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Abstract

The solution of inverse problems is a frequent task in science and in technical applications. The
goal is to determine the cause of a problem from measurable effects. Examples for such problems
can be found in biomedical applications, where non invasive techniques are crucial or when mon-
itoring technical processes inside a pipeline. Such problems are called tomography problems. To
compare and assess different methods for solving inverse problems the model of a resistor network
with linear resistances is investigated. Voltages at certain accessible points of the network are to
be determined, when a given current is injected into the network. The values of different adja-
cent resistors, which are diverse to the rest of the resistances (called the background) are to be
reconstructed. Such networks are used to simulate different parts of the human body in biomed-
ical applications. A major advantage of this forward problem is, that the determination of the
accessible voltages from the resistances and the currents injected is straight forward and can be
done with less computational effort. The simulated voltages are then opposed to the "measured"
ones. The unavoidable differences between those sets of values, called the residuals, can be used
to formulate an optimization problem, namely a least squares problem. To solve that type of
problem deterministic methods will be employed only. Unfortunately, the resulting optimization
problem can be classified as "ill posed", which is quite frequently the case when dealing with in-
verse problems. This feature makes it all but impossible to solve the resulting system of equations
directly. It is essential to stabilize and regularize the system of equations. This is preferably done
by adding a new term, the penalty term to the optimization problem. Methods for regularization
can be divided into two groups, those which rely on the L2 norm, as in the case of Tikhonov
regularization and those, which rely on the L1 norm, represented by the method of Total Varia-
tion. Irrespectively of the applied norm, a proper regularization parameter has to be determined.
Different approaches to do so are discussed and assessed. To be as close as possible to real world
applications both data without and with noise were used in the least squares approach, in order
to evaluate the different methods applied and to be able to make somewhat general statements.



Kurzfassung

Die Lösung von inversen Problemen ist eine häufige Aufgabenstellung in der Technik. Dabei
handelt es sich um die Ermittlung der Ursache einer Aufgabenstellung aus deren Wirkung, da nur
diese messbar zugänglich ist. Als Beispiel sind hierzu nichtinvasive Messmethoden in der biomedi-
zinischen Technik oder in der Prozesstechnik anzuführen. Diese Probleme werden als Tomografie
Probleme bezeichnet.
Zum Vergleich mehrerer Methoden wurde als Beispiel das mathematische Modell eines Wider-
standsnetzwerks mit linearen Elementen herangezogen. Dabei sollen durch Messung von Span-
nungen an bestimmten Punkten am Rand des Netzwerks die Widerstandswerte des Netzwerks
bestimmt werden. Der dazu notwendige Strom kann auch nur an diesen bestimmten Punkten am
Rand des Netzwerks eingespeist werden. Die Widerstandswerte wurden zu Gruppen gleichwer-
tig angenommen, sodass sich das Problem als Objekte auf einem Hintergrund beschreiben lässt.
Ähnliche Widerstandsmodelle werden auch für biomedizinische Zwecke als sogenannte Phantome
verwendet, um Messverfahren für den menschlichen Körper zu entwickeln.
Diese Aufgabenstellung wurde gewählt, da es sich dabei um einfach zu berechnendes Vorwärtspro-
blem handelt. Das Vorwärtsproblem beschreibt die Berechnung der Wirkung aus der gegebenen
Ursache des Problems, die dann der gemessenen Wirkung gegenübergestellt wird. Dadurch ergibt
sich ein Optimierungsproblem (Minimierungsproblem), das auch als Least-Squares-Problem be-
zeichnet wird. Zur Lösung dieses Problems wurden in diesem Fall nur deterministische Methoden
herangezogen.
Es handelt sich dabei in der gegebenen Aufgabenstellung auch um ein schlecht gestelltes unter-
bestimmtes Gleichungssystem, das eine direkte Lösung nicht möglich macht. Das Problem muss
zusätzlich stabilisiert oder regularisiert werden. Dabei wird zum Optimierungsproblem ein Straf-
term addiert. Die Regularisierungsverfahren können aufgrund der Norm dieses Strafterms in zwei
Gruppen eingeteilt werden. Die L2-Norm wird von der Tikhonov Regularisierungsmethode und
die L1-Norm von der Methode der Totalen Variation verwendet. Zusätzlich werden die möglichen
Parameterbestimmungsverfahren und Unterschiede erläutert.
Die Rekonstruktionen der gegebenenWiderstandsverteilungen erfolgten ohne zusätzlichemMessrau-
schen und mit angenommenem Rauschen, das in praktischen Problemen nicht zu vermeiden ist.
Die Unterschiede zwischen den angewendeten Verfahren werden durch Darstellungen und Fehler-
analyse gezeigt.
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1 Introduction

1.1 Motivation

Inverse problems often arise in science and in technical applications. In such the quantity, which
can be called the effect of something can be measured, while the corresponding cause of the
measurements is not accessible or measurable. (The opposite of that is the forward or direct
problem where the effect is calculated from the known cause.) For example, it is quite often
desirable to have a "look" inside a pipe, a vessel or the human body with noninvasive techniques.
This kind of problem is termed a tomography problem. Then perturbations are made from the
exterior of the object to be examined and measurements are also just possible on the surface or
at the boundary, as it is called. With that measurements the obtained internal structure should
be determined in the best possible way for the given application. Thereof arise some additional
problems like the computational effort of the reconstruction process. There also exist problems
where the distribution of the sought values is not time invariant, for example when investigating a
breathing human body. But also optimization problems looking for certain geometrical parameters
are similarly solved. Another example is the earthquake location problem.
There are many different inverse problems in different applications but in this work emphasis is put
on a simple circuit problem, a network of ohmic resistors. For that setup the forward problem is
easy to be calculated and therefore it is a good choice for comparing different methods for solving
inverse problems. This problem belongs to the group of electrical sensing techniques which are
called electrical impedance tomography (EIT) problems. Basically EIT can be divided into three
groups depending on the sought or dominant value. The three groups are the Electro-Magnetic
Inductance Tomography (EMT), the Electrical Capacitance Tomography (ECT), and finally the
Electrical Resistance Tomography (ERT). The problem in this thesis belongs to the last group, of
course, since the sought values are the internal linear resistor values. Resistor circuits are often
used as a simulation board, for example in biomedical applications for the cross section of a human
torso, because the true values are easy to be determined and show a high long time stability. With
the help of this problem basic deterministic reconstruction methods and their characteristics are
described and analyzed.

1.2 Aim of This Thesis

In this thesis the main features when solving a linear inverse problem are discussed. Different
methods to perform this task are presented. Regularization is crucial in this respect, so the most
important methods are introduced. The obtained results are then applied to a nonlinear circuit
problem, see figure 1.1 on the following page.
The main task is to determine the resistance of every resistor in the network as accurately as

1
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Figure 1.1: Network of resistors with 8 electrodes

possible only from measuring some voltages at the boundary of the network. Therefore, some nodes
at the boundary are appointed as "electrodes", where currents can be injected and voltages can
be measured. The other nodes at the boundary and in the interior are not accessible. Alternately,
two active electrodes are defined, one for currents injecting and one reference electrode. Therefore,
a discrete inverse problem has to be solved, because starting from exterior measurement values
(which are the effect) one calculates the cause of the measurement values, which are the resistor
values. So one has a discrete number of values. It will be shown, that this problem is a nonlinear
one and has to be solved iteratively. The solution strategies for a linear problem are also discussed,
because nonlinear problems are typically solved by successive linearization.

1.3 Thesis Outline

• In the first chapter the general problem is discussed, the forward problem is determined
and on the basis of a small network the structure of the problem is analyzed. Also the
main characteristics of inverse problems are reviewed. Additionally the structure of the
measurements and the sensitivity of these measurements are presented.

• The second chapter contains the Optimization and Regularization theory. With the help of
an one-dimensional linear problem the main characteristics are discussed. The implemented
algorithms are presented and the line search procedure used is shown.

• In the third chapter the common calculations of the regularization parameter (iteratively
and non iteratively) are described.
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• In the fourth chapter the determination of the Regularization Matrix of the Tikhonov
Functional is discussed and different forms of the matrix are presented.

• In the fifth chapter the Total Variation method is applied to the present problem and the
differences to the Tikhonov Functional are shown.

• In the sixth chapter different reconstruction methods are applied to the circuit problem
and the results are discussed. MATLAB [2] is used for all calculations in this work.

1.4 Problem Description

1.4.1 Forward Problem

The forward problem is analyzed by defining the graph of the given circuit made of resistors and
sources, which consists of branches and nodes. The branches are the line segments containing the
resistors (and sources) and the nodes are the terminal points of the branches.
Therefore, the general branch bk of a linear time invariant network is considered (see figure 1.2)
[3, 4]. All initial conditions are assumed to be included in the independent sources. Then the

Figure 1.2: General branch bk

branch current ibk is given as the sum of the current source isk and the element current ik.
Similarly, the branch voltage ubk is the algebraic sum of the voltage source usk and the voltage
drop across the element uk.

ibk = ik + isk , k = 1, 2, . . . , B

ubk = uk − usk , k = 1, 2, . . . , B
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for all B branches present in the network. The currents and voltages can be written in vector
form:

ib = (ib1 , ib2 , . . . , ibB )T

is = (is1 , is2 , . . . , isB )T

i = (i1, i2, . . . , iB)T

ub = (ub1 , ub2 , . . . , ubB )T

us = (us1 , us2 , . . . , usB )T

u = (u1, u2, . . . , uB)T

Then one gets

ib = i + is (1.1)

ub = u− us (1.2)

Each element voltage uk is related to the corresponding element current ik through the equation

uk = Rkik (1.3)

since in branch bk there is only a resistor with resistance Rk in the present case. This equation
can also be converted to

ik =
1

Rk
uk = Ykuk

where Yk = 1/Rk is the conductance of the resistor. For further considerations the equation is
needed in matrix form

i = Y u (1.4)

where Y is the element admittance matrix, a diagonal matrix consisting the conductances of the
respective branches. To obtain the set of equations corresponding to the forward problem the
nodal analysis method [4] is used.
To derive this method Kirchhoff’s Current Law (KCL) is needed [3]: For any lumped electrical
network the algebraic sum of the currents entering or leaving a node is equal zero. This can be
arranged in matrix form for all branches

Aaib = 0 (1.5)

where Aa is said to be the augmented incidence matrix. It consists of the elements ajk,which are
defined according to the direction of the directed branches bk. (Every branch is getting a distinct
direction according to the assumed direction of the current flow.)

ajk = +1 when bk in incident to the node nj and is directed away from it

ajk = −1 when bk is incident to nj and is directed toward it

ajk = 0 when bk is not incident to nj
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Not all of the equations resulting from equation (1.5) on the preceding page are linearly indepen-
dent, because one row can always be represented through the others. By deleting one equation,
the set of nodal equations becomes linearly independent. This can be written in matrix form

Aib = 0 (1.6)

where A is the incidence matrix. It is obtained by deleting one row of the augmented incidence
matrix Aa. The node corresponding to the deleted row is called the reference node. Additionally
the nodal voltages unj are defined: These are the voltages from the corresponding node to the
reference node. The vector of the nodal voltages un is defined as

un = (un1
, un2

, . . . , unN )T

and the relation between the nodal voltages and the branch voltages is given as

ub = ATun.

To obtain the equations without the branch voltages, these are replaced in equation (1.2) on the
previous page

u− us = ATun (1.7)

Similarly the branch currents vector ib is replaced in equation (1.6) with equation (1.1) on the
previous page:

A ib = A(i + is) = 0 → A i = −A is,

Then the element currents are replaced through equation (1.4) on the preceding page to obtain

A Yu = −A is

and the element voltages are replaced with equation (1.7)

A Y ATun = Yn un = −A Yus −A is

where Yn is called the nodal admittance matrix. In the presented case only a current source is
present, hence the term with the voltage sources is neglected.

A Y ATun = Ynun = −Ais

Finally the nodal voltage vector is obtained with the equation

un = −Y−1
n Ais (1.8)

which is calculated in MATLAB [2]. But only few nodal voltages (according to the measurable
voltages) are needed. The result is the vector of nodal voltages u(r), which can be compared
with the measurement voltages. Since there are no real measurements available, the vector of
node voltages is set equal to a precalculated vector biased with noise. The noise is assumed to be
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normally distributed with zero mean and standard deviation σ. To analyze the structure of the
present problem the following small network is considered.

1.4.2 Small Network

The determination of the resistances from measured voltages in a small network with only 4
nodes (figure 1.3) is analyzed and the structure of the forward problem is shown. On the basis of

Figure 1.3: Small network of resistors

equation (1.8) on the previous page the problem is formulated. First the reference and injection
nodes have to be defined. Node 1 is selected to be the reference node and node 2 to be the injection
node with the injection current is, see figure 1.4. Also the nodal voltages are defined in the figure.

Figure 1.4: Network of resistors with source current and nodal voltages

To calculate them, first the directed graph has to be defined (see figure 1.5). With this graph the

Figure 1.5: Directed graph of the network
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augmented incidence matrix Aa can be determined as

Aa =


−1 0 −1 0

1 0 0 1

0 1 0 −1

0 −1 1 0


The first row of Aa is deleted because this row corresponds to node 1, which is defined as the
reference node. According to equation (1.8) on page 5 the node admittance matrix Yn is calculated

Yn =

1 0 0 1

0 1 0 −1

0 −1 1 0




1
R1

0 0 0

0 1
R2

0 0

0 0 1
R3

0

0 0 0 1
R1




1 0 0

0 1 −1

0 0 1

1 −1 0


=


1
R1

+ 1
R4

− 1
R4

0

− 1
R4

1
R2

+ 1
R4

− 1
R2

0 − 1
R2

1
R2

+ 1
R3

 .

Then the complete system of equations can be written as
1
R1

+ 1
R4

− 1
R4

0

− 1
R4

1
R2

+ 1
R4

− 1
R2

0 − 1
R2

1
R2

+ 1
R3


un2

un3

un4

 =

is0
0


Now the nodal voltages have to be calculated so that the later used structure u(r) = un can be
analyzed. The following solution is obtained:

un2
=
isR1 (R2 +R3 +R4)

R1 +R2 +R3 +R4

un3
=

isR1 (R2 +R3)

R1 +R2 +R3 +R4
(1.9)

un4
=

isR1R3

R1 +R2 +R3 +R4

This result can be written as
un = u(r, is) (1.10)

where r is the vector of resistances and is defined as r = (R1, R2, R3, R4)T .
For further considerations the general characteristics of linear problems are given [5]:

• Principle of superposition: G(x1 + x2) = G(x1) + G(x2) and

• Principle of homogeneity or scaling: G(α x) = α G(x) where α is a scalar

The vector x is equivalent to the vector of resistances r and the matrix G would be equivalent
to a matrix U, which is independent from r, but this representation is not possible for the equa-
tion (1.10). It can be seen that the principle of scaling is valid, but the principle of superposition is
violated, hence the forward problem is a nonlinear problem. The dependency of the nodal voltage



Chapter 1. Introduction 8

vector un on the source or injection current is is of course a linear relation (Ohm’s law), but the
remaining entire resistance is a relation of all resistances. Of course, if all resistors have the same
resistance the problem is linear again. It should be marked that the resistors are linear elements,
but the structure of the elements in equation (1.9) on the preceding page leads to a nonlinear
system.

1.4.3 Structure of the Network

The present forward problem according to the network in figure 1.1 on page 2 can also be described
as

u(r, is) = u,

where u(r, is) is the system, dependent on the known source current vector is and the vector of
the unknown resistances r, and u are the resulting voltages at the boundary electrodes. For future
computations u(r, is) is only described as u(r) and is is neglected, because the source current is
is a given constant value.

u(r) = u.

Now the structure of the present problem is analyzed:
There are m = 9 rows of nodes and p = 9 columns of nodes, hence the number of nodes is
n = m · p = 81. The nodes, where the voltages can be measured, are defined as the electrodes.
They are positioned at the corners and in the middle of the edges and they are named from 1
to 8 counterclockwise (see figure 1.1 on page 2). Thus there are e = 8 electrodes with access for
measurements. The number of unknown resistances is calculated by b = p·(m−1)+m·(p−1) = 144.
One electrode is defined as reference electrode, hence there exist n − 1 = 80 nodal voltages but
only e − 1 = 7 are measurable. With the circular method i = 8 successive measurements are
made, hence the whole number of measured voltages is given by v = (e − 1) · i = 56. Because of
the reciprocity of the problem only one half is linearly independent [6]. This can be displayed by
calculation of the system matrix JT J (where J is denoted as the Jacobian matrix) which has always
the rank of (e−1)·i/2 = 28. There is always noise present in practical applications. For this reason
it is usual to use all measurements for the reconstruction [6]. Hence, for the solution of the inverse
problem there are 144 unknown resistors and 28 linearly independent voltage measurements. This
is a highly underdetermined or rank deficient problem, therefore, another configuration with 12
electrodes is used (see figure 1.6 on the next page). Then the rank of the matrix JT J equals
(e − 1) · i/2 = (12 − 1) · 12/2 = 66. Compared to the configuration with 8 electrodes more
information about the resistances is available but it is still a rank deficient problem.

1.4.4 Determination of the Jacobian Matrix

The Jacobian matrix J is an important matrix of the given system and is defined as the first
derivatives of the model function.

J =
∂u(r)

∂r
= [∇u1,∇u2, . . . ,∇uv]T
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Figure 1.6: Configuration with 12 electrodes

and is needed for solving the inverse problem. It can be interpreted as the mapping between the
distribution of the voltages at the boundary and the distribution of the resistor values [7]. But
also it is a norm of the sensitivity of the problem, hence it is called the sensitivity matrix. In the
given case it is not possible to compute the first derivatives of the model function analytically,
therefore the Jacobian matrix J is approximated using finite difference operators repeatedly. Every
resistance Ri is shifted separately by a small value δ(δ = 10−4), and the forward problem is
computed to get the shifted nodal voltages ũ for each shifted resistor. The computation of each
coefficient of the Jacobian matrix can be described as

Ji,j =
∂uj
∂ri
∼=
ũi,j − uj

δ
with i = 1 . . . b, j = 1 . . . v,

where b denotes the number of resistors and v denotes the number of voltages along the boundary.
Here one can see why it is also termed sensitivity matrix. It displays the sensitivity of the boundary
voltages according to small perturbations of the resistances. The computation of the Jacobian
matrix requires b = 144 solutions of the forward problem, which is no problem for the given
network problem but for more time consuming forward problems other computation methods
have to be used (see for example [8]).

1.4.5 Current Pattern and Sensitivity Analysis

In principle all combinations of reference and injection node are allowed, but the two main patterns
(combinations of reference and injection electrode) shall be analyzed here:

• the circular method: the reference electrode and the injection electrode are abreast each
other.

• the opposite method: the reference electrode and the injection electrode lie opposite to each
other.

For the given problem, 8 fixed electrodes (one at each vertex and one in the middle of each edge)
are used. Figure 1.7 on the following page shows the two schematics, the circular method on
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(a) opposite method (b) circular method

Figure 1.7: Schematic of the current pattern

the right and the opposite method on the left. To analyze the two patterns, 10 resistors of the
network are selected (see figure 1.8) and one after another is perturbed with a small constant
and the forward problem is computed for each pattern to display the change of the outside values
according to a change of an inside value. Hence, the sensitivity computation equals the Jacobian
matrix computation for the selected resistors.

Figure 1.8: Selected resistors for sensitivity analysis

The difference is, that only the size of the change of the voltage values and not its direction
is needed. Therefore, the absolute values are used. Because of the dependency of the sensitivity
from the present resistor values, this computation is made for four different distributions (The
unit of the resistor values (Ω) is not specified.):

• homogeneous distribution, all resistor values are R = 3

• circuit 1: two different objects: one small object with the values R = 3 and one big object
with the values R = 5 on a background with R = 1

• circuit 2: two different objects: one small object with the values R = 5 and one big object
with the values R = 3 on a background with R = 1

• circuit 3: one big object with the values R = 5 on a background with R = 1

The first distribution equals to the starting distribution for the reconstruction processes in chapter
6 and the other three distributions equal to the circuits in chapter 6. In order to compare the
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computed values, the values of each distribution are correlated to the mean sensitivity value of
the distribution. The resulting values for every resistor are plotted in figure 1.9 It can be seen,

(a) circular method

(b) opposite method

Figure 1.9: Relative sensitivity values for the selected resistors. The edges of the box are the 25th
and 75th percentiles, the red line marks the median, the black line marks the complete
range.

that the sensitivity for resistors at the boundary is higher than the one for resistors inside the
network. Especially next to the electrodes there are very high maximum values and the mean
range of the values is also bigger than elsewhere. Comparing the two figures for the different
patterns the maximum values for the boundary resistors are a bit smaller in the opposite case
than in the circular case, but the sensitivity for the inside values are about as worse as in the
circular case. For the calculations in chapter 6 only the circular method is used, because there are
only insignificant differences to be expected in the reconstruction results.
For other practical situations where the computation time is a main problem it may be useful to
choose fewer combinations, because with growing amount of combinations the computation time
grows. Since the accuracy of the results is also proportional to the number of combinations, a
good trade off has to be found.
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1.4.6 Inverse Problems

The forward problem is defined as the problem if the system parameters and the input values are
given and the output values are sought.
In opposite to the forward problem the inverse problem can be defined as

• the problem, if the input and output values are given and the system parameters are sought,

or as

• the problem if the output values and the system parameter are given and the input values
are sought.

For the present problem the input and output values are given and the system parameters, the
resistor values are sought.
An important issue of inverse problems is, whether the problem is well-posed or ill-posed. Well-
posedness implies that the solution can easily be determined by inversion, since there exists a
well-defined, continuous inverse operator [9]. In the beginning of the 20th century Hadamard
defined the conditions of well-posed problems:

• The solution exists

• and the solution is unique

• and the solution depends continuously on the data.

For all admissible data, if one of the conditions is violated the problem is named ill-posed [10, 5].
The third item can additionally be described such a way, that the solution is stable with respect
to perturbations in the data. It is violated if for example an arbitrarily small perturbation of the
data causes an arbitrarily large perturbation of the solution.



2 General Optimization and
Regularization Methods

2.1 Introduction

The solution of an inverse problem is often connected to the solution of an optimization problem.
Therefore, the basic knowledge about optimization methods is crucial and will be described in
the first section. Furthermore, some Regularization techniques are needed as well for ill-posed
problems. This will be discussed in the second section. Most of the regularization methods can
be expressed as or combined with an optimization method like in the presented algorithms in the
third section.
So first of all optimization methods are introduced. Starting from the the result of the forward
problem, which has the form

u(r) = u, (2.1)

where u(r) are the simulated voltages derived from the forward model and u is the resulting
boundary voltage vector. Now one could expect that the boundary voltages u are equal the
corresponding measured voltages ur at the boundary, but in real world problems the measurement
values are never exactly equal to the solution of the forward model either because of noise or
because of the approximation of the the model or some environmental influences. Therefore,
equation (2.1) will not exist in this form (see the Hadamard conditions). To ensure that a solution
exists in every case a least squares minimization problem has to be formulated minimizing the
difference of the two voltage vectors, which is named the residuals r = u(r) − ur. Hence the
minimization functional ψ(r) can be developed as

min
r
ψ(r)

with
ψ(r) = ||u(r)− ur||22. (2.2)

This is a general optimization problem one has to solve as accurately as possible. Equation (2.2)
can be written as the scalar product of rT and r.

ψ = rT r.

In case of a linear model Kf = d, which will be used to introduce different approaches, one gets

ψ(f) = ||Kf − d||22, (2.3)

13
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where K is the model matrix, f are the sought discrete function values and d are the discrete data
values (measurements). The notation is selected according to the linear example which will be
introduced now. According to [9, p. 1] the Fredholm first kind integral equation of convolution
type in one space dimension is used to explain linear methods in the next sections. This equation
occurs in two-dimensional optical imaging, but here a one dimensional version only is used.

g(x) =

∫ 1

0

k(x− x∗) f(x∗)dx∗, 0 < x < 1,

There f represents the light source intensity as a function of spatial position, g represents the
image intensity, and k is called the kernel and characterizes the blurring effects that occur during
the image formation. Here the Gaussian kernel is used because it models the long-time average
effects of atmospheric turbulence of light propagation [9]. The one-dimensional form is:

k(x− x∗) = c e
−(x−x∗)2

2γ2

where γ and c are positive parameters and they are set to γ = 0.025 and c = 1/(γ
√

2π). The
resulting equation becomes

g(x) =

∫ 1

0

ce
−(x−x∗)2

2γ2 f(x∗)dx∗, 0 < x < 1. (2.4)

This equation defines the forward problem, because for a given function f and a typically smooth
kernel function k the function g can be calculated. Contrary the inverse problem is defined with
the given kernel k and the given blurred image g, while the source f has to be calculated.
The equation equation (2.4) needs to be discretized, which is done by using collocation in the
independent variable x and quadrature in x∗. The discrete linear system Kf = d is generated
with the entries of K, which, if midpoint quadrature is applied, are defined as [9]

K(i, j) =
1

n
ce
−

((i−j) 1
n

)2

2γ2 , 1 ≤ i, j ≤ n,

where n is the number of discrete data points. A certain amount of data points is necessary to
obtain an accurate quadrature approximation, hence n must be relatively large. But the matrix K

becomes more ill-conditioned with increasing data points, and therefore errors in d are amplified
during the reconstruction process to obtain f . To show this effect, the constructed blurred data
g are additionally perturbed with noise (leading to the data vector d) to take into account errors
which are always present in practical applications. The true distribution f and the data points,
which are used to create the data vectors g and d are shown in figure 2.1 on the following page,
the blurred data g and the noisy data d are displayed in figure 2.2 on the next page. The data
vector d is used to reconstruct the distribution f . The straightforward approach is the solution
of f = K−1d. This fails, due to the amplification of the present errors in the data, as can be seen
in figure 2.3 on page 16.
If no noise is present, the reconstruction of the source is successful, although the limited resolution
due to the 80 data points is visible, see figure 2.4 on page 16.
Now some standard deterministic methods for solving this optimization problem are described.
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Figure 2.1: The linear problem: The true source distribution f (black line) and the 80 data points
which are used to create the data vectors

Figure 2.2: The blurred image g (green line) and noisy data d (blue circles)
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Figure 2.3: The true distribution f (is not visible on the left due to the dimension of the y-axis)
and the simple inverse solution obtained by f = K−1d.
On the right a detailed view including the true distribution is shown.

Figure 2.4: The true distribution f and the simple inverse solution obtained by f = K−1d, if no
noise is present
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• The Steepest Descent Method, where the search direction for the next parameter values is
chosen as the negative gradient of the functional,

• The Standard Newton Method, using first and second order information,

• The Gauss Newton Method, which is a special form of the Newton Method and

• The Levenberg-Marquardt Method, a trust region method (contrary to step length methods)
and can be seen as something between the steepest descent and the Newton method.

There are other practical, often used methods like the Conjugate Gradient Method, which avoids
the direct calculation of the Hessian, but approximates this matrix during the iteration process
(see [11, 9] for example). Because of the simple forward problem one does not need such approxi-
mations. There are other special Newton-type methods, the Quasi-Newton method for example,
which are also not described here. They are shown in [11, 12] for example.
The result of the Newton method and the steepest descent method is a search direction. This
direction is a decent direction, but a full step in this direction does not ensure to arrive the mini-
mum value. Therefore the minimum value has to be searched along this direction. This essential
algorithm, which is part of most optimization methods is named line search procedure and is de-
scribed in the last subsection. Only the Levenberg-Marquardt method doesn’t need a line search
because the trust region restricts the values and the corresponding variable has to be adjusted
appropriately.
This basic optimization methods are needed to solve inverse problems, but additional measures
have to be taken. It only ensures, that a solution exists [13]. The remaining two points of
Hadamard’s conditions, that the solution is unique and stable, are not ensured when just mini-
mizing the functional. Therefore, the optimization problem has to be modified. In other words
the problem needs some regularization. Regularization means, that additional information or as-
sumptions of the system are added to get a useful solution.
The regularization methods, which are treated in detail, are:

• Truncated Singular Value Decomposition

• Standard Tikhonov Regularization Method

• Landweber Iteration Method

• Total Variation Method

The last section forms the basis of the implemented algorithms, which are often combinations of
optimization and regularization methods.

• Regularized Gauss-Newton Algorithm

• Occam’s Inversion

• Regularization with additional box constraints, a special "Active Set" method
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2.2 Standard Optimization Methods

2.2.1 Steepest Descent Method

The steepest descent method is a simple first order iterative method (without computation of the
Hessian matrix). To compute the search direction, the negative gradient is used, hence only first
derivatives are necessary. In the linear case, the functional which should be minimized is given by

ψ(f) =
1

2
||Kf − d||22

The factor 1/2 is just added to avoid the factor 2 in the gradient which is given by

g = ∇ψ(f) = KT (Kf − d).

The gradient vector of a scalar function defines the direction and the magnitude of maximum
increase in the functions values at a given point [14, p. 102]. Hence the negative gradient represents
the steepest descent of the function. Whenever the gradient is not equal to zero, the search
direction s is automatically a descent direction because of gT s = −||g||22 [14, p. 102] with

s = −g = −∇ψ(f)

in a given point. The update step to obtain the next iterate of f (fk+1) is given by

fk+1 = fk + γsk,

where the step size γ is obtained by a line search algorithm in order to minimize the functional ψ
along the search direction sk. This can be stated as

min
γ>0

ψ(fk + γsk)

In every iteration k the gradient gk and the step size γk have to be calculated.
The following simple algorithm is given by [9, p. 35]

k = 0

f0 = inital guess

begin loop

sk = −∇ψ(fk) compute the negative gradient

γk = min
γ>0

ψ(fk + γsk) line search

fk+1 = fk + γksk update

k = k + 1

end loop
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The steepest descent method is a standard numerical optimization tool, but there are some dis-
advantages about it [14, p. 102]: Usually a large number of iterations is needed, because due the
orthogonality of the successive gradients (gTk gk+1 = 0), a zigzag path is generated. Additionally
the convergence rate of an quadratic functional is linear, but can be very slow in more general,
non quadratic cases, especially if the Hessian is ill-conditioned [9, p. 31].

2.2.2 Standard Newton Method

Newton-based methods are quite often referred to when using regularization methods. So a short
description of Newton’s method is given here. Newton’s method is an iterative method for linear
and nonlinear problems and is constructed in the following way [11]. Starting from a quadratic
model derived from Taylor series expansion of ψ(x) about xk, which can be written as

ψ(xk + δ) ≈ ψ̃k(δ) = ψ(xk) + gTk δ +
1

2
δTHkδ

where δ = x − xk and ψ̃k is the quadratic approximation of ψ(xk + δ). The two other variables
denote the gradient gk and the Hessian matrix Hk which are known. The next iterate is defined as
xk+1 = xk+δ, where the correction δ minimizes ψ̃k(δ). To get a unique minimizer the Hessian Hk

must be positive definite. The minimizer δ is calculated by setting the first derivative of ψ̃k(δk)

to zero. So Newton’s method for the step k can be written

• solve Hkδ = −gk for δ = δk,

• set xk+1 = xk + δk

The correction δk is named search direction or Newton direction [15, 11] sk. The classical Newton
method uses a unit step with γ = 1, but it can be improved by the line search [14, p. 106]. With
additional line search, which determines the step size γ the update step follows

xk+1 = xk + γksk.

This describes the fundamental idea of the standard procedure for the Newton method with line
search. Now the linear case with the simple optimization functional is considered:

ψ(f) =
1

2
||Kf − d||22

the gradient gk = ∇ψ is derived as

gk = KT (Kfk − d)

and the constant Hessian matrix H = ∇2ψ

H = KTK

Hence the solution for the next iteration step is

fk+1 = fk − γ(KTK)−1KT (Kfk − d)
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which is equal to the optimal point in the "single step method" derived by setting the gradient of
the functional g = KT (Kf − d) = 0 with γ = 1

fopt = (KTK)−1(KTd)

If the model Kf − d is accurate and the Hessian matrix is positive definite, then only one step is
necessary to find the minimum of the quadratic model from every starting point [15, 14]. For not
accurate models the iterative Newton method is preferred.
There is another modification of Newton’s method, an iterative method where the solution is
computed without calculation of the real Hessian matrix. This is called the Quasi-Newton method.
Only first order derivatives (the gradients) are computed, the Hessian matrix is approximated with
the help of the previous iteration and the first order derivatives ("update formulas") [14, p. 107].

2.2.3 Gauss-Newton Method

The Gauss-Newton method is a modified Newton method for nonlinear least squares [14]. The
functional of the network is used to derive the iterative Gauss-Newton scheme [13]:

ψ(r) = ||u(r)− ur||22 (2.5)

and the Taylor series approximation of this functional is

ψ̃(r) = ψ(rk) +

(
∂ψ

∂r
(rk)

)
(r− rk) +

1

2
(r− rk)T

(
∂2ψ

∂r2
(rk)

)
(r− rk) (2.6)

where the first order derivative is defined as the gradient gk = g(rk)

gk =
∂ψ

∂r
(rk)

and the second order derivative is defined as the Hessian matrix Hk = H(rk)

Hk =
∂2ψ

∂r2
(rk)

The equation (2.6) at the point r = rk+1 is given as

ψ̃(rk+1) = ψ(rk) + gk(rk+1 − rk) +
1

2
(rk+1 − rk)THk(rk+1 − rk)

To get the optimal value, the minimum of the functional above, the first order derivative is set
equal zero :

∂ψ̃

∂r
(rk+1) = gk + Hk(rk+1 − rk) = 0

Under assumption that the Hessian matrix is invertible it follows

(rk+1 − rk) = −H−1
k gk
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Now the gradient is derived from equation (2.5) on the previous page

g(r) =
∂ψ

∂r

=
∂

∂r

[
(u(r)− ur)

T
(u(r)− ur)

]
= 2

(
∂u(r)

∂r

)T
(u(r)− ur)

= 2J(r)T (u(r)− ur)

because the Jacobian matrix is J(r) = ∂u(r)
∂r . The Hessian can be determined as follows

H(r) =
∂2ψ

∂r2
(2.7)

= 2

(
∂u

∂r

)T (
∂u

∂r

)
+ 2

∑
k

∂2uk(r)

∂r2
(uk(r)− ur k)︸ ︷︷ ︸

negligible

(2.8)

≈ 2J(r)T J(r) (2.9)

The second term in equation (2.8) is negligible in the neighborhood of the solution, because the
residuals are small there [14, p. 173]. This is denoted the Gauss-Newton-Hessian approximation.
So the gradient gk = g(rk) and the Hessian matrix Hk = H(rk) at iteration k are given as

gk = 2JTk (u(rk)− ur)

Hk = 2JTk Jk

where Jk = J(rk) is the Jacobian matrix at iteration k. The updating correction can be written
in the following compact form :

δrk+1 = −H−1
k gk

with δrk+1 = rk+1 − rk.

2.2.4 Levenberg-Marquardt Method

In case the Hessian matrix Hk is not positive definite, a diagonal matrix (in the standard case a
weighted identity matrix) is added to ensure that the "modified Hessian matrix" becomes positive
definite [14, p. 107] . This is known as the Levenberg-Marquardt method and can be written as

(Hk + νI)sk = −gk.

The value ν is chosen in such a way that the modified Hessian matrix (Hk + νI) becomes positive
definite and yields a good search direction [14, p. 175]. The exceptional is that the eigenvectors
remain unchanged and the eigenvalues are augmented by ν and are positive if ν is positive. This
also improves the condition number of the Hessian matrix. This modification can also seen in
a different way: For ν = 0 the result is the Newton direction and for ν → ∞ it becomes the
descent direction. So the Levenberg-Marquardt direction lies somewhere in between the Newton
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and the steepest descent method [11]. Additionally shall be stated, that the Levenberg-Marquardt
method is not a regularization method like the standard Tikhonov method. There is no additional
information included like with the Tikhonov penalty term when using the identity matrix. The
additional identity matrix has the only purpose to obtain a positive definite Hessian matrix and
to ensure stability.
This method is also nicely applicable to the nonlinear least squares case (Gauss-Newton), when
the Hessian matrix is approximated. Generally speaking, the unconstrained optimization methods
can be splitted into two main classes: step-length methods and trust-region methods [12, p. 113].
It can be shown that the Levenberg-Marquardt method is a trust region method, because it is
related to the problem

min
s

gTk s +
1

2
sTHks

s.t. ||s||2 ≤ ∆

where ∆ is the trust region [12, p. 114]. In [12, p. 114] this relation is shown for the two cases if
either ν = 0 and ||s||2 ≤ ∆, or ν ≥ 0 and ||s||2 = ∆. In the first case the trust region ∆ is large
enough so the result equals the general Newton direction s. Otherwise a restriction is active and
the trust region bound holds and ν is set to a positive value.

2.2.5 Line Search Procedure

The line search procedure is necessary in Newton based regularization methods for enhanced
convergence. The solution of a Newton based regularization method is a search direction, without
specification where the minimum lies. Therefore the line search procedure is needed to determine
the distance to the minimum value along this search direction. Basically the line search consists
of two distinct phases [15, 11]:

• bracketing phase: find an interval [a, b] where the minimum is expected

• sectioning phase: divide [a, b] in sub-intervals [aj , bj ], which become smaller and smaller,
until a point is located as the minimum

For practical usage the standard line search procedure is too much time consuming. There are
several forward problem solution and especially also Jacobian matrices have to be computed.
Because one line search is needed at each iteration and since the real problem is approximated
at each iteration, a reduced and inexact line search procedure is used, which is described here.
[16, 17, 18] It uses only the quadratic interpolation for the residual function without a bracketing
phase, there are no loops included and no additional Jacobian matrix is necessary. Only one
forward problem is calculated for a full Newton step. This simple approximation is only possible
because it is a very good approximation of the real function present in the network problem. First
a full Newton step is done with

rnew = r + δr
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and the new voltages unew are calculated. For each individual function of the residual r a quadratic
interpolation is made.

r(γ) = (r1 − r′0 − r0) · γ2 + r′0 · γ + r0.

The derivative of r0 with respect to γ is calculated as follows:

r′0 =
dr0(r)

dγ
=

dr0(r)

dr
dr
dγ

= J · δr

because of
r(γ) = r(0) + γδr

and
J =

dr0(r)

dr
So the quadratic interpolation can be seen as

r(γ) = a γ2 + b γ + c

with

c = r0 =

[
u(r)− ur√

α L r

]

b = r′0 =

[
J δr
√
α L δr

]

a = r1 − r′0 − r0 =

[
unew − ur − J δr− (u− ur)

0

]
The complete functional f is calculated from

f(γ) = r(γ)T r(γ)

= (aγ2 + bγ + c)T (aγ2 + bγ + c)

= aTaγ4 + 2aTbγ3 + (2aT c + bTb)γ2 + 2bT cγ + cT c

where xTy = yTx for x,y = a,b, c. The step size can be determined by setting the first derivative
of f to zero.

df(γ)

dγ
= f ′(γ)

= 4aTaγ3 + 6aTbγ2 + 2(2aT c + bTb)γ + 2bT c

= 0

To determine the possible values of γ which solve that function, the Matlab function roots() [2] is
used. The largest positive and real value of the roots-vector inside the range 0 ≤ γ ≤ 1 is chosen
as the maximum γ value. The maximum step size is one Newton step even if the minimum γ value
is bigger than one. Figure 2.5 on the next page shows the schematic diagram for the line search
procedure.



Chapter 2. General Optimization and Regularization Methods 24

Figure 2.5: Schematic diagram for the line search

2.3 Regularization Methods

2.3.1 Truncated Singular Value Decomposition (TSVD)

One of the standard tools for solving linear problems is the Truncated Singular Value Decompo-
sition (TSVD). To understand this method, it is necessary to have a look at the Singular Value
Decomposition (SVD) of a matrix briefly.

Singular Value Decomposition (SVD)

To explain the Singular Value Decomposition of a matrix, consider a rectangular matrix K ∈ Rm×n

with the rank(K) = k [1, 19, 14]. The SVD of the matrix K has the form

K = U

(
Σ 0

0 0

)
VT = USVT ,

where

• U is a m ×m orthogonal matrix U = (u1, ...,um) ∈ Rm×m(UT = U−1), where ui are the
left singular vectors,

• V is a n× n orthogonal matrix V = (v1, ...,vn) ∈ Rn×n (VT = V−1), where vi are the right
singular vectors and

• Σ is a k × k diagonal matrix with the diagonal entries σ = (σ1, ..., σk) with σk > 0.

The diagonal entries of the matrix S are σ = (σ1, ...σp) with p = min(m,n). This values are called
the singular values of the matrix K. All singular values are non negative and can be arranged
in decreasing order so that

σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0
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An important value in this context is the condition number of the matrix K

cond(K) =
σ1

σk
.

It is the ratio between the biggest and the smallest nonzero singular value of the matrix K. The
matrix K is named ill-conditioned if the condition number is large, where the specification of
"large" depends on the particular problem [9, p. 31]. The inverse solution obtained by the SVD
equals the unregularized solution in figure 2.3 on page 16, see figure 2.6

Figure 2.6: The true distribution f (is not visible on the left due to the dimension of the y-axis)
and the inverse solution obtained by the SVD.
On the right a detailed view with the true distribution is shown.

TSVD

For further consideration the SVD is used to solve linear least squares problems of the form

min
f
‖Kf − d‖22

The SVD of the matrix K ∈ Rm×n can be seen as

K = USVT =

k∑
i=1

uiσiv
T
i

with rank(K) = k.
If d ∈ Rm then the solution f∗ is unique and can be defined by

f∗ =

k∑
i=1

(
uTi d

σi

)
vi

Now the matrix K+ is defined, which is called the pseudo-inverse or Moore-Penrose generalized
inverse of K.

K+ = VΣ+UT
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where Σ+ = diag(σ−1
1 , ..., σ−1

k , 0, ...0) ∈ Rn×n then the solution is

f∗ = K+d

The pseudo-inverse can additionally be formulated by

K+ = (KTK)−1KT .

If rank(K) = m = n, so the matrix is square and has full rank, then K+ = K−1. In this case the
singular values are all nonzero. Additionally the squared singular values of K are the eigenvalues
of KTK.
According to Hansen [1] two characteristics are often found in connection with discrete ill-posed
problems.

• The singular values σi decay gradually to zero with no particular gap in the spectrum.

• The left and right singular vectors ui and vi tend to have more and more changes in signs
in their elements for increasing index i.

The singular values of the present matrix K are plotted in figure 2.7. They decay without a

Figure 2.7: The singular values of the matrix K

particular gap from s1 = 0.9971 to s80 = 6.2032 · 10−9. The condition number of the matrix K is
quite large: cond(K) = 1.6074 · 108. It is shown in figure 2.8 on the next page that for decreasing
singular value σi the elements of the singular vectors show more oscillations. For the solution f∗

it can be expected, that for bigger index i it will get more and more oscillations, since the values
of d are amplified dramatically by the very small but nonzero σi. (The high-frequency contents
in d are amplified.)
If there is a notable discontinuity in the spectrum of singular values the problem is well-posed and
no regularization is needed. As a logical consequence of this, only the first r singular values are
used and the rest is neglected (set to zero), which is called Truncated Singular Value decomposition
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Figure 2.8: The singular vectors v1, v5, v20, of the matrix K

(TSVD). So the solution fTSV D is given by

fTSV D =

r∑
i=1

(
uTi d

σi

)
vi.

The choice of r depends on the particular problem. In practice not r but the threshold α with the
condition σ2

i > α is defined. All singular values which violate the condition are set to zero. This
leads to the filter function

wα(σ2) =

1 if σ2 > α

0 if σ2 ≤ α
(2.10)

The approximated solution fα can then be written in the form

fα =
∑
σ2
i>α

σ−1
i (uTi d)vi =

∑
i

wα(σ2
i )σ−1

i (uTi d)vi. (2.11)

The solution for a given threshold α = 0.001 is plotted in figure 2.9 on the following page. The
SVD is often used to calculate the inverse of the Hessian matrix of the given functional. To
handle functionals with an additional penalty term like in the Tikhonov functional the matrix
pair (K,L) (see equation (2.12) on the next page) it is necessary to extend or generalize the SVD.
This modified SVD is known as generalized SVD or GSVD, see [1].

2.3.2 Tikhonov Regularization (Standard Method)

The Tikhonov Regularization method is a frequently used regularization method, so it is also
applied to the network of resistors. First of all, the linear problem is discussed and the similarities in
between the TSVD and the Tikhonov Regularization method are shown. Sometimes the Tikhonov
Regularization is also denoted as Tikhonov-Phillips Regularization method [19, p. 87]. Tikhonov
originally used the penalty term ‖f‖2 which is equivalent to a regularization matrix L = I (with I

the identity matrix), hence this constellation is also known as standard Tikhonov Regularization
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Figure 2.9: Solution obtained with TSVD with α = 0.001

or zeroth order Tikhonov Regularization [5]. Other choices for the regularization matrix L are
shown in chapter 4. Nevertheless the linear case is considered here and the functional is given by

min
f

(||Kf − d||22 + α||Lf ||22), (2.12)

where Kf is the linear model of the system, d is the vector of the measurement values and α is
the regularization parameter (see next chapter). Additionally the above defined linear functional
in equation (2.12) can be interpreted as a constrained least squares problem in two different ways
[14].
On the one hand an ill-posed problem is considered and some prior information of the form ||Lf ||2
is incorporated. One specifies that the L2 norm of the sought values is smaller than a prescribed
value ε.

min
f
||Kf − d||2 subject to ||Lf ||2 ≤ ε

This is known as the method of quasi solution relative to L.
On the other hand some a-priori knowledge about the behavior (for example: a smoothness be-
havior) of the solution is known and the least squares problem is given by

min
f
||Lf ||2 subject to ||Kf − d||2 ≤ δ

Now the standard Tikhonov functional with L = I is analyzed and the similarity compared to the
TSVD is shown. Equation (2.12) leads to the least squares problem

min
f

(||Kf − d||22 + α||f ||22)

The solution can be written as
fα = KI

αd
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where the matrix KI
α ∈ Rn×n is a ’regularized inverse’ which is defined by

KI
α = VΣIαUT

with
ΣIα = diag

[
σ1

σ2
1 + α

, . . . ,
σn

σ2
n + α

]
∈ Rn×m

This solution also can be written as

fα =

n∑
i=1

σi(u
T
i d)

σ2
i + α

vi = (KTK + αI)−1KTd.

This leads to the Tikhonov filter function similar to the TSVD filter function in equation (2.10)
on page 27 and the according solution in equation (2.11) on page 27

wα(σ2) =
σ2

σ2 + α
(2.13)

In figure 2.10 the similarity of the linear Tikhonov regularization to the TSVD is shown. The TSVD

Figure 2.10: Similarity of the TSVD and Tikhonov filter functions wα(σ2)

cuts off the smaller singular values, the Tikhonov method has a smooth but similar transition if
the regularization parameter α is chosen appropriately. Therefore, the result of the chosen linear
problem (which is shown in figure 2.11 on the next page) is similar to the TSVD, even though the
oscillations are slightly smaller.

The influence of the Tikhonov filter function could be described that for relatively large values
of σ2

i the solution is only slightly modified, but for small values, which have strong influence in
amplifying the data errors, the solution is damped [19, p. 91]. In opposite to the TSVD the terms
are not omitted, but replaced with "incorrect" terms which do not corrupt the solution.
Now the problem is treated as a least squares problem and the standard single-step method is
shown. This is possible for linear problems only, if the model is of high accuracy. On the basis of
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Figure 2.11: Single step Tikhonov Regularization according to the TSVD method with α = 0.001

this linear problem it is shown in figure 2.2 on page 15, that the simple solution f = K−1d is not
satisfactory. Consider the linear optimization functional above, then the minimization problem is

ψ(f) = ||K f − d||22 + ||Lf ||22

or
ψ(f) = (K f − d)T (K f − d) + α(Lf)T (Lf)

To determine the optimal parameter, set the first derivation to zero.

2KT (K f − d) + 2αLTLf = 0

and it follows
(KTK + LTL)f = KTd

and the optimal solution is
f = (KTK + LTL)−1(KTd).

Additionally it should be marked, that the penalty term with the Identity matrix L = I forces
the minimization of the parameters of f , which could lead to bad results if this assumption is not
correct.

2.3.3 Landweber Iteration Method

The Landweber iteration method is similar to the steepest descent method, but the γ value is
set to a fixed constant with 0 < γ < 1/||K||2 [9, p. 10]. It has the updating function for every
iteration k

fk+1 = fk − γKT (Kfk − d). (2.14)
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In [19, p. 107] and [9, p. 10] it is shown, that the Landweber iteration can also be interpreted as
the filter function

wk(σ2) = 1− (1− γσ2)k. (2.15)

[9, p. 10] The filter function depends on the number of iterations k, hence for few iterations the
solution is a very smooth approximation of the real function, on the other hand if the number of
iterations becomes too large, the solution becomes highly oscillatory. The iteration counter plays
the role of the regularization parameter, since α = 1/k [19, p. 106-7]. The method tends to need
a high number of iterations to arrive at a useful solution, therefore the practical usage is limited.
In [10, p. 154] the linear Landweber iteration is described as a steepest descent method without
line search, equivalent with γ = 1. The plots in figure 2.12 show the results after 5, 50, 500 and
5000 iterations. In case of a nonlinear k(f), the updating formula becomes

(a) (b)

(c) (d)

Figure 2.12: Landweber iteration method: solution after a different number of iterations

fk+1 = fk − k′(fk)(k(fk)− d) (2.16)

where k′(f) is the Frechet-derivative of k(f) [10].
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2.3.4 Total Variation Method

The Total Variation method is in general is a regularization method with a different selection
of the penalty term. In the Tikhonov penalty term the L2-Norm is used, the penalty term of
the Total Variation (TV) Method can be seen as L1-norm [9]. With this choice ’blocky’ images
can be reconstructed with good results. ’Blocky’ images means nearly constant areas with jump
discontinuities or steep changes of the values between them. Unfortunately, the method it is more
difficult to implement. First consider the following linear least squares minimization functional
similar as above:

min
f

(||Kf − d||22 + αTV(f)) (2.17)

where TV(f) is in general

TV(f) =

∫
Ω

|∇f |Ω dΩ. (2.18)

As example the discrete one dimensional TV functional is [9, p. 9]

TV(f) =

n−1∑
k=1

|fk+1 − fk|

=

n−1∑
k=1

∣∣∣∣fk+1 − fk
∆x

∣∣∣∣∆x.
This method reveals some problems, which are discussed later in chapter 5. As motivation:
for the given linear problem a solution can be computed with the lagged diffusivity fixed point
method for the Total Variation penalized least squares [9], see figure 2.13 and see chapter 5. The
main characteristic of the TV-functional is that blocky structures are nicely reconstructed, while
continuous functions (like the sin-function) in the example is reconstructed with almost blocky
elements. The computed fixed point method is developed in chapter 5 and [9, p. 136].

Figure 2.13: Fixed Point method for the Total Variation functional α = 0.001 with 50 iterations
(because the TV-method needs to be iterative for linear functions)
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2.4 Implemented Algorithms with Tikhonov Regularization

2.4.1 Regularized Gauss-Newton Method

The derivation of the iterative Gauss-Newton scheme [13]

ψ(r) = ||u(r)− ur||22 + α||L r||22

and via the Taylor series approximation (see equation (2.6) on page 20) the gradient g(r) and the
Hessian matrix H(r) can be determined as

g(r) =
∂ψ

∂r

=
∂

∂r

[
(u(r)− ur)

T
(u(r)− ur) + α (L r)

T
(L r)

]
= 2J(r)T (u(r)− ur) + 2αLT (L r)

H(r) =
∂2ψ

∂r2

= 2

(
∂u

∂r

)T (
∂u

∂r

)
+ 2

∑
k

∂2uk
∂r2

(uk(r)− ur k)︸ ︷︷ ︸
negligible

+2αLTL

≈ 2J(r)T J(r) + 2αLTL

with the Jacobian matrix J = ∂u
∂r (r). The second order term is negligible in the neighborhood of

the solution. This is denoted as Gauss-Newton Hessian matrix approximation.
Hence the gradient gk = g(rk) at iteration k is

gk =
∂ψ

∂r
(rk) = 2JTk (u(rk)− ur) + 2αLT (L rk) (2.19)

and the Hessian matrix Hk = H(rk) at iteration k is

Hk =
∂2ψ

∂r2
(rk) = 2JTk Jk + 2αLTL (2.20)

The solution of every iteration k is the difference δr to calculate the resistor values for the next
step.

δrk+1 = −H−1
k gk

with δrk+1 = rk+1 − rk, where ur is the vector of measured voltages or the data vector, u(r)

is the vector of calculated voltages, α is the regularization parameter, r is the vector of current
resistor values and L is the regularization matrix. The first term which is named the residual
norm or objective functional contains only of the measurement values and simulated values of the
voltages. With this term only it is not possible to get a useful and stable solution, because of
the ill-posedness of the problem. Therefore the second term, the penalty term is added. This
term expands the problem with additional information. An update step of the resistor values r
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for iteration k is given by
rk+1 = rk + γ δr

with
δr = −(JT J + αLTL)−1(JT (u(r)− ur) + αLTL r)

and γ is the step size calculated by the line search procedure, which was shown earlier in this
chapter. As maximum a full Newton step is made hence the maximal γ value is γ = 1.

2.4.2 Occam’s Inversion

Occam’s Inversion [5] is an iterative algorithm which uses the discrepancy principle (see next
chapter) to chose the best α for every iteration. It is similar to the Gauss-Newton algorithm, but
uses only a Taylor series approximation for the model u(r) without a line search procedure. The
basic idea is a linear approximation of the model in every step. In the network problem the real
δ-value from the discrepancy principle can be computed because the real resistances are known.
The method approximates u(r) with a Taylor series approximation:

u(rk+1) = u(rk) +
∂u(rk)

∂r

T

(rk+1 − rk)

= u(rk) + JTk δrk+1

For the iteration k + 1 the functional is given by

ψk+1 = ‖u(rk+1)− ur‖22 + α ‖L rk+1‖22

with the approximation of u(rk+1) and a new data vector ûr = ur − u(rk) + J(rk)rk and rk+1 =

rk + δr it can be written

ψk+1 = ‖J(rk)rk+1 − ûr‖22 + α ‖L rk+1‖22

The gradient can be computed as follows and is set to zero to determine the optimal parameters

∂ψ

∂rk+1
= 2J(rk)T (J(rk)rk+1 − ûr) + α2LTLrk+1 = 0

with Jk = J(rk) the optimal next resistor values are determined as

rk+1 = (JTk Jk + αLTL)−1JTk ûr (2.21)

The algorithm adjusts the regularization parameter α every step according to the best factor
determined by the discrepancy principle [5, p. 245]. Equation (2.21) is equal with the Gauss
Newton update function without a line search procedure (γ = 1).

2.4.3 Active Set Method with Box Constraints

Additional information can also be implemented if upper and lower bounds of the sought values
are known [11]. This bounds can be implemented as simple box constraints. There are two
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constraints for every resistor and because the resistor can only be at one bound at the same time,
there can only be one constraint active. This is computed according to the algorithm of [11] with
considerations from [12]. The optimization functional ψ(r) is given by

min
r

ψ(r) = min ‖u(r)− ur‖22 + α ‖Lr‖22 (2.22)

s.t. lb ≤ r ≤ ub

with the Taylor series expansion of the Gauss Newton method the active set problem becomes

min

(
δrTgk +

1

2
δrTHkδr

)
s.t. δlb ≤ δr ≤ δub

where δlb = lb − rk, δr = r − rk and δub = ub − rk. The gradient gk and the Hessian matrix
Hk where defined with the Gauss-Newton approximation (see equation (2.20) and equation (2.19)
on page 33)

gk = 2JTk (u(rk)− ur) + 2αLTLrk

Hk = 2JTk Jk + 2αLTL

The general linear constraints are represented as A δr ≥ b. In this particular case the matrix
A consists of positive or negative rows of the identity matrix dependent on the bound (lb or ub),
and the vector b consists of the relative negative upper and positive lower bounds. The given
constraints are inequality constraints. They become active if they reach the bound and then they
are treated like equality constraints. Hence the active constraints are equality constraints, the
other inactive constraints are ignored.

min

(
δrTgk +

1

2
δrTHkδr

)
(2.23)

s.t. aTj δr = 0 for j ∈ active set

where aTj are the rows of At which denotes the active constraints. It is important for the algorithm
to start inside the feasible region (no inequality constraint is violated). To calculate the solution
the null space of A needs to be defined in such a way that ATZ = 0 (Z is the null space of AT ). In
this special case with boundary constraints only, the matrix At contains the rows of the identity
matrix which belong to the active constraints and the matrix Zt contains the rows of the identity
which belong to the inactive constraints. Because of two constraints for every resistor, if one
constraint of a resistor is active the opposite constraint of this resistor can be removed (not active
and not inactive). In each iteration the bounded variables (active variables) are removed from the
equations (elimination method) and the optimal solution is obtained from the system of inactive
constraints. This system is denoted as the reduced optimization system with the substitution

δr = Zty. (2.24)
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Inserting equation (2.24) into equation (2.23) leads to

min

(
yTZTt gk +

1

2
yTZTt HkZty

)
with the reduced Hessian matrix Hr defined as

Hr = ZTt HkZt

and the reduced gradient gr is
gr = ZTt gk.

Hence the solution of the reduced system can be written as

y = −H−1
r gr = −

(
ZTt HkZt

)−1
ZTt gk

To ensure that no constraint is violated, the step size needs to be limited

γmax = min
aTj sk<0

bj − aTj δrk

aTj sk
for j : j /∈ active set

with the index of the inactive constraints j and the iteration count k. If some computed δr-values
violate the constraints, the value which causes the maximum step size γmax for the next step
rk+1 = rk+γmaxδr is set active and the solution is computed again. If no constraint is violated, it
is checked if some constraints become inactive. Therefore the first order estimates of the Lagrange
multipliers at the solution are needed and calculated by solving the equation system

g = Aλ

In the case with box constraints, for the solution on the lower bound λj = gi and for the solution
at the upper bound λj = −gi. The constraint denoted with the smallest λj < 0 is removed
from the active set. Every main iteration (computation of the forward solution) only 3 active set
iterations are made, since the system is an approximation only (Gauss-Newton Hessian matrix
approximation).
Additionally a line search is made but the maximum step size γmax is given by the equation
above or the full Newton step (γ = 1). Therefore if the boundary is reached multiple times, the
convergence rate is lower because of the restricted step size. If the boundary is set too wide, there
is no difference in convergence compared to the unconstrained case.



3 Calculation of the Regularization
Parameter

3.1 Introduction

Again the following structure of the linear minimization functional (standard Tikhonov functional)
is considered.

min
f

‖Kf − d‖22︸ ︷︷ ︸
residual norm

+α ‖f‖22︸︷︷︸
solution norm

 , (3.1)

where the penalty term consists of a regularization matrix that is only the Identity matrix (there-
fore the name solution norm). The regularization parameter α guides the influence of the penalty
term in the functional and is controlling the degree of regularization [5, p. 93]. It is an important
quantity which controls the properties of the regularized solution [1, p. 10]. As seen in chapter 2
in the example of the TSVD and the Tikhonov Regularization, α plays the role of the truncation
threshold of the filter function. There exist basically three standard methods to determine the
regularization parameter :

• discrepancy principle

• generalized cross validation method

• L-curve method (Hansen)

One often used criterion is the discrepancy principle, also known as Morozov criterion. The idea
behind is that one cannot expect more accuracy in the approximate solution than the one present
in the data, hence it is possible to define a boundary value δ for the residual norm.
The generalized cross validation (GCV) method and especially the L-curve method are methods
which need a lot of iterations to arrive a proper regularization parameter. So they need a con-
siderable amount of computation time. Especially for the given nonlinear least squares problem
resulting from the network of resistors

min
r

‖u(r)− ur‖22︸ ︷︷ ︸
residual norm

+α ‖Lr‖22︸ ︷︷ ︸
penalty term

 (3.2)

the idea comes up to use in each iteration the best regularization parameter. This means, that one
have to compute the best parameter in each iteration, which in practice will not be applicable. The
computation of the forward problems is the most time consuming part of the inverse problems.
There is an iterative method using the discrepancy principle named Occam’s inversion [5] which

37
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is described in the previous chapter. Therefore the forward problem has to be computed several
times per iteration (8-12) to get the best parameter of the computed ones, which need not to
be the best parameter for the problem. If the computation of the forward problem is extremely
time consuming even this is not possible. Hence there are other methods which should also be
mentioned:

• adaptive method (EMT)

• simple methods of diminishing α

The adaptive method uses the weighted ratio of the residual norm and the penalty term to adjust
the regularization parameter in each step. The condition number of the Hessian matrix is used
to get an initial parameter and the weighting factor. This method was empirically found and is
probably not applicable for every problem. It is described in more detail later.
The idea behind the simple diminishing of the regularization parameter is to get first a rough
version of the solution and then refining the solution by putting more emphasis on the residual term
for minimization. In the case that a smoothing L-matrix is used and the diminishing regularization
factor should reduce the smoothing later in the iteration process. A popular adjustment formula
is

αk = α0q
k−1,

where α0 is the properly chosen initial value and q is a constant value 0 < q < 1. This equals the
notation αk+1 = αk · q. Another and very simple choice of the regularization parameter is given
by [10, p. 287]

αk = 2−k.

Of course the number of iterations has to be limited appropriately, in dependence of the present
errors (noise and model error).

3.2 Discrepancy Principle

The discrepancy principle [14, 67] is also known as the Morozov criterion. It requires a knowledge
of a upper noise limit δ and can be formulated as the functional

h(α;d) = ||Kfα − d||2

is the residual norm for the approximate solution fα. If the following condition for the data holds

||d̂− d||2 ≤ δ < ||d||2

where d̂ is the real data vector without noise, then the approximate regularization parameter α(δ)

is determined from
δ = h(α;d).

This gives the final equation for the network of resistors

∥∥u(rδα)− uδr
∥∥

2
= δ. (3.3)
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Therefrom the optimal regularization parameter αδ according to δ is computed [9, 106]. The
computation of the regularization parameter does not need to be very exact, because typically the
residual norm changes only little with small changes in α. The main problem of the discrepancy
principle is, that exact details of the included noise are necessary, white noise is assumed and the
variance is needed [9, p. 126]. The convergence of the discrepancy principle can be shown in the
sense that if the noise level δ goes to zero the solution goes to the true solution [10, 5]. Vogel in
[9, p. 126] derived that the discrepancy principle for the stochastic setting is order optimal. Engl,
Grever [20] show, that the L-curve can be used to calculate the optimal regularization parameter
via the Morozov criterion. In the results in chapter 6 the δ bound, derived from the computed
forward problem with the correct solution and the data vector which is perturbed with noise, is
plotted in the L-curve.

3.3 Generalized Cross Validation Method (GCV)

The Generalized Cross Validation Method [14, p. 68] is based on statistical assumptions about
the data error (according to Wahba) and defined as the following minimization problem where the
optimal α can be determined:

min
α>0
|||Kfα − d||22 −mθσ2|

with d being the discrete data perturbed with additive noise and this noise is assumed to have
zero mean and uncorrelated with the variance σ2 and a fudge factor 0.7 ≤ θ ≤ 0.95. This function
is based on the stochastic smoothing principle of Wahba and Wold. Hansen [1] defines the cross
validation function as

q(α) =
||Kfα − d||22

(trace(I−KKI
α))2

, (3.4)

where K is the matrix from Kf = d and KI
α is the matrix which produces the regularized solution

in fα = KI
αd, so its the "regularized inverse". The chosen regularization parameter minimizes

the function q(α). The derivation of this method is shown in [5, p. 116] and also the ordinary
or "leave-one-out" cross validation is defined. The principle is, that the model can be obtained
by omitting one data point out of the fitting process. The model will predict the missing data
value. The regularization parameter is selected by minimization of the predictive errors of all data
points. The number of problems equals the number of data points therefore the method of the
Generalized Cross Validation is used to speed up this computation [5, p. 115]. In contrast to
the discrepancy principle there is no knowledge necessary about the variance of the noise for the
computation and as in the discrepancy principle white noise is assumed [9, p. 126].

3.4 L-Curve Method

The L-curve [1] is a popular graphical tool to determine the regularization parameter, where no
information about the errors of the problem is necessary. In principal the L-curve displays the
compromise between minimizing the two quantities of the regularization problem, the norm of the
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α >>

α <<

Figure 3.1: L-curve from Hansen [1], where log ||Ax − b||2 equals log ||Kf − d||2 and log ||Lx||2
equals log ||L f ||2

residuals and the norm of the regularization or penalty term, see figure 3.1.

ψ = ||u(r)− ur||22︸ ︷︷ ︸
residual norm

+α ||L r||22︸ ︷︷ ︸
penalty term

(3.5)

By detecting the corner of the L-curve, the optimal regularization parameter can be found [1],
because the solution is computed with a good balance of the regularization parameter. For some
problems no corner can be detected, so the L-curve method fails. The corner can be defined in
different ways [10, 110]. In the definition of Hansen [1] the corner of the L-curve is the point
of maximum curvature with respect to α. Another definition [10, 110] says that the L-curve is
concave in the neighborhood of the corner and the tangent of the corner has to have the slope k
with k = −1. Unfortunately both definitions are not suitable for the network of resistors. Most of
the computed L-curves have no standard L-form and more than one corner. The regions around
the corners can be defined as convex with a negative slope. So in each region the point with
maximal curvature is defined as the corner. The corner in which the error between simulated and
measured data is the smallest is chosen to determine α. The L-curve of the linear problem, on the
other hand, has a nice L-shape (see figure 3.2 on the next page).

It has been shown [21] that the L-curve criterion works nicely, if the discrete Picard condition
is fulfilled. The discrete Picard condition insures stability in the solution and arises from the
computation of the SVD solution of the inverse problem. Considering the linear problem ‖|Kf−d||2
and assuming that K is a n× n Matrix with full rank, then the SVD solution can be written

f∗ = VS−1UTd =

n∑
j=1

uTj d

σj
vj
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Figure 3.2: L-curve of the linear problem

where uj and vj are the singular vectors corresponding to σj .
The discrete Picard condition is satisfied if the values of |uTj d| decay to zero more quickly than

the singular values σj [5, p. 67]. The Picard plot of linear problem is shown in figure 3.3 on the
following page and can be used to analyze the discrete Picard condition. Between value number
35 to 40 can be seen that the singular values continue to decay while the values of |UTd| remain
almost constant. In other words the values of |UTd| reach the noise floor [5, p. 99]. Thus the
ratio |uTj d|/σj increases, which implies that the singular values after this point should be damped
(Tikhonov) or omitted (TSVD), because it cannot be expected to get useful information from this
singular values [5, p. 99].

According to Hansen [1] the functionality of the L-curve is described in the case that the un-
perturbed data vector d satisfies the discrete Picard condition. Therefore the Fourier coefficients
|UTd| in average decay faster to zero than the singular values σ. The Picard plot without noise is
shown in figure 3.4 on the next page.
The horizontal part of the L-curve corresponds to solutions where the regularization error dom-
inates and the solution becomes very smooth. On the other hand, the vertical part contains
solutions which are dominated by perturbation error due to the division by the small singular
values. Because its impossible to reach a point below the L-curve in the Tikhonov case (because of
the continuous L-curve in opposite to the TSVD), the optimality of the L-curve method is defined
that for a given residual norm there does not exist a solution with a smaller semi norm than the
Tikhonov solution and therefore the Tikhonov regularization is optimal [1].
Additionally the computed MATLAB [2] function comp_lcurve.m is explained here. It consists

of 5 parts:

• Part 1: Drawing the L-curve with about 50 or less points (α values: if there are too little
points no corner can be detected, but the computation time is raising with the number of
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Figure 3.3: Picard plot for the linear problem

Figure 3.4: Picard plot for the linear problem without noise in the data vector
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calculated points. The number of points and the range of the values depends on the partic-
ular problem.

• Part 2: Determining the corner regions. A possible corner consists of points which are adja-
cent together, concave and / or with negative slope.

• Part 3: Refinement of corner regions: To increase the accuracy of the L-curve and therefore
the accuracy of the regularization parameter, the curve can be refined with additional points
placed in the possible corner regions(s). The factor of refinement can be chosen between
1 and 10, where 1 means no refinement. This parameter is multiplied with the number of
points containing every corner region and results in the new number of points in the corner
region. This part isn’t used in the results in chapter 6, because the accuracy for the given
problem is sufficient without it.

• Part 4: Calculation of the corner of every region. The best point of each corner region is
defined as the point with the maximum curvature [1]. The spline toolbox is used to obtain
a function for every corner.

• Part 5: Determining the best corner, if there are more than one. The best corner is chosen
as the corner with the smallest residual norm.

The major characteristic of the L-curve method is that no error information of the problem is
needed even no information of the error in the measurements. It can fail if there is no corner
detectable or the values of α doesn’t match the values of other methods. In [21] is shown that
the functionality of the L-curve method fails if the discrete Picard condition is not satisfied. The
non convergence of the L-curve for the TSVD and the standard Tikhonov regularization method
is also shown in [9, p. 124-126]. And in [10] it is shown that no scheme which contains noisy data
with no information about the noise level is able to converge, even if the noise level goes to zero.
Thus if useful information of the existing errors in the problem are known, an other method might
be more useful [9].

3.5 Adaptive Method

If the L-matrix is the discrete Laplace operator (see chapter 4), it includes a smoothing assumption
for the solution, which is often not a correct assumption as in the case of the resistor network.
Therefore the regularization parameter is adjusted adaptively after each iteration to get a better
solution [22]. This method chooses the initial regularization parameter in dependence of the con-
dition number of the Hessian matrix Hk = (JTk Jk + αLTL) . The condition number of a Matrix is
defined as the ratio between the biggest and the smallest singular value of the matrix (see chapter
2 SVD). Then the regularization parameter is chosen in dependence of the initial parameter and
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the resulting norms.
Hence, the determination of the regularization parameter can be described in two steps:

• First an estimate of the regularization parameter via the calculation of the condition number
of the Hessian matrix. The following minimization problem is solved for the initial value of
the regularization parameter.

α0 = argmin
α

{∥∥cond (JT J + αLTL
)
− c
∥∥2

2

}
where cond(A) denotes the condition number of A and c denotes a empirically found constant
value.

• The second step contains an iterative adaptation of α. The idea behind is to use ratio
between the residual norm and the regularization term. The residual norm gets smaller
after each iteration and also the regularization term should get smaller (see the L-curve
method). The following adaption strategy is used.

αk = c(α0)
‖u(rk)− ur‖22
‖L rk‖22

where c(α0) is a weighting factor in dependence of α0. For the constructed problem it works
very well, but it is possible that this applies not for every problem. But if this succeeds for
the particular problem the regularization parameter is chosen completely automatically.
In our case, it is difficult to find a appropriate weighting factor for the network problem
because the combinations of different resistances is not bounded due to prior information.



4 Tikhonov Regularization: Different
Methods to Determine the
Regularization Matrix

4.1 Introduction

There exist many different approaches (see [23]) to include prior information in the regularization
matrix. The standard Tikhonov functional contains the identity matrix as L-matrix, which is also
called zeroth order Tikhonov regularization. For the linear case the first and second order Tikhonov
regularization also can be easily explained. The linear Tikhonov regularization functional has the
form

‖Kf − d‖22 + α ‖Lf‖22

and the L-matrix of the first order Tikhonov regularization is denoted as

L1 =



−1 1

−1 1

. . . . . .

−1 1

−1 1


This L1f term is the finite-difference approximation proportional to the first order derivative, which
will favor solutions that are relatively "flat" [5, p. 103] or slowly changing [24]. The L-matrix of
the second order Tikhonov regularization in given by

L2 =



1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2 1


This results in the approximation of the second order derivative, which will favor "smooth" solu-
tions. For higher dimensional problems the second order Tikhonov regularization is often imple-
mented using the finite difference approximation to the Laplacian operator [5, p. 104], which is
constructed in the next section. The choice of the identity matrix for the resistor network forces
the minimization of every resistor value and in our case it doesn’t really assist the search for the
real solution. Hence for the general case, where no special a priori information is available, the
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Laplacian operator is preferred.
Another point of view of the function of the Tikhonov regularization method is that it pulls the
solution towards the null space N(L) of the regularization matrix L [23], because the resulting
distributions (slowly changing, smooth) form the basis of the null spaces of the respective ma-
trices (L1 and L2). Hence if prior information about the true distribution is available, then the
regularization matrix can be constructed to guide the solution towards the known distribution.
From this another problems arises if the prior information is incorrect. The features of these this
special methods, which are

• the Basis Constraint Method

• the Subspace Regularization Method

• the Diagonal Weighting of JT J

• the Minimum Mean Variation Method

are described in the following sections. There are other statistical methods to determine the
regularization matrix for example see [7].
An additional remark:
When replacing ||Lr|| with ||L(r − r∗)||,then r∗ can represent prior information, which is not
represented in the null space of L [23]. The values of r∗ are often the initial parameters of the
regularization [13, 23].

4.2 Discrete Laplacian Operator

In this case the regularization matrix L is a discrete Laplacian operator (approximated with finite
differences). If the element L(i, j) (= Rj) is a neighbor of the main element L(i, i) (= Ri), then
L(i, j) = −1 or zero otherwise. For the used definition of the neighbor elements see figure 4.1. The
main elements are given by L(i, i) = −

∑
j L(i, j) for i 6= j. If the main element is horizontal, the

neighboring elements are the vertical ones next to this main element. For vertical main elements
it is similar. This choice of the regularization matrix incorporates a smoothness assumption about
the variation of the resistor values.

Figure 4.1: Definition of the neighbors
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4.2.1 Some Different Definitions of Element-Neighbors

Other definitions of neighbors are also possible, see figure 4.2 for example. These alternative

Figure 4.2: Other possible definitions of the neighbors

definitions of the neighbor elements take more neighbors into account than the first definition,
hence they lead to a bigger smoothing of the regularized solution. It is also possible to weight the
neighbors differently, so that the neighbors further away are less weighted than the adjacent ones.
It is essential, that the value assigned to the "main" resistor is the negative sum of the values
assigned to the neighboring resistors, so that the sum of each row of L equals zero.

4.3 Basis Constraint Method

The idea behind the basis constraint method is described here [23, 25] starting from the minimiza-
tion functional

min
r
{||ur − u(r)||2 + α||Lr||2}.

First a set of preselected basis functions wm is used, to set up an approximation of the sought
distribution.

r =

M∑
m=1

cmwm(x) , cm ∈ R,

where cm are weights and wm are the possible distribution vectors or basis functions. The number
of different preselected basis functionsM should be small (for example 3−5). The construction of
these basis function is possible with known structures or conductivities. A priori knowledge, like
results of earlier measurements (like MRI) is also used. This kind of set of distributions is then
also known as a learning set. The Subspace Sw = span(wm) is assumed to be the space, in which
vicinity the true solution is assumed to lie. A set of possible sought distributions (vectors) rn is
set up, with n = 1, ..., N , next to which the true distribution is assumed to be (learning set). The
real distribution is next to one or next to a linear combination of these vectors. This set can be
seen as an prior model. It is very inefficient to stabilize if N is very large, so a low-dimensional
subspace is used (with predefined M elements). The covariance matrix C is calculated with

C = N−1R̂R̂
T
,
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where the matrix R̂ = [r1...rN ]. To approximate the smaller set with M elements, one calculate
theM largest eigenvalues and their orthonormal eigenvectors wm of C. This is a good compromise
between a good approximation (large M) and good regularization (small M). The disadvantage
of this method is, that when the prior information is incompatible with the reality, one gets
misleading results, so the estimates exhibits the structures of the prior information although they
are not existent. In medical detection of some unimplemented features it will fail [23].

4.4 Subspace Regularization Method

This method uses the same idea of the basis constraint method, but uses no strict linear com-
bination of these basis functions [23]. It leads the approximation towards the Subspace Sw =

span(wm). This is done by forming a new regularization matrix with the null space N(L) = Sw.
the orthogonal projector onto Sw is WWT where W is the matrix with the orthonormal eigenvec-
tors wm as its columns. The regularization matrix is constructed as follows

L = I−WWT ,

with I the identity matrix. The regularization matrix is constructed in that way because of the
relation

WWT r ≈ r

which is valid for such vectors that comply approximately with the prior model. Now the whole
matrix construction for such compatible vectors is considered

(I−WWT )r = r−WWT r ≈ 0,

therefore such vectors are favored in the reconstruction. This choice of the regularization matrix
is the same as to use the distance between the subspace Sw and the solution r as penalty.

4.5 Diagonal Weighting of JTJ

In this section a diagonal weighting of JT J is used as regularization matrix L [23].

L = diag(JT J)

so that
δrk = (JT J + α diag(JT J))−1[JT (ur − u(rk))]

is. The diagonal matrix can be thought here as an approximation of the part of the second
derivative.

4.6 Minimum Mean Variation Method

If the cross section is subdivided in parts with different length of the edges, the regularization ma-
trix can be weighted with the length of the edges to ensure different strength of the regularization
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[23]. First the regularization matrix L is chosen as a discrete first order difference operator ( for
row i: 1 and -1 are set for the pixels on the common edge) , that the part ||Lr|| gives an approx-
imation for the mean variation of r. Additionally each row has been weighted with the length of
the edge di of the edge i. The diagonal matrix D consists of the vector d in the diagonals. The
final form can be written as

δrk = (JT J + αLTDTDL)−1[JT (ur − u(rk))− αLTDTDLrk].

4.7 Modifications of Standard Regularization Matrices due to

Spatial Prior Information

According to Borsic in [13, p. 78] and [26] where the Tikhonov Regularization with a special
regularization matrix is used, the main idea of the modification which is named Anisotropic Reg-
ularization is described here. Assuming that in many practical applications blocky structures are
present, which means areas with constant values and steep variations between them, the smoothing
effect of the Laplacian operator used as regularization matrix does not lead to optimal reconstruc-
tions because it doesn’t allow steep variations. In many cases (for example the human body) the
position of the areas is known but the size is only roughly known or is varying. Therefore, the
whole area is separated in areas with expected small variations and in areas with expected steep
variations. In the regions where small variations are expected, the standard Laplacian operator
is used. In the regions with expected steep variations (the direction of the variation in usually
known) the Laplacian operator values are relaxed only along the direction of the steep variation,
allowing faster transitions in this direction while keeping the necessary smoothness tangentially
[26]. It is also ensured that the sum of each row of L is zero hence the value of the center element
is set to the negative sum of all appearing elements.

Another similar approach is made in [24], where the first order difference operator is used as
regularization matrix L and modified to include prior information. The locations of the sharp
edges are assumed a priori. The corresponding rows to this sharp edges are removed of the L

matrix. With this modification resistance changes (according to the network problem) are allowed
to be arbitrarily and not forced to be small over this edge as elsewhere. If the assumption is
incorrect and the regularization parameter is well adjusted, the results are almost as good as the
reconstruction without prior assumptions.

Also worth mentioning is the approach to reduce the degrees of freedom with the aid of groups.
In [27] the idea is presented. The problem is assumed as a two phase-field, where only two
different parameter values are present. The aim is the improvement of the spatial resolution of
the reconstruction. Starting from a Gauss Newton based reconstruction with some iterations the
resulting parameters are partitioned into three groups. The groups are defined by two thresholds
µTH and µTL, where µTL is the lower threshold and all parameter values below this threshold are
assigned to the background group BG. A similar procedure is done for the values which are higher
than the upper threshold µTH , they are assigned to the target group TG. The remaining values,
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which are between the two thresholds are assigned to the unadjusted group UG. All parameter
in the background and target group are reduced to one sought parameter each. Doing that, the
degrees of freedom are reduced and after some iterations the grouping is repeated. In [27] it is
shown that the number of unknowns is reduced successively and thus the ill-posedness of the
inverse problem is diminished.



5 Total Variation Method

5.1 Introduction

In chapter 2 the basics of the Total Variation theory were introduced. Now a detailed implemen-
tation is shown [9]. When "blocky" structures are assumed in the true object the Total variation
method is a good choice for the penalty term. "Blocky" structure means piecewise constant values
with steep changes between them. The complete minimization functional of linear form can be
defined as

min
f

(||Kf − d||22 + αTV(f)) (5.1)

where TV(f) is in general

TV(f) =

∫
Ω

|∇f |ΩdΩ.

This formula can also be written in the range of 0 to 1 without loss of generality, for the one
dimensional case as

TV1D(f) =

∫ 1

0

∣∣∣∣dfdx
∣∣∣∣ dx. (5.2)

and equivalent in the two dimensional case

TV2D(f) =

∫ 1

0

∫ 1

0

|∇f |dx dy,

where ∇f = (∂f∂x ,
∂f
∂y ) denotes the gradient and |(a, b)| =

√
a2 + b2 denotes the Euclidean norm

[9, p. 129]. These formulas are true for smooth functions, this means for infinitely differentiable
functions. There exists an important problem when implementing numerical methods: the L1

norm is not differentiable at the origin. So the often used approximation of |x| like
√
|x|2 + β2 is

used to handle that problem and this yields to the following formulas:
for the one dimensional case:

TV1D(f) =

∫ 1

0

√(
df
dx

)2

+ β2 dx

and equivalent for the two dimensional case:

TV2D(f) =

∫ 1

0

∫ 1

0

√(
df
dx

)2

+

(
df
dy

)2

+ β2 dx dy.

where β is a small positive parameter. This approximation has the deviation of β at the origin
and converges outside the origin to the original function [9, 17, 5].
In a geometrical interpretation of f the TV(f) can be seen as the lateral surface area of the graph
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of f [9, p. 130].
The main difference between the first order Tikhonov and the Total Variation regularization
is the grade of the used norm of the penalty term. The Tikhonov Regularization uses the L2

norm independent of the used L-matrix, the Total Variation regularization uses the L1 norm with
the first order differences Operator (denoted as the matrix D) like in the first order Tikhonov
Regularization.

min
f

(||Kf − d||22 + α||Df ||1) (5.3)

This general model has to be adopted numerically to the given discrete problem, which leads
to some problems. This is made for 1D and 2D problems as well as for the network problem.
Additionally the implemented and some other algorithms for the linear and nonlinear case are
shown, but first of all the difference between L1 and L2 norm is demonstrated.

5.2 Difference Between L1 and L2 Norm

The main difference between the L1 and L2 norm should be explained with a simple piecewise
linear function (see figure 5.1) [17, p. 34]. This penalty term applied to the given function f(x)

Figure 5.1: Piecewise linear function to explain the behavior of different norms

in the range of (0, h) gives

TV(f) =

∫ h

0

|f ′(x)|dx.

To analyze this we need the general notation of norms with grade p applied to the given problem
f(x) = d

hx

‖f ′(x)‖pp =

∫ h

0

|f ′(x)|pdx =

∫ h

0

(
d

h

)p
dx =

(
d

h

)p
h =

dp

hp−1
.

The norm is then given by

‖f ′(x)‖p =
p

√
dp

hp−1
=

d

h
p−1
p

.

The result for the L1 and L2 norm follows to

‖f ′(x)‖1 = d

‖f ′(x)‖2 =
d√
h
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It can be seen that both norms penalizes the transitions in f (because of d) but the L2 norm
penalizes fast transitions (with small h) more than slow transitions (with big h), in contrast to
the L1 norm. There is no difference between fast and slow transitions. Therefore the L2 norm
penalizes the abrupt changes in f and the L1 norm has no effect on the gradient of f(x) because
it is no function of h.

5.3 1D-Discretization of the Functional

The 1D-TV-functional given in equation (5.2) on page 51 has to be discretized for implementation.
Hence the function f(x) is supposed to be a smooth function with [9, p. 131]

f = (f0, ..., fn) with fi ≈ f(xi), xi = i∆x,∆x =
1

n

and the approximation of the derivative is defined as

Dif =
fi − fi−1

∆x
i = 1, ..., n.

So the vector Di has the size (n + 1) × 1 and is nonzero on the position i and i − 1 and can be
seen as one row of the matrix D in equation (5.3) on the preceding page.

Di = [0, ..., 0,− 1

∆x
,

1

∆x
, 0, ..., 0]

Hence the discrete penalty term arises to

TVd(f) =
1

2

n∑
i=1

φ((Dif)
2)∆x

The function φ is a smooth function and is integrated to handle the non-differentiability at the
origin with the property

φ′(t) > 0 whenever t > 0.

A common approximation for φ(t) is

φ(t) = 2
√
t+ β2.

The variable t is defined as t = (Dif)
2. The derivatives of φ(t) results in

φ′(t) =
1√
t+ β2

(5.4)

φ′′(t) = −1

2

(
t+ β2

)− 3
2 (5.5)

There are another possible approximations of φ′(t) shown in [9, p. 131] and in [5, p. 177].
Now the optimal solution of the linear optimization functional has to be computed. This derivation
is taken from [5, p. 176] because its easier to understand than in [9, p. 133] while the result is the
same with the assumption ∆x = 1 which can always be absorbed by the regularization parameter.
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Starting with the functional (see equation (5.3) on page 52)

min
f

(||Kf − d||22 + α||Df ||1) (5.6)

and with the substitution y = Df , getting ||Df ||1 =
∑m
j=1 |yj | with m number of elements of y

the gradient is obtained by

g(f) = 2KT (Kf − d) + α

m∑
j=1

∇|yj |

For nonzero yj (what is ensured above)

∇|yj | =
∂|yj |
∂fi

= Dj,i sgn(yj) = Dj,i
yj
|yj |

Now the diagonal matrix W(f) can be defined. W(f) has the elements

Wj,j(f) =
1

|yj |
=

1√
(Djf)2 + β2

.

Then the gradient of the penalty functional is given as

∇(||Df ||1) = DTW(f)Df

The complete gradient is given by

g(f) = 2KT (Kf − d) + αDTW(f)Df

To obtain the optimal solution the gradient is set to zero

(2KTK + αDTW(f)D)f = 2KTd

The matrix W(f) equals the matrix diag(φ′((Djf)
2)) [9, p. 132] and depends on Df . It is an

nonlinear system of equations. Because W(f) depends on the sought solution, the iteration process
has to be started with f0 and some iterations are needed to gain convergence. So opposite to the
Tikhonov Regularization the Total Variation method is not a single step solution. Additionally
the Hessian matrix can be calculated with [9, p. 133]

H(f) = 2KTK + αDTW(f)D + αDTW′(f)D

with the definition W′(f) = diag(2(Df)2φ′′((Djf)
2)) and φ′′ equivalent to the approximation in

equation (5.5) on the preceding page. In the following algorithms the following notations according
to [9] are used

L(f) = DTW(f)D

L′(f)f = DTW′(f)D
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To analyze the penalty term, the entries of the diagonal matrices W and W′ are plotted. For the
approximated Hessian matrix only the first term W is used. One entry of this diagonal matrix is
denoted as y1(x) and for the complete Hessian matrix both terms W + W′ are used. One entry
of this matrix is denoted as y2(x) where x corresponds to Djf , the difference of the neighboring
elements.

y1(x) =
1√

x2 + β2

y2(x) =
β2

(x2 + β2)
3
2

Both terms are plotted with β = 0.1 in figure 5.2. It can be seen that the term for the approxima-
tion of the Hessian matrix converges much slower to zero than the term of the complete Hessian
matrix but the maximum value which is 1/β is the same.

Figure 5.2: Constructed entries of the diagonal matricesW andW+W ′ versus x which corresponds
to Dif with β = 0.1

The algorithm with the solution in the second chapter plotted figure 2.13 on page 32 can be
written as

k = 0

f0 = initial guess

begin loop

Hk = 2KTK + αL(fk) approximated Hessian matrix

fk+1 = H−1
k (2KTd) update step derived by setting the gradient gk = 0

end loop repeat until the solution converges

Additionally some other linear algorithms and the corresponding solutions are discussed briefly
now.
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5.4 Some Linear Algorithms

5.4.1 Steepest Descent Algorithm

The simple algorithm from the steepest descent method, where the search direction is the negative
gradient, is modified for Total Variation-Penalized Least Squares [9, p. 135]

k = 0

f0 = initial guess

begin loop

gk = 2KT (Kfk − d) + αL(fk)fk calculation of the gradient

γk = argmin
γ>0

ψ(fk − γgk) linesearch

fk+1 = fk − γgk update

k = k + 1

end loop

In figure 5.3 the result for the steepest descent with TV algorithm for 50 iterations is plotted.
The selected number of iterations is small for the steepest descent algorithm, hence the result is

Figure 5.3: Total variation steepest descent method with α = 0.001 after 50 iterations

smooth. With 500 iterations the result is similar to figure 2.13 on page 32.

5.4.2 Newton Method

The next algorithm is the modified Newton algorithm, where the full Hessian matrix is used.
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k = 0

f0 = initial guess

begin loop

gk = 2KT (Kfk − d) + αL(fk)fk calculation of the gradient

Hk = 2KTK + α[L(fk) + L′(fk)fk] Hessian matrix

sk = −H−1
k gk calculation of one Newton step, search direction

γk = argmin
k>0

ψ(fk + γsk) linesearch

fk+1 = fk + γsk update

k = k + 1

end loop

The complete Hessian matrix is more difficult to be controlled than the approximated Hessian
matrix. A possible method to overcome this problem is the successive decrease of β every iteration.
Additionally a well working line search procedure is needed. The result, equivalent to the Quasi-
Newton approach is shown in figure 5.4.

Figure 5.4: Total variation Newton method with α = 0.001 and β = 0.001

5.4.3 Lagged Diffusivity Fixed Point Method

In general this is the same as the algorithm of the solution in the second chapter, the similarity is
shown starting from the equation for the iteration step k [9]

fk+1 = [2KTK + αL(fk)]−12KTd = fk − [2KTK + αL(fk)]−1[2KT (Kf − d) + αL(fk)fk].

The first definition is the equation of the fixed point iteration like derived above, the second is the
Quasi-Newton form, both are equivalent. The Quasi-Newton form can be derived by a simplified
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Hessian without the L(f)′f -Term, where the result equals the optimal solution derived above. This
results to

[2KTK + αL(fk)]∆f = 2KTd with ∆f = fk+1 − fk

The following algorithm is based on the Quasi Newton form. This form is not so sensitive to
roundoff errors than the fixed point form [9].

k = 0

f0 = initial guess

begin loop

gk = 2KT (Kfk − d) + αL(fk)fk calculation of the gradient

Hk = 2KTK + αL(fk) Hessian matrix

sk = −H−1
k gk calculation of one Newton step, search direction

fk+1 = fk + sk update

k = k + 1

end loop

The term L(f) is termed the discrete diffusion operator. Therefrom the name "lagged diffusivity"
is derived. If KTK is positive definite, it is proven that the algorithm converges globally without
a line search and a linear rate of convergence can be expected [9, p. 136]

5.5 Implemented Gauss-Newton Method with Total Variation

According to the linear case above,the variable t is defined as tj = Djr where Dj is a row of the
D-Matrix.

tj = Djr =
rk − rj

∆r
for j = 1 . . . b, k = 1 . . . neighbors of j

where b is the number of resistors and Dj the discrete derivative approximation. And ∆r is set to
∆r = 1 for simplicity. The D-Matrix is first constructed from the L-Matrix, for every neighboring
resistor of the current resistor a row Di is constructed. As neighbor definition the L-Matrix is
used (see figure 4.1 on page 46), so for each "main" resistor 4 neighbors are defined and 4 rows
in the D-Matrix are constructed. So the D-Matrix would have the size 512× 144. The D-Matrix
is also given when taking the horizontal neighbors into account only, because every difference
between two neighboring resistors appears. Then the D-Matrix has the size 256× 144. Now it is
needed to determine the gradient and the Hessian of the new penalty term. Although its a planar
problem it’s not a real 2D-problem with x and y variable, because the sought vector is r, hence
it is computed as 1D-problem with the above constructed D-Matrix. Stability problems occurred
with the use of the L′(r)r term in Hessian matrix (full Newton step), hence only the quasi-Newton
steps with the penalty term of Hessian matrix L(r) is used, which leads to the following derivation
of the Gauss Newton method with the Total Variation Functional.
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The following minimization problem is discussed

min
r
ψ(r)

with
ψ = ‖u(r)− ur‖22︸ ︷︷ ︸

residual norm

+α ‖D r‖1︸ ︷︷ ︸
TV penalty term

(5.7)

Equivalent to the Gauss-Newton approximation the Taylor-series approximation is applied and
the gradient of the functional is computed

gk = 2Jr(u(rk)− ur) + α∇‖D rk‖1

The term ∂u
∂r denotes the Jacobian matrix J and the derivative of the TV term can be written as

∇‖D rk‖1 = DTW(rk)D rk

where the matrix W is W = diag
(
φ′((Djr)2)

)
as previous defined. The Hessian matrix is given

by

Hk = 2JTk Jk + αDTW(rk)D + 2
∂2u

∂r2
(u(rk − ur) + αDT ∂W

∂r
Drk︸ ︷︷ ︸

2nd order term is neglected

Equivalent to the standard Gauss-Newton case the second order terms are neglected.

δrk = (rk+1 − rk) = −H−1
k g = −(2JTk Jk + αDTW(rk)D)−1(2JTk (u(rk)− ur) + αDTW(rk)Drk)

In the linear case the Total Variation algorithm is an iterative algorithm because of the dependency
of the penalty functional of the sought values. In the (Gauss-) Newton case the Total Variation
term is only dependent on the actual constant resistor values rk, hence there are no additional
iterations necessary. The following Gauss-Newton-based algorithm is used:

k = 0

r0 = initial guess

begin loop

L(rk) = DTW(rk)D

gk = 2JT (u(rk)− u) + αL(rk)rk calculation of the gradient

H = 2JT J + αL(rk) approximated Hessian matrix

sk = −H−1gk calculation of one Newton step, search direction

γk = argmin
γ>0

ψ(fk + γsk) linesearch

rk+1 = rk + γsk update

k = k + 1

end loop



6 Results and Discussion

6.1 Introduction

In this chapter the implemented regularization methods are briefly described and results are pre-
sented. First the circuits used are shown. After that possible errors in an practical problem
are described and the error approximation used is defined. Finally the measurement values are
described.

6.1.1 Used Circuits

Three different circuits are selected to show reconstruction results. They are consisting of con-
tinuous areas with homogeneous resistances. The distribution can be seen as objects against a
background. The unit of the resistances (Ω) is not specified. The background consists of resistors
with resistance 1. The first circuit contains a small object with value 3 and a big object with value
5, see figure 6.1. On the basis of this network the implemented algorithms are applied and the
results are compared. The second circuit consists also of two objects similar to the first one but
with interchanged resistances, see figure 6.2 on the following page. Additionally a third circuit
(see figure 6.3 on the next page) is used. It consists of one big object in the center. For every
circuit error calculations are made. Because of the rank deficiency of the problem, even if no

Figure 6.1: Circuit 1: Two different objects diagonally arranged
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Figure 6.2: Circuit 2: Two different objects diagonally arranged with interchanged values

Figure 6.3: Circuit 3: One big object in the center
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noise is present the true distribution cannot be reconstructed easily. The missing equations have to
be replaced with information from the regularization term. Therefore, reconstructions are shown
with and without noise.

6.1.2 Errors

Errors can occur in measuring the values ur and in computation of the optimal solution r.
The measurement errors should be as small as possible, but they are always present because of
limited accuracy of the measuring instruments, which can be seen as instrument noise. There is
always some noise present in practical applications, which is common for every electrode at the
boundary. It can be seen as noise induced from the measurement environment, for example [28].
Additionally errors (due to the computation of the solution) can occur in the solution because of
following reasons [12].

• Rounding errors: The cause is the representation of numbers on the computer. The numbers
are typically floating point numbers with bounded length and usually written as a signed
fraction times a power of 10. Hence, only a finite set of numbers can be represented, so the
real number must be rounded.

• Cancellation errors: They occur during arithmetic operations caused by the bounded storage
space for the numbers.

Additionally it should stated, that the ill-posedness or ill-conditioning of problems has nothing to
do with the floating point-operations. It is a property of the problem itself.
Due to the simple forward problem of the present network problem, the errors occurring in the
computation are assumed to be very small and they are negligible. The measurement errors which
are always present in practical applications are simulated. They are assumed as additive Gaussian
noise with zero mean and a standard deviation of 1% of each boundary voltage. Additionally the
reconstruction is made without noise to visualize the best possible results. After that the different
methods are applied to the different circuits, and the solutions are discussed on the basis of the
relative mean error εmean, the relative maximum error εr,max and the absolute maximum error
εa,max. They are defined as follows [29, 30, 31]

εmean =

√∑
i (Ri recon −Ri true)2∑

i (Ri true)2
× 100%

εr,max = max
|Ri recon −Ri true|

|Ri true|
× 100% (6.1)

εa,max = max |Ri recon −Ri true|.

The same errors are calculated for the voltage values ur for comparison with the calculated resis-
tances. For the resulting solution r the number of iterations k needed, the resulting residual norm
and the maximum and minimum resistances are displayed as well. The values of the regularization
parameter computed with the different methods are compared.
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6.1.3 Measurement Voltages with Noise

Here the used measurement voltages with noise are shown for every circuit. The values are
calculated with the same noise vector for comparison (for 8 and 12 electrodes separately). The
noise vector is weighted with the corresponding values to construct a noise equal to about 1 percent
of the value for each value. The correct and the perturbed values of the voltage vector ur for the
8 electrode arrangement are shown in figure 6.4, figure 6.5 and figure 6.6. Similarly, the values
for the 12 electrode arrangement are shown in figure 6.7, figure 6.8 and figure 6.9. Additionally
the maximum and minimum values and the errors are shown in table 6.1 for the 8 electrode
arrangement and in table 6.2 on page 65 for the 12 electrode arrangement.

Figure 6.4: Measurement values for circuit 1 with 8 electrodes

Figure 6.5: Measurement values for circuit 2 with 8 electrodes

circuit Umax Umin εmean εr,max εa,max
mV mV % % mV

1 22.2348 3.5293 1.1009 3.0292 0.5211
2 21.1449 3.5745 1.0847 3.0292 0.4771
3 19.0328 3.2792 1.0733 3.0292 0.4192

Table 6.1: Measurement values for the circuits with 8 electrodes
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Figure 6.6: Measurement values for circuit 3 with 8 electrodes

Figure 6.7: Measurement values for circuit 1 with 12 electrodes

Figure 6.8: Measurement values for circuit 2 with 12 electrodes

Figure 6.9: Measurement values for circuit 3 with 12 electrodes
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network Umax Umin εmean εr,max εa,max
mV mV % % mV

1 18.5576 2.5321 0.9773 2.4969 0.2853
2 17.8204 2.5503 0.9660 2.4969 0.2828
3 15.4994 2.4028 0.9839 2.4969 0.3036

Table 6.2: Measurement values for the circuits with 12 electrodes
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6.2 Circuit 1

6.2.1 True Distribution

In figure 6.10 the true distribution of resistances is displayed. It is shown in two representations.
The left figure shows the circuit of resistors and the color of each resistor shows its resistance. The
right figure shows a three dimensional plot of the resistances. Due to the structure of the network,
not every row consists of the same number of resistors. There are rows with 8 or 9 resistors and
the position of the values should be comparable to the real configuration. Therefore, the values in
between are interpolated. The result is a net of 17 x 17 values, which can be displayed in three
dimensions.

Figure 6.10: Circuit 1, true distribution

6.2.2 Tikhonov Regularization Method

Results Without Noise

First reconstructions with the second order Tikhonov Regularization method are shown. The
L-matrix is selected as the discrete Laplace operator with the neighboring element definitions
shown in figure 4.1 on page 46. There is no measurement noise added to the vector ur. The
reconstructions are computed for both electrode arrangements (8 and 12 electrodes). Since there
is no noise present, the stopping criteria is a very small value of the residual norm. If the residual
norm reaches the value 10−8 the iteration is stopped. Additionally a maximum number of 50
iterations is specified. The regularization parameter is diminished every iteration with αk+1 =

αk/10 and the starting value is selected with α0 = 0.1 and positive definiteness is enforced in
every iteration (α = 2α until positive definiteness is given). The used L-matrix is the discrete
Laplace operator (see chapter 4), which incorporates a smoothness assumption. In figure 6.11 on
the following page the result with 8 electrodes is shown. The solution is very smooth (because of
the assumption of the L-matrix), but the two objects are located. Figure 6.12 on the next page
shows the result for the 12 electrode model. There the algorithm tries to approximate the true
distribution. The results are shown in table 6.3 on page 68. There e is the number of electrodes,
k is the iteration count, ||u(r)− ur||22 is the residual norm after k iterations, Rmax and Rmin are
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the maximum and minimum resistances after k iterations and αk is the regularization parameter
at iteration k. The remaining values εmean, εr,max and εa,max are the errors which are defined in
equation (6.1) on page 62. The reconstruction of the 12 electrode model reaches the maximum
number of iterations. Therefore, the reconstruction is repeated with 80 iterations and the results
are shown in figure 6.13 on the following page and table 6.4 on the next page. The residual norm
has not changed significantly from iteration 51 to 80. Since the smoothness assumption is not
correct for this problem, the algorithm is not able to reach the stopping criterion. In case of the 8
electrode model, there is much less information of the true distribution available. Therefore, the
stopping criterion is reached with a smooth solution. In table 6.3 can be seen that the relative
maximum error for 12 electrodes is higher than for 8 electrode, because of oscillations in the
background values. Also Rmin is smaller than in the result with 8 electrodes.

Figure 6.11: 2nd order Tikhonov regularization without noise, circuit 1 with 8 electrodes, αk+1 =
αk/10 and α0 = 0.1

Figure 6.12: 2nd order Tikhonov regularization without noise, circuit 1 with 12 electrodes, αk+1 =
αk/10 and α0 = 0.1

Additionally one reconstruction with the zeroth-order Tikhonov Regularization (where the Reg-
ularization matrix is the Identity matrix) is shown without adding noise (see figure 6.14 on page 69).
The resulting values are shown in table 6.5 on page 69. The result is much worse than the result
with the smoothness assumption, since the used penalty term tries to push the solution r towards
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e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 25 6.0236e-9 5.7904 0.5743 32.4304 157.9615(1) 2.5782(5) 1.3744e-14
12 50 6.4363e-4 5.7312 0.2997 22.5447 165.7045(1) 1.8287(5) 1.3292e-14

Table 6.3: Tikhonov Regularization without noise, circuit 1

Figure 6.13: Reconstruction without noise, circuit 1 with 12 electrodes: 2nd order Tikhonov reg-
ularization with regularization parameter adjusted with αk+1 = αk/10 and α0 = 0.1
after 80 iterations

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

12 80 3.1906e-4 5.6820 0.2248 23.0700 169.2961(1) 1.9378(5) 1.6850e-14

Table 6.4: Tikhonov reconstruction without noise, circuit 1 with 80 iterations
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zero.

Figure 6.14: Reconstruction without noise, circuit 1 with 8 electrodes: zeroth order Tikhonov
regularization with the parameter adjusted with αk+1 = αk/10 and α0 = 0.1

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 32 9.3377e-9 4.7871 -0.4072 47.5091 234.6539(1) 3.4051(5) 1.8447e-13

Table 6.5: Tikhonov reconstruction without noise, circuit 1 with the identity matrix

Determination of the Regularization Parameter with the L-curve

The measurement values of the 8 electrode model are perturbed with noise (see figure 6.4 on
page 63 and table 6.1 on page 63). As above the L-matrix is the discrete Laplace operator. The
regularization parameter α is obtained by the L-curve method for different number of iterations.
To calculate the L-curve several regularization parameter are chosen. With each parameter the
reconstruction is performed. The resulting terms, the residual norm (x-axis) and the penalty term
(y-axis) are plotted for 1, 2, 3 and 5 iterations, see figure 6.15 on the following page. Additionally
the δ parameter from the discrepancy principle (which is a measure of the noise level) is displayed
in the L-curve. There it can be seen that the L-curve parameter is chosen independently from the
noise level. The α values obtained from the L-curve are displayed in table 6.6 on the next page for
the different number of iterations. Each of this values is used as a fixed regularization parameter
for the reconstructions. The stopping criteria is the δ parameter and 2 additional iterations are
performed after reaching this threshold δ. With the first parameter the stopping criterion cannot
be reached because it is too large. The solution after 50 iterations is very smooth (see figure 6.16
on the following page), therefore this parameter cannot be used as a fixed regularization parameter
but only as a starting value for iterative methods. The other values are much smaller and hence, the
solutions are much better (see figure 6.17, figure 6.18 and figure 6.19). The corresponding results
are shown in table 6.7 on page 72. The error values of the reconstruction with the third value are
the best, but there occur negative resistances. This is possible, because it is not prevented by an
additional constraint. So the algorithm doesn’t know that this values are impossible. Therefore
box-constraints are applied next.
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(a) 1 iteration (b) 2 iterations

(c) 3 iterations (d) 5 iterations

Figure 6.15: L-curve of circuit 1 for the 8 electrode model and different number of iterations for
each α value

iterations αL residual norm αmin residual norm
mV 2 mV 2

1 1 2.1251 0.39811 2.0571
2 0.01 0.89839 0.00631 0.89703
3 0.0025 0.73188 0.0025 0.73188
5 0.0015849 0.71525 0.001 0.71066

Table 6.6: Regularization parameter obtained by the L-curve for the different number of iterations

Figure 6.16: Result obtained with the L-curve parameter after 1 iteration
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Figure 6.17: Result obtained with the L-curve parameter after 2 iterations

Figure 6.18: Result obtained with the L-curve parameter after 3 iterations

Figure 6.19: Result obtained with the L-curve parameter after 5 iterations
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i k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

1 50 3.8404 2.2019 0.9221 58.5164 103.6687(1) 3.4347(5) 1
2 4 0.6423 4.0617 0.2498 41.3768 178.0676(1) 2.8848(5) 0.0100
3 5 0.5277 4.4902 -0.0773 40.4919 221.6456(1) 2.9947(5) 0.0025
5 5 0.5116 4.5967 -0.1966 40.8390 234.7525(1) 3.1071(5) 0.0016

Table 6.7: Tikhonov reconstruction of circuit 1 with fixed α-values obtained by the L-curve, 8
electrode model

Active Set Method

The box-constraints are applied as active set algorithm to the same configuration with 8 electrodes.
The fixed regularization parameter obtained by the L-curve after 3 iterations is used. The upper
and lower bound are selected exactly according to the true distribution. The result is shown in
figure 6.20 and in table 6.8. Both bounds are reached and much more iterations are needed than
in the unconstrained case. The result is considerably better than in the unconstrained case.

Figure 6.20: Active set result with the L-curve parameter after 3 iterations, 8 electrode model

i k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

3 26 0.7018 5 1 30.8644 141.8425(1) 2.7587(5) 0.0025

Table 6.8: Active set method, results with the L-curve parameter after 3 iterations, 8 electrode
model

Simple Diminishing of α

Due to the L-curve parameter shown in table 6.6 on page 70, where the parameter are getting
smaller for growing iteration count, the regularization parameter is now diminished after each
iteration. Similarly to the reconstruction without noise the regularization parameter is selected
with αk+1 = αk/2 starting with the value α0 = 0.1. The result is shown in figure 6.21 on the
next page for the 8 electrode model and in figure 6.22 on the following page for the 12 electrode
model (see also table 6.9 on page 74). They are smoothed distributions similar to the distributions
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obtained by the L-curve parameters. The result with 12 electrodes is slightly better than the result
with 8 electrodes.

Figure 6.21: Results obtained with Tikhonov regularization and α calculated by αk+1 = αk/2,
α0 = 0.1, circuit 1 with 8 electrodes

Figure 6.22: Results obtained with Tikhonov regularization and α calculated by αk+1 = αk/2,
α0 = 0.1, circuit 1 with 12 electrodes

GCV Regularization Parameter

Additionally the reconstruction is shown with the regularization parameter obtained by GCV for
each iteration. The results are shown in figure 6.23 on the following page for the 8 electrode model
and in figure 6.24 on page 75 for the 12 electrode model. The results are very similar to the
results obtained by diminishing α each iteration. Each iteration the GCV-functional is calculated
for 9 points which span one decade above and one decade below the actual α. (The matrix in
the GCV-functional is shown for linear problems, but according to Vogel [9] it could be used for
nonlinear problems, by using the Frechet-Derivative. The matrix is the same as used in Occam’s
inversion, it’s the update-matrix which results by linearization of the system at each iteration).
Therefore, a initial value is needed. It is chosen α0 = 0.1. The stopping criterion is identical with
the one above defined.
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e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 5 0.6076 4.1810 0.1979 40.9486 187.7858(1) 2.8855(5) 0.0063
12 6 0.6797 4.7342 0.2979 35.5585 123.7251(1) 2.6085(5) 0.0031

Table 6.9: Results for circuit 1 obtained by Tikhonov regularization, α calculated by αk+1 = αk/2,
α0 = 0.1

Additionally should be stated, that the computational effort is much higher with the GCV method
than with the previous method (diminishing α), but no additional information is needed, but as
in the previous method the factor has to be predefined with a proper value.

Figure 6.23: Results obtained with Tikhonov regularization, α calculated by the GCV method,
circuit 1 with 8 electrodes

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 6 0.5564 4.3688 0.0752 40.4389 205.3699(1) 2.8770(5) 0.0040
12 6 0.6580 4.8279 0.2641 35.0028 128.4550(1) 2.5571(5) 0.0025

Table 6.10: Results for circuit 1 obtained by Tikhonov regularization, α calculated by the GCV
method, α0 = 0.1

Occam’s Inversion

Here the regularization parameter is obtained by the discrepancy principle after each iteration.
The δ value is chosen correctly. The same regularization matrix as above is used. It is the same
value which is used for the stopping criterion. The number of iterations is extended, to ensure that
the values converge to a solution. The results are shown in figure 6.25 on the following page for
the 8 electrode model and in figure 6.26 on the next page for the 12 electrode model. Additionally
the values are shown in table 6.11 on page 76. The distributions are smoother than the solutions
before and the mean error is also worse, but they would be similar if removing the two additional
iterations below the δ threshold.
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Figure 6.24: Results obtained with Tikhonov regularization, α calculated by the GCV method,
circuit 1 with 12 electrodes

Figure 6.25: Results obtained with Occam’s Inversion, α calculated by the discrepancy principle,
circuit 1 with 8 electrodes

Figure 6.26: Results obtained with Occam’s Inversion, α calculated by the discrepancy principle,
circuit 1 with 12 electrodes
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e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 12 0.9344 3.5465 0.5126 44.7863 138.0341(1) 2.9856(5) 0.0316
12 13 0.9654 4.0951 0.4993 39.5321 127.7857(1) 2.8063(5) 0.0200

Table 6.11: Results obtained for circuit 1 with Occam’s Inversion, α calculated by the discrepancy
principle

6.2.3 Total Variation Regularization

Results without Noise

The Total Variation method is implemented according the algorithm derived in chapter 5. Similarly
to the Tikhonov case, first reconstruction with the measurement values without noise is performed.
The regularization parameter α is also selected equally. The reconstruction with 8 electrodes is
shown in figure 6.27. The corresponding values are shown in table 6.12. There the mean error
is slightly worse than the error in the comparable Tikhonov reconstruction. This is is not the
case with 12 electrodes (see figure 6.28 on the next page). There all reconstruction values are
much better than in the Tikhonov result. The two objects are well reconstructed, also the values,
especially the maximum value are well reconstructed. The maximum number of iterations is not
reached. In comparison to the Tikhonov results, the TV regularization is able to reconstruct the
true image better because abrupt edges are allowed.

Figure 6.27: Total Variation regularization without noise, circuit 1 with 8 electrodes, αk+1 = αk/10
and α0 = 0.1

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 37 9.1225e-9 5.1459 0.4407 35.0090 141.2171(1) 3.4972(5) 9.4447e-16
12 43 7.0460e-9 5.0121 0.6597 10.4770 34.1380(1) 1.7069(5) 9.9035e-16

Table 6.12: Total Variation regularization without noise, circuit 1, αk+1 = αk/10 and α0 = 0.1
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Figure 6.28: Total Variation regularization without noise, circuit 1 with 12 electrodes, αk+1 =
αk/10 and α0 = 0.1

Simple Diminishing of α

The used measurement values are perturbed with noise. The regularization parameter is selected
equally to the Tikhonov reconstruction with a diminishing α (α = α/2) and the starting value
α0 = 0.1. The results are shown in figure 6.29 for the 8 electrode model and in figure 6.30 on
the next page for the 12 electrode model. The positions of the two objects cannot be determined
very well. The maximum values are much lower than in the Tikhonov results. Again a negative
minimum resistance occurs. In comparison with the Tikhonov results the TV results with noise
present are worse (see table 6.13 on the following page).

Figure 6.29: Results obtained with TV regularization, α calculated by α = α/2, α0 = 0.1, circuit
1 with 8 electrodes

GCV Regularization Parameter

The TV regularization is shown with the GCV-Parameter. The results are shown in figure 6.31 on
the next page for the 8 electrode model and in figure 6.32 on page 79 for the 12 electrode model.
The results are similar to the results of the corresponding diminishing α method. Again they are
worse than the results in the Tikhonov reconstruction (see table 6.14).
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Figure 6.30: Results obtained with TV regularization, α calculated by α = α/2, α0 = 0.1, circuit
1 with 12 electrodes

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 7 0.5639 3.6325 -0.4964 46.8929 259.1235(1) 3.5014(5) 0.0016
12 7 0.6825 3.6626 0.1112 39.7020 239.2542(1) 3.1083(5) 0.0016

Table 6.13: Resulting values for circuit 1 obtained by TV regularization, α calculated by αk+1 =
αk/2, α0 = 0.1

Figure 6.31: Results obtained with TV regularization, α calculated by the GCV method, α0 = 0.1,
circuit 1 with 8 electrodes

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 7 0.5704 3.5651 -0.5378 47.4969 256.4827(1) 3.4410(5) 0.0032
12 8 0.6843 3.6029 0.1413 40.4548 234.3709(1) 3.1296(5) 0.0020

Table 6.14: Resulting values for circuit 1 obtained by TV regularization, α calculated by the GCV
method, α0 = 0.1
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Figure 6.32: Results obtained with TV regularization, α calculated by the GCV method, α0 = 0.1,
circuit 1 with 12 electrodes
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6.2.4 Comparison of the Results for Circuit 1

The following tables show the results for the first circuit in comparison. The results are assembled
for the 8 and 12 electrode model and the Tikhonov and Total Variation regularization method.
Following acronyms are used for the tables:

• WN: Reconstruction without noise in the measurement values.

• LC2: The regularization parameter is selected with the L-curve method, the parameter
obtained after 2 iterations is used.

• LC3: The regularization parameter is selected with the L-curve method, the parameter
obtained after 3 iterations is used.

• AS3: The active set method is used. The regularization parameter is selected with the
L-curve method, the parameter obtained after 3 iterations is used.

• SDα: The regularization parameter is obtained by simple diminishing of α each iteration.

• GCV: The regularization parameter is obtained by the GCV method after each iteration.

• OI: Occam’s Inversion is applied. The regularization parameter is obtained by the discrep-
ancy principle after each iteration.

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 25 6.0236e-9 5.7904 0.5743 32.4304 157.9615(1) 2.5782(5) 1.3744e-14
LC2 4 0.6423 4.0617 0.2498 41.3768 178.0676(1) 2.8848(5) 0.0100
LC3 5 0.5277 4.4902 -0.0773 40.4919 221.6456(1) 2.9947(5) 0.0025
AS3 26 0.7018 5 1 30.8644 141.8425(1) 2.7587(5) 0.0025
SDα 5 0.6076 4.1810 0.1979 40.9486 187.7858(1) 2.8855(5) 0.0063
GCV 6 0.5564 4.3688 0.0752 40.4389 205.3699(1) 2.8770(5) 0.0040
OI 12 0.9344 3.5465 0.5126 44.7863 138.0341(1) 2.9856(5) 0.0316

Table 6.15: Reconstruction of circuit 1 with 8 electrodes, Tikhonov based regularization methods

The results obtained for the 8 electrode model and the Tikhonov regularization method are com-
pared in table 6.15. It can be seen, that the active set method achieves the best mean error
value and relative maximum error value, better than in the reconstruction without noise. This is
possible because of the correct additional prior information about the true distribution in form of
box constraints.
Comparing the errors of the TV regularization in table 6.16 with the corresponding errors for

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 37 9.1225e-9 5.1459 0.4407 35.0090 141.2171(1) 3.4972(5) 9.4447e-16
SDα 7 0.5639 3.6325 -0.4964 46.8929 259.1235(1) 3.5014(5) 0.0016
GCV 7 0.5704 3.5651 -0.5378 47.4969 256.4827(1) 3.4410(5) 0.0032

Table 6.16: Reconstruction of circuit 1 with 8 electrodes, TV regularization method
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the Tikhonov regularization in table 6.15 on the previous page the Tikhonov regularization out-
performs the TV regularization, which is not obvious from the beginning.

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 50 6.4363e-4 5.7312 0.2997 22.5447 165.7045(1) 1.8287(5) 1.3292e-14
SDα 6 0.6797 4.7342 0.2979 35.5585 123.7251(1) 2.6085(5) 0.0031
GCV 6 0.6580 4.8279 0.2641 35.0028 128.4550(1) 2.5571(5) 0.0025
OI 13 0.9654 4.0951 0.4993 39.5321 127.7857(1) 2.8063(5) 0.0200

Table 6.17: Reconstruction of circuit 1 with 12 electrodes, Tikhonov based regularization methods

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 43 7.0460e-9 5.0121 0.6597 10.4770 34.1380(1) 1.7069(5) 9.9035e-16
SDα 7 0.6825 3.6626 0.1112 39.7020 239.2542(1) 3.1083(5) 0.0016
GCV 8 0.6843 3.6029 0.1413 40.4548 234.3709(1) 3.1296(5) 0.0020

Table 6.18: Reconstruction of circuit 1 with 12 electrodes, TV regularization method

Comparing the results for the 12 electrode model with the Tikhonov regularization (see ta-
ble 6.17) and the TV regularization (see table 6.18), the TV regularization is better only in the
case if no noise is present in the measurement values. For the reconstructions with noise the
Tikhonov regularization method seems to be the better choice.
But it should be stated, that the used regularization parameter are not chosen on the basis of
an optimality analysis. With other configurations or other initial parameters the result can dif-
fer. Nevertheless the mean error values differ not much in the comparable results, there are no
unexplainable differences.
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6.3 Circuit 2

6.3.1 True Distribution

The true distribution, which should be obtained, is shown in figure 6.33. It is similar to the first
one, but the resistances of the objects are interchanged. Which should lead to no problems on
first sight.

Figure 6.33: Circuit 2, true distribution

6.3.2 Tikhonov Regularization

Results Without Noise

Similarly to circuit 1, the results without noise in the measurements are obtained. The result with

Figure 6.34: Tikhonov regularization without noise, circuit 2 with 8 electrodes, αk+1 = αk/10 and
α0 = 0.1

8 electrodes is shown in figure 6.34. It differs extremely from the true distribution. The biggest
errors are in the object with smaller values in the true distribution. The size of the two objects
is nearly the same. Looking at the results in table 6.19 on the following page shows a very small
residual norm. There must be a duality between big objects with small values and small objects
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with big values.
The result with 12 electrodes is shown in figure 6.35. There the position of objects is correctly
found, nevertheless the smoothness assumption is not a correct assumption and the norm is not
reached (similarly to circuit 1), the result after 50 iterations is shown. Because of the failure of
reconstruction with 8 electrodes, the reconstructions with noise are only shown with 12 electrodes.

Figure 6.35: Tikhonov regularization without noise, circuit 2 with 12 electrodes, αk+1 = αk/10
and α0 = 0.1

elec k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 15 2.7420e-10 3.7916 0.6050 37.4924 130.6354(1) 2.5878(5) 3.2000e-14
12 50 2.4366e-5 5.6959 0.4249 23.8618 138.6688(1) 1.6212(5) 1.3292e-14

Table 6.19: Tikhonov regularization without noise, circuit 2, αk+1 = αk/10 and α0 = 0.1

Results With Noise

The reconstructions for the 12 electrode model and the parameter selected with the simple dimin-
ishing of α and the GCV method are compared. Both reconstructions are very smooth and also
similar in values. The GCV result is slightly better in the mean error, the maximum value and
the absolute maximum error. The true maximum value is not well detected by both methods.

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

SDα 5 0.6942 3.3388 0.6052 38.1349 113.5978(1) 2.5473(5) 0.0063
GCV 6 0.6346 3.5831 0.5522 36.6462 119.5880(1) 2.4227(5) 0.0025

Table 6.20: Results obtained with Tikhonov regularization, circuit 1 with 12 electrodes, α calcu-
lated by αk+1 = αk/2 and the GCV method, α0 = 0.1
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Figure 6.36: Results obtained with Tikhonov regularization, α calculated by αk+1 = αk/2 and
α0 = 0.1, circuit 2 with 12 electrodes

Figure 6.37: Results obtained with Tikhonov regularization, α calculated by the GCV method,
α0 = 0.1, circuit 2 with 12 electrodes
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6.3.3 Total Variation Regularization

Results Without Noise

The Total Variation Reconstruction for the 8 electrode model is shown in figure 6.38. It suffers
from the same problem as in the Tikhonov regularization method. The reconstruction fails, the
larger values are in the big object which has smaller values in the true distribution, and these values
are too large. On the contrary, reconstruction with 12 electrodes is working almost perfectly. The
corresponding values are shown in table 6.21. Similarly to the Tikhonov regularization method
the reconstructions with noise are only shown with 12 electrodes.

Figure 6.38: TV regularization without noise, circuit 2 with 8 electrodes, αk+1 = αk/10 and
α0 = 0.1

Figure 6.39: TV regularization without noise, circuit 2 with 12 electrodes, αk+1 = αk/10 and
α0 = 0.1

elec k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

8 32 8.5463e-9 3.3111 0.2008 40.8422 180.2822(1) 2.2539(5) 2.8823e-15
12 41 4.1438e-9 5.2000 0.8902 8.6880 20.3373(5) 1.0169(5) 3.0949e-15

Table 6.21: TV regularization without noise, circuit 2, αk+1 = αk/10 and α0 = 0.1
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Results With Noise

The reconstruction values with noise present in the measurement values are shown with the GCV-
Parameter and the simple diminishing of α (see figure 6.40 and figure 6.41). The simple diminishing
of α leads to slightly better results than the GCV method, but they are both worse than the
comparable Tikhonov solutions. Similarly to the Tikhonov results the maximum value is not well
detected. The resulting values are shown in table 6.22 on the following page.

Figure 6.40: Results obtained with TV regularization, α calculated by αk+1 = αk/2, α0 = 0.1,
circuit 2 with 12 electrodes

Figure 6.41: Results obtained with TV regularization, α calculated by the GCV method, α0 = 0.1,
circuit 2 with 12 electrodes
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e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

SDα 7 0.6596 3.0388 0.2593 42.7105 198.5031(1) 2.7910(5) 0.0016
GCV 7 0.6618 3.0461 0.2285 44.5333 198.6251(1) 2.6927(5) 0.0020

Table 6.22: Results obtained with TV regularization, circuit 2 with 12 electrodes, α calculated by
αk+1 = αk/2 and the GCV method, α0 = 0.1
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6.4 Circuit 3

6.4.1 True Distribution

The true distribution of circuit 3 is shown in figure 6.42. It has only one big object in the center.

Figure 6.42: Circuit 3, true distribution

6.4.2 Tikhonov Regularization Applied to the 8 Electrode Model

The reconstruction of the 8 electrode model without noise present is shown in figure 6.43. It
is a very smooth result. The maximum values are much higher than the real values, due to
the smoothness assumption. The reconstruction with 12 electrodes, looks much better, but the
smoothness assumption prevents the correct reconstruction. In this case an additional averaging
of high and low values could give a good result. In figure 6.44 on the next page the result with
noise present is shown, where the diminishing α regularization parameter is used. In figure 6.45
on the following page the corresponding result with the GCV regularization parameter is shown.
Both results are similar and very smooth. The resulting values are shown in table 6.23 on the
next page.

Figure 6.43: Tikhonov regularization without noise, circuit 3 with 8 electrodes, αk+1 = αk/10 and
α0 = 0.1
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Figure 6.44: Results obtained with Tikhonov regularization, α calculated by αk+1 = αk/2, α0 =
0.1, circuit 3 with 8 electrodes

Figure 6.45: Results obtained with Tikhonov regularization, α calculated by the GCV method,
α0 = 0.1, circuit 3 with 8 electrodes

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 24 3.2642e-9 5.9329 0.5743 27.6488 107.1360(1) 2.0066(5) 1.7180e-14
SDα 4 0.5140 3.8626 0.7070 42.4409 139.3554(1) 2.8085(5) 0.0125
GCV 4 0.5138 3.8852 0.7093 42.3148 141.1383(1) 2.8127(5) 0.0100

Table 6.23: Tikhonov regularization, circuit 3 with 8 electrodes
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6.4.3 Tikhonov Regularization Applied to the 12 Electrode Model

The results obtained by the Tikhonov regularization method and without noise present are shown
in figure 6.46. The true distribution is well obtained, but the smoothness assumption prevents
the exact reconstruction. Similarly to circuit 1 and 2 the stopping criterion is not reached (see
table 6.24 on the next page). Additionally the reconstructions are performed with noise present.

Figure 6.46: Tikhonov regularization without noise, circuit 2 with 12 electrodes, αk+1 = αk/10
and α0 = 0.1

The results are shown in figure 6.47 for the diminishing α and in figure 6.48 on the next page for
the GCV parameter. The results are also shown in table 6.24 on the following page. They are
slightly better for the GCV parameter, especially the maximum resistance is much higher, but
both distributions are very smooth.

Figure 6.47: Results obtained with Tikhonov regularization, α calculated by αk+1 = αk/2, α0 =
0.1, circuit 3 with 12 electrodes

6.4.4 Total Variation Regularization Applied to the 8 Electrode Model

Also the TV regularization method is applied to the 8 electrode model. The result without noise
present is shown in figure 6.49 on the next page. There the shape of the object is not reconstructed
correctly, but the maximum resistance is very close to the true value. Also the reconstructions



Chapter 6. Results and Discussion 91

Figure 6.48: Results obtained with Tikhonov regularization, α calculated by the GCV method,
α0 = 0.1, circuit 3 with 12 electrodes

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 50 1.3929e-4 5.5973 0.4516 25.6929 190.1507(1) 1.9015(1) 6.6461e-15
SDα 5 0.7358 4.9487 0.8045 35.5617 134.7627(1) 2.8957(5) 0.0063
GCV 6 0.6761 5.4221 0.7566 33.3848 128.6227(1) 2.8957(5) 0.0032

Table 6.24: Tikhonov regularization, circuit 3 with 12 electrodes

with noise present are shown similar to the Tikhonov reconstrution (see figure 6.50 on the following
page and figure 6.51 on the next page). The corresponding values are shown in table 6.25 on the
following page. The result without noise present is better than the corresponding result obtained
by the Tikhonov regularization. Both reconstructions with noise present are similar, but they are
worse than the values obtained with the Tikhonov regularization method.

Figure 6.49: TV regularization without noise, circuit 3 with 8 electrodes, αk+1 = αk/10 and
α0 = 0.1
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Figure 6.50: Results obtained with TV regularization, α calculated by αk+1 = αk/2, α0 = 0.1,
circuit 3 with 8 electrodes

Figure 6.51: Results obtained with TV regularization, α calculated by the GCV method, α0 = 0.1,
circuit 3 with 8 electrodes

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 50 1.1513e-8 5.0211 0.7405 24.6335 126.8274(1) 2.5625(5) 3.3231e-15
SDα 6 0.5167 3.2559 0.6557 44.0817 205.4313(1) 3.1775(5) 0.0031
GCV 5 0.5061 3.2942 0.6597 43.3115 208.7100(1) 3.0857(5) 0.0040

Table 6.25: TV regularization, circuit 3 with 8 electrodes
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6.4.5 Total Variation Regularization Applied to the 12 Electrode Model

The obtained reconstructions with the TV method applied to the 12 electrode model are shown.
The result without noise present (see figure 6.52) is exactly the true distribution. Additionally
the reconstructions with noise present are shown in figure 6.53 and figure 6.54 on the next page.
They are similar again, but the GCV parameter result is slightly better. The results are shown
in table 6.26 on the following page. In this case the mean errors are better than errors of the
corresponding Tikhonov results.

Figure 6.52: TV regularization without noise, circuit 3 with 12 electrodes, αk+1 = αk/10 and
α0 = 0.1

Figure 6.53: Results obtained with TV regularization, α calculated by αk+1 = αk/2, α0 = 0.1,
circuit 3 with 12 electrodes
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Figure 6.54: Results obtained with TV regularization, α calculated by the GCV method, α0 = 0.1,
circuit 3 with 12 electrodes

e k ||u(r)− ur||22 Rmax Rmin εmean εr,max εa,max αk
mV 2 Ω Ω % % Ω

WN 15 1.4736e-9 5.0013 0.9921 0.1973 0.7884(1) 0.0222(5) 1.0000e-15
SDα 7 0.7243 4.2142 0.6590 33.8517 221.6411(1) 3.1533(5) 0.0016
GCV 6 0.6796 4.3852 0.5789 32.2658 209.0032(1) 3.1137(5) 0.0032

Table 6.26: TV regularization, circuit 3 with 12 electrodes



7 Conclusion

In this thesis different methods to solve inverse problems were introduced and their main features
were discussed. These methods were applied to a linear and a nonlinear problem. It was shown
that reconstruction is much more complex in the nonlinear case. In the linear case just a few iter-
ations (sometimes even a single iteration) are required, while nonlinear problems are successively
linearized and hence iteratively solved. It was shown that there is not "the procedure" to solve
each individual problem. On the contrary, one has to find a more or less tailor-made algorithm
for the problem at hand. When doing so, several criteria have to be taken into account. It makes
a big difference, how time consuming the underlying forward problem is or whether the Hessian
matrix can be calculated with reasonable effort or is better approximated in some way or another.
A main feature of each inverse algorithm is the a kind of regularization, which is essential in the
process of reconstruction and the way, the regularization parameter is computed. It can be done
iteratively or by fixing this parameter after a suitable number of iterations. In any case the type of
regularization has to be selected carefully in order to represent the distribution of the sought data
(material values etc.) as correctly as possible. Furthermore, it makes a big difference whether the
results are to be obtained in real time or not. A big issue is the distribution of the measured data
(which are to be simulated correctly by the underlying forward problem) and the signal to noise
ratio. It has to be investigated how sensitive the selected algorithms reacts to variable signal to
noise ratios. A vital question, which has to answered before starting the reconstruction process, is
the number of measured data, the amount of information, which has to be supplied in order to get
meaningful results. It was shown with the help of the second circuit, that a number of 8 measuring
electrodes does not give feasible results at all (even without any noise), while grading up to 12
electrodes improves the results substantially, even though the resulting system of equations is still
massively under determined. Having the problems investigated in mind it can be concluded that
reconstructing continuous areas of different features with a sufficiently high number of measured
data and a sufficiently low signal to noise ratio the Total Variation methods is a good choice for
the regularization term. Nevertheless, if the position of some continuous area is more important
than its exact dimensions, Tikhonov regularization is also a promising method, even more so, if
some a priori knowledge about the magnitude of the values of the continuous is available.
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