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Abstract

Fathoming the functions of the human body and especiallyptbgression of disease is
the subject of current research. Many researchers frorardiit disciplines work together
to attain a better understanding behind these featuresndibanics is a part of this re-
search field which deals with the development, extensioreapdication of mechanics to
biological systems. The relation between diseases andraahonechanically behavior
of cells have been detected by many researchers. Here, we éocthe investigation of
mechanical properties of individual filaments and netwark8laments, which occur on
subcellular level. Recently, a new mathematical desonmpdif the worm-like chain model
was developed from purely mechanical considerations. dasghe micro-sphere model
a new continuum mechanical formulation for describing thechanical properties of fil-
ament networks was established. It acts as a multiscal@agiprwhich incorporates the
single filament model. In the present thesis we perform aeclasalysis on this recently
developed network model. The neglected part of the michessgpmodel is discussed and
a specific parameter is examined more precisely. To confienapipropriate application of
these two models, we fit these models to experimental dathrof fa protein which plays

a key role in hemostasis.






Kurzfassung

Die Erforschung der Funktionen des menschlichen Korpedsinsbesondere der Verlauf
einer Erkrankung ist Gegenstand aktueller wissenscbiadttiTatigkeit. Viele Forschungs-
gruppen aus unterschiedlichen Bereichen arbeiten zusapumeein besseres Verstandnis
fur all diese Mechanismen zu erlangen. Zu diesen Forschergichen gehort auch die
Biomechanik, die sich im Allgemeinen mit der Entwicklungwiiterung und Anwendung
der Mechanik auf biologische Systeme befasst. Der Zusamamgrvon Krankheiten und
abnormalem mechanischen Verhalten von Zellen wurde Besait einigen Forschern pub-
liziert. Unser Hauptaugenmerk liegt dabei auf der Erfouschder mechanischen Eigen-
schaften von einzelnen Filamenten und Netwerken von Fitdeme die auf subzellularer
Ebene vorkommen. Erst kurzlich wurde eine neue matheatatiSormulierung des worm-
like chain Modells entwickelt, die auf rein mechanischekl&mung basiert. Ebenfalls erst
kdrzlich wurde eine neue kontinuumsmechanische Formurdge zur Beschreibung von
Filament-Netzwerken, basierend auf dem micro-sphere Maalgfgestellt. Dieses Net-
zwerkmodell agiert auf mehreren Grof3enskalen, in welcdesiModell des einzelnen
Filaments integriert ist. In der vorliegenden Diplomatliéghren wir eine genauere Anal-
yse des kurzlich entwickelten Netzwerkmodells durch. @abskutieren wir den ver-
nachlassigten Teil des micro-sphere Modells und nehmendiestimmten Netzwerkpa-
rameter genauer unter die Lupe. Um die geeignete Anwendesgrdbeiden erst kirzlich
entwickelten Modelle zu bestatigen, fitten wir diese Méelah experimentelle Daten von
Fibrin, ein Protein dem in der Hamostase eine wichtigedralikommt.
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1 Introduction

The unigueness of the human body in its structures and fumefiascinates the modern
science of different disciplines. This complex biologisgstem still includes many open
guestions which wait to be resolved today. This is espguaiaportant if pathological pro-
cesses cause human diseases. 'War on Cancer’ was anvaibigtiormer U.S. president
Richard Nixon in the yeat971, with the aim to find the cure for the disease of cancer
within the next25 years. We lost this war, unfortunately. The World Health #&rigation
(WHO)! reports that cardiovascular diseases and cancer are tHeenome cause of death
in percent to total number of death worldwide. In the last tleeades many researchers
revealed the connection between the abnormal mechanigpérres of cells to diseases
such as arthritis (Trickey et al. 2000), asthma (An et al.6)p@therosclerosis (Ohashi
and Sato 2005), cancer (Suresh 2007), glaucoma (Zeng €14l) ar malaria (Nash et al.
1989).

Materials in biological systems such as fibers (biopolymexsibit extraordinary me-
chanical behavior. They are not comparable with engingamaterials such as rubber,
steel or ceramic. A new theory has to be developed to closg#p. This is the mission of
biomechanics. Biomechanics is the development, extersidrapplication of mechanics
to biological systems. This science provides an importaottedge to better understand
the mechanism behind disease progression (Lee and Lim 200iugh the investigations
of mechanical properties on the molecular, cellular, Bssugan, and organism levels, the
biomechanics contributes significantly in the researchisgakes. The insights of biome-
chanics assist the improvements in the detection, diagraosl treatment of diseases (Lee
and Lim 2007).

The focus in this thesis lies on the determination of meatemiroperties of biological
materials on cellular and subcellular levels, such as fiaedsnetworks of fibers. The term
biopolymer, as we define it, is introduced in Section 1.1. Bygle filament models we
have the opportunity to determine mechanical propertiesngfle fibers. One of the well-
known models is the worm-like chain model by Kratky and Pq##9). A new approach
was developed recently by Holzapfel and Ogden (2011) torbesmechanical behavior of
biopolymers. In the human body, single fibers interact togieaind thereby form a network.
Network models such as the eight chain model by Arruda ana8¢¥993) describe the
mechanical behaviors of this kind of biological materi@sirrently a new network model
by Unterberger et al. (submitted) is in the development @h@bke underlying idea of this
model is based on the micro-sphere model for rubber elgsttiich goes back to Miehe

http://ww. who.int/gho/nortality burden_di sease/ causes_deat h 2008
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et al. (2004) and which includes the eight chain model as aiajpease.

The fundamental framework for the development of these sadeprovided by the
classical continuum mechanics, which we introduce briefiZlhapter 2. The highlights of
this work are the investigations of the models which act oglsi filaments and networks,
which we address in Chapter 3. In particular, we focus oneleently developed models
of Holzapfel and Ogden (2011) and Unterberger et al. (subdjit In Chapters 4 and 5,
we take a closer look on the Unterberger model. Experimemtsiapolymers are useful
either to confirm or to re-evaluate the theory. Therefore&;lvapter 6 we fit these models
to experimental data of the biopolymer fibrin, which are takem Hudson et al. (2010)
and Kang et al. (2009).

1.1 Characterization of biopolymers

Biopolymers are a class of polymers, which are formed imguwrganisms. A polymer is

a large macromolecule made up of repetitive subunits cafledomers, which are linked
together by covalent bonds. Biopolymers exist outsideldgeh in extracellular matrix,

fibrin in blood clots) and inside of cells (actin filamentdgimmediate filaments, and micro-
tubules create the cytoskeleton). The coarse structune etilkaryotic cell consists of cell
membrane, nucleus and cytoplasm which includes organefg¢gskeleton and cytosol.
Organelles accomplish a special function within the cdfle ain ingredients of the cyto-
plasm are water and proteins. From the biomechanical pbinew, the cytoskeleton, the

interior skeleton of a cell, plays the main role. On the latesn Figure 1.1 we illustrate

these components and on the right we show a microscopic Vievblmod clot.

Actin cortex Centrosome

Cell membrane Microtubules

Cytosol Intermediate

Cell junctions filaments  gyeq fibers

Figure 1.1: Schematic view of a typical eukaryotic cell with mecharicénportant components
(left). View of a blood clot (right) with red blood cells (RGBmbedded by fibrin,
www. ch. i c. ac. uk/ Il ocal / proj ect s/ bhonoah/ bl oodcoagul ati on. ht m
accessed on February 6, 2012.
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Roughly biopolymers can be classified according to threferdifit main categories.
Namely in nucleic acids, proteins and polysaccharides tbsihould be mentioned that
this classification is not strict. Amino acids are the monsme proteins, in polysaccha-
rides or carbohydrates the monomers are monosaccharidesialeic acids are polymers
of nucleotides. The biological function of nucleic acidacls as DNA and RNA, is to
store and transmit genetic information, whereas the maigstion of polysaccharides is
to store energy. The proteins play an important role in maffgrdnt functions of cells
and tissues. For instance, they serve as enzymatic catallysly are responsible for the
transport of molecules, they are the communicators betweksand they determine the
structure of cells and tissues. This represents only a &gy ibtroduction to the biologi-
cal functions of biopolymers. For a detailed discussiontos topic the reader is referred
to van der Maarel (2008) and Voet et al. (2010). Lipids arenoraolecules but not poly-
mers because of their structure, see Voet et al. (2010). @&reepot made up of repeating
chains of monomers. Water take&percent of a total cell weight, proteins, nucleic acids,
and polysaccharides arouid percent (Alberts et al. 2008). For more information of its
structures and functions of each component, the readeieised to Alberts et al. (2008).

In polymer physics two measurements are essential, theaolgngthZ and the per-
sistence lengtli,,. The contour length is the total unfolded length of a polywran other
words the arc length along the polymer backbone. The pergistlength is a measure of
the bending stiffness of polymers and it describes the fiiyilbf a polymer chain. This is
characterized by its flexural rigiditi with units of Pam®. In the beam theory, which is a
field within the linear theory of elasticity, the flexural idity can be written as a product of
the Young’s modulugr and the second moment of inerfiai.e. B = EI. The filament’s
shape fluctuates at finite temperatrand thus it yields thermal energy, which we write
as a product of the Boltzmann constéptand the temperature. The persistence length is a
characteristic length scale which is direct proportiondahte flexural rigidity and inversely
proportional to thermal energy, such that

ET

L,=———.
P kT

(1.1)

Through a variety of experimental methods the persistezrugth can be measured.

Biopolymers exhibit different behaviors in terms of theexibility. Thus, we classify
each type of biopolymer in one of the three categories, flexgemiflexible or rigid. If
L, > L, we say that the polymer is rigid and it means that the theenalgy is not
sufficient to bend its contour. This kind of polymers exfshiirtually no entropic elasticity.
Conversely, if the persistence length is much smaller tharcontour length, i.el, < L,
the filament is called flexible and its thermal fluctuationsnittate. The entropy is of
crucial impact to straightening this kind of polymers. Thstltype of polymers is called
semiflexible. This category includes those polymers whessigtence and contour lengths
are of the same order. Most of the biologically relevant padys belong to this category.
This kind of polymers exhibits a balance between the theflmeuation and the stiffness
of the filament.
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1.2 F-actin

Actin filaments are one of the major components within theskgleton. They belong to
the structural proteins which make significant contribagsieo determine the shape of the
cell surface. Further, they play a key role in the mechaniespponse of the cell and cell
motility. The subunit of actin filament is globular actin @atin) which polymerizes to
long filamentous F-actin. The structure of F-actin is congglosf two chains of polymer-
ized G-actin, which are arranged helically, see Figure Mare detailed information on

Depolymerization

""'-___—"‘"-.._‘

i peial
O™

F-actin
G-actin

P el

\__‘_-_.__’

Polymerization

Figure 1.2: Actin filament, adopted from Kamm and Mofrad (2006)

the biology of actin filament can be found in Alberts et al.&2 The mechanical prop-
erties of F-actin are well known. It measures a diameter obia®nm (Ott et al. 1993),

Le Goff et al. (2002) determined the persistence length olglb6 ym and its specific
contour length which depends on the experiments, measuw#so 10 — 20 zm (Liu and
Pollack 2002) andh vivo ~ 1 um (Fernandez et al. 2006). F-actin belongs to the class of
semiflexible polymers.

1.3 Fibrin

Fibrin is an essential component of hemostasis. Togethrplatelets they stop bleeding
by forming blood clots in the injuries of blood vessels. kibgives the major structural
framework of blood clots (Weisel 2004) and as a result woueaihg takes place. The
blood clot has to be strong enough to be resistant to theislyefarce of the blood stream.
The process of blood clotting starts when the precursoeprdibrinogen is converted to
fibrin by the enzyme thrombin. A schematic diagram of the fation of fibrin is illus-
trated in Figure 1.3 which we adopted from Mosesson (2005)mare detail, fibrinogen
is synthesized by the liver and it is an elongated proteih witnm in length, see Weisel
(2004). By cleaving fibrinopeptides from the central donifibrinogen through throm-
bin, the exposed knobs can interact with the ends of anotbéraule. It results in a half



1.3 Fibrin 5
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Figure 1.3: Schematic diagram of the structure of fibrinogen and the d&bion of fibrin, adopted
from Mosesson (2005)

staggered structure, which is called protofibril and whiah & periodicity o22.5 nm. The
aggregation of protofibrils forms a fibrin fiber. The averagaaentration of fibrinogen in
the blood is abou?.5 g/l (Weisel 2004). The transglutaminase fackdila or the fibrin
stabilizing factor, respectively, is an enzyme that ligdibrin to form an insoluble clot
or fibrin polymer. These ligations increase the stiffnesshef clot substantially. Fibrin
exhibits viscoelastic properties which are analyzed imitlet Weisel (2004).






2 Continuum mechanics

Continuum mechanics describes the motion and deformafieordinuous media under
the influence of forces. The matter is composed of molecukeshware formed by atomic
and subatomic particles. In the continuum theory the mddée@tructure of the material is
neglected and only the behavior of the material as a wholeasngd important. For this
reason it is assumed that the material is continuouslyibliged throughout its volume and
it completely fills the space it occupies. In this way the macopic behavior is explained.
The subject of continuum mechanics is commonly divided thtee main parts, see, e.g.,
Holzapfel (2000). The first part is the kinematics, the staflynotion and deformation.
The concept of stress, that means the study of stress in agont, is the second part.
And the third part treats the constitutive equations, whastablish the relations between
stresses and deformations. These three parts must contplyheibalance principles, the
mathematical description of the fundamental laws of phy/giaverning the motion of a
continuum. These need to be fulfilled in all points and timdare detailed information
on continuum mechanics is also given by Ogden (1997).

2.1 Kinematics

The kinematics describes the changes of a continuum bodtiowe, without considering
the forces that cause these changes. The (solid) body igébiogna coherent set of material
points or particles and is subjected to different types affiguiration during the motion,
which we specify next.

2.1.1 Configuration and motion

We denote a continuum body i#/and represent a particle of it By € B. A configuration
of B is defined by a one-to-one mappirg B — E3, which takes the particles &f to a
region in the Euclidean spad®, as depicted in Figure 2.1. The region, indicatedhy
is the image set of the configuratianand a subset dE®. We definef) as a set of places
occupied by the patrticles @& through

Q= k(B) = {k(P),P c B} C E’. (2.1)

At a freely chosen but fixed reference timewe identify the image ok as reference (or
undeformed) configuration. It is common but not necessachtmse the reference time at
t = 0. This is why we label the reference configuration and regipthle subscripo, i.e.
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Reference Current
configuration X configuration

time t =0 time ¢

Figure 2.1: Configuration and motion

by ky and(,, respectively, as we see in Figure 2.1. The bBdjeforms subsequently and
moves over a period of timec R* and this configuration df at¢ is known as current (or
deformed) configuration. The place (or position vectogccupied by the particl® € B

in the configurationk is constituted by

x =k(P), P=r'(x), (2.2)

see Figure 2.1. Moreover, it is common to distinguish betweaterial (or referential)
coordinates, which is often referred to as the Lagrangiatrijaion, and the spatial (or
current) coordinates, which is referred to as the Euleriescdption. In the Lagrangian
description, we observe the changes of a particular partidioughout the deformation
process, however in the Eulerian description, we obsenat hdippens at a spatially fixed
observation point as time changes. For further notatioedalel uppercase letters for the
reference configuration and lowercase letters for the ntio@nfiguration. In the reference
configuration we define the position veciiby its componentX 4, A = 1, 2, 3, relative to
some coordinate system with orthonormal bd$is } centered at some convenient origin
0, X = X,E4. The position vectok in the current configuration is represented by its
components,,a = 1,2,3, which are relative to a coordinate system with orthonormal
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basis{e,} centered ab, x = z,e,. In the following we assume the origir®, o and
the basis vectors of reference and spatial coordinatesitcide, i.e. the set of E4} is
identical to{e, }.

The motion of the bodys can be described by a one-parameter family of configurations
k.. B — T3, wheret identifies the parameter. We write for the position vectothef
particleP € B at timet

x = Ki(P) = (P, t) (2.3)

and at the given instant of timte= 0
X = ko(P), (2.4)

respectively. If we use the inverse of the reference corditpm P = ;' (X) in (2.3),
we obtain a definition of the motiog of the continuum body

x =k (kg (X, 1) = x(X,1). (2.5)

The motion is a mapping functiog: E3 — E? of the reference configuration into the
current configuration in the Lagrangian description. Femtore, we assume thgt is
continuously differentiable in finite regions so thats invertible and its inverse, written
in Eulerian form, is given by

X =x(x,1), (2.6)

i.e. it identifies the particles which pass througturing the motion, as mentioned above.

2.1.2 Deformation gradient

The fundamental quantity in continuum mechanics is therdedition gradient which de-
scribes the deformation of a continuum body occurring whenkiody moves from the
reference regiofi), to current regiorf). If the body is in motion, it is able to change its
position (translation), orientation (rotation) and shégeformation). The motion is called
rigid body motion if it includes translation and rotatiort.id time-dependent and means
that the distance between an arbitrary pair of particlee@biody remains constant. How-
ever, the deformation of a body can be characterized by tegehin distance between two
adjacent points. For further consideration, let the makéxe elastic, where deformations
are history (or time) independent. The deformation gradaéf relative to the reference
configuratiornt), gives the relationship of a material lid&X before deformation to the line
dx after deformation. It should be pointed out tdatconsists of the same material@&X.
Before we definelX anddx, we consider a material (or undeformed) cuXe= I'(¢)
in the reference configuration and the spatial (or deforncedyex = ~(&,t) at timet
in the current configuration, whetedenotes the parametrization indicated in Figure 2.2.
By using equation (2.5) we define the parametric equation for the spatial curve aed fi
timet

x =7(&1) = x(T(§),1). (2.7)
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Reference Current
configuration configuration
dX =T1Vd¢ dx = ~'d¢
.~ X
i
)
LS r Y ,
\otimet =0 time ¢ 4
e
[ ° |
L ¢ 1
3

Figure 2.2: Deformation of a material cunvB C €2 into a spatial curvey C 2

Now we define the material tangent vectid and the spatial tangent vecibx
dX =T'(§)ds,  dx =~/(£1)dg, (2.8)

where the prime denotes differentiation with resped{.t®y using (2.7), (2.8) and the
chain rule we get

dx (X, t) ., . Ox(X,t)dX
d—g—’)’(fﬂf)—aTF (5)_67Xd_§’ (2.9)
and by definition of the deformation gradient through
_ ox(X,1)
F(X,t) := X (2.10)
we receive the fundamental relation
dx = F(X, t)dX. (2.11)

The deformation gradieri is a second order tensor and it contains the informationtabou
the local behavior of motion in the neighborhood of a poinbr#¥ispecifically, the defor-
mation gradient describes the change in length and orientat an arbitrary line element
dX at X in the reference configuration to the line eleméstat x in the current config-
uration. In the physical sense, we demand X +# 0 holds for alldX # 0, i.e. the
deformation gradienF is a non-singular tensor. This requires the condition

J(X,t) == det F(X, ) # 0, (2.12)
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where we defined as the Jacobian determinant. Sinte“ 0, there exists the inverse of
the deformation gradier !,

ox'(x,t)

1 o
F(x,t) = o

(2.13)

Next, we consider the transformation of surface and volutements. First, we in-
vestigate the change of an infinitesimal volume element éetwthe referencél’ and
currentdv configurations. The volume of the infinitesimal parallepegnl whose edges are
dX® dX® dX® is given by

dV = (dX® x dX@) . dX® = det (dXV,dX®,dX®)). (2.14)
In the current configuration we obtain

dv = (dx® x dx®) - dx®
- (Fudx}” x ngdXZ.@))  Fydx®

= det F (dX® x dX®) . ax®
= det FdV = JdV,

(2.15)

where we can infer that the Jacobian determinaig a measure for volume change. If
J = 1 we say that the material is incompressible and its defoonasi called isochoric or
volume-preserving. This implies that the volume does nanhge during deformation. In
the physical sense, we require that the volume of a matdealent should be positive, so
that we can conclude from (2.15) that

J(X,t) =det F(X,t) > 0. (2.16)
Finally, we consider the neighborhood of the pa¥ate B,, which we label as an in-
finitesimal vector element of material surfad8. Let N be a unit vector normal to a
infinitesimal surface elementS, thendS = NdS. In the current configuration is a unit

vector normal to the surfags, such thatls = nds. The infinitesimal volume element
is now expressed by a dot produlet = ds - dx. Equation (2.15) yields

dv =ds-dx = JAV = JdS - dX (2.17)
and with (2.11) and the rule - Av = A Tu - v we obtain
(F'ds — JdS) -dX = 0. (2.18)
The latter equation holds for arbitrary material line elatse X, hence it follows

(F'ds — JdS) = 0. (2.19)
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Consequently, we obtain the relation between the vectonais of the infinitesimally
small areasls anddS
ds = JF~TdS, (2.20)

which is known as Nanson'’s formula.

2.1.3 Decomposition of deformations

In the section above, the deformation gradient suppliedrdnesfer of the material line
from dx to dX and it includes both information about the change in length@ientation.
We want to use a strain measure insteaB ofvhich either refers to the reference or current
configuration and where the rigid body motion has no effestthis section we will ex-
tract the information of interest out of the deformationdiemt. The polar decomposition
theorem, a fundamental theorem in continuum mechanidslsyibe possibility to do that.
Ogden (1997, p. 92) mentioned it as follows

Theorem 2.1.1. (Polar decompositionfor any non-singular second order tendothere
exist unique positive definite symmetric second-ordeotsis andv (i.e. U =U",v =
v ") and an orthogonal second-order tendr(i.e. R~! = R") such that

F=RU=vR (2.21)

Proof. see Ogden (1997, p. 92) O

The right (or material) stretch tensbrrand the left (or spatial) stretch tensomeasure
the local stretch or contraction. The right stretch tedsacts on the reference configura-
tion while the left stretch tensar acts on the current configuration. Whereas, the rotation
tensorR measures the local rotation and maps between the referadaierent configu-
rations. By using equation (2.11) and (2.21ye obtain

dx = R(UdX). (2.22)

This equation can be interpreted as follows, first the matknie dX is stretched byJ and
then rotated into the spatial linkx by R. Hence, the tensdR maps from the reference
configuration to current configuration, liKeé. If R = I, the deformation is called pure
stretch and iU = v = 1, it is referred to as rigid body motion. Another importamast
measure in material coordinates is the right Cauchy-GreesorC, which is introduced
through

C=F'F. (2.23)

On use of (2.21) we get the relation between right Cauchy-Green and rigétcst tensor
C=U'R'RU = U2 (2.24)

SinceU is symmetric we are able to conclude tlfatis symmetric as well. As we can
see, the rigid rotation is eliminated in equation (2.24)r the sake of completeness, we
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introduce the left Cauchy-Green tenggmwhich is a strain measure with respect to spatial
coordinates and is defined by
b=FF'. (2.25)

Using equation (2.23) we obtain the relation of the left Cauchy-Green to the leftsh
tensor, by
b=vRR'v' =v? (2.26)

and by using equation (2.21and (2.24), we achieve the relation between the left and the
right Cauchy-Green tensor, through

b=RUU'R" =RCR'. (2.27)

A brief physical interpretation diJ is now mentioned. We consider the distance between
two pointsX € Qy andY € g, whereY is very close taX, as shown in Figure 2.3. We

Current
configuration

Reference
configuration

time ¢

Aao = Fa(]
, [Aapll = A
time ¢t =0

laof =1

Xl,]fl/ “

Figure 2.3: Deformation of a material line element into a spatial lineneént

denotele = ||Y —X]| as the length of the material lirX = Y —X in the Euclidean norm.
From the geometric viewle denotes the radius of a sphere with ceXerThe direction
of dX is described by the unit vectay, i.e. ||ag|| = 1. In the current configuration, by
applying the deformation gradient &g, we obtain the stretch vectox,, through

Aa, = Fay. (2.28)
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Now, consider the two neighboring pointsandy in the current configuration. The
difference of this two points can be linearly approximatgdusing Taylor's expansion,
such that

y —x =~ ||Y — X||Fag = de,,, (2.29)

see Holzapfel (2000, Sec. 2.5). The strexdh the directiom, at X is defined by the ratio
of current to reference lengths, i.e.

ly — x|
A= = || Ag, (2.30)
Y =X| [ Aa |
the stretch ratio is given by the length df, and therefore always positive. The change in
length referring to the current configuration is therefoeéedmined by

Hy - XH - HAaOHd&j = Ade. (231)

If A > 1,2 = 1or\ < 1 we say that there is an expansion, no stretch or compression,
respectively, in the current configuration. Now, we consttie square oA,

A= HAaO||2 - Aal0 ’ Aao = Fa; - Fa,

2.32
:aO-FTFaozaO-Ca0>O fora()?éo. ( )

In addition to the already known symmetry @f equation (2.24), we can deduce now
from equation (2.32) tha€ is positive definite at eaclX € ),. Due to the positive
definiteness ofC, we can infer that the equation (2.32) defines an ellipsoidered on
x. With respect to a geometrical interpretation, we are abkaly that the stretch tensor
U or Cauchy-Green tens@r, respectively, transforms the material within a spherdnen t
reference configuration into an ellipsoid in the currentfiguration, see Figure 2.3.

2.1.4 Examples of deformations

We complete the section kinematics with two examples of meddions, which we will
use in the course of this work. The first assumption we makeaisthe deformation of the
body is homogeneous, i.e. independent of the position véCtdA further assumption is
that the material is incompressible, meaning that the velofrthe body remains constant.
In this case, the deformation is referred to as isochoricdand® = 1 holds.

At first we discuss the equibiaxial deformation. Since tha&dwaectors in reference and
current configurations coincide, the deformation of theybimdthe current configuration
can be specified generally in the form

r1 =Xy, T2=XXy, x3=N3Xj3, (2.33)

where\;, A\, and)\; denotes the stretch ratioin-, x»- andzs-directions. The deformation
gradient, which we defined in (2.10), with respect to the ehagference and current basis
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Reference Current
configuration configuration
¥
T
o | L
I I
\ \ f
~ | | >
T I I
I I
I |
X, 2o
f I
e P
\ : L . A= —
o o Xy, 21 } { L

Figure 2.4: Equibiaxial deformation in which the forcécauses an uniform extensionn x;- and
xo-direction. The dashed line represents the body with lefgthx, - andx,-direction
in reference configuration and the solid line illustrates lody with equal length df
in both axes direction in current configuration.

vectors has the following matrix representation

A 00
[F]=10 X 0]. (2.34)
0 0 X

Now, consider a body in,z,-plane, which we stretch by uniformly in z;- and x,-

direction, as pictured in Figure 2.4. In this sende,= X\, = X and by the condition
of isochoric deformation, i.edet F = A\ X253 = 1, we obtain\; = A2, Finally, the
equibiaxial deformation has the matrix representation

A0 0
[F]={0Xx 0 |. (2.35)
00 A2

The second type of deformation, which we mention here, issthwle shear defor-
mation, which is illustrated by Figure 2.5. Based on thigsttation we can specify the
deformation of the body in current configuration in the fallng way

71 = X1 + (tanp) Xo,
Ty — XQ, (236)
T3 = Xg.

The simple shear deformation is defined as an isochoric glafmation, which means
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Reference Current
configuration configuration
T2
- \
\
\
\
oy \
\
\

T

Figure 2.5: Simple shear deformation with shear angland deformationy = tan . No change
in length and orientation occurs in -direction. The dashed line represents the body in
the reference configuration and the solid line in the curcenfiguration.

that the deformation is restricted to two axes, e.gzprandz,-direction. Beyond that, no
shear deformations may occurig-direction. From this consideration, the body does not
change its length and direction by the deformationirdirection. By defining the amount
of shear throughy = tan ¢, the deformation gradient in matrix form is deducible from
equations (2.36) and with equation (2.10), such that

10
F]=1010]. (2.37)
001

2.2 Concept of stress

The previous section dealt with the motion and especiayddéformation of a continuum
body. This is caused by external forces acting on the bodygaredrise to interactions
between neighboring material points in the interior parthe body. In order to study
these, we introduce the concept of stress.

Let us consider a deformable body during a finite motion. wett the bodyB occupies
an arbitrary regiorf2 with boundary surfacés?, as shown in Figure 2.6. We distinguish
between external forces, which act on parts or the wholeebtiundary surface, and the
internal forces, which act on an imaginary surface withie thterior of the body. Let
the body be separated into two parts by a plane surface. usdrdited in Figure 2.6, we
denoten as an outward normal vector relative to an infinitesimaligbatrface element
ds at the pointx. The plane surface passes through the material pointhe Cauchy
(or true) traction vectot is a measure of force per unit area. Analogously, the questit
X,dS, N andT are defined in the reference configuration. The vetiepends linearly
on the surface normal. This leads us to another importantaki continuum mechanics.
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Reference Current

conﬁguration Conﬁguration
X
X 3,3 '
(99[) ‘ o0

time ¢t =0 €3 time ¢
% I Xz, T
€2

Figure 2.6: The concept of stress

Theorem 2.2.1. (Cauchy’s theorem)The stress vector(x, n, ¢) in a pointx of a body
depends linearly on the normal of a surface element, i.e. there exists a second-order
tensor fieldo independent of such that

t(x,n,t) = o(x,t)n. (2.38)

Proof. see Ogden (1997, Sec. 3.3) O

The second-order tensaris a spatial tensor and known as Cauchy (or true) stressrtenso
In order to satisfy the conservation of angular momentunmha dtatic equilibrium, we
need the necessary and sufficient condition that the Cauclysstensor is symmetric,
i.e. o = o'. Using equation (2.38) and Nanson’s formula (2.20) thetivacon an area
elementds in the current configuration can be represented

tds = onds = JoF~ 'NdS. (2.39)
Thus we are able to define the first Piola-Kirchhoff stressdeR by
P :=JoF . (2.40)

The nominal stress tensor or engineering sti25ss often used to represent experimental
data. Now, we are able to formulate for the traction vedoa similar relation, as was
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postulated in the Cauchy’s theorem for
T(X,N,t) =P(X,¢)N. (2.41)

Derivation of the relation betweaen andP can be done by

tds = TdS
onds = PNdS (2.42)
ods = PdS.

Completing this section, we introduce further stress tenysshich are commonly used
in practical nonlinear mechanics. A very useful stressdemscomputational mechanics
is the second Piola-Kirchhoff stress ten&rwhich describes the state of stress in the
reference configuration and is defined by

S=JFloF T =F'P. (2.43)
By restatement latter equation we get the following expoes®r the Cauchy stress tensor
o=J'FSF' = J'PF'. (2.44)

If we consider
ST =JF lo'F T, (2.45)

we can infer thatS is symmetric because is symmetric. However, the first Piola-
Kirchhoff stress tensadP is in general not symmetric but it satisfies the connection

FP=S'F'. (2.46)

Another useful measure of stress is the Kirchhoff stressvhich also has no obvious
physical interpretation. This is defined by

T=Jo. (2.47)

and compared with (2.44yields
T =FSF'. (2.48)

Note, for incompressible materialg & 1) 7 = o holds.

2.3 Balance laws and constitutive equations

The basic equations consist of the classical balance ptescand the constitutive (or ma-
terial) equations. Thereby the balance equations desttréeniversal principle which are
axiomatically required for all points of the material boByand must be satisfied for all
timest. The constitutive equations provide the link between thangjties of the kine-
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matics and kinetics, which we introduced in Section 2.1 a@d fdr example the relation
between stress and deformation. Furthermore, the maggp@tions represent the individ-
ual characteristic of any particular material.

In the literature usually the following three fundamentaldnce equations are specified,
these are the conservation of mass, momentum and energysidéoithe current mass
densityp, the particle velocityv(x,t), which is defined bw(x,¢) = 0x/dt, the body
forceb(x, t), and the Cauchy stressx, t), the following balance laws are postulated in
Ogden (1997, Chap. 3).

Conservation of mass

% + pdivv =0 (2.49)
Conservation of linear momentum
0
dive + pb = pa—: (2.50)

Conservation of angular momentum
oc=0' (2.51)

Equations (2.49) and (2.50) providezquations forl0 unknowns p, 3 components of
and with equation (2.51); components o&). These balance equations provide a set of
eqguations to describe a continuum mechanical system, brg omknown variables are
involved than equations are available. The material spdo#ghavior yields the additional
eguations to determine the continuum system.

The aims of constitutive laws are to develop mathematicaletwfor representing the
real behavior of matter and to determine the material respoin other words they de-
scribe an ideal material and the predictions should proaigtery close approximation to
the observed behavior of the real material. This can be aetiiby fitting mathematical
equations to experimental data. In the literature manycjpias are postulated which con-
duce to support the formulation of constitutive equatiohtere we make no attempt to
review the large number of constitutive theories availableontinuum mechanics. We
will provide the basic concept of constitutive equationsorMprecisely, the purpose of
constitutive laws is to specify the material behavior asrecfion of strain and stress state
in appropriate form. The crucial variable is the Helmhottzef energy function’, which
is referred to as the strain-energy function or stored gnengction. In the hyperelasticity
theory such an energy function is assumed to exist. For coenee we focus on homoge-
neous materials, which means the distribution of the imtliestructure is such, that every
material point has the same mechanical behavior. The fpunechanical) constitutive
equation for hyperelastic materials is expressed by

_ OU(F)

P=6(F) =

(2.52)
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where® is referred to as response function and (2.5 general constitutive law, see
Holzapfel (2000, Sec. 6.1). It follows for the symmetric Clay stress tensor using equa-

tion (2.44),
N
o=g(F) = J—laqj(]‘?)}?T = J'F (‘NJ(F)) . (2.53)

OF OF

The strain-energy function is a scalar-valued function roé ¢ensorial variable. In the
reference configuration wheke = I we assume that the strain-energy function vanishes.
From physical view we conclude thétincreases with deformation. Therefore we require

() =0 and U(F)>0. (2.54)

At thermodynamic equilibrium the strain-energy functidtass its global minimum for
F = 1. To guarantee the existence of (unique) solutions for agbemstitutive model fur-
ther conditions on the strain-energy function are necgsgarexample the polyconvexity
of the strain-energy function.

At the end of this section, we want to obtain a constitutivesgpn for an incompressible
hyperelastic material, i.el = det F = 1, which we use later in Section 3.2.2. For this
reason we include a side condition to the strain-energytiomcwhich we define by a
Lagrange multipliec, so that

U= U(F) — (] 1) (2.55)

holds, see Holzapfel (2000, Sec. 6.3). The Lagrange migtiphn be interpreted as a
hydrostatic pressure. With (2.52) and

oJ
—— = JF T 2.
5F J , (2.56)
we obtain for the first Piola-Kirchhoff stress tensor
_OUE) o
P= s —(F " (2.57)

The second Piola-Kirchhoff stress tensor is recovered bliphying equation (2.57) by
F~! from the lefthand

DU (F)
OF

OV (F)

. F—lF—T — F—l
¢ OF

S=F"! —¢c (2.58)

By multiplying equation (2.57) by from the righthand, the Cauchy stress tensor is a
consequence of equation (2.44)
oV (F)

_ T _
o= F (L (2.59)
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In Holzapfel (2000, Sec. 6.1) the following rule was deduced

(540) sl

so that it follows 2u(C)
— T J—
o= 20— —F —(L

(2.60)

(2.61)
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3 Models for biopolymers

In Section 1.1 we discussed about two different levels ohoigation of biopolymers. In
this chapter we want to specify the modeling on both of thegarosation levels. To
describe the mechanical behavior of individual polymersigean appropriate single fila-
ment model. We are introducing different types of singlarident models with reference to
Kuhn (1934), Kratky and Porod (1949), and Holzapfel and @g@®11). These models
are describing some kinds of filaments very well but diffethieir approaches of basic
equations. Single filament models act usually on the scalenarl0 nm. In contrast, a
network model, describes the mechanical behavior of nédsvof polymers, incorporates
the information from the single filament and acts on diffétength scale, fromi0 nm up
to 1 um. In addition, we will discuss in this chapter a network moaétich was recently
devised by Unterberger et al. (submitted). The authorsdtatad a multi-scale approach
to modeling cross-linked actin networks. We will also spetihe basic concept of this
network model which is made available by Miehe et al. (2004).

3.1 Single filament model

We are interested in the behavior of elastic filaments or mpeeifically, in the response
to an applied force acting on a filament. Currently there a@types of single filament

models to study the characteristics of biopolymers whialelmoved to be successful. The
freely-jointed chain (FJC) model which goes back to Kuhr8@)ds a rather simple model,

but it provides the basic elements of single flament modelifhe second type is one of
the most commonly used model, the worm-like chain (WLC) nholde basic concept was

supplied by Kratky and Porod (1949). A few decades laterersgvresearchers provided
a mathematical description of the worm-like chain modeldbieve a force-extension ex-
pression. With the concept of statistical mechanics Maria @iggia (1995), Bustamante
et al. (1994) and MacKintosh et al. (1995) achieved an agplecformulation. From the

view of mechanical equilibrium, Holzapfel and Ogden (20d&yeloped recently another
approach to the worm-like chain model. The FIJC model dessfilexible polymers very

well, whereas the WLC model is usually used for semiflexibtgblymers. Both types

of models are introduced in the following section and in ipatar we demonstrate the
mechanical approach by Holzapfel and Ogden (2011).

23
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3.1.1 Freely-jointed chain model

The freely-jointed chain (FJC) model, introduced by Kuh@34), belongs to the family
of discrete models. The polymer is characterized by ideaingh This implies that we
neglect the interactions among non-neighbouring monowrmedsdescribe the path traced
by a polymer by random walk. Every polymer is a sequence ofammars, which are
considered as a chain wiffi segments. These segments are linked with frictionlessking
Each segment is regarded as a rigid rod of equal lehgtihe so-called Kuhn length, so
that the contour length or total unfolded length, respetyivis L = NI, see Figure 3.1.
Letry,...,ry be the vectors corresponding to the individual monomer® &rid-to-end

r

Figure 3.1: lllustration of freely-jointed chain model wittv segments of length,, linked with
hinges. The corresponding vectors to the individual morerager, . .., rx and the
end-to-end vector i. The angle between the vectarsandr; is denoted by, ;.

vectorr, the vector between the starting point of the first monomdrtha endpoint of the
last monomer, as shown in the Figure 3.1, is given by

N
r= Zri. (3.1)

This results in an end-to-end distancerof ||r||. The inner product denoted by a dot of
two vectors is
Ty = 51%,

r;-r;= I cos 0;;. (3:2)
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The average over all possible chain configurations can bealed by the mean square
end-to-end distance, which are expressed as

N
Z (ri- 1)) (3.3)

where angle brackets denote the mean. Since the monomenscaneelated, meaning that
(r; -r;) = 0 and thereforécos 0;;) = 0, the mean square end-to-end distance for an ideal
chain is accordingly

(r¥) = NI2 = L. (3.4)

By applying a forcef at the ends of the chain we change the configuration of thechai
and hence also its end-to-end distanceNow we want to find a relation between these
two quantities. In this way of looking, the elasticity is plyr based on the entropy. In
other words, we have to apply energy to lower the number afiptesconfigurations of a
chain, and this in turn means that we decrease the entropyeftnopic elasticity theory of
chain molecules is explained in the context of statisticathanics. Boltzmann’s equation
contributes significantly to that theory and describes ét&tion between the entropyof
a system and the probability distributiéh It reads as

n=kglnP (3.5)
and defines the strain-energy function by

where the force can be deduced by
dy

f=a (3.7)

To perform latter equation for the FJC model, we have to makaiek side trip into the
statistical mechanics. The FJC model can be based eitheaossian or on non-Gaussian
(inverse Langevin) statistics in order to specify the cleaoigentropy. The Gaussian statis-
tics, which refers to Kuhn (1934) and Kuhn (1936), does nasater the finite extensibil-
ity of the chain and the force depends linearly on the regasivetch-/L. Alternatively,
the inverse Langevin statistic as introduced by Kuhn anghGt942), provides a nonlin-
ear theory, which takes into account the limiting case, inctvlthe end-to-end distance
can reach only the contour length. The probability densitypduced by Kuhn and Griin
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(1942), has the form

- (N;;gl (£) = ¥ (h@(?))) ) ) w9

L

whereF, denotes a normalization constant a#fcthe Langevin function, which is defined

by @ T r L
(7)) =com(z) -+ (3:9)

Therefore, the strain-energy function of the freely-jeshthain model can be expressed as

T (T 27 (+
Yy = 1o + kTN (Lz <Z> “In (Sinh <$<1L<>7, )) )) , (3.10)

L

wherei, denotes an energy stored in the reference chain. By theadigg\of the strain-
energy function with respect g we obtain a force-extension relation for the freely-jesht
chain, see Treloar (1975, Sec. 6.3), with inverse Langewaiissics through

f= k];—kT.,sf—l () (3.11)

The inverse Langevin function can be approximated by Ppgéoaimation

P G ),
(%) L(1_<%)2)’

as shown in Cohen (1991). In this way it can be proved thatrf@lksstretches the force of
the inverse Langevin chain coincides with the force of the<san chain.

(3.12)

At the end of this section, we consider the limiting case effldC model, which occurs
if r/L — 1, see equation (3.11) and (3.12). In this context, the forbekvwe apply to
stretch the filament, goes to infinity. This is obvious coasitg the assumption that the
segments of the chain are inextensible. The maximum of té@end distance may only
reach the contour length and not beyond that. Consequeuipgtion (3.11) presents the
inextensible FJC model. But usually, biopolymers are abkxpand beyond their contour
length. Extensible models have the ability to allo. becoming greater than one. In this
case we need energy to store the elasticity in the systers.c@hibe visualized by pulling
on a spring. An extensible FJC model was introduced by Smih €1996), but we do not
treat this in detalil.
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3.1.2 Worm-like chain model

Now we discuss a continuous model, the worm-like chain (Win@ylel, which is based on
thermal fluctuations. This property is reflected by an addél parameter, the persistence
length L,. The first idea of this model was proposed by Kratky and Pol®#9). As
opposed to Kuhn’s conception, Kratky and Porod said thatagnatonsists ofV rods of
lengthl, which are joined together that each rod will influence threction of a rod from
the previous in a certain way. Kratky and Porod (1949) coitiedterm of persistence
length of a chain, by declaring that the average of the cosirtbe angle of deviation
together with the length of a rddare a quantity of it, which is defined as

l l
Ly=—— g 1
P In(cos 6) cosf —1’ (3.13)
where the latter approximation is obtained by applying dageries. Assumed that all
bending angles are equally likely and independent of edoérothen the correlation be-
tween two bond vectons andr; results in

(r; -r;) = 1*(cos 9) 1. (3.14)

Furthermore, Kratky and Porod (1949) considered the rodasraiously flexible by exe-
cuting the limiting case by letting the number of segmentgado infinity (V — oo) and
by letting the length of the rod to go to zerb-{> 0), with the restriction that the contour
length remains constant (— N L). For this limiting process, which we denote Ibyyorm,
we perform the following steps

lim (cos 0) = lim exp (N In(cos 6))

worm worm

Taylor 2
expansion —1

PE limexp ( N cos@—l—m—l—...

worm 2 (3 15)
0—1 50 — 1)2 .
= lim exp (Nl (COS — (cos ) +))
worm l 21

L
= exXp _L_ .
p

Again, we are interested in the mean square end-to-enddestd he end-to-end vector,
with tangent unit vectok(s) = ag—(;) at a distances from the starting point along the
contour, can be written as

L
r:/o t(s)ds. (3.16)

The orientation correlation function for a worm-like chaiecays exponentially, so that the
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mean square end-to-end distance can be calculated through

/ / ))ds'ds
= /0 /0 (cosf(s — s'))ds'ds (3.17)
= [ [ (527 avas
We split the integrand into the regian< s’ ands > s’
<r2>:/OL (/Osexp (—(Sgp8/>)ds/+ ( I ) )ds
A G C IR p)))
[ (o) (52
f o) (e
~ 1, (254 Lyeww () - Lpexp( — L) )
~ 1, (224 1, (e (_L_p)_1_1+exp(_L£p)))
= 2L,L —2L2 (1 — exp (_L%))

and therefore we attain the formulation of the mean squate@®end distance

(r?) = 2L,L (1 — % (1 — exp ( fp))) . (3.19)

This result was carried out by Rubinstein and Colby (2003)nsider now limiting cases
of latter equation. 1L > L,

@h| o ﬁh| ) @h| )

(r?) = 2L,L, (3.20)

follows. This limit provides us the relationship betweee uhn length and the persis-
tence length. By comparison with equation (3.4), we obtain

I = 2L, (3.21)

Another limiting case occurs whelh < L, for this purpose we use the following series
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expansion for the approximation

L) L 1<L)2 1(L)3
exp(——|~l-——+-|+—)] —=|+ ) +... (3.22)
< L, L, 2\L, 6 \ L,

in equation (3.19) and receive thereby
L L 1/L\> 1/L\°
2y _rq_ i [ 22 ) -
w14 (10 -3 (E) A () )
1/ L 1 /LY
2L, L[1-1+=(—=)—-=(= .. (3.23)
1105 (5) 5 () + )

This limiting case reflects the nature of a stiff biopolymers

The numerical treatment of the WLC was first done by Fixman kmehc (1973) and
some analytical details were furnished by Kovac and CraBBZ). This was then comple-
mented by Bustamante et al. (1994) and Marko and Siggia (183%et a force-extension
relation, as we mentioned above. To obtain this relationcamesider a single filament,
whose end points lie on the -axis, as illustrated in Figure 3.2. Suppose that one end is

T2

0 SN~~——" T

Figure 3.2: Single filament with a fixed end at; = 0. The forcef acting inx;-direction over-
comes the second endtg@ = r. The unit tangent(s) defined by parameterization of
arc lengths € [0, L].

fixed atz; = 0. Letry be the second end point on the-axis, which is referred to as the
end-to-end distance when no force is applied. We describgdth of a flament through
the parametrization of the arc lengtte [0, L]. Lett(s) be a unit tangent vector atand
r(s) the position vector along the chain, so that

t(s) = ag(j). (3.24)

The curvaturex is defined by

(3.25)
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and the bending energy per unit length of the filament mom%sk]gTmez, wherekg is
the Boltzmann constant with value3s x 10-2Nm/K andT is the absolute temperature.
If we now apply a forcef in the z;-direction the endr; = o changes tar; = r, see
Figure 3.2, and thus work was done, which acts against tleetasf thermal fluctuations.
This can be described by the terﬁj) fdz. The effective energy of a stretched filament,
which mentioned by Marko and Siggia (1995) is written as

1 L T
Fwie = 5/gBTLp / kids — / fdz. (3.26)
0 o

To achieve a useful relation betwe¢randr/L, Marko and Siggia used the Boltzmann
distributionexp (—%) and obtained the following interpolation formula

o ]{?BT 4r 1

— — -1
4L, L+<1_1>2 ’
L

f (3.27)

which is a very useful approximation for semiflexible, irensible flaments.

3.1.3 Holzapfel-Ogden model

Another approach to obtain a force-extension relationtierworm-like chain model was
carried out by Holzapfel and Ogden (2011). This concept g&8an a pure mechanical
analysis and the extensible case of a filament is incorpbfaden the beginning. Let us
now discuss the basic concept of this model.

We start with the analysis of tHenematics, before we examine the equilibrium equa-
tions and complete the analysis by material laws. The filarnsedescribed by a plane
curve, which we illustrated in Figure 3.3(left) in the reface and in Figure 3.3(right) in
current configurations. The arc lengththe tangent vectar and the curvature are de-
fined in the previous section. Létbe the angle between the unit tangent veé¢tand the
x1-axis and letu be the transverse deviation from the-axis. In the reference configu-
ration we denot& as the distance along the chain from the ori@in The change in arc
length, which we define as the local stretch of deformed tcetorched length, is given
through

ds

s
where the prime denotes the derivative with respeci.td'he local stretch is defined in
A € (0, 00) and the relation betweenandsS is one-to-one. Lex(s) be the position vector
at positions in the current configuration. The derivativexfs) with respect tos defined
the unit tangent vector through

s(S) = A(S), (3.28)

x'(s) = P

t(s). (3.29)
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Figure 3.3: An elastic biopolymer in a straight unstretched referengefiguration (left) lying
along theX;-axis with the arc length paramet8t In the deformed or current con-
figuration (right), both ends of the filament lying on theaxis and a forcg is applied
on the right-hand end of the filament along-direction. The related arc length param-
eter iss andr is the end-to-end distance. The unit tangent and the unmalovectors
aret andn, respectively. The tangent makes an artgeth the z;-axis and u denotes
the lateral displacement from thg-axis.

According to Figure 3.3, we write the unit tangent veat@nd unit normal vecton with
respect to the current configuration with basis vectgrande,, respectively, in the fol-
lowing form

t(s) = cosf(s)e; + sinf(s)ey, mn(s) = —sinf(s)e; + cosb(s)es. (3.30)
The infinitesimal lateral displacemedt from z;-axis, can be expressed geometrically by

d
% _ sing. (3.31)
ds

For a plane curve the curvature is defined as the derivatitteeadingle with respect to the

arc length

k(s) = 1 =0'(s). (3.32)

Considering the derivative of the tangent vector with resfes, by using equation (3.39)
and (3.32) we obtain

dt dtdd ) do
TS (— sin fe; + cos fey) T k(s)n(s). (3.33)
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When we consider the quantities in the reference configuratith respect to the param-
eterS we put henceforth a bar over these quantities. By the notéti§) = 6(s) and by
equation (3.28)and (3.32), the modified curvature is defined by

dg(s)  dé(s) ds -
=15 = a4 15 = NOn(s) =7(5) (3.34)

Finally, we consider the derivative afwith respect toS. The notationi(S) = u(s) and
equation (3.31) and (3.28) yields

R(S)

du B du ds

S =45 T Bas T

A(S)sin6(9). (3.35)

In the next step we establish thquilibrium equations in consideration of an unshear-
able biopolymer. For this purpose we use the theory of a plsteady-state problems for
elastic rods as support, which is discussed in detail in Amtig2005, Chap. 4). Consider
the cross section of an 'unshearable’ biopolymer at loocatjdhe resultant force consists
of a tangential and a normal component and is written as

p=1tt+nn= (tcosd —nsind)e; + (tsinf + ncosf)es, (3.36)

wheret describes the tension in the tangential directionaadts as a Lagrange multiplier
required to prevent shearing in the cross section of thedbyoper. The moment belonging
to this resultant force about the origifi is x x p. At this locations there acts also a
resultant contact coupka with a bending moment: in the biopolymer, such that

m = mt X n. (3.37)

We consider a material segments| of the filament, which is in equilibrium when the
sum of resultant forces and moments acting on this segmen¢ash zero. Assuming
additionally that a body forcb is acting along this segment and there are no body couples
per unit length in the deformed configuration. In this way ve¢ain

mw—p@%ﬁ/EQM§=m
. e (3.38)
m(s) — m(e) + x(5) % pls) — x() x ple) + [ X(6)x b{E)dE =

see Antman (2005, Chap. 4). Lebe a constant. Taking the derivative with respect to
the equations in (3.38) result in

(S) = 07
0 (3.39)
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By rearranging the equation (3.39nd using (3.39) we get

m’(s) +X'(s) X p(s) +x 8) X (P'(s) +b(s)) =

m'(s) 1 x'(s)  p(s) (3.40)

0
0.
For convenience we introduce a vectos) such that’(s) = b holds. Then we can deduce

from equation (3.39)thatp + c is a constant. In the two-dimensional case, whgis
acting only inz; direction andy is a normal reaction im, direction, we can thus write

p+c= fe; + ge,. (3.41)

Without loss of generality we assume tleatas only a transverse component, £és) =
¢(s)eq. This assumption converts equation (3.41) into

p = fe; — ces, (3.42)

wherec is defined by := ¢ — g. Comparing the latter equation with equation (3.36), we
achieve
tcos —nsinf = f, tsinf +ncosf = —c. (3.43)

By multiplication of (3.43) with cos # and (3.43) with sin 6, followed by summation these
preliminary results, we obtain one of the two translatiolabee equations. The second one
is achieved by multiplication of (3.43with sin 8 and (3.43) with cos # and subsequent
subtraction. By doing this, we get the following two trariglaal balance equations

t=fcosf —csinf and n = —fsinf + ccosb, (3.44)

respectively. The rotational balance equation is dedugesubstituting equation (3.36)
in (3.40), and by using equation (3.29) and (3.37) we obtain

d
Mt ntt(txt)+n(txn)=0, (3.45)
ds Y~ ~—— ——
€3 0 es
so that it follows
m' +n = 0. (3.46)

The final step is to establish tlw®nstitutive laws We consider an elastic energy,
which is stored in a biopolymer, per unit length in the refiee configuration. Generally,
this energy depends on the strefcand the curvaturg, i.e.U = U(\, &). The connection
between the tensile forcdeand bending moment,, respectively, and the stored energy
were discussed by Steigmann and Ogden and are given by

ou ou

tza, m:%

(3.47)
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If the biopolymer exhibits no stretch, i.&.= 1 and no bending, i.ex = 0, then the tensile
force and bending moment have to vanish. Thus we demand

U(1,0)=0, Ux(1,0)=0, Ux(1,0)=0, (3.48)

where the subscripts denote the partial derivatives. Weotldigtinguish between bending
up and bending down, this means that the bending momems the same sign asand
further we consider only local extension and not a contoactif the biopolymer, which
means that foA > 1 it follows that

Ux(\, k) >0 foranyk. (3.49)

Additionally, in an energy minimizing configuratidn should be a locally convex function
of A andkg, i.e.
Uw >0, Uz >0, UnUs — Ui >0, (3.50)

which is according to Steigmann and Ogden. For a smalhd with the constant stretch
modulusy, > 0 and a constant bending stiffneBg, we may assume a simple decoupled
model in the form

1 1
U\ &) = S (A = 1)° + §BOR2. (3.51)
This model yields
t:U)\ZMQ()\—l), m:UR:BOR (352)
and further
U = o, Uzz =By, Uxz=0. (3.53)

The specified model (3.51) fulfills all conditions bf, as indicated in (3.48), (3.49) and
(3.50). Now we are able to deduce the equilibrium equatiorafsingle biopolymer with
using the model (3.51). To this end we consider the functieitls respect taS, i.e. we
replacet, n, ¢, m andf in equation (3.44) and (3.46) byn, ¢, m andd. Furthermore, we
assume thafl is very small, so thatosf ~ 1 andsind ~ # can be approximated and
furthermorec is a linear function ird. By using equation (3.44) neglecting the second
order terms irf and with (3.52), we obtain

taf=p(A—1) = =1+l (3.54)

Ho

In this way it follows that)\ is constant, independent of positiSn The rotational equilib-
rium equation (3.46) as a function of the arc len§ttakes the form

dm ds
ds ds
By substituting equation (3.44) in the latter equation anith wquation (3.52) it follows

+a=A"'m'+n=0. (3.55)



3.1 Single filament model 35

thatm’ = Byk' = Byf" and we get the approximation

A'Byd" — f0 =¢. (3.56)
Since@ = b and by differentiation of (3.56) we receive

A By0" — 0 =b. (3.57)

The differentiation ofi’ = A sin § results ini” = X cos 9" and by using the approximation
cosf ~ 1 we getu” ~ \¢'. In this way, equation (3.57) leads to

A2Byi"” — AL fi’ =b. (3.58)

If A = 1, we say that the filament is inextensible, meaning thatS and therefore we can
drop the bars henceforth. The equilibrium equation (3.68}He inextensible case takes
the form

Bou"" — fu" = b, (3.59)

which recovers the classical Euler beam equation if theme isody force.

The body force term is necessary for finding non-trivial sols of the mechanical
boundary-value problem. To obtain a force-extension igadf the governing equa-
tions (3.58) and (3.59), the Fourier series were used in&dét and Ogden (2011). The
result of the force versus end-to-end distance for the sikiencase, which depends on the
end-to-end distance with zero foreg has the form

(1+zi)(1+I)2
I Fo Fo

Z: Lo <1+ fL2 fQLz )2

(1 _ 7”—0) , (3.60)

2By * 72 Bofio

This formula includes bending and stretching propertieghWie transformation of force
f to a dimensionless measure

* L?
==
7TBO

and by using the dimensionless parameter

f (3.61)

7T2BO

the extensible Holzapfel-Ogden model (3.60) becomes

—1taf - (3.63)

(1+2af) (1+af*)’ (1-2)
(1—|—f*+af*2)2 .

SIE

L
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The inextensible case is included in the extensible fortradawheny, — oo and there-
fore « — 0. Thus the inextensible Holzapfel-Ogden model is given by

% —1— - +1f*)2 (1 _ %) . (3.64)

The achieved models can be adopted for both flexible and sxibii filaments.

3.2 Network model

In human body filaments do not appear in single form but ratbgether with other fila-
ments of the same type or even other types. A network modeldldescribe the elasticity
response of these interactions of filaments. In the liteegthere are a variety of these types
of models, such as the affine three chain model by Wang and (&882), the non-affine
four chain model by Treloar (1954), which describes a fubwwek, and the non-affine
eight chain model by Arruda and Boyce (1993), which is the tnppeminent network
model today. Another formulation of a full network model igopided by Miehe et al.
(2004) and is called the micro-sphere model. Unterbergatl. ésubmitted) made use of
this concept recently, and formulated a new approach to hedeoss-linked actin net-
work. Before we discuss Unterberger’'s model in detail, weoithuce the basic concept of
the micro-sphere model.

3.2.1 Micro-sphere model

The non-affine micro-sphere model proposed by Miehe et @D4Ris a microscopically
motivated model for rubberlike materials. The authors wedrkut a new formulation of a
micro-macro approach to describe the elasticity respohaematerial. This is constructed
by a new constitutive setting of the micro-mechanical respoof a single polymer chain
considered in a constrained environment and by a new nameatfficro-to-macro transi-
tion. The implementation of the first point is carried out wptmicro-kinematic variables,
the stretch\ of the chain and the contractianof the cross section of a micro-tube that
contains the chain. The second point provides the bridgedsst the microscopic kine-
matic variables and the macroscopic continuum deformatieasures. This is achieved
by a homogenization procedure of micro-state variablesxedéfon the micro-sphere of
space orientations and this defines the three-dimensiaeahlb response of the polymer
network. The constitutive model was obtained through tleviong three steps. The first
step describes the link between the micro and macro line mradstretches through a fluc-
tuation field on a micro-sphere. The fluctuation field is deiaed by a minimization of the
macroscopic free energy, which we obtained by the singlmél# model, which we have
carried out for the Holzapfel-Ogden model in Section 3.I.Be second step considers a
tube constraint, which describes the restriction of the enoent of a single chain. This
part for example illustrates the cross-links in a polymewoek. The last step addresses
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a numerical approximation of an integral over a sphere, theadled 21-point integration
scheme by BaZzant and Oh (1986) is used.

To begin with thekinematics, we focus on the definition of micro-kinematic variables of
the chain. For that purpose, we consider a single chain,iwhiconstrained by a straight
tube to draft the interactions of chains in a network anduhiice the two micro-kinematic
variables, the stretch and the tube contractiom Depending on the specific model to
describe the single chain determines the remaining paexsetthe single filament model.
Miehe et al. (2004) made use of the freely-jointed chain moakich we introduced in
Section 3.1.1. By using the usual notation, the end-to-estmcer and the end-to-end
distance at zero force), the dimensionless stretéhis defined as

A= L (3.65)
To
Consider an inextensible filament,c (0, L/r,). In view of the second micro-kinematic
variable, it is assumed that the polymer chain is confined twba of constant diameter
d and that both ends are fixed at the center of the end cros®msedthe dimensionless
tube area contraction with € (0, co), which describes the network constraint to the single

chain, can be described by
L do 2
V= <—d) , (3.66)

whered, is the initial diameter of the tube. The variabléescribes the number of allowed
conformations of the chain inside of the tube and the indiameter can be interpreted as
material parameter of the undeformed network.

Now we investigate the formulation of the micro-to-macransition, which links the
two micro-kinematic variableg andv to the line-stretch\ and to the area-stretah re-
spectively of the macro-continuum. First of all, we consisi@me stretch assumption. Let
IT be a unit orientation vector with the Euclidean nojfiiI|| = 1, which describes the
direction between the end points of the polymer in the refegeconfiguration. The iso-
choric stretch vectott is defined by the transformation through the macroscopizhisoc
deformation gradienkF and is given by

7 = FII, (3.67)

see Figure 3.4.
The macro-stretch of a material line element is then defiryed b

A= = ||| = 7. (3.68)

By recalling the definition of Cauchy-Green ten€or= F'F and by using (3.67), the
macro-stretch can be written as

A=+VFII-FII = VII - FTFII = VII - CIIL. (3.69)
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Figure 3.4: The unit vectorTI in the reference configuration (left) is deformed by defdiora
gradientF into the vectod in the current configuration (right) in the three dimensiona
space.

A further assumption of Miehe’s conception is that the mistietches\ fluctuate around
the macro-stretchesand the relation can be expressed with the stretch-fluctuéield f

A=\ (3.70)

The fluctuation field on the unit spheitas determined by a principle of minimum averaged
free energy, which is in line with the concept of homogenaaprinciples and is explained
by thep-root averaging operator

_ 1 p 1/p
A=(\), = <@/Q/\ dA) : (3.71)

whered A is the infinitesimal area element@fwith total ared(2| = 47 andp an additional
material parameter of the polymer network.
Next, consider an area element with unit norfiin the reference configuration. The
area vecton can be described by
a=F "II, (3.72)

compare with Nanson'’s formula (2.20). Subsequently theroaarea stretch of a material
elementis

= [la| = va-a. (3.73)

If we regard the inverse of Cauchy-Green tensor and equggi@g), the macro-area stretch
becomes

7=VFTII-F-TII = VII . F-'F-TII = VII - C-'IL (3.74)

The relation between the micro-tube contraction and theorarea stretch is proposed by
Miehe et al. (2004) through
v= (). (3.75)

The non-linearity between the microscopic tube contractiod the macroscopic area re-
sults from an additional material paramegerA geometrical interpretation of conceptual
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linking of micro-kinematic variables to macro-kinematgriables is shown in Miehe et al.
(2004).

The contributions from the line stretch and area stretchlrés an additive decompo-
sition of the free energy function into the contribution of the free energy of the free
motion of the chain and the contribution of the free enepgpf the tube constraint, such
that

This decomposition is translated to the macroscopic scilethe result
U(F) = U(F) + W(F), (3.77)
and subsequently
T =1+ 1. — (L (3.78)

It should be assumed, that the undeformed network is honeagesrand isotropic. Further,
the network consists of chains per unit reference volume, where it represents theu
of filaments of the network and is also called filament densligese filaments are ran-
domly distributed in a three-dimensional unit sphere. Tihste free energy of a network
is equal to the sum of the elastic free energiesf the individual chains, i.e

e = v\, (3.79)

The macroscopic free energy of the non-affine network mamtaliiconstrained chains is
denoted by Miehe et al. (2004) as

For the tube constraint the macroscopic free energy isemris
U (F) = (ne(v7)), (3.81)

where () denotes the continuous averaging for an equal orientatgtmtuition and is
regarded as the homogenization on a micro-sphere with adius, which we defined
in (3.71) forp = 1. Furthermore, the macroscopic Kirchhoff stresses for tleoostrained
and constrained part is given by

Tt = nYi A Ph, (3.82)

with tensorh := (\*~2m @ &), and
7. = 'k, (3.83)

respectively, withtk := (¢q7?a ® a), where® denotes the dyadic product.

Finally, the integral over the continuous space orientetizas to be solved numerically.
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This can be done by discretizing the continuous orientadistribution of the unit sphere
Q2. In this context,n discrete points are defined on the surface of the unit sphihe w
orientation vectorqII‘},_; ,, and with the associated weight factdrs‘};—; ... The
discrete micro-state variablds’},_; ,, are evaluated at the discrete points. Therefore,
the numerical integration over the unit sphere of stateatéeiv can be approximated by
the discrete sum

1 SN
(v) = Tl /QU(A)dA A ;v w'. (3.84)

In the discrete setting, the numerical integration scheageth satisfy some constraints.
The average over all orientation vectors has to be

(TT) = 0. (3.85)

In order to ensure a stress-free state of the reference ooatiign the dyadic product of
the orientation vectors has to satisfy the following coiodit

(T & TI) — %1. (3.86)
Bazant and Oh (1986) specifie@&-point integration scheme, which fulfill these condi-
tions. These1 points are defined on the hemisphere because of the symnii¢try onit
sphere. The associated discrete points defined on the Hegnésfor a Cartesian system
and the associated weights are tabulated in Bazant and @6).1 Miehe et al. (2004)
showed that thig1-point integration scheme provides the sufficient accufacyall nu-
merical considerations.

3.2.2 Unterberger model

A new multi-scale model to describe the mechanics of criod®dl actin networks was

recently developed by Unterberger et al. (submitted). Wuosk includes the basic idea
of the network model by Miehe et al. (2004) and incorporatgeeralized form of the

Holzapfel-Ogden model for the contribution of the singlarfilent. For convenience, the
tube part of the micro-sphere model by Miehe et al. (2004) weggected in this consider-
ation. Further, an initial pre-stretch variablg was installed in the single flament model,
such that

r = )\)\07’0. (387)

The extensible Holzapfel-Ogden model was generalized bgtguting the square in equa-
tion (3.60) by an arbitrary exponefitwhich is referred to as the effective extensional mod-
ulus, see Holzapfel and Ogden (submitted). This paramewaribes the initial stiffnes of
the single filament. By using the dimensionless fofteand the dimensionless parameter
«, which are defined in equation (3.61) and (3.62), respdgtimad with equation (3.87),
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the generalized extensible single filament model reads as

(3.88)

)\)\0’/’0 . " (1 + 20&]“)(1 + 20&]“)6 To
L itelt- (1+ f*+ af2)s <1_Z>’

see Unterberger et al. (submitted). To assemble the netwodel the derivative of the
strain-energy function with respect as required and can be calculated as follows
/_3% _a¢far o

I S (3:89)
where the forcef is the partial derivative ofy; with respect ta-, i.e. f = 9vy¢/0r holds.
The force is determined by the single filament model. Instd48.88) for the Holzapfel-
Ogden model, we can use equation (3.11) and (3.12) for tleéy/fjeinted chain model or
equation (3.27) for the worm-like chain model.

(8

Now, we are interested in the computation of the Cauchystesssor and doing this in
the same way like Unterberger et al. (submitted), but we idengrom the beginning an
incompressible hyperelastic material, i.e= 1. The associated Cauchy stress tensor was
derived in Section 2.3 and is recalled in the form

OV(C) ot
=2F———F"' — (L. 3.90
Of oC C ( )
In this sense we have to analyze the derivation of the stm@rgy function with respect
to the right Cauchy-Green tensor. Considering that we ethe tube part of the micro-
sphere model, therefore the following deduction is basetthemnconstrained chains. Us-
ing equation (3.80) and (3.89) we arrive at

ovy Oy 3%@@_ ,@3_5\

oc ~ "ac ~ "axaxoc ~ "oxac
Consider first, the last partial derivative, which can begkted with equation (3.69) and
(3.67) as

(3.91)

ox 0 _ 1..,0(IT-CI)
oc ~ o VI CI=32"—%c—
A (e (3.92)
1- _ _
25)\ 1(F @ nF T)

Using Leibniz’s rule for differentiation under the integsggn and equation (3.71) we work
out the following expression

%8_5\_ 1=p *p—la_j‘
aXaC_A <A oC (3.93)
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Put the partial results together into (3.91) and rewriteagiga (3.90)

o = 2Fa\1g7gj)FT — (I
= 2n¢§)\1‘pF% (W 2F 'n@aF TYFT — (I (3.94)

= napp AP <5\p_27'r ® 7'r> — (1.
The final result of the Cauchy stress tensor for an incomjimessaterial reads now
o =nPiA'Ph — (I with h= (N r®x). (3.95)

The latter result presents basically the same as (3.82)4f 1. The stretch parameter
A is calculated by the micro-sphere model as well as the streicensoth, by using the
homogenization procedure of (3.84). The resulha$ used in the single filament model.
The solution of the generalized extensible single flameateh (3.88) provides us the
force f and henceforth we are able to calculadte Both the micro-sphere model and the
single filament model are assembled and result in the Caurtgsdensos;.



4 Analysis of the tube part

In the previous section we introduced the concept of netwodklels, in particular the
micro-sphere model and the Unterberger model for an incesgille hyperelastic mate-
rial, where the tube part of the micro-sphere model was cegle Now we want to make
up for this omission. For this purpose, we first have to inocaje the contribution of this
tube constraint to the Cauchy stress tensor. Afterwards iVeliscuss the computation
of the Cauchy stress tensor in particular about the strakctansorsh andk. The tube
part supplies two additional parameters that need to berdeted. By varying these two
parameters, we show the effect of the tube part on the netmodel and discuss these
results at the end of the section.

4.1 Incorporation of the tube part

To incorporate the tube part into the network model, we hav&udy the Cauchy stress
tensor again, in particular the derivative of the straiergg function with respect t€.
We defined the Cauchy stress tensor for an incompressiblerélgstic material in equa-
tion (2.61), which we recall again in the form

dU(C)
aC

We know from (3.77) that the strain-energy functigris additively decomposed int;
andV.. Hence, the Cauchy stress tensor is writable as

U:QF(@E+0%)FT—H. (4.2)

o =2F F' — (L (4.1)

oC  0C

The derivative of’; with respect toC is completely done in Section 3.2.2. In the same
way we establish the derivative &, with respect taC. From equation (3.81) and (3.75),
we get

ov 0 0
¢ = — 79 = —
Using the homogenization principle, which we defined in {3,/we continue to write
o, 0 (1 1 e (V)
o = ac (o ) =g [p5ctae e

43
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Now we have to evaluate
OUv) _ D) v D0 0w 07
oC  Ov owoC <o oC’
where the prime denotes the partial derivative with resfieet Sincer = 7 it follows,
therefore,

(4.5)

— =gt L. (4.6)

ov
What remains is the analysis 6f/0C. The macro-area stretch is defined in equation
(3.74) by

p=(II-C7'I)* (4.7)
so that we obtain
w1 1 o(-C~') 1 9II-C ') 4.8)
0C  2(II- C—1I)3 oC Y oC ’ '

To perform this derivation, we require the following indestation, which is defined in
Holzapfel (2000, p. 43),

00! 1, . L
ac,; =3 (CriCs + ot ey (4.9)

We execute the derivative in equation (4.8)ith respect toC in index notation in the
following steps

0 _ 1 P e
@(Hicijlnj) = ) [Hi (Oz'klcéjl + Cz'zlckj1> Hj}
_ oo s nesteo
- % [IL,C;, Cp 1L +1L,C;, O I1;] (4.10)
= -2 [(me™), (c7'm), + (me ), (C7'm),]
1 _ _ _ _
= -5 [(c™ '), (TC™T), + (CT'm), (e |
Since the right Cauchy Green tensor is symmetric, meaning
cl=c, (4.11)
we obtain —_——
% — C'MeIC"=-C'Me CIL (4.12)

In equation (3.72), the area vector is defined by

a=F TIL (4.13)
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We consider
Fla=F'F II=C'II (4.14)
and infer
@ B i@(l‘[ -CI)
= ——FlagaF .
2v

Back again to equation (4.5), if we collect all partial resii#.6) and (4.15), we attain the
following result

8¢C(V) _ ! —q—1 1 -1 -T
9C —Qpcqy ﬁF a®alF ™ . (4-16)
Insert latter equation in equation (4 3)ve achieve
a\:[JC o awc o 1 ! —q—21—1 -T
5 = <n80> = ancq@ F ragaF ). (4.17)

Consider again the Cauchy stress tensor (4.2) in the form

R T oV,
Using the results, namely equation (3.95) for the uncomstdachain and equation (4.17)

for the tube constraint, we obtain with

F' — (L (4.18)

h:=(M?ren) and k:= (@’ ?a®a) (4.19)
the following Cauchy stress tensor

o = nA' Ph — nylk — (L. (4.20)

To complete this section, we still need to assemble the akkres of the strain-energy
function ¢, with respect tar. The derivation of the free energy function of the tube part
1), is carried out analogously tor;c in Section 3.1.1. The probability of the straight tube
constraint, which is postulated in Miehe et al. (2004) aridreeto Doi and Edwards (1986,
p. 205), is with the normalization constaf given by

P.(v) = Pyexp (—a (2—2)2 u> . (4.21)

The parameteny describes a numerical factor which depends on the shapesafrtdss
section of the tube. All other parameters have already b&erduced in Section 3.2.1. It
is assumed that the undulations of the worm-like chain arstcained by the tube. For
purely entropic response we get by means of equations (Bcbj3a6) the following free
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energy function

2
Ve = —kgT Inp.(v) = —kgT In (po P <_a (%) V))
0

S\ 2 (4.22)
= —kpTlnpy+kTa (- | v.
—— dy
=g
with constant)y. In this way, the derivative of. with respect tas yields
a¢c / To 2
= =akgT | — 4.23
= vt = aka (1) (4.29
For our purpose, we define
2
U:=a (@) (4.24)
do
as a geometric parameter, so tiiatreads as
U = kpTU. (4.25)

4.2 Implementation of Cauchy stress tensor

Now, we want to specify the Cauchy stress tensor (4.20) ¢gakito account a simple shear
deformation. This kind of deformation is described in dataBection 2.1.4. Henceforth,
the subscripts of matrix elements are labeled only with de®sd subscripts of the annota-
tion of the axes. More precisely, the subscript8 and3 refer to ther;-, x»- andzs-axes,
respectively. In Section 3.2.2 we already discussed appoukhis factor is contributed by
the single filament model and is given in equation (3.89). ifdma ) was explained at the
end of the previous section. The micro-streidis calculated using equation (3.71) and by
discretization of the continuous unit sphere into #headius vectordl — II‘. For this
we have to determine the discrete itemshrough

M\ = ||FIT|| (4.26)
and thus we are able to computdy
21 1/p
A= [Z (Xi)”wi] . (4.27)
i=1

As we already know, the material parametedefines the filament density apdan ad-
ditional network parameter, which we will address in depthChapter 5. Let us deal
next with the implementation of the structural tenshirandk. Using equation (3.67) we
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execute the following steps

h= (N ?2r@n)= (W2 FIIQIF")

_ (4.28)
=FNII@IDF'.
By using the21-point integration scheme we approach the averaging by
" 21
hi= (V2O ~ Y (V) I @ M. (4.29)

=1

The additional non-affine tube paramegés introduced in Section 3.2.1. In the following
steps we analyze the area-stretch teksby using equation (3.72)

k=q(p"a®a) = ¢ F 'TIQIF )

(4.30)
=q¢F ("I I)F .
We discretizes — ' through
7= ||FTIT| (4.31)
and approximate the angle brackets in equation (4.30) by
" 21
k= (@ Hel)~ Y (7)o v (4.32)

i=1

Because of simple shear deformation in the,-plane and the condition (3.85), which

.....

and area-stretch tensors have the following forms in matrtation

hll h12 0 kll k12 0
[h] = h12 hgg 0 and [k] = k12 k?gg 0 , (433)
0 0 hss 0 0 ks3

respectively. After the computation &f from (4.28), andk from (4.30), we are able to
work out the entries dh andk in the following way

hin = En + 27%12 + ’YQﬁQz, hia = §12 + 7%227 (4.34)
hag = hag, hs3 = has,
and N ~ B
ki1 = gk, k12 =q (km - 7k11> )
(4.35)

kyo = q <%22 — 27%12 + 72%11) ) ksz = q%33‘
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Cross-linker densitie® 1/40 1/20
T Temperature 204 294 K
L, Persistence length 16 16 pum
L  Contour length 1.47  0.53 pm
ro End-to-end distance at zero force1.33  0.48 pum
io Stretch modulus 38.6 38.6 nN
B Effective extensional modulus 0.438 0.438 -
n  Filament density 10.2 285 pum™3
Mo Initial stretch 1.027 1.007 -
p  Averaging parameter 8 15 -

Table 4.1: Model parameters for cross-linked actin network, adoptechfUnterberger et al. (sub-
mitted).

The remaining variable in equation (4.20), which we stiNd&&o determine is the La-
grange multiplierl. We consider only plane stresses in the,-plane. This results in the
following conditions

013 = 093 = 033 = O, (436)

which we can enforce by
< = nwéAl_ph:gg — Tblpék}:gg. (437)

In this way, the normal Cauchy stressaift andx,-direction and the shear stress can be
computed by
o11 = YN Phyy — nplki — €
=n (%)\l_phn — ki — YA Phas + 1%7?33)
=n (YA 7P (hay — haz) + U, (ks — k)
Tag = NN "Phoy — napl ko — € (4.38)
= n (YA Phay — ikos — VA Phys + Ylkss)
=n (YANTP (has — haz) + V., (ks3 — kao))

o12 = n (YA "Phyy — lkas)

4.3 Effect of the tube part

In this section, we deal with the effects of the tube constran the network model. Un-
der the consideration of simple shear deformation and hbygutsie material parameters
for a cross-linked actin network, which are published indsherger et al. (submitted) and
reported in Table 4.1, we demonstrate the influence of the past on the Unterberger
model. The tube part yields two additional parameters, dwmetry parametdr and the
averaging tube parameter which have to be determined. By varying these two param-
eters we illustrate the impact of the tube part on the mode.cWbose the values of the
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parameteﬁ in analogously to Miehe et al. (2004). They used, howeverfrigely-jointed
chain model for the description of the single chain and oletaifor the derivative of),
with respect ta’ the following expression

W = kg TNU, (4.39)

whereN is the number of segments of a chain. Comparing the latteategquwith equa-
tion (4.25), we get the relation B
U=NU. (4.40)

To show the effect of the additional contribution due to thieet constraint, Miehe et al.
(2004) chose the fixed value 8f = 25 and different values o/ = [0.5,2.0, 5.0, 10.0].

In order to maintain approximately the same magnitude ferggiometrical parameter, we
choose the following values df = [0, 50, 100,200]. The parametey varies with the
values ofg = [0, 1,2,4,7]. If U = 0 or ¢ = 0, respectively, then this means that the tube
constraint is neglected, i.ewy)_k = 0. A special case occurs when= 2. Consider the
area-stretch tensdrin equation (4.30), the macro-area stretch provides naitorion if

g = 2 andk becomes with equation (3.86)

k=2F T TIQI)F!= gF‘TF‘l = %b‘l. (4.41)
N——

_1
_§I

The implementation of the Cauchy stress tensor (4.20) res¢eried outin MATLAB
by using the material parameters listed in Table 4.1. Héwe ctoss-linker density is
defined by the ratio of cross-linker to molar concentrati®y. doubling the cross-linker
density fromR = 1/40 to 1/20, the network becomes denser, so that the contour length
and the initial end-to-end distance decrease and the filadeg1sity increases.

In Figure 4.1 and 4.2 the normal Cauchy stressgsand oy, and the shear stress,
versus deformation are depicted. We consider only the experimental data up sfa-d
mation of30 %, because the response ab80é&: no longer reflects the actual properties of
the network, for more details see Unterberger et al. (subdjit First, we keep constant
and vary the geometrical parametéy shown in Figure 4.1. Figures 4.1(a)-(c) represent
the effect ofU by settingg = 3 and by using the material parameters with a cross-linker
density of R = 1/40. The same value of is selected in Figures 4.1(d)-(f) but with differ-
ent material parameters which were measured with a denisi§/-6 1/20. By means of
the material parameters fét = 1/40 and considering the special case, i.e. sejeet 2,
we depict the normal stresses, ando,; and the shear stress, in Figures 4.1(g)-(i).
Following this, we vary the averaging paramejerhile we fix the geometrical parame-
ter atU = 50, illustrated in Figure 4.2. In Figures 4.2(a)-(c) the effetthe tube part is
demonstrated with the use of the material parametels-6f1 /40 and in Figures 4.2(d)-(f)
using the material parameters of the double cross-linkesitie i.e. R = 1/20.

First, let us take a closer look at the curves in which the to@e has no influence
on the model. This is represented in each picture in Figteadd 4.1 by the dark blue
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Figure 4.1: lllustration of the effect of the tube part by varyirg = [0, 50,100, 200] and fixed
g. Normal stresses; (a,d,g),092 (b,e,h) and shear stress, (c,f,i) versusy of actin
networks with variable cross-linker densiiy = 1/40 in (a)-(c),(9)-(i) andR = 1/20
in (d)-(f). The averaging parameter is fixedgat 3 in (a)-(f) andg = 2 in (g)-(i).



4.3 Effect of the tube part

(a 3 (b) 1.2 () 9 ‘
1+ 8t q= %
: g 08| R
= 804 o U =50
& &a 5 5L y
4 o 02 g R=1/40 = /]
© LZI 5 4 a
T < S 3L /
S E-02} 1 2 /)
2 204 ;v 2 2
—0.6 1 . 1- o 4 1
—0.5 ‘ ‘ ~0.8 ol=——"
0 10 20 30 0 10 20 30 0 10 20 30
Deformationy in % Deformationy in % Deformationy in %
(d) 40 (e) 25 () 60 ‘ ‘
o 20 50 =3
£ 30 g s | —_IZ3%
z = o a=1
= 251 = 15 £ 40+ 4=
— N a U = 50
& 9oL & "
4 o 10} g 30, R=1/2
% 15¢ @ &
© © =
£ 10 - £ 5 § 20 -
o L (o] n
= < 0 10}
0
0 10 20 30 0 30 0 10 20 30

10 20
Deformationy in % Deformationry in % Deformationy in %

Figure 4.2: Representation of the effect of the tube part by varying ttesaging parameter with
values ofg = [0, 50, 100, 200] and fixedU. This is displayed by the normal Cauchy
stresses ;1 (a),(d) o2 (b),(e) and shear stresss (c),(f) versus deformation. Using
in (a)-(c) the material parameters of an actin networkRo# 1/40 and in (d)-(f) for
R = 1/20. The geometrical parameter is fixedlat= 50 in (a)-(f).

curve, if either = 0 or g = 0. In this case, the stiffness for the normal stressgs
andoy, is very low nearly zero at the deformation up1t®%. After that, the tangent of
the curve begins to increase slightly and increases ramdlye last third. Consequently,
both normal stresses exhibit a small stiffness in the lowgion and a high stiffness in the
upper region of deformation. The response of the shearsstiggliffers somewhat from
the normal stress by increasing the deformation. It shows fithe beginning a positive
gradient and becomes slowly stiffer as the deformatioreim®es. In all cases, the tangent
is always positive by neglecting the tube part.

Before we continue to analyze the effect of the tube part taijeve mention a few
words, how these two parametérsandq affect the network in general. Equation (4.24)
reveals that/ is inversely proportional to the initial diameter of the sssectionl, of the
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tube. If we increasé/, that means that the diameter is decreased and it followghba
filaments between the cross-linkers have less freedom oément. The network seems
to be stiffer. The averaging parameteaffects the macro-area stretch exponentially. A
general observation, which we see in Figure 4.1 and 4.2,asttie stiffness becomes
lower for the normal stresses; ando, if the parameteré/ or ¢ increase. In contrast,
shear stress;, shows a stiffer response by increasing the parameters.

Consider equations (4.34), (4.35) 4 and (4.38), we notice that by increasing the de-
formation, the impact on the structural tensoin z;-direction is more significant than
onk. Observe thah andk also depend on. This observation is confirmed by the Fig-
ures 4.1(a),(d),(e) and 4.2(a),(d), which indicate a meaftact of the tube part on normal
stressri;. The only slight effect occurs gt= 7 according to Figure 4.2(a).

The normal stress im,-directiono,, is much more affected by the tube part compared to
the z, -direction, that can be deduced from equations (4.34%.35) 4, and (4.38). This
effect caused, that the characteristics of the curve clsainge strictly monotonically in-
creasing to a non-monotonic function. The tangent is negati the lower region of the
deformation and it changes the sign after the local minimBynincreasing the parameters
U or ¢, the local minimum is getting smaller and is reached latdrigiter deformation.
These statements are clearly seen in Figures 4.1(b),(n.2(l), but not so prominently
in Figures 4.1(e) and 4.2(e). Note the different scales enatkis of ordinates in Fig-
ures 4.1(b),(e) and 4.2(b),(e), respectively. We usedguress 4.1(d)-(f) and 4.2(d)-(f) the
material parameters with a higher filament dengity- 1/20, which results in higher val-
ues of stresses in the stretch part. The effect of the tuli®par, seems to be minimal by
using the parameters fdt = 1/20 (see Figures 4.1(e), 4.2(e)), but in the small scale, the
negative response ir,-direction can be observed just like in Figures 4.1(b) a2db).

Consider the equations associated with the shear strgss.e. (4.34), (4.35) and
(4.38), the deformation has an equivalent effect on the structerelorh and area-stretch
tensork. By increasing/ andg, respectively, the shear stress shows a significant respons
depicted in Figures 4.1(c),(f),(i) and 4.2(c),(f).

If ¢ = 2, then the entries of the area-stretch terls@ccording to equation (4.41) are
calculated as

2
kll = k33 = ga
2
Koy = g(l ++%) and (4.42)
2
kia = —§7~

By equations (4.38)and (4.42), we note that the term of the tube constraint on the normal
stressry; is zero and independent bt This is observed in Figure 4.1(g). The contribution
of the tube part on the normal stress has the value of-2¢/~+?/3. This results in a
smoother curve, compare Figure 4.1(b) with 4.1(h). Theediifice between the curves
depicted in Figure 4.1(c) and 4.1(i), respectively, istdlig noticeable. The factok;, is
omitted in equation (4.3%)f ¢ = 2.
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We conclude this section by focusing again on the resulth@fmiormal stress im;-
direction, which allows an obscure observation. It is notgitally meaningful that stress
changes the sign of the direction, during increasing dedtion. In this way, there is not
an acceptable explanation of the tube constraint. What welsarly is that the tube part
for normal stress in:,-direction has a greater impact thanap-direction. Comparing
Figures 4.1(a)-(c),(9)-(h) to 4.1(d)-(f) and Figures 4)2(c) to 4.2(d)-(f), respectively, we
can infer that the cross-linker density has an impact on ffeeteof the tube part. The
stiffer the network the greater the impact of the tube pattinfall we have to determine
two additional parameters, which are not physically intetgble, and the effect of the
tube constraint does not necessarily reflect a realistisesefherefore, we challenge the
necessity of the tube part. As long as we cannot develop arhetterstanding of these
two parameters, it makes no sense to incorporate the tubafmathe model.






5 A closer look on the averaging
parameter

In this chapter we focus our interest on the analysis of thramaterp of the model of
Unterberger et al. (submitted), which is specified in equma{B.95). Most of the model
parameters are physically interpretable and most of thendetiermined by the single fila-
ment model. The temperaturéis determined by the experiments and it usually takes the
value of room temperatuts °C. The persistence lengtl, is a material parameter which
is postulated in the literature for many biopolymers withamweontroversy. For F-actin,
however there is great consensus. Le Goff et al. (2002) gluddi a value arountb pm.
Based on the experimental data of a single actin filament byabd Pollack (2002), Un-
terberger et al. (submitted) used the nonlinear Least $quaol (Isqnonlin) of MATLAB
with fixed persistence length and temperature to deterrnmegmaining parameters. The
best fit was reached by the valués= 11.264 ym,rq = 10.17 pm, o = 38.6nN and

B = 0.438, see Unterberger et al. (submitted). The ratipL. = 0.91 is very useful for
finding the network parameters, because the contour lehgtfers to the length of the
filament between the cross-linkers in the network. Thegefthis length varies with the
density of the cross-linker. The number of filaments per uwoitimen is determined by
the ratio of the total length of the filaments to the referemolime. Unterberger et al.
(submitted) calculate the relation betweeand the contour length through

150 pm =2
= T .

n (5.1)
The parameters, the contour lendththe initial stretch\, and the averaging parameger
are the remaining parameters which are determined by fiitimigeological data using the
nonlinear Least Squares tool of MATLAB. Values are publgheUnterberger et al. (sub-
mitted) for a variety of examples with different cross-mkdensities. The initial stretch
and the contour length are just acting on the single filamesdeh The only parameter
which has no physical interpretation is the averaging patanp to which we turn now
our attention.

5.1 Analysis of the structural tensor

The parametep acts on the network scale and plays an important role in thetstal
tensorh. To make the influence of this parameter visible, we visedlie structural tensor.

55
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Therefore, we have to analyze the propertiehofBut before we start, we take a short
excursion into the linear algebra.

Let A be a symmetric matrix with real entries, i&.= AT andA € R™*", and letv be
an eigenvector oA corresponding to the eigenvaluesHereafter, we denote the complex
conjugation of a complex number by the overline. Now we penfthe following steps

— VTAV (52)

Since the product of a complex number with its complex coafegiumber is real, the
product ofv "v is real and unequal zero, and it follows from (5.2), that v, i.ev € R.
All eigenvalues of a real, symmetric matrix are real. kgtv, be eigenvectors oA
corresponding to different eigenvalues v,. Following these steps

01V1TV2 = (Avl)TV2 = VITATV2
VlT (Avy) = 02V1TV2

(5.3)

= 0=(v — ’UQ) V;l—Vg7
——
£0

we are able to conclude that the eigenvectord dfuild an orthogonal system. The theo-
rem about the principal component analysis (PCA) says thateal symmetric matrix is
diagonalizable, meaning that it is similar to a diagonalrirasee Fischer (2003, Sec. 5.7).
This theorem reveals that there is an orthogonal ma&rix = ET whose column vectors
consists of the orthonormal eigenvectorsfdfand a diagonal matri¥d consisting of the
real eigenvalues oA, such that

D =E'AE (5.4)

holds.

Let us consider the following real quadratic formRa

ade| |z
az? 4+ by? + c2* + 2dxy + 2exz + 2fyz = [;E Y z} db f| |yl =x"Ax, (5.5)
efel |z

with the symmetric matribA. We know therefore, from the above considerations, that
has real eigenvalues and is diagonalizable by an orthogoatix E and is written in the
form

A =EDE". (5.6)

Further, we are interested in classifying the hypersunféteh is represented in (5.5). For
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this purpose we want to transfer the equation (5.5) in themiaal form

1’2 y2 22
The first thing we have to do, is to eliminate the cross termsez, yz in equation (5.5),
this means that we rotate the object in its ordinary cootdisgstem. With this in mind,
we have to transform the matrix into a diagonal matriXD. Under the change of basis

which we define througk := Ey ory = E'x, respectively and with (5.6) we obtain
x'Ax =x'EDE'x = (ETX)T D (ETX) =y 'Dy. (5.8)

In this way, the eigenvectors &k represent the directions of the principal axes and the
eigenvalues ofA determine the type of the hypersurface. If all eigenvaluespasitive

we obtain the equation of an ellipsoid which is given in thearacal form with real and
positive semiaxes, b,c € R,

I‘2 y2 22

For the sake of completeness, the volume of an ellipsoid/esngby
4
V= gwabc. (5.10)

In the reference configuration, which means that no defaomas applied to the object
F = I, the structural tensdi is represented by sphere with radiys. That is because,
the discrete macro stretch = 1 for all i and thereforéh = (IT ® IT) = 1/3 I holds by
condition (3.85). As a result, the volume in the referenadfigoiration is determined by

47
of = —. 5.11
Viet 31 (5.11)
If p = 2, the structural tensor resultsin= 1/3 b, which we see later in eqaution (5.26).
Since we have assumed that the material is incompressibld’(= 1), it follows that
detb = 1, independent of the deformation mode. This again meanghbatolume of
structural tensor is equal to the reference volume-if 2

V(h,p=2) = V. (5.12)

But this does not mean, that the eigenvalueb afe always the same in consideration of
different deformation modes, see Section 5.2. If we chahgevalue ofp, the volume of
h changes of course. In this way we interpret the ratio of threetil volume to reference
volume as a measure for the non-affinity.

Let us now return to the analysis of the structural tensorc@vesider an incompressible
material, i.e.det F = 1, in view of a simple shear and an equibiaxial deformationthBo
types of deformations have already been introduced in @e&il.4. Consider again the
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structural tensoh, which we have obtained in equation (4.28) and (4.29) iniSeet.2,
h=F\ I IF', (5.13)

with
21

h= (VO ~ Y (V) I @ M. (5.14)
=1
Again, the discrete macro stretch is defined by

X = ||FIr), (5.15)

which is always positive and real I’ # 0. The weightsw?, which are given in Bazant
and Oh (1986), are also positive and real. Since the dyadotyet ofIT ® IT is obviously
commutative, it is implied that the result of it is a symmetensor and that means that
h = h' is symmetric. This yields with equation (5.13) tiais symmetric

h' — (FEFT>T — FhF =h (5.16)

and its entries are rell € R3*3,

Next, we want to show that all eigenvaluedoére positive. Considering a simple shear
deformation we got in Section 4.2 the following matrix naiatfor the structural tensor

Ty +~27%12 + 72%22 T + Vﬁm 0
[h] = haa + yhao hag 0. (5.17)
0 0 hs3

The criterion of Sylvester (Fischer 2003, p. 327) state$ sheeal symmetric matrix is
positive definite if and only if all leading principal minoase positive. In other words, if
all the following matrices, the upper lefftby-1 corner ofh, the upper lefe-by-2 corner of
h andh itself, have a positive determinant. This criterion is sfad if

Rithgy — h3y >0 (5.18)

holds. Continue with the calculation of latter equation Isyng the corresponding entries
of h, which are given in equation 5.17, thus follows

hihas — B2, > 0. (5.19)
12

In order to prove this inequality, we need the Cauchy-Schwegquality, which is given
in Heuser (2006, Sec. 12) and which we formulate in the falgwvay
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Theorem 5.1.1. (Chauchy-Schwarz inequality)

n 2 n n
S < (z) (zy) 5.20)

Equality holds if and only it andy are linearly dependent.

Proof. see Heuser (2006, p. 97) O

The entries oh are computed by th2l-point integration formula, as we have done in
equation (4.29). In this way we are able to compute each xnattitry by

21
7 Yi\P~2 (17 AW
hje =Y (A" (11 (I1}) w'. (5.21)
=1
The subscriptj of II,; denotes the vector entries corresponding tojtie axis direction.
By using the computational formulation bf, in equation (5.19) we obtain

21 21 21 2
(S o) (307 o) - (S0 00 ) ) 0,
=1 =1 =1 (522)
With the theorem of Chauchy-Schwarz inequality, we canresgtié the second term of latter
equation

21 2 21 21
(S ) = (S0 ) (3 0 o).

=1 =1 =1 (523)
We denote throughl, the vector which contains all entries of tBé orientation vectors
IT, in /-direction. Sincell; is linearly independent tdl, we get a strictly-less sign at
the inequality of Chauchy-Schwarz. Hence, we satisfy tlegirlity (5.18) and thus the
structural tensor is positive definite and it holds

x'hx >0 forallx € R (5.24)

In the case of equibiaxial deformation, we obtain a stradttensor with the following
diagonal matrix
Ahyp 0 0
=] 0 Mhy 0 |. (5.25)
0 0 )\_4?1,33
Since each diagonal element is positive, we also obtain iiy@definite structural tensor
h.
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Finally, we are able to illustrate the structural tensorraglépsoid in the three-dimen-
sional space. The eigenvectorslofepresent the principal directions of the ellipsoid and
the associated eigenvalues represent the length of thecsesni

5.2 Geometrical interpretation of the structural tensor

The parametep has an influence on micro- and macro-stretches and thesadlepahe
deformation gradient. We are unable to interpret the pat@m@hysically, but we are able
to interpret it in the geometrical sense, what we are doing. féirst, we consider what
it means when we increase the parameteif we perform an equibiaxial deformation.
After that we consider the effect gf when applying simple shear deformation. In both
considerations, we choose two different valuep ahd compare them. The first value is
fixed atp = 2 since this is a special case of the structural tensor. Thistein\>2 = 1
and consequently we get by definitionloind equation (3.86) and (2.25)

h=F(MI®I)F' = -b. (5.26)

The second selected valueofs consistent with the averaging parameter that was deter-
mined in the experiment for the sampke= 1/40 of Unterberger et al. (submitted), which
is p = 8. From the previous section, we know that the structuraldenare real, symmet-
ric and positive definite, for both equibiaxial deformatiand simple shear deformation.
Thus we may represent the structural tensor as an ellip¥déedlabel the direction of the
principal axes byi-, 2- and3-direction. The axes of the coordinate system are denoted by
x1, T2 andzxs, respectively.

Let us now discuss the effect pfat equibiaxial deformation. We perform an uniform
stretch in the direction af,- andz,-axes of5 %, thus the deformation gradient in matrix
form reads as

1.05 0 0
F]=| 0 105 0 |. (5.27)
0 0 1o

The resulting ellipsoids with the two different valuespoére depicted in Figure 5.1. The
left one shows the normal projection on thex,-plane and the right one the projection on
thez x3-plane. Ifp = 2 the resulting structural tensor in matrix form looks like

L [1052 0 0
M=z | 0 105 0 |. (5.28)
0 0 15

The associated eigenvalues and eigenvectors can be easglynihed, which are; , =
0.367 andvs = 0.274 with the standard basis for the three-dimensional space, and
es, respectively. The subscripts denote the principal axestions. In contrast, the eigen-
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Figure 5.1: Visualization ofh for p = 2 andp = 8 at equibiaxial deformation with uniform stretch
in z1- and zo-direction of 5 %. The ellipsoids are shown here in top view (left) and
front view (right).

values ofh atp = 8 arev; » = 0.425 andvs = 0.228 with unchanged eigenvectors. These
values can be read in the images of Figure 5.1. To sum up, wenaba uniform stretch
in 1- and2-direction and a contraction isrdirection by increasing. The volume of the
ellipsoid is also increasing jf increases, although only very slightly. The stretch-ror
2-direction is greater than the contractiorsualirection.

Consider next the geometrical representation of the stralctensor with the use of
simple shear deformation. We select the amount of defoomati~y = 20 %. In matrix
notation the deformation gradient has the following form

0| . (5.29)

The associated visualized structural tensorgfer2 andp = 8 are depicted in Figure 5.2.
On the left side of Figure 5.2 we view thez,-plane and on the right side thexzs-plane.
We are able to easily compulkeif p = 2. Using equation (5.26), the structural tensor is
written in matrix notation as follows

1.04 0.2
h]=-]02 1 0. (5.30)
0 01

The associated eigenvalueslofarev, = 0.407, v = 0.273 andvs = 0.333, respec-
tively, with the corresponding eigenvectars = [0.741 0.671 0] ", v, = [0.671 0.741 0] '
andvs; = [001]', respectively. This eigenvectors form an orthonormal dasiR?.
By changingp = 8 the eigenvectors remain the same with associated eigesalu
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Figure 5.2: Visualisation oth for p = 2 andp = 8 at simple shear deformation with an deformation

of 20 %. The ellipsoids are shown here in top view (left) and fromwiright).

v1 = 0.546, vy = 0.229 andvs = 0.346.

First of all we can say that a stretchlirdirection, a smaller stretch Bdirection and a
contraction ir2-direction occurs by increasing The quantity of the stretch ih-direction
IS greater than the quantity of the contraction in fhdirection. This observations are
illustrated in Figure 5.2. As in the case of equibiaxial aefation, the volume increases
as well. At this point, we demonstrate in Figure 5.3 the cleaingzolume as a function of
p normalized by reference volume. There is an affine defoondtr p = 2 which yields

1.25¢
1.2¢
1.15¢
1.1t

1.05¢

0.95
0

Figure 5.3: Demonstration of the change in volume by increagind@ he current volumé/(p) is
normalized by the reference volumg;.

thatV (p)/Viee = 1. The measure of non-affinity increases non-linearly byaasmgp.
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The second thing is that we perceive a rotation of the pral@ges with respect to the
x1- andz,-axes. In general, the angle between two nonzero vegtgr&an be calculated

by the dot product, through
6 = arccos (l) : (5.31)

([l
The principal axes in the undeformed configuration are desdrby the standard basis of
the Euclidean space. By using the eigenvectors associdfethe1-directione; andv,, or
the eigenvectors associated with thdirectione, andv,, we calculate the rotation angle
with equation (5.31). The resulting angle is ab8ut 42.1°. In Figure 5.4 we demon-
strate this rotation of the principal axes. The paralledogrepresents the deformation of a
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Figure 5.4: Representation of the rotation of the ellipsoidpat 2 of the 1- and2-principal axes
directions. Symbolical description of simple shear defation with = arctany by
the parallelogram.

rectangle under simple shear and the ellipse corresports tllipsoid in ther; z,-plane
if p = 2. The arrows in Figure 5.4 show the principial axed irand2-direction of the
ellipsoid.

An interesting observation is that this valuetbtoincides with the formulation of the
relation between the angle for the principal axes of theQefichy-Green tenstwr= FF '
and the amount of deformation which is given by Ogden (1997, p. 103) in the following

way

2
tan20 = = (5.32)

v

Consider equation (5.26), which states that 1/3b if p = 2, it is easy to see the above
agreement. By increasing the eigenvectors do not change, thus the above formulation
holds for arbitrary values gé. In this sense, we are able to infer, that the principal axes
in 1-, 2-direction of h rotate by the same angle as the Eulerian principal axds loy
considering simple shear deformation. Now we can easilyptdenthe rotation anglé
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by equation (5.32). The rotation of the ellipsoidanz,-plane is independent of. To
substantiate this statement we compare the gained eq(at##), from Section 2.1.3

b =RU’R’ (5.33)
with B
h=FMN I IHF'

_ 5.34
= RUNWTII®INU'R'. (5-34)
Since(\*~2I1 ® IT) is symmetric and positive definite and acts in the referenodigura-
tion, i.e. it has the same properties@swe define the tensdd? = U\ 211 @ IT)UT,

where the properties of a stretch tensor are maintainedrarsditfollows
h=RU>R". (5.35)

Latter equation differs from equation (5.33) only by theesth tensor, but both formula-
tions are subject to the same rotation tensor.



6 Material parameters for fibrin

In the previous sections we discussed models for singleditasnand biological networks.
A closer examination was carried out on the Unterberger mede Section 3.2.2, which
includes the Holzapfel-Ogden model, see Section 3.1.% Batdels have been developed
only recently. The Holzapfel-Ogden model fits very well tkperimental data to dsDNA
from Bustamante et al. (2000) and F-actin from Liu and P&llg002), see Holzapfel
and Ogden (submitted). Experimental data of actin netwads obtained via rheological
experiments by Unterberger et al. (submitted), which arg well described by the Unter-
berger model. The resulting material parameters are suinedan Table 4.1. Based on
the Holzapfel-Ogden model and the Unterberger model, we teaexamine the charac-
teristics of another biopolymer. We look for suitable metigparameters for fibrin. Based
on the experimental data of a single fibrin fiber of Hudson e(2410), we first analyze
the properties of the single filament by fitting the Holzagdglden model. Afterwards we
continue the study of the properties of its network basecerekperimental data of Kang
et al. (2009) by fitting the Unterberger model. But before wgib, we give a review of
the properties of fibrin which have been discussed prewanghe literature.

6.1 Properties of fibrin

In the last few years several research groups investigagatiéchanical properties of fibrin
fibers and attempted to justify these properties. The mtdecuigins of the extensibility
of fibrin are still not fully understood. These groups of shers issued different values
of material parameters especially for the persistencettenghis disagreement made it
difficult to obtain meaningful values for the Holzapfel-Ggddmodel. Storm et al. (2005)
determined a persistence length of fibrin whiclLjs= 0.5 um. By contrast Houser et al.
(2010) reached an average persistence lengthlof 0.6 nm and Brown et al. (2007)
published a persistence length bf = 0.8nm. To be careful these persistence lengths
were obtained by execution of different experiments. Huadsioal. (2010), Houser et al.
(2010), and Brown et al. (2007) used atomic force microsdopgetermine mechanical
properties of single fibrin fibers. Whereas the determimatibmechanical properties of
fibrin by Storm et al. (2005) are based on fibrin protofibriinetks.

Further experiments on fibrin networks were done by Kang .e28l09) and Brown
et al. (2009). Kang et al. (2009) conducted experiments diifferent cross-linker densi-
ties. One experiment describes rather a network consigtisgmiflexible filaments, called
fine clot, and the other more like a network of rigid flamem&ferred to as coarse clot.
Semiflexible polymers are usually described by an entropideh Stiff polymers are bet-
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ter modeled by enthalpic models that are based on the dtiem&nd stretching of fibers,

see Kang et al. (2009). At this point it should be noted thathiolzapfel-Ogden model

is a mixture of entropic and enthalpic models. From the drpamts on fine clots, Kang

et al. (2009) determined a persistence length,pf= 0.5 xm, which coincides with Storm

et al. (2005), and for coarse clots, which is more physigalgiaL, > 1 mm. It seems as

if the determination of the persistence length of fibrin i ambiguous. The values span
a range of seven orders of magnitude. According to the opiafdHudson et al. (2010)

and Houser et al. (2010) fibrin fibers behave as elastomeaneagits, they do not fit into

the conventional categories of flexible, semiflexible df bibpolymers.

Fibrin exhibits viscoelastic properties which are anatlyse detail in Weisel (2004).
Unligated fibers could be stretched® times their length and ligated fibe2s3 times their
length without permanent damage and they still return to thitial length, see Liu et al.
(2006). These authors conclude, that the effect of ligatibfibrin is extraordinary, be-
cause this would usually make the fibers stiffer and lessektée, but this holds not for
fibrin. The reason could be that the ligation occurs direatbng the fiber axis, this has
been suggested in Liu et al. (2006). The individual fibrinrfgieave a larger extensibility
than the fibrin networks, see Liu et al. (2006). Thus it candseimed, that the clot rupture
does not stem from the rupture of the individual fibers buteatrom the branch points.
Recent publications argue that this extraordinary exhglitgi originates from the stretch-
ing of an unstructured.C region, for example see Houser et al. (2010). In contrasivBro
et al. (2009) proposed that this behavior comes from theldimig of a coiled coil domain
between the D and E region, see Figure 1.3. The propertiebriri faire still not totally
explored, but we are trying now to determine suitable maktearameters for fibrin.

6.1.1 Characterization of a single fibrin fiber

Before we proceed to the network model we first have to detexthie material parameters
of the single fibrin fiber. We use the experimental data of ladst al. (2010) and fit
the parameters of the extensible Holzapfel-Ogden modéidset data. The single fibrin
fiber was stretched by the tip of an atomic foce microscopeMABnd this stretching
process was imaged by a fluorescence microscope. Houser(20h0) described these
experiments in more detail. The resulting data yield a foreesus strain curve, which
is very useful for determining the six material parametdrshe extensible Holzapfel-
Ogden model (3.60), which ate r, T', L,, i, 5. We chosel’ corresponding to the room
temperature, meaniri§ = 21°C. On the molecular structure of fibrin, which has a length
of 45 nm and which we refer to as),, Houser et al. (2010) determined a persistence length
in the range 06.1—0.6 nm and a relation between the contour length and the relaxgthori
lengthry, which is aboutl, = (2.4 4+ 0.4)r,. In agreement with this we fixed the contour
length atZ, = 135 nm. By using the MATLAB’s nonlinear Least Squares tool we fitted
model (3.60) with fixedl’, L, andr,. The circles in Figure 6.1 represent the experimental
data of Houser et al. (2010) and the curve the fit of equatigd0§3 In the lower region

it indicates a lower stiffness and a much higer stiffnes anupper region when reaches
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Figure 6.1: Single fibrin fiber force versus end-to-end distance curvapeEmental data were
obtained by Hudson et al. (2010) (circles). The curve thinotlge data depicts the
extensible Holzapfel-Ogden model (3.60) with = 294K, L, = 3.99mm,L =
135nm, rg = 45 nm, g = 455.4nN, andg = 2.5.

L. The resulting free parameters drg = 3.99 mm, pp = 455.4nN, 8 = 2.5. A unique
solution could not be found, but this was the one with the tieSthe received value for the
persistence length is questionable. The persistenceléngtuch greater than the contour
length, which would imply that fibrin belongs in the categaiyrigid biopolymers. In
contrast, the end-to-end distance at zero force is muchiassthe contour length, which
suggests that it is a semiflexible biopolymer. Although thkeig of L, is doubtful, however
the fit is very good in Figure 6.1.

6.1.2 Characterization of a fibrin network

Biological materials consisting of cross-linked biopokrs exhibit a nonlinear elastic re-
sponse by applying simple shear deformation. The expetahéata which we use to
analyze the network model (3.95), relate to Kang et al. (2000a different way, Brown

et al. (2009) carried out an experiment on fibrin networks &g of uniaxial tensile tests.
They observed a significant change in volume during the dedtion. To account for these
effects in the model they modified the eight chain model byudarand Boyce (1993). In
the model of Brown et al. (2009), they defined a two-state tdation of a single fiber.

The fiber can either be in the folded or in the unfolded state.siall forces, where the
fiber is in the folded state, they argued that the force-esxtenrelation is linear. In the
unfolded state at large force, they assumed that the fibrar behaves like a worm-like
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chain polymer. This individual fiber model was then used sefght chain model. Brown
et al. (2009) used for the model fit a persistence length,odnd assumed a fiber density
of 0.5 um~=3. The network is incompressible in the fully folded and udéa state, but
it shows a negative compressibility during the transitioocgss from folded to unfolded
state. This statement is explained in detail by Purohit.g28l11), a follow-up edition of
Brown et al. (2009).

Unterberger et al. (submitted) fitted their proposed manlekperimental data from rhe-
ological experiments of cross-linked actin networks. Ef@re, we want to fit the Unter-
berger model (3.95) to experimental data from rheologikpeements of fibrin networks.
Such experiments were executed by Kang et al. (2009). In ¢éxperiments they used a
strain controlled rheometer (RHSF, Rheometrics) with 25nm parallel plate geometry
and increased constantly the deformation with strain rate@ s~'. Further, they exe-
cuted experiments with different conditions of fibrin netk& One condition is referred
to as coarse clot. It reflects more the physiological coodgiand is displayed as a net-
work of stiff filaments. The other labeled as fine clot vismadl a network of semiflexible
filaments. The results of the single filament of fibrin, whick @abtained in Section 6.1.1,
suggest that we deal with a rigid biopolymer rather than #erilble. Therefore we focus
on the experimental data of the coarse clot by Kang et al.qraad attempt to fit the
model (3.95). In Figure 6.2 we represent the data of Kang.g2809) by the circles,
which were obtained by averaging three samples with saméittmm The green circles
refer to shear stress versus strain and the red circlesteefesrmal stress versus strain.
Since Unterberger et al. (submitted) measured the normedsss with positive sign, we
take the experimental data of the normal stresses of Karlg(@089) with opposite sign,
see Figure 6.2.

These experimental data reflect a network with rigid fibersaich Kang et al. (2009)
postulated a persistence length which is greater thamn. The obtained persistence
length of the Holzapfel-Ogden model is in agreement witls.tRiVe fit the Unterberger
model (3.95) by using the single flament parameters, whietaghieved in Section 6.1.1,
the stretching modulug, = 455.44 nN, the temperatui’ = 294 K, the effective exten-
sional modulugs = 2.5, and the persistence length = 3.99 mm. The remaining fitting
parameters are the filament densitythe end-to-end distance at zero forgethe initial
stretch)\,, the contour lengtt., and the averaging network parameterOne of the best
fits by using the nonlinear least square tools of MATLAB ygettie following values for
the parameters;, = 64 ym=3,ry = 48.43nm, A\ = 1.044, L = 116 nm, andp = 25.

The fit is acceptable for the shear stresses and slightlyexforghe normal stesses. It
is of course more difficult to fit two sets of experimental dsitaultaneously. The data
of normal stress show an inflection point, the origin of whiglinknown, see Figure 6.2.
We only used the experimental data up to a deformation oftadd¥ and the values of
the ordinates are very large-scale in the result of Kang.€Rab9). Thus there may be
a considerable error stem from measuring the data in thénatidiagram. Further, it is
difficult to give a reasonable interpretation of these of#diparameters. We are not able
to compare this result with others. Brown et al. (2009) aquiished the experiments in a
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Figure 6.2: Network of fibrin fiber shear stress and normal stress vetsais €urve. Experimental
data were obtained by Kang et al. (2009). Green circles tspear stress vs. strain and
red circles normal stress vs. strain. The curve through &t depicts the Unterberger
model (3.95) withT' = 294K, L, = 3.99nm,L = 116nm,ry = 48.43nm, yg =
455.44nN,n = 64 um =3, Ao = 1.044, 8 = 2.5,p = 25.

completely different way and their results are far-off froors.

The research on fibrin properties came up very recently. Bigt & very important
biopolymer for haemostasis and wound healing. It also pdagae in forming of throm-
bosis. The mechanical properties are still not fully esthleld yet. The reason for its
extraordinary elasticity not fathomed. Therefore manysgjoe are still open and contra-
dictory statements are not uncommon.






7/ Concluding remarks

In the present work we dealt with a theoretical approach tdeting biological materials.
Thereby we focused on models which determine the mechamicpérties of biopolymers
and networks of biopolymers. The thesis was motivated byexpdoration to get a better
understanding of mechanisms behind disease progressiprcéediovascular diseases and
cancer). The framework of these models which we highligindtis work was provided
by the classical continuum mechanics. On the level for aividdal biopolymer we were
familiar with two different approaches of polymer modelse tfreely-jointed chain and
the worm-like chain model. Recently a new mathematical ietsen of the WLC model
was published, referred to as Holzapfel-Ogden model. It bves®ed on pure mechanical
formulation and the extensible case of a polymer was ingatpd from the beginning.

On the level of networks of biopolymers we discussed the tetger model and its un-
derlying idea which originated from the micro-sphere motlé¢ showed that the omission
of the tube part from the micro-sphere model was justifiedunamnsiderations. Most of
the material parameters of the Unterberger model wererdated by the single filament
model. The number of filaments per unit volume, the distamteéen branch points, the
initial stretch and the averaging parameter were mateai@meters which belonged to the
network model. All of these parameters except the averagangmeter were physically
interpretable. Therefore we took a closer look at this ayiegaparameter by visualizing
the structural tensor for different deformation modes aawibus averaging parameters. It
was interpreted as a measure for the non-affinity of the dedtion.

The presented models fitted excellently the experimenti@ dha single filamentous
actin and cross-linked actin networks, respectively. kemrnore, these two models should
be applicable to other biopolymers, but this was of courseappmundertaking in con-
sideration of the complexity of the human body. Fibrin istsaccomplex protein which
structure and properties are still obscure. Fibrin is a uagortant protein for hemostasis
and blood clotting. We fitted the models to experimental adithbrin fibers and fibrin
networks. A very good fit for the single fiber was obtained Inat values of the parame-
ters remained questionable. More difficult was to fit the mekamodel. We dealt purely
theoretical with modeling on biological materials and dkaat this point lacked the im-
portant experimental part. To use experimental data franliterature complicated the
determination of some parameters. We were not able to fix rparameters, because they
were unknown or the range of their magnitude was extremealghvi@. This resulted in a
set of non-unique solutions of the fits and made it more difficusubmit meaningful in-
terpretations. To support the applicability of these twaerdly developed models to other
biopolymers, further experiments are required.
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