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Abstract

The electron momentum density of a crystalline material determines many of its physical

properties. A widely accepted experimental method to determine the electron momen-

tum density is the positron annihilation spectroscopy, which has been very successful,

especially in analysis of crystal defects. To gain a better understanding about the mech-

anisms that determine the Doppler profiles mesasured in those experiments and to get

a link between theory and experiment, Doppler profiles have been calculated based on

the many-particle problem in quantum mechanics. Starting point for all calculations are

the Bloch functions determined by the full-potential linearized augmented plane wave

(LAPW) band structure program WIEN2k. Further the electron momentum density

and the electron-positron momentum density, that plays a crucial role in positron anni-

hilation experiments, have been calculated using a linear density approximation (LDA)

to describe the electron-positron correlation effects. From this data the corresponding

one-dimensional Doppler profiles have been determined. Finally, other experimentally

measurable quantities, such as the intrinsic magnetization and, especially, the positron

lifetime have been derived.
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Zusammenfassung

Theorie von Elektronen in Kristallen unter

besonderer Berücksichtigung der

Doppler-Spektroskopie

Das Ziel dieser Arbeit ist die Berechnung von experimentell zugänglichen Grössen ausge-

hend vom quantenmechanischen Modell der Vielteilchen-Schrödingergleichung der Elek-

tronen in kristallinen Festkörpern. Das Hauptaugenmerk gilt hierbei der Berechnung

der Impulsverteilung von Elektronen und Elektron-Positron-Paaren in Metallen. Als

Grundlage hierfür werden die Ergebnisse von selbstkonsistenten Bandstrukturrechngen,

die mit dem full potential linearized augmented plane wave (LAPW) Programm WIEN2k

durchgeführt werden, herangezogen. Aus den erhaltenen Impulsverteilungen werden

die materialspezifischen Comptonprofile und, vor allem, Dopplerprofile bestimmt, da

diese in der experimentellen Methode der Positronen-Annihilationsspektroskopie eine

direkte Messgrösse darstellen. Aus den Dopplerprofilen werden weitere experimentell

zugängliche Grössen, wie etwa die Positronenlebensdauer oder die Magnetisierung berech-

net.
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1 Introduction

The electron momentum density distribution in crystalline materials determines a huge

variety of physical properties. A widely accepted experimental method to investigate

the electron momentum density is the positron annihilation spectroscopy [1], [2]. This

method is very successful, especially in detecting crystal defects and any other kind of

irregularities. The main advantage of positron annihilation experiments compared to

Compton spectroscopy (see Refs. [3], [4]) is the fact that the positron is a charged par-

ticle, and hence, more attracted to crystal defects, such as impurities or vacancies, since

any kind of crystal defects changes the local charge distribution. The most common

experimental methods are the Doppler broadening technique, the angular correlation

measurements and the positron lifetime measurements [5]. In order to gain a better

understanding of the effects that determine the experimentally achieved data, the goal

of this work is to get a link between ab initio theory and experiment. Starting point for

all calculations made in this work is the quantum-mechanical model, hence, the many-

particle Schrödinger equation for solid state materia. The Schrödinger equation is solved

using the self-consistent full-potential LAPW program WIEN2k [6]. From these data

the electron momentum density and further the electron-positron momentum density

are derived using the independent particle model (IPM) and state-independent enhance-

ment factors according to the linear density approximation (LDA) to describe electron-

positron correlation effects. Finally the corresponding Doppler profiles and other ex-

perimentally measurable quantities, such as the magnetization or the positron lifetime

are calculated. The goal of the calculations was to get reliable one-dimensional Doppler

profiles for the investigated materials up to a momentum region of about q = 50 mrad,

since this is the range where modern angular-correlation experiments are feasible and

most of the information concerning crystal defects is detected in this high-momentum

region. The investigated materials are (meta-)stable Fe100−xCux alloys (with x=0, 25,

50, 75 and 100), that are assumed to form highly symmetric, perfect structures without

any crystal defects. At first, two series have been considered, one in a bcc realization

with the lattice constant such as for pure iron, the second series being in an fcc lattice
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1 Introduction

with the lattice constant of pure copper. Since not all of these structures are stable

in nature (see Wang et. al. [7]), only for a fraction of Cu x ≤ 50 the bcc realization

has further been treated while for x ≥ 50 only the fcc realization has been taken into

account. Using a generalized gradient approximation (GGA), these authors have fur-

ther optimized the values for the lattice constants, which have been used in this thesis

instead of the fixed ones described above. In the discussion of the results, especially the

contributions of different electron bands to the total profiles are treated, with special

emphasis to the 3d bands of Fe and Cu. These bands play a major role in determining

the physical properties of a metal, especially in iron (and other 3d transition metals),

where they cross the Fermi level, and are therefore responsible for electric conductivity.

Further, the fact that these bands are not completely occupied in case of Fe determines

the ferromagnetism of this metal. Finally, the positron lifetime in the investigated FeCu

alloys has been calculated by numerical integration of the Doppler profiles and the values

for pure Fe and Cu have been compared with the results of other calculations using the

local density approximation as well as with experimental data.

Chapter 2 of this thesis presents a short summary of its theoretical basis and is mainly

taken from the literature (see the list of references at the end of this work).

The chapters 3 and 4, however, contain basically new and original connections and

results of the author.
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2 General Aspects

2.1 Introduction to Positron Physics

In this chapter a short overview of the fundamentals to be treated in this work will be

given.

2.1.1 Compton scattering

Compton scattering means an inelastic scattering process of a high energy photon (e.g

X-Ray or γ photon) and an electron in the outer shell of an atom (Fig. 2.1):

Figure 2.1: Scheme of Compton scattering [8].

In this process the electron is emitted from the shell while the incident photon is scattered

inelastically. Thus, the photon changes its momentum and loses energy. The measuring

17



2 General Aspects

quantity in Compton spectroscopy is the intensity of scattered photons within the solid

angle dΩ which corresponds to the cross section (eq. 2.1) [4]

dσ

dΩ
∝ JCompton(q, e) =

∫
d3pρ(p)δ(p · e − q), (2.1)

where e = q
|q| is the unit vector in direction of the scattered photons to be measured. This

direction needs to be constant during the measurement, q =| q | means the measured

contributions of this vector which correspond to the wavelengths of the Compton pho-

tons. This way one obtains a so-called one-dimensional Compton profile JCompton(q, e)

for each direction to be measured. So, in eq. 2.1, there is one measurable quantity

JCompton(q, e) on the left hand side while on the right hand side the function ρ(q) rep-

resents the momentum distribution of the electrons in the solid state body. Integration

of eq. 2.1 yields ∫ ∞

−∞
dqJCompton(q, e) =

∫
d3pρ(p). (2.2)

Of course, such an integration of the electron momentum density over momentum space

results in the number of electrons in the crystal. Usually, however, one normalizes the

one-dimensional Compton profile such that∫ ∞

−∞
dqJCompton(q, e) =

∫
d3pρ(p) = γ, (2.3)

with γ being the number of electrons in the unit cell.

2.1.2 Electron momentum density

The evaluation of the electron momentum density (EMD) in crystalline solid state bodies

is a very complex problem in computational physics. The easiest simplification hereby

is to use the independent particle model (IPM, see e.g. Ref. [9]) which is given in eq.

2.4

ρ(p) = 2
1

(2π)3

Ω0

Ω

∑
n

BZ∑
k

∑
K

Θ(εF − εn,k) |
∫

Ω

d3re−ip·rψn,k(r) |2 δk,p−K (2.4)

where Ω and Ω0 are the volumes of the crystal and the unit cell, ψn,k mean the wave

functions and εn,k the energy eigenvalues of the electrons which can be obtained from

18



2 General Aspects

band structure calculations. The quantity

|
∫

Ω

d3r e−ip·r ψn,k(r)|2 (2.5)

means the square of the Fourier transform of the Bloch function of the electron state

|n,k > which represents the probability distribution of the Bloch function ψn,k(r) in

momentum space with regard to the wave number p. For p is a vector of the extended

reciprocal space, and k is reduced to the first Brillouin zone, the Kronecker delta δk,p−K

accepts only one term of the double sum
∑

k

∑
K, because there is only one possibility

to define an average vector p as sum of a Brillouin zone vector and a reciprocal-lattice

vector. Finally, the Heaviside function in eq. 2.4 arises from the fact that only electrons

in occupied states, i.e., with energies lower than the Fermi energy εF contribute to the

momentum density.

2.1.3 Electron-positron annihilation probability

When a positron emitted from an applicable radioactive source (e.g. Na-22, Cu-64,

Co-58,...) penetrates a crystal, numerous collision processes between the positron on

the one hand side and metallic ions and valence electrons on the other hand will occur

until the positron is decelerated from its initial energy (some 100 keV) to the thermal

energy of the electrons in the crystal. This process, called thermalization, happens

during a few picoseconds [5]. Such a thermalized positron has a certain time (positron

bulk lifetime) to move within the crystal (including further interactions with the crystal

lattice and - preferably - the valence electrons) before it annihilates, as an anti-particle

of an electron, with an electron in the metal. In this annihilation process the mass of

the electron-positron pair is converted to energy according to Einstein’s mass-energy

equivalence. In most cases this energy is emitted by two photons with an energy of 511

keV each, what is called a 2γ-annihilation process. The time between the emission of

a positron and its annihilation is called the positron lifetime which is typically a few

hundred picoseconds in solid metals. In real experiments, the time between the emission

of photons from the source is much larger than the positron lifetime, hence, there is only

one positron in the crystal. Therefore, the positron can be assumed to be in its ground

state after the thermalization process.

A quantity of particular interest in positron physics is the probability of the positron to

annihilate with an electron in the metal. This probability is called the annihilation rate

R(p) and depends on the annihilation momentum p which is the sum of the momenta

19



2 General Aspects

of the annihilating particles:

p = pe + pp. (2.6)

As a result of quantum electrodynamics (see, e.g. Refs. [1], [2]), the annihilation rate

is directly related to the momentum density of the annihilating electron-positron pair

ρep(p) (eq. 2.7).

R(p) =
r2
0πc

Ω0

ρep(p), (2.7)

where r0 is the classical electron radius and c is the speed of light.

Momentum density of electron-positron pairs: Since the accurate derivation of ρep(p)

is rather complicated, the Coulomb interaction between the electron and the positron

is often neglected (independent particle model, IPM). Assuming that the local density

of positrons in the crystal is much smaller than the density of electrons, the electron-

positron momentum density (EPMD) in the independent particle model reads [1]

ρep(p) =
2Ω0

(2π)3

∑
n

BZ∑
k

∑
K

Θ(εF − εn,k) |
∫

Ω

d3re−ip·rψn,k(r)ψ+(r) |2 δk,p−K. (2.8)

Formally, a comparison of the above formula with the corresponding electron momentum

density (eq. 2.4) obtains that the Fourier integral of the electron state ψn,k(r) is replaced

by the Fourier integral of the overlap of the electron Bloch state ψn,k(r) and the positron

ground state wave function ψ+(r).

The normalization has been chosen such that in case of a positron that is uniformly

distributed over the whole crystal, thus

ψ+(r) =
1√
Ω
, (2.9)

eq. 2.8 turns out to be the electron momentum density as given in eq. 2.4. Using this

normalization and eq. 2.7 yields another essential relation (eq. 2.10):∫
d3pR2γ(p) =

r2
0πc

Ω0

∫
d3pρep(p) =

1

τ
, (2.10)

where τ is the bulk lifetime of a positron in ground state in a perfect crystal.

The advanced EPMD-formula: Enhancement: In eq. 2.8, the independent particle

approximation neglects the Coulomb interaction between the positron and the electrons.

20



2 General Aspects

This formula just contains the product of the wave functions of the annihilating parti-

cles, but the particles do not mutually influence each other. On the one hand, such a

neglect of a major force, such as the Coulomb interaction, strongly decreases the quality

of eq. 2.8, but on the other hand the exact implementation of the electron-positron

correlation would get too complicated to handle [10],[11]. Therefore some authors sug-

gested the compromise to describe the electron-positron correlation effect (enhancement

effect) approximately by the local multiplicative factor gn,k(r) in the electron-positron

momentum equation [12]:

ρep(p) =
2Ω0

(2π)3

∑
n

BZ∑
k

∑
K

Θ(εF − εn,k) |
∫

Ω

d3re−ip·rψn,k(r)
√
gn,k(r)ψ+(r) |2 δk,p−K

(2.11)

Further information and a detailed treatment of the enhancement factor gn,k(r) are given

in section 3.2.

2.2 Positron Annihilation Experiments

Figure 2.2: Scheme of the 2γ-annihilation in a perfect simple cubic lattice [13]

.
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2 General Aspects

The diagram (fig. 2.2) demonstrates some fundamental aspects of a 2γ-annihilation

within an ideal crystal: an electron-positron pair with a total momentum ~p annihilates

into two photons with the momentum-dependent annihilation rate R2γ(p). According

to equation 2.7, this quantity is proportional to the electron-momentum density ρep(p).

Unfortunately, there exists no experimental method that enables a direct measurement

of R2γ as a function of its three independent arguments px, py, and pz. In the following,

the three most important positron annihilation experiments are shortly described, more

detailed information about these methods can be found in the literature.

2.2.1 Angular correlation spectroscopy

This method is based on the measurement of the deviations Θ of the emitted annihilation

photons from 180 degrees. This angle is due to the transversal component pT of the total

momentum of the annihilating electron-positron pair and reads

Θ =
pT

mc
. (2.12)

In realistic experiments, this small angle is measured in units of milliradiants (mrad):

equation 2.12 gives the explanation why (in Compton and positron spectroscopy, and

also in this thesis) momenta are given in mrad (see chapter 4).

Angular correlation (AC) spectroscopy can be realized by (very extensive) 2D exper-

iments, leading to the two-dimensional angular correlation spectrum

N(px, py) ∝
∫
dpzR2γ(p), (2.13)

whereas 1D experiments in the so-called long-slit geometry lead to the one-dimensional

AC profile

N(pz) ∝
∫
dpxdpyR2γ(p). (2.14)

2.2.2 Coincidence Doppler broadening spectroscopy

This method is based on the fact that the motion of the electron-positron pair causes

a Doppler shift on the energy of the annihilation radiation which is proportional to the

longitudinal component pL of the total electron-positron momentum as

∆E = c
pL

2
. (2.15)
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2 General Aspects

The result of such experiments is the one-dimensional Doppler profile

JDoppler(q, e) ∝ d3pR2γ(p)δ(p · e − q). (2.16)

Originally, Doppler spectroscopy has been performed using a single-detector system.

However, state-of-the-art is the so-called coincidence Doppler broadening technique (CDB).

In this alignment, two detectors that are placed diametrically with respect to the speci-

men are used. Further they operate in coincident way, thus a signal is only converted if

it is detected in both detectors simultaneously. The main advantage of this method in

comparison to the single detector system is an improved peak-to-background ratio by

about two orders of magnitude (fig. 2.3). This high sensitivity is an essential condition

for a reliable experimental determination of electron-positron momentum densities in

the high-momentum region (> 35mrad) where the core electrons play the major role.

More details about CDB can be found, e.g., in Refs. [14], [15].

Figure 2.3: Comparison of one-dimensional Doppler profiles for GaAs, measured with a

single dectector system and a coincidence measuring system. Using CDB,

the peak-to-background ratio is improved by approximately two orders of

magnitude [16].
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2.2.3 Positron lifetime spectroscopy

In positron lifetime spectroscopy, the quantity to be measured is the time between the

emission of the positron from the source and the emission of the photons that are gener-

ated in the electron-positron annihilation process within the specimen. The thermaliza-

tion process happens within a very short period of time with respect to the bulk lifetime

of a positron (time between thermalization and annihilation). Therefore, the measured

time between the emission of the positron and the emission of the photons, that arise

from the annihilation process, is denoted as the bulk lifetime in positron lifetime spec-

troscopy. The correlation between the positron bulk lifetime, the annihilation rate and

the electron-positron momentum density is given in eq. 2.10. For further information

see, e.g., Ref. [5].

2.3 Theoretical Treatment

2.3.1 The Bloch functions

The wave functions of the electrons ψn,k(r) and the positrons ψ+
n,k(r) are calculated using

single-particle Schrödinger equations based on the density functional theory (DFT) by

Hohenberg et. al. [17] and Kohn et. al. [18]. According to the two-component density

functional theory (see, e.g. Ref. [19]) the ground-state energy of the interacting electron-

positron system can be written as a functional depending on the particle densities of

electrons n− and positrons n+:

E[n−, n+] =

∫
d3rv−(r)n−(r)︸ ︷︷ ︸

(1)

+

∫
d3rv+(r)n+(r)︸ ︷︷ ︸

(2)

− e2
∫
d3rd3r′

n−(r)n+(r′)

| r − r′ |︸ ︷︷ ︸
(3)

+
e2

2

∫
d3rd3r′

n−(r)n−(r′)

| r − r′ |︸ ︷︷ ︸
(4)

+
e2

2

∫
d3rd3r′

n+(r)n+(r′)

| r − r′ |︸ ︷︷ ︸
(5)

+ T [n−]︸ ︷︷ ︸
(6)

+T [n+]︸ ︷︷ ︸
(7)

+Exc[n
−, n+]︸ ︷︷ ︸

(8)

(2.17)

The terms (1) and (2) describe the potential energy of the particles in the crystal po-

tential, (3),(4) and (5) mean the Hartree-Potentials caused by the Coulomb interaction

between the charged particles and (6) and (7) describe the kinetic energies of electrons
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and positrons. The last term (8) contains exchange and correlation effects:

Exc[n
+, n−] = E−

xc[n
−] + E+

xc[n
+] + E+−

c [n−, n+], (2.18)

where the first term describes the exchange-correlation effects between the electrons,

the second one is for the positrons and the last term includes the electron-positron-

correlations. In a real positron annihilation experiment, however, the number of positrons

in the crystal n+ is by many orders of magnitude smaller than the number of electrons

n−. A quite good approximation is to assume that there is only one positron interact-

ing with the electrons in its proximity. As a consequence, all exchange and correlation

effects between positrons can be neglected and eq. 2.18 reduces to

Exc[n
+, n−] = E−

xc[n
−] + E+−

c [n−, n+]. (2.19)

According to Ref. [18], the electronic single-particle Schrödinger equations for the

electron-positron system can be obtained by a variational ansatz{
δE[n−, n+]

δn− − εn,k

}
ψn,k(r) = 0 (2.20)

as well as the single-particle Schrödinger equations for the positrons{
δE[n−, n+]

δn+
− ε+n,k

}
ψ+

n,k(r) = 0. (2.21)

A combination of this ansatz with eq. 2.17 and eq. 2.19 leads to a system of coupled

equations:{
− ~2

2m
∇2 + v−(r) + vH(r) +

δE−
xc[n

−]

δn− +
δE+−

c [n−, n+]

δn− − εn,k

}
ψn,k(r) = 0

(2.22){
− ~2

2m
∇2 + v+(r) − vH(r) +

δE+−
c [n−, n+]

δn+
− ε+n,k

}
ψ+

n,k(r) = 0,

where vH(r) is the Hartree-potential:

vH(r) = e2
∫
d3r′

n−(r′) − n+(r′)

| r − r′ |
. (2.23)
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At this point another approximation has to be done since the correlation between the

functionals E−
xc and E+−

c and the particle densities is not known for inhomogenous

electron gases as they appear in real crystals. Most band structure programs use the

local density approximation (LDA):

E−
xc[n

−] ≈
∫
d3rµxc(n

−(r))n−(r) (2.24)

and

E+−
c [n−, n+] ≈

∫
d3rµ+−

c (n−(r))n+(r), (2.25)

where µxc(n
−(r)) is the exchange-correlation energy in a homogeneous electron gas and

µ+−
c (n−(r)) describes the correlation energy in a homogeneous electron-positron gas.

The variation of E−
xc in the electronic variation equation (eq. 2.22) now yields

δE−
xc[n

−]

δn− ≈ µxc(n
−(r)) +

δµ+−
xc (n−)

δn− n−(r) = vLDA
xc (n−(r)), (2.26)

which is the LDA-approximation for the exchange-correlation part. Further one gets

δE+−
c [n−, n+]

δn− ≈ δµ+−
c (n−)

δn− n+(r) (2.27)

and
δE+−

c [n−, n+]

δn+
≈ µ+−

c (n−(r)). (2.28)

After inserting this in eq. 2.22 the electronic equation turns into{
− ~2

2m
∇2+v−(r)+vH(r)+vLDA

xc (n−(r))+
δµ+−

c (n−)

δn− n+(r)

}
ψn,k(r) = εn,kψn,k(r) (2.29)

and the equation for the positron states{
− ~2

2m
∇2 + v+(r) − vH(r) + µ+−

c (n−(r))

}
ψ+

n,k(r) = ε+n,kψ
+
n,k(r). (2.30)

The particle densities are now formed by the eigenfunctions of these equations. Further,

according to the previously described one-positron-in-ground-state approximation, one

has n = 1 and k = 0 for ψ+(r). The particle densities for electrons and positrons
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therefore are

n−(r) =
∑

n

BZ∑
k

| ψn,k(r) |2 Θ(εF − εn,k)

and (2.31)

n+(k) =| ψ+
1,0(r) |2=:| ψ+(r) |2 .

As mentioned above, there is only one positron assumed to be in the crystal. Hence, in

all terms containing the positron density explicitely,

n+(r) → 0

is a convenient approximation. Inserting this in eq. 2.29 and eq. 2.23 yields the simplified

equations{
− ~2

2m
∇2 + v−(r) + vH(r) + vLDA

xc (n−(r))

}
ψn,k(r) = εn,kψn,k(r), (2.32)

{
− ~2

2m
∇2 + v+(r) − vH(r) + µ+−

c (n−(r))

}
ψ+

n,k(r) = ε+n,kψ
+
n,k(r). (2.33)

and

vH(r) = e2
∫
d3r′

n−(r′)

| r − r′ |
. (2.34)

The Schrödinger equations for the electrons and the positrons are no longer coupled and

a self-consistent solution of the above problem is strongly simplified.
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3.1 The plane-wave representation

To obtain the one-dimensional Doppler and Compton profiles it is now necessary to

evaluate the formula for the electron momentum density distribution (EMD) as given in

eq. 2.4. Therefore one has to know the electron Bloch function ψn,k(r). This function

is calculated using the full-potential LAPW program WIEN2k [6] and is represented in

form of a linear expansion of the functional basis ϕLAPW
k (r). These functions, however,

are rather complicated, hence, it is convenient to express the LAPW-Bloch function as

a Fourier series

ψn,k(r) =
∑
G

aLAPW
n,k (G)ϕLAPW

k (r) =
1√
Ω

∑
G

aPW
n,k (G)ei(k+G)·r, (3.1)

where G is a vector of the reciprocal-lattice of the crystal. Since a Fourier expansion

is based on plane waves, the corresponding coefficients aPW
n,k (G) are called plane-wave

coefficients. Inserting eq. 3.1 into eq. 2.4 and performing some fundamental mathemat-

ical manipulations yields the formula for the electron momentum density (EMD) in the

plane-wave representation [20]:

ρ(p) =
2Ω0

(2π)3

∑
n

BZ∑
k

Θ(εF − εn,k)
∑
K

δk,p−K | aPW
n,k (K) |2 . (3.2)

Further one gets for the plane-wave representation of the uniformly distributed positron

ψ+(r) =
1√
Ω

∑
G′

bPW
+ (G′)eiG′·r. (3.3)
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Inserting this and the plane-wave representation for electrons (eq. 3.1) into eq. 2.8, one

finally gets

ρep(p) =
2Ω0

(2π)3

∑
n

BZ∑
k

Θ(εF − εn,k)
∑
K

δk,p−K | aep
n,k(K) |2, (3.4)

the plane-wave representation for the electron-positron momentum density according to

the independent particle approximation where

aep
n,k(K) :=

∑
G

aPW
n,k (G)bPW

+ (K − G) (3.5)

are the electron-positron Fourier coefficients. In the following calculations the trans-

formation of the Bloch functions for the electrons as a result of the band structure

calculation performed by the full-potential LAPW program WIEN2k to the plane-wave

representation is done in the program main−PWcalc.exe and for the positron in the

program main−positron.exe as described in section 3.3. The further calculation of the

electron-positron Fourier coefficients is performed by the program IPM−coeff.exe. For

details on the programs mentioned above, see Ref. [13].

3.2 Electron-positron correlation: enhancement

In the positron literature, and also in this thesis, the equations 3.4 and 3.5 are denoted

electron-positron momentum density according to the independent particle model.

What does this term IPM mean? In principle, this means that the two-particle electron-

positron wave function ψep(re, rp) can be separated into its electron and positron part,

i.e.,

ψep(re, rp) = ψe(re) · ψp(rp) (3.6)

(compare equation 2.8), where ψe(r) and ψp(r) are solutions of the separated Schrödinger

equations 2.32 and 2.33. This meaning of IPM does obviously not mean that there is

no interaction between the positron and the surrounding electrons, since there is a term

−vH(r) in the Hamiltonian of eq. 2.33 which describes a Hartree interaction between the

positron and the electron gas µ−(r), and there is even the electron-positron correlation

term µ+−
c (n−(r)) in the LDA in this Hamiltonian. The functional relation between the

electron-positron correlation potential µ+−
c (n−(r)) and the electron density ne(r) has

been intensively investigated during the last decades, leading, e.g., to theoretical results
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by Arponnen and Pajanne [21] that have been parametrized by Boronski and Nieminen

[19] with the following results:

µ+−
c (n−(r)) = vep(rs) (3.7)

and

vep(rs) = −1.56
√
rs

+ (0.051 ln rs − 0.081) ln rs + 1.14 for rs ≤ 0.302.

vep(rs) = −0.92305 − 0.05459

r2
s

for 0.302 ≤ rs ≤ 0.56, (3.8)

vep(rs) = − 13.1511

(rs + 2.5)2
+

2.8655

rs + 2.5
− 0.6298 for 0.56 ≤ rs ≤ 8.0,

vep(rs) = −179856.2768n2
e + 186.4207ne − 0.524 for 8.0 ≤ rs ≤ ∞,

with

rs(r) =

[
3

4πne(r)

]1/3

. (3.9)

The above equation is - in principle - only valid for n+ → 0, hence, for a single

completely delocalized positron in a perfect crystal.

LDA correlation terms like eqs. 3.8 and 3.9 are entirely contained in the one-particle

Schrödinger equations (and also in the investigation presented here), but their influence

on the shape and area of the one-dimensional Doppler profiles is rather small. Much more

important for the theory of positrons in electron gases is the so-called enhancement effect

which is also a consequence of electron-positron correlation, but can not be realistically

described by one-particle approximations. It is a real two-particle effect whose theory

has been successfully formulated for the homogeneous electron gas (for a comprehensive

summary, see e.g. Ref. [10]). For inhomogeneous electron gases, however, such a two-

particle electron-positron correlation theory is extremely tedious and too complicated

for the ’daily life’ (see Ref. [11]).

A suitable approximation (but totally non-ab initio) of such an electron-positron en-

hancement goes back to several authors [12] leading to

ψep(re, rp) ≈ ψn,k(r)
√
gn,k(r)ψ+(r), (3.10)

where gn,k(r) refers to the change of the positron ground state due to the Coulomb

correlation with an electron in the Bloch state |n,k >. As a further approximation,
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many authors propose a state-independent ansatz for the electron-positron correlation

function (gn,k(r) ≈ g(r)). Inserting this ansatz into the IPM formula for the electron-

positron momentum density (eq. 2.8) yields

ρenh
ep (p) =

2Ω0

(2π)3

∑
n

BZ∑
k

∑
K

Θ(εF − εn,k)δp−k,K

× |
∫

Ω

d3re−ip·rψn,k(r)
√
g(r)ψ+(r)|2, (3.11)

For the function g(r), several proposals have been made, the most common were

proposed by Boronski and Nieminen [19]

gBN = 1 + 1.23rs + 0.8295r3/2
s − 1.26r2

s + 0.3286r5/2
s + r3

s/6, (3.12)

by Puska, Seitsonen and Nieminen [22]

gPSN = 1 + 1.23rs + 0.9889r3/2
s − 1.482r2

s + 0.3956r5/2
s + r3

s/6 (3.13)

and finally by Barbinielli, Puska, Torsti and Nieminen [23]

gBPTN = 1 + 1.23rs − 0.0742r2
s + r3

s/6. (3.14)

In case of these state independent enhancement factors as given in eqs. 3.12-3.14 the

enhanced positron wave function can be defined as

ψenh
+ (r) =

√
gn,k(r)ψ+(r). (3.15)

Obviously, for g(r) = 1, eq. 3.11 reduces to the independent particle model (eq. 2.8).
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3.3 Calculation of plane-wave coefficients of LAPW

Bloch waves

As already given in sec. 3.1 the LAPW Bloch function can be expressed by a Fourier

series (eq. 3.1) that defines the plane wave coefficients

ψn,k(r) =
1√
Ω

∑
G

an,k(G) ei(k+G)·r, (3.16)

where an,k(G) is the desired plane-wave coefficient of the Bloch state ψn,k(r) according

to the reciprocal-lattice vector G and Ω is the volume of the crystal. Resolving equation

3.16 with respect to the plane-wave coefficient an,k(G) yields

an,k(G) =
1√
Ω

∫
Ω

d3r e−i(k+G)·r ψn,k(r) . (3.17)

Using the Bloch condition

ψn,k(r + R) = eik·R ψn,k(r) , (3.18)

the integral in eq. 3.17 can be reduced to an integral over the volume of the unit cell

Ω0:

an,k(G) =

√
Ω√
Ω0

∫
Ω0

d3r e−i(k+G)·r ψn,k(r) . (3.19)

The Bloch function calculated by the program WIEN2k is given by the LAPW expansion

ψn,k(r) =

z1∑
i=1

cn,k(Ki)
∑

t

∑
α

Φt,α
k+Ki

(r) (3.20)

where the cn,k(Ki) are the coefficients with respect to the LAPW basis functions Φt,α
k (r).

Further information and a detailed description of the LAPW basis functions obtained by

the full-potential LAPW program WIEN2k are given in Ref. [24]. The basis functions

have the following shape

Φt,α
k (r) =

L∑
`=0

m∑
−m

[
At,α

l,m(k)u
(t)
` (|r − rt,α|, E`) +Bt,α

l,m(k) u̇
(t)
` (|r − rt,α|, E`)

]
× Y`,m(r − rt,α) Θ(r

(t)
MT − |r − rt,α|) (3.21)
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with

u̇
(t)
` (r) =

du
(t)
` (r)

dE`

(3.22)

for all non-overlapping muffin-tin spheres within the unit cell Ω0. In equation 3.21, t

means the tth non-equivalent atom in the unit cell, while α means one of the equivalent

atoms belonging to the group of t. Further, rt,α describes the position of the atom

indicated by (t, α) and r
(t)
MT is the radius of the surrounding muffin-tin sphere. Outside

of all muffin-tin spheres (in the so-called interstitial region), the LAPW basis function

is simply given by the plane wave

Φk(r) =
1√
Ω

eik·r . (3.23)

The parameters A and B that in equation 3.21 are chosen such that no discontinuitites

of Φ and the first derivation of Φ with respect to r occur on the surface of the muffin-tin

sphere, hence,

At,α
`,m(k + K) =

4πr
(t)2
MT√
Ω

i` Y ∗
`,m(k + K) ei(k+K)·rt,α a

(t)
` (k + K) (3.24)

and

Bt,α
`,m(k + K) =

4πr
(t)2
MT√
Ω

i` Y ∗
`,m(k + K) ei(k+K)·rt,α b

(t)
` (k + K) (3.25)

with

α
(t)
` (k + K) = j′`(|k + K|r(t)

MT ) u̇
(t)
` (r

(t)
MT , El) − j`(|k + K|r(t)

MT ) u̇
′(t)
` (r

(t)
MT , El) (3.26)

and

β
(t)
` (k + K) = j`(|k + K|r(t)

MT )u
′(t)
` (r

(t)
MT , El) − j′`(|k + K|r(t)

MT )u
(t)
` (r

(t)
MT , El) . (3.27)

The radial functions u`(r) that occur in eqs. 3.24-3.27 are solutions of the ordinary

differential equations (in atomic units)[
− d2

dr2
+
`(`+ 1)

r2
+ V (r) − E`

]
ru`(r) = 0 (3.28)

and [
− d2

dr2
+
`(`+ 1)

r2
+ V (r) − E`

]
ru̇`(r) = ru`(r), (3.29)
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where V (r) represents the spherical average of the crystsl potential within the muffin-tin

sphere of the tth atom. Combining the plane-wave formula (eq. 3.19) and the LAPW

ansatz (eq. 3.20) yields

an,k(G) =

√
Ω

Ω0

∑
K

cn,k(K)
∑

t

∑
α

{∫
Ω0

d3r e−i(k+G)·r

×
∑

`

∑
m

[
At,α

`,m(k + K)u
(t)
` (|r − rt,α|, E`) +Bt,α

`,m(k + K) u̇
(t)
` (|r − rt,α|, E`)

]
× Y`,m(r − rt,α) Θ(r

(t)
MT − |r − rt,α|) +

1√
Ω

∫
Ωint

d3r ei(K−G)·r
}
,

where Ωint denotes the volume of the interstitial region between all muffin-tin spheres

in the crystal. After evaluation of the Heaviside function Θ, inserting the identity

e−i(k+G)·r = 4π
∑

`′

∑
m′

(−i)`′ j`′(|k + G|r)Y`′,m′(k + G)Y ∗
`′,m′(r)

with j`(x) and Y`,m being the spherical Bessel functions and the spherical harmonics,

and further applying some elementary but tedious mathematics the plane-wave fromula

can be rewritten as

an,k(G) =
4π

√
Ω

Ω0

∑
K

cn,k(K)

{∑
t

∑
α

e−i(k+G)·rt,α
∑
`,m

∑
`′,m′

(−i)`′
∫ r

(t)
MT

r=0

dr r2 j`′(|k + G|r)

×
[
At,α

`,m(k + K)u
(t)
` (r, E`) +Bt,α

`,m(k + K) u̇
(t)
` (r, E`)

]
Y`′,m′(k + G)

×
∫
dw Y ∗

`′,m′(r)Y`,m(r) +
1√
Ω

∫
Ωint

d3r ei(K−G)·r
}
.

This expression can further be reduced by implementing the orthonormalization rule∫
dw Y ∗

`′,m′(r)Y`,m(r) = δ`,`′ δm,m′
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to

an,k(G) =
∑
K

cn,k(K)

{∑
t

∑
α

(4π)2
√

Ω

Ω0

e−i(k+G)·rt,α
∑
`,m

(−i)` Y`,m(k + G)

×
∫ r

(t)
MT

r=0

dr r2 j`(|k + G|r)
[
At,α

`,m(k + K)u
(t)
` (r, E`) +Bt,α

`,m(k + K) u̇
(t)
` (r, E`)

]
+

1

Ω0

∫
Ωint

d3r ei(K−G)·r
}
. (3.30)

The next step is the separation of the last integral over the interstitial regions as∫
Ωint

d3r ei(K−G)·r =

∫
Ω0

d3r ei(K−G)·r−
∫

ΩallMTs

d3r ei(K−G)·r = Ω0 δK,G−
∫

ΩallMTs

d3r ei(K−G)·r,

where ΩallMTs denotes the volume over all muffin-tin spheres within the unit cell Ω0.

The evaluation of this integral can be done analytically which leads to∫
ΩallMTs

d3r ei(K−G)·r = 4π
(
r
(t)
MT

)3

ei(K−G)·rt,α
j1(|K − G|r(t)

MT )

|K − G|r(t)
MT

.

Including equations 3.24 and 3.25 into equation 3.30 yields

an,k(G) = cn,k(G) +
∑
K

cn,k(K)
∑

t

4π
(
r
(t)
MT

)2

Ω0

∑
α

ei(K−G)·rt,α

×

{
4π
∑

`

(∑
m

Y`,m(k + G)Y ∗
`,m(k + K)

)∫ r
(t)
MT

r=0

dr r2 j`(|k + G|r)

×
[
α

(t)
` (k + K)u

(t)
` (r, E`) + β

(t)
` (k + K) u̇

(t)
` (r, E`)

]
− r

(t)
MT

j1(|K − G|r(t)
MT )

|K − G|r(t)
MT

}
. (3.31)

Finally, a further simplification of eq. 3.31 can be done by using the formula

∑
m

Y`,m(k + G)Y ∗
`,m(k + K) =

2`+ 1

4π
P` [cos(∠G,K)]
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with P`(x) being the Legendre polynomial of the order `, which results in

an,k(G) = cn,k(G) +
∑
K

cn,k(K)
∑

t

4π
(
r
(t)
MT

)2

Ω0

∑
α

ei(K−G)·rt,α

×

{∑
`

(2`+ 1)P` [cos(∠G,K)]

∫ r
(t)
MT

r=0

dr r2 j`(|k + G|r)

×
[
α

(t)
` (k + K)u

(t)
` (r, E`) + β

(t)
` (k + K) u̇

(t)
` (r, E`)

]
− r

(t)
MT

j1(|K − G|r(t)
MT )

|K − G|r(t)
MT

}
. (3.32)

Inclusion of the positron ground state: In this section the specification of equation

3.32 for the pure positron wave function

ψ+(r) =
1√
Ω

∑
G

b+(G) eiG·r (3.33)

and for the enhanced positron wave function

ψenh
+ (r) =

√
g(r)ψ+(r) =

1√
Ω

∑
G

benh
+ (G) eiG·r (3.34)

will be derived. In case of the pure positron wave function that occurs in the independent

particle approximation, only the electron quantities in eq. 3.32 need to be replaced by

the corresponding positron quantities:

b+(G) = c+(G) +
∑
K

c+(K)
∑

t

4π
(
r
(t)
MT

)2

Ω0

∑
α

ei(K−G)·rt,α

×

{∑
`

(2`+ 1)P` [cos(∠G,K)]

∫ r
(t)
MT

r=0

dr r2 j`(|G|r)

×
[
α

+(t)
` (K)u

+(t)
` (r, E`) + β

+(t)
` (K) u̇

+(t)
` (r, E`)

]
− r

(t)
MT

j1(|K − G|r(t)
MT )

|K − G|r(t)
MT

}
. (3.35)

Concerning the plane-wave coefficients of the enhanced positron ground state, the sit-

uation can be considerably simplified by the use of a muffin-tin approximation for the
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enhancement function g(r) as follows

g(r) ≈

{
g(t)(|r|) for r in the tth MT sphere,

gint for r within the interstitial region.
(3.36)

In this approximation the inclusion of the enhancement into equation 3.36 yields the

following formula for the plane-wave coefficient of the enhanced positron ground state

benh
+ (G) = c+(G)

√
gint +

∑
K

c+(K)
∑

t

4π
(
r
(t)
MT

)2

Ω0

∑
α

ei(K−G)·rt,α

×

{∑
`

(2`+ 1)P` [cos(∠G,K)]

∫ r
(t)
MT

r=0

dr r2 j`(|G|r)
√
g(t)(r)

×
[
α

+(t)
` (K)u

+(t)
` (r, E`) + β

+(t)
` (K) u̇

+(t)
` (r, E`)

]
− r

(t)
MT

j1(|K − G|r(t)
MT )

|K − G|r(t)
MT

√
gint

}
. (3.37)
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3.4 Numerical evaluation of the EMD and EPMD in the

plane-wave representation

After defining

px = qey + eyzr cosϕ

py = qey − [exeyr cosϕ− ezr sinϕ]/eyz (3.38)

pz = qez − [exezr cosϕ+ eyr sinϕ]/eyz

and eyz =
√
e2y + e2z eq. 2.1 can be written as

J(q, e) =

∫ ∞

r=0

∫ 2π

ϕ=0

drrdϕρ(p). (3.39)

In order to calculate a Compton or Doppler profile, one has to know the EMD or EPMD

at any point of the p space, which would require the knowledge of all energy eigenvalues

and of the corresponding plane-wave coefficients for all occupied electron states | n,k >
within the Brillouin zone. This, however, leads to an enormous numerical effort that can

be reduced by using all symmetry properties of the crystal, especially concerning the

point group operations. These operations are defined by a set of orthogonal matrices

αt, t = 1, . . . , tmax. The following relations are valid [20]:

εn,α−1
t K = εn,k (3.40)

and

aPW
n,α−1

t k
(K) = e−iK·staPW

n,k (αtK) and aep

n,α−1
t k

(K) = e−iK·staep
n,k(αtK), (3.41)

where st means the non-trivial translation vector corresponding to the point group

element αt. Evaluation of Kronecker’s delta δk,p−K in eq. 3.2 yields the following rule:

For each fixed vector p, there is one and only one reciprocal-lattice vector K(p) that

reduces p into the first BZ [20]. Further one can rotate the vector p − K(p) into the

irreducible wedge (IW) of the Brillouin zone by the point group element called αIW :

kIW = αIW [p − K(p)] ∈ IW. (3.42)

Band structure calculations are now performed inside the irreducible wedge for a sample
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of k points which define a number of tetrahedrons which completely fill the irreducible

wedge. For any vector kIW obtained by eq. 3.42 it has then to be checked to which

tetrahedron kIW belongs. The corresponding Bloch energies and plane-wave coefficients

are finally determined by linear interpolations within the tetrahedron. With this ma-

nipulations the one-dimensional Compton and Doppler profiles can now be obtained by

numerical evaluation of

JCompton(q, e) =
2Ω0

(2π)3

∫ ∞

r=0

∫ 2π

ϕ=0

drrdϕ
∑

n

Θ(εF − εn,kIW
) | aPW

n,kIW (αIWK(p)) |2 (3.43)

and

JDoppler(q, e) =
2Ω0

(2π)3

∫ ∞

r=0

∫ 2π

ϕ=0

drrdϕ
∑

n

Θ(εF − εn,kIW
) | aep

n,kIW (αIWK(p)) |2 . (3.44)

The integration of eqs. 3.43 and 3.44 now was performed by a two-dimensional Simpson

integration as it is done in the program comprof−10VAR.exe [13]. The corresponding

tetrahedrons are defined using the SETK -programs [25]. The number of data points

and tetrahedrons varies for different structures of the unit cell (tab. 3.1):

Table 3.1: Number of data points and tetrahedrons defined by these points for the dif-
ferent unit cells used in section 4.1.

Structure Number of data points Number of tetrahedrons
body centered cubic 91 250
face centered cubic 89 250

simple cubic 84 216
simple tetragonal 90 240
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4.1 Investigation of FeCu alloys

4.1.1 Paramagnetic treatment

Investigated structures: Two series have been taken into account, one is based on

the face-centered-cubic lattice as for pure copper, with a lattice constant of d = 6.82

a.u.. The other series is based on the real body-centered-cubic iron lattice (d = 5.42

a.u.). The alloys are assumed to appear in highly ordered and symmetric structure,

hence, the composition of Fe and Cu atoms was not chosen to be randomly in the

crystal. Further, for each series, five different concentrations of the Fe-atoms in the

crystal (x = 0, 25, 50, 75, 100) have been investigated. The structures that have been

used in particular are given in Tab. 4.1 and 4.2.

Table 4.1: Structures investigated for the fcc series of FeCu alloys. The lattice constant
d has been chosen identical to that of the fcc Cu lattice (d = 6.82a.u.) as
suggested in [26].

Composition Space group Number Lattice constant
Fe100Cu0 Fm-3m 225 a = d
Fe75Cu25 Pm-3m 221 a = d
Fe50Cu50 P4/mmm 123 a = b = d√

2

Fe25Cu75 Pm-3m 221 a = d
Fe0Cu100 Fm-3m 225 a = d

The coordinates of the atomic arrangements have been obtained from Ref. [27]. In

order to achieve good results the muffin-tin radius rMT in the full-potential LAPW-

calculations performed by the program WIEN2k has been chosen such that 2rMT = dNN

for each arrangement, where dNN means the nearest-neighbour-distance in the crystal

lattice. Further, the energy to separate core states and valence states has been chosen

41



4 Numerical Results

Table 4.2: Structures investigated for the bcc series of FeCu alloys. The lattice constant
d has been chosen identical to that of the bcc Fe lattice (d = 5.42a.u.) as
suggested in [26]. For bcc Fe50Cu50 two different atom arrangements were
taken into consideration.

Composition Space group Number Lattice constant
Fe100Cu0 Im-3m 229 a = d
Fe75Cu25 Fm-3m 225* a = 2d
Fe50Cu50 Pm-3m 221 a = d
Fe50Cu50 Fd-3m 227 a = 2d
Fe25Cu75 Fm-3m 225* a = 2d
Fe0Cu100 Im-3m 229 a = d

such, that the electronic states up to the 2p state are treated as core states, all other

states (semi-core and valence states) are treated as valence states, hence for Fe

1s22s22p6︸ ︷︷ ︸
core

3s23p6︸ ︷︷ ︸
semi−core

3d64s2︸ ︷︷ ︸
valence

and for Cu

1s22s22p6︸ ︷︷ ︸
core

3s23p6︸ ︷︷ ︸
semi−core

3d104s1︸ ︷︷ ︸
valence

.

This requires a separation energy of -7.0 Ry for bcc Fe100Cu0 and fcc Fe100Cu0 and -

9.0 Ry for all other arrangements including Cu. The band structure calculations have

been performed for the paramagnetic case, and no relativistic effects have been taken

into account. In order to compare the results of the LAPW-calculation with former

calculations in literature the density of states has been calculated for the considered

alloys (figs. 4.1 and 4.2). The results agree quite well with those in Ref. [26].
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Figure 4.1: Nonpolarized density of states (DOS) for fcc FexCu100−x alloys for x = 0

(a), 25 (b), 50 (c), 75 (d) and 100 (e). The zero-energy represents the Fermi

level.
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Figure 4.2: Nonpolarized density of states (DOS) for bcc FexCu100−x alloys for x = 0

(a), 25 (b), 50 (c), 75 (d) and 100 (e). The zero-energy represents the Fermi

level.

Compton profiles: In order to evaluate the quality of a one-dimensional Compton

profile calculated by the program comprof−10VAR.exe [13], the correlation between the

number of coefficients used in the plane-wave representation for the electron Bloch func-

tions (eq. 3.1) and the convergence of the profile has been investigated. The goal was to

get a reliable calculation of Compton profiles within a momentum region up to approx-

imately 50 mrad. This inclusion of the high-momentum region is of great importance

since many experimental investigations using Compton or Doppler spectroscopy are

done with special emphasis on this region. To study the convergence within this high-
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momentum region, it is convenient to use semilogarithmic diagrams, since the Compton

profiles reach rather small values in this region. As one would expect, the number of

plane-waves required to achieve this accuracy depends on the complexity of the investi-

gated structure. To demonstrate this, the one-dimensional Compton profiles for the fcc

copper crystal (1 atom per unit cell) has been calculated for various numbers of plane-

waves (fig. 4.3). The same has been done for the bcc Fe25Cu75 alloy (in the Fm-3m

structure, as given in tab. 4.2; 1 Fe and 3 Cu atoms per unit cell), which is one of the

most complex structures among the considered FeCu alloys. The result is shown in fig.

4.4. For the simple 1-atomic fcc copper the desired convergence up to 50 mrad is already

reached at a number of about 2000 plane-waves used for the plane wave representation

of the electronic Bloch function (fig. 4.3). For the more complex bcc Fe25Cu75 alloy,

however, approximately 6000 plane-waves are necessary to obtain similar accuracy (fig.

4.4). Thus, the more complicated the structure is, the more numerical effort is needed

in order to achieve good results. Further, the effort grows with the region of momentum

to be investigated, e.g up to 30 mrad no more than 3000 plane-waves are required for

good convergence in the 4-atomic structure.
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Figure 4.3: One-dimensional Compton profile for fcc Cu along the [100]-direction. All

semi-core and valence electrons have been considered for various numbers of

plane-wave coefficients from about 500 up to 2500. The desired convergence

up to approximately 50 mrad is reached at about 2000 plane-waves.
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Figure 4.4: One-dimensional Compton profile for bcc Fe25Cu75 along the [111]-direction.

All semi-core and valence electrons have been considered for various num-

bers of plane-wave coefficients from about 3000 up to 7000. The desired

convergence up to approximately 50 mrad is finally reached at about 6000

plane-waves.

Semilogarithmic diagrams as they are used in figs. 4.3 and 4.4 can also be used to

show how different electron bands contribute to the total Compton profile. This has

been done for bcc Cu in fig. 4.5, where the Compton distributions of the 3s-, 3p- and

the valence electrons (3d and 4s) are separately shown. An equivalent investigation for

bcc Fe25Cu75 is presented in fig. 4.6. In this case one has to distinguish between the 3s

and 3p contributions for Fe and Cu atoms. The contributions of the valence states of

the different atoms, however, cannot be separated because the corresponding bands are

completely mixed due to their high dispersion and the fact that their energy levels are

quite close to each other.
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Figure 4.5: One-dimensional Compton profile for fcc Cu along the [100]-direction for

different bands. The valence states (3d and 4s) can not be separated.
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Figure 4.6: One-dimensional Compton profile for bcc Fe25Cu75 along the [111]-direction

for different bands. The valence states (3d and 4s) can not be separated.
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The separate presentation of contributions to the Compton profile due to different

bands (figs. 4.5 and 4.6) shows, that the contribution of the semi-core states (3s and 3p)

to the total profile is rather large in a momentum region from zero to about 20 mrad

(3p) and then starts to increase again at about 25 mrad (3s), respectively 40 mrad (3p)

towards the high-momentum region. One can also observe that the contributions of the

semi-core states for Fe and Cu to the total profile in fig. 4.6 have almost the same shape

in the semilogarithmic diagram. Further they have almost the same value per atom

(note that in fig. 4.6 the contribution of the Cu states is counted three times due to the

material’s structure). Hence, any differences in shape of the one-dimensional Compton

profiles, that may occur by variation of the fractions of iron and copper, arise from the

contribution of the valence states (3d and 4s). This topic will be discussed later in this

chapter.

Another quantity to determine the reliability of calculated one-dimensional Compton

profiles is the number of electrons in the unit cell which should equal the area under

the Compton profile as given in eq. 2.3. The result of this integration for the profiles

of the bcc series of FeCu alloys along the [100]-direction (fig. 4.7) is given in tab. 4.3.

The results of the integration agree quite well with the number of electrons, the relative

error is around 1.5% − 3%.

Table 4.3: Number of electrons γ in all semi-core and valence states and integrated area
of the one-dimensional Compton profile γcalc for the bcc series of FeCu alloys
along the [100]-direction.

Composition γ γcalc

Fe100Cu0 16 15.71
Fe75Cu25 67 65.19
Fe50Cu50 35 34.38
Fe50Cu50 70 67.94
Fe25Cu75 73 70.80
Fe0Cu100 19 18.48

In the following, the Compton profiles of the two series proposed in [26] are shown.

The calculations have been performed for the [100]- and the [110]-direction of the crystal

lattices. In case of the fcc Fe50Cu50 alloy (see tab. 4.1), the so called CuAu-structure

[27], the unit cell is a tetragonal structure where the primitive vectors in the base plane
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(kz = 0) are rotated by 450 with respect to the primitive vectors of the cubic structures.

Elementary considerations reveal that the [100]-direction of the cubic lattice is equal

to the [110]-direction in the tetragonal lattice, the cubic [110]-direction corresponds to

the [010]-direction in the tetragonal case. 7000 plane-waves have been used for the

calculations, all semi-core and valence electrons have been considered. The results are

shown in figs. 4.7 - 4.10.
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Figure 4.7: 1D-Compton profiles for bcc FexCu1−x alloys along the [100]-direction.
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Figure 4.8: 1D-Compton profiles for bcc FexCu1−x alloys along the [110]-direction.
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Figure 4.9: 1D-Compton profiles for fcc FexCu1−x alloys along the [100]-direction.
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Figure 4.10: 1D-Compton profiles for fcc FexCu1−x alloys along the [110]-direction.

The semilogarithmic diagrams in figs. 4.7 - 4.10 predominantly show the behaviour of

the Compton profiles in the high-momentum region. In this regard, the following consid-

erations are useful for their discussion. The electron momentum distribution in a crystal

basically depends on the electron’s spatial localization. Strongly bound electrons are

highly localized, while weakly bond electrons are more delocalized in space. Regarding

an electronic band structure one can assume that spatially sharply localized electrons

correspond to bands having a small dispersion in momentum space and, hence, having

a narrow bandwidth. Generally one can observe, that the localization of electrons in

crystals grows as

• the electron energy, with respect to the Fermi level, decreases

• the azimuthal quantum number decreases.

Hence, one can assume that the semi-core states (3s and 3p) of iron and copper are

strongly localized, since their energies are several Ry lower than the Fermi energy. The 3d
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bands are also strongly localized because they have a larger azimuthal quantum number,

but since the energies of the Cu 3d bands are somewhat lower than in case of Fe, one

can assume that the copper 3d electrons are more localized than the iron 3d electrons.

According to the Heisenberg uncertainty principle, states that are strongly localized in

real space are strongly delocalized in momentum space and vice versa. Delocalization in

momentum space further means a higher contribution to the high-momentum region in

the Compton profile. Hence, the weaker localization in real space of the Fe 3d states with

respect to the Cu 3d states yields larger values of the Fe profiles in the high-momentum

region as the fraction of Cu in the crystal increases. This can be observed in figs. 4.7 -

4.10.

The one-dimensional Compton profiles for Fe, fcc and bcc Fe50Cu50 are shown in fig.

4.11. The profiles have a Gaussian shape and for the fcc and bcc Fe50Cu50 they coincide,

the profiles for pure Fe and pure Cu, however, have significant different shapes. While

the Fe profile is rather sharp, with a high peak at q = 0, this peak is much lower in

the Cu profile, but, as in the semilogarithmic diagram, there are larger values in the

high-momentum region of the Cu profile.
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Figure 4.11: 1D-Compton profiles for Fe100Cu0, Fe50Cu50 and Fe0Cu100 alloys along the

[110]-direction. All curves are normalized to the same area.
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4.1.2 Ferromagnetic calculations

Investigated structures: According to Ref. [7], the series shown in chapter 4.1.1 is

somewhat artificial due to the following reasons:

• for all alloys containing Fe its ferromagnetism should be taken into account. This

aspect will be treated in this chapter.

• as we learn from Ref. [7], the stability of the FexCu1−x might be quite different in

their fcc or bcc realization.

It is no surprise that in case of dominating Fe, the bcc structure will be more stable

while alloys with dominating Cu will preferably form a bcc structure. Fe1−xCux alloys

have a single bcc phase for 0 < x < 0.4 and a single fcc phase for 0.6 < x < 1.0, while

both structures are likely to exist in the region of 0.4 < x < 0.6 [7]. Further the lattice

constants for the different compositions are modified according to the equilibrium lattice

constants calculated using the generalized gradient approximation in Ref. [7]. Therefore

only the structures as given in table 4.4 have been used for further calculations and the

discussion starts again with the DOS of these materials.

Table 4.4: Crystal structures used for further calculations of the one-dimensional Comp-
ton profiles for Fe1−xCux alloys, according to Ref. [7].

Composition Structure Space group Lattice constant [A]
Fe100Cu0 bcc Im-3m 2.843
Fe75Cu25 bcc Fm-3m 2.888
Fe50Cu50 bcc Pm-3m 2.900
Fe50Cu50 fcc P/4mmm 3.637
Fe25Cu75 fcc Pm-3m 3.631
Fe0Cu100 fcc Fm-3m 3.616

For this reason, a more detailed presentation of the density of states has been chosen

for the materials given in table 4.4. In fig. 4.12, the d-parts separated into their Cu

(red line) and Fe (blue line) contributions are shown. It is not surprising that from pure

Fe to pure Cu the density of states of the d electrons of copper is reduced continuously,

but it is interesting to observe that this reduction takes place from the iron side of the

spectrum. The remaining d contribution of the DOS for Cu is more and more shifted to

smaller energies.
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Figure 4.12: Nonpolarized density of states (DOS) for the d-parts of FexCu100−x alloys

as given in table 4.4, separated into their Cu (red line) and Fe (blue line)

contributions. The zero-energy represents the Fermi level.

Compton profiles: In the next step the one dimensional-Compton profiles for the

Fe1−xCux alloys as given in table 4.4 have been calculated again, but this time for all

structures containing Fe spin-polarized LAPW calculations have been performed using

WIEN2k. Again all semicore and valence states have been considered, 6800 plane waves

have been used. In the ferromagnetic case the results consist of two one-dimensional

Compton profiles, one for the spin up electrons and another one for the spin down elec-

trons. Integration over the profiles again yields the number of electrons (eq. 2.3) that

contribute to the associated profile, hence the number of electrons with spin up (γup) or

spin down (γdn). The sum of the areas under the two profiles (γup + γdn) yields the total
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number of electrons in the considered semicore and valence states of the structure, and

their difference (γup − γdn) describes the magnetic moment per unit cell in units of Bohr

magnetons.
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Figure 4.13: Normalized 1D-Compton profiles for ferromagnetic Fe1−xCux alloys accord-

ing to table (4.4) along the [100]-direction.
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Figure 4.14: 1D-Compton profiles for ferromagnetic Fe100Cu0 along the [100]-direction.
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Figure 4.15: 1D-Compton profiles for ferromagnetic Fe75Cu25 along the [100]-direction.
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Figure 4.16: 1D-Compton profiles for ferromagnetic bcc Fe50Cu50 along the [100]-

direction.
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Figure 4.17: 1D-Compton profiles for ferromagnetic bcc Fe50Cu50 along the [100]-

direction.
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Figure 4.18: 1D-Compton profiles for ferromagnetic bcc Fe25Cu75 along the [100]-

direction.

As a measure of quality for the ferromagnetic one-dimensional Compton profiles (fig.

4.13-4.18) the number of electrons in the semi-core and valence states obtained by in-

tegration of the profiles is given in table 4.5. Again the results of the integration agree

quite well with the number of electrons, the relative error is less than 3.5% in each case.

Table 4.5: Integrated ferromagnetic one-dimensional Compton profiles compared to the
number of electrons in semi-core and valence states.

Composition γup γdn γcalc = γup + γdn γ
Fe100Cu0 9.08 6.74 15.82 16
Fe75Cu25 36.30 28.82 65.12 67
Fe50Cu50 bcc 18.45 15.87 34.32 35
Fe50Cu50 fcc 18.26 15.78 34.04 35
Fe25Cu75 36.61 34.07 70.68 73
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Further the magnetic moment can be obtained from the ferromagnetic one-dimensional

Compton profiles. It is simply given by

µ = γup − γdn, (4.1)

where µ is the magnetic moment per unit cell in units of the Bohr magneton µB. The

magnetic moments for the investigated Fe1−xCux alloys determined from the values in

table 4.5 using equation 4.1 are shown in figure 4.19. As one would expect the averaged

magnetic momentum per atom decreases almost linearly with the concentration x of Cu

atoms in the crystal. The magnetic moment per Fe atom, however, increases as x grows.

The reason is reduced symmetry on the one hand and the loss of magnetic neighbours

as x increases on the other hand. These effects narrow the 3d bandwidth and thus lead

to a larger density of states at the Fermi energy that increases the magnetic moment [7].
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Figure 4.19: Magnetic moments of Fe1−xCux determined from the one-dimensional

Compton profiles. The blue graph represents the magnetic moment aver-

aged over all atoms in the unit cell, the red one shows the magnetic moment

at the Fe sites.
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4.1.3 Doppler profiles

In this section, the Doppler profiles for the Fe1−xCux alloys as given in table 4.4 are

presented. The calculations have been performed for the independent particle model

(eq. 2.8) as well as including the enhancement effect (see sec. 3.2). For the calculation

of the Doppler profiles no ferromagnetic effects have been taken into account, neither

for the electron states, nor for the positron ground state. As it is done for the Compton

profiles (see sec. 4.1.1, figs. 4.3 and 4.4) the convergence of the Doppler profiles is first

checked. For pure copper in the IPM, the results are shown in fig. 4.20. As in case of the

Compton profiles mentioned above, the convergence in the high-momentum region first

increases with the number of plane-wave coefficients. At a higher number of electron-

positron Fourier coefficients used, the profile shows a crazy behaviour for q > 35 mrad.

The reason for this can be found in eq. 3.5:

aep
n,k(K) :=

∑
G

aPW
n,k (G)bPW

+ (K − G).

According to the above equation, the electron-positron plane-wave coefficients aep
n,k for

a reciprocal-lattice vector K are obtained by a convolution of the given set of electron

plane-wave coefficients aPW
n,k (G), (G = 1, . . . ,Gmax) with the positron plane-wave coeffi-

cients bPW
+ centered at K. A schematic presentation of this situation is given in fig. 4.21,

left diagram. If, however, K gets too large and, hence, lies too near to Gmax, the convo-

lution in the above formula gets defect, as it is shown in fig. 4.21, right diagram. This

means, that, in case of a number of Gmax electron plane-wave coefficients, reliable results

for the electron-positron plane-wave coefficients aep
n,k(K) can only be obtained for approx-

imately Kmax ≤ Gmax

2
. A feasible method to check the reliability of the electron-positron

plane-wave coefficients aep
n,k(K) calculated using equation 3.5 is to analyse the Doppler

profiles of the so-called semi-core bands (3s+3p). The Compton profiles of these bands

are almost perfectly isotropic in momentum space. Further, this property must also be

valid for the Doppler profiles of these bands, since the wave function of the positron

being in ground state (1s-symmetry) does certainly not change this situation. Hence,

all deviations of these Doppler profiles from isotropy in the q space indicate numerical

problems concerning the determination of the electron-positron plane-wave coefficients.

The results of this test for the Fe25Cu25 alloy, performed in three different directions in

momentum space, are shown in figure 4.22. Regarding the right picture (5041 electron-

positron plane-wave coefficients), the profiles along the different directions coincide up

to about 45 mrad, then their behaviour becomes somewhat crazy due to the reason
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mentioned above. The use of lower numbers of electron-positron plane-wave coefficients,

however, yields almost coincident Doppler profiles along the three different directions.

Similar tests concerning the other investigated Fe1−xCux alloys lead to the same results.

Hence, for a number of 6800-6900 electron plane-wave coefficients (as used in this work),

the highest convergence (up to more than 50 mrad for pure Fe and Cu, up to about 45

mrad for the structures of higher complexity) is obtained by using about 4000 electron-

positron plane-wave coefficients. This rule is also valid in case of the enhanced positron,

the local multiplicative enhancement factor (see sec. 3.2) does not alter the situation

explained above.
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Figure 4.20: One-dimensional Doppler profiles for Cu along the [100]-direction accord-

ing to the independent particle model and different numbers of electron-

positron Fourier coefficients (eq. 3.5).
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correct convolution for a small K; right: erroneous convolution for a large
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Figure 4.23: One-dimensional Doppler profile for FexCu1−x alloys along the [100]-

direction according to the independent particle model (without any en-

hancement). All curves are normalized to the same area.
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In fig. 4.23 the Doppler profiles (without any enhancement) for FexCu1−x alloys (for

x=0, 0.5 and 1) are shown. Compared to the corresponding Compton profiles in fig.

4.24, the Gaussian shape is much sharper, hence, it is obvious that the annihilation

rate takes highest values at small momenta. For higher momenta, the one-dimensional

Doppler profiles take on rather small values, the annihilation rate almost vanishes in

the high-momentum region. Further the Doppler profiles for Fe and Cu do not differ

that much as the Compton profiles do, hence the effect of the Fe 3d electrons in the

high-momentum region as described in sec. 4.1.1 does not occur any more.

Enhanced Doppler profiles: A measure to determine the practicability of the different

parametrized enhancement factors (eqs. 3.12-3.14) and further, the reliability of the cal-

culated Doppler profile, is the positron bulk lifetime as given in equation 2.10. Therefore,

the Doppler profiles for copper using all enhancement factors given in section 3.2 have

been calculated. The corresponding positron lifetimes are obtained by integration of

the one-dimensional Doppler profiles (the bulk lifetime equals the reciprocal value of the

area under the Doppler profile, see eq. 2.10). The results are shown in figure 4.25 and

again in the semilogarithmic diagram fig. 4.26. Regarding the curves in 4.25 it turns out

that the enhancement factors suggested by Boronski et. al. [19] and Puska et. al. [22]

yield quite similar results throughout the whole region, while the curve calculated using

the enhancement factor proposed by Barbiellini et. al. [23] yields significantly higher

values and, hence, higher annihilation rates, especially for low momenta (q < 15 mrad).

In the high-momentum region (q > 35 mrad), however, the three different enhancement

factors yield quite similar results (fig. 4.26), hence, for an analysis of the Doppler profiles

in this region, the choice of the enhancement factor only plays a minor role.

Positron lifetime experiments performed on copper turned out a bulk lifetime between

110 ps and 112 ps (Refs. [28],[29]). Hence, the formulas proposed in Refs. [19] and [22]

yield quite good results in case of pure Cu, while the enhancement factor proposed in

Ref. [23] does not seem to be applicable in this case. Therefore, all the following Doppler

profiles presented in this chapter have been produced using formula 3.12.
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Figure 4.25: One-dimensional Doppler profiles for Cu along the [100]-direction using the

different enhancement factors given in sec. 3.2 (BN=eq. 3.12, PSN=eq.

3.13, BPTN=eq. 3.14). τ means the bulk lifetime according to eq. 2.10.
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Figure 4.26: One-dimensional Doppler profiles for Cu along the [100]-direction using the

different enhancement factors given in sec. 3.2 (BN=eq. 3.12, PSN=eq.

3.13, BPTN=eq. 3.14). τ means the bulk lifetime according to eq. 2.10.

65



4 Numerical Results

A comparison of the one-dimensional Compton profile and the Doppler profiles using

the independent particle model as well as the enhanced positron ground state for pure

copper is shown in fig. 4.27. Again, the enhancement factor suggested by Boronski and

Nieminen (eq. 3.12) has been chosen. Obviosly the contribution to the high-momentum

region decreases by several orders of magnitude (note that this is a semilogarithmic

diagram) when the positron ground state is taken into account. Hence, the overlap

of the electron wave function and the positron ground state wave function decreases

as q grows. At lower momenta, however, the enhanced Doppler profile assumes even

higher values than the Compton profile. For a more detailed discussion of this effects,

the contribution of the different electron bands to the total Doppler profile is shown in

figure 4.28.
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Figure 4.27: One-dimensional Compton and Doppler profiles for Cu along the [100]-

direction.

Regarding the contributions of the different electron bands to the total Doppler profile

(figs. 4.28 and 4.29) compared to their contributions to the Compton profiles (fig. 4.30),

it turns out that the contribution of the valence states, that dominate the Compton

profile up to a high-momentum region, is strongly decreased in case of the Doppler
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profile for higher momenta. For low momenta (up to 25 mrad), however, the contribution

of the semi-core states is negligible and the profile in this region is almost completely

determined by the valence states. Hence, the overlap of the positron wave function

and the valence states wave function, that dominates the profile in the low momentum

region, almost vanishes for higher momenta. On the other hand, the contribution of the

semicore states, especially of the 3p bands, dominates the Doppler profile in the region of

q > 35 mrad. Thus, according to figs. 4.28-4.30, a positron is most likely to annhihilate

with an electron being in a valence state and having a small momentum, the overlap of

the electron wave function and the positron wave function and, thus, the annihilation

rate, takes on the largest values in this case. The rate decreases for higher momenta,

but for annihilation processes taking place in the high-momentum region (q > 35 mrad),

the electrons of the 3p bands play a major role.
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Figure 4.28: One-dimensional Doppler profiles for Cu along the [100]-direction using the

enhancement factor suggested in Ref. [19] (eq. 3.12).
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Figure 4.29: One-dimensional Doppler profiles for Cu along the [100]-direction according

to the IPM.
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Figure 4.30: One-dimensional Compton profiles for Cu along the [100]-direction.
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Figure 4.31: Dependence of positron lifetime τ in Fe1−xCux alloys to the fraction of Cu x,

determined according to eq. 2.10, using the enhancement factor suggested

in Ref. [19] (eq. 3.12).

In fig. 4.31 the relation between the positron bulk lifetime τ and the fraction of Cu

is shown. A comparison of the positron bulk lifetimes for pure Fe and Cu, calculated

in this work, with theoretical results obtained by Campillo Robles et. al. [30], using

the linear orbital muffin-tin method (LMTO) and the enhancement factor proposed by

Boronski and Nieminen [19], and some experimental data is given in the following table:

Table 4.6: Some theoretical and experimental positron bulk lifetimes in bcc Fe and fcc
Cu.

τFe [ps] τCu [ps]
theory:
this work (LAPW-BN) 100 110
Campillo Robles et. al. [30] (LMTO-BN) 101 105
experiment:
cited by Campillo Robles et. al. 111 120
cited by Barbiellini et. al. (1991) [31] 106 110
cited by Barbiellini et. al. (1995) [23] 112 120
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As one can see in the table above, the values for the positron bulk lifetimes for pure

Fe and Cu obtained in this work correspond quite well to other theoretical values in

literature (see table 4.6), experimental data are somewhat higher than the calculated

ones. A comparison of theoretical lifetimes with experimental ones, however, is difficult

due to strong differences between the results of various experiments.

Further, one would assume the relation between the positron lifetime and the copper

concentration to be linear, which is by far not the case in fig. 4.31. This might be due

to two reasons

• a linear relation between lifetime and concentration will only exist if the relation

between the concentration and the volume per atom is linear, which is not the case

in the calculations performed in this work (values for the lattice constants can be

found in table 4.4)

• another effect that might be the reason for this non-linear behaviour is called

preferential positron annihilation (PPA) [32]: this means that there is a different

affinity of the positron to the different partners of the alloy.

Regarding the figure above, the positron lifetime of pure Cu is obviously already

reached at a fraction of Cu x = 0.5. This might be a sign that the second reason

mentioned above (PPA) is the main effect yielding this non-linear behaviour. A possible

explanation is that the positron’s affinity to annihilate with an Cu electron is such higher

than for annihilation with an Fe electron, that for x = 0.5 all positrons annihilate at Cu

electrons having a lifetime close to the one in pure Cu. In order to distinguish between

these two effects, however, more detailed theoretical investigations will be necessary.
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