheduling strategy long-
term subscriber and supply agreements can be included. It can also be used for determining the
fuel supply for the thermal blocks and the optimal start-up and shut-down times. It is important
to know the maintenance schedule of the power plants. Forecast values (i.e. for load and fuel price)
used as planning basis can introduce additional uncertainty. [5, p.6]

Above all long term scheduling is used to develop an optimal strategy for the reasonable use of
large hydroelectric systems.

While the management of annual storage reservoirs is optimized, daily and weekly storage reservoirs
are treated like run-of-river power plants. For the transmission system the transmission losses are
neglected. [4, p.627]

Since the inflow is not constant over the year and can be different from expectation, the simulation
has to use more than one scenario. It is important to take the whole set of fluctuating water inflows
into account and to formulate this in a very detailed model. On the other hand this extends the
model and makes it more complicated and time consuming to find a feasible solution. So stochastic
optimization is important. [4, p.627]

The two control variables used in models for simulating hydro power plants are the spillage and
the electrical output. The storage is a state variable, since it is derived when the other two values
are determined. This fact will be described in chapter 5.

To improve the results of long-term scheduling, it is repeated in continuous intervals. New inputs
can improve the output, lost chances can never be made up. [4, p.627]

Middle Term Scheduling

After long-term scheduling the planned use of the thermal power plants and the amount of water
being available during different weeks or months are known. Also decisions about long-term delivery
contracts are done during long-term scheduling. In middle-term scheduling the optimization is going
to be more detailed. The weekly or daily reservoirs are taken into account. The uncertainties of the
forecasts for the available water and the availabilities and costs for thermal blocks are still given,
even if they are less than during the long-term scheduling. [4, p.628]

As the outputs of middle-term scheduling are used as inputs for short-term scheduling, the opti-
mization is usually repeated several times per week, to improve the results. It can also be based
on stochastic optimization.
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Short Term Scheduling

Short-term scheduling is normally done on a daily basis and taking into account much more details
than in long- and middle-term scheduling. Where different power plants where summarized into
groups during previous optimizations steps, they are now considered individually. The advantage
is, that the forecasts are more detailed and secure. The expected load curve for the following day is
given in half-hour intervals. The grid and the allocation of reactive power can be taken into account,
being important because of its influence to the costs of the transmission and the amplitude of the
voltage. [4, p.628]

Instantaneous Optimization

The real network load never follows the values of the forecast created by short-term scheduling. So
the instantaneous optimization quickly responds to changes caused by fluctuations in the needed
load, blackouts, drop-outs of power plants or outages in transmission networks. For the power-
frequency control the current values are monitored. The frequency response reserve has to balance
between the need and the production. It is tried to allocate it between different power plants.
Especially (pump-)storage power plants are used. With the spinning and non-spinning reserve it
is tried to restore the scheduled exchange between the different trading zones or control areas and
to split the load-difference over several power plants in the trading zone or control area. If just a
few power plants are used to balance the differences, it is risked to leave the economic optimum.
So the best solution is an on-line optimization for the load. [4, p.629] [17, p.76,78]

Since the energy market is liberalized nowadays, the objective function for optimization has changed.
Instead of minimizing the costs for providing the needed electrical energy, maximizing the profit,
which of course also includes a minimization of the production and procurement costs, is important
now. Power plants or groups of plants are independent of the transmission and distribution net-
work, the costumer can choose any producer, the grid is like a neutral instance just transmitting
the energy. [20, p.40][4, p.630]

The power producers are in competition with each other and try to maximize their benefit. There
can be more than one producer on the market, all performing their own optimizations within their
constraints. But not only the costs are important, also their success in the marketplace.

Not the whole system can be optimized because different power plants, the transmission system and
different distribution networks are often owned by several independent and competing companies.
This means, an optimum for the overall system can not be reached even if each producer is working
at his optimum. It may happen, that a more economic producer can not sell his energy because
of other mechanisms on the market. This is the risk of the system because it is supposed that the
cost pressure in the competition overcompensates this differences to the total optimum. [4, p.635]

The main structure of the planning process is not changed, it is still started with the long-term
energy supplies and the revision timetables, which correspond to stochastic values. New elements
which have to be taken into account are the variability of the prices on the energy market as well
as the prices for fuel, which can fluctuate more. The horizons are not changed, just new aspects
are added. So additional degrees of freedom within the planning horizon got introduced, because
the producers can also buy energy on the spot market instead of producing it by themselves or sell
energy there. [4, p.636-637]
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In the last years more renewable energy with fluctuating production is used. This did not change
the optimization algorithms, but introduced more uncertainties. Also emission certificate trading
took part of the optimizations. After the unbundling of the grid the management of the system
got changed, so now the network operator can use auctions to ask for frequency response reserve
and spinning and non-spinning reserve. [27, p.5-7]

Nowadays the requirements on optimization algorithms are that they are more detailed, solve the
problem as fast as possible and deliver the information in a way allowing it to be used very fast.
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3.1. Optimization, Mathematical Algorithms

In general the objective of an optimization algorithm is to find the extremum, which means to
maximize or minimize the objective function with respect to various constraints. The unknown
variables should be solved. There are a lot of optimization subfields and techniques to do this job.
In this thesis, some of them are explained, corresponding to the fields and the techniques used by
XA, an optimization library used for this purpose.

Optimization problems are given in several fields for different reasons. For example:

• in economies to minimize costs or in transportation companies to calculate the best routes in
a complex transport system

• in farming to calculate the amounts of different kinds of seeds to be used to achieve best
harvests

• in nutritional science to calculate the smallest amount of food with the highest nutritional
content

• in the petrol industry optimization is applied to production problems, which means that the
oil production, the allocation and the processing should be done for the lowest costs

• in the telecom sector optimization algorithms are used to calculate the most useful connections
between different cities for the lowest costs

• in the steel industry the optimal use of the rolling trains is of relevance

• in the chemical industry as well as in the pharmaceutical industry optimizations can be
applied to compound problems

• in aviation the whole transportation network has to be optimized

Fields

Depending on the type of input and output data and the mathematical description of the problem
a categorization into several fields can be done, like for example:

• Linear Programming: the objective function and all constraints are linear, all variables are
continuous variables

• Integer Programming: the objective function and all constrains are linear, all variables are
integer variables

• Mixed-Integer Programming: the objective function and all constrains are linear, some vari-
ables are continuous, some are integer variables
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• Non-linear Programming: the objective function and the constrains are non-linear

• Quadratic Programming: a special case of non-linear programming

• Stochastic Programming: taking into account uncertainties of fluctuating values

• Dynamic Programming: decomposing large problems into nested subproblems

Techniques

The actual optimization can then be done using different techniques, depending of the problems:

• Simplex/Vertex Method: the optimization is done by the walking along the vertices of the
feasible region

• Branch and Bound: is used for finding integer solutions by branching and bounding

• Interior Point Method: the optimization is done by moving within the feasible region

• Ellipsoid Method: the optimum is found by constructing ellipsoids around the target point

• Steepest Descent: the optimum is found by following the steepest descent of the surface of
the function

In the electricity industry, one or more of these optimization algorithms are used for the scheduling
of power plant systems. Since the liberalization of the energy market, the minimization of the
marginal-costs has become necessary to optimize power plants.

In different trading zones or control areas a certain number of power plants have to cover the total
load in the system, depending on

• the kind of power plants

• the prices of the production

• the possibility of the optimal use of the power plants

• the spot prices

Additionally the import of energy might be less expensive than the costs incurred on producing it
locally. In other cases, it might be better to produce more energy and export it during periods of
higher prices.

In hydro-thermal scheduling the thermal power plants should be used for covering the base load.
Because the turn-on and turn-off times for hydro power plants are shorter in comparison to thermal
plants, they can easily be switched on or off for short periods of time. They should therefore be
used mostly for peak-shaving. Also the costs for producing hydro energy are low. Additionally
if it is “green energy” it can be sold on spot markets at a certain price. The main problem with
hydro power plants is that the natural inflow of storage power plants or the flow rate of run-of-river
plants has to be taken into account in the generation of electrical energy and these values fluctuate
during the year and can not be forecasted with high accuracy.
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The problem of scheduling can be formulated as a linear problem, all the constraints and formulas
have to be linearized. Depending on the number of power plants, the problem might become too
big to solve it within reasonable time, so it has to be separated into multiple stages and solved using
decomposition approaches. Taken into account fluctuating load and inflow conditions of different
years the system has to be solved with stochastic programming.

3.2. Fields

3.2.1. Linear Programming

In linear programming the main purpose is to find the extremum of the objective function. This
objective function and all constraints are linear, using continuous variables. The constraints can
be equations and inequations with ≤ or ≥ conditions. [25, p.124]

Linear programming is one of the most used methods in operations research. [28, p.142]

constraint 1

constraint 2

constraint 3
constraint 4

non-negative
constraint

non-neg. constr.

convex solution space

Figure 3.1.: Convex solution space bounded by several constraints [28, p.143]

The constraints form an convex solution space (convex polyhedron). They restrict the solution
space as shown in the graph above. The optimum is on one of the vertexes. [28, p.142]

Another constraint is the demand for a linear objective function. Taking several linear functions,
which are only used in a certain interval of the objective function, non-linear functions can be
approximated. [28, p.112]

The simplest way of describing a linear system in the general form is:

f(x) = c1 · x1 + c2 · x2 + ...+ cn · xn (3.1)

c, x...Rn (3.2)

Because the variables can have values within the range from −∞ to +∞, constraints have to be
defined to find a possible solution.
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Considering this constraints it can be rewritten as:
[28, p.145]

min : f(x) = cT · x (3.3)

subject to:

A · x ≥ b (3.4)

x ≥ 0 (3.5)

with:

c ε Rn cost-vector
x ε Rn vector of the opimization variable
A ε Rm×n,m < n matrix, coefficients of the constraints
b ε Rm vector, known values

It does not matter if the objective function should be maximized or minimized, because a search for
a maximum can also always be interpreted as a search for a minimum by multiplying the objective
function by -1 and vice versa. [26, p.40]

To solve a problem in its linear form, all the constraints and formulas have to be linearized.
Interpreted geometrically the constraints describe a polyhedron, the so called feasible region. To
find a solution it is important that the constraints do not contradict each other, the polyhedron is
completely bounded and there is only one minimum or maximum. If one of this requirements is
not met, it is not possible to find a solution. This is shown in the following examples. [26, p.39]

Empty solution space

If there are contradicting constraints, the solution space is empty.

x1 > 4 (3.6)

x1 < 1 (3.7)

Unbounded solution space

If the solution space is not completely bounded, the problem may also not have a unique solution.

max : x1 + x2 (3.8)

subject to:

x1 + x2 ≥ 3 (3.9)

x1, x2 > 0 (3.10)
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Figure 3.2.: Solution space (shown in green) which is not completely bounded

Ambiguous solutions

If there exists no explicit extremum a set of ambiguous solutions is possible.

max : x1 + x2 (3.11)

subject to:

x1 + x2 ≤ 3 (3.12)

x2 ≤ 2 (3.13)

x1, x2 > 0 (3.14)

−1 1 2 3

−1

1

2

3

0

x2

x1

Figure 3.3.: Optimization problem without explicit extremum (possible solutions for x1 and x2 are
shown as green line)

The great advantage of linear programming compared to other methods is its simplicity and the
possibility to solve problems very fast.
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Example - mathematical problem definition

The following example should explain the way of finding the feasible region by drawing constraints.
In the following example two variables are used. With more variables the dimensionality rises and
it is much harder to visualize the problem.

The problem definition is taken from [28, p.143]:

max : 4 · x1 + 3 · x2 (3.15)

subject to:

2 · x1 + 3 · x2 ≤ 6 (3.16)

3 · x1 − 2 · x2 ≤ 3 (3.17)

2 · x2 ≤ 5 (3.18)

2 · x1 + x2 ≤ 4 (3.19)

x1, x2 ≥ 0 (3.20)

The constraints define a convex area. The initial solution space defined by by the conditions x1 > 0
and x2 > 0 is shown as yellow area. The first two constraints define the area marked red in the
solution space. The third constraint does not restrict the solution space at all, therefore it is called
redundant. The solution space defined by the fourth constraint is shown as blue area. The final
solution space is the overlapping area of both sets of constraints. It is shown in the diagram using
violet.

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

0

x2

x1

constraint 1

constraint 2

constraint 3

constraint 4

Figure 3.4.: Graphical solution of the optimization problem
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Finally it is necessary to find the maximum of the objective function in the solution space. To do
this a straight line representing the function 4 · x1 + 3 · x2, shown in green, is introduced. This
straight line is moved parallel towards the extremum until it intersects the solution space at exactly
one point. The solution for x1 and x2 is the maximum of the objective function.

The optimal solution is:

x1 = 1.5 (3.21)

x2 = 1 (3.22)

f(x) = 9 (3.23)

Duality

Based on the duality principle, each linear programming problem (the primal problem) has its
corresponding dual problem. Between the primal and the dual problem exists a close and defined
relation. This relationship can be used to easier find a solution for linear programming in some
cases.

The relation is:
[29, p.343-345]

• If the primal problem (LP) is a maximization problem where all constraints are ≤-inequalities,
so the dual problem (DP) is a minimization problem with ≥-inequalities and vice versa.

• The coefficients from the objective function of the LP are the coefficients on the right hand
side of the constraints of the DP in the same order.

• The coefficients on the right side of the constraints of the LP are the coefficients of the
objective function in the DP, also in the same order.

• The left side coefficients of the constraints of the LP read in horizontal direction are the left
side coefficients of the DP in vertical direction (it is a transposed matrix).

So a linear programming (primal) problem with m constraints and n variables results in a dual
problem with n constraints and m variables.

This means, the primal problem

max : cT · x (3.24)

subject to:

A · x ≤ b (3.25)

x ≥ 0 (3.26)

results in the dual problem

min : bT · y (3.27)
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subject to:

AT · y ≥ c (3.28)

y ≥ 0 (3.29)

In some cases it can make sense to repeat this process to construct a second dual problem based
on the first dual problem generated out of the original linear programming problem, which would
result in:

min : yT · b (3.30)

subject to:

yT ·A ≥ cT (3.31)

yT ≥ 0 (3.32)

Because of the close relationship between the primal and the dual problem the value of the objective
function at the optimum is the same for both formulations, though the objective function itself looks
quite different. This called strong duality and is true in most cases.

As an example converting the primal problem

max : 2 · x1 + 3 · x2 + x3 (3.33)

subject to:

2 · x1 + x2 + x3 ≤ 20 (3.34)

x1 + 2 · x2 ≤ 30 (3.35)

x1, x2, x3 ≥ 0 (3.36)

with three coefficients and two constraints results in the dual problem

min : 20 · y1 + 30 · y2 (3.37)

subject to:

2 · y1 + y2 ≥ 2 (3.38)

y1 + 2 · y2 ≥ 3 (3.39)

y1 ≥ 1 (3.40)

y1, y2 ≥ 0 (3.41)

with two coefficients and three contraints.

The solution of the primal problem is x1 = 0 and x2 = 15 with a value of 50 for the objective
function, for the dual problem it is y1 = 1 and y2 = 1, also with a value of 50 for the objective
function. How to solve a linear problem using primal and dual problem formulations is going to be
described in chapter 4.3
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3.2.2. Integer programming

If all unknown variables are integers the problem is called an integer programming problem. Some-
times this might be necessary, because in several cases the results can only be represented by integer
values, for example in the case of a number of people, a number of cars or when on/off-decisions
are represented by integer values. The main problem of integer programming compared to linear
programming problems with continuous variables is that it takes much more time to find a solu-
tion or the problems can not be solved in the worst case. Therefore special integer programming
techniques are used to solve such problems. [26, p.9-10]

Example - mathematical problem definition

Again this can be demonstrated looking at the example introduced when explaining linear pro-
gramming.

max : 4 · x1 + 3 · x2 (3.42)

subject to:

2 · x1 + 3 · x2 ≤ 6 (3.43)

3 · x1 − 2 · x2 ≤ 3 (3.44)

2 · x2 ≤ 5 (3.45)

2 · x1 + x2 ≤ 4 (3.46)

x1, x2 ≥ 0 (3.47)

(3.48)

Also in this case the solution can be determined graphically. The constraints are drawn in the graph
and the solution space is displayed. The possible integer values for x1 and x2 are demonstrated
with the red points. The best solution for x1 and x2 with respect to the solution space and the
objective function would be at x1 = 1.5, but as both, x1 and x2, should be integer values, the final
solution also matching this additional criteria is at x1 = x2 = 1 with f(x) = 7, even if this is not
the possible optimum within the whole solution space.

3.2.3. Mixed Integer programming

Additional complexity is added if only some of the unknown variables are required to be integer
values, but the rest are continues variables. In such cases the problems are called mixed-integer
problems. In practice most optimization problems are mixed-integer problems. [28, p.163]
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Figure 3.5.: Graphical solution (integer programming)

Example - mathematical problem definition

Again, using a simple, 2-dimensional optimization task, finding the solution can be demonstrated
graphically:

max : 4 · x1 + 3 · x2 (3.49)

subject to:

2 · x1 + 3 · x2 ≤ 6 (3.50)

3 · x1 − 2 · x2 ≤ 3 (3.51)

2 · x2 ≤ 5 (3.52)

2 · x1 + x2 ≤ 4 (3.53)

x1, x2 ≥ 0 (3.54)

If only x1 needs to be an integer value while continuous values are allowed for x2 the possible
solutions are not restricted to the intersections of grid lines representing integer values on both
axes. All points on all grid lines having integer values on the x1-axis within the area bounded by
the constraint functions are potential candidates in this case. This is shown in figure 3.6 with the
red dot representing the optimum. The optimal solution is at x1 = 1 and x2 = 1.33 with f(x) = 8.

3.2.4. Stochastic programming

In stochastic programming also uncertainties of data or fluctuating values which may occur with
several optimization problems are taken into account. Real world problems very often have to be
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Figure 3.6.: Graphical solution (mixed integer programming)

formulated including unknown parameters, or at least based on information which is only known
with a certain accuracy. Stochastic programming is a way to deal with such problems and still
allow the optimization to be run.

The main purpose is to find a solution which is feasible for all sets of input data, and to do this
within a certain computational tolerance and within a given total computing time or maximum
number of iterations. The generated solutions can be at a global as well as a local optimum.

Solving such problems is based on using stochastic or random variables with unknown values but
given probabilities. [25, p.483]

The general form of a two stage stochastic problem looks like:
[31, p.10-11]:

min : cT · x+ Eξ ·Q(x, ξ) (3.55)

subject to:

A · x = b (3.56)

x ≥ 0 (3.57)

in combination with:

Q(x, ξ) = min : qT (ξ) · y (3.58)
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subject to:

W (ξ) · y = h(ξ)− T (ξ) · x (3.59)

y ≥ 0 (3.60)

In the first stage the decision vector x ∈ <n has to be optimized without knowing the whole
information on some random events. This stochastic input data is represented by the random
vector ξ, which is formed by the components of qT , h and T . Eξ is the mathematical expectation
with respect to ξ.

As the results of the first stage are optimal with respect to the probability distribution of the
random input data which was taken into account, they are not optimal for each single scenario.
The second stage optimization is done at a later point in time, when the values of the stochastic
inputs are already known. Its goal is to make the best out of the particular scenario, which can
not be influenced anymore. The second stage variable vector is y ∈ <m.

Example - a farmers problem

A farmer wants to decide how much of his 500 hectares of land he should use for grain, for corn
and for sugar beets. [31, p.4-10]

The restrictions are, that he needs 200 tons of wheat and 240 tons of corn for animal feeding. This
amounts can be raised on the farm or partially or even completely bought from a wholesale. In
cases of an overproduction the remainings can also be sold. The sugar beet production is only done
for selling and there are regulatory restrictions, which result in a dramatically reduced price for
any production which exceeds 6000 tons. The purchase and selling prices for the different products
are listed in table 3.1.

product selling price purchase price

wheat $ 170 / ton $ 238 / ton
corn $ 150 / ton $ 210 / ton
sugar beet (first 6000 tons) $ 36 / ton -
sugar beet (above 6000 tons) $ 10 / ton -

Table 3.1.: Purchase and selling prices

Further known input data are the costs for preparing the land for the production of the different
agricultural products and the yield which can be expected in each case. These costs are listed in
table 3.2.

product preparation costs expected yield

wheat $ 150 / ha 2.5 tons / ha
corn $ 230 / ha 3.0 tons / ha
sugar beet $ 260 / ha 20.0 tons / ha

Table 3.2.: Preparation costs and expected yield for each product
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culture acreage yield sales

wheat 120 ha 300 tons 100 tons
corn 80 ha 240 tons -
sugar beets 300 ha 6000 tons 6000 tons

Table 3.3.: Optimal solution with linear programming

After solving this problem with a linear solver program, the farmer obtains an optimal solution
with an total profit of $ 118,600 as shown in table 3.3.

Unfortunately nature introduces a stochastic effect, as weather conditions, especially rain and
sunshine, vary from year to year. So harvests which are 20 % higher or lower than the average are
typical. This not only leads to higher or lower profits, but also changes the distribution of land
usage which has to be done to reach the best possible profit.

culture acreage yield sales

wheat 183.33 ha 550 tons 350 tons
corn 66.67 ha 240 tons -
sugar beets 250.00 ha 6000 tons 6000 tons

Table 3.4.: Optimal solution for years with a plus-20%-harvest

culture acreage yield sales

wheat 100.00 ha 200 tons -
corn 25.00 ha 60 tons -
sugar beets 375.00 ha 6000 tons 6000 tons

Table 3.5.: Optimal solution for years with a minus-20%-harvest

Thus the total profit when optimally using the land in these other scenarios would be $ 167,667 in
good (+20%) years and $ 59,950 in bad (-20%) years.

As it is not possible to make weather forecasts accurate enough, it is also not possible to make
perfect decisions which match the future weather conditions. To still have a chance to come to an
decision, which is good for all possible scenarios, all these scenarios have to be considered together
with the probability of their appearance. This is where stochastic programming plays its role.

In the case of the given example there are three scenarios with the same probability of occurrence,
one for normal weather conditions, one for better and one for worse harvests.

Passing the stochastic formulation of the problem through a linear solver gives us an optimal
solution of using 170 hectares for wheat, 80 hectares for corn and 250 hectares for sugar beets.
This values are the primary output of the optimization, the so called first stage output, the values
for sells and purchases depend on the effective harvests which depend on the real weather conditions.
These so called second stage results are shown in table 3.6.

The optimal solution can be interpreted as that in all scenarios it is more optimal to avoid sales
of sugar beet under the unfavourable price, even when it is not used up to the amount of 6000.
The land for corn should carry out the feeding requirement when the land yield is on average. The
rest of the land is devoted to wheat. This leaves the farmer with an expected average profit of $
108,390.
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wheat corn sugar beets
scenario yield sales yield sales purchases yield sales profit

1 - good years 510 310 288 48 - 6000 6000 $ 167.000
2 - normal years 425 225 240 - - 5000 5000 $ 109.350
3 - bad years 340 140 192 - 48 4000 4000 $ 48.820

Table 3.6.: Results for different scenarios after stochastic optimization

Looking at the resulting profit for normal years it can clearly be seen that optimum for a single
scenario is worse when using stochastic optimization compared to using normal linear optimization
for exactly this scenario. This is because stochastic optimization takes into account, that this
scenario only occurs with a certain probability and also respects the situation in other scenarios
with their given probability of occurrence.

3.2.5. Dynamic programming

Dynamic programming can be used to decrease the runtime needed to optimize large problems.
Often a formulated problem can have a big number of variables and constraints, so it can become
hard to find a solution if the objective function and all constraints are taken into account at the
same moment. If the problem consists of overlapping subproblems with optimal substructures it
can be split into a number of smaller optimization problems, which can be solved one after another.
Optimal substructures means, that the optimal solutions of all subproblems can be used to find
the optimal solution of the master problem. [32, p.5-7]

So the way of finding a solution in dynamic programming can be interpreted as a tree step problem:

• divide the main problem into several subproblems

• solve the subproblems using an appropriate algorithm, either in forward direction or back-
wards

• use these optimal solutions to construct an optimal solution for the original problem

Example - production optimization

This example describes a production problem, in which the demand for the goods as well as the
different kinds of costs incurred for production and storage are changing over different periods. [34]

The example goes over four periods, whereas the inventory is empty at the beginning of the first
period and also has to be empty at the end of the last period. Taking items from one period to the
next creates fixed costs of $ 1 per unit, the costs for production (a fixed fee for production startup
plus production costs per unit) and the demand in each period are given in table 3.7.

At any stage the beginning inventory plus the amount of produced units during a period must be
equal to the demand plus the size of the output inventory.

The problem can be solved by splitting it into small subproblems, one for each period, and using
backward recursion for optimization. However, in some other cases forward recursion may be more
convenient.
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production production
period setup costs costs per unit demand

period 1 $ 5 $ 1 5
period 2 $ 7 $ 1 7
period 3 $ 9 $ 2 11
period 4 $ 7 $ 2 3

Table 3.7.: Production costs and demands

Figure 3.7.: Production problem with its four subproblems (Xn are the productions in each period,
In the output inventories) [34]

An initial consideration before numerically optimizing the problem is, that each period should
either start with an empty beginning inventory, in which case a production should take place, or,
in case of a non-empty beginning inventory, no production should be done. This is based on the
idea, that if it is profitable to take items to the next period, this must be true for one item up to
at least the whole demand in the next period.

In a first step the optimization for period 4 is done. Based on the initial consideration, that a
production only should take place when no items were received from the previous period, there are
only two possible solutions, either receiving all 3 needed items as input inventory or producing all
of them in this period, both with their associated costs.

beginning inventory production total costs

solution 1 0 3 $ 13
solution 2 3 0 $ 0

Table 3.8.: Possible solutions for the period 4 subproblem

Based on this information the optimization can be continued with period 3. As the possible
beginning inventories for period 4 can be 3 or 0, all possible scenarios delivering these output
inventory values have to be taken into consideration. Again, only allowing either production or a
non-zero input inventory, four solutions would be possible.

As solutions 1 and 3 have the same input inventory, the costs created are the only difference when
seen from the preceding period. This means, that solution 1, creating the higher costs, can be
ignored during further optimization steps.

For period 2 all solutions with an output inventory of 0, 11 or 14 could be of relevance. As for
period 3 for each different size of the input inventory only the best solution survives, solution 1
and 3 therefore can be discarded.

Finally when continuing optimization with period 1, no additional solutions can be created, as the
input inventory for period 1 is fixed to zero.
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output beginning total costs
inventory inventory production (periods 3 to 4)

solution 1 0 0 11 $ 44
solution 2 0 11 0 $ 13
solution 3 3 0 14 $ 40
solution 4 3 14 0 $ 3

Table 3.9.: Possible solutions for the period 3 subproblem

output beginning total costs
inventory inventory production (periods 2 to 4)

solution 1 0 0 7 $ 54
solution 2 0 7 0 $ 40
solution 3 11 0 18 $ 49
solution 4 11 18 0 $ 24
solution 5 14 0 21 $ 45
solution 6 14 21 0 $ 17

Table 3.10.: Possible solutions for the period 2 subproblem

So the optimal solution for period 1 is to produce exactly the demand of 5 items an pass no
inventory to the next period. Under this constraint of an empty beginning inventory the optimal
solution for period 2 is a production of 21 in combination with an output inventory of 14 items.
Continuing through all periods the optimal solution for the master problem is a production of 5 an
21 items in periods 1 and 2 without any production in the last two periods, generating total costs
of $ 55.

3.2.6. Nonlinear and Quadratic Programming

The two fields of nonlinear and quadratic programming should just be mentioned here. Both of
them are not used in this thesis, as all problems were linearized before optimization.

Nonlinear programming is part of the mathematical optimization which has to be done to find the
best solution for continuous nonlinear problems. Objective function and constraints are nonlinear
in this case. [29, p.268]

Quadratic programming is just a special case of non-linear programming. [29, p.192]

The general form of an quadratic programming problem is:
[29, p.192]:

min :
1

2
· xT ·G · x+ gT · x (3.61)

subject to linear equations and inequalities:

AT · x ≥ b (3.62)

x ≥ 0 (3.63)
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output beginning total costs
inventory inventory production (periods 1 to 4)

solution 2 0 0 5 $ 55
solution 4 7 0 12 $ 64
solution 5 18 0 23 $ 70
solution 6 21 0 26 $ 69

Table 3.11.: Possible solutions for the period 1 subproblem

3.3. Techniques

3.3.1. Simplex method

The simplex method is used to solve linear problems by analysing the vertexes of the feasible region.
[29, p.269]

x1

x2

1 (Start Solution)

2

3

4 (Optimal Solution)

Figure 3.8.: Simplex optimization walking along the vertexes of the feasible region

An optimization using the simplex method involves two phases:
[26, p.45]

• first it is necessary to find any feasible solution

• afterwards the optimal solution can be determined iteratively

If the linear programming problem has one optimal solution it is exactly on one of the vertices
of the polyhedron which is formed by the constraints, like mentioned in the section about linear
programming. If there is more than one solution, at least one is on one of the vertices. The vertex
algorithm is based on iteratively continuing searching on neighboring vertices of the polyhedron,
so that the solution is getting better or at least not worse in each step, until the optimal solution
is found. An important technique for moving from one vertex to the next is the manipulation of
the problem using Gauss-elimination. [26, p.46]

If a problem has k variables and m constraints, with k > m, there are more variables than equations,
so more than one solution is possible. Instead if k = m, exactly one solution exists. [26, p.47]
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The principle of the simplex method now is to select m column vectors from this coefficient-matrix,
which allow the remaining k −m column vectors to be expressed. The set of m variables is called
basic variables, the rest of the variables are called non-basic variables. Moving from one vertex
to a neighboring one now conforms to an exchange, whereby exactly one column vector from the
selected m column vectors is exchanged with one column vector from the remaining k−m vectors.
[26, p.47-49]

For using the simplex method the system is transformed to its standard form. This means that there
are just equalities and that there are more columns than rows (more variables than constraints).
This transformation can be done by introducing slack variables, which are non-negative variables.
For a problem with n variables and m constraints m slack variables have to be used. The slack
variables display the absolute difference between the left hand side and the right hand side. [26,
p.47-48]

Finding a initial solution is done by setting the not-basic variables to zero. If all values on the
right hand side are > 0, it is an feasible solution, otherwise a feasible solution needs to be found
by other means. [26, p.49-50]

Example

It is now be explained using an example:
[28, p.147-156][30, p.26-32]

max : 4 · x1 + 3 · x2 (3.64)

subject to:

2 · x1 + 3 · x2 ≤ 6 (3.65)

3 · x1 − 2 · x2 ≥ −3 (3.66)

2 · x2 ≤ 5 (3.67)

2 · x1 + x2 ≤ 4 (3.68)

x1, x2 ≥ 0 (3.69)

By introducing the slack variables the inequalities are converted into equalities:

max : 4 · x1 + 3 · x2 + 0 · s1 + 0 · s2 + 0 · s3 + 0 · s4 (3.70)

subject to:

2 · x1 + 3 · x2 + s1 = 6 (3.71)

−3 · x1 + 2 · x2 + s2 = 3 (3.72)

2 · x2 + s3 = 5 (3.73)

2 · x1 + x2 + s4 = 4 (3.74)

x1, x2, s1, s2, s3, s4 ≥ 0 (3.75)
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Figure 3.9.: Graphical illustration for the given example

Now the problem has k = n+m variables. For this problem the number of equalities is 4, the total
number of of variables including the slack and the surplus variables is 6 and the number of slack
variables is 4.

For example for a point being exactly on the line of the first constraint, 2 · x1 + 3 · x2 + s1 = 6, s1
has to be zero. As a comparable condition has to be true for all lines representing constraints, and
all vertices are located on intersections between such lines, two of the six variables have to be zero
for each vertex. The variables which are set to zero are the non-basic variables. This is shown in
table 3.12.

vertex non-basic variables

A x1 = x2 = 0
B x2 = s4 = 0
C s1 = s4 = 0
D s1 = s2 = 0
E x1 = s2 = 0

Table 3.12.: Vertices with their associated non-basic variables

The problem now can be solved for example by using a simplex tableau:

The objective function is transformed to

f(x) = z − 4 · x1 − 3 · x2 − 0 · s1 − 0 · s2 − 0 · s3 − 0 · s4 (3.76)

For a feasible basic solution x1 and x2 are set to zero. So the starting solution for the basic variables
is s1 = 6, s2 = 3, s3 = 5 and s4 = 4.

As a first step in each iteration the so called pivot-element has to be identified. This is done using
following steps:
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z x1 x2 s1 s2 s3 s4 solution

0 2 3 1 0 0 0 6
0 -3 2 0 1 0 0 3
0 0 2 0 0 1 0 5
0 2 1 0 0 0 1 4

1 -4 -3 0 0 0 0 0

Table 3.13.: Initial simplex tableau for the given example

1. The pivot-column is the column in which the coefficient of the objective function has the
most negative value for maximization problems or the most positive value for minimization
problems.

2. The pivot-row is the row with the lowest non-negative quotient, which is formed as

quotient =
solution

value of the pivot-column
(3.77)

3. The pivot-element is the element at the cross-section of the pivot-column and the pivot-line
and is shown in bold.

z x1 x2 s1 s2 s3 s4 solution quotient

0 2 3 1 0 0 0 6 6/2
0 -3 2 0 1 0 0 3 3/-3
0 0 2 0 0 1 0 5 5/0
0 2 1 0 0 0 1 4 4/2

1 -4 -3 0 0 0 0 0

Table 3.14.: Simplex tableau with calculated quotients and the pivot-element shown in bold

In this example the pivot-column is the column for x1, the pivot-row is the fourth row, because the
minimum of the not-negative values is 4/2.

Next the pivot row is divided by the pivot element. So the pivot-row now is:

z x1 x2 s1 s2 s3 s4 solution

0 1 1/2 0 0 0 1/2 4/2 = 2

Table 3.15.: Pivot row after dividing by the pivot element

Now, for each other row, the pivot row is multiplied by a coefficient and added to the row, so that
the factor in the pivot column always results to 0. This is called the Gauss-elimination method.

Looking at the objective function itself this would look like:

original f(x): 1 · z − 4 · x1 − 3 · x2 + 0 · s1 + 0 · s2 + 0 · s3 + 0 · s4 = 0
plus 4× pivot-row: 0 · z + 4 · x1 + 2 · x2 + 0 · s1 + 0 · s2 + 0 · s3 + 2 · s4 = 8
new f(x): 1 · z + 0 · x1 − 1 · x2 + 0 · s1 + 0 · s2 + 0 · s3 + 2 · s4 = 8
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The same step is done with an multiplicator of −2 for the first row and +3 for the second row.
The third row does not need to be changed because the coefficient of x1 is already 0.

This results in the simplex tableau shown in table 3.16 after the first optimization step.

z x1 x2 s1 s2 s3 s4 solution

0 0 2 1 0 0 -1 2
0 0 7/2 0 1 0 3/2 9
0 0 2 0 0 1 0 5
0 1 1/2 0 0 0 1/2 2

1 0 -1 0 0 0 2 8

Table 3.16.: Simplex tableau after the first optimization step

Now x2 and s4 are the non-basic variables, because they influence the objective function. The new
basic solution is at x1 = 2, s1 = 2, s2 = 9, s3 = 5 and z = 8. Looking at the graphical illustration
in figure 3.9 it has moved from vertex A to vertex B.

This process has to be repeated as long as the optimal solution is not reached. The optimum is
reached when there are no negative coefficients left in the objective function, as no improvement
can occur anymore in this case.

In the next step x2 is the pivot column and the first row is the pivot row, the element at the
intersection, shown in bold, is the pivot element.

z x1 x2 s1 s2 s3 s4 solution quotient

0 0 2 1 0 0 -1 2 2/2
0 0 7/2 0 1 0 3/2 9 18/7
0 0 2 0 0 1 0 5 5/2
0 2 1 0 0 0 1 4 4/1

1 0 -1 0 0 0 2 8

Table 3.17.: Simplex tableau after the second optimization step

Again the pivot-row is divided by the pivot element, which is 2 in this case. Then the pivot equation
is multiplied by +1 and added to the objective function. For the second row it is multiplied with
−7/2, for the third row with +2 and for the fourth with −2.

This results in a simplex tableau as shown in table 3.18, which in this case already represents the
optimum solution.

z x1 x2 s1 s2 s3 s4 solution

0 0 2 1 0 0 1 2
0 0 0 −7/4 1 0 13/4 11/2
0 0 0 -1 0 1 1 3
0 2 0 −1/2 0 0 11/2 3

1 0 0 1/2 0 0 11/2 9

Table 3.18.: Simplex tableau after reaching the optimum
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Now s1 and s4 are the non-basic variables and have to be set to zero. The final solution is x1 = 1.5
and x2 = 1 with f(x) = 9, which is vertex C in figure 3.9.

3.3.2. Branch and Bound

The branch and bound method is used to solve integer and mix-integer optimization problems. [29,
p.266]

The first step when using this method is to find an optimal solution, not restricted to integer
conditions, which can be interpreted as the upper-bound for maximization problems or the lower
bound for minimization problems. Additionally a feasible integer solution has to be known, which
then already represents one solution and can be seen as the lower-bound for maximization problems
or the upper-bound for minimization problems. Finding such a feasible integer solution can often
be done by setting all variables to zero. [28, p.167]

Afterwords the algorithm consits of two parts: the branching and the bounding.

Branching

In the branching step, the problem is divided into two or more subproblems, so the original problem
is simplified. Since this procedure is repeated recursively a tree structure is developed.

This tree is growing dynamically during the search. There are different algorithms for choosing the
order in which the nodes of the tree structure should be processed and extended.

The three most used algorithms for this purpose are:

• Depth first search
The process is going fast into the deep of the tree. Always the last entered node is chosen.
The advantage is that just a few nodes have to be saved and the sub-problems can be solved
fast because they are similar to the preceding problem. The drawback is that also nodes
which do not give an optimal solution have to be processed very deep. [33, p.73]

Figure 3.10.: Example for a node processing order when using depth first search [8, p.17]
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• Best first search
Among all sub-problems that were not already processed, the one which gives the best result
is chosen. The tree is rising breadthwise in this case. As the criterion for the choice is quality-
based, good solutions are found very fast. The disadvantage is, that the problems which are
solved consecutively typically are not similar. [33, p.73]

Figure 3.11.: Example for a node processing order when using best first search [8, p.17]

• Breadth first search
All nodes on the same level of the tree are processed before the algorithm is going into the
deep. The processing time is usually longer in this case, since the number of nodes is rising
exponentially with the depth level. [8, p.18]

Figure 3.12.: Example for a node processing order when using breadth first search [8, p.17]

Bounding

Each branching step is immediately followed by a bounding step, in which all available solutions
are compared, and candidate nodes which do not deliver a better or at least the same solution than
the already known optimum are eliminated. This drastically minimizes the necessary effort to find
the optimum as the decision tree is reduced. [28, p.175]
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If the solution of a sub-problem is a non-integer solution which is worse than the best known integer
solution, the node does not need to be branched. If the solution is better, it has to be branched. If
the solution is an integer solution, branching the node is not necessary, as it already represents the
optimum of the branch. If it is better than the already known best result, it is taken as the new
optimum. [28, p.167]

Summarized it has not to be branched if

• either the sub-problem has an infeasible solution

• or the solution is an integer solution, as the branch optimum is reached in this case

• or it is a not integer-solution which is worse than the best already known integer solution

3.3.3. Other optimization techniques

The following optimization techniques are just mentioned, since they are not used in the XA
optimization library and also have no direct relation to the thesis.

Interior Point Method

The Interior Point Method dose not analyse the vertices. After selecting a starting point within
the feasibly region this point is adjusted during the search, which is continued until the optimum is
reached. During the search this point always stays within the interior of feasibly region. [30, p.14]

x1

x2

Optimal Solution

Start Solution

Figure 3.13.: Interior point method

Ellipsoid Method

In this method an ellipse is used which includes the solution space. A straight line is drawn which
separates the centre of the ellipse from the solution region. Afterwards a new ellipse is selected
which also includes the feasible region and points where the ellipse intersects the straight line. If
the center point of the ellipse then is in the solution space, it is the optimum, if not, the process is
continued until the optimum is reached. [30, p.15]
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Figure 3.14.: Ellipsoid Method, example iterations

Monte Carlo

The Monte Carlo method is a way to find an extremum of a function with a certain probability by
taking random samples. As it is based on statistically analyzing repeatedly taken random samples
it never can never find the exact extremum of a function, or at least this is very unlikely, but with
a growing number of samples taken the probability of finding a solution near the optimum is rising.

Figure 3.15.: Statistically sampling points of a function the Monte Carlo method can find an opti-
mum with a certain probability [23, p.14]

Steepest descent

A gradient descent is used to solve nonlinear problems by approaching the local minimum or
maximum of a function. The algorithm is based on the derivative of the function and a search
for the steepest slope. First a starting variable value is selected and the descent of this point is
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determined. The maximum has to be in the direction of the gradient, so the variable value is
changed towards this direction and the descent is determined again. With iterative steps it is
moved in the direction of the optimum, where the decent is zero.

An important point for this optimization method is the selection of the step size, as a small step
size would lead to a lot of iterations, whereas the possibility of missing the maximum exists for
large step sizes [28, p.137]

Figure 3.16.: Steepest Descent Method
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4.1. Structure of the System and Description of Linear Implementation

In the hydro thermal scheduling process, the purpose is to find the optimal commitment of thermal
and hydro power plants to generate the lowest costs according to the constraint to cover the required
load with optimal use of hydro power plants.

The problem can be formulated as a linear problem with linearized constraints.

Figure 4.1.: Illustration of a single bubble with thermal and hydro power plants

The thermal power plants are described with the following values:

data unit

block capacity MWh
costs e/MWh

Table 4.1.: Describing data for thermal power plants

For the optimization system the thermal power plants are represented as blocks, where each block
represents the maximum generation of all power plants in one region for certain costs. If the thermal
power plants are producing more energy, the costs also increase.

The hydro power plants are described with the following values:

Depending on the type of a hydro power plant (storage power plant or run-of-river power plant),
the values which are used to describe the plant are different. For run-of-river power plants the
storage is set to zero, because there is no storage at all.
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data unit

inflow m3/s
storage m3

spillage m3/s
outflow m3/s
water head m
coefficient N/m3

costs e/MWh

Table 4.2.: Describing data for hydroelectric power plants

The maximum generation of a hydro power plant depends not only on the amount of outflow, but
also on the water head and the efficiency of the turbine.

The output of a hydro power plant is defined by the formula:

hydro power = outflow× water head× coefficient (4.1)

So the generation depends on several factors. The water head can be increased by using long pipes
to make the height difference between the source and the water outflow as large as possible. The
coefficient represents the gravitational acceleration, the water density and a turbine factor.

The inflow is the natural inflow in the system during the considered period. This can be rain, water
from upstream rivers or melt water from the mountains. The inflow can be quite different over the
years.

Different trading zones or control areas are modeled as so called bubbles. The system operator
should cover the stage load in the system by using the power plants which are contained in the
considered zone, or by importing energy from other regions. Energy produced, which exceeds the
load in the region, is exported to other trading zones.

The trading zones or control areas are described with the following values:

data unit

stage loads MWh
flow between bubbles MWh
wheeling costs e/MWh

Table 4.3.: Describing data for the different bubbles

The objective function represents the costs of the system, where the objective is to minimize the
costs for all power plants in the system over the total time horizon:

min :
T∑
t=1

( m∑
i=1

(thermal costsi × thermal generationi,t)+ (4.2)

+
n∑
j=1

(hydro costsj × hydro generationj,t)
)
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In this formula i = 1..m stands for the number of thermal power plants, j = 1..n for the number
of hydro power plants and t = 1..T for the number of stages over the whole time horizon.

Going more into detail results into:

min :
T∑
t=1

( m∑
i=1

(thermal costsi × thermal generationi,t)+ (4.3)

+
n∑
j=1

(hydro costsj × outflowj,t × water headj,t × coefficientj,t ×∆t)
)

subject to the lower-bound constraints:

thermal generationi,t ≥ 0 (4.4)

hydro generationj,t ≥ 0 (4.5)

hydro spillagej,t ≥ minimum spillagej,t (4.6)

hydro storagej,t ≥ minimum storagej,t (4.7)

subject to the upper-bound constraints:

thermal generationi,t ≤ maximum thermal generationi,t (4.8)

hydro generationj,t ≤ maximum hydro generationj,t (4.9)

hydro spillagej,t ≤ maximum spillagej,t (4.10)

hydro storagej,t ≤ maximum storagej,t (4.11)

subject to the load constraints:

m∑
i=1

thermal generationi,t +
n∑
j=1

hydro generationj,t = loadt (4.12)

subject to the water continuity constraints:

outflow volumej,t + spillage volumej,t + storagej,t = inflow volumej,t + storagej,(t−1) (4.13)

All the variables which are used in the formulation have upper and lower bounds. The upper and
lower bounds represent the physical bandwidth in which the values can be naturally set.

The lower bound of the electrical output for thermal and hydro power plants is zero, because it
would not make sense to have negative electrical output, which would mean electrical energy being
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consumed by the power plant. The power plant is producing the needed electrical energy by itself.
Only in turn-on time periods the plant is receiving energy from the grid.

If the power plants have to operate with at least a certain minimum capacity, it is a user input. This
can for example be a demand resulting from long turn-on and turn-off times of thermal power plants,
which are given because of the thermal components and the thermodynamic demands. A very fast
temperature difference can create cracks and breakages in the turbine wheels, so temperature
changes can only be done slowly. Therefore the power plants might have to run with at least a
minimum output to keep it prepared for faster power boosts.

Run-of-river power plants usually are used to cover the base load in the power system. The flow
rate of the river should be used, and the power plant does not store the water. So the water can
only be used in the moment when it is passing the power plant. Also for the run-of-river power
plants there might be a minimum load set.

In comparison, storage power plants can be turned on and off easily, so they are used to cover the
peak load. The water can be stored and used every time when it is needed, especially for the peak
load periods.

The minimum spillage is a hydro power plant specification. The obligatory spillage can depend
on several reasons. Thus, the system operator can force a minimum amount for the course of the
river or the use of downstream power plants. Mostly the generator tries to use the whole amount
of water in the storage for producing electrical energy. Reasons for natural spillage can be seepage.

Also the minimum storage can be forced by several reasons. For example if a natural reservoir
contains some stored water, because of environmental concerns it may not be allowed to completely
empty it. A purpose is also to store the water for periods when more energy is needed and the
price for the energy is higher. The price for energy to cover the peak load is much higher than the
price for the base load.

The upper bounds are also user-specified and express the physical upper bounds for the maximum
electrical capacity which can be produced. Power plants are constructed for a maximum output.
The generator is dimensioned for a maximum rated output, for short periods it can be used over
this capacity, but this stresses the generator components. The maximum storage is the storage
capacity of the reservoir. There can also be reasons for a maximum spillage, for example caused
by the construction of the dam.

The equation for the load in the whole system at stage t can be formulated as:

m∑
i=1

thermal generationi,t +

n∑
j=1

(outflowj,t · water headj,t · coefficientj,t ·∆t) = loadt (4.14)

The total load in the system has to be covered with the production of electrical generation using
the contained power plants.

At stage t the water continuity for each power plant can be formulated as:

outflowj,t ·∆t+ spillagej,t ·∆t+ storagej,t = inflowj,t ·∆t+ storagej,(t−1) (4.15)
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In the water continuity equations inflow, stored and used water have to be balanced. The storage at
the end of a period plus the spillage and the outflow must be equal to the storage at the beginning
of the stage plus the natural inflow and the water from the upstream plants.

The transfer between the trading zones or control areas (bubbles) is restricted by the maximum
capacity of the transmissions lines available in the grid. This maximum capacity is affected by
the voltage level, the material and the diameter of the lines. The maximum capacity can also be
limited by a rental agreement between the energy company and the network operator or market
restrictions.

Figure 4.2.: Illustration of the interaction between the single bubbles

Considering the costs for energy exports and imports of each bubble the objective function has to
be extended:

min :
T∑
t=1

( m∑
i=1

(thermal costsi × thermal generationi,t)+ (4.16)

+

n∑
j=1

(hydro costsj × hydro generationj,t)+

+

b∑
k=1

(wheeling costsk × exportk,t)+

+

b∑
k=1

(wheeling costsk × importk,t)
)

with k = 1..b representing all possible interconnections which can be used for energy transfers,

subject to the lower-bound constraints:
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thermal generationi,t ≥ 0 (4.17)

hydro generationj,t ≥ 0 (4.18)

hydro spillagej,t ≥ minimum spillagej,t (4.19)

hydro storagej,t ≥ minimum storagej,t (4.20)

exportk,t ≥ 0 (4.21)

importk,t ≥ 0 (4.22)

subject to the upper-bound constraints:

thermal generationi,t ≤ maximum thermal generationi,t (4.23)

hydro generationj,t ≤ maximum hydro generationj,t (4.24)

hydro spillagej,t ≤ maximum spillagej,t (4.25)

hydro storagej,t ≤ maximum storagej,t (4.26)

exportk,t ≤ maximum wheeling capacityk,t (4.27)

importk,t ≤ maximum wheeling capacityk,t (4.28)

subject to the load constraints:

mbe∑
i=mbs

thermal generationi,t +

nbe∑
j=nbs

hydro generationj,t +

bbe∑
k=bbs

importl,t = (4.29)

= bubble loadt +

bbe∑
k=bbs

exportl,t

with i = mbs..mbe enumerating the thermal power plants in the bubble, j = nbs..nbe enumerating
the hydro plants and k = bbs..bbe the zone interconnections influencing the current bubble, subject
to the water continuity constraints, which did not change:

outflow volumej,t + spillage volumej,t + storagej,t = inflow volumej,t + storagej,(t−1) (4.30)

In many systems along rivers or other natural connections, more than one hydro power plant exist on
the same watercourse, so they are connected in cascades and influence each other. The relationship
between the outflow and the spillage of an upstream power plant, representing an additional inflow
to a downstream power plant is described with the so called upstream relation and is included in
the system.

In long term scheduling the time horizon of one year is divided in monthly or weekly periods.
During this periods, most of the water has already run down the considered system, so the outflow
of an upstream hydro power plant can be added to the natural inflow of the downstream power
plant in the same period.

Additional factors are used for modelling different situations:
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• the outflow water of several power plants is added to one downstream plant

• the outflow of one power plant is split over several power plants

• if some water is blocked on the way down.

The water of several power plants is added together may for example occur if two rivers merge
together. The water of one power plant can be split because the river separates into a main stream
and an anabranch, blocking may for example occur due to a dam.

This leads to an extended formulation of the water continuity constraint:

outflow volumej,t + spillage volumej,t + storagej,t = (4.31)

= natural inflow volumej,t + storagej,(t−1) +

p∑
h=1

(factorh · (outflow volumeh,t + spillage volumeh,t))

with h = 1..p representing the upstream power plants influencing the considered hydro power plant.

Figure 4.3.: Illustration of different upstream relations for hydro power plants

For the optimization system not only the constraints for the upper- and lower-bounds, the load
and the water continuity, but also the upstream relations, the imports and exports between the
operator zones, and the influence of the non-constant electrical output of the hydro power plants,
depending on the variating head, have to be taken into account.

Sometimes the equations are difficult to solve to solve and it can require a lot of iterations. In
certain cases it is not even possible to find a solution as it is not feasible for all the constraints.
To avoid this problem, soft constraints are used in the system. That means, that additional upper
unbounded variables are added to the constraints.

To avoid solving the problem by only using this unbounded variables (referred to as epsilons), high
costs are set for these variables. The solving algorithm tries to solve the problem with using the
epsilons only in cases where the constraints are infeasible. In some cases the algorithm needs the
epsilons at the beginning, to find an initial solution for the problem. During the optimization the
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algorithm tries to reduce the values for these variables as much as possible and to work only with
the already described variables.

The objective function is extended to:

min :

T∑
t=1

( m∑
i=1

(thermal costsi × thermal generationi,t)+ (4.32)

+

n∑
j=1

(hydro costsj × hydro generationj,t)+

+

b∑
k=1

(wheeling costsk × exportk,t)+

+

b∑
k=1

(wheeling costsk × importk,t)
)

+

f∑
e=1

(penalty costse × εe,t)

with e = 1..f representing the number of epsilons used in the equations for the load and the water
continuity.

With respect to the epsilons the constraints for load and water continuity are extended to:

m∑
i=1

thermal generationi,t +
n∑
j=1

hydro generationj,t + ε1 − ε2 = loadt (4.33)

outflow volumej,t + spillage volumej,t + storagej,t + ε3 − ε4 = (4.34)

= inflow volumej,t + storagej,(t−1)

The epsilons have to be greater than or equal to 0, but they do not have upper bounds, so they
can resolve all the infeasibilities in the system.

4.2. Decomposition Approach

As optimizing the scheduling of thermal und hydro power plants is very complex, the following
method, called decomposition approach, can be used to reduce this complexity by seperating the
whole optimization problem into smaller subproblems, thus making it easier and faster to solve.
[11] [12]

The objective of the whole optimization is to minimize the costs over all stages. This problem
becomes complex, because the decisions in each stage influence all the following stages and the
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amount of water available over all stages is limited. So if the storages are empty, the load has to
be covered with expensive thermal energy or it may even come to problems to cover the peak load,
because not all thermal power plants can follow the load peaks fast enough. On the other hand if
too much water is stored and the inflow is increasing, the spillage has to be used without producing
energy.

Because a reliable forecast for the natural inflow, the load curve, the fuel price, possible blackouts
and problems in the grid, as well as the price for electrical energy on the market is not possible,
the problem is a stochastic problem.

Depending on the solver used and the computer configuration available it may happen that it takes
a long time to solve the problem or even that the size of the problem is too large to be solved,
because there are too many variables.

For example a big system with several hundred reservoirs and scenarios can result in a linear
programming problem with several million variables and a number of constraints in the same
magnitude.

One part of the implementation of the system is based on Stochastic Dual Dynamic Programming
(SDDP) as described by Pereira and Pinto. The related description is an excerpt of their papers.
[11] [12]

The approach is based on the approximation of the future costs by piecewise linear functions. This
approximated functions are obtained from the solutions of the dual form of the problem as described
later.

4.2.1. Deterministic Dual Dynamic Programming

When using Deterministic Dual Dynamic Programming (DDDP) the problem is decomposed into
multiple single stage sub-problems. Since each of them is smaller than the original problem, it is
much faster to solve.

This algorithm can be interpreted as a Benders decomposition. The information between the
different stages is given by the Benders cuts. The accepted future cost curve is approximated by a
piecewise linear function from the Benders cuts.

A two stage deterministic hydrothermal optimization problem can be formulated as:

min : c1 · x1 + c2 · x2 (4.35)

where x1 already represents all variables for thermal and hydro generation as in the objective
function shown in equation 4.3 for stage one, x2 all variables for stage two respectively, subject to
all constraints, including load balance and water continuity:
(see also equations 4.4 to 4.13)

A1 · x1 ≥ b1 (4.36)

E1 · x1 +A2 · x2 ≥ b2 (4.37)
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with c as the cost vector, x as the variable vector and b are the known values of the bounds, the load
and the inflow. A is the matrix for the variable combination of the current stage, E is the matrix
for the variable combination of the previous stage (i.e. for the second stage it is the end-storage of
the first stage).

The problem can be interpreted as a two-stage decision process. In this case a stage is a time
segment. In long term scheduling the time horizon is one year, and separated in monthly or weekly
periods, which means 12 or 52 stages.

If a trial value x̂1 of the first stage solution (i.e. such that A1 · x1 > b1) is found, the solution for
the second stage function can be calculated with:

min : c2 · x2 (4.38)

s.t. : A2 · x2 ≥ b2 − E1 · x̂1

where x̂1 is a known value.

Since the value x̂1 is a known value it is moving to the right hand side. The objective is the
minimization of the sum of costs from the first and second stage.

Figure 4.4.: Illustration of the two-stage decision process [11, p.360]

Using decomposition the problem is separated in two sub-problems. The fist stage problem can be
formulated as:

min : c1 · x1 + α1(x1) (4.39)

s.t. : A1 · x1 ≥ b1

where c1 · x1 are the immediate costs and α1(x1) are the future costs which depend on decision of
x1.

To keep the notation consistent b1 can also be written as

b1 = b′1 − E0 · x0 (4.40)

with x0 being the initial state.

Using the future cost function the costs of the second stage are described as a function of the first
stage decision x1 (state variables):
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α1(x1) = min : c2 · x2 (4.41)

s.t. : A2 · x2 ≥ b2 − E1 · x1

If the future costs are know, the two stage problem can be solved as a one stage problem.

With the decomposition algorithm the future cost function is constructed by discretization of x1
into a set of trial values and solving the problem stated in equation 4.41 for each value. After
the construction of the future cost function the first-stage problem can be solved. The first stage
decision is still dependent on the second stage variables.

The advantage of the decomposition approach is that it can be easily extended to a multi-stage
problem or to a stochastic case. The main drawback is the necessary discretization of the state
variables to construct the future cost function. So a very large number of combinations are needed
for just a few variables. For example for ten components of x, discretized into four values, x1 has
410 = 1048574 possible values.

To avoid this problem the future cost function can be approximated by analytical functions. For
this the future costs α1(x1) are calculated for a few states and the solutions are approximated with
a polynomial function. This polynomial function can be used in the first stage to approximate the
future costs.

In the paper of Pereira and Pinto a way to solve this is shown, whereby the future cost function is
exactly represented by a piecewise linear function. [11] [12]

The dual problem of the future cost function is

α1(x1) = max : λ · (b2 − E1 · x1) (4.42)

s.t. : λ ·A2 ≤ c2

with λ being the vector of the dual variables. As illustrated in section 3.2.1 the solutions of the
objective function of the primal and the dual problem are the same.

The variable x1 is now contained in the objective function instead of still being on the right hand
side of the constraints. So the possible solutions are independent of decision x1. The constraints
of the dual problem form a polyhedron and the possible solutions correspond to the vertices of the
polyhedron. Λ = λ1...λυ is the set of all vertices of the constraints.

The problem can then be rewritten as a linear programming problem:

α1(x1) = min : α (4.43)

subject to:
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α ≥ λ1(b2 − E1 · x1) (4.44)

...

α ≥ λυ(b2 − E1 · x1)

where α1(x1) is a piecewise linear function of the decision variable x1 and α is a scalar variable.

It can be complicated to calculate all vertices, another approach by approximating the future cost
function based on calculating a subset of the vertices is used. The vertices can be calculated using
the following equation:

α1(x̂1i) = min : c2 · x2 (4.45)

s.t. : A2 · x2 ≥ b2 − E1 · x̂1i
dual : varλi

With x̂1i as a trial value and λi as the corresponding simplex multiplier vector of the dual problem
for each trial i, this vector represent one vertex of all possible solutions of the set of Λ. This vertex
can be used to construct a supporting hyperplane of the future cost function.

The approximated future cost function is:

α̂1(x1) = min : α (4.46)

s.t. : α ≥ λi(b2 − E1 · x1), i = 1..n

This function α̂1(x1) is the lower bound of the future cost function α(x1), because in the problem
given by equation 4.46 only some restrictions are included. With help of the approximated future
cost function the first stage problem can be solved.

z = min : c1 · x1 + α̂1(x1) (4.47)

s.t. : A1 · x1 ≥ b1

This is an LP problem and can be rewritten as:

z = min : c1 · x1 + α (4.48)

subject to:

A1 · x1 ≥ b1
α− λi(b2 − E1 · x1) ≥ 0, i = 1..n
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It can not be guaranteed that the solution is an optimal solution, because α1(x1) is an approximated
function. Therefore the lower bound z of the problem is the sum of the immediate costs and the
approximated future costs:

z = c1 · x̂1 + α̂ (4.49)

The upper bound z can be described as the total cost over all stages, which can be calculated by
solving the second stage problem for x̂1:

z = c1 · x̂1 + α̂(x̂1) (4.50)

With an increasing number of iterations the future cost function is described in a more detailed
way.

Because of the approximation of the future cost function, it can take a lot of iterations before the
optimal solution can be found. Thus, a convergence criterion is implemented.

Convergence criterion:

z − z < tolerance (4.51)

The convergence criterion is the difference between the upper and the lower bound, it measures
the difference between the expected future costs and the actual future costs of the trial solution. It
can be used to verify the accuracy of the approximated future costs. The tolerance is user-defined
and has to be a compromise between accuracy and computation time.

The lower bound is rising with the number of iterations, because the future cost function is getting
better approximated. The upper bound declines with the number of iterations, because the solution
is converging to the optimal solution.

Summarized the process can be described as:
[11, p.364]

• Step 1 - Initialization:
set the approximate future cost function α̂(x1) to zero, the upper bound z to ∞ and the
number of vertices to zero

• Step 2:
solve the approximate first stage problem (equation 4.47), use x̂1 as the current optimal
solution

• Step 3:
calculate the lower bound z (equation 4.49) and stop if the convergence criterion is reached
(z − z ≤ tolerance)

• Step 4:
solve the second stage problem (equation 4.45): calculate α(x̂1) and update z (equation 4.50)
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• Step 5:
increment the number of vertices n by one, let the multiplier associated to the optimal solution
of step 4 be λn and construct the approximate cost function α̂1(x1) using the n vertices
(equation 4.46)

• continue with step 2

This algorithm is equivalent to a Benders decomposition algorithm. Also the multi-stage and
stochastic cases can be interpreted as a Benders decomposition scheme.

4.2.2. Multi-Stage Dual Dynamic Programming

If the DDDP algorithm should be used for a longer planing horizon, it can be extended to a
multi-stage problem:

The steps for doing this are:
[11, p.365]

• Step 1 - Initialization:
set the approximate future cost function α̂t(xt) to zero and the upper bound z to ∞, where
t = 1..T represents the single stages of the planning horizon

• Step 2:
solve the approximate first stage problem (equation 4.47), use x̂1 as the current optimal
solution

• Step 3:
calculate the lower bound z (equation 4.49) and stop if the convergence criterion is reached
(z − z ≤ tolerance)

• Step 4 - Forward Simulation:
iteratively solve the optimization problem for all further stages t = 2..T based on the trial
decision x̂t−1 and store the optimal solutions as x̂t:

min : ct · xt + α̂t(xt) (4.52)

s.t. : At · xt ≥ bt − Et−1 · x̂t−1

• Step 5:
calculate the upper bound:

z =

T∑
t=1

ct · x̂t (4.53)

• Step 6 - Backward Recursion:
iteratively backwards solve the optimization problem for all stages t = T, T − 1, ..2 based on
the trial decision x̂t−1:

min : ct · xt + α̂t(xt) (4.54)

s.t. : At · xt ≥ bt − Et−1 · x̂t−1
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Construct an additional supporting hyperplane for the approximate future cost function in
the previous stage α̂t−1(xt−1) using λt−1 as the multiplier associated to the constraints of the
problem given in equation 4.54 at the optimal solution.

• continue with step 2

4.2.3. Stochastic Dual Dynamic Programming

In stochastic programming the different scenarios for wet and dry years, for different load situations,
or for cold or warm years are taken into account. The algorithm mentioned before can be used and
extended for this purpose.

The main drawback of the original linear formulation is that the size of the problem grows ex-
ponentially with the number of stages and states. One solution to avoid the dimensionality is to
decompose the problem into multiple stages and to discretize the scenarios into multiple states.

The following is a two-stage stochastic problem formulation:

min : c1 · x1 + ρ1 · c2 · x21 + ρ2 · c2 · x22 + ...+ ρm · c2 · x2m (4.55)

subject to:

A1 · x1 ≥ b1 (4.56)

E1 · x1 +A2 · x21 ≥ b21 (4.57)

E1 · x1 +A2 · x22 ≥ b22 (4.58)

... (4.59)

E1 · x1 +A2 · x2m ≥ b2m (4.60)

The probability of an associated scenario is represented by ρ, where the sum of all probabilities has
to be one.

A more detailed two stage problem with two scenarios at the second stage looks like:

min : c1 · x1 + ρ1 · c2 · x21 + ρ2 · c2 · x22 (4.61)

subject to:

A1 · x1 ≥ b1 (4.62)

E1 · x1 +A2 · x21 ≥ b21 (4.63)

E1 · x1 +A2 · x22 ≥ b22 (4.64)

In the first stage a decision for x1 is made. Depending on this decision there are m sub-problems
for the second stage to solve. The future costs for each scenario can be formulated as it was done
for the deterministic case:
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Figure 4.5.: Two-stage decision process for a stochastic case [11, p.366]

α1j(x1) = min : c2 · x2j (4.65)

s.t. : A2 · x2j ≤ b2j − E1 · x1

The objective is to minimize the sum of the costs of the first and the second stage, where the second
stage costs are:

m∑
j=1

ρj · c2 · x2j (4.66)

The expected future cost function can be represented as the weighted average of the benders cuts:

α(x1) =

m∑
j=1

ρj · α1j(x1) (4.67)

The first stage problem is the same as in deterministic dual dynamic programming and can be
formulated as following:

min : c1 · x1 + α1(x1) (4.68)

s.t. : A1 · x1 ≥ b1

The future cost function is again a piecewise linear function. It is assumed that the variables of the
right hand side are independent random variables, whereby bt is discretized into m values. This
values represent different scenarios with different probabilities. Independent means that the vector
bt does not depend on other realizations in the previous stages.

The algorithm is implemented as following:
[11, p.367]

• Step 1 - Trial Decision Definition
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– define a set {x̂ti} of trial decisions, where i = 1..n enumerates the decisions and t = 1..T
enumerates the stages

• Step 2 - Backward Recursion:

– backwards process the stages t = T, T − 1, ..., 2

– within each stage process each trial decision x̂t,i (for i = 1..n)

– within each trial decision process each scenario bt,j (for j = 1..m)

– within each scenario solve the optimization problem based on t, x̂(t−1),i and bt,j

min : ct · xt + αt(xt) (4.69)

s.t. : At · xt ≥ bt,j − Et−1 · x̂(t−1),i

and construct one supporting hyperplane for the approximate future cost function for
stage t − 1, α̂t−1(xt−1) using λ(t−1),i,j as the multiplier associated to the constraints of
the problem given in equation 4.69 at the optimal solution.

• Step 3:

– continue with step 1

The final question is: “how to find the trial solutions”. In an ideal case a forward simulation is
done for all combinations of scenarios. The main drawback of this method is that the number
of combinations grows exponentially with the number of stages and states. Using a Monte-Carlo
forward simulation for just some of the scenarios can help in this case:
[11, p.368]

• Step 1:

– solve the first stage problem (equation 4.68), use x̂1 as the optimal solution and initialize
x1i = x̂1 for i = 1..n

• Step 2:

– repeat for t = 2..T

– repeat for i = 1..n

– sample a vector bt,i from the set {bt,j , j = 1..m}, solve the optimization problem for
stage t and sample i

min : ct · xt + αt(xt) (4.70)

s.t. : At · xt ≥ bt,i − Et− 1 · x̂(t−1),i

and store the optimal solution as x̂t,i

The aim is to find good trial decisions, around which the future cost function is approximated.

As in the deterministic case the lower bound is calculated based on the solution of the first stage
problem. The upper bound is an estimation resulting from the Monte Carlo simulation results:
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z = c1 · x1 +
1

n

n∑
i=1

zi (4.71)

with zi representing the total costs resulting from one Monte Carlo run:

zi =

T∑
t=1

·ct · x̂t,i (4.72)

The uncertainty of this results is given by the standard deviation:

σz =

√√√√ 1

n2
·
n∑
i=1

(zupper − zi)2 (4.73)

Based on the standard deviation the 95% confidence interval [zupper − 2σz, zupper + 2σz], as any
other confidence interval, can be used as the convergence criteria, stopping the algorithm when the
lower bound reaches this interval.

4.3. Benders decomposition

4.3.1. General Description [10, p.1-2]

The algorithm mentioned in the last section can be interpreted as a Benders decomposition. Origi-
nally Benders decomposition was used for solving mixed integer programming problems, where the
problem was decomposed into a master problem with all the integer variables and sub-problems
containing the continuous variables. In hydro thermal scheduling integer variables can be on/off
decision variables for thermal power plants.

As in hydrothermal systems the water continuity equations include variables from the actual stage
and the stage before, Benders decomposition is a way to solve these problems using nested sub-
problems.

With a given problem definition like:

min : z = c1 · x1 + c2 · x2 (4.74)

subject to:

A1 · x1 = b1 (4.75)

E1 · x1 +A2 · x2 = b2 (4.76)

x1, x2 ≥ 0 (4.77)

x ∈ <n (4.78)
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using Benders decomposition it can be split into a master problem and a subproblem, with the
master problem being defined as:

min : z = c1 · x1 + α (4.79)

subject to:

A1 · x1 = b1 (4.80)

x1 ≥ 0 (4.81)

x ∈ V (4.82)

and a the related subproblem being defined as:

α = min : c2 · x2 (4.83)

(4.84)

subject to:

A2 · x2 = b2 − E1 · x1 (4.85)

x2 ≥ 0 (4.86)

with V representing a restricted set of values for the result of stage one, which allows stage two to
be solved. Finding V is one of the main tasks when applying Benders decomposition.

Using the strong duality principle the problem can be rewritten as:

α = max : λ · (b2 − E1 · x1) (4.87)

subject to:

λ ·A2 ≤ c2 (4.88)

To find V , Farkas lemma, a mathematical stating about the solvability of inequations, is applied
to the second stage problem:

V = {x ∈ <n | σ · (b2 − E1 · x1) ≤ 0, ∀σ | σ ·A2 ≤ 0} (4.89)

V and α are just known by their implicit definitions. So the relaxed master problem is solved
and additional constraints are added if they are necessary, they are formed by solving the updated
subproblem. The constraints are the so called optimal cuts or feasibly cuts.

Finally the master problem can be expressed as:
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min : z = c1 · x1 + α (4.90)

subject to:

A1 · x1 = b1 (4.91)

σk ·A2 · x1 ≥ σk · b2 k = 1..K (4.92)

α ≥ λj · (b2 − E1 · x1) j = 1..J (4.93)

x1 ≥ 0 (4.94)

Summarized the steps of a Benders decomposition for a two stage problem are:

• Step 1 - Initialization:
define a tolerance > 0 being used for the stopping rule, set the lower bound z to −∞ and the
upper bound z to +∞

• Step 2:
solve the relaxed master problem, determine x1n and αn, and set the lower bound to
z = c1 · xn + αn

• Step 3:
form and solve the restricted subproblem, obtain yn

– if the subproblem is infeasible:
use feasibility cut, obtain σk+1 and update K = K ∪ {k + 1}

– if the subproblem is feasible:
use optimal cut, obtain αj+1, update J = J ∪ {j + 1} and set upper bound to
z = c1 · x1n + c2 · x2n

• Step 4 - Stopping Rule:
stop if defined tolerance is reached (z − z ≤ z ∗ tolerance)

• Step 5:
continue with step 1

4.3.2. Example for a Benders Decomposition using Optimal Cuts

This example for a Benders decomposition with a feasible subproblem uses only continuous vari-
ables.

Given is a problem:

min : 7 · x1 + 28 · x2 (4.95)

subject to:

7 · x1 ≥ 13 (4.96)

2 · x1 + 2 · x2 ≥ 8 (4.97)
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First set a tolerance for the stopping rule and initial values for the bounds:

tolerance = 0, z = −∞, z =∞ (4.98)

Then construct the master problem (MP):

min : 7 · x1 + α (4.99)

subject to:

7 · x1 ≥ 13 (4.100)

x ≥ 0 (4.101)

This gives a solution of

x1 = 13/7, α = 0 (4.102)

which means that the lower bound has to be set to

z = c1 · x1 + α = 7 · 13/7 + 0 = 13 (4.103)

This value then is used to solve the relaxed subproblem:

min : 28 · x2 (4.104)

subject to:

2 · x2 ≥ 8− 2 · 13/7 (4.105)

x2 ≥ 0 (4.106)

This problem is feasible with x2 = 15/7, so the dual problem has to be solved:

α = max : λ · (8− 2 · x1) (4.107)

λ · 2 ≤ 28 (4.108)

This gives a solution of λ = 14,
the new upper bound is set to z = c1 · x1 + c2 · x2 = 7 · 13/7 + 28 · 15/7 = 73.

Now the stopping rule is checked:

z − z ≤ z · tolerance (4.109)

73− 13 ≤ 73 · 0 (4.110)

60 ≤ 0 (4.111)

As the stopping rule is not satisfied the relaxed master problem is solved again, now with respect
to the optimal cut:

min : 7 · x1 + α (4.112)

(4.113)

68



4. Implementation

subject to:

7 · x1 ≥ 13 (4.114)

α > 14 · (8− 2 · x1) (4.115)

x1 ≥ 0 (4.116)

The solution now is x1 = 4, α = 0,
so the new lower bound is z = c1 · x1 + α = 7 · 4 + 0 = 28.

Now the second stage subproblem has to be solved again, using x1 = 4:

min : 28 · x2 (4.117)

subject to:

2 · x2 ≥ 8− 2 · x1 (4.118)

x2 ≥ 0 (4.119)

This results in a new solution of x2 = 0,
the new upper bound is z = c1 · x1 + c2 · x2 = 7 · 4 + 28 · 0 = 28.

Now the stopping rule

z − z ≤ z ∗ tolerance (4.120)

28− 28 ≤ 28 ∗ 0 (4.121)

0 ≤ 0 (4.122)

is satisfied and the optimization stops with resulting values of x1 = 4 and x2 = 0.

4.3.3. Example for a Benders Decomposition using Feasibility Cuts

This example for a Benders Decomposition has a infeasible subproblem, so feasibility cuts are used
to solve the subproblem.

Given is a problem:

min : 7 · x1 + 8 · x2 (4.123)

subject to:

7 · x1 ≥ 6 (4.124)

2 · x1 − 2 · x2 ≥ 3 (4.125)

First a tolerance for the stopping rule as well as the initial values for the bounds are set:

tolerance = 0, z = −∞, z =∞ (4.126)

Then the master problem (MP) is constructed:

min : 7 · x1 + α (4.127)
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subject to:

7 · x1 ≥ 6 (4.128)

x ≥ 0 (4.129)

Solving the master problem results in x1 = 6/7, α = 0,
so the lower bounds are set to z = c1 · x1 + α = 7 · 6/7 + 0 = 6.

Now the relaxed subproblem has to be solved using x1 = 6/7:

min : 8 · x2 (4.130)

subject to:

−2 · x2 ≥ 3− 2 · 6/7 (4.131)

x2 ≥ 0 (4.132)

This problem is not feasible because of the two following constraints:

−2 · x2 ≥ 9/7 (4.133)

x2 ≥ 0 (4.134)

This means that σ has to be set to a value fulfilling the requirement

σ · −2 ≤ 0 (4.135)

So it is set to σ = 1, which fulfills this requirement,
the upper bound stays unchanged at z =∞.

As the upper bound is still ∞ the stopping rule is not satisfied, so the relaxed master problem is
solved again:

min : 7 · x1 + α (4.136)

subject to:

7 · x1 ≥ 6 (4.137)

1 · 2 · x1 ≥ 1 · 3 (4.138)

x1 ≥ 0 (4.139)

This gives an solution of x1 = 3/2 and α = 0,
the new lower bound is z = c1 · x1 + α = 7 · 3/2 + 0 = 21/2.

This value then is used to solve the second stage subproblem again:

min : 8 · x2 (4.140)

subject to:

−2 · x2 ≥ 3− 2 · 3/2 (4.141)

x2 ≥ 0 (4.142)
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This now results in a solution of x2 = 0
with a new upper bound of z = c1 · x1 + c2 · x2 = 7 · 3/2 + 8 · 0 = 21/2.

Now the stopping condition is met:

z − z ≤ z ∗ tol (4.143)

21/2− 21/2 ≤ 21/2 ∗ 0 (4.144)

0 ≤ 0 (4.145)

This means that the optimum value is found (within the specified tolerance), the result is x1 = 3/2
and x2 = 0.

4.4. Flexible Array Class

For storing big amounts of data in composite structures such as multi-dimensional arrays, it is
difficult to find a clear-structured solution, which is also less dependent on memory resources. This
problem is amplified by the fact that both the number of necessary dimensions and their expanses
cannot be determined before the program is executed in run time, making the use of classical array
structures virtually impossible.

On the other hand, the use of dynamic array structures also entails with certain problems. Not
only the functions that construct and access these data are more complex, it is also less efficient to
manage a large amount of these structures if they are small in size, significantly compromising the
performance of the operating system.

The situation could be improved by using nested array objects, which already exist in the Microsoft
Foundation Classes (MFC). However, this alternative would have the same problem of having to
use complex functions for creating array trees and accessing several elements, again an inefficient
approach.

The solution was the implementation of a special class, which can be initialized at runtime and
saves the necessary memory capacity for one block. Inside objects of this class all data elements
are mapped to a linear array. Additionally, the number of dimensions and the associated expanses
are saved. Based on this information, the position of the data in the linear array can be calculated
for each access to the required element.

During the construction of the object no storage space is reserved. Following the initialization via
the function Create, which also specifies the number of dimensions and their respective expanse,
the required storage space is demanded. Afterwards it is possible to have access to the array.

For accessing elements of the multi dimensional array in detail, the functions Element and Ele-
mentPtr exist.

Sequentially to the call the indices for all dimensions are passed like parameters. The function
then calculates the position of the required data and returns a pointer or a reference to the wanted
position. This can be used for writing or reading accesses. It is a good strategy to limit the
consequences of the use of invalid indices. This is achieved by returning pointers or references to a
prepared data element. An access to that has no effect or returns invalid values, but it avoids the
program from breaking.
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Supporting functions such as Discard and GetSize exist.

The Discard method clears the contents of the array and releases the used memory capacity.
Afterwards a new initialization with Create again is possible. An automatic call to the Discard
function occurs in the wake of deleting the CFlexArray-object or when the program end is reached.
With the function GetSize it is possible to request the size of the reserved data space for the
array. This information can then be useful during program development and for the unavoidable
debugging process.

4.5. XA Optimisation Library [9]

XA is an optimisation software from Sunset Software Technology. It can solve linear programming
problems, mixed integer programming problems and quadratic programming problems.

For linear programming problems XA uses primal and dual simplex and for mixed integer program-
ming the branch and bound approach. It also has an interior-point implementation, but a license
for this was not available during the implementation of the system. For quadratic programming
the barrier algorithm is used.

For this thesis the XA Callable Library was used. This is a software library, providing a set of
functions to solve linear, binary, integer and semi-continuous linear programming problems and
allowing to use these functions in programs written in several programming languages, including
C, Visual Basic, Fortan and Pascal.

Two different techniques can be used to define models to be solved by the XA optimisation library:

• RCC (Row, Column and Coefficient) style

• Classic style, using arrays

While the classic style problem definition provides compatibility with as well older versions of XA
as many other solver libraries, the RCC style problem definition method was used for the project,
because it has advantages with regards to memory requirements and implementation complexity.

4.5.1. RCC Style Problem Definition

When defining problems in RCC style all data is provided in three parallel arrays for row names,
column names and the respective coefficients. The use of special row and column names as OBJ
for elements of the objective function or MIN, MAX and FIX for constraints allow to fully define
a model, while the order in which the elements are passed is not relevant. XA internally completes
the model. This simplifies the use of the interface used for problem definition.

The main advantages of using the RCC style problem definition method are:

• easier model maintenance, as adding new dimensions is possible

• scalability within dimensions without reloading the whole model

• simplified debugging by using speaking names for rows and columns
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• use of a simple data structure, only needing three arrays, reducing memory requirements

• changes can be applied to a model after it is already loaded in the optimizer

As an example, given a problem definition as:

min : 10 · x1 + 20 · x2 (4.146)

subject to:

2 · x1 + 3 · x2 ≤ 10 (4.147)

5 · x1 − 2 · x2 ≥ 2 (4.148)

5 · x1 − 2 · x2 ≤ 20 (4.149)

x1, x2 ≥ 0 (4.150)

would lead to an RCC style problem definition presented to XA as:

RowName ColName Coef

OBJ x1 10

OBJ x2 20

C1 x1 2

C1 x2 3

C2 x1 5

C2 x2 -2

C1 MAX 10

C2 MIN 2

C2 MAX 20

Table 4.4.: RCC style problem definition

If the problem has to be modified after already being loaded this can be done by just adding
elements of a further function or deleting elements of already defined functions.

The example following shows how such a modification can work. A new column x3, also containing
an integer condition, is added and the x2 for the second constraint is changed, to get the new
problem definition:

min : 10 · x1 + 20 · x2 + 30 · x3 (4.151)

subject to:

2 · x1 + 3 · x2 + 4 · x3 ≤ 10 (4.152)

5 · x1 − 6 · x3 ≥ 2and ≤ 20 (4.153)

x1, x2 ≥ 0 (4.154)

1 ≤ x3 ≤ 100 (4.155)

x3 : integer (4.156)

To update the originally loaded problem definition to this new one following element definitions
have to be passed to XA:
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RowName ColName Coef

C1 x3 4

C2 x3 -6

MIN x3 1

C2 x2 0

OBJ x3 30

STATUS x3 4

MAX x3 100

Table 4.5.: RCC style problem definition update

4.5.2. Typical XA Calling Sequence

A typical sequence of calls to the XA library for passing data and and multiple iterations of solving,
retrieving data and modifying the model can look like shown below.

XAINIT initialize XA code
... load data to RCC arrays

XARCCI initialize new problem with RCC data
XARCCM continue XARCCM with new RCC data until model is completed
XARCCM continue XARCCM

XASOLV solve the problem
XAACTC retrieve the results (returns the activity of a column or data)
XADUALC extract more data (returns the dual activity of a column or row)

XARCCM update the problem until model is completely redefined
XARCCM

XASOLV solve the problem
XAACTC retrieve the results
XADUALC extract more data

XARCCI initialize a new problem with RCC data
XARCCM continue XARCCM with new RCC data
XARCCM

XASOLV solve the problem
XAACTC retrieve the results
XADUALC extract more data

XADONE close XA files and release memory

Table 4.6.: Typical XA calling sequence
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5.1. Input Data

The following system is implemented as described in section 4.1.

Figure 5.1.: Structure of the test scenarios

All input data are given in MWh. The considered input variables for hydro power plants, thermal
blocks and wind parks are shown in tables 5.1 to 5.4. As energy values are used, water head,
coefficient and time duration are already considered in the input data.

data unit

thermal generation MWh
costs e/MWh

Table 5.1.: Describing data for thermal power plants

data unit

hydro generation MWh
inflow MWh
storage MWh
spillage MWh
costs e/MWh

Table 5.2.: Describing data for hydroelectric power plants
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data unit

wind generation MWh
wind strength MW
costs e/MWh

Table 5.3.: Describing data for wind power plants

data unit

solar generation MWh
solar radiation MWh
costs e/MWh

Table 5.4.: Describing data for solar power plants

5.2. General Test Results

The test scenarios 1 to 11 are used to verify the basic functionality of the software.

Afterwards in section 5.3 linear programming and deterministic dual dynamic programming are
compared, while the difference between deterministic and stochastic optimization is shown in section
5.4. Very simple scenarios are used for this cases.

Section 5.6 shows the optimization of several simplified scenarios including renewable energy to-
gether with the related production costs and CO2-emissions.

Finally a comparison of problem size, runtime and results between the usage of linear and stochastic
dual dynamic programming for a complex scenario is given in section 5.7.

5.2.1. Test 1 - Constant load

Test 1 consists of only two thermal power plants and one storage power plant. The overall load as
well as the inflow are set to constant values over all periods, the volume of the water in the storage
is not allowed to change. To make the problem feasible the production has to be the same as the
load in this case and is therefore set to the average load over the year.

Being forced to hold the volume in the storage constant, the storage power plant works the same
way as a run-of-river power plant in this case, the inflow is used in the moment it gets available.
This results in an optimization output with all variables being constant over all stages.

Using hydro power generates the lowest production costs, therefore its capacity is fully used. The
thermal power plants are used based on their production costs, which means the plant with the
lesser costs runs at its full capacity and the second thermal power plant is then used to cover the
rest of the load.

The total costs over the year in this scenario are e 301,793,568.
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Figure 5.2.: Optimization results for constant load

5.2.2. Test 2 - Changing load and constant inflow

In test scenario 2 the load changes over the year, with a higher consumption during the winter
months. The number of thermal power plants is increased to four, while the storage power plant
still is not allowed to change the volume held back in the storage, which of course are unrealistic
conditions.

Figure 5.3.: Optimization results for changing load

As in test 1 the inflow to the storage power plant is still used up constantly. However, as the
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condition of fully covering the load in each period has to be met, the difference between the load
and the power generated from the hydro power plant is covered by the production of the four
thermal power plants. The scheduling of the thermal power plants is based on the costs they incur
during production. This means, that the plants being more expensive are only used if necessary,
while the cheaper ones contribute their production during all stages.

The total costs over the year are e 310,738,144. Although the average load over the year is the
same, the costs are higher than in test scenario 1. This is because the thermal blocks 3 and 4
have to be used in the months with higher loads, generating higher costs. The lower production
during the summer months can not compensate this additional costs, as the costs resulting from
the thermal blocks 1 and 2 are less.

5.2.3. Test 3 - Constant load, variable storage

The test scenario 3 is simplified again, only containing two thermal and one storage power plant
with a constant overall load over the year as in test scenario 1. However the volume in the storage
is allowed to change between 50 % and 100 % of its maximum capacity now, initially containing the
minimum volume of 50 %. The maximum storage volume is equivalent to a production capacity of
247,680 MWh.

Figure 5.4.: Optimization results for constant load with variable storage

The storage of the hydro power plant is filled up during the months of lower load in this case.
However, as the energy produced by the storage power plant is the cheapest one, its production
capacity is completely used and the storage is used up to the lower bound of 50 % of its maximum
in the last stage. So the whole yearly inflow is used.

This example shows, that the result of the optimization algorithm not necessarily represents the
results of a human decision. In this case every scheduling scenario completely making use of the
production capacities of the storage power plant and the cheaper thermal block over the year
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generates the same optimal costs and therefore is equal to the optimizer. Without additional
constraints the optimization algorithm returns with the first scenario found meeting this minimal
costs requirement.

With respect to costs the scheduling results from test scenarios 1 and 3 are equivalent, as all other
schedulings fully taking use of the production capacities of both, the hydro power plant and thermal
block 1 over the year. The total costs are e 301,783,568, which are the same as in scenario 1.

5.2.4. Test 4 - Changing load, variable storage

In this test scenario the load changes over the year and the volume in the storage is allowed to
change under the same restrictions as in test scenario 3. The storage power plant therefore can
be used to optimize production costs by reducing the amount of energy which has to be produced
by the more expensive thermal blocks 3 and 4. The inflow to the storage is still constant in this
scenario.

Figure 5.5.: Optimization results for changing load with variable storage

Again there would be an unlimited number of optimal results, all incurring the same total costs. All
solutions fully using the production capacities of the storage power plant and the cheaper thermal
blocks are equivalent.

With e 305,566,624 the total costs are less than in test scenario 2, although the load distribution
over the months, the power plants and the inflow being available are the same. The cost reduction
results from a better use of the storage power plant by shifting the production to periods of higher
load.
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5.2.5. Test 5 - Spillage due to constant storage

In this test scenario the volume in the storage has to be constant while the inflow changes over the
year. The load is the same in all stages. (unrealistic scenario)

Figure 5.6.: Optimization results for test scenario 5, with necessary spillage

As the volume in the storage is not allowed to change, the whole inflow has to be used immediately
- for power generation and/or spillage. If the inflow exceeds the generation capacity of the storage
power plant, as this happens in June, the remaining water has to be spilled, reducing the overall
performance of the system.

The total costs are e 304,443,936.

5.2.6. Test 6 - Storage used to prevent spillage

Compared to test scenario 5 the volume in the storage is allowed to vary between 50 % and 100 %
of the maximum in this case. The initial level is at the allowed minimum.

With the volume in the storage being at its minimum at the beginning of the first stage, no water
from the storage can be used for production at this moment. The inflow can either be used for
production or stored in the reservoir. This allows for shifting the production of the storage power
plant from periods with high inflow and low demand to periods with low inflow and high load,
optimizing the costs by preventing spillage and minimizing the use of the expensive thermal blocks.

This additional optimizations lead to reduced total costs of e 303,057,024 compared to test scenario
5.
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Figure 5.7.: Optimization results for test scenario 6, with storage preventing spillage

5.2.7. Test 7 - Scenario with 24 stages

In this test scenario the number of stages is increased to 24, representing two full years. The input
data of the first year is repeated for the second year.

Figure 5.8.: Optimization results for a scenario with 24 stages (2 years)

If a scenario with the possibility to change the storage volume has no restrictions for the filling
level of the storage at the end of the scenario, the water in the storage will always result in being
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used up to its minimum limit. This occurs because no costs are connected with the production
of energy from stored water. Extending a scenario with a second year significantly changes the
optimal scheduling of the storage power plant.

The total costs for this scenario are e 606,070,336, being e 303,035,168 per year. This is slightly
better then in test scenario 6, as the optimization of the scheduling can be done over more stages.

5.2.8. Test 8 - Run-of-River Power Plant

For this test scenario a run-of-river power plant is added to the system.

Figure 5.9.: Optimization results for test scenario 8, including a run-of-river power plant

It can be seen that the inflow of the run-of-river power plant is always used for production up to
the plants maximal generation capacity, the rest of the water is spillage. The scheduling for the
production for the remaining load is optimized as in the test scenarios before.

The total costs for this scenario are e 274,641,888.

5.2.9. Test 9 - Changing inflow

To be more realistic the inflows to the run-of-river and the storage power plants are changing in
this test scenario.

As in the last test scenario the inflow of the run-of-river power plant is always used for production,
but the changing inflow leads to a less optimal use of the plant. During the dry months the inflow
is much less than the generation capacity of the plant, while during the wet months the inflow
reaches the generation capacity.

The scheduling of the storage power plant and the thermal blocks is optimized in such a way, that
the use of the more expensive thermal blocks is reduced. During the first months the whole inflow
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Figure 5.10.: Optimization results for test scenario 9, with changing inflows

to the storage power plant is used for production, to minimize the use of the thermal blocks, which
however are needed to cover the load. During the summer months water is held back in the storage
while the cheapest thermal block is still used to produce energy. This water is used to produce
additional energy in the last months, reducing the need for the more expensive thermal blocks 2,
3 and 4. As the scenario only contains 12 stages, the water in the storage is used up to its lower
limit in the last stage.

The total costs incurred for production over the year are e 285,809,664.

5.2.10. Test 10 - Enlarged storage

This test scenario is the same as scenario 9, except for the storage volume available for the storage
power plant, which is ten times larger. Nearly the whole yearly inflow can be stored therefore.

The enlarged storage capacity makes no difference during the first months of the year, as the whole
inflow is used during this stages. However, more water is stored during the summer months, which
is used to completely work without thermal blocks 3 and 4 during the last stages. The total costs
so can be reduced to e 281,667,232.

5.2.11. Test 11 - Wind Plant

In test scenario 11 a wind power plant is added to the system.

This leads to the effect, that the full load can be covered using only the wind and the run-of-river
plants between April and August, in June not even using the full generation capacity of the run-
of-river plant. While more spillage than necessary technically is used in this example, in reality
the excess energy can be sold on the market. As no water has to be used from the storage power
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Figure 5.11.: Optimization results for test scenario 10, with enlarged storage

Figure 5.12.: Optimization results for test scenario 11, with wind power plant
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plant during the summer months, even more production capacity from this plant can be shifted to
the last stages. Together with the additional wind power this allows to totally work without the
thermal blocks 3 and 4 during this months. The total costs are e 360,955,698.

5.3. Comparison of Linear Programming and Deterministic Dual Dynamic
Programming

5.3.1. Linear Programming

The scenario for this test (test scenario 12) consists of four thermal power plants and one storage
power plant. The lower bound for the amount of water in the storage is now set to 30 % (145,286
MWh), its initial filling level to around 35 % (174,344 MWh) of the total storage capacity (484,286
MWh).

Figure 5.13.: Optimization results for test scenario 12, solved using linear programming
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 4967 58516
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 0 75777
April 623841 158849 266400 204038 0 0 153403
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 204424 0 0 0
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 0 0 0 239735
October 659153 115028 266400 145073 0 0 247680
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1979135 755146 4967 1822543

Table 5.5.: Optimization results for test scenario 12 (LP)

As no further stages are considered, the whole inflow to the storage as well as its usable initial
content (29,058 MWh) are used. Similar to the tests before more water is used for production
during stages with higher load, to reduce the use of the more expensive thermal power plants.

The total costs for production are e 304,835,424.

5.3.2. Deterministic Dual Dynamic Programming

This test (test scenario 13) is based on the same scenario (test scenario 12), but the problem is
solved using deterministic dual dynamic programming.

Figure 5.14.: Optimization results for test scenario 13, solved using deterministic dual dynamic
programming
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 4967 70810
April 623841 158849 266400 237600 0 0 119841
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 0 0 0 204424
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 78334 0 0 161401
October 659153 115028 266400 237600 0 0 155153
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166427 0 247678
sum 7758591 1793485 3196800 1979134 755147 4967 1822543

Table 5.6.: Optimization results for test scenario 13 (DDDP)

The optimization stops with a value of e 304,835,424 for the lower as well as the upper bound,
being identical to the result when solving the same problem using linear programming. The lower
bound represents the sum of the immediate and the approximated future costs, the upper bound
the total costs over all stages. Although both values are the same, this may not be the case for
other scenarios.

The solutions for both, using linear and deterministic dual dynamic programming, look quite
similar. There are only minor differences in the scheduling of thermal block 4 and the storage power
plant. This is because both algorithms return one optimal solution out of an indetermined number
of existing optimal solutions. As DDDP uses a convergence criterion to stop the optimization it
may not return the exact optimum for more complex scenarios, but a solution being within a certain
tolerance defined by this convergence criterion.

5.4. Comparison of Deterministic and Stochastic Programming (scenarios with
different inflows and loads)

To compare the results achieved when using deterministic programming for different scenarios to
the results when using stochastic programming, three years with different inflow and load conditions
are simulated.

Again the scenarios for this tests consist of four thermal power plants and one storage power plant.
The lower bound for the amount of water in the storage is now set to 30 % (145,286 MWh), its
initial filling level to around 35 % (174,344 MWh) of the total storage capacity (484,286 MWh).
So the total inflow plus 29,058 MWh of the storage can be used.

In the first scenario the inflow also the load are set to the average. For the second scenario the load
is higher in the following stages, the inflow is lesser compared to scenario one. The third scenario
represent a higher load and more inflow compared to scenario one.
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scenario conditions costs in e
scenario 1 average load, average inflow 304,835,424
scenario 2 higher load, lower inflow 337,207,904
scenario 3 higher load, higher inflow 314,153,696

Table 5.7.: Production costs for the different scenarios

5.4.1. Deterministic Optimization

When using deterministic optimization each scenario is processed separately, so an optimal result
for the considered year can be achieved.

The total costs for each scenario are:

Figure 5.15.: Deterministic optimization for scenario 1 (average load, average inflow)
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Figure 5.16.: Deterministic optimization for scenario 2 (higher load, lower inflow)

Figure 5.17.: Deterministic optimization for scenario 3 (higher load, higher inflow)
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 4967 58516
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 0 75777
April 623841 158849 266400 204038 0 0 153403
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 204424 0 0 0
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 0 0 0 239735
October 659153 115028 266400 145073 0 0 247680
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1979135 755146 4967 1822543

Table 5.8.: Deterministic optimization for scenario 1 (average load, average inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 8168215 61348 266400 237600 180000 63483 0
February 7420732 45352 266400 237600 180000 120987 28358
March 6587387 52952 266400 237600 180000 0 160352
April 5743035 95801 266400 237600 53133 0 95801
May 5090101 213282 266400 79280 0 0 211252
June 4533169 235895 266400 0 0 0 237925
July 4028844 213282 266400 100813 0 0 145091
August 3516540 230638 266400 198132 0 0 0
September 3052008 210125 266400 237600 0 0 42774
October 2505234 123189 266400 220154 0 0 247680
November 1771000 99674 266400 237600 84774 0 247680
December 934546 53997 266400 237600 180000 2866 247680
sum 8168215 1635535 3196800 2261579 857907 187336 1664593

Table 5.9.: Deterministic optimization for scenario 2 (higher load, lower inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 46075 17408
February 742345 75571 266400 237600 180000 0 58345
March 833535 59311 266400 237600 180000 0 149535
April 612435 159385 266400 237600 0 0 108435
May 545824 153889 266400 188020 0 0 91404
June 464584 228086 266400 0 0 0 198184
July 484952 239078 266400 0 0 0 218552
August 454694 234956 266400 0 0 0 188294
September 495455 303656 266400 0 0 0 229055
October 723594 200373 266400 237600 0 0 219594
November 812349 129688 266400 237600 60669 0 247680
December 977106 99767 266400 237600 180000 45426 247680
sum 7894356 1945108 3196800 1851220 780669 91501 1974166

Table 5.10.: Deterministic optimization for scenario 3 (higher load, higher inflow)
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5.4.2. Stochastic Optimization

Performing a stochastic optimization, taking into account all scenarios together with their probabil-
ity of occurrence, delivers one result for the first stage, together with one solution for each scenario
for the following stages. This solution is not cost optimal with respect to each single scenario,
but optimal with respect to the stochastic occurrence of the scenarios. The three solutions for the
following stages represent the optimal solutions for the different scenarios based on the conditions
at the end of the first stage.

The average costs for all years are e 318,732,352

Figure 5.18.: Stochastic optimization, taking into account all scenarios
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 766236 64775 266400 237600 180000 4967 77269
March 759777 61348 266400 237600 180000 0 75777
April 623841 158849 266400 204038 0 0 153403
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 204424 0 0 0
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 0 0 0 239735
October 659153 115028 266400 145073 0 0 247680
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1979135 755146 4967 1822543

Table 5.11.: Stochastic optimization for scenario 1 (average load, average inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 833345 45352 266400 237600 180000 149345 0
March 844352 52952 266400 237600 180000 35125 125227
April 652934 95801 266400 237600 53133 0 95801
May 556932 213282 266400 77250 0 0 213282
June 504325 235895 266400 70149 0 0 167776
July 512304 213282 266400 237600 0 0 8304
August 464532 230638 266400 198132 0 0 0
September 546774 210125 266400 32694 0 0 247680
October 734234 123189 266400 220154 0 0 247680
November 836454 99674 266400 237600 84774 0 247680
December 934546 53997 266400 237600 180000 2866 247680
sum 8168215 1635535 3196800 2261579 857907 187336 1664593

Table 5.12.: Stochastic optimization for scenario 2 (higher load, lower inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 742345 75571 266400 237600 180000 46075 12270
March 833535 59311 266400 237600 180000 0 149535
April 612435 159385 266400 186650 0 0 159385
May 545824 153889 266400 125535 0 0 153889
June 464584 228086 266400 141521 0 0 56663
July 484952 239078 266400 0 0 0 218552
August 454694 234956 266400 0 0 0 188294
September 495455 303656 266400 0 0 0 229055
October 723594 200373 266400 209514 0 0 247680
November 812349 129688 266400 237600 60669 0 247680
December 977106 99767 266400 237600 180000 45426 247680
sum 7894356 1945108 3196800 1851220 780669 91501 1974166

Table 5.13.: Stochastic optimization for scenario 3 (higher load, higher inflow)
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5.4.3. Stochastic Optimization using Dual Dynamic Programming

Compared to the solution of the stochastic optimisation using linear programming, for the first
and the third scenario, not the howl inflow and usable storage capacity is used. Because of the
approximation and the break-up criterion the total optimum is not reached.

The lower bound is e 316,703,808, the upper bound is e 319,854,810. The upper bound represents
the costs over all stages. This costs are higher than when using linear formulation (e 318,732,352).
This shows that the real optimum is not reached.

Figure 5.19.: Stochastic optimization, using dual dynamic programming
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 4967 70810
April 623841 158849 266400 237600 0 0 119841
May 541447 237725 266400 27367 0 0 247680
June 470824 297978 266400 0 0 0 204424
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 168437 0 0 35987
September 506135 201573 266400 35363 0 0 204372
October 659153 115028 266400 237600 12200 0 142953
November 800400 92023 266400 237600 124415 0 171985
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1894367 843042 4967 1819415

Table 5.14.: SDDP optimization for scenario 1 (average load, average inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 833345 45352 266400 237600 180000 77070 72275
March 844352 52952 266400 237600 180000 107400 52952
April 652934 95801 266400 237600 53133 0 95801
May 556932 213282 266400 77250 0 0 213282
June 504325 235895 266400 2030 0 0 235895
July 512304 213282 266400 32622 0 0 213282
August 464532 230638 266400 198132 0 0 0
September 546774 210125 266400 111760 0 0 168614
October 734234 123189 266400 237600 79120 0 151114
November 836454 99674 266400 237600 152818 0 179636
December 934546 53997 266400 237600 180000 32286 218260
sum 8168215 1635535 3196800 2084994 1005072 216756 1664593

Table 5.15.: SDDP optimization for scenario 2 (higher load, lower inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 742345 75571 266400 237600 180000 0 58345
March 833535 59311 266400 237600 180000 46075 103460
April 612435 159385 266400 237600 0 0 108435
May 545824 153889 266400 74585 0 0 204839
June 464584 228086 266400 0 0 0 198184
July 484952 239078 266400 0 0 0 218552
August 454694 234956 266400 177858 0 0 10436
September 495455 303656 247775 0 0 0 247680
October 723594 200373 266400 209514 0 0 247680
November 812349 129688 266400 237600 60669 0 247680
December 977106 99767 266400 237600 180000 45426 247680
sum 7894356 1945108 3178175 1887557 780669 91501 1956454

Table 5.16.: SDDP optimization for scenario 3 (higher load, higher inflow)
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5.5. Comparison of Deterministic and Stochastic Programming (scenarios for normal,
dry and wet year, covering the same load)

The scenarios for this tests consist of four thermal power plants and one storage power plant.
The lower bound for the amount of water in the storage is now set to 50 % (145,286 MWh), its
initial filling level also to 50 % (145,286 MWh) of the total storage capacity (290,572 MWh). The
maximum capacity for the storage power plant is 247,680 MWh.

The load is the same for all scenarios, the inflow is different for a normal, a dry and a wet year.
The problems are solved using linear formulation.

Figure 5.20.: Stochastic optimization, using linear programming, normal-dry-wet year

During dry years the thermal power plants have to be used more, in wet years the production of
thermal generation can be reduced compared to the normal years. This leads to higher production
costs in dry years and lower costs in wet years.
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Figure 5.21.: Compare deterministic and stochastic optimization for normal year, using linear
programming

As shown in figure 5.21 there is a difference in the use of the storage power plant in the first stage
when solving the problem deterministically compared to stochastically. The solution for the normal
year solved stochastically is influenced by the wet year, so more capacity of the storage power plant
is used in January.

5.6. Scenarios including Wind Power Plants

The scenarios in this section show a typical daily load curve of a combined hydrothermal and wind
power system, being oriented on the current situation in Germany.

The diagrams show how the load is covered in half-hour intervals. The scheduling is optimized only
according to the marginal costs in the merit order. Because of laws regarding renewable energy (i.e.
EEG), the costs for wind, biomass, solar and hydro energy are set to zero. Because of regulatory
demands this power plants can feed the whole production into the grid. [6, p.36]

Technical conditions (i.e. start and stop times for thermal power plants) and other economical
conditions (i.e. costs for a non-optimal use of thermal power plants) are not taken into account.

5.6.1. Scenario 1 - Normal Situation

This scenario, shown in figure 5.22, represents a basic situation with a daily production of 75 GWh
resulting from wind power plants.
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Figure 5.22.: Optimization of a one day scenario including wind power plants, normal situation
(7 % wind energy, plus nuclear power)

5.6.2. Scenario 2 - Strong Wind

In this scenario a day with stronger wind is shown. During periods with strong wind it is possible
to make full use of the installed generation capacity of the wind parks, which is 29 GW (14.5 GWh
per half-hour) in this example. The scheduling is shown in figure 5.23.

Figure 5.23.: Optimization of a one day scenario including wind power plants, with stronger wind
(59 % wind energy, plus nuclear power)
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5.6.3. Scenario 3 - Without Nuclear Power Plants

This example shows a situation with all nuclear power plants being turned off. In this case it
is necessary to make use of fossil burning power plants up to a higher extent. The optimized
scheduling is shown in figure 5.24.

Figure 5.24.: Optimization of a one day scenario including wind power plants, without nuclear
power plants (59 % wind energy)

5.6.4. Scenario 4 - Heavily Changing Wind

In a situation with changing wind conditions, which occur frequently, as wind is very stochastic,
also generated wind power is strongly changing. So the load has to be covered by other resources,
which ideally are storage power plants, but as their capacity is restricted, the rest has to be covered
by the fossil fired power plants. This is shown in figure 5.25.
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Figure 5.25.: Optimization of a one day scenario including wind power plants, with heavily changing
wind (40 % wind energy, without nuclear power)

5.6.5. Scenario 5 - Bottlenecks in the Grid

This example shows a situation where the produced wind power exceeds the transport capacity of
the grid and thus cannot be transported to the customer. So other power plants have to cover the
load as shown in figure 5.26.

Figure 5.26.: Optimization of a one day scenario including wind power plants, restricted transport
(37 % wind energy, without nuclear power, bottleneck in the grid)
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5.6.6. Scenario 6 - Heavily Changing Wind including Solar Power Plants

In this scenario also the generation from solar power plants is included. The solar energy can be
an important part to cover the load during midday, this is shown in 5.27

Figure 5.27.: Optimization of a one day scenario including wind and solar power plants
(40 % wind energy, 5 % solar energy)

5.6.7. Electrical Production Costs

The real production costs for the electrical energy can be quite different from the costs used in the
optimization algorithm. This is especially true for renewable energy, which has a special role, as it
has a guaranteed price, which is high compared to other power sources, and there is an obligation
to use renewable energy when it is available.

In the literature, the productions costs are given quite different, so a detailed discussion is difficult.

type of power plant costs per MWh

brown coal e 35
hard coal e 48
gas and steam e 52
nuclear (new) e 39
wind e 82
biomass e 92
hydro power plants e 46
solar power plants e 130

Table 5.17.: Electrical production costs for different types of power plants [4, p.237,278,248][21,
p.429]
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This leads to production costs for the former examples as shown in table 5.18. It can be seen,
that situations with a lot of wind being available lead to higher costs, although more production
capacity is available. The costs would get lower without the existence of regulatory directives.

scenario costs

scenario 1 e 53,868,770 normal situation
scenario 2 e 75,809,492 strong wind situation
scenario 3 e 76,149,077 strong wind, without nuclear power plants
scenario 4 e 69,073,479 heavily changing wind
scenario 5 e 67,517,006 restricted transport capacity for wind power
scenario 6 e 73,832,203 heavily changing wind and solar power

Table 5.18.: Total electrical production costs for the example scenarios

5.6.8. CO2-Emissions

Also the CO2-emissions occurring during the production of electrical energy can be of interest,
especially as there is a huge difference depending on the type of production.

This can be discussed in different manners, depending on which sources of CO2-emissions are
considered. The range starts with only taking into account the emissions resulting from burning
the fuel and continues to consider all emissions produced for transport and preparation of the fuel
and even construction and planning of the power plants.

Even here the range in the literature can be quiet different.

For biomass the discussion is difficult. In most papers emissions are handled as 0, as all CO2

contained in biomass material already was available in the environment before and would at least
partially also be released without being burned. [22, p.18] Whereby the procurement, the trans-
portation and the preparation are not included.

In the following table, the CO2-emissions are refereed to the emissions occurred by burning the
fuel.

type of power plant CO2-emissions in kg/MWh

hydro power plants 0
wind energy 0
biomass 0
nuclear power 0
solar energy 0
gas and steam 420
hard coal 930
brown coal 1200

Table 5.19.: Typical CO2-emissions for different types of power plants [22, p.20]

In the former examples this would lead to emissions as listed in table 5.20 for the whole daily
production.
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scenario tons per day

scenario 1 651,495 tons normal situation
scenario 2 147,655 tons strong wind situation
scenario 3 353,709 tons strong wind, without nuclear power plants
scenario 4 533,245 tons heavily changing wind
scenario 5 570,080 tons restricted transport capacity of wind power
scenario 6 491,339 tons heavily changing wind and solar power

Table 5.20.: CO2-emissions for the example scenarios

5.6.9. Differences in costs and emissions

A comparison of the differences in the production costs and the CO2-emissions is listed in table
5.21.

scenario cost difference in e CO2-emission difference CO2-reduction costs

scenario 2 - scenario 1 +21,940,722 -503,840 tons e 44/ton
scenario 3 - scenario 2 +339,589 +206,054 tons
scenario 4 - scenario 3 -7,075,598 +179,536 tons
scenario 5 - scenario 4 -1,556,473 +36,835 tons
scenario 4 - scenario 6 +4,758,724 -41,906 tons e 114/ton

Table 5.21.: Comparison of CO2-emissions and electrical production costs between the different
scenarios

Scenario 1 (7 % wind energy, plus nuclear power) compared with scenario 2 (59 % wind energy,
plus nuclear power) leads to higher costs, as the guaranteed compensation for electricity fed into
the grid is taken into account for wind energy, while the thermal power plants can cover the load
with lower costs. The CO2-emissions are reduced dramatically. If the costs are set in relation to
the CO2, the price for reducing one ton of CO2 is around e 44.

If the nuclear power plants are turned off as in scenario 3, the costs increase a bit more, as the
expensive fossil fired power plants are used more. Additionally the CO2-emissions increase, as
brown coal and hard coal fired power plants are used.

If the wind is changing heavily as in scenario 4, the 19 % lower production of wind energy has to
be covered by fossil fired power plants. So the CO2-emissions are increasing while the costs are
lower than in scenario 3.

If the transportation through the grid is restricted as in scenario 5, the wind energy used by the
customer decreases to 37 %. The CO2-emissions are increasing, while the costs are decreasing in
this case.

If solar energy is added to scenario 4, resulting in a total of 40 % wind and 5 % solar energy,
the electrical production costs are increasing even more, while the CO2-emissions are decreasing
slightly. One ton of CO2-reduction costs e 114 in this scenario.

The costs shown in table 5.17 are of older date. Newer electric production costs are discussed in
[36], a deeper discussion on electric production costs and CO2 certificate costs can be found in [37].
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5. Results

5.7. Comparison of Linear Programming and Stochastic Dual Dynamic Programming

The comparison of linear programming and stochastic dual dynamic programming is based on
scenarios with 21 thermal blocks.

Table 5.22 gives an overview of the number of variables and constraints which are related to test
cases with a rising number of reservoirs, scenarios and stages. The additional epsilon-terms, used
to relax constraints, are already taken into account in this number. As explained in 4.1.

The number of variables is increasing linear with the number of reservoirs, steeper linear with the
number of stages and exponentially with the number of scenarios.

Table 5.23 shows the results including the number of iterations and the calculation time for opti-
mizing the same scenario using SDDP and LP in each case.
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reservoirs scenarios stages variables constraints

10 10 12 8103 14985
10 10 52 37303 68985
20 10 12 13653 24975
20 20 12 27183 49725
20 30 12 40713 74475
30 10 12 19203 34965
30 20 12 38233 69615
30 30 12 57263 104265
30 60 12 114353 208215
30 100 12 190473 346815
40 10 12 24753 44955
50 10 12 30303 54945
50 50 12 150423 272745
50 100 12 300573 544995

100 50 12 288173 520695

Table 5.22.: Number of variables and constraints depending on model size

reservoirs/scenarios/stages LP SDDP

res. scen. stag. solution duration solution iterations duration

10 10 12 1615105152 21 s 1643136256 9 50 s
10 10 52 2038861440 451 s 2155891968 1 31 s
20 10 12 1676020480 75 s 1721686272 11 121 s
20 20 12 1839321728 368 s 1854447104 6 131 s
20 30 12 1851897216 899 s 1868171392 11 362 s
30 10 12 1798478592 155 s 194315040 11 277 s
30 20 12 1753113472 737 s 1772224000 7 292 s
30 30 12 1759147904 1791 s 1831559168 11 676 s
30 60 12 too big for LP - 1802390784 11 1609 s
30 100 12 too big for LP - 18824858624 11 2687 s
40 10 12 1781228544 283 s 1917719296 11 365 s
50 10 12 1930445696 502 s 2148826624 11 535 s
50 50 12 too big for LP - 2104971264 11 2741 s
50 100 12 too big for LP - 2067765376 11 5598 s

100 50 12 too big for LP - 3037334016 31 27877 s

Table 5.23.: Comparison of LP and SDDP algorithms for several test cases
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6. Discussion and conclusions

Stochastic optimization compared to deterministic optimization involves much more effort as well
for preparing the input data as for calculation time and memory requirements, as the size and the
variability of the problems can rise significantly. A stochastic point of view was already important
for optimizing the use of hydro power plants. However, the necessity to consider multiple stochastic
scenarios will rise in future for the integration of wind and solar power sources.

By linear problem formulation usually the real optimum can be found for the deterministic as well
as the stochastic case. However when using deterministic dual dynamic programming or stochastic
dual dynamic programming a quicker solution close to the optimum can be reached. This difference
occurs because of an approximation of the future cost function at each stage in the case of dynamic
programming. This approximation affects the number of iterations. The definition of the stopping
criteria allows to find a compromise between the number of iterations and the accuracy of the
solution.

If the problem contains a small number of scenarios a LP formulation is faster than a SDDP
formulation. With a rising number of scenarios and variables SDDP becomes faster than linear
programming, because the problem is divided in multiple nested smaller subproblems, which can
be solved faster, except for a slow convergence in some test cases.

The formulation of epsilons helps to find solutions faster. Such additional terms, relaxing the
constraints, are used to find a feasible solution during the first iterations. Later their use is reduced
due to the high costs associated with them. An additional aspect is, that these terms help to solve
infeasible problems, which have to be checked manually afterwards.

Even more detailed problem formulations increase the number of variables and the complexity of
the system, which then increases the time needed for the optimization or even makes it impossible to
solve them using a linear formulation. Dynamic programming therefore is mandatory for complex
problems.

The XA solver library allows an easy definition of the model by constructing arrays in a multi-
dimensional form and transfer it to the optimizer step by step. Defined models can even be altered,
reducing the effort when redefining models. Intermediate results can be saved and used in following
stages and iterations.

Optimization of storage power plant scheduling in a mixed power plant portfolio is a valuable
and effective tool to reduce the costs of power production. This was already important in pure
hydro-thermal scenarios, but gains even more importance with the increasing use of wind and solar
energy. As other plants have to compensate for fluctuations in load and energy being available, the
optimal use of storage power plants is getting more important to reduce CO2-emissions.

105



6. Discussion and conclusions

Future optimisation tools need to take into account the whole system, including the technical
restrictions of the grid and the power plants, which are for example

• for the grid:

– bottlenecks, voltage level, load flow

• for thermal power plants:

– startup and shutdown times

– downtimes and periods of use

– efficiency, control techniques, technologies to reduce the CO2-emissions

As during midday the solar energy can take a great part of covering the load, the storage power
plants can be used to cover the load during other times. This means the use of storage power plants
may change in the future. It can even happen that the production of energy from renewable sources
exceeds the load. Because of regulatory demands this power plants are allowed to feed the whole
production into the grid. So regulatory demands need to be discussed. Discussions about CO2

certificate costs are also necessary. More flexible power plants or control techniques are needed to
compensate the fluctuating production of renewable energy.
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A. Appendix

Inputs for test 1 to 11, test 5.3, test 5.4 and test 5.5

type of power plant e /MWh

Thermal Block 1 16
Thermal Block 2 25
Thermal Block 3 41
Thermal Block 4 75
Generation SPP & RPP 1
Wind Power Station 0.1

Table A.1.: Variable costs used for optimization

type of power plant e /MWh

Thermal Block 1 35
Thermal Block 2 47
Thermal Block 3 52
Thermal Block 4 104
Generation SPP & RPP 33
Wind Power Station 82

Table A.2.: Electrical production costs used to calculate the total costs in the system

Variable costs used for optimization in tests 5.22 until 5.27

variable costs for optimisation
e /MWh

wind power stations 0
solar power plants 0
run-of-river power plants 0
storage power plants 0
biomass power plants 0
nuclear power plants 7
brown coal power plants 16
hard coal power plants 25
gas and steam power plants 75
heating oil power plants 120

Table A.3.: Variable costs used for optimization
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Optimized variable costs and electrical production costs

optimized variable costs electrical production costs
e per year e per year

Test 1 122639985 301793568
Test 2 136839614 310738144
Test 3 122639986 301783568
Test 4 131548845 305566624
Test 5 130791096 304443936
Test 6 127435055 303057024
Test 7 127369558 303035168
Test 8 71757421 274641888
Test 9 80997443 285809664
Test 10 76534460 281667232
Test 11 39398848 306955698

Table A.4.: Variable costs and electrical production costs for each scenario
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Test 1

month load inflow storage LB storage UB min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2
MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 647383 148624 145286 145286 0 400000 247680 266400 237600
February 647383 148624 145286 145286 0 400000 247680 266400 237600
March 647383 148624 145286 145286 0 400000 247680 266400 237600
April 647383 148624 145286 145286 0 400000 247680 266400 237600
May 647383 148624 145286 145286 0 400000 247680 266400 237600
June 647383 148624 145286 145286 0 400000 247680 266400 237600
July 647383 148624 145286 145286 0 400000 247680 266400 237600
August 647383 148624 145286 145286 0 400000 247680 266400 237600
September 647383 148624 145286 145286 0 400000 247680 266400 237600
October 647383 148624 145286 145286 0 400000 247680 266400 237600
November 647383 148624 145286 145286 0 400000 247680 266400 237600
December 647383 148624 145286 145286 0 400000 247680 266400 237600
sum 7768596 1783488 1743432 1743432 0 4800000 2972160 3196800 2851200

Table A.5.: Input Test 1

month Thermal Block 1 Thermal Block 2 Generation SPP Storage
MWh MWh MWh MWh

January 266400 232359 148624 145286
February 266400 232359 148624 145286
March 266400 232359 148624 145286
April 266400 232359 148624 145286
May 266400 232359 148624 145286
June 266400 232359 148624 145286
July 266400 232359 148624 145286
August 266400 232359 148624 145286
September 266400 232359 148624 145286
October 266400 232359 148624 145286
November 266400 232359 148624 145286
December 266400 232359 148624 145286
sum 3196800 2788308 1783488 1743432

Table A.6.: Output Test 1
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Test 2

month load inflow storage LB storage UB min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 847483 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
February 706236 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
March 729777 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
April 623841 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
May 541447 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
June 470824 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
July 494365 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
August 470824 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
September 506135 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
October 659153 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
November 800400 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
December 918106 148624 145286 145286 0 400000 247680 266400 237600 180000 180000
sum 7768591 1783488 1743432 1743432 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.7.: Input Test 2

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Storage
MWh MWh MWh MWh MWh MWh

January 266400 237600 180000 14859 148624 145286
February 266400 237600 53612 0 148624 145286
March 266400 237600 77153 0 148624 145286
April 266400 208817 0 0 148624 145286
May 266400 126423 0 0 148624 145286
June 266400 55800 0 0 148624 145286
July 266400 79341 0 0 148624 145286
August 266400 55800 0 0 148624 145286
September 266400 91111 0 0 148624 145286
October 266400 237600 6529 0 148624 145286
November 266400 237600 147776 0 148624 145286
December 266400 237600 180000 85482 148624 145286
sum 3196800 2042892 645070 100341 1783488 1743432

Table A.8.: Output Test 2
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Test 3

month load inflow storage LB storage UB min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2
MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 647383 148624 145286 290572 0 400000 247680 266400 237600
February 647383 148624 145286 290572 0 400000 247680 266400 237600
March 647383 148624 145286 290572 0 400000 247680 266400 237600
April 647383 148624 145286 290572 0 400000 247680 266400 237600
May 647383 148624 145286 290572 0 400000 247680 266400 237600
June 647383 148624 145286 290572 0 400000 247680 266400 237600
July 647383 148624 145286 290572 0 400000 247680 266400 237600
August 647383 148624 145286 290572 0 400000 247680 266400 237600
September 647383 148624 145286 290572 0 400000 247680 266400 237600
October 647383 148624 145286 290572 0 400000 247680 266400 237600
November 647383 148624 145286 290572 0 400000 247680 266400 237600
December 647383 148624 145286 290572 0 400000 247680 266400 237600
sum 7768596 1783488 1743432 3486864 0 4800000 2972160 3196800 2851200

Table A.9.: Input Test 3

month Thermal Block 1 Thermal Block 2 Generation SPP Storage
MWh MWh MWh MWh

January 266400 237600 143383 150527
February 266400 237600 143383 155768
March 266400 237600 143383 161009
April 266400 237600 143383 166250
May 266400 237600 143383 171491
June 266400 237600 143383 176732
July 266400 237600 143383 181973
August 266400 237600 143383 187214
September 266400 237600 143383 192455
October 266400 237600 143383 197696
November 266400 237600 143383 202937
December 266400 174708 206275 145286
sum 3196800 2788308 1783488 2089338

Table A.10.: Output Test 3

114



A
.
A
p
p
en

d
ix

Test 4

month load inflow storage LB storage UB min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 847483 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
February 706236 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
March 729777 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
April 623841 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
May 541447 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
June 470824 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
July 494365 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
August 470824 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
September 506135 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
October 659153 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
November 800400 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
December 918106 148624 145286 290572 0 400000 247680 266400 237600 180000 180000
sum 7768591 1783488 1743432 3486864 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.11.: Input Test 4

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Storage
MWh MWh MWh MWh MWh MWh

January 266400 237600 180000 14859 148624 145286
February 266400 237600 130765 0 71471 222439
March 266400 237600 0 0 225777 145286
April 266400 208817 0 0 148624 145286
May 266400 126423 0 0 148624 145286
June 266400 201086 0 0 3338 290572
July 266400 79341 0 0 148624 290572
August 266400 55800 0 0 148624 290572
September 266400 91111 0 0 148624 290572
October 266400 237600 0 0 155153 284043
November 266400 237600 108075 0 188325 244342
December 266400 237600 166426 0 247680 145286
sum 3196800 2188178 585266 14859 1783488 2639542

Table A.12.: Output Test 4
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Test 5

month load inflow storage LB storage UB min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 647383 61348 145286 145286 0 400000 247680 266400 237600 180000 180000
February 647383 54775 145286 145286 0 400000 247680 266400 237600 180000 180000
March 647383 61348 145286 145286 0 400000 247680 266400 237600 180000 180000
April 647383 158849 145286 145286 0 400000 247680 266400 237600 180000 180000
May 647383 237725 145286 145286 0 400000 247680 266400 237600 180000 180000
June 647383 297978 145286 145286 0 400000 247680 266400 237600 180000 180000
July 647383 230057 145286 145286 0 400000 247680 266400 237600 180000 180000
August 647383 186236 145286 145286 0 400000 247680 266400 237600 180000 180000
September 647383 201573 145286 145286 0 400000 247680 266400 237600 180000 180000
October 647383 115028 145286 145286 0 400000 247680 266400 237600 180000 180000
November 647383 92023 145286 145286 0 400000 247680 266400 237600 180000 180000
December 647383 86545 145286 145286 0 400000 247680 266400 237600 180000 180000
sum 7768596 1783485 1743432 1743432 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.13.: Input Test 5

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Generation SPP Spillage SPP Storage
MWh MWh MWh MWh MWh MWh

January 266400 237600 82035 61348 0 145286
February 266400 237600 88608 54775 0 145286
March 266400 237600 82035 61348 0 145286
April 266400 222134 0 158849 0 145286
May 266400 143258 0 237725 0 145286
June 266400 133303 0 247680 50298 145286
July 266400 150926 0 230057 0 145286
August 266400 194747 0 186236 0 145286
September 266400 179410 0 201573 0 145286
October 266400 237600 28355 115028 0 145286
November 266400 237600 51360 92023 0 145286
December 266400 237600 56838 86545 0 145286
sum 3196800 2449378 389231 1733187 50298 1743432

Table A.14.: Output Test 5
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Test 6

month load inflow storage LB storage UB min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 647383 61348 145286 290572 0 400000 247680 266400 237600 180000 180000
February 647383 54775 145286 290572 0 400000 247680 266400 237600 180000 180000
March 647383 61348 145286 290572 0 400000 247680 266400 237600 180000 180000
April 647383 158849 145286 290572 0 400000 247680 266400 237600 180000 180000
May 647383 237725 145286 290572 0 400000 247680 266400 237600 180000 180000
June 647383 297978 145286 290572 0 400000 247680 266400 237600 180000 180000
July 647383 230057 145286 290572 0 400000 247680 266400 237600 180000 180000
August 647383 186236 145286 290572 0 400000 247680 266400 237600 180000 180000
September 647383 201573 145286 290572 0 400000 247680 266400 237600 180000 180000
October 647383 115028 145286 290572 0 400000 247680 266400 237600 180000 180000
November 647383 92023 145286 290572 0 400000 247680 266400 237600 180000 180000
December 647383 86545 145286 290572 0 400000 247680 266400 237600 180000 180000
sum 7768596 1783485 1743432 3486864 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.15.: Input Test 6

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Generation SPP Storage
MWh MWh MWh MWh MWh

January 266400 237600 143383 0 206634
February 266400 237600 109295 34088 227321
March 266400 237600 0 143383 145286
April 266400 222134 0 158849 145286
May 266400 151572 0 229411 153600
June 266400 133303 0 247680 203898
July 266400 237600 0 143383 290572
August 266400 136557 0 244426 232382
September 266400 237600 0 143383 290572
October 266400 237600 0 143383 262217
November 266400 237600 0 143383 210857
December 266400 228867 0 152116 145286
sum 3196800 2535633 252678 1783485 2513911

Table A.16.: Output Test 6

117



A
.
A
p
p
en

d
ix

Test 7

month load inflow storage LB storage UB min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 647383 61348 145286 290572 0 400000 247680 266400 237600 180000 180000
February 647383 54775 145286 290572 0 400000 247680 266400 237600 180000 180000
March 647383 61348 145286 290572 0 400000 247680 266400 237600 180000 180000
April 647383 158849 145286 290572 0 400000 247680 266400 237600 180000 180000
May 647383 237725 145286 290572 0 400000 247680 266400 237600 180000 180000
June 647383 297978 145286 290572 0 400000 247680 266400 237600 180000 180000
July 647383 230057 145286 290572 0 400000 247680 266400 237600 180000 180000
August 647383 186236 145286 290572 0 400000 247680 266400 237600 180000 180000
September 647383 201573 145286 290572 0 400000 247680 266400 237600 180000 180000
October 647383 115028 145286 290572 0 400000 247680 266400 237600 180000 180000
November 647383 92023 145286 290572 0 400000 247680 266400 237600 180000 180000
December 647383 86545 145286 290572 0 400000 247680 266400 237600 180000 180000
January 647383 61348 145286 290572 0 400000 247680 266400 237600 180000 180000
February 647383 54775 145286 290572 0 400000 247680 266400 237600 180000 180000
March 647383 61348 145286 290572 0 400000 247680 266400 237600 180000 180000
April 647383 158849 145286 290572 0 400000 247680 266400 237600 180000 180000
May 647383 237725 145286 290572 0 400000 247680 266400 237600 180000 180000
June 647383 297978 145286 290572 0 400000 247680 266400 237600 180000 180000
July 647383 230057 145286 290572 0 400000 247680 266400 237600 180000 180000
August 647383 186236 145286 290572 0 400000 247680 266400 237600 180000 180000
September 647383 201573 145286 290572 0 400000 247680 266400 237600 180000 180000
October 647383 115028 145286 290572 0 400000 247680 266400 237600 180000 180000
November 647383 92023 145286 290572 0 400000 247680 266400 237600 180000 180000
December 647383 86545 145286 290572 0 400000 247680 266400 237600 180000 180000
sum 15537192 3566970 3486864 6973728 0 9600000 5944320 6393600 5702400 4320000 4320000

Table A.17.: Input Test 7
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month Thermal Block 1 Thermal Block 2 Thermal Block 3 Generation SPP Storage
MWh MWh MWh MWh MWh

January 266400 237600 143383 0 206634
February 266400 237600 109295 34088 227321
March 266400 237600 0 143383 145286
April 266400 222134 0 158849 145286
May 266400 151572 0 229411 153600
June 266400 133303 0 247680 203898
July 266400 237600 0 143383 290572
August 266400 194747 0 186236 290572
September 266400 179410 0 201573 290572
October 266400 237600 0 143383 262217
November 266400 237600 0 143383 210857
December 266400 237600 136553 6830 290572
January 266400 237600 82035 61348 290572
February 266400 237600 25357 118026 227321
March 266400 237600 0 143383 145286
April 266400 222134 0 158849 145286
May 266400 151572 0 229411 153600
June 266400 133303 0 247680 203898
July 266400 237600 0 143383 290572
August 266400 136557 0 244426 232382
September 266400 237600 0 143383 290572
October 266400 237600 0 143383 262217
November 266400 237600 0 143383 210857
December 266400 228867 0 152116 145286
sum 6393600 5079999 496623 3566970 5315236

Table A.18.: Output Test 7
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Test 8

month load inflow SPP storage LB storage UB max.gen.SPP inflow RPP mx.gen.RPP min.spill. max.spill. max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 647383 61348 145286 290572 247680 92527 306000 0 400000 266400 237600 180000 180000
February 647383 54775 145286 290572 247680 100938 306000 0 400000 266400 237600 180000 180000
March 647383 61348 145286 290572 247680 233187 306000 0 400000 266400 237600 180000 180000
April 647383 158849 145286 290572 247680 283002 306000 0 400000 266400 237600 180000 180000
May 647383 237725 145286 290572 247680 248421 306000 0 400000 266400 237600 180000 180000
June 647383 297978 145286 290572 247680 306180 306000 0 400000 266400 237600 180000 180000
July 647383 230057 145286 290572 247680 281973 306000 0 400000 266400 237600 180000 180000
August 647383 186236 145286 290572 247680 184493 306000 0 400000 266400 237600 180000 180000
September 647383 201573 145286 290572 247680 147576 306000 0 400000 266400 237600 180000 180000
October 647383 115028 145286 290572 247680 127762 306000 0 400000 266400 237600 180000 180000
November 647383 92023 145286 290572 247680 123930 306000 0 400000 266400 237600 180000 180000
December 647383 86545 145286 290572 247680 130846 306000 0 400000 266400 237600 180000 180000
sum 7768596 1783485 1743432 3486864 2972160 2260835 3672000 0 4800000 3196800 2851200 2160000 2160000

Table A.19.: Input Test 8

month Thermal Block 1 Thermal Block 2 Generation SPP Storage Generation RPP Spillage RPP
MWh MWh MWh MWh MWh MWh

January 266400 237600 50856 155778 92527 0
February 266400 237600 42445 168108 100938 0
March 266400 63626 84170 145286 233187 0
April 205532 0 158849 145286 283002 0
May 161237 0 237725 145286 248421 0
June 93703 0 247680 195584 306000 180
July 230341 0 135069 290572 281973 0
August 266400 0 196490 280318 184493 0
September 266400 42088 191319 290572 147576 0
October 266400 65623 187598 218002 127762 0
November 266400 237600 19453 290572 123930 0
December 266400 18306 231831 145286 130846 0
sum 2822013 902443 1783485 2470650 2260655 180

Table A.20.: Output Test 8
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Test 9

month load inflow SPP storage LB storage UB max.gen.SPP inflow RPP mx.gen.RPP min.spill. max.spill. max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 847483 61348 145286 290572 247680 92527 306000 0 400000 266400 237600 180000 180000
February 706236 54775 145286 290572 247680 100938 306000 0 400000 266400 237600 180000 180000
March 729777 61348 145286 290572 247680 233187 306000 0 400000 266400 237600 180000 180000
April 623841 158849 145286 290572 247680 283002 306000 0 400000 266400 237600 180000 180000
May 541447 237725 145286 290572 247680 248421 306000 0 400000 266400 237600 180000 180000
June 470824 297978 145286 290572 247680 306180 306000 0 400000 266400 237600 180000 180000
July 494365 230057 145286 290572 247680 281973 306000 0 400000 266400 237600 180000 180000
August 470824 186236 145286 290572 247680 184493 306000 0 400000 266400 237600 180000 180000
September 506135 201573 145286 290572 247680 147576 306000 0 400000 266400 237600 180000 180000
October 659153 115028 145286 290572 247680 127762 306000 0 400000 266400 237600 180000 180000
November 800400 92023 145286 290572 247680 123930 306000 0 400000 266400 237600 180000 180000
December 918106 86545 145286 290572 247680 130846 306000 0 400000 266400 237600 180000 180000
sum 7768591 1783485 1743432 3486864 2972160 2260835 3672000 0 4800000 3196800 2851200 2160000 2160000

Table A.21.: Input Test 9

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Spillage SPP Storage Generation RPP Spillage RPP
MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 266400 237600 180000 9608 61348 0 145286 92527 0
February 266400 237600 46523 0 54775 0 145286 100938 0
March 266400 168842 0 0 61348 0 145286 233187 0
April 181990 0 0 0 158849 0 145286 283002 0
May 55301 0 0 0 237725 0 145286 248421 0
June 0 0 0 0 164824 5533 272907 306000 180
July 0 0 0 0 212392 0 290572 281973 0
August 38651 0 0 0 247680 0 229128 184493 0
September 218430 0 0 0 140129 0 290572 147576 0
October 266400 149963 0 0 115028 0 290572 127762 0
November 266400 237600 80447 0 92023 0 290572 123930 0
December 266400 237600 51429 0 231831 0 145286 130846 0
sum 2092772 1269205 358399 9608 1777952 5533 2536039 2260655 180

Table A.22.: Output Test 9
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Test 10

month load inflow SPP storage LB storage UB max.gen.SPP inflow RPP mx.gen.RPP min.spill. max.spill. max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 847483 61348 145286 2905720 247680 92527 306000 0 400000 266400 237600 180000 180000
February 706236 54775 145286 2905720 247680 100938 306000 0 400000 266400 237600 180000 180000
March 729777 61348 145286 2905720 247680 233187 306000 0 400000 266400 237600 180000 180000
April 623841 158849 145286 2905720 247680 283002 306000 0 400000 266400 237600 180000 180000
May 541447 237725 145286 2905720 247680 248421 306000 0 400000 266400 237600 180000 180000
June 470824 297978 145286 2905720 247680 306180 306000 0 400000 266400 237600 180000 180000
July 494365 230057 145286 2905720 247680 281973 306000 0 400000 266400 237600 180000 180000
August 470824 186236 145286 2905720 247680 184493 306000 0 400000 266400 237600 180000 180000
September 506135 201573 145286 2905720 247680 147576 306000 0 400000 266400 237600 180000 180000
October 659153 115028 145286 2905720 247680 127762 306000 0 400000 266400 237600 180000 180000
November 800400 92023 145286 2905720 247680 123930 306000 0 400000 266400 237600 180000 180000
December 918106 86545 145286 2905720 247680 130846 306000 0 400000 266400 237600 180000 180000
sum 7768591 1783485 1743432 34868640 2972160 2260835 3672000 0 4800000 3196800 2851200 2160000 2160000

Table A.23.: Input Test 10

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Storage Generation RPP Spillage RPP
MWh MWh MWh MWh MWh MWh MWh MWh

January 266400 237600 180000 9608 61348 145286 92527 0
February 266400 237600 46523 0 54775 145286 100938 0
March 266400 168842 0 0 61348 145286 233187 0
April 181990 0 0 0 158849 145286 283002 0
May 55301 0 0 0 237725 145286 248421 0
June 0 0 0 0 164824 278440 306000 180
July 22906 0 0 0 189486 319011 281973 0
August 266400 0 0 0 19931 485316 184493 0
September 266400 0 0 0 92159 594730 147576 0
October 266400 17311 0 0 247680 462078 127762 0
November 266400 162390 0 0 247680 306421 123930 0
December 266400 237600 35580 0 247680 145286 130846 0
sum 2391397 1061343 262103 9608 1783485 3317712 2260655 180

Table A.24.: Output Test 10
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Test 11

month load inflow SPP storage LB storage UB max.gen.SPP inflow RPP mx.gen.RPP min.spill. max.spill. max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4 wind strength max.wind.gen
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 847483 61348 145286 2905720 247680 92527 306000 0 400000 266400 237600 180000 180000 197465 300000
February 706236 54775 145286 2905720 247680 100938 306000 0 400000 266400 237600 180000 180000 224357 300000
March 729777 61348 145286 2905720 247680 233187 306000 0 400000 266400 237600 180000 180000 150302 300000
April 623841 158849 145286 2905720 247680 283002 306000 0 400000 266400 237600 180000 180000 210625 300000
May 541447 237725 145286 2905720 247680 248421 306000 0 400000 266400 237600 180000 180000 161295 300000
June 470824 297978 145286 2905720 247680 306180 306000 0 400000 266400 237600 180000 180000 238674 300000
July 494365 230057 145286 2905720 247680 281973 306000 0 400000 266400 237600 180000 180000 150302 300000
August 470824 186236 145286 2905720 247680 184493 306000 0 400000 266400 237600 180000 180000 79736 300000
September 506135 201573 145286 2905720 247680 147576 306000 0 400000 266400 237600 180000 180000 102760 300000
October 659153 115028 145286 2905720 247680 127762 306000 0 400000 266400 237600 180000 180000 161295 300000
November 800400 92023 145286 2905720 247680 123930 306000 0 400000 266400 237600 180000 180000 86980 300000
December 918106 86545 145286 2905720 247680 130846 306000 0 400000 266400 237600 180000 180000 172812 300000
sum 7768591 1783485 1743432 34868640 2972160 2260835 3672000 0 4800000 3196800 2851200 2160000 2160000 1936603 3600000

Table A.25.: Input Test 11

month Thermal Block 1 Thermal Block 2 Generation WPP Generation SPP Storage Generation RPP Spillage RPP
MWh MWh MWh MWh MWh MWh MWh

January 266400 237600 197465 53491 153143 92527 0
February 266400 70449 224357 44092 163826 100938 0
March 266400 0 150302 79888 145286 233187 0
April 0 0 210625 130214 173921 283002 0
May 0 0 161295 131731 279915 248421 0
June 0 0 238674 0 577893 232150 74030
July 0 0 150302 62090 745860 281973 0
August 0 0 79736 206595 725501 184493 0
September 8119 0 102760 247680 679394 147576 0
October 122416 0 161295 247680 546742 127762 0
November 266400 75410 86980 247680 391085 123930 0
December 266400 100368 172812 247680 229950 130846 0
sum 1462535 483827 1936603 1698821 4812516 2186805 74030

Table A.26.: Output Test 11
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Test 5.3

month load inflow storage LB storage UB initial storage min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 145286 484286 174344 0 400000 247680 266400 237600 180000 180000
February 766236 64775 145286 484286 0 400000 247680 266400 237600 180000 180000
March 759777 61348 145286 484286 0 400000 247680 266400 237600 180000 180000
April 623841 158849 145286 484286 0 400000 247680 266400 237600 180000 180000
May 541447 237725 145286 484286 0 400000 247680 266400 237600 180000 180000
June 470824 297978 145286 484286 0 400000 247680 266400 237600 180000 180000
July 494365 230057 145286 484286 0 400000 247680 266400 237600 180000 180000
August 470824 186236 145286 484286 0 400000 247680 266400 237600 180000 180000
September 506135 201573 145286 484286 0 400000 247680 266400 237600 180000 180000
October 659153 115028 145286 484286 0 400000 247680 266400 237600 180000 180000
November 800400 92023 145286 484286 0 400000 247680 266400 237600 180000 180000
December 918106 86545 145286 484286 0 400000 247680 266400 237600 180000 180000
sum 7758591 1793485 1743432 5811432 174344 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.27.: Input for test 5.3

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 4967 58516
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 0 75777
April 623841 158849 266400 204038 0 0 153403
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 204424 0 0 0
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 0 0 0 239735
October 659153 115028 266400 145073 0 0 247680
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1979135 755146 4967 1822543

Table A.28.: Optimization results for test 5.3, scenario 12

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 4967 70810
April 623841 158849 266400 237600 0 0 119841
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 0 0 0 204424
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 78334 0 0 161401
October 659153 115028 266400 237600 0 0 155153
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166427 0 247678
sum 7758591 1793485 3196800 1979134 755147 4967 1822543

Table A.29.: Optimization results for test 5.3, scenario 13
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Tests 5.4

month load inflow storage LB storage UB initial storage min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 145286 484286 174344 0 400000 247680 266400 237600 180000 180000
February 766236 64775 145286 484286 0 400000 247680 266400 237600 180000 180000
March 759777 61348 145286 484286 0 400000 247680 266400 237600 180000 180000
April 623841 158849 145286 484286 0 400000 247680 266400 237600 180000 180000
May 541447 237725 145286 484286 0 400000 247680 266400 237600 180000 180000
June 470824 297978 145286 484286 0 400000 247680 266400 237600 180000 180000
July 494365 230057 145286 484286 0 400000 247680 266400 237600 180000 180000
August 470824 186236 145286 484286 0 400000 247680 266400 237600 180000 180000
September 506135 201573 145286 484286 0 400000 247680 266400 237600 180000 180000
October 659153 115028 145286 484286 0 400000 247680 266400 237600 180000 180000
November 800400 92023 145286 484286 0 400000 247680 266400 237600 180000 180000
December 918106 86545 145286 484286 0 400000 247680 266400 237600 180000 180000
sum 7758591 1793485 1743432 5811432 174344 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.30.: Input for test 5.4, scenario 1 (average load, average inflow)

month load inflow storage LB storage UB initial storage min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 145286 484286 174344 0 400000 247680 266400 237600 180000 180000
February 833345 45352 145286 484286 0 400000 247680 266400 237600 180000 180000
March 844352 52952 145286 484286 0 400000 247680 266400 237600 180000 180000
April 652934 95801 145286 484286 0 400000 247680 266400 237600 180000 180000
May 556932 213282 145286 484286 0 400000 247680 266400 237600 180000 180000
June 504325 235895 145286 484286 0 400000 247680 266400 237600 180000 180000
July 512304 213282 145286 484286 0 400000 247680 266400 237600 180000 180000
August 464532 230638 145286 484286 0 400000 247680 266400 237600 180000 180000
September 546774 210125 145286 484286 0 400000 247680 266400 237600 180000 180000
October 734234 123189 145286 484286 0 400000 247680 266400 237600 180000 180000
November 836454 99674 145286 484286 0 400000 247680 266400 237600 180000 180000
December 934546 53997 145286 484286 0 400000 247680 266400 237600 180000 180000
sum 8168215 1635535 1743432 5811432 174344 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.31.: Input for test 5.4, scenario 2 (higher load, lower inflow)

month load inflow storage LB storage UB initial storage min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 145286 484286 174344 0 400000 247680 266400 237600 180000 180000
February 742345 75571 145286 484286 0 400000 247680 266400 237600 180000 180000
March 833535 59311 145286 484286 0 400000 247680 266400 237600 180000 180000
April 612435 159385 145286 484286 0 400000 247680 266400 237600 180000 180000
May 545824 153889 145286 484286 0 400000 247680 266400 237600 180000 180000
June 464584 228086 145286 484286 0 400000 247680 266400 237600 180000 180000
July 484952 239078 145286 484286 0 400000 247680 266400 237600 180000 180000
August 454694 234956 145286 484286 0 400000 247680 266400 237600 180000 180000
September 495455 303656 145286 484286 0 400000 247680 266400 237600 180000 180000
October 723594 200373 145286 484286 0 400000 247680 266400 237600 180000 180000
November 812349 129688 145286 484286 0 400000 247680 266400 237600 180000 180000
December 977106 99767 145286 484286 0 400000 247680 266400 237600 180000 180000
sum 7894356 1945108 1743432 5811432 174344 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.32.: Input for test 5.4, scenario 3 (higher load, higher inflow)
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 4967 58516
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 0 75777
April 623841 158849 266400 204038 0 0 153403
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 204424 0 0 0
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 0 0 0 239735
October 659153 115028 266400 145073 0 0 247680
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1979135 755146 4967 1822543

Table A.33.: Deterministic optimization for scenario 1 (average load, average inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 8168215 61348 266400 237600 180000 63483 0
February 7420732 45352 266400 237600 180000 120987 28358
March 6587387 52952 266400 237600 180000 0 160352
April 5743035 95801 266400 237600 53133 0 95801
May 5090101 213282 266400 79280 0 0 211252
June 4533169 235895 266400 0 0 0 237925
July 4028844 213282 266400 100813 0 0 145091
August 3516540 230638 266400 198132 0 0 0
September 3052008 210125 266400 237600 0 0 42774
October 2505234 123189 266400 220154 0 0 247680
November 1771000 99674 266400 237600 84774 0 247680
December 934546 53997 266400 237600 180000 2866 247680
sum 8168215 1635535 3196800 2261579 857907 187336 1664593

Table A.34.: Deterministic optimization for scenario 2 (higher load, lower inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 46075 17408
February 742345 75571 266400 237600 180000 0 58345
March 833535 59311 266400 237600 180000 0 149535
April 612435 159385 266400 237600 0 0 108435
May 545824 153889 266400 188020 0 0 91404
June 464584 228086 266400 0 0 0 198184
July 484952 239078 266400 0 0 0 218552
August 454694 234956 266400 0 0 0 188294
September 495455 303656 266400 0 0 0 229055
October 723594 200373 266400 237600 0 0 219594
November 812349 129688 266400 237600 60669 0 247680
December 977106 99767 266400 237600 180000 45426 247680
sum 7894356 1945108 3196800 1851220 780669 91501 1974166

Table A.35.: Deterministic optimization for scenario 3 (higher load, higher inflow)
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 766236 64775 266400 237600 180000 4967 77269
March 759777 61348 266400 237600 180000 0 75777
April 623841 158849 266400 204038 0 0 153403
May 541447 237725 266400 237600 0 0 37447
June 470824 297978 266400 204424 0 0 0
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 0 0 0 204424
September 506135 201573 266400 0 0 0 239735
October 659153 115028 266400 145073 0 0 247680
November 800400 92023 266400 237600 48720 0 247680
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1979135 755146 4967 1822543

Table A.36.: Stochastic optimization for scenario 1 (average load, average inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 833345 45352 266400 237600 180000 149345 0
March 844352 52952 266400 237600 180000 35125 125227
April 652934 95801 266400 237600 53133 0 95801
May 556932 213282 266400 77250 0 0 213282
June 504325 235895 266400 70149 0 0 167776
July 512304 213282 266400 237600 0 0 8304
August 464532 230638 266400 198132 0 0 0
September 546774 210125 266400 32694 0 0 247680
October 734234 123189 266400 220154 0 0 247680
November 836454 99674 266400 237600 84774 0 247680
December 934546 53997 266400 237600 180000 2866 247680
sum 8168215 1635535 3196800 2261579 857907 187336 1664593

Table A.37.: Stochastic optimization for scenario 2 (higher load, lower inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 742345 75571 266400 237600 180000 46075 12270
March 833535 59311 266400 237600 180000 0 149535
April 612435 159385 266400 186650 0 0 159385
May 545824 153889 266400 125535 0 0 153889
June 464584 228086 266400 141521 0 0 56663
July 484952 239078 266400 0 0 0 218552
August 454694 234956 266400 0 0 0 188294
September 495455 303656 266400 0 0 0 229055
October 723594 200373 266400 209514 0 0 247680
November 812349 129688 266400 237600 60669 0 247680
December 977106 99767 266400 237600 180000 45426 247680
sum 7894356 1945108 3196800 1851220 780669 91501 1974166

Table A.38.: Stochastic optimization for scenario 3 (higher load, higher inflow)
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month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 766236 64775 266400 237600 180000 0 82236
March 759777 61348 266400 237600 180000 4967 70810
April 623841 158849 266400 237600 0 0 119841
May 541447 237725 266400 27367 0 0 247680
June 470824 297978 266400 0 0 0 204424
July 494365 230057 266400 0 0 0 227965
August 470824 186236 266400 168437 0 0 35987
September 506135 201573 266400 35363 0 0 204372
October 659153 115028 266400 237600 12200 0 142953
November 800400 92023 266400 237600 124415 0 171985
December 918106 86545 266400 237600 166426 0 247680
sum 7758591 1793485 3196800 1894367 843042 4967 1819415

Table A.39.: SDDP optimization for scenario 1 (average load, average inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 833345 45352 266400 237600 180000 77070 72275
March 844352 52952 266400 237600 180000 107400 52952
April 652934 95801 266400 237600 53133 0 95801
May 556932 213282 266400 77250 0 0 213282
June 504325 235895 266400 2030 0 0 235895
July 512304 213282 266400 32622 0 0 213282
August 464532 230638 266400 198132 0 0 0
September 546774 210125 266400 111760 0 0 168614
October 734234 123189 266400 237600 79120 0 151114
November 836454 99674 266400 237600 152818 0 179636
December 934546 53997 266400 237600 180000 32286 218260
sum 8168215 1635535 3196800 2084994 1005072 216756 1664593

Table A.40.: SDDP optimization for scenario 2 (higher load, lower inflow)

month load inflow thermal 1 thermal 2 thermal 3 thermal 4 storage power plant
MWh MWh MWh MWh MWh MWh MWh

January 747483 61348 266400 237600 180000 0 63483
February 742345 75571 266400 237600 180000 0 58345
March 833535 59311 266400 237600 180000 46075 103460
April 612435 159385 266400 237600 0 0 108435
May 545824 153889 266400 74585 0 0 204839
June 464584 228086 266400 0 0 0 198184
July 484952 239078 266400 0 0 0 218552
August 454694 234956 266400 177858 0 0 10436
September 495455 303656 247775 0 0 0 247680
October 723594 200373 266400 209514 0 0 247680
November 812349 129688 266400 237600 60669 0 247680
December 977106 99767 266400 237600 180000 45426 247680
sum 7894356 1945108 3178175 1887557 780669 91501 1956454

Table A.41.: SDDP optimization for scenario 3 (higher load, higher inflow)
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Test 5.5

month load inflow storage LB storage UB initial storage min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 747483 53346 145286 290572 145286 0 400000 247680 266400 237600 180000 180000
February 786236 67631 145286 290572 0 400000 247680 266400 237600 180000 180000
March 729777 53346 145286 290572 0 400000 247680 266400 237600 180000 180000
April 623842 138129 145286 290572 0 400000 247680 266400 237600 180000 180000
May 541448 206718 145286 290572 0 400000 247680 266400 237600 180000 180000
June 470824 259111 145286 290572 0 400000 247680 266400 237600 180000 180000
July 494365 200049 145286 290572 0 400000 247680 266400 237600 180000 180000
August 470824 161945 145286 290572 0 400000 247680 266400 237600 180000 180000
September 506136 175281 145286 290572 0 400000 247680 266400 237600 180000 180000
October 659154 100025 145286 290572 0 400000 247680 266400 237600 180000 180000
November 800401 80020 145286 290572 0 400000 247680 266400 237600 180000 180000
December 918107 75257 145286 290572 0 400000 247680 266400 237600 180000 180000
sum 7748597 1570858 1743432 3486864 145286 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.42.: Input - normal year

month load inflow storage LB storage UB initial storage min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 747483 53346 145286 290572 145286 0 400000 247680 266400 237600 180000 180000
February 786236 43825 145286 290572 0 400000 247680 266400 237600 180000 180000
March 729777 62399 145286 290572 0 400000 247680 266400 237600 180000 180000
April 623842 104788 145286 290572 0 400000 247680 266400 237600 180000 180000
May 541448 167660 145286 290572 0 400000 247680 266400 237600 180000 180000
June 470824 170518 145286 290572 0 400000 247680 266400 237600 180000 180000
July 494365 167660 145286 290572 0 400000 247680 266400 237600 180000 180000
August 470824 142892 145286 290572 0 400000 247680 266400 237600 180000 180000
September 506136 87641 145286 290572 0 400000 247680 266400 237600 180000 180000
October 659154 101930 145286 290572 0 400000 247680 266400 237600 180000 180000
November 800401 76209 145286 290572 0 400000 247680 266400 237600 180000 180000
December 918107 59062 145286 290572 0 400000 247680 266400 237600 180000 180000
sum 7748597 1237930 1743432 3486864 145286 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.43.: Input - dry year

month load inflow storage LB storage UB initial storage min.spill. max.spill. max.gen.SPP max.th.gen.1 max.th.gen.2 max.th.gen.3 max.th.gen.4
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

January 747483 53346 145286 290572 145286 0 400000 247680 266400 237600 180000 180000
February 786236 84783 145286 290572 0 400000 247680 266400 237600 180000 180000
March 729777 71446 145286 290572 0 400000 247680 266400 237600 180000 180000
April 623842 100025 145286 290572 0 400000 247680 266400 237600 180000 180000
May 541448 230528 145286 290572 0 400000 247680 266400 237600 180000 180000
June 470824 245291 145286 290572 0 400000 247680 266400 237600 180000 180000
July 494365 284832 145286 290572 0 400000 247680 266400 237600 180000 180000
August 470824 274353 145286 290572 0 400000 247680 266400 237600 180000 180000
September 506136 189570 145286 290572 0 400000 247680 266400 237600 180000 180000
October 659154 173376 145286 290572 0 400000 247680 266400 237600 180000 180000
November 800401 84783 145286 290572 0 400000 247680 266400 237600 180000 180000
December 918107 74304 145286 290572 0 400000 247680 266400 237600 180000 180000
sum 7748597 1866637 1743432 3486864 145286 0 4800000 2972160 3196800 2851200 2160000 2160000

Table A.44.: Input - wet year
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month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Storage
MWh MWh MWh MWh MWh MWh

January 266400 237600 200000 0 43483 155149
February 266400 237600 200000 4742 77494 145286
March 266400 237600 172431 0 53346 145286
April 266400 237600 0 0 119842 163573
May 266400 140642 0 0 134406 235885
June 266400 0 0 0 204424 290572
July 266400 27916 0 0 200049 290572
August 266400 42479 0 0 161945 290572
September 266400 64455 0 0 175281 290572
October 266400 237600 55129 0 100025 290572
November 266400 237600 200000 9945 86456 284136
December 266400 237600 200000 0 214107 145286
sum 3196800 1938692 1027560 14687 1570858 2727461

Table A.45.: Output - stochastic optimization, normal year

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Storage
MWh MWh MWh MWh MWh MWh

January 266400 237600 200000 0 43483 155149
February 266400 237600 200000 28548 53688 145286
March 266400 237600 178432 0 47345 160340
April 266400 237600 0 0 119842 145286
May 266400 141294 0 0 133754 179192
June 266400 0 0 0 204424 145286
July 266400 60305 0 0 167660 145286
August 266400 121313 0 0 83111 205067
September 266400 237600 0 0 2136 290572
October 266400 237600 53224 0 101930 290572
November 266400 237600 200000 20192 76209 290572
December 266400 237600 200000 9759 204348 145286
sum 3196800 2223712 1031656 58499 1237930 2297894

Table A.46.: Output - stochastic optimization, dry year

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Storage
MWh MWh MWh MWh MWh MWh

January 266400 237600 200000 0 43483 155149
February 266400 237600 200000 0 82236 157696
March 266400 237600 161738 0 64039 165103
April 266400 237600 0 0 119842 145286
May 266400 44520 0 0 230528 145286
June 244023 0 0 0 226801 163776
July 266400 0 0 0 227965 220643
August 266400 0 0 0 204424 290572
September 266400 50166 0 0 189570 290572
October 266400 219378 0 0 173376 290572
November 266400 237600 200000 6135 90266 285089
December 266400 237600 200000 0 214107 145286
sum 3174423 1739664 961738 6135 1866637 2455030

Table A.47.: Output - stochastic optimization, wet year

month Thermal Block 1 Thermal Block 2 Thermal Block 3 Thermal Block 4 Generation SPP Storage
MWh MWh MWh MWh MWh MWh

January 266400 237600 200000 4742 38741 159891
February 266400 237600 200000 0 82236 145286
March 266400 237600 172431 0 53346 145286
April 266400 237600 0 0 119842 163573
May 266400 140642 0 0 134406 235885
June 266400 0 0 0 204424 290572
July 266400 0 0 0 227965 262656
August 266400 70395 0 0 134029 290572
September 266400 64455 0 0 175281 290572
October 266400 237600 55129 0 100025 290572
November 266400 237600 200000 9945 86456 284136
December 266400 237600 200000 0 214107 145286
sum 3196800 1938692 1027560 14687 1570858 2704287

Table A.48.: Output - deterministic optimization, normal year
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Test 5.22

load biomass PP nuclear power PP brown coal PP hard coal PP gas and steam PP heating oil PP run-of-river PP run-of-river PP wind PP wind PP storage PP storage PP
max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. inflow max.gen. wind strength max.gen. volume

MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh
00:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 1750 3327 40480
00:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 1825 3327
01:00 18646 1210 4730 5900 7000 5680 1510 1300 1165 14500 1900 3327
01:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 1950 3327
02:00 17798 1210 4730 5900 7000 5680 1510 1300 1165 14500 1925 3327
02:30 17516 1210 4730 5900 7000 5680 1510 1300 1165 14500 1925 3327
03:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 1875 3327
03:30 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 1825 3327
04:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 1775 3327
04:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 1725 3327
05:00 18928 1210 4730 5900 7000 5680 1510 1300 1165 14500 1750 3327
05:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 1575 3327
06:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 1550 3327
06:30 20906 1210 4730 5900 7000 5680 1510 1300 1165 14500 1525 3327
07:00 22036 1210 4730 5900 7000 5680 1510 1300 1165 14500 1475 3327
07:30 23166 1210 4730 5900 7000 5680 1510 1300 1165 14500 1375 3327
08:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 1200 3327
08:30 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 1025 3327
09:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 1100 3327
09:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 1175 3327
10:00 27969 1210 4730 5900 7000 5680 1510 1300 1165 14500 1275 3327
10:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 1450 3327
11:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 1550 3327
11:30 28534 1210 4730 5900 7000 5680 1510 1300 1165 14500 1750 3327
12:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 1775 3327
12:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 1850 3327
13:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 1925 3327
13:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 1975 3327
14:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 2125 3327
14:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 2200 3327
15:00 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 2375 3327
15:30 25991 1210 4730 5900 7000 5680 1510 1300 1165 14500 2250 3327
16:00 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 2300 3327
16:30 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 2200 3327
17:00 24296 1210 4730 5900 7000 5680 1510 1300 1165 14500 2150 3327
17:30 24578 1210 4730 5900 7000 5680 1510 1300 1165 14500 2050 3327
18:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 1800 3327
18:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 1550 3327
19:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 1200 3327
19:30 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 875 3327
20:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 725 3327
20:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 600 3327
21:00 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 600 3327
21:30 23731 1210 4730 5900 7000 5680 1510 1300 1165 14500 725 3327
22:00 23448 1210 4730 5900 7000 5680 1510 1300 1165 14500 925 3327
22:30 22318 1210 4730 5900 7000 5680 1510 1300 1165 14500 1000 3327
23:00 21188 1210 4730 5900 7000 5680 1510 1300 1165 14500 1100 3327
23:30 20623 1210 4730 5900 7000 5680 1510 1300 1165 14500 1250 3327
sum 1130324 58080 227040 283200 336000 272640 72480 62400 55920 696000 75775 159696 40480

Table A.49.: Input - scenario 1
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run-on-river wind biomass nuclear power brown coal hard coal gas and steam heating oil storage power plant
MWh MWh MWh MWh MWh MWh MWh MWh MWh

00:00 1165 1750 1210 4730 5900 5021 0 0 0
00:30 1165 1825 1210 4730 5900 4381 0 0 0
01:00 1165 1900 1210 4730 5900 3741 0 0 0
01:30 1165 1950 1210 4730 5900 3126 0 0 0
02:00 1165 1925 1210 4730 5900 2868 0 0 0
02:30 1165 1925 1210 4730 5900 2586 0 0 0
03:00 1165 1875 1210 4730 5900 2353 0 0 0
03:30 1165 1825 1210 4730 5900 2403 0 0 0
04:00 1165 1775 1210 4730 5900 2453 0 0 0
04:30 1165 1725 1210 4730 5900 3351 0 0 0
05:00 1165 1750 1210 4730 5900 4173 0 0 0
05:30 1165 1575 1210 4730 5900 4631 0 0 0
06:00 1165 1550 1210 4730 5900 5221 0 0 0
06:30 1165 1525 1210 4730 5900 6376 0 0 0
07:00 1165 1475 1210 4730 5900 7000 556 0 0
07:30 1165 1375 1210 4730 5900 7000 1786 0 0
08:00 1165 1200 1210 4730 5900 7000 5068 0 0
08:30 1165 1025 1210 4730 5900 7000 2199 0 3327
09:00 1165 1100 1210 4730 5900 7000 2406 0 3327
09:30 1165 1175 1210 4730 5900 7000 4246 0 0
10:00 1165 1275 1210 4730 5900 7000 5037 0 1652
10:30 1165 1450 1210 4730 5900 7000 5680 0 551
11:00 1165 1550 1210 4730 5900 7000 5680 0 169
11:30 1165 1750 1210 4730 5900 7000 5680 0 1099
12:00 1165 1775 1210 4730 5900 7000 5341 0 0
12:30 1165 1850 1210 4730 5900 7000 5680 0 151
13:00 1165 1925 1210 4730 5900 7000 4908 0 0
13:30 1165 1975 1210 4730 5900 7000 5141 0 0
14:00 1165 2125 1210 4730 5900 7000 5274 0 0
14:30 1165 2200 1210 4730 5900 7000 1589 0 3327
15:00 1165 2375 1210 4730 5900 7000 4176 0 0
15:30 1165 2250 1210 4730 5900 7000 3736 0 0
16:00 1165 2300 1210 4730 5900 7000 3403 0 0
16:30 1165 2200 1210 4730 5900 7000 1808 0 0
17:00 1165 2150 1210 4730 5900 7000 2141 0 0
17:30 1165 2050 1210 4730 5900 7000 2523 0 0
18:00 1165 1800 1210 4730 5900 7000 2272 0 3327
18:30 1165 1550 1210 4730 5900 7000 2239 0 3327
19:00 1165 1200 1210 4730 5900 7000 1741 0 3327
19:30 1165 875 1210 4730 5900 7000 4828 0 0
20:00 1165 725 1210 4730 5900 7000 3064 0 3327
20:30 1165 600 1210 4730 5900 7000 1494 0 3327
21:00 1165 600 1210 4730 5900 7000 81 0 3327
21:30 1165 725 1210 4730 5900 7000 0 0 3001
22:00 1165 925 1210 4730 5900 7000 0 0 2518
22:30 1165 1000 1210 4730 5900 7000 0 0 1313
23:00 1165 1100 1210 4730 5900 7000 0 0 83
23:30 1165 1250 1210 4730 5900 6368 0 0 0
sum 55920 75775 58080 227040 283200 290052 99777 0 40480

Table A.50.: Output Scenario 1
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Test 5.23

load biomass PP nuclear power PP brown coal PP hard coal PP gas and steam PP heating oil PP run-of-river PP run-of-river PP wind PP wind PP storage PP storage PP
max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. inflow max.gen. wind strength max.gen. volume

MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh
00:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 14000 3327 40480
00:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 14075 3327
01:00 18646 1210 4730 5900 7000 5680 1510 1300 1165 14500 14150 3327
01:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 14200 3327
02:00 17798 1210 4730 5900 7000 5680 1510 1300 1165 14500 14175 3327
02:30 17516 1210 4730 5900 7000 5680 1510 1300 1165 14500 14175 3327
03:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 14125 3327
03:30 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 14075 3327
04:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 14025 3327
04:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 13975 3327
05:00 18928 1210 4730 5900 7000 5680 1510 1300 1165 14500 14000 3327
05:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 13825 3327
06:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 13800 3327
06:30 20906 1210 4730 5900 7000 5680 1510 1300 1165 14500 13775 3327
07:00 22036 1210 4730 5900 7000 5680 1510 1300 1165 14500 13425 3327
07:30 23166 1210 4730 5900 7000 5680 1510 1300 1165 14500 13175 3327
08:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 13250 3327
08:30 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 13075 3327
09:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 12975 3327
09:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 13175 3327
10:00 27969 1210 4730 5900 7000 5680 1510 1300 1165 14500 13525 3327
10:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 13700 3327
11:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 13800 3327
11:30 28534 1210 4730 5900 7000 5680 1510 1300 1165 14500 14000 3327
12:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 14025 3327
12:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 14100 3327
13:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 14175 3327
13:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 14225 3327
14:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 14375 3327
14:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 14450 3327
15:00 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 14625 3327
15:30 25991 1210 4730 5900 7000 5680 1510 1300 1165 14500 14500 3327
16:00 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 14550 3327
16:30 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 14450 3327
17:00 24296 1210 4730 5900 7000 5680 1510 1300 1165 14500 14400 3327
17:30 24578 1210 4730 5900 7000 5680 1510 1300 1165 14500 14300 3327
18:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 14050 3327
18:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 13800 3327
19:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 13450 3327
19:30 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 13125 3327
20:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 12975 3327
20:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 12850 3327
21:00 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 12850 3327
21:30 23731 1210 4730 5900 7000 5680 1510 1300 1165 14500 12975 3327
22:00 23448 1210 4730 5900 7000 5680 1510 1300 1165 14500 13175 3327
22:30 22318 1210 4730 5900 7000 5680 1510 1300 1165 14500 13250 3327
23:00 21188 1210 4730 5900 7000 5680 1510 1300 1165 14500 13350 3327
23:30 20623 1210 4730 5900 7000 5680 1510 1300 1165 14500 13500 3327
sum 1130324 58080 227040 283200 336000 272640 72480 62400 55920 696000 662000 159696 40480

Table A.51.: Input - scenario 2
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run-on-river wind biomass nuclear power brown coal hard coal gas and steam heating oil storage power plant
MWh MWh MWh MWh MWh MWh MWh MWh MWh

00:00 1165 14000 1210 3401 0 0 0 0 0
00:30 1165 14075 1210 2761 0 0 0 0 0
01:00 1165 14150 1210 2121 0 0 0 0 0
01:30 1165 14200 1210 1506 0 0 0 0 0
02:00 1165 14175 1210 1248 0 0 0 0 0
02:30 1165 14175 1210 966 0 0 0 0 0
03:00 1165 14125 1210 733 0 0 0 0 0
03:30 1165 14075 1210 783 0 0 0 0 0
04:00 1165 14025 1210 833 0 0 0 0 0
04:30 1165 13975 1210 1731 0 0 0 0 0
05:00 1165 14000 1210 2553 0 0 0 0 0
05:30 1165 13825 1210 3011 0 0 0 0 0
06:00 1165 13800 1210 3601 0 0 0 0 0
06:30 1165 13775 1210 4730 26 0 0 0 0
07:00 1165 13425 1210 4730 1506 0 0 0 0
07:30 1165 13175 1210 4730 2886 0 0 0 0
08:00 1165 13250 1210 4730 5900 0 0 0 18
08:30 1165 13075 1210 4730 3049 0 0 0 3327
09:00 1165 12975 1210 4730 3431 0 0 0 3327
09:30 1165 13175 1210 4730 5146 0 0 0 0
10:00 1165 13525 1210 4730 5756 0 0 0 1583
10:30 1165 13700 1210 4730 5900 0 0 0 981
11:00 1165 13800 1210 4730 5900 0 0 0 599
11:30 1165 14000 1210 4730 5900 0 0 0 1529
12:00 1165 14025 1210 4730 5900 0 0 0 91
12:30 1165 14100 1210 4730 5900 0 0 0 581
13:00 1165 14175 1210 4730 5558 0 0 0 0
13:30 1165 14225 1210 4730 5791 0 0 0 0
14:00 1165 14375 1210 4730 5900 0 0 0 24
14:30 1165 14450 1210 4730 5566 0 0 0 0
15:00 1165 14625 1210 4730 4826 0 0 0 0
15:30 1165 14500 1210 4730 4386 0 0 0 0
16:00 1165 14550 1210 4730 4053 0 0 0 0
16:30 1165 14450 1210 4730 2458 0 0 0 0
17:00 1165 14400 1210 4730 2791 0 0 0 0
17:30 1165 14300 1210 4730 3173 0 0 0 0
18:00 1165 14050 1210 4730 2922 0 0 0 3327
18:30 1165 13800 1210 4730 2889 0 0 0 3327
19:00 1165 13450 1210 4730 2391 0 0 0 3327
19:30 1165 13125 1210 4730 5478 0 0 0 0
20:00 1165 12975 1210 4730 3714 0 0 0 3327
20:30 1165 12850 1210 4730 2144 0 0 0 3327
21:00 1165 12850 1210 4730 731 0 0 0 3327
21:30 1165 12975 1210 4730 324 0 0 0 3327
22:00 1165 13175 1210 4730 0 0 0 0 3168
22:30 1165 13250 1210 4730 0 0 0 0 1963
23:00 1165 13350 1210 4730 733 0 0 0 0
23:30 1165 13500 1210 4730 18 0 0 0 0
sum 55920 662000 58080 190798 123046 0 0 0 40480

Table A.52.: Output - scenario 2
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Test 5.24

load biomass PP nuclear power PP brown coal PP hard coal PP gas and steam PP heating oil PP run-of-river PP run-of-river PP wind PP wind PP storage PP storag PP
max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. inflow max.gen. wind strength max.gen. volume

MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh
00:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 14000 3327 40480
00:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 14075 3327
01:00 18646 1210 4730 5900 7000 5680 1510 1300 1165 14500 14150 3327
01:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 14200 3327
02:00 17798 1210 4730 5900 7000 5680 1510 1300 1165 14500 14175 3327
02:30 17516 1210 4730 5900 7000 5680 1510 1300 1165 14500 14175 3327
03:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 14125 3327
03:30 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 14075 3327
04:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 14025 3327
04:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 13975 3327
05:00 18928 1210 4730 5900 7000 5680 1510 1300 1165 14500 14000 3327
05:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 13825 3327
06:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 13800 3327
06:30 20906 1210 4730 5900 7000 5680 1510 1300 1165 14500 13775 3327
07:00 22036 1210 4730 5900 7000 5680 1510 1300 1165 14500 13425 3327
07:30 23166 1210 4730 5900 7000 5680 1510 1300 1165 14500 13175 3327
08:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 13250 3327
08:30 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 13075 3327
09:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 12975 3327
09:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 13175 3327
10:00 27969 1210 4730 5900 7000 5680 1510 1300 1165 14500 13525 3327
10:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 13700 3327
11:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 13800 3327
11:30 28534 1210 4730 5900 7000 5680 1510 1300 1165 14500 14000 3327
12:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 14025 3327
12:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 14100 3327
13:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 14175 3327
13:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 14225 3327
14:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 14375 3327
14:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 14450 3327
15:00 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 14625 3327
15:30 25991 1210 4730 5900 7000 5680 1510 1300 1165 14500 14500 3327
16:00 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 14550 3327
16:30 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 14450 3327
17:00 24296 1210 4730 5900 7000 5680 1510 1300 1165 14500 14400 3327
17:30 24578 1210 4730 5900 7000 5680 1510 1300 1165 14500 14300 3327
18:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 14050 3327
18:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 13800 3327
19:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 13450 3327
19:30 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 13125 3327
20:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 12975 3327
20:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 12850 3327
21:00 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 12850 3327
21:30 23731 1210 4730 5900 7000 5680 1510 1300 1165 14500 12975 3327
22:00 23448 1210 4730 5900 7000 5680 1510 1300 1165 14500 13175 3327
22:30 22318 1210 4730 5900 7000 5680 1510 1300 1165 14500 13250 3327
23:00 21188 1210 4730 5900 7000 5680 1510 1300 1165 14500 13350 3327
23:30 20623 1210 4730 5900 7000 5680 1510 1300 1165 14500 13500 3327
sum 1130324 58080 227040 283200 336000 272640 72480 62400 55920 696000 662000 159696 40480

Table A.53.: Input - scenario 3
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run-on-river wind biomass nuclear power brown coal hard coal gas and steam heating oil storage power plant
MWh MWh MWh MWh MWh MWh MWh MWh MWh

00:00 1165 14000 1210 0 3401 0 0 0 0
00:30 1165 14075 1210 0 2761 0 0 0 0
01:00 1165 14150 1210 0 2121 0 0 0 0
01:30 1165 14200 1210 0 1506 0 0 0 0
02:00 1165 14175 1210 0 1248 0 0 0 0
02:30 1165 14175 1210 0 966 0 0 0 0
03:00 1165 14125 1210 0 733 0 0 0 0
03:30 1165 14075 1210 0 783 0 0 0 0
04:00 1165 14025 1210 0 833 0 0 0 0
04:30 1165 13975 1210 0 1731 0 0 0 0
05:00 1165 14000 1210 0 2553 0 0 0 0
05:30 1165 13825 1210 0 3011 0 0 0 0
06:00 1165 13800 1210 0 3601 0 0 0 0
06:30 1165 13775 1210 0 4756 0 0 0 0
07:00 1165 13425 1210 0 5900 0 0 0 336
07:30 1165 13175 1210 0 5900 0 0 0 1716
08:00 1165 13250 1210 0 5900 4748 0 0 0
08:30 1165 13075 1210 0 5900 5206 0 0 0
09:00 1165 12975 1210 0 5900 5588 0 0 0
09:30 1165 13175 1210 0 5900 3651 0 0 325
10:00 1165 13525 1210 0 5900 6169 0 0 0
10:30 1165 13700 1210 0 5900 5711 0 0 0
11:00 1165 13800 1210 0 5900 5329 0 0 0
11:30 1165 14000 1210 0 5900 2932 0 0 3327
12:00 1165 14025 1210 0 5900 4821 0 0 0
12:30 1165 14100 1210 0 5900 5311 0 0 0
13:00 1165 14175 1210 0 5900 4388 0 0 0
13:30 1165 14225 1210 0 5900 1294 0 0 3327
14:00 1165 14375 1210 0 5900 1427 0 0 3327
14:30 1165 14450 1210 0 5900 1069 0 0 3327
15:00 1165 14625 1210 0 5900 3656 0 0 0
15:30 1165 14500 1210 0 5900 3216 0 0 0
16:00 1165 14550 1210 0 5900 2883 0 0 0
16:30 1165 14450 1210 0 5900 1288 0 0 0
17:00 1165 14400 1210 0 5900 1621 0 0 0
17:30 1165 14300 1210 0 5900 2003 0 0 0
18:00 1165 14050 1210 0 5900 1752 0 0 3327
18:30 1165 13800 1210 0 5900 1719 0 0 3327
19:00 1165 13450 1210 0 5900 1221 0 0 3327
19:30 1165 13125 1210 0 5900 4308 0 0 0
20:00 1165 12975 1210 0 5900 2544 0 0 3327
20:30 1165 12850 1210 0 5900 974 0 0 3327
21:00 1165 12850 1210 0 5900 0 0 0 2888
21:30 1165 12975 1210 0 5900 0 0 0 2481
22:00 1165 13175 1210 0 5900 0 0 0 1998
22:30 1165 13250 1210 0 5900 0 0 0 793
23:00 1165 13350 1210 0 5463 0 0 0 0
23:30 1165 13500 1210 0 4748 0 0 0 0
sum 55920 662000 58080 0 229015 84829 0 0 40480

Table A.54.: Output - scenario 3
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Test 5.25

load biomass PP nuclear power PP brown coal PP hard coal PP gas and steam PP heating oil PP run-of-river PP run-of-river PP wind PP wind PP storage PP storage PP
max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. inflow max.gen. wind strength max.gen. volume

MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh
00:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327 40480
00:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 11753 3327
01:00 18646 1210 4730 5900 7000 5680 1510 1300 1165 14500 12236 3327
01:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 12558 3327
02:00 17798 1210 4730 5900 7000 5680 1510 1300 1165 14500 12397 3327
02:30 17516 1210 4730 5900 7000 5680 1510 1300 1165 14500 12397 3327
03:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 12075 3327
03:30 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 11753 3327
04:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 11431 3327
04:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 11109 3327
05:00 18928 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327
05:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 10143 3327
06:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 9982 3327
06:30 20906 1210 4730 5900 7000 5680 1510 1300 1165 14500 9821 3327
07:00 22036 1210 4730 5900 7000 5680 1510 1300 1165 14500 9499 3327
07:30 23166 1210 4730 5900 7000 5680 1510 1300 1165 14500 8855 3327
08:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 7728 3327
08:30 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 6601 3327
09:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 7084 3327
09:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 7567 3327
10:00 27969 1210 4730 5900 7000 5680 1510 1300 1165 14500 8211 3327
10:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 9338 3327
11:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 9982 3327
11:30 28534 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327
12:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 11431 3327
12:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 11914 3327
13:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 9397 3327
13:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 8719 3327
14:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 7685 3327
14:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 6168 3327
15:00 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 5295 3327
15:30 25991 1210 4730 5900 7000 5680 1510 1300 1165 14500 4490 3327
16:00 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 8812 3327
16:30 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 10168 3327
17:00 24296 1210 4730 5900 7000 5680 1510 1300 1165 14500 11846 3327
17:30 24578 1210 4730 5900 7000 5680 1510 1300 1165 14500 12202 3327
18:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 13592 3327
18:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 12982 3327
19:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 11728 3327
19:30 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 12335 3327
20:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 10669 3327
20:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 9864 3327
21:00 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 4164 3327
21:30 23731 1210 4730 5900 7000 5680 1510 1300 1165 14500 4669 3327
22:00 23448 1210 4730 5900 7000 5680 1510 1300 1165 14500 6957 3327
22:30 22318 1210 4730 5900 7000 5680 1510 1300 1165 14500 6440 3327
23:00 21188 1210 4730 5900 7000 5680 1510 1300 1165 14500 7084 3327
23:30 20623 1210 4730 5900 7000 5680 1510 1300 1165 14500 8050 3327
sum 1130324 58080 227040 283200 336000 272640 72480 62400 55920 696000 462991 159696 40480

Table A.55.: Input - scenario 4
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run-on-river wind biomass nuclear power brown coal hard coal gas and steam heating oil storage power plant
MWh MWh MWh MWh MWh MWh MWh MWh MWh

00:00 1165 11270 1210 0 5900 231 0 0 0
00:30 1165 11753 1210 0 5083 0 0 0 0
01:00 1165 12236 1210 0 4035 0 0 0 0
01:30 1165 12558 1210 0 3148 0 0 0 0
02:00 1165 12397 1210 0 3026 0 0 0 0
02:30 1165 12397 1210 0 2744 0 0 0 0
03:00 1165 12075 1210 0 2783 0 0 0 0
03:30 1165 11753 1210 0 3105 0 0 0 0
04:00 1165 11431 1210 0 3427 0 0 0 0
04:30 1165 11109 1210 0 4597 0 0 0 0
05:00 1165 11270 1210 0 5283 0 0 0 0
05:30 1165 10143 1210 0 5900 793 0 0 0
06:00 1165 9982 1210 0 5900 1519 0 0 0
06:30 1165 9821 1210 0 5900 2810 0 0 0
07:00 1165 9499 1210 0 5900 4262 0 0 0
07:30 1165 8855 1210 0 5900 6036 0 0 0
08:00 1165 7728 1210 0 5900 7000 3270 0 0
08:30 1165 6601 1210 0 5900 7000 1419 0 3261
09:00 1165 7084 1210 0 5900 7000 1152 0 3327
09:30 1165 7567 1210 0 5900 7000 0 0 2584
10:00 1165 8211 1210 0 5900 7000 1156 0 3327
10:30 1165 9338 1210 0 5900 7000 0 0 3073
11:00 1165 9982 1210 0 5900 7000 2147 0 0
11:30 1165 11270 1210 0 5900 7000 1989 0 0
12:00 1165 11431 1210 0 5900 7000 415 0 0
12:30 1165 11914 1210 0 5900 7000 497 0 0
13:00 1165 9397 1210 0 5900 7000 2166 0 0
13:30 1165 8719 1210 0 5900 7000 0 0 3127
14:00 1165 7685 1210 0 5900 7000 1117 0 3327
14:30 1165 6168 1210 0 5900 7000 2351 0 3327
15:00 1165 5295 1210 0 5900 7000 2659 0 3327
15:30 1165 4490 1210 0 5900 7000 2899 0 3327
16:00 1165 8812 1210 0 5900 7000 1621 0 0
16:30 1165 10168 1210 0 5900 5570 0 0 0
17:00 1165 11846 1210 0 5900 4175 0 0 0
17:30 1165 12202 1210 0 5900 4101 0 0 0
18:00 1165 13592 1210 0 5900 5537 0 0 0
18:30 1165 12982 1210 0 5900 5864 0 0 0
19:00 1165 11728 1210 0 5900 6270 0 0 0
19:30 1165 12335 1210 0 5900 5098 0 0 0
20:00 1165 10669 1210 0 5900 7000 1177 0 0
20:30 1165 9864 1210 0 5900 7000 287 0 0
21:00 1165 4164 1210 0 5900 7000 1247 0 3327
21:30 1165 4669 1210 0 5900 7000 460 0 3327
22:00 1165 6957 1210 0 5900 7000 0 0 1216
22:30 1165 6440 1210 0 5900 7000 0 0 603
23:00 1165 7084 1210 0 5900 5829 0 0 0
23:30 1165 8050 1210 0 5900 4298 0 0 0
sum 55920 462991 58080 0 261431 223393 28029 0 40480

Table A.56.: Output - scenario 4
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Test 5.26

load biomass PP nuclear power PP brown coal PP hard coal PP gas and steam PP heating oil PP run-of-river PP run-of-river PP wind PP wind PP storage PP storage PP
max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. inflow max.gen. wind strength max.gen. volume

MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh
00:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327 40480
00:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 11753 3327
01:00 18646 1210 4730 5900 7000 5680 1510 1300 1165 14500 12236 3327
01:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 12558 3327
02:00 17798 1210 4730 5900 7000 5680 1510 1300 1165 14500 12397 3327
02:30 17516 1210 4730 5900 7000 5680 1510 1300 1165 14500 12397 3327
03:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 12075 3327
03:30 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 11753 3327
04:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 11431 3327
04:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 11109 3327
05:00 18928 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327
05:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 10143 3327
06:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 9982 3327
06:30 20906 1210 4730 5900 7000 5680 1510 1300 1165 14500 9821 3327
07:00 22036 1210 4730 5900 7000 5680 1510 1300 1165 14500 9499 3327
07:30 23166 1210 4730 5900 7000 5680 1510 1300 1165 14500 8855 3327
08:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 7728 3327
08:30 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 6601 3327
09:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 7084 3327
09:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 7567 3327
10:00 27969 1210 4730 5900 7000 5680 1510 1300 1165 14500 8211 3327
10:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 9338 3327
11:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 9982 3327
11:30 28534 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327
12:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 11431 3327
12:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 11914 3327
13:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 9397 3327
13:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 8719 3327
14:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 7685 3327
14:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 6168 3327
15:00 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 5295 3327
15:30 25991 1210 4730 5900 7000 5680 1510 1300 1165 14500 4490 3327
16:00 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 8812 3327
16:30 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 10168 3327
17:00 24296 1210 4730 5900 7000 5680 1510 1300 1165 14500 11846 3327
17:30 24578 1210 4730 5900 7000 5680 1510 1300 1165 14500 12202 3327
18:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 13592 3327
18:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 12982 3327
19:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 11728 3327
19:30 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 12335 3327
20:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 10669 3327
20:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 9864 3327
21:00 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 4164 3327
21:30 23731 1210 4730 5900 7000 5680 1510 1300 1165 14500 4669 3327
22:00 23448 1210 4730 5900 7000 5680 1510 1300 1165 14500 6957 3327
22:30 22318 1210 4730 5900 7000 5680 1510 1300 1165 14500 6440 3327
23:00 21188 1210 4730 5900 7000 5680 1510 1300 1165 14500 7084 3327
23:30 20623 1210 4730 5900 7000 5680 1510 1300 1165 14500 8050 3327
sum 1130324 58080 227040 283200 336000 272640 72480 62400 55920 696000 462991 159696 40480

Table A.57.: Input - scenario 5

139



A
.
A
p
p
en

d
ix

run-on-river wind biomass nuclear power brown coal hard coal gas and steam heating oil storage power plant unused wind energy
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

00:00 1165 10000 1210 0 5900 1501 0 0 0 1270
00:30 1165 10000 1210 0 5900 936 0 0 0 1753
01:00 1165 10000 1210 0 5900 371 0 0 0 2236
01:30 1165 10000 1210 0 5706 0 0 0 0 2558
02:00 1165 10000 1210 0 5423 0 0 0 0 2397
02:30 1165 10000 1210 0 5141 0 0 0 0 2397
03:00 1165 10000 1210 0 4858 0 0 0 0 2075
03:30 1165 10000 1210 0 4858 0 0 0 0 1753
04:00 1165 10000 1210 0 4858 0 0 0 0 1431
04:30 1165 10000 1210 0 5706 0 0 0 0 1109
05:00 1165 10000 1210 0 5900 653 0 0 0 1270
05:30 1165 10000 1210 0 5900 936 0 0 0 143
06:00 1165 9982 1210 0 5900 1519 0 0 0 0
06:30 1165 9821 1210 0 5900 2810 0 0 0 0
07:00 1165 9499 1210 0 5900 4262 0 0 0 0
07:30 1165 8855 1210 0 5900 6036 0 0 0 0
08:00 1165 7728 1210 0 5900 7000 3270 0 0 0
08:30 1165 6601 1210 0 5900 7000 1419 0 3261 0
09:00 1165 7084 1210 0 5900 7000 1152 0 3327 0
09:30 1165 7567 1210 0 5900 7000 0 0 2584 0
10:00 1165 8211 1210 0 5900 7000 1156 0 3327 0
10:30 1165 9338 1210 0 5900 7000 0 0 3073 0
11:00 1165 9982 1210 0 5900 7000 2147 0 0 0
11:30 1165 10000 1210 0 5900 7000 3259 0 0 1270
12:00 1165 10000 1210 0 5900 7000 1846 0 0 1431
12:30 1165 10000 1210 0 5900 7000 2411 0 0 1914
13:00 1165 9397 1210 0 5900 7000 2166 0 0 0
13:30 1165 8719 1210 0 5900 7000 0 0 3127 0
14:00 1165 7685 1210 0 5900 7000 1117 0 3327 0
14:30 1165 6168 1210 0 5900 7000 2351 0 3327 0
15:00 1165 5295 1210 0 5900 7000 2659 0 3327 0
15:30 1165 4490 1210 0 5900 7000 2899 0 3327 0
16:00 1165 8812 1210 0 5900 7000 1621 0 0 0
16:30 1165 10000 1210 0 5900 5738 0 0 0 168
17:00 1165 10000 1210 0 5900 6021 0 0 0 1846
17:30 1165 10000 1210 0 5900 6303 0 0 0 2202
18:00 1165 10000 1210 0 5900 7000 2129 0 0 3592
18:30 1165 10000 1210 0 5900 7000 1846 0 0 2982
19:00 1165 10000 1210 0 5900 7000 998 0 0 1728
19:30 1165 10000 1210 0 5900 7000 433 0 0 2335
20:00 1165 10000 1210 0 5900 7000 1846 0 0 669
20:30 1165 9864 1210 0 5900 7000 287 0 0 0
21:00 1165 4164 1210 0 5900 7000 1247 0 3327 0
21:30 1165 4669 1210 0 5900 7000 460 0 3327 0
22:00 1165 6957 1210 0 5900 7000 0 0 1216 0
22:30 1165 6440 1210 0 5900 7000 0 0 603 0
23:00 1165 7084 1210 0 5900 5829 0 0 0 0
23:30 1165 8050 1210 0 5900 4298 0 0 0 0
sum 55920 422462 58080 0 278450 236213 38719 0 40480 40529

Table A.58.: Output - scenario 5

140



A
.
A
p
p
en

d
ix

Test 5.27

load biomass nuclear power brown coal hard coal gas and steam heating oil run-of-river run-of-river wind wind storage storage solar solar
max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. max.gen. inflow max.gen. wind strength max.gen. volume max.gen. useable solar radiation

MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh
00:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327 40480 12500 0
00:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 11753 3327 12500 0
01:00 18646 1210 4730 5900 7000 5680 1510 1300 1165 14500 12236 3327 12500 0
01:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 12558 3327 12500 0
02:00 17798 1210 4730 5900 7000 5680 1510 1300 1165 14500 12397 3327 12500 0
02:30 17516 1210 4730 5900 7000 5680 1510 1300 1165 14500 12397 3327 12500 0
03:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 12075 3327 12500 0
03:30 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 11753 3327 12500 0
04:00 17233 1210 4730 5900 7000 5680 1510 1300 1165 14500 11431 3327 12500 0
04:30 18081 1210 4730 5900 7000 5680 1510 1300 1165 14500 11109 3327 12500 0
05:00 18928 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327 12500 0
05:30 19211 1210 4730 5900 7000 5680 1510 1300 1165 14500 10143 3327 12500 0
06:00 19776 1210 4730 5900 7000 5680 1510 1300 1165 14500 9982 3327 12500 0
06:30 20906 1210 4730 5900 7000 5680 1510 1300 1165 14500 9821 3327 12500 0
07:00 22036 1210 4730 5900 7000 5680 1510 1300 1165 14500 9499 3327 12500 500
07:30 23166 1210 4730 5900 7000 5680 1510 1300 1165 14500 8855 3327 12500 500
08:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 7728 3327 12500 1000
08:30 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 6601 3327 12500 1000
09:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 7084 3327 12500 1500
09:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 7567 3327 12500 1500
10:00 27969 1210 4730 5900 7000 5680 1510 1300 1165 14500 8211 3327 12500 3000
10:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 9338 3327 12500 3000
11:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 9982 3327 12500 4000
11:30 28534 1210 4730 5900 7000 5680 1510 1300 1165 14500 11270 3327 12500 4300
12:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 11431 3327 12500 4500
12:30 27686 1210 4730 5900 7000 5680 1510 1300 1165 14500 11914 3327 12500 4500
13:00 26838 1210 4730 5900 7000 5680 1510 1300 1165 14500 9397 3327 12500 4500
13:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 8719 3327 12500 4500
14:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 7685 3327 12500 4500
14:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 6168 3327 12500 4500
15:00 26556 1210 4730 5900 7000 5680 1510 1300 1165 14500 5295 3327 12500 4000
15:30 25991 1210 4730 5900 7000 5680 1510 1300 1165 14500 4490 3327 12500 3000
16:00 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 8812 3327 12500 2000
16:30 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 10168 3327 12500 2000
17:00 24296 1210 4730 5900 7000 5680 1510 1300 1165 14500 11846 3327 12500 500
17:30 24578 1210 4730 5900 7000 5680 1510 1300 1165 14500 12202 3327 12500 500
18:00 27404 1210 4730 5900 7000 5680 1510 1300 1165 14500 13592 3327 12500 0
18:30 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 12982 3327 12500 0
19:00 26273 1210 4730 5900 7000 5680 1510 1300 1165 14500 11728 3327 12500 0
19:30 25708 1210 4730 5900 7000 5680 1510 1300 1165 14500 12335 3327 12500 0
20:00 27121 1210 4730 5900 7000 5680 1510 1300 1165 14500 10669 3327 12500 0
20:30 25426 1210 4730 5900 7000 5680 1510 1300 1165 14500 9864 3327 12500 0
21:00 24013 1210 4730 5900 7000 5680 1510 1300 1165 14500 4164 3327 12500 0
21:30 23731 1210 4730 5900 7000 5680 1510 1300 1165 14500 4669 3327 12500 0
22:00 23448 1210 4730 5900 7000 5680 1510 1300 1165 14500 6957 3327 12500 0
22:30 22318 1210 4730 5900 7000 5680 1510 1300 1165 14500 6440 3327 12500 0
23:00 21188 1210 4730 5900 7000 5680 1510 1300 1165 14500 7084 3327 12500 0
23:30 20623 1210 4730 5900 7000 5680 1510 1300 1165 14500 8050 3327 12500 0
sum 1130324 58080 227040 283200 336000 272640 72480 62400 55920 696000 462991 159696 40480 600000 59300

Table A.59.: Input - scenario 6
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run-on-river wind biomass nuclear power brown coal hard coal gas and steam heating oil storage power plant solar power plant
MWh MWh MWh MWh MWh MWh MWh MWh MWh MWh

00:00 1165 11270 1210 0 5900 231 0 0 0 0
00:30 1165 11753 1210 0 5083 0 0 0 0 0
01:00 1165 12236 1210 0 4035 0 0 0 0 0
01:30 1165 12558 1210 0 3148 0 0 0 0 0
02:00 1165 12397 1210 0 3026 0 0 0 0 0
02:30 1165 12397 1210 0 2744 0 0 0 0 0
03:00 1165 12075 1210 0 2783 0 0 0 0 0
03:30 1165 11753 1210 0 3105 0 0 0 0 0
04:00 1165 11431 1210 0 3427 0 0 0 0 0
04:30 1165 11109 1210 0 4597 0 0 0 0 0
05:00 1165 11270 1210 0 5283 0 0 0 0 0
05:30 1165 10143 1210 0 5900 793 0 0 0 0
06:00 1165 9982 1210 0 5900 1519 0 0 0 0
06:30 1165 9821 1210 0 5900 2810 0 0 0 0
07:00 1165 9499 1210 0 5900 3762 0 0 0 500
07:30 1165 8855 1210 0 5900 5536 0 0 0 500
08:00 1165 7728 1210 0 5900 5943 0 0 3327 1000
08:30 1165 6601 1210 0 5900 7000 353 0 3327 1000
09:00 1165 7084 1210 0 5900 6652 0 0 3327 1500
09:30 1165 7567 1210 0 5900 4846 0 0 3238 1500
10:00 1165 8211 1210 0 5900 7000 0 0 1483 3000
10:30 1165 9338 1210 0 5900 7000 0 0 73 3000
11:00 1165 9982 1210 0 5900 5147 0 0 0 4000
11:30 1165 11270 1210 0 5900 4689 0 0 0 4300
12:00 1165 11431 1210 0 5900 2915 0 0 0 4500
12:30 1165 11914 1210 0 5900 2997 0 0 0 4500
13:00 1165 9397 1210 0 5900 4666 0 0 0 4500
13:30 1165 8719 1210 0 5900 5627 0 0 0 4500
14:00 1165 7685 1210 0 5900 6944 0 0 0 4500
14:30 1165 6168 1210 0 5900 7000 0 0 1178 4500
15:00 1165 5295 1210 0 5900 7000 0 0 1986 4000
15:30 1165 4490 1210 0 5900 7000 0 0 3226 3000
16:00 1165 8812 1210 0 5900 6621 0 0 0 2000
16:30 1165 10168 1210 0 5900 3570 0 0 0 2000
17:00 1165 11846 1210 0 5900 3675 0 0 0 500
17:30 1165 12202 1210 0 5900 3601 0 0 0 500
18:00 1165 13592 1210 0 5900 5537 0 0 0 0
18:30 1165 12982 1210 0 5900 5864 0 0 0 0
19:00 1165 11728 1210 0 5900 6270 0 0 0 0
19:30 1165 12335 1210 0 5900 5098 0 0 0 0
20:00 1165 10669 1210 0 5900 7000 0 0 1177 0
20:30 1165 9864 1210 0 5900 7000 0 0 287 0
21:00 1165 4164 1210 0 5900 7000 1247 0 3327 0
21:30 1165 4669 1210 0 5900 7000 460 0 3327 0
22:00 1165 6957 1210 0 5900 7000 0 0 1216 0
22:30 1165 6440 1210 0 5900 4276 0 0 3327 0
23:00 1165 7084 1210 0 5900 2502 0 0 3327 0
23:30 1165 8050 1210 0 5900 971 0 0 3327 0
sum 55920 462991 58080 0 261431 190062 2060 0 40480 59300

Table A.60.: Output - scenario 6
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