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Abstract

Fathoming the functions of the human body and especially theprogression of disease is
the subject of current research. Many researchers from different disciplines work together
to attain a better understanding behind these features. Biomechanics is a part of this re-
search field which deals with the development, extension andapplication of mechanics to
biological systems. The relation between diseases and abnormal mechanically behavior
of cells have been detected by many researchers. Here, we focus on the investigation of
mechanical properties of individual filaments and networksof filaments, which occur on
subcellular level. Recently, a new mathematical description of the worm-like chain model
was developed from purely mechanical considerations. Based on the micro-sphere model
a new continuum mechanical formulation for describing the mechanical properties of fil-
ament networks was established. It acts as a multiscale approach, which incorporates the
single filament model. In the present thesis we perform a closer analysis on this recently
developed network model. The neglected part of the micro-sphere model is discussed and
a specific parameter is examined more precisely. To confirm the appropriate application of
these two models, we fit these models to experimental data of fibrin, a protein which plays
a key role in hemostasis.
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Kurzfassung

Die Erforschung der Funktionen des menschlichen Körpers und insbesondere der Verlauf
einer Erkrankung ist Gegenstand aktueller wissenschaftlicher Tätigkeit. Viele Forschungs-
gruppen aus unterschiedlichen Bereichen arbeiten zusammen, um ein besseres Verständnis
für all diese Mechanismen zu erlangen. Zu diesen Forschungsbereichen gehört auch die
Biomechanik, die sich im Allgemeinen mit der Entwicklung, Erweiterung und Anwendung
der Mechanik auf biologische Systeme befasst. Der Zusammenhang von Krankheiten und
abnormalem mechanischen Verhalten von Zellen wurde bereits von einigen Forschern pub-
liziert. Unser Hauptaugenmerk liegt dabei auf der Erforschung der mechanischen Eigen-
schaften von einzelnen Filamenten und Netwerken von Filamenten, die auf subzellulärer
Ebene vorkommen. Erst kürzlich wurde eine neue mathematische Formulierung des worm-
like chain Modells entwickelt, die auf rein mechanischer Erklärung basiert. Ebenfalls erst
kürzlich wurde eine neue kontinuumsmechanische Formulierung zur Beschreibung von
Filament-Netzwerken, basierend auf dem micro-sphere Modell, aufgestellt. Dieses Net-
zwerkmodell agiert auf mehreren Größenskalen, in welchemdas Modell des einzelnen
Filaments integriert ist. In der vorliegenden Diplomarbeit führen wir eine genauere Anal-
yse des kürzlich entwickelten Netzwerkmodells durch. Dabei diskutieren wir den ver-
nachlässigten Teil des micro-sphere Modells und nehmen einen bestimmten Netzwerkpa-
rameter genauer unter die Lupe. Um die geeignete Anwendung dieser beiden erst kürzlich
entwickelten Modelle zu bestätigen, fitten wir diese Modelle an experimentelle Daten von
Fibrin, ein Protein dem in der Hämostase eine wichtige Rolle zukommt.
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1 Introduction

The uniqueness of the human body in its structures and functions fascinates the modern
science of different disciplines. This complex biologicalsystem still includes many open
questions which wait to be resolved today. This is especially important if pathological pro-
cesses cause human diseases. ’War on Cancer’ was an initiative by former U.S. president
Richard Nixon in the year1971, with the aim to find the cure for the disease of cancer
within the next25 years. We lost this war, unfortunately. The World Health Organization
(WHO)1 reports that cardiovascular diseases and cancer are the number one cause of death
in percent to total number of death worldwide. In the last fewdecades many researchers
revealed the connection between the abnormal mechanical properties of cells to diseases
such as arthritis (Trickey et al. 2000), asthma (An et al. 2006), atherosclerosis (Ohashi
and Sato 2005), cancer (Suresh 2007), glaucoma (Zeng et al. 2010) or malaria (Nash et al.
1989).

Materials in biological systems such as fibers (biopolymers) exhibit extraordinary me-
chanical behavior. They are not comparable with engineering materials such as rubber,
steel or ceramic. A new theory has to be developed to close this gap. This is the mission of
biomechanics. Biomechanics is the development, extensionand application of mechanics
to biological systems. This science provides an important knowledge to better understand
the mechanism behind disease progression (Lee and Lim 2007). Through the investigations
of mechanical properties on the molecular, cellular, tissue, organ, and organism levels, the
biomechanics contributes significantly in the research of diseases. The insights of biome-
chanics assist the improvements in the detection, diagnosis and treatment of diseases (Lee
and Lim 2007).

The focus in this thesis lies on the determination of mechanical properties of biological
materials on cellular and subcellular levels, such as fibersand networks of fibers. The term
biopolymer, as we define it, is introduced in Section 1.1. By single filament models we
have the opportunity to determine mechanical properties ofsingle fibers. One of the well-
known models is the worm-like chain model by Kratky and Porod(1949). A new approach
was developed recently by Holzapfel and Ogden (2011) to describe mechanical behavior of
biopolymers. In the human body, single fibers interact together and thereby form a network.
Network models such as the eight chain model by Arruda and Boyce (1993) describe the
mechanical behaviors of this kind of biological materials.Currently a new network model
by Unterberger et al. (submitted) is in the development phase. The underlying idea of this
model is based on the micro-sphere model for rubber elasticity which goes back to Miehe

1 http://www.who.int/gho/mortality_burden_disease/causes_death_2008
accessed on February 2, 2012
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2 1 Introduction

et al. (2004) and which includes the eight chain model as a special case.
The fundamental framework for the development of these models is provided by the

classical continuum mechanics, which we introduce briefly in Chapter 2. The highlights of
this work are the investigations of the models which act on single filaments and networks,
which we address in Chapter 3. In particular, we focus on the recently developed models
of Holzapfel and Ogden (2011) and Unterberger et al. (submitted). In Chapters 4 and 5,
we take a closer look on the Unterberger model. Experiments on biopolymers are useful
either to confirm or to re-evaluate the theory. Therefore, inChapter 6 we fit these models
to experimental data of the biopolymer fibrin, which are taken from Hudson et al. (2010)
and Kang et al. (2009).

1.1 Characterization of biopolymers

Biopolymers are a class of polymers, which are formed in living organisms. A polymer is
a large macromolecule made up of repetitive subunits calledmonomers, which are linked
together by covalent bonds. Biopolymers exist outside (collagen in extracellular matrix,
fibrin in blood clots) and inside of cells (actin filaments, intermediate filaments, and micro-
tubules create the cytoskeleton). The coarse structure of an eukaryotic cell consists of cell
membrane, nucleus and cytoplasm which includes organelles, cytoskeleton and cytosol.
Organelles accomplish a special function within the cell. The main ingredients of the cyto-
plasm are water and proteins. From the biomechanical point of view, the cytoskeleton, the
interior skeleton of a cell, plays the main role. On the left side in Figure 1.1 we illustrate
these components and on the right we show a microscopic view of a blood clot.

Actin cortex

Cell membrane Microtubules

Centrosome

Stress fibers

Intermediate

filaments
Cell junctions

Cytosol

Nucleus

Figure 1.1: Schematic view of a typical eukaryotic cell with mechanically important components
(left). View of a blood clot (right) with red blood cells (RCB) embedded by fibrin,
www.ch.ic.ac.uk/local/projects/bhonoah/bloodcoagulation.html

accessed on February 6, 2012.
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1.1 Characterization of biopolymers 3

Roughly biopolymers can be classified according to three different main categories.
Namely in nucleic acids, proteins and polysaccharides but it should be mentioned that
this classification is not strict. Amino acids are the monomers in proteins, in polysaccha-
rides or carbohydrates the monomers are monosaccharides and nucleic acids are polymers
of nucleotides. The biological function of nucleic acids, such as DNA and RNA, is to
store and transmit genetic information, whereas the main function of polysaccharides is
to store energy. The proteins play an important role in many different functions of cells
and tissues. For instance, they serve as enzymatic catalysts, they are responsible for the
transport of molecules, they are the communicators betweencells and they determine the
structure of cells and tissues. This represents only a very brief introduction to the biologi-
cal functions of biopolymers. For a detailed discussion on this topic the reader is referred
to van der Maarel (2008) and Voet et al. (2010). Lipids are macromolecules but not poly-
mers because of their structure, see Voet et al. (2010). Theyare not made up of repeating
chains of monomers. Water takes70 percent of a total cell weight, proteins, nucleic acids,
and polysaccharides around26 percent (Alberts et al. 2008). For more information of its
structures and functions of each component, the reader is referred to Alberts et al. (2008).

In polymer physics two measurements are essential, the contour lengthL and the per-
sistence lengthLp. The contour length is the total unfolded length of a polymeror in other
words the arc length along the polymer backbone. The persistence length is a measure of
the bending stiffness of polymers and it describes the flexibility of a polymer chain. This is
characterized by its flexural rigidityB with units ofPam4. In the beam theory, which is a
field within the linear theory of elasticity, the flexural rigidity can be written as a product of
the Young’s modulusE and the second moment of inertiaI, i.e. B = EI. The filament’s
shape fluctuates at finite temperatureT and thus it yields thermal energy, which we write
as a product of the Boltzmann constantkB and the temperature. The persistence length is a
characteristic length scale which is direct proportional to the flexural rigidity and inversely
proportional to thermal energy, such that

Lp =
EI

kBT
. (1.1)

Through a variety of experimental methods the persistence length can be measured.

Biopolymers exhibit different behaviors in terms of their flexibility. Thus, we classify
each type of biopolymer in one of the three categories, flexible, semiflexible or rigid. If
Lp ≫ L, we say that the polymer is rigid and it means that the thermalenergy is not
sufficient to bend its contour. This kind of polymers exhibits virtually no entropic elasticity.
Conversely, if the persistence length is much smaller than the contour length, i.e.Lp ≪ L,
the filament is called flexible and its thermal fluctuations dominate. The entropy is of
crucial impact to straightening this kind of polymers. The last type of polymers is called
semiflexible. This category includes those polymers whose persistence and contour lengths
are of the same order. Most of the biologically relevant polymers belong to this category.
This kind of polymers exhibits a balance between the thermalfluctuation and the stiffness
of the filament.
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1.2 F-actin

Actin filaments are one of the major components within the cytoskeleton. They belong to
the structural proteins which make significant contributions to determine the shape of the
cell surface. Further, they play a key role in the mechanicalresponse of the cell and cell
motility. The subunit of actin filament is globular actin (G-actin) which polymerizes to
long filamentous F-actin. The structure of F-actin is composed of two chains of polymer-
ized G-actin, which are arranged helically, see Figure 1.2.More detailed information on

F-actin
G-actin

Depolymerization

Polymerization

Figure 1.2: Actin filament, adopted from Kamm and Mofrad (2006)

the biology of actin filament can be found in Alberts et al. (2008). The mechanical prop-
erties of F-actin are well known. It measures a diameter of about 8 nm (Ott et al. 1993),
Le Goff et al. (2002) determined the persistence length of about 16µm and its specific
contour length which depends on the experiments, measuresin vitro 10 − 20µm (Liu and
Pollack 2002) andin vivo∼ 1µm (Fernández et al. 2006). F-actin belongs to the class of
semiflexible polymers.

1.3 Fibrin

Fibrin is an essential component of hemostasis. Together with platelets they stop bleeding
by forming blood clots in the injuries of blood vessels. Fibrin gives the major structural
framework of blood clots (Weisel 2004) and as a result wound healing takes place. The
blood clot has to be strong enough to be resistant to the shearing force of the blood stream.
The process of blood clotting starts when the precursor protein fibrinogen is converted to
fibrin by the enzyme thrombin. A schematic diagram of the formation of fibrin is illus-
trated in Figure 1.3 which we adopted from Mosesson (2005). In more detail, fibrinogen
is synthesized by the liver and it is an elongated protein with 45 nm in length, see Weisel
(2004). By cleaving fibrinopeptides from the central domainof fibrinogen through throm-
bin, the exposed knobs can interact with the ends of another molecule. It results in a half
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Figure 1.3: Schematic diagram of the structure of fibrinogen and the formation of fibrin, adopted
from Mosesson (2005)

staggered structure, which is called protofibril and which has a periodicity of22.5 nm. The
aggregation of protofibrils forms a fibrin fiber. The average concentration of fibrinogen in
the blood is about2.5 g/l (Weisel 2004). The transglutaminase factorXIIIa or the fibrin
stabilizing factor, respectively, is an enzyme that ligates fibrin to form an insoluble clot
or fibrin polymer. These ligations increase the stiffness ofthe clot substantially. Fibrin
exhibits viscoelastic properties which are analyzed in detail in Weisel (2004).





2 Continuum mechanics

Continuum mechanics describes the motion and deformation of continuous media under
the influence of forces. The matter is composed of molecules which are formed by atomic
and subatomic particles. In the continuum theory the molecular structure of the material is
neglected and only the behavior of the material as a whole is deemed important. For this
reason it is assumed that the material is continuously distributed throughout its volume and
it completely fills the space it occupies. In this way the macroscopic behavior is explained.
The subject of continuum mechanics is commonly divided intothree main parts, see, e.g.,
Holzapfel (2000). The first part is the kinematics, the studyof motion and deformation.
The concept of stress, that means the study of stress in a continuum, is the second part.
And the third part treats the constitutive equations, whichestablish the relations between
stresses and deformations. These three parts must comply with the balance principles, the
mathematical description of the fundamental laws of physics governing the motion of a
continuum. These need to be fulfilled in all points and times.More detailed information
on continuum mechanics is also given by Ogden (1997).

2.1 Kinematics

The kinematics describes the changes of a continuum body over time, without considering
the forces that cause these changes. The (solid) body is formed by a coherent set of material
points or particles and is subjected to different types of configuration during the motion,
which we specify next.

2.1.1 Configuration and motion

We denote a continuum body byB and represent a particle of it byP ∈ B. A configuration
of B is defined by a one-to-one mappingκ : B → E

3, which takes the particles ofB to a
region in the Euclidean spaceE3, as depicted in Figure 2.1. The region, indicated byΩ,
is the image set of the configurationκ and a subset ofE3. We defineΩ as a set of places
occupied by the particles ofB through

Ω := κ(B) = {κ(P ), P ∈ B} ⊂ E
3. (2.1)

At a freely chosen but fixed reference timet, we identify the image ofκ as reference (or
undeformed) configuration. It is common but not necessary tochoose the reference time at
t = 0. This is why we label the reference configuration and region by the subscript0, i.e.

7



8 2 Continuum mechanics

Figure 2.1: Configuration and motion

byκ0 andΩ0, respectively, as we see in Figure 2.1. The bodyB deforms subsequently and
moves over a period of timet ∈ R

+ and this configuration ofB at t is known as current (or
deformed) configuration. The place (or position vector)x occupied by the particleP ∈ B
in the configurationκ is constituted by

x = κ(P ), P = κ−1(x), (2.2)

see Figure 2.1. Moreover, it is common to distinguish between material (or referential)
coordinates, which is often referred to as the Lagrangian description, and the spatial (or
current) coordinates, which is referred to as the Eulerian description. In the Lagrangian
description, we observe the changes of a particular particle throughout the deformation
process, however in the Eulerian description, we observe what happens at a spatially fixed
observation point as time changes. For further notations, we label uppercase letters for the
reference configuration and lowercase letters for the current configuration. In the reference
configuration we define the position vectorX by its componentsXA, A = 1, 2, 3, relative to
some coordinate system with orthonormal basis{EA} centered at some convenient origin
O, X = XAEA. The position vectorx in the current configuration is represented by its
componentsxa, a = 1, 2, 3, which are relative to a coordinate system with orthonormal
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basis{ea} centered ato, x = xaea. In the following we assume the originsO, o and
the basis vectors of reference and spatial coordinates to coincide, i.e. the set of{EA} is
identical to{ea}.

The motion of the bodyB can be described by a one-parameter family of configurations
κt : B → E

3, wheret identifies the parameter. We write for the position vector ofthe
particleP ∈ B at timet

x = κt(P ) = κ(P, t) (2.3)

and at the given instant of timet = 0

X = κ0(P ), (2.4)

respectively. If we use the inverse of the reference configurationP = κ−1
0 (X) in (2.3)2,

we obtain a definition of the motionχ of the continuum bodyB

x = κ
(
κ−1

0 (X, t)
)
=: χ(X, t). (2.5)

The motion is a mapping functionχ : E3 → E
3 of the reference configuration into the

current configuration in the Lagrangian description. Furthermore, we assume thatχ is
continuously differentiable in finite regions so thatχ is invertible and its inverse, written
in Eulerian form, is given by

X = χ−1(x, t), (2.6)

i.e. it identifies the particles which pass throughx during the motion, as mentioned above.

2.1.2 Deformation gradient

The fundamental quantity in continuum mechanics is the deformation gradient which de-
scribes the deformation of a continuum body occurring when the body moves from the
reference regionΩ0 to current regionΩ. If the body is in motion, it is able to change its
position (translation), orientation (rotation) and shape(deformation). The motion is called
rigid body motion if it includes translation and rotation. It is time-dependent and means
that the distance between an arbitrary pair of particles of the body remains constant. How-
ever, the deformation of a body can be characterized by the change in distance between two
adjacent points. For further consideration, let the material be elastic, where deformations
are history (or time) independent. The deformation gradient of Ω relative to the reference
configurationΩ0 gives the relationship of a material linedX before deformation to the line
dx after deformation. It should be pointed out thatdx consists of the same material asdX.

Before we definedX anddx, we consider a material (or undeformed) curveX = Γ(ξ)
in the reference configuration and the spatial (or deformed)curvex = γ(ξ, t) at timet
in the current configuration, whereξ denotes the parametrization indicated in Figure 2.2.
By using equation (2.5)2, we define the parametric equation for the spatial curve at a fixed
time t

x = γ(ξ, t) = χ(Γ(ξ), t). (2.7)
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[

]

[

]

[ ]

Figure 2.2: Deformation of a material curveΓ ⊂ Ω0 into a spatial curveγ ⊂ Ω

Now we define the material tangent vectordX and the spatial tangent vectordx

dX = Γ′(ξ)dξ, dx = γ ′(ξ, t)dξ, (2.8)

where the prime denotes differentiation with respect toξ. By using (2.7)2, (2.8)1 and the
chain rule we get

dx

dξ
= γ ′(ξ, t) =

∂χ(X, t)

∂X
Γ′(ξ) =

∂χ(X, t)

∂X

dX

dξ
, (2.9)

and by definition of the deformation gradient through

F(X, t) :=
∂χ(X, t)

∂X
, (2.10)

we receive the fundamental relation

dx = F(X, t)dX. (2.11)

The deformation gradientF is a second order tensor and it contains the information about
the local behavior of motion in the neighborhood of a point. More specifically, the defor-
mation gradient describes the change in length and orientation of an arbitrary line element
dX at X in the reference configuration to the line elementdx at x in the current config-
uration. In the physical sense, we demand thatFdX 6= 0 holds for alldX 6= 0, i.e. the
deformation gradientF is a non-singular tensor. This requires the condition

J(X, t) := detF(X, t) 6= 0, (2.12)
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where we definedJ as the Jacobian determinant. SinceJ 6= 0, there exists the inverse of
the deformation gradientF−1,

F−1(x, t) =
∂χ−1(x, t)

∂x
. (2.13)

Next, we consider the transformation of surface and volume elements. First, we in-
vestigate the change of an infinitesimal volume element between the referencedV and
currentdv configurations. The volume of the infinitesimal parallelepiped whose edges are
dX(1), dX(2), dX(3) is given by

dV =
(
dX(1) × dX(2)

)
· dX(3) = det

(
dX(1), dX(2), dX(3)

)
. (2.14)

In the current configuration we obtain

dv =
(
dx(1) × dx(2)

)
· dx(3)

=
(
F1idX

(1)
i × F2idX

(2)
i

)
· F3idX

(3)
i

= detF
(
dX(1) × dX(2)

)
· dX(3)

= detFdV = JdV,

(2.15)

where we can infer that the Jacobian determinantJ is a measure for volume change. If
J = 1 we say that the material is incompressible and its deformation is called isochoric or
volume-preserving. This implies that the volume does not change during deformation. In
the physical sense, we require that the volume of a material element should be positive, so
that we can conclude from (2.15) that

J(X, t) = detF(X, t) > 0. (2.16)

Finally, we consider the neighborhood of the pointX ∈ B0, which we label as an in-
finitesimal vector element of material surfacedS. Let N be a unit vector normal to a
infinitesimal surface elementdS, thendS = NdS. In the current configurationn is a unit
vector normal to the surfaceds, such thatds = nds. The infinitesimal volume elementdv
is now expressed by a dot productdv = ds · dx. Equation (2.15) yields

dv = ds · dx = JdV = JdS · dX (2.17)

and with (2.11) and the ruleu ·Av = A⊤u · v we obtain

(
F⊤ds− JdS

)
· dX = 0. (2.18)

The latter equation holds for arbitrary material line elementsdX, hence it follows

(
F⊤ds− JdS

)
= 0. (2.19)
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Consequently, we obtain the relation between the vector elements of the infinitesimally
small areasds anddS

ds = JF−⊤dS, (2.20)

which is known as Nanson’s formula.

2.1.3 Decomposition of deformations

In the section above, the deformation gradient supplies thetransfer of the material line
from dx to dX and it includes both information about the change in length and orientation.
We want to use a strain measure instead ofF, which either refers to the reference or current
configuration and where the rigid body motion has no effect. In this section we will ex-
tract the information of interest out of the deformation gradient. The polar decomposition
theorem, a fundamental theorem in continuum mechanics, yields the possibility to do that.
Ogden (1997, p. 92) mentioned it as follows

Theorem 2.1.1. (Polar decomposition)For any non-singular second order tensorF there
exist unique positive definite symmetric second-order tensorsU andv (i.e. U = U⊤,v =
v⊤) and an orthogonal second-order tensorR (i.e.R−1 = R⊤) such that

F = RU = vR (2.21)

Proof. see Ogden (1997, p. 92)

The right (or material) stretch tensorU and the left (or spatial) stretch tensorv measure
the local stretch or contraction. The right stretch tensorU acts on the reference configura-
tion while the left stretch tensorv acts on the current configuration. Whereas, the rotation
tensorR measures the local rotation and maps between the reference and current configu-
rations. By using equation (2.11) and (2.21)1, we obtain

dx = R(UdX). (2.22)

This equation can be interpreted as follows, first the material linedX is stretched byU and
then rotated into the spatial linedx by R. Hence, the tensorR maps from the reference
configuration to current configuration, likeF. If R = I, the deformation is called pure
stretch and ifU = v = I, it is referred to as rigid body motion. Another important strain
measure in material coordinates is the right Cauchy-Green tensorC, which is introduced
through

C = F⊤F. (2.23)

On use of (2.21)1, we get the relation between right Cauchy-Green and right stretch tensor

C = U⊤R⊤RU = U2. (2.24)

SinceU is symmetric we are able to conclude thatC is symmetric as well. As we can
see, the rigid rotation is eliminated in equation (2.24). For the sake of completeness, we
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introduce the left Cauchy-Green tensorb, which is a strain measure with respect to spatial
coordinates and is defined by

b = FF⊤. (2.25)

Using equation (2.21)2, we obtain the relation of the left Cauchy-Green to the left stretch
tensor, by

b = vRR⊤v⊤ = v2, (2.26)

and by using equation (2.21)1 and (2.24), we achieve the relation between the left and the
right Cauchy-Green tensor, through

b = RUU⊤R⊤ = RCR⊤. (2.27)

A brief physical interpretation ofU is now mentioned. We consider the distance between
two pointsX ∈ Ω0 andY ∈ Ω0, whereY is very close toX, as shown in Figure 2.3. We

Figure 2.3: Deformation of a material line element into a spatial line element

denotedε = ‖Y−X‖ as the length of the material linedX = Y−X in the Euclidean norm.
From the geometric viewdε denotes the radius of a sphere with centerX. The direction
of dX is described by the unit vectora0, i.e. ‖a0‖ = 1. In the current configuration, by
applying the deformation gradient toa0, we obtain the stretch vectorλa0

through

λa0
= Fa0. (2.28)
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Now, consider the two neighboring pointsx andy in the current configuration. The
difference of this two points can be linearly approximated by using Taylor’s expansion,
such that

y − x ≈ ‖Y −X‖Fa0 = dελa0
, (2.29)

see Holzapfel (2000, Sec. 2.5). The stretchλ in the directiona0 atX is defined by the ratio
of current to reference lengths, i.e.

λ =
‖y − x‖
‖Y −X‖ = ‖λa0

‖ (2.30)

the stretch ratio is given by the length ofλa0
and therefore always positive. The change in

length referring to the current configuration is therefore determined by

‖y− x‖ = ‖λa0
‖dε = λdε. (2.31)

If λ > 1, λ = 1 or λ < 1 we say that there is an expansion, no stretch or compression,
respectively, in the current configuration. Now, we consider the square ofλ,

λ2 = ‖λa0
‖2 = λa0

· λa0
= Fa0 · Fa0

= a0 · F⊤Fa0 = a0 ·Ca0 > 0 for a0 6= 0.
(2.32)

In addition to the already known symmetry ofC, equation (2.24), we can deduce now
from equation (2.32) thatC is positive definite at eachX ∈ Ω0. Due to the positive
definiteness ofC, we can infer that the equation (2.32) defines an ellipsoid centered on
x. With respect to a geometrical interpretation, we are able to say that the stretch tensor
U or Cauchy-Green tensorC, respectively, transforms the material within a sphere in the
reference configuration into an ellipsoid in the current configuration, see Figure 2.3.

2.1.4 Examples of deformations

We complete the section kinematics with two examples of deformations, which we will
use in the course of this work. The first assumption we make is that the deformation of the
body is homogeneous, i.e. independent of the position vector X. A further assumption is
that the material is incompressible, meaning that the volume of the body remains constant.
In this case, the deformation is referred to as isochoric anddetF = 1 holds.

At first we discuss the equibiaxial deformation. Since the basis vectors in reference and
current configurations coincide, the deformation of the body in the current configuration
can be specified generally in the form

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (2.33)

whereλ1, λ2 andλ3 denotes the stretch ratio inx1-, x2- andx3-directions. The deformation
gradient, which we defined in (2.10), with respect to the chosen reference and current basis
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Figure 2.4: Equibiaxial deformation in which the forcef causes an uniform extensionλ in x1- and
x2-direction. The dashed line represents the body with lengthL in x1- andx2-direction
in reference configuration and the solid line illustrates the body with equal length ofl
in both axes direction in current configuration.

vectors has the following matrix representation

[F] =




λ1 0 0
0 λ2 0
0 0 λ3



 . (2.34)

Now, consider a body inx1x2-plane, which we stretch byλ uniformly in x1- and x2-
direction, as pictured in Figure 2.4. In this sense,λ1 = λ2 = λ and by the condition
of isochoric deformation, i.e.detF = λ1λ2λ3 = 1, we obtainλ3 = λ−2. Finally, the
equibiaxial deformation has the matrix representation

[F] =




λ 0 0
0 λ 0
0 0 λ−2



 . (2.35)

The second type of deformation, which we mention here, is thesimple shear defor-
mation, which is illustrated by Figure 2.5. Based on this illustration we can specify the
deformation of the body in current configuration in the following way

x1 = X1 + (tanϕ)X2,

x2 = X2,

x3 = X3.

(2.36)

The simple shear deformation is defined as an isochoric planedeformation, which means
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Figure 2.5: Simple shear deformation with shear angleϕ and deformationγ = tanϕ. No change
in length and orientation occurs inx1-direction. The dashed line represents the body in
the reference configuration and the solid line in the currentconfiguration.

that the deformation is restricted to two axes, e.g. onx1- andx2-direction. Beyond that, no
shear deformations may occur inx3-direction. From this consideration, the body does not
change its length and direction by the deformation inx1-direction. By defining the amount
of shear throughγ = tanϕ, the deformation gradient in matrix form is deducible from
equations (2.36) and with equation (2.10), such that

[F] =




1 γ 0
0 1 0
0 0 1



 . (2.37)

2.2 Concept of stress

The previous section dealt with the motion and especially the deformation of a continuum
body. This is caused by external forces acting on the body andgive rise to interactions
between neighboring material points in the interior part ofthe body. In order to study
these, we introduce the concept of stress.

Let us consider a deformable body during a finite motion. At timet the bodyB occupies
an arbitrary regionΩ with boundary surface∂Ω, as shown in Figure 2.6. We distinguish
between external forces, which act on parts or the whole of the boundary surface, and the
internal forces, which act on an imaginary surface within the interior of the body. Let
the body be separated into two parts by a plane surface. As illustrated in Figure 2.6, we
denoten as an outward normal vector relative to an infinitesimal spatial surface element
ds at the pointx. The plane surface passes through the material pointx. The Cauchy
(or true) traction vectort is a measure of force per unit area. Analogously, the quantities
X, dS,N andT are defined in the reference configuration. The vectort depends linearly
on the surface normal. This leads us to another important axiom in continuum mechanics.
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Figure 2.6: The concept of stress

Theorem 2.2.1. (Cauchy’s theorem)The stress vectort(x,n, t) in a pointx of a body
depends linearly on the normaln of a surface element, i.e. there exists a second-order
tensor fieldσ independent ofn such that

t(x,n, t) = σ(x, t)n. (2.38)

Proof. see Ogden (1997, Sec. 3.3)

The second-order tensorσ is a spatial tensor and known as Cauchy (or true) stress tensor.
In order to satisfy the conservation of angular momentum in the static equilibrium, we
need the necessary and sufficient condition that the Cauchy stress tensor is symmetric,
i.e. σ = σ⊤. Using equation (2.38) and Nanson’s formula (2.20) the traction on an area
elementds in the current configuration can be represented

tds = σnds = JσF−⊤NdS. (2.39)

Thus we are able to define the first Piola-Kirchhoff stress tensorP by

P := JσF−⊤. (2.40)

The nominal stress tensor or engineering stressP⊤ is often used to represent experimental
data. Now, we are able to formulate for the traction vectorT a similar relation, as was
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postulated in the Cauchy’s theorem fort

T(X,N, t) = P(X, t)N. (2.41)

Derivation of the relation betweenσ andP can be done by

tds = TdS

σnds = PNdS

σds = PdS.

(2.42)

Completing this section, we introduce further stress tensors, which are commonly used
in practical nonlinear mechanics. A very useful stress tensor in computational mechanics
is the second Piola-Kirchhoff stress tensorS, which describes the state of stress in the
reference configuration and is defined by

S = JF−1σF−⊤ = F−1P. (2.43)

By restatement latter equation we get the following expression for the Cauchy stress tensor

σ = J−1FSF⊤ = J−1PF⊤. (2.44)

If we consider
S⊤ = JF−1σ⊤F−⊤, (2.45)

we can infer thatS is symmetric becauseσ is symmetric. However, the first Piola-
Kirchhoff stress tensorP is in general not symmetric but it satisfies the connection

FP = S⊤F⊤. (2.46)

Another useful measure of stress is the Kirchhoff stressτ , which also has no obvious
physical interpretation. This is defined by

τ = Jσ. (2.47)

and compared with (2.44)1 yields
τ = FSF⊤. (2.48)

Note, for incompressible materials (J = 1) τ = σ holds.

2.3 Balance laws and constitutive equations

The basic equations consist of the classical balance principles and the constitutive (or ma-
terial) equations. Thereby the balance equations describethe universal principle which are
axiomatically required for all points of the material bodyB and must be satisfied for all
times t. The constitutive equations provide the link between the quantities of the kine-
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matics and kinetics, which we introduced in Section 2.1 and 2.2, for example the relation
between stress and deformation. Furthermore, the materialequations represent the individ-
ual characteristic of any particular material.

In the literature usually the following three fundamental balance equations are specified,
these are the conservation of mass, momentum and energy. Consider the current mass
densityρ, the particle velocityv(x, t), which is defined byv(x, t) = ∂x/∂t, the body
forceb(x, t), and the Cauchy stressσ(x, t), the following balance laws are postulated in
Ogden (1997, Chap. 3).

Conservation of mass
∂ρ

∂t
+ ρdivv = 0 (2.49)

Conservation of linear momentum

divσ + ρb = ρ
∂v

∂t
(2.50)

Conservation of angular momentum
σ = σ⊤ (2.51)

Equations (2.49) and (2.50) provide4 equations for10 unknowns (ρ, 3 components ofv
and with equation (2.51),6 components ofσ). These balance equations provide a set of
equations to describe a continuum mechanical system, but more unknown variables are
involved than equations are available. The material specific behavior yields the additional
equations to determine the continuum system.

The aims of constitutive laws are to develop mathematical models for representing the
real behavior of matter and to determine the material response. In other words they de-
scribe an ideal material and the predictions should providea very close approximation to
the observed behavior of the real material. This can be achieved by fitting mathematical
equations to experimental data. In the literature many principles are postulated which con-
duce to support the formulation of constitutive equations.Here we make no attempt to
review the large number of constitutive theories availablein continuum mechanics. We
will provide the basic concept of constitutive equations. More precisely, the purpose of
constitutive laws is to specify the material behavior as a function of strain and stress state
in appropriate form. The crucial variable is the Helmholtz free energy functionΨ, which
is referred to as the strain-energy function or stored energy function. In the hyperelasticity
theory such an energy function is assumed to exist. For convenience we focus on homoge-
neous materials, which means the distribution of the internal structure is such, that every
material point has the same mechanical behavior. The (purely mechanical) constitutive
equation for hyperelastic materials is expressed by

P = G(F) =
∂Ψ(F)

∂F
, (2.52)
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whereG is referred to as response function and (2.52)1 as general constitutive law, see
Holzapfel (2000, Sec. 6.1). It follows for the symmetric Cauchy stress tensor using equa-
tion (2.44)2,

σ = g(F) = J−1∂Ψ(F)

∂F
F⊤ = J−1F

(
∂Ψ(F)

∂F

)⊤

. (2.53)

The strain-energy function is a scalar-valued function of one tensorial variable. In the
reference configuration whereF = I we assume that the strain-energy function vanishes.
From physical view we conclude thatΨ increases with deformation. Therefore we require

Ψ(I) = 0 and Ψ(F) ≥ 0. (2.54)

At thermodynamic equilibrium the strain-energy function attains its global minimum for
F = I. To guarantee the existence of (unique) solutions for a given constitutive model fur-
ther conditions on the strain-energy function are necessary, for example the polyconvexity
of the strain-energy function.

At the end of this section, we want to obtain a constitutive equation for an incompressible
hyperelastic material, i.e.J = detF = 1, which we use later in Section 3.2.2. For this
reason we include a side condition to the strain-energy function, which we define by a
Lagrange multiplierζ , so that

Ψ = Ψ(F)− ζ(J − 1) (2.55)

holds, see Holzapfel (2000, Sec. 6.3). The Lagrange multiplier can be interpreted as a
hydrostatic pressure. With (2.52) and

∂J

∂F
= JF−⊤, (2.56)

we obtain for the first Piola-Kirchhoff stress tensor

P =
∂Ψ(F)

∂F
− ζF−⊤. (2.57)

The second Piola-Kirchhoff stress tensor is recovered by multiplying equation (2.57) by
F−1 from the lefthand

S = F−1∂Ψ(F)

∂F
− ζF−1F−⊤ = F−1∂Ψ(F)

∂F
− ζC−1. (2.58)

By multiplying equation (2.57) byF⊤ from the righthand, the Cauchy stress tensor is a
consequence of equation (2.44)2

σ =
∂Ψ(F)

∂F
F⊤ − ζI. (2.59)
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In Holzapfel (2000, Sec. 6.1) the following rule was deduced

(
∂Ψ(F)

∂F

)⊤

= 2
∂Ψ(C)

∂C
F⊤, (2.60)

so that it follows

σ = 2F
∂Ψ(C)

∂C
F⊤ − ζI. (2.61)





3 Models for biopolymers

In Section 1.1 we discussed about two different levels of organisation of biopolymers. In
this chapter we want to specify the modeling on both of these organisation levels. To
describe the mechanical behavior of individual polymers weuse an appropriate single fila-
ment model. We are introducing different types of single filament models with reference to
Kuhn (1934), Kratky and Porod (1949), and Holzapfel and Ogden (2011). These models
are describing some kinds of filaments very well but differ intheir approaches of basic
equations. Single filament models act usually on the scale around10 nm. In contrast, a
network model, describes the mechanical behavior of networks of polymers, incorporates
the information from the single filament and acts on different length scale, from10 nm up
to 1µm. In addition, we will discuss in this chapter a network model, which was recently
devised by Unterberger et al. (submitted). The authors formulated a multi-scale approach
to modeling cross-linked actin networks. We will also specify the basic concept of this
network model which is made available by Miehe et al. (2004).

3.1 Single filament model

We are interested in the behavior of elastic filaments or morespecifically, in the response
to an applied force acting on a filament. Currently there are two types of single filament
models to study the characteristics of biopolymers which have proved to be successful. The
freely-jointed chain (FJC) model which goes back to Kuhn (1934) is a rather simple model,
but it provides the basic elements of single filament modeling. The second type is one of
the most commonly used model, the worm-like chain (WLC) model. Its basic concept was
supplied by Kratky and Porod (1949). A few decades later, several researchers provided
a mathematical description of the worm-like chain model to achieve a force-extension ex-
pression. With the concept of statistical mechanics Marko and Siggia (1995), Bustamante
et al. (1994) and MacKintosh et al. (1995) achieved an applicable formulation. From the
view of mechanical equilibrium, Holzapfel and Ogden (2011)developed recently another
approach to the worm-like chain model. The FJC model describes flexible polymers very
well, whereas the WLC model is usually used for semiflexible biopolymers. Both types
of models are introduced in the following section and in particular we demonstrate the
mechanical approach by Holzapfel and Ogden (2011).

23
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3.1.1 Freely-jointed chain model

The freely-jointed chain (FJC) model, introduced by Kuhn (1934), belongs to the family
of discrete models. The polymer is characterized by ideal chains. This implies that we
neglect the interactions among non-neighbouring monomersand describe the path traced
by a polymer by random walk. Every polymer is a sequence of monomers, which are
considered as a chain withN segments. These segments are linked with frictionless hinges.
Each segment is regarded as a rigid rod of equal lengthlk, the so-called Kuhn length, so
that the contour length or total unfolded length, respectively, isL = Nlk, see Figure 3.1.
Let r1, . . . , rN be the vectors corresponding to the individual monomers. The end-to-end

Figure 3.1: Illustration of freely-jointed chain model withN segments of lengthlk, linked with
hinges. The corresponding vectors to the individual monomers arer1, . . . , rN and the
end-to-end vector isr. The angle between the vectorsri andrj is denoted byθij.

vectorr, the vector between the starting point of the first monomer and the endpoint of the
last monomer, as shown in the Figure 3.1, is given by

r =

N∑

i=1

ri. (3.1)

This results in an end-to-end distance ofr = ‖r‖. The inner product denoted by a dot of
two vectors is

ri · ri = l2k,

ri · rj = l2k cos θij .
(3.2)



3.1 Single filament model 25

The average over all possible chain configurations can be revealed by the mean square
end-to-end distance, which are expressed as

〈r2〉 = 〈r · r〉 =
〈

N∑

i=1

ri ·
N∑

j=1

rj

〉

=

N∑

i=1

〈ri · ri〉+ 2

N−1∑

i=1

N∑

j=i+1

〈ri · rj〉

= Nl2k + 2l2k

N−1∑

i=1

N∑

j=i+1

〈cos θij〉,

(3.3)

where angle brackets denote the mean. Since the monomers areuncorrelated, meaning that
〈ri · rj〉 = 0 and therefore〈cos θij〉 = 0, the mean square end-to-end distance for an ideal
chain is accordingly

〈r2〉 = Nl2k = Llk. (3.4)

By applying a forcef at the ends of the chain we change the configuration of the chain
and hence also its end-to-end distancer. Now we want to find a relation between these
two quantities. In this way of looking, the elasticity is purely based on the entropy. In
other words, we have to apply energy to lower the number of possible configurations of a
chain, and this in turn means that we decrease the entropy. The entropic elasticity theory of
chain molecules is explained in the context of statistical mechanics. Boltzmann’s equation
contributes significantly to that theory and describes the relation between the entropyη of
a system and the probability distributionP . It reads as

η = kB lnP (3.5)

and defines the strain-energy function by

ψ = −ηT, (3.6)

where the force can be deduced by

f =
dψ

dr
. (3.7)

To perform latter equation for the FJC model, we have to make aquick side trip into the
statistical mechanics. The FJC model can be based either on Gaussian or on non-Gaussian
(inverse Langevin) statistics in order to specify the change of entropy. The Gaussian statis-
tics, which refers to Kuhn (1934) and Kuhn (1936), does not consider the finite extensibil-
ity of the chain and the force depends linearly on the relative stretchr/L. Alternatively,
the inverse Langevin statistic as introduced by Kuhn and Gr¨un (1942), provides a nonlin-
ear theory, which takes into account the limiting case, in which the end-to-end distance
can reach only the contour length. The probability density,introduced by Kuhn and Grün
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(1942), has the form

P = P0 exp


−N r

L
L

−1
( r
L

)
−N ln




L −1
( r
L

)

sinh
(
L −1

( r
L

))




 , (3.8)

whereP0 denotes a normalization constant andL the Langevin function, which is defined
by

L

( r
L

)
= coth

( r
L

)
− L

r
. (3.9)

Therefore, the strain-energy function of the freely-jointed chain model can be expressed as

ψFJC = ψ0 + kBTN


 r

L
L

−1
( r
L

)
− ln




L −1
( r
L

)

sinh
(
L −1

( r
L

))




 , (3.10)

whereψ0 denotes an energy stored in the reference chain. By the derivative of the strain-
energy function with respect tor, we obtain a force-extension relation for the freely-jointed
chain, see Treloar (1975, Sec. 6.3), with inverse Langevin statistics through

f =
kBT

lk
L

−1
( r
L

)
. (3.11)

The inverse Langevin function can be approximated by Padé approximation

L
−1
( r
L

)
≈ r

L

(
3−

( r
L

)2)

(
1−

( r
L

)2) , (3.12)

as shown in Cohen (1991). In this way it can be proved that for small stretches the force of
the inverse Langevin chain coincides with the force of the Gaussian chain.

At the end of this section, we consider the limiting case of the FJC model, which occurs
if r/L → 1, see equation (3.11) and (3.12). In this context, the force which we apply to
stretch the filament, goes to infinity. This is obvious considering the assumption that the
segments of the chain are inextensible. The maximum of the end-to-end distance may only
reach the contour length and not beyond that. Consequently,equation (3.11) presents the
inextensible FJC model. But usually, biopolymers are able to expand beyond their contour
length. Extensible models have the ability to allowr/L becoming greater than one. In this
case we need energy to store the elasticity in the system. This can be visualized by pulling
on a spring. An extensible FJC model was introduced by Smith et al. (1996), but we do not
treat this in detail.
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3.1.2 Worm-like chain model

Now we discuss a continuous model, the worm-like chain (WLC)model, which is based on
thermal fluctuations. This property is reflected by an additional parameter, the persistence
lengthLp. The first idea of this model was proposed by Kratky and Porod (1949). As
opposed to Kuhn’s conception, Kratky and Porod said that a chain consists ofN rods of
lengthl, which are joined together that each rod will influence the direction of a rod from
the previous in a certain way. Kratky and Porod (1949) coinedthe term of persistence
length of a chain, by declaring that the average of the cosineof the angle of deviation
together with the length of a rodl are a quantity of it, which is defined as

Lp = − l

ln(cos θ)
≈ − l

cos θ − 1
, (3.13)

where the latter approximation is obtained by applying Taylor series. Assumed that all
bending angles are equally likely and independent of each other, then the correlation be-
tween two bond vectorsri andrj results in

〈ri · rj〉 = l2(cos θ)|j−i|. (3.14)

Furthermore, Kratky and Porod (1949) considered the rod as continuously flexible by exe-
cuting the limiting case by letting the number of segments togo to infinity (N → ∞) and
by letting the length of the rod to go to zero (l → 0), with the restriction that the contour
length remains constant (L→ NL). For this limiting process, which we denote bylimworm,
we perform the following steps

lim
worm

(cos θ)N = lim
worm

exp (N ln(cos θ))

Taylor
expansion

= lim
worm

exp

(
N

(
cos θ − 1− (cos θ − 1)2

2
+ . . .

))

= lim
worm

exp

(
Nl

(
cos θ − 1

l
− (cos θ − 1)2

2l
+ . . .

))

= exp

(
− L

Lp

)
.

(3.15)

Again, we are interested in the mean square end-to-end distance. The end-to-end vector,
with tangent unit vectort(s) = ∂r(s)

∂s
at a distances from the starting point along the

contour, can be written as

r =

∫ L

0

t(s)ds. (3.16)

The orientation correlation function for a worm-like chaindecays exponentially, so that the
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mean square end-to-end distance can be calculated through

〈r2〉 =
∫ L

0

∫ L

0

〈t(s) · t(s′)〉ds′ds

=

∫ L

0

∫ L

0

〈cos θ(s− s′)〉ds′ds

=

∫ L

0

∫ L

0

exp

(
−|s− s′|

Lp

)
ds′ds.

(3.17)

We split the integrand into the regions < s′ ands > s′

〈r2〉 =
∫ L

0

(∫ s

0

exp

(
−(s− s′)

Lp

)
ds′ +

∫ L

s

exp

(
−(s′ − s)

Lp

)
ds′
)
ds

=

∫ L

0

(
Lp exp

(
(s′ − s)

Lp

)∣∣∣∣
s

0

+ Lp

(
− exp

(
(s− s′)

Lp

))∣∣∣∣
L

s

)
ds

=

∫ L

0

Lp

(
1− exp

(
− s

Lp

)
− exp

(
(s− L)

Lp

)
+ 1

)
ds

= Lp

∫ L

0

(
2− exp

(
− s

Lp

)
− exp

(
(s− L)

Lp

))
ds

= Lp

(
2s+ Lp exp

(
− s

Lp

)
− Lp exp

(
(s− L)

Lp

))∣∣∣∣
L

0

= Lp

(
2L+ Lp

(
exp

(
− L

Lp

)
− 1− 1 + exp

(
− L

Lp

)))

= 2LpL− 2L2
p

(
1− exp

(
− L

Lp

))

(3.18)

and therefore we attain the formulation of the mean square end-to-end distance

〈r2〉 = 2LpL

(
1− Lp

L

(
1− exp

(
− L

Lp

)))
. (3.19)

This result was carried out by Rubinstein and Colby (2003). Consider now limiting cases
of latter equation. IfL≫ Lp

〈r2〉 = 2LpL, (3.20)

follows. This limit provides us the relationship between the Kuhn length and the persis-
tence length. By comparison with equation (3.4), we obtain

lk = 2Lp. (3.21)

Another limiting case occurs whenL ≪ Lp, for this purpose we use the following series
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expansion for the approximation

exp

(
− L

Lp

)
≈ 1− L

Lp
+

1

2

(
L

Lp

)2

− 1

6

(
L

Lp

)3

+ . . . (3.22)

in equation (3.19) and receive thereby

〈r2〉 ≈ 2LpL

(
1− Lp

L

(
1− 1 +

L

Lp
− 1

2

(
L

Lp

)2

+
1

6

(
L

Lp

)3

− . . .

))

= 2LpL

(
1− 1 +

1

2

(
L

Lp

)
− 1

6

(
L

Lp

)2

+ . . .

)

= L2 − 1

3

L3

Lp
+ . . . ≈ L2.

(3.23)

This limiting case reflects the nature of a stiff biopolymers.
The numerical treatment of the WLC was first done by Fixman andKovac (1973) and

some analytical details were furnished by Kovac and Crabb (1982). This was then comple-
mented by Bustamante et al. (1994) and Marko and Siggia (1995) to get a force-extension
relation, as we mentioned above. To obtain this relation, weconsider a single filament,
whose end points lie on thex1-axis, as illustrated in Figure 3.2. Suppose that one end is

Figure 3.2: Single filament with a fixed end atx1 = 0. The forcef acting inx1-direction over-
comes the second end tox1 = r. The unit tangentt(s) defined by parameterization of
arc lengths ∈ [0, L].

fixed atx1 = 0. Let r0 be the second end point on thex1-axis, which is referred to as the
end-to-end distance when no force is applied. We describe the path of a filament through
the parametrization of the arc lengths ∈ [0, L]. Let t(s) be a unit tangent vector ats and
r(s) the position vector along the chain, so that

t(s) =
∂r(s)

∂s
. (3.24)

The curvatureκ is defined by

κ =

∣∣∣∣
∂2r(s)

∂2s

∣∣∣∣ (3.25)
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and the bending energy per unit length of the filament mounts to 1
2
kBTLpκ

2, wherekB is
the Boltzmann constant with value1.38× 10−23Nm/K andT is the absolute temperature.
If we now apply a forcef in the x1-direction the endx1 = r0 changes tox1 = r, see
Figure 3.2, and thus work was done, which acts against the effect of thermal fluctuations.
This can be described by the term

∫ r
r0
fdx. The effective energy of a stretched filament,

which mentioned by Marko and Siggia (1995) is written as

EWLC =
1

2
kBTLp

∫ L

0

κ2ds−
∫ r

r0

fdx. (3.26)

To achieve a useful relation betweenf andr/L, Marko and Siggia used the Boltzmann

distributionexp
(
−EWLC

kBT

)
and obtained the following interpolation formula

f =
kBT

4Lp



4r

L
+

1
(
1− r

L

)2 − 1


 , (3.27)

which is a very useful approximation for semiflexible, inextensible filaments.

3.1.3 Holzapfel-Ogden model

Another approach to obtain a force-extension relation for the worm-like chain model was
carried out by Holzapfel and Ogden (2011). This concept is based on a pure mechanical
analysis and the extensible case of a filament is incorporated from the beginning. Let us
now discuss the basic concept of this model.

We start with the analysis of thekinematics, before we examine the equilibrium equa-
tions and complete the analysis by material laws. The filament is described by a plane
curve, which we illustrated in Figure 3.3(left) in the reference and in Figure 3.3(right) in
current configurations. The arc lengths, the tangent vectort and the curvatureκ are de-
fined in the previous section. Letθ be the angle between the unit tangent vectort and the
x1-axis and letu be the transverse deviation from thex1-axis. In the reference configu-
ration we denoteS as the distance along the chain from the originO. The change in arc
length, which we define as the local stretch of deformed to undeformed length, is given
through

ds

dS
= s′(S) =: λ(S), (3.28)

where the prime denotes the derivative with respect toS. The local stretch is defined in
λ ∈ (0,∞) and the relation betweens andS is one-to-one. Letx(s) be the position vector
at positions in the current configuration. The derivative ofx(s) with respect tos defined
the unit tangent vector through

x′(s) =
dx

ds
= t(s). (3.29)
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Figure 3.3: An elastic biopolymer in a straight unstretched reference configuration (left) lying
along theX1-axis with the arc length parameterS. In the deformed or current con-
figuration (right), both ends of the filament lying on thex1-axis and a forcef is applied
on the right-hand end of the filament alongx1-direction. The related arc length param-
eter iss andr is the end-to-end distance. The unit tangent and the unit normal vectors
aret andn, respectively. The tangent makes an angleθ with thex1-axis and u denotes
the lateral displacement from thex1-axis.

According to Figure 3.3, we write the unit tangent vectort and unit normal vectorn with
respect to the current configuration with basis vectorse1 ande2, respectively, in the fol-
lowing form

t(s) = cos θ(s)e1 + sin θ(s)e2, n(s) = − sin θ(s)e1 + cos θ(s)e2. (3.30)

The infinitesimal lateral displacementdu from x1-axis, can be expressed geometrically by

du

ds
= sin θ. (3.31)

For a plane curve the curvature is defined as the derivative ofthe angle with respect to the
arc length

κ(s) =
dθ(s)

ds
= θ′(s). (3.32)

Considering the derivative of the tangent vector with respect tos, by using equation (3.30)2

and (3.32)1 we obtain

dt

ds
=

dt

dθ

dθ

ds
= (− sin θe1 + cos θe2)

dθ

ds
= κ(s)n(s). (3.33)
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When we consider the quantities in the reference configuration with respect to the param-
eterS we put henceforth a bar over these quantities. By the notation θ̄(S) = θ(s) and by
equation (3.28)2 and (3.32)1, the modified curvature is defined by

κ̄(S) =
dθ̄(S)

dS
=

dθ(s)

ds

ds

dS
= λ(S)κ(s) = θ̄′(S) (3.34)

Finally, we consider the derivative of̄u with respect toS. The notation̄u(S) = u(s) and
equation (3.31) and (3.28) yields

ū′(S) =
dū

dS
=

du

ds

ds

dS
= λ(S) sin θ̄(S). (3.35)

In the next step we establish theequilibrium equations in consideration of an unshear-
able biopolymer. For this purpose we use the theory of a planar steady-state problems for
elastic rods as support, which is discussed in detail in Antman (2005, Chap. 4). Consider
the cross section of an ’unshearable’ biopolymer at location s, the resultant forcep consists
of a tangential and a normal component and is written as

p = tt+ nn = (t cos θ − n sin θ) e1 + (t sin θ + n cos θ) e2, (3.36)

wheret describes the tension in the tangential direction andn acts as a Lagrange multiplier
required to prevent shearing in the cross section of the biopolymer. The moment belonging
to this resultant force about the originO is x × p. At this locations there acts also a
resultant contact couplem with a bending momentm in the biopolymer, such that

m = mt× n. (3.37)

We consider a material segment[c, s] of the filament, which is in equilibrium when the
sum of resultant forces and moments acting on this segment are each zero. Assuming
additionally that a body forceb is acting along this segment and there are no body couples
per unit length in the deformed configuration. In this way we obtain

p(s)− p(c) +

∫ s

c

b(ξ)dξ = 0,

m(s)−m(c) + x(s)× p(s)− x(c)× p(c) +

∫ s

c

x(ξ)× b(ξ)dξ = 0,
(3.38)

see Antman (2005, Chap. 4). Letc be a constant. Taking the derivative with respect tos
the equations in (3.38) result in

p′(s) + b(s) = 0,

m′(s) + x′(s)× p(s) + x(s)× p′(s) + x(s)× b(s) = 0.
(3.39)



3.1 Single filament model 33

By rearranging the equation (3.39)2 and using (3.39)1, we get

m′(s) + x′(s)× p(s) + x(s)× (p′(s) + b(s)) = 0

m′(s) + x′(s)× p(s) = 0.
(3.40)

For convenience we introduce a vectorc̃(s) such that̃c′(s) = b holds. Then we can deduce
from equation (3.39)1 thatp + c̃ is a constant. In the two-dimensional case, wheref is
acting only inx1 direction andg is a normal reaction inx2 direction, we can thus write

p+ c̃ = fe1 + ge2. (3.41)

Without loss of generality we assume thatc̃ has only a transverse component, i.e.c̃(s) =
c̃(s)e2. This assumption converts equation (3.41) into

p = fe1 − ce2, (3.42)

wherec is defined byc := c̃ − g. Comparing the latter equation with equation (3.36), we
achieve

t cos θ − n sin θ = f, t sin θ + n cos θ = −c. (3.43)

By multiplication of (3.43)1 with cos θ and (3.43)2 with sin θ, followed by summation these
preliminary results, we obtain one of the two translation balance equations. The second one
is achieved by multiplication of (3.43)1 with sin θ and (3.43)2 with cos θ and subsequent
subtraction. By doing this, we get the following two translational balance equations

t = f cos θ − c sin θ and n = −f sin θ + c cos θ, (3.44)

respectively. The rotational balance equation is deduced by substituting equation (3.36)1

in (3.40)2 and by using equation (3.29) and (3.37) we obtain

dm

ds
t× n︸ ︷︷ ︸

e3

+t (t× t)︸ ︷︷ ︸
0

+n (t× n)︸ ︷︷ ︸
e3

= 0, (3.45)

so that it follows
m′ + n = 0. (3.46)

The final step is to establish theconstitutive laws. We consider an elastic energyU ,
which is stored in a biopolymer, per unit length in the reference configuration. Generally,
this energy depends on the stretchλ and the curvaturēκ, i.e.U = U(λ, κ̄). The connection
between the tensile forcet and bending momentm, respectively, and the stored energy
were discussed by Steigmann and Ogden and are given by

t =
∂U

∂λ
, m =

∂U

∂κ̄
. (3.47)
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If the biopolymer exhibits no stretch, i.e.λ = 1 and no bending, i.e.̄κ = 0, then the tensile
force and bending moment have to vanish. Thus we demand

U(1, 0) = 0, Uλ(1, 0) = 0, Uκ̄(1, 0) = 0, (3.48)

where the subscripts denote the partial derivatives. We do not distinguish between bending
up and bending down, this means that the bending momentm has the same sign asκ̄ and
further we consider only local extension and not a contraction of the biopolymer, which
means that forλ > 1 it follows that

Uλ(λ, κ̄) > 0 for anyκ̄. (3.49)

Additionally, in an energy minimizing configurationU should be a locally convex function
of λ andκ̄, i.e.

Uλλ ≥ 0, Uκ̄κ̄ ≥ 0, UλλUκ̄κ̄ − U2
λκ̄ ≥ 0, (3.50)

which is according to Steigmann and Ogden. For a smallκ̄ and with the constant stretch
modulusµ0 > 0 and a constant bending stiffnessB0, we may assume a simple decoupled
model in the form

U(λ, κ̄) =
1

2
µ0 (λ− 1)2 +

1

2
B0κ̄

2. (3.51)

This model yields
t = Uλ = µ0 (λ− 1) , m = Uκ̄ = B0κ̄ (3.52)

and further
Uλλ = µ0, Uκ̄κ̄ = B0, Uλκ̄ = 0. (3.53)

The specified model (3.51) fulfills all conditions ofU , as indicated in (3.48), (3.49) and
(3.50). Now we are able to deduce the equilibrium equation for a single biopolymer with
using the model (3.51). To this end we consider the functionswith respect toS, i.e. we
replacet, n, c,m andθ in equation (3.44) and (3.46) bȳt, n̄, c̄, m̄ andθ̄. Furthermore, we
assume that̄θ is very small, so thatcos θ̄ ≈ 1 and sin θ̄ ≈ θ̄ can be approximated and
furthermorec̄ is a linear function in̄θ. By using equation (3.44)1, neglecting the second
order terms in̄θ and with (3.52)2, we obtain

t ≈ f = µ0 (λ− 1) ⇒ λ = 1 +
f

µ0

. (3.54)

In this way it follows thatλ is constant, independent of positionS. The rotational equilib-
rium equation (3.46) as a function of the arc lengthS takes the form

dm̄

dS

dS

ds
+ n̄ = λ−1m̄′ + n̄ = 0. (3.55)

By substituting equation (3.44) in the latter equation and with equation (3.52)4, it follows
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thatm′ = B0κ̄
′ = B0θ̄

′′ and we get the approximation

λ−1B0θ̄
′′ − f θ̄ = c̄. (3.56)

Sincec̄′ = b̄ and by differentiation of (3.56) we receive

λ−1B0θ̄
′′′ − f θ̄′ = b̄. (3.57)

The differentiation of̄u′ = λ sin θ̄ results inū′′ = λ cos θ̄θ̄′ and by using the approximation
cos θ̄ ≈ 1 we getū′′ ≈ λθ̄′. In this way, equation (3.57) leads to

λ−2B0ū
′′′′ − λ−1fū′′ = b̄. (3.58)

If λ = 1, we say that the filament is inextensible, meaning thats = S and therefore we can
drop the bars henceforth. The equilibrium equation (3.58) for the inextensible case takes
the form

B0u
′′′′ − fu′′ = b, (3.59)

which recovers the classical Euler beam equation if there isno body force.

The body force term is necessary for finding non-trivial solutions of the mechanical
boundary-value problem. To obtain a force-extension relation of the governing equa-
tions (3.58) and (3.59), the Fourier series were used in Holzapfel and Ogden (2011). The
result of the force versus end-to-end distance for the extensible case, which depends on the
end-to-end distance with zero forcer0, has the form

r

L
= 1 +

f

µ0
−

(
1 + 2

f

µ0

)(
1 +

f

µ0

)2

(
1 +

fL2

π2B0
+

f 2L2

π2B0µ0

)2

(
1− r0

L

)
, (3.60)

This formula includes bending and stretching properties. With the transformation of force
f to a dimensionless measure

f ⋆ =
L2

π2B0

f (3.61)

and by using the dimensionless parameter

α =
π2B0

µ0L2
, (3.62)

the extensible Holzapfel-Ogden model (3.60) becomes

r

L
= 1 + αf ⋆ − (1 + 2αf ⋆) (1 + αf ⋆)2

(1 + f ⋆ + αf ⋆2)2

(
1− r0

L

)
. (3.63)
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The inextensible case is included in the extensible formulation, whenµ0 → ∞ and there-
foreα→ 0. Thus the inextensible Holzapfel-Ogden model is given by

r

L
= 1− 1

(1 + f ⋆)2

(
1− r0

L

)
. (3.64)

The achieved models can be adopted for both flexible and semiflexible filaments.

3.2 Network model

In human body filaments do not appear in single form but rathertogether with other fila-
ments of the same type or even other types. A network model should describe the elasticity
response of these interactions of filaments. In the literature there are a variety of these types
of models, such as the affine three chain model by Wang and Guth(1952), the non-affine
four chain model by Treloar (1954), which describes a full network, and the non-affine
eight chain model by Arruda and Boyce (1993), which is the most prominent network
model today. Another formulation of a full network model is provided by Miehe et al.
(2004) and is called the micro-sphere model. Unterberger etal. (submitted) made use of
this concept recently, and formulated a new approach to model a cross-linked actin net-
work. Before we discuss Unterberger’s model in detail, we introduce the basic concept of
the micro-sphere model.

3.2.1 Micro-sphere model

The non-affine micro-sphere model proposed by Miehe et al. (2004) is a microscopically
motivated model for rubberlike materials. The authors worked out a new formulation of a
micro-macro approach to describe the elasticity response of a material. This is constructed
by a new constitutive setting of the micro-mechanical response of a single polymer chain
considered in a constrained environment and by a new non-affine micro-to-macro transi-
tion. The implementation of the first point is carried out by two micro-kinematic variables,
the stretchλ of the chain and the contractionν of the cross section of a micro-tube that
contains the chain. The second point provides the bridge between the microscopic kine-
matic variables and the macroscopic continuum deformationmeasures. This is achieved
by a homogenization procedure of micro-state variables defined on the micro-sphere of
space orientations and this defines the three-dimensional overall response of the polymer
network. The constitutive model was obtained through the following three steps. The first
step describes the link between the micro and macro line and area stretches through a fluc-
tuation field on a micro-sphere. The fluctuation field is determined by a minimization of the
macroscopic free energy, which we obtained by the single filament model, which we have
carried out for the Holzapfel-Ogden model in Section 3.1.3.The second step considers a
tube constraint, which describes the restriction of the movement of a single chain. This
part for example illustrates the cross-links in a polymer network. The last step addresses
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a numerical approximation of an integral over a sphere, the so-called 21-point integration
scheme by Bažant and Oh (1986) is used.

To begin with thekinematics, we focus on the definition of micro-kinematic variables of
the chain. For that purpose, we consider a single chain, which is constrained by a straight
tube to draft the interactions of chains in a network and introduce the two micro-kinematic
variables, the stretchλ and the tube contractionν. Depending on the specific model to
describe the single chain determines the remaining parameters of the single filament model.
Miehe et al. (2004) made use of the freely-jointed chain model, which we introduced in
Section 3.1.1. By using the usual notation, the end-to-end distancer and the end-to-end
distance at zero forcer0, the dimensionless stretchλ is defined as

λ :=
r

r0
. (3.65)

Consider an inextensible filament,λ ∈ (0, L/r0). In view of the second micro-kinematic
variable, it is assumed that the polymer chain is confined in atube of constant diameter
d and that both ends are fixed at the center of the end cross section. The dimensionless
tube area contraction withν ∈ (0,∞), which describes the network constraint to the single
chain, can be described by

ν :=

(
d0
d

)2

, (3.66)

whered0 is the initial diameter of the tube. The variableν describes the number of allowed
conformations of the chain inside of the tube and the initialdiameter can be interpreted as
material parameter of the undeformed network.

Now we investigate the formulation of the micro-to-macro transition, which links the
two micro-kinematic variablesλ andν to the line-stretch̄λ and to the area-stretch̄ν, re-
spectively of the macro-continuum. First of all, we consider some stretch assumption. Let
Π be a unit orientation vector with the Euclidean norm‖Π‖ = 1, which describes the
direction between the end points of the polymer in the reference configuration. The iso-
choric stretch vectorπ is defined by the transformation through the macroscopic isochoric
deformation gradientF and is given by

π = FΠ, (3.67)

see Figure 3.4.
The macro-stretch of a material line element is then defined by

λ̄ =
‖π‖
‖Π‖ = ‖π‖ =

√
π · π. (3.68)

By recalling the definition of Cauchy-Green tensorC = F⊤F and by using (3.67), the
macro-stretch can be written as

λ̄ =
√
FΠ · FΠ =

√
Π · F⊤FΠ =

√
Π ·CΠ. (3.69)
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Figure 3.4: The unit vectorΠ in the reference configuration (left) is deformed by deformation
gradientF into the vectorΠ in the current configuration (right) in the three dimensional
space.

A further assumption of Miehe’s conception is that the micro-stretchesλ fluctuate around
the macro-stretches̄λ and the relation can be expressed with the stretch-fluctuation field f̃

λ = λ̄f̃ . (3.70)

The fluctuation field on the unit sphereΩ is determined by a principle of minimum averaged
free energy, which is in line with the concept of homogenization principles and is explained
by thep-root averaging operator

λ = 〈λ̄〉p :=
(

1

|Ω|

∫

Ω

λ̄pdA

)1/p

, (3.71)

wheredA is the infinitesimal area element ofΩ with total area|Ω| = 4π andp an additional
material parameter of the polymer network.

Next, consider an area element with unit normalΠ in the reference configuration. The
area vectora can be described by

a = F−⊤Π, (3.72)

compare with Nanson’s formula (2.20). Subsequently the macro-area stretch of a material
element is

ν̄ =
‖a‖
‖Π‖ = ‖a‖ =

√
a · a. (3.73)

If we regard the inverse of Cauchy-Green tensor and equation(3.72), the macro-area stretch
becomes

ν̄ =
√
F−⊤Π · F−⊤Π =

√
Π · F−1F−⊤Π =

√
Π ·C−1Π. (3.74)

The relation between the micro-tube contraction and the macro-area stretch is proposed by
Miehe et al. (2004) through

ν = (ν̄)q. (3.75)

The non-linearity between the microscopic tube contraction and the macroscopic area re-
sults from an additional material parameterq. A geometrical interpretation of conceptual
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linking of micro-kinematic variables to macro-kinematic variables is shown in Miehe et al.
(2004).

The contributions from the line stretch and area stretch result in an additive decompo-
sition of the free energy functionψ into the contribution of the free energyψf of the free
motion of the chain and the contribution of the free energyψc of the tube constraint, such
that

ψ(λ, ν) = ψf(λ) + ψc(ν). (3.76)

This decomposition is translated to the macroscopic scale with the result

Ψ(F) = Ψf(F) + Ψc(F), (3.77)

and subsequently
τ = τf + τc − ζI. (3.78)

It should be assumed, that the undeformed network is homogeneous and isotropic. Further,
the network consists ofn chains per unit reference volume, where it represents the number
of filaments of the network and is also called filament density. These filaments are ran-
domly distributed in a three-dimensional unit sphere. The elastic free energy of a network
is equal to the sum of the elastic free energiesψif of the individual chains, i.e

Ψf =

n∑

i=1

ψif (λ̄
i). (3.79)

The macroscopic free energy of the non-affine network model for unconstrained chains is
denoted by Miehe et al. (2004) as

Ψf(F) = nψf(〈λ̄〉p). (3.80)

For the tube constraint the macroscopic free energy is written as

Ψc(F) = 〈nψc(ν̄
q)〉, (3.81)

where〈•〉 denotes the continuous averaging for an equal orientation distribution and is
regarded as the homogenization on a micro-sphere with unit radius, which we defined
in (3.71) forp = 1. Furthermore, the macroscopic Kirchhoff stresses for the unconstrained
and constrained part is given by

τf = nψ′
fλ

1−ph, (3.82)

with tensorh := 〈λ̄p−2π ⊗ π〉, and

τc = −nψ′
ck, (3.83)

respectively, withk := 〈qν̄q−2a⊗ a〉, where⊗ denotes the dyadic product.

Finally, the integral over the continuous space orientations has to be solved numerically.



40 3 Models for biopolymers

This can be done by discretizing the continuous orientationdistribution of the unit sphere
Ω. In this context,m discrete points are defined on the surface of the unit sphere with
orientation vectors{Πi}i=1,..,m and with the associated weight factors{wi}i=1,..,m. The
discrete micro-state variables{vi}i=1,..,m are evaluated at the discrete points. Therefore,
the numerical integration over the unit sphere of state variablev can be approximated by
the discrete sum

〈v〉 := 1

|Ω|

∫

Ω

v(A)dA ≈
m∑

i=1

viwi. (3.84)

In the discrete setting, the numerical integration scheme has to satisfy some constraints.
The average over all orientation vectors has to be

〈Π〉 = 0. (3.85)

In order to ensure a stress-free state of the reference configuration the dyadic product of
the orientation vectors has to satisfy the following condition

〈Π⊗Π〉 = 1

3
I. (3.86)

Bažant and Oh (1986) specified a21-point integration scheme, which fulfill these condi-
tions. These21 points are defined on the hemisphere because of the symmetry of the unit
sphere. The associated discrete points defined on the hemisphere for a Cartesian system
and the associated weights are tabulated in Bažant and Oh (1986). Miehe et al. (2004)
showed that this21-point integration scheme provides the sufficient accuracyfor all nu-
merical considerations.

3.2.2 Unterberger model

A new multi-scale model to describe the mechanics of cross-linked actin networks was
recently developed by Unterberger et al. (submitted). Thiswork includes the basic idea
of the network model by Miehe et al. (2004) and incorporates ageneralized form of the
Holzapfel-Ogden model for the contribution of the single filament. For convenience, the
tube part of the micro-sphere model by Miehe et al. (2004) wasneglected in this consider-
ation. Further, an initial pre-stretch variableλ0 was installed in the single filament model,
such that

r = λλ0r0. (3.87)

The extensible Holzapfel-Ogden model was generalized by substituting the square in equa-
tion (3.60) by an arbitrary exponentβ, which is referred to as the effective extensional mod-
ulus, see Holzapfel and Ogden (submitted). This parameter describes the initial stiffnes of
the single filament. By using the dimensionless forcef ⋆ and the dimensionless parameter
α, which are defined in equation (3.61) and (3.62), respectively, and with equation (3.87),
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the generalized extensible single filament model reads as

λλ0r0
L

= 1 + αf ⋆ − (1 + 2αf ⋆)(1 + 2αf ⋆)β

(1 + f ⋆ + αf ⋆2)β

(
1− r0

L

)
, (3.88)

see Unterberger et al. (submitted). To assemble the networkmodel the derivative of the
strain-energy function with respect toλ is required and can be calculated as follows

ψ′
f =

∂ψf

∂λ
=
∂ψf

∂r

∂r

∂λ
= fλ0r0, (3.89)

where the forcef is the partial derivative ofψf with respect tor, i.e. f = ∂ψf/∂r holds.
The force is determined by the single filament model. Insteadof (3.88) for the Holzapfel-
Ogden model, we can use equation (3.11) and (3.12) for the freely-jointed chain model or
equation (3.27) for the worm-like chain model.

Now, we are interested in the computation of the Cauchy stress tensor and doing this in
the same way like Unterberger et al. (submitted), but we consider from the beginning an
incompressible hyperelastic material, i.e.J = 1. The associated Cauchy stress tensor was
derived in Section 2.3 and is recalled in the form

σf = 2F
∂Ψf(C)

∂C
F⊤ − ζI. (3.90)

In this sense we have to analyze the derivation of the strain-energy function with respect
to the right Cauchy-Green tensor. Considering that we neglect the tube part of the micro-
sphere model, therefore the following deduction is based onthe unconstrained chains. Us-
ing equation (3.80) and (3.89) we arrive at

∂Ψf

∂C
= n

∂ψf

∂C
= n

∂ψf

∂λ

∂λ

∂λ̄

∂λ̄

∂C
= nψ′

f

∂λ

∂λ̄

∂λ̄

∂C
. (3.91)

Consider first, the last partial derivative, which can be calculated with equation (3.69) and
(3.67) as

∂λ̄

∂C
=

∂

∂C

√
Π ·CΠ =

1

2
λ̄−1∂(Π ·CΠ)

∂C

=
1

2
λ̄−1 (Π⊗Π)

=
1

2
λ̄−1

(
F−1π ⊗ πF−⊤

)

(3.92)

Using Leibniz’s rule for differentiation under the integral sign and equation (3.71) we work
out the following expression

∂λ

∂λ̄

∂λ̄

∂C
= λ1−p

〈
λ̄p−1 ∂λ̄

∂C

〉
(3.93)
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Put the partial results together into (3.91) and rewrite equation (3.90)

σf = 2F
∂Ψf(C)

∂C
F⊤ − ζI

= 2nψ′
fλ

1−pF
1

2

〈
λ̄p−2F−1π ⊗ πF−⊤

〉
F⊤ − ζI

= nψ′
fλ

1−p
〈
λ̄p−2π ⊗ π

〉
− ζI.

(3.94)

The final result of the Cauchy stress tensor for an incompressible material reads now

σf = nψ′
fλ

1−ph− ζI with h = 〈λ̄p−2π ⊗ π〉. (3.95)

The latter result presents basically the same as (3.82) ifJ = 1. The stretch parameter
λ is calculated by the micro-sphere model as well as the structure tensorh, by using the
homogenization procedure of (3.84). The result ofλ is used in the single filament model.
The solution of the generalized extensible single filament model (3.88) provides us the
forcef and henceforth we are able to calculateψ′

f . Both the micro-sphere model and the
single filament model are assembled and result in the Cauchy stress tensorσf .



4 Analysis of the tube part

In the previous section we introduced the concept of networkmodels, in particular the
micro-sphere model and the Unterberger model for an incompressible hyperelastic mate-
rial, where the tube part of the micro-sphere model was neglected. Now we want to make
up for this omission. For this purpose, we first have to incorporate the contribution of this
tube constraint to the Cauchy stress tensor. Afterwards we will discuss the computation
of the Cauchy stress tensor in particular about the structural tensorsh andk. The tube
part supplies two additional parameters that need to be determined. By varying these two
parameters, we show the effect of the tube part on the networkmodel and discuss these
results at the end of the section.

4.1 Incorporation of the tube part

To incorporate the tube part into the network model, we have to study the Cauchy stress
tensor again, in particular the derivative of the strain-energy function with respect toC.
We defined the Cauchy stress tensor for an incompressible hyperelastic material in equa-
tion (2.61), which we recall again in the form

σ = 2F
∂Ψ(C)

∂C
F⊤ − ζI. (4.1)

We know from (3.77) that the strain-energy functionΨ is additively decomposed intoΨf

andΨc. Hence, the Cauchy stress tensor is writable as

σ = 2F

(
∂Ψf

∂C
+
∂Ψc

∂C

)
F⊤ − ζI. (4.2)

The derivative ofΨf with respect toC is completely done in Section 3.2.2. In the same
way we establish the derivative ofΨc with respect toC. From equation (3.81) and (3.75),
we get

∂Ψc

∂C
=

∂

∂C
〈nψc(ν̄

q)〉 = ∂

∂C
〈nψc(ν)〉. (4.3)

Using the homogenization principle, which we defined in (3.71)2, we continue to write

∂Ψc

∂C
=

∂

∂C

(
1

|Ω|

∫

Ω

nψc(ν)dA

)
=

1

|Ω|

∫

Ω

n
∂ψc(ν)

∂C
dA. (4.4)

43
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Now we have to evaluate

∂ψc(ν)

∂C
=
∂ψc(ν)

∂ν

∂ν

∂ν̄

∂ν̄

∂C
= ψ′

c

∂ν

∂ν̄

∂ν̄

∂C
, (4.5)

where the prime denotes the partial derivative with respectto ν. Sinceν = ν̄q it follows,
therefore,

∂ν

∂ν̄
= qν̄q−1. (4.6)

What remains is the analysis of∂ν̄/∂C. The macro-area stretch is defined in equation
(3.74) by

ν̄ =
(
Π ·C−1Π

) 1

2 , (4.7)

so that we obtain

∂ν̄

∂C
=

1

2

1

(Π ·C−1Π)
1

2

∂(Π ·C−1Π)

∂C
=

1

2ν̄

∂(Π ·C−1Π)

∂C
. (4.8)

To perform this derivation, we require the following index notation, which is defined in
Holzapfel (2000, p. 43),

∂C−1
ij

∂Ckℓ
= −1

2

(
C−1
ik C

−1
ℓj + C−1

iℓ C
−1
kj

)
. (4.9)

We execute the derivative in equation (4.8)2 with respect toC in index notation in the
following steps

∂

∂Ckℓ
(ΠiC

−1
ij Πj) = −1

2

[
Πi

(
C−1
ik C

−1
ℓj + C−1

iℓ C
−1
kj

)
Πj

]

= −1

2

[
ΠiC

−1
ik C

−1
ℓj Πj +ΠiC

−1
iℓ C

−1
kj Πj

]

= −1

2

[(
ΠC−1

)
k

(
C−1Π

)
ℓ
+
(
ΠC−1

)
ℓ

(
C−1Π

)
k

]

= −1

2

[(
C−⊤Π

)
k

(
ΠC−⊤

)
ℓ
+
(
C−1Π

)
k

(
ΠC−1

)
ℓ

]
.

(4.10)

Since the right Cauchy Green tensor is symmetric, meaning

C−1 = C−⊤, (4.11)

we obtain
∂Π ·C−1Π

∂C
= −C−1Π⊗ΠC−⊤ = −C−1Π⊗C−1Π. (4.12)

In equation (3.72), the area vector is defined by

a = F−⊤Π. (4.13)
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We consider
F−1a = F−1F−⊤Π = C−1Π (4.14)

and infer
∂ν̄

∂C
=

1

2ν̄

∂(Π ·C−1Π)

∂C

= − 1

2ν̄
F−1a⊗ aF−⊤.

(4.15)

Back again to equation (4.5), if we collect all partial results (4.6) and (4.15), we attain the
following result

∂ψc(ν)

∂C
= −ψ′

cqν̄
q−1 1

2ν̄
F−1a⊗ aF−⊤. (4.16)

Insert latter equation in equation (4.3)2, we achieve

∂Ψc

∂C
=

〈
n
∂ψc

∂C

〉
= −1

2
nψ′

cq〈ν̄q−2F−1a⊗ aF−⊤〉. (4.17)

Consider again the Cauchy stress tensor (4.2) in the form

σ = 2F
∂Ψf

∂C
F⊤ + 2F

∂Ψc

∂C
F⊤ − ζI. (4.18)

Using the results, namely equation (3.95) for the unconstrained chain and equation (4.17)
for the tube constraint, we obtain with

h := 〈λ̄p−2π ⊗ π〉 and k := 〈qν̄q−2a⊗ a〉 (4.19)

the following Cauchy stress tensor

σ = nψ′
fλ

1−ph− nψ′
ck− ζI. (4.20)

To complete this section, we still need to assemble the derivative of the strain-energy
functionψc with respect toν. The derivation of the free energy function of the tube part
ψc is carried out analogously toψFJC in Section 3.1.1. The probability of the straight tube
constraint, which is postulated in Miehe et al. (2004) and refers to Doi and Edwards (1986,
p. 205), is with the normalization constantP0 given by

Pc(ν) = P0 exp

(
−α
(
r0
d0

)2

ν

)
. (4.21)

The parameterα describes a numerical factor which depends on the shape of the cross
section of the tube. All other parameters have already been introduced in Section 3.2.1. It
is assumed that the undulations of the worm-like chain are constrained by the tube. For
purely entropic response we get by means of equations (3.5) and (3.6) the following free
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energy function

ψc = −kBT ln pc(ν) = −kBT ln

(
p0 exp

(
−α
(
r0
d0

)2

ν

))

= −kBT ln p0︸ ︷︷ ︸
=:ψ0

+kBTα

(
r0
d0

)2

ν.

(4.22)

with constantψ0. In this way, the derivative ofψc with respect toν yields

∂ψc

∂ν
= ψ′

c = αkBT

(
r0
d0

)2

(4.23)

For our purpose, we define

Ũ := α

(
r0
d0

)2

(4.24)

as a geometric parameter, so thatψ′
c reads as

ψ′
c = kBT Ũ. (4.25)

4.2 Implementation of Cauchy stress tensor

Now, we want to specify the Cauchy stress tensor (4.20) taking into account a simple shear
deformation. This kind of deformation is described in detail in Section 2.1.4. Henceforth,
the subscripts of matrix elements are labeled only with the second subscripts of the annota-
tion of the axes. More precisely, the subscripts1, 2 and3 refer to thex1-, x2- andx3-axes,
respectively. In Section 3.2.2 we already discussed aboutψ′

f . This factor is contributed by
the single filament model and is given in equation (3.89). Theitemψ′

c was explained at the
end of the previous section. The micro-stretchλ is calculated using equation (3.71) and by
discretization of the continuous unit sphere into the21 radius vectorsΠ → Πi. For this
we have to determine the discrete itemsλ̄i through

λ̄i = ‖FΠi‖ (4.26)

and thus we are able to computeλ by

λ =

[
21∑

i=1

(
λ̄i
)p
wi

]1/p
. (4.27)

As we already know, the material parametern defines the filament density andp an ad-
ditional network parameter, which we will address in depth in Chapter 5. Let us deal
next with the implementation of the structural tensorsh andk. Using equation (3.67) we
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execute the following steps

h = 〈λ̄p−2π ⊗ π〉 = 〈λ̄p−2FΠ⊗ΠF⊤〉
= F〈λ̄p−2Π⊗Π〉F⊤.

(4.28)

By using the21-point integration scheme we approach the averaging by

h̃ := 〈λ̄p−2Π⊗Π〉 ≈
21∑

i=1

(
λ̄i
)p−2

Πi ⊗Πiwi. (4.29)

The additional non-affine tube parameterq is introduced in Section 3.2.1. In the following
steps we analyze the area-stretch tensork by using equation (3.72)

k = q〈ν̄q−2a⊗ a〉 = q〈ν̄q−2F−⊤Π⊗ΠF−1〉
= qF−⊤〈ν̄q−2Π⊗Π〉F−1.

(4.30)

We discretizēν → ν̄i through
ν̄i = ‖F−⊤Πi‖ (4.31)

and approximate the angle brackets in equation (4.30) by

k̃ := 〈ν̄q−2Π⊗Π〉 ≈
21∑

i=1

(
ν̄i
)q−2

Πi ⊗Πiwi. (4.32)

Because of simple shear deformation in thex1x2-plane and the condition (3.85), which
says that the average over all orientation vectors{Πi}i=1,...,m have to be0, the structural
and area-stretch tensors have the following forms in matrixnotation

[h] =



h11 h12 0
h12 h22 0
0 0 h33


 and [k] =



k11 k12 0
k12 k22 0
0 0 k33


 , (4.33)

respectively. After the computation of̃h from (4.28)3 andk̃ from (4.30)3 we are able to
work out the entries ofh andk in the following way

h11 = h̃11 + 2γh̃12 + γ2h̃22, h12 = h̃12 + γh̃22,

h22 = h̃22, h33 = h̃33,
(4.34)

and
k11 = qk̃11, k12 = q

(
k̃12 − γk̃11

)
,

k22 = q
(
k̃22 − 2γk̃12 + γ2k̃11

)
, k33 = qk̃33.

(4.35)
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Cross-linker densitiesR 1/40 1/20
T Temperature 294 294 K
Lp Persistence length 16 16 µm
L Contour length 1.47 0.53 µm
r0 End-to-end distance at zero force1.33 0.48 µm
µ0 Stretch modulus 38.6 38.6 nN
β Effective extensional modulus 0.438 0.438 -
n Filament density 10.2 28.5 µm−3

λ0 Initial stretch 1.027 1.007 -
p Averaging parameter 8 15 -

Table 4.1:Model parameters for cross-linked actin network, adopted from Unterberger et al. (sub-
mitted).

The remaining variable in equation (4.20), which we still have to determine is the La-
grange multiplierζ . We consider only plane stresses in thex1x2-plane. This results in the
following conditions

σ13 = σ23 = σ33 ≡ 0, (4.36)

which we can enforce by
ζ := nψ′

fλ
1−ph33 − nψ′

ck33. (4.37)

In this way, the normal Cauchy stress inx1- andx2-direction and the shear stress can be
computed by

σ11 = nψ′
fλ

1−ph11 − nψ′
ck11 − ζ

= n
(
ψ′
fλ

1−ph11 − ψ′
ck11 − ψ′

fλ
1−ph33 + ψ′

ck33
)

= n
(
ψ′
fλ

1−p (h11 − h33) + ψ′
c (k33 − k11)

)

σ22 = nψ′
fλ

1−ph22 − nψ′
ck22 − ζ

= n
(
ψ′
fλ

1−ph22 − ψ′
ck22 − ψ′

fλ
1−ph33 + ψ′

ck33
)

= n
(
ψ′
fλ

1−p (h22 − h33) + ψ′
c (k33 − k22)

)

σ12 = n
(
ψ′
fλ

1−ph12 − ψ′
ck12

)

(4.38)

4.3 Effect of the tube part

In this section, we deal with the effects of the tube constraint on the network model. Un-
der the consideration of simple shear deformation and by using the material parameters
for a cross-linked actin network, which are published in Unterberger et al. (submitted) and
reported in Table 4.1, we demonstrate the influence of the tube part on the Unterberger
model. The tube part yields two additional parameters, the geometry parameter̃U and the
averaging tube parameterq, which have to be determined. By varying these two param-
eters we illustrate the impact of the tube part on the model. We choose the values of the



4.3 Effect of the tube part 49

parameter̃U in analogously to Miehe et al. (2004). They used, however, the freely-jointed
chain model for the description of the single chain and obtained for the derivative ofψc

with respect toν the following expression

ψ′
c = kBTNU, (4.39)

whereN is the number of segments of a chain. Comparing the latter equation with equa-
tion (4.25), we get the relation

Ũ = NU. (4.40)

To show the effect of the additional contribution due to the tube constraint, Miehe et al.
(2004) chose the fixed value ofN = 25 and different values ofU = [0.5, 2.0, 5.0, 10.0].
In order to maintain approximately the same magnitude for the geometrical parameter, we
choose the following values of̃U = [0, 50, 100, 200]. The parameterq varies with the
values ofq = [0, 1, 2, 4, 7]. If Ũ = 0 or q = 0, respectively, then this means that the tube
constraint is neglected, i.e.nψ′

ck = 0. A special case occurs whenq = 2. Consider the
area-stretch tensork in equation (4.30), the macro-area stretch provides no contribution if
q = 2 andk becomes with equation (3.86)

k = 2F−⊤ 〈Π⊗Π〉︸ ︷︷ ︸
= 1

3
I

F−1 =
2

3
F−⊤F−1 =

2

3
b−1. (4.41)

The implementation of the Cauchy stress tensor (4.20) has been carried out in MATLAB
by using the material parameters listed in Table 4.1. Here, the cross-linker densityR is
defined by the ratio of cross-linker to molar concentration.By doubling the cross-linker
density fromR = 1/40 to 1/20, the network becomes denser, so that the contour length
and the initial end-to-end distance decrease and the filament density increases.

In Figure 4.1 and 4.2 the normal Cauchy stressesσ11 andσ22 and the shear stressσ12
versus deformationγ are depicted. We consider only the experimental data up to a defor-
mation of30%, because the response above30% no longer reflects the actual properties of
the network, for more details see Unterberger et al. (submitted). First, we keepq constant
and vary the geometrical parameterŨ , shown in Figure 4.1. Figures 4.1(a)-(c) represent
the effect ofŨ by settingq = 3 and by using the material parameters with a cross-linker
density ofR = 1/40. The same value ofq is selected in Figures 4.1(d)-(f) but with differ-
ent material parameters which were measured with a density of R = 1/20. By means of
the material parameters forR = 1/40 and considering the special case, i.e. selectq = 2,
we depict the normal stressesσ11 andσ22 and the shear stressσ12 in Figures 4.1(g)-(i).
Following this, we vary the averaging parameterq while we fix the geometrical parame-
ter atŨ = 50, illustrated in Figure 4.2. In Figures 4.2(a)-(c) the effect of the tube part is
demonstrated with the use of the material parameters ofR = 1/40 and in Figures 4.2(d)-(f)
using the material parameters of the double cross-linker density, i.e.R = 1/20.

First, let us take a closer look at the curves in which the tubepart has no influence
on the model. This is represented in each picture in Figure 4.2 and 4.1 by the dark blue
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Figure 4.1: Illustration of the effect of the tube part by varying̃U = [0, 50, 100, 200] and fixed
q. Normal stressesσ11 (a,d,g),σ22 (b,e,h) and shear stressσ12 (c,f,i) versusγ of actin
networks with variable cross-linker densityR = 1/40 in (a)-(c),(g)-(i) andR = 1/20
in (d)-(f). The averaging parameter is fixed atq = 3 in (a)-(f) andq = 2 in (g)-(i).
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Ũ = 50

Deformationγ in %Deformationγ in %Deformationγ in %

Deformationγ in %Deformationγ in %Deformationγ in %

S
h

ea
r

st
re

ssσ
1
2

in
P
a

S
h

ea
r

st
re

ssσ
1
2

in
P
a

N
o

rm
al

st
re

ss
σ
2
2

in
P
a

N
o

rm
al

st
re

ss
σ
2
2

in
P
a

N
o

rm
al

st
re

ss
σ
1
1

in
P
a

N
o

rm
al

st
re

ss
σ
1
1

in
P
a

0 0 0

000

10 10 10

101010

20 20 20

202020

30 30 30

303030
0

1

2

3

4

5

6

7

8

9

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.5

−0

0.5

1

1.5

2

2.5

3

0

10

20

30

40

50

60

−5

0

5

10

15

20

25

−5

0

5

10

15

20

25

30

35

40

Figure 4.2: Representation of the effect of the tube part by varying the averaging parameterq with
values ofq = [0, 50, 100, 200] and fixedŨ . This is displayed by the normal Cauchy
stressesσ11 (a),(d)σ22 (b),(e) and shear stressσ12 (c),(f) versus deformationγ. Using
in (a)-(c) the material parameters of an actin network forR = 1/40 and in (d)-(f) for
R = 1/20. The geometrical parameter is fixed atŨ = 50 in (a)-(f).

curve, if eitherŨ = 0 or q = 0. In this case, the stiffness for the normal stressesσ11
andσ22 is very low nearly zero at the deformation up to10%. After that, the tangent of
the curve begins to increase slightly and increases rapidlyin the last third. Consequently,
both normal stresses exhibit a small stiffness in the lower region and a high stiffness in the
upper region of deformation. The response of the shear stress σ12 differs somewhat from
the normal stress by increasing the deformation. It shows from the beginning a positive
gradient and becomes slowly stiffer as the deformation increases. In all cases, the tangent
is always positive by neglecting the tube part.

Before we continue to analyze the effect of the tube part in detail, we mention a few
words, how these two parametersŨ andq affect the network in general. Equation (4.24)
reveals that̃U is inversely proportional to the initial diameter of the cross sectiond0 of the
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tube. If we increasẽU , that means that the diameter is decreased and it follows that the
filaments between the cross-linkers have less freedom of movement. The network seems
to be stiffer. The averaging parameterq affects the macro-area stretch exponentially. A
general observation, which we see in Figure 4.1 and 4.2, is that the stiffness becomes
lower for the normal stressesσ11 andσ22 if the parameters̃U or q increase. In contrast,
shear stressσ12 shows a stiffer response by increasing the parameters.

Consider equations (4.34)1,4, (4.35)1,4 and (4.38)3, we notice that by increasing the de-
formation, the impact on the structural tensorh in x1-direction is more significant than
on k. Observe that̃h andk̃ also depend onγ. This observation is confirmed by the Fig-
ures 4.1(a),(d),(e) and 4.2(a),(d), which indicate a minoreffect of the tube part on normal
stressσ11. The only slight effect occurs atq = 7 according to Figure 4.2(a).

The normal stress inx2-directionσ22 is much more affected by the tube part compared to
thex1-direction, that can be deduced from equations (4.34)3,4, (4.35)3,4 and (4.38)6. This
effect caused, that the characteristics of the curve changes from strictly monotonically in-
creasing to a non-monotonic function. The tangent is negative in the lower region of the
deformation and it changes the sign after the local minimum.By increasing the parameters
Ũ or q, the local minimum is getting smaller and is reached later athigher deformation.
These statements are clearly seen in Figures 4.1(b),(h) and4.2(b), but not so prominently
in Figures 4.1(e) and 4.2(e). Note the different scales on the axis of ordinates in Fig-
ures 4.1(b),(e) and 4.2(b),(e), respectively. We used in Figures 4.1(d)-(f) and 4.2(d)-(f) the
material parameters with a higher filament densityR = 1/20, which results in higher val-
ues of stresses in the stretch part. The effect of the tube part onσ22 seems to be minimal by
using the parameters forR = 1/20 (see Figures 4.1(e), 4.2(e)), but in the small scale, the
negative response inx2-direction can be observed just like in Figures 4.1(b) and 4.2(b).

Consider the equations associated with the shear stressσ12, i.e. (4.34)2, (4.35)2 and
(4.38)7, the deformation has an equivalent effect on the structuraltensorh and area-stretch
tensork. By increasing̃U andq, respectively, the shear stress shows a significant response,
depicted in Figures 4.1(c),(f),(i) and 4.2(c),(f).

If q = 2, then the entries of the area-stretch tensork according to equation (4.41) are
calculated as

k11 = k33 =
2

3
,

k22 =
2

3
(1 + γ2) and

k12 = −2

3
γ.

(4.42)

By equations (4.38)3 and (4.42)1, we note that the term of the tube constraint on the normal
stressσ11 is zero and independent of̃U . This is observed in Figure 4.1(g). The contribution
of the tube part on the normal stressσ22 has the value of−2ψ′

cγ
2/3. This results in a

smoother curve, compare Figure 4.1(b) with 4.1(h). The difference between the curves
depicted in Figure 4.1(c) and 4.1(i), respectively, is slightly noticeable. The factor̃k12 is
omitted in equation (4.35)4 if q = 2.
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We conclude this section by focusing again on the results of the normal stress inx2-
direction, which allows an obscure observation. It is not physically meaningful that stress
changes the sign of the direction, during increasing deformation. In this way, there is not
an acceptable explanation of the tube constraint. What we see clearly is that the tube part
for normal stress inx2-direction has a greater impact than inx1-direction. Comparing
Figures 4.1(a)-(c),(g)-(h) to 4.1(d)-(f) and Figures 4.2(a)-(c) to 4.2(d)-(f), respectively, we
can infer that the cross-linker density has an impact on the effect of the tube part. The
stiffer the network the greater the impact of the tube part. All in all we have to determine
two additional parameters, which are not physically interpretable, and the effect of the
tube constraint does not necessarily reflect a realistic sense. Therefore, we challenge the
necessity of the tube part. As long as we cannot develop a better understanding of these
two parameters, it makes no sense to incorporate the tube part into the model.





5 A closer look on the averaging
parameter

In this chapter we focus our interest on the analysis of the parameterp of the model of
Unterberger et al. (submitted), which is specified in equation (3.95). Most of the model
parameters are physically interpretable and most of them are determined by the single fila-
ment model. The temperatureT is determined by the experiments and it usually takes the
value of room temperature21 ◦C. The persistence lengthLp is a material parameter which
is postulated in the literature for many biopolymers with much controversy. For F-actin,
however there is great consensus. Le Goff et al. (2002) published a value around16µm.
Based on the experimental data of a single actin filament by Liu and Pollack (2002), Un-
terberger et al. (submitted) used the nonlinear Least Squares tool (lsqnonlin) of MATLAB
with fixed persistence length and temperature to determine the remaining parameters. The
best fit was reached by the valuesL = 11.264µm, r0 = 10.17µm, µ0 = 38.6 nN and
β = 0.438, see Unterberger et al. (submitted). The ratior0/L = 0.91 is very useful for
finding the network parameters, because the contour lengthL refers to the length of the
filament between the cross-linkers in the network. Therefore, this length varies with the
density of the cross-linker. The number of filaments per unitvolumen is determined by
the ratio of the total length of the filaments to the referencevolume. Unterberger et al.
(submitted) calculate the relation betweenn and the contour lengthL through

n =
15.0µm−2

L
. (5.1)

The parameters, the contour lengthL, the initial stretchλ0 and the averaging parameterp,
are the remaining parameters which are determined by fittingto rheological data using the
nonlinear Least Squares tool of MATLAB. Values are published in Unterberger et al. (sub-
mitted) for a variety of examples with different cross-linker densities. The initial stretch
and the contour length are just acting on the single filament model. The only parameter
which has no physical interpretation is the averaging parameterp to which we turn now
our attention.

5.1 Analysis of the structural tensor

The parameterp acts on the network scale and plays an important role in the structural
tensorh. To make the influence of this parameter visible, we visualize the structural tensor.

55
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Therefore, we have to analyze the properties ofh. But before we start, we take a short
excursion into the linear algebra.

LetA be a symmetric matrix with real entries, i.e.A = A⊤ andA ∈ R
n×n, and letv be

an eigenvector ofA corresponding to the eigenvaluesυ. Hereafter, we denote the complex
conjugation of a complex number by the overline. Now we perform the following steps

ῡv̄⊤v = (υv)⊤ v =
(
Av
)⊤

v

= v̄⊤Ā⊤v = v̄⊤Av

= v̄⊤ (υv) = υv̄⊤v.

(5.2)

Since the product of a complex number with its complex conjugate number is real, the
product ofv̄⊤v is real and unequal zero, and it follows from (5.2), thatῡ = υ, i.eυ ∈ R.
All eigenvalues of a real, symmetric matrix are real. Letv1,v2 be eigenvectors ofA
corresponding to different eigenvaluesυ1, υ2. Following these steps

υ1v
⊤
1 v2 = (Av1)

⊤
v2 = v⊤

1 A
⊤v2

= v⊤
1 (Av2) = υ2v

⊤
1 v2

⇒ 0 = (υ1 − υ2)︸ ︷︷ ︸
6=0

v⊤
1 v2,

(5.3)

we are able to conclude that the eigenvectors ofA build an orthogonal system. The theo-
rem about the principal component analysis (PCA) says that any real symmetric matrix is
diagonalizable, meaning that it is similar to a diagonal matrix, see Fischer (2003, Sec. 5.7).
This theorem reveals that there is an orthogonal matrixE−1 = E⊤ whose column vectors
consists of the orthonormal eigenvectors ofA and a diagonal matrixD consisting of the
real eigenvalues ofA, such that

D = E−1AE (5.4)

holds.

Let us consider the following real quadratic form inR3

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz =
[
x y z

]



a d e
d b f
e f c








x
y
z



 = x⊤Ax, (5.5)

with the symmetric matrixA. We know therefore, from the above considerations, thatA

has real eigenvalues and is diagonalizable by an orthogonalmatrixE and is written in the
form

A = EDE⊤. (5.6)

Further, we are interested in classifying the hypersurfacewhich is represented in (5.5). For
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this purpose we want to transfer the equation (5.5) in the canonical form

x2

a2
± y2

b2
± z2

c2
= ±1. (5.7)

The first thing we have to do, is to eliminate the cross termsxy, xz, yz in equation (5.5),
this means that we rotate the object in its ordinary coordinate system. With this in mind,
we have to transform the matrixA into a diagonal matrixD. Under the change of basis
which we define throughx := Ey or y = E⊤x, respectively and with (5.6) we obtain

x⊤Ax = x⊤EDE⊤x =
(
E⊤x

)⊤
D
(
E⊤x

)
= y⊤Dy. (5.8)

In this way, the eigenvectors ofA represent the directions of the principal axes and the
eigenvalues ofA determine the type of the hypersurface. If all eigenvalues are positive
we obtain the equation of an ellipsoid which is given in the canonical form with real and
positive semiaxesa, b, c ∈ R+

x2

a2
+
y2

b2
+
z2

c2
= 1. (5.9)

For the sake of completeness, the volume of an ellipsoid is given by

V =
4

3
πabc. (5.10)

In the reference configuration, which means that no deformation is applied to the object
F = I, the structural tensorh is represented by sphere with radius1/3. That is because,
the discrete macro stretch̄λi = 1 for all i and thereforeh = 〈Π ⊗ Π〉 = 1/3 I holds by
condition (3.85). As a result, the volume in the reference configuration is determined by

Vref =
4π

81
. (5.11)

If p = 2, the structural tensor results inh = 1/3b, which we see later in eqaution (5.26).
Since we have assumed that the material is incompressible (detF = 1), it follows that
detb = 1, independent of the deformation mode. This again means thatthe volume of
structural tensor is equal to the reference volume ifp = 2

V (h, p = 2) = Vref . (5.12)

But this does not mean, that the eigenvalues ofb are always the same in consideration of
different deformation modes, see Section 5.2. If we change the value ofp, the volume of
h changes of course. In this way we interpret the ratio of the current volume to reference
volume as a measure for the non-affinity.

Let us now return to the analysis of the structural tensor. Weconsider an incompressible
material, i.e.detF = 1, in view of a simple shear and an equibiaxial deformation. Both
types of deformations have already been introduced in Section 2.1.4. Consider again the
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structural tensorh, which we have obtained in equation (4.28) and (4.29) in Section 4.2,

h = F〈λ̄p−2Π⊗Π〉F⊤, (5.13)

with

h̃ = 〈λ̄p−2Π⊗Π〉 ≈
21∑

i=1

(
λ̄i
)p−2

Πi ⊗Πiwi. (5.14)

Again, the discrete macro stretch is defined by

λ̄i = ‖FΠi‖, (5.15)

which is always positive and real ifΠi 6= 0. The weightswi, which are given in Bažant
and Oh (1986), are also positive and real. Since the dyadic product ofΠ⊗Π is obviously
commutative, it is implied that the result of it is a symmetric tensor and that means that
h̃ = h̃⊤ is symmetric. This yields with equation (5.13) thath is symmetric

h⊤ =
(
Fh̃F⊤

)⊤
= Fh̃F⊤ = h (5.16)

and its entries are realh ∈ R
3×3.

Next, we want to show that all eigenvalues ofh are positive. Considering a simple shear
deformation we got in Section 4.2 the following matrix notation for the structural tensor

[h] =



h̃11 + 2γh̃12 + γ2h̃22 h̃12 + γh̃22 0

h̃12 + γh̃22 h̃22 0

0 0 h̃33


 . (5.17)

The criterion of Sylvester (Fischer 2003, p. 327) states that a real symmetric matrix is
positive definite if and only if all leading principal minorsare positive. In other words, if
all the following matrices, the upper left1-by-1 corner ofh, the upper left2-by-2 corner of
h andh itself, have a positive determinant. This criterion is satisfied if

h11h22 − h212 > 0 (5.18)

holds. Continue with the calculation of latter equation by using the corresponding entries
of h, which are given in equation 5.17, thus follows

h̃11h̃22 − h̃212 > 0. (5.19)

In order to prove this inequality, we need the Cauchy-Schwarz inequality, which is given
in Heuser (2006, Sec. 12) and which we formulate in the following way
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Theorem 5.1.1. (Chauchy-Schwarz inequality)

∣∣∣∣∣

n∑

i=1

xiyi

∣∣∣∣∣

2

≤
(

n∑

j=1

x2j

)(
n∑

k=1

y2k

)
(5.20)

Equality holds if and only ifx andy are linearly dependent.

Proof. see Heuser (2006, p. 97)

The entries of̃h are computed by the21-point integration formula, as we have done in
equation (4.29). In this way we are able to compute each matrix entry by

h̃jℓ =
21∑

i=1

(
λ̄i
)p−2 (

Πi
j

) (
Πi
ℓ

)
wi. (5.21)

The subscriptj of Πj denotes the vector entries corresponding to thej-th axis direction.
By using the computational formulation ofh̃jℓ in equation (5.19) we obtain

(
21∑

i=1

(
λ̄i
)p−2 (

Πi
1

)2
wi

)(
21∑

i=1

(
λ̄i
)p−2 (

Πi
2

)2
wi

)
−
(

21∑

i=1

(
λ̄i
)p−2 (

Πi
1

) (
Πi

2

)
wi

)2

> 0.

(5.22)
With the theorem of Chauchy-Schwarz inequality, we can estimate the second term of latter
equation

(
21∑

i=1

(
λ̄i
)p−2 (

Πi
1

) (
Πi

2

)
wi

)2

≥
(

21∑

i=1

(
λ̄i
)p−2 (

Πi
1

)2
wi

)(
21∑

i=1

(
λ̄i
)p−2 (

Πi
2

)2
wi

)
.

(5.23)
We denote throughΠℓ the vector which contains all entries of the21 orientation vectors
Πℓ in ℓ-direction. SinceΠ1 is linearly independent toΠ2 we get a strictly-less sign at
the inequality of Chauchy-Schwarz. Hence, we satisfy the inequality (5.18) and thus the
structural tensor is positive definite and it holds

x⊤hx > 0 for all x ∈ R
3. (5.24)

In the case of equibiaxial deformation, we obtain a structural tensor with the following
diagonal matrix

[h] =



λ2h̃11 0 0

0 λ2h̃22 0

0 0 λ−4h̃33


 . (5.25)

Since each diagonal element is positive, we also obtain a positive definite structural tensor
h.



60 5 A closer look on the averaging parameter

Finally, we are able to illustrate the structural tensor as an ellipsoid in the three-dimen-
sional space. The eigenvectors ofh represent the principal directions of the ellipsoid and
the associated eigenvalues represent the length of the semiaxes.

5.2 Geometrical interpretation of the structural tensor

The parameterp has an influence on micro- and macro-stretches and these depend on the
deformation gradient. We are unable to interpret the parameterp physically, but we are able
to interpret it in the geometrical sense, what we are doing now. First, we consider what
it means when we increase the parameterp, if we perform an equibiaxial deformation.
After that we consider the effect ofp when applying simple shear deformation. In both
considerations, we choose two different values ofp and compare them. The first value is
fixed atp = 2 since this is a special case of the structural tensor. This results inλ̄2−2 = 1
and consequently we get by definition ofh and equation (3.86) and (2.25)

h = F 〈Π⊗Π〉︸ ︷︷ ︸
= 1

3
I

F⊤ =
1

3
b. (5.26)

The second selected value ofp is consistent with the averaging parameter that was deter-
mined in the experiment for the sampleR = 1/40 of Unterberger et al. (submitted), which
is p = 8. From the previous section, we know that the structural tensors are real, symmet-
ric and positive definite, for both equibiaxial deformationand simple shear deformation.
Thus we may represent the structural tensor as an ellipsoid.We label the direction of the
principal axes by1-, 2- and3-direction. The axes of the coordinate system are denoted by
x1, x2 andx3, respectively.

Let us now discuss the effect ofp at equibiaxial deformation. We perform an uniform
stretch in the direction ofx1- andx2-axes of5%, thus the deformation gradient in matrix
form reads as

[F] =



1.05 0 0
0 1.05 0
0 0 1

1.052


 . (5.27)

The resulting ellipsoids with the two different values ofp are depicted in Figure 5.1. The
left one shows the normal projection on thex1x2-plane and the right one the projection on
thex1x3-plane. Ifp = 2 the resulting structural tensor in matrix form looks like

[h] =
1

3




1.052 0 0
0 1.052 0
0 0 1

1.054



 . (5.28)

The associated eigenvalues and eigenvectors can be easily determined, which areυ1,2 =
0.367 andυ3 = 0.274 with the standard basis for the three-dimensional spacee1, e2 and
e3, respectively. The subscripts denote the principal axes directions. In contrast, the eigen-
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Figure 5.1: Visualization ofh for p = 2 andp = 8 at equibiaxial deformation with uniform stretch
in x1- andx2-direction of5%. The ellipsoids are shown here in top view (left) and
front view (right).

values ofh atp = 8 areυ1,2 = 0.425 andυ3 = 0.228 with unchanged eigenvectors. These
values can be read in the images of Figure 5.1. To sum up, we observe a uniform stretch
in 1- and2-direction and a contraction in3-direction by increasingp. The volume of the
ellipsoid is also increasing ifp increases, although only very slightly. The stretch in1- or
2-direction is greater than the contraction in3-direction.

Consider next the geometrical representation of the structural tensor with the use of
simple shear deformation. We select the amount of deformation atγ = 20%. In matrix
notation the deformation gradient has the following form

[F] =




1 0.2 0
0 1 0
0 0 1



 . (5.29)

The associated visualized structural tensors forp = 2 andp = 8 are depicted in Figure 5.2.
On the left side of Figure 5.2 we view thex1x2-plane and on the right side thex1x3-plane.
We are able to easily computeh if p = 2. Using equation (5.26), the structural tensor is
written in matrix notation as follows

[h] =
1

3




1.04 0.2 0
0.2 1 0
0 0 1


 . (5.30)

The associated eigenvalues ofh areυ1 = 0.407, υ2 = 0.273 andυ3 = 0.333, respec-
tively, with the corresponding eigenvectorsv1 = [0.741 0.671 0]⊤ ,v2 = [0.671 0.741 0]⊤

and v3 = [0 0 1]⊤, respectively. This eigenvectors form an orthonormal basis of R3.
By changingp = 8 the eigenvectors remain the same with associated eigenvalues of
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Figure 5.2: Visualisation ofh for p = 2 andp = 8 at simple shear deformation with an deformation
of 20%. The ellipsoids are shown here in top view (left) and front view (right).

υ1 = 0.546, υ2 = 0.229 andυ3 = 0.346.
First of all we can say that a stretch in1-direction, a smaller stretch in3-direction and a

contraction in2-direction occurs by increasingp. The quantity of the stretch in1-direction
is greater than the quantity of the contraction in the2-direction. This observations are
illustrated in Figure 5.2. As in the case of equibiaxial deformation, the volume increases
as well. At this point, we demonstrate in Figure 5.3 the change in volume as a function of
p normalized by reference volume. There is an affine deformation for p = 2 which yields

V (p)
Vref

p
0 1 2 3 4 5 6 7 8 9 10

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Figure 5.3: Demonstration of the change in volume by increasingp. The current volumeV (p) is
normalized by the reference volumeVref .

thatV (p)/Vref = 1. The measure of non-affinity increases non-linearly by increasingp.
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The second thing is that we perceive a rotation of the principal axes with respect to the
x1- andx2-axes. In general, the angle between two nonzero vectorsx,y can be calculated
by the dot product, through

θ = arccos

(
x · y

‖x‖‖y‖

)
. (5.31)

The principal axes in the undeformed configuration are described by the standard basis of
the Euclidean space. By using the eigenvectors associated with the1-directione1 andv1, or
the eigenvectors associated with the2-directione2 andv2, we calculate the rotation angle
with equation (5.31). The resulting angle is aboutθ = 42.1◦. In Figure 5.4 we demon-
strate this rotation of the principal axes. The parallelogram represents the deformation of a

x
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Figure 5.4: Representation of the rotation of the ellipsoid atp = 2 of the1- and2-principal axes
directions. Symbolical description of simple shear deformation withϕ = arctan γ by
the parallelogram.

rectangle under simple shear and the ellipse corresponds tothe ellipsoid in thex1x2-plane
if p = 2. The arrows in Figure 5.4 show the principial axes in1- and2-direction of the
ellipsoid.

An interesting observation is that this value ofθ coincides with the formulation of the
relation between the angle for the principal axes of the leftCauchy-Green tensorb = FF⊤

and the amount of deformationγ, which is given by Ogden (1997, p. 103) in the following
way

tan 2θ =
2

γ
. (5.32)

Consider equation (5.26), which states thath = 1/3b if p = 2, it is easy to see the above
agreement. By increasingp, the eigenvectors do not change, thus the above formulation
holds for arbitrary values ofp. In this sense, we are able to infer, that the principal axes
in 1-, 2-direction ofh rotate by the same angle as the Eulerian principal axes ofb by
considering simple shear deformation. Now we can easily compute the rotation angleθ
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by equation (5.32). The rotation of the ellipsoid inx1x2-plane is independent ofp. To
substantiate this statement we compare the gained equation(2.27)1 from Section 2.1.3

b = RU2R⊤ (5.33)

with
h = F〈λ̄p−2Π⊗Π〉F⊤

= RU〈λ̄p−2Π⊗Π〉U⊤R⊤.
(5.34)

Since〈λ̄p−2Π⊗Π〉 is symmetric and positive definite and acts in the reference configura-
tion, i.e. it has the same properties asU, we define the tensor̃U2 = U〈λ̄p−2Π ⊗Π〉U⊤,
where the properties of a stretch tensor are maintained and thus it follows

h = RŨ2R⊤. (5.35)

Latter equation differs from equation (5.33) only by the stretch tensor, but both formula-
tions are subject to the same rotation tensor.



6 Material parameters for fibrin

In the previous sections we discussed models for single filaments and biological networks.
A closer examination was carried out on the Unterberger model, see Section 3.2.2, which
includes the Holzapfel-Ogden model, see Section 3.1.3. Both models have been developed
only recently. The Holzapfel-Ogden model fits very well the experimental data to dsDNA
from Bustamante et al. (2000) and F-actin from Liu and Pollack (2002), see Holzapfel
and Ogden (submitted). Experimental data of actin networkswas obtained via rheological
experiments by Unterberger et al. (submitted), which are very well described by the Unter-
berger model. The resulting material parameters are summarized in Table 4.1. Based on
the Holzapfel-Ogden model and the Unterberger model, we want to examine the charac-
teristics of another biopolymer. We look for suitable material parameters for fibrin. Based
on the experimental data of a single fibrin fiber of Hudson et al. (2010), we first analyze
the properties of the single filament by fitting the Holzapfel-Ogden model. Afterwards we
continue the study of the properties of its network based on the experimental data of Kang
et al. (2009) by fitting the Unterberger model. But before we begin, we give a review of
the properties of fibrin which have been discussed previously in the literature.

6.1 Properties of fibrin

In the last few years several research groups investigated the mechanical properties of fibrin
fibers and attempted to justify these properties. The molecular origins of the extensibility
of fibrin are still not fully understood. These groups of researchers issued different values
of material parameters especially for the persistence length. This disagreement made it
difficult to obtain meaningful values for the Holzapfel-Ogden model. Storm et al. (2005)
determined a persistence length of fibrin which isLp = 0.5µm. By contrast Houser et al.
(2010) reached an average persistence length of0.1 − 0.6 nm and Brown et al. (2007)
published a persistence length ofLp = 0.8 nm. To be careful these persistence lengths
were obtained by execution of different experiments. Hudson et al. (2010), Houser et al.
(2010), and Brown et al. (2007) used atomic force microscopyto determine mechanical
properties of single fibrin fibers. Whereas the determination of mechanical properties of
fibrin by Storm et al. (2005) are based on fibrin protofibril networks.

Further experiments on fibrin networks were done by Kang et al. (2009) and Brown
et al. (2009). Kang et al. (2009) conducted experiments withdifferent cross-linker densi-
ties. One experiment describes rather a network consistingof semiflexible filaments, called
fine clot, and the other more like a network of rigid filaments,referred to as coarse clot.
Semiflexible polymers are usually described by an entropic model. Stiff polymers are bet-
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ter modeled by enthalpic models that are based on the orientation and stretching of fibers,
see Kang et al. (2009). At this point it should be noted that the Holzapfel-Ogden model
is a mixture of entropic and enthalpic models. From the experiments on fine clots, Kang
et al. (2009) determined a persistence length ofLp = 0.5µm, which coincides with Storm
et al. (2005), and for coarse clots, which is more physiological, aLp > 1mm. It seems as
if the determination of the persistence length of fibrin is still ambiguous. The values span
a range of seven orders of magnitude. According to the opinion of Hudson et al. (2010)
and Houser et al. (2010) fibrin fibers behave as elastomeric elements, they do not fit into
the conventional categories of flexible, semiflexible or stiff biopolymers.

Fibrin exhibits viscoelastic properties which are analyzed in detail in Weisel (2004).
Unligated fibers could be stretched2.2 times their length and ligated fibers2.8 times their
length without permanent damage and they still return to their initial length, see Liu et al.
(2006). These authors conclude, that the effect of ligationof fibrin is extraordinary, be-
cause this would usually make the fibers stiffer and less extensible, but this holds not for
fibrin. The reason could be that the ligation occurs directlyalong the fiber axis, this has
been suggested in Liu et al. (2006). The individual fibrin fibers have a larger extensibility
than the fibrin networks, see Liu et al. (2006). Thus it can be assumed, that the clot rupture
does not stem from the rupture of the individual fibers but rather from the branch points.
Recent publications argue that this extraordinary extensibility originates from the stretch-
ing of an unstructuredαC region, for example see Houser et al. (2010). In contrast Brown
et al. (2009) proposed that this behavior comes from the unfolding of a coiled coil domain
between the D and E region, see Figure 1.3. The properties of fibrin are still not totally
explored, but we are trying now to determine suitable material parameters for fibrin.

6.1.1 Characterization of a single fibrin fiber

Before we proceed to the network model we first have to determine the material parameters
of the single fibrin fiber. We use the experimental data of Hudson et al. (2010) and fit
the parameters of the extensible Holzapfel-Ogden model to these data. The single fibrin
fiber was stretched by the tip of an atomic foce microscope (AFM) and this stretching
process was imaged by a fluorescence microscope. Houser et al. (2010) described these
experiments in more detail. The resulting data yield a forceversus strain curve, which
is very useful for determining the six material parameters of the extensible Holzapfel-
Ogden model (3.60), which areL, r0, T, Lp, µ0, β. We choseT corresponding to the room
temperature, meaningT = 21◦C. On the molecular structure of fibrin, which has a length
of 45 nm and which we refer to asr0, Houser et al. (2010) determined a persistence length
in the range of0.1−0.6 nm and a relation between the contour length and the relaxed origin
lengthr0, which is aboutL = (2.4 ± 0.4)r0. In agreement with this we fixed the contour
length atL = 135 nm. By using the MATLAB’s nonlinear Least Squares tool we fittedthe
model (3.60) with fixedT, L, andr0. The circles in Figure 6.1 represent the experimental
data of Houser et al. (2010) and the curve the fit of equation (3.60). In the lower region
it indicates a lower stiffness and a much higer stiffnes in the upper region whenr reaches
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Figure 6.1: Single fibrin fiber force versus end-to-end distance curve. Experimental data were
obtained by Hudson et al. (2010) (circles). The curve through the data depicts the
extensible Holzapfel-Ogden model (3.60) withT = 294K, Lp = 3.99mm, L =
135nm, r0 = 45nm, µ0 = 455.4 nN, andβ = 2.5.

L. The resulting free parameters areLp = 3.99mm, µ0 = 455.4 nN, β = 2.5. A unique
solution could not be found, but this was the one with the bestfit. The received value for the
persistence length is questionable. The persistence length is much greater than the contour
length, which would imply that fibrin belongs in the categoryof rigid biopolymers. In
contrast, the end-to-end distance at zero force is much lessthan the contour length, which
suggests that it is a semiflexible biopolymer. Although the value ofLp is doubtful, however
the fit is very good in Figure 6.1.

6.1.2 Characterization of a fibrin network

Biological materials consisting of cross-linked biopolymers exhibit a nonlinear elastic re-
sponse by applying simple shear deformation. The experimental data which we use to
analyze the network model (3.95), relate to Kang et al. (2009). In a different way, Brown
et al. (2009) carried out an experiment on fibrin networks by use of uniaxial tensile tests.
They observed a significant change in volume during the deformation. To account for these
effects in the model they modified the eight chain model by Arruda and Boyce (1993). In
the model of Brown et al. (2009), they defined a two-state formulation of a single fiber.
The fiber can either be in the folded or in the unfolded state. For small forces, where the
fiber is in the folded state, they argued that the force-extension relation is linear. In the
unfolded state at large force, they assumed that the fibrin fiber behaves like a worm-like
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chain polymer. This individual fiber model was then used in the eight chain model. Brown
et al. (2009) used for the model fit a persistence length ofLp and assumed a fiber density
of 0.5µm−3. The network is incompressible in the fully folded and unfolded state, but
it shows a negative compressibility during the transition process from folded to unfolded
state. This statement is explained in detail by Purohit et al. (2011), a follow-up edition of
Brown et al. (2009).

Unterberger et al. (submitted) fitted their proposed model to experimental data from rhe-
ological experiments of cross-linked actin networks. Therefore, we want to fit the Unter-
berger model (3.95) to experimental data from rheological experiments of fibrin networks.
Such experiments were executed by Kang et al. (2009). In their experiments they used a
strain controlled rheometer (RFS-III, Rheometrics) with 25mm parallel plate geometry
and increased constantly the deformation with strain rate of 0.01 s−1. Further, they exe-
cuted experiments with different conditions of fibrin networks. One condition is referred
to as coarse clot. It reflects more the physiological conditions and is displayed as a net-
work of stiff filaments. The other labeled as fine clot visualized a network of semiflexible
filaments. The results of the single filament of fibrin, which we obtained in Section 6.1.1,
suggest that we deal with a rigid biopolymer rather than semiflexible. Therefore we focus
on the experimental data of the coarse clot by Kang et al. (2009) and attempt to fit the
model (3.95). In Figure 6.2 we represent the data of Kang et al. (2009) by the circles,
which were obtained by averaging three samples with same condition. The green circles
refer to shear stress versus strain and the red circles referto normal stress versus strain.
Since Unterberger et al. (submitted) measured the normal stresses with positive sign, we
take the experimental data of the normal stresses of Kang et al. (2009) with opposite sign,
see Figure 6.2.

These experimental data reflect a network with rigid fibers for wich Kang et al. (2009)
postulated a persistence length which is greater than1mm. The obtained persistence
length of the Holzapfel-Ogden model is in agreement with this. We fit the Unterberger
model (3.95) by using the single filament parameters, which we achieved in Section 6.1.1,
the stretching modulusµ0 = 455.44 nN, the temperaturT = 294K, the effective exten-
sional modulusβ = 2.5, and the persistence lengthLp = 3.99mm. The remaining fitting
parameters are the filament densityn, the end-to-end distance at zero forcer0, the initial
stretchλ0, the contour lengthL, and the averaging network parameterp. One of the best
fits by using the nonlinear least square tools of MATLAB yields the following values for
the parameters,n = 64µm−3, r0 = 48.43 nm, λ0 = 1.044, L = 116 nm, andp = 25.

The fit is acceptable for the shear stresses and slightly worse for the normal stesses. It
is of course more difficult to fit two sets of experimental datasimultaneously. The data
of normal stress show an inflection point, the origin of whichis unknown, see Figure 6.2.
We only used the experimental data up to a deformation of about 43% and the values of
the ordinates are very large-scale in the result of Kang et al. (2009). Thus there may be
a considerable error stem from measuring the data in the original diagram. Further, it is
difficult to give a reasonable interpretation of these obtained parameters. We are not able
to compare this result with others. Brown et al. (2009) accomplished the experiments in a
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Figure 6.2: Network of fibrin fiber shear stress and normal stress versus strain curve. Experimental
data were obtained by Kang et al. (2009). Green circles depict shear stress vs. strain and
red circles normal stress vs. strain. The curve through the data depicts the Unterberger
model (3.95) withT = 294K, Lp = 3.99 nm, L = 116nm, r0 = 48.43 nm, µ0 =
455.44 nN, n = 64µm−3, λ0 = 1.044, β = 2.5, p = 25.

completely different way and their results are far-off fromours.
The research on fibrin properties came up very recently. But it is a very important

biopolymer for haemostasis and wound healing. It also playsa role in forming of throm-
bosis. The mechanical properties are still not fully established yet. The reason for its
extraordinary elasticity not fathomed. Therefore many question are still open and contra-
dictory statements are not uncommon.





7 Concluding remarks

In the present work we dealt with a theoretical approach to modeling biological materials.
Thereby we focused on models which determine the mechanicalproperties of biopolymers
and networks of biopolymers. The thesis was motivated by theexploration to get a better
understanding of mechanisms behind disease progression (e.g. cardiovascular diseases and
cancer). The framework of these models which we highlightedin this work was provided
by the classical continuum mechanics. On the level for an individual biopolymer we were
familiar with two different approaches of polymer models, the freely-jointed chain and
the worm-like chain model. Recently a new mathematical description of the WLC model
was published, referred to as Holzapfel-Ogden model. It wasbased on pure mechanical
formulation and the extensible case of a polymer was incorporated from the beginning.

On the level of networks of biopolymers we discussed the Unterberger model and its un-
derlying idea which originated from the micro-sphere model. We showed that the omission
of the tube part from the micro-sphere model was justified in our considerations. Most of
the material parameters of the Unterberger model were determined by the single filament
model. The number of filaments per unit volume, the distance between branch points, the
initial stretch and the averaging parameter were material parameters which belonged to the
network model. All of these parameters except the averagingparameter were physically
interpretable. Therefore we took a closer look at this averaging parameter by visualizing
the structural tensor for different deformation modes and various averaging parameters. It
was interpreted as a measure for the non-affinity of the deformation.

The presented models fitted excellently the experimental data of a single filamentous
actin and cross-linked actin networks, respectively. Furthermore, these two models should
be applicable to other biopolymers, but this was of course a major undertaking in con-
sideration of the complexity of the human body. Fibrin is such a complex protein which
structure and properties are still obscure. Fibrin is a veryimportant protein for hemostasis
and blood clotting. We fitted the models to experimental dataof fibrin fibers and fibrin
networks. A very good fit for the single fiber was obtained but the values of the parame-
ters remained questionable. More difficult was to fit the network model. We dealt purely
theoretical with modeling on biological materials and exactly at this point lacked the im-
portant experimental part. To use experimental data from the literature complicated the
determination of some parameters. We were not able to fix manyparameters, because they
were unknown or the range of their magnitude was extremely variable. This resulted in a
set of non-unique solutions of the fits and made it more difficult to submit meaningful in-
terpretations. To support the applicability of these two recently developed models to other
biopolymers, further experiments are required.
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BAŽANT, Z.P. AND OH, B.H. Efficient numerical integration on the surface of a sphere.
Z. Angew. Math. Mech., 66:37–49, 1986.

BROWN, A.E., LITVINOV, R.I., DISCHER, D.E., AND WEISEL, J.W. Forced unfolding
of coiled-coils in fibrinogen by single-molecule AFM.Biophys. J., 92:L39–L41, 2007.

BROWN, A.E., LITVINOV, R.I., DISCHER, D.E., PUROHIT, P.K., AND WEISEL, J.W.
Multiscale mechanics of fibrin polymer: Gel stretching withprotein unfolding and loss
of water.Science, 325:741–744, 2009.

BUSTAMANTE, C., MARKO, J.F., SIGGIA , E.D., AND SMITH , S. Entropic elasticity of
λ-phage DNA.Science, 265:1599–1600, 1994.

BUSTAMANTE, C., SMITH , S.B., LIPHARDT, J., AND SMITH , D. Single-molecule stud-
ies of DNA mechanics.Curr. Opin. Struct. Biol., 10:279–285, 2000.
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FERNÁNDEZ, P., PULLARKAT , P.A.,AND OTT, A. A master relation defines the nonlinear
viscoelasticity of single fibroblasts.Biophys. J., 90:3796–3805, 2006.
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M IEHE, C., GÖKTEPE, S., AND LULEI , F. A micro-macro approach to rubber-like
materials—Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech.
Phys. Solids, 52:2617–2660, 2004.

MOSESSON, M.W. Fibrinogen and fibrin structure and functions.J. Thromb. Haemost., 3:
1894–1904, 2005.

NASH, G.B., O’BRIEN, E., GORDON-SMITH , E.C.,AND DORMANDY, J.A. Abnormal-
ities in the mechanical properties of red blood cells causedby plasmodium falciparum.
Blood, 74:855–861, 1989.

OGDEN, R.W. Non-linear Elastic Deformations. Dover, New York, 1997.

OHASHI, T. AND SATO, M. Remodeling of vascular endothelial cells exposed to fluid
shear stress: experimental and numerical approach.Fluid Dyn. Res., 37:40–59, 2005.

OTT, A., MAGNASCO, M., SIMON , A., AND L IBCHABER, A. Measurement of the per-
sistence length of polymerized actin using fluorescence microscopy. Phys. Rev. E, 48:
R1642–R1645, 1993.

PUROHIT, P.K, LITVINOV, R.I., BROWN, A.E., DISCHER, D.E., AND WEISEL, J.W.
Protein unfolding accounts for the unusual mechanical behavior of fibrin networks.Acta
Biomater., 7:2374–2383, 2011.

RUBINSTEIN, M. AND COLBY, R.H. Polymers Physics. Oxford University Press, New
York, 2003.



76 Bibliography

SMITH , S.B., CUI , Y., AND BUSTAMANTE, C. Overstretching B-DNA: The elastic re-
sponse of individual double-stranded and single-strandedDNA molecules.Science, 271:
795–799, 1996.

STORM, C., PASTORE, J.J., MACK INTOSH, F.C., LUBENSKY, T.C., AND JANMEY, P.A.
Nonlinear elasticity in biological gels.Nature, 435:191–194, 2005.

SURESH, S. Biomechanics and biophysics of cancer cells.Acta Biomater., 3:413–438,
2007.

TRELOAR, L.R. The photoelastic properties of short-chain molecular networks. Trans.
Faraday Soc., 50:881–896, 1954.

TRELOAR, L.R. The Physics of Rubber Elasticity. Oxford University Press, Oxford, 3rd
edn., 1975.

TRICKEY, W.R., LEE, G.M., AND GUILAK , F. Viscoelastic properties of chondrocytes
from normal and osteoarthritic human cartilage.J. Orthop. Res., 18:891–898, 2000.

UNTERBERGER, M.J., SCHMOLLER, K.M., BAUSCH, A.R., AND HOLZAPFEL, G.A. A
new approach to model cross-linked actin networks: Multiscale continuum formulation
and computation analysis. submitted.

VOET, D., VOET, J.G., PRATT, C.W., BECK-SICKINGER, A.G., AND HAHN , U.
Lehrbuch der Biochemie. Wiley-VCH, Weinheim, 2., aktualisierte u. erw. Aufl., 2010.

WANG, M.C. AND GUTH, E. Statistical theory of networks of non-Gaussian flexible
chains.J. Chem. Phys., 20:1144–1157, 1952.

WEISEL, J.W. The mechanical properties of fibrin for basic scientists and clinicians.
Biophys. Chem., 112:267–276, 2004.

ZENG, D., JUZKIW, T., READ, A.T., CHAN , D.W.-H., GLUCKSBERG, M.R., ETHIER,
C.R.,AND JOHNSON, M. Young’s modulus of elasticity of schlemm’s canal endothelial
cells. Biomech. Model. Mechanobiol., 9:19–33, 2010.


	Introduction
	Characterization of biopolymers
	F-actin
	Fibrin

	Continuum mechanics
	Kinematics
	Configuration and motion
	Deformation gradient
	Decomposition of deformations
	Examples of deformations

	Concept of stress
	Balance laws and constitutive equations

	Models for biopolymers
	Single filament model
	Freely-jointed chain model
	Worm-like chain model
	Holzapfel-Ogden model

	Network model
	Micro-sphere model
	Unterberger model


	Analysis of the tube part
	Incorporation of the tube part
	Implementation of Cauchy stress tensor
	Effect of the tube part

	A closer look on the averaging parameter
	Analysis of the structural tensor
	Geometrical interpretation of the structural tensor

	Material parameters for fibrin
	Properties of fibrin
	Characterization of a single fibrin fiber
	Characterization of a fibrin network


	Concluding remarks
	Bibliography

