

Christian OSWALD

Rechnergestützte Auslegung der Betriebsfestigkeit von Rotorketten für Wasserkraftgeneratoren im Grenzbereich

Diplomarbeit

Technische Universität Graz

Institut für Leichtbau

Betreuung: Ass. Univ.-Prof.Dipl-Ing.Dr.techn. Christian Moser

Graz, August 2012

Eidesstattliche Erklärung¹

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, am

Datum

Unterschrift

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

Graz,

Date

Signature

 $^{^1\}mathrm{Beschluss}$ der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008; Genehmigung des Senates am 1.12.2008

Kurzfassung

Durch sich ändernde Anforderungen am Markt gewinnen Pumpspeicherkraftwerke immer mehr an Bedeutung. Da Generatoren für solche Kraftwerke sehr vielen Lastwechseln ausgesetzt sind, ist der Betriebsfestigkeitsnachweis von zentraler Bedeutung. Es ist zweckmäßig die Betriebsfestigkeit bereits während der Vorauslegung zu berücksichtigen, um Iterationsschritte zwischen der Konstruktions- und der Berechnungsabteilung zu vermeiden. In dieser Arbeit werden Grundlagen erarbeitet, die für die Erstellung eines teilautomatischen Berechnungsprogramms für die Vorauslegung von Rotorketten notwendig sind. Dieses Berechnungsprogramm soll die Betriebsfestigkeit bereits in der Entwurfsphase berücksichtigen. Rotorketten sind Polträger von Generatorläufern, die aus Blechsegmenten aufgeschichtet sind. Den zentralen Teil der Arbeit bildet das Entwickeln eines parametrisierten Finite-Elemente-Modells für die Berechnung der für den Betriebsfestigkeitsnachweis erforderlichen Kerbspannungen, wobei die besonderen Eigenschaften des Kettenläufers miteinbezogen werden. In der Arbeit werden zudem analytische Modelle vorgestellt, die der Verifikation der numerischen Berechnung dienen.

Abstract

Because of changing demands on the market, pumped storage plants are becoming more and more important. Generators for such power stations are operated at a high number of load cycles. Therefore, the determination of the fatigue strength is a crucial point. It is practical to calculate the fatigue strength already during an early phase of the engineering of the components in order to reduce the number of loops between the construction department and the engineering department. This thesis contains basic principles for the implementation of a semiautomatic software tool for the generation of the sheet metal layout of stacked rotor rims, which includes the calculation of the fatigue strength. Stacked rotor rims are rims for generators which consist of layers of sheet metal segments which are pinned together. The central part of the thesis is the development of a finite-element model. The results of this model are then used for determining the fatigue strength during the early stage of the engineering process. Special attributes of stacked rotor rims are also being considered. Moreover this thesis contains analytical models for the verification of the numerical calculations.

Inhaltsverzeichnis

1	Einl	eitung					1
	1.1	Bauarten von	Generatoren				. 3
		1.1.1 Massiv	rotor				. 3
		1.1.2 Massiv	joch				. 3
		1.1.3 Rotork	ette				. 3
	1.2	Aufbau eines I	Kettenläufers				. 4
	1.3	Polaufbau					. 7
	1.4	Aktuelle Beree	chnungsmethodik der Vorauslegung				. 7
	1.5	Spitzenspannu	ngsproblematik				. 8
	1.6	Problemstellu	lg	•	•		. 9
2	Auf	gabenstellung					12
	2.1	Zielsetzung .					. 12
	2.2	Beispielprojek	t				. 13
3	Die	analytischen I	Modelle				16
Ū	3.1	Der dünne Ri	ן מי ו מי				16
	3.2	Der dicke Rine	r r	·	•		. 10
	3.3	Interpretation	der analytischen Modelle	•		 	. 25
л	Dac	Einita Elama	ata Madall				27
4		Analyse der w	nie-Modeli wliogenden Coometrie				21
	4.1	Lastfällo		•	•	•••	. 21
	4.2	A 2 1 Stilleto		•	•	•••	. JJ
		4.2.1 Sunsta 4.2.2 Norph	na	•	•	•••	. 00
		4.2.2 Nombo 4.2.3 Lastab	wurf	•	•	•••	. 00 34
		4.2.5 Dastab	wuii	•	•	•••	· 04 34
		4.2.4 Durch	ang	•	•	•••	· 04 34
	43	Analyse der E	lementoröke	•	•	•••	. 54
	ч.0	A 3.1 Radien	am Schwalbenschwanznutgrund	•	•	•••	. 55
		4.3.2 Rolzen		•	•	•••	. 50
	A A	Modifikatione	des Modells für kettensnezifische Besonderheiten	•	•	•••	. 40 17
	7.7	441 Radien	am Schrumpfleisten-Nutgrund	•	•	•••	. =1
		442 Nenner	ann senn umphension reargi und	•	•	•••	. 54
		1.1.2 1.0mms		·	•	•••	. 55

Inhaltsverzeichnis

	4.5	Rechenzeitoptimierung	62	
5	Bet	riebsfestigkeitsnachweis	64	
	5.1	Werkstoffwechselfestigkeit $\sigma_{w,zd}$	67	
	5.2	Bauteilwechselfestigkeit σ_{WK}	68	
	5.3	Bauteildauerfestigkeit nach Mittelspannung σ_{AK}	74	
	5.4	Bauteilermüdungsfestigkeit bei variabler Spannungsamplitude σ_{BK}	78	
	5.5	Ausnutzungsgrad	81	
6	Um	setzung	82	
	6.1	Parametrisierung der Geometrie	83	
	6.2	Vernetzen und Lastfälle	86	
	6.3	Umsetzung als Programm	86	
7	Zus	ammenfassung und Ausblick	87	
Lit	Literatur 8			

Abbildungsverzeichnis

1.1	Schematischer Aufbau eines Pumpspeicherkraftwerks[Ele12]	1
1.2	Lastkurve[Sch12]	2
1.3	Prinzipskizze eines Generatoräufers	5
1.4	Beispiel einer Rotorkette mit 3/4-Verschichtung[Wal11]	6
1.5	Arbeiter beim Aufschichten einer Generatorkette	6
1.6	Rechteckpol 1fach-SSW	7
1.7	Rechteckpol 2fach-SSW	7
1.8	Trapezpol 2fach-SSW	7
1.9	Exemplarische Darstellung der Spannungsverteilung in einem Segment	
	einer Rotorkette[Wal11]	9
1.10	Spannungshysterese bei lokaler Plastifizierung	10
1.11	Spannungsverlauf bei dynamischer Belastung	11
1.12	Rissbildung bei einem Kettenblech einer Kette mit Hammerkopf- Polbe-	
	festigung	11
2.1	Eingabemaske des Programms RADBERKW	14
2.2	Ablauf der teilautomatisierten Berechnung	14
3.1	Abstrahierung des Generatorrotors für das Modell	17
3.2	Darstellung des Querschnitts der Kette	17
3.3	Modell des dünnen Rings unter Ausnützung aller Symmetrien	19
3.4	links: Auflagerreaktionen und äußere Kräfte, rechts: Kräfte am differen-	
	ziellen Element	19
3.5	Bestimmen der Verläufe von 0 bis β	20
3.6	Bestimmen der Verläufe von β bis γ	21
3.7	(a)Mit modelliertem Arm, (b) Armsteifigkeit ersetzt durch Federkonstan-	
	te k	22
3.8	Polygonalverformung der Kette durch die Armkäfte (stark übertriebene	
	Darstellung) eines Nabensterns mit 8 Armen	23
3.9	Verlauf der Biegemomente in der Kette	24
3.10	Herleitung der Spannungen am differenziellen Volumselement[Mar08]	25
3.11	Spannungsprofil der Radialspannungen σ_r (grün), Tangentialspannungen	
	σ_{φ} (blau) und der von-Mises-Vergleichsspannungen $\sigma_{v} = \sqrt{\sigma_{\varphi}^{2} + \sigma_{r}^{2} - \sigma_{\varphi}\sigma_{r}}$	
	(rot)	26

Abbildungsverzeichnis

4.1	Geometrie des Kettenbleches des Beispielgenerators	28
4.2	Kleinste geometrische Symmetrieeinheit	29
4.3	Flankenkräfte (grün)	30
4.4	Grundgeometrie des symmetrischen Modells. (1) Rotation, (2) Flanken-	
	kräfte und (3) Armkräfte	31
4.5	Einfach vernetztes Modell mit einer Elementkantenlänge von $\approx 10 \text{mm}$	36
4.6	Homogenes Mesh: LF Stillstand	37
4.7	Homogenes Mesh: LF Nennbetrieb	37
4.8	Homogenes Mesh: LF Lastabwurf	37
4.9	Homogenes Mesh: LF Durchgang	37
4.10	Von-Mises-Vergleichsspannung in Abhängigkeit von der Teilung	39
4.11	Relativer Fehler bezogen auf Teilung von 32	39
4.12	1 Element am SSW-Radius	40
4.13	2 Elemente am SSW-Radius	40
4.14	4 Elemente am SSW-Radius	40
4.15	8 Elemente am SSW-Radius	40
4.16	16 Elemente am SSW-Radius	41
4.17	32 Elemente am SSW-Radius	41
4.18	Verformungsplot (weiße Linie: unbelastetes Modell)	41
4.19	Plot des Netzes mit 32 Elementen am Nutgrundradius des SSW	41
4.20	Von-Mises-Vergleichsspannung in Abhängigkeit von der Teilung	43
4.21	Relativer Fehler bezogen auf Teilung von 32	44
4.22	1 Element am Bolzenaugenviertel	45
4.23	2 Elemente am Bolzenaugenviertel	45
4.24	4 Elemente am Bolzenaugenviertel	45
4.25	8 Elemente am Bolzenaugenviertel	45
4.26	16 Elemente am Bolzenaugenviertel	46
4.27	64 Elemente am Bolzenaugenviertel	46
4.28	Position des Detailausschnittes am Modell	46
4.29	Plot des Netzes mit 16 Elementen am Bolzenaugenviertel	46
4.30	Verlauf der Tangentialspannungen eines vorgespannten Blechpakets und	
	einer Verschichtung von $u = \frac{4}{5}$ [Wal11]	48
4.31	Modellaufbau für die Bestimmung des Rampenfaktors (Paket aus 6 Ble-	
	$chen) [Wal11] \dots $	48
4.32	Dicke der PLANE182-Elemente in Abhängigkeit von der tangentialen Po-	
	sition	50
4.33	Bereich, auf den die Dickenfunktion angewendet wird	51
4.34	Markierte Elemente für die Dickenfunktion	52
4.35	3D-Ansicht Dickenfunktion	52
4.36	3D-Ansicht Dickenfunktion	52
4.37	3D-Ansicht Dickenfunktion	52
4.38	Spannungskonturplot ohne korrigierter Dicke/Dichte	53

Abbildungsverzeichnis

4.39	Spannungskonturplot mit korrigierter Dicke/Dichte	53
4.40	Größenordnung der Radialspannungen im Bereich der Dicke-/Dichtfunkion	
	bei Durchgang (Konturplot von -20MPa bis 20MPa)	54
4.41	Spannungsspitzen-Singularität bei "unendlich steifem" Arm	55
4.42	Simulation des Arms mittels Steifigkeiten	56
4.43	Ersatzmodell für die Steifigkeit des Arms	56
4.44	Vergleichsspannung am Radius bei Stillstand mit simulierter Armsteifigkeit	57
4.45	Reaktionskraft der Arme und Spannungen am Radius	58
4.46	Radiale Verschiebung in Abhängigkeit von der Elementgröße	59
4.47	Entwicklung der Knotenanzahl in Abhängigkeit von der Elementkantenlänge	60
4.48	Radiale Verschiebung bei 50mm Elementkantenlänge	61
4.49	Radiale Verschiebung bei 10mm Elementkantenlänge (mit Darstellung der	
	Dickenfunkion)	61
4.50	Radiale Verschiebung bei 2mm Elementkantenlänge	61
4.51	Positionen der untersuchten Knoten	61
4.52	Aufgeteiltes Modell mit Säumen um Bereiche höherer Spannungskonzen-	
	tration	62
4.53	Vernetztes Modell mit unterschiedlicher Knotendichte	63
51	Wöhlerlinien von Werkstoffen mit ausgeprägter Dauerfestigkeit (a) und	
0.1	ohno ausgoprägtor Dauerfostigkoit (b) [BV07]	64
52	Wöhlerlinie	66
5.3	Wöhlerlinie modifiziert	67
5.4	Temperaturfaktor für die Werkstoffwechselfestigkeit $K_{\pi,p}$ [Mas03]	68
5.5	Beispielhafte Darstellung eines Spannungsgradienten quer zur Spannungs-	00
0.0	richtung Quelle: Firmeninterne Publikation	$\overline{70}$
5.6	Punktweise Bestimmung von Spannungsamplituden [Mas03]	70
5.0	Bestimmung der Stützzahl n_{τ} aus dem Faktor \overline{G}_{τ}	72
5.8	Bestimmung des Bauheitsfaktors	72
5.9	Makroaufnahme der Laserschnittoberfläche	74
5.10	Die 4 Mittelspannungsbereiche nach FKM-Bichtlinie [Mas03, S, 115]	75
5.11	$\sigma_{-\varepsilon}$ -Diagramm mit Neuber-Hyperbel	79
5.12	Wöhlerlinienexponent	80
6.1	Schreiben eines APDL-Makros	82
6.2	Grundmodell	84
6.3	Ein Bolzenauge mit Saum	85
6.4	Schwalbenschwanznut	85
6.5	Schrumpfleistennut	85

Durch Änderung des Marktes haben sich die Anforderungen an Generatoren für hydroelektrische Kraftwerke geändert. Bis vor einiger Zeit wurden hauptsächlich Generatoren für Basislastkraftwerke geliefert, also Kraftwerke, die auf Dauerbetrieb ausgelegt wurden. In letzter Zeit gewinnen allerdings – nicht zuletzt wegen des vergrößerten Anteiles der Windenergie im Energiemix – Pumpspeicherkraftwerke zunehmend an Bedeutung. Diese haben die Aufgabe Leistungsspitzen und -täler im Netz auszugleichen. Dazu wird Wasser aus dem Unterbecken in das Oberbecken gepumpt, bzw. aus diesem wieder abgelassen. Abbildung 1.1 zeigt schematisch den Aufbau eines Pumpspeicherkraftwerks.

Abbildung 1.1: Schematischer Aufbau eines Pumpspeicherkraftwerks[Ele12]

Flusslaufkraftwerke werden hingegen nur selten niedergefahren, daher kann von einer statischen Belastung ausgegangen werden, bei der der Stillstand als eher selten auftretender Betriebszustand gilt. Bei der Berechnung von Generatoren für solche Kraftwerke ist es daher zulässig von quasistatischer Belastung auszugehen (insbesondere bei vertikaler Bauform). Bei Motor-Generatoren für Pumpspeicherkraftwerke ist diese Annahme jedoch nicht mehr zulässig, da aufgrund der vielen An- und Abfahrvorgänge (Lastwechsel) eine dynamische Belastung vorliegt, für die ein Nachweis der Betriebsfestigkeit notwendig ist. In Abbildung 1.2 ist exemplarisch eine Lastkurve eines Stromnetzes dargestellt. Aus dieser Lastkurve ist ersichtlich, dass für den Ausgleich täglich mehrere An- und Abfahrvorgänge notwendig sind. Tabelle 1.1 zeigt einen Vergleich des Betriebsverhaltens zweier Kraftwerkstypen. Diese Werte dürfen nicht als absolut gültig angesehen werden, da sie von Projekt zu Projekt variieren. Sie sollen daher lediglich die Größenordnung der Anzahl der Lastwechsel aufzeigen.

Tagesgang eine Pumpkraftwerkes

Abbildung 1.2: Lastkurve[Sch12]

	Laufkraftwerk	Pumpspeicherkraftwerk
Lastwechsel (An- und Abfahrvorgänge)	1 / Monat	$10 \ / \ { m Tag}$
Geplante Einsatzdauer	60 Jahre	60 Jahre
An- und Abfahrvorgänge absolut	720	219.000
Belastung	${f quasistatisch}$	dynamisch

Tabelle 1.1: Unterschied zwischen statischem und dynamischem Betrieb

Im Moment beruhen die Berechnungsmodelle für die Vorauslegung grundsätzlich auf der Annahme, dass quasistatische Belastung vorliegt. Dabei wird der Generator auf statische Festigkeit vorausgelegt. Weil Lastwechsel in diese Art der Berechnung nicht miteinbezogen werden können, fehlt die Möglichkeit die Betriebsfestigkeit bei dynamischer Belastung zu ermitteln. Gegenwärtig wird die Betriebsfestigkeit von der Abteilung Mechanische Berechnung einzeln für die Entwürfe der Konstruktionsabteilung nachgewiesen. Dabei kommt es oft zu Iterationsschritten zwischen der Konstruktionsabteilung und der Abteilung Mechanische Berechnung, da die von der Berechnung vorgeschlagenen Änderungen wiederum von der Konstruktionsabteilung umgesetzt werden. Daher sollen die Berechnungsmodelle dahin gehend umgestaltet werden, dass bereits bei der Vorauslegung Rücksicht auf die Betriebsfestigkeit genommen wird, um solche Iterationsschritte künftig zu vermeiden.

Obwohl diese Problematik für alle Komponenten des Generators gleichermaßen gilt, wird

im Zuge der Arbeit nur das Joch des Generatorrotors untersucht. Dieses kann aufgrund seiner weit höheren Belastung bereits sehr viele der Probleme abbilden, die auch bei den anderen Komponenten auftreten können.

1.1 Bauarten von Generatoren

Für das in dieser Arbeit behandelte Rotorjoch gibt es verschiedene Bauformen, die alle die gleiche Aufgabe haben, aber teils sehr unterschiedlich gefertigt werden und daher sehr unterschiedlich berechnet werden müssen. Im Wesentlichen gibt es drei verschiedene Bauformen, welche nachfolgend erläutert werden.

1.1.1 Massivrotor

Der Massivrotor ist ein aus einem einzigen Stück gefertigter Massivteil aus Schmiedestahl. Er wird bei schnelllaufenden Generatoren eingesetzt.

1.1.2 Massivjoch

Das Massivjoch ist ein Jochring aus Schmiedestahl. Massivjoche werden ebenfalls bei schnelllaufenden Generatoren eingesetzt. Der Maximaldurchmesser von Massivjochen hat (wie auch der Massivrotor) aufgrund der Schmiedbarkeit eine Obergrenze. Weiters werden Massivjoche zunehmend durch Rotorketten ersetzt. Ein Grund dafür ist einerseits, dass die Lieferzeit und Verfügbarkeit stark von der Auslastung der Stahlwerke abhängig ist. Andererseits sind Rotorketten kostengünstiger und leichter transportierbar.

1.1.3 Rotorkette

Die Rotorkette ist die mittlerweile am häufigsten eingesetzte Bauform für Generatorrotoren. Rotorketten werden aus Kreisringsegmenten aus Dynamoblech aufgeschichtet und axial durch Bolzen verspannt. Das Grundprinzip ist in etwa vergleichbar mit dem einer Fahrradkette, die ebenso aus Blechen und Bolzen aufgebaut ist. Da die Kettenbauweise die aus rechnerischer Sicht mit Abstand komplizierteste Bauweise darstellt und alle für die Kette gültigen Ansätze in vereinfachter Form auch für die anderen Bauweisen anwendbar sind, wird in dieser Arbeit ausschließlich diese Bauweise behandelt.

Lochleibungskette

Bei der Lochleibungskette werden alle auftretenden Tangentialkräfte durch Scherspannungen in den Kettenbolzen aufgenommen. Durch diese Bauform ändern sich die Wuchtzustände ständig. Ortsfeste Kräfte können ein Scheuern verursachen. Daher kommt diese Bauform nur selten vor.

Mischreibungskette

Bei der Mischreibungskette werden die Bleche axial durch Bolzen verspannt, sodass zwischen den Blechschichten Reibkräfte auftreten, die einen Teil der Belastung übertragen können. Wenn die Reibungskräfte die Lasten bei Nennbetrieb übertragen sind ständige Scheuerbewegungen ausgeschlossen. Änderungen des Wuchtzustandes sind bei höheren Drehzahlen zu erwarten.

Reibungskette

Bei der Reibungskette werden die Bleche mit den Kettenbolzen so stark axial verspannt, dass die Reibungskräfte zwischen den Blechen so groß werden, dass sie die Tangentialkräfte alleine, also ohne Scherbeanspruchung der Bolzen, übertragen können. Die Bolzen sind damit zwar axial stark beansprucht, müssen aber keinerlei Scherspannungen aufnehmen, da sie torsionsfrei gesetzt werden. Reibungsketten sind sowohl in tangentialer als auch in radialer Richtung steif und können für manche Berechnungen wie ein Massivteil betrachtet werden. Aus maschinendynamischer Sicht sind Reibungsketten ebenfalls die zu bevorzugende Konstruktion. In der vorliegenden Arbeit werden ausschließlich Reibungsketten behandelt.

1.2 Aufbau eines Kettenläufers

Wie in Kapitel 1.1.3 bereits erwähnt, wird das Joch des Kettenläufers, die *Rotorkette*, aus Blechsegmenten teilüberlappend aufgeschichtet, die jeweils einen bestimmten Winkel des Umfangs der Kette abdecken. Der dadurch entstehende Kreisring wird über *Schrumpfleisten*, die zwischen den Armen und der Kette eingelegt werden, auf den *Nabenstern* aufgeschrumpft. Die dabei auftretenden Radialkräfte verursachen eine leichte polygonale Verformung. Die Kette weitet sich jedoch mit steigender Drehzahl durch die Massenkräfte (Fliehkräfte) auf, sodass ab einer bestimmten Drehzahl kein Kontakt mehr zwischen Armen und Kette herrscht.

Abbildung 1.3: links: Prinzipskizze eines Generatorläufers, rechts: Darstellung einer aufgeschrumpften Rotorkette ohne Pole

Der Winkel, der von einem einzelnen Blechsegment abgedeckt wird, ist abhängig von der Verschichtung. Die Last der Massen- und Fliehkräfte wird reibschlüssig zwischen den Blechebenen übertragen. Um diesen Reibschluss zu gewährleisten, werden die Bleche axial mittels Bolzen vorgespannt. Um die Tangentialkräfte in der Kette mittels Reibung auf die benachbarten Blechsegmente übertragen zu können, ist es notwendig, dass sich die Bleche überlappen. Durch die Aufschichtung von Blechsegmenten, die jeweils für sich immer nur einen Teil des Umfangs abdecken, entstehen zwangsweise Lücken, die keine tangentiale Tragfähigkeit besitzen. Diese Lücken müssen gleichmäßig auf den Umfang verteilt werden. Die Verschichtung u ist definiert als die Anzahl der nicht tragenden Blechschichten (n - 1) zur Gesamtanzahl der Schichten (n) in einem sich wiederholenden Muster [Wal11] [KW67].

$$u = \frac{n-1}{n} \tag{1.1}$$

Bei der in Abbildung 1.4 dargestellten Verschichtung müssen also im Bereich der Lücken 3 Schichten die Last von 4 Schichten tragen.

An der Außenkontur der Rotorkette befinden sich Schwalbenschwanznuten, in die die Pole des Rotors eingehängt werden. Über diese Schwalbenschwanznuten werden die Polkräfte radial in die Kette eingeleitet und dort in Tangentialkräfte umgewandelt.

Abbildung 1.4: Beispiel einer Rotorkette mit 3/4-Verschichtung[Wal11]

Abbildung 1.5: Arbeiter beim Aufschichten einer Generatorkette

1.3 Polaufbau

Der Aufbau und die Anzahl der Pole haben einen großen Einfluss auf das Aussehen der Kette und deren Belastung. Die Anzahl der Polpaare definiert die Nenndrehzahl des Generators, also jene Drehzahl, mit der der Generator rotiert, wenn er elektrische Leistung an das Netz abgibt. Die Nenndrehzahl in U/min errechnet sich aus

$$n_{\rm nenn} = \frac{60f_{\rm Netz}}{z} \tag{1.2}$$

und die Winkelgeschwindigkeit aus

$$\omega_{\rm nenn} = \frac{2\pi f_{\rm Netz}}{z} \tag{1.3}$$

wobei z für die Anzahl der Polpaare steht.

Weiters bestimmt die Polbauart in hohem Maße die Geometrie der Kette. Grundsätzlich unterscheidet man zwischen Rechteckpolen und Trapezpolen. Bei Rechteckpolen sind die Schwalbenschwanzverbindungen zueinander meistens parallel ausgerichtet, bei Trapezpolen radial. Weiters gibt es Pole mit einfachem Schwalbenschwanz oder Mehrfachschwalbenschwanz.

Der Polkörper wird meist, ähnlich wie die Kette, aus Blechen aufgeschichtet, die axial vorgespannt werden. Da die Polspule aufgesteckt werden können muss ist diese stets länger als der Schwalbenschwanz, was zu einer überhöhten spezifischen Belastung des Schwalbenschwanzendes führt.

1.4 Aktuelle Berechnungsmethodik der Vorauslegung

Gegenwärtig beruhen die Berechnungsmodelle der ANDRITZ Hydro GmbH grundsätzlich auf der Annahme, dass quasistatische Belastung vorliegt. Für diese Art von Belastung exisiteren betriebsintere Berechnungsprogramme, die auf einem analytischen

Formelansatz beruhen. Diesem Formelansatz liegt die Annahme zugrunde, dass stetig auftretende, sich nicht ändernde Lasten die Rotorkette belasten.

Diese sind:

- Massenkräfte der Kette, verursacht durch Rotation mit Maximaldrehzahl
- Fliehkräfte der Pole, verursacht durch Rotation mit Maximaldrehzahl

Diese Kräfte werden von der Kette in erster Linie durch Tangentialkräfte aufgenommen. Über einen Ersatzquerschnitt (unter Berücksichtigung von Elementen wie Bolzenaugen, Einstiche, Schwalbenschwanznuten, etc.) lassen sich so die Nennspannungen in der Kette berechnen. Da durch Rotation verursachte Massenkräfte stets proportional zum Quadrat der Winkelgeschwindigkeit sind, bleiben durch sie verursachte Nennspannungen ebenso stets positiv, also im Zuspannungsbereich zwischen 0 und dem Maximalwert bei höchster berücksichtigter Drehzahl $\sigma_n(\omega_{max})$.

1.5 Spitzenspannungsproblematik

An Stellen mit hoher Spannungskonzentration, wie beispielsweise der Radien am Nutgrund des Schwalbenschwanzes oder den Bolzenaugen (siehe Abbildung 1.9), kann bei Überschreitung der Streckgrenze des verwendeten Werkstoffs lokale Plastifizierung auftreten. Bei quasistatischer Belastung ist dies in der Regel unproblematisch, solange die statische Festigkeit gegeben ist, da diese Spannungsspitzen bei erstmaliger Belastung durch lokales Fließen abgebaut werden.

Die Höhe der ertragbaren Spannungsspitzen lässt sich aus dem σ - ε -Diagramm des verwendeten Werkstoffs ableiten (Seite 10, Abbildung 1.10). Setzt man ideal elastischplastisches Werkstoffverhalten voraus, steigt die Spannung unter der Belastung zunächst bis zur Streckgrenze (R_e) an. Bei Überschreiten der Streckgrenze beginnt der Werkstoff zu fließen. Nach diesem erstmaligen Plastifizierungsvorgang (rot) der durch die Last verursachten Zugkräfte verlagert sich die Gerade der ideal-elastischen Verformung nach rechts. Bei Rücknahme der Last treten an diesen Stellen Druckspannungen auf. Zwischen Stillstand und maximaler Last bewegen sich die Spannungen an der betrachteten Stelle entlang der verschobenen Gerade der ideal-elastischen Verformung (grün), solange die Spitzenspannungen bei Erstbelastung unter der doppelten Streckgrenze des Werkstoffes bleiben ((a) und Grenzfall (b)). Übersteigen Spitzenspannungen bei Erstbelastung auch die doppelte Streckgrenze, tritt bei Rücknahme der Last im Druckbereich ebenfalls Plastifizierung auf. In diesem Fall plastifiziert der Werkstoff bei jedem Lastwechsel sowohl im Zug- als auch im Druckbereich (c). Dies führt zu sehr schnellem Versagen des Werkstoffs und ist auf jeden Fall zu vermeiden.

Abbildung 1.9: Exemplarische Darstellung der Spannungsverteilung in einem Segment einer Rotorkette (rot: Bereiche hoher Spannungskonzentration)[Wal11]

1.6 Problemstellung

Bei jedem Lastwechsel – also bei jedem An- und Abfahrvorgang – bewegen sich die Spannungen zwischen einem Minimalwert σ_u und einem Maximalwert σ_o mit der Amplitude σ_a um eine Mittelspannung σ_m .

An Stellen mit hoher Spannungskonzentration, wie beispielsweise Radien, kann nach einer gewissen Anzahl an Lastwechseln Rissbildung auftreten, welche in letzter Konsequenz zu einem Versagen des Bauteils führen können (Abbildung 1.12). Das heißt, dass auch bei gegebener statischer Festigkeit bei dynamischer Belastung ab einer bestimmten Anzahl von Lastwechseln ein Bauteilversagen auftreten kann. Aus diesem Grund ist ein Nachweis der Betriebsfestigkeit bei dynamisch beanspruchten Generatoren notwendig (vgl. Tabelle 1.1).

Im Moment werden Kerbspannungen von der Abteilung Mechanische Berechnung einzeln mit Hilfe von Finite-Elemente-Programmen berechnet. Betriebsfestigkeitsnachweise von Motor-Generatoren für Pumpspeicherkraftwerke werden von der Abteilung Mechanische Berechnung also immer manuell durchgeführt. Die momentan verwendete Berechnungsmethode zur Vorauslegung ist daher nicht mehr ausreichend. Es soll daher die Berechnungsmethodik basierend auf quasistatischer Belastung auf dynamische Belastung umgestellt werden.

Abbildung 1.10: Spannungshysterese bei lokaler Plastifizierung

Abbildung 1.11: Spannungsverlauf bei dynamischer Belastung

Abbildung 1.12: Rissbildung durch Materialermüdung an einem Radius bei einem Kettenblech

Im Zuge dieser Arbeit sollen grundlegende Ansätze für die Umstellung der Vorauslegung für Generatoren unter dynamischer Belastung erarbeitet werden. Dazu ist es zunächst notwendig die Spitzenspannungen in der Kette zu ermitteln. Es ist zweckmäßig, das mit einem Finite-Elemente-Modell zu realisieren, da sich diese Methode beim Nachrechnen von Rotorketten bereits gegenüber anderen Ansätzen (Formzahlen, Kerbzahlen) bewährt hat und alle dazu notwendigen Mittel (insbesondere Softwarelizenzen) beim Anwender vorhanden sind.

Da Finite-Elemente-Rechnungen sehr rechenintensiv sind und eine der Anforderungen eine kurze Berechnungszeit ist (idealerweise wenige Minuten auf heute üblichen Bürorechnern), sollen Möglichkeiten erarbeitet werden um diese gering zu halten. Damit diese Anforderung erfüllt werden kann, ohne eine nennenswerte Beeinträchtigung der Qualität der Rechenergebnisse zu verursachen, soll ein Modell erarbeitet werden, das die Kette für das vorliegende Problem so grob wie möglich, aber so genau wie nötig abbildet. Zusätzlich soll die Plausibilität der Rechenergebnisse überschlagsmäßig mit Modellen aus der klassischen Festigkeitslehre überprüft werden. Um dies durchführen zu können, sollen neben den numerischen Modellen (FE-Modellen) analytische Modelle gefunden werden, die die Kette möglichst realitätsnah abbilden. Die analytischen Modelle haben den Zweck, die Plausibilität der numerischen Modelle sicherzustellen.

Die aus der Finite-Elemente-Rechnung gewonnenen Ergebnisse sollen anschließend zur Durchführung einer Betriebsfestigkeitsberechnung herangezogen werden. Der Nachweis der Betriebsfestigkeit soll mittels FKM-Richtlinie² durchgeführt werden.

2.1 Zielsetzung

Das Ziel dieser Arbeit sollte eine Basis für die künftige Umsetzung der Vorauslegung unter den geänderten Anforderungen als Berechnungsprogramm sein. Das momentan verwendete Berechnungsprogramm *RADBERKW* soll in Zukunft durch ein neues Programm ersetzt werden, das den in Kapitel 1 erklärten geänderten Anforderungen gerecht

²Mas03, Rechnerischer Festigkeitsnachweis für Maschinenbauteile.

wird. Neben der fehlenden Möglichkeit des Nachweises der Betriebsfestigkeit bei dynamischer Belastung gibt es auch noch andere Gründe, warum das Programm RADBERKW nicht mehr zeitgemäß ist.

- Fast alle der für die mechanische Berechnung relevanten Parameter müssen händisch in die Eingabemaske eingegeben werden, was die Bedienung sehr umständlich macht (Abbildung 2.1).
- Das Programm ist über Jahre hinweg gewachsen und ist aufgrund der Komplexität kaum noch adaptier- oder erweiterbar. Es ist zudem in mehreren verschiedenen Programmiersprachen verfasst.
- Das Programm kann wegen des ihm zugrunde liegenden analytischen Ansatzes keine geometrischen Details berücksichtigen oder abbilden.

Diese Gründe lassen es als sinnvoll erscheinen, dass das Programm RADBERKW nicht mehr verändert, sondern durch ein neues Programm ersetzt wird.

Im Betrieb ist derzeit eine Reihe von Berechnungsprogrammen im Einsatz, die im Zuge der Generatorvorauslegung verwendet werden (elektrische Vorauslegung, Polberechnung etc.). Bestimmte Parameter für die Kette sind bereits durch die elektrische Vorauslegung (Berechnungsprogramm *SMAUP*) definiert, da diese auch elektromagnetischen Anforderungen (z. B. Übertragung des magnetischen Flusses) gerecht werden muss. Um den Automatisierungsgrad der Berechnung für die mechanischen Anforderungen zu erhöhen, sollen möglichst viele dieser bereits vorhandenen Parameter verwendet werden, ohne diese nochmals eingeben zu müssen. Die für die mechanische Berechnung verwendbaren Parameter kommen hauptsächlich aus der elektrischen Vorauslegung. Die Finite-Elemente-Rechnung soll mit der beim Anwender vorhandenen kommerziellen Software ANSYS Mechanical durchgeführt werden.

2.2 Beispielprojekt

Um die in der Arbeit gewonnenen Ergebnisse vergleichbar zu machen, und deren Plausibilität zu überprüfen, wird ein bereits realisiertes Generatorprojekt als Ausgangssituation herangezogen. Die für die Arbeit relevanten technischen Daten können der Tabelle 2.1 entnommen werden. Die Daten stammen aus den technischen Berichten dieses Projekts. Obwohl dieser Generator eigentlich für quasistatischen Betrieb ausgelegt wurde, eignet sich seine Geometrie sehr gut für die Ausarbeitung von grundsätzlichen Überlegungen, da sein Design am ehesten dem "Standarddesign" für die Generatoren der ANDRITZ Hydro GmbH entspricht. Die technischen Daten dieses Generators werden für alle Berechnungen in dieser Arbeit als Eckdaten herangezogen.

Abbildung 2.1: Eingabemaske des Programms RADBERKW

Abbildung 2.2: Ablauf der teilautomatisierten Berechnung

Beispielprojekt					
Allgemeine Daten					
Polzahl		16			
Armzahl		8			
Nenndrehzahl	n_{nenn}	375(39,27)	$\rm U/min~(rad/s)$		
Lastabwurfsdrehzahl	n_{LAW}	480(50,27)	$\rm U/min~(rad/s)$		
Durchgangsdrehzahl	n_{DG}	630(65,97)	U/min (rad/s)		
Abhebedrehzahl	n_{AHD}	480 (50,27)	U/min (rad/s)		
Verschichtungsfaktor der Kette	u	² /3			
Radiales Übermaß der Schrumpfverbindung	л	0,75	mm		
Nennleistung	P_{nenn}	50	MW H-		
Netzirequenz	JNetz	50	ΗZ		
Relevante Abmessungen					
Innendurchmesser (ohne Zapfen)	R_i	1,028	m		
Außendurchmesser (gemittelt)	R_a	1,562	m		
Tragende Kettenlänge	l	1,76	m		
Winkel zwischen zwei Armen	γ	45	0		
Materialdaten					
Spezifisches Gewicht der Kettenbleche	$\rho_{ m Kette}$	7850	$ m kg/m^3$		
Spezifisches Gewicht der Polbleche	$ ho_{ m Pol}$	7850	$ m kg/m^3$		
E-Modul Kettenbleche / Polbleche	E	$2{,}06\times10^{11}$	$ m N/m^2$		
Schubmodul	G	0.8×10^{11}	$ m N/m^2$		
Temperaturausdehnungskoeffizient	α_T	$1,1 \times 10^{-5}$	$1/\mathrm{K}$		
Querkontraktionszahl	ν	0,3			
Mindestreibungskoeffizient zw. Blechen	μ_{\min}	0,09			
Realer Reibungskoeffizient zw. Blechen	μ_{real}	0,15			
Pole					
Polmasse / Pol	$m_{\rm Pol}$	1809	kg		
Schwerpunktsradius des Pols	$R_{\rm Pol}$	$1,\!67$	m		
Anzahl Schwalbenschwanzverbindungen		$1/\mathrm{Pol}$			
Nabenstern					
Armzahl		8			
Armsteifigkeit	k	$6,\!55{ imes}10^{10}$	N/m		
Winkel zwischen zwei Armen	γ	45	0		
Schwalbenschwanz					
Tiefe	Т	80	mm		
Halsbreite	H	100	$\mathbf{m}\mathbf{m}$		
Flankenwinkel		60	0		

Tabelle 2.1: Technische Daten des Beispielprojekts

Die in diesem Kapitel beschriebenen analytischen Modelle beruhen auf grundsätzlichen Überlegungen der klassischen Festigkeitslehre. Anhand der Ergebnisse dieser Modelle soll später die Plausibilität der aus den numerischen Berechnungen erhaltenen Ergebnisse überprüft werden. Darüber hinaus stellt der Formelapparat der analytischen Modelle eine Möglichkeit dar, schnell zu überschlagsmäßigen Ergebnissen zu kommen. Für beide der hier beschriebenen Modelle wird der Rotor des Generators auf einfache geometrische Formen abstrahiert. Bei beiden Modellen wird von einem ebenen Spannungszustand ausgegangen. Diese Vereinfachung ist zulässig, da der Rotor in axialer Richtung nicht in seiner Dehnung behindert wird. Weiters ändert sich der Querschnitt der Kette in axialer Richtung bis auf kleinere Ausnahmen nicht und kann wie ein extrudierter Körper angesehen werden. Durch die Massenkräfte weitet sich der Rotor außerdem mit zunehmender Drehzahl auf, was in einer Reduktion der Schrumpfkräfte zwischen den Armen des Nabensterns und der Kette resultiert.

3.1 Der dünne Ring

Das Modell des dünnen Rings beruht auf der Annahme, dass die radiale Höhe des Kettenquerschnitts im Vergleich zum Durchmesser der Kette sehr klein ist. Deshalb kann vorausgesetzt werden, dass die Spannungen in tangentialer Richtung über den gesamten Querschnitt konstant sind. Während die Arme als am Innendurchmesser angreifende Kräfte modelliert werden, wird die Masse der Pole als gleichmäßig über den Umfang verteilte Massenkraft pro Längeneinheit angenommen (Abbildung 3.1). Die Anzahl der Pole ist immer größer als die Anzahl der Arme. Die Massenkräfte der Arme werden vernachlässigt.

Abbildung 3.1: Abstrahierung des Generatorrotors für das Modell

Der Einfachheit halber wird der Querschnitt der Rotorkette als rechteckiger Vollquerschnitt betrachtet. Da der Querschnitt von der Außenkontur der Kette bis hin zum Nutgrund der Schwalbenschwanznuten in tangentialer Richtung eine vernachlässigbar kleine Tragfähigkeit besitzt, wird dieser Bereich weder für den Querschnitt A, noch für das Flächenmoment 2. Ordnung I berücksichtigt (Abbildung 3.2).

Abbildung 3.2: Darstellung des Querschnitts der Kette

Die Fläche und das dazu gehörige Flächenmoment 2. Ordnung errechnen sich somit

folgend:

$$f = R_a - T - R_i \tag{3.1}$$

$$R = \frac{(R_a - T) + R_i}{2}$$
(3.2)

$$A = fl \tag{3.3}$$

$$I = \frac{f^3 l}{12} \tag{3.4}$$

Da der nichttragende Bereich aber sehr wohl Masse besitzt (und damit Fliehkräfte verursacht), die keinesfalls vernachlässigt werden darf, wird dieser Bereich dadurch berücksichtigt, indem die Dichte des verbleibenden Querschnitts anteilsmäßig erhöht und auf den gemittelten Kettenradius reduziert wird. Die Masse der Pole wird ebenfalls in diesen Radius reduziert. Die sich in der Kette befindenden Bolzenaugen werden vernachlässigt und die Dichte des Polblechwerkstoffs und Dichte des Kettenblechwerkstoffs als gleich angesehen ($\rho_{\text{Kette}} = \rho_{\text{Pol}} = \rho$). Dies ist wichtig, weil die Masse des polseitigen Anteils des Schwalbenschwanzes ebenfalls in die Berechnung einfließt.

$$\rho' = \rho + \frac{m_{\rm Pol}}{2AR\pi} \frac{R_{\rm Pol}}{R} + \rho \frac{2Tl \frac{R_a + (R_a - T)}{2} \pi}{2AR\pi}$$
(3.5)

Da die Rotorkette auf den Nabenstern aufgeschrumpft wird, erfährt diese durch die beim Abkühlvorgang entstehenden Armkräfte eine polygonale Verformung. Während dem Hochfahrvorgang nähert sich dieses Polygon aufgrund der Fliehkräfte immer mehr einem Kreis an, und zwar so lange, bis der Ring durch die Zentrifugalkräfte so stark aufgeweitet wird, dass die Armkräfte, die durch den Schrumpfvorgang entstanden sind, null werden. Die Drehzahl, bei der dies auftritt, wird als *Abhebedrehzahl* bezeichnet. Ab dieser Drehzahl ist das Rotorjoch nur noch durch vereinfacht gesehen über den Umfang gleichmäßig verteilte Fliehkräfte belastet.

Unter Ausnutzung der Symmetrien kann das Modell weiter vereinfacht werden, und zwar von einem Arm bis zur Mitte zwischen zwei Armen. γ ist dabei der halbe Winkel zwischen zwei benachbarten Armen.

Abbildung 3.3: Modell des dünnen Rings unter Ausnützung aller Symmetrien

Zunächst müssen die Auflagerreaktionen berechnet werden. C ist dabei die statisch unbestimmte Schrumpfkraft. Um die Verschiebung parametrisiert mitberechnen zu können, wird die Hilfskraft H eingeführt.

Abbildung 3.4: links: Auflagerreaktionen und äußere Kräfte, rechts: Kräfte am differenziellen Element

Aus den Kräftegleichgewichten in horizontaler und vertikaler Richtung

$$\rightarrow \qquad -A + B\cos\gamma + \int_{0}^{\gamma} lf\rho' R^2 \omega^2 \sin\alpha \, d\alpha + H\sin\beta = 0 \qquad (3.6)$$

$$\uparrow \qquad B\sin\gamma - \int_{0}^{\gamma} lf\rho' R^2 \omega^2 \cos\alpha \, d\alpha - C - H\cos\beta = 0 \qquad (3.7)$$

erhählt man die Auflagerreaktionen

_

$$A = lf\rho' R^2 \omega^2 + \frac{C}{\tan\gamma} + H \frac{\cos\beta}{\tan\gamma} + H \sin\beta$$
$$B = \frac{1}{\sin\gamma} (C + H \cos\beta + lf\rho' R^2 \omega^2 \sin\gamma)$$

Da die eingeführte Hilfskraft H eine Unstetigkeitsstelle in den Verläufen darstellt, müssen die Normal- und Querkraftverläufe, sowie die Momentenverläufe auf zwei Bereiche aufgeteilt werden.

Abbildung 3.5: Bestimmen der Verläufe von 0 bis β

. .

Normalkraftverlauf von 0 bis β :

$$N_1(\varphi) = A\cos\varphi + \int_0^{\varphi} lf \rho' R^2 \omega^2 \sin(\varphi - \alpha) \, d\alpha + C\sin\varphi$$
(3.8)

Querkraftverlauf von 0 bis β :

$$Q_1(\varphi) = -A\sin\varphi + \int_0^{\varphi} lf \rho' R^2 \omega^2 \cos(\varphi - \alpha) \, d\alpha + C\cos\varphi \tag{3.9}$$

Momenten
verlauf von 0 bis β :

$$M_1(\varphi) = M_a - AR(1 - \cos\varphi) + R\left[\int_0^{\varphi} lf \rho' R^2 \omega^2 \sin(\varphi - \alpha) \, d\alpha\right] + CR \sin\varphi \quad (3.10)$$

Abbildung 3.6: Bestimmen der Verläufe von β bis γ

Normalkraftverlauf von β bis γ :

$$N_2(\varphi) = A\cos\varphi + \int_0^{\varphi} lf \rho' R^2 \omega^2 \sin(\varphi - \alpha) \, d\alpha + C\sin\varphi + H\sin(\varphi - \beta)$$
(3.11)

Querkraftverlauf von β bis γ :

$$Q_2(\varphi) = -A\sin\varphi + \int_0^{\varphi} lf \rho' R^2 \omega^2 \cos(\varphi - \alpha) \, d\alpha + C\cos\varphi + H\cos(\varphi - \beta) \qquad (3.12)$$

Momentenverlauf von β bis γ :

$$M_{2}(\varphi) = M_{a} - AR(1 - \cos\varphi) + R\left[\int_{0}^{\varphi} lf \rho' R^{2} \omega^{2} \sin(\varphi - \alpha) d\alpha\right] + CR \sin\varphi + HR \sin(\varphi - \beta)$$
(3.13)

Da die Steifigkeit des Armes stark von der Geometrie abhängt und dafür eigene Berechnungsmethoden existieren, wird hier die Steifigkeit des Armes durch eine Feder mit der Federkonstante k ersetzt (siehe Tabelle 2.1, Seite 15).

Abbildung 3.7: (a) Mit modelliertem Arm, (b) Armsteifigkeit ersetzt durch Federkonstante k

Die innere Ergänzungsenergie nach dem Satz von Menabrea erhält man mit

$$U^{*} = R \left[\int_{0}^{\beta} \left(\frac{N_{1}(\varphi)^{2}}{2EA} + N_{1}(\varphi)\alpha_{t}\Delta T \right) d\varphi + \int_{0}^{\beta} \frac{Q_{1}(\varphi)^{2}}{2GA_{s}} d\varphi + \int_{0}^{\beta} \frac{M_{1}(\varphi)^{2}}{2EI} d\varphi \right]$$
$$+ R \left[\int_{\beta}^{\gamma} \left(\frac{N_{2}(\varphi)^{2}}{2EA} + N_{1}(\varphi)\alpha_{t}\Delta T \right) d\varphi + \int_{\beta}^{\gamma} \frac{Q_{2}(\varphi)^{2}}{2GA_{s}} d\varphi + \int_{\beta}^{\gamma} \frac{M_{2}(\varphi)^{2}}{2EI} d\varphi \right]$$
$$+ \frac{C^{2}}{2k}$$
(3.14)

Der mit dem Schubkorrekturfaktor für rechteckige Querschnitte korrigierte Schubspan-

nungsquerschnitt für die innere Ergänzungsenergie A_s beträgt

$$A_s = \frac{5}{6}A\tag{3.15}$$

Da die Schrumpfkraft C bei aufrechtem Schrumpf kein Klaffen zwischen Arm und Kette erlaubt, und an der Stelle $\varphi = 0$ aus Gründen der Symmetrie keine Verdrehung zulässig ist, erhält man aus den beiden Gleichungen, die man durch Nullsetzen der partiellen Ableitungen der inneren Ergänzungsenergie nach den statisch Unbestimmten erhält, die statisch unbestimmte Kraft C und das statisch unbestimmte Moment M_a .

I:
$$\frac{\partial U^*}{\partial C} = 0$$
 II: $\frac{\partial U^*}{\partial M_a} = 0$ (3.16)

Da in der Schrumpfverbindung keine Zug-, sondern nur Druckkräfte auftreten können, kann die Kraft C nicht negativ, sondern nur 0 werden. Da die Lösung dieses Gleichungssystems sehr aufwendig und lang ist, befindet sich die Lösung (gelöst mit dem kommerziellen Programm *Mathematica*) im Appendix.

Abbildung 3.8: Polygonalverformung der Kette durch die Armkäfte (stark übertriebene Darstellung) eines Nabensterns mit 8 Armen

Auf Abbildung 3.9 ist das Biegemoment in Abhängigkeit von der tangentialen Position abgebildet. Dieser Verlauf ist qualitativ bis zum Erreichen der Abhebedrehzahl gültig,

danach verschwindet das Biegemoment, da die Schrumpfkraft verschwindet, und alle anderen Kräfte gleichmäßig über den Umfang verteilt sind. Es ist ersichtlich, dass das Biegemoment an der Position der Arme sowie zwischen den Armen am größten ist.

Abbildung 3.9: Verlauf der Biegemomente in der Kette

3.2 Der dicke Ring³

Anders als bei der Theorie des dünnen Ringes werden bei der Theorie des dicken Rings die Radialspannungen nicht vernachlässigt. Auch geht man von einem Tangentialspannungsgradienten in radialer Richtung aus. Damit lassen sich die Spannungen an jedem Punkt der Kette in Abhängigkeit von der Drehzahl bestimmen. Die Armkräfte werden bei diesem Ansatz nicht berücksichtigt. Aus diesem Grund eignet sich die Theorie des dicken Rings nur für die qualitative Spannungsberechnung im Bereich um und zwischen Nenndrehzahl und Durchgangsdrehzahl.

Die Herleitung der Spannungsprofile erfolgt über ein differenzielles Volumselement in der Rotorkette[Mar08].

Unter Einbeziehung des *Hookeschen Gesetzes* erhält man für die Tangentialspannungen

$$\sigma_{\varphi}(R) = \sigma_{ra} \frac{1 + (R_i/R)^2}{1 - (R_i/R_a)^2} + \frac{3 + \nu}{8} \rho R_a^2 \omega^2 \left[1 + \left(\frac{R_i}{R_a}\right)^2 + \left(\frac{R_i}{R}\right)^2 - \frac{1 + 3\nu}{3 + \nu} \left(\frac{R}{R_a}\right)^2 \right]$$
(3.17)

³vgl. Mar08; Bal10.

Abbildung 3.10: Herleitung der Spannungen am differenziellen Volumselement[Mar08]

und für die Radialspannungen

$$\sigma_r(R) = \sigma_{ra} \frac{1 - (R_i/R)^2}{1 - (R_i/R_a)^2} + \frac{3 + \nu}{8} \rho R_a^2 \omega^2 \left[1 - \left(\frac{R_i}{R}\right)^2 \right] \left[1 - \left(\frac{R}{R_a}\right)^2 \right]$$
(3.18)

Die Außenspannung σ_{ra} errechnet sich aus der Summe der Fliehkraft aller Pole und der äußeren Mantelfläche des Kettenzylinders.

$$\sigma_{ra} = n_{\rm Pol} \frac{m_{\rm Pol} R_{\rm Pol} \omega^2}{2R_a \pi l} \tag{3.19}$$

Trägt man die Verläufe aus den Gleichungen 3.17 und 3.18 über den Radius auf, so wird ersichtlich, dass die Tangentialspannungen betragsmäßig dominieren, und dass die Tangentialspannungen am Innenradius am größten sind und nach außen hin abnehmen.

3.3 Interpretation der analytischen Modelle

Die beiden erklärten analytischen Modelle *Dünner Ring* und *Dicker Ring* eignen sich zwar beide für sich alleine nicht für eine vollständige Beschreibung der Geometrie und der Belastungen der Kette, jedoch liefern sie wichtige Aussagen über die Spannungs- und Verformungssituation der Kette. Während sich das Modell *Dünner Ring* vorwiegend

Abbildung 3.11: Spannungsprofil der Radialspannungen σ_r (grün), Tangentialspannungen σ_{φ} (blau) und der von-Mises-Vergleichsspannungen $\sigma_v = \sqrt{\sigma_{\varphi}^2 + \sigma_r^2 - \sigma_{\varphi}\sigma_r}$ (rot)

dazu eignet, den prinzipiellen Verlauf der Normal- und Querkräfte, sowie den Verlauf der Biegemomente in Abhängigkeit von der tangentialen Position bei einer bestimmten Drehzahl abzubilden, liefert das Modell *Dicker Ring* den qualitativen Verlauf der Radial- und Tangentialspannungen bei einer bestimmten Drehzahl in Abhängigkeit der radialen Koordinate. Weil aber letzteres Modell die Armkräfte am Innendurchmesser nicht berücksichtigt, eignet es sich vorwiegend zur Beschreibung der Spannungsprofile bei höheren Drehzahlen, bei denen die Schrumpfkräfte nur mehr klein, bzw. nicht mehr vorhanden sind.

Die beiden Modelle sind daher eine wichtige Basis für die Entwicklung und Überprüfung des Finite-Elemente-Modells, welches in Kapitel 4 dokumentiert ist.

4 Das Finite-Elemente-Modell

Wie in Kapitel 2 erwähnt sollen die für den Betriebsfestigkeitsnachweis erforderlichen Spitzenspannungen durch eine Finite-Elemente-Rechnung ermittelt werden. Für die Entwicklung eines geeigneten Modells sind besonders zwei Anforderungen von Bedeutung, nämlich die Genauigkeit der Ergebnisse und die zur Auflösung des Gleichungssystems des Finite-Elemente-Modells benötigte Rechenzeit.

Da diese beiden Anforderungen gegenläufig sind wird der Hauptaugenmerk dieses Kapitels darauf abzielen, ein Modell zu entwickeln, das beiden Anforderungen bestmöglich entspricht.

Die Vorgehensweise bei der Modellentwicklung wird sein:

- 1. Analyse der vorliegenden Geometrie und der Lasten
- 2. Analyse der Lastfälle
- 3. Bestimmung des relativen Rechenfehlers in Abhängigkeit von der Elementgröße
- 4. Optimieren des Modells hinsichtlich Rechenzeit
- 5. Inkludieren von kettenspezifischen Besonderheiten in das Modell

4.1 Analyse der vorliegenden Geometrie

Ausgangspunkt für die Erstellung des Modelles ist das Finden von verwertbaren Symmetrien. Abbildung 4.1 zeigt das ein Kettenblech des in Tabelle 2.1 beschriebenen Beispielgenerators⁴. Die größeren Schwalbenschwanznuten dienen zur Befestigung der Pole. Über sie werden die Kräfte der Pole (Massenkräfte, magnetische Kräfte, etc.) auf die Kette übertragen, bei welchen die Fliehkräfte eindeutig dominieren. Die kleineren Hilfsschwalbenschwanznuten sind über den Großteil der Länge der Kette unbelastet, weil diese lediglich der Befestigung von Anbauteilen an den beiden Enden der Kette dienen.

⁴Anmerkung: Die Rechtecknuten für die Verkeilung am Schwalbenschwanzgrund werden für die FE-Rechnung nicht mitmodelliert, weil diese Nuten in Zukunft nicht mehr durchgehend, sondern nur mehr an den beiden Randbereichen der Kette eingearbeitet werden.

4 Das Finite-Elemente-Modell

Diese Kräfte können vernachlässigt werden, da diese Anbauteile keine großen Fliehkräfte verursachen. Die Zapfen am Innenradius dienen zur Zentrierung des Nabensterns innerhalb der Kette. Am Grund der zwischen den Zapfen entstehenden Nut werden die Armkräfte eingeleitet.

Abbildung 4.1: Geometrie des Kettenbleches des Beispielgenerators

Es ist ersichtlich, dass das Kettenblech in sechs nahezu⁵ spiegelsymmetrische Einheiten unterteilt werden kann. Diese kleinste *geometrische Symmetrieeinheit* (dargestellt in Abbildung 4.2) wird für die Erstellung des Modells herangezogen.

 $^{^5 {\}rm Kleinere}$ Unregelmäßigkeiten, wie z. B. die gekürzten Ecken der Kettenbleche, werden dabei vernachlässigt.

Abbildung 4.2: Kleinste geometrische Symmetrieeinheit

Qualitativ betrachtet wird die Kette durch drei verschiedene Arten von Lasten beansprucht (Abbildung 4.4).

Massenkräfte

Die Massenkräfte der Eigenmasse der Kette haben einen sehr großen Anteil an der Gesamtbelastung der Kette und werden durch die Rotation verursacht. Die Gewichtskraft wird vernachlässigt. Dies ist zulässig, wenn man das Beschleunigungsverhältnis (Zentripetalbeschleunigung zu Gravitation) des Beispielgenerators betrachtet (hier bei Durchgangsdrehzahl).

$$\frac{g}{\omega^2 \frac{(R_a + R_i)}{2}} = \frac{9,81}{65,97^2 \frac{(1,562 + 1,028)}{2}} \approx \frac{1}{575}$$

Der Einfluss der Gewichtskraft liegt bei diesem Generator demnach deutlich unter 1% und kann daher vernachlässigt werden. Diese Aussage hat durchaus allgemeine Gültigkeit, da dieses Verhältnis bei anderen Generatoren bis zu 1/2500 oder sogar weniger betragen kann.

Polfliehkräfte

Die Polflichkräfte sind Massenkräfte, die durch die Rotation der Pole um die Generatorachse entstehen. Die Flichkraft für einen Pol errechnet sich aus

$$F_{\rm Pol} = m_{\rm Pol} R_{\rm Pol} \omega^2 \tag{4.1}$$

wobei $R_{\rm Pol}$ den Schwerpunktsradius des Pols darstellt und ω die Winkelgeschwindigkeit, mit der der Generator im jeweiligen Lastfall rotiert (beschrieben in Kapitel 4.2). Die Polfliehkräfte werden über die Schwalbenschwanzverbindungen in die Kette eingeleitet. Nach Designvorschrift⁶ der ANDRITZ Hydro GmbH werden derzeit nur Schwalbenschwanzverbindungen mit einem Flankenwinkel von 60° gefertigt. Es ist daher trivial ersichtlich, dass die Kräfte, die auf die Schwalbenschwanzflanken wirken, betragsmäßig identisch mit der Polfliehkraft sind. Die Reibkräfte an den Flanken werden bei der Berechnung in der Regel vernachlässigt.

Abbildung 4.3: Flankenkräfte (grün)

Anmerkung: Dies gilt jedoch nur für Pole einer Schwalbenschwanzverbindung/Pol. Bei anderen Polbauarten ist der Betrag der Flankenkräfte stärker von der Polgeometrie (Abstand und Anordnung der SSWs, siehe Kapitel 1.3) abhängig.

Armkräfte

Die Armkräfte sind Kräfte in radialer Richtung, die an der Innenkontur der Kette angreifen. Zur Herstellung des Schrumpfsitzes wird eine mit Übermaß behaftete Schrumpfleiste zwischen Kette und Arm getrieben. Die Kette ist dabei um ΔT° gegenüber der Armtemperatur erwärmt. Im Zuge des Abkühlvorganges entstehen als Reaktion auf die Stauchung der Arme sehr große Druckkräfte, die über die Schrumpfleisten in die Kette

 $^{^6\}mathrm{P}$ GEN EX 2155

eingeleitet werden. Aufgrund der Vielfältigkeit der Nabensternbauformen wird in dieser Arbeit nicht auf die Berechnung der Steifigkeit der Arme eingegangen. Diese wird hier als bekannt vorausgesetzt. Die Armkräfte werden nicht als Kräfte, sondern als bekannte Verschiebungen aufgebracht.

Betrachtet man nun die Belastungsarten, wird ersichtlich, dass die oben erwähnte geometrische Symmetrieeinheit zur vollständigen Beschreibung des vorliegenden Problems nicht ausreicht, weil die Armkräfte im allgemeinsten Fall nicht an jeder geometrischen Symmetrieeinheit angreifen, sondern an einem ganzzahligen Vielfachen derselben. Die kleinste geometrische Symmetrieeinheit deckt bei dem vorliegenden Beispielprojekt einen Winkel von $\alpha_s = 11,25^{\circ}$ ab. In Kapitel 3.1 wurde bereits ermittelt, dass der kleinst-mögliche Winkel, um die Kette mit allen Belastungen symmetrisch abbilden zu können, der halbe Winkel zwischen zwei Armen ist, also $\gamma = 22,5^{\circ}$.

$$\frac{\gamma}{\alpha_s} = \frac{22.5^\circ}{11.25^\circ} = 2$$

Daraus folgt, dass zwei geometrische Symmetrieeinheiten notwendig sind, um die Kette samt angreifender Lasten vollständig abbilden zu können (Abbildung 4.4). Die blauen Pfeile stellen dabei die Lasten dar, die roten Auflagersymbole die Symmetriebedingungen.

Abbildung 4.4: Grundgeometrie des symmetrischen Modells. (1) Rotation, (2) Flankenkräfte und (3) Armkräfte

Weiters stellt sich die Frage, ob es für die FE-Rechnung zweckmäßiger ist, ein 2D- oder ein 3D-Modell zu erstellen. Die Komplexität der Rotorkette zwingt in beiden Fällen zur starken Vereinfachung des Modells. Die Gründe dafür sind in erster Linie, dass sich ein axial vorgespanntes Blechpaket numerisch nur sehr schwer modellieren lässt. Die Rotorkette besteht aus einer großen Anzahl von Blechen, die zudem nicht ideal plan sind. Ein vollständiges 3D-Modell, das alle Bleche, die axiale Vorspannung der Bleche und die zwischen den Blechen auftretenden Reibkontakte vollständig abbildet, ist also mit Bürorechnern des momentanen Standes der Technik nicht durchführbar. Des Weiteren ist eine wichtige Anforderung an das Berechnungsprogramm eine schnelle Rechenzeit.

Tabelle 4.1: Vergleich von Vor- und Nachteilen von einem 2D- und einem 3D-Modell

2D-Modell	3D-Modell	
Vorteile	Vorteile	
 Viel kürzere Rechenzeit Relativ einfach parametrisierbar Erfüllt die Anforderungen an die Genauigkeit in guter Näherung 	Kann die tatsächliche Geometrie besser abbildenBildet axiale Schwankunen der Last ab	
Nachteile	Nachteile	
• Um alle relevanten Belas- tungszonen in axialer Rich- tung abbilden zu können wer- den im Regelfall zwei Durch- läufe der Rechnung mit un- terschiedlichen Belastungen nötig sein	 Kompliziertere Parametrisierung und Modellierung Sehr viel längere Rechenzeit Das genaue Verhalten des Blechpakets kann trotzdem kaum abgebildet werden 	

Alleine der Vorteil der sehr viel schnelleren Berechnungszeit rechtfertigt die Verwendung des 2D-Modells. Der Querschnitt der Rotorkette ändert sich zudem in axialer Richtung

nicht⁷. Die in Tabelle 4.1 erwähnten Inhomogenitäten der Belastung in axialer Richtung entstehen in erster Linie durch die an den Polenden umgelenkten Kupferwicklungen der Pole. Dadurch ist am Polende die spezifische Fliehkraft (Fliehkraft pro Längeneinheit in axialer Richtung) größer als in Polmitte. Dieser Effekt ist jedoch bekannt, daher können die Ergebnisse dementsprechend nachkorrigiert werden.

4.2 Lastfälle

In der gesamten Lebensdauer des Generators können vier verschiedene Lastfälle auftreten. Drei davon sind reguläre Lastfälle, die in der Betriebsfestigkeitsrechnung mit einbezogen werden. Der vierte Lastfall stellt eine Art Katastrophenlastfall des Generators dar, und gilt nicht als regulärer Betriebszustand, sondern als Lastfall, der nur auf statische Festigkeit überprüft wird.

4.2.1 Stillstand

Beim Stillstand ist die Kette mit Außnahme der vernachlässigbaren Gewichtskraft mit keiner Massenkraft belastet. Durch das Aufschrumpfen der Rotorkette auf den Nabenstern wird der Rotorkette eine polygonale Verformung aufgezwungen (siehe Kapitel 3.1). Dabei treten im Bereich der Arme und bei halbem Winkel zwischen den Armen (γ) große Biegemomente auf (vgl. Abbildung 3.9). Weiters werden über die Schrumpfleisten Druckkräfte, die als Reaktion auf die Stauchung der Arme auftreten, in die Kette eingebracht.

4.2.2 Nennbetrieb

Im Lastfall des Nennbetriebs rotiert der Rotor (und somit die Kette) mit der Betriebsdrehzahl bzw. Nenndrehzahl des Rotors. Die Nenndrehzahl errechnet sich aus der Netzfrequenz des Netzes, an dem der Generator betrieben wird, und der Polpaarzahl. Da sich die Kette durch die durch die Rotation verursachten Massenkräfte aufweitet, fallen die Druckkräfte zwischen der Rotorkette und den Armen (bzw. der Schrumpfleisten). Die aufgezwungene polygonale Verformung nähert sich somit einem Kreis an.

⁷mit Ausnahme der eingangs in Kapitel 4 erwähnten Rechtecknuten für die Verkeilung

4.2.3 Lastabwurf

Der Lastabwurf ist der in der Betriebsfestigkeitsrechnung berücksichtigte Lastfall mit der höchsten Belastung. Bei Lastabwurf, also dem Zusammenbrechen des elektrischen Netzes und somit dem Wegfall der Last am Generator, beschleunigt das Drehmoment der Turbine den Generator auf die *Lastabwurfdrehzahl*. Dies ist die maximale Drehzahl, auf die der Generator beschleunigt wird, bis die Regelwerke des Kraftwerks (z. B. Kugelschieber) eingreifen und die Beaufschlagung der Turbine abriegeln.

4.2.4 Durchgang

Der Durchgang ist kein "Betriebszustand" im eigentlichen Sinn und sollte während der gesamten Lebensdauer des Generators eigentlich überhaupt nicht auftreten. Vielmehr ist er als ein Katastrophenlastfall zu betrachten, der auftritt, wenn bei einem Lastabwurf die Regelwerke des Kraftwerks versagen, und die Turbine den Generator ungebremst beschleunigt, bis die Maximaldrehzahl der Turbine erreicht ist. Bei diesem Lastfall muss die Abhebedrehzahl (siehe Kapitel 4.2.5) auf jeden Fall überschritten sein, damit die nun sehr hohen Tangentialspannungen nicht durch Biegespannungen (verursacht durch die Armkräfte) überlagert werden. Die Rotorkette ist durch die Aufweitung nun kreisförmig und "schwebt" auf dem Nabenstern. Diese Drehzahl ist stark vom Turbinentyp abhängig. In der folgenden Tabelle sind typische Verhältnisse Durchgangsdrehzahl zu Nenndrehzahl aufgelistet.

Turbinentyp	${\it Drehzahlverh\"altnis}$
Peltonturbine	$1,8 \ \dots \ 1,9$
Francisturbine	$1,6 \dots 1,9$
Kaplanturbine	$2,5 \dots 3,4$
Pumpturbine	$1,4 \ \dots \ 2,0$

Da der Durchgang kein normaler Betriebszustand ist, wird er nicht als solcher in der Betriebsfestigkeitsberechnung erfasst, sondern als Überlastungsfall. Es ist daher ausreichend, den Generator bei Durchgangsdrehzahl auf statische Festigkeit zu überprüfen.

4.2.5 Abheben

Das Übermaß für die Schrumpfverbindung, die die Temperaturdifferenz ΔT für den Schrumpfvorgang definiert, wird bei der Auslegung des Generators so gewählt, dass die radiale Aufweitung der polygonal verformten Kette bei der gewünschten Abhebedrehzahl

genau so groß ist, dass sie dem Übermaß des Schrumpfsitzes entspricht. Daraus folgt, dass die Druckkräfte, die nach dem Abkühlvorgang zwischen den Armen des Nabensterns und der Kette herrschen, verschwinden. Die Kette ist bei Rotation mit Drehzahlen > Abhebedrehzahl kreisrund und biegespannungsfrei. Es wird angestrebt, die Abhebedrehzahl aus Gründen der Laufruhe in die Nähe der Lastabwurfsdrehzahl zu legen.

Tabelle 4.2: Qualitativer Vergleich der vier Lastfälle			
Belastung durch Rotation Polfliehkräfte Armkrä			
Stillstand	null	null	sehr hoch
Nennbetrieb	normal	normal	normal
Lastabwurf	Lastabwurf hoch		sehr klein / null
Durchgang	sehr hoch	sehr hoch	null

4.3 Analyse der Elementgröße

Da die Rechenzeit für das FE-Modell mit der Anzahl der Knoten ungefähr quadratisch ansteigt, erscheint es sinnvoll zunächst die Anzahl der erforderlichen Elemente an jenen Stellen zu ermitteln, an denen hohe Spannungskonzentrationen erwartet werden, um das Netz speziell in diesen Bereichen zu verfeinern. Um diese Stellen ausfindig zu machen, wird das im Kapitel 4.1 erläuterte Grundmodell zunächst mit ungefähr homogen verteilten Knoten vernetzt, die Lasten aufgebracht⁸ und das Ergebnis ausgewertet. Um in allen geometrischen Symmetrieeinheiten das selbe Netz zu erhalten und die Ergebnisse so gut wie möglich vergleichbar zu machen, wird eine geometrische Symmetrieeinheit vernetzt und das Netz anschließend gespiegelt.

Es werden für die folgenden Rechnungen immer folgende Lastfälle gerechnet (vgl. Tabelle 4.2). Die Daten stammen aus den dem Berechnungsprotokoll des Programms RAD-BERKW.

Tabelle 4.3: Zusammenfassung der Lastfälle für das Beispielprojekt			
	Drehzahl	Flanken-	ΔR durch
	$\mathbf{n}(\omega)$	kraft	Armkrafte
	$[\min] ([rad/s])$	[kN]	[mm]
Stillstand	0	0	0,376
Nenndrehzahl	275(39,27)	$4,658 \times 10^{3}$	$0,\!536$
Lastabwurf	480(50,27)	$7,634x10^{3}$	$0,\!638$
Durchgang	$630\ (65, 97)$	$13,147 \text{x} 10^3$	

⁸Auf die Lastfälle wird detailliert im Kapitel 4.2 eingegangen

Zunächst wird das Modell mit Elementen vernetzt, die eine Kantenlänge von etwa 10mm haben.

Abbildung 4.5: Einfach vernetztes Modell mit einer Elementkantenlänge von $\approx 10 \text{mm}$

Die Auswertung der in Tabelle 4.3 beschriebenen Lastfälle ist auf den Abbildungen 4.6 bis 4.9 auf Seite 37 dargestellt. Es handelt sich dabei um eine grafische Darstellung der von-Mises-Vergleichsspannungen. Die Bereiche mit hoher Spannungskonzentration sind mit der Lupe gekennzeichnet. Die am höchsten belasteten Bereiche sind

- Bei Durchgang die Radien am Nutgrund für die Schrumpfleisten an der Innenkontur (erkennbar in Abbildung 4.6)
- Bei Durchgang (oder Stillstand, vgl Kapitel 4.4.1) die Radien am Nutgrund der Schwalbenschwanznuten (erkennbar in Abbildung 4.9)

Weiters treten an den Bolzenaugen, speziell an jenen, die näher an der Innenkontur liegen, hohe Spannungskonzentrationen auf (Abbildung 4.7). Dies deckt sich mit den Erkenntnissen des analytischen Modells *Dicker Ring*, das zeigt, dass näher an der Innenkontur höhere tangentiale Spannungen auftreten (siehe Abbildung 3.11). Beim Lastfall Stillstand, dargestellt in Abbildung 4.6, ist außerdem erkennbar, dass im Bereich der Arme vom Innendurchmesser bis zum Außendurchmesser eine Spannungsüberhöhung auftritt. Dies deckt sich wiederum mit der im Modell *Dünner Ring* gewonnen Erkenntnis, dass in diesem Bereich hohe Biegespannungen auftreten.

Anzumerken ist, dass die Kette für dieses Modell vorerst wie ein Körper aus einem isotropen Vollmaterial behandelt wurde.

Tabelle 4.4: Verwendete Daten für das Vormodell

Werkstoffdaten		
E-Modul	$2,\!1\! imes\!10^{11}$	N/m^2
Querkontraktionszahl ν	0,3	
Dichte ρ	7850	$ m kg/m^3$
Modelldaten		
Elementgröße	≈ 10	mm
Elementtyp	PLANE182	
Anzahl der Knoten	2919	
Anzahl der Elemente	2778	

4.3.1 Radien am Schwalbenschwanznutgrund

Wie in der Auswertung des Vormodells ersichtlich, werden die Spannungsspitzen am Nutgrund der Schwalbenschwanznuten fast ausschließlich durch die Polfliehkräfte verursacht. Da diese bei bei *Durchgang* am größten sind, wird die Untersuchung der Elementgröße nur bei diesem Lastfall durchgeführt. Um eine für die vorliegende Belastung und Geometrie geeignete Elementgröße (bzw. Abstand zwischen zwei Knoten) zu ermitteln, wird das Modell im Bereich der Radien am Schwalbenschwanzgrund mit unterschiedlich großen Elementen vernetzt und die Resultate ausgewertet. Um über den Radius qualitativ gleichmäßige Ergebnisse zu erhalten, wird der Abstand zwischen zwei Knoten am Radius durch Vorgabe einer Teilung definiert. Begonnen wird mit einer Teilung von eins, d.h. ein Element steht repräsentativ für den gesamten Radius. Die Daten für Werkstoff und Elementtyp werden aus dem Vormodell aus Kapitel 4.3 übernommen.

Abbildung 4.10 Von-Mises-Vergleichsspannung in Abhängigkeit von der Teilung

Abbildung 4.11 Relativer Fehler bezogen auf Teilung von 32

Die Bogenlänge des Radius beträgt in diesem Beispiel 20,94mm. Um die Qualität der Rechenergebnisse überprüfen zu können wird als Referenzwert für die maximale Vergleichsspannung das Ergebnis der Rechnung mit der Teilung von 32 herangezogen, da sich die Ergebnisse ab dieser Teilung abgesehen von kleineren Schwankungen kaum noch

Abbildung 4.15: 8 Elemente am SSW-Radius

520 E+0 9

372E+09

.298E+09

.444E+09 .518E+09

.371E+09

.297E+09

ändern. Der relative Fehler zum Referenzergebnis ist auf Abbildung 4.11 abzulesen. Da der Fehler ab einer Teilung von 12 unter 1,5% bleibt sollten bei Schwalbenschwanzgeometrien mit 60° Flankenwinkel die Nutgrundradien mit einer Teilung von 12 vernetzt werden.

Grundsätzlich kann man jedoch festhalten, dass für konservative Berechnungen eine tendenziell feinere Vernetzung für diesen Bereich zu wählen ist. Abbildung 4.18 zeigt die Geometrie ohne Belastung als Kontur.

4.3.2 Bolzenaugen

Wie an den Radien am Schwalbenschwanzgrund treten an den Bolzenaugen, speziell jenen der Bolzenreihe, die am nähesten beim Innendurchmesser liegt, Spannungs-überhöhungen auf. Der Kerbfaktor von kreisrunden Bohrungen und Löchern liegt bei bei etwa 3 [Pet74]. Da die Kerbspannungen an den Bolzenaugen in erster Linie durch die Massenkräfte durch Rotation verursacht werden, sind diese bei Durchgangsdrehzahl am größten. Daher wird die Untersuchung der Elementgröße nur bei diesem Lastfall durchgeführt. Da der Bereich um die Bolzenaugen eine einfache geometrische Form darstellt (Kreisring) kann ein regelmäßiges Netz verwendet werden (konzentrische Kreise und radial nach außen angeordnete Elemente, für eine Teilung von 16 Elementen pro Viertelkreis dargestellt in Abbildung 4.29). Wie für die Radien am Schwalbenschwanzgrund wird die ideale Elementgröße über Variation der Teilung ermittelt. Die Teilung bezieht sich hierbei auf jeweils ein Viertel des Umfangs⁹. Abbildung 4.28 zeigt die Position des untersuchten Bolzenauges am Modell (orange Box).

Abbildung 4.20 Von-Mises-Vergleichsspannung in Abhängigkeit von der Teilung

 $^9\mathrm{ANSYS}$ definiert Kreise als vier Radien, die jeweils einen 90° des Umfangs abdecken.

Abbildung 4.21 Relativer Fehler bezogen auf Teilung von 32

Wie auch im vorigen Kapitel wird hier als Referenz die ermittelten Kerbspannungen aus der Berechnung mit einer hohen Teilung herangezogen (in diesem Fall 64). Die Kerbwirkungszahlen sind zwar für eine näherungsweise Überprüfung der Ergebnisse brauchbar. Da die vorliegende Geometrie aber sehr stark von den von Peterson¹⁰ verwendeten Versuchen abweicht, sind die Kerbwirkungszahlen für eine genauere Überprüfung nicht präzise genug.

Auch hier ist erkennbar, dass eine Verfeinerung des Netzes sehr schnell zu besseren Ergebnissen führt. Obwohl der relative Fehler bei gleicher Elementzahl höher ist, als an den Schwalbenschwanz-Radien, kann hier ebenso eine Elementzahl von 12 als geeignet angesehen werden. Der Grund dafür liegt darin, dass für beide Fälle, also Bolzenaugen und Schwalbenschwanzradien, qualitativ die gleiche dynamische Belastung vorliegt, nämlich eine Schwellbelastung verursacht durch Massenkräfte der Rotation mit Drehzahlen 0 bis n_{LAW} . Da aber der Betrag der Kerbspannung an den Schwalbenschwanzradien meist größer ist, als jener an den Bolzenaugen, ist ein leicht höherer relativer Fehler akzeptabel.

 $^{^{10}}$ Pet74.

Abbildung 4.28: Position des Detailausschnittes am Modell

46

4.4 Modifikationen des Modells für kettenspezifische Besonderheiten

Das Vormodell wurde unter der Prämisse erstellt, dass es sich bei der Kette um einen massiven Bauteil aus einem isotropen Material handelt. Die Annahme von isotropen Werkstoffeigenschaften trifft jedoch nur auf den Massivrotor oder das Massivjoch zu. Da dies bei der Kette aber nicht zutrifft, muss das Modell einigen Modifikationen unterzogen werden, damit es die realen Besonderheiten der Kettenbauweise besser abbildet. In Kapitel 1.2 wurde bereits der Verschichtungsfaktor vorgestellt, der besagt, dass im Bereich der Stoßstellen der Bleche eine Spannungsüberhöhung auftritt, die so groß ist wie das Verhältnis der Anzahl der gesamten Blechschichten zur Anzahl der tragenden Blechschichten.

Dieser Übergang findet natürlich nicht abrupt, sondern allmählich statt, da sich der Reibschluss in Umfangsrichtung von den Stoßstellen weg erst aufbauen muss. Simulationen mit Kontaktberechnung haben ergeben, dass der Aufbau des Reibschlusses einer Geraden folgt [Wal11].

Aus diesen Simulationen ergibt sich unter Annahme von idealer Linearität folgender Zusammenhang, der *Rampenfaktor*[Wal11]:

$$f_{\rm RAMP} = \frac{1}{0.8 \frac{S_{\rm reib} \mu_{\rm real}}{u \mu_{\rm calc}}}$$
(4.2)

Dabei ist μ_{calc} ist der für die Berechnung der notwendigen Vorspannkraft für den Reibschluss herangezogene Reibkoeffizient, der üblicherweise sehr konservativ gewählt wird, um global gesehen den völligen Reibschluss auch sicher zu gewährleisten. Um für die Spannungsverteilung jedoch realitätsnähere Ergebnisse zu erhalten wird für die Berechnung des Rampenfaktors der Reibkoeffizient $\mu_{\text{real}} > \mu_{\text{calc}}$ herangezogen. s_{reib} ist ein Sicherheitsfaktor, der üblicherweise im Bereich von etwa 1,5 liegt. Weiters geht man bei der ANDRITZ Hydro GmbH davon aus, dass 20% der Vorspannkraft durch Setzungseffekte verloren gehen.

Der Rampenfaktor gibt also an welcher tangentiale Anteil des überlappten Bereiches dafür benötigt wird, um die Belastungen vollständig auf die benachbarten Bleche zu übertragen.

Wie bereits erwähnt können nicht alle Reibkontakte des Blechpakets der Kette in das Modell eingebracht werden, da dies zu extrem langen Berechnungszeiten führen würde. Es ist jedoch zweckmäßig, diese linear ansteigende Schwächung des Querschnitts in die

Stress distribution along the circumference

Abbildung 4.30: Verlauf der Tangentialspannungen eines vorgespannten Blechpakets und einer Verschichtung von u = 4/5 [Wal11]

Abbildung 4.31: Modellaufbau für die Bestimmung des Rampenfaktors (Paket aus 6 Blechen) [Wal11]

FE-Rechnung miteinzubeziehen, da sonst alle Rechenergebnisse manuell mittels Rampenfaktor nachkorrigiert werden müssen. Um die Schwächung trotzdem modellieren zu können, bedient man sich eines Tricks.

Die PLANE182-Elemente, die bisher im Modell verwendet wurden, setzen einen ebenen Spannungszustand voraus, bieten jedoch die Möglichkeit der Eingabe einer Dicke (in diesem Fall wäre dies die Länge der Kette). Jene Bereiche, die außerhalb des Rampenbereichs liegen, enthalten keine Lücken und die Tangentialkräfte sind an dieser Position bereits vollständig übertragen und ausgebildet. Sie erfahren also keine Spannungsüberhöhung durch fehlende Tragfähigkeit von benachbarten Blechen.

Allgemeiner kann man nun formulieren, dass all jene Bereiche, die keine zusätzliche Last von benachbarten Blechen aufnehmen müssen, die Dicke 1 haben. Dort, wo Stoßstellen auftreten, tritt eine Spannungsüberhöhung mit dem Kehrwert des Verschichtungsfaktors auf. Das heißt, dass die Dicke für die PLANE182-Elemente (bei ANSYS Mechanical gesteuert über sogenannte *real constants*) in diesem Bereich den Wert des Verschichtungsfaktors u betragen muss. Um das auf das Modell umzulegen, muss also jedem Element in Abhängigkeit von der tangentialen Position eine bestimmte Dicke zugeordnet werden. Dazu muss der Rampenfaktor mit der tangentialen Koordinate des Zylinderkoordinatensystems¹¹ (mit Ursprung in der Rotationsachse der Kette) in Verbindung gebracht werden. Da der Rampenfaktor den prozentuellen Anteil des Winkels einer sich überlappenden Einheit angibt, lautet die Dickenfunktion

$$d(\phi) = \begin{cases} u + \frac{1-u}{\alpha_s f_{\text{RAMP}}} \phi & \text{für } \phi < \alpha_s f_{\text{RAMP}} \\ 1 & \text{für } \phi > \alpha_s f_{\text{RAMP}} \end{cases}$$
(4.3)

unter der Annahme, dass sich bei $\phi = 0$ ein Spalt befindet und ϕ vom Spalt weg immer positiv gezählt wird (vgl. Abbildung 4.33). α_s ist der überlappte Bereich, der mit dem Rampenfaktor f_{RAMP} bewertet wird.

Da die weniger tragfähigen Bereiche um die Spalte aber beinahe die gleiche Masse haben, wie die tragenden Schichten (die Spalte sind im Verhältnis zu Umfang und Länge der Kette sehr klein) muss bei Verringerung der Dicke der Elemente die Dichte der selben Elemente um den gleichen Faktor vergrößert werden, damit die Massenkräfte erhalten bleiben. Durch die Schwächung werden die Radialspannungen zwar ebenfalls anteilsmäßig erhöht, allerdings ist der Anteil der Radialspannungen an der Gesamtbelastung der Kette relativ gering (siehe Kapitel 3.2, Theorie des dicken Rings), sodass der Fehler, der dadurch entsteht, vernachlässigt werden kann (die leichte Erhöhung der Radialspannungen führt zudem zu konservativeren Ergebnissen).

 $^{^{11} {\}rm Eigentlich}$ handelt es sich um ein Polarkoordinatensystem, da die Kooridinate in axialer Richtung aufgrund der Zweidimensionalität des Modells immer null ist.

Abbildung 4.32: Dicke der PLANE182-Elemente in Abhängigkeit von der tangentialen Position

Die Dichtefunktion lautet demnach:

$$\rho'(\phi) = \rho \frac{1}{d(\phi)} \tag{4.4}$$

Um die Dickenfunktion auf die Elemente anwenden zu können, müssen die Elemente einzeln nach Position (Flächenschwerpunkt des Elements) überprüft werden und anschließend anhand derer die Dickenfunktion angewandt werden. Für das Beispielprojekt sind folgende Werte anzuwenden.

α_s	$11,\!25^{\circ}$
μ_{calc}	0,09
$\mu_{\rm real}$	$0,\!15$
s_{reib}	1,5
u	$^{2/3}$
ρ	$7850 \ kg/m^3$

Diese Dickenfunktion wird jeweils auf das Netz eines sich überlappenden Bereichs angewandt und anschließend gespiegelt.

Auf Abbildung 4.33 ist der Bereich grob dargestellt, auf den die Dickenfunktion angewandt wird. Das Bild zeigt jenen Bereich des Modells, deren Elemente mit der Dickenfunktion bewertet werden.

Abbildung 4.33: Bereich, auf den die Dickenfunktion angewendet wird

Abbildungen 4.35 bis 4.37 zeigen Dickenplots des Modells, nachdem die Dickenfunktion über die Elemente gelegt wurde. Der Vorteil der Anwendung der Dickenfunktion liegt darin, dass die Ergebnisse aus der FE-Rechnung nicht nachkorrigiert werden müssen, und außerdem die Dehnungen und Verschiebungen korrekt sind, und die Anwendung eines verschmierten E-Moduls vermieden werden kann. Auf den Spannungsplots der Rechenergebnisse sind also bereits die wahren Spannungen ablesbar.

Abbildung 4.38 und 4.40 zeigen den Effekt der Dicken-Dichten-Korrekturfunktionen. Es ist deutlich erkennbar, dass an den Stoßstellen (bei $\phi = 0$) die Spannung leicht ansteigt. Dies hängt damit zusammen, dass die Massenkräfte zwar gleich bleiben, aber der Querschnitt geschwächt wurde, um die höhere Belastung der Kette an den Stoßstellen zu simulieren.

Abbildung 4.36: 3D-Ansicht Dickenfunktion

Abbildung 4.37: 3D-Ansicht Dickenfunktion

Abbildung 4.38: Spannungskonturplot ohne korrigierter Dicke/Dichte

Abbildung 4.39: Spannungskonturplot mit korrigierter Dicke/Dichte

Abbildung 4.40: Größenordnung der Radialspannungen im Bereich der Dicke-/Dichtfunkion bei Durchgang (Konturplot von -20MPa bis 20MPa)

4.4.1 Radien am Schrumpfleisten-Nutgrund

Die Radien am Nutgrund der sich am Innendurchmesser befindenden Nuten für die Schrumpfleisten sind ebenfalls Stellen, bei denen hohe Spannungskonzentrationen auftreten. Allerdings ist die Situation hier etwas komplizierter als bei den Schwalbenschwanznuten und bei den Bolzenaugen. Erstens spielt an dieser Stelle die Steifigkeit der Arme des Nabensterns eine große Rolle, und zweitens ist hier die Entwicklung der Spannung mit der Drehzahl nicht trivial ersichtlich, da der Radius einerseits im Stillstand durch hohe Biegespannungen im Bereich der Arme beansprucht wird, andererseits wird der Innendurchmesser der Kette wie in Kapitel 3.2 beschrieben bei Durchgang durch sehr hohe Tangentialspannungen beansprucht.

Die in Tabelle 4.3 angeführten radialen Verschiebungen stammen aus dem Berechnungsmodell des Programms RADBERKW und berücksichtigen die Steifigkeit des Armes. Bringt man diese Verschiebungen am Nutgrund bei den jeweiligen Lastfällen (=Drehzahlen) direkt im Bereich der Schrumpfleisten auf, erhält man global gesehen richtige Ergebnisse. Allerdings treten lokal im Bereich der Radien sehr hohe Spannungsspitzen auf, die nicht der Realität entsprechen. Die direkte Aufbringung der Verschiebungen entlang des Nutgrunds wirkt wie ein unendlich steifer Arm, der der Kette eine feste Verschiebung aufzwingt und lokale Nachgiebigkeiten nicht abbilden kann. Auf Abbildung 4.41 ist diese Situation abgebildet. Rechts ist sehr gut erkennbar, wie sich der Radius durch den unnachgiebigen Arm verformt. In Anlehnung an Kapitel 4.3.1 und Kapitel 4.3.2 wird der 90°-Radius mit einer Elementteilung von 8 vernetzt.

Abbildung 4.41: Spannungsspitzen-Singularität bei "unendlich steifem" Arm

Da der Arm aufgrund der vielfältigen Geometrien bei diesem Modell nicht mitmodelliert werden soll (dies würde die Parametrisierung des Modells maßgeblich verkomplizieren) wird der Arm durch Federn bzw. Steifigkeiten simuliert (wie auch bei dem Modell *Dünner Ring*, Kapitel 3.1), die an den jeweiligen Knoten des Schrumpfleisten-Nutgrunds angreifen und aufsummiert die Steifigkeit des (halben) Arms¹² ergeben. Die Massenkraft der Armmasse wird vernachlässigt, da diese im Vergleich zur Kettenmasse sehr klein ist (die radiale Aufweitung der Kette ist bei allen Generatoren viel größer als die radiale Verlängerung der Arme bei Rotation).

Weil die einzelnen Steifigkeiten (Ersatzfedersteifigkeiten) jeweils für einen Anteil der radialen Steifigkeit des Arms stehen, werden einerseits die äußerste Ersatzsteifigkeit (sie steht nur für die Steifigkeit des Randbereichs, auf Abbildung 4.43 also nur den "halben Teil unter der Feder") und die Steifigkeit an der Symmetrieachse (volle Steifigkeit ergibt sich durch die Symmetriebedingung) mit der halben Federsteifigkeit versehen. Die Steifigkeiten werden mit COMBIN14-Elementen modelliert.

Durch das Aufbringen der radialen Verschiebung der Kette über Federsteifigkeiten wird das Ergebnis vergleichmäßigt und die Singularität verschwindet (die maximale Spannung am Radius befand sich im ersten Versuch jenseits der 3000 MPa).

Der Vorteil dieser Methode ist außerdem, dass nun am freien Ende der COMBIN14-Elemente das Übermaß der Schrumpfverbindung direkt als Radialverschiebung aufgebracht werden kann, wodurch diese nicht in Abhängigkeit von der Drehzahl angegeben werden müssen. Dadurch lassen sich die Spannungen in Abhängigkeit von der Drehzahl abbilden, und zwar so lange, bis die Reaktionskräfte in den Zugbereich überschlagen, weil die Schrumpfverbindung keine radialen Zugkräfte aufnehmen kann.

 $^{^{12}\}mathrm{Die}$ Steifigkeit des halben Arms muss verwendet werden, falls der Arm, wie in diesem Beispiel, in der Symmetrieebene liegt

Abbildung 4.42: Simulation des Arms mittels Steifigkeiten

Abbildung 4.43: Ersatzmodell für die Steifigkeit des Arms

Abbildung 4.44: Vergleichsspannung am Radius bei Stillstand mit simulierter Armsteifigkeit

Die Berechnung zeigt, dass an den Radien der Schrumpfleistennuten die Spannung bei dem betrachteten Generator trotz großer Armkräfte mit der Drehzahl zunimmt. In der Wertetabelle des Diagramms auf Abbildung 4.45 ist ersichtlich, dass bei 630 U/min, also der Durchgangsdrehzahl dieses Generators, die Reaktionskraft der Arme bereits negativ ist. Die FE-mäßig berechnete Abhebedrehzahl beträgt 622 U/min. Da die Reaktionskraft ab dieser Drehzahl negativ wird (also in Zugkräfte umschlagen) sind die Ergebnisse ab dieser Drehzahl fehlerbehaftet. Um richtige Ergebnisse zu bekommen, müssen die Randbedingungen des FE-Modells abgeändert werden, was das System nichtlinear macht. Dies kann entweder durch Nullsetzung der Steifigkeit der Armelemente oder durch Entfernen der Verschiebungsbedingung an den freien Enden der Armelemente geschehen.

Über das Resultat, dass die Spannung in diesem Radius mit der Drehzahl zunimmt, kann jedoch keine für alle Generatoren gültige Aussage getroffen werden. Ob die Höhe der Spannung mit steigender Drehzahl zu- oder abnimmt hängt vom Steifigkeitenverhältnis Arm zu Kette ab. Um diese Situation eines relativ zur Kette steiferen Arms zu simulieren, wurde eine weitere Berechnungsreihe mit einer zehnfach höheren Armsteifigkeit bei sonst gleich bleibendem Modell durchgeführt. Dabei stellte sich heraus, dass die Spannung am Radius mit der Drehzahl sinkt, solange die Reaktionskräfte (Schrumpfkräfte) im Druckbereich bleiben. Die Ergebnisse dieser Berechnung sind in der Wertetabelle als σ_v^* gekennzeichnet (kursiv) und auf Abbildung 4.45 gestrichelt dargestellt.

4	Das	Finite-E	lemente-M	odell
---	-----	----------	-----------	-------

n [U/min]	F_{Arm} [kN]	σ_v [MPa]	σ_v^* [MPa]
0	13542	306	594
100	13194	308	588
200	12150	314	572
300	10410	324	545
400	7973	339	508
500	4841	369	465
600	1012	405	426
630	-271	418	413

Abbildung 4.45 Reaktionskraft der Arme und Spannungen am Radius

4.4.2 Nennspannungsbereich

Der Bereich zwischen geometrischen Störstellen, die den Kraftfluss umlenken, also im Bereich der Nennspannungen, sollte danach getrachtet werden, möglichst grob zu vernetzen, da dieser Bereich flächenmäßig am größten ist und daher bei sinnvoller Vernetzung viel Rechenzeit gespart werden kann. Da zu große Elemente das Modell jedoch mathematisch zu steif machen (insbesondere betreffend der Biegesteifigkeit) dürfen die Elemente nicht zu groß werden. Wie auch in den vorigen Kapiteln wird deshalb untersucht welche Elementkantenlänge sinnvoll ist. Da dieser Bereich geometrisch gesehen in hohem Maße unregelmäßig ist, wird diese Fläche von ANSYS automatisch vernetzt (*automesh*). Die ermittelte Kantenlänge versteht sich demnach nicht als konstante Größe, sondern stellt einen Richtwert dar, den der Vernetzungsalgorithmus einzuhalten versucht. Da auf Kerbspannungen bei dieser Studie keine Rücksicht genommen wird, werden die in den vorherigen Kapiteln behandelten Bereiche nicht feiner vernetzt.

Da die Biegespannungen in der Kette durch die Armkräfte verursacht werden, und diese bei Stillstand am größten sind, wird die Berechnungsreihe bei diesem Lastfall durchgeführt. Aus dem selben Grund wird der Bereich zwischen den Armen (großes Biegemoment bei maximaler Distanz zu den Schrumpfleisten) untersucht. Auf Abbildung 4.51 ist der Knoten eingezeichnet, der für den Vergleich herangezogen wird.

Elementgröße		ΔR
absolut	relativ	
[mm]	[%]	[mm]
50	$11,\!0$	0,24446
25	5,5	$0,\!24132$
20	4,4	0,24204
15	3,3	$0,\!24074$
10	2,2	$0,\!23986$
8	$1,\!8$	$0,\!23958$
5	$1,\!1$	$0,\!23947$
2	0,4	0,23881

Abbildung 4.46 Radiale Verschiebung in Abhängigkeit von der Elementgröße

Abbildung 4.47 Entwicklung der Knotenanzahl in Abhängigkeit von der Elementkantenlänge

In den Tabellen ist zusätzlich zur absoluten Elementgröße (bzw. Elementkantenlänge) die relative Elementgröße aufgelistet. Da diese von den absoluten Abmaßen der in diesem Beispiel behandelten Kette unabhängig ist, hat sie auch für andere Kettengeometrien Gültigkeit. Sie errechnet sich aus dem Verhältnis der (mittleren) Elementkantenlänge zur tragenden Höhe des Kettenquerschnitts, also

$$l_{e,rel} = \frac{l_{e,abs}}{R_a - T - R_i} \tag{4.5}$$

Es ist auffallend, dass die Ergebnisse für den Nennspannungsbereich weit weniger schnell konvergieren als beispielsweise die Kerbspannungen an den Nutgrundradien. Auf Abbildung 4.47 ist jedoch erkennbar, dass bei einer relativen Elementkantenlänge von etwa 2% der tragenden Höhe die Anzahl der Knoten extrem stark ansteigt, sodass eine feinere Vernetzung nicht tolierierbar ist. Insgesamt kann man jedoch festhalten, dass der Bereich der Nennspannungen weit weniger anfällig für eine schlechtere Netzqualität ist. Dies kann man im Vergleich zu den Radien am Schwalbenschwanzgrund oder den Bolzenaugen sehr gut in Abbildung 4.46 erkennen. Die Schwankungen der Ergebnisse in Abhängigkeit von der Elementgröße bewegen sich im Hundertstelmillimeterbereich. Daher darf die Vernetzung für diesen Bereich im Vergleich zu den Radien sehr grob ausfallen.

307E-03

272E-03

.255E-03

237E-03

4.5 Rechenzeitoptimierung

Wegen der Tatsache, dass die Anzahl der Knoten, und mit ihr die Rechenzeit, bei feiner Vernetzung drastisch ansteigt, kann nicht das gesamte Modell mit der kleinsten der in den Kapiteln 4.3.1 bis 4.4.2 ermittelten Elementgröße vernetzt werden. Daher muss das Modell in Bereiche "zerstückelt" werden, und die jeweiligen Bereiche mit der geforderten Elementgröße vernetzt werden. Auf diese Art kann die Qualität der Rechenergebnisse (der tolerierbare Rechenfehler liegt im Bereich von 1-2%) bei verhältnismäßig niedriger Elementzahl eingehalten werden. Um die Bereiche der hohen Spannungskonzentrationen werden Säume gebildet, in dem das Netz die für den jeweiligen Fall geeignete Qualität (mittlere Elementkantenlänge oder Teilung an den Radien) hat.

Obwohl die kleineren Hilfsschwalbenschwänze normalerweise keiner hohen Belastung durch Flieh- oder Massenkräfte unterliegen, werden diese trotzdem mit einem Saum versehen, um etwaiige Wechselwirkungen mit anderen geometrischen Störstellen berücksichtigen zu können. Bei anderen Kettengeometrien kann beispielsweise der Abstand zwischen zwei Schwalbenschwanznuten für die Polbefestigung geringer sein, was den Aufbau der Druckspannungen zwischen den Schwalbenschwanznuten beeinflusst (der Hilfsschwalbenschwanz ist dann eine nicht vernachlässigbare Störstelle). Außerdem können so Berechnungen im Randbereich der Kette durchgeführt werden, womit auch Generatoraufbauten berücksichtigt werden können.

Abbildung 4.52: Aufgeteiltes Modell mit Säumen um Bereiche höherer Spannungskonzentration

Die Breite der Säume ist abhängig von der Elementgröße, da der Übergang zwischen feinerer und gröberer Vernetzung einige Elementreihen betragen soll, um positive Effekte

aus einer feineren Vernetzung erzielen zu können. Die Säume sollten daher eine Mindestbreite von zehn Elementreihen aufweisen. Abbildung 4.53 zeigt ein beispielhaftes, gemischtes Netz.

Abbildung 4.53: Vernetztes Modell mit unterschiedlicher Knotendichte

Die feine Vernetzung zwischen den Bolzenreihen und den Schwalbenschwanznuten rührt daher, dass in diesem Bereich nicht gröber vernetzt werden kann, da sonst Formverletzungen auftreten können. Formverletzungen treten bei Überschreitung von Grenzwerten auf, die beispielsweise ein zu großes Längen-Breiten-Verhältnis der Elemente verhindern sollen. Auf Abbildung 4.53 ist außerdem sehr gut erkennbar, dass die beiden symmetrischen Geometrieeinheiten jeweils ein exakt spiegelbildliches Netz aufweisen. Der Grund dafür ist, dass nur die geometrische Symmetrieeinheit vernetzt wird, und das Netz anschließend gespiegelt wird. Dies hat vor vor allem den Vorteil, dass die Laufzeit des Vernetzungsalrorithmus stark verkürzt werden kann, denn diese kann bei sehr feinen Netzen nicht unerheblich sein.

5 Betriebsfestigkeitsnachweis¹³

Zur Bestimmung der Betriebsfestigkeit der Kette wird die *FKM-Richtline* zum Einsatz kommen. Die FKM-Richtlinie beruht auf der Modifikation der aus der Wöhlerlinie von Stahl und Eisengusswerkstoffen (sowie Aluminiumwerkstoffen) stammenden Kennwerte. In erster Linie wird dabei die ertragbare Spannungsamplitude für Dauerfestigkeit nach oben oder nach unten verschoben¹⁴. In 5.1 sind qualitativ zwei charakteristische Wöhlerlinien dargestellt. Bei Rotorketten kommen nur Werkstoffe zum Einsatz, bei welchen die Linie (a) gilt. Linie (b) ist stellt eine beispielhafte Wöhlerlinie für Aluminiumwerkstoffe dar, die für Generatorketten aber keine Bedeutung haben.

Abbildung 5.1: Wöhlerlinien von Werkstoffen mit ausgeprägter Dauerfestigkeit (a) und ohne ausgeprägter Dauerfestigkeit (b) [RV07]

Die FKM-Richtlinie unterscheidet bei nicht-geschweißten Bauteilen zwei Rechenansätze:

- mit Nennspannungen und Kerbfaktoren
- mit lokalen Kerbspannungen

 13 Mas03.

¹⁴Für Aluminiumwerkstoffe gelten teilweise andere Formeln, da der Zeitfestigkeitsbereich andere Charakteristiken aufweist.
Während die Berechnung der Nennspannungen näherungsweise noch denkbar wäre (siehe 3.1, 3.2), ist es aufgrund der komplexen Geometrie des Rotors und seiner Belastungen fast unmöglich, die Kerbspannungen über Kerbfaktoren zu bestimmen. Daher ist es zweckmäßiger mit lokalen Kerbspannungen zu arbeiten, da sich diese numerisch mittels *Finite-Elemente-Berechnung* bestimmen lassen. Dies wurde bereits ausführlich in Kapitel 4 behandelt.

Auf Abbildung 1.11 (Seite 11) ist beispielhaft der Spannungsverlauf bei dynamischer Belastung dargestellt. Die Spannung bewegt sich dabei je nach in die Rechnung einbezogenen Lastfällen zwischen einer Maximalspannung $\sigma_{o,i}$ und einer Minimalspannung $\sigma_{u,i}$. Allgemein errechen sich die Berechnung relevanten Mittelspannungen $\sigma_{m,i}$ und Amplituden $\sigma_{a,i}$ aus

$$\sigma_{m,i} = \frac{\sigma_{o,i} + \sigma_{u,i}}{2} \tag{5.1}$$

und

$$\sigma_{a,i} = \sigma_{o,i} - \sigma_{m,i} = \sigma_{m,i} - \sigma_{u,i} \tag{5.2}$$

mit einem Spannungsverhältnis von

$$R_{\sigma,i} = \frac{\sigma_{u,i}}{\sigma_{o,i}} \tag{5.3}$$

wobei i für den behandelten Lastfall steht.

Die hier behandelte FKM-Richtlinie für den Betriebsfestigkeitsnachweis bezieht sich auf den Zeit- und Dauerfestigkeitsbereich der Wöhlerlinie. Abbildung 5.2 zeigt exemplarisch eine Wöhlerlinie für nichtgeschweißten Stahl. Diese Wöhlerlinie ist das Resultat eines Schwingversuchs eines normierten Zugstabes mit polierter Oberfläche¹⁵ bei einer Mittelspannung von $\sigma_m = 0$. Bei Stahl kann man von Dauerfestigkeit ausgehen, wenn ein Bauteil nach mehr als etwa 10⁶ Lastspielen keine Beschädigungen durch Materialermüdung aufweist.

 15 RV07.

Abbildung 5.2: Wöhlerlinie

Im Zeitfestigkeitsbereich, also zwischen etwa 10^4 und 10^6 Lastspielen, kann ein Bauteilversagen durch Materialermüdung nach einer bestimmten Anzahl von Lastwechsel auftreten, auch wenn statische Festigkeit gegeben ist. Die FKM-Richtlinie geht also der Frage nach, wie hoch die Versagenssicherheit eines Bauteiles bei einer gegebenen Anzahl von Lastwechsel ist.

Die Vorgehensweise für die Modifikation der Wöhlerlinie ist:

- 1. Bestimmen der Werkstoffwechselfestigkeit 16 (Zug-Druck) des zugrunde liegenden Werkstoffs $\sigma_{w,zd}$
- 2. Bestimmen der Bauteilwechselfestigkeit σ_{WK} in Abhängigkeit von konstruktiven Randbedingungen
- 3. Bestimmen der Bauteildauerfestigkeit je nach Mittelspannung σ_{AK}
- 4. Bestimmen der Bauteilermüdungsfestigkeit bei variabler Spannungsamplitude (Einbeziehung der Lastfälle) σ_{BK}

¹⁶bei Mittelspannung von $\sigma_m = 0$

5. Nachweis der Sicherheit gegen Bauteilversagen durch Materialermüdung bei gegebener Lastspielzahl

Wendet man die Schritte 2 und 3 auf die auf Abbildung 5.2 gezeigte Wöhlerlinie an so erhält man eine neue, "modifizierte Wöhlerlinie", anhand der sich die Bauteilermüdungsfestigkeit bei einer gegebenen Lastspielzahl bestimmen lässt.

Abbildung 5.3: Wöhlerlinie modifiziert

5.1 Werkstoffwechselfestigkeit $\sigma_{w,zd}$

Für die Berechnung der Werkstoffwechselfestigkeit für Stahl- und Eisengusswerkstoffe ist grundsätzlich zwischen geschweißten und nichtgeschweißten Bauteilen zu unterscheiden. Weiters ist der Temperatureinfluss zu berücksichtigen, wenn die Kette Temperaturen von $>100^{\circ}$ C ausgesetzt ist. Für die verwendeten Kettenwerkstoffe gelten diese Temperaturen nach FKM-Richtlinie nicht mehr als "normale Temperaturen", sondern als "höhere Temperaturen", sondern als "höhere Temperaturen".

¹⁷Mas03, S. 104.

von ausgehen, dass die Kette nach erstmaligem Hochfahren des Generators in der Regel nicht mehr abkühlt, da die Stillstandszeiten zwischen den Betriebszeiten kurz sind und die Kette deshalb in dieser kurzen Zeit kaum an Temperatur verliert.

Für normale Temperaturen gilt

$$\sigma_{w,zd} = f_{w,\sigma} R_m \tag{5.4}$$

und für "höhere Temperaturen"

$$\sigma_{w,zd,T} = f_{w,\sigma} R_m K_{T,D} \tag{5.5}$$

Der Faktor $K_{T,D}$ ist auf Abbildung 5.4 dargestellt¹⁸.

Abbildung 5.4: Temperaturfaktor für die Werkstoffwechselfestigkeit $K_{T,D}$ [Mas03]

5.2 Bauteilwechselfestigkeit σ_{WK}

Die Bauteilwechselfestigkeit berücksichtigt bereits die Konstruktion und Beschaffenheit des zu untersuchenden Bauteils. Es ist zu unterscheiden zwischen *stabförmigen Bautei*-

¹⁸Der Faktor kann auch über Formeln bestimmt werden, siehe [Mas03, S. 104].

len, flächenförmigen Bauteilen und *volumenförmigen Bauteilen*. Für die Bestimmung der Betriebsfestigkeit von Rotorketten kommt ausschließlich der Formelsatz für volumenförmige Bauteile zum Einsatz, weil sich für diese die Hauptnormalspannungen aus der FE-Rechnung verwenden lassen.

Die Bauteilwechselfestigkeit ist die mit einem Bauteilfaktor korrigierte Werkstoffwechselfestigkeit.

$$\sigma_{WK} = \frac{\sigma_{w,zd}}{K_{WK,\sigma}} \tag{5.6}$$

Der Faktor $K_{WK,\sigma}$ setzt sich wiederum aus mehreren Teilfaktoren zusammen. Für die Hauptnormalspannungen 1 und 2 gilt

$$K_{WK,\sigma_i} = \frac{1}{n_{\sigma,i}} \left(1 + \frac{1}{\tilde{K}_f} \left(\frac{1}{K_{R,\sigma}} - 1 \right) \right) \frac{1}{K_v \cdot K_s \cdot K_{NL,E}}$$
(5.7)

und für die Hauptnormalspannung 3 (senkrecht zur Oberfläche wirkende Spannungen)

$$K_{WK,\sigma_3} = \left(1 + \frac{1}{\tilde{K}_f} \left(\frac{1}{K_{R,\sigma}} - 1\right)\right) \frac{1}{K_v \cdot K_s \cdot K_{NL,E}}$$
(5.8)

Dabei sind

n_{σ}	 Stützzahl
\tilde{K}_f	 Konstante für Einfluss der Oberflächenrauhigkeit
$K_{R,\sigma}$	 Rauhheitsfaktor
K_V	 Randschichtfaktor
K_S	 Schutzschichtfaktor
$K_{NL,E}$	 Konstante für Grauguss

Der letzte Bruch in den Gleichungen 5.6 und 5.7 ist hier nur der Vollständigkeit halber angeführt, weil die Faktoren K_V , K_S und $K_{NL,E}$ für die Kettenbleche immer 1 sind, weil sie weder oberflächenbehandelt, noch mit einer Schutzschicht versehen werden, noch aus Gusseisenwerstoffen bestehen.

Stützzahl n_{σ}

Für die Bestimmung der Stützzahl n_{σ} muss zunächst ein bezogenes Spannungsgefälle senkrecht zur Spannungsrichtung berechnet werden. Die FKM-Richtlinie betrachtet Belastungen im Spitzenspannungsbereich (bestimmt über Mittelspannung und Amplitude). Bereiche niedrigerer Spannungen (z. B. Nennspannung) werden in den rechnerischen Betriebsfestigkeitsnachweis der FKM-Richtlinie indirekt über die Stützzahl einbezogen.

Ein steiler Spannungsgradient senkrecht zur Spannungsrichtung wirkt sich dabei positiv auf die Betriebsfestigkeit aus. Der Grund dafür liegt darin, dass die Stellen, wo hohe Kerbspannungen auftreten durch Bereiche niedrigerer Spannung "gestützt" werden.

Abbildung 5.5: Beispielhafte Darstellung eines Spannungsgradienten quer zur Spannungsrichtung. Quelle: Firmeninterne Publikation

Das bezogene Spannungsgefälle errechnet sich aus dem Spannungsgefälle zweier benachbarter Punkte, an denen die Spannung bekannt ist. Berechnet man die Spannungen mittels FE-Rechnung kann man die Spannungen zweier benachbarter Knoten (*nodes*) heranziehen.

Abbildung 5.6: Punktweise Bestimmung von Spannungsamplituden [Mas03]

$$\overline{G}_{\sigma} = \frac{1}{\Delta s} \left(1 - \frac{\sigma_{2a}}{\sigma_{1a}} \right) \tag{5.9}$$

Damit kann man anschließend die Stützzahl bestimmen^{19 20}.

$$n_{\sigma} = \begin{cases} 1 + \overline{G}_{\sigma} \cdot 10^{-\binom{a_{G} - 0, 5 + \frac{R_{m}}{b_{G}}}} & \text{für } \overline{G}_{\sigma} \leq 0, 1 \text{mm}^{-1} \\ 1 + \sqrt{\overline{G}_{\sigma}} \cdot 10^{-\binom{a_{G} + \frac{R_{m}}{b_{G}}}} & \text{für } 0, 1 \text{mm}^{-1} < \overline{G}_{\sigma} \leq 1 \text{mm}^{-1} \\ 1 + \sqrt[4]{\overline{G}_{\sigma}} \cdot 10^{-\binom{a_{G} + \frac{R_{m}}{b_{G}}}} & \text{für } 1 \text{mm}^{-1} < \overline{G}_{\sigma} \leq 100 \text{mm}^{-1} \end{cases}$$
(5.10)

Alternativ kann die Stützzahl aus Diagramm 5.7 bestimmt werden.

Die Stützzahlen müssen für die beiden Spannungsrichtungen in der Oberfläche getrennt bestimmt werden $(n_{\sigma,i}$ in Gleichung 5.6 mit *i* als Nummer für die Spannungsrichtung der Hauptnormalspannungen).

Einfluss der Oberflächengüte $K_{R,\sigma}$ und \tilde{K}_f

Die Güte der Oberfläche beeinflusst die Ermüdungsfestigkeit des Bauteils. Die geomerische Beschaffenheit des Bauteils hat zudem Einfluss darauf, wie stark sich die Oberflächengüte auf die Ermüdungsfestigkeit auswirkt.

$$K_{R,\sigma} = 1 - a_{R,\sigma} \cdot \log\left(R_z\right) \cdot \log\left(\frac{2R_z}{R_{m,N,min}}\right)$$
(5.11)

Dabei sind

$a_{R,\sigma}$	 Konstante, $a_{R,\sigma} = 0.22$ für Stähle
R_z	 Rauheit der Bauteiloberfläche in μm (nach DIN 4768 [Mas03])
$R_{m,N,min}$	 Konstante, $R_{m,N,min} = 400$ MPa für Stähle
R_m	 Zugfestigkeit

 19 Als Einheiten sind nicht hier nicht SI-Einheiten, sondern m
m und MPa zu verwenden. 20 Die Faktoren betragen
 $a_G=0,5$ und $b_G=2700$ (für Kettenblechstähle)

Abbildung 5.7: Bestimmung der Stützzahl n_q aus dem Faktor \overline{G}_σ

Alternativ kann der Rauheitsfaktor aus Diagramm 5.8 bestimmt werden.

Abbildung 5.8: Bestimmung des Rauheitsfaktors

Der Faktor \tilde{K}_f ist weitaus schwieriger zu bestimmen, da er nur über die Spannungskonzentration einer Ersatzstruktur bestimmt werden kann²¹. Diese Ersatzstruktur ist ein auf Biegung belasteter Flachstab der Dicke *B* mit einer Rundkerbe mit dem Kerbradius *r* und einer Restdicke unter der Kerbe *s*. Die Bestimmung dieser Größen kann nur schätzungsweise erfolgen. Dafür gilt **näherungsweise**²²

$$\tilde{K}_f = \frac{\text{MAX}(10^{0,066-0,36\log r/s} ; 1)}{n_{\sigma}}$$
(5.12)

Erscheint die Erstellung einer Ersatzstrukur unzweckmäßig, kann für Stahl näherungsweise $\tilde{K}_f = 2$ gesetzt werden²³.

Qualitativ kann jedoch festgehalten werden, dass der Einfluss der Oberflächenrauhigkeit bei großen Kerben größer ist, als bei kleinen.

Die Rotorbleche werden per Laserschnitt aus Blechtafeln herausgeschnitten. Abbildung 5.9 zeigt eine Makroaufnahme der Oberfläche, die bei Laserschnitt entsteht (weißer Pfeil). Als Vergleich ist die Oberfläche zusammen mit einer 2-Cent-Münze abgebildet. Der rechte Bildausschnitt zeigt ebenfalls die Laserschnittoberfläche im Vergleich mit der Rändelung einer 2-Cent-Münze.

 $^{^{21} {\}rm Laut}$ FKM-Richtlinie ist diese Ersatzstruktur derzeit die einzige verfügbare, und kann daher nur als Näherung betrachtet werden.

 $^{^{22}\}mathrm{MAX}$ bedeutet, dass der größere der beiden Werte genommen werden soll $^{23}\mathrm{M}_{-}$ ob G. 100

 $^{^{23}}$ Mas03, S. 106.

Abbildung 5.9: Makroaufnahme der Laserschnittoberfläche

5.3 Bauteildauerfestigkeit nach Mittelspannung σ_{AK}

Die Bauteildauerfestigkeit nach Mittelspannung stellt einen mit einem Faktor bewertete Bauteilwechselfestigkeit σ_{WK} dar.

$$\sigma_{i,AK} = K_{AK,\sigma i} \cdot K_{E,\sigma} \cdot \sigma_{i,WK} \tag{5.13}$$

Dabei sind

 $K_{AK,\sigma i}$... Mittelspannungsfaktor $K_{E,\sigma}$... Eigenspannungsfaktor²⁴ $\sigma_{i,WK}$... Bauteilwechselfestigkeit nach Kapitel 5.2

 $^{^{24}\}mathrm{f\ddot{u}r}$ nichtgeschweißte Bauteile immer 1 [Mas
03, S. 114]

Da der Mittelspannungsfaktor $K_{AK,\sigma}$ vom Überlastungsfall abhängig ist, muss zunächst dieser bestimmt werden. Die FKM-Richtlinie kennt vier verschiedene Arten von Überlastungsfällen.

Im Falle der Überlastung²⁵ bleibt:

- F1 Mittelspannung σ_m konstant
- F2 Spannungsverhältnis R_{σ} konstant
- F3 Minimalspannung σ_{\min} konstant
- F4 Maximalspannung σ_{\max} konstant

Für die Spannungen an den Nutgrundradien der Schwalbenschwanzverbindungen gilt immer der Überlastungsfall F3, da die Radien im Stillstand immer der gleichen Spannung ausgesetzt sind. Die Drehzahl bei Überlast hat darauf keinen Einfluss. Die Minimalspannung ist somit konstant.

Für die Bolzenaugen gilt näherungsweise auch der Überlastungsfall F3, da die Biegespannungen im Stillstand keine sehr großen Kerbspannungen verursachen und daher näherungsweise davon ausgegangen werden kann, dass die Minimalspannung 0 ist.

Die Radien am Grund der Schrumpfleistennuten bei Stillstand höher belastet sein können als bei Überlast (siehe Kapitel 4.4.2), gilt entweder der Überlastungsfall F3 oder der Überlastungsfall F4.

Für den Mittelspannungsbereich sind 4 Bereiche zu unterscheiden.

Abbildung 5.10: Die 4 Mittelspannungsbereiche nach FKM-Richtlinie [Mas03, S. 115]

²⁵vgl. Kapitel 4.2

Die 4 Bereiche nach FKM-Richtlinie sind (übernommen aus [Mas03, S. 115]):

- I $R_{\sigma} > 1$, Druckschwellbereich. $R_{\sigma} + \infty$ oder $-\infty$ ist reine Druckschwellspannung.
- II $+\infty \leq R_{\sigma} \leq 0, R_{\sigma} < -1$ ist der Druckwechselbereich, $R_{\sigma} = 1$ ist reine Wechselsspannung, $R_{\sigma} > -1$ ist der Zugwechselbereich
- III $0 < R_{\sigma} < 0.5$, niedriger Zugschwellbereich. $R_{\sigma} = 0$ ist reine Zugschwellspannung.
- $\mathbf{IV} \qquad R_{\sigma} \geq 0.5 \text{ hoher Zugschwellbereich.}$

Überlastungsfall F3Überlastungsfall F4 $s_m = \frac{\sigma_{\min}}{\sigma_{WK}}$ (5.14) $s_m = \frac{\sigma_{\max}}{\sigma_{WK}}$ (5.15)Die Mittelspannungsempfindlichkeit errechnet sich aus²⁶ $M_q = a_M \cdot 10^{-3} \cdot R_m + b_M$ (5.16)Bereich IBereich IFür $s_m < \frac{-2}{1-M_{\sigma}}$ giltFür $s_m < 0$ gilt

$K_{AK,\sigma} = \frac{1}{1 - M_{\sigma}}$	(5.17)	$K_{AK,\sigma} = \frac{1}{1 - M_{\sigma}}$	(5.18)

Bereich II		Bereich II	
Für $\frac{-2}{1-M_{\sigma}} \leq s_m \leq 0$ gilt		Für $0 \le s_m \le \frac{2}{1+M_\sigma}$ gilt	
$K_{AK,\sigma} = \frac{1 - M_{\sigma} \cdot s_m}{1 + M_{\sigma}}$	(5.19)	$K_{AK,\sigma} = \frac{1 - M_{\sigma} \cdot s_m}{1 - M_{\sigma}}$	(5.20)

Bereich III	Bereich III	
Für $0 < s_m < \frac{2}{3} \cdot \frac{3+M_\sigma}{(1+M_\sigma)^2}$ gilt	Für $\frac{2}{1+M_{\sigma}} < s_m < \frac{4}{3} \cdot \frac{3+M_{\sigma}}{(1+M_{\sigma})^2}$ gilt	
Ma	M_{π}	

$$K_{AK,\sigma} = \frac{\frac{1+\frac{\sigma}{3}}{1+M_{\sigma}} - \frac{M_{\sigma}}{3} \cdot s_m}{1+\frac{M_{\sigma}}{3}}$$
(5.21) $K_{AK,\sigma} = \frac{\frac{1+\frac{\sigma}{3}}{1+M_{\sigma}} - \frac{M_{\sigma}}{3} \cdot s_m}{1-\frac{M_{\sigma}}{3}}$ (5.22)

Bereich IVBereich IVFür
$$s_m \ge \frac{2}{3} \cdot \frac{3+M_{\sigma}}{(1+M_{\sigma})^2}$$
 giltFür $s_m \ge \frac{4}{3} \cdot \frac{3+M_{\sigma}}{(1+M_{\sigma})^2}$ gilt $K_{AK,\sigma} = \frac{3+M_{\sigma}}{3(1+M_{\sigma})^2}$ (5.23) $K_{AK,\sigma} = \frac{3+M_{\sigma}}{3(1+M_{\sigma})^2}$

²⁶Die Konstanten betagen für Stahl $a_M = 0.35$ und $b_M = -0.1$ [Mas03, S. 118]

5.4 Bauteilermüdungsfestigkeit bei variabler Spannungsamplitude σ_{BK}

Wie in Kapitel 1.5 beschrieben nimmt man bei der Konstruktion von Rotorketten an Stellen höchster Belastung lokales Fließen in Kauf, solange statische Festigkeit gegeben ist, und die lokalen Spitzenspannungen die doppelte Streckgrenze nicht überschreiten (siehe Diagramm auf Abbildung 1.10, Seite 10).

Da die für den Betriebsfestigkeitsnachweis notwendigen Kerbspannungen mittels FE-Rechnung bestimmt werden, müsste man, um die realen Spannungen und Verformungen an den Stellen höchster Spannungskonzentration zu bestimmen, das reale, elastischplastische σ - ε -Diagramm in die Rechnung einbeziehen. Dies ist zwar technisch möglich, jedoch wirkt sich dies negativ auf die Dauer der Berechnung aus.

Um dieses Problem zu umgehen, und mit der FE-Rechnung im linear-elastischen Bereich bleiben zu können (das σ - ε -Diagramm ist damit eine Gerade), können die Verformungen und Spannungen näherungsweise mit der *Neuber-Hyperbel* bestimmt werden. Die Neuber-Hyperbel sagt aus, dass $\sigma\varepsilon$ = const ist[Hai02]. In anderen Worten stellt sie einen Zusammenhang zwischen einer theoretischen linear-elastischen Spannung und einer realen Spannung her, die sich bei lokaler Plastifizierung einstellt.

Auf Abbildung 5.11 ist ein beispielhafter Verlauf der theoretischen linear-elastischen Spannung rot gestrichelt eingezeichnet und die Neuber-Hyperbel grün. Der Punkt, wo sich die Neuber-Hyperbel mit der σ - ε -Kurve schneidet, ist die näherungsweise bestimmte reale Spannung.

Die Bauteilermüdungsfestigkeit bei variabler Spannungsamplitude berücksichtigt nun auch die verschiedenen Lastfälle. Die FKM-Richtlinie unterscheidet zwischen zwei Verfahren, wie diese Lastfälle bewertet werden. Diese sind

- Miner elementar und
- Miner konsequent

wobei ersteres zu konservativeren Ergebnissen führt. Daher kommt zur Bewertung der Lastfälle *Miner elementar* zum Einsatz. Dieses geht davon aus, dass bei jedem Lastspiel – auch bei jenen, bei deren Amplitude theoretisch Dauerfestigkeit vorliegt – eine bestimmte Teilschädigung des Bauteils auftritt.

$$\sigma_{BK} = K_{BK} \cdot \sigma_{AK} \tag{5.25}$$

Um den Faktor K_{BK} bestimmen zu können, muss zuerst das sogenannte Völligkeitsmaß ν_{σ} bestimmt werden. Das Völligkeitsmaß berücksichtigt die Häufigkeit und Schwere der Spannungsamplituden der verschiedenen regulären Laststufen (Schadenspotenzial).

Abbildung 5.11: $\sigma{-}\varepsilon{-}$ Diagramm mit Neuber-Hyperbel

Die Kette wird durch zwei verschiedene Laststufen beansprucht (vgl Kapitel 4.2):

1. Stillstand - Lastabwurf

2. Stillstand - Nennbetrieb

Es liegt also ein zweistufiges Spannungskollektiv vor. Obwohl Lastwechsel der Laststufe 2 wesentlich häufiger auftreten, ist definitionsgemäß jener Lastfall mit der größten Spannungsamplitude der Lastfall 1.

$$\nu_{\sigma} = \sqrt[k]{\sum_{i=1}^{3} \frac{n_i}{N} \left(\frac{\sigma_{a,i}}{\sigma_{a,1}}\right)^k}$$
(5.26)

$$K_{BK} = \left[\left(\frac{1}{\nu_{\sigma}^{k}} - 1 \right) D_{m} + 1 \right]^{\frac{1}{k}} \cdot \left(\frac{N_{D}}{N} \right)^{\frac{1}{k}}$$
(5.27)

Dabei sind

n_i	 Anzahl der Lastwechsel in Lastfall i^{27}
N	 Gesamtanzahl der Lastwechsel
$\sigma_{a,i}$	 Spannungsamplitude bei Lastfall i^{27}
$\sigma_{a,1}$	 Spannungsamplitude bei Lastfall 1^{28}
D_m	 Kritische Schadenssumme ²⁹
N_D	 Bauteilwöhlerlinien-Knickpunktzahl ³⁰
k	 Neigungs exponent ("Steigung") der Bauteil-Wöhlerlinie (für $N < N_D)^{31}$

Abbildung 5.12: Wöhlerlinienexponent

Die aus Gleichung 5.25 ermittelte Bauteilermüdungsfestigkeit bei var. Spannungsamplitude σ_{BK} ist also die ertragbare Spannungsamplitude bei einer gegebenen Lastspielzahl unter Berücksichtigung des zweistufigen Lastkollektivs.

 $^{^{27}\}mathrm{vgl.}$ Kapitel 4.2

²⁸Lastfall 1 ist nach FKM-Richtlinie jener Lastfall mit der höchsten Spannungsamplitude.

 $^{^{29}\}mathrm{Die}$ kritische Schadenssumme beträgt für nichtgeschweißte Stahlkomponenten $D_m=0,3$

 $^{^{30} \}mathrm{Die}$ Knickpunktzyklenzahl begrägt für nichtgeschweißte Stahlkomponenten $N_D = 10^6,$ siehe auch Abbildung 5.2

 $^{^{31}{\}rm Für}$ nichtgeschweißte Stahlkomponenten k=5

5.5 Ausnutzungsgrad

Der Ausnutzungsgrad stellt eine Art Sicherheitsfaktor für die Betriebsfestigkeit dar, ist aber kein solcher im eigentlichen Sinne. Er beschreibt eher wie stark das Potenzial des Bauteils ausgenutzt wird, Spannungsausschläge mit einer bestimmten Anzahl von Lastspiel zu ertragen.

Er ist definiert als

$$a_{BK} = \frac{\sigma_{a,1}}{\sigma_{BK}/j} \tag{5.28}$$

wobei j den allgemeinen Sicherheitsfaktor darstellt. Für Bauteile aus Stahl, die keiner regelmäßigen Inspektion unterzogen werden können und bei denen ein Schadensfall katastrophale Auswirkungen haben kann (z. B. Kettenbruch), beträgt der allgemeine Sicherheitsfaktor j = 1,5. Für den Ausnutzungsgrad herangezogen wird immer der Lastfall mit der größten Spannungsamplitude, also der Lastfall 1 ($\sigma_{a,1}$).

In den vorangehenden Kapiteln wurden die Grundlagen für die Umsetzung eines Programms erörtert, dass zukünftig das aktuelle Kettenberechnungsprogramm RADBER ersetzen soll. In Kapitel 2 wurde bereits erwähnt, welche Aufgaben das Programm künftig erfüllen soll. Eine zentrale Rolle wird dabei das FE-Modell einnehmen.

Zur Durchführung von mechanischen Berechnungen verwendet die ANDRITZ Hydro GmbH das Programm ANSYS Mechanical. Dieses kann über die programmeigene Schnittstelle APDL³² gesteuert werden. Es handelt sich dabei um eine sequenzielle Programmiersprache, die den gesamten Funktionsumfang des Programms von der Generierung der Geometrie bis zur Auswertung der Ergebnisse abdeckt.

In diesem Kapitel werden die für das Programm notwendigen Makros grob beschrieben. Eine detaillierte Dokumentation der Makros ist in den Quellcodes nachzulesen.

000	I genload.mac	\odot
New Open Recent Save Print	Undo Rado Cut Copy Paste Search	Preferences Help
! Load step: Drehzahl und Annkräfte		Î
LSCLEAR,ALL SELTOL,0.0005 CSYS,glocyl		
NSEL,ALL NSEL,r,loc,y,0 D,ALL,0, ,, ,UY,,,, NSEL,ALL NSEL,ALL NSEL,r,loc,y,reflects*alpha D,ALL,0, , , , , , , ,		
NSEL, ALL		
IDrehzahl aufbringen (wenn vorhanden) *IF,drehz,NE,0,THEN OMEGA,0,0,((drehz*_pi)/30), *ENDIF		
IAmdroffe aufbringen (wenn vorhanden) 457 dann, ME & THEN neel, oll neel, n. loc, x. zouter neel, n. loc, x. zouter 0, ALL, dram,		
<pre>*IF,drehz,NE,0,THEN polkroft = (mpol*pol*((drehz*_pi)/38)**2)/lkette polkroft = polkroft / (mshteil+1) NSEL,ALL</pre>	! reduziert auf normierte im Länge ! Kraft pro Node auf der Flanke	
_currssm = 1 *00MHLE_currssm **F_currssm,[14,THEN <sys,ssm(_currssm,7,1) NSELs,loc,y.30 Ur gendammar Top (31,9) (Arsys)</sys,ssm(_currssm,7,1) 		(4 4
Beginning of buffer		

Abbildung 6.1: Schreiben eines APDL-Makros

³²ANSYS Parametric Design Language

6.1 Parametrisierung der Geometrie

Um den Automatisierungsgrad der Berechnung zu erhöhen soll die Geometrie vom Programm selbst generiert werden, und nicht etwa über Importschnittstellen von anderen CAD-Programmen übernommen werden. Die Kettengeometrie ist zwar bei jedem Generator anders, jedoch weisen alle Ketten bestimmte Ähnlichkeiten auf. Darum ist es möglich jede Kettengeometrie nach einer Art Baukastensystem modular zusammenzusetzen.

Die Grundgeometrie für die Erstellung des Kettenmodells ist immer ein Kreisringsegment. Aus dieser Grundgeometrie werden anschließend die einzelnen geometrischen Unregelmäßigkeiten gegenüber dem Kreisringsegment (Schwalbenschwanz, Bolzenaugen etc.) mit Hilfe von bool'schen Operationen "herausgestanzt". Um den modularen Aufbau des APDL-Skripts zu gewährleisten, wird jede Art von Ausnehmung in ein eigenes Makro ausgelagert und getrennt parametrisiert. Dieses kann dann im Hauptmakro aufgerufen werden. Für alle diese Arten von Geometrieelementen wird im Hauptmakro jeweils ein Array angelegt, in dem die wichtigsten Parameter abgelegt werden, um darauf später leicht zugreifen zu können. Diese Vorgehensweise hat zudem den Vorteil, dass das Makro relativ leicht erweiterbar ist.

Eine besondere Herausforderung stellt die Nummerierung der Linien, Flächen und Knoten dar, da die Nummern bis auf wenige Ausnahmen automatisch von ANSYS vergeben werden und nachträglich nicht mehr geändert werden können. Bei den bool'schen Operationen fehlt zudem die Möglichkeit die Nummern der durch sie generierten Flächen oder Linien herauszufinden. Die Kenntnis darüber, wie im Makro nummeriert wird, ist jedoch zwingend notwendig (insbesondere bei den Flächen), um später im Makro darauf Bezug nehmen zu können. Eine Möglichkeit auf die Nummerierung Einfluss zu nehmen ist jedoch der Befehl NUMSTR, mit dem man zwingend die kleinste zu vergebende Nummer festsetzen kann. Mit Hilfe von Auswahlbefehlen und *GET Abfragen können die Nummern dann ausgelesen werden.

Grundmodell

Das Grundmodell, sozusagen der "Rohling", aus dem die Geometrie generiert wird, ist wie bereits erwähnt ein Kreisringsegment. Allerdings weist nicht jede Kette eine zylindrische Außenkontur auf. Dies ist bedingt durch die Bauart der Pole, welche die Außenkontur bestimmen. In Kapitel 1.3 sind die verschiedenen Polbauarten beschrieben. Bestimmte Parameter müssen auch aus elektrotechnischer Sicht erfüllt werden, wie beispielsweise die Leitung des magnetischen Flusses oder der zulässige Luftspalt zwischen Kette und Polen. Diese Parameter sind bereits durch die elektrische Vorauslegung (SMAUP) vorhanden,

und sollen aus dieser übernommen werden, um die Anzahl der Parameter, die manuell eingegeben werden müssen, zu verringern.

Ist die Außenkontur der Kette nicht zylindrisch, muss die sie entsprechend der Polgeometrie angepasst werden.

Als Grundmodell wird zunächst nur die in Kapitel 4.1 beschriebene geometrische Symmetrieeinheit erstellt.

Abbildung 6.2: Grundmodell

Bolzenaugen

Die Bolzenaugen werden durch ein Makro generiert, welchem die radiale und tangentiale Position, sowie der Durchmesser mitgeteilt werden. Weiters soll dieses Makro bei Angabe einer Saumbreite eine kreisringförmige Fläche um das Bolzenauge erstellen, welches bei der Erstellung der Elemente feiner vernetzt werden kann (unter Angabe der Teilung für den Viertelradius). Alle Parameter, die für die Bolzenaugen relevant sind, werden in einem Array, das vom Hauptmakro verwaltet wird, abgelegt. Dadurch können Operationen an allen Bolzenaugen in einer Schleife abgearbeitet werden. Diese Parameter sind unter Anderem:

- Radiale und tangentiale Position des Mittelpunkts
- Knotennummer des Mittelpunkts
- Flächennummer des Saums

Abbildung 6.3: Ein Bolzenauge mit Saum

Schwalbenschwanznuten und Schrumpfleistennut

Die Geometrie der Schwalbenschwanznuten wird durch eine betriebsinterne Designvorschrift vorgegeben. Alle zulässigen Geometrien (breiter SSW und schmaler SSW) sind über die gleichen Parameter definierbar. Das heißt, dass alle Schwalbenschwanznuten von einem einzigen Makro erstellt werden können. Dem Makro müssen neben den Abmessungen auch Position und Verdrehung mitgeteilt werden. Wie auch bei den Bolzenaugen soll dieses Makro bei Angabe einer Saumbreite einen Saum erstellen, der später feiner vernetzt werden kann. Auch hier werden, wie bei den Bolzenaugen, relevante Parameter in einem SSW-Array abgelegt.

Für die Schrumpfleistennut ist die Vorgehensweise weitestgehend gleich.

Abbildung 6.4 Schwalbenschwanznut

Abbildung 6.5 Schrumpfleistennut

6.2 Vernetzen und Lastfälle

Die Netzerstellung wird größtenteils mit dem automatischen Vernetzungsalgorithmus von ANSYS Mechanical durchgeführt. Eine Ausnahme sind dabei die Bolzenaugen, die mit einem regelmäßigen *mapped mesh* vernetzt werden können. Die Größe der Elemente, sowie die Teilung wird ebenfalls über Parameter gesteuert.

Die in Kapitel 4.4 beschriebene Dicken-/Dichtenfunktion wird mit einer Schleife abgearbeitet, welche die tangentiale Koordinate des Flächenschwerpunkts aller Elemente ausliest. Anhand dieser Koordinate wird die Dicke und die Dichte neu gesetzt. Während die Dicke der PLANE182-Elemente über *real constants* gesteuert wird, muss für die Korrektur der Dichte für jedes Element ein eigenes Material angelegt werden.

Nach Fertigstellung des Netzes auf einer geometrischen Symmetrieeinheit kann das Netz gespiegelt werden. Dazu müssen zunächst die Knoten und Elemente von der Geometrie getrennt werden. Der Grund dafür liegt darin, dass ANSYS stets die Hierarchie *Volumen* - *Fläche - Linie - Keypoint - Element - Knoten (node)* befolgt. Spiegelt man eine Fläche mit dem mit ihr verbunden Netz an einer Linie, werden alle Hierarchieebenen unter der Fläche, also Knoten, Elemente, Keypoints und Linien ebenso gespiegelt. Die Elemente der beiden Flächen teilen sich damit aber nicht die Knoten, sondern es entsteht entlang der Spiegelebene eine Reihe doppelter, übereinander liegender Knoten. Diese können jedoch nicht zusammengefasst werden, da sie anderen Flächen angehören, und damit die Hierarchie verletzt würde. Nach Ausführen des Befehls MODMSH, DETACH sind die Knoten von der Geometrie unabhängig und können mittels NUMMRG zusammengefasst werden. So entsteht ein zusammenhängendes Netz.

Wie auch die Erstellung der Geometrie und des Netzes werden auch die Lasten über ein parametrisiertes Makro aufgebracht. Da dieses Makro mit verschiedenen Lasten beliebig oft aufgerufen werden kann, lassen sich mit ihm Berechnungsreihen durchführen.

6.3 Umsetzung als Programm

Auch wenn die Parametrisierbarkeit der APDL-Makros einen hohen Automatisierungsgrad bei den Berechnungen ermöglicht sind die Makros für einen ungeübten Benutzer kaum verwendbar. Um die Handhabung zu vereinfachen, wird angestrebt, die Makros über eine Benutzeroberfläche zu steuern, die mit einer modernen Programmiersprache verfasst wird und intuitiv zu bedienen ist.

7 Zusammenfassung und Ausblick

Das Ziel der vorliegenden Arbeit war das Erarbeiten von Grundlagen, die der Entwicklung eines teilautomatischen Berechnungsprogramms dienen, das die Betriebsfestigkeit von dynamisch belasteten Rotorketten von Generatoren, also Generatoren, die viele Lastwechsel durchlaufen, bereits bei der Vorauslegung berechnen soll.

Bei der ANDRITZ Hydro GmbH wurden die Rotorketten der Generatoren bisher mit Hilfe eines Berechnungsprogramms vorausgelegt, das auf einem analytischen Formelsatz beruht. Dieser Formelsatz ist jedoch nur in der Lage, die Vorauslegung von Rotorketten bei Annahme quasistaticher Belastung durchzuführen. Diese Annahme ist jedoch bei vielen der heute entwickelten Generatoren nicht mehr zulässig, da der Anteil der dynamisch belasteten Generatoren zunimmt. Der Betriebsfestigkeitsnachweis für diese Generatoren muss einzeln von der Abteilung Mechanische Berechnung durchgeführt werden.

Viele der Prinzipien, die in die Erstellung des momentan eingsetzten Berechnungsprogramms RADBERKW eingeflossen sind, sind jedoch auch für das neue Berechnungsprogramm von großer Bedeutung, daher wurde zu Beginn der Arbeit die bisherige Berechnungsmethodik studiert. Es hat sich gezeigt, dass die Verwendung von Kerbzahlen für die Berechnung der für den Nachweis notwendigen Kerbspannungen nicht zweckmäßig ist, da diese zu viel zu ungenauen Ergebnissen führen. Da die Betriebsfestigkeit zum gegenwärtigen Zeitpunkt mittels Finite-Elemente-Berechnungen nachgewiesen wird, erwies sich diese Methode auch für ein teilautomatisches Berechnungsprogramm als geeignet.

Um die Ergebnisse der numerischen Berechnung verifizieren zu können, wurden analytische Modelle entwickelt, mit denen die Ergebnisse qualitativ überprüft werden können. Die Modelle beruhen auf Überlegungen der klassischen Festigkeitslehre.

Es hat sich gezeigt, dass die Geometrie der Rotorkette bei jedem Generatorprojekt anders ist, jedoch weisen alle Geometrien Ähnlichkeiten auf, die eine Parametrisierung eines Finite-Elemente-Modells für die Rotorkette ermöglichen. Damit ist es möglich, das Finite-Elemente-Modell, mit dem die Spannungen berechnet werden, vollständig mit Hilfe eines Makros für die Simulationssoftware ANSYS Mechanical APDL zu generieren, welches ohne Import/Export-Schnittstellen von CAD-Programmen auskommt. Dadurch wird es in Zukunft nicht mehr nötig sein, die Rotorkette vor der Berechnung in einem CAD-Programm zu zeichnen und in der Simulationssoftware zu importieren, um den Festigkeitsnachweis durchzuführen. Das Modell kann rein über die Eingabe von Parametern erstellt werden.

7 Zusammenfassung und Ausblick

Um das Makro später als benutzerfreundliches Programm implementieren zu können, wurde dieses modular aufgebaut. Die einzelnen Module sollen in Zukunft von einer grafischen Benutzeroberfläche parametrisiert werden, die in einer modernen Programmiersprache verfasst werden soll. Ein weiterer Vorteil dieser Variante ist, dass bereits vorhandene Parameter (die beispielsweise aus der elektrischen Vorauslegung kommen) automatisch übernommen werden können, was die Parametereingabe zusätzlich erleichtert.

Die Parametrisierung über eine grafische Benutzeroberfläche bietet außerdem die Möglich-keit, vor der eigentlichen Parametrisierung des Modells überschlagsmäßige Berechnungen durchzuführen (z. B. benötigte Anzahl der Bolzen und deren Durchmesser). Weiters besteht damit die Möglichkeit Berechnungsreihen durchzuführen. Einige Beispiele wären:

- Variation der Bolzenanzahl- und Position zum Zwecke der Minimierung von Spitzenspannungen
- Variation der Lasten (Simulation der höheren spezifischen Fliehkraft im Bereich der Polendplatten)
- Beobachtung der Spannungsentwicklung mit der Drehzahl (z.B. im Bereich der Nutgrundradien)

Das Ziel der Arbeit, das Erarbeiten von Grundlagen für die teilautomatische Vorauslegung von Rotorketten unter Einbeziehung eines Betriebsfestigkeitsnachweises, konnte erreicht werden. Die anfänglichen Befürchtungen, dass ein Finite-Elemente-Modell mit der gewünschten Genauigkeit für die Ergebnisse auf Bürorechnern zu lange Berechnungszeiten verursachen würde, haben sich nicht bewahrheitet. Die Berechnungszeit des ausgearbeiteten Modells liegt auf heutigen Rechnern in jedem Fall im Bereich weniger Sekunden pro Durchlauf und erfüllt damit die Anforderungen an eine kurze Berechnungszeit. Darüber hinaus bietet das parametrisierte Modell besonders in Hinblick auf das Erstellen von Studien sehr viel Potenzial für Adaptierungen und Erweiterungen.

Literatur

- [Bal10] Herbert Balke. *Einführung in die Technische Mechanik Festigkeitslehre*. 2. Aufl. Dresden: Springer, 2010. Kap. Rotationssymmetrische Spannungszustände.
- [Ele12] VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Schema eines Pumpspeicherkraftwerks. Mai 2012. URL: http://www.vde.com/de/fg/ ETG/Arbeitsgebiete/V1/Aktuelles/Oeffentlich/Seiten/Wasserkraft.a spx (besucht am 12.05.2012).
- [Hai02] Erwin Haibach. *Betriebsfestigkeit*. 2. Aufl. Berlin, Heidelberg, New York, Hong Kong, London, Mailand, Paris, Tokio: Springer, 2002.
- [KW67] Walter Kellenberger und Eugen Wiedemann. Konstruktion Elektrischer Maschinen. 1. Aufl. Berlin, Heidelberg: Springer, 1967.
- [Mar08] Richard Markert. *Fahrzeugschwingungen*. 1. Aufl. Darmstadt: TU Darmstadt, 2008. Kap. Rotierende Scheiben und Trommeln.
- [Mas03] FKM-Forschungskuratiorium Maschinenbau. Rechnerischer Festigkeitsnachweis für Maschinenbauteile. 5. Aufl. Frankfurt am Main: VDMA Verlag, 2003.
- [Pet74] Rudolph Earl Peterson. *Stress Concentration Factors*. New York, Toronto: Wiley-Intersience, 1974.
- [RV07] Dieter Radaj und Michael Vormwald. Ermüdungsfestigkeit Grundlagen für Ingenieure. 3. Aufl. Stuttgart, Darmstadt: Springer Verlag, 2007.
- [Sch12] Markus Schweiss. Lastkurve eines Pumpspeicherkraftwerks basierend auf Veröffentlichungen des RWE. Mai 2012. URL: http://de.wikipedia.org/wiki/ Pumpspeicherkraftwerk (besucht am 12.05.2012).
- [Wal11] Klaus Walter. Rotor Rim Design. 1. Aufl. Weiz, 2011.

Appendix

Dünner Ring mit Fliehkraft und Armkräften

Remove [A, B, STUC, STUA, HR, HRM] ; Remove [AUFLAGER, tmpSTUC, tmpSTUA, UNBEST, AAS, AA, II]; Remove[al, be, ga, ph, om]; Remove[l, f, r, rh, EE, GG, AIM, IM, k]; Remove[nphil, nphi2, qphil, qphi2, mphil, mphi2];

Remove[nTM, nr, nATM, nf, nl, nAA, nga];

Auflagerreaktionen berechnen

AUFLAGER = Solve[

-A+B Cos[ga] + Integrate[lfrhr^2 om^2 Sin[al], {al, 0, ga}] + HR Sin[be] = 0, B Sin[ga] - Integrate[lfrhr^2 om^2 Cos[al], {al, 0, ga}] - STUC - HR Cos[be] = 0 {A, B}];

A = A /. AUFLAGER[[1]] B = B /. AUFLAGER[[1]]

f l om² $r^2 \ r^2 \ rh$ + STUC Cot [ga] + HR Cos [be] Cot [ga] + HR Sin [be]

 $\texttt{Csc[ga]} \left(\texttt{STUC} + \texttt{HR} \; \texttt{Cos[be]} + \texttt{f} \; \texttt{l} \; \texttt{om}^2 \; \texttt{r}^2 \; \texttt{rh} \; \texttt{Sin[ga]} \right)$

Biegemoment-, Querkraft- und Momentenverlauf im Ring

Verläufe von 0 bis be

```
\label{eq:constraint} f \ l \ om^2 \ r^2 \ rh \ + \ Cos[ph] \ (\ (STUC \ + \ HR \ Cos[be] \ ) \ Cot[ga] \ + \ HR \ Sin[be]) \ + \ STUC \ Sin[ph] \ (pl) \ + \ STUC \ Sin[ph] \ + \ Stucker \ Sin[ph] \ + \ STUC \ Sin[ph] \ + \ Stucker \ Stucker \ Sin[ph] \ + \ Stucker \ 
                                                                                                                                                                                                       ، المناحية + Integrate [1 £ rh r^2 om^2 Sin[ph - al] , {al, 0, ph}]
+ STUC Sin[ph]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          + Integrate [1frhr^2 om^2 Cos[ph - al], {al, 0, ph}]
+ STUC Cos[ph]
nphil[ph_] = Simplify[
A Cos[ph]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 qphil[ph_] = Simplify[
-ASin[ph]
```

STUC Cos[ph] - ((STUC + HR Cos[be]) Cot[ga] + HR Sin[be]) Sin[ph]

mphi1[ph_] = Simplify[

+ STUA

 $STUA + HR r (-1 + Cos[ph]) Sin[be] - 2 r (STUC + HR Cos[be]) Cot[ga] Sin\left[\frac{ph}{2}\right]^2 + r STUC Sin[ph]$

- Ar (1 - Cos[ph]) + r Integrate[1f rh r^2 om^2 Sin[ph - al], {al, 0, ph}] + STUC r Sin[ph]

Verläufe von be bis ga

```
f \ l \ om^2 \ r^2 \ rh \ + \ (\texttt{STUC} + \texttt{HR} \ \texttt{Cos} \ [\texttt{pe]} \ ) \ \texttt{Cos} \ [\texttt{ph}] \ \texttt{Cot} \ [\texttt{ga}] \ + \ (\texttt{STUC} + \texttt{HR} \ \texttt{Cos} \ [\texttt{be}] \ ) \ \texttt{Sin} \ [\texttt{ph}] \ \texttt{Sin} \ [\texttt{ph}] \ \texttt{Sin} \ \texttt{Sin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \label{eq:students} STUA-HR\,r\,Sin[be] - 2\,r\,(STUC+HR\,Cos[be])\,Cot[ga]\,Sin\left[\frac{ph}{2}\right]^2 + r\,STUC\,Sin[bh] + \mu P\,r\,Ana\,hana
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       - Ar (1 - Cos[ph])
- Ar Trutegrafe[1 fthr^2 om^2 Sin[ph - al], {al, 0, ph}]
+ STOC Fain[ph]
+ HR r Sin[ph - be]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (STUC + HR Cos [be] ) Csc [ga] Sin [ga - ph]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          r STUC Sin[ph] + HR r Cos[be] Sin[ph]
nphi2[ph_] = Simplify[
ACos[ph]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              qphi2[ph_] = Simplify[
- ASin[ph]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             mphi2[ph_] = Simplify[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (*+HRM*)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    + STUA
```

Innere Ergänzungsenergie aufstellen

```
AA = fr;
AAS = A5 /6; (* Schubkorrekturfaktor... im Kellenberger nachschauen *)
TI = 1/173/12;
```

```
u = rIntegrate[(nphil[phI] ^ 2) / (2 EE AA) + nphil[phI] ATW TW, [phI, 0, be]] +
rIntegrate[(nphil[phI] ^ 2) / (2 G0AAS), (phI, 0, be]] +
rIntegrate[(mphil[phI] ^ 2) / (2 EE II), (phI, 0, be]] +
rIntegrate[(mphI2[phI] ^ 2) / (2 EE AA) + nphi2[phI] ATW TW, [phI, be, ga]] +
rIntegrate[(mphI2[phI] ^ 2) / (2 G0AAS), (phI, be, ga]] +
srucestrel(mphI2[phI] ^ 2) / (2 EE II), (phI, be, ga]] +
srucestrel(mphI2[phI] ^ 2) / (2 EE II), (phI, be, ga]] +
```

$8 \text{ HR}^2 r^2 \sin[3 \text{ be } - 2 \text{ga}] + 4 \text{ HR} r^2 \text{STUC } \text{Sin}[3 \text{be } - 2 \text{ga}] + \text{HR}^2 r^2 \text{Sin}[4 \text{be } - 2 \text{ga}] - 24 \text{ HR} r^2 \text{STUC } \text{Sin}[2 (\text{be } - \text{ga})] + \text{HR}^2 r^2 \text{Sin}[2 \text{ga}] - 24 \text{HR} \text{STUC } \text{Sin}[2 (\text{be } - \text{ga})] + \text{HR}^2 r^2 \text{Sin}[2 \text{ga}] - 24 $	$8 \text{ HR } r^2 \text{ stuc sin}[2 \text{ ga}] - 16 \text{ ber stud stuc sin}[2 \text{ ga}] - 12 r^2 \text{ stuc}^2 \text{ sin}[2 \text{ ga}]) + r \left[\text{ArM } \text{ HW} \left(\text{be f 1 } \text{ um}^2 r^2 \text{ rh} + \text{ stuc } - \text{ stuc cos}[\text{be}] + \text{ sin}[\text{be}] ((\text{ stuc + HR } \cos[\text{be}]) \text{ cot}[\text{ ga}] + \text{HR } \text{ sin}[\text{be}])\right) + \frac{1}{22 \text{ tm}^2 \text{ stud}^2 r^2 \text{ rh}^2 + 8 \text{ fH} 1 \text{ cm}^2 r^2 \text{ rh} + 8 \text{ be } r^2 r^2 \text{ cm}^4 r^4 \text{ rh}^2 + 16 \text{ f 1 om}^2 r^2 \text{ rh} \text{ stuc } + 10 \text{ cm}^2 r^2 \text{ rh} \text{ stuc } + 10 \text{ cm}^2 r^2 \text{ rh} \text{ stuc } + 10 \text{ cm}^2 r^2 \text{ rh} \text{ stuc } + 10 \text{ cm}^2 r^2 \text{ rh} \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 \text{ stuc } + 10 \text{ cm}^2 r^2 r^2 r^2 r^2 r^2 r^2 r^2 r^2 r^2 r$	$\begin{array}{l} 0.2 \text{EET} \\ \textbf{B} \text{be STUC}^2 + 8 \left(\text{be HR} - 2 \text{fl} \text{om}^2 \text{r}^2 \text{th} \right) \text{STUC} \text{Cos}[\text{be}] - 8 \text{f} \text{HR} \text{l} \text{om}^2 \text{r}^2 \text{th} \text{STUC} \text{cos}[2 \text{be}] + \\ \textbf{B} \text{be HRSTUC} \text{Cos}[\text{be} - 2 \text{ga}] + 16 \text{fl} \text{l} \text{om}^2 \text{r}^2 \text{th} \text{STUC} \text{cos}[\text{be} - 2 \text{ga}] + \\ \textbf{B} \text{be HRSTUC} \text{Cos}[2 (\text{pe} - 9 \text{ga})] + 8 \text{f} \text{HR} \text{l} \text{om}^2 \text{r}^2 \text{th} \text{Cos}[2 (\text{be} - 9 \text{ga})] - 8 \text{f} \text{HR} \text{l} \text{om}^2 \text{r}^2 \text{th} \text{Cos}[2 \text{ga}] - \\ \textbf{4} \text{be} \text{HR}^2 \text{Cos}[2 (\text{pe} - 9 \text{ga})] + 8 \text{HR} \text{l} \text{om}^2 \text{r}^2 \text{th} \text{Struc} \text{cos}[2 \text{ga}] + 8 \text{HR} \text{sruc} \text{Sin}[\text{be}] + \\ \textbf{2} \text{HR}^2 \text{sin}[2 \text{be}] - 4 \text{HR} \text{RTUC} \text{sin}[2 \text{be}] + 4 \text{RTUC} \text{sin}[2 \text{ga}] + 8 \text{HR} \text{sruc} \text{sin}[2 \text{ga}] + 8 s$		Nach statisch unbestimmtem Moment STUA ableiten	tmpsTUA = FullSimplify[D[u, STUA]]	12 r (-ga STUR - r (HR + STUC) + ga r STUC Cot[ga] + ga HR r Cos[be - ga] Csc[ga])	EE f ³ l	Nach statisch unbestimmtem Moment STUC ableiten tepszuc = Fullsimpitfy[p[u, szuc]]	$\frac{1}{200000000000000000000000000000000000$	20 EDI UGAL 06 GG kr ² (STUA + 2 gar STUC) + 5 f ³ GG l (EE STUC + k r (l om ² r h + ATM EE TM)) +	HK k (-T' (pe - 2 ga) (5 EE + 5 G3) 1 - 60 (pe - 4 ga) G3 T') COS [pe] + HK k (be f^2 (5 EE + 5 G3) 1 + 60 (be + 2 ga) G4 r^3) COS [pe - 2 ga] -	$ \begin{array}{l} 10 \ f^3 \ Gc \ k \ l^2 \ cm^2 \ r^2 \ rh \ cos \ [2 \ gal \ -120 \ Gc \ k \ r^2 \ STUA \ cos \ [2 \ gal \ -10 \ Ec \ f^3 \ Gc \ k \ r^2 \ STUC \ cos \ [2 \ gal \ +10 \ rm \ rh \ rh \ stath \ rh \ stath \ rh \ stath \ rh \ stath \ stath \ rh \ stath \ rh \ stath \ stath \ rh \ stath \ stath\ \ stath \ stath\ $
$\frac{\operatorname{sruc}^2}{2 \operatorname{k}} + \frac{1}{40 \operatorname{fi} \operatorname{fi} \operatorname{gc}} \operatorname{3} \operatorname{csc}[\operatorname{ga}]$		$ \begin{split} r \left(\text{AIM TM} \left(f \; (-\text{be} + \text{ga}) \; 1 \; \text{om}^2 \; r^2 \; r\text{h} + (\text{STUC} + \text{IR Cos[be]}) \; (\text{Cos[be]} - \text{Cot[ga]} \; \text{sin[be]}) \right) + \\ \frac{1}{8 \; \text{Ef } f \; r} \left(8 \; f \; 1 \; \text{om}^2 \; r^2 \; \text{th Cos[be]} \; (\text{STUC} + \text{IR Cos[be]}) + \\ 2 \; (\text{STUC} + \text{IR Cos[be]})^2 \; \text{Cos[2 be]} \; \text{Cot[ga]} - 2 \; (\text{STUC} + \text{IR Cos[be]})^2 \; \text{Cos[2 ga]} \; \text{Cos[ga]} + \\ (\text{STUC} + \text{IR Cos[be]})^2 \; (\text{Cos[ga]} + \text{Cos[3 ga]}) \; \text{Cos[ga]} - 2 \; (\text{STUC} + \text{IR Cos[be]})^2 \; \text{Cos[2 ga]} \; \text{Cos[ga]} + \\ 2 \; (\text{STUC} + \text{IR Cos[be]})^2 \; (\text{Cos[ga]} + \text{Cos[3 ga]}) \; \text{Cos[ga]} - 2 \; f^2 \; 1^2 \; \text{om}^4 \; r^4 \; r^4 \; r^2 + \\ 2 \; \text{STUC}^2 \; 4 \; \text{IR STUC} \; \text{Cos[2 be]} \; \text{Cos[2 be]} - 2 \; f^2 \; 1^2 \; \text{om}^4 \; r^4 \; r^4 \; \text{Cos[ga]}^2 + \\ \\ ga \; (\text{IR}^2 \; + 2 \; r^2 \; 1^2 \; \text{om}^4 \; r \; r^2 \; r \; r^2 \; 2 \; \text{STUC}^2 \; 4 \; \text{IR STUC} \; \text{Cos[2 be]} + \\ 2 \; f^2 \; 1^2 \; \text{om}^4 \; r^4 \; \text{rh}^2 \; \text{Cos[2 ga]}^2 + \\ \\ 2 \; f^2 \; 1^2 \; \text{om}^4 \; r^4 \; \text{rh}^2 \; \text{Cos[2 ga]} \; \text{Cos[2 ga]}^2 \; \text{STUC} \; \text{Cos[2 be]} - \\ \\ \end{array} \end{split}$	$\texttt{Cot}[\texttt{ga}] \texttt{Sin}[\texttt{be}] - (\texttt{STUC} + \texttt{HR}\texttt{Cos}[\texttt{be}])^2 \texttt{Cos}[\texttt{2}\texttt{ga}] \texttt{Csc}[\texttt{ga}]^2 \texttt{Sin}[\texttt{2}\texttt{be}]) + \texttt{cos}[\texttt{be}] \texttt{cos}[\texttt{cos}[\texttt{be}] \texttt{cos}[\texttt{cos}] \texttt{cos}[\texttt{cos}[\texttt{cos}] \texttt{cos}[\texttt{cos}] \texttt{cos}[\texttt{cos}[\texttt{cos}] \texttt{cos}[\texttt{cos}] $	3 (STUC + HR Cos[be]) ² Cac[ga] ² (-2 be + 2 ga + Sin[2 (be - ga)]) + 20 f Ga	-	8 EB f ³ I	3 r Csc [ga] ⁴ (-12 be Hr ² r ² + 12 ga Hr ² r ² + 8 Hr r STUA - 8 be STUA ² + 8 ga STUA ² - 16 be Hr ² r ² + 16 ga r ² STUC ² - 16 r (2 be Hr r - 2 ga HR r - STUA) STUC Cos [be] - 16 be r ² STUC ² - 16 r (2 be Hr r - 2 ga HR r - STUA) STUC Cos [be] - 16 be r ² STUC ² + 16 ga r ² STUC ² - 16 r (2 be Hr r - 2 ga HR r - STUA) STUC Cos [be] - 16 be r ² STUC ² + 16 ga r ² STUC ² - 16 r (2 be Hr r - 2 ga H	4 HR r (be HR r - ga HR r - 2 STUA) Cos [2 be] - 16 be HR r ² STUC Cos [be - 2 ga] + 16 ga HR r ² STUC Cos [be - 2 ga] - 16 r STUA STUC Cos [be - 2 ga] - 8 be HR ² r ² Cos [2 (be - ga)] + 8 ga HR ² r ² Cos [2 (be - ga)] - 8 HR r STUA Cos [2 de] - 9 HR r STUA Cos [2 ga] + 8 be STUA ² Cos [2 ga] - 8 ga STUA ² Cos [2 ga] - 8 be r ² STUC ² Cos [2 ga] + 8 ga r ² STUC ² Cos [2 ga] + 16 he HR r STUA SOS [2 ga] - 8 HR r STUA ich ba, 1 fr ² sTUA Cos [2 ga] +	$8 \ \mathrm{Hr}^2 \ \mathrm{Sturber-2} \ \mathrm{gal} + 16 \$	4 HR r^{2} STUC Sin[3 be - 2 ga] - HR ² r^{2} Sin[4 be - 2 ga] - 2 HR ² r^{2} Sin[2 (be - ga)] + 24 HR r^{2} STUC Sin[2 (be - ga)] - 4 r^{2} STUC ² Sin[2 (be - ga)] + HR ² r^{2} Sin[2 ga] -	8 HR $ m r^2$ STUC Sin[2 ga] + 16 be r STUA STUC Sin[2 ga] - 16 ga r STUA STUC Sin[2 ga]) + 1	$\frac{1}{8 \text{ Erg}^{1}} 1 \text{ Csc}[ga]^{2} (12 \text{ be Hr}^{2} r^{2} + 8 \text{ Hr} r \text{ srUh} + 8 \text{ be srUh}^{2} + 16 \text{ r srUh} \text{ srUc}^{2} + 8 \text{ Erg}^{3} 1$ $8 \text{ r} (3 \text{ be Hr} r - 2 \text{ srUh} \text{ srUc} \cos[be] - 8 \text{ Hr} r \text{ srUh} \cos[2 be] + 24 \text{ be Hr} r^{2} \text{ srUc} \cos[be - 2 ga] + 16 \text{ r srUh} \text{ srUc} \cos[be - 2 ga] + 16 \text{ r srUh} \text{ srUc} \cos[be - 2 ga] + 16 \text{ r srUh} \text{ srUc} \cos[be - 2 ga] + 16 \text{ r srUh} \text{ srUc} \cos[be] - 2 ga] + 12 \text{ be Hr}^{2} r^{2} \cos[2 (be - ga)] + 8 \text{ Hr} r \text{ srUh} \cos[2 (be - 2 ga] + 8 \text{ Hr} r \text{ srUh} \cos[2 (ab - 2 ga] + 16 \text{ srUh} \text{ srUc} \cos[2 ga] - 16 \text{ Hr}^{2} \text{ srUh} \cos[2 ga] - 16 \text{ Hr}^{2} \text{ srUh} \cos[2 ga] + 8 \text{ Hr}^{2} \text{ srUh} \cos[2 ga] + 16 \text{ srUh}^{2} \sin[be] - 16 \text{ Hr}^{2} \text{ srUh} \cos[2 ga] + 16 \text{ be Hr}^{2} \text{ srUh} \sin[be] - 8 \text{ Hr}^{2} \text{ srUh} \cos[2 ga] + 16 \text{ be Hr}^{2} \text{ srUh}^{2} \sin[be] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] + 16 \text{ be Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] + 16 \text{ be Hr}^{2} \text{ srUh}^{2} \sin[2 be] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ he} \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ he} \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ he} \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ he} \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} \text{ srUh}^{2} \sin[be] - 2 ga] - 16 \text{ Hr}^{2} $

Rotor_v3_vereinfacht.nb 3

ĥ
9
H.
ğ
ein
Vel
β
P
Rot

Ableitungen von HR und HRM bestimmen

tmpHR = D[u, HR]; HR = 0; HRM = 0; Simplify[tmpHR] tmpHR = %; Clear[HR, HRM];

-

- Csc [ga]² 20 EE f³ GG 1

 $\left(-\left(be\left(6\ EE\ f^2\ 1+5\ f^2\ GG\ 1+60\ GG\ r^3\right)-2\ ga\left(6\ EE\ f^2\ 1+5\ f^2\ GG\ 1+120\ GG\ r^3\right)\right)\ student cost \left[be\right]+120\ GG\ r^3\right)\right)\ student cost state{1}$ $10 \text{ GG } r \left(-12 r^2 \text{ STUC Cos [ga]} + \left(12 r \text{ STUA} + f^3 1 \left(1 \text{ om}^2 r r h + \text{ ATM EE TM}\right)\right) \text{ Sin [ga]}\right)\right)$ $2 \, \text{Sin[ga]} \, \left(- \left(120 \text{ ga} \text{ GG} \, r^2 \, \text{STUA} + \left(6 \, \text{EE} \, f^2 \, 1 - 5 \, f^2 \, \text{GG} \, 1 + 60 \, \text{GG} \, r^3 \right) \, \text{STUC} \right) \, \text{Cos[be - ga]} + \frac{1}{2} \, \text{Cos[be - ga]} \, \text{Cos[be - ga]} + \frac{1}{2} \, \text{Cos[be - ga]} \, \text{Cos[be - ga]} + \frac{1}{2} \, \text{Cos[be - ga]} \, \text{Cos[be - ga]} + \frac{1}{2} \, \text{Cos[be - ga]} \, \text{Cos[be - ga]} + \frac{1}{2} \, \text{Cos[be - ga]} \, \text{Cos[be - ga]}$ $(120 \text{ ga} \text{ GG} \text{ } r^3 + \text{be} (6 \text{ EE} \text{ f}^2 \text{ } 1 + 5 \text{ } \text{f}^2 \text{ } \text{GG} \text{ } 1 + 60 \text{ } \text{GG} \text{ } r^3)) \text{ STUC Cos[be - 2 \text{ } \text{ga}] +$

tmpHRM = D[u, HRM]; Simplify[tmpHRM] tmpHRM = %; Clear[HR, HRM]; HR = 0; HRM = 0; c

HR = 0; HRM = 0;

Statisch Unbestimmte Kräfte STUC und STUA ermitteln

(*Clear[HR,HRM];*) (* Hilfskraft für spätere Operationen wieder verfügbar machen *) (*HR =0) HRM=0; Hilfskraft HR Null setzen *) UNBEST = Solve([runseruc = solve([runseruc = solve([runseruc = simplify[sruc /. UNBEST[1]]] STUC = Simplify[sruc /. UNBEST[[1]]]

 $(10 \ f^3 \ GG \ k \ l \ r^2 \ (1 \ om^2 \ r \ rh + \ ATM \ EE \ TM) \ (ga \ Cos[ga] - Sin[ga]) \ Sin[ga]) \ Sin[ga]) \ /$

 $(-5 \text{ EE } f^3 \text{ ga GG } 1 - 6 \text{ EE } f^2 \text{ ga}^2 \text{ k } 1 - 5 \text{ } f^2 \text{ ga}^2 \text{ GG } \text{ k } 1 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ ga}^2 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ ga}^2 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ ga}^2 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ ga}^2 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ ga}^2 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ ga}^2 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ ga}^2 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ k } r^3 - 60 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ K } r^3 + 60 \text{ GG } \text{ k } r^3 + 60 \text{ GG } \text{ K } r^3 + 60 \text{ GG } \text{ K } r^3 + 60 \text{ GG } \text{ K } r^3 + 60 \text{$

 $5~GG~\left(\text{EE}~f^3~ga~l-12~k~r^3\right)~\text{Cos}~[2~ga]+ga~k~\left(6~\text{EE}~f^2~l-5~f^2~GG~l-60~GG~r^3\right)~\text{Cos}~[ga]~Sin~[ga]\right)$

 $(10 \text{ f}^3 \text{ ga GG k l r} (1 \text{ om}^2 \text{ r rh} + \text{ATM EE TM}) \text{ Sin} [\text{ga}]^2) /$

 $(-5 \text{ EE } f^3$ ga GG l $- 6 \text{ EE } f^2$ ga² k l $- 5 f^2$ ga² GG k l + 60 GG k $r^3 - 60$ ga² GG k $r^3 + 60$ G

 $5~GG~\left(\text{EE}~f^3~ga~l-12~k~r^3\right)~\text{Cos}~[2~ga]+ga~k~\left(6~\text{EE}~f^2~l-5~f^2~GG~l-60~GG~r^3\right)~\text{Cos}~[ga]~Sin~[ga]\right)$

STUCF

- om__ (*Winkelgeschwindigkeit om+) TM__ (*Withers Temperaturdifferenz Ring TM+) T__ (*Radiale Hobe des Rings f*) f_ (*Radiale Hobe des Rings f*) f_ (*Radiale Hobe des Rings f*) g__ (*Radiale des Rings f*) f_ (*Stohmoul des Ringes f*) R_ (*Schubmoul des Ringes G(*) ATM_ (*Schubmoul des Ringes G(*) ATM_ (*Schubmoul des Ringes K*) k_ (*Schubmoul des Ringes K*)

= STUC

Clear[HR, HRM];

 $(10 \text{ f}^3 \text{ ga GG k l r} (1 \text{ om}^2 \text{ r rh} + \text{ATM EE TM}) \text{ Sin} [\text{ ga}]^2)$

 $(-5 \text{ EE } f^3 \text{ ga } \text{GG } 1 - 6 \text{ EE } f^2 \text{ ga}^2 \text{ k} 1 - 5 f^2 \text{ ga}^2 \text{ GG } \text{k} 1 + 60 \text{ GG } \text{k} r^3 - 60 \text{ ga}^2 \text{ GG } \text{k} r^3 + 60 \text{ ga}^2 \text{ ga}^$

 $5~GG~\left(EE~f^{3}~ga~l-12~k~r^{3}\right)~cos\left[2~ga\right]+ga~k~\left(6~EE~f^{2}~l-5~f^{2}~GG~l-60~GG~r^{3}\right)~cos\left[ga\right]~Sin\left[ga\right]\right)$

[*STUCf[

6 Rotor_v3_vereinfacht.nb

- om, (*Winkelgeschwindigkeit om*) TM, (*Mittlere Temperaturdifferenz Ring TM*)

 - (*Radius Ring r*) (*Radiale Höhe des Rings f*)

Verschiebungsfunktion / Verdrehungsfunktion des Kraftangriffspunktes von Hilfskraft HR und HRM bestimmen

deltaR[

- current (* Position be *) be__ (*Nikhelgeschwindigkeit om*) mu__ (*Nikhelgeschwindigkeit om*) mu__ (*Nikhelgeschwindigkeit om*) r__ (*Nikhelgerenz turdifferenz Ring TM*) f__ (*Radian Bröhe des Rings f*) 1_ (*Lidnge des Rings 1*) g__ (*Rahber Winkel zwischen den Armen ga*) f__ (*Rahber Winkel zwischen den Armen ga*) g__ (*Rahber Winkel zwischen den Armen ga*) f__ (*Schubmodul des Ringes CG*) MM_ (*Märmeausdehunngskocsfiizient des Ringes ATM*) km_ (*Wenteusdehunngskocsfiizient des Ringes ATM*) km_ (*Schubmodul des Armes k*)] = tmpHR)

deltaR[

- be, (* Position be *)
 0, (*Winkelgeschwindigkeit om*)
 TM, (*Mittlere Temperaturdifferenz Ring TM*)
- r; (*Radius Ring r*) f; (*Radius Ring r*) 1; (*Lange Rebie es Rings f*) ga, (#Ralber Winkel zwischen den Armen ga*) rh, (*Dinked des Ringes rh*) EE, (*E-Modul des Ringes EE*) GG, (*Schumodul des Ringes GG+) ATM, (*Wärmesudehnungskoeffizient des Ringes ATM*) 0 (*Stelfigheit des Armes i*)

- ATM r TM

deltaPH[

- be, (* Position be *) cm. (*Wikelgeschwindigkeit ome) TM. (*Wikelgeschwindigkeit ome) TM. (*Mikelgeschwindigkeit ome) t. (*Radial Ring r*) f. (*Radial ENDe des Rings f*) g. (*Radial ENDe des Rings f*) g. (*Halber Winkel zwischen den Armen ga*) g. (*Halber Winkel zwischen den Armen ga*) f. (*Dichte des Ringes It*) cg. (*Schubmodul des Ringes CG*) ATM_ (*Växmesusdehnungskoeffizient des Ringes ATM*) k. (*Steifigkeit des Armes k*)] = tmpRRM;

8 Rotor_v3_vereinfacht.nb

Berechnungsbeispiel und Grafik

Maße und Werkstoffkennwerte

korrFaktor = 0.01;

nr = 1.5; nATM = 20×10^(-6); nf = 0.47; nom = 100; nTM = -200; nl = 3;

nAA = nfnl; nAA = nfnl; nrh = 7850; nrh = 7850; nrE = 2.1×10^11; nGG = 0.8×10^11; nk = 3.2×10^10;

Verformungsplot

upt for the second of the second If[i != 0, tmp = Show[grafik, gra[i]]; grafik = tmp;, grafik = Show[gra[i]] Chop[korrFaktor + deltaR[]], {be, inga, (i+1)nga}]], {be, inga, (i+1)nga} gra[i] = PolarPlot[i++;

]; tmp = Show[grafik, gra[i]]; grafik = tmp;

Show[grafik]

Rotor_v3_vereinfacht.nb

Plot der Abhebedrehzahl / Kraftverlauf von STUC in Abhängigkeit von der Drehzahl

Plot der Normalkraft-, Querkraft- und Momentenverläufe

- HR = 0; HRM = 0; MPhi[

- ph (**Nikelsersexhidion be *) om_ (*Nikelsersexhidionsheet com*) TM_ (*Nikelsersexhidionsheet com*) tm_ (*Nikelsersexhidionsheet registersex (*Radius Ring r*) f, (*Radius Höhe des Rings 1*) f, (*Länge des Rings 1*) ga_ (*Ralber Vishel zwischen den Armen ga*) rh, (*Nikmeundel des Ringes E*) GG_ (*Schubodul des Ringes E*) GG_ (*Schubodul des Ringes E*) GG_ (*Schubodul des Ringes GG*) ATM_ (*Nikmesusdehungskoeffizient des Ringes ATM*) k_ (*Steifigkeit des Armes k*)

- - k____(*Steifig)] = nphil[ph]; QPhi[

- - k_ (*Steil,] = qphil[ph]; Clear[HR, HRM];

Plot[{ (* Blau *) NPhi[

- ph', (* Position be *) nom (*Winklegeschwindigkeit one) nrw, (*Winklegeschwindigkeit one) nr, (*Radius Ring r*) nf, (*Radius Ring r*) nf, (*Radius Ring r*) ng, (*Radius Ring 1*) ng, (*Radise Rings 1*) ng, (*Radise Ringes r*) ng, (*Radise Ringes E*) ng, (*Schhwohl des Ringes E*) nG, (*Schhwohl des Ringes E*) nkr, (*Schwohl des Ringes E*)

-], (* ROSA *) QPhi[

- ph', (* Position be *) nom (*Winklegeschwindigkeit one) nrw, (*Winklegeschwindigkeit one) nr, (*Radius Ring r*) nf, (*Radius Ring r*) nf, (*Radius Rings 1*) ng, (*Radiae Rings 1*) ng, (*Radiae Ringes 1*) ng, (*Radher Winkel zwischen den Armen ga*) ng, (*Radher Winkel zwischen den Armen ga*) ng, (*Schhmodul des Ringes E*) nG, (*Schhmodul des Ringes E*) nkr, (*Schhmodul des Ringes E*)

- -], (* GELB *) MPhi[

- pv* pv* nom (* Fosition be *) nom (*Mikelgeschwindigkeit on*) nry (*Mikelgeschwindigkeit on*) nry (*Radiale Rhoe des Rings f*) nf (*Radiale Rhoe des Rings f*) nf (*Radiale Rhoe des Ringe f*) ng (*Halber Winkel zwischen den Armen ga*) ng, (*Halber Winkel zwischen den Armen ga*) nry (pichte des Ringes rh*) nry (*Schhmodul des Ringes rb*) ndry (*Schhmodul des Ringes rb*) nkr, (*Schhmodul des Ringes de*) nkr (*Schhmodul des Ringes de*)

- (ph, 0, FullSimplify[nga / Degree]},
- AxesOrigin → {0, 0}, Ticks → {Range[0, 180, FullSimplify[nga / Degree] / 10], Automatic}]

Plot der Tangentialspannungen zufolge Normalkraft und Moment

Plot[{
 (* BLU *)
 (* Bosition be *)
 (* BLU *)
 (* Blau *)
 (* Wittlere Temperaturdifferenz Ring TM*)
 nom, (*Wittlere Temperaturdifferenz Ring TM*)
 nTM, (*Mittlere Temperaturdifferenz Ring TM*)
 nTM, (*Mittlere Temperaturdifferenz Ring TM*)
 nT, (*Radian ENG # *)
 ni, (*Radian ENG # *)
 ni, (*Radian ENG # *)
 ni, (*Bichte des Rings 1*)
 ni, (*Bichte des Rings 1*)
 nTM, (*Bichte des Ringes T*)
 nTM, (*Sichte des Ringes T*)
 nAM, (*Mittlere Temperaturdifferenz Ring TM*)
 nAM, (*Mittlere Temperaturdifferenz Ring TM*)
 nth (*Steifigheit des Armes k*)
 1/nlnf) / 10°6,
 (* RoSA *)
 (* RoSA *)
 (*Nittlere Temperaturdifferenz Ring TM*)
 nth (*Steifigheit des Ringes T*)
 nom, (*Witnelgeschmindigkeit om*)
 nom, (*Witnelgeschmindigkeit om*)
 nom, (*Witnelgeschmindigkeit om*)
 nth (*Steifigheit des Ringes T*)
 nom, (*Witnelgeschmindigkeit om*)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes CG+)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes CG+)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes CG+)
 nth (*Steifigheit des Ringes T*)
 nth (*Steifigheit des Ringes T

14 Rotor_v3_vereinfacht.nb

13.5