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Abstract

Precrash systems are part of integrated safety systems, which are believed to reduce
fatalities due to road accidents further. These systems include belt pre-tensioners, air bag
systems and also special type of automatically reconfigurable seats. All these systems
are intended to mitigate vehicle crash. If they have to be effective in doing so, they
must be activated at the right time and when the accident is no more avoidable. For
this a certain predictor is needed, which can look in the future and estimate the states
of both the host and target vehicles. This can be accomplished by using Kalman filter
with the accompanied use of different tracking models like constant velocity, constant
acceleration, coordinated turn, common state space and IMM models. In addition to
the state estimation, estimation of the collision probability at a certain specific time
is also needed. Different models are explored in this work and some enhancements are
applied to some of them, when it seemed that it is appropriate to do so. The first model
is based on stochastic drivers’ input and it does this by randomly taking different input
values of both vehicles and generating trajectories with the use of a simplified kinematic
model of the vehicles and then checking collision for each generated pair of trajectories
and implementing polygonal intersection check-ups. The second model uses the size of
the overlap of the projections of the two vehicles rectangular representations along an
imaginary line perpendicular to the relative velocity and the time to collision to assess
likeness of collision . The third model which is based on Monte Carlo simulation needs
the mean and covariance of the states of the two vehicles as input. It generates different
possible state values, with the assumption of Gaussian distribution. Next, it simulates
all the generated states with a simplified single track vehicle model. Finally, it calculates
the collision probability based on theses simulated states and polygonal intersection
check-ups. The fourth one considers radar tracking with the use of either the Extended
Kalman Filter or the Unscented Kalman Filter and the constan velocity motion model.
This model deals with propagation of collision space and time to collision by generating
different states from the mean and the covariance like the third model and using some
non-linear transformation to get the propagated collision space (hit point) and TTC for
all the generated states. The output of this model is the predicted mean hit point and
TTC.
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1 Introduction

1.1 Motivation

1.2 Vehicle Safety

Automobile safety is the science of vehicle design, construction, and equipment and
road way systems to minimize the occurrence and consequences of automobile accidents.
Vehicle safety is divided into two main categories, known as Active Safety and Passive
Safety. Active safety refers to technology assisting in the prevention of a crash, whereas
passive safety refers to components of the vehicle that help to protect occupants during
a crash. It involves crashworthiness oriented design, development and integration of
the restraint systems, engineering of crashworthiness based vehicle structure, seat and
pedestrian and vulnerable road user protection systems. Post-crash Safety involves
activities like immediate post-crash treatment, accident reconstruction, severity evaluation
and emergency notification.

At the moment the passive safety technologies have reached a relatively matured state
with less room remaining for innovation and further significant improvements are unlikely
to be made in the near future [Che08]. Active Safety Systems and Integrated Safety
Systems, which are a combination of active and passive systems and other automotive
domains have a very high potential of further innovation and development in the coming
years. Fig 1.1 shows the additional potential that can be obtained by using Integrated
Safety compared to the potential of the individual approaches of Active and Passive
Safety systems. The blue, red and green lines show the potential growth of Passive Safety,
Integrated Safety and Active Safety respectively over the years past and to come.

The European Commission’s transport policy has set the ambitious target of reducing the
fatalities due to vehicle accidents by 50% in 2010. The traditional approach of isolated
development of passive and active safety systems has not been enough to reach this target.
Integrated Safety Systems have a very promising potential in reducing the fatality due to
vehicle accidents [Che08]. In Fig 1.2, we can see the expected impact of Integrated Safety
Systems in the future. Further development and application of Pre-crash-systems, Drive
assistant systems and Integrated Safety Systems play a very decisive role in bringing
down the road fatalities.
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1 Introduction

Figure 1.1: Development of active, passive and integrated safety electronic systems [GL02]

Figure 1.2: Targets set by EU of 50% reduction in the road fatalities before 2010 [EUC01]
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1 Introduction

Figure 1.3: Integrated Vehicle Safety Project of FTG, TU Graz [Eic10]

1.3 Target of this Thesis

The target of this thesis is to investigate the stae-of-the-art in vehicle tracking and
collision estimation and to implement some of them by applying some enhancements or
modifications. The thesis is part of an on-going strategic project being carried out at the
Automotive Engineering Institute of Graz University of Technology. In Fig 1.3 we see
the different modules of the mentioned project and this thesis specifically deals with the
pre-collision model .

1.4 Chapter Overview

Here in this section a summarized chapter overview is given in order to let the reader
have the complete overview this Master’s Thesis

Chapter 1 is a brief introduction to Vehicle Safety, Pre-Crash Systems and Time to
Collision. The main goal of this chapter is to start with the broader fields of Vehicle
Safety and to come through different branches, to reach to the point that we specifically
discuss about the concept of Time-to-Collision and its relevance.

Chapter 2 deals with different kinds of state estimators needed for vehicle tracking.

Chapter 3 introduces different models used for tracking with the use of state estimators.
Here some of the models, implemented for vehicle tracking are discussed and their
mathematical derivations is also presented in detail.
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1 Introduction

Chapter 4 deals with different models used for collision prediction. Some modifications
are suggested for the collision prediction model, which is based on drivers stochastic
input and for the one, which is based on overlap, additional mathematical derivations
are included, to realize its implementation in matlab programming framework.
Chapter 5 presents the simulations and results of the applications of some of the selected
models.

Chapter 6 is dedicated for Discussion and Conclusion.

1.4.1 Preventive Safety Applications

Preventive safety applications are used to mitigate an accident through the use of in-
vehicle systems which assess the nature and significance of the danger with sensors, while
taking the driver’s state into consideration. Depending on the weight and timing of the
accident threat, the active and preventive safety systems will [Köh04]

• Inform the driver as early as possible with advanced driver information systems
• Warn the driver, if the driver is not reacting to the information of the threat, and
• Actively assist or ultimately intervene in order to avoid an accident or mitigate its

consequences.
Preventive safety applications support the drivers with various functions [Köh04] :

• Keep a safe speed, safe distance
• Drive by keeping the vehicle within the lane
• Avoid overtaking in dangerous situations
• Ensure safe crossing of road intersections
• Protect pedestrians and vulnerable road users
• Mitigate an accident, if it still occurs.
• Collision avoidance and intervention
• Braking and vehicle control through Advanced Driver Assistance Systems

• Providing brake assistance
• Preventing Roll-over or providing safety protection, if it happens

Preventive safety uses information, communications and positioning technologies to
improve road safety. Some of these technologies are fully or partial autonomous with
systems operating on-board and others operate on cooperative basis with a vehicle-to-
vehicle or vehicle-to-infrastructure communication. This is believed to reduce the number
of accidents and their severity.
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1 Introduction

1.5 Pre-Crash Systems

In recent years, as there is an increased demand for vehicle safety features and better
crash-rating systems from legislation and customers, the vehicle manufacturers have
quickly begun to incorporate more advanced technology into their designs. Among these
advanced technologies, which are believed to reduce the number of fatalities and injuries
on the road further, the introduction of a pre-collision system (PCS) can be mentioned.
PCS constantly evaluates a ego vehicles’s position and motion as well as any objects on
the road, in order to prevent or mitigate damage that might arise due to an accident.
On one hand some systems warn the driver with acoustic signal that a collision might be
imminent –and this is with the thought of alerting the driver and thereby making him
ready to take evasive action. On the other hand other systems take partial or full control
of certain parts of the car. Some pre-crash brake systems apply additional pressure to
the car’s brake in addition to that of the driver’s to assist the driver in reducing the
speed of the car as fast as possible and mitigate the damage that might result from
the accident. In some other systems, the PCS is connected to a pre-crash seat belt
system and when the PCS predicts that a crash is imminent a higher tension is applied
to the passenger’s seat belts by the use of seatbelt pretensioners. These systems are
called brak Brake Assist (BA). In some vehicles this is also accompanied by automatic
sunroof closing and raising of reclined seats. Also systems capable of lane deviation
and frontal collision avoidance are implemented in some cars. The PCS do make use of
radar, video, lidar, infrared imagery or a fused combination of any of them, to asses the
situation of the environment. Such systems should be reliable, robust, fine-tuned and
highly accurate, since any malfunction could by itself be disastrous. As can be imagined,
PCS passes through thorow rigorous testing to ensure failure-free functionality using best
practice design and testing methods. Failure-safe strategies in case of system malfunction
minimise the consequences.

Fig 1.5 shows an example of a PCS. The Milliwave radar makes assesment on the road
environment and sends signals to the Pre-crash, seat belt and radar cruise control units
to make decision, whether to activate the Brake actuators and the Motor Pretensioners.

1.5.1 Parts of a Pre-Crash System

A Pre-Crash System consists of the following main parts [MTO04].

Sensor System The Sensor system percepts the traffic environment and provides dy-
namic object data of the environment.

5



1 Introduction

Figure 1.4: Mazda pre-crash safety system [Mazda]

Assessment and Deployment Algorithm The algorithm processes the data obtained
from the sensor system, makes analysis of the traffic situation to decide, whether a
crash is avoidable or not and if the accident is not avoidable it sends a trigger signal to
actuators for activating the safety system.

Actuators Actuators serve for performing different kinds of safety starategies. As an
example a belt pre-tenstioner can be taken. It is used to limit slack from the seat-belt
when a crash is detected and this slack reduction reduces the belt load on the occupant
during crash. Belt Slack represents a displacement, which is cost for “ride-down” of the
occupant. ride-down is the displacement to deccelerate the occupant from collisison speed
to zero motion. Belt slack results in higher belt forces and occupant loadings. To obtain
an optimized protection of the occupant, the firing of the pre-tensioners and airbags
should be well synchronized.

The following flow diagram, Fig 1.5, shows how Pre-Crash systems are interconnected
to each other and the associated signal flow direction. The Radar Sensors assess the
environment and collect Object-data, then in the next module the Object-data gets
processed, then the processed Obeject-data is used as input to the algorithm, which
decides, whether the crash is avoidable or not. If the crash is avoidable, the safety system
is activated and if it is not avoidable, no measure will be taken.

The Following diagram, Fig 1.6, shows various pre-crash actuators, which are used for

6



1 Introduction

Figure 1.5: Block diagram of deployment strategy [MTO04]

adaptive loading of the occupant, when a crash is inevitable.

1.5.2 Precrash phases

Rather than using impact based sensors for activation some safety systems, when the crash
contact takes place, the precrash system using vehicle tracking and collision prediction,
helps to activate all the active safety system in time, like the belt pre-tensioners and the
airbags.

A crash has typically three phases [Köh04].

1. The phase till the no return situation

2. The phase from no return situation to the time of first crash contact

3. The crash phase after the first contact took place

Fig 1.7, shows all the crash phases. The blue part shows, the time when the precrash
safety system gets activated.

The actions that can be taken during the pre-crash phase can be

• Autonomous intervention like automatic braking and evasive maneuver

• Warning with signals (acoustic or visible signs)

7
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Figure 1.6: Pre-Crash Actuators and Adaptive Occupant Loading During a Crash [Hal05]

Figure 1.7: Phases of a crash [Köh04]
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• Activating reversible restraint systems to reduce occupant displacement in the
forward direction due to the braking force ( Reversible restraint systems are like
belt pretentioners, knee or thorax impact absorbers( the last two are known as
active mechanical systems))

• Starting to record with black box data recorder

• Assessment and prediction of crash severity

• Active restraint systems (e.g. large volumed air bags with smart venting) are fired
earlier than the normal time after getting crash confirmation.

1.5.3 Time to collision

Here the Crash Phase is further broken down into quantified time ranges of different
pre-collision activities according to Prevent [Pre].

• In the Time-to-Collision range period between 10 seconds and roughly one second
(the human reaction time), is the driver warning and assistance phase. The warning
might be with optical, acoustic and/or haptic signals.

• The active assistance starts to act, when the time to collision goes down under one
second. A haptic warning system can be taken as an example. In this system, the
active accelerator starts to develop force, which gets intensified more and more over
time during the warning phase - calling for corrective measures. Then breaking
assistance follows and ultimately autonomous braking gets into action in order to
avoid or mitigate the crash.

• During the last second before the collision, active and autonomous safety measures
of a pre-crash system,consisting of suitable actuators will act to reduce the impact
and the consequences of the crash. Two kinds of intervening measures achieve this
goal: Autonomous or semi-autonomous (with amplification) braking which results
in reduced crash kinetic energy.

• When time less than 500 milliseconds is remaining before the impact, activation
of pre-crash systems, which make use of reversible structural actuators such as
controllable bumpers, crash boxes and motor hoods takes place.

• When time less than 100 milliseconds is remaining before the impact, the phase
known as pre-fire period starts. In this pre-fire period, the pre-crash system could
provide the appropriate data and trigger in order to optimize the protections
function of reversible restraint systems (e.g. belt-pre-tensioning) with the aim of
reducing the overall occupant loading.

• Finally, during the last 10 milliseconds known as pre-set period, parametrization of
the electronic control unit of the airbag system, based on the perceptive information

9



1 Introduction

Figure 1.8: Timelines for collisions with and without precrash sensing [DD07]

gathered about the imminent collision, takes place. This will result in the best and
appropriate protection of the occupants.

Fig 1.8, compares two crash scenarios, with no pre-crash sensing and with pre-crash
sensing. A time scale similar to the one discussed above is shown on the horizontal axis.
The diagram shows that, whenever no pre-crash sensing is used, nothing happens before
impact happens and after the impact it takes 20 ms before the airbag is triggered. The
airbag inflation happens in 20 ms, resulting in a very agressive impact of the airbag
with the occupant. On the other hand in the case of pre-crash sensing 2 s earlier of
the crash, start of object tracking, identification of the object as a potential threat
and threat indication by the alarm happen sequentially. Then 1s earlier of the crash,
closing of windows, siffening of seats, pretensioning of seat belts, application of ABS in
reducing speed and then finally imact of the identified object with the vehicle take place
respectively. After about 10ms the airbag starts to inflate and the airbag impacts the
occupant after 40 ms of the occurence of the crash. The advantage of using a pre-crash
sensing is the identification of the risk earlier and taking measures in time that would
protect the occupant. The airbag is also slowly inflated in the case of pre-crash sensing.
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2 State Estimators for Vehicle Tracking

This chapter presents the concept of state estimation and some filters used for this
purpose. The dicussion and the equations are based on [Ord05][HS07] and [WB95].

Estimating the state of a process from noisy and/or inaccurate process variables mea-
surement is known as State Estimation [Ord05]. Estimating the state of a process, which
we cannot directly observe, involves probabilistic estimation of the state, i.e., getting the
probability density function (pdf) of the state of the process. The state estimation has
two in a cycle recursively operating steps, namely prediction of the future state from
the current value and updating/correction of the predicted value with the measurement
taken.

2.1 State Space Models

A state space models a process, where the process’s state x is designated by a numerical
vector. In a state space models there are actually two separate models, known as Process
Model and Measurement Model. The Process Model models how the state propagates
with time under the influence of external disturbances like input and noise, whereas the
Measurement Model models how the process is measured.

2.1.1 General State Space Models

The non-linear model is considered as the general form of state-space model and it
normally has two functions, f and h:

xk = f(xk−1, uk−1, wk−1),

zk = h(xk, vk), (2.1)

where f is Propagation Function, h is Measurement Function, u is Process input, w is
state noise vector, v is process noise vector, k is discrete time, xk is state vector and zk
is measurement vector.

11



2 State Estimators for Vehicle Tracking

The functions, f and h , are normally discretized differential equations representing the
dynamics of both the process of the system and observation on the system.

2.1.2 Linear State Space Models

A state-space model is a linear state space model if both f and h are linear. Using
matrices F, B and H , it can be written in the following form.

xk = Ak−1xk−1 + Bk−1uk−1 + wk

zk = Hkxk + vk (2.2)

Such models are used for inherently linear systems or nonlinear systems, which are
linearized by means of Taylor approximation.

2.1.3 Discretization of continuous-time linear time-invariant systems

Continuous time invariant models can be written in the following form [HS07]:

dx(t)
dt

= Fx(t) + L w(t) (2.3)

Where

• the initial conditions are x(0) ∼ N(m(0), P (0)) (i.e. The initial state is defined
by the initial state mean and initial state covariance of the normally distributed
states.)

• F and L are constant matrices, which characterize the behavior of the model
• w(t) is a white noise process with a power spectral density Qc

The model is discretized with the following formula resulting in the matrices Ak and Qk

[HS07]

Ak = exp(F ∆tk),

Qk =
ˆ ∆tk

0
exp(F(4tk − τ))L QcLT exp(F(∆tk − τ))Tdτ, (2.4)

12



2 State Estimators for Vehicle Tracking

where∆tk = tk+1 − tk is the discretization step size, τ is time, F and L are constant
matrices, which characterize the behavior of the model and Qc is the power spectral
density of w(t).

If Qk cannot be computed analytically with the above formula, then we can calculate it
with the following matrix decomposition:

(Ck

Dk

)
= exp

{(
F LQcLT
0 −FT

)
∆tk

}(
0
I

)
, (2.5)

where∆tk = tk+1 − tk is the discretization step size, τ is time, F and L are constant
matrices, which characterize the behavior of the model and Qc is the power spectral
density of w(t).

From Ck and D−1
k , then Qk is calculated as

Qk = CkD−1
k . (2.6)

2.2 Recursive Bayesian Estimation

Recursive Bayesian Estimation simulates a certain process in a recursive manner, while
at the same manner it makes corrections based on the new measurements taken on the
process. The two recursive calculation steps are [Ord05]

1. Extrapolation of the next state from the current one with the use of state propagation
belief p(xk/xk+1) obtained from the function f

2. Correction of the predicted value by making use of the measurement likelihood
p(zk,xk) obtained from the function h

The prior pdf of the state xk of the process is calculated with the Chapman-Kolmogorov
equation based on the measurement value, that we have up to time k-1:

p(xk/zk−1) =
ˆ
p(xk/xk−1)p(xk−1/zk−1) dxk−1 (2.7)

Then the next step is to calculate the updated pdf of state xk taking into account the
measurement taken up to time k

13



2 State Estimators for Vehicle Tracking

p(xk/zk) = p(zk/xk)p(xk/zk−1)´
p(zk/xk)p(xk/zk−1) dxk

(2.8)

Unfortunately apart from serving as theoretic foundation for state estimation, the
equation cannot be used to solve real world problems, due to the multidimensional
integrals involved in case of multidimensional state vectors and also because of the
reason that computers can calculate pdf only for discretized state space. Bayesian
Estimation can be implemented only in cases, where the state space is discretized or
with certain limitation assumptions.

2.3 Kalman Filter

The Kalman Filter (KF) is a set of mathematical equations that gives an efficient
computational (recursive) means to estimate the state of a process, by minimizing the
mean of the squared error [WB95]. The Kalman Filter gives optimal results for linear
systems, though many systems in real world are in fact nonlinear. To use the Kalman Filter
for non-linear systems, the method widely used is first to linearize the system and then to
use the Extended Kalman Filter (EKF). Unfortunately the linearization can cause unstable
estimation. To solve this problem in nonlinear system state estimation the Unscented
Kalman Filter (UKF) is used, which totally eliminates and replaces linearization of the
functions with Unscented Transformation, which makes use of propagation of a carefully
selected set of points through the actual nonlinear function.

The Bayesian estimation technique is reduced to the Kalaman Filter, if the following
assumptions are taken [Ord05]:

• f and h are linear functions

• the noise vectors w and v are assumed to be uncorrelated, Gaussian and white with
a zero mean

The constraints are written in mathematical notation a follows

The functions f and h are linear functions

f(xk−1, uk−1, wk−1) = Akxk−1 + Bkuk−1 + wk−1

h(xk, vk) = Hxk + vk

14



2 State Estimators for Vehicle Tracking

The noise vectors w and v are assumed to be uncorrelated, Gaussian and white

wk ∼ N(0, Qk) vk ∼ N(0, Rk) (2.9)

The mean of the distribution of the noise vectors w and v is assumed to be zero

E(w,wTj ) = Qiδ(i− j) E(v, vTj ) = Riδ(i− j)

E(wkvTk ) = 0

Where Q and R are covariance matrices representing both the state and measurement
noise in the second-order. Applying the above constraints results in the following linear
state space model:

xk = Akxk−1 + Bkuk−1 + wk−1,

zk = Hkxk + vk, (2.10)

where A , B and H are matrices, which can also depend on time.

The state and the output of this model is Gaussian distributed, because of the fact that
the linearity of the model and and the Gaussian input, which means that it is enough to
calculate the mean vector m and covariance matrix P rather than calculating a full state
pdf.

The Kalman filter consists of two steps, Prediction and Update steps and the equations
used are [HS07]:

KF Prediction Equations:
x̂−k = Ax̂k−1 + Buk−1

P−k = Ak−1Pk−1AT
k−1 + Qk−1 (2.11)
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Figure 2.1: Discrete Kalman filter cycle [WB95]

KF Update Equations:
vk = zk −Hkx̂−k

Kk = P−k HT
k

(
HkP−k HT

k + Rk

)−1
(2.12)

x̂k = x̂−k +Kkvk

Pk = (I−KkHk) P−k

where

• x̂−k and P−k are the predicted mean and covariance of the state respectively, on time
step k before the measurement

• x̂k and Pk are the estimated mean and covariance of the state, respectively on time
step k after seeing the measurement

• vk is the innovation or the measurement residual on time step k

• Kk is the filter gain, which sizes how much the predictions should be corrected on
time step k

Fig 2.2 shows the complete picture of the operation of the Kalman filter. There are two
recursively happening steps. The first one is the Time Update one, which consists of
projection of the state and the error ahead. The second one is the Measurement Update
one, which involves kalman gain computation, updating of estimate with measurement
and updating of error covariance.
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Figure 2.2: A complete picture of the operation of the Kalman filter [WB95]

2.4 Extended Kalman Filter

Most of the processes in real world are nonlinear and need to get linearized, before getting
their state estimated with Kalman filter. Here all the derivations of the algorithms are
taken from [WB95].

The type of Kalman filter, which uses the Jacobian of f and h at the estimated state
resulting in the trajectory of the model function centered around this particular state is
the Extended Kalman Filter.

Normally we do not know the individual values of the noise wk and and vk at each time
step, but still we can approximate the state and measurement vector in their absence as

x̃k = f(x̃k−1, uk−1, 0) (2.13)

and

z̃k = h(x̃k, 0) (2.14)

where x̃k is a posterior estimate of a state from the previous time step k

Then we can write a linearized estimate of the non-linear system as follows
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xk t x̃k + A(xk−1 − x̂k−1) + Wwk−1 (2.15)

zk t z̃k + H(xk − x̃k) + V vk−1 (2.16)

• xk and zk are the actual state and measurement vectors,

• x̃k and z̃k are the approximate state and measurement vectors

• x̂k is an posterior estimate of the state at step k

• the random variables wk and vk represent the process and measurement noise

• A is the Jacobian matrix of partial derivatives of f with respect to x, that is

A[i,j] =
∂f[i]
∂x [j] (x̂k−1, uk−1, 0), (2.17)

where i and j are the row and column number of A.

• W is the Jacobian matrix of partial derivatives of f with resprect to w

W[i,j] =
∂f[i]
∂w [j] (x̂k−1, uk−1, 0), (2.18)

where i and j are the row and column number of W.

• H is the Jacobian matrix of partial derivatives of h with respect to x

H[i,j] =
∂h[i]
∂x [j] (x̃k, 0), (2.19)

where i and j are the row and column number of H.

• V is the Jacobian matrix of partial derivatives of h with respect tov

V[i,j] =
∂h[i]
∂v [j] (x̃k, 0), (2.20)

where i and j are the row and column number of V.

The Extended Kalman filter consists of two steps, Prediction and and Update steps like
the Kalman filter and the equations used are [HS07], see Fig 2.3
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EKF Prediction Equations:
x̂−k = f(x̂k−1, uk−1, 0)

P−k = AkPk−1AT
k + WkQk−1WT

k (2.21)

EKF Update Equations:
vk = zk − hk(x̂−k , 0)

Kk = P−k HT
k

(
HkP−k HT

k + VkRkVT
k

)
(2.22)

x̂k = x̂−k + Kkvk

Pk = (I−KkHk) P−k

Figure 2.3: A complete picture of the operation of the extended Kalman filter [WB95]

The Limitations of EKF
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• The linear transformation produces reliable results only in cases when the error
propagation can be well approximated by a linear function, otherwise EKF might
perform poorly, at worst divergence in estimation might also happen.

• The Jacobian matrices might not exist or can have singularities.

• Calculating the Jacobian matrices might need a long cpu time and error prone.

2.5 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is another version of the Kalman filter, which gives
a Gaussian approximation to nonlinear filtering problems by making use of the unscented
transformation. The algorithm is taken from [HS07].

Unscented Transform (UT) In UT, first a fixed number of samples known as sigma
points are carefully selected to capture the true mean and covariance of the original
Gaussian distribution of the state variable, which is random. Then the sigma points
are propagated through the non-linear function and finally we capture the posterior
mean and covariance accurately to the third order from the the propagated sigma points.
UT captures the higher order moments of the non-linear transformation better that the
Taylor series and it also does not need calculation of the Jacobian matrices,which makes
it simpler and less error-prone.

If a state vector of x of dimension n gets propagated through a non-linear function
y = f(x) and its mean and covariances are m and P respectively, a matrix consisting of
2n+ 1 sigma vectors x(i) having a corresponding weight W (i) is formed. The calculations
involved are shown in the following steps

• Compute the set of 2n+ 1 sigma points

x(0) = m,

x(i) = m +
[√

(n+ λ) P
]
i
, i = 1, ..., n, (2.23)

x(i) = m−
[√

(n+ λ) P
]
i
, i = n+ 1, ..., 2n,

and the corresponding weights are

W (0)
m = λ/(n+ λ),
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W (0)
c = λ/ (n+ λ) + (1− α2 + β),

W (i)
m = 1/ {2 (n+ λ)} , i = 1, ..., n, (2.24)

W (i)
c = 1/ {2 (n+ λ)} , i = 1, ..., n,

λ = α2(n+ k)− n,

where

λ is used for scaling,

α expresses the spread of the sigma points around the mean ( small number like 10−3),

β used to incorporate the prior knowledge of the random variables distribution ( 2 is an
optimal value for Gaussian distribution),

k is a secondary scaling factor (usually it is taken to be equal to zero).

• Propagate every sigma point through the non-linear function

y(i) = f(x(i)), i = 0, ..., 2n (2.25)

• Calculate the mean,µU , and covariance estimates for y, SU

µU t
2n∑
i=0

W (i)
m y(i) (2.26)

SU =
2n∑
i=0

W (i)
c

(
y(i) − µU

) (
y(i) − µU

)T
(2.27)

• Calculate the cross-covariance between x and y

CU t

2n∑
i=0

W(i)
c

(
x(i) −m

) (
y(i) − µU

)T
(2.28)

The steps for UKF are given below
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UKF Prediction Equations: Calculate the predicted state mean m−k and the predicted
covariance P−k as follows

Xk−1 = [mk−1...mk−1] +
√
c

[
0
√

Pk−1 −
√

Pk−1

]

x̂−k = f(xk−1, uk−1, wk−1)

m−k = x̂−k wm (2.29)

P−k = x̂W [x̂k]T + Qk−1

UKF Update Equations: In the update part we calculate the predicted mean µk,the
measurement covariance Sk and the cross covariance of the state and the measurement
Ck

Xk−1 = [mk...mk] +
√
c
[
0
√

Pk −
√

Pk

]

Y−k = h(x−k , k)

µk = Y−k wm (2.30)

Sk = Y−k W
[
Y−k

]T
+ Rk

Ck = X−k W
[
Y−k

]T
The filter gain Kk, the updated mean mk and covariance Pk are then calculated:

Kk = CkS−k

mk = m−k + Kk [yk − µk] (2.31)
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Pk = P−k −KkSkKT
k

Fig 2.4 shows how a normal sampling, EKF and UKF propagate the mean in different
ways. In EKF the mean and the covariances are approximated using Taylor Series,
whereas in UKF the mean and covariance are approximated using carefully selected sigma
points.

Figure 2.4: Comparison of mean propagation in EKF, UKF and Sampling [RvdM97]

2.6 Interacting Multiple Model Filter

In many practical applications the system’s model can change in time. The varying
system characterstics is not effectively represented with one model, that means that in
estimation the model also changes with this change. Here all the important algorithms
of the model are given as presented in [HS07].
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Let out of the n models that are available M =
{
M1...Mn

}
, one of them be the current

model, µj0 = P
{
M j

0

}
is the prior probability of M j , and pij =

{
M j
k/M

j
k−1

}
is the

transition probability matrix of a first order Markov chain of switching from model i
to model j, which characterizes the mode transitions. If in a discrete random process
the next state depends only on the current state, it is known as a Makrov Chain. Such
systems are known as Markovian switching systems.
IMM-filter is a computationally efficient filter and most of the times it gives a suboptimal
estimation for Markovian switching systems, which consists of three main steps, interaction
(mixing), filtering and combination.

• Interacting (Mixing)
Given that µik−1 is the probability of model M i in the time step k − 1, the mixing
probabilities µi/jk for each model M i and M j are computed as

c̄j =
n∑
i=1

pijµ
i
k−1 (2.32)

µ
i/j
k = 1

c̄j
pijµ

i
k−1 (2.33)

Where c̄j is a normalization factor
The mixed means and covariances used as input for each filter are computed from the
updated mean

(
x̂ik−1

)
and covariance

(
Pi
k−1

)
for model i at time step k − 1 as follows

x̂0j
k−1 =

n∑
i=1

µ
i/j
k x̂ik−1 (2.34)

P0j
k−1 =

n∑
i=1

µ
i/j
k

{
Pi
k−1 +

[
x̂ik−1 − x̂0j

k−1

] [
x̂ik−1 − x̂0j

k−1

]T}
(2.35)

• Filtering

Filtering for each model M i is carried out as follows

[
x̂−,ik ,P−,ik

]
= KFp

(
x̂0j
k−1,P

0j
k−1,A

i
k−1,Qi

k−1

)
(2.36)

[
x̂ik,Pi

k

]
= KFp

(
x̂−,ik ,P−,ik ,yk,Hi

k,Ri
k

)
(2.37)

The measurement likelihood of each filter is calculated as
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Λik =
(
vik; 0,Sk

)
, (2.38)

where vik is the measurement error and Sik is model M i’s covariance

Each model’s
(
M i
)
probability at time k is computed as

c =
n∑
i=1

Λik c̄i (2.39)

µik = 1
c

Λik c̄i (2.40)

c is a normalizing factor

• Combination: is the final step, which combines the estimate state means and
covariances.

x̂k =
n∑
i=1

µikx̂ik (2.41)

Pk =
n∑
i=1

µik

{
Pi
k

[
x̂ik − x̂k

] [
x̂ik − x̂k

]T}
(2.42)

2.7 EKF/UKF Toolbox- Tool Used for State Estimation

EKF/UKF Toolbox is an optimal filtering toolbox, which works under Matlab Environ-
ment [HS07].The Kalman filters and smoothers are the main elements of this toolbox,
which are the most widely used methods in stochastic state-space estimation. The
developers developed it with the aim to provide a simple framework for building proof-of-
concept implementations of optimal filters and smoothers for use in practical applications.
The toolbox is developed by the Laboratory of Computational Engineering at Helsinki
University of Technology (HUT). It is freely available and can be downloaded from their
website. In the content of this thesis, this toolbox has been used instead of programming
the equations of chapter 2.
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3 Models for Vehicle Tracking and Motion
Estimation

Here in this chapter different models that are used in estimating the future path of a
vehicle are presented. Any of these models can be used for vehicle tracking purpose
depending on the need. Each one of them has its own strong sides and weaknesses. Some
of the models try to combine two or more models to get a better performance. The last
5 models also implement very simplified Vehicle Dynamic Models and some of them can
be used for motion estimation without the use of state estimators.

3.1 Constant Velocity Model (CV)

The following mathematical formulas are based on [PTAA07] and [Jan05]

The state vector xk reads

xk = [px py vx vy]T , (3.1)

where px and py are the x and y coordinate values respectively and vx and vy are the x
and y components of the velocity respectively.

Assuming a constant acceleration and yaw rate derivatives, the transition matrix A of
size 4×4 used for the state equation update reads

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 . (3.2)

The covariance matrix of the process noise Q of size 4×4

Q = G.q.GT , (3.3)

where the matrix G of size 4×2 is written as
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G =
[

0.5T 2 0 T 0
0 0.5T 2 0 T

]T
. (3.4)

Assuming a white, Gaussian process noise with zero mean and variances σ2
vx

and σ2
vy

for
vx and vy respectively, the matrix q of size 2×2 is given as

q =
[
σ2
vx

0
0 σ2

vy

]
. (3.5)

3.2 Constant Acceleration Model (CA)

This is one of the models used for predicting the future trajectory of vehicles,which
assumes that the acceleration of the vehicle as constant in both axes and the state vector
consists of the variables position, velocity and acceleration in both axes. The following
mathematical formulas are based on [PTAA07] and [Jan05].

The state vector of size 6×1 xk reads

xk = [px py vx vy ax ay]T , (3.6)

where px and py are the x and y coordinate values respectively and vx and vy are the x
and y components of the velocity respectively and ax and ay are the x and y components
of the accelerations respectively.

Assuming a constant acceleration and yaw rate derivatives, the transition matrix A of
6×6 size used for the state equation reads

A =



1 0 T 0 0.5T 2 0
0 1 0 T 0 0.5T 2

0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1


. (3.7)

The covariance matrix Q of size 4×2 of the process noise reads

Q = G.q.GT . (3.8)
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The matrix G of size 4×2 is written as

G =
[

0.5T 2 T 1 0 0 0
0 0 0 0.5T 2 T 1

]T
. (3.9)

Assuming a white, Gaussian process noise with zero mean and variances σ2
ax

and σ2
ay

for
ax and ay respectively, the matrix q is given as

q =
[
σ2
ax

0
0 σ2

ay

]
. (3.10)

The initial state vector used to predict the future path of the vehicle is given as

x0 = [0 0 vv 0 av ωvvv] , (3.11)

where vv is speed of the vehicle, avis acceleration of the vehicle and ωv is yaw rate of the
vehicle.

3.3 Constant Acceleration and Yaw rate Derivatives Model

This is a model used to track the observer’s vehicle itself. This might be important, if we
think about ego motion compensation, or handing over the information to another target
vehicle through vehicle to vehicle communication system. All the analysis is taken from
[PTAA07]

The state vector xk reads

xk = [v a ȧ ϕ ω ω̇]T , (3.12)

where v is speed of the vehicle, a is the acceleration of the vehicle, ȧ is the rate of change
of acceleration, ω is the yaw rate and ω̇ is the rate of the yaw rate.

The measurement vector from the CAN bus reads

y = [v ω]T , (3.13)

where v is speed of the vehicle and ω is the yaw rate.

The matrix, H of size 2×6, which maps the measurement space to the state space is
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H =
[

1 0 0 0 0 0
0 0 0 0 1 0

]
. (3.14)

The covariance matrix R of size 2×2 of the white and Gaussian measurement noise with
a zero mean is

R =
[
σ2
v 0

0 σ2
ω

]
, (3.15)

where σ2
v is standard deviation in velocity and σ2

ω is standard deviation in yaw rate.

Assuming a constant acceleration and yaw rate derivatives, the transition matrix A of
size 6×6 used for the state equation update is

A =



1 T 0.5T 2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 T T 0.5T 2

0 0 0 1 1 T
0 0 0 0 0 1


, (3.16)

where T is time span.

The covariance matrix Q of size 6×6 of the process noise is given as

Q = G.q.GT . (3.17)

The matrix G of size 2×6 is written as

G =
[

0.5T 2 T 1 0 0 0
0 0 0 0.5T 2 T 1

]
. (3.18)

Assuming a white, Gaussian process noise with zero mean and variances σ2
ȧ and σ2

ω̇ for ȧ
and ω̇ respectively, the matrix q of size 2×2 is given as

q =
[
σ2
ȧ 0

0 σ2
ω̇

]
, (3.19)

where σ2
ȧ is th variance of the acceleration and σ2

ω̇ is the variance of the rate of change of
yaw rate.
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3.4 Constant Turn Model with Unknown Turn Rate

This model assumes the yaw rate and the speed of the vehicle as constant and the state
vector consists of positions and velocities in both direction and its turn rate. Below all
the mathematical derivations are given based on [PTAA07].

The state vector xk is given as

xk = [px py vx vy ω]T , (3.20)

where px and py are the x and y coordinate values respectively and vx and vy are the x
and y components of the velocity respectively and ω is the yaw rate respectively.

The rate of change of acceleration, ȧ, is give as

ȧ = −ω2v, (3.21)

where ω is the yaw rate and v is the velocity of the vehicle.

The yaw rate ω is given as

ω = v a

/v/2 , (3.22)

where ω is the yaw rate, v is the velocity and a is the acceleration of the vehicle.

Decomposing the velocity v along the two axes using the heading angle ϕ gives us

vx = v cos (ϕ) , (3.23)

and

vy = v sin (ϕ) . (3.24)

Assuming a CTR, ω = ϕ̇, the prediction equations for position coordinates px and py
read

px,k+1 = xk +
ˆ tk+1

tk

vx (τ/tk) dτ = px,k + T [SW.vx,k − CW.vy,k] , (3.25)

and
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py,k+1 = yk +
ˆ tk+1

tk

vy (τ/tk) dτ = py,k + T [CW.vx,k + SW.vy,k] , (3.26)

where

SW = sin (ωT ) /ωT, (3.27)

and

CW = [1− cos (ωT )]
ωT

. (3.28)

The prediction equation for the velocity components in the two axes is given as

vx,k+1 = v.cos (ϕ+ ωT ) = vx (k) cos (ωT )− vy (k) sin (ωT ) , (3.29)

and

vy,k+1 = v.sin (ϕ+ ωT ) = vx (k) sin (ωT ) + v (k) cos (ωT ) , (3.30)

In a matrix form, the state equation is given as


px,k+1
py,k+1
vx,k+1
vy,k+1
ωk+1

 =


px,k + T [SW.vx,k − CW.vy,k]
py,k + T [CW.vx,k + SW.vy,k]
vx,kcos (ωT )− vy,ksin (ωT )
vx,ksin (ωT )− vy,kcos (ωT )

ω (k)

 . (3.31)

Linearizing the above state equation gives the following transition matrix A of size 5×5

A =


1 0 sin(ωT )

ω
−(1−cos(ωT ))

ω f15
0 1 1−cos(ωT )

ω
sin(ωT )

ω f25
0 0 cos(ωT ) −sin(ωT ) f35
0 0 sin(ωT ) cos(ωT ) f45
0 0 0 0 1

 , (3.32)

where f15 through f45 read:

f15 = ∂px
∂ω

= T (vxdsw − vydcw) , (3.33)
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f25 = ∂y

∂ω
= T (vxdcw + vydsw) , (3.34)

f35 = ∂vx
∂ω

= −T (vxsin (ωT ) + vycos (ωT )) , (3.35)

f45 = ∂vy
∂ω

= T (vxcos (ωT )− vysin (ωT )) , (3.36)

dsw = cos (ωT )
ω

− sin (ωT )
ω2T

, (3.37)

dcw = sin (ωT )
ω

− 1
ω2T

+ cos (ωT )
ω2T

. (3.38)

The covariance matrix Q of size 5×5 of the process noise is given as

Q = G.q.GT (3.39)

The matrix G of size 3×5 is written as

G =

 0.5T 2 0 T 0 0
0 0.5T 2 0 T 0
0 0 0 0 T


T

(3.40)

Assuming a white, Gaussian process noise with zero mean and variances σ2
vx

and σ2
vy

for
vx and vy respectively, the matrix q of size 3×3 is given as

q =

 σ2
vx

0 0
0 σ2

vy
0

0 0 σ2
ω

 . (3.41)

The initial state vector, when the model is used for predicting the trajectory of the host
vehicle is given as

x0 = [0 0 vv 0 ωv] , (3.42)

where vv and ωv are current velocity and turn rate of the vehicle
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When the model is used for target vehicle trajectory prediction, the initial state vector is
formed from the current position, velocity and acceleration components of the tracked
vehicle and is given as

x0 =
[
x0 y0 vx vy

vxay − vyax
v2
x + v2

y

]
. (3.43)

3.5 Constant Turn Model with Known Turn Rate

This model assumes the yaw rate and the speed of the vehicle as constant and the state
vector consists of positions and velocities in both direction. The formulas are taken from
[Jan05] and [PTAA07].
State vector xk of size 4×1 reads

xk = [px py vx vy]T , (3.44)

where px and py are the x and y coordinate values respectively and vx and vy are the x
and y components of the velocity respectively.

The analysis is similar like in that of the Constant Turn Model with Unknown Turn Rate
and the linearized transition matrix A of size 4×4 is given as

A =


1 0 sin(ωT )

ω
−(1−cos(ωT ))

ω

0 1 1−cos(ωT )
ω

sin(ωT )
ω

0 0 cos(ωT ) −sin(ωT )
0 0 sin(ωT ) cos(ωT )

 . (3.45)

The covariance matrix Q of the process noise is given as

Q = G.q.GT . (3.46)

The matrix G of size 3×2 is written as

G =
[

0.5T 2 0 T 0
0 0.5T 2 0 T

]T
. (3.47)

Assuming a white, Gaussian process noise with zero mean and variances σ2
vx

and σ2
vy

for
vx and vy respectively, the matrix q is given as
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q =
[
σ2
vx

0
0 σ2

vy

]
. (3.48)

3.6 Constant Turn Rate and Constant Tangential Acceleration
Model (CTRA)

This models combines the advantages of the CA and the CT models and the following
mathematical derivations are taken from [TPA05]

This represents the true motion of vehicle as the model considers the vehicle to move
with constant tangential acceleration, at and constant yaw rate, ω and the state vector is
given as

x = [x vx atx y vy aty ω]T (3.49)

The rate of change of speed with time, v̇ , is constant and is given as the tangential
acceleration.

at = v̇ (3.50)

The rate of change of the heading angle with time, ϕ̇, is constant and is given as the
tangential acceleration.

ω = ϕ̇ (3.51)

The x component of the acceleration, ax, is given as

ax = v̇x, (3.52)

ax = v̇ cos (ϕ)− vϕ̇ sin (ϕ) , (3.53)

ax = atcos (ϕ)− ωvsin (ϕ) , (3.54)

ax = atcos (ϕ)− ωvy, (3.55)
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ax = atx + anx, (3.56)

where v̇x is the rate of change of velocity in x direction, v̇ is the rate of change of velocity,
ϕ is the heading angle, at is the tangential acceleration, ω is the yaw rate v is the velocity,
vy is the y component of the velocity, atx is the tangential component of the acceleration
in x direction and anx is the normal component of the acceleration in x direction.
The y component of the acceleration, ay, is given as

ay = v̇y (3.57)

ay = v̇sin (ϕ)− vϕ̇cos (ϕ) (3.58)

ay = atsin (ϕ)− ωvcos (ϕ) (3.59)

ay = atsin (ϕ)− ωvx (3.60)

ay = aty + any (3.61)

The centripital acceleration components, anx and any, are given as

anx = −ωvy (3.62)

any = ωvx (3.63)

Then their resultant, the centripital acceleration, which is normal to vehicle’s motion

an =
√
a2
nx + a2

ny =
√
ω2
(
v2
x + v2

y

)
= ωv (3.64)

The tangential components of the acceleration, atx and aty, are calculated as

atx = atcos (ϕ) , (3.65)

aty = atsin (ϕ) , (3.66)
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where ϕ is the heading angle.

The linearized transition matrix A of this model is given as

A =



1 sin(ωT )
ω f13 0 cos(ωT )−1

ω f16 f17
0 cos (ωT ) T cos (ωT ) 0 −sin (ωT ) −T sin (ωT ) f27
0 0 cos (ωT ) 0 0 −sin (ωT ) f37
0 1−cos(ωT )

ω f43 1 sin(ωT )
ω f46 f47

0 sin (ωT ) T sin (ωT ) 0 cos (ωT ) T cos (ωT ) f57
0 0 sin (ωT ) 0 0 cos (ωT ) f67
0 0 0 0 0 0 1


, (3.67)

Where f13, f43, f16, f46 and f17 through f67 are calculated with the following equations:

c1 = sin (ωT )
ωT

, (3.68)

c2 = cos (ωT )− 1
ωT

, (3.69)

c3 = cos (ωT ) , (3.70)

c4 = sin (ωT ) , (3.71)

d1 = ωTc3− c4
ω2 , (3.72)

d2 = Tc4− c2
ω

, (3.73)

d3 =
(
ωT 2c3− 2Tc4− 2c2

)
ω2 , (3.74)

d4 =

([
2− (ωT )2

]
c4− 2ωTc3

)
ω3 , (3.75)

d5 = −d2, d6 = d1, (3.76)
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d7 = −d4, d8 = d3, (3.77)

f13 = ∂x

∂atx
= T (c2 + c4)

ω
, (3.78)

f43 = ∂y

∂atx
= (c4− ω T c3)

ω2 , (3.79)

f16 = ∂x

∂aty
= −f(43), (3.80)

f46 = ∂y

∂aty
= f(13), (3.81)

f17 = ∂x

∂ω
= vx,kd1 + vy,kd2 + atx,kd3 + aty,kd4, (3.82)

f47 = ∂y

∂ω
= vx,kd5 + vy,kd6 + atx,kd7 + aty,kd8, (3.83)

f27 = ∂vx
∂ω

= −T (vx,k+1c4 + vy,k+1c3), (3.84)

f57 = ∂vy
∂ω

= T (vx,k+1c3− vy,k+1c4), (3.85)

f37 = ∂atx
∂ω

= −T (atx,kc4− aty,kc3), (3.86)

f67 = ∂aty
∂ω

= −T (atx,kc3− aty,kc4). (3.87)

3.7 Adaptive Dynamic (AD) Model

In [PTAA07], the AD Model is discussed briefly and the following part is based on that.

The CA model is better in predicting the trajectory of a vehicle, which is moving with a
constant longitudinal acceleration. On the other hand, the CT model suits to a vehicle
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turning with a constant turn rate, whereas the CTRA model predicts the trajectory, if
the vehicle is turning with a constant yaw rate, while it is accelerating at the same time.
Heuristic rules can be used for applying the right model to the right scenario based on a
data from real driving recordings. The tracking model is adapted to the derivative of
the yaw rate and the longitudinal acceleration, resulting in optimized performance in
the lateral and longitudinal axes respectively, as this makes it possible to apply the right
model to the right scenario.

3.8 Common State Space Model

The following model is taken from [BY07]. The model considers the longitudinal and the
angular motion of the vehicle being tracked separately. The model is linear, which makes
it quite simple for implementation.

The state space model xk+1 of size 5×1 reads

xk+1 =


dk+1

vego,k+1
vobj,k+1
aego,k+1
aobj,k+1

 = Axk + Bwk, (3.88)

where dk is the distance between the observer and the object, vego,k+1 is the speed of the
observer, vobj,k+1 is the speed of the object, aego,k+1 is the acceleration of the observer
and aobj,k+1 is the acceleration of the observer.

The transition matrix A of size 4×5 is given as

A =


1 −T T −T

2
2 T

2
2

0 1 0 T 0
0 0 0 1 0
0 0 0 0 1

 , (3.89)

where T is the cycle time.

The matrix B of size 5×2 add noise elements of w(k) to the last two state variables and
is given as

B =
[

0 0 0 1 0
0 0 0 0 1

]T
. (3.90)
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The corresponding measurement equation y(k) of the longitudinal motion is given as

y(k) =

 dmk
vmrel,k
vmego,k

 =

 1 0 0 0 0
0 −1 1 0 0
0 1 0 0 0

xk + vk, (3.91)

where dmk measured relative distance between the observer and the object, vmrel,k measured
relative speed of the observer with respect to the object and vmego,k the measured speed of
the ego vehicle.

We assume that the vehicles are driving in the same direction though in reality it depends
also on their driving directions, but it can still be used with the Kalman filter. The
relative speed, vrel,k+1, is calculated as

vrel,k+1 = vobj,k − vego,k, (3.92)

where vego,k is the speed of the observer and vobj,k is the speed of the object.

The state transition equations for the angular dynamics model is given as

xa,k+1 =
[
α̇k+1
αk+1

]
= xa,k +

[
0
1

]
wa,k, (3.93)

where α̇k the relative angle from the vehicle (or sensor) axis to the object αk the angular
velocity or gyro and wa,k noise process which models changes in the accelerations of
observer and object.

The corresponding measurement equation of the angular motion is

ya = αmk =
[

1 0
]
xa,k + va,k, (3.94)

where

αmm relative angle of the observer to the observed object and

va,k angular measurement noise vector.

3.9 Global Tracking Model

The following part is taken from [BY07]. This is a tracking model devised to deal with
some of the draw backs of other tracking models like the Common State Space Model.
The drawbacks are the inabilities of the tracking model to fulfill the needs listed below.
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The model addresses successfully the following needs

1. Separation of the two distinct types of movement changes (acceleration/deceleration
and steering).

2. Representation of constant object motion with a constant state.

3. Correct information consideration of both the ego and target vehicles.

4. All the sensors have the same coordinate system.

The state vector, xk+1 reads

xk+1 =



sx,k+1
sy,k+1
vk+1
ϕk+1
ak+1
δk+1


= f (xk) +Bwk, (3.95)

where (sx,k, sy,k) is the position of the vehicle, vk is the tangential speed of the vehicle,
ϕk+1 is the heading angle, ak+1 is the acceleration of the vehicle and δk is the steering
angle and wk is the input process noise, which is a 2x1 vector that models changes in
acceleration and steering angle.

Fig 3.1 shows the state and measurement variables of Global Tracking Model. All the
variables are given in Global Coordinate System.

As shown below the derivation of the state transition function, f (x (k)) of equation
(3.95) is solved below. The index c in this section indicates the variables, which have a
continuous-time representation

The position variables, sx,k+1and sy,k+1 at time t = (k + 1)T are calculated as.

[
sx,k+1
sy,k+1

]
=
[
sx,k
sy,k

]
+
ˆ (k+1)

kT
vc(t)

[
cos(ϕc(t))
sin(ϕc(t))

]
, (3.96)

For calculation convenience, speed and driving directions are assumed as constant during
every interval of length T and the values, which we would have obtained at the center of
the interval are taken and it is proven with test runs that this assumption do not cause
any noticeable errors.

The time at the center of the interval between discrete time step k and k + 1, t, is given
as
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Figure 3.1: State and Measurement Variables of Global Tracking Model [BY07]

t = (k + 1
2)T (3.97)

The resulting speed, vc(t) and driving direction, ϕc(t) are given as

vc(t) = v̄k = vk + T

2 ak, (3.98)

ϕc(t) = ϕ̄k + T

2Lδkvk, (3.99)

where T is time span, vk is velocity at discrete time step k, ak is acceleration at discrete
time step k, ϕ̄k is heading angle at discrete time step k, L is length of wheel base and δk
is steering angle at discrete time step k.

The resulting simplified transition equations are

[
sx,k+1
sy,k+1

]
=
[
sx,k
sy,k

]
+ T v̄k

[
cos(ϕc(t))
sin(ϕc(t))

]
(3.100)

The transition equations, which consist of the speed, acceleration and steering angle are
linear and they are given as follows
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 vk+1
ak+1
δk+1

 =

 1 T 0
0 1 0
0 0 1


 vk
ak
δk

 (3.101)

The state transition equation for the driving direction, ϕk+1, which is a two-point single
track model relating changes in driving directions to the speed, is given as

ϕk+1 = ϕk + T

L
δkvk + w2,k, (3.102)

where T is time span, vk is velocity at discrete time step k,ϕk is heading angle at discrete
time step k, L is length of wheel base, δk is steering angle at discrete time step k and
w2,k is the noise.

The measurement vector, y(k), consisting of distance, dmk , relative angle, αmrel,k and the
Doppler speed, vmrel,k, measured by the sensors is given as

y(k) =

 dmk
αmrel,k
vmego,k

 = g(xk) + vk, (3.103)

where v (k) is a 3x1 vector, which models the measurement noise in the three directions

As shown below the derivation of the state transition function, g (xk) is given.

The relative angle,αk , the relative distance between the two vehicles, dk and the Doppler
speed, vrel,k are given as

αk = arctan
(
sy,k − sseny
sx,k − ssenx

)
− ϕego − θsen, (3.104)

dk =
√

(sx,k − ssenx )2 + (sy,k − sseny )2, (3.105)

vrel,k = vego cos(αk + θsen)− vk cos(αk + θsen + ϕego − ϕk), (3.106)

where
(
ssenx , sseny

)
is the current sensor position in the global coordinate system, ϕego

is the current driving direction of the observer, θsen is the sight direction of the sensor
measured relative the longitudinal axis of the ego vehicle, (sx,k, sy,k) is position coordinate
and vk is tangential speed.
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3.10 Ego-Motion Estimation Using Inertial Sensor (INS) data 1

The following model and discussion is taken [FDL03]. The following model is a simplified
model compared to the single track model as it does not require many parameters, but
it is proven that its accuracy is comparable [FDL03].In this model the pitch, roll and
motion of the vehicle in the z direction are neglected. The motion of the vehicle in the
x and y directions and its yaw motion are calculated with this model. As input, the
steering angle and the speed of the vehicle are used, which are obtained from the INS data.
The time T is the time between two consecutive scans in the case of the laser scanner,
which has normally a typical value of 100ms . The slip angle is also calculated using the
INS data. In this model condition of no change in wheel load, no cross acceleration, no
accelerating or decelerating forces is assumed. The aerodynamic forces are also ignored.
In this simplified model the side slip angle, β, depends only on the steering angle δ.

The relative positions ∆x, ∆y and ∆ψ between two time steps are given as

∆x = v.T. cos(β), (3.107)

∆y = v.T. sin(β), (3.108)

∆ψ = v.T

lh
.β (3.109)

and

β = lh
lv + lh

.δ, (3.110)

where ∆x is translation in x direction between two consecutive scans,∆y is translation in
y direction between two consecutive scans, ∆ψ is yaw rotaion between two consecutive
yaw scans,v is velocity of ego vehicle, T is sampling rate,β is body slip angle, lh is
distance from the center of gravity to the rear axis of the car, lv is distance from the
center of gravity to the front axis of the car andδ is front wheel steering angle.

3.11 Ego-Motion Estimation Using Inertial Sensor (INS) data 2

The following model and discussion is taken also from [FDL03]. The following model is a
model, which have many parameters like both the front and the rear slip angles, αv, αh ,
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cornering stiffness of both the front and the rear tires, Cv and Ch, mass of the vehicle, m
and yaw moment of inertia of the vehicle in z-direction, Jz [FDL03].

The state vector for this model contains four variables and reads:

x = (β ψ̇ δ δ̇)T , (3.111)

where β is the side slip angle, ψ̇ is yaw rate, δ is the steering angle and δ̇ is the rate of
change of the steering angle.

The state equation is then written as

ẋ = A.x. (3.112)

where A is the transition matrix and is given as

A =


−Cv+Ch

m.v
Ch.lh−Cv .lv−m.v2

m.v2
Cv
m.v 0

Ch.lh−Cv .lv
Jz

−Ch.l
2
h−Cv .l2v
Jz .v

Cv .lv
Jz

0
0 0 0 1
0 0 0 0

 , (3.113)

where Cv and Ch are cornering stiffness of both the front and the rear tires, m is mass of
the vehicle , Jz is the yaw moment of inertia of the vehicle in z-direction, v is velocity of
the vehicle, lv is the distnace between the front wheels and the center of gravity of the
vehicle and lh is the distnace between the rear wheels and the center of gravity of the
vehicle.

This state equation can be used to find the state of a vehicle with the use of the Kalman
filter.

The second model was used to evaluate the first simple model as it is presented in
[FDL03]. Out of the different scenarios used for this evaluation purpose, the Authors of
the mentioned work gave one as an example. The trajectories, which are produced, with
both models are almost the same, only with a small error.
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Figure 3.2: Friction elipse [DD07]

3.12 Simplified Dynamic Model of a Vehicle

The following model is taken from [DD07] and [Eid08].

For the following description, see Fig 3.2. In this model the vehicle is assumed to be
controlled with the two control input values (u1, u2), where the first input is for the
longitudinal motion and the second is for the lateral motion.The allowed acceleration on
the friction ellipse is found out by intersecting the friction ellipse itself with a rectangle
having maximum engine torque and maximum steering angle as sides. A separate
treatment of the longitudinal and lateral acceleration is used and the limitation is based
on the vehicle speed v and the switching threshold speed values in the longitudinal and
lateral directions, vlong and vlat.

If v 6 vlat, the maximum steering angle ϕmax and the wheel base L keep the lateral
acceleration in a limited interval, and if v > vlat only the road friction af limits it. On
the other hand, if v > vlong, engine torque k

v (k is engine power divided by the mass of
the vehicle) and road friction are the two limiting factors, which limit the longitudinal
acceleration, whereas if v ≤ vlong the limiting factor is the road friction af . According to
Eidehall’s argument, it is the road friction, which limits the vehicle’s braking acceleration
rather than the engine torque.

As per the experimental investigations forwarded in [Eid08] , the expected mean longi-
tudinal and lateral accelerations (ālong, ālat) are zero, as calculated and confirmed from
highway drive data.

The equations are given as

Symbol ẋ denotes the x componenet of the velocity and reads:
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ẋ = v cos θ, (3.114)

where v is the velocity and θ is the heading angle.

Symbol ẏ denotes the y componenet of the velocity and reads:

ẏ = v sin θ, (3.115)

where v is the velocity and θ is the heading angle.

Symbol v̇ denotes acceleration and reads:

v̇ = { u1
k
v if v > vlong andu1 ≥ 0

u1af else
, (3.116)

where u1 is longitudinal motion control input value, kv is engine power divided by the
mass of the vehicle, af is the maximum acceleration on the friction ellipse and vlong is
the limiting longitudinal velocity.

Symbol θ̇ denotes the rate of change of heading angle and reads:

θ̇ = { v sin ((ϕmaxu2) /L) if v ≤ vlat
u2af/v if v > vlat

, (3.117)

where δmax is the maximum steering angle, u2 is lateral motion control input value, L
width of the wheel base of the vehicle, af is the maximum acceleration on the friction
ellipse and vlat is the limiting lateral velocity.

3.13 Simplified bicycle type vehicle model

The following part is taken from [GCT08].

The following model is a single track model and is usually called as the bicycle model, which
takes into account the behavioral and stability issues listed below, thereby integrating
constraints related to vehicle kinematics. The name bicycle is an arbitrarly given name
and has no relation with the kinematics of a bicyle .

• No transfer of lateral tire load: the vehicle is assumed as if it is moving only on a
single track

• No longitudinal transfer of tire loads, vehicles center of gravity is zero.
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• No roll or pitch motion

• Tires are assumed to be a linear configuration

• Constant forward speed,v

• No aerodynamic effects

• Position control

• No effect from suspension and chassis flexibility

The implication of all the above assumptions is that the the acceleration is bound to
remain below 0.4g, the steering and drift angles are small and no suspension displacement
is assumed (as the road is assumed to be smooth). When the vehicle turns, it turns at
low velocity resulting in negligible centrifugal forces and no development of tyre lateral
forces, which means the tyre rolls without sliding or drifting and the instantaneous center
of rotation of each tyre lies in the middle of the curve.

Fig 3.3 shows how this model models a four wheel vehicle as a single track. The symbols
L and δ represent the distance between the front and rear wheels and the steering angle
respectively.

Figure 3.3: The “bicycle model” [GCT08]

Let (x,y) be the vehicle fixed coordinate system for this model, then its kinematic relations
are given as follows.

Symbol ẋ and ẏ denote the x and y componenets of the velocity and read:

ẋ = v. cos β, (3.118)

ẏ = v. sin β (3.119)
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and the rate of change of the slip angle β̇ read:

β̇ = v

L
tan δ, (3.120)

whereβ is the vehicle’s side slip, δ is the steering angle, v is the velocity of the vehicle
and L is distance between the front and rear wheels.
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4 Collision Prediction Models

In this chapter some representative models used for prediction of collision are discussed
and the associated mathematical derivations are also shown in detail. Among them the
3rd, 4th, 6th and 7th models are implemented directly or with some needed modifications.
Some similarity can be drawn among some of the models.

4.1 Global Approach

This is a model recently published in [SA09] and it incorporates several factors in it as
discussed below

This approach has three sequential steps for mitigating a collision;

1. Environment Modelling

2. Trajectory Prediction-with state estimators like Kalman filter

3. Collision Detection-with the use of TTC and intersecting circles concept

4. Risk Management-with the use of belt pretentioners, automated brake systems,
pre-firing of airbags and so on.

The whole process looks as illustarted in Fig 4.1. The environment is assessed with
proproceptive and extroceptive sensors and the signal from them is fused in the data
fusion model. The current environment state model makes evaluation of the static
enviroment, dynamic objects and ego vehicle state using the the sensor data obtained
from the data fusion mdel. Then the trajectories are checked, if they possibly result in
collisison or not. If the situation is found to be dangerous the necessary actuators are
activated.
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Figure 4.1: A block diagram summarizing the risk assessment steps [BY07]
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The uncertainty of Gravitational Position System (GPS) based location of a vehicle
is modeled with a Gaussian ellipse, which gives us the vehicle’s position probability.
The collision between two vehicles results in intersection of their corresponding ellipses.
Calculation of the intersection of ellipses is unfortunately time consuming, rather it is
much easier to perform intersection check up of series of circles inscribed in the ellipses
as shown in Fig. 4.2. Collision estimation is therefore based on calculation of respective
distances between the respective circles of the two vehicles. A collision is detected, if at
least one circle of one vehicle intersects with one or more circles of the other vehicle.
The algorithm consists of the following steps:

1. TTC calculation-tells the time available for the drivers for taking action for collision
avoidance or mitigation.

2. Number of circles intersecting-tells about the extent of the crash.
3. Duration of the circles intersection-the longer it takes,the higher the crash proba-

bility.

Figure 4.2: The collision detection is performed by detecting the collision between the
circles around each vehicle [BY07].

4.2 Extended Area of Crash

The following model is taken from [MRR06] and the reader is encouraged to refer the
mentioned literature for more details.
The maximum turning maneuver of a vehicle depends on the current speed v and the
grip potential µr between the tires and the road. µr = 1 is taken as most of the times
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the real value is unknown. The two maximum turning maneuvers, one to the right and
one to the left enclose, the crash area Dc.If an obstacle is in this area, it will definitely
be hit by the vehicle. The two maximum turning maneuvers have a radius of ro,min.

The x coordinate of no return point of an obstacle is calculated as

xcrash(y) =
√
r2
o,min − (ym,min + y)2 − (l + la) , (4.1)

where y is the y coordinate of the position of the obstacle, ro,min the outer turning
radius of the maximum maneuver, ym,min distance between the center of the maneuver
arc and the y axis, l distance between front and rear axle and la distance between the
front axle and the front bumper.

Figure 4.3: Crash area model [MRR06]
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Figure 4.4: x coordinate of no return point of an obstacle [MRR06]

The time needed for the driver, to lift his/her foot from the throttle pedal and place it
on the brake pedal is most of the times around 150 ms. This reaction time is modeled as
dead time. Then the corresponding distance resulting is calculated as

xreaction = v.treaction = v ∗ 0.15s. (4.2)

This reaction time and the corresponding area enlarges the crash area as shown in Fig
4.5. Dc now consists of the maneuver and the reaction areas. To calculate this area
we need to do prediction of the path, which depends on the current speed and steering
angles of the vehicles. For pre-crash cases, which involve very short time in the range of
a few hundred milliseconds, linear path assumption is sufficient.

When the vehicle is moving along a curve its rear is closer to the center of the curve than
its front. To find the resulting curved crash area, we need to do plotting of some selected
representative boundary points of the vehicle as shown in Fig 4.5.

Three coordinate systems are used for detecting a vehicle, whether it is lying in the
maneuver area or reaction area or in none of them.

1. Scar known as the car coordinate system fixed at the front of the car
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2. Sra known as reaction area coordinate system. It is fixed to the center of the curve.

3. Sma known as the maneuver area coordinate system, which is fixed at the end of
the reaction time

Checking whether a target is lying inside or outside of the crash area, involves the
transformation of the targets vehicle into the other coordinate systems. Comparing the
target’s radial position obtained after transformation into the reaction area coordinate
system, with the boundaries of the reaction area rrear,inner and rbumper,outer is used to
detect, whether a target is inside the reaction area. To detect whether a vehicle is inside
the maneuver area, we translate and rotate its coordinates from the vehicle coordinate
system into the maneuver area coordinate system, then finally we do check like we did
previously.

Figure 4.5: Crash area model incorporting driver reaction time [MRR06]
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Figure 4.6: Crash area model incorporting driver reaction time along a curve [MRR06]

4.3 Projection Overlap based

This model is taken from [Köh04] and some geometrical derivations are added to make the
general concept applicable. This algorithm is very fast and makes an accurate accident
situation assessment.

Fig 4.10 is explained here. The first step in this method is to get the relative velocity
direction and to define a projection line perpendicular to the relative velocity. Then all
the corners of the two rectangular representations of the vehicles are projected on this
line. The projection of each rectangle gives us a line. That means two lines from both
of the rectangles, which lie on the same line. The intersection of the two lines is the
overlap. To get this intersection, the method, which should be used, is to check, if one of
the end points of one projection lies between the two end points of the other projected
line. Thenafter it is possible to get the end points of the overlap line and to calculate
this length. Based on the length and the TTC, it is possible to calculate the collision
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probability.

The block diagram in Fig 4.7 shows the algorithm of collision prediction with the use of
overlap calculation. The object contour data is obtained from the vehicle detection and
tracking done by the sensors on all the objects viewed.

Figure 4.7: Crash Detection Algorithm [Köh04]

4.3.1 Overlap Calculation

Fig 4.6 shows the illustration of the original concept of overlap calculation. In the orignal
concept the ovrlap is the smaller one of OL and OR. The overlap calculation involves
calculating the relative velocity and its direction, finding the size of the projected size of
the vehicles on a line perpendicular to the relative velocity and also the center to center
distance of the two rectangles representing the vehicles and the last step is to calculate
the overlap using all the necessary angles and dimensions.
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Figure 4.8: Overlap Calculation [Köh04]

4.3.2 Normalized Overlap Calculation

After getting the size of the projected overlap, ov, the next step would be to calculate the
ratio of the overlap and the projected size of the vehicle. Here the size of the projected
ego vehicle is enlarged by a safety factor of ∆pe/2, that means by a total value of ∆pe
and this in turn leads to the enlargement of the overlap size, ov, by a safety factor of
∆pe.

The normalized overlap, ov′, reads

ov′ = ov + ∆pe/2
pe + ∆pe

. (4.3)

4.3.3 Point of First Contact (PFC) and Time to Collision Calculation(TTC)

The point of the target vehicle (object) contour, which has the shortest distance from
ego vehicle’s contour is named as the point of first contact (PFC). We can also take an
assumption that PFC is equivalent to the smallest distance between the two rectangular
boundaries of the two vehicles. The point should be a member of the points, which form
the overlap on the line perpendicular to the direction of the relative velocity. From PFC
and vrel, we can calculate the TTC value.
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The TTC is calculated as,

TTC = dPFC
vrel

, (4.4)

where dPFC is distance of first point of contact and vrel is the relative velocity.

Here in this diagram an illustration is given. The variable dpfc can be calculated with
the algorithm given in [JAC08].

Figure 4.9: Calculation of PFC and TTC [Köh04]

The x component of the relative velocity, vrel,x, is calculated as

vrel,x = (vtx − vex) , (4.5)

where vtx and vex are respectively the target and ego vehicles’ x component.

The y component of the relative velocity, vrel,y, is calculated as

vrel,y = (vty − vey) , (4.6)

where vty and vey are respectively the target and ego vehicles’ y components.
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If we know the slip angles of both vehicles, we can calculate the relative velocity
components, vrel,x and vrel,y , as

vrel,x = vt cos βt − ve cos βe, (4.7)

vrel,y = vt sin βt − ve sin βe, (4.8)

where vt and ve are the target and ego vehicles’ velocities and βt and βe are the target
and ego vehicles’ side slip angles.

The relative velocity, vrel, can be calculated from the above components as

vrel =
√

(vrel,x)2 + (vrel,y)2, (4.9)

vrel,x and vrel,y are respectively the x and y components of the velocities.

4.3.4 Crash Likeness(CL)

with the following metrics the likeness of crash, CL, can be calculated as

CL = ov′

TTC −∆t , (4.10)

where ∆t is delay time, which might be vehicle specific and is determined experimentally,
ov′ is the nomalized overlap and TTC is the time to collision.

4.3.5 Geometrical Analysis of Overlap Calculation

This part is a further contribution to the orginal work and it is derived with the thought
of making it applicable. Fig 4.10 shows us all the important dimensions and angles used
to calculate the overlap of the two vehicles.
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Figure 4.10: Overlap calculation geometry

The angle that the relative velocity makes with the horizontal axis, θrel, reads:

θrel = arctan
(
vrel,y
vrel,x

)
, (4.11)

where vrel,y and vrel,x are the y and x components of the relative velocity respectively.

The angle of the line perpendicular to the relative velocity, θrelp, reads:

θrelp = θrel + π

2 , (4.12)

where θrel is the angle that the relative velocity makes with the horizontal axis.
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The angle between the side of the ego vehicle and perpendicular line, θes, reads:

θes = |θrelp − θe|, (4.13)

where θrelp is the angle of the line perpendicular to the relative velocity andθe is the
heading angle of the ego vehicle.

The angle between the front of the ego vehicle and perpendicular line, θef , reads:

θef = |θrelp − θe|+
π

2 , (4.14)

where θrelp is the angle of the line perpendicular to the relative velocity andθe is the
heading angle of the ego vehicle.

The angle between the side of the ego vehicle and perpendicular line, θts, reads:

θts = |θrelp − θt|, (4.15)

where θrelp is the angle of the line perpendicular to the relative velocity andθt is the
heading angle of the ego vehicle.

The angle between the front of the ego vehicle and perpendicular line, θtf , reads:

θtf = |θrelp − θt|+
π

2 , (4.16)

where θrelp is the angle of the line perpendicular to the relative velocity andθt is the
heading angle of the ego vehicle.

The ego vehicle projection on the line perpendicular to the relative velocity, pe, reads:

pe = |le cos θes|+ |we sin θef |, (4.17)
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where le is length of the ego vehicle, we is width of the ego vehicle, θes is the angle
between the side of the ego vehicle and the perpendicular line and θef is the angle
between the front of the ego vehicle and the perpendicular line.

The target vehicle projection on the line perpendicular to the relative velocity, pt, reads:

pt = |lt cos θts|+ |wt sin θtf |, (4.18)

where lt is length of the target vehicle, wt is width of the target vehicle, θts is the angle
between the side of the target vehicle and the perpendicular line and θtf is the angle
between the front of the target vehicle and the perpendicular line.

The minimum possible size of the projected center to center distance on the line
perpendicular to the relative velocity that results in 0 overlap, χmin, reads:

χmin = 1
2 (pe + pt) , (4.19)

where pe and pt are the ego and target vehicle projections on the line perpendicular to
the relative velocity.

The actual size of the projected center to center distance on the line perpendicular to
the relative velocity, χ, reads:

χ = |d cos (θrelp ± θcc) |, (4.20)

where d is the center to center distance between the two vehicles, θrelp is the angle of the
line perpendicular to the relative velocity and θcc the angle of the line connecting the
two CGs of the vehicles with the horizontal.

The projected overlap, ov, reads:

ov = |χmin − χ| = |
1
2 (pe + po)− |d cos (θrelp ± θcc) ||. (4.21)

The center to center distance between the two vehicles, d, is calculated as
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d =
√

(xt − xe)2 + (yt − ye)2, (4.22)

where (xe, ye)and (xt, yt) are the x and y components of the ego and target vehicles
respectively.

The tangent of the angle of the line connecting the two CGs of the vehicles with the
horizontal, tan θcc is calculated as

tan θcc = (yt − ye)
(xt − xe)

, (4.23)

where (xe, ye)and (xt, yt) are the x and y components of the ego and target vehicles
respectively.

4.4 Monte Carlo Simulation based

Monte Carlo Based Collision Probability Estimation The following collision prediction
is based on the work presented in [LGPN08]. Unlike many authors, who implemented
the estimation of the timely occupation of a vehicle by an ellipse, with a 90% probability
accuracy of vehicle orientation and occupation representation, the Monte Carlo Based
Collision Estimation presented in [LGPN08] makes use of the whole probability density
functions (pdfs) of the volumes, positions and orientations of both the ego and target-
vehicles, resulting in a more accurate collision prediction. The method takes into account
both the three dimensional uncertainty of the vehicles and as well as their volumes.
Moreover it can be used for collision prediction for the cases, when multiple obstacles are
being tracked.

Vehicle Models The positions and orintations of the two vehicles, xvand xo, are
expressed as

xv = (xv, yv, θv)T , (4.24)

xo = (xo, yo, θo)T , (4.25)
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where the indexes v and o show those variables, which represent the ego and target
vehicles respectively, (xv, yv) and(xo, yo)are the representative points of the vehicles and
here considered as the geometric centers of the two rectangles representing the vehicles
on a 2D map and θvand θoare the respective orientations of the ego vehicle and the
target vehicle.

Uncertainty Modeling of the two vehicles From their respective mean state, x̂, and
covariance,Σ, of the two vehicles, we can calculate their probability distribution function
as

p(x) = 1(√
2π
)n√

det (Σ)
e−

1
2 ((x−x̂)Σ−1(x−x̂)), (4.26)

where n is the size of x, i.e. 3 in this case and Σ is the covariance matrix.

The covariance, Σ, is given as

Σ =
(
(x− x̂) (x− x̂)T

)
, (4.27)

where x is the state vector and x̂ is the mean vector.

The mean and the covariance matrices can be obtained from Extended Kalman Filter or
Unscented Kalman Filter.

A more complete state description of a vehicle can include the orientations, covariances
and physical occupations in a vector.

Symbols v and o denote the ego vehicle and the target vehicle respectively and read:

v = (xv,Σv, vv), (4.28)

o = (xo,Σo, vo), (4.29)

where xvand xo are the positions and orintations of the two vehicles, Σvand Σo are the
respective covariance matrices and νv and νo are used to denote the two polygonal
representations of the vehicles.
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Probability of collision for two vehicles with Gaussian uncertainties The probability
of collision between two vehicles is the probability that their rectangular representations
share the same space after some time. The collision probability, p(v, o), can be written
mathematically as

p(v, o) =
ˆ
D
pv(xv, yv, θv).po(xo, yo, θo) dxvdyvdθvdxodyodθo, (4.30)

where

D =
{

(xv, yv, θv, xo, yo, θo) εR6|νv(xv, yv, θv) ∩ νo(xo, yo, θo) 6= φ
}
. (4.31)

This equation cannot be solved analytically. Nevertheless it can be solved using Monte
Carlo Simulation.

Monte Carlo Solution for the Collision Probability The above equation can be written
as

p(v, o) =
ˆ
D
γ pv(xv, yv, θv).po(xo, yo, θo) dxvdyvdθvdxodyodθo, (4.32)

where

γ = (vv (xv, yv, θv) , vo (xo, yo, θo)) (4.33)

is a collision test between the two geometries and is evaluated as

γ =
{

1 if νv(xv, yv, θv) ∩ νo(xo, yo, θo) 6= φ 0 if νv(xv, yv, θv) ∩ νo(xo, yo, θo) = φ .

(4.34)

The algorithm is summarised in Algorithm 4.1. The algorithm generate radom states of
both vehicles using their state means and covariances and check for intersection. perform
this for N times. The collisison probability is calculated as the number of collision
resulting states divided by N.
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Algorithm 4.1 Faster computing of the probability of collision between v and o [LGPN08]

4.5 Joint pdf Estimation based

The following model is presented in [Jan05]

The joint pdf of the ego and target vehicles is formed from their relative position to each
other. The joint pdf is calculated from the future absolute position pdfs of both vehicles,
which can be obtained by state estimation.The probability of collision is calculated by
integrating the joint pdf over the area of their physical overlap, where collision would
take place.

Symbol Probcollision is the probability of collision and reads:

Probcollision = max(Prob(xt+iT εD)
i

), i = 1, ..., N, (4.35)

whereD represents the state space, which corresponds to collision.

Fig 4.11 shows the relative positional vector of the two vehicles and region of their
physical overlap. The set of all possible orientations of collision are represented by D.
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Figure 4.11: The set D corresponds to all possible configurations between the two vehicles,
which results in collision [Jan05].

The Probability of collision for each time instant for three dimensional case, Probcollision at time t+T ,
is calculated as

Probcollision at time t+T = Prob(p̃x,t+T , p̃y,t+T , ψ̃t+T εD), (4.36)

and

Probcollision at time t+T =
˚

p̃x,p̃y , ˜ψεD
pt+T (p̃x, p̃y, ψ̃/Y )dxdydψ, (4.37)

where pt+T is the probability function of the relative position of the two vehicles, p̃x
and p̃y are the x and y components of the relative position of the two vehicles, ψ̃ is the
relative angle of the two vehicles, D is the region, where collision is expected to happen,
Y is the measurement vector and T is the time span.

The above estimation problem can be reduced to a two dimensional problem by disre-
garding the heading angle and approximating D with a rectangle. The rectangle has
width, which is equal to the sum of the widths of the two vehicles and length, which
is equal to the length of the ego vehicle. An assumption of the in-dependency of the
movement of the two vehicles in x and y direction is taken.

The probability of collision taking these assumptions, Prob(collision at time t + i), is
calculated as

Prob(collision at time t+ i) =
¨
p̃εD

pt+iT (p̃x, p̃y/Yt)dxdy, (4.38)
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where pt+T is the probability function of the relative position of the two vehicles, p̃x
and p̃y are the x and y components of the relative position of the two vehicles, D is the
region, where collision is expected to happen, Y is the measurement vector and T is the
time span.
Integrating the probability density on the area D , we get an expression, which involves
the corresponding cumulative density functions. See the details in [Jan05].

4.6 Stochastic drivers’ Input based

In this section the situation assessment of vehicle to vehicle collision in [KSD09] is
discussed and some changes are suggested. The changes include use of a better simple
realistic vehicle dynamic model for trajectory generation and also a collision index, which
is quite easy to calculate from the measurable parameters of both vehicles.

4.6.1 Model I

In the mentioned work it is assumed that the inputs of the drivers of both the ego and
the host vehicles are unknown. The algorithm considers all the combinations of the
trajectories of the vehicles at the maximum handling limits of the vehicles. A collision
is unavoidable, if any of these combinations doesn’t result in collision avoidance. The
algorithm takes the maximum possible acceleration of the vehicle and gets the longitudinal
and lateral acceleration components of a certain maneuver with a given angle γ on the
Kamm’s circle for both the ego and target vehicles. This leads to the conclusion that
[γego, γtarget] define the trajectory combinations of the two vehicles.
The longitudinal and lateral accelerations, al and ac, are given as

al = a. cos(γ), (4.39)

ac = a. sin(γ), (4.40)

where a is the acceleration of the vehicle and, γ maneuver angle on the Kamm’s circle.
The limiting friction force, Ff , is the maximum force that the wheels can transmit to
the surface of the road and is given as

Ff = µ0mg, (4.41)

where µ0 road friction, m mass of the vehicle and g gravitational acceleration.

68



4 Collision Prediction Models

The force which is applied to move it, Fa, is calculated as

Fa = ma, (4.42)

where m is the mass of the vehicle and, a is acceleration of the vehicle.
Then the maximum acceleration, amax, is calculated as

amax = µ0g, (4.43)

where µ0 is the road friction, g is the gravitational acceleration.
The maximum acceleration of standard vehicles can reach up to 11 [ m/s2].
Fig 4.12 shows the Kamm circle. At 0°, the vehicle is fully accelerated , whereas at 180°,
it is fully braking. At 90°, it is turning to the left, whereas at 270°, it is turning to the
right. The acceleration, a, has longitudinal and lateral components, al and acrespectively.

Figure 4.12: Kamm’s circle[KSD09]

The motion model used for getting the trajectories is given with the following equations.
The acceleration, v̇(t), is given as

v̇(t) = amax cos(γ), (4.44)

where amax is the maximum possible acceleration and γ is the maneuver angle on the
Kamm circle.
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Symbol ψ̇denotes the yaw rate and reads

ψ̇ = min

(
amax sin(γ)

v(t) ,
v(t)
rmin

)
, (4.45)

where amax is the maximum possible acceleration, γ is the maneuver angle on the Kamm’s
circle, v(t) is the velocity of the vehicle and rmin is the minimum possible turning radius
for the given velocity.

Symbols ẋt and ẏt denote the x and y components of the velocity respectively and read

ẋt = v(t) cos(ψ(t)), (4.46)

ẏt = v(t) cos(ψ(t)), (4.47)

where v(t) is the velocity of the vehicle and ψ(t) is the heading angle.

Fig 4.13 shows the possible trajectories for a =10 m/s2 and v0 =20 m/s for a time
prediction of 1 s on x-y coordinate system. The curves in blue color are the limiting
trajectories.

Figure 4.13: Possible trajectories for a =10 m/s2 and v0 =20 m/s for a prediction of 1 s
[KSD09] .

Kaemphen defined the size of the area of the opponent vehicle’s body between the lines
drawn from the two front corners of the ego vehicle towards the opponent vehicle in the
direction of their relative velocity as a collision index. This collision index is directly
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proportional to the extent of the crash, which means that it is very small in cases where
the two vehicles touch barely to each other and large if they centrally crash. See Fig 4.14.

Figure 4.14: Collision index determination. The size of the gray area is the collision index
[KSD09].

For a given trajectory combination with maneuver angles [γego, γtarget] , the relative
velocity vr = [vx, vy] is calculated from the velocities of both vehicles as

vr,x = vx,ego − vx,target = vego cos(ψego)− vtarget cos(ψtarget), (4.48)

vr,y = vy,ego − vy,target = vego sin(ψego)− vtarget sin(ψtarget). (4.49)

In the implementation of the algorithm searching for the the minimum collision index
is crucial. If we find out that the collision matrix has a value of zero for a certain
combination, it means that the collision can still be avoided. But if there is no any
combination which leads to a collision index of zero the collision is inevitable and the
safety system should be activated. Searching for the minimum collision index involves
usage of gradient-descent algorithm in four different areas of the matrix. Each area
corresponds to a certain trajectory combination of the vehicles. The number of of the
local minima is always 1 or 2. If there are two local minima, they will be situated opposite
to each other on the Kamm’s circle.
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4.6.2 Model II

In this model an alternative way of implementing the concept of the first model is
suggested. The following changes are made:

A better motion model A better motion model, which considers the friction limits and
engine torque is used. Basically the set of equations is quite similar to that of the one in
section 3.11 but it is modified based on the model in [GCT08].

The rate of position of the vehicle in x and y direction, ẋ and ẏ are calculated as

ẋ = v cos β, (4.50)

ẏ = v sin β, (4.51)

where v is velocity and β is the side slip angle.

The acceleration of the vehicle in terms of the maximum engine power or the maximum
acceleration, v̇, which depends on the friction is given as

v̇ = { u1
k
v if v > vlong andu1 ≥ 0

u1af else
, (4.52)

where u1 is longitudinal motion control input value, kv is engine power divided by the
mass of the vehicle, af is the maximum acceleration on the friction ellipse and vlong is
the limiting longitudinal velocity.

The rate of the slip with time of the vehicle in terms of the maximum steering angle or
the maximum acceleration, β̇, which depends on the friction is given as

β̇ = { v tan ((δmaxu2) /L) if v ≤ vlat
u2af/v if v > vlat

, (4.53)

where δmax is the maximum steering angle, u2 is lateral motion control input value, L
width of the wheel base of the vehicle, af is the maximum acceleration on the friction
ellipse and vlat is the limiting lateral velocity.
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The rate of the heading angle with time of the vehicle in terms of the maximum steering
angle or the maximum acceleration, which depends on the friction is given as

θ̇ = { v sin ((δmaxu2) /L) if v ≤ vlat
u2af/v if v > vlat

. (4.54)

Using Euler’s integration the above equations are integrated as follows

The position of the vehicle is calculated as

xk+1 = xk + T · vk · cos(βk), (4.55)

yk+1 = yk + T · vk · sin(βk). (4.56)

The velocity of the vehicle is calculated as

vk+1 = vk + T{ u1
k
v if v > vlong andu1 ≥ 0

u1af else
. (4.57)

The side slip angle of the vehicle, β, is calculated as

βk+1 = βk + T{ v tan ((δmaxu2) /L) if v ≤ vlat
u2af/v if v > vlat

, (4.58)

where T is time span, δmax is the maximum steering angle, u2 is lateral motion control
input value, L width of the wheel base of the vehicle, af is the maximum acceleration on
the friction ellipse and
vlat is the limiting lateral velocity.

the heading angle of the vehicle, θ, is calculated as

θk+1 = θk + T{ v sin ((δmaxu2) /L) if v ≤ vlat
u2af/v if v > vlat

, (4.59)

where T is time span, δmax is the maximum steering angle, u2 is lateral motion control
input value, L width of the wheel base of the vehicle, af is the maximum acceleration on
the friction ellipse and vlat is the limiting lateral velocity.
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Trajectories of Arbitrary Inputs for both the Longitudinal and Lateral Motions All
the input combinations both in the longitudinal and lateral directions are considered.
In this model the vehicle is assumed to be controlled with the two control input values
(u1, u2), where the first input is for the longitudinal motion and the second is for the
lateral motion. Both have [−1, 1] as value range.

Different Possible Input combination of both vehicles The probability of collision is
calculated based on polygonal intersection algorithm and 16 possible combination of
maneuver types of the two vehicles. The collision probability is calculated in a similar
way to that implemented in 4.4. The advantage of doing this is that it makes it possible
to assess, which combination results in high collision risk and if we couple this with
tracking, it would be possible to estimate, the current combination of the inputs of the
two vehicles making it possible for us to estimate the corresponding risk involved.

The possible combinations are given in Tabel 4.1.

Table 4.1: Possible Maneuver combination

For each combination, equal number of arbitrary stochastic inputs are generated and
then trajectories are produced. For each pair of trajectories generated from the initial
conditions, polygon intersection check up is done. Monte Carlo simulation for a specified
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number of input generation coupled with trajectory generation and collision check up
is performed. The probability of collision for a certain maneuver combination is the
number of input generation, which resulted in collision divided by the total number of
input generations carried out. The same is done for all the possible combinations and
also as a whole for any arbitrary maneuver combination.

Collision metrics based on transformation and intersection check-up of the rectan-
gular representations The intersection of two rectangles is checked first by simulating
both rectangles with the motion models and finding the final positions. Then multiplying
all the four corners coordinates with both the translation and rotation matrices gives the
final coordinates. But in the beginning each corner of the rectangle should be express in
terms of the coordinates of the geometric centers, the dimensions of the rectangles and
the angle that their longitudinal axes make with the horizontal. After getting the new
coordinate values of the rectangles, the next step would be to check intersection. If there
is intersection the function should return the value of 1 and if not it should return the
value of 0.
The first step for the motion simulation is to randomly generate input values and based on
the randomly generated input values corresponding trajectories are generated. Depending
on whether this will cause the geometrical figures to intersect or not, the value of 1 or
0 is respectively assigned. By performing the simulation for as many input samples we
want, lots of check up results are obtained. Finally when the sum of 1s of the the samples
resulting in intersection is divided with the total sum of the the samples generated, the
probability of collision is found.

Minimum Time of Collision for Each Pairs of Trajectories Generated The minimum
time of collision is calculated for each pair of trajectories generated. And finally the
minimum possible collision time of all the generated pair of trajectories is found out with
Matlab Statistics Function min.

4.7 Model using covariance and space propagation

The following part is based on the work of [MZD09].
The ego-motion isignored for pre crash application, as the time duration is very short.
The error can be considered in the error covariance with an assumption of error in
acceleration with a magnitude of +/-10 m/s2.
For activating the Pre-crash actuator, propagation of the states with their covariance
matrices both in time and space, is an effective way of finding the probability of collision
and knowing, when and where it is going to occur.
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4.7.1 Measurement and State-Model

The measurement vector, z, in polar coordinates for radar based tracking is

z = [rz φz ṙz]T , (4.60)

where rz is range, φz is azimuth angle and ṙz is range rate.

The motion model used in this work is the nearly constant turn model and the state
vector,x, is given as

x = [xx yx ẋx ẏx]T , (4.61)

where xx is the x coordinate of the tracked object, yx is the y coordinate of the tracked
object, ẋx the velocity of the tracked object in x direction and ẏx the velocity of the
tracked object in y direction.

4.7.2 Propagation to collision space

A non-linear distribution Pspace of the state around the mean one is defined by taking N
samples around the mean according to the the covariance matrix. The next step to get
the non-Gaussian probability density is to non-linearly transform all the samples with
the use of the following function, yhit, which reads:

yhit(x(i)) =
{
yx − ẏx

ẋx
.xx ẋx 6= 0

∞ otherwise

}
, (4.62)

where yhit(x(i)) is the mean expected point of impact, xx is the x coordinate of the
tracked object, yx is the y coordinate of the tracked object, ẋx is the velocity of the
tracked object in x direction and ẏx is the velocity of the tracked object in y direction.

4.7.3 The collision space probability

The space covariance propagation pspace let us determine the collision space probability
and reads:

pspace = P
(
−w2 ≤ yhit(x

(i)) ≤ w

2

)
, (4.63)

where w is the width of the target vehicle.
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4.7.4 Propagation to collision time

Analyzing TTC of a vehicle tracked with a radar is very important to determine the
right triggering time of the actuators in a pre-crash system of the ego vehicle. As it
is mentioned above the transformation of the samples with the following non-linear
functions results into the two main parameters used for defining the TTC. Then the TTC
with its variance and mean is found out by calculation using the TTC formula.

The expected point of impact, see equation (4.69)

yhit(x) =
{
yx − ẏx

ẋx
.xx ẋx 6= 0

∞ otherwise

}
(4.64)

The range of the target vehicle, rhit, from the ego vehicle is calculated as

rhit =
√
x2
x + y2

x, (4.65)

where xx is the x coordinate of the tracked object and yx is the y coordinate of the
tracked object.

The mean angle of point of impact, φhit(x) , is a calculated with the following formula

φhit(x) =
{

arctan
(
yhit(x)−yx

xx

)
if xx 6= 0

∞ otherwise

}
, (4.66)

where yhit(x) is the mean expected point of impact, xx is the x coordinate of the tracked
object and yx is the y coordinate of the tracked object.

The range rate, ṙhit is calculated as follows

ṙhit = −ẋx. cos(φhit(x)) + ẏx. sin(φhit(x)), (4.67)

where ẋx is the velocity of the tracked object in x direction, ẏx is the velocity of the
tracked object in y direction and φhit(x) is the mean angle of point of impact.

The transformed TTC, TTChit(x(i)), gives us the TTC distribution and is calculated as
follows.
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TTChit(x(i)) = rhit(x(i))
ṙhit

(
x(i)) , (4.68)

where rhit(x(i)) is the mean range point of impact and ṙhit
(
x(i)

)
is the mean rate of

change of range point of impact.

4.7.5 Actuator trigger

If the covariance propagation of the TTC lies between 200 and 400ms and the collision
space probability is greater than experimental predetermined threshold, the actuator is
activated [MZD09]. To make sure the trigger time accuracy, the variance of the TTC
can also be evaluated and if its variance is below a certain threshold value, the actuators
are triggered.
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5 Simulation of Selected Tracking and
Collision Models

In this chapter some of the models presented in the last two chapters are implemented.
The first part deals with the implementation of the Kalman filter for tracking. In this
part the purpose is to show the tracking model used for collision estimation and to show
the suitability of the coordinated turn model due to its adaptive nature.

The second part deals with different vehicle collision prediction models. Some of the
models are tested with different collision scenarios, which were generated with the use of
the software package PC-Crash.

5.1 Simulation of Selected Vehicle Tracking Models

5.1.1 Radar based Constant Velocity Model with EKF and UKF

Fig 5.1 shows the result of tracking an object with the constant velocity model using a
radar sensor. The trajectory is synthetically generated and the same model is used for
collision assessment. The model is a modified version of the bearing only tracking demo
model of ekf/ukf toolbox[HS07].
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Figure 5.1: Radar measurement based tracking with a constant velocity motion model

Fig 5.2 and Fig 5.3 show the error involved in the tracking along x and y directions.
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Figure 5.2: Error in tracking of x direction

Figure 5.3: Error in tracking of y direction
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Figure 5.4: Radar measurement based tracking with an IMM Coordinated Turn model

5.1.2 Radar based Coordinated Turn Model with EKF and UKF

Fig 5.4, shows the result of radar measurement based tracking, which implements the
IMM tracking. The model is a modified version of the bearing only coordinated tracking
demo model of ekf/ukf toolbox [HS07]. Tracking vehicles along a straight road and a
curved one is possible with this model. The following plot shows this.
Mean square errors of position estimates of this tracking example is given as follows and
from the numbers we see that the IMM models perform better than the others. The Root
Mean Square Error (RMSE) is used to measure the differences between the prediction
values of an estimator and the actual values.

RMSE value
EKF-RMSE 0.0108
UKF-RMSE 0.0106
EIMM-RMSE 0.0060
UIMM-RMSE 0.0046

Fig 5.4 shows that the turning rate is very closely tracked, exhibiting the advantage of
the Coordinated Turn Model.
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Figure 5.5: Estimation of the turning rate

5.2 Simulation of Selected Collision Estimation Models

5.2.1 Projection Overlap based

Here a simulation result of two scenarios are investigated with the use of collision
prediction model based on projection overlap based, in which there is no offset in the
first case and there is an offset in the other one. For the model the code in [JAC08] is
used to calculate the minimum distance between the two rectangular representations of
the vehicles.

Test case a In this case a full overlap head on collision is considered. In the table
below we see the dependence of collision likeness on the distance between the two vehicles.
Collision likeness increases as distance between the two vehicles gets less and less. Tabel
5.1 shows the output of this model by varying the distance between the two vehicles.
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Table 5.1: Input data and simulation result of test Test case a

Where xe is x coordinate of ego vehicle, ye is y coordinate of ego vehicle, betae is the
side slip angle of the ego vehicle, thetae is heading angle of the ego vehicle, le is length of
the ego vehicle, we is width of the ego vehicle, xt is x coordinate of target vehicle, yt is y
coordinate of target vehicle, betat is slip angle of the target vehicle, thetat is heading
angle of the target vehicle, lt is length of the target vehicle, wt is width of the target
vehicle, collikeness collision likeness, TTC is time to collision and min_d is the minimum
distance between the two vehicles.

Fig 5.6 shows the relation between TTC and Overlap based Collision Likeness. The two
variables are inversely related. As the TTC gets smaller and smaller, the collision likeness
gets larger and larger.

Figure 5.6: TTC versus Collision Likeness for a 0 offset case
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Test Case b In this case a head on collision with an offset of 0.5m is considered. In
comparison with Test Case b, the offset has an effect of lowering the collision likeness
depending on its value. Tabel 5.2 shows the output of this model by varying the distance
between the two vehicles in the presence of offset.

Table 5.2: Input data and simulation result of test Test case b

For the definition of the variables, see Test Case a.

The effect of the offset is a reduced collision likeness as compared to the above one as
shown in Fig 5.7, where there was no offset but the relation between TTC and Collision
Likeness is similar.

Figure 5.7: TCC versus Collision Likeness for an offset of 0.5m case
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5.2.2 Monte Carlo Simulation based

Here a simulation scenario of a rear end collision of two vehicles in which a vehicle
driving with a speed of 70 kph following a vehicle driving with 20 kph is presented. For
the implementation of this model, the code in [Gia09] and [Fel07] is used for polygonal
intersection check up and and creating a gaussian distribution of the states from the
mean and covariance of each vehicle.

Fig 5.8 shows the situation after 0.3s. The collision probability is 0 at this moment.
From the diagram, one can understand that the spread of each vehicle around the mean
depends on its covariance matrix of state estimation.

Figure 5.8: Orientation of the vehicles after 0.3s

Fig 5.9, shows the situation after 0.4s. The collision probability is 0.567 at this moment.
More than half of the cases result in collision.
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Figure 5.9: Orientation of the vehicles after 0.4s

Fig 5.9, shows the situation after 0.45s. The collision probability is 0.967 at this moment.
At this moment the occurrence of collision is inevitable.
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Figure 5.10: Orientation of the vehicles after 0.967

In this simullation , Le=2.4 is length of the ego vehicle, we=1.5 is width of the vehicle,
toe=0 is initial time of the ego vehicle, xoe=0 is initial x value of the ego vehicle, yoe=0 is
initial y value of the ego vehicle, voe=70kph is initial x value of the ego vehicle, phioe=0
is initial heading the ego vehicle, betaoe=0 is initial slip angle of the ego vehicle, lt=2.4
is length of the target vehicle, wt=1.5 is width of the target vehicle, tot=0 is initial time
of the target vehicle, xot=8 is initial x value of the target vehicle, yot=0 is initial y value
of the target vehicle, vot=20kph is initial x value of the target vehicle, phiot=0 is initial
heading the target vehicle and betaot=0 is initial slip angle of the target vehicle.
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5.2.3 collision prediction using stochastic drivers’ Input

Here the simulation of two accident scenarios are discussed, in which one is without an
offset and the other with an offset. For the implementation of this model, the code from
[Gia09] is used for polygonal intersection check up.

Test Case 1a

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (10,0),
the slip angle is 0, the heading angle is 180° and its speed is 70kph. The minimum
possible collision time=0.217 and the total probability of collision=0.052. Overall the
danger of collision at this moment is small. See Fig 5.11 and Fig 5.12.

Figure 5.11: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1a
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Figure 5.12: Collisison Probabilities of the Strategies of 1a

Test Case 1b

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (8,0), the
slip angle is 0, the heading angle is 180° and its speed is 70kph.

The minimum possible collision time=0.15 and the total probability of collision=0.086.
Overall the danger of collision at this moment is small. The one with the largest collision
probability is strategy 4 with a corresponding value of 0.28. See Fig 5.13 and Fig 5.14.
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Figure 5.13: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1b

Figure 5.14: Collisison Probabilities of the Strategies 1b

Test Case 1c

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (6,0), the
slip angle is 0, the heading angle is 180° and its speed is 70kph. The minimum possible
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collision time=0.117 and the total probability of collision=0.216. See Fig 5.15 and Fig
5.16.

Figure 5.15: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1c

Figure 5.16: Collisison Probabilities of the Strategies 1c

Test Case 1d
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The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (4,0), the
slip angle is 0, the heading angle is 180° and its speed is 70kph.

The minimum possible collision time=0.033, and the total probability of collision=0.999.
Here collision is inescapable. See Fig 5.17 and Fig 5.18.

Figure 5.17: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1d

Figure 5.18: Collisison Probabilities of the Strategies 1d
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As can be seen in the following table, Tabel 5.3, the minimum possible collision time and
the total probability of collision increases as the distance between the vehicle gets less
and less.

Table 5.3: Simulation result of test Test case 1

Test Case 2a

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (10,3),
the slip angle is 0, the heading angle is 180° and its speed is 70kph.(10m distance in
between)

The minimum possible collision time=0.25 and the total probability of collision=0.04.
The probability of collision is quite small at this specific moment. See Fig 5.19 and Fig
5.20.
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Figure 5.19: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1a

Figure 5.20: Collisison Probabilities of the Strategies 2a

Test Case 2b

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (8,3), the
slip angle is 0, the heading angle is 180° and its speed is 70kph.(8m distance in between)
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The minimum possible collision time=0.167 and the total probability of collision=0.065.
See Fig 5.21 and Fig 5.22.

Figure 5.21: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1a

Figure 5.22: Collisison Probabilities of the Strategies 2b

Test Case 2c
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The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (6,3), the
slip angle is 0, the heading angle is 180° and its speed is 70kph.(6m distance in between)

The minimum possible collision time=0.133 and the total probability of collision=0.123.
Overall the danger of collision at this moment is small but in some specific cases is
getting higher. See Fig 5.23 and Fig 5.24.

Figure 5.23: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1a
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Figure 5.24: Collisison Probabilities of the Strategies 2c

Test Case 2d

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (4,3), the
slip angle is 0, the heading angle is 180° and its speed is 70kph.(4m distance in between)

The minimum possible collision time=0.067 and the total probability of collision=0.429.
Overall the danger of collision at this moment is getting higher and higher. Among all
the strategies strategy 1,2,3,4 and 9 have the highest collision probability. See Fig 5.25
and Fig 5.26.
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Figure 5.25: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1a

Figure 5.26: Collisison Probabilities of the Strategies 2d

Test Case 2e

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (3.6,3),
the slip angle is 0, the heading angle is 180° and its speed is 70kph.(3.6m distance in
between)
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The minimum possible collision time=0.05 and the total probability of collision=0.522.
Overall the danger of collision at this moment is getting higher and higher. Among all
the strategies strategy 1,2,3,4,6,9 and 11 have the highest collision probability. See Fig
5.27 and Fig 5.28.

Figure 5.27: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1a

Figure 5.28: Collisison Probabilities of the Strategies 2e
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Test Case 2f

The initial coordinate of the ego vehicle is (0,0), both the slip and heading angles are
equal to 0 and its speed is 50kph. The initial coordinate of the target vehicle is (6,0), the
slip angle is 0, the heading angle is 180° and its speed is 70kph.(3m distance in between)

The minimum possible collision time=0.05 and the total probability of collision=0.669.
As can be seen in the following table the minimum possible collision time and the total
probability of collision increases as the distance between the vehicle gets less and less.
See Fig 5.29 and 5.30.

Figure 5.29: Trajectories generated and Collision probability of a strategy followed by
the two vehicles of Test Case 1a
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Figure 5.30: Collisison Probabilities of the Strategies 2f

As can be seen in the following table, Tabel 5.4, the minimum possible collision time
and the total probability of collision increases as the distance between the vehicles gets
less and less. Compared to the result of Table 5.3, we see the corresponding collision of
probability to an equivalent distance in x direction is less due to the offset.

Table 5.4: Simulation result of test Test case 2
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5.2.4 TTC and Space Propagation based

Here in this section the simulation result of different accident scenarios, which are based
on TTC and space propagation are presented. Here a modified version of the bearing
only tracking demo model of ekf/ukf toolbox in [HS07] and the code in [Fel07] is used.
The measurement update is 0.01s but it can be made larger depending on the time span
that we want to look each time in the future. Here as the ekf/ukf toolbox of Kalman
filtering is used for tracking, the time span for prediction and measurement are the same.

Tabel 5.5 and Tabel 5.6 are the test matrices of the test scenarios examined with the
mentioned algorithm. The first tabel is for the ego vehicle data and the second tabel is
for the corresponding data of the target vehicle. All together, it consist of 18 different
scenarios. The simulations were performed with PC-Crash with a VW Golf, as an ego
vehicle and and Opel Astra as a target vehicle. Symbol vx is the longitudinal velocity of
each vehicle, pedal position value is in between 1 (full acceleration) and -1 (full braking).
the steering angle is the angle measured at the wheel. Overlap shows, how much percent
of the vehicles are to be involved in collision.

Table 5.5: Test Scenario Matrix a
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Table 5.6: Test Scenario Matrix b

Test Scenario1 Fig 5.31 shows the vehicle collision orientation for Test 1.

Figure 5.31: The final incidence orientation of test 1

Fig 5.32 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.32: Trajectory of test 1

Fig 5.33 and Fig 5.34 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.33: RMSE of x and y estimation of test 1
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Figure 5.34: RMSE of y estimation of test 1

In Fig 5.35, TTC goes down to zero and in Fig 5.36, the point of first contact lies between
-0.15 and 0.12, which all together indicates high probability of collision.

Figure 5.35: TTC of test 1
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Figure 5.36: Point of First Contact estimation of test 1

Test Scenario 2 Fig 5.37, shows the vehicle collision orientation for Test 2.

Figure 5.37: The final incidence orientation of test 2

Fig 5.38 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.38: Trajectory of test 2

Fig 5.39 and Fig 5.40 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.39: RMSE of x and y estimation of test 2
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Figure 5.40: RMSE of y estimation of test 2

In Fig 5.41, TTC goes down to zero and in Fig 5.42, the point of first contact lies between
-0.3 and 0.05, which all together indicates high probability of collision.

Figure 5.41: TTC of test 2
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Figure 5.42: Point of First Contact estimation of test 2

Test Scenario 3 Fig 5.43 shows the vehicle collision orientation for Test 3.

Figure 5.43: The final incidence orientation of test 3

Fig 5.44 shows the trajectory prediction of the last 0.6s before collision.

110



5 Simulation of Selected Tracking and Collision Models

Figure 5.44: Trajectory of test 3

Fig 5.45 and Fig 5.46 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.45: RMSE of x and y estimation of test 3

111



5 Simulation of Selected Tracking and Collision Models

Figure 5.46: RMSE of y estimation of test 3

In Fig 5.47, TTC goes down to zero and in Fig 5.48, the point of first contact lies between
-1.2 and 1, which all together indicates high probability of collision.

Figure 5.47: TTC of test 3
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Figure 5.48: Point of First Contact estimation of test 3

Test Scenario 4 Fig 5.49 shows the vehicle collision orientation for Test 4.

Figure 5.49: The final incidence orientation of test 4

Fig 5.50 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.50: Trajectory of test 4

Fig 5.51 and Fig 5.52 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.51: RMSE of x and y estimation of test 4
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Figure 5.52: RMSE of y estimation of test 4

In Fig 5.53, TTC goes down to zero for some time and starts to go up again and in Fig
5.54, the point of first contact grows from zero to 18, which all together indicates that
collision is unlikely.

Figure 5.53: TTC of test 4
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Figure 5.54: Point of First Contact estimation of test 4

Test Scenario 5 Fig 5.55 shows the vehicle collision orientation for Test 5.

Figure 5.55: The final incidence orientation of test 5

Fig 5.56 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.56: Trajectory of test 5

Fig 5.57 and Fig 5.58 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.57: RMSE of x and y estimation of test 5
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Figure 5.58: RMSE of y estimation of test 5

In Fig 5.59, TTC goes down to zero and in Fig 5.60, the point of first contact lies between
-0.5 and 1.8, which all together indicates high probability of collision.

Figure 5.59: TTC of test 5
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Figure 5.60: Point of First Contact estimation of test 5

Test Scenario 6 Fig 5.61 shows the vehicle collision orientation for Test 6.

Figure 5.61: The final incidence orientation of test 6

Fig 5.62 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.62: Trajectory of test 6

Fig 5.63 and Fig 5.64 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.63: RMSE of x and y estimation of test 6
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Figure 5.64: RMSE of y estimation of test 6

In Fig 5.65, TTC goes up for a while in the beginning and then starts to drop down
and in Fig 5.66, yhit was approximately 0 in the beginning then it went down abruptly,
which all together indicates low probability of collision.

Figure 5.65: TTC of test 6
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Figure 5.66: Point of First Contact estimation of test 6

Test Scenario 7 Fig 5.67 shows the vehicle collision orientation for Test 7.

Figure 5.67: The final incidence orientation of test 7

Fig 5.68 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.68: Trajectory of test 7

Fig 5.69 and Fig 5.70 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.69: RMSE of x and y estimation of test 7
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Figure 5.70: RMSE of y estimation of test 7

In Fig 5.71, TTC goes down to zero and in Fig 5.72, yhit has the mean value of 0 although
some divergence problem is observed, which all together indicates high probability of
collision.

Figure 5.71: TTC of test 7

124



5 Simulation of Selected Tracking and Collision Models

Figure 5.72: Point of First Contact estimation of test 7

Test Scenario 8 Fig 5.73 shows the vehicle collision orientation for Test 8.

Figure 5.73: The final incidence orientation of test 8

Fig 5.74 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.74: Trajectory of test 8

Fig 5.75 and Fig 5.76 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.75: RMSE of x and y estimation of test 8
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Figure 5.76: RMSE of y estimation of test 8

In Fig 5.77, TTC goes down below 0.1 and in Fig 5.78, yhit lies in between 0.75 and 1.05,
which all together indicates high probability of collision.

Figure 5.77: TTC of test 8
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Figure 5.78: Point of First Contact estimation of test 8

Test Scenario 9 Fig 5.79 shows the vehicle collision orientation for Test 9.

Figure 5.79: The final incidence orientation of test 9

Fig 5.80 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.80: Trajectory of test 9

Fig 5.81 and Fig 5.82 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.81: RMSE of x and y estimation of test 9
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Figure 5.82: RMSE of y estimation of test 9

In Fig 5.83, TTC goes down below 0.1 and in Fig 5.84, yhit lies in between 1.4 and 1.85,
which all together indicates moderate probability of collision.

Figure 5.83: TTC of test 9
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Figure 5.84: Point of First Contact estimation of test 9

Test Scenario10 Fig 5.85 shows the vehicle collision orientation for Test 10.

Figure 5.85: The final incidence orientation of test 10

Fig 5.86 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.86: Trajectory of test 10

Fig 5.87 and Fig 5.88 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.87: RMSE of x and y estimation of test 10
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Figure 5.88: RMSE of y estimation of test 10

In Fig 5.89, TTC goes down in the beginning and then it starts to go up. and in Fig 5.90,
yhit lies in between 1.88 and 2, which all together indicates that collision is unlikely.

Figure 5.89: TTC of test 10
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Figure 5.90: Point of First Contact estimation of test 10

Test Scenario11 Fig 5.91 shows the vehicle collision orientation for Test 11.

Figure 5.91: The final incidence orientation of test 11

Fig 5.92 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.92: Trajectory of test 11

Fig 5.93 and Fig 5.94 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.93: RMSE of x and y estimation of test 11
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Figure 5.94: RMSE of y estimation of test 11

In Fig 5.95, TTC goes down to zero and in Fig 5.96, yhit has the mean value of 0 although
some divergence problem is observed, which all together indicates high probability of
collision.

Figure 5.95: TTC of test 11
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Figure 5.96: Point of First Contact estimation of test 11

Test Scenario12 Fig 5.97 shows the vehicle collision orientation for Test 12.

Figure 5.97: The final incidence orientation of test 12

Fig 5.98, shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.98: Trajectory of test 12

Fig 5.99 and Fig 5.100 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.99: RMSE of x and y estimation of test 12
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Figure 5.100: RMSE of y estimation of test 12

In Fig 5.101, TTC goes up steadily and in Fig 5.102, yhit lies in the range of 0 and 3.2
in. This tells us that there is a very low probability of collision.

Figure 5.101: TTC of test 12
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Figure 5.102: Point of First Contact estimation of test 12

Test Scenario13 Fig 5.103 shows the vehicle collision orientation for Test 13.

Figure 5.103: The final incidence orientation of test 13

Fig 5.104 shows the trajectory prediction of the last 0.6s before collision.
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Figure 5.104: Trajectory of test 13

Fig 5.105 and Fig 5.106 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.105: RMSE of x and y estimation of test 13
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Figure 5.106: RMSE of y estimation of test 13

In Fig 5.107, TTC goes down to a value of 0 steadily and in Fig 5.108, yhit lies in the
range of 0.4 and 2.2. This tells us that there is some probability of collision.

Figure 5.107: TTC of test 13

142



5 Simulation of Selected Tracking and Collision Models

Figure 5.108: Point of First Contact estimation of test 13

Test Scenario14 Fig 5.109 shows the vehicle collision orientation for Test 14.

Figure 5.109: The final incidence orientation of test 14

Fig 5.110 shows the trajectory prediction of the last 0.6s before collision.
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5 Simulation of Selected Tracking and Collision Models

Figure 5.110: Trajectory of test 14

Fig 5.111 and Fig 5.112 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.111: RMSE of x and y estimation of test 14
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5 Simulation of Selected Tracking and Collision Models

Figure 5.112: RMSE of y estimation of test 14

In Fig 5.113, TTC goes down to a value of 0 steadily and in Fig 5.114, yhit lies in the
range of -0.35 and 0.05. This tells us that there is a high probability of collision.

Figure 5.113: TTC of test 14
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5 Simulation of Selected Tracking and Collision Models

Figure 5.114: Point of First Contact estimation of test 14

Test Scenario15 Fig 5.115 shows the vehicle collision orientation for Test 15.

Figure 5.115: The initial and final incidence orientation of test 15

Fig 5.116 shows the trajectory prediction of the last 0.6s before collision.
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5 Simulation of Selected Tracking and Collision Models

Figure 5.116: Trajectory of test 15

Fig 5.117 and Fig 5.118 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.117: RMSE of x and y estimation of test 15
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5 Simulation of Selected Tracking and Collision Models

Figure 5.118: RMSE of y estimation of test 15

In Fig 5.119, TTC goes up steadily and in Fig 5.120, yhit lies in the range of 4.915 and
4.96. This tells us that collision will not occur.

Figure 5.119: TTC of test 15
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5 Simulation of Selected Tracking and Collision Models

Figure 5.121: The initial and final incidence orientation of test 16

Figure 5.120: Point of First Contact estimation of test 15

Test Scenario16 Fig 5.121 shows the vehicle collision orientation for Test 16.

Fig 5.122 shows the trajectory prediction of the last 0.6s before collision.
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5 Simulation of Selected Tracking and Collision Models

Figure 5.122: Trajectory of test 16

Fig 5.123 and Fig 5.124 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.123: RMSE of x and y estimation of test 16
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5 Simulation of Selected Tracking and Collision Models

Figure 5.124: RMSE of y estimation of test 16

In Fig 5.125, TTC goes up steadily and in Fig 5.125, yhit lies in the range of -0.25 and
0.2. This tells us that collision will not occur.

Figure 5.125: TTC of test 16
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5 Simulation of Selected Tracking and Collision Models

Figure 5.126: Point of First Contact estimation of test 16

Test Scenario17 Fig 5.126 shows the vehicle collision orientation for Test 126.

Figure 5.127: The final incidence orientation of test 17

Fig 5.127 shows the trajectory prediction of the last 0.6s before collision.
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5 Simulation of Selected Tracking and Collision Models

Figure 5.128: Trajectory of test 17

Fig 5.128 and Fig 5.129 show the error involved in the prediction of x and y coordinates
respectively.

Figure 5.129: RMSE of x and y estimation of test 17
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5 Simulation of Selected Tracking and Collision Models

Figure 5.130: RMSE of y estimation of test 17

In Fig 5.131, we see the value of TTC going down below 0.15s and in Fig 5.131, the y
coordinate of the first point of impact is getting closer to 0 at approximately 0.25 after
sharp divergence, which means collision is inevitable.

Figure 5.131: TTC of test 17
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5 Simulation of Selected Tracking and Collision Models

Figure 5.132: Point of First Contact estimation of test 17

Test Scenario18 Fig 5.133 shows the vehicle collision orientation for Test 18.

Figure 5.133: The final incidence orientation of test 18

Fig 5.134 shows the trajectory prediction of the last 0.6s before collision is given.

155



5 Simulation of Selected Tracking and Collision Models

Figure 5.134: Trajectory of test 18

Fig 5.135 and Fig 5.136 show the error involved in the prediction of x and y coordinates
respectively..

Figure 5.135: RMSE of x estimation of test 18
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5 Simulation of Selected Tracking and Collision Models

Figure 5.136: RMSE of y estimation of test 18

In Fig 5.137, we see the value of TTC going down from 0.6 below 0.1s and in Fig 5.138,
the y coordinate of the first point of impact is approximately within the range of 0.2m
and 0.6m, which means collision is inevitable.

Figure 5.137: TTC of test 18
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5 Simulation of Selected Tracking and Collision Models

Figure 5.138: Point of First Contact estimation of test 18
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6 Discussion of the results

From the simulation results, it is observed that different models can be implemented for
assessing the traffic situation on the road.

Collision prediction using overlap and TTC calculation is very fast and robust, but to
make the numbers we get meaningful, a supportive accident scenario database is needed.
This model is very fast and robust and can be applied for any general case.

Collision prediction using Monte Carlo simulation is very fast, effective and can be used
in conjunction with vehicle tracking. It always demands the covariance and the mean of
the tracking result. It can be used for any accident scenario.

Collision prediction using stochastic drivers’ input is able to quantify, the risk involved
in the driving strategy combinations of the two drivers. This is even very useful for
problems of collision avoidance. It can be used for general accident scenarios. The only
disadvantage is its slowness, as it involves so many simulations. It is hoped that the
model can be made faster in the future with some improvements.

The last model of collision prediction, which uses TTC and space propagation, is very
fast and is used with radar tracking. Moreover it can be used for any accident scenario
investigation. The advantages of this model are, prediction of collisison even in times,
when there is much error involved in tracking and assessing the risk both along the x
and y axes of the vehicle.

Finally, we can conclude that any one of these models can be implemented depending on
the specific problems in hand.
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7 Summary and conclusions

In this thesis an effort is made to do a preliminary study of different state of the art models
available for tracking and collision estimation. The literature review is coupled with
implementation of some of these models and in addition some suggestions for improving
the stochastic driver’s input based and the overlap based collision prediction models is
given. For the stochastic driver’s input based collision prediction model, a new way of
assesing the traffic situation is shown and a single track vehicle model, which considers
the basic driving limits of a vehicle is implemented. For the overlap based collision
prediction model, it is shown in this work, how to relate all the important geometrical
variables with the vehicle dynamics of both vehicles. The simulation results are promising
and further refining would hopefully produce more satisfactory results.
The two Kalman filters, EKF and UKF are implemented for tracking and it seems that
both have similar performances, but cases of big differences in performance are also
exhibited. The advantage of using UKF over EKF is in avoidance of effort needed to get
the Jacobian matrices.
The coordinated turn model is shown to be suitable for tracking along a straight road or
a curved one. It basically mixes the tracking results of two or more state space models
proportionally. This might be very interesting for future work, as its adaptive nature
makes it to have a better performance.
The collision prediction model, which is based on stochastic input of drivers is shown to
be suitable and is able to provide an assessment of different possible scenarios, including
the minimum possible collision time estimation. It makes it possible to measure the risk
involved in the current strategy that is being followed or considered to be followed. This
might be even interesting for collision avoidance application. Moreover this model can
be used for any kind of traffic accident orientation. To make it suitable for real-time
application, some improvements should be made and moreover programming it in C can
make it even faster.
The collision estimation model, which is based on TTC calculation and projection overlap
on a hypothetical line, which is perpendicular to the relative velocity has proven to be
effective and fast for real time application. It can be used together with a database
built using several test drives. This can be used, if visual tracking and own car state
estimation is available or if the vehicles communicate each other and exchange their own
car state estimations.
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7 Summary and conclusions

The Monte Carlo simulation based collision prediction model, which needs the mean and
covariance matrices of Kalman filtering state estimation, is also very fast and effective.
Similarly like in the Case of the projection based model, this model can be used, if visual
tracking and own car state estimation is available or if the vehicles communicate each
other and exchange their own car state estimations.

The last model, which is based on TTC and space covariance, is also very effective, even
it is able to predict the y coordinate of the first hit point. It is shown that eventhough
the radar tracking itself might not sometimes give sufficient results, since ego mtotion
compensation is not considered and the time is so short for filter settling (giving stable
values), the algorithm is still able to predict collision.

Here in this work, it is also shown that, collision estimation can be performed, without
the use of the Kalman Filter, just with the use of models that make use of very simplified
vehicle dynamics models.

As a final conclusion, it can be said that this work is still far from perfection, but it can
be considered as a step towards fruitful collision prediction model implementation.
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