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Abstract

Active Wavefront Sampling (AWS) is a 3D surface imaging technique, which uses only a

single camera and an AWS module. In its simplest form, an AWS module is an off-axis

aperture, that moves on a circular path around the optical axis. By moving the aperture

around the optical axis, target points on the image plane rotate on a circle (assuming that

we have ideal non-aberrated conditions). The target points depth information is coded by

the diameter of the according image rotation. In principle, AWS imaging allows any system

with a digital camera to function in 3D. Thus it eliminates the need for multiple cameras to

acquire 3D.

In this work we present a global optical flow approach to calculate the blur-circle-radii

generated by a rotating AWS module. Thus, we add prior knowledge about the sought

depth maps and assume that the blur-circle-radius varies smoothly almost everywhere in the

image. Our approach is based on total variation (TV) in the regularization-term and the

robust L1-norm in the data-term. Therefore, the approach is referred to as TV-L1 global

AWS.

Keywords: Active Wavefront Sampling, 3D Reconstruction, global AWS
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Kurzfassung

Active Wavefront Sampling (AWS) ist ein Verfahren zur 3D Rekonstruktion von Oberflächen,

welches lediglich eine einzelne Kamera mit einem speziellen AWS-Modul benötigt. In der

einfachsten Form handelt es sich bei einem AWS-Modul um eine off-axis Blende, welche um

die optische Achse rotiert wird. Durch diese Rotation der Blende werden die Bildpunkte

ebenfalls in Rotation versetzt. Die Analyse der Rotationsbewegung eines bestimmten

Punktes ermöglicht die Berechnung der dazugehörigen Tiefeninformation. Im Prinzip

ermöglicht ein AWS-Modul 3D Informationen mit einer beliebigen Kamera zu berechnen,

und macht somit ein multi-Kamera-Setup unnötig.

In der vorliegenden Diplomarbeit wird ein Verfahren vorgestellt, das es ermöglicht die

Rotationsbewegungen, welche durch ein rotierendes AWS-Modul erzeugt werden, global

zu berechnen. Hierfür wird a priori Information über die Oberflächenbeschaffenheit des

Objektes für die Berechnung verwendet. Das Verfahren basiert im Wesentlichen auf

Total Variation (TV) und der robusten L1-Norm und wird somit als TV-L1 global AWS

bezeichnet.

Stichwörter: Active Wavefront Sampling, 3D Rekonstruktion, global AWS
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Chapter 1

Introduction

Figure 1.1: Endless stairs illusion. The figure shows an impossible object in which the stairs
make four 90◦ turns as they ascend or descent, which is clearly impossible in 3D. The 2D
figure achieves this optical illusion by distorting perspective.

We live in a 3D world and thanks to our eyes we can possess stereo vision. The process in visual

perception of capturing depth from slightly different projections of the world onto the retinas

of the two eyes is called stereopsis1. Depth information is obtained by the difference in the

two images called horizontal disparity or binocular disparity. Inspired by this, a fundamental

problem in computer vision is to obtain 3D geometric information from captured planar

images of an observed scene. This process is traditionally referred to as 3D reconstruction.

Due to the fact that these images are 2D projections of our 3D world, all quantitative depth

information is lost. Only shading and a priori knowledge of the scene allow us to qualitatively

extract depth cues from such 2D images. But also these qualitative depth cues can fool a

human observer. Consider for example depth ambiguities also known as optical illusions (cf

Fig. 1.1).

A transition from 2D to 3D image capture and display is extremely desirable. It is in fact hard

to imagine an imaging application, where the added capability to measure depth would not

be welcome. Therefore, the acquired 3D models have a large field of application, including 3D

1from stereo meaning solidity, and opsis meaning vision or sight

1
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model capture for the movie and entertainment industries, computer aided design, industrial

design, reverse engineering, prototyping, and quality control. However, if 3D scanners should

become more ordinary, new methods, that are able to acquire robust geometric models of

real objects fast and easily using low cost technologies, are needed. When these conditions

are once complied, then 3D imaging will replace 2D imaging, due to the simple fact, that the

world is not flat.

13th Int Symp on Applications of Laser Techniques to Fluid Mechanics 
Lisbon, Portugal, 26-29 June, 2006 
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cameras are used, three sets of three cameras are generated from the four camera perspectives.  
One of the cameras is selected as the base camera for which the corrected perspective is determined.  
This camera is included in each set of three cameras as the “third” camera.  The lens distortion 
parameters and projection tensor are then determined for this camera from each set of three cameras 
as described in the preceding section.  The entire set is then iterated on until the relative error 
between the distortion parameters generated by each set converges.  After each iteration, the 
projection tensor and the lens distortion parameters for each camera set are adjusted to reflect the 
mean image perspective, ( , )u ux y .  Assuming that the correspondence points are correctly 
identified in each perspective, the addition of a single camera substantially increases the redundant 
information available to find the lens distortion parameters and, thus, robustness and accuracy are 
greatly improved.   
 
3. AWS Approach to Distortion Correction 
Active Wavefront Sampling (AWS) is a method of imaging in 3D from a single lens based on 
imaging the wavefront of a lens in time, Rohaly, et. al. (2001).  In its simplest form, AWS is little more 
than an off-axis aperture placed in an optical path that rotates such that images are recorded from different 
sections along a circular path of a lens.  Despite a relatively small baseline, very high accuracy can be 
achieved relative to stereo based 3D because alignment error is virtually eliminated and multiple 
perspectives provide significant processing redundancy, Fig. 1.  Moving objects can be imaged in 3D using 
AWS as long as its motion is steady (either velocity or acceleration) relative to the framing rate of the 
camera.  AWS works on most any optical system that a digital camera can be used.  It is simple and robust 
and eliminates the need for multiple cameras to acquire 3D.  Thus, AWS lends itself well to applications 
such as microPIV but it has also found application in medical imaging, computer animation, and machine 
vision.  Furthermore, as an addition to existing stereo systems, AWS can be used in unsteady flow 
applications to improve accuracy and processing robustness and to minimize calibration and distortion 
errors. 

 
Fig. 1. MIT’s Active Wavefront Sampling (AWS) 3D imaging system.  A CMOS Q-Imaging USB camera with 
Nikon 35mm lens is shown here with the addition of an AWS module.  Images are processed and 3D models 
generated and displayed at video rates.  

 

Figure 1.2: MIT’s Active Wavefront Sampling (AWS) 3D imaging system. The image shows
a CMOS USB camera with a Nikon 35mm lens and an additional AWS module. The images
are processed and the 3D models are acquired at video rates. [11]

The Active Wavefront Sampling (AWS) approach presented by Frigerio [10] makes a start

on lowering the system costs for a 3D scanner, as well as providing high accurate 3D models

(cf Fig. 1.2). Additionally it is a passive vision system with a simple hardware, which allows

a very compact setup. The method requires only a single camera with a special rotating

off-axis aperture to capture depth information. Thus, in principle it allows any system with

a digital camera to function in 3D. Moreover, it halves the costs for the optics compared

to a standard stereo setup. Furthermore, the method can be easily adjusted to the given

requirements, meaning that it allows realtime reconstruction, by using a low number of

aperture positions, as well as high precise reconstruction, by using a high number of aperture

positions. The AWS system is also quite small and needs to be calibrated only once,

contrary to a stereo setup that needs to be calibrated whenever the relative position between

the cameras is modified. Although the AWS technique can be used to reconstruct any kind

of object, it works best for objects, that are very close to the camera. Therefore, typical
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applicational examples of AWS include minimally invasive surgery using an endoscope, and

3D microscopy.

Due to the above mentioned advantages of the AWS system it is reviewed in this thesis.

Beside reviewing the suggested methods from Frigerio, we, moreover, present a global

optical flow method to solve the AWS problem, where we assume that the blur-circle-radius

varies smoothly almost everywhere in the image. Therefore, this thesis concentrates on the

problem of extracting 3D structures by analyzing the motion in visual scenes.

In order to improve the accuracy of the calculated 3D models, acquired by the algorithms

presented by Frigerio, we concentrate our research on the image motion obtained by

moving the off-axis aperture of an AWS system. We introduce a special motion model to

calculate the optical flow field obtained by an AWS system. Thus, we incorporate the circle

approximation into the optical flow calculation, which are separated steps in the Frigerio

multi image approach. Moreover we add prior knowledge about the sought depth maps and

develop a global approach to solve the according AWS minimization problem.

By testing the approach on synthetic image sequences we show that our approach reaches

slightly better accuracy results than the Frigerio version and it is also robust in the

presence of Gaussian image noise. Moreover our global AWS approach is capable of parallel

processing and can hence be accelerated on the GPU.

The thesis is organized as follows:

Chapter 2 provides an overview of current 3D reconstruction techniques, including the

wavefront sampling approach. Here the BIRIS sensor, as an example for Static Wavefront

Sampling (SWS), and the main idea of the Active Wavefront Sampling (AWS) approach will

be presented.

Next, Chapter 3 presents necessary background information to clearly understand the AWS

approach. First, a brief review on visual motion, and optical flow is presented, followed by a

survey of basic concepts about the theory of defocus and wavefront sampling.

Chapter 4 present a new global AWS approach, which assumes that the blur-circle-diameter

varies smoothly almost everywhere in the image. For a better understanding, first a

version of the global AWS approach is presented, that uses the L2-norm to weight the

data-term. In a second step, a robust version of the global AWS approach is presented,

that uses the L1-norm to weight the data-term, as well as an edge-preserving smoothness-term.

Finally, in Chapter 5 we evaluate the different AWS approaches and present some experimental

results as well as 3D reconstruction results.
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Figure 2.1: Classification of non contact optical shape measurement techniques.

There are generally two types of (non-contact) 3D reconstruction techniques called active

vision and passive vision (cf Fig. 2.1).

5



6 Chapter 2. Related Work

Active vision techniques use a controlled source of structured energy emission, e.g. some kind

of radiation or light, and an additional detector, e.g. a camera. The 3D data is recovered by

using the nature of the interaction of the reflected source with the object surface. However,

active vision methods have some drawbacks. It may be difficult to use them in outside ap-

plications, or more general, when there are conflicting ambient energy sources. Furthermore,

variation in object reflectance and color may have a negative influence on the accuracy.

On the other hand, passive vision techniques do not use a specific structured source of en-

ergy. The basic principle used in many passive vision methods is the so called triangulation

principle. This principle refers to the idea that when the distance between two points and

the angles from each of these points to a third point are known, then the location of the third

point can be calculated. In triangulation-based methods one of the two points must be a

sensor, the second one can be another sensor (passive vision) or a light source (active vision),

and the third point is a point of the 3D object. Triangulation methods include structured

light, shape from stereo , and shape from motion.

2.1 Shape from Stereo

Position 1

Position 2

Position 3

Camera 1 Camera 2

Camera 1 Camera 2
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d
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Figure 2.2: Illustration of the main idea of stereo vision.

One of the earliest approaches to capture depth information is the so called shape from stereo

approach, which is a triangulation technique. It refers to the ability to infer information on

the 3D structure of a scene from two or more images taken from different viewpoints [15].

Furthermore, it relies on the difference or disparity between the recorded position of each

target point on the images (cf Fig. 2.2). The magnitude of this disparity is directly related

to the feature’s distance from the imaging sensor. The two main problems related to stereo

vision are the correspondence problem and the reconstruction problem.

The correspondence problem is the problem of determining which pixel in the first image

corresponds to which pixel in the second image.

The reconstruction problem deals with the calculation of 3D point locations and 3D structures

of an observed scene, given a number of corresponding points as well as a camera model.
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2.2 Shape from Motion

The basic concept of shape from motion [30, 25] is depth estimation of object points using

the motion of either the camera or the object itself. The main difference to shape from stereo

is the use of images, taken not only from different viewpoints, but also from different points

in time. Shape from motion normally uses a monocular sequence of closely sampled images

taken over a period of time, where either the object or the camera has been moved. Therefore

the challenging part in this method is given by the calculation of the camera trajectory.

2.3 Photometric Stereo

Figure 2.3: Illustration of photometric stereo, which is a technique for estimating surface
orientations by observing a scene from the same viewpoint at different illumination conditions.

Photometric stereo [31] is another technique for computing depth information from images.

It is based on the Lambertain surface model, which assumes that the observed intensity of

the surface does not change according to the view point. This technique estimates the surface

normals of an object by observing the surface under illumination from different directions,

but from the same viewpoint. The special case where there is only one image available is

known as shape from shading [16]. The overall accuracy of the photometric stereo approach

can be improved by a more detailed analysis of lighting conditions, such as shadows, inter-

reflections and highlights. Photometric stereo only needs a single camera and a few light

sources. Therefore, the main advantage is the inexpensive setup. However, photometric

stereo is highly sensitive to ambient light. Hence usually dark room conditions are required

for accurate results.

2.4 Shape from (De)Focus

Shape from (de)focus [24, 7, 3, 23] is another approach of estimating the 3D surface of a scene

from a set of two or more images. The images are obtained from the same point of view, but

with different camera parameters. Typically, the focal settings or the axial position of the

image plane are changed.

In the depth from focus case, the in-focus-plane is moved. At each position the depth for

focused target points (points on the in-focus-plane) can be computed. Therefore, the problem
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lens’ principle plane sensor plane

in-focus planereference plane

translational stage

surface

Figure 2.4: Illustration of depth from focus. The three images in the first row are acquired
using different focal settings. The images in the second row show the according in-focus planes
in green. The sketch below shows the whole setup from the side view.

of measuring focus needs to be solved (cf Fig. 2.4).

Contrary, in the depth from defocus case the depth information is obtained by measuring the

diameter of the target feature’s defocus blur spots. Depth from defocus (DFD) consists of

reconstructing the distances to targets in an observed scene by modeling the effect that the

camera’s focal parameters have on two or more images. DFD techniques are usually passive

and require only a single camera. The most difficult part of the method is the deconvolution of

the defocus operator from the observed scene. Compared to common triangulation methods,
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DFD methods are generally more reliable and robust, because they rely on more points in

depth estimation.

2.5 Shape from Structured Light

The principle of structured light is, that by projecting a narrow band of light onto a 3D surface,

a line of illumination is produced that appears distorted from other perspectives than that of

the projector. Therefore, this line can be used for an exact geometric reconstruction of the

3D surface. Based on this principle, structured light scanners project 1D or 2D light patterns

onto the target and extract pattern deformations.

Camera
Laser - Line

Laser - Projector
Object

(a) Setup of a laser scanner. (b) Camera field of view.

Figure 2.5: Illustration of a laser scanner. Figure (a) shows the whole setup consisting of an
object, a line-laser and a camera. Figure (b) shows the camera field of view.

An example for a 1D pattern is given by a projected laser line, which leads to a laser scanning

system. Such an system is amongst the most accurate 3D imaging systems available, and

it is also the most widely used triangulation-based 3D scanner, because of its optical and

mechanical simplicity and cost. In this system, a laser sheet is swept across the target. The

projection on the target surface is recorded by the camera (cf Fig. 2.5). Depending on how

far away the laser strikes the target, the laser dots will appear on different locations in the

camera’s field of view. Similar to the depth from stereo approach, the relative position and

orientation of the camera and the laser projector are known. Therefore, the distances between

the sensor and the target features along the laser line can be determined uniquely.

The main disadvantages of these slit scanners include finding a compromise between the field

of view and depth resolution, and their relatively poor immunity to ambient light.

An example of a 2D pattern is a line stripe pattern. Although, many other variants of patterns

are possible, patterns of parallel stripes are widely used. The most popular methods for 2D

pattern projection use binary coded patterns, which lead to gray-coded binary images, as
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Figure 2.6: Illustration of gray-coded structured light. Here, two different linear patterns are
projected on an object. The way that these patterns deform, when striking the object, allows
to calculate depth information.

shown in Figure 2.6. These gray-coded binary images use multiple frames with increasing

resolution to encode a pixel with the corresponding depth on the image.

Reasons for the popularity of coded patterns include the availability of low-cost projectors,

the relatively fast acquirement of 3D structures, and the possibility of acquiring 3D structures

without complex mechanical scanning devices. Furthermore, the speckle noise associated with

lasers is reduces due to the use of incoherent light, which consequently provides better surface

smoothness. However, compared to laser stripe scanners the depth of view is smaller as well

as the absolute accuracy of the 3D volume.

2.6 Pulsed Time-of-flight

Emitter

Detector

d

t

t+Δt
Object

Figure 2.7: Pulsed time-of-flight rangefinder principle. Here the emitter produces a laser light
or ultrasonics at time t. This energy emission is than reflected by the object. Depending on
distance d, there will be a delay ∆t, before the reflected energy emission is recognized by the
detector. Depth is measured, based on the delay.
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The two main representatives of flight range scanners [6] are ultrasonic rangefinders and laser

rangefinders, which use laser light and ultrasonics, respectively, to probe an object. Therefore,

the most relevant parameters are the speed of light and the speed of sound.

Laser rangefinders are able to acquire large objects with high accuracy. They calculate the

distance of a surface point by measuring the round-trip time of a pulse of light. More precise,

the laser is used to emit a pulse of light. The amount of time, elapsed before the reflected light

is recognized by the detector, is measured. Since the speed of light c is known, the round-trip

time ∆t can be used to determine the target distance d = (c · ∆t)/2. Thus, the accuracy

depends on the precision of the round-trip time measurement. The main advantage of time-of-

flight systems is the constant scanning accuracy over a wide range, regardless of the distance

to the object. Compared to triangulation-based systems, time-of-flight systems offer a greater

operating range, which is especially useful for outdoor navigation tasks. However, the laser

rangefinder only detects the distance of one point at a time. Therefore, the main disadvantage

of such systems is the prolonged operation time, required to scan an entire object. Moreover,

the scanners are usually larger than triangulation-based scanners, and they only capture the

geometry and not the object’s texture.

2.7 Wavefront Sampling

Object

Laser
Projector

Static
Sampling Plane Lens Image

Plane

Camera
Center

Laser - Line
Projected
Laser - Lines

Figure 2.8: The Figure illustrates the main idea of the BIRIS range sensor. This sensor is
based on the static wavefront sampling (SWS) approach. Two diametrically opposed aper-
tures are used to sample the wavefront. This sampling pattern results in the projection of
two quasi-in-focus images of the target on the image plane, where the distance between the
images is used to calculate the depth information.

In a wavefront sampling system only special parts of the wavefront are allowed to reach the

image plane. There are generally two types of wavefront sampling system, the static wavefront

sampling (SWS) and the active wavefront sampling (AWS) approach.

In the SWS case (cf Fig. 2.8), a sampling mask with at least two off-axis apertures is used to

sample the wavefront. This mask produces multiple images of an object-point on the image
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Object

Rotating
off-axis Aperture

Rotating
Image Point Image

Plane

Camera
Center

Lens

Figure 2.9: Illustration of the active wavefront sampling approach (AWS). Here a single off-
axis aperture is rotated around the optical axis. Thus, a target point’s image will appear to
rotate on the image plane. The fact, that at each aperture position only a single image is
recorded on the image plane eliminates any kind of overlapping problem.

plane. The distance between these imaged object points is then used to calculate the depth

information. One implementation of a two aperture SWS approach is the so called BIRIS

range sensor, developed at National Research Council, Canada [26, 4]. The main components

of this sensor are: a sampling mask with two apertures, a camera lens, and a standard CCD

camera. The two aperture mask replaces the iris of a standard camera lens and therefore the

sensor was named BI-IRIS.

Depth calculation in the BIRIS sensor is accomplished as follows: A laser line produces two

images on the sensor plane. By measuring the distance between the two lines the depth of

the target points illuminated by the laser is calculated. Similar to a regular laser scanner, the

target needs to be gradually scanned in order to obtain the entire depth map.

It is possible to use more than two sampling positions for the depth estimation. Such a

sampling mask with more than two apertures would result in images with a corresponding

number of lines. By measuring the displacements between the various lines depth can be

calculated with a higher potential depth estimation accuracy. Thus, on the one hand, more

sampling positions would increase the accuracy, but on the other hand it would also cause

confusion due to possibly overlapping lines.

The main disadvantage of SWS is the fact, that the images are recorded on the same image

plane, which can cause overlapping problems. The active wavefront sampling (AWS) approach

(cf Fig. 2.9) is a further development of the SWS approach and provides a solution to

the overlapping problem. In an AWS system a single off-axis aperture is moved from one

position to the next. At each position a single quasi-in-focus image is recorded without

multiple image overlap. Moreover, images are recorded from multiple perspectives, which

increases the accuracy of the calculated depth maps. Due to the relatively simple mechanical

implementation the off-axis aperture is usually rotated around the optical axis, but this is

not the only possible path that can be used. In theory depth can be recovered as long as the

aperture path is known.
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This chapter provides relevant background information. First, in Section 3.1 a short mathe-

matical recap regarding calculus of variations is presented. Section 3.3 presents an overview

of optical flow concepts, which are used in the active wavefront sampling (AWS) approach to

track the features from one sampling position to the next. Section 3.4 provides a short review

about robust estimation. To clearly understand the principle of AWS one first has to under-

stand some basic concepts about the theory of defocus. Thus, Section 3.5 provides necessary

background information regarding this topic. Among other things, this section describes how

an out-of-focus point is encoded by its blur spot diameter on the image plane. Section 3.6

introduces the main idea of wavefront sampling and explains how the blur-spot-diameter of

a DFD system can be calculated using a static wavefront sampling (SWS) or active wave-

front sampling (AWS) mask. This section also gives some basic information about size and

placement of the sampling mask as well as an analysis of the depth sensitivity of an AWS

based system. Further, this section also presents current 3D reconstruction algorithms using

the AWS approach, presented by Frigerio [10]. First, Section 3.6.7 describes Frigerio’s multi

image AWS algorithm. Second, Section 3.6.8 describes an alternative version of the Frigerio

multi image approach, which makes use of long spatio-temporal filter.

13
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3.1 Calculus of Variations

Calculus of variations [33, 9, 12] is a field of mathematics, that deals with the problem of

minimizing expressions of the form

F [y(x)] =

∫ b

a
f(x, y(x), y′(x)) dx, (3.1)

where f : [a, b] × Rd × Rd → R is given and one seeks a function y : [a, b] → Rd. The

fundamental result of the calculus of variations is the following theorem.

Theorem 1 (Euler-Lagrange Equation)

If y(x) is a curve in C2
[a,b] that minimizes the functional

F [y(x)] =

∫ b

a
f(x, y(x), y′(x)) dx, (3.2)

then the following equation must be satisfied

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (3.3)

This equation is referred to as Euler-Lagrange Equation.

To proof Teorem 1 we need the Leibniz rule, and the following Lemma.

Lemma 1

Let M(x) be a continuous function on the interval [a, b]. If for any continuous function h(x)

with h(a) = h(b) = 0 ∫ b

a
M(x)h(x) dx = 0, (3.4)

then M(x) is zero almost everywhere.

Proof 1

First one chooses h(x) = −M(x)(x − a)(x − b). Thus, h(x) is continuous because M is

continuous. Moreover, M(x)h(x) > 0 for x ∈ [a, b]. If the definite integral of a non-negative

function is zero, then the function itself is zero almost everywhere. Thus, one obtains

0 = M(x)h(x) = [M(x)]2 [−(x− a)(x− b)] . (3.5)

Equation 3.5 and the fact that [−(x− a)(x− b)] > 0 for x ∈ (a, b) implies that [M(x)]2 = 0

on [a, b]. Therefore, M(x) = 0 on [a, b].

�

Proof 2 (Euler-Lagrange Equation)

Suppose y(x) is a curve minimizing the functional F . Thus, for any curve g(x), F [y(x)] 6
F [g(x)]. Next, one constructs a variation of y(x) as follows:
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ys(x) = y(x) + s h(x), (3.6)

where h(x) ∈ C2
[a,b] with h(a) = h(b) = 0 and s is close to null. Now one defines the function

H(s) = F [ys(x)] . (3.7)

Due to the fact that y(x) minimizes F [y(x)] it follows that 0 minimizes H(s). From ordinary

calculus one obtains H ′(0) = 0 because H(0) is a minimum value for H. Using the Leibniz

rule one obtains

d

ds
H(s) =

d

ds

∫ b

a
f(x, ys(x), y′s(x)) dx =

∫ b

a

∂

∂s
f(x, ys(x), y′s(x)) dx. (3.8)

Next, the chain rule is used within the integral.

∂

∂s
f(x, ys(x), y′s(x)) =

∂f

∂x

∂x

∂s
+
∂f

∂ys

∂ys
∂s

+
∂f

∂y′s

∂y′s
∂s

=
∂f

∂ys
h(x) +

∂f

∂y′s
h′(x) (3.9)

Incorporating this into Equation 3.8 leads to

H ′(s) =

∫ b

a

(
∂f

∂ys
h(x) +

∂f

∂y′s
h′(x)

)
dx (3.10)

By setting s = 0 one obtains

0 =

∫ b

a

(
∂f

∂y
h(x) +

∂f

∂y′
h′(x)

)
dx. (3.11)

By applying integration by parts to the second term in Equation 3.11 one finally receives

0 =

∫ b

a

[
∂f

∂y
h(x)− d

dx

(
∂f

∂y′

)]
h(x) dx. (3.12)

This procedure works for any function h(x) with h(a) = h(b) = 0. Therefore, one can use

Lemma 1 to obtain the Euler-Lagrange Equation

0 =
∂f

∂y
− d

dx

(
∂f

∂y′

)
. (3.13)

�

Example

Finding the real-valued function y(x) on the interval [a, b] ⊂ R, such that the arc-length

between the points (a, y(a)) and (b, y(b)) is minimized, is one of the standard examples to

illustrate such a problem (cf Fig. 3.1). Here the length of the graph y(x) is given by

L(y) =

∫ b

a

√
1 + y′(x)2 dx. (3.14)



16 Chapter 3. Background

a b
x

y

y(b)

y(a)

Figure 3.1: Illustration of the functional L(y). Here the dashed blue graph depicts an arbitrary
function on the interval [a, b] ⊂ R connecting the points (a, y(a)) and (b, y(b)). The solid blue
graph depicts the stationary function of L(y), which is of course a straight line.

The partial derivatives of L are as follows:

∂f(x, y, y′)

∂y′
=

y′√
1 + y′2

and
∂f(x, y, y′)

∂y
= 0. (3.15)

By substituting the results from 3.15 into the Euler-Lagrange equation (3.3), one obtains

d

dx

y′(x)√
1 + y′(x)2

= 0, (3.16)

which indicates that

y′(x)√
1 + y′(x)2

= C, (3.17)

where C is a constant. As a consequence, y′(x) is constant too. This implies, that the

according graph is a straight line.

3.2 Visual Motion

The world changes with time, so that in any realistic vision problem we need to understand

and deal with motion. Images are obtained by projecting the 3D world onto a 2D light sensing

surface, for example a piece of film, an array of light sensors or photoreceptors in the human

eye. By moving an object in the 3D world, the 2D projection of that object will move also.

This movement of the 2D projection is referred to as image velocity or visual motion. The

visual motion field provides a valuable source of information for analyzing the observed scene

in terms of objects, their motion in space, and also their 3D structure.



3.3. Optical Flow 17

x
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z

�x(t)�X(t)

camera
center

image
plane

Figure 3.2: Illustration of image motion. A 3D surface point follows a space-time path ~X(t).
Projecting this path onto the image plane produces a 2D path ~x(t), where the instantaneous
2D velocity is called image motion.

3.3 Optical Flow

(a) First frame. (b) Color-coded optical flow. (c) Second frame.

Figure 3.3: Illustration of the optical flow principle. Figure (a) and (c) show two consecutive
frames. Figure (b) shows the color-coded optical flow field, calculated using a global optical
flow method [32]. Direction and magnitude of the flow vectors are visualized by the color and
the intensity, respectively.

A fundamental problem of image processing is the measurement of motion or image velocity.

Motion is an important part of our visual experience and supports a wide range of visual

tasks, such as 3D shape acquisition, object recognition and scene understanding.

The goal of optical flow estimation is to approximate the 2D velocity field or also called 2D

motion field. The motion field is a projection of the 3D velocities of surface points onto

the image plane. More precisely, each point on a 3D surface moves along a path ~X(t). By

projecting this path onto the image plane it produces a 2D path ~x(t), where the instantaneous

direction d~x(t)/dt is called velocity.

Note, optical flow is a radiometric concept. It explains brightness variation, while motion
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optical flow field

(a) Optical flow without motion.

optical flow field

(b) Motion without optical flow.

Figure 3.4: Illustration of the difference between visual motion and optical flow. In Figure
(a) a static sphere is illuminated by a moving light source, which is an example for optical
flow without motion. In Figure (b) a spinning sphere is illuminated by a static light source,
which is an example for motion without optical flow.

is geometric. Thus, optical flow and motion are two different things. There may be motion

without optical flow (consider e.g. a spinning sphere of uniform appearance) and optical flow

without motion (consider e.g. a scene illuminated by a moving light source). In the taxonomy

of computer vision problems, the optical flow problem belongs to the class of correspondence-

problems. Given two or more images of the same scene, the correspondence-problem is to

find an optimal relation between corresponding image data.

3.3.1 Basic Observations

The calculation of optical flow is a notoriously error-prone problem. There are several sit-

uations that occur in real-world scenes causing trouble for most algorithms. Some of those

problems are mentioned below.

In some situations there is insufficient information to calculate the optical flow (cf Fig. 3.5).

By considering, for example an untextured flat surface, we cannot determine motion at all,

because the image remains constant over time. Due to the fact that we study techniques

that estimate the motion by considering small regions, this problem will occur whenever the

considered region has a uniform image brightness.

Another problem occurs by looking at a striped pattern. In this case one cannot determine

the velocity along the direction of the stripes, because, if the pattern slides along the direction

of the stripes, the image will not change. In literature this problem is usually referred to as

the aperture problem.

Most algorithms for optical flow estimation are based on the assumption that changes in the

image intensity are due only to motion. Unfortunately, in real-world images this assumption

is frequently violated. For example, if lighting changes occur, all intensities in the image
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Figure 3.5: Illustration of motion situations for the two types of singularities and the non-
singularity situation. In the center of the square the motion is completely unconstrained.
At the edge the intensity changes are consistent forming a 1D set of velocities (dashed line).
Here we cannot determine the motion along the edge, only the motion perpendicular to the
edge can be determined. At the corner a unique velocity can be calculated. [29]

Frame 2

Frame 1

?

velocity

Figure 3.6: Illustration of temporal aliasing. Two frames are shown, where a series of squares
is moving (to the left). If the motion is slow (smaller than half the distance between two
consecutive squares), the motion will be recognized correctly. If the motion is faster than half
the distance between two consecutive squares, the opposite motion will be estimated.
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Ti
m
e

Space Space Space

(a) (b) (c)

Figure 3.7: Space-time illustration of three types of non-translational motion (dilation, occlu-
sion, and transparency). Figure (a) shows the situation of a dilation. Figure (b) illustrates
the case of an occlusion boundary, where two patterns move towards each other, and the
right occluding the left. Finally, Figure (c) shows rightward and leftward moving transparent
patterns. [29]

will change either. Or by considering orientation changes of surfaces relative to the camera,

the reflected light towards the camera will also change. In such situations an optical flow

algorithm based on the brightness conservation assumption will fail.

Owing to the fact that the input to an optical flow estimation system is sampled with respect

to time, it is usually difficult to estimate large motions. This problem is clarified by the

following example: Consider a series of squares moving to the left (cf Fig. 3.6). If the velocity

is low then the motion will be correctly recognized by a local motion algorithm. However,

if the velocity is high, there will not be a correct estimation of the motion any longer. For

some velocities, the squares will even seem to move backwards (to the right). This problem

is called temporal aliasing.

Almost all optical flow approaches are based on the assumption that motion is translational

and hence a single velocity vector is sufficient to describe motion. But this assumption is

frequently violated in real-world scenes as well. Typical examples are due to rotation, dila-

tion or motion of non-rigid objects (e.g. fluids or elastic materials). This will lead to a small

motion estimation error as long as the regions over which motion is being estimated are small

compared to the deviations from translational motion.

More severe problems occur at occlusion boundaries and in the presence of transparency or

highlights. In these situations motion cannot be properly described by a single displacement

vector.

3.3.2 Differential Techniques

Due to the fact that velocity is a differential quantity, it is intuitive to consider derivative

measurements for estimation. Differential techniques, also known as gradient techniques, use
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spatiotemporal derivatives of image intensity to compute the image velocity. This is, in many

ways, the simplest and also the most elegant approach to estimate the motion field.

3.3.2.1 Basic Gradient-Based Estimation

Gradient-based methods assume that pixel intensities are translated from one image to the

next, with respect to the brightness constancy assumption

I(~x, t) = I(~x+ ~u, t+ δt), (3.18)

where I(~x, t) is the image intensity as a function of space ~x = (x, y)T and time t, ~u = (u, v)T

is the 2D velocity and δt is a small temporal increment. Without loss of generality, we will

assume δt = 1. Note, that the brightness constancy does not hold exactly. It is linked to the

assumption that surface radiance remains constant with respect to time, as mentioned in the

previous section.

f1

f2

xx − d̂

d̂

d

Figure 3.8: This illustration shows how the gradient constraint relates the displacement of a
signal to its temporal difference and spatial derivatives (slope). For a nonlinear signal, the
difference divided by the slope gives an approximation d̂ to the true displacement d.

First of all, the 1D case will be considered. There are two 1D signals f1 and f2, where the

second signal is a translated version of the first one, i.e. f2(x) = f1(x−d) where d denotes the

translation (cf Fig. 3.8). Then f1 is linearized by using a Taylor series expansion of f1(x− d)

about x:

f1(x− d) = f1(x)− df ′1(x) +O(d2f ′′1 ). (3.19)

Using this Taylor series expansion the difference between the signals can be written as follows:

f1(x)− f2(x) = df ′1(x) +O(d2f ′′1 ). (3.20)

By ignoring second- and higher-order terms, one receives the following approximation to d:
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d̂ =
f1(x)− f2(x)

f ′1(x)
. (3.21)

The 1D case can be generalized to 2D in a straightforward way. Again, it is assumed that

the displaced image is approximated by a first-order Taylor series expansion.

I(~x+ ~u, t+ 1) ≈ I(~x, t) + ~u · ∇I(~x, t) + It(~x, t), (3.22)

where ∇I = (Ix, Iy) denote spatial and It temporal partial derivatives of the image I, and

~u = (u, v)T denotes the 2D velocity. By substituting this linear approximation into the

brightness constancy assumption (Equation 3.18) one obtains the so called gradient constraint

equation:

∇I(~x, t) · ~u+ It(~x, t) = 0. (3.23)

The gradient constraint equation can also be derived more generally from an estimation of

2D paths ~x(t) along which intensity is conserved:

I(~x(t), t) = c, (3.24)

where c is a constant. By using the temporal derivative and the chain rule for differentiation,

one again obtains the gradient constraint equation:

d

dt
I(~x(t), t) =

d

dt
c

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t

dt

dt
= 0

∇I · ~u+ It = 0,

with ~u = (dx/dt, dy/dt)T . The gradient constraint equation (Equation 3.23) defines the

relationship between the image intensities and the optical flow, and is fundamental to all

differential techniques.

It is one equation with two unknowns and therefore it constrains the optical flow ~u to a one

parameter family of velocities along a line in velocity space (cf Fig. 3.9) [19]. The velocity

(u, v) has to lie along a line perpendicular to∇I and its perpendicular distance from the origin

is |It|/‖∇I‖. Therefore, the locus of solutions to the gradient constraint equation constitutes

a line in the 2D velocity space:

~u = −It · ∇I‖∇I‖2 + α
1

‖∇I‖

(
−Iy
Ix

)
, (3.25)

where α is a variable, parameterizing the line. It should be mentioned, that the first term in

Equation 3.25 is called normal velocity.

Due to the fact, that the gradient constraint equation is one equation with two unknowns,
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Figure 3.9: The set of velocities that satisfy the gradient constraint equation (3.23) constitutes
a line in the 2D velocity space. Furthermore, this line has to be perpendicular to the brightness
gradient vector. The distance of this line from the origin equals |It|/‖∇I‖. Thus, the so called
normal velocity is −It∇I/‖∇I‖2. [19]

relying the calculation only on this constraint leads to an under-constrained or ill-posed1

problem. In order to obtain a well-posed problem, additional modeling assumptions are

needed.

3.3.2.2 Local Methods

Due to the aperture problem, it is not possible to calculate the flow vector from a single

gradient constraint equation. Therefore, further constraints are needed. One idea is using

multiple illuminations, where more equations under different illuminations are obtained.

Another idea is to use an intensity derivative conservation assumption, where the gradient

constraint equation is derived with respect to x, y and/or t. This leads to the optical flow

calculations based on second-order derivatives. The constraint equation including all three

partial derivatives yields to:  Ixx Ixy
Ixy Iyy
Ixt Ixt

 ~u+

 Ixt
Iyt
Itt

 = 0. (3.26)

1Hadamard defines problems to be well-posed if a solution exists, the solution is unique, and if the solution
depends continuously on the data, in some reasonable topology. If any of those conditions is violated, the
problem is called ill-posed.
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Equation 3.26 has three constraints for the two unknowns. Therefore it is no longer under-

constrained like Equation 3.23.

Note that this method can be extended to any order of derivative. It is also reasonable to

combine constraints from different orders of derivatives. E.g., one can combine the second-

order constraints with the first-order constraint:
Ix Iy
Ixx Ixy
Ixy Iyy
Ixt Ixt

 ~u+


It
Ixt
Iyt
Itt

 = 0. (3.27)

An approach that combines constraints from nearby pixels to further constrain ~u was sug-

gested by Lucas and Kanade [21]. They assumed that the flow is constant in a small window,

which leads to the following set of equations:

Ix(x1, y1, t)u+ Iy(x1, y1, t)v = −It(x1, y1, t)

Ix(x2, y2, t)u+ Iy(x2, y2, t)v = −It(x2, y2, t)

...

Ix(xn, yn, t)u+ Iy(xn, yn, t)v = −It(xn, yn, t),

where (xi, yi, t) for 1 ≤ i ≤ n are the space-time coordinates of points in the window. This

leads to an overdetermined system of equations:Ix(x1, y1, t) Iy(x1, y1, t)

.. ..

Ix(xn, yn, t) Iy(xn, yn, t)

(u
v

)
=

−It(x1, y1, t)

..

−It(xn, yn, t)

 , (3.28)

which can be solved using least-squares estimation. Furthermore, they used a weighting

function that determines the support of the estimator and gives more influence to constraints

at the center of the neighborhood. Hence, they used a weighted least-squares fit of local

first-order constraints:

E(u, v) =
∑
~x∈Ω

g(~x) [∇I(~x, t) · ~u+ It(~x, t)]
2 , (3.29)

where g(~x) is the weighting function, and Ω denotes a local neighborhood of ~x. Minimization

of Equation 3.29 is done by evaluating the first derivatives with respect to the vector ~u:

∂E(u, v)

∂u
=
∑
x∈Ω

g(~x)(uI2
x + vIxIy + IxIt) = 0,

∂E(u, v)

∂v
=
∑
x∈Ω

g(~x)(vI2
y + uIxIy + IyIt) = 0.

This system of equations can be rewritten in matrix form as
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M~u = ~b, (3.30)

where M and ~b are:

M =

( ∑
g(~x)I2

x

∑
g(~x)IxIy∑

g(~x)IyIx
∑
g(~x)I2

y

)
,

~b = −
( ∑

g(~x)IxIt∑
g(~x)IyIt

)
.

The least squares estimate to Equation 3.30 is ~̂u = M−1~b, if rank(M) = 2. If M is rank

deficient, the problem is not properly constrained, which means that the local neighborhood

Ω has insufficient information to solve the aperture problem. By increasing the size of the

local interrogation area more constraints can be added, which increases the chance to find a

unique solution. Note, by increasing the neighborhood, the assumption of a single flow vector

for the whole neighborhood becomes increasingly questionable. One solution to this dilemma

is to calculate the flow only at points where M has full rank, which results in a sparse flow

field.

3.3.2.3 Global Methods

Local methods will yield poorly conditioned systems of equations in image regions of nearly

uniform intensity. Global methods try to avoid this singularity problem by incorporating

additional constraints or regularization terms to the energy function. As indicated by the

name, global methods integrate the information from the entire image domain to infer the

flow. Contrary to sparse local methods, where a dense flow field is obtained by an interpolation

step, global methods directly yield a dense flow field.

The motion models are generally classified as fully parametric, quasi-parametric, and non-

parametric by Bergen et al. [5].

A fully parametric flow estimation model describes the motion of individual pixels within a

region via a parametric form. Therefore, parametric models are limited to applications, where

the characteristics of the flow fields are known. Examples for fully parametric models include

affine and quadratic flow fields.

Quasi-parametric models combine a parametric component that is valid for the entire region

with a local component, which varies from pixel to pixel, like e.g. the rigid motion model.

Non-parametric models do not express the additional assumption explicitly, but use some type

of regularisation term, e.g., Horn and Schunck [19] used a constraint of global smoothness of

the velocity field. Hildreth [18] used a constraint of smoothness along contours. Nagel [22]

suggested a global oriented-smoothness constraint, in which less smoothing is done in the

direction of the gradient. These methods will be briefly discussed below.

The main disadvantage of global methods is the computational cost, which is far higher than

with local methods.
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Horn and Schunck [19]

Horn and Schunck presented a method for finding the optical flow, which assumes that the

apparent velocity of the brightness pattern varies smoothly almost everywhere in the image.

They combined the gradient constraint (Equation 3.23) with a global smoothness term,∫
Ω

(∇I · ~u+ It)
2 + α2 (‖∇u‖22 + ‖∇v‖22)︸ ︷︷ ︸

smoothness term

dΩ, (3.31)

where α reflects the influence of the smoothness term and Ω is the image space. The min-

imization is done by using the calculus of variation. They obtained the following system of

equations:

I2
xu+ IxIyv = α2∇2u− IxIt,

IxIyu+ I2
yv = α2∇2v − IyIt.

By using an approximation to the Laplacian they obtained

(α2 + I2
x)u+ IxIyv = (α2ū− IxIt),

IxIyu+ (α2 + I2
y )v = (α2v̄ − IyIt),

where ū and v̄ denote neighborhood averages. This system is solved for u and v , which yields

to

(α2 + I2
x + I2

y )u = +(α2 + I2
y )ū− IxIyv̄ − IxIt,

(α2 + I2
x + I2

y )v = −IxIyū+ (α2 + I2
x)v̄ − IyIt.

This can finally be rewritten as:

(α2 + I2
x + I2

y )(u− ū) = −Ix(Ixū+ Iyv̄ + It),

(α2 + I2
x + I2

y )(v − v̄) = −Iy(Ixū+ Iyv̄ + It).

Due to the fact that it would be very costly to solve this system by using standard methods,

like e.g. Gauss-Jordan elimination, an iterative method is used. They compute a new set of

velocities (un+1, vn+1) from the derivatives and the averages of (un, vn):

un+1 = ūn − Ix(Ixū
n + Iyv̄

n + It)

α2 + I2
x + I2

y

,

vn+1 = v̄n − Iy(Ixū
n + Iyv̄

n + It)

α2 + I2
x + I2

y

.

Nagel [22]

Nagel was one of the first who used second-order derivatives to compute optical flow. More-

over, he suggested an oriented-smoothness constraint in which smoothness is not imposed
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across steep intensity gradients (edges). The problem is formulated by the following func-

tional:

∫
Ω

(∇I ·~u+It)
2 +

α2

‖∇I‖22 + 2δ
((uxIy−uyIx)2 +(vxIy−vyIx)2 +δ(u2

x+u2
y+v2

x+v2
y))dΩ (3.32)

Using Gauss-Seidel iterations, the solution can be computed as follows:

uk+1 = ξ(uk)− Ix(Ixξ(u
k) + Iyξ(v

k) + It)

I2
x + I2

y + α2
,

vk+1 = ξ(vk)− Iy(Ixξ(u
k) + Iyξ(v

k) + It)

I2
x + I2

y + α2
,

where k is the iteration number, and ξ(uk) and ξ(vk) are given by

ξ(uk) = ūk − 2IxIyuxy − qT (∇uk),

ξ(vk) = v̄k − 2IxIyvxy − qT (∇vk),

where

q =
1

I2
x + I2

y + 2δ
∇IT

[(
Iyy −Ixy
−Ixy Ixx

)
+ 2

(
Iyy Ixy
Ixy Ixx

)
W

]
,

uxy and vxy are partial derivatives of ~uk, ūk and v̄k are local neighborhood averages of uk and

vk and W is the weight matrix

W = (I2
x + I2

y + 2δ)−1

(
I2
y + δ −IxIy
−IxIy I2

x + δ

)
.

Hildreth [18]

Due to the aperture problem, local optical flow techniques provide, in the case of contours,

only the component of motion in the direction perpendicular to the orientation of the contour.

The velocity component in the direction of the contour cannot be detected. More precise,

the 2D velocity field along a contour may be described by the vector function V (s), where

s denotes arclength. V (s) can be decomposed into components tangent and perpendicular

to the contour, as shown in Figure 3.10. u>(s) and u⊥(s) are unit vectors in the directions

tangent and perpendicular to the curve, and v>(s) and v⊥(s) denote the two components

[18]:

V (s) = v>(s)u>(s) + v⊥(s)u⊥(s).

v⊥(s), u>(s), and u⊥(s) are given directly by initial measurements from the observed images.
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Figure 3.10: Decomposition of the velocity V (s). The velocity vector V (s) is decomposed
into components perpendicular and tangent to the curve C. The unit direction vectors are
represented by u>(s) and u⊥(s). v⊥(s) and v>(s) represent the two velocity components.

Thus, only the component v>(s) must be recovered to calculate V (s). Nevertheless, a given

set of v⊥(s) measurements along a contour is not enough to determine the motion uniquely.

Therefore, in order to calculate the velocity V (s) uniquely, one needs to integrate over the

constraints provided by v⊥(s) along the contour combined with additional constraints, e.g. a

smoothness constraint.

In order to find the velocity field that varies the least, Hildreth suggested three approaches

to measured the variation in velocity along the contours.

First, he defined the local variation in V (s) with respect to the contour given by ∂V/∂s (cf

Fig. 3.11). Taking its magnitude, one obtains a scalar measure. A measure of the total

variation in the velocity field over an entire contour may be derived by integrating this local

measure, which leads to the following functional:

Θ(V ) =

∫ ∣∣∣∣∂V∂s
∣∣∣∣ ds.

Second, he defined the variation in direction (cf Fig. 3.12), where the local change in direction

for two nearby velocities is given by ∂ϕ/∂s, where ϕ is the angle describing the direction of

velocity (counterclockwise orientation). This leads to:

Θ(V ) =

∫ ∣∣∣∣∂ϕ∂s
∣∣∣∣ ds.

Finally, he suggested the total variation in magnitude of the velocity, which results in:

Θ(V ) =

∫
∂ |V |
∂s

ds.

He found out, that the use of functionals that incorporate only a measurement of direction or

magnitude of velocity does not, in general, lead to a unique velocity field solution. However,
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C

ds

(a) Image space.

Vx

Vy

∂V

∂s

(b) Velocity space.

Figure 3.11: Illustration of variation in V (s). Figure (a) shows two nearby velocity vectors on
the contour C. Figure (b) shows the according velocities in the velocity space, where ∂V/∂s
is marked by the dashed line.

C

ds
ϕ

(a) Image space.

Vx

Vy

∂ϕ

∂s

(b) Velocity space.

Figure 3.12: Illustration of variation in direction. Figure (a) shows the direction of velocity
represented by ϕ. Figure (b) shows the velocity vectors of the two nearby velocities of Figure
(a) in velocity space. Here ∂ϕ/∂s indicates the change in direction.
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he showed, that using the measure of variation

Θ(V ) =

∫ ∣∣∣∣∂V∂s
∣∣∣∣2 ds (3.33)

leads to a unique velocity field, that satisfies the known velocity constraints and minimizes

(3.33), under the simple condition that v⊥(s) is known everywhere along the contour, and

there exists at least two points at which the local orientation of the contour is different.

3.3.2.4 Gradient Estimation

By considering the optical flow problem as a signal processing problem, it can be seen that

the accuracy of the method is linked with choosing good derivative and interpolating filters.

For the two image case, one can use e.g. two point derivative and interpolating filters like

[−1, 1], [1/2, 1/2] respectively. These filters calculate the velocity of a point midway between

two consecutive pixels in time and space (cf Fig. 3.13).

(a) 2 × 2 × 2 pixel cube. (b) N ×N ×N pixel cube.

Figure 3.13: Illustration of multi image gradient calculation using long filters. (a) shows the
use of two point derivative and interpolating filters. Here, the velocity at the center of a
2 × 2 × 2 pixel cube is calculated (marked by the blue dot). (b) shows the use of N point
derivative and interpolating filters. Here the velocity is calculated at a N ×N ×N pixel cube
(marked by the green spot).

By using multiple images gathered over time, the accuracy of the calculated spatial and

temporal derivative and interpolating filters can be increased by using long filters.

An ideal interpolating filter has a frequency response, whose magnitude equals one for all

frequencies. An ideal derivative filter, meanwhile, has a magnitude response equal to the

frequency itself. Figure 3.14 shows the response of the two point derivative filter [−1, 1] and

the two point interpolating filter [1/2, 1/2], compared to their ideal counterparts. It can be

seen that the two point filters significantly deviate from ideal behavior for high frequencies.
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(a) Two point derivative filter.
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(b) Two point interpolating filter.

Figure 3.14: Magnitude response of the two point derivative and interpolating filter. (a)
shows the magnitude response of the two point derivative filter (blue), along with the ideal
counterpart (black). (b) shows the magnitude response of the two point interpolating filter
(blue) with the corresponding ideal response (black).
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(a) Derivative filters.
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(b) Interpolating filters.

Figure 3.15: Even and odd derivative and interpolating filters. The two figures show even and
odd length derivative and interpolating filters, designed with the Parks-McClellan algorithm.
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As mentioned above, the use of multiple images now allows the use of long filters. In Figure

3.15 the fundamental tradeoff between even and odd length filters is shown. Odd length

derivative filters best approximate the derivatives for points at pixel centers. However, due

to their symmetry, the magnitude response of odd length filters are 0 at frequency ω = π.

Even length filters best approximate derivatives for points, half way between pixel centers.

Compared to odd length derivative filters the magnitude response of even length filters better

approximates the ideal derivative filter, especially for high frequencies. However, the symme-

try of the filter requires that the magnitude response of the interpolating filters of even length

are 0 at ω = π. Therefore even length derivative filters are better than odd length filters of

compared length. On the other hand, odd length filters are better interpolating filters (always

length 1) than even length filters.

Long derivative and interpolating filters can be calculated using the Parks-McClellan algo-

rithm. Much more accurate derivative and interpolating filters can be designed by calculating

them together rather than separately. This means that a small error in the derivative filter

can be corrected by a corresponding error in the interpolating filter, and vice versa.

3.3.2.5 Prefiltering
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(a) Gaussian low pass filter.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

M
ag

ni
tu

de
 R

es
po

ns
e

(b) Optimized low pass filter.

Figure 3.16: (a) shows the magnitude response of a Gaussian low pass filter. The filter
response drops off very quickly, which results in the attenuation of the signal even at low
frequencies. (b) shows the magnitude response of an optimized low pass filter. Here the filter
response remains one for low frequencies and drops very fast at the cut off frequency.

To reduce the effects of high frequency noise many researchers use prefilters to low pass filter

the images before calculating the optical flow. A popular prefilter is a Gaussian low pass

filter, shown in Figure 3.16(a). The magnitude response of a typical Gaussian low pass filter

decreases even for low frequencies. This has an undesired effect for images undergoing non-

uniform motion. More precise, the movement of adjacent features by different amounts from
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one image to the next has the effect, that the images will be ’stretched’ in some areas and

’compressed’ in others. These stretching and compressing effects represent changes in spatial

frequencies of the images. Therefore, the spatial frequency of a target feature’s neighborhood

may slightly change from one image to the next. By applying a Gaussian low pass filter, the

target feature’s intensity will change too from one image to the next. This is because the

Gaussian prefilter will attenuate image regions with higher frequencies (compressed neighbor-

hoods) more, than image regions with the lower frequencies (stretched neighborhoods). This

intensity variation violates the constant brightness assumption, and will reduce the accuracy

of the calculations.

In order to avoid this effect, one has to use a prefilter, whose magnitude response remains

constant for low frequencies, and drops off quickly at the cutoff frequency (cf Fig. 3.16(b)).

3.3.3 Matching Techniques

Matching techniques define velocity as the shift ~d = (dx, dy)
T that yields the best fit between

regions at different times. The matching is performed by dividing the image into small regions

(interrogation areas), which are then tracked from one image to the next by minimizing the

following error function: ∑
(x,y)∈Ω

ρ(I(x, y, t), I(x+ dx, y + dy, t+ 1)), (3.34)

where Ω is the interrogation area, (dx, dy) is the displacement vector, I(x, y, t) is the image at

spatial and temporal coordinates, and ρ(.) is a function, computing the dissimilarity between

two images. Common choices for ρ(.) are the squared difference or the absolute difference

between two arguments, leading to the following error functions:

SSD:
∑

(x,y)∈Ω

(I(x, y, t)− I(x+ dx, y + dy, t+ 1))2,

SAD:
∑

(x,y)∈Ω

|I(x, y, t)− I(x+ dx, y + dy, t+ 1)|.
(3.35)

The error for each interrogation area in the first image is calculated for a range of

displacements in x and y direction in the second image. The displacement with the smallest

error is chosen to be the true displacement. It should be mentioned that region-based

matching can only calculate integer displacements. For a subpixel displacement calculation

the images need to be interpolated.

Another evaluation function for region-based matching is the discrete normalized

cross-correlation (NCC) function:

NCC:

∑
(x,y)∈Ω

(
I(x, y, t)− Īt

) (
I(x+ dx, y + dy, t+ 1)− Īt+1

)√∑
(x,y)∈Ω

(
I(x, y, t)− Īt

)2∑
(x,y)∈Ω

(
I(x+ dx, y + dy, t+ 1)− Īt+1

)2 , (3.36)
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where Īt and Īt+1 define the mean of I(x, y, t) and I(x + dx, y + dy, t + 1), respectively, for

(x, y) ∈ Ω. Unlike the sum of squared differences (SSD) or the sum of absolute differences

(SAD) the cross-correlation function approaches one if there is a perfect match and goes to

zero if there is no match. Therefore, the cross-correlation function is called to be a similarity

measure. For the computation of the disparity the cross-correlation function is calculated for

a range of displacements in x and y direction, which produces a cross-correlation table. The

true displacement corresponds to the highest peak in this table.

Region-based matching can be computationally intensive. To speed up the computation of

the cross-correlation table, the images are transformed to frequency domain to make use of

the correlation theorem. Similar to the convolution theorem the correlation theorem relates

spatial correlation to the product of the image transforms. If ” ◦ ” denotes a correlation

operator and ” ∗ ” the complex conjugate, then the correlation theorem states the following:

f ◦ w ⇐⇒ F{f}F∗{w}, (3.37)

where f is an image and w is a given subimage (called mask or template) [13].

3.3.4 Spatio-temporal Filtering Techniques

Space

Ti
m
e

Figure 3.17: Space-time illustration of a leftward moving 1D signal. The movement of the
signal produces a diagonal path in the 2D space-time diagram. The inverse slope of the bar
corresponds to the speed of the 1D signal. Furthermore, the figure shows the positive and
negative coefficient lobes of an idealized linear operator, where the orientation matches the
underlying signal. [29]

Another method for motion analysis is based on spatio-temporal filters. Here, the basic mo-

tivation is that motion corresponds to orientation in space-time.

By way of illustration, we first consider a 1D example of a box signal. If one views this signal



3.3. Optical Flow 35

in the space-time domain, as shown in Figure 3.17, it can be recognized that translation cor-

responds to a skewed bar. Furthermore, the inverse slope of this bar corresponds to the speed

of the 1D signal. Thus, the motion can be determined by applying a set of oriented linear

operators, where each responds best to signals that match its orientation. Figure 3.17 also

shows the idealized impulse response lobes of a spatio-temporally oriented filter that matches

the motion of the box signal.

Note, that the spatio-temporally filter response does not only depend on the velocity of the

underlying signal, but also on symmetry, contrast, and spatial orientation of the underlying

signal. Therefore, a linear filter response by itself does not constitute a velocity estimator

[29].

To eliminate above mentioned dependencies, Adelson and Berg [1], e.g., suggested the com-

putation of motion energy measures from the sum of the squares of even and odd-symmetric

filters, tuned for the same orientation. Moreover, they suggested to subtract the output of a

mechanism sensitive to leftward motion from one sensitive to rightward motion. They finally

proposed a mechanism for computing a signal that is monotonically related to speed:∑
(R2

o +R2
e)−

∑
(L2

o + L2
e)∑

(S2
o + S2

e )
. (3.38)

R, L, and S here indicate the output of a filter tuned for rightward, leftward, and static

motion, respectively. e and o refer to the even- and odd-symmetry of the filters.

3.3.5 Frequency-Based Techniques

Frequency-based techniques are based on spatio-temporally oriented filters. They are moti-

vated by considering the motion problem directly in the Fourier domain. These methods are

divided into two main categories, namely energy based and phase based techniques.

Energy Based

First, the motion of a discrete 1D signal is considered. Such a signal can be represented by

an intensity image, where each pixel intensity corresponds to the value of the signal at a

particular location. By translating this signal it will appear as a striped pattern in the space-

time domain, where the stripes are oriented at an angle α = arctan(1/u) (cf Fig. 3.18(a)).

The corresponding Fourier decomposition is a set of sinusoids of the same orientation α, and

varying wavenumbers. Therefore, the Fourier transformation will only have high values on a

line through the origin at angle α (cf Fig. 3.18(b)).

This method can be extended straightforward to 2D. Thus, the Fourier transform spectrum

of an image undergoing rigid transformation lies in a plane in the spatio-temporal frequency

domain. This suggests an alternative approach to measure optical flow, by searching for the

plane that best fits the power spectrum of the spatio-temporal signal.

Note that due to the fact, that we are interested in local estimates of the image velocity, we

also need a local estimate of the power spectrum.

Heeger [17], e.g., used an energy based approach to develop an algorithm for computing optical
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(a) Leftward moving 1D signal. (b) Fourier Spectrum.

Figure 3.18: Illustration of the main idea of frequency based techniques. Figure (a) shows the
space-time diagram of a leftward moving 1D signal. Figure (b) shows the according Fourier
spectrum, where the pattern lies on a line.
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(a) Over-estimation of the signal-speed.
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(b) Under-estimation of the signal-speed.

Figure 3.19: Illustration of the systematic errors in the velocity estimation calculated with
Gabor filter. The Gabor filter are represented by the overlapping circles and the power
spectrum of the signal lies on the blue line. Figure (a) shows the situation, where the spectral
distribution is concentrated at higher spatial frequencies (marked by the bulge). This increases
the response of the leftward filter and leads to an over-estimation of the signal-speed. On
the other hand, Figure (b) shows the situation, where spectral content at lower frequencies
under-estimates the speed of the signal. [29]
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flow. He first measured the power spectrum, using a set of Gabor filters 2, tuned for different

spatio-temporal frequencies. In a second step he used a numerical optimization procedure to

find the plane that best fits the measurements.

A drawback of this approach is that the resulting velocity estimates depend on local spatial

content of the signal. Thus, this technique will calculate the wrong velocity for any sinusoidal

grating, whose spatial frequency is not matched with the center response of the filter (cf Fig.

3.19).

Phase Based

Phase based methods initially decompose an image into band-pass channels. They assume a

conservation of phase in each band-pass channel. The phase based gradient constraint for a

given complex-valued band-pass channel r(~x, t), with phase φ(~x, t) ≡ arg[r(~x, t)], is

∇φ(~x, t) · ~u+ φt(~x, t) = 0. (3.39)

Equation 3.39 can be used to estimate optical flow with any estimator described in Section

3.3.2.

Phase has some attractive properties for optical flow estimation. Phase is amplitude invariant,

and thus quite stable in terms of contrast and intensity changes between images. Phase is

also approximately linear over relatively large spatial extends and has very few critical points.

This implies that, compared to image derivative approaches, more gradient constraints may

be available, and that the range of velocities that can be estimated is significantly larger.

However, the main disadvantages of phase based methods are the computational costs of the

band-pass filters, and the spatial support of the filters near occlusion boundaries and fine

scaled objects.

3.3.6 Temporal Aliasing

Temporal aliasing is a typical problem of computing optical flow of real image sequences. A

typical example is the wheel of a car, where the direction of rotation appears to reverse, when

the wheel rotates at the right speed. This phenomenon is the result of the sparseness of the

temporal sampling, introduced by the camera, and can cause problems for any type of motion

algorithm. In the case of matching-based algorithm, this problem results in mismatchings. For

filtering algorithms, the effect can be observed in the frequency domain. Therefore, one has to

consider a 1D signal moving with constant velocity. As mentioned in the previous section, the

power spectrum of this signal lies on a line through the origin. Temporal sampling introduces

spectral replicas, causing aliasing for high speeds (cf Fig. 3.20) [29].

It is important to mention that temporal aliasing affects the higher spatial frequencies of an

image. More precise, spatial frequencies that move more than half of their period per frame

will be aliased, but lower spatial frequencies will not.

This gives rise to an approach for avoiding temporal aliasing by using a low frequency or

coarse-scale prefilter that ignores higher frequencies. If the given imagery only contains a

2A Gabor function is a sinusoid multiplied by a Gaussian window.
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Temporal sampling, period T

2π/T

ωt

ωx ωx

ωt

Figure 3.20: Illustration of temporal aliasing in the frequency domain. The left diagram shows
the idealized power spectrum of a 1D pattern. Temporal sampling produces a replication of
the power spectrum with temporal frequency intervals of 2π/T , where T depicts the period
of the signal. [29]

global motion, that varies slowly, we are done. However, in real-world scenes, an assumption

of slowly varying motion fields is frequently violated. In order to receive better estimates

of local velocity, higher frequency bands and spatially smaller filters must be taken into

account. Therefore, first the coarse-motion estimate is used to undo the motion in a warping

step. Next, higher frequency filters are used to extract the larger-scale motion, which gives a

new optical flow estimate. This correction process can be repeated for finer and finer scales,

and is referred to as coarse-to-fine approach.

However, this technique has serious drawbacks. If the coarse-scale estimates are incorrect,

there will be no chance for the finer-scale estimates to correct the errors. Thus, a poor

estimate at one scale provides a poor initial guess at the next finer scale.

3.4 Robust Estimation

The two main goals of robust statistics according to Hampel [14] are, first, to describe the

structure, best fitting the bulk of data, and second, to identify deviating data points (outliers)

or deviating substructures for further treatment, if desired.

Robust estimation deals with the problem of finding parameters a = [a0, ..., an], that best fit

a given model m(s, a) to a set of data points d = [d0, ..., ds], s ∈ S, where the data differs

statistically from the model. The goal is to find values for a that minimize the residual errors

min
a

∑
s∈S

C(ds −m(s, a), σs), (3.40)

where C(.) is an estimator and σs is a scaling parameter. When considering errors δs =

ds−m(s, a) that are mean-zero Gaussian, and independent and identically distributed (IID),
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Figure 3.21: The first row shows the cost and influence function of the squared error. Here
outliers are assigned a high weight, which can have negative effects on the estimation. The
second row shows the cost and influence function of the truncated quadratic estimator. This
estimator weights the errors quadratic up to a fixed threshold. Errors beyond that threshold
receive a constant weight. As a result the influence of outliers goes to zeros, which makes the
estimator more robust.

the optimal estimator is the quadratic (see Figure 3.21)

C(δs, σs) =
δ2
s

2σ2
s

(3.41)

which leads to the standard least-squares estimation problem.

The robustness of an estimator is related to its insensitivity to outliers. Considering the

quadratic estimator, we recognize that outliers are assigned a high weight, which can be seen

by the according influence function. This function characterizes the bias that a measurement



40 Chapter 3. Background

has on the solution and is obtained by the deviation of the estimator. In the least-squares

case, this influence function increases linearly without bounding.

In order to increase robustness one has to consider estimators for which the influence of

outliers tends to zero. One such robust estimator is the truncated quadratic (cf Fig. 3.21).

This estimator weights the errors quadratically, but only up to a fixed scale. Beyond that,

errors receive a constant value. Therefore, the influence of outliers goes to zero beyond the

threshold.
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Figure 3.22: The Figures show, from left to right, the Blake-Zisserman, the L1, and the
Huber cost-function (represented by the blue functions) compared to the quadratic estimator
(represented by the gray function).

Figure 3.22 shows, from left to right, the Blake Zisserman, the L1, and the Huber cost

function, which will be briefly discussed below [15].

Blake-Zisserman Cost Function

The Blake-Zisserman cost function (see Figure 3.22(a)) is considered as a statistically based

cost function. This means that the cost function is derived by guessing the distribution of

errors for the particular measurements. Therefore, the probability density function (PDF) is

assumed to be ρ(δ) = exp(−δ2) + ε, which is in fact not actually a PDF, but leads to the

following cost-function:

C(δ) = −log(exp(−δ2) + ε). (3.42)

Note, that the normalization constant for the Gaussian distribution 1/
√

2πσ2 is ignored.

Furthermore, it is assumed that 2σ2 = 1. This cost function weights inliers (small δ) quadratic,

and outliers (large δ) are assigned a cost of −log(ε). Note, that this is a non-convex cost

function, which can lead to multiple local minima.

L1 Cost Function

The L1 cost function (cf Fig. 3.22(b)) uses the sum of absolute errors instead of the sum of

squares. Therefore, the cost-function is
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C(δ) = 2b|δ|, (3.43)

where 2b is a positive constant. Compared to the quadratic cost function, outliers are less

weighted here. Note that this cost-function is convex, which leads to a single minimum, but

it is non-differentiable at the origin.

Huber Cost Function

The last cost-function considered here is the Huber cost-function (cf Fig. 3.22(c)). Its is a

hybrid between the L1 and the quadratic cost-function. Thus,

C(δ) =

{
δ2, for |δ| < b,

2b|δ| − b2, otherwise,
(3.44)

where b defines the outlier threshold. This cost function is continuous with a continuous first

derivative, and also convex.

3.5 Theory of Defocus

To calculate the depth information, using a wavefront sampling approach, one first has to

know how a target feature’s depth is encoded by the diameter of its defocus blur spot on the

image plane. Figure 3.23 shows the sketch of an imaging system, where a point at distance

δṽ
ũ

u
v

D
r

Figure 3.23: Sketch of an imaging system with aperture D. A point at distance ũ in front of
the lens is viewed in focus, where a point at distance u is blurred on the image plane with
radius r. [28]

ũ in front of the lens produces a in-focus image on the sensor at distance ṽ behind the lens.

As the target feature moves away from the in-focus plane, the diameter of the defocus blur

increases. Hence, a target at distance u produces a defocused image, with a blur-circle of

radius r on the image plane. The blur radius r can be calculated using a straightforward
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geometrical optics analysis [8]. Considering Figure 3.23, we recognize that similar triangles

yield a formula for the radius r of the blur circle

2r

δ
=
D

v
=⇒ 2r

D
=
δ

v
, (3.45)

where D is the diameter of the aperture, v is the distance from the lens to a focused image

of an object at distance u in front of the lens, and δ is the displacement of the image plane

from sharp focus. Thus,

δ = v − ṽ. (3.46)

By substituting Equation 3.46 into Equation 3.45, and by applying the Gaussian lens law

1

v
+

1

u
=

1

F
=

1

ṽ
+

1

ũ
, (3.47)

one gets:

2r

D
=
v − ṽ
v

= 1− ṽ

v
= ṽ

(
1

ṽ
− 1

v

)
= ṽ

((
1

F
− 1

ũ

)
−
(

1

F
− 1

u

))
= ṽ

(
1

u
− 1

ũ

)
,

where F is the focal length. Thus, an expression that directly relates the radius r or rather

the diameter d = 2r of a target feature’s defocus blur circle to the feature’s distance from the

lens u is obtained:

d

D
= ṽ

(
1

u
− 1

ũ

)
. (3.48)

Evaluation of Equation 3.48 over a range of normalized target depths results in the plot shown

in Figure 3.24. It can be seen, that the blur diameter equals zero, when the target is located

on the in-focus plane. The blur diameter increases when the target moves away from the

in-focus plane. Therefore, the accuracy of this method is directly related to the slope of the

line in Figure 3.24. Moreover, Figure 3.24 shows that the depth sensitivity increases more

steeply, if the target moves towards the lens, than away from the lens. This shows that the

optimal operating distance for a depth calculating system based on the wavefront sampling

approach is defined somewhere between the in-focus plane and the lens.

It should also be mentioned that for a given disparity measurement there are two possible

target positions. The first one is located between the lens and the in-focus plane. The second

position is located beyond the in-focus plane. Thus, without any prior knowledge this leads

to a depth ambiguity.

3.5.1 Defocus Measure

An image i(~x), captured by an image sensor, is modeled by the convolution of a sharp pre-

image s(~x) with the point spread function (PSF) h(~x)
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Figure 3.24: Normalized target distance as a function of the normalized blur spot diameter.
Here, d is the diameter of the blur spot, D is the diameter of the lens’ exit pupil, u is the
target distance to the lens, and ũ is the distance between lens and in-focus plane.

i(~x) = s(~x) ∗ h(~x), (3.49)

where ~x = (x, y)T are the spatial coordinates.

The PSF or impulse response of an optical system is the irradiance distribution that results

from a single point in object space. Although the source is a point, the image may not. The

two main reasons for the spread over a finite area are aberrations in the optical system, and

diffraction effects. Thus, the PSF h(~x) can be considered as a convolution of the optical

kernel µ(~x), the defocus kernel η(~x), and the sampling blur kernel ρ(~x) [24]:

h(~x) =

∫ ∫
ρ(~x− s)η(s− t)µ(t)dsdt (3.50)

The diffraction blur µ(~x) in Equation 3.50 is given by

µ(x, y) =
2J1(γ)

γ
, with γ =

π‖~x‖D
λv

. (3.51)

J1 in above equation is the first-order Bessel function, and λ is the wavelength of light (=

0.7×10−6m). The defocus kernel has a cylindrical shape and is given by the following pillbox

function with radius r:

η(x, y) =

{
1
πr2

, ‖~x‖ ≤ r2

0, otherwise.
(3.52)

The sampling kernel describes averaging over a square pixel of size ∆x:
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ρ(x, y) =

{
1

∆x2
, if max(|x|, |y|)) ≤ ∆x2

2

0, otherwise.
(3.53)

As mentioned above, blurring due to defocus can be modeled as a convolution with the PSF

h(x, y). But, a single unfocused image does not contain enough information in order to extract

the defocus operator. Hence, at least two images of the same scene with different defocus

operators are required. Thus, we need to change the defocus operator, which can be done by

varying the position of the image plane ṽ, the focal length F , or the aperture D.

A common method to isolate the defocus operator from the scene is inverse filtering, which

will be described in Section 3.5.2.

3.5.2 Inverse Filtering

Ens and Lawrence [8] calculate the depth information from two defocused images, acquired

with two different f-numbers3. Defocusing by change of the f-number preserves v (compare

Figure 3.23). This has the advantage that unwanted scaling of the image is excluded. The

blur is treated as a convolution of a sharp image s(x, y) with a low-pass filter, similar to

η(x, y). First, a less blurred image

i1(x, y) = s(x, y) ∗ η1(x, y) (3.54)

is acquired with a defocused system with a f-number f1. Next, a more blurred image

i2(x, y) = s(x, y) ∗ η2(x, y) (3.55)

with a f-number f2 < f1 is acquired. Afterwards, the inverse problem is solved to find a

function η3, which transforms i1(x, y) into i2(x, y):

i1(x, y) ∗ η3(x, y) = i2(x, y). (3.56)

By substituting Equation 3.54 and 3.55 into Equation 3.56 one obtains

s(x, y) ∗ η1(x, y) ∗ η3(x, y) = s(x, y) ∗ η2(x, y) (3.57)

η1(x, y) ∗ η3(x, y) = η2(x, y) (3.58)

Thus, η3(x, y) is also called the convolution ratio of η2(x, y) and η1(x, y). Transformed into

the Fourier domain, this deconvolution problem translates into a simple division defined by

F{η3(x, y)} =
F{i2(x, y)}
F{i1(x, y)} , (3.59)

which can be seen by considering Equation 3.54, 3.55, and 3.58. Thus, the function η3(x, y)

has been isolated and the one-to-one relationship between η3 and the depth is derived from

geometric optics or found from a look-up table, evaluated on a calibration object.

3The f-number f/# is given by f/D, where f is the focal length, and D is the aperture diameter.
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3.6 Wavefront Sampling

In a typical DFD system the whole wavefront is allowed to reach the image plane. As men-

tioned in the previous section, the challenging part is the accurate calculation of the diameter

of each target feature’s blur spot. Furthermore, the usability of a DFD system is usually lim-

ited due to complications occurring with overlapping blur spots from feature rich targets. By

using a wavefront sampling approach some limitations in the DFD methods can be overcome.

3.6.1 Static Wavefront Sampling

Compared to a DFD system, the wavefront sampling approach only allows specific parts of

the optical path’s wavefront to travel through and hit the image plane. The sampling is done

by using special sampling patterns. The simplest pattern is one with two apertures. The

corresponding reconstruction method is referred to as Static Wavefront Sampling (SWS).

Similar to the imaging system sketched in Figure 3.29, SWS results in the projection of two

quasi-in-focus images of the target on the image plane. Assuming that the two apertures are

separated by a distance equal to the full exit pupil diameter of the DFD system, the distance

between the two quasi-in-focus images resulting from the SWS method will be exactly equal

to the blur spot diameter resulting from the DFD technique. Hence, wavefront sampling can

also be compared with sampling the defocus blur.

In order to determine a target feature’s depth, the distance between the two images of the

target feature needs to be calculated. This can be done by using any kind of matching

technique. However, the fact that two images of the same target are recorded on the same

image can still cause overlapping problems due to feature rich targets.

3.6.2 Active Wavefront Sampling

There are two main disadvantages concerning SWS methods. The first one is depth ambiguity,

which means that it is not distinguishable whether the target is located in front or behind

the in-focus plane. The second drawback is the possible overlap on feature rich targets.

The Active Wavefront Sampling (AWS) approach [10] provides a solution to both problems.

In an AWS system a single aperture is moved from one position to the next. At each position a

single image is recorded without multiple image overlap. Furthermore, the depth ambiguity is

resolved as long as the motion of the aperture on the sampling plane is known. For instance,

a single off-axis aperture, rotated in a circle, and centered on the optical axis of the lens,

would have the effect that the target’s image would also rotate in a circle. Hence, depth

information for the target is encoded in the diameter of the rotation on the image plane. A

target located on the in-focus plane will have a zero diameter rotation and thus will remain

constant, whereas targets located at increasing distances from the in-focus plane will rotate

along circles with increasing diameter. Note, that a target, located beyond the in-focus plane,

will rotate 180◦ out of phase, compared to a target, located between the lens and the in-focus

plane. As a result of this phase difference the depth ambiguity presented in the DFD and

SWS systems can be solved.

It should be mentioned that a rotating off-axis aperture is not the only possible path that can
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D

(a) SWS

D/2

(b) AWS

Figure 3.25: (a) shows the sampling mask of a two aperture Static Wavefront Sampling
(SWS) system. The wavefront is sampled by two diametrically opposed apertures separated
by a diameter D. The use of such a sampling mask results in two quasi-focused images
recorded on the image plane. (b) shows the sampling mask of an Active Wavefront Sampling
(AWS) system. The wavefront is sampled by an off-axis aperture, that rotates around the
optical axis. At each sampling position a quasi-focused image is acquired. These images are
used to calculate the blur-spot diameters.

be used with AWS. Other possibilities are, e.g. simple translations along horizontal, vertical,

or diagonal lines, or in more general, any path following any arbitrary closed loop. In theory,

depth can be recovered as long as the aperture path is known. A simple circular aperture

path has certain advantages, e.g. the relatively simple mechanical implementation.

One main advantage of the AWS method is the possibility to adjust the system with respect

to accuracy and processing speed. This means, that for high speed imaging applications

where some measurement accuracy can be sacrificed, the sampling positions can be reduced

to a minimum of two. Otherwise, considering high accuracy applications where speed can be

sacrificed, a high number of sampling positions can be used for the calculation.

3.6.3 Size of the Sampling Aperture

The size of the sampling aperture can strongly affect the quality of the image [10]. A large

aperture will allow to image higher frequency features, but simultaneously it will also have

a small depth of field, which reduces the depth range of the system to a narrower band,

surrounding the in-focus plane (cf Fig. 3.26). It also allows shorter image exposure times,

which increases the maximum frame rate of the imaging system.

On the other hand, a smaller aperture increases the depth of field, which results in a higher

depth sensitivity, but it will also low pass filter the images. Furthermore, it will also increase
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(a) Large aperture depth range.
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(b) Small aperture depth range.

Figure 3.26: (a) Practical target depth range for a large aperture size. (b) Practical target
depth range for a small aperture. [10]

the exposure time, which reduces the maximum frame rate of the system.

3.6.4 Placement of the Sampling Plane

Frigerio [10] showed that the aperture sampling plane should be placed as close as possible to

the lens in order to minimize vignetting and intensity variation between consecutive images.

The effect of placing the sampling aperture far from the lens is sketched in Figure 3.27,

which shows that for the top and bottom position of the aperture point 1 and point 2 are

blocked respectively. This vignetting effect has the result that a target feature image cannot

be tracked from one sampling position to the next. Thus a loss of depth information occurs.

Conversely, Figure 3.28 shows the sketch of an imaging system where the sampling plane is

located close to the lens. Here we see that the vignetting effect is removed, which makes a

full 3D reconstruction possible.

Another possible position for the sampling plane is at the lens’s aperture plane, which will

also minimize vignetting and intensity variation between images.

3.6.5 Comparison to Stereo Imaging

Now we consider Figure 3.29, where the entire lens is blocked, except for two pinholes on its

perimeter, on opposite ends. As a result the geometrical point spread function consists of

only two points, xL and xR, with distance

d = 2r = |xR − xL|. (3.60)

Due to of the fact that the image of the target now consists of two separated points, it

seems natural to compare it with a stereo setting. Therefore, we now consider the canonical
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Image PlaneSampling Plane

Figure 3.27: Effect caused by placing the sampling plane far away from the lens. The upper
sketch shows the aperture located at the top. In this case light rays from point 2 are able
to reach the image plane, but all rays from point 1 are blocked. The lower sketch shows the
case, where the aperture is located on the bottom. Here rays from point 1 are able to reach
the image plane, but rays from point 2 are blocked. This effect prevents a 3D reconstruction.
[10]

stereoscopic system, sketched in Figure 3.30. This system consists of two pinhole cameras

with the same physical dimensions of the system defined in Figure 3.23. The target point

at distance u is again imaged to two points, one at each sensor. The disparity d = x̂L + x̂R
between these images is related to the target feature’s distance to the cameras, as defined by:

d

D
= ṽ · 1

u
. (3.61)

Comparing Equation 3.61 with Equation 3.48, we recognize that they only differ by the

constant term 1/ũ.
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Figure 3.28: Effect caused by placing the sampling plane close to the lens. The upper sketch
shows the aperture located at the top and the lower sketch shows the aperture located at the
bottom. In both cases light rays from point 1 as well as from point 2 are able to reach the
image plane. Thus a 3D reconstruction is possible. [10]

3.6.6 Depth Sensitivity of AWS based Systems

As mentioned above, the optimal operating regime of a DFD system is defined somewhere

between the in-focus plane and the lens, as shown in Figure 3.24. Because of the similar-

ities between AWS and DFD the idealized optical performance characteristics of these two

approaches are identical. Thus the sensitivity can be calculated by taking the derivative of

Equation 3.48 with respect to the target depth u [10]. This leads to

∂

∂u

d

D
=

∂

∂u
ṽ

(
1

u
− 1

ũ

)
∂d

∂u
= −D · ṽ · 1

u2
. (3.62)

Now one can compare this with a canonical stereoscopic system with a disparity D between

the two images (see Equation 3.61). Just like above, the sensitivity can be obtained by taking

the derivative of this equation with respect to target depth, which leads to
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Figure 3.29: The sketch of an imaging system similar to that of Figure 3.23, but with the
difference that the lens is now blocked except for two pinholes on its perimeter, on opposite
ends. Therefore, an out-of-focus point at distance u produces two projections on the image
plane, with a disparity equal to the diameter of the blur circle, that would have been appeared
without a blocked lens. [28]

u

D

ṽ

x̂L

x̂R

Figure 3.30: The sketch of a canonical stereoscopic system with baseline D. A point at
distance u is imaged to two points, one at each sensor.
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∂

∂u

d

D
=

∂

∂u
ṽ

1

u

∂d

∂u
= −D · ṽ · 1

u2
. (3.63)

By comparing Equation 3.62 and 3.63 it can be seen that the depth sensitivities of a canonical

stereo system and an AWS system are identical. Hence, the only physical parameters that

can be changed in order to increase the sensitivity to depth are the sampling diameter, which

is the baseline in the stereo system, and the distance between the lens and the imaging sensor.

Depth sensitivity increases with ṽ. Simultaneously the field of view will decrease. The sensi-

tivity to depth also increases with D, but in the case of AWS, the diameter D is limited by the

lens exit pupil size. Thus, the bigger the lens, the larger the maximum sampling diameter.

3.6.7 Frigerio’s Multi Image AWS Algorithm

  Frigerio's Multi Image AWS Algorithm

Optical FLow 
Calculation Circle Fitting Depth 

Calculation

...

...

...

Input Output

Figure 3.31: Frigerio’s multi image AWS algorithm procedure. The figure shows the three
main steps of Frigerio’s AWS approach. The algorithm takes as input the images acquired
by moving the rotating off-axis aperture from one position to the next. The output of the
algorithm is the according depth map.

Frigerio [10] was the first, who presented an algorithm, that uses more than two AWS sam-

pling positions. His multi image AWS approach consists of three steps (cf Fig. 3.31). In the

first step, Frigerio defines an anchor image (located at the 9 o’clock position on the sampling

plane). By rotating the aperture, new images are acquired and the displacements between the

anchor image and the new acquired images are calculated. The displacement calculation is

done in two steps: First the integer pixel displacements are calculated and then, after warping

the images by the integer displacements, the remaining subpixel displacements are calculated

using a gradient based optical flow approach.

In the second step, a circle is fitted to the points, which are calculated by adding the dis-

placements to the according anchor image position. This is done in a least squares sense and

by knowing the angular between the sampling positions. As a result Frigerio receives the

rotation diameter of each pixel in the anchor image.

In a final step, these rotation diameters are used to calculate the depth of each pixel in the

anchor image. This is done by using simple geometric considerations.

Step one and three are described in Section 3.3 and Section 3.5, respectively. Therefore, the
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Figure 3.32: Sketch showing the geometry underlying the calculation of the rotation radius
R.

only thing left to show is the circle approximation step. For this purpose, Frigerio first defined

the angular θ2 for each image pair. This angular θ2 describes the motion direction of that

image pair.

θ2 = tan−1

(
∆y

∆x

)
, (3.64)

where (∆x,∆y) is the x and y component of the motion. Next, Frigerio used the cosine law to

calculate the motion radius R in terms of the motion distance L and the angle θ1 separating

the two images (cf Fig. 3.32).

L2 = 2R2 − 2R2cosθ1, (3.65)

R =
L√

2(1− cosθ1)
. (3.66)

The motion distance L can also be calculated using ∆x, ∆y and θ2 as follows:

L =
∆x

cosθ2
, (3.67)

L =
∆y

sinθ2
. (3.68)

By substituting Equations 3.67 and 3.68 into Equation 3.66, one obtains an overdetermined

set of equations, which can be used to solve for the radius R.(√
2(1− cosθ1)cosθ2√
2(1− cosθ1)sinθ2

)
R =

(
∆x

∆y

)
(3.69)

By using N sampling positions, N − 1 image pairs can be processed and furthermore an
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overdetermined system of equations with 2(N − 1) equations can be used to solve for R.
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Figure 3.33: Required number of images to ensure subpixel motion between evenly spaced
aperture positions plotted as a function of pixel diameter.

It should be mentioned, that the calculation of the integer pixel displacements can be avoided

by using enough AWS aperture positions. Hence, the disparity between the images is reduced

to being subpixel. Figure 3.33 relates a given maximum diameter to according numbers of

evenly spaced aperture positions.

According to Frigerio, the required number of aperture positions can be significantly reduced,

if the sampling intervals are not uniform. In order to do so, one has to place the second

aperture position very close to the anchor position. By using these two aperture positions an

accurate enough rotation diameter estimate can be calculated, which allows the other images

to be sampled at greater angles.

3.6.8 Frigerio’s Multi Image AWS Algorithm with long spatio-temporal

Filter

Although it might be an incorrect assumption for general AWS applications, it is still worth-

while to consider first the situation how images undergoing uniform motion can be processed

by an AWS system using long filters.

As a consequence of the uniform motion over the whole image the radius of the circular im-

age motion will be uniform too. Also note, that due to the uniform sampling positions the

motion is also periodic. This means that the image captured by the last aperture position

will smoothly flow into the image captured by the first aperture position. This periodicity

allows the use of long spatiotemporal derivative filters to calculate the N velocities. Note,

because the motion is uniform across each image, the N velocities can be calculated at the

same image position.

In order to calculate the radius R, Frigerio defined a spatiotemporal interrogation cuboid G



54 Chapter 3. Background

x

y

r

(a) Image space.

u

v r

(b) Velocity space.

Figure 3.34: Illustration of the motion model used in Frigerio’s multi image AWS approach
with long spatio-temporal filter. Figure (a) shows the velocities between consecutive images
in the image space. Here the motion describes the circumcircle of a blur spot. Figure (b)
shows the same velocities in the velocity space, where they describe a parameterization of a
circle with radius r = R · L.

of size 8×8×N pixels over which he solved the constant brightness equation for the rotation

in the least squares sense. The minimization problem was formulated as follows:

min
R

∑
i,j,k

[Gx(i, j, k)u(k) +Gy(i, j, k) v(k) +Gt(i, j, k)]2 (3.70)

with

u(k) = LRsin (αk) ,

v(k) = −LR cos (αk) ,

where

L =
2π

N
and αk =

2π

N
k. (3.71)

By calculating the derivative with respect to R and by setting it to zero, Frigerio obtained

the following equation for the radius R:
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R =

∑
i,j,k

G2
x(i, j, k) sin2(αk)− 2Gx(i, j, k)Gy(i, j, k) sin(αk) cos(αk) +G2

y(i, j, k) cos2(αk)

−1

N

2π

∑
i,j,k

Gt(i, j, k) (Gy(i, j, k) cos(αk)−Gx(i, j, k) sin(αk))

 .
Note, that this equation assumes that R remains constant throughout the spatiotemporal

interrogation cuboid, and therefore it is not valid in the case of non-uniform motion. By

introducing non-uniform motion the actual radius of motion, R, at any spatial position can

change in time. In order to handle non-uniform motion the spatiotemporal interrogation

cuboid must be made to track the target of interest through time.

According to Frigerio, this algorithm creates a much noisier 3D surface model, than the multi

image AWS approach from Section 3.6.7.
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Based on the Frigerio multi image AWS approach with long spatio-temporal filter (cf Section

3.6.8), we present in this section a global version of this method, which we refer to as global

AWS. The main motivation for introducing a global version is to reduce the noise effects

of the models, calculated with the Frigerio multi image AWS approach with long spatio-

temporal filter. Therefore, the global AWS approach assumes, that the blur-circle-radius

varies smoothly almost everywhere in the image. Further, we assume that reflectance varies

smoothly and the illumination is uniform across the surface.

For a better understanding, we first present a version of the global AWS approach, that

uses the L2-norm to weight the data-term. This version is referred to as L2 global AWS (cf

Section 4.1). In a second step, a robust version of the global AWS approach is presented,

that is based on total variation (TV) in the regularization-term and the robust L1-norm in

the data-term. We present a numerical scheme to solve the according TV-L1 global AWS

problem (cf Section 4.2). This iterative method is based on a dual formulation of the TV

energy and a point-wise thresholding step. Additional, the calculation is embedded into a

coarse-to-fine warping approach, which avoids convergence to unfavorable minima. Moreover,

the TV-L1 global AWS approach is capable of parallel processing and hence the approach can

be accelerated by graphics processing units (GPUs).

Experimental results for synthetic image sequences are then presented in Chapter 5.

57
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4.1 L2 Global AWS

In order to extend the Frigerio multi image approach with long spatio-temporal filter to

a global version, we add a smoothness constraint. Therefore, neighboring points on the

object have similar radii and the flow field varies smoothly almost everywhere. The according

minimization problem is written as follows:

E =

∫
Ω

∑
k

[Ix(x, y, k)u(k) + Iy(x, y, k) v(k) + It(x, y, k)]2 + λ‖∇R‖2 dΩ (4.1)

with

u(k) = LRsin (αk) ,

v(k) = LR cos (αk) ,

where

L =

√
2− 2cos

(
2π

N

)
and αk =

2π

N
k.

λ represents a parameter, reflecting the influence of the smoothness term. Note that compared

to Frigerio’s approach we use a more accurate approximation of L.

Equation 4.1 can be minimized, using the calculus of variations:

∂f

∂R
− div

(
∂f

∂(∇R)

)
= 0 (4.2)

where f defines the integrand of E. In the following calculation we use I(k) as the sloppy

notation for I(x, y, k). Thus,

∂f

∂R
= 2L2R

∑
k

[
I2
x(k) sin2(αk) + 2 Ix(k) Iy(k) sin(αk) cos(αk) + I2

y (k) cos2(αk)
]

+

2LIt(k)
∑
k

[Ix(k) sin(αk) + Iy(k) cos(αk)]
(4.3)

and

div

(
∂f

∂(∇R)

)
= λ 2∇2R. (4.4)

Next, we calculate the second order derivative of R by using a Laplacian approximation. The

approximation can be calculated by setting β = 1/3 in the following general Laplacian mask:
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1
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6

1
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1
6

1
12

 . (4.5)

Therefore, the Laplacian approximation is calculated by subtracting the value at a certain

point from a weighted average of according neighborhood points. Using this, we can approx-

imate ∇2R as follows:

∇2R ≈ 3(R̄−R), (4.6)

where R̄ denotes the local neighborhood average. Substituting Equation 4.6 into Equation

4.4 leads to:

div

(
∂f

∂(∇R)

)
≈ λ̄ 2 (R̄−R), (4.7)

where λ̄ = 3λ. In a final step, we substitute Equations 4.3 and Approximation 4.7 into

Equation 4.2, and solve the resulting equation with respect to R:

R =

[
L2
∑
k

[
I2
x(k) sin2(αk) + 2Ix(k) Iy(k) sin(αk) cos(αk) + I2

y (k) cos2(αk)
]

+ λ̄

]−1

[
λ̄R̄− L

∑
k

[Ix(k) sin(αk) + Iy(k) cos(αk)] It(k)

]
.

(4.8)

As in the Frigerio approach, this problem is not valid for non-uniform motion. To handle

non-uniform motion the derivative images Ix, Iy and It need to be warped according to the

radius R.

4.2 TV-L1 Global AWS

Due to the fact, that the quadratic estimator, used in Section 4.1, is expected to be noise

sensitive, we also consider a more robust version of our global AWS approach by using a robust

estimator for the data-term. Moreover, we also use the Euclidean norm in the smoothness-

term, which leads to edge-preserved and smoothed depth-maps. Therefore, the minimization

problem is now given by:

min
R

∫
Ω

λ
∑
k

|Ix(k)u(k) + Iy(k) v(k) + It(k)|+ ‖∇R‖ dΩ, (4.9)

where u(k) and v(k) are defined in Equation 4.1. Note, that the data-term is weighted by

λ instead of the smoothness-term. In order to solve this minimization problem, we first
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Figure 4.1: Example depth-maps of the Suzanne-Scene (compare Chapter 5). The left image
shows a depth-map calculated with the L2 global AWS approach from Section 4.1. The right
image shows a depth map obtained by using the TV-L1 global AWS approach. The closeup
views clearly show that the right depth-map is edge-preserving, whereas the left depth-map
is not.

introduce auxiliary variables R̄k for 1 6 k 6 N , and we propose to minimize the following

approximation of Equation 4.9:

min
R,R̄k

∫
Ω

λ
∑
k

|Ix(k) ū(k) + Iy(k) v̄(k) + It(k)|+ 1

2θ

∑
k

(
R− R̄k

)2
+ ‖∇R‖ dΩ (4.10)

with

ū(k) = L R̄k sin (αk) ,

v̄(k) = L R̄k cos (αk) ,

where θ is a small constant, so that each R̄k is a close approximation of R. The minimization

is done by alternating update steps. First each R̄k for 1 6 k 6 N , and second R is updated.

Therefore, first one has to solve the following for 1 6 k 6 N and for fixed R:

min
R̄k

∫
Ω

λ| Ix(k) ū(k) + Iy(k) v̄(k) + It(k)︸ ︷︷ ︸
=:ρ(R̄k)

|+ 1

2θ

(
R− R̄k

)2
dΩ. (4.11)

In a second step, one has to minimize

min
R

∫
Ω

1

2θ

∑
k

(
R− R̄k

)2
+ ‖∇R‖ dΩ (4.12)

for fixed R̄k, 1 6 k 6 N . The minimization problem in Equation 4.11 can be solved by

a thresholding step, since it is a point-wise problem. Hence, the solution is given by the
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following thresholding scheme:

R̄k = R+


λθUk if ρ(R) < −λθU2

k

−λθUk if ρ(R) > λθU2
k

−ρ(R)/Uk if |ρ(R)| 6 λθU2
k ,

(4.13)

where

Uk = Ix(k)Lsin(αk) + Iy(k)Lcos(αk). (4.14)

This can be easily proved by analyzing the three different cases ρ(R̄k) < 0, ρ(R̄k) > 0, and

ρ(R̄k) = 0.

The second problem (4.12) is very similar to the variation based image denoising model of

Rudin et al. [27], and can therefore be solved in a similar way. Thus, we first introduce the

dual variable p (cf Fig. 4.2), so that

‖∇R‖ = max
‖p‖61

{∇R · p} . (4.15)

∇R

||p|
| �

1

Figure 4.2: Illustration of the dual variable p used in Equation 4.15.

By substituting this into Equation 4.12 we obtain

min
R

max
‖p‖61

∫
Ω

1

2θ

∑
k

(
R− R̄k

)2
+∇R · p dΩ. (4.16)

Next, we use the divergence theorem

−
∫
Ω

u(∇ · p)dΩ =

∫
Ω

p · (∇u)dΩ (4.17)

to obtain a point-wise minimization problem in R:
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min
R

max
‖p‖61

∫
Ω

1

2θ

∑
k

(
R− R̄k

)2 −R(∇ · p) dΩ. (4.18)

This can be solved, for fixed p, by taking the derivative with respect to R and setting it to

zero.

∂

∂R


∫
Ω

1

2θ

∑
k

(
R− R̄k

)2 −R(∇ · p) dΩ

 =
1

θ

∑
k

(
R− R̄k

)
− div(p) = 0, (4.19)

which leads to the following result:

R =
1

N

∑
k

R̄k +
θ

N
div(p). (4.20)

In a second step, one has to update p for fixed R. This is done by a gradient ascent update

scheme, where

∂

∂p


∫
Ω

1

2θ

∑
k

(
R− R̄k

)2
+∇R · p dΩ

 = ∇R. (4.21)

Finally, one can solve (4.12) using the following iteration, where n indicates the iteration step:

Rn+1 =
1

N

∑
k

R̄nk +
θ

N
div(pn)

pn+1 =
pn + τ∇Rn+1

max{1, ‖pn + τ∇Rn+1‖} ,

where τ is the step length.

4.3 Coarse-to-Fine Approach

The minimization problems (4.9) and (4.1) are only valid for small displacements between

consecutive aperture positions. Thus, the minimization is embedded into a coarse-to-fine

warping approach. This avoids convergence to unfavorable local minima. Therefore an image-

pyramide with a downsampling factor of two is used (see Figure 4.4). In each level of the

image-pyramide the images are warped according to a given radius R0. Hence, only the

remaining radius R − R0 needs to be calculated. This warping steps are valid by simply

considering Figure 4.3. It illustrates the two possible situations, where the current blur-

circle is shrunk (cf Fig. 4.3(a)) or extended (cf Fig. 4.3(c)). In both figures the blue circle

with radius R0 depicts the current blur-circle and the black circle with radius Rt defines a

better approximation of the true blur-circle. By warping the current blur-circle to the anchor
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R0

Rt Rw

(a) Shrinking situation.

Rw

(b) Shrinking situation after warping.

R0

Rt

Rw

(c) Extending situation.

Rw

(d) Extending situation after warping.

Figure 4.3: Illustration of the coarse-to-fine warping strategy. Figures (a) and (c) show the
situations of shrinking and extending the current blur-circle, respectively. In both situations
the blue circle with radius R0 depicts the current blur-circle and the black circle with radius Rt
defines a better approximation of the true blur-circle. Figures (b) and (d) show the situation
after warping the current blur-circle to the anchor position (9 o’clock position). Here, the
new calculated radius Rw has a negative orientation in Figure (b) and a positive orientation
in Figure (d). Therefore, in both situations Rt can be calculated by the sum of R0 +Rw.
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level i

level i-1

level i+1

(a) Architecture. (b) Example.

Figure 4.4: Illustration of an image pyramid [2]. Figure (a) shows the architecture of an
image pyramid with a downsampling factor of two. Figure (b) shows an example for an
image pyramid with seven levels.
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Figure 4.5: Flowchart of the proposed TV-L1 global AWS algorithm.
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position (9 o’clock position) one obtains the situations shown in Figure 4.3(b) and 4.3(d),

respectively. Here, the new calculated radius Rw has a negative orientation in Figure 4.3(b)

and a positive orientation in Figure 4.3(d). Thus, in both situations Rt can be calculated by

the sum of R0 +Rw.

As a result we can sum up the whole TV-L1 global AWS algorithm by the flowchart shown in

Figure 4.5. We start with some pre-processing, e.g. to reduce image noise. Next, we create

the image pyramids, which are then processed from top to bottom. At each level the images

are warped according to the coarse solution. The TV-L1 global AWS problem is then solved

in an inner iteration. After processing all levels one obtains the diameter result for each pixel.

In a last step, these diameter results are used to calculate the actual depth values.

4.4 Acceleration by Graphics Processing Units

Due to the fact, that the methods presented in Section 4.1 and 4.2 work on regular grids, they

can be effectively accelerated by Graphics Processing Units (GPUs). A GPU is typically only

used for computer graphics computation. The approach of using a GPU to perform general

purpose computing is referred to as GPGPU, GPGP or GP2 (General Purpose Computing

on Graphics Processing Units).

Host
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l

Thread

Grid
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Host

Se
ria

l C
od

e

Device

Block N

Figure 4.6: Illustration of the heterogeneous programming in CUDA. CUDA enables one to
use parallel kernels within the serial code. These parallel kernels execute the code in many
device threads across multiple processing elements on the GPU, which can provide large
speedups.
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By using e.g. CUDA1 (Compute Unified Device Architecture) one gets access to the comput-

ing engine in NVIDIA GPUs. CUDA is a scalable parallel programming model and a software

environment for parallel computing developed by NVIDIA. It enables one to create serial pro-

grams with parallel kernels (cf Fig. 4.6). The serial code is executed in a host thread on the

CPU. The parallel kernel code is executed in many device threads across multiple processing

elements on the GPU.

By using the parallel processing capabilities of GPUs one can achieve a large performance

benefit for applications, suitable for parallel processing. We are not providing an exact per-

formance analysis for a CUDA implementation of our TV-L1 global AWS approach. In our

implementation only the inner iteration (cf Fig. 4.5) is implemented using CUDA on the

GPU. Compared to a CPU implementation the CUDA implementation of this part of the

algorithm brought a speedup S of about 50 for images of size 512×512 pixels, where speedup

S is given by

S =
tCPU
tGPU

. (4.22)

tCPU is the execution time of the sequential implementation on the CPU, and tGPU is the

execution time of the parallel implementation on the GPU.

4.5 Conclusion

In this chapter we presented a global approach to calculate the image-rotation diameter

generated by a rotating AWS mask. First, in Section 4.1 we described a solution, which makes

use of a quadratic estimator. We showed that this version is very easy to minimize using the

calculus of variations. However, due to the quadratic estimator, this version is expected to

be noise sensitive. Therefore, we provided a robust version using a TV-L1 energy functional

in Section 4.2. We showed, how the minimization is done by using a numerical scheme.

Furthermore, we also solved the problem of warping the derivative images according to the

radius R by using a coarse-to-fine strategy described in Section 4.3. Finally, we mentioned,

that the TV-L1 global AWS approach has potential for parallel processing. Therefore it is

recommended to use GPGPU approaches to speedup the computation.

1http://developer.nvidia.com/CUDA
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(a) Plane-Scene. (b) Sphere-Scene. (c) Suzanne-Scene.

Figure 5.1: The images show the anchor images of three different scenes, used within con-
ducted experiments.

In this chapter we evaluate the different Active Wavefront Sampling (AWS) approaches. First

we start with the methods presented by Frigerio (cf Section 3.6.7 and 3.6.8) and then we

evaluate the TV-L1 global AWS approach (cf Section 4.2). Moreover, it should be mentioned,

that we refer methods based on the Frigerio approach from Section 3.6.7 as local AWS.

The goal of this chapter is the comparison of the accuracy of the 3D reconstruction results

acquired by the different AWS approaches. Therefore we use rendered image sequences of

three different scenes, which we refer to as Plane-, Sphere-, and Suzanne-Scene. Figure 5.1

67
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Render Image Sequences Calculate Displacements

zBuffer Calculate Rotation Diameter

Calculate Ground Truth Diameter Calculate Error

Figure 5.2: Illustration of the experimental procedure used to analyze the accuracy of the
local AWS approach.

shows an example image for each scene. Each image sequence consists of 32 images of size

512×512 pixel, acquired by moving the camera position over evenly spaced positions on a

circle. The different camera positions simulate the different aperture positions of an AWS

system. Such a simulation of an AWS system is valid because of the comparison to stereo

imaging described in Section 3.6.5. Moreover, all scenes use noise textures to improve the

results and to allow the comparison between methods based on local and global optical flow

techniques.

The Plane-Scene consists of a simple plane, that is placed parallel to the image plane. Thus

the according ground truth rotation diameters are uniform over the whole image. In the

Sphere-Scene the rotation diameters are no longer uniform. Here the rotation diameters are
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high at the center of the image and decrease towards the margin of the image. Finally,

the Suzanne-Scene presents not only non-uniform rotation diameter but also some occlusion

effects.

The ground truth values for the depth are obtained by Blender’s zBuffer values. These values

are used to calculate ground truth diameters, which are then compared to the calculated

results from the different AWS methods (cf Fig. 5.2).

5.1 Local AWS

(a) Plane-Scene. (b) Sphere-Scene. (c) Suzanne-Scene.

Figure 5.3: Depth reconstruction examples for (a) Plane-, (b) Sphere-, and (c) Suzanne-Scene,
calculated with Frigerio’s local AWS approach using a global optical flow presented by Zach
et al. [32].

In order to obtain reference values for the accuracy, we first implement the local AWS

approach, described in Section 3.6.7. The experimental procedure is illustrated in Figure

5.2. First, we render the image sequences for the Plane-, Sphere-, and Suzanne-Scene, us-

ing Blender1. Next, we calculate the displacements between the anchor image (first image)

and the other images for each image sequence. The displacements are calculated using four

different approaches. First, we use a blockmatching approach (NCC) to calculate the pixel

displacements. Second, we use a local optical flow approach, presented by Lucas and Kanade

[21]. Finally, we use two global optical flow approaches presented by Zach et al. [32] and Ce

Liu [20]. The approach presented by Zach et al. is based on total variation (TV) and the Ce

Liu approach is referred to as iterative re-weighted least squares (IRLS), because it iterates

between computing the weight for non-linear terms and solving a least squares problem. After

the displacement calculation, the diameter for each pixel in the anchor image is calculated

using the Frigerio circle fitting method. We finally compare the calculated diameters with

ground truth diameters, which are obtained by using Blender’s zBuffer values. The mean

relative diameter errors for the three different scenes are used for quantitative evaluation.

Due to the fact that we are mainly using differential based optical flow techniques to calculate

the displacements between the images, we first assess the sensitivity to noise. Therefore, we

1Blender is a 3D graphics application released as free software under the GNU General Public License.
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(a) Plane-Scene with 0% noise.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Noise [%]

M
ea

n 
D

ia
m

et
er

 E
rr

or
 [%

]

Plane

 

 
Zach et al.
Ce Liu
NCC
Lucas & Kanade

(b) Plane-Scene with 32 aperture positions.
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(c) Sphere-Scene with 0% noise.
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(d) Sphere-Scene with 32 aperture positions.
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(e) Suzanne-Scene with 0% noise.
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(f) Suzanne-Scene with 32 aperture positions.

Figure 5.4: Comparison of four different optical flow techniques (Zach et al. [32], Ce Liu [20],
NCC, Lucas and Kanade [21]) used within Frigerio’s local AWS approach.
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(a) Plane-Scene with 0% noise.
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(b) Plane-Scene with 5% noise.
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(c) Sphere-Scene with 0% noise.
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(d) Sphere-Scene with 5% noise.
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(e) Suzanne-Scene with 0% noise.
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(f) Suzanne-Scene with 5% noise.

Figure 5.5: Comparison of two robust optical flow techniques (Zach et al. [32], Ce Liu [20])
used within the local AWS approach.
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contaminate the rendered image sequences with additive Gaussian noise with a standard

deviation of 0% to 5% of the image dynamic range. We further calculate the mean relative

diameter error for the different noise levels and for different numbers of evenly spaced aperture

positions. The results for all four optical flow techniques are shown in Figure 5.4.

As expected, the accuracy increases with increasing number of aperture positions. Accuracy

decreases when noise increases. Because NCC and the Lucas-Kanade version provide poor

accuracy results in the presence of image noise (see Figure 5.4), we concentrate on the two

remaining techniques presented by Zach et al. and Ce Liu. In Figure 5.5 the accuracy results

for the robust methods are shown for noise levels of 0% and 5%. Figure 5.5 shows increasing

accuracy for an increasing number of aperture positions. Although this effect can be observed

in the accuracy results of the original image sequences, it is more dominant in the presence

of noise. This is shown in the right column of Figure 5.5. In the Suzanne-Scene this effect is

not that obvious, because of partial occlusion, that is present in this scene.

5.2 Global AWS

Figure 5.6: Depth reconstruction examples for the Suzanne-Scene. The left image shows the
result for the Frigerio AWS approach (Section 3.6.8), where a 5 × 5 interrogation area was
used. The right image shows the result for the TV-L1 global AWS approach (Section 4.2),
with λ = 25. The blue-closeup view depicts the presence of outliers in the Frigerio AWS
approach, the green-closeup view shows a more homogenous area, and the yellow-closeup
view shows a edge-region.

In this section we review the TV-L1 global AWS approach presented in Section 4.2. We com-

pare it, amongst others, to Frigerio’s multi image AWS approach with long spatio-temporal

filter (cf Section 3.6.8). As in the previous section, we use the Plane, Sphere, and Suzanne-

Scene to test the approach.

The TV-L1 global AWS approach as well as Frigerio’s AWS algorithm are incorporated into

a coarse-to-fine warping approach, described in Section 4.3. Thus it is sufficient to use two

point derivative and interpolating filter. It is worth mentioning, that we slightly modifiy

Frigerio’s AWS approach, which means, that we use the same approximation
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Figure 5.7: Depth reconstruction examples for the Sphere-Scene. The left image shows the
result for the Frigerio AWS approach with long spatio-temporal filter (cf Section 3.6.8). The
right image shows the result for the TV-L1 global AWS approach (Section 4.2). The closeup
views show, noise effects presented in the Frigerio AWS algorithm and the staircase effect in
the TV-L1 AWS approach.

L =

√
2− 2cos

(
2π

N

)
as in the TV-L1 global AWS approach. Moreover, we also use a Gaussian weighting mask

in order to weight the constraints in the center of the current neighborhood more highly,

which reduces the visibility of quadratic patterns in the calculated depth map. However, by

comparing the two approaches based on the Suzanne-Scene (cf Fig. 5.6), it can be seen, that

Frigerio’s algorithm produces outliers in the forehead area, whereas the global AWS algorithm

produces a smoothed surface. Furthermore, by comparing the edge regions, one recognizes

that Frigerio’s algorithm produces a undesired spreading effect, whereas the global AWS

algorithm seems to preserve the edges. Here the spread of the edges depends on the size of

the local interrogation area (cf Fig. 5.8). Further, Frigerio’s AWS algorithm seems to produce

a much noisier surface than the global AWS algorithm. This can be seen by considering Figure

5.7. The noise effects can be reduced by increasing the local interrogation area (cf Fig. 5.8),

but this will simultaneously increase the edge-spreading-effect. On the other hand, the TV-L1

global AWS algorithm produces a staircase-effect (cf Fig. 5.7), because of the L1 norm used

within the data-term.

After this qualitative analysis we will now present a more quantitative analysis. Therefore, we

first analyze the effect of the interrogation area in the Frigerio approach. Figure 5.10 shows

the mean relative diameter errors for the three different scenes and for different numbers of

aperture positions as a function of the interrogation area-size. It can be seen, that increasing

the interrogation area increases the accuracy in the Plane and Sphere-Scene, but not in the

Suzanne-Scene. This is due to the above mentioned edge-spreading-effect. Moreover, Figure
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(a) Suzanne-Scene,
3 × 3 interrogation
area.

(b) Suzanne-Scene,
5 × 5 interrogation
area.

(c) Suzanne-Scene,
9 × 9 interrogation
area.

(d) Suzanne-Scene,
15 × 15 interrogation
area.

(e) Sphere-Scene,
3 × 3 interrogation
area.

(f) Sphere-Scene,
5 × 5 interrogation
area.

(g) Sphere-Scene,
9 × 9 interrogation
area.

(h) Sphere-Scene,
15 × 15 interrogation
area.

Figure 5.8: Depth reconstruction results for the Suzanne-Scene (first row) and Sphere-Scene
(second row). The depth results are calculated using the Frigerio AWS approach (cf Sec-
tion 3.6.8) with different interrogation area settings. It can be seen, that by increasing the
interrogation area noise effects are reduced, but simultaneously the edge-spreading-effect is
increased.

5.10 shows that increasing the number of aperture positions has a positive effect on the

accuracy.

Next, we analyze the effect of the data-term weighting within the TV-L1 global AWS ap-

proach. Figure 5.9 shows depth map results acquired by different λ settings. By increasing λ

the data-term obviously gets more influence, therefore, finer structures become visible.

Figure 5.11 shows the mean relative diameter errors for the three different scenes and

different numbers of aperture positions as a function of λ. As can be seen, increasing the

number of aperture positions increases the accuracy. Moreover, by considering Figure

5.12 one recognizes that each aperture setting has a different optimal λ setting. This can

be explained by the simple fact, that by increasing the number of aperture positions one

simultaneously increases the terms of the sum within the data-term, which changes the

weighting between data-term and smoothness-term.

The mean relative diameter errors for the three scenes are presented in Table 5.1. Here we
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(a) Suzanne-Scene,
λ = 5.

(b) Suzanne-Scene,
λ = 10.

(c) Suzanne-Scene,
λ = 20.

(d) Suzanne-Scene,
λ = 30.

(e) Sphere-Scene,
λ = 5.

(f) Sphere-Scene,
λ = 10.

(g) Sphere-Scene,
λ = 20.

(h) Sphere-Scene,
λ = 30.

Figure 5.9: Depth reconstruction results for the Suzanne-Scene (first row) and Sphere-Scene
(second row). The depth results are calculated using the TV-L1 global AWS approach with
different λ settings. It can be seen, that by increasing the influence of the data-term, finer
structures become visible.

Plane-Scene Sphere-Scene Suzanne-Scene

Local AWS (NCC) 1.3550 2.1386 2.2935
Local AWS (Lucas & Kanade) 0.7881 0.6956 1.4902
Local AWS (Zach et al.) 0.1144 0.1535 1.2708
Local AWS (Ce Liu) 0.0279 0.1154 0.7943
Frigerio AWS (with long filter) 0.0707 0.1216 1.0193
TV-L1Global AWS 0.0205 0.1339 0.7886

Table 5.1: Numerical results for the mean relative diameter errors for local and global AWS
approaches.

compare the best results from Frigerio’s AWS approach and the TV-L1 global AWS approach

to the local AWS approaches. It can be seen, that the TV-L1 global AWS approach reaches

slightly better results than Frigerio’s AWS approach. Moreover, compared to the local AWS

approaches, the TV-L1 global AWS approach produces only marginally different errors.

By considering additive image noise, we observe, that the TV-L1 global AWS algorithm

keeps the error within a reasonable limit, as long as the weighting between data-term and
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(a) Plane-Scene.
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(b) Sphere-Scene.
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(c) Suzanne-Scene.

Figure 5.10: Accuracy analysis of the Frigerio multi image AWS approach with long spatio-
temporal filter.
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(a) Plane-Scene.
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(b) Sphere-Scene.
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(c) Suzanne-Scene.

Figure 5.11: Accuracy analysis of the TV-L1 global AWS approach.



78 Chapter 5. Experiments

5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

lambda

M
ea

n 
D

ia
m

et
er

 E
rr

or
 [%

]

 

 
4 images
8 images
16 images

(a) Plane-Scene, 2% Noise.
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(b) Plane-Scene, 5% Noise.
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(c) Sphere-Scene, 2% Noise.
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(d) Sphere-Scene, 5% Noise.
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(e) Suzanne-Scene, 2% Noise.
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(f) Suzanne-Scene, 5% Noise.

Figure 5.12: Accuracy analysis of the TV-L1 global AWS approach.
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(a) 0% Noise. (b) 2% Noise. (c) 3% Noise. (d) 5% Noise.

Figure 5.13: Depth-map examples for the Suzanne-Scene for different noise levels. Here the 32
images of the Suzanne-Scene are contaminated with additive Gaussian noise with a standard
deviation of 0% to 5% of the image dynamic range, before the according depth-maps are
calculated using the TV-L1 global AWS approach.

Plane-Scene Sphere-Scene Suzanne-Scene

Local AWS (Zach et al.) 0.3860 0.4288 2.6026
Local AWS (Ce Liu) 0.3651 0.3864 1.0661
TV-L1Global AWS 0.1166 0.4413 0.9404

Table 5.2: Numerical results for the mean relative diameter errors for local and global AWS
approaches with 2% image noise.

Plane-Scene Sphere-Scene Suzanne-Scene

Local AWS (Zach et al.) 0.5361 0.6310 3.0857
Local AWS (Ce Liu) 0.5767 0.6069 1.2999
TV-L1Global AWS 0.2160 0.6363 1.1564

Table 5.3: Numerical results for the mean relative diameter errors for local and global AWS
approaches with 3% image noise.

Plane-Scene Sphere-Scene Suzanne-Scene

Local AWS (Zach et al.) 0.7594 0.8866 3.6669
Local AWS (Ce Liu) 1.1324 1.0174 1.7624
TV-L1Global AWS 0.3353 0.8300 1.4680

Table 5.4: Numerical results for the mean relative diameter errors for local and global AWS
approaches with 5% image noise.

smoothness-term has been adjusted for the current aperture setting.

Figure 5.12 shows the mean diameter error for two different noise levels as well as for

different numbers of aperture positions as a function of λ. The according numerical results

for the mean relative diameter errors can be found in Table 5.2, 5.3, and 5.4 for images

with additive Gaussian noise with a sigma of 2%, 3%, and 5% of the image dynamic range,
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respectively. One recognizes, that the TV-L1 global AWS approach reaches the best results

for the Plane-Scene and Suzanne-Scene. The results from the Sphere-Scene are nearly

identical for all three approaches.

The main advantage of the TV-L1 global AWS approach is, that the smoothness-term is

directly applied to the depth-map. Therefore, compared to local AWS approaches, the global

version removes negative effects resulted from the least-squares circle fitting step. Moreover,

the global AWS approach also allows the use of long temporal filters. Unfortunately, we could

not observe a noticeable improvement due to long filter.

5.3 3D Reconstruction Results

In this section we present reconstruction results calculated using local AWS and TV-L1 global

AWS. Figures 5.14 and 5.15 show the main views and the 3D reconstruction of the Suzanne-

Scene and the Sphere-Scene, respectively. The 3D reconstruction is calculated with Frigerios

local AWS approach using a robust optical flow presented by Zach et al. [32]. Figures 5.16

and 5.17 show the same for the TV-L1 global AWS approach.



5.3. 3D Reconstruction Results 81

(a) Groundplan. (b) Front view.

(c) Side view. (d) 3D view.

Figure 5.14: 3D reconstruction and main views of the Suzanne-Scene calculated using Frige-
rio’s Multi Image AWS algorithm with a global optical flow presented by Zach et al. [32]. (a)
shows the groundplan, (b) the front view, (c) the side view, and (d) the 3D view.
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(a) Groundplan. (b) Front view.

(c) Side view. (d) 3D view.

Figure 5.15: 3D reconstruction and main views of the Sphere-Scene calculated using Frigerio’s
Multi Image AWS algorithm with a global optical flow presented by Zach et al. [32]. (a) shows
the groundplan, (b) the front view, (c) the side view, and (d) the 3D view.
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(a) Groundplan. (b) Front view.

(c) Side view. (d) 3D view.

Figure 5.16: 3D reconstruction and main views of the Suzanne-Scene calculated using the
TV-L1 global AWS algorithm. (a) shows the groundplan, (b) the front view, (c) the side
view, and (d) the 3D view.
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(a) Groundplan. (b) Front view.

(c) Side view. (d) 3D view.

Figure 5.17: 3D reconstruction and main views of the Sphere-Scene calculated using the TV-
L1 global AWS algorithm. (a) shows the groundplan, (b) the front view, (c) the side view,
and (d) the 3D view.
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Conclusions

In this thesis we have evaluated a 3D surface reconstruction technique based on the Active

Wavefront Sampling (AWS) approach. This final chapter gives a summary of the work and

an outlook for potential future work.

In Chapter 1 we first introduced the idea of Active Wavefront Sampling (AWS) presented

by Frigerio [10]. Second, advantages of AWS were outlined. It was shown, that the ability

of the AWS technique to capture 3D structures using a single optical path is an attractive

property. Therefore, the AWS approach has clear advantages in applications, where two

separated optical channels cannot be used, like e.g. minimally invasive surgery using an

endoscope, and 3D microscopy. Moreover, the AWS approach can be used to create a

low cost 3D scanner, and has also the ability to calculate high accurate and robust 3D models.

Related work was presented in Chapter 2. First different 3D reconstruction approaches were

described. Second, the BIRIS sensor, as an example for Static Wavefront Sampling (SWS),

and the main idea of Active Wavefront Sampling (AWS) was presented.

Necessary background information was presented in Chapter 3. In this chapter topics like

calculus of variations, visual motion, and optical flow were reviewed. Furthermore, this

chapter also included a section regarding the theory of defocus, where the connection

between a target feature’s blur-circle-diameter and the target feature’s depth was explained.

Finally, this chapter also contained the general description of wavefront sampling, as well as

a more detailed description of the multi image AWS algorithms presented by Frigerio. These

algorithms were developed to use more than two sampling positions on the aperture plane.

The first algorithm defined an anchor image and performed pair-wise matching between it

and the remaining images, which were acquired by rotating an off-axis aperture around the

optical axis. The matching results were then used to calculate the image-rotation-diameter

in a least-squares sense.

The second algorithm made use of long multi-point interpolating and derivative filter.

However, the main drawback of this algorithm was the requirement of an method, that

moves the spatio-temporal interrogation cuboid according to the calculated motion.

85
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In Chapter 4 we presented the global AWS approach, which assumed that the

blur-circle-radius varies smoothly almost everywhere in the image. For a better

understanding, we first presented a version, which uses the L2 norm to weight the

data-term. The according minimization problem could be solved using the calculus

of variations. However, due to the quadratic estimator, the L2 global AWS approach

is highly sensitive to image noise. One possible solution to solve this problem was

the use of a robust estimator for the data-term, which led to the TV-L1 global AWS approach.

Experimental results were presented in Chapter 5. Here we first evaluated the Frigerio local

AWS approach by using different optical flow techniques to calculate the displacements

between the images acquired form the different aperture positions. It was shown that

the accuracy of the algorithm increases as the number of aperture positions increases.

Furthermore, the sensitivity to Gaussian noise was evaluated. As expected, the accuracy

decreases when noise increases. The image noise especially affected the methods, which

make use of quadratic estimators. Moreover, we observed that the methods based on global

optical flow techniques provided better accuracy results than those based on local optical

flow techniques.

Next, we compared the global AWS approach to the Frigerio multi image AWS approach

with long multi-point filter. It was shown, that the global AWS method creates a smoother

surface and it also received better numerical results compared to Frigerio’s multi image

AWS approach with long filter. We showed that the TV-L1 global AWS algorithm is robust

in the presence of Gaussian image noise, and the algorithm received slightly better accuracy

results than the robust local AWS algorithms. However, the main advantage of the TV-L1

AWS approach is the fact, that the smoothness-term is directly applied to the depth-map.

Therefore, compared to local AWS approaches, the global version removes negative effects

resulted from the least-squares circle fitting step. Furthermore, the global AWS approach

allows the use of long temporal filter.

Potential future work includes testing the approach on real-world scenes, evaluating the effect

of long multi-point derivative and interpolating filter, and using other robust estimators within

the data-term of the global AWS minimization problem.



Appendix A

Definitions

A.1 Abbreviations

1D one dimension(al)

2D two dimension(al)

3D three dimension(al)

R1 Euclidean one-dimensional vector space

R2 Euclidean two-dimensional vector space

R3 Euclidean three-dimensional vector space

AWS Active Wavefront Sampling

CAD Computer Aided Design

CCD Charge-Coupled Device

NCC Normalized Cross-Correlation

PSF Point Spread Function

SAD Sum of Absolute Differences

SSD Sum of Squared Differences

SWS Static Wavefront Sampling

A.2 Used Symbols

∇ Nabla operator

∆ Laplace operator

∂n derivative of order n

‖.‖p Lp norm

∗ convolution operator

x∗ complex conjugation of x
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