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den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche

kenntlich gemacht habe.

Graz, am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Unterschrift)

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitely marked

all material which has been quotes either literally or by content from the used

sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

date

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(signature)



Vorwort

Da der Markt für die unterschiedlichsten Kreditinstrumente in den letzten

Jahren kontinuierlich gewachsen ist, spielt die Bestimmung des Ausfallrisikos

bzw. des Kreditrisikos eine immer tragendere Rolle. Vor allem ausgeklügelte

quantitative Methoden sollen hierbei helfen, dieses finanzielle Risiko richtig zu

bemessen. Schlussendlich haben uns auch die Begebenheiten am Finanzmarkt

im Jahre 2007 nochmals deutlich vor Augen geführt, wie wichtig die Einbindung

des Kreditrisikos ins Risikomanagement ist.

Preface

Since the market of credit instruments has been growing continuously over the

last years, quantitative modeling of default risk, or more generally credit risk,

is getting more and more important. Sophisticated quantitative methodologies

help to measure and manage this financial risk. Finally the financial crisis of 2007

showed, that credit risk plays an essential role in risk management.
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Abstract

The main subject of this diploma thesis is the estimation of the default

probability of a single firm. A variety of models have been derived to model

this default risk in a quantitative way, but basically two main approaches have

proved to be particularly useful and well suited: so called structural models on

the one hand and intensity models on the other. This thesis will focus on the

most popular representatives of these approaches and compare them regarding

feasibility and their ability to match real market data.

In the first chapter of my diploma thesis we will first point out the most

important definitions and some preliminary considerations concerning default

risk. Afterwards we will derive the technical setup of the different approaches,

namely the Itô integral, the Black-Scholes formula, first passage times and the

Poisson process and variants thereof.

In Chapter 2 we will focus on structural models, more precisely the Merton

model and the Black and Cox model. These models are also known as firm value

models and especially the Merton model used to be and still is quite popular in

practice, mainly because of its simplicity. An illustration of the Merton model is

given in Figure 1.

In Chapter 3 we will focus on the second approach, the intensity models. We will

start with a simple deterministic model and then we will introduce stochastic

default intensities on the one hand, and stochastic interest rates on the other

hand. Finally we will discuss the SSRD model, which allows for dependence

between interest rate and default intensities. An illustration of the intensity

setup is given by Figure 2.
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Figure 1: Merton model

Figure 2: Intensity model

As already mentioned, in my diploma thesis I want to study the practical

feasibility of the different models, therefore the last section will focus on the

application of the discussed models. We will discuss two case studies with real

market data and compare the obtained results.
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Chapter 1

Introduction

1.1 Preliminary considerations

First we will settle the most important definitions and basic information about

credit risk and the instruments discussed later on. For further information I refer

to [2], on which the framework of this section is based.

One main object of this diploma thesis will be to calculate the price of a so-

called defaultable corporate bond. But before we can go into details, the event

of default and the main instrument, the corporate bond, need to be defined.

Since the corporate bond is a special type of bond, we will start with the definition

of the most simple version of a bond, the default-free zero coupon bond.

Definition 1.1.1.: Zero coupon bond

The zero coupon bond pays the face value 1 at maturity. Since there are no

periodic payments, the price of the zero coupon bond is its discounted face

value. In the sequel the price of a zero coupon bond will be denoted by B(t, T ).

Definition 1.1.2.: Coupon bond

The coupon bond pays at predefined dates T1, T2, ..., Tn a predefined payment,

the coupon, and at maturity the face value 1, and a coupon. Its price is the

overall discounted value of the payments. Therefore a coupon bond can be

seen as a sum of zero coupon bonds.

3



1.1 Preliminary considerations

Figure 1.1: Cashflow of a zero coupon bond

Figure 1.2: Cashflow of a coupon bond

Definition 1.1.3.: Corporate bond

A corporate bond is a bond issued by a corporate. By issuing the bond, the

corporate commits to make specific payments on future dates. In return the

corporate charges a fee.

Definition 1.1.4.: Default

A counterparty defaults, when it can not fulfill a contractual commitment to

meet its obligations.

Given this definition, default risk is the financial risk, that future payments will

not be paid in full amount. Credit risk is the financial risk that occurs due to

any change in credit quality. For example downgrading of a firms credit rating,

which causes a loss in the value of the bond, issued by this firm. So default risk

is a special instance of credit risk.
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1.1 Preliminary considerations

Remark: When the issuer of a corporate bond defaults, the bondholder will

not receive the promised payments (in full amount). Therefore, in this debt

instrument, default risk has to be taken into account.

Definition 1.1.5.: Default time

The default time τ of a corporate is the first point in time, the corporate can

not fulfill its obligations.

Definition 1.1.6.: Recovery rules

The recovery rules specify the timing and the amount of the payments, the

corporate has to/is able to pay in case of default before or at maturity.

Remark: Normally the recovery scheme is assumed to be a fixed fraction δ of

the future payments, called the recovery rate.

Given these first definitions one can already specify the payoff Dδ(T, T ) at time

T of a zero coupon corporate bond, assuming that the face value equals 1 and

the recovery rate δ is paid at maturity T in case of default:

Dδ(T, T ) = I{τ>T} + δI{τ≤T}, (1.1)

where T is the maturity of the zero coupon bond and τ is the default time.

In my further explanations D(t, T ) will denote the price of a defaultable bond at

time t with maturity T .

With given (riskless) zero coupon bond prices B(t, T ), the price of the zero coupon

corporate bond is given by

Dδ(0, T ) = E
(

B(0, T )I{τ>T} + δB(0, T )I{τ≤T}
)

= B(0, T )P(τ > T ) + δB(0, T )P(τ ≤ T )

= B(0, T )− LGD P(τ ≤ T )

with LGD (=Loss Given Default) = (1− δ) B(0, T ).
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1.1 Preliminary considerations

Another credit instrument, we will need in the sequel, is the Credit Default

Swap, or short CDS. This contract can be seen as a default insurance.

Definition 1.1.7.: Credit default swap

In this agreement periodic payments or an upfront fee from the buyer of the

CDS is exchanged for a promised payment (from the seller), if a pre-specified

credit event occurs.

Usually, the defined credit event is default, since then the CDS contract can be

used to eliminate the risk, that promised payments are not paid. But, of course,

other definitions are possible, for example a change in the firms credit rating.

Remark: Normally there are three counterparties engaged in the CDS. The

seller of the CDS , let us call it “A”, the buyer of the CDS, “B”, and the credit

event is usually a default of a third party, “C”. The CDS is the protection

of “B”, when “C” defaults and can not meet its obligations towards “B”. So

“B” avoids his financial risk, when “C” defaults, by paying a contractual fixed

fee to “A”. For better understanding, the cashflows are given in figure 1.3.

Typically the nominal of the CDS is set accordingly to the nominal of the

underlying bond and the insured sum is the expected LGD.

Definition 1.1.8.: CDS - spread

The spread of a CDS is the amount/fee, in percent of the nominal, that the

buyer has to pay to the seller at predefined dates T1, T2, ... until maturity or

default of “C”.

Since CDS-spreads are quoted on the market, they reflect the markets opinion

on the default probability of the firm “C”. Hence the market CDS-spreads can

be used to calibrate credit risk models.
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1.1 Preliminary considerations

Figure 1.3: CDS - cashflow with associated bond

7



1.2 Overview of the main approaches of modeling credit risk

1.2 Overview of the main approaches of

modeling credit risk

In this section I will give a short review of the main quantitative approaches, that

can be used to model the default risk. It is important to point out, that most

of the models can also be used to model credit risk and not only default risk,

nevertheless I will concentrate on the default event.

In principle there are two main groups of models. Structural models and reduced

form or intensity models.

In structural models the value of a firm and its capital structure is modeled by

some stochastic process and the default event is triggered, when this process falls

below some specific barrier. These models are quite popular, since there is a

direct link between the firm value and the default event. Due to this link one

can establish a connection between the observable market data, as e.g. the stock

price of a firm, and the credit risk model. Furthermore the input parameters

have an economic interpretation. My explanations concerning structural models

are mostly based on [2], [3] and [19]. For further readings see for instance [1], [4]

and [18].

As mentioned above, the second approach are reduced form models. In these

models the capital structure is not modeled at all. Instead the credit event

is described directly without using the firms value: default is triggered by an

exogenously given jump process. We can distinguish between approaches that

model the default time (= intensity models) and those modeling the migration

between rating classes (=credit migration models). For intensity models we will

follow in large parts [6] and [11], respectively. Also [1], [18] are a good account

on intensity models and credit risk in general.

Of course not all proposed models can be classified in this way. For example,

recently some hybrid models (see e.g. [1], [13]) were introduced, that try to

combine the advantages of both approaches. However in this diploma thesis the

focus will lie on structural models, or more precisely, on the Merton model and

the Black and Cox model on the one hand, and on intensity models on the other

hand.
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1.3 Technical setup

1.3 Technical setup

In this section I review some of the main building blocks for the following

models. For structural models the most important tool is the Brownian motion

and some related concepts, as the Itô-formula or first passage times, which will

be considered in some detail.

On the other hand, for the intensity models, the major ingredient is a Poisson

process, either with constant, time varying or stochastic intensity. We will

discuss this kind of processes at the end of this chapter.

1.3.1 Brownian motion

Let N(µ, σ2) denote the normal distribution with expected value µ and variance

σ2. Then the Brownian motion is defined by:

Definition 1.3.1.: Brownian motion

A Brownian motion (Bt)t≥0 is a continuous stochastic process defined on a

probability space (Ω,A,P), with the following properties:

• B0 = 0 almost surely.

• All paths of B are almost surely continuous.

• B has independent increments with distribution Bt−Bs ∼ N(µ, σ2(t− s))
for 0 ≤ s ≤ t.

Remark: A path of the Brownian motion B is given by the function ω → Bt(ω),

for a fixed ω ∈ Ω.

A Brownian motion with µ = 0 and σ = 1 is called standard Brownian motion

or Wiener process and is often denoted by (Wt)t≥0.
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1.3 Technical setup

Definition 1.3.2.: Geometric Brownian motion

A stochastic process (St)t≥0 is called a geometric Brownian motion, if

St = S0 · exp((µ− σ2

2
)t+ σWt).

Definition 1.3.3.: Filtration

A filtration F = (Ft)t≥0 is a nondecreasing family of sub - σ - algebras.

Remark: In this chapter we will use the so called natural filtration of a

Brownian motion F = σ({Bs|s ≤ t} ∪ N ), with N being the empty sets. It

reflects the information process up to time t.

Definition 1.3.4.: Adapted process

A stochastic process X is called adapted to F, if the random variable Xt is

Ft-measurable for every t.

Remark: We say, Bt is a Brownian motion with respect to a Filtration F, if Bt

is adapted to F and the increments Bt−Bs are independent of Fs for all 0 ≤ s ≤ t.

Definition 1.3.5.: Martingale / local martingale

Let (Ω,A,P) be a probability space and F a filtration on this probability

space. A F - adapted family of random values (Mt)t≥0, is called:

• Martingale, if E(|Mt|) <∞ and E(Mt|Fs) = Ms for all s ≤ t.

• Local martingale, if there exist an series of increasing, Ft - measurable

stopping times τk : Ω → [0,∞), such that the stopped process

M τk
t = Mmin(t,τk) is a martingale.

Remark: When Wt is a standard Brownian motion with respect to F, then Wt is

a martingale. Furthermore, the processes Mt = W 2
t − t and Yt = exp(θWt + θ2

2
t)

are martingales.

10



1.3 Technical setup

Definition 1.3.6.: Quadratic Variation

Let Xt be a stochastic process. If there exists a random variable [X,X]t for

every t, such that
n∑
k=1

(Xtk −Xtk−1
)2 P−→ [X,X]t

when the fineness of the decomposition 0 = t0 < t1 < ... < tn = t goes to zero,

then [X,X]t is a stochastic process and it is called the quadratic variation of

X at time t.

For the quadratic variation of a standard Brownian motion we have the following

theorem.

Theorem 1.3.7: ([16])

The quadratic variation of a standard Brownian motion is given as [W,W ]t = t.

Corollary 1.3.8: ([16])

The paths of a Brownian motion have infinite variation.

1.3.2 The Itô Formula

For the application of the Brownian motion to financial modeling we need a

concept for an integral with respect to the Brownian motion. As the paths of

the Brownian motion are very rough and in particular not of finite variation,

the integral can not be defined in a pathwise manner using for example the

Lebesgue-Stieltjes integral. Itô [14] solved this problem and it turns out, that

the right way to define an integral with respect to the Brownian motion is the

following.

Definition 1.3.9.: Itô Integral defined by Riemann-Stieltjes-sums

Let (Yt)t≥0 be a quadratic integrable (
∫∞

0
|Ys|2 ds < ∞ ), measurable and

adapted process, (Bt)t≥0 a Brownian motion and 0 = t1 < t2 < · · · < tn = t a

partition of [0, t], then the Itô-integral is defined as:∫ t

0

Ys dBs = lim
n∑
i=1

Yti−1
(Bti −Bti−1

)

11



1.3 Technical setup

when the fineness of the decomposition 0 = t0 < t1 < ... < tn = t goes to zero.

This definition is well defined, which means that the limes does not depend

on the decomposition, as long as its fineness goes to zero.

Remark: Xt = Yt P− a.s. means, that P(Xt 6= Yt) = 0 ∀t. We will use this

notation in the sequel.

Definition 1.3.10.: Itô process

A real-valued, adapted process X is called Itô-process, if it can be represented

by:

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dBs, (1.2)

which is often denoted by

dXt = Ktdt+HtdBt,

with

• X0 is a F0-measurable random variable

• K = (Kt)0≤t≤T is adapted and
∫ T

0
|Ks| ds <∞ P - a.s.

• H = (Ht)0≤t≤T is measurable, adapted and
∫ T

0
Hs

2 ds <∞ P - a.s.

Remark:

• This representation is well-defined. This means if Xt = X ′0 +
∫ t

0
K ′s ds +∫ t

0
H ′s dBs, then X0 = X ′0, K = K ′ and H = H ′, λ× P-almost surely, with

λ being the Lebesgue measure.

• If X is a local martingale ⇒ K = 0 λ× P-almost surely.

Definition 1.3.11.: Integral with respect to an Itô process

Let X be an Itô process with representation (1.2) and Y an adapted process.

Then we define: ∫ t

0

Ys dXs :=

∫ t

0

YsKs ds+

∫ t

0

YsHs dBs

whenever the right-hand side is defined.

12



1.3 Technical setup

Theorem 1.3.12: If Y has continuous paths and
∫ t

0
Ys dXs exists, then

n∑
i=1

Yti−1
(Xti −Xti−1

)
P−→
∫ t

0

Ys dXs

and
n∑
j=1

Ytj−1
(Xtj −Xtj−1

)2 P−→
∫ t

0

YsHs
2 ds

The sums on the left are called “Riemann-Stieltjes sums”.

Proof: For a proof see for instance [16].

Remark: This theorem in particular shows that the definition of the integral

with respect to the Brownian motion (Definition 1.3.9) is consistent with the

definition of integrals with respect to Itô-Processes. Furthermore, we obtain

that, if X is an Itô process with representation (1.2), then [X,X]t =
∫ t

0
Hs

2 ds.

Theorem 1.3.13: Itô-formula

If f: R→ R is two times continuously differentiable and X is an Itô process, then

the process f(X) = (f(Xt))0≤t≤T is an Itô process and

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs) d[X,X]s. (1.3)

Remark: (1.3) is often written in the differential notation

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X,X]t. (1.4)

This explains, why the Itô formula is often called the “chain-rule” of stochastic

calculus.

For the proof we first need to define a stopping time.

Definition 1.3.14.: Stopping time

Let (Ω,A,P) be a probability space and F = (Ft)t≥0 a filtration defined on

(Ω,A,P). Then the random time τ is a stopping time, if {τ ≤ t} ∈ Ft ∀t.

13
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Proof:(Sketch)

We introduce a stopping time Tn, that is defined as follows:

Tn =


0, if |X0| ≥ n,

inf(t ≥ 0 : |Xt| ≥ n), if |X0| < n,

∞, if |X0| < n and {t ≥ 0 : |Xt| ≥ n} = ∅

The resulting sequence is then nondecreasing with limTn =∞. So we can prove

the Itô theorem for the stopped processes Xt∧Tn , and we get the desired result

for n → ∞. We may assume, therefore, that X0(ω) and the random function

Xt(ω) is bounded on [0,∞) by some constant C. Then f , f ′ and f ′′ are also

bounded.

Let us have a look on the Taylor decomposition of f(X).

For a given decomposition Π, 0 = t0 < t1 < ... < tn = t, of [0, t] we get:

f(Xtj)− f(Xtj−1
) = f ′(Xtj−1

)(Xtj −Xtj−1
) +

1

2
f ′′(ηj)(Xtj −Xtj−1

)2

with ηj(ω) = Xtj−1
(ω) + θk(ω)(Xtj(ω) − Xtj−1

(ω)) for some appropriate θk(ω)

satisfying 0 < θk(ω) < 1 and ω ∈ Ω.

Summing up over 1 ≤ j ≤ n we obtain

f(Xtn)− f(X0) =
n∑
j=1

f ′(Xtj−1
)(Xtj −Xtj−1

)︸ ︷︷ ︸
P−→∫ t

0 f
′(Xs) dXs

+
1

2

n∑
j=1

f ′′(ηj)(Xtj−1
−Xtj)

2.

For the first term, we can use Theorem 1.3.12. For the second one, we want to

show, that
1

2

n∑
j=1

(f ′′(Xtj−1
)− f ′′(ηj))(Xtj−1

−Xtj)
2 P−→ 0.

14
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Let us define [X,X]t,Π being the quadratic variation over the decomposition Π.

This means, that

[X,X]t,Π =
∑
tk∈Π

(Xtk −Xtk−1
)2.

Then we obtain, that

1

2

n∑
j=1

(f ′′(Xtj−1
)− f ′′(ηj))(Xtj−1

−Xtj)
2 ≤ [X,X]t,Π max

{1≤j≤n}
|f ′′(Xtj−1

)− f ′′(ηj)|,

Since [X,X]t,Π =
∑n

j=1(Xtj − Xtj−1
)2 P−→

∫ t
0
Hs

2 ds and
∫ t

0
Hs

2 ds < ∞ by

assumption, there exists a constant C, so that we obtain applying the Cauchy-

Schwartz inequality

E
(

[X,X]t,Π max
{1≤j≤n}

|f ′′(Xtj−1
)−f ′′(ηj)|

)
≤
√
C

√
E
(

max
{1≤j≤n}

|f ′′(Xtj−1
)− f ′′(ηj)|

)2

.

Now using that X is continuous and the bounded convergence theorem, this term

converges to zero.

Another application of Theorem 1.3.12 then yields

1

2

n∑
j=1

f ′′(Xtj−1
)(Xtj−1

−Xtj)
2 P−→ 1

2

∫ t

0

f ′′(Xs) d[X,X]s.

�

1.3.3 Black - Scholes formula

The Black-Scholes model is an option pricing model and was invented by Fischer

Black and Myron Scholes in 1973 [5]. We will see later on, that the stock

price process in the Black-Scholes model follows a geometric Brownian motion,

therefore we will show, that a geometric Brownian motion is the solution of the

stochastic differential equations

dXt = Xt(µdt+ σdBt).

We have defined a geometric Brownian motion by:

Xt = X0 · exp((µ− σ2

2
)t+ σBt)
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1.3 Technical setup

Note that Xt = X0 exp(ξt) with ξt = (µ− σ2

2
)t+ σBt.

Now applying Itô’s formula yields

dXt = X0e
ξtdξt +

1

2
X0e

ξt(dξt)
2

= Xt((µ−
σ2

2
)dt+ σdBt) +

1

2
Xt ((µ− σ2

2
)dt+ σdBt)

2︸ ︷︷ ︸
=σ2dt

= Xt(µdt+ σdBt).

Definition 1.3.15.: Black Scholes asset price model

In the Black Scholes model the market consists of two liquid assets, namely

a (riskless) zero coupon bond and a stock. The respective price processes are

given as

• S0
t = ert for the bond, where r is the riskless interest rate r.

• S1
t for the stock where

dS1
t = S1

t (µdt+ σdWt).

In the following we will denote the discounted price of the stock by S̃1
t =

S1
t

S0
t
.

In the Black-Scholes Model, we assume the market for these two assets to be

frictionless, i.e.:

• trading in continuous time is possible

• all assets are infinitely divisible

• unrestricted borrowing and lending at the same interest rate r is possible

• there are no transaction costs and no restriction on short-selling

• no bankruptcy or reorganization costs in case of default have to be paid

Definition 1.3.16.: Trading strategy

A trading strategy is an adapted two dimensional process X = (Xt)0≤t≤T =

(Xt,0, Xt,1)0≤t≤T , where Xt,0 is the number of bonds and Xt,1 is the number

16



1.3 Technical setup

of shares of the stock held at time t. So Xt represents the Black-Scholes

portfolio at time t and its value is given by Vt(X) = Xt,0S
0
t +Xt,1S

1
t .

A trading strategy is called self financing, if dVt(X) = Xt,0dS
0
t +Xt,1dS

1
t .

Definition 1.3.17.: Arbitrage free markets

An arbitrage opportunity is a self-financing trading strategy X with V0(X) = 0

and P(Vt(X) ≥ 0) = 1, such that P(Vt(X) > 0) > 0.

If a financial market does not provide arbitrage opportunities, we call it

arbitrage free.

Definition 1.3.18.: Equivalent measures

Two measures P,Q on (Ω,A) are called equivalent, if ∀A ∈ A:

P(A) = 0⇔ Q(A) = 0.

Theorem 1.3.19: Theorem of Girsanov

Assume Bt to be a Brownian motion on (Ω,A,P). For a measurable, adapted

process Ht, with
∫ T

0
H2
s ds < ∞ P - a.s., we consider the stochastic process B̂t,

that is defined by:

B̂t = Bt +

∫ t

0

Hs ds.

Furthermore we assume, that the exponential process

Zt = exp
(
−
∫ t

0

Hs dBs −
1

2

∫ t

0

H2
s ds

)
,

that is always a local martingale, is even a martingale. Then B̂ is a Brownian

motion on (Ω,A,P∗), where P∗ is equivalent to P and defined by the Radon-

Nikodym-derivative dP∗
dP = ZT .

Definition 1.3.20.: Equivalent martingale measure/risk neutral

probability measure

A probability measure P∗ is called equivalent martingale measure or risk

neutral probability measure on (Ω,A,P), if P∗ is equivalent to P and the

discounted price process S̃1
t is a P∗-local martingale.

The following theorem indicates, why we are looking for such an equivalent

martingale measure.

17



1.3 Technical setup

Theorem 1.3.21: First fundamental theorem of asset pricing

The no arbitrage assumption is equivalent to the existence of an equivalent

probability measure P∗, such that the discounted price process S̃1
t is a

P∗-martingale.

Proof: For the proof see for instance [9].

A Claim CT is a FT -measurable random variable, specifying a payoff at time T .

According to the first fundamental theorem of asset pricing its price is given by

Ṽt(CT ) = EP∗(C̃T |Ft).

Since we assume an arbitrage free market, there exists an equivalent martingale

measure P∗, such that the discounted price process S̃1
t is a martingale.

As an Itô process S̃1
t can only be a martingale, if it has the form: S̃1

t =
∫ t

0
H̃s dWs,

with W being a standard Brownian motion. It follows that dS̃1
t = H̃tdWt has to

hold.

Let us now have a look on the differential equation of the discounted stock price

S̃1
t :

dS̃1
t = d((S0

t )
−1S1

t ) = (S0
t )
−1dS1

t + S1
t d(S0

t )
−1 + d(S0

t )
−1dS1

t︸ ︷︷ ︸
=0

= S̃1
t (µdt+ σdBt)− rS̃1

t dt

= S̃1
t ((µ− r)dt+ σdBt)

= σS̃1
t (
µ− r
σ

dt+ dBt)

By setting Wt = Bt + µ−r
σ
t⇔ dWt = dBt + µ−r

σ
dt, we get

dS̃1
t = σS̃1

t dWt.

Now we need Girsanov’s theorem: If we change the probability measure in a

way, that W is a Brownian motion under P∗, then S̃1
t is a local martingale.

18



1.3 Technical setup

Hence by setting
dP∗

dP
= ZT ,

where

Zt = exp(−
∫ t

0

Hs dBs −
1

2

∫ t

0

H2
s ds) = exp(−µ− r

σ
Bt −

1

2

µ− r
σ

2

t)︸ ︷︷ ︸
= martingale

we obtain an equivalent measure P∗ under which S̃1
t is a local martingale. Hence

P∗ is an equivalent martingale measure.

As mentioned before, the stochastic differential equation for S̃1
t has an explicit

solution:

S̃1
t = S̃1

0 exp(σWt −
σ2

2
t).

This solution is called the exponential martingale of the Brownian motion Wt.

Let us now derive the famous Black - Scholes formula. The payoff CT of a call

option is given by CT = f(S1
T ) = (S1

T −K)+. The discounted value then equals:

EP∗(C̃T |Ft) = EP∗(f(S1
T )e−r(T−t)|Ft)

= e−r(T−t)EP∗(f(
S1
T

S1
t

S1
t )|Ft)).

Note that

S1
T

S1
t

= exp((r − σ2

2
)(T − t) + σ(WT −Wt))

is independent of Ft.

Combining the last two expressions, we obtain:

EP∗(C̃T |Ft) = e−r(T−t)EP∗

(
f
(
S1
t exp((r − σ2

2
)(T − t) + σ(WT −Wt))

)
|Ft
)

where f(x) = (x−K)+.

Vt = e−r(T−t)
∫
R

(S1
t · exp((r − σ2

2
)(T − t) + σ

√
T − tu)−K)+ · e−

u2

2 du
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1.3 Technical setup

And by straight-forward calculations one obtains:

Vt = S1
t Φ(d1)−Ke−r(T−t)Φ(d2)

with

d1 =
ln(

S1
t

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t.

This is exactly the Black Scholes formula for the price of a call option on a stock

in a dividend free market.

Including dividends in the Black Scholes formula:

The original Black and Scholes model does not allow for dividend payments, but

it can easily be modified to do so. This was first done by Merton [19] in 1973.

He assumed that the price of the stock fulfills the following differential equation:

dS1
t = S1

t ((µ− κ)dt+ σdWt)

where κ is the so called dividend yield.

Using the same calculus as above, we get the Black Scholes formula for a call on

a dividend paying stock as follows:

V0 = S1
0e
−κ(T−t)Φ(d1)−Ke−r(T−t)Φ(d2)

with

d1 =
ln(

S1
0

K
)− (r − κ+ σ2

2
)(T − t)

σ2
√
T − t

d2 =
ln(

S1
0

K
)− (r − κ− σ2

2
)(T − t)

σ2
√
T − t

.
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1.3.4 First passage times

In this section, we will present some characteristics concerning Brownian motions

and first passage times. For further information concerning first passage times

see for instance [20], [16], [22] and [23].

We are interested in the joint distribution of the first passage time τ of a process

Yt, with Yt = Y0 + νt + σWt, with Y0, ν ∈ R, σ > 0 and Wt being a standard

Brownian motion. Formally τ is defined by:

τ = inf{t ≥ 0 : Yt < 0}. (1.5)

Let W be a standard Brownian motion, then we define:

MW
t = max

u∈[0,t]
Wu , mW

t = min
u∈[0,t]

Wu.

Since W has infinite variation, it follows immediately that for every t > 0

P(MW
t > 0) = 1 and P(mW

t < 0) = 1.

Theorem 1.3.22: Strong Markov property of the Brownian motion

Let (Bt)t≥0 be a Brownian motion with respect to F and T a stopping time with

P(T <∞) = 1. Then the process B(T ) = (B
(T )
t )t≥0 with

B
(T )
t = Bt+T −BT

is a Brownian motion and B(T ) is independent from FT .

Proof: See [16].

The above theorem can be used to derive the so called “reflection principle”.

Lemma 1.3.23: Reflection principle

For every t > 0, y ≥ 0 and x ≤ y the following formula holds:

P(Wt ≤ x,MW
t ≥ y) = P(Wt ≥ 2y − x) = P(Wt ≤ x− 2y)

Proof: We define the stopping time Ty = inf{t ≥ 0|Wt ≥ y}.
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1.3 Technical setup

According to the strong Markov property, WTy+t − y is a Brownian motion.

We start with:

P(Wt ≤ x,MW
t ≥ y) = P(Wt ≤ x|MW

t ≥ y) · P(MW
t ≥ y)

= P(WTy+(t−Ty) − y ≤ x− y|Ty < t) · P(MW
t ≥ y).

Now we can use the strong Markov property:

= P(WTy+(t−Ty) − y ≥ y − x|Ty < t) · P(Mt ≥ y)

= P(Wt ≥ y − x+ y|Ty < t) · P(Mt ≥ y)

= P(Wt ≥ 2y − x, Ty < t)

= P(Wt ≥ 2y − x,MW
t > y).

If Wt ≥ 2y− x and x ≤ y it follows that Wt ≥ y, and therefore it is ensured that

MW
t > y. Knowing this we get

P(Wt ≥ 2y − x,MW
t > y) = P(Wt ≥ 2y − x).

�

Now, we will have a look on the more general process Xt = νt+σWt, with σ > 0,

ν ∈ R and Wt being a standard Brownian motion under P. From Girsanov’s

theorem we know, that X is a Brownian motion under an equivalent probability

measure and thus we get:

P(MX
t > 0) = 1 and P(mX

t < 0) = 1

for every t > 0.

Lemma 1.3.24: Let Xt = νt+ σWt. Then, for every t > 0, y ≥ 0 and x ≤ y the

following formula holds:

P(Xt ≤ x,MX
t ≥ y) = e2νyσ−2P(Xt ≥ 2y − x+ 2νt). (1.6)

Proof: Let us set

I := P(Xt ≤ x,MX
t ≥ y) = P(Xσ

t ≤
x

σ
,MXσ

t ≥ y

σ
),
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with Xσ
t = Wt + νt

σ
. Thus, without loss of generality we may assume σ = 1.

By applying Girsanov’s theorem, we get the equivalent probability measure

defined by:
dP̂
dP

= e−νWT−ν2 T
2 , P− a.s.

or inverted:
dP
dP̂

= eνWT+ν2 T
2 = eνXT−ν

2 T
2 , P̂− a.s.

We get:

I = EP̂(eνXT−ν
2 T

2 I{Xt≤x,MX
t ≥y}).

Since X follows a Brownian motion under P̂, an application of the reflection

principle gives:

I = EP̂(eν(2y−XT )−ν2 T
2 I{2y−Xt≤x,MX

t ≥y})

= EP̂(eν(2y−XT )−ν2 T
2 I{Xt≥2y−x})

= e2νyEP̂(e−νXT−ν
2 T

2 I{Xt≥2y−x}).

Since 2y − x ≥ y, we can define another equivalent probability measure P̃ by

setting
dP̃
dP̂

= e−νXT−ν
2 T

2 , P̂− a.s.

It follows:

I = e2νyEP̂(e−νXT−ν
2 T

2 I{Xt≥2y−x}) = e2νyP̃(Xt ≥ 2y − x)

and W̃t = Xt + νt follows a standard Brownian motion under P̃. Since Xt =

W̃t − νt, we obtain

I = e2νyP̃(W̃t + νt ≥ 2y − x+ 2νt).

Since W̃t is a standard Brownian motion under P̃ and Wt under P, it follows that

P̃(W̃t + νt ≥ 2y − x+ 2νt) = P(Wt + νt︸ ︷︷ ︸
=Xt

≥ 2y − x+ 2νt),

and we finally obtain

I = e2νyP(Xt ≥ 2y − x+ 2νt).

�
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Corollary 1.3.25: For every x, y ∈ R such that y ≥ 0 and x ≤ y, we have

P(Xt ≤ x,MX
t ≥ y) = e2νyσ−2

N(
x− 2y − νt

σ
√
T

)

and

P(Xt ≤ x,MX
t ≤ y) = N(

x− νt
σ
√
T

)− e2νyσ−2

N(
x− 2y − νt

σ
√
T

).

Proof: The first equation can be obtained by

P(Xt ≥ 2y − x+ 2νt) = P(−σWt ≤ x− 2y − νt) = N(
x− 2y − νt

σ
√
T

),

since −σWt is normally distributed with mean zero and variance σ2t. The second

formula follows from

P(Xt ≤ x) = P(Xt ≤ x,MX
t ≤ y) + P(Xt ≤ x,MX

t ≥ y).

�

Corollary 1.3.26: For every y ≥ 0 we have:

P(MX
t ≤ y) = N(

y − νt
σ
√
T

)− e2νyσ−2

N(
−y − νt
σ
√
T

).

The same calculations can be used for the minimum value, since the connection

is the following:

P(max
u∈[0,t]

(σWu − νu) ≥ −y) = P( min
u∈[0,t]

(−σWu + νu) ≤ y) = P( min
u∈[0,t]

Xu ≤ y).

Therefore we get the following corollaries:

Corollary 1.3.27: For every x, y ∈ R such that y ≤ 0 and y ≤ x, we have:

P(Xt ≥ x,mX
t ≥ y) = N(

−x+ νt

σ
√
T

)− e2νyσ−2

N(
2y − x+ νt

σ
√
T

).
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Corollary 1.3.28: For every y ≤ 0 we have:

P(mX
t ≥ y) = N(

−y + νt

σ
√
T

)− e2νyσ−2

N(
y + νt

σ
√
T

).

Using these results, we obtain the joint probability of Yt = Y0 + Xt and its first

passage time τ .

It is obvious, that

P(τ ≥ s) = P( inf
t∈[0,s]

Yt ≥ 0). (1.7)

Corollary 1.3.29: For every s > 0 and y ≥ 0 we have:

P(Ys ≥ y, τ ≥ s) = N(
−y + Y0 + νs

σ
√
s

)− e−2νyσ−2Y0N(
−y − Y0 + νs

σ
√
s

).

Proof: Follows directly of Corollary 1.3.27.
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1.3.5 Poisson processes

In this section we will discuss the stochastic foundations of intensity models,

namely the Poisson process and variants thereof. We will deal with the time-

homogeneous Poisson process, the time-inhomogeneous Poisson process and the

Cox process. For further information I refer to [6] and [21].

Time-homogeneous Poisson process:

Definition 1.3.30.: Time-homogeneous Poisson process

A process N = (Nt)t≥0 is called Poisson process with intensity λ, when:

• N0 = 0

• N is an integer-valued, right continuous increasing process

• N has stationary and independent increments

• N follows in any interval of length t a Poisson distribution with mean λt,

i.e.:

P(N(t+s) −Ns = k) = e−λt(λt)k/k!.

Characteristics of the time homogeneous Poisson process:

Let τ 1, τ 2, . . . be the jump times of N. Given the above definition, it follows

that

P(Nt = 0) = P(τ 1 > t) = e−λt.

This means, that τ 1 is exponential distributed with mean 1/λ.

Furthermore we have

lim
t→0

P(Nt ≥ 2)/t = 0

lim
t→0

P(Nt = 1)/t = λ.

Note that λ = E(Nt)/t = V ar(Nt)/t.

We are interested in the first jump time τ 1. We already know that τ 1 is a random

variable and it is exponential distributed with mean 1/λ.
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It follows, that the infinitesimal probability of the first jump at time t is given by

P(τ ∈ [t, t+ dt)|τ ≥ t) =
P(τ ∈ [t, t+ dt))

P(τ > t)
=
e−λt − e−λ(t+dt)

e−λt
≈ λdt.

Time-inhomogeneous Poisson process:

A time inhomogeneous Poisson process Mt is again a integer-valued increasing,

right continuous process with M0 = 0, but in contrast to the time homogeneous

Poisson process with time-varying intensity λt.

We define

Λ(t) :=

∫ t

0

λu du,

where λt is called intensity or hazard rate and Λ(t) the cumulative intensity,

cumulative hazard rate or hazard function.

Then the time-inhomogeneous Poisson process Mt with intensity λt is given by

Mt = NΛ(t), where Nt is a time-homogeneous Poisson Process with intensity

λ = 1.

With time-varying λt, the increments of Mt are no longer identically distributed,

albeit still independent.

Again, our interest lies on the first jump time of M , denoted by τ . With this

definition N jumps the first time at Λ(τ). Since N is a standard Poisson process,

we know that the first jump time is an exponential distributed random variable

with mean 1 and hence

Λ(τ) =: ξ ∼ Exp(1).

By inverting this formula we get

τ = Λ−1(ξ).

Having not jumped before t, the probability of a jump in the time period [t, t+dt]

is therefore

P(τ ∈ [t, t+ dt]|τ > t,Ft) ≈ λtdt,

where the factor λt is strictly positive.
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Cox process:

The Cox process Ct is again an integer-valued, increasing, right continuous

process, with C0 = 0 and with stochastic intensity λt, where λt is a right

continuous and Ft - adapted process . We define

Λ(T ) =

∫ T

0

λt dt,

with λt > 0.

Then the Cox process Ct with intensity λt is defined as Ct = NΛ(T ), where Nt is

again a time-homogeneous Poisson Process with intensity λ = 1.

Also with stochastic intensity, we can use the link to the standard Poisson process

N to describe the first jump time τ of C. More precisely we have

Λ(τ) =: ξ ∼ Exp(1)

and

τ = Λ−1(ξ).

The infinitesimal probability of the first jump is again given by

P(τ ∈ [t, t+ dt]|τ > t,Ft) = λtdt.
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Chapter 2

Structural models

2.1 Introduction

In this chapter we will focus on structural models, more precisely on the Merton

and the Black and Cox model. For further information on structural models I

refer to [2], on which the framework of this chapter is based.

The first structural model was introduced by Merton [19] in 1974 and is nowadays

known as the Merton model. The models setup is as follows: the firm value Vt is

assumed to follow a geometric Brownian motion and the liabilities are given by

one zero coupon bond. At the bond’s maturity T , the firm has to be able to pay

out the bond’s face value L. If the firms value is below L a default occurs!

The big disadvantage of Merton’s model is, that default can only occur at

maturity T , which is widely acknowledged to be unrealistic. For this reason

so called first passage time models were introduced, e.g. the Black and Cox

model, to which we will come back later.

There are plenty of other structural models. They may be classified by the

following components (cf. [2]):

• the dynamics of the asset value of the firm

• the structure of the firms liabilities

• the default event (barrier)

• the recovery rule

• other economic quantities
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2.2 Merton’s approach

2.2 Merton’s approach

Merton’s model has the following setup. The market has to be frictionless and

the short term interest rate r is constant and deterministic, which implies that

the price of a zero coupon bond with maturity T at time t equals

B(t, T ) = e−r(T−t).

Let the firm’s equity value be denoted by E(Vt) (or short Et), the firm’s debt

by D(Vt), and the firm value at time t by Vt = E(Vt) + D(Vt). The firm value

process Vt is assumed to follow a geometric Brownian motion under the equivalent

martingale measure P∗:

dVt = Vt((r − κ)dt+ σV dW
∗
t )

where κ is the non-negative payout ratio, which reflects the outflow of capital of

the firm (for example dividends), W ∗
t is a standard Brownian motion and σV is

the constant volatility of Vt.

The credit event (in this case the default) is triggered, when the firm value process

VT ≤ L.

Remark: Here one big problem of Merton’s model can be observed. Both,

firm value and its volatility are not observable in general. But there is a way to

obtain these quantities in terms of the observable equity value and its volatility.

We will come back to this topic later.

The payment to the bondholders at time T in this model is

X(T ) = L · I{VT≥L} + VT · I{VT<L} = min(VT , L) = L− (L− VT )+. (2.1)

with x+ = max(x, 0).

Hence the payment can be decomposed in a fixed amount L and a put option

on the firm value with maturity T and strike L. This put is also called

“put-to-default”.
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2.2 Merton’s approach

So the value of the firm’s debt is:

D(t, T ) = D(Vt) = L · B(t, T )− Pt, (2.2)

where Pt is the price of the put-to-default.

With (2.1) we get

E(VT ) = VT −D(VT ) = VT −min(VT , L) = (VT − L)+ (2.3)

Again we see that this is the payoff of a European Call-Option, and with the

call-put-parity we get:

Ct − Pt = Vt − LB(t, T ). (2.4)

Now using the Black-Scholes-formula leads us to the following result:

Proposition 2.2.1: The price of a defaultable zero coupon bond is

D(t, T ) = Vt · e−κ(T−t)N(−d1(Vt, T − t)) + LB(t, T )N(d2(Vt, T − t))

where κ is again the non-negative payout ratio, N is the standard Gaussian

cumulative distribution function and

d1(Vt, T − t) =
ln(Vt/L) + (r − κ+ 1

2
σ2
V )(T − t)

σV
√
T − t

d2(Vt, T − t) =
ln(Vt/L) + (r − κ− 1

2
σ2
V )(T − t)

σV
√
T − t

.

Proof: The Black-Scholes price of a put option with strike L on a dividend-

paying stock equals:

Pt = LB(t, T )N(−d2(Vt, T − t))− Vt · e−κ(T−t)N(−d1(Vt, T − t)).

From (2.2) we get:

D(t, T ) = LB(t, T )− Pt
= LB(t, T )(1−N(−d2(Vt, T − t))) + Vt · e−κ(T−t)N(−d1(Vt, T − t)).
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Since N(−x) = 1−N(x), we get the final result

D(t, T ) = Vt · e−κ(T−t)N(−d1(Vt, T − t)) + LB(t, T )N(d2(Vt, T − t)).

�

Distance to default

The probability of default in this model is closely linked to the distance-to-default,

which is defined as:

DDt =
ln(Vt/L) + (r − κ− 1

2
σ2
V )(T − t)

σV
√
T − t

.

The default probability then equals P(VT ≤ L) = N(−DDt).

Remark: The distance to default is the number of standard deviations, that

the firms value is above or below the default barrier.

Credit spread

We define the yield of the non-defaultable bond and the defaultable bond via

Y (t, T ) = − lnB(t, T )

T − t
, Y d(t, T ) = − lnD(t, T )

T − t
.

The credit spread is then given by

S(t, T ) = Y d(t, T )− Y (t, T ).

In the Merton model we assume a riskless interest rate r, so it follows that

Y (t, T ) = r . Using Proposition 2.2.1 we find:

S(t, T ) = −
ln( Vt

B(t,T )
e−κ(T−t)N(−d1(Vt, T − t)) + L ·N(d2(Vt, T − t)))

T − t
.
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Estimation of the firm value

As already mentioned, we have to deal with the non-observability of the asset

value and its volatility. But we can bypass this problem by using some helpful

characteristics of the observable equity value.

Following Jones et al. (1984) the estimation of the firm value is based on two

equations. The first one can be derived from Merton’s formula:

Et = VtN(d1(Vt, T − t))− Le−r(T−t)N(d2(Vt, T − t)). (2.5)

Using Itô’s lemma, one can check, that the dynamics of Et under P∗ are:

dEt = rEtdt+ VtN(d1(Vt, T − t))σV dW ∗
t .

Therefore the volatility of the firm’s equity has the following representation:

σE =
Vt
Et
N(d1(Vt, T − t))σV . (2.6)

Given now the observable input parameters E, σE, r and L, we are able to

numerically solve equation (2.5) for t = 0 and (2.6) iteratively and we get the

firm value V0 and its volatility σV .

2.2.1 Advantages and drawbacks of the Merton’s model:

Since the Merton model was the first credit risk model, there are a few things,

that are too simplifying in this approach. But, nevertheless, it was/is quite

popular because of its simplicity and its clear references to the input parameters.

The main drawbacks of the Merton model are:

• default can only occur at maturity T

• the non-observability of the asset value, although it can be bypassed

• the constant parameters, for example the constant short rate r

• for small maturities the produced credit spreads are close to zero, which is

not consistent with empirical studies
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2.2 Merton’s approach

Remark: Another limitation that could come to mind might be the stochastic

process. Assuming that the firms value follows a geometric Brownian motion,

induces lognormal distributed dynamics for Vt. However, [6] found that “this

assumption is quite robust and, according to KMV’s empirical studies, actual

data confirm quite well for this hypothesis.”
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2.3 Merton model with stochastic interest rate

In this section I want to point out, how stochastic parameters can be taken into

account in the Merton model.

Therefore we consider the short rate r to follow the Vasicek model under the spot

martingale measure P∗, i.e.:

drt = (α− βrt)dt+ σrdW̃t,

with W̃t being a standard Brownian motion. For further details on the Vasicek

model and other short rate models, see for instance [6].

The value process Vt is here

dVt = Vt(rtdt+ σV dW
∗
t ),

with W ∗
t being again a standard Brownian motion.

Again, this equation holds under the spot martingale measure P∗. Furthermore

we assume the Brownian motions W̃ and W ∗ to be correlated with constant

correlation ρV,r. With b(t, T ) being the volatility of a default free zero coupon

bond in the Vasicek model, i.e.:

b(t, T ) = σrβ
−1(1− e−β(T−t)),∀t ∈ [0,T].

we define σ2(t, T ) by

σ2(t, T ) =

T∫
t

(σ2
V − 2ρV,rσV b(u, T ) + b2(u, T ))du.

As shown by Jamshidian (1989) [15], the put-to-default can be obtained in this

setup by:

Pt = LB(t, T )N(−d2(Vt, t, T ))− VtN(−d1(Vt, t, T )),

where

d1(Vt, t, T ) =
ln(Vt/B(t, T ))− ln(L) + 1

2
σ2(t, T )

σ(t, T )
.

d2(Vt, t, T ) =
ln(Vt/B(t, T ))− ln(L)− 1

2
σ2(t, T )

σ(t, T )
.
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2.3 Merton model with stochastic interest rate

Since we know that D(t, T ) = LB(t, T )− Pt, we get

D(t, T ) = LB(t, T )(1−N(−h2(Vt, t, T ))) + VtN(−h1(Vt, t, T ))

= LB(t, T )(N(h2(Vt, t, T ))) + VtN(−h1(Vt, t, T )).
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2.4 Black and Cox model

We have seen in the last chapter, that the main restriction of the Merton model is,

that default can only occur at maturity T. To avoid this unrealistic feature Black

and Cox [3] introduced a first passage time model, where default is assumed to

occur the first time the firm value Vt falls below an pre-specified time-dependent

barrier Lt.

Let be τ the default time, then we have:

τ = inf{t ≥ 0 : Vt < Lt}. (2.7)

This setup allows a lot more modeling choices. For example, the default barrier

can be assumed to be stochastic itself and the recovery payoff may be specified

in various ways.

2.4.1 The model

As mentioned before Black and Cox’s approach is based on Merton’s model.

However, it is generalized in numerous ways: not only premature default is

allowed, also more specific features of debt contracts, like safety covenants, debt

subordination etc., can be included. Assuming continuous payout at a rate κ (the

dividend yield) the value process is given by:

dVt = Vt((r − κ)dt+ σV dW
∗
t ). (2.8)

The other parameters are set as in Merton’s model.

Next we focus on the safety covenants. The safety covenants define, when the

bondholders have the right to force the firm into bankruptcy or reorganization

to protect their capital. More precisely, as soon as the firm value process falls

below the safety covenants, the bondholders take over control of the firm and thus

default occurs. In Black and Cox’ approach the safety covenants are modeled by

a deterministic barrier l(t). One of the most popular choices is to set l(t) =

Ke−γ(T−t), where γ is the continuous payoff the bondholders receive for their

capital. Besides undershooting the safety covenants there is a second possibility
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2.4 Black and Cox model

of default. Namely, if at maturity T VT < L.

Thus setting

Lt =

{
l(t), for t < T,

L, for t = T,

default occurs, when Vt < Lt for the first time, or mathematically, default time

τ is set as:

τ := inf{t ∈ [0, T ] : Vt < Lt}. (2.9)

Economically it makes sense to assume that γ > r, since the bondholders will only

provide their capital, if the expected return is higher than the riskless interest

rate r. Furthermore we demand that

Lt ≤ Le−γ(T−t) (2.10)

i.e.: K ≤ L.

This condition makes sense, since the bondholders will not force the firm into

bankruptcy, when the firm value is higher than the future payment L. When

K < L, the bondholders do not force the firm into bankruptcy immediately

when the firm value is below the (with γ) discounted value of the debt L.

The next step we will make, is to develop a formula for the price of a defaultable

bond. Since the Black and Cox model allows more specifications, we will also

include a recovery rule. So let us set β2 the recovery rate, when the bondholders

force the firm into bankruptcy, which means τ < T , and β1 the recovery rate at

maturity T, when VT < L.

To get the formula, we distinguish different possibilities of default. So when no

default occurs, the value of the bond at time t is Le−r(T−t).

When default occurs at maturity T, which means that Vt > Lt for all t ∈ [t, T ),

but VT < L, the value of the payoff at time t is β1VT e
−r(T−t). Last but not least

default can occur at τ < T , in which case we have a payoff of Kβ2e
−γ(T−τ)e−r(t−τ).
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2.4 Black and Cox model

By combining the different possibilities we get

D(t, T ) = EP∗(Le
−r(T−t)I{τ≥T,VT≥L}|Ft)

+ EP∗(β1VT e
−r(T−t)I{τ≥T,VT<L}|Ft)

+ EP∗(Kβ2e
−γ(T−τ)e−r(t−τ)I{t<τ<T}|Ft).

Using now the results on the first passage time of a Brownian motion one can in

fact evaluate the expectations above.

For notional convenience we will use the notation ν = r − κ − 1
2
σV ,

ν̃ = ν − γ = r − κ− γ − 1
2
σV and ã = ν̃σ−2

V in the sequel.

Proposition 2.4.1: Assume that ν̃2 + 2σ2
V (r − γ) > 0. Then the price of a

defaultable bond at time t is given by

D(t, T ) = LB(t, T )(N(h1(Vt, T − t))−R2ã
t N(h2(Vt, T − t)))

+ β1Vte
−κ(T−t)(N(h3(Vt, T − t))−N(h4(Vt, T − t)))

+ β1Vte
−κ(T−t)R2ã+2

t (N(h5(Vt, T − t))−N(h6(Vt, T − t)))
+ β2Vt(R

θ+ζ
t N(h7(Vt, T − t)) +Rθ−ζ

t N(h8(Vt, T − t))),

where

Rt = l(t)/Vt θ = ã+ 1 ζ = σ−2
V

√
ν̃2 + 2σ2(r − γ)

and

h1(Vt, T − t) =
ln(Vt/L) + ν(T − t)

σ
√
T − t

h2(Vt, T − t) =
ln(l2(t))− ln(LVt) + ν(T − t)

σ
√
T − t

h3(Vt, T − t) =
ln(L/Vt)− (ν + σ2)(T − t)

σ
√
T − t

h4(Vt, T − t) =
ln(K/Vt)− (ν + σ2)(T − t)

σ
√
T − t

h5(Vt, T − t) =
ln(l2(t))− ln(LVt) + (ν + σ2)(T − t)

σ
√
T − t

h6(Vt, T − t) =
ln(l2(t))− ln(KVt) + (ν + σ2)(T − t)

σ
√
T − t

h7(Vt, T − t) =
ln(l(t)/Vt) + ζσ2(T − t)

σ
√
T − t

h8(Vt, T − t) =
ln(l(t)/Vt)− ζσ2(T − t)

σ
√
T − t

.
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2.4 Black and Cox model

Before we can prove the proposition, we need an elementary lemma:

Lemma 2.4.2: For any a ∈ R, b > 0 and any y > 0, we have∫ y

0

x dN
( lnx+ a

b

)
= e

1
2
b2−aN

( ln y + a− b2

b

)
(2.11)

and ∫ y

0

x dN
(− lnx+ a

b

)
= e

1
2
b2+aN

(− ln y + a+ b2

b

)
. (2.12)

Let a, b, c ∈ R satisfy b < 0 and c2 > a. Then for every y > 0∫ y

0

eax dN
(b− cx√

x

)
=
d+ c

2d
g(y) +

d− c
2d

h(y), (2.13)

where d =
√
c2 − 2a and

g(y) := eb(c−d)N
(b− dy
√
y

)
, h(y) := eb(c+d)N

(b+ dy
√
y

)
.

Proof

The proof of (2.11) and (2.12) is quite standard, so we will focus on (2.13). Denote

f(y) =

∫ y

0

eax dN
(b− cx√

x

)
=

∫ y

0

eaxn
(b− cx√

x

)(
− b

2x
3
2

− c

2
√
x

)
dx

with n being the probability density function of a standard normal distribution.

Now we will have a look on the right side of (2.13):

g′(x) = eb(c−
√
c2−2a)n

(b−√c2 − 2ax√
x

)(
− b

2x
3
2

−
√
c2 − 2a

2
√
x

)
= eaxn

(b− cx√
x

)(
− b

2x
3
2

− d

2
√
x

)

and

h′(x) = eb(c+
√
c2−2a)n

(b+
√
c2 − 2ax√
x

)(
− b

2x
3
2

+

√
c2 − 2a

2
√
x

)
= eaxn

(b− cx√
x

)(
− b

2x
3
2

+
d

2
√
x

)
.
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2.4 Black and Cox model

Therefore we get:

g′(x) + h′(x) = −eax b
x

3
2

n
(b− cx√

x

)
and

g′(x)− h′(x) = −eax d
x

1
2

n
(b− cx√

x

)
.

Hence we can represent f as follows:

f(x) =
1

2

∫ y

0

(g′(x) + h′(x) +
c

d
(g′(x)− h′(x))) dx.

Since limy→0+ g(y) = limy→0+ h(y) = 0, we have for every y > 0:

f(y) =
1

2
(g(y) + h(y)) +

c

2d
(g(y)− h(y)).

�

Proof of Proposition 2.4.1: Since most of the calculations needed for the

proof are are standard but lengthly, we will not go into detail and only sketch

the proof here. For full details see [16].

We need to find the following conditional expectations:

D1(t, T ) = LB(t, T )P∗{VT ≥ L, τ ≥ T |Ft},
D2(t, T ) = β1 B(t, T )EP∗(VT I{VT<L,τ≥T}|Ft),
D3(t, T ) = Kβ2Vte

−γTEP∗(e
(γ−r)τ I{t<τ<T}|Ft).

For notional simplicity, we set t = 0. Let us start with D1(0, T ):

Using Corollary 1.3.29 we find

P∗{VT ≥ L, τ ≥ T} = N
( ln V0

L
+ νT

σ
√
T

)
−R2ã

0 N
( ln l2(0)

LV0
+ νT

σ
√
T

)
with R0 = l(0)

V0
and hence

D1(0, T ) = LB(0, T )(N(h1(V0, T ))−R2ã
0 N(h2(V0, T ))).
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2.4 Black and Cox model

For D2(0, T ), which is the part, where default is triggered at time T, we consider:

D2(0, T )

β1 B(0, T )
= EP∗(VT I{VT<L,τ≥T}),=

∫ L

K

x dP∗{VT < x, τ ≥ T}.

Using again Corollary 1.3.29 we get:

dP∗{VT < x, τ ≥ T} = dN
( ln x

V0
− νT

σ
√
T

)
+R2ã

0 dN
( ln l2(0)

xV0
+ νT

σ
√
T

)
.

Denoting

K1(0) =

∫ L

K

x dN
( lnx− lnV0 − νT

σ
√
T

)
and

K2(0) =

∫ L

K

x dN
(−2 ln l(0)− lnx− lnV0 + νT

σ
√
T

)
,

using Lemma 2.4.2, we have:

K1(0) = V0e
(r−κ)T

(
N
( ln L

V0
− ν̂T

σ
√
T

)
−N

( ln K
V0
− ν̂T

σ
√
T

))
,

and

K2(0) = V0R
2
0e

(r−κ)T
(
N
( ln l2(0)

LV0
+ ν̂T

σ
√
T

)
−N

( ln l2(0)
KV0

+ ν̂T

σ
√
T

))
,

where ν̂ = ν + σ2 = r− k + 1
2
σ2. Since D2(0, T ) = β1 B(0, T )(K1(0) +Rã

0K2(0)),

we find:

D2(t, T ) = β1V0e
−κT (N(h3(V0, T ))−N(h4(V0, T )))

+ β1V0e
−κTR2ã+2

0 (N(h5(V0, T ))−N(h6(V0, T ))).

Let us finally consider D3(0, T ). We observe:

l(0)EP∗(e
(γ−r)τ I{τ<T}) = l(0)

∫ T

0

e(γ−r)s dP∗{τ ≤ s},

where

P∗{τ ≤ s} = N
( ln l(0)

V0
− ν̃s

σ
√
s

)
+
( l(0)

V0

)2ã

N
( ln l(0)

V0
+ ν̃s

σ
√
s

)
.
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Note that l(0) < V0 and thus ln l(0)
V0

< 0. Now using (2.13) we obtain:

l(0)

∫ T

0

e(γ−r)s dN
( ln l(0)

V0
− ν̃s

σ
√
s

)
=
V0(ã+ ζ)

2ζ
Rθ−ζ

0 N(h8(V0, T ))

− V0(ã− ζ)

2ζ
Rθ+ζ

0 N(h7(V0, T ))

and

l(0)2ã+1

V 2ã
0

∫ T

0

e(γ−r)s dN
( ln l(0)

V0
+ ν̃s

σ
√
s

)
=
V0(ã+ ζ)

2ζ
Rθ+ζ

0 N(h7(V0, T ))

− V0(ã− ζ)

2ζ
Rθ−ζ

0 N(h8(V0, T )).

All together we obtain:

D3(0, T ) = β2V0(Rθ+ζ
0 N(h7(V0, T )) +Rθ−ζ

0 N(h8(V0, T ))).

�

2.4.2 Further characteristics

Distance to default:

The distance to default is similar to the one in Merton’s model, the only difference

is the time-dependent barrier, that has to be taken into account.

So the formula is changed into

DDt =
ln(Vt/l(t)) + (r − κ− 1

2
σ2
V )(T − t)

σV
√
T − t

. (2.14)

The distance to default represents again the number or standard deviations, the

firm value is above the default barrier.
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2.4 Black and Cox model

Estimation of the firm value:

Since the Black and Cox model needs the same input parameters as the Merton

model, in particular also the firm value and its volatility, we have to employ

the same procedure as in the Merton model. The estimation of firm value and

volatility has to be done in all firm value models, which was one of the motivations

to develop alternative risk models.
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2.5 Black and Cox model with stochastic

interest rate

As in the Merton model, we will also incorporate interest rate risk in the

Black and Cox model. Furthermore we allow the parameters κ and σV to be

time-dependent. To maintain the analytical tractability of the model despite

this extension, we have to assume that the barrier Lt can be represented as

l(t) = K B(t, T )f(t) for some constant K and some function f : [0, T ] → R+.

Furthermore the volatility of the forward firm’s value FV (t, T ) := Vt/B(t, T ) has

to be a deterministic function.

Having the second condition in mind we will use the Gaussian Heath-

Jarrow-Morton setup for the stochastic interest rates, which means assuming

deterministic bond price volatilities.

Therefore, the dynamics of the firm value and the default free zero coupon bond

under the martingale measure P∗ are given by:

dVt = Vt((rt − κ(t))dt+ σV (t)dW ∗
t ),

and

dB(t, T ) = B(t, T )(rtdt+ b(t, T )dW ∗
t ),

where W ∗ is a d-dimensional standard Brownian motion under P∗, κ : [0, T ]→ R
is deterministic and σV , b : [0, T ]→ Rd are bounded deterministic functions.

As typically done in the Heath-Jarrow-Morton setup, we use the zero coupon bond

as numeraire and the forward martingale measure PT . For further information

regarding the HJM model or the change of numeraire technique, see [6].

As already mentioned above, the forward value of the firm is given by:

FV (t, T ) = Vt/B(t, T ).

Its dynamics satisfy the following equation under the forward martingale measure

PT :

dFV (t, T ) = −κ(t)FV (t, T )dt+ FV (t, T )(σV − b(t, T ))dW T
t ,

with

W T
t = W ∗

t −
∫ t

0

b(u, T ) du.
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2.5 Black and Cox model with stochastic interest rate

For any t ≤ T we define:

Lt =

{
K B(t, T )e

∫ T
t κ(u) du, for t < T,

L, for t = T,

and

κ(t, T ) =

∫ T

t

κ(u) du , σ(t, T ) =

√∫ T

t

||σV (u)− b(u, T )||2 du

where || · || is the Euclidean norm in Rd.

For motional issues we set:

η+(t, T ) = κ(t, T ) +
1

2
σ2(t, T ) , η−(t, T ) = κ(t, T )− 1

2
σ2(t, T ).

Proposition 2.5.1: Let the barrier process Lt be given as above. For any t < T ,

the forward price FD(t, T ) = D(t, T )/B(t, T ) of a defaultable bond equals:

FD(t, T ) = L(N(ĥ1(FV (t, T ), t, T ))− FV (t, T )

K
e−κ(t,T )N(ĥ2(FV (t, T ), t, T )))

+ β1FV (t, T )e−κ(t,T )(N(ĥ3(FV (t, T ), t, T ))−N(ĥ4(FV (t, T ), t, T )))

+ β1K(N(ĥ5(FV (t, T ), t, T ))−N(ĥ6(FV (t, T ), t, T )))

+ β2KJ1(FV (t, T ), t, T ) + β2FV (t, T )e−κ(t,T )J2(FV (t, T ), t, T ),

where

ĥ1(FV (t, T ), t, T ) =
ln(FV (t, T )/L)− η+(t, T )

σ(t, T )

ĥ2(FV (t, T ), t, T ) =
2 ln(K)− ln(LFV (t, T )) + η−(t, T )

σ(t, T )

ĥ3(FV (t, T ), t, T ) =
ln(L/FV (t, T )) + η−(t, T )

σ(t, T )

ĥ4(FV (t, T ), t, T ) =
ln(K/FV (t, T )) + η−(t, T )

σ(t, T )

ĥ5(FV (t, T ), t, T ) =
2 ln(K)− ln(LFV (t, T )) + η+(t, T )

σ(t, T )

ĥ6(FV (t, T ), t, T ) =
ln(K/FV (t, T )) + η+(t, T )

σ(t, T )
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J1(Ft, t, T ) =

∫ T

t

eκ(u,T ) dN(
ln(K/FV (t, T )) + η+(t, T )

σ(t, u)
)

J2(Ft, t, T ) =

∫ T

t

eκ(u,T ) dN(
ln(K/FV (t, T )) + η−(t, T )

σ(t, u)
).
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2.6 Summary

One big advantage of structural models is, that the parameters in the models are

linked to economic fundamentals. Therefore the influence of the variables on the

result are quite clear and comprehensible. For example, by increasing the firm’s

volatility, it is quite clear, that the probability of default will rise too.

One of the main drawbacks is, as mentioned above, the non-observability of

some input parameters, although there are ways to bypass this problem. But

even when we assume, that the determination is correct, it is still questionable,

if the equity market is a reliable source of information on the credit quality of a

company.

Another drawback is the so called ”predictability of default”. Since default is

triggered by the firm value and a predefined barrier, we know at time t the

distance to default, and if this distance of default is large, the firm value would

have to fall very fast to trigger the default event. However, in the considered

models the firm value is continuous and hence, a sharp fall is implausible,

implying that the short-term probability of default is close to zero. With the

same considerations, the recovery rate can also be seen as a predictable variable,

since when the firm defaults, the recovery rate is the result of the remaining firm

value.

These drawbacks have led to further extensions of the Black and Cox model.

For example, Duffie and Lando (2001), Giesecke (2005) and Jarrow and Protter

(2004) assume, that the investors only infer a distribution function of the firm

value or the barrier. Another approach, for example by Zhou (2001), is to allow

for jumps of the firm value process. With these extensions, sudden default is

possible and therefore the predictability of default is eliminated.

For further information on structural models see [1], [2], [4] and [18].
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Chapter 3

Intensity Models

3.1 Introduction

In this chapter we will discuss the second approach for modeling default risk,

namely intensity models. The framework of this chapter is based on [6].

These models are totally different from the structural models we have considered

in Chapter 2, since default is not triggered by market information. Instead

intensity models (or reduced form models) describe default by means of an

exogenously given jump process. More precisely, the default time τ is the first

jump time of a stochastic process, in the most simple setting the Poisson process.

So the default time is closely linked to the intensity λ. As pointed out above,

default has an exogenous component, that is independent of all the default free

market data. This means that monitoring the default free market does not give

complete information about the default process and there is no direct link to the

economic parameters.

Intensity models are typically fitted to credit default spreads and a big advantage

of intensity models is, that they are in general easier to calibrate to credit default

swap or corporate bond data.

As mentioned above default is triggered by the first jump of a Poisson/Cox

process. According to Section 1.3.5 the survival probability P(τ > t) is given

by
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P(τ ≥ t) = P(Λ(τ) ≥ Λ(t))

= P(ξ ≥
∫ t

0

λu du)

= E(P(ξ ≥
∫ t

0

λu du|Fλt ))

= E(e−
∫ t
0λu du).

In case of deterministic intensities λt or even constant intensity λ, this formula

simplifies to

P(τ > t) = e−
∫ t
0λu du,

respectively

P(τ > t) = e−λt.

Notice, that the survival probabilities P(τ > t) have the same structure as

discount factors. In particular the formulas above are equivalent to the price

of a zero coupon bond with stochastic short rate rt

B(0, t) = E(e−
∫ t
0 ru du),

deterministic short rate rt

B(0, t) = e−
∫ t
0 r(u) du

or constant short rate r

B(0, t) = e−rt.

Due to the close connection of intensity models to short rate models, it is natural

to use short rate models to model the hazard rate λt.
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3.2 A deterministic intensity model

In this first example we will see, how one can fit an intensity model to given

credit spreads.

As a first example, we will assume that the hazard rate λ is deterministic and

piecewise constant, i.e. λt = λi for t ∈ [Ki, Ki+1], where Ki, for i = 1, . . . , n, are

the maturities of the CDS contracts observable on the market. This means, that

the cumulative hazard function is

Λ(t) =

∫ t

0

λu du =

k(t)∑
i=1

(Ki+1 −Ki)λi + (t−Kk(t)−1)λk(t) (3.1)

where k(t) is the index of the first Ki following t. If t = Kj for some j = 1, . . . , n

then

Λj = Λ(Kj) =

j∑
i=1

(Ki −Ki−1)λi. (3.2)

Let us shortly recapitulate the cash flows in a CDS contract. The buyer of the

CDS gets a predefined value, when a third party defaults, usually the LGD.

In return for this insurance she pays the seller of the CDS a constant rate R at

predefined dates T1, ...Tn.

The sellers expected payout can thus be written as:

LGD · E(Disc(0, τ)I{T0<τ<Tn}|F) = LGD

∫ Tn

T0

E(Disc(0, u))P(τ ∈ [u, u+ du]) du

= LGD

∫ Tn

T0

B(0, u)λue
−
∫ u
0 λs ds du

= LGD

n∑
i=1

λi

∫ Ti

Ti−1

e−Λi−1−λu−Ti−1B(0, u) du

where Disc(0, T ) is the discount factor from T to now.

Remark: It is important to point out, that this derivation only holds, if we

assume independence of the intensity rate λ and the non-defaultable zero coupon

bond price, respectively the short rate r.
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3.2 A deterministic intensity model

The buyers expected payout is similar, but she receives a fixed rate R at

predefined dates T1, ...Tn or until default. In case of default, she receives the

rate R from the last payment date Ti until default at time τ . This payment is

called the “accrued interest”.

So the cash flow can be written as:

E
( n∑
i=1

R · I{Ti<τ}|F
)

+R · E
(

Disc(0, τ)(τ − Tk(τ)−1)I{T0<τ<Tn}|F
)

=
n∑
i=1

RαiE
(

Disc(0, Ti)|F
)
P(Ti < τ) +R

∫ Tn

T0

E
(

Disc(0, u)(u− Tk(u)−1)
)
P(τ ∈ [u, u+ du]) du

=R
n∑
i=1

B(0, Ti)αie
−Λ(Ti) +R

∫ Tn

T0

B(0, u)(u− Tk(u)−1)λ(u)e−
∫ u
0 λ(s) ds du

=R
n∑
i=1

B(0, Ti)αie
−Λ(Ti) +R

n∑
i=1

λi

∫ Ti

Ti−1

e−Λi−1−λ(u−Ti−1)B(0, u)(u− Ti−1) du

where αi is the time span from Ti−1 to Ti.

All together we get a formula for the CDS price:

CDST0,Tn(0, R, LGD,Λ(·)) = R
n∑
i=1

λi

∫ Ti

Ti−1

e−Λi−1−λi(u−Ti−1)B(0, u)(u− Ti−1) du

+R
n∑
i=1

B(0, Ti)αie
−Λ(Ti) (3.3)

− LGD
n∑
i=1

λi

∫ Ti

Ti−1

e−Λi−1−λ(u−Ti−1)B(0, u) du.

In the next section we will see, how we can use this result, to derive the implied

hazard rate from the actual CDS-prices.
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3.2.1 Numeric example

Let us have a look at a numeric example. To use the intensity model, derived in

the previous section, we need the CDS spreads for some time steps Ki and the

appropriate interest rate curve. So let us assume a company with the following

spreads:

Maturity Tn CDS Spread in BP

1Y 100

3Y 110

5Y 115

7Y 118

10Y 120

Table 3.1: CDS-Spreads

As common in market, the CDS spreads are given in Basis Points (BP), which

is 1/100 of a percent. Furthermore we assume annual payments and a constant

recovery rate, which is set to 40%. The interest rate, used in our calculations, is

given in Figure 3.1.

Figure 3.1: Interest rate curve

Now we can use formula (3.3) to solve the equations CDSK0,Ki(0, Ri, LGD,Λ(·))
= 0 with the given spread Ri and K1, ...Kn = 1,3,5,7,10 for λ1, λ2, λ3, λ4 and λ5.

The results for piecewise constant intensities are shown in Figure 3.2. In addition
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3.2 A deterministic intensity model

we have also solved the equations for piecewise linear intensities, these results are

given in Figure 3.3.

Figure 3.2: Piecewise constant intensity

Figure 3.3: Piecewise linear intensity

For this standard company the results are quite satisfying. But let us now

consider a more stressed company, for which the CDS-spreads are given in Table

3.2. This example is taken from [6], it is real market data and coming from

Parmalat, December 2003:

Maturity Tn CDS Spread in BP

1Y 5050

3Y 2100

5Y 1500

7Y 1250

10Y 1100

Table 3.2: CDS-Spreads of a Parmalat 2003
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3.2 A deterministic intensity model

Given the spreads of Table 3.2 and a recovery rate of 15%, we obtain the results,

shown in Figure 3.4 and 3.5.

Figure 3.4: Piecewise constant intensity

Figure 3.5: Piecewise linear intensity

As we can see, the calibration results in negative hazard rates, which is not

consistent with the models assumptions.

By comparing the two choices of intensities, we see, that the model with

piecewise constant intensity is more robust against negative intensities. One

could have expected this result, since the obtained constant intensity is an

average intensity over its time span, so extreme values are compensated. By

introducing linear intensities, this behavior is lost.

We have seen, that in very distressed situations even the constant intensity

model results in negative intensities. But according to [6], this only happens in

a pathological situation and therefore it is a clear signal that one should pay

attention to this firm.
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3.3 A stochastic intensity model

For deterministic intensities, we have derived a valuation formula for the price

of a CDS, or respectively a numerical method to bootstrap the hazard rates

for given CDS spreads Ri. But if we want to allow the model for stochastic

volatilities, this leads to a Cox process.

We already noted, that the survival probability is closely linked to the prize of

a zero coupon bond and, therefore, that is reasonable to use a short rate model

for the stochastic intensity. In the sequel we will use a particular model, namely

the CIR++ model, which is introduced in the following section.

3.3.1 The CIR model

Before we can discuss the CIR++ model, we first need to introduce the well

known CIR(Cox-Ingersoll-Ross)-model [7]. Since the CIR model is a short rate

model, we will derive the model for the short rate r, but keeping in mind, that

we will use it to model the default intensities λ.

The dynamics of the short rate r are given by:

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dWt,

with r(0) = r0 and r0, k, θ and σ positive constants and 2kθ > σ2. This condition

assures, that r remains positive.

Here r follows for all t > 0 a noncentral χ2-distribution., which means that the

density function of r is given by:

pr(t)(x) = pχ2(v,ξt)/ct(x) = ctpχ2(v,ξt)(ctx),

with

ct =
4k

σ2(1− exp(−kt))

v =
4kθ

σ2

ξt = ctr0 exp(−kt)

56



3.3 A stochastic intensity model

The density of the (noncentral) χ-squared distribution is given by:

pχ2(v,ξ)(z) =
∞∑
i=0

e−ξ/2(ξ/2)i

i!
pχ2(v+2i)(z),

with pχ2(v)(z) being the density of a central χ-squared distribution.

Modeling the intensity λ by a short rate model, the default probability is given

by the price of a zero coupon bond.

In the CIR model, the price of a zero coupon bond with maturity T at time t is

B(t, T ) = ζ1(t, T )e−ζ2(t,T )r(t), (3.4)

where

ζ1(t, T ) =
( 2h exp(k + h)(T − t)/2

2h+ (k + h)(exp((T − t)h)− 1)

)2kθ/σ2

, (3.5)

ζ2(t, T ) =
2(exp((T − t)h)− 1)

2h+ (k + h)(exp((T − t)h)− 1)
, (3.6)

h =
√
k2 + 2σ2.

3.3.2 The CIR++ model

The CIR++ model is a generalization of the CIR model to enable exact fitting

on market data. Therefore the model is modified the following way:

dx(t) = k(θ − x(t))dt+ σ
√
x(t)dWt, with x0 = 0 (3.7)

r(t) = x(t) + φ(t),

where φ(t) is a non-negative function and x0, k, θ and σ are positive constants

such that 2kθ > σ2.

The advantage of this model is, that the analytic tractability of the initial

model is maintained, while by introducing the function φ(t) any observed term

structure can be fitted exactly.
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3.3 A stochastic intensity model

For simplicity we define the parameter vector α = (k, θ, σ). When we assume

exact fitting of the initial discount factors given by the markets zero coupon

prices Bmkt(0, T ), we have:

φ(t) = φCIR(t, α),

where

φCIR(t, α) = fmkt(0, t)− fCIR(0, t;α),

fCIR(0, t;α) =
2kθ(exp(th)− 1)

2h+ (k + h)(exp(th)− 1)
+ x0

4h2exp(th)

[2h+ (k + h)(exp(th)− 1)]2

with h =
√
k2 + 2σ2, fmkt(0, t) being the instantaneous interest rate with

maturity t available on the market and fCIR(0, t;α) the interest rate given by

the CIR model.

The price of a zero coupon bond with maturity T in this model is given by

B(t, T ) = ζ̃1(t, T )e−ζ2(t,T )r(t), (3.8)

with

ζ̃1(t, T ) =
Bmkt(0, T )ζ1(0, t) exp(−ζ2(0, t)x0)

Bmkt(0, t)ζ1(0, T ) exp(−ζ2(0, T )x0)
ζ1(t, T )eζ2(t,T )φCIR(t,α),

with ζ1(t, T ) and ζ2(t, T ) be given by (3.5) and (3.6).

For further information on the CIR/CIR++ or interest rate models in general I

refer to [6].
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3.3 A stochastic intensity model

3.3.3 Setup of the model

Modeling the default intensity λ by the CIR++ model we define

λt = xαt + ψ(t, α), with t ≥ 0,

where ψ is a deterministic function, depending on the parameter vector α =

(κ, θ, σ, xα0 ), with κ, θ, σ, xα0 being positive deterministic constants. We are free to

set the starting parameter xα0 as long as:

ψ(0, α) = λmkt0 − xα0 .

The process x is defined by (3.7) and to ensure the positivity of λ, we set the

condition:

2κθ > σ2.

Calibration:

In Section 3.2, we have derived the CDS price for piecewise constant intensities.

A more general formula is given by

CDSa,b(0, R, LGD,Λ(·)) = R[−
∫ Tb

Ta

B(0, t)(t− Tk(t)−1) dP(τ ≥ t)]

+
b∑

i=a+1

B(0, Ti)αiP(τ ≥ Ti) (3.9)

+ LGD

∫ Tb

Ta

B(0, t) dP(τ ≥ t),

where αi is the time span between Ti−1 and Ti and τ is the default time,

respectively the first jump of the underlying Cox process.

Brigo and Mercurio [6] suggest to calibrate the model the following way: First,

according to Section 3.2, solve the CDST0,Ti(0, Ri, LGD,Λ(·)) = 0 with the given

spread Ri and Ti for λi. Therefore we are free to use linear or constant intensities.

These intensities are now seen as the market intensities λmkt. Next, we use the

following derivation to calibrate the model.

The survival probabilities in the CIR++ model equals:

P(τ > t)model = E(e−Λ(t)) = E(exp(−Ψ(t, α)−Xα(t)),
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3.3 A stochastic intensity model

with

Ψ(t, α) =

∫ t

0

ψ(s, α)ds , Xα(t) =

∫ t

0

xαs ds.

So we have to make sure that:

E(exp(−Ψ(t, α)−Xα(t)) = P(τ > t)mkt = e−Λmkt(t).

To obtain exact fitting of the initial market default intensities, we have

Ψ(t, α) = Λmkt(t) + ln(E(e−X
α(t))) = Λmkt(t) + ln(BCIR(0, t, x0, α)).

On the one hand, we need to find α subject to a non-negative ψ, or in other

words non-negative and increasing Ψ, on the other hand we want the contain the

departure of λ from its time-homogeneous component xαt . Therefore we find α

by min
∫ T

0
ψ(s, α)2ds subject to ψ(s, α) ≥ 0∀s.

If we still assume independence of the short rate and the default intensities, we

obtain the CDS-price at time 0 by

CDST0,Tn(0, R, LGD,Λ(·) = R

∫ Tb

Ta

B(0, u)(Tk(u)−1 − u)λ(u)e−Λ(u)du

+R
b∑

i=a+1

B(0, Ti)αie
−Λ(Ti)

− LGD
∫ Tb

Ta

B(0, u)λ(u)e−Λ(u)du.

By construction, this price will exactly fit the market price.
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3.4 The SSRD model

3.4.1 Dependence between interest rate and default

probability

Let us have a look on the price of a defaultable bond:

D(0, T ) = E(Disc(0, T )I{τ>T}) = E(Disc(0, T )I{Λ(τ)>Λ(T )})

= E(E(Disc(0, T )I{ξ>Λ(T )}|Ft)) = E(Disc(0, T )E(I{ξ>Λ(T )}|Ft))

= E(Disc(0, T ) Exp(−Λ(T ))) = E(e−
∫ T
0 (ru+λu) du)

with Disc(0, ·) being the discount factor for time T .

It is obvious, that for independent short rate r and intensity λ, the formula can

be simplified as:

D(0, T ) = B(0, T )P(τ > T ). (3.10)

Up to now, we only have discussed intensity models, where independence of r

and the probability of default is assumed. We will now introduce the SSRD

(=shifted square root diffusion) model which allows to take dependence into

account.

We assume, that the short rate r follows a CIR++ model, while default is

triggered by a Cox process.

As [2] have shown, these two processes are independent, if they are defined on

the same probability space. Therefore the short rate r and the default time τ are

independent as long as λt and rt are independent.

So dependence can only be incorporated in this setup by correlating the interest

rate r and the intensities λt.
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3.4.2 Setup of the model

Short rate model:

We assume the short rate r to follow the CIR++ model. We have

dxαt = k(θ − xαt )dt+ σ
√
xαt dWt

rt = xαt + φ(t, α), with t ≥ 0,

with starting condition

φ(0, α) = rmkt0 − xα0 .

As we have already pointed out in Section 3.3.2, the closed form formula for the

the price of a zero coupon bond with maturity T is:

B(t, T ) =
Bmkt(0, T )ζ1(0, t;α) exp(−ζ2(0, t;α)x0)

Bmkt(0, t)ζ1(0, T ;α) exp(−ζ2(0, T ;α)x0)
BCIR(t, T, rt − φCIR(t, α);α),

where

BCIR(t, T, xt;α) = Et(e
−
∫ T
t x

α(u) du) = ζ1(t, T ;α) exp(−ζ2(t, T ;α)xt)

is the bond price formula of the CIR model.

Intensity model:

We also assume the intensities to follow the CIR++ model. Therefore the

intensities λ are given by

λt = yβt + ψ(t, β), with t ≥ 0,

where ψ is a deterministic function, depending on the parameter vector

β = (κ, µ, ν, yβ0 ), with κ, µ, ν, yβ0 being positive deterministic constants.

As above, we are free to select the value of yβ0 as long as:

ψ(0, β) = λmkt0 − y0.

The process y is defined by:

dyβt = κ(µ− yβt )dt+ ν

√
yβt dZt,
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3.4 The SSRD model

with Z being a standard Brownian motion and to ensure the positivity of λ, we

set the condition:

2κµ > ν2.

Since our motivation was, to introduce dependence between the interest rate and

the intensities, we assume the Brownian motions W and Z to have a constant

correlation ρ.

3.4.3 Calibration of the SSRD model

Recall that the survival probability in the intensity model is given by:

P(τ ≥ t) = P(Λ(τ) ≥ Λ(t)) = E(e−
∫ t
0λu du).

To calibrate the model, we need a CDS-formula for dependent r and λ. A general

formula is given by:

CDSa,b(t, R,LGD) = I{τ>t}E
(

Disc(t, τ)(τ − Tk(τ)−1)RI{Ta<τ<Tb}

+
b∑

i=a+1

Disc(t, Ti)αiRI{τ>Ti} − I{Ta<τ<Tb}Disc(t, τ) LGD |Gt
)

where G = (Gt)t≥0, F = (Ft)t≥0, Gt = Ft ∨ σ(τ < u, u ≤ t) and Ft is the

information on the default free market up to time t.

To calibrate the model to actual CDS-rates, we would have to solve the following

equations for α, β and ρ:

CDSSSRD0,b (0, Rmkt
0,b , α, β, φ(·, α), ψ(·, β), ρ) = 0.

For a consistent calibration of the model, we would have to include also interest

rate derivatives, like zero coupon bonds, swaps or caps, and fit the parameters

of the interest rate model and the intensity model at the same time. This

method, however, would be very time intense and hence a different approach
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3.4 The SSRD model

based on some approximation might be a good alternative. Therefore we need

the following proposition.

Proposition 3.4.1: ([2]) Filtration switching formula

Let Ft ⊆ Gt, then for any G-measurable random variable Y and t ∈ R the

following formula holds.

E(I{τ>T}Y |Gt) =
I{τ>t}

P(τ > t|Ft)
E(I{τ>T}Y |Ft) , for t < T.

Let us now have a closer look on the first term of the CDS-formula.

I{τ>t}E
(

Disc(t, τ)(τ − Tk(τ)−1)R I{Ta<τ<Tb}|Gt
)

=
I{τ>t}

P(τ > t|Ft)
E
(

Disc(t, τ)(τ − Tk(τ)−1)R I{Ta<τ<Tb}|Ft
)

=
I{τ>t}

exp(−
∫ t

0
λs ds)

E
(∫ ∞

t

Disc(t, s)(s− Tk(s)−1)R I{Ta<s<Tb}I{τ∈[s,s+ds]}|Ft
)

=
I{τ>t}

exp(−
∫ t

0
λs ds)

E

(
E
(∫ Tb

Ta

Disc(t, s)(s− Tk(s)−1)R I{τ∈[s,s+ds]}|FTb
)
|Ft

)

=
I{τ>t}

exp(−
∫ t

0
λs ds)

E
(∫ Tb

Ta

Disc(t, s)(s− Tk(s)−1)R P
(
τ ∈ [s, s+ ds]|FTb

)
|Ft
)

=
I{τ>t}

exp(−
∫ t

0
λs ds)

E
(∫ Tb

Ta

Disc(t, s)(s− Tk(s)−1)R exp(−
∫ s

0

λu du)λs ds|Ft
)

= I{τ>t}E
(∫ Tb

Ta

Disc(t, s)(s− Tk(s)−1)R exp(−
∫ s

t

λu du)λs ds|Ft
)
.

Similar calculations can be carried out for the second and third term and we

obtain the following general CDS-formula, that holds for dependent r and λ.
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3.4 The SSRD model

CDSa,b(t, R,LGD) = I{τ>t}
(
R

b∑
i=a+1

αiE(exp(−
∫ Ti

t

(ru + λu) du)|Ft) (3.11)

+R

∫ Tb

Ta

E(exp(−
∫ u

t

(rs + λs) ds)λu|Ft)(u− Tk(u)−1) du

− LGD

∫ Tb

Ta

E(exp(−
∫ u

t

(rs + λs) ds)λu|Ft)du
)
.

To bypass the joint calibration of the short rate and the intensity model, we will

assume ρ = 0. Let us have a look on the following expectations:

E(exp(−
∫ Ti

t

(ru + λu) du)|Ft) = E(exp(−
∫ Ti

t

ru du)|Ft)E(exp(−
∫ Ti

t

λu du)|Ft)

(3.12)

= exp(Ψ(t, β)−Ψ(Ti, β))BCIR(t, Ti, yt, β)

× exp(Φ(t, α)− Φ(Ti, α))BCIR(t, Ti, xt, α)

where BCIR is the zero coupon bond price in the CIR model given by formula

(3.4).

E(exp(−
∫ u

t

(rs + λs) ds)λu|Ft) = E(exp(−
∫ u

t

rs ds)|Ft)E(exp(−
∫ u

t

λs ds)λu|Ft)

= E(exp(−
∫ u

t

rs ds)|Ft)(−
d

du
E(exp(−

∫ u

t

λs ds)|Ft))

(3.13)

= − exp(Φ(t, α)− Φ(u, α))BCIR(t, u, xt, α)

× d

du
exp(Ψ(t, β)−Ψ(u, β))BCIR(t, u, yt, β).

Since we have obtained Φ and Ψ as the difference of xαt and yβt to the market

data, (3.12) and (3.13) can be reduced to

Bmkt(t, Ti)(e
−(Λ(Ti)−Λ(t))) and Bmkt(t, u)λmkt(u)(e−(Λ(u)−Λ(t))).
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Using these results and by setting t = 0, we can simplify formula (3.11) to

CDSa,b(t, R,LGD) = R

∫ Tb

Ta

B(0, u)(Tk(u)−1 − u)λ(u)e−(Λ(u)) du

+R
b∑

i=a+1

B(0, Ti)αie
−Λ(Ti) (3.14)

− LGD

∫ Tb

Ta

B(0, u)λ(u)e−(Λ(u)) du.

So for calibration of the SSRD model we have to take the following steps.

First, we separately calibrate the short rate model to actual cap prices and the

intensity model to CDS spreads. Then we have determined all input parameters

except ρ, which is then set on a specific value, based on historical data or market

view.

It is important to point out, that for an exact calibration we would have to

simultaneously calibrate the interest rate model and the intensity model. But as

shown in [6], for pricing credit default swaps with the SSRD model, the correlation

ρ is negligible. Therefore the presented workaround is feasible and will fit to

market data.

The obtained model is able to replicate the actual CDS- and cap prices, but also

keeps the feature of dependence between the interest rate r and the intensity λ,

which is needed for more complicated products.

3.4.4 Simulation in the SSRD model

When we have ρ = 0, we have shown that the two independent CIR-processes

have non-central χ2 distributed marginals and most prices are given in closed

form. When dependence is introduced, it is not possible, to characterize the

joint distribution of r and λ and therefore numerical methods have to be used.

Typically this is made by applying a discretization scheme for the stochastic

differential equations and then to simulate the Gaussian increments corresponding

to the joint Brownian motion.

We will now discuss a few methods, that can be used in the SSRD model with

ρ 6= 0.
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3.4 The SSRD model

We will discuss three different approaches, namely the Euler scheme, the implicit

Euler scheme and the Gaussian dependence mapping.

Euler scheme in different approaches:

The Euler scheme is the easiest discretization scheme. We split the interval

[0, T ] into 0 = t0 < t1 < · · · < tn = T . Next, the Brownian motion Z (of the

intensity process) can be represented by means of a third Brownian motion V ,

i.e. Zt = ρWt +
√

1− ρ2Vt, with V being independent of W .

Given this setup, the increments of W and Z in the interval [ti, ti+1] can be

simulated by the increments of the independent Brownian motions W and V .

We obtain:

xαti+1
= xαti + k(θ − xαti)(ti+1 − ti) + σ

√
xαti(Wti+1

−Wti)

yβti+1
= yβti + κ(µ− yβti)(ti+1 − ti) + ν

√
yβti(Zti+1

− Zti).

The drawback of this simplifying approach is, that we do not ensure positivity

and since xαti+1
contains the square root of xαti , the process is not well defined in

general.

There are a few approaches, to bypass the problem. One possibility is proposed

by [8]. xαti+1
is defined by

xαti+1
= xαti + k(θ − xαti)(ti+1 − ti) + σ

√
xαtiI{xαti>0}(Wti+1

−Wti).

Here, positivity is not ensured, but since we only take the square root in case of

positivity, the process is well defined.

Another approach, according to [10], is to take the absolute value of xαti+1
:

xαti+1
= |xαti + k(θ − xαti)(ti+1 − ti) + σ

√
xαti(Wti+1

−Wti)|.
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3.4 The SSRD model

Implicit Euler scheme:

For CIR processes it is possible to obtain ad-hoc schemes.

Let us therefore have a look on the diffusion process of the square root of xαt .

d
√
xαt =

kθ − σ2

4

2
√
xαt

dt− k

2

√
xαt dt+

σ

2
dWt (3.15)

It follows, that d
√
xαt dWt = σdt/2. We will use this result in the next calculations.

When max(ti+1 − ti, 0 ≤ i ≤ n)→ 0, we can transform xαt as follows

xαt = xα0 +

∫ t

0

k(θ − xαs ) ds+ σ

∫ t

0

√
xαs dWs

= lim
[
xα0 +

∑
i;ti<t

k(θ − xαti)(ti+1 − ti) + σ
∑
i;ti<t

√
xαti(Wti+1

−Wti)
]

= lim
[
xα0 +

∑
i;ti<t

k(θ − xαti+1
)(ti+1 − ti) + σ

∑
i;ti<t

√
xαti+1

(Wti+1
−Wti)

− σ
∑
i;ti<t

(
√
xαti+1

−
√
xαti)(Wti+1

−Wti)
]

= lim
[
xα0 +

∑
i;ti<t

(kθ − kxαti+1
)(ti+1 − ti) + σ

∑
i;ti<t

√
xαti+1

(Wti+1
−Wti)

]
− lim

∑
i;ti<t

σ2

2
(ti+1 − ti)

= lim
[
xα0 +

∑
i;ti<t

(kθ − σ2

2
− kxαti+1

)(ti+1 − ti) + σ
∑
i;ti<t

√
xαti+1

(Wti+1
−Wti)

]
.

Therefore we introduce the following implicit scheme:

xαti+1
= xαti + (kθ − σ2

2
− kxαti+1

)(ti+1 − ti) + σ
√
xαti+1

(Wti+1
−Wti).

Then
√
xαti+1

is the unique positive square root of the polynomial

P (X) = (1 + k(ti+1 − ti))X2 − σ(Wti+1
−Wti)X − (xαti + (kθ − σ2

2
)(ti+1 − ti))

and hence is given by

xαti+1
=

(
σ(Wti+1

−Wti) +
√

∆ti

2(1 + k(ti+1 − ti))

)2
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3.4 The SSRD model

with

∆ti = σ2(Wti+1
−Wti)

2 + 4(xαti + (kθ − σ2

2
)(ti+1 − ti))(1 + k(ti+1 − ti))).

A second approach starts with equation (3.15). Setting up the implicit scheme,

we get again a second-degree equation, given by

(1 +
k

2
(ti+1 − ti))xαti+1

− (
σ

2
(Wti+1

−Wti) +
√
xαti)
√
xαti+1

+
kθ − σ2

4

2
(ti+1 − ti) = 0.

By solving the equation and taking again the positive square root, we obtain

xαti+1
=

(
σ
2
(Wti+1

−Wti) +
√
xαti +

√
∆̃ti

2(1 + k
2
(ti+1 − ti))

)2

,

with

∆̃ti = (
σ

2
(Wti+1

−Wti) +
√
xαti)

2 + 2(1 +
k

2
(ti+1 − ti))(kθ −

σ2

4
)(ti+1 − ti).

The big problem of the Monte Carlo algorithm is, that we need a large number

of simulations to achieve a good precision. For CDS-simulations, this is even

more complicated, since the variance of the CDS price obtained by Monte Carlo

simulation is quite large in comparison to the obtained value.

One method to reduce the number of simulations is to introduce a threshold

barrier B, so that P(Λ(T ) < B) ' 1. This means, that we do not have to

simulate values of ξ, that are larger than B, since in this case no default occurs

and we already know the value of the CDS, which is R0,b(0)
∑b

i=1 B(0, Ti)αi.

For Λ(τ) ∼ exponential distributed with parameter 1 we have

E(CDS) = E(CDS|Λ(τ) < B)(1− e−B) + E(CDS|Λ(τ) ≥ B)e−B.

This will lead to an increase of our efficiency by (1 − e−B), nevertheless, the

number of simulations, or in other words the amount of time needed, remains

quite large.
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3.4 The SSRD model

Gaussian dependence mapping:

Due to the drawbacks of Monte Carlo simulations for pricing CDS, Brigo and

Mercurio [6] mentioned a different approach, that does not need Monte Carlo,

called Gaussian dependence mapping. As we have seen in Section 3.4.3, the CDS

formula can be displayed the following way, for t = 0 and Ta = 0:

CDS0,b(0, R,LGD) = R
b∑
i=1

αiE
(

exp(−
∫ Ti

0

(ru + λu) du)
)

+R

∫ Tb

0

E
(

exp(−
∫ u

0

(rs + λs) ds)λu

)
(u− Tk(u)−1) du

(3.16)

− LGD
∫ Tb

0

E
(

exp(−
∫ u

0

(rs + λs) ds)λu

)
du.

The problem is in the case of ρ 6= 0, that we have no explicit formula for

E(exp(−
∫ T

0
(xαs + yβs ) ds)).

According to [6] “the idea Gaussian dependence mapping approach is now, to map

the two-dimensional CIR dynamics in an analogous tractable two-dimensional

Gaussian dynamics, that preserves as much as possible of the original CIR

structure.”

By taking a Vasicek process for x and y we can use the following lemma:

Lemma 3.4.1: Let xα,Vt and yβ,Vt be two Vasicek processes as follows:

dyβ,Vt = κ(µ− yβ,Vt )dt+ νdZt

dxα,Vt = k(θ − xα,Vt )dt+ σdWt

with dZtdWt = ρdt. Then A =
∫ T

0
(xα,Vs + yβ,Vs ) ds and B = yβ,VT are Gaussian

random variables with respective mean and variance given as follows:

mA = (µ+ θ)T − [(θ − x0)g(k, T ) + (µ− y0)g(κ, T )]

mB = µ− (µ− y0)e−κT ,

σ2
A =

ν

κ

2

(T − 2g(κ, T ) + g(2κ, T )) +
σ

k

2

(T − 2g(k, T ) + g(2k, T )),

+
2ρνσ

κk
(T − g(κ, T )− g(k, T ) + g(k + κ, T ))

σ2
B = ν2g(2κ, T ).
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3.4 The SSRD model

The correlation is given as:

ρ̃ =
1

σAσB

[ν2

κ

(
g(κ, T )− g(2κ, T )

)
+
ρνσ

k

(
g(κ, T )− g(κ+ k, T )

)]
where g(k, T ) = 1−e−kT

k
.

With the above formula and taking yV the degenerated case with µ = κ = y0 = 1

and ν = 0, we can calculate:

E
[
exp
(
−
∫ T

0

xα,Vs ds
)]

= exp(−θt+ (θ − x0)g(k, T ) +
1

2

σ

k

2

(t− 2g(k, T ) + g(2k, T ))),

which is exactly the bond price formula in the Vasicek model.

Then the expectation of the CIR process is matched with the expectation of the

Vasicek process, such that

E

(
exp(−

∫ T

0

xαT ,Vs ds)

)
= E

(
exp(−

∫ T

0

xαs ds)

)

E

(
exp(−

∫ T

0

yβT ,Vs ds)

)
= E

(
exp(−

∫ T

0

yβs ds)

)
.

These equations are all analytically known.

Therefore we approximate the expectations needed in equation (3.16) by

E

(
exp(−

∫ T

0

(xαs + yβs ) ds)

)
≈ E

(
exp(−

∫ T

0

(xαT ,Vs + yβT ,Vs ) ds)

)

E

(
exp(−

∫ T

0

(xαs + yβs ) ds)yβT

)
≈ E

(
exp(−

∫ T

0

(xαT ,Vs + yβT ,Vs ) ds)yβT ,VT

)
+ ∆,

with

∆ = E

(
exp(−

∫ T

0

xαs ds)

)
E

(
exp(−

∫ T

0

yβs ds)y
β
T

)

− E

(
exp(−

∫ T

0

xαT ,Vs ds)

)
E

(
exp(−

∫ T

0

yβT ,Vs ds)yβT ,VT

)
.
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3.5 Summary

As already mentioned above, the intensity approach does not use economic

fundamentals, it focuses directly on the default event. This direct approach

leads to advantages and drawbacks shortly discussed below.

One big advantage of intensity models in comparison with structural models is

the better ability to match actual CDS-spreads. This fact is closely linked to

the observability of market data required by the model, since intensity models

only need the actual zero coupon curve (default-free market information) and

CDS-spreads (default information) for calibration. Furthermore intensity models

are based on a quite general approach, since in principle, we are free to use any

short rate model of intensities.

It is important to mention, that λ does not only depend on the credit quality

of the firm. λ is linked directly to the CDS-price, which is influenced by many

factors, that cannot be separated, since the CDS-data is mapped directly to the

intensities. For example, increasing CDS-rates do not have to be based on worse

credit quality of this single firm, but may also depend on other influence factors,

like insufficient liquidity on the CDS market, macroeconomic reasons, et cetera.

Due to this inseparability of influence factors it is not possible to simulate for

example macroeconomic changes and their impact on the default probability.

Another drawback of intensity models is that for most of the rate models leading

to positive intensities, we do not get explicit formulas for the prices of CDS-rates

or for corporate bonds. So we have to use Monte Carlo simulations or other

approximation methods to obtain satisfying results. Here, variance reduction

methods and Quasi Monte Carlo methods have to be used and we refer to [17],

[8] and [10] for further information.
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Chapter 4

Application of the models

In my diploma thesis I want to discuss also the practical feasibility of the models

and how good they perform in matching real market data. Therefore we will

discuss two real market examples of the 30th of December 2009 and compare the

results obtained by the different models.

This diploma thesis arose in the context of my work at the Raiffeisen Landesbank

Steiermark. Therefore our field of interest lies in financial bonds and, as we will

see later, banks are a special field of application, especially for structural models.

For the first example, Credit Suisse, we will calculate the default probabilities

using the different models and compare the results. We will focus on the models

with deterministic interest rate, since the application of the more complex

models would go beyond the scope of this diploma thesis. To double check the

results, we will take the obtained default probabilities to value two bonds, issued

by Credit Suisse, and compare them with the market price. This procedure

should give information about the reliability of the results, since the default

probabilities should not differ significantly whether they are obtained by CDS-

or bond data.

The second example, Banca Intesa, is a bank with similar market situation to

Credit Suisse, since they have the same credit rating and very similar CDS

spreads. As we will see later, the situation is though little different due to the

different balance sheet data. Nevertheless the markets default probabilities

should not differ significantly to the ones of Credit Suisse due to the similar

CDS spreads. We will see later, how structural models can handle this situation.
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Remark: All data for the following examples are taken from Bloomberg

Terminal.

Consider the default free interest rate curve of the 30th of December 2009 shown

below:

Figure 4.1: Zero coupon curve 30th of December 2009

Remark: Here, we are already confronted with the first difficulty, because we

have to choose the risk free interest rate. According to [12], interest swap rates

are a good approximation for default free interest rates, since default risk does

not play a crucial role in Swap contracts. This approach is also widely used in

practice, therefore the above interest curve is stripped from the swap rate curve

of the 30th of December 2009.

4.1 Credit Suisse

Before we can start with the different models, we have to quote first the given

data. The CDS-spreads of Credit Suisse on the 30th of December 2009 are given

in Table 4.1.

We will first start with intensity models, in particularly with the simple model of

piecewise constant/linear intensities. These intensities are also the starting basis

of the CIR++ model.

For the intensity approach we only need as input parameters the actual CDS

rates and the interest rate curve. Using formula (3.3), we get the results, shown

in Figure 4.2.

74



4.1 Credit Suisse

Maturity Tn CDS Spread in BP

1Y 33

2Y 38

3Y 44

4Y 55

5Y 60

7Y 68

10Y 72

Table 4.1: CDS-Spreads

Figure 4.2: piecewise constant/linear default intensities

By taking these intensities as the “market intensities”, we can fit the CIR++

model to this data. By using the least squares method, we obtain the results

plotted in Figure 4.3. The parameters of the fitted CIR++ model are given by:

κ = 0, 065939 µ = 0, 00001 σ = 0, 00036315 y0 = 0, 00819139

We can compute the default probability by using the Bond price formula of the

CIR++ model. Since we have fitted the CIR++ model to the piecewise linear

default intensities, we will obtain the same probabilities for the CIR++ model

and the piecewise constant intensity model. The default probabilities are given

in Table 4.2.
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Figure 4.3: CIR++ intensity model

Maturity Tn Constant Intensities Piecewise intensities / CIR++

1Y 0,816 % 0,816 %

2Y 1,867 % 1,867%

3Y 3,228 % 3,231 %

5Y 7,272 % 7,275 %

7Y 11,306 % 11,345 %

10Y 16,442 % 16,363 %

Table 4.2: Default probabilities for Credit Suisse, 30th of December 2009

Next we compare the results with the ones obtained by structural models. For

structural models we need the equity value E0, its volatility σE and the debt value

D0, which are normally observable on the market. The equity value is calculated

by

E0 = Number of shares ∗ Value of shares

and σE can be estimated by the logarithmic changes of the equity value. The

debt value for a common corporate is given by the nominal of the issued bonds,

which is observable on market. When it comes to balance sheet data of banks,
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the segmentation of liabilities and equity is different, as illustrated in figure 4.4.

Figure 4.4: Liabilities and equity of banks in comparison to corporates

Nevertheless we will first use the equity value E0 and the total liabilities to

calculate the default probabilities. I will not focus on the estimation of the

total liabilities, since we will see, that this approach will not lead to satisfying

results. I have taken the total liabilities of the quarterly financial statement for

my calculations.

E0 = 35.819 σE = 30, 245% D0 = 660.329

in TEUR. The balance sheet data of Credit Suisse is given in CHF, therefore I

used the currency rate of the 30th of December 2009, which equals 1,4888.

Remark: σE is estimated by the logarithmic changes of the equity value in

CHF, since it should not contain the FX volatility.

Furthermore I assume the debt value Dt to be given by

Dt = D0 · eγt

where γ is according to the Merton and Black and Cox model the interest rate the

investors get for their capital. A good estimator for γ is the riskless interest rate

r plus the CDS spread according to the maturity, since in principle, the investor

can invest in the bond and buy a CDS as insurance in case of default.
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With these input data, we calculate the starting firm value V0 and its volatility

according to the method mentioned in Section 2.2:

V0 = 696.149 σV = 1, 5562%

The 10 year default probability then equals:

P(τ < 10) = 64, 6%

It is obvious that this probability is overestimated and in total contrariety to

the market’s CDS spreads.

As a second approach we will assume the “other debts” as constant. As

illustrated in figure 4.5, the model is only sensitive on the distance to default,

therefore a constant factor in Dt and Vt do not affect the result.

Figure 4.5: CIR++ intensity model

With this assumption the model is equivalent to the structural models for

common corporates, since we may estimate the “changing” total asset value as

equity value E0 and debt value, respectively the nominal of the issued bonds,

D0. On the one hand this is quite a strong hypothesis, but on the other hand it

can be seen as a way to translate the bank data to the corporate setup of the

Merton and the Black and Cox model.
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Remark: For the debt structure we definitively have to take into account the

nominal of the issued bonds, since the nominal and the interest has to be paid

in fully amount until/at maturity to avoid default. As we will see later, the

obtained default probabilities seem to be quite consistent with the ones obtained

by the intensity models, but even overestimated for maturities over 5 years.

Therefore, including the other liabilities would lead to overestimation of the

default probabilities for longer maturities.

Using this approach, we get the following results:

E0 = 35.819 σE = 30, 245% D0 = 93.386 Dt = D0 · eγt

We calculate again the starting firm value V0 and its volatility according to the

method mentioned in Section 2.2:

V0 = 129.205 σV = 8, 385%

As we can see, the debt-to-equity ratio is now 2,6%, which is in the usual range.

Using the Merton Model and the Black and Cox Model we obtain the results

given in Table 4.3.

Maturity Tn Merton Black and Cox

1Y 0,007 % 0,01 %

2Y 0,45 % 0,54 %

3Y 1,91 % 2,16 %

5Y 6,97 % 7,52 %

7Y 12,75 % 13,40 %

10Y 20,59 % 21,28 %

Table 4.3: Default probabilities for Credit Suisse, 30th of December 2009

The results obtained by this approach seem more in accordance with the market

CDS rates. The Black and Cox model produces higher default probabilities than

the Merton’s model. We have expected this kind of result, since the Black and

Cox model has a similar setup, but allows also default before maturity T .

Here we can see one characteristic of structural models, which was already
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mentioned in the conclusion of Chapter 2. The short term default probabilities

produced by the Merton and also the Black and Cox model are approximately

zero. Therefore, by pricing for example a CDS or a corporate bond with a short

duration, the calculated prices do not match the market prices.

For testing purposes, we will calculate the price of two coupon bonds, issued by

Credit Suisse, given the default probabilities of the different models. Since we

use deterministic interest rates, we can use formula 3.10 to calculate the present

value of the bonds.

An annual 4,625% coupon bond with maturity 07.06.2010 had a bid price of

104,0179 and an ask price of 104,2019. So the middle price, we want to estimate

by our models is 104,1099. This example is very simple, since only one payment

is outstanding. Using the different models, we get the following results:

Model Price YtM

Merton 104,2461 0,834 %

Black and Cox 104,2460 0,835 %

Market price 104,1099 1,136 %

Constant intensities 104,099 1,160 %

CIR++ / linear intensities 104,099 1,160 %

Table 4.4: Coupon bond Price

The price of the intensity models is the same, since we assume in the first interval

[0, T1] a constant intensity. As we can see in Table 4.4, in case of short term

contracts the results produced by structural models and intensity models are

quite different. As a measure of the difference one may use the corresponding

yield-to-maturity given also in Table 4.4. Notice that taking no default risk into

account would cause a price of 104,252. So for contracts with short duration

structural models cannot be used in practice and intensity models clearly have

to be preferred.

The second bond, is an annual 5,125 coupon bond with maturity 18.09.2017. Its

bid price was 106,943, the ask price 107,436, which results in a middle price of

107,189.
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Model Price YtM

Merton 106,302 4,35 %

Black and Cox 105,904 4,41 %

Market price 107,190 4,22 %

Constant intensities 106,996 4,25 %

CIR++ / linear intensities 106,799 4,28 %

Table 4.5: Coupon bond Price

As we can see from Table 4.5, also here the intensity models match the market

prices better than the structural models.

The Merton and the Black and Cox model reflect the drawbacks mentioned in

Section 2, especially the underestimation of the short term default probabilities.

Nevertheless I have to mention, that the small number of input factors is on the

one hand the big advantage of intensity models, but on the other hand also its

drawback. Given the interest rate, intensity models use a bijective mapping of

CDS-rates to intensities, therefore intensity models will match market prices,

but a proceeding analysis of the influence factors is not in the scope of the

model.
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4.2 Banca Intesa

The second example we will discuss is Banca Intesa. Banca Intesa is an Italian

bank with the same credit rating as Credit Suisse. As shown in Table 4.6 also

the CDS spreads are in the same range, therefore the results obtained by the

different models should not differ significantly in comparison to Credit Suisse.

As we will see later, the debt-to-equity value is quite different, therefore we want

to test how structural models can handle this situation.

Maturity Tn CDS Spread in BP

1Y 33

2Y 38

3Y 42

4Y 54

5Y 59

7Y 65

10Y 70

Table 4.6: CDS-Spreads

Using intensity models, the probability of default is only influenced by the

interest rate and the actual CDS-spreads. Therefore the obtained results, given

in Table 4.7, are very similar to the ones of Credit Suisse.

Maturity Tn Constant Intensities Piecewise intensities / CIR++

1Y 0,829 % 0,831 %

2Y 1,843 % 1,843%

3Y 3,115 % 3,118 %

5Y 7,195 % 7,196 %

7Y 10,767 % 10,803 %

10Y 16,166 % 16,124 %

Table 4.7: Default probabilities
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For structural models, we estimate again the firm value by the equity value E0,

its volatility σE and the debt value D0 and Dt. Using the same approach as in

section 4.1, we have the following input data:

E0 = 34.868 σE = 28, 416% D0 = 185.243 Dt = 185.243 · eγt,

with γ being again the riskless interest rate plus the CDS spread in basis points.

To obtain the total asset value and its volatility we use again the approach

described in Section 2.2.

V0 = 220.111 σV = 4, 5015%

As we can see we have here a debt-to-equity ratio of 4,9, whereas the debt-to-

equity ratio of Credit Suisse was 2,6. For the default probabilities of the Merton

and Black and Cox Model this leads to the following results:

Maturity Tn Merton Black and Cox

1Y 0,009 % 0,010 %

2Y 0,053 % 0,56%

3Y 2,27 % 2,33 %

5Y 8,53% 8,62 %

7Y 15,71 % 15,78 %

10Y 25,83 % 25,88%

Table 4.8: Default probabilities

By comparing the default probabilities for Banca Intesa and Credit Suisse, the

long term default probabilities differ clearly, despite the similar initial situation.

The reason for this difference may be based on the technical setup of structural

models in general. Structural models have to deal with more hypothesis in the

modeling and the calibration, therefore there is a bigger margin of error. The

different balance sheet data of banks even worsens this problem.

Concluding we can say, that using structural models requires a lot of know-how

and a well-founded analysis of the market situation, including balance sheet

data, industry sector,et cetera.

Due to the observability and the simplicity of the input data, in this special

application, the direct approach of intensity models works more reliable.
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4.3 Conclusion

In my opinion, the feasibility of the different models and the special demands of

banks as counterparties, make intensity models more applicable than structural

models.

First, the non-observability of data and therefore the estimation of the required

input parameters make structural models hard to calibrate and automatize, and

second, these models do not really match actual market data well.

Exactly these issues are the advantages of the intensity models, since all needed

input parameters are observable in real time and the obtained probabilities of

default match the markets opinion.

As a drawback of the intensity models we have to mention, that we need

numerical methods to solve the set of equations CDST0,Ti(0, Ri, LGD,Γ(·)) = 0.

Nevertheless we only have to solve the system of equations assuming

independence, the computational time requirements should remain in tolerable

limits.

Within intensity models, the choice of the model to use, is clearly dependent

on the field of application. If the field of interest is the default probabilities,

the simplified method with piecewise constant or linear intensities could be

sufficient, whereas if the dependence on the interest rate has to be taken into

account, then the SSRD model can better fit the requirements.

Last but not least we have to mention, that these models are only one tool

among others. This means that there are of course other influence factors on

CDS rates or corporate bond prices than the default probability that are not

taken into account by these models, like liquidity or the debt maturity structure.

But nevertheless these models are a good support to manage default risk in a

quantitative way.
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