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Abstract

Hash functions play an important role in cryptography as they are used in various
cryptographic applications and protocols. The most popular hash functions belong to
the MD-family of cryptographic hash functions. Hence their security is of special in-
terest. In  the differential attacks by Wang et al. on the collision resistance of the
MD-family attracted a lot of attention. Since then the members of the MD-family have
been the target in many cryptographic attacks. Several commonly used members, e.g.
MD and SHA-, have been broken and cannot be considered secure anymore.
In this thesis the security of the ISO-standard hash function RIPEMD-, also a
MD-family member, is analyzed against collision attacks. Contrary to MD and SHA-
, RIPEMD- is a dual stream hash function and thus, considered to be much more
secure. First methods for the differential cryptanalysis of RIPEMD- are discussed.
Then, the different parts of the collision attack on step reduced but otherwise unmod-
ified RIPEMD- are described in detail. For the attacks an automatic search tool is
adapted, which is able to find complex non-linear differential characteristics as well as
confirming message pairs.
We were able to construct differential characteristics for different approaches. Also a
differential characteristic for both streams between round  and  has been found.
Unfortunately it was not possible to also find a confirming message pair for this char-
acteristic for RIPEMD-. Using a modified variant of RIPEMD- we were at least
able to verify this characteristic by constructing a semi-free start collision.
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Kurzfassung

Hashfunktionen spielen eine bedeutende Rolle in der Kryptographie, da sie in ver-
schiedenen kryptographischen Anwendungen und Protokollen verwendet werden. Die
verbreitetsten Hashfunktionen gehören zur MD-Familie kryptographischer Hashfunk-
tionen. Daher ist deren Sicherheit von besonderem Interesse.  zogen die differ-
entiellen Attacken von Wang et al. auf die Kollisionsresistenz der MD-Familie viel
Aufmerksamkeit auf sich. Seit damals sind die Mitglieder der MD-Familie das Ziel
vieler kryptographischer Attacken. Verschiedene weit verbreitete Mitglieder, z.B. MD
und SHA-, wurden gebrochen und können nicht mehr als sicher betrachtet werden.
In dieser Diplomarbeit wird die Sicherheit der ISO-Standard Hashfunktion RIPEMD-
, auch ein MD-Familienmitglied, gegen Kollisionsattacken analysiert. Im Gegen-
satz zu MD und SHA- ist RIPEMD- eine Hashfunktion mit zwei parallelen
Berechnungslinien und wird daher als viel sicherer erachtet. Zunächst werden Metho-
den der differentiellen Kryptoanalyse von RIPEMD- besprochen. Dann werden die
verschiedenen Teile der Kollisionsattacke auf schrittreduziertes, aber sonst unverän-
dertes RIPEMD- im Detail beschrieben. Für die Attacken wird ein automatisches
Suchwerkzeug angepasst, welches fähig ist komplexe nichtlineare differentielle Charak-
teristiken sowie der Charakteristik folgende Nachrichtenpaare zu finden.
Wir konnten differentielle Charakteristiken für unterschiedliche Ansätze konstruieren.
Auch eine differentielle Charakteristik für beide Berechnungslinien zwischen Runde 
und  wurde gefunden. Unglücklicherweise war es nicht möglich auch ein dieser Charak-
teristik folgendes Nachrichtenpaar für RIPEMD- zu finden. Unter Verwendung einer
modifizierten Variante von RIPEMD- konnten wir zumindest diese Charakteristik
durch Konstruktion einer sogenannten "semi-free start" Kollision verifizieren.
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 Introduction

In modern cryptography, cryptographic hash functions play an important role in many
applications. Generally speaking, a cryptographic hash function maps a message of
arbitrary finite length to a hash value of fixed length. The idea is that the hash value
can serve as a short representation of the message and can be used as if it were uniquely
identifiable with the message. The advantage of cryptographic hash functions is that
instead of the long messages, the short hash value can be used to provide data integrity
and message authentication, which is in general more efficient. Hence, cryptographic
hash functions are used in various cryptographic applications and protocols. As their
security is very important for those applications and protocols, also the cryptanalysis
of hash functions plays an important role in cryptography [MOV].

. Cryptanalysis of Hash Functions

Cryptanalysis can be described as the science of analyzing cryptographic algorithms.
In the process of analyzing these methods often new cryptographic attacks are devel-
oped or existing attacks are extended and improved.

Members of the MD family of hash functions are the most popular hash functions
nowadays. Hence, their security and therefore their cryptanalysis is of special interest.
MD [Riv] can be seen as the origin of the whole MD family and was proposed
in  by Ron Rivest. As early cryptanalysis of MD already indicated weaknesses,
Rivest proposed MD in , a strengthened version of MD. This nicely illustrates
the interaction between the design and construction of cryptographic algorithms and
their cryptanalysis. After weaknesses through cryptanalysis can be found new crypto-
graphic algorithms are proposed to eliminate the discovered weaknesses. Also through
cryptanalysis invented cryptographic attacks are taken into account in the design of
new algorithms in order to resist the known attacks.
Although the successors of MD are more complex, they all follow the same design
principles and have similar structures. Hence attack strategies for one member of the
family are often adapted and improved to attack another member of the family.
In  Wang et al. surprised the cryptographic community by announcing practical
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 Introduction

collisions for MD, RIPEMD [Wan+], MD [WY] and SHA- [WYYa]. They
introduced several new techniques in their attacks. Since then, many hash functions
have been the target of cryptographic attacks improving and extending these powerful
techniques.

Also RIPEMD- belongs to the MD family of hash functions and was proposed by
Dobbertin, Bosselaers and Preneel in  [DBP]. But since then only few results
for RIPEMD- have been published. One regarding the preimage resistance can
be found in [OSS]. Despite the breakthrough results of Wang et al. the only work
concerning the collision resistance of RIPEMD- has been published by Mendel et
al. in  [Men+]. In this work, the authors analyze the possibility to apply the
attacks/ideas by Wang et al. [Wan+] and Dobbertin [Dob] to the dual-stream
variants RIPEMD- and RIPEMD-. They concluded that those methods can-
not be used to attack full RIPEMD- respectively that they are not suitable for
RIPEMD- reduced to three rounds due to a too high complexity. But it was not
stated, if attacks reduced to two rounds are feasible.
The recent attacks on the collision resistance of RIPEMD- [MNS] using a powerful
automatic search tool, which was also used to successfully attack step-reduced SHA-
[MNS], motivated to use and modify this tool to attack two rounds of RIPEMD-.

The goal of this thesis is to analyze the security of the ISO standard hash function
RIPEMD- against collision attacks. Hence the theory behind differential attacks
is examined as well as its relevance to practical application. Some of the steps in the
analysis are done using an automatic search tool as doing them by hand seems almost
impossible.
Although different difficulties arise because of the design of RIPEMD-, it is pos-
sible to achieve some results and intermediate results for step-reduced RIPEMD-.
E.g. differential characteristics for certain areas can be found as well as a differential
characteristic for both streams between round  and . Unfortunately no collision for
RIPEMD- using this characteristic can be produced, but at least we are able to ver-
ify the characteristic by constructing a semi-free start collision for a modified variant
of RIPEMD-.

. Thesis Outline

In Chapter  the definition and main security requirements of unkeyed hash functions
as well as some basic properties are given. Furthermore the principles of iterated hash
functions are described.
In Chapter  the general design properties of the MD-family of hash functions are
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. Thesis Outline

presented. As this thesis focuses on RIPEMD-, it is described in more detail. Also
an overview of the remaining hash functions of the MD-family is given.
Chapter  provides the basic terminology used in differential cryptanalysis. Further the
propagation of differences through the functions used in RIPEMD- are considered.
Finally an overview of differential attacks is given.
Chapter  describes the first part of the attack, the search for a good starting point,
where different approaches are discussed.
In Chapter  the second part of the attack, the search for a differential characteristic
is described in detail. Hence some general considerations on RIPEMD- specific
properties as well as the used search strategies in combination with an automatic
search tool are provided. Also some results are presented to illustrate the different
strategies.
In Chapter  the last part of the attack, the search for a confirming message pair is
considered. The difficulties of finding a confirming message pair in RIPEMD- are
discussed and an alternative approach is presented.
Chapter  concludes and the obtained results and intermediate results are presented
in the Appendix.
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 Cryptographic Hash Functions

Hash functions can be divided at a high level into two classes: unkeyed and keyed hash
functions. This thesis only deals with unkeyed hash functions or more precisely with
the subclass modification detection codes (MDCs). Therefore, in this chapter their
definition as well as their main security requirements are discussed. Also the iterated
hash function construction is described.

. Definition and Properties

A hash function H : {0, 1}∗ → {0, 1}n maps bit strings of arbitrary finite length into
bit strings of fixed length n. The input is called message M and the output is the
hash value h = H(M). The size n of the hash value is often denoted as hash length.
Further a hash function has to be efficiently computable and each hash-value should
be a unique and randomly looking representation of the input message.
Mathematically a hash functions is a function that maps x elements to y elements
with x > y. Therefore a unique association between those elements is impossible. The
consequence for a hash function is that collisions are guaranteed. In practice a hash
value should be uniquely identifiable with a single input message. Hence it should be
computationally infeasible to find collisions [MOV].

.. Main Security Requirements

A cryptographic hash function has to satisfy additional properties since they are used
in many diverse applications. Hence the following three main security requirements
evolved:

• preimage resistance: it is computationally infeasible to find any input message
M which results in any pre-specified hash value h, i.e. for any given h = H(M)
find the unknown M .





. Definition and Properties

• second preimage resistance: it is computationally infeasible to find any second
input messageM ′ which has the same hash value h as any specified input message
M , i.e. for any given M find a second M ′ 6= M such that H(M ′) = H(M) = h.

• collision resistance: it is computationally infeasible to find any two distinct input
messages M , M ′ which result in the same hash value h, i.e. find M and M ′ 6= M
such that H(M) = H(M ′) = h.

With these properties the subclass MDC of unkeyed hash functions can be further
classified:

• A one-way hash function has to satisfy the properties preimage resistance and
second preimage resistance. These two properties are therefore also denoted as
one-way property.

• A collision resistant hash function is usually a one-way hash function that also
satisfies the collision resistance property.

Remark: In the strict definition of collision resistant hash functions they only satisfy
the properties second preimage resistance and collision resistance, as collision resistance
only implies second preimage resistance but does not guarantee preimage resistance.
In practice they almost always have the preimage resistance property [MOV].

.. Generic Attacks

The three main security requirements are often set in relation to the bit length n of the
hash value in order to observe some mathematical results about cryptographic hash
functions that are independent of the hash algorithm.

A naive method is the brute-force attack, where a random input message M (of
bounded bitlength) is picked and H(M) is computed. Assuming the hash function
approximates a uniform random variable, the probability of a match is 2−n. So for any
hash function a preimage or a second preimage can be found by guessing approximately
2n random input messages M , computing H(M) and checking if H(M) matches the
given respectively calculated h.

The complexity of the generic attack to find collisions differs due to the birthday para-
dox. A birthday attack allows to find collisions for any function f with output size n
with an optimal complexity of 2n/2.
The two most well-known birthday attack implementations are Yuval’s birthday at-
tack and Floyd’s cycle-finding algorithm. Both attacks require O(2n/2) time, but while
Yuval’s birthday attack also requires O(2n/2) storage, Floyd’s cycle-finding algorithm
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 Cryptographic Hash Functions

can be considered memoryless. Further details about the two algorithms can be found
in [MOV].

As both obtained results hold for any function f with an output size n, a cryptographic
hash function that meets these bounds is called ideal hash function.
A hash function is considered to be broken if the ideal requirements are not met, i.e.
if preimages or second preimages can be found in less than 2n respectively collisions in
less than 2n/2 computations.

The hash length n is usually chosen large enough to make generic attacks computation-
ally infeasible. Hence common hash lengths range between n = 128 and n = 512 bits,
because then it is impossible to find collisions or preimages by these generic attacks.

. Iterated Hash Function Construction

Most commonly used hash functions use some kind of iteration to map the arbitrary
long input message to the hash value of fixed length n. An iterated hash function makes
use of some compression function F which maps an input of size w to an output of
size m with w ≥ m. In each iteration a part of the message Mi is used as input to the
compression function which then outputs the chaining value Hi. Iterated hash func-
tions may also use a final output transformation G which maps the last compression
function output of size m to the final hash value of size n. The output transformation
is often the identity function or a truncation. Figure . illustrates an iterated hash
function which uses the same compression function in each iteration.

F F F F G

M1 M2 M3 Mk

IV H(M)

Figure .: Iterated hash function construction

Formally let H : {0, 1}∗ → {0, 1}n be an iterated hash function, which uses a com-
pression function F : {0, 1}w → {0, 1}m and a output transformation G : {0, 1}m →
{0, 1}n. The input message is split into k message blocks M1 ‖ . . . ‖Mk of size w. To





. Iterated Hash Function Construction

ensure that the input message length is a multiple of the block size w some padding is
used. Then the hash value h = H(M) is computed as follows:

H0 = IV

Hi = F (Hi−1,Mi) for 1 ≤ i ≤ k

h = G(Hk)

IV denotes the predefined initial value, which initializes them-bit intermediate variable
Hi called chaining value.

Remark: Sometimes other additional inputs to the compression function are used in
iterated constructions, e.g. a salt or a counter.

The security of an iterated hash function depends on the security of the compression
function F , on the output transformation G and on the bitsize m of the intermediate
chaining values.
The most commonly used strategy is the Merkle-Damgård design principle [Dam;
Mer]. There the bitsize m of the intermediate chaining values can be as small as the
bitsize n of the final hash value, but the compression function F has to be secure. The
Merkle-Damgård Theorem states that an iterated hash function is collision resistant
if the used compression function is collision resistant. Further the Merkle-Damgård
strengthening requires that the padding includes the length of the message and that
the initial value is fixed to some predefined constant.





 RIPEMD and Other Hash
Functions of the MD-Family

In this chapter the MD-family of hash functions is described. First an overview over
the common properties of the members of this family is given. As this thesis focuses on
RIPEMD-, we then describe this hash function in more detail. Finally the remaining
members of the MD-family are briefly covered by dividing the whole family into three
subfamilies, where the main focus lies on the RIPEMD-subfamily. Also some collision
attacks on the hash functions of those subfamilies are mentioned.

. General Design

Members of the MD-family are iterative hash functions based on the Merkle-Damgård
design principle (see Section .). Further the hash functions are word-oriented, which
means that all data is divided into words of a certain length (w bits). The compression
function uses operations on words of this length. The word length w of the MD-family
hash functions is  or  bits [Rom]. Furthermore they have several other similarities
regarding the construction of the compression function.
The compression function can be split into two major parts, the message expansion
and the state update transformation. The state update transformation processes the
expanded message while following a sequential structure. This means that a certain
number of similar operations called step operations are executed sequentially. Apart
from the dependence on the (expanded) message words, these single steps only vary
little. After the last step the output of the compression function is computed from the
final state variables and the input chaining variables. This prevents simple inversion of
the compression function and therefore simple meet-in-the-middle attacks. This kind
of output computation is also very similar to the Davies-Meyer mode of constructing a
compression function from a block cipher. Figure . illustrates the common structure
of the MD-family compression function.

The purpose of message expansion is that each message block is used more than once in
the compression function. Therefore the message expansion describes how the message





. General Design
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Figure .: Common structure of the compression function of the MD-family

words, which serve as input for the single steps of the state update transformation, are
derived from the message block. For the MD-family there exist two different methods of
message expansion, the round-wise permutations and the recursive message expansion.
In round-wise permutation the steps are grouped together to rounds consisting of
n steps each and the message block is split into n message words of w bits each.
Then each of the message words is used in one step as input in every round, but in
each round the message words are used in a different order. In the recursive message
expansion the message block is split into n message words of w bits each, which serve
as starting values. The following message words are computed recursively from the
previous message words. That has the advantage of an increased diffusion as nearly
all message words depend on nearly all starting values. Hence a small change in the
message block and thus in one starting value affects many steps. More details about
the MD-family message expansions can be found in [Dau].
In each step of the compression function one expanded message word is used to update
a certain (small) number of state variables by the state update transformation. As
already mentioned the operations in each step of the state update transformation are
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 RIPEMD and Other Hash Functions of the MD-Family

very similar in every hash function of the MD-family. The requirements concerning
these step operations are not only to be very efficient, as they are used in every step,
but also to be hard to analyze and to provide good diffusion. In order to be efficient the
members of the MD-family only change one or at most two state variables in each step
by using a combination of very efficient and simple basic operations. This combination
of operations follows the ARX design principle, so it consists of the following basic
operations on words:

A Integer addition modulo 2w (modular additions)

R Bit shifts and rotations

X Bitwise Boolean operations

These specific efficient basic operations are chosen, because the mixing of Boolean
functions and addition is believed to be cryptographically strong and hence they fulfill
the second requirement concerning step operations. The operations in each step of the
state update transformation only vary in some specific parameters (e.g. number of bits
to rotate or used constants) and/or in the used Boolean function (especially in round-
based structures).
The hash functions of the MD-family use the following Boolean functions:

XOR(X, Y, Z) := X ⊕ Y ⊕ Z
MAJ(X, Y, Z) := (X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z)

IF(X, Y, Z) := (X ∧ Y )⊕ (¬X ∧ Z) = (X ∧ Y )⊕ (X ∧ Z)⊕ Z
ONX(X, Y, Z) := (X ∨ ¬Y )⊕ Z = (X ∧ Y )⊕ Y ⊕ Z ⊕ 1

The non-symmetric functions IF and ONX are sometimes also applied with swapped
parameters. These functions also have been chosen, because they are supporting a
strong avalanche effect, which means that small differences in the state variables are
mapped to large differences in only very few steps. A detailed analysis of these functions
can be found in [Dau].

. RIPEMD-

RIPEMD- was designed by Dobbertin, Bosselaers and Preneel in  as a re-
placement for RIPEMD and is described in detail in [DBP]. It belongs to the
MD-family of hash functions and builds together with other RIPEMD variants and
Extended MD the RIPEMD-subfamily (see Subsection ..). RIPEMD- is also
part of the ISO/IEC international standard ISO/IEC -: on dedicated hash
functions, together with six other hash functions (RIPEMD-, SHA-, SHA- and
WHIRLPOOL). As this thesis is focused on RIPEMD-, it is described in more
detail.
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. RIPEMD-

.. Standard Description

RIPEMD- produces a -bit hash value of an input message with a maximum
length of 264 bits. It processes message blocks of  bits. To guarantee that the input
message length is an exact multiple of  bits the input message is padded using
an unambiguous padding method, which is identical to the one of MD. First, the
padding method appends a single ’1’ bit to the message, then ’0’ bits such that the
length in bits of the padded message becomes congruent to  modulo . Finally a
-bit representation of the length of the message before the padding bits were added
is appended to the padded message. This way the padded message is an exact multiple
of  bits [Riva; Riv].
Like in the other members of the RIPEMD subfamily the compression function of
RIPEMD- consists of two parallel streams of computations. In each stream the cor-
responding message block is used to update the state variables. After the computations
the results of both streams are combined with the chaining input, which is illustrated
in Figure .. The two streams of RIPEMD- are designed more differently than
those of RIPEMD or Extended MD, which are basically identical parallel streams
(for details see Section ..). Hence, in the following description of the compression
function the differences between the left and the right stream are pointed out.
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Figure .: Structure of the RIPEMD- compression function
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 RIPEMD and Other Hash Functions of the MD-Family

Both streams are initialized with the five -bit initial values respectively the five -
bit chaining input values h0, . . . , h4, so A = h0 = A′, . . . , E = h4 = E ′. Each stream
consists of a message expansion and a state update transformation.

The state update transformation updates five state variables A, . . . , E of  bits each
in five rounds of  steps each using one expanded message word Wi in each step. The
whole update process for one step in one stream is given by the following equations:

T = ((A+ f(B,C,D) +Wi +Ki) ≪ s) + E

A = E, E = D, D = (C ≪ 10), C = B, B = T
(.)

Figure . shows one step of the state update transformation of each stream.
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Figure .: One step of the state update transformation of RIPEMD-

The Boolean function f is different in each of the five rounds:

f1(X, Y, Z) = X ⊕ Y ⊕ Z = XOR(X, Y, Z)

f2(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z) = IF (X, Y, Z)

f3(X, Y, Z) = (X ∨ ¬Y )⊕ Z = ONX(X, Y, Z)

f4(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z) = IF (Z,X, Y )

f5(X, Y, Z) = X ⊕ (Y ∨ ¬Z) = ONX(Y, Z,X)
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. RIPEMD-

fr is used for the r-th round in the left stream and f6−r for the r-th round in the right
stream with 1 ≤ r ≤ 5.
A constant Ki is added in every step. This constant is different for each stream and
for each round. The actual values can be found in [DBP].
In each stream and each step different rotation values s are used. These values can be
found in Table ..

Step                
Round                 

Left Round                 
Round                 

Stream Round                 
Round                 
Round                 

Right Round                 
Round                 

Stream Round                 
Round                 

Table .: Rotation values s for each step and each stream of RIPEMD-

The message expansion of RIPEMD- is a round-wise permutation of the  message
block words, but for the left and the right stream different permutations are used. The
message block words are permuted according to Table ..

Step                
Round                 

Left Round                 
Round                 

Stream Round                 
Round                 
Round                 

Right Round                 
Round                 

Stream Round                 
Round                 

Table .: Index of the message block words, which are used as expanded message words Wi in each
step and each stream of RIPEMD-

After the last step of the state update transformation, the output values of the last
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 RIPEMD and Other Hash Functions of the MD-Family

step of the left stream A, . . . , E and of the right stream A′, . . . , E ′ are combined with
the chaining input values respectively the initial values h0, . . . , h4:

T = h1 + C +D′, h1 = h2 +D + E ′, h2 = h3 + E + A′,

h3 = h4 + A+B′, h4 = h0 +B + C ′, h0 = T

The final values of one iteration h0, . . . , h4 are either the final hash value or the chaining
input for the next message block.

.. Alternative Description

In this thesis an alternative description of RIPEMD- is used. Like [MNS] suggests,
it is possible to describe the state update transformation by only considering a single
state variable. Hence the following mapping for the input values A, . . . , E of one step
of the left stream respectively A′, . . . , E ′ of one step of the right stream is used:

A = (Ai−5 ≪ 10), B = Ai−1, C = Ai−2, D = (Ai−3 ≪ 10), E = (Ai−4 ≪ 10)

A′ = (Bi−5 ≪ 10), B′ = Bi−1, C
′ = Bi−2, D

′ = (Bi−3 ≪ 10), E ′ = (Bi−4 ≪ 10)

With these substitutions the update process for one step in one stream given in (.)
can be rewritten as

Ai = (((Ai−5 ≪ 10) + f(Ai−1, Ai−2, (Ai−3 ≪ 10)) +Wi +Ki) ≪ s) + (Ai−4 ≪ 10)
(.)

It can be easily seen that the temporary value T can be avoided as well as the whole
handing over process of the remaining state variables. Figure . illustrates one step
of the state update transformation of one stream in the alternative description.

Both streams are initialized by A−5 = h0 = B−5, A−1 = h1 = B−1, . . . , A−4 = h4 =
B−4. It is worth noting that the initial values A−5, A−4, A−3 and B−5, B−4, B−3 are not
rotated  bits to left in (.). So the update process in the first three steps of each
stream is slightly different.
The equations for the final values of one iteration h0, . . . , h4 can be rewritten as fol-
lows:

h0 = A−1 + A78 + (B77 ≪ 10)

h1 = A−2 + (A77 ≪ 10) + (B76 ≪ 10)

h2 = A−3 + (A76 ≪ 10) + (B75 ≪ 10)

h3 = A−4 + (A75 ≪ 10) +B79

h4 = A−5 + A79 +B78
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Figure .: One step of the state update transformation of RIPEMD- in the alternative description

Remark: Instead of adapting the update process in the first three steps, it is also
possible to rotate the initial values and adapt the equations for the final values of one
iteration.

. Other Hash Functions of the MD-Family

In this section a short overview of the remaining hash functions of the MD-family is
given. They are categorized into three subfamilies according to two main distinctions.
First the message expansion is either a round-wise permutation or a recursive message
expansion. The second criterion is the number of parallel lines of computation.

.. MD-Subfamily

MD and MD form this subfamily, as both use one line of computation and round-wise
permutations as message expansion method. Both of them were designed by Ronald
Rivest and produce a -bit hash value by processing message blocks of  bits.
The compression function of MD consists of three rounds of  steps each. In each
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 RIPEMD and Other Hash Functions of the MD-Family

round a different boolean function (IF (X, Y, Z), MAJ(X, Y, Z) and XOR(X, Y, Z))
as well as a different constant are used. In each step operation a rotation is used as
well, but only a few different rotation values are used that follow a certain pattern
throughout the whole compression function. The exact description of the step opera-
tion and further details can be found in [Riva; Riv].
MD is the successor of MD and hence quite similar. It was designed to fix certain
vulnerabilities of MD. The compression function of MD has four rounds of  steps
each. In addition to the application of a Boolean function in each step also a further
state variable is added after the rotation. Further in MD each step has an unique con-
stant and the rotation values of each round are unique. Details can be found in [Rivb].

Both MD and MD are considered broken. The most important recent attack on
MD was published by Wang et al. in  [Wan+]. There they presented an attack,
which can find a collision with a complexity of less than 28 MD hash operations. Also
further optimizations to this collision attack have been proposed, e.g. by Schläffer and
Oswald [SO] or Sasaki et al. [Sas+].
Wang and Yu also presented a collision attack on MD in the same year with complex-
ity 239 [WY]. Since then several improvements to those attacks have been published
e.g. by Klíma [Klí] or Stevens [Ste].

.. RIPEMD-Subfamily

The RIPEMD-subfamily consists of RIPEMD, the strengthened versions RIPEMD-
, RIPEMD-, RIPEMD- and RIPEMD-, but also Extended MD. All of
them use round-wise permutations for the message expansion and process -bit mes-
sage blocks. The crucial difference to other MD-family members is that two parallel
lines of computations are used.
RIPEMD, sometimes also denoted RIPEMD-, was proposed as a strengthened ver-
sion of MD. The compression function of RIPEMD consists of two parallel lines of
the MD compression function with different improved parameters. So compared to
MD the round constants, the rotation values and the used permutation of the message
words are different. Both lines only differ in the round constants, so message expansion
and rotation values are the same for both lines. At the end of the compression function
the words of the left line, the right line and the chaining input are combined to produce
a -bit hash value respectively chaining output. Details can be found in [BP].
RIPEMD- was designed as an instant replacement of the vulnerable RIPEMD, as
it also produces a -bit hash value. The number of rounds is increased from three
to four and the two lines are made more different. Not only the constants, but also
the Boolean functions and permutation of message words are different in the two lines.





. Other Hash Functions of the MD-Family

The message expansion is the same as the one of RIPEMD- up to round four and
also the same rotation values are used (Tables . and .). The step operation of
RIPEMD- is still the same as the one of MD, but also different Boolean functions
are used and not only different parameters like in RIPEMD. The actual values of the
parameters and other details can be found in [DBP].
RIPEMD- and RIPEMD- are optional extensions of RIPEMD- and RIPEMD-
. The compression function is almost the same, the only two differences are that
after each round there is an interaction between the two lines (swapping of two state
variables) and that the combination of the two lines at the end of the compression
function is omitted to achieve the desired double length of the hash values.
Extended MD was proposed as an extension of MD by Ronald Rivest to produce a
-bit hash value. Its compression function consists of two lines of MD, which only
differ in the initial values and the round constants of the second and third round. There
is no interaction between both lines in the compression function, the only interaction
happens between the iterations of the compression function. More details can be found
in [Riv].

RIPEMD and Extended MD are broken. The collision attack on RIPEMD with com-
plexity 216 was also published by Wang et al. in  [Wan+]. Last year Wang
presented a collision attack on Extended MD with complexity 237.
The most recent result is the collision attack on  steps of RIPEMD- by Mendel,
Nad and Schläffer [MNS] with a complexity of 214. It also seems to be the first
published collision attack on RIPEMD-.

.. SHA-Subfamily

The SHA-family is formed by the hash functions SHA, SHA- and SHA-. The com-
pression functions use only one line of computations, but the message expansions are
recursive message expansions, so the expanded message words are computed by recur-
sively defined functions.
SHA, now also denoted SHA-, and SHA- produce -bit hash values and process
-bit message blocks. The compression function consists of four rounds of  steps
and in each round a different Boolean function is used. Unlike the other MD-family
members the rotation values are constant and state variables instead of intermediate
results are rotated in each step.
The remaining members form the SHA- subfamily. They not only differ in the hash
value size (, ,  and  bits), but also in the complexity of the step opera-
tions, as more than one state variable is updated in each step. Further not only bitwise
Boolean functions, but also other auxiliary functions are used in each step. It is worth
to note that the same functions are used in all steps of the compression function, so
the steps only differ in the constants and expanded message words.
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In contrast to the other SHA variants, SHA- and SHA- use -bit words and
process message blocks of  bits each. Further details on all SHA-subfamily mem-
bers can be found in [ST; ST].

The hash functions SHA- and SHA- are considered broken. Wang, Yin and Yu pre-
sented collision attacks on SHA- with complexity 239 [WYYa] and for SHA- with
complexity 269 [WYYb]. For SHA- an improvement of the complexity to 263 was
presented by Wang, Yao and Yao in . Also a practical collision for SHA- was
found for  steps by Grechnikov [GA].
For SHA- the currently best collision attack is a -step collision published by Mendel,
Nad and Schläffer last year [MNS].
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 Differential Cryptanalysis &
Attacks

Differential cryptanalysis was first published by Biham and Shamir in  for the
block cipher DES [BS]. Den Boer and Bosselaers presented the first results on hash
functions, namely MD [BB].
An obvious target for differential attacks is the collision resistance of a hash function. In
a collision attack two distinct input messagesM andM ′ which result in the same hash
value need to be found. From a differential point of view a non-zero input difference
should result in a zero output difference (Section .). So the main idea of differential
attacks is to consider the propagation of differences between two distinct input mes-
sages without considering the actual values of the input messages. The propagation of
differences is predicted and results in a sequence of differences. This sequence should
produce a zero output difference, i.e. a collision, with high probability. Finally a mes-
sage pair needs to be found, that follows the sequence of differences throughout the
hash function.

. Definitions and Terminology

In differential cryptanalysis most commonly two different types of differences are con-
sidered, the bitwise XOR differences and wordwise modular differences.
The bitwise XOR difference is defined as follows:

Definition .. [Sch] Let X and X∗ be two n-bit vectors. The n-bit XOR difference
is defined by

∆⊕X := ∆⊕(X,X∗) = X ⊕X∗

The modular difference is defined as follows:

Definition .. Let X and X∗ be two n-bit values. The n-bit modular difference is
defined by

∆+X := ∆+(X,X∗) = X −X∗ mod 2n
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In differential attacks, not only differences but sometimes also values need to be con-
sidered. On one hand XOR differences do not keep track of the specific value of the
involved bit, on the other hand modular differences cannot be used in an easy way
in combination with bitwise defined Boolean functions. Hence Wang et al. introduced
signed differences in their attacks on MD and RIPEMD [Wan+]. A signed difference
can be defined as follows:

Definition .. [SO] Let X and X∗ be two n-bit vectors, then the bitwise n-bit
signed difference is defined by

∆X := ∆(X,X∗) = (xn−1 − x∗n−1, . . . , x0 − x∗0)

respectively (δxn−1, . . . , δx0) := (δ(xn−1, x
∗
n−1), . . . , δ(x0, x

∗
0)) = (xn−1 − x∗n−1, . . . , x0 − x∗0)

δxi = xi − x∗i ∈ {−1, 0,+1}, 0 ≤ i ≤ n− 1 is also called a single bit signed difference.

In [Dau] Daum proves that a signed difference ∆X uniquely determines the XOR
difference ∆⊕X and the modular difference ∆+X.

In [CR] De Cannière and Rechberger generalized the concept of signed differences
even further by allowing characteristics to impose arbitrary conditions on values of
pairs of bits. These conditions take all  possible conditions on a pair of bits into
account.

Definition .. Let X and X∗ be two n-bit vectors and xi respectively x∗i the i-th bit
of those vectors. Then all  possible conditions on a pair of bits (xi, x

∗
i ) are called

generalized conditions on a pair of bits and denoted by ∇xi. The generalized conditions
on a pair of n-bit vectors (X,X∗) are then defined as

∇X := [∇xn−1, . . . ,∇x0]

∇X i.e. represents a set, containing the values for which the conditions are satisfied.

To write ∇X in a compact way the notation in Table . is used, which lists all possible
conditions on a pair of bits (xi, x

∗
i ) = ∇xi. Sometimes a differential characteristic using

generalized conditions instead of simple differences is also called generalized character-
istic.

Example .: A short example should illustrate the concept of generalized conditions
and its notation. Let X and X∗ be two 8-bit vectors and ∇X the following set:

∇X = {(X,X∗) | x7 ∨ x∗7 = 1, x5 ∧ x∗5 = 0, x4 = x∗4 = 1, x3 6= x∗3, xi = x∗i for 0 ≤ i ≤ 2}

This can be rewritten using the notation of Table . as:

∇X = [E?71x---]
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(xi, x∗i ) (,) (,) (,) (,)
? X X X X
- X - - X
x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X
# - - - -

(xi, x∗i ) (,) (,) (,) (,)
3 X X - -
5 X - X -
7 X X X -
A - X - X
B X X - X
C - - X X
D X - X X
E - X X X

Table .: Notation for possible generalized conditions on a pair of bits

As can be easily seen the conditions {x, -} represent the XOR differences {1, 0} and
{n, -, u} the signed differences {-1, 0, +1}.

Other commonly used terms in connection with differential cryptanalysis are zero dif-
ference and non-zero difference, which are defined as follows:

Definition .. Let ∆X be a difference, then ∆X is a zero difference if ∆X = 0 and
∆X is a non-zero difference if ∆X 6= 0.
Furthermore, a zero difference in step i of a hash function contains zero differences in
all state variables of step i, e.g. for RIPEMD-:

(∆Ai−4,∆Ai,∆Ai−1,∆Ai−2,∆Ai−3) = (0, 0, 0, 0, 0)

and (∆Bi−4,∆Bi,∆Bi−1,∆Bi−2,∆Bi−3) = (0, 0, 0, 0, 0)

A collision is then a zero difference after the last step. But not only this "global"
collision is considered in differential attacks. Very often step-reduced collisions are
considered, so collisions up to a certain step i, which means a zero difference in step i.
Another commonly used term is the local collision, which can be defined as follows:

Definition .. A local collision is a collision over a certain (small) number of steps
i1, . . . , ik of the compression function. Hence in step i1 − 1 and step ik there are zero
differences, whereas between i1 and ik there are non-zero differences.

In differential cryptanalysis the propagation of differences through functions are con-
sidered which leads to the following definitions:

Definition .. A differential for a function f consists of an input difference ∆X and
an output difference ∆Y and is written as

∆X
f−→ ∆Y
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Very often functions can be split into smaller sub-functions, e.g. the compression func-
tion into step functions. The sequence of differences in these sub-functions is usually
called a differential characteristic or differential path.

Definition .. A differential characteristic through a function with k sub-functions
fi and f = fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1 consists of k + 1 differences ∆Xi and is denoted by

∆X0
f1−→ ∆X1

f2−→ ∆X2
f3−→ . . .

fk−1−−→ ∆Xk−1
fk−→ ∆Xk

An alternative way to describe a differential characteristic is based on the step structure
of the compression function of the MD-family. Hence a differential characteristic is a
certain sequence of differences in the state variables over a certain number of steps.
Sometimes also the differences in the (expanded) message words are included in the
differential characteristic.

Also the differential probability of a differential for a function f plays an important role
in differential cryptanalysis. Informally the differential probability can be described as
follows. Let ∆X → ∆Y be a differential and k be the number of n-bit vector pairs
(X,X∗) with input difference ∆X and output difference ∆Y . Then the differential
probability can be defined as DP (∆X → ∆Y ) = k · 2−n. As at most 2n pairs exist,
the differential probability lies in the range [0, 1].
More formally the differential probability is defined as follows depending on the con-
sidered difference:

Definition .. For XOR differences the differential probability of a differential is
defined as

DP (∆⊕X
f−→ ∆⊕Y ) = 2−n ·#{X | f(X ⊕∆⊕X)⊕ f(X) = ∆⊕Y }

For modular differences the differential probability is defined as

DP (∆+X
f−→ ∆+Y ) = 2−n ·#{X | f(X + ∆+X)− f(X) = ∆+Y }

. Basic Operations Addition and Rotation

In this section the propagation of differences through the basic operations addition and
rotation is analyzed in detail. Also some observations about the carries are given.
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.. Rotation

As in each step of RIPEMD- rotations are used, the rotation of signed differences
respectively generalized conditions should be shortly described here.

First of all the rotation is non-redundant. To rotate -bit signed differences ∆X or
generalized conditions ∇X over s bits to left, each element δxi respectively ∇xi is
rotated as follows:

δxi ≪ s = δx(i+s) mod 32

∇xi ≪ s = ∇x(i+s) mod 32

Example .: ∇X = [??--0D--x-3--7-n-u?-????-1C-7A??] is rotated over 10 bits
to the left, which results in:

∇X ≪ 10 = [??--0D--x-3--7-n-u?-????-1C-7A??] ≪ 10

= [3--7-n-u?-????-1C-7A????--0D--x-]

.. Addition

Let single signed bit differences be uniquely determined, in the notation of generalized
conditions 0, n, u, 1. Assuming there is no carry at the considered bit position the
addition results in

δs = δx+ δy =


n if (δx, δy) = (0, n) or (n, 0) or (1, u) or (u, 1)

- if (δx, δy) = (n, n) or (n, u) or (u, n) or (u, u)

u if (δx, δy) = (0, u) or (u, 0) or (1, n) or (n, 1)

with the corresponding carry

δc =


n if (δx, δy) = (n, n) or (1, n) or (n, 1)

0 if (δx, δy) = (0, n) or (n, 0) or (n, u) or (u, n) or (0, u) or (u, 0)

u if (δx, δy) = (u, u) or (1, u) or (u, 1)

The outcomes of the addition of single signed bit differences can be divided into the
following four classes [McD]:

. Identity: The addition of a zero has no effect.

. Static Carry: The addition of a one carries the difference up one bit position and
inverts the difference at the current bit position.
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. Dynamic Carry: The addition of the same difference causes the replacement of
the difference at the current bit position by the difference carried up one bit
position.

. Inverse: The addition of two inverse differences cancels the difference out.

Example .: The following example should illustrate the four classes of addition. 0’s
are used to assure that no carry occurs. Let X and X∗ be two 4-bit vectors and ∇X1

and ∇X2 the two differences.

∇X1 +∇X2 = [---n] + [---0] = [---n]

∇X1 +∇X2 = [--01] + [--0n] = [--nu]

∇X1 +∇X2 = [--0u] + [--0u] = [--u0]

∇X1 +∇X2 = [---u] + [---n] = [---1]

A useful fact is that the carry, which forms through the addition at the position of the
most significant bit, is discarded because of the modular addition. This possibility to
cancel a difference by using the carry should be illustrated in the following example.

Example .: Let X and X∗ be two 4-bit vectors, ∇X1 and ∇X2 the two differences
and the addition be performed modulo 24.

∇X1 +∇X2 = [u---] + [u---] = [----]

or ∇X1 +∇X2 = [n---] + [n---] = [----]

.. Carry

In the previous observations of the modular addition it was assumed that there is
no carry at the considered bit position. In this subsection the "expansion" effect of a
difference is discussed as well as some general notes about the carry.
For comprehension reasons a first example with a single difference should illustrate the
possibilities of the expansion effect.

Example .: Let X and X∗ be two 4-bit vectors, ∇X1 and ∇X2 the two differences
and the addition be performed modulo 24.

. ∇X1 +∇X2 = [----] + [---u] = [---u] with probability 1/2

or . ∇X1 +∇X2 = [----] + [---u] = [--un] with probability 1/4

or . ∇X1 +∇X2 = [----] + [---u] = [-unn] with probability 1/8

or . ∇X1 +∇X2 = [----] + [---u] = [unnn] with probability 1/16

or . ∇X1 +∇X2 = [----] + [---u] = [nnnn] with probability 1/16
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In this example there exist five possible results for the modular addition due to the
expansion of the difference, but the probabilities for the different cases are quite dif-
ferent.
The first case is as likely as the cases  to  together. The reason for this is that the
first case occurs if the least significant bit is 0 and all the other cases depend on the
least significant bit to be 1.
If the least significant bit is 1, the second case is as likely as the cases  to , because
the sum of the two second bits to be 0 (0 + 0, 1 + 1) is as likely as the sum to be 1
(0 + 1, 1 + 0).
The exact description of the calculation of probabilities can be found in [Dau].

If the possibilities should be summarized in the notation of the generalized conditions,
Example . would yield to:

∇X1 +∇X2 = [----] + [---u] = [???x] with probability 1

but already ∇X1 +∇X2 = [----] + [---u] = [--Bx] with probability 3/4

and ∇X1 +∇X2 = [----] + [---u] = [-B?x] with probability 7/8

The reason for this behavior lies in the redundancy of the representation of a modular
difference in a bitwise manner and hence as a XOR difference, signed difference or
bitwise defined generalized condition.
To continue the example from before ∇X1 has the modular difference ∆+X1 = 0 and
∇X2 the modular difference ∆+X2 = 1. If the addition is considered with modular
differences, this results in ∆+X1 +∆+X2 = 1. But there exist  different pairs of -bit
value with a modular difference of 1 and those pairs have one of the following forms:
[---u] (23 = 8 pairs), [--un] (22 = 4 pairs), [-unn] (21 = 2 pairs), [unnn] (1 pair) or
[nnnn] (1 pair).
The detailed description of the transformation of a modular difference into a signed
difference can be found in [Dau].

Up to here, only single differences were considered. The situation is more complex if
more than one difference is involved, especially if the considered bit ranges are not
disjoint and/or the number of expansion steps is not limited.
In practical attacks bits are often chosen at random and hence cases with higher proba-
bility (e.g. shorter carries) are more likely to occur. Therefore the number of expansion
steps is often limited.

Further in practical cases very often more than two values are added in one considered
operation. Hence also the number of possible carries increases if more than two values
are added. If e.g. four 1’s are added in one step the carry can already be 2 and not only
0 or 1 even if the carry at the bit position was 0. If additionally a carry at the position
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occurs, the carry can get higher. So it is possible that the carry not only affects the
next bit position, but also higher bit positions.

. Propagation Properties of Boolean Functions

In this section the propagation of differences through the five in RIPEMD- used
Boolean functions are described in detail. First some basic properties of the functions
are reviewed and extended considering XOR differences x and -. Later the results are
described in more detail also considering signed differences n, - and u.

The propagation can in general be controlled by conditions on the input values, but
each of the used functions has certain limits in order to manipulate the output of the
function.

.. The XOR Function

The XOR function XOR(x, y, z) = x ⊕ y ⊕ z is used as f1(x, y, z) = XOR(x, y, z) in
RIPEMD- in the first round of the left stream and last round of the right stream.
There exist the following properties for the XOR function:

. XOR(x, y, z) = ¬XOR(¬x, y, z) = ¬XOR(x,¬y, z) = ¬XOR(x, y,¬z)

. XOR(x, y, z) = XOR(¬x,¬y, z) = XOR(x,¬y,¬z) = XOR(¬x, y,¬z)

. XOR(x, y, z) = ¬XOR(¬x,¬y,¬z)

But as not only XOR differences but also signed differences should be considered, a
more detailed analysis is necessary.
A zero output difference happens if and only if exactly two non-zero input differences
occur, hence it does not matter which non-zero input difference. Of course the trivial
case of three zero input differences as well leads to a zero output differences.
Another observation is that by imposing conditions, it is possible to determine the
signed output difference of the XOR function if and only if there is exactly one input
difference. The disadvantage is that these conditions always affect both other input bits.
Such conditions affecting two bits are also called two-bit conditions and are discussed
in Subsection ...
If there are differences in each input, the output difference is fully determined and
cannot be altered.
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.. The IF Function

The IF function IF (x, y, z) = (x ∧ y) ∨ (¬x ∧ z) is used as f2(x, y, z) = IF (x, y, z)
and as f4(x, y, z) = IF (z, x, y) in RIPEMD-. For the IF function there exist the
following properties:

. IF (x, y, z) = IF (¬x, y, z) if and only if y = z

. IF (x, y, z) = IF (x,¬y, z) if and only if x = 0

. IF (x, y, z) = IF (x, y,¬z) if and only if x = 1

. IF (x, y, z) = IF (¬x,¬y, z) if and only if x⊕ y ⊕ z = 1

. IF (x, y, z) = ¬IF (x,¬y,¬z)

. IF (x, y, z) = IF (¬x, y,¬z) if and only if x⊕ y ⊕ z = 0

. IF (x, y, z) = IF (¬x,¬y,¬z) if and only if y 6= z

As can be seen above, the IF function can produce zero output differences in almost
all different cases of input differences (cases .-. and .-.).
An interesting case is the case of a signed input difference on x, as by imposing condi-
tions the output difference can be fully determined. The disadvantage of determining
the non-zero output difference in this special case is that two conditions are needed,
so y = 1 and z = 0 respectively y = 0 and z = 1. In all the other cases, where the
non-zero input difference can produce a zero output difference, the non-zero output
difference cannot be altered.
In case . from above the non-zero output difference can only be altered if the non-zero
input differences are different, i.e. if y 6= z.
It is worth noting that the IF function is the only used function that can produce a
zero output difference for all three single non-zero input differences.

.. The ONX Function

The ONX function ONX(x, y, z) = (x ∨ ¬y)⊕ z is used as f3(x, y, z) = ONX(x, y, z)
and as f5(x, y, z) = ONX(y, z, x) in RIPEMD-. For the ONX function there exist
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the following properties:

. ONX(x, y, z) = ONX(¬x, y, z) if and only if y = 0

. ONX(x, y, z) = ONX(x,¬y, z) if and only if x = 1

. ONX(x, y, z) = ¬ONX(x, y,¬z)

. ONX(x, y, z) = ONX(¬x,¬y, z) if and only if x = y

. ONX(x, y, z) = ONX(x,¬y,¬z) if and only if x = 0

. ONX(x, y, z) = ONX(¬x, y,¬z) if and only if y = 1

. ONX(x, y, z) = ONX(¬x,¬y,¬z) if and only if x 6= y

Also the ONX function can produce zero output differences in most cases. Further
the non-zero output difference can be fully determined for single non-zero input dif-
ferences by imposing conditions. Again the disadvantage is that two distict conditions
are needed.
In case . the non-zero output difference can be altered through conditions on z if and
only if the non-zero input differences are different. In the remaining cases of two non-
zero input differences, the non-zero output difference cannot be altered. The output
differences of three non-zero input differences are determined and cannot be altered by
imposing conditions.

. Differential Attacks

As already mentioned the collision resistance is an intuitive target for differential at-
tacks, because two distinct messages M 6= M ′ ⇔ ∆M 6= 0 should be found, which
produce the same hash value H(M) = H(M ′)⇔ ∆H(M) = 0.
Basically all current attacks can be divided in at least two separate parts. In the first
part a sequence of differences is determined or chosen. In the second part the collisions
are determined by searching for message pairs, which follow the sequence of differences.
But there exist exceptions as well, e.g. in [MNS] the search for differential charac-
teristics and confirming message pairs is already combined.

Usually the attacker tries first to choose differences in the message words, or more pre-
cisely in the expanded message words, such that the differences behave in a desired way
throughout the hash function or in certain parts of the hash function. This is probably
the most important, but also the most critical part. Already here the different types
of attacks start to differ.
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As differences are considered, the attacks already differ in the choice of the considered
differences. While e.g. Dobbertin mainly used modular differences in his attacks on
MD, MD and RIPEMD, Chabaud and Joux mainly considered XOR differences in
their attack on SHA-. Wang et al. used modular differences but also XOR differences
or more precisely signed differences, when they needed it.
Both differences have their advantages and disadvantages. On one hand the modu-
lar addition is often used extensively in the step operations, e.g. the step operation
of RIPEMD- consists of four modular additions, and hence considering modular
differences is in some sense more intuitive. But bit-wise defined functions cannot be
analyzed by only considering modular differences as the bit-wise representation of a
modular difference is redundant. On the other hand by only using XOR differences the
whole function cannot be analyzed either. In this case approximations of the functions
are needed [Dau].

Also the methods to construct the differential characteristic differ. For a long time they
were mostly constructed by hand before Chabaud and Joux started to use automated
tools of coding theory and linear algebra to search for differential characteristics by
using linear differentials. De Cannière and Rechberger used an even more complex tool
to search for non-linear differential characteristics [Sch].

Nevertheless the different methods have the same goal, to find a differential charac-
teristic with a high probability. Often the Hamming weight of the differences in the
differential characteristic is used to estimate this probability, hence the less differences
the higher the probability. So in general attackers search for sparse differential charac-
teristics, but such sparse differential characteristics are not easy to find.
Since the message can be chosen in most attacks (e.g. collision attack), Chabaud and
Joux observed that the message can be chosen according to the differential characteris-
tic [CJ]. Hence it is possible to allow differential characteristics with low probability
as long as the message can be chosen. In most hash functions the message can be cho-
sen up to a certain step of the hash functions respectively compression function. If e.g.
round based structures are considered the message can be chosen in the first round or
first few rounds. By allowing low probability in parts, where the message can be cho-
sen, it is often easier to find a differential characteristics with high probability in the
remaining parts. So for most hash functions this means that a good differential char-
acteristic has low probability at the beginning and high probability towards the end.
By using such differential characteristics Wang et al. were able to attack several hash
functions, like MD, MD etc. In their attacks they further developed advanced mes-
sage modification techniques to increase the overall success probability of the attack.
In their attacks they used the following three-step approach:

. Find a message difference, which produces a collision (with high probability).
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. Derive a differential characteristic for the message difference, resulting in a set
of sufficient conditions for the characteristic to hold.

. Use message modification techniques, such that almost all sufficient conditions
hold.

Since then many attacks based on this approach have been published improving the
message modification and differential characteristic search in different ways.

Also the differential attack of this thesis is based on this three step-approach:

. Finding a starting point.

. Finding a differential characteristic.

. Finding a confirming message pair.
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In this thesis we consider differential attacks, which start with one or more message
words containing differences. This part is crucial as it influences not only the success
of finding a differential characteristic for the hash function, but also the probability of
finding a message pair that leads to a collision.
The compression function of RIPEMD- consists of two streams of five rounds each,
but at the moment it is infeasible to attack the whole compression function. Hence in
this thesis round reduced variants of RIPEMD are discussed, to be precise the attack
concentrates on two rounds.

First of all the impact of a difference in a message word on the state variables should
be clarified. Therefore the update process for one step of one stream of RIPEMD-
(.) is reviewed in order to make the following observation:

Proposition .. If there are zero differences in all input state variables, ∆Ai = 0
with k − 5 ≤ i ≤ k − 1, then

∆Ak = 0⇔ ∆Wk = 0.

Further if ∆Ai = 0 for k − 4 ≤ i ≤ k, then

∆Ak−5 = 0⇔ ∆Wk = 0.

A similar observation for MD can be found in [Dau].

This observation motivates the following two observations about local collisions.

Proposition .. A local collision can only begin and end in a step, where a non-
zero message word difference is used in the update process. More formally, for a local
collision over k steps from step i to step i+ k the following holds

∆Wi 6= 0 and ∆Wi+k 6= 0.

Proposition .. The minimum number of steps of a local collision in RIPEMD-
is five.
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The success probability of an attack is generally higher if the number of conditions
over the considered area and therefore the number of conditions on the state variables
of the considered area is small. Further the goal is to find high probability differential
characteristics in later rounds of both streams. A high probability differential charac-
teristic would only contain a few conditions in the later rounds. Hence if attacking the
first two rounds, the differential characteristic should be sparse in the second round of
both streams.

One way to achieve such high probability differential characteristics is to cancel dif-
ferences quickly using local collisions over a small number of steps. Another way is to
eliminate the differences as early as possible in the later round, so in the considered
case early in the second round.

. Using a Single Message Word

Due to the different message permutations in each stream it is difficult to find a single
message word that can produce short local collisions in both streams concurrently.
Nevertheless a few possible candidates should be given here. The idea of using a single
message word is illustrated in Figure ..
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Figure .: Local Collisions using a single message word over two rounds

The best candidate seems to be W13, with a -step local collision in the left stream
and a -step local collision in the right stream between round  and . Also both local
collisions end quite early in the second round. But there exists a strong constraint for a
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local collision over five steps. The consequence for using a single message word should
be illustrated by the following observation.

Proposition .. The shortest local collision, which uses a single message word, has
to be constructed over six steps.

The reason for this behavior lies in the update process again. Hence the update process
for one step of one stream of RIPEMD- (.) is reviewed again for a -step local
collision.
A -step local collision only allows a non-zero difference in a single state variable, more
precisely the state variable where the difference is introduced using the message word
difference. This difference could be canceled five steps later using the same message
word. But due to the construction of the RIPEMD- state update transformation,
a closer look at step four of the -step local collision is needed. In step four of a local
collision over five steps the following setting is given:

∆Ai−5 = 0,∆Ai−3 = 0,∆Ai−2 = 0,∆Ai−1 = 0 and ∆Ai−4 6= 0 and ∆Wi = 0

Hence the following equation leads to a contradiction:

∆Ai =

∆Di︷ ︸︸ ︷
(((∆Ai−5 ≪ 10) + f(∆Ai−1,∆Ai−2, (∆Ai−3 ≪ 10)) + ∆Wi +Ki) ≪ s)

+ (∆Ai−4 ≪ 10)

∆Ai︸︷︷︸
=0

= ∆Di︸︷︷︸
=0

+ (∆Ai−4 ≪ 10)︸ ︷︷ ︸
6=0

A difference can only be canceled through a modular addition, if there are differences
in both summands. Therefore the equation above leads to a contradiction.

Further due to the XOR function, which is used in the left stream in round , the
difference cannot be eliminated immediately, which is another reason, why a -step
local collision for W13 in the left stream between round  and  is impossible. The
round dependent behavior of differences is discussed later in this thesis.

Table . presents single message words that can produce local collisions over less than
 steps in each stream between round  and .

Some of the local collisions end rather late in the second round in at least one stream.
E.g. the local collision produced by W12 in the right stream ends in step . The con-
sequence is that differences in more state variables of the second round have to be
expected.
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 Finding a Starting Point

Message Local Collision Lengths
Word Left Stream Right Stream
W10  steps (step  to )  steps (step  to )
W12  steps (step  to )  steps (step  to )
W6  steps (step  to )  steps (step  to )
W15  steps (step  to )  steps (step  to )

Table .: Local collision candidates (single message word)

. Using Multiple Message Words

If a single message word is used, there is the restriction that the local collision has to
be constructed between two rounds. Due to this restriction only a few possible message
words are left, that can be used to construct a rather short local collision. So the idea
is to use more than one message word, such that local collisions within one round can
be constructed.
Also this approach aims for high probability differential characteristics in the later
rounds. Hence the local collision should be short respectively a slightly longer local
collision should end very early in the later round. In the considered case that would
be the second round.

.. Using two Message Words

A first approach would be to use two distinct message words to build short collisions
in the second round. Proposition . suggests that the shortest local collision is one
over five steps, but the same restriction proposed in Proposition . has to be applied.
Hence the shortest local collision using two message words has a minimum number of
six steps.
Figure . shows the construction of four local collisions without considering the order
of the two message words in the different rounds.

Only considering the second round, e.g. the pair (W5,W6) seems to be a good idea, as
in both streams the local collision would span over six steps. But if two local collisions
in the second round should be constructed, also two local collisions in the first round
are needed. Hence it is impossible to use the pair (W5,W6) as the local collision in the
left stream in round  would only have one step.
So the goal is to find pairs of message words, which have short local collisions in
the second round, but also possible local collisions in the first round, preferable also
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Figure .: Four Local Collisions using a two message words

short ones. Already  of the  considered message pairs of the second round lead to
impossible local collisions in the first round.
The pairs of message words, that can construct -step local collisions in the second
round in both streams and local collisions in the first round are presented in Table ..

Pairs of Local Collision Lengths
Message Left Stream Right Stream
Words Round  Round  Round  Round 

(W0,W8)  steps ( - )  steps ( - )  steps ( - )  steps ( - )
(W7,W15)  steps ( - )  steps ( - )  steps ( - )  steps ( - )
(W3,W14)  steps ( - )  steps ( - )  steps ( - )  steps ( - )

Table .: Local collision candidates (pairs of message words)

.. Using three Message Words

Another approach to avoid the restriction of Proposition . is to use differences in a
third message word, which is used in the forth of the five local collision steps to avoid
the contradiction.
Unfortunately no such triple of message words exists for both streams of round , but
there exist several triples, which have a -step local collision in the second stream.
Again the first round has to be considered as well. Seven out of the  in the second
round considered cases lead to impossible local collisions in the first round.
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 Finding a Starting Point

The two best triples considering both rounds in both streams are presented in Table
..

Triples of Local Collision Lengths
Message Left Stream Right Stream
Words Round  Round  Round  Round 

(W4,W10,W12)  steps ( - )  steps ( - )  steps ( - )  steps ( - )
(W5,W9,W15)  steps ( - )  steps ( - )  steps ( - )  steps ( - )

Table .: Local collision candidates (triples of message words)

.. Using three Local Collisions

A third approach is to use one long local collision in one stream instead of two short
ones. A constraint would be that the long collision should cancel differences as early
as possible in the second round. This approach can be done again for two or three
message words. Figure . should illustrate the construction with two message words
and without considering the order of the message words in the different rounds.
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Figure .: Three Local Collisions using a two message words

Considering two message words only three pairs are left that have a relatively short
local collision in the first round of the same stream and a not too long local collision
between round  and round  in the other stream. Those three pairs can be found in
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Table ..
Considering three message words the situation gets worse, because there is only one
reasonable candidate, which can be found in Table . as well.
All long local collisions between round  and  in the left stream end in the middle of
the second round, which would lead to differences in two, four or six state variables of
the second round.

Pairs/Triples Local Collision Lengths
of Left Stream Right Stream

Message Words Round  Round  Round  Round 
(W12,W13)  steps ( - )  steps ( - )  steps ( - )
(W7,W15)  steps ( - )  steps ( - )  steps ( - )
(W9,W10)  steps ( - )  steps ( - )  steps ( - )

(W4,W10,W12)  steps ( - )  steps ( - )  steps ( - )

Table .: Candidates producing three local collisions

. RIPEMD- Message Pattern

In the previous sections, message words were obtained which can be used to attack the
first two rounds of RIPEMD- as their distance between the rounds or within the
rounds fulfill certain requirements. As the permutation of message words of RIPEMD-
 follows some mathematical structure and is not random, there exists a repeating
pattern considering those distances. Hence it is possible to find other message words
with the same distances between rounds  and  and so on.

To derive the pattern, the message words at a certain step i of rounds  to  have to be
considered. The same sequence of message words between round  and  can be found
again in a certain step j between round  to . To be more precise, if message word
Wk can be found in step i of round n and step j of round n+1, then the message word
Wl in step i of round n + 1 can also be found in step j of round n + 2. This pattern
holds for each step and each stream.

So e.g. the -step local collision message word W10 between round  and  becomes
the -step local collision message word W9 between round  and . Table . should
illustrate, how message words of the same distance can be found.
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Step                
Round                 

Left Round                 
Round                 

Stream Round                 
Round                 
Round                 

Right Round                 
Round                 

Stream Round                 
Round                 

Table .: Index of the message block words with distance patterns

As can be easily seen, message words with same distances can be found by simply
going through the columns. If e.g. instead of rounds  and  the rounds  and  should
be attacked, without considering round , the observations from the previous sections
can be used to derive the message words for the considered rounds.
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 Finding a Differential
Characteristic

After a starting point is fixed, a differential characteristic needs to be found. This
part is the most difficult one, as the differential characteristic should fulfill certain
properties.
First an introduction to the used notation for differential characteristics is provided.
Then some general considerations about the RIPEMD- specific difficulties in finding
a differential characteristic are given. Further the used automatic search tool and the
used algorithms are described considering different search strategies.

. Notation

To find a differential characteristic an automatic search tool is used. It is based on the
work of De Cannière and Rechberger, who presented a method to search for charac-
teristics in an automatic way. They used it to construct a -step collision for SHA-
[CR]. The tool was improved and extended by Mendel et al. to find complex non-
linear differential characteristics and confirming message pairs for a -step SHA-
collision [MNS]. Recently it was used to successfully construct a -step collision for
RIPEMD- [MNS].

Remark: The description of the automatic search tool as well as the used search strate-
gies for SHA- and SHA- can be found in Section ..

As this tool is also used in this thesis, Table . should illustrate the notation of
differential characteristics used in combination with the tool and RIPEMD-.

In each row of the distinct areas the generalized conditions of the current variables can
be found, while i denotes the respective step. The message words are only presented
once.
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 Finding a Differential Characteristic

i ∇Ai ∇Bi ∇Wi

-
... initial value

-

... state state message
... variables variables words


 of the of the
...
... left right
... stream stream



... hash value



Table .: Notation of differential characteristics

. General considerations

In this section some general considerations on the search for a differential characteristic
in RIPEMD- are given. They should illustrate the RIPEMD- specific difficulties.

To simplify further considerations the update process of one step of each stream is
divided into three sub-steps. A similar approach was used e.g. in the attacks on SHA-
and RIPEMD- [MNS; MNS]. Hence the update process is rewritten using the
following notation for the left stream

Fi = f(Ai−1, Ai−2, (Ai−3 ≪ 10))

Di = (((Ai−5 ≪ 10) + Fi +Wi +Ki) ≪ s)

Ai = Di + (Ai−4 ≪ 10)

and the following one for the right stream

Gi = f(Bi−1, Bi−2, (Bi−3 ≪ 10))

Ei = (((Bi−5 ≪ 10) +Gi +Wi +Ki) ≪ s)

Bi = Ei + (Bi−4 ≪ 10)
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. General considerations

.. Canceling differences in RIPEMD-

Like Proposition . states, the shortest collision using a single message word or two
message words within one round has a minimum length of six steps, because non-
zero differences in two subsequent state variables are needed. Considering the modular
addition in step four and five of the -step local collision is interesting. The start setting
of such a -step local collision is given in Table ..

i ∇Ai ∇Wi

 ???????????????????????????????? ????????????????????????????????x
 ???????????????????????????????? --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- ????????????????????????????????

Table .: -step local collision starting point using two message words

Canceling differences in the modular addition

First some general observations on canceling differences in the modular addition are
provided. We consider bitwise defined differences in combination with the modular
addition. As already mentioned in Subsection .., a non-zero bit difference can only
be canceled by another non-zero bit difference at the same position. This difference can
either be a non-zero bit difference in the value at the considered position or a non-zero
bit difference in the carry bit. But as non-zero differences in the carry bit can only
occur after being introduced by a non-zero bit difference in the value, the following
observation can be made.

Proposition .. Let ∇X1 and ∇X2 be two non-zero differences. The modular ad-
dition ∇X1 +∇X2 of ∇X1 and ∇X2 can only be a zero difference, if the position of
the first non-zero bit difference in ∇X1 equals the position of the first non-zero bit
difference in ∇X2.

The following examples should illustrate the proposition.

Example .: Let∇X1 and∇X2 be two -bit differences and the addition be performed
modulo 28.
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∇X1 +∇X2 = [------n-] + [------u-] = [--------]

or ∇X1 +∇X2 = [-----u--] + [-nuuuu--] = [--------]

or ∇X1 +∇X2 = [--nu--u-] + [----uuu-] = [--------]

or ∇X1 +∇X2 = [nnnn----] + [---n----] = [--------]

Step  of a -step Local Collision

Figure . should illustrate the situation in step five and hence the following observa-
tions. δ[k] denotes a non-zero bit difference at bit position k.

Ai−5 Ai−1 Ai−2 Ai−3 Ai−4

Ai−4 Ai Ai−1 Ai−2 Ai−3

Ki

Wi

+

+

+

+

f

≪ 10

≪ s

≪ 10

≪ 10

δ[si−4]

δ[si−4 + 10]

δ[0]

δ[10]

δ[si + 10]

Figure .: Differences in step  of a -step local collision

In step five there are non-zero differences in the two state variables Ai−4 and Ai−5, so
∆Ai−4 6= 0 and ∆Ai−5 6= 0, which should lead to a zero difference in Ai, so ∆Ai = 0.
Using the sub-steps from above the non-zero differences in Di and Ai−4 are of interest.
Considering modular differences we get ∆+Di = −∆+Ai−4. As we are considering bit-
wise defined differences, the situation is a bit more complex due to the previous gained
observations.
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As not only ∆Di, but also ∆Ai−4 is influenced by ∆Ai−5, it is worth to have first a
closer look on how both values are influenced by ∆Ai−5. For simplicity reason a single
non-zero bit difference in Ai−5 at the least significant bit position (∇x0 = x) is consid-
ered.

Since
Fi−4 = f(Ai−5, Ai−6, (Ai−7 ≪ 10)),

a single non-zero bit difference in Ai−5 leads to a single non-zero bit difference in Fi−4.
Through

Di−4 = (((Ai−9 ≪ 10) + Fi−4 +Wi−4 +Ki−4) ≪ si−4)

this either leads to a single non-zero bit difference in Di−4 or more consecutive non-
zero bit differences in Di−4 through the expansion effect of the carry. Those differences
are rotated over si−4 bits to the left, where si−4 varies between  and . Finally the
modular addition

Ai−4 = Di−4 + (Ai−8 ≪ 10)

is performed to result in Ai−4 with a single non-zero bit difference or more "carry
expanded" consecutive non-zero bit differences. Note that this last modular addition
may also lead to carry expanded differences.

Ai−5 is used as well in the calculation of Di, as

Di = (((Ai−5 ≪ 10) + Fi +Wi +Ki) ≪ si)

First the non-zero bit difference in Ai−5 is rotated  bits to the left. Then the modular
additions lead to one or more consecutive non-zero bit differences, which are rotated
over si bits to the left. In total the non-zero bit difference of Ai−5 is rotated over  to
 bits to the left to result in the non-zero bit difference(s) of Di.
For simplicity reason we assume that both Di and Ai−4 only have a single non-zero bit
difference. So for Di we have ∇xsi+10 = x and for Ai−4 we have ∇xsi−4

= x.

Now step five of the local collision and hence the equation

Ai = Di + (Ai−4 ≪ 10)

is considered again.
Due to Proposition . we need si +10 = si−4 +10 to cancel the difference. But usually
si−4 6= si and therefore the difference cannot be canceled.
As a consequence we can assume that we need more than a single non-zero bit differ-
ence in Ai−5 and/or Ai−4 to fulfill Proposition . in step five.
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Remark: The observation that the positions of first non-zero bit differences of Di and
(Ai−4 ≪ 10) have to be equal holds for any local collision in the four steps prior to
the last step, not only for the -step local collisions. But in longer local collisions the
non-zero bit differences in Ai−4 are determined by non-zero bit differences in more than
one state variable (up to five). Hence there is more freedom in constructing the desired
non-zero bit differences.

Implication on message words The non-zero bit differences of Ai−5 are introduced
by the non-zero bit difference(s) of a message word in the first step of the local col-
lision. Further the non-zero bit differences of Ai−4 are canceled by the non-zero bit
difference(s) of a message word in the last step of the local collision (Proposition .
and .). If the non-zero bit differences of the state variable are separated by zero bit
differences, they cause multiple non-zero bit differences in the corresponding message
word. Theoretically a single non-zero bit difference in the message word can produce
 consecutive non-zero bit differences. In this case the non-zero bit difference would
have to be at the least significant bit of the message word and the added value would
have to consist of 1’s except for the most significant bit. The probability for this case
to happen without influencing the added value is 2−31.

Step  of a -step Local Collision

Figure . should illustrate the situation in step four and the following observations.
Again δ[k] denotes a non-zero bit difference at bit position k.

In step four there are non-zero differences in two state variables, namely ∆Ai−3 6= 0
and ∆Ai−4 6= 0, which should lead to a zero difference in Ai, so ∆Ai = 0.
Again Ai−4 and Ai−3 are related as described above.
The non-zero bit differences in Ai−3 lead to non-zero bit differences in Fi and hence in
Di. As Ai−3 is rotated  bits to the left first, also the non-zero bit differences in Fi

are rotated  bits to the left. Therefore the non-zero bit differences in Di are rotated
 to  bits to the left compared to Ai−3. As modular additions are used to compute
Di, carry expanded differences are possible.
For simplicity reasons we continue the example from above. So we have Ai−4 with
∇x0 = x, Ai−3 with ∇xsi−3

= x and Di with ∇xsi+10+si−3
= x.

Now again the modular addition of Di and (Ai−4 ≪ 10) is the interesting part. As
Proposition . states, the bit positions of the first non-zero bit differences in both
variables have to be the same. Hence we need si + 10 + si−3 = 10 to cancel the differ-
ence. As 5 ≤ si ≤ 15 and 5 ≤ si−3 ≤ 15 we get 10 ≤ si + si−3 ≤ 30. So there is no way
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Figure .: Differences in step  of a -step local collision

to cancel the difference.

Hence it is not possible to construct a -step local collision using only a single non-zero
bit difference in each of the two state variables with non-zero differences.

.. Boolean Functions

In the previous subsection some general considerations about the modular addition
were given. These observations are independent of the round and stream. In this sub-
section some complications due to the Boolean functions are considered. The properties
of the propagation of differences through the different Boolean function are given in
Section ..

First we consider the XOR function, which is used in the first round of the left stream
and the last round of the right stream. Again a -step local collision is discussed. Here
the steps two and three are of interest.
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In step three of the -step local collision there are non-zero differences in Ai−2 and
Ai−3, so ∆Ai−2 6= 0 and ∆Ai−3 6= 0.

First we consider the relation between the differences of Ai−3 and Ai−2. In the first
step the state variable Ai−3 is used as input of the XOR function. As it is the only
input containing non-zero bit differences, those non-zero bit differences cannot lead to
zero bit differences in the output of the XOR function. Since

Fi−2 = XOR(Ai−3, Ai−4, (Ai−5 ≪ 10))

each non-zero bit difference ofAi−3 results in a non-zero bit difference in Fi−2. Through

Ai−2 = (((Ai−7 ≪ 10) + Fi−2 +Wi−2 +Ki−2) ≪ si−2) + (Ai−6 ≪ 10)

this on the other hand leads to non-zero bit differences in Ai−2 rotated over si−2 bits
to the left and possibly carry expanded.

In step two of the -step local collision Ai−3 and Ai−2 are used in the equation

Fi−1 = XOR(Ai−2,Ai−3, (Ai−4 ≪ 10))

and should lead to a zero difference in Fi−1. In order to produce a zero bit output
difference exactly two non-zero bit input differences of the XOR function are needed.
Hence, the non-zero bit differences of Ai−3 and Ai−2 are needed at exactly the same
bit positions in order to lead to zero bit differences in Fi−1.

In step three then Ai−3 and Ai−2 are used in

Fi = XOR(Ai−1,Ai−2, (Ai−3 ≪ 10))

and should lead to a zero difference in Fi. As can be seen Ai−3 is rotated  bits to the
left before it is used as input of the XOR function, whereas Ai−2 is not rotated. Again
non-zero input bit differences at exactly the same bit positions are needed. But as Ai−3

is rotated  bits to the left, at least  differences in each of the two state variables
are needed due to the rotation over  bits. To be more precise at least non-zero bit
differences on every second bit are needed, because 32 mod 10 = 2.

The XOR function also has further restrictions in order to produce zero output differ-
ences, e.g. also in step four the non-zero input bit differences are passed on, as non-zero
bit differences in only one input variable of the XOR function always produces non-zero
output bit differences.
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Also the ONX function has restrictions in order to produce zero output differences.
Consider e.g. a -step local collision in the first round of the right stream. The non-zero
bit differences in Ai, the first state variable containing differences, are always passed
on to Ai+1, the second state variable containing differences.

The IF function can be considered as the nicest function producing zero output dif-
ferences. Consider e.g. round two of the left stream. The only case, where zero output
differences cannot be produced, is if there are non-zero bit differences in Ai−2 and
(Ai−3 ≪ 10) and a zero bit differences in Ai−1 at the same bit position. This is pretty
unlikely in sparse differential characteristics, but can become relevant in dense ones.

. Automatic Search Tool

Altogether the previous section suggests, that there are multiple interactions between
the different state variables and too many influences, such that finding differential
paths by hand is almost impossible. Hence an automatic search tool is needed, which
can be used to find complex nonlinear differential characteristics. Therefore the tool
introduced in Section . is used in this thesis.

.. Propagating Generalized Conditions

The generalized conditions are propagated the same way as in the SHA- variant of
the tool. Basically there exist three cases [CR]:

. conditions are inconsistent

. conditions are consistent

. conditions are consistent, if additional bit conditions are fulfilled (the conditions
propagate)

As mentioned in [MNS] the complexity of propagating generalized conditions in-
creases exponentially with the number of input bits and additions. In RIPEMD-
there are six input bits excluding the carry. To reduce the complexity the whole up-
date process of RIPEMD- is split into three sub-steps, which have already been
mentioned at the beginning of the previous section. This way the number of input bits
reduces to at most three. Further the sub-steps Fi and Gi take advantage of the for
SHA- developed optimizations for sub-steps without modular addition. Those can be
precomputed for all generalized input conditions as a speedup method. The drawback
of the method of splitting is that the relation between the sub-steps compared to the
combined propagation is lost.
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.. Propagating Conditions on two Bits

But also additional conditions are present in the differential characteristic, that are
not covered by generalized conditions.
As an example we consider the IF function, which is used in the second round of the
left stream (Section .). Assume we have a non-zero bit difference in the first input
and a zero bit difference in the second and third input. If the output should be a zero
bit difference, there exists the condition that the second and the third input bit have
to be equal. Therefore conditions on two bits need to be considered as well such that
the differential characteristic is valid. Such two-bit conditions are needed to control
the propagation of differences through the Boolean functions.
Moreover, two-bit conditions also occur in modular additions. The following example
should illustrate how two-bit conditions are used in modular additions.

Example .: Let ∇X1, ∇X2 and ∇X3 be two -bit differences and the addition be
performed modulo 24. The following result of the addition is desired:

∇X1 +∇X2 = [--n-] + [----] = [--n-] = ∇X3

It is known from Section ., that n + 0 = n, but this does not take the carry into
account. The following additions lead to the desired result:

∇X1 = [ --n0 ] or [ --n0 ] or [ --n1 ] or [ --n1 ]
+ ∇X2 = [ --00 ] [ --01 ] [ --00 ] [ --11 ]
Carry = [ --00 ] [ --00 ] [ --00 ] [ --11 ]
∇X3 = [ --n0 ] [ --n1 ] [ --n1 ] [ --n0 ]

The additional condition on two bits is, that the carry at the second bit position is
equal to bit value of ∇X2 at the second bit position.

It is worth to mention, that already Wang et al. used two-bit conditions in their attacks
on MD and RIPEMD [Wan+].

These two-bit conditions can lead to further inconsistencies, as two contradicting con-
ditions may occur. While in SHA- such inconsistencies can happen quite often, this
is not the case in RIPEMD-, where they only occur rarely. Hence only one simple
check is used to verify if the differential characteristic is valid. These checks are only
done at certain points, more precisely only at the end of the search for a local collision
in a certain area, e.g. one after the local collision over two rounds in one stream is
found and a second one after the local collision over two rounds in second stream is
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found. As check the Complete Condition Check of SHA- on bits, which contain two-
bit conditions, is used. It is an expensive check, as for every bit restricted to ’-’ it is
checked, whether both choices, so ’0’ and ’1’, are still valid. If both choices are invalid,
the whole characteristic is impossible. Further details on the check can be found in
[MNS].

.. Search Strategy

The search technique is based on the technique, that was used by De Cannière and
Rechberger for SHA- [CR] and adopted and extended by Mendel et al. for SHA-
[MNS]. The search strategy can in general be divided into three parts: decision, de-
duction and backtracking.
In the first part is decided, which bit is chosen and which condition is imposed. In
the second part the propagation of the imposed condition is computed it is checked if
a contradiction through the imposed condition occurs. If there is a contradiction, the
third part does the backtracking by undoing decisions [MNS].

SHA- Search Strategy The basic search strategy to find differentials, which has
been proposed in [CR] can be described as follows. This description can be found in
[MNS].

Let U be the set of all ’?’ and ’x’, then repeat the following until U is empty.
Decision

. Pick randomly a bit in U .

. Impose a ’-’ for a ’?’ or randomly a sign (’u’ or ’n’) for ’x’.

Deduction

. Compute the propagation.

. If a contradiction is detected start backtracking, else go to step .

Backtracking

. Jump back to an earlier state of the search and go to step .
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This is already an optimized version of the in [CR] proposed algorithm. In step  of
the not optimized version only ’?’-bits are picked (i.e. bits which are not restricted).
Furthermore, the backtracking part (step ) does not exist in the not optimized ver-
sion. If a contradiction occurs, simply a restart is done. Also the original procedure
does not take the different sub-steps into account.
A nice property of this search strategy is, that sparser differential characteristics are
discovered with a higher probability, if they exist.

SHA- Search Strategy The same strategy was also applied to SHA- in [MNS],
but no valid differential characteristic could be found. Hence a more sophisticated
search strategy was developed to find valid differential characteristics. Basically the
search for a confirming message pair with the search for a differential characteristic
was combined by considering bits with a critical amount of two-bit conditions, i.e. bits
involved in many relations with other bits, much earlier. Further the backtracking part
was improved by remembering critical bits during the search process, which improves
the search speed significantly. A decision bit is marked critical, if a contradiction can-
not be resolved by trying the second choice for the bit (see step  of the backtracking
part described below). Further optional additional checks were done to detect invalid
characteristics earlier, which were caused by the high number of related two-bit con-
ditions in SHA-.

As already mentioned in RIPEMD- such complex conditions occur rarely. Hence
it is possible to reduce those optional additional checks respectively only use them to
verify characteristics.
Since the search process benefits from the improved backtracking of the SHA- variant
of the algorithm, it is also used for RIPEMD-. The backtracking part is described
as follows [MNS].

Backtracking

. If the decision bit is ’x’ try the second choice for the sign or if the decision bit is
’?’ impose a ’x’.

. If still a contradiction occurs mark bit as critical.

. Jump back until the critical bit can be resolved.

. Continue with step .
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RIPEMD- Search Strategy The SHA- strategy was applied to RIPEMD-,
but no valid characteristic could be found in a certain amount of time. The reason for
this lies in another problem, that arises through the used separation into three sub-
steps in RIPEMD-, which is not present in the separation into sub-steps in SHA-.
In SHA- the final sub-step in the state update process is basically one big modular
addition consisting of summands that are either input state variables or function out-
puts of functions that do not use modular additions. The situation is similar in SHA-.
In RIPEMD- on the other hand, the modular addition of one step in one stream is
divided by a rotation in between. Hence in the update process (.), which is

Ai = (((Ai−5 ≪ 10) + f(Ai−1, Ai−2, (Ai−3 ≪ 10)) +Wi +Ki) ≪ s) + (Ai−4 ≪ 10)

the modular additions were divided into the two sub-steps:

Di = (((Ai−5 ≪ 10) + Fi +Wi +Ki) ≪ s)

Ai = Di + (Ai−4 ≪ 10)

Therefore two different carry expansions, the one in sub-step Di and the one in Ai may
occur. Through guessing only bits in the main steps Ai, like in the SHA- variant, the
conditions propagate very slowly and the contradictions are detected very late in the
search process. Hence the search strategy of SHA- is not suitable for RIPEMD-.
A similar problem was detected by Mendel et al. for MD [MRS].

Remark: The use of Fi = f(Ai−1, Ai−2, (Ai−3 ≪ 10)) does not pose a problem.

A further optimization approach, which was proposed in [MRS], was taken into
account in the search process. It was suggested, that ’x’-bits should be picked as soon as
they appear. The sign of the difference should be guessed, so ’u’ or ’n’, and backtracking
should be done, if the chosen sign does not lead to consistent conditions. They observed
that contradictions are discovered considerably earlier this way.

Remark: Although in the SHA- search strategy ’x’-bits are also picked, they are in
the same set U with the unrestricted ’?’-bits and the bits of U are chosen by random.

It turns out that this for MD proposed approach is also more effective for RIPEMD-
.

In RIPEMD- the search is done separately for different search areas, e.g. only
one round and/or only one stream. There exist different refinements considering those
search areas for the different approaches discussed in this thesis, which can be found
in Section . in the respective Subsections.
The previous observations lead to the following overall search strategy for RIPEMD-
.
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Let U be the set of all ’?’ in the defined search area and D be the set of all ’x’ in the
defined search area, then repeat the following until both U and D are empty.
Decision

. Pick randomly a bit in D and go to step . If D is empty go to step .

. Impose randomly a sign (’u’ or ’n’) for ’x’ and go to step .

. Pick randomly a bit in U and go to step .

. Impose a ’-’ for a ’?’.

Deduction

. Compute the propagation.

. If no contradiction is detected, go to step , else start backtracking.

Backtracking

. If the decision bit is ’x’ try the second choice for the sign or if the decision bit is
’?’ impose a ’x’.

. If still a contradiction occurs mark bit as critical.

. Jump back until the critical bit can be resolved.

. Continue with step .

Using this strategy contradictions that lead to an impossible differential characteristic
are detected earlier during the search process. The drawback of this strategy is that
the resulting characteristics are less sparse, as long carry expansions are more likely to
occur.

Remark: The whole search process is restarted after a certain amount of contradictions.
This should end states in the search that are stuck and far from being a possible
differential characteristic.

. Differential Characteristic Search

.. Multiple Short Local Collisions

A first approach is to find multiple short local collisions, e.g. -step local collisions.
This way only a few state variables would contain differences, considering e.g. a -step
local collision, only two state variables contain differences. Although for one round
and one stream such local collision could be found, it was not possible to find more
of them. Further those local collisions tend to be very dense, which is not the optimal
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case regarding the search for a confirming message pair, especially in round .

In the search for e.g. a -step local collision further adjustments to the overall search
strategy described in . are made, which seem to improve the search.

Remark: For simplicity reasons only the variables Ai, Di and Fi of the left stream are
used to describe the modifications, although they were used as well in the right stream
and in both streams simultaneously.

As also suggested in [MRS] the following setting of search areas is used to attack
one stream:

• U1 contains the unrestricted bits of the Di and Ai

• D1 contains the bits of the Di and Ai imposing a difference

• U2 contains both the unrestricted bits and the bits imposing a difference of Fi

The sequence of using the sets is as follows:

. Use set U1 and D1 and apply the overall search strategy.

. If U1 and D1 both are empty, use U2 and pick randomly, preferring neither ’x’-bits
nor ’?’-bits.

The reason for using one set U2 is that only little freedom in Fi is possible after all Di

and Ai are determined.

Further modifications concerning the sub-step Di are done to improve the search pro-
cess. As longer trails of differences could be expected, the backtracking part is slightly
modified. If the decision bit is ’-’ in Di also the second choice, so ’x’ is tried. For longer
collisions that would be ineffective, but in a -step local collision only four of these
sub-steps have to be considered.

As the differential characteristics tend to be extremely dense, a further modification is
done in order to get sparser Ai. The set U1 is split into two sets UA and UD, so into the
unrestricted bits of Ai and the unrestricted bits of Di. Then the sequence is modified
as follows:

. Use set D1 as usual.

. Use a control sequence to choose between UA and UD, if one of them is empty
continue using the other one.

. If UA, UD and D1 are empty, use U2 and pick randomly, preferring neither ’x’-bits
nor ’?’-bits.
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Another observation considering -step local collisions is that trying to make the Ai

more sparse resulted in more isolated differences in the main state variables Ai. This
on the other hand caused more differences in the message words.

For e.g. the message pair (W7,W15) a local collision in round  of the right stream
could be found, which is shown in Table . but this local collision already contains 
differences in two state variables and further fixed bits. Also the construction of this
local collision leads to a fully determined message pair (W7,W15) with four differences
in W7 and six differences in W15. The fully determined message words make the search
in other areas more difficult.

i ∇Bi ∇W
 ---------1---------------------- -------------------------------- = W3

 --0----------------------------- -------------------------------- = W12

 ---------1---------------------- -------------------------------- = W6

 ----1--------------------------- -------------------------------- = W11

 ----1----00000000000----0----011 -------------------------------- = W3

 ---------11111111111un--1-n--1-- -n-------------------------un--n = W7

 uuuuuuuuuu----n----u-----------n -------------------------------- = W0

 ----------------------1---01---- -------------------------------- = W13

 ----------------------0---10---- -------------------------------- = W5

 -------------------------------- -------------------------------- = W10

 -------------------------------0 -------------------------------- = W14

 -------------------------------- ----u----n------------------unnn = W15

Table .: -step local collision differential characteristic within the second round of the right stream

.. Longer Local Collisions

Slightly longer local collisions seem to work better, due to the additional freedom,
especially in the last five steps of the local collisions, where the differences have to be
canceled. Hence starting points, that only use a single message word to produce local
collisions between two rounds are used in the search for differential characteristics for
both streams.
Also here several modifications considering search areas and search strategy were tried
to improve the search process.

As very short local collisions are already hard to find with two distinct message words
and result in multiple separated differences or pretty long trails of differences in the
used message words, it seems almost impossible to find a very short local collision
using a single message word. Hence for message words, which have a short -step local
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collision in one stream, it seems hard to find a local collision. Such a short local collision
could not be found with the used strategies. Message words, which seem more suitable,
are those having similar length in both streams.

Round  and 

As the Boolean functions in the second and third round have nicer properties consider-
ing influencing its output, first those rounds are attacked. The most suitable message
word considering the length of the local collisions between round  and  is W9, which
can produce -step local collisions in both streams.
In first experiments it was tried to attack both streams simultaneously. Unfortunately
getting close to a solution in one stream resulted practically always in contradictions in
the second stream. Hence in further attempts the left and right stream are considered
separately.

The differences in the message word W9 lead to differences in the state variables
A26, . . . A31 in the left stream and to differences in the state variables B29, . . . B34

in the right stream of RIPEMD-. The differences in the state variables of the left
stream are all in the second round, whereas in the right stream differences in three
state variables of the third round occur.

Using the default setting of search areas described in Subsection .. and the described
sequence of using the sets, a differential characteristic could be found for both the left
stream and the right stream. Unfortunately the found differential characteristic is dense
in both streams. So further adjustments are needed. Table . shows the relevant area
of the state variables as well as the used message words.

As first approach, the method described in Subsection .. of splitting the unrestricted
sets was tried without success. Hence a modification using an additional splitting of
sets was tried. Not only the set U1 (unrestricted bits ’?’) is split into UA and UD, but
also the set D1 (bits with difference ’x’) is split into DA and DD. While UA and UD

are chosen using a certain ratio, DA is chosen until its empty before DD is chosen.
Although this approach did not lead to a solution, intermediate states of the search
process indicated that quite often trails of differences respectively contradictions were
found quicker. But as the method in general did not lead to results, thorough experi-
ments were not done.
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i ∇Ai W ∇Bi W
 ----------------11111----------- W12 -------------------------------- W14

 10----0-11------110-101100----00 W0 -------------------------------- W15

 ------n10-1011000---0101----0--- W9 -------------------------------- W8

 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn00 W5 --------1-0010111--------------- W12

 111110u111nun1111000000001111100 W2 0110-----10000000-10111110110110 W4

 111111100u-0-1111n10-un111111u1n W14 uuuuuuu111-----0111-------011111 W9

 101nuuu110-101000000000000000000 W11 ----0110unnnnnnnnnnnnnu1-n01111- W1

 ---111100--unnnnnnnnnnnnnnnnnnnn W8 0111uun1nn11111100000011-00n1un1 W2

 111111111--001111111011101001111 W3 000000001111000u0nn1uu0110-1uuun W15

 -001000001-100111111101111111100 W10 0000nu11-1-010110011101111111110 W5

 ------------------------0------- W14 ----1110-1-unnnnnnnnnnnnnnnnnnnn W1

 -------------------------------- W4 011---0111-111010111100000010110 W3

 -------------------------------- W9 -00---0010100101-1100000000000-- W7

 -------------------------------- W15 -------------------------------- W14

 -------------------------------- W8 -------------------------------- W6

 -------------------------------- W1 -------------------------------- W9

∇W W
-------------------------------- W0

------------------------1-00--10 W1

-------------------------------- W2

10011100010011100100--0100011001 W3

-------------------------------- W4

00001--------------------------1 W5

-------------------------------- W6

---------------11011001000-----0 W7

111101----------------------0--- W8

------------------nuuu---------- W9

-0000011------1-1011000100001111 W10

-------------0-----------------1 W11

-------------------------------- W12

-------------------------------- W13

-------------------------------- W14

-------------------------------- W15

Table .: -step local collision differential characteristic between the second and the third round of
both streams

Round  and 

As differential characteristics between round  and  can be found, the next target is to
find differential characteristics between round  and . In order to achieve sparser dif-
ferential characteristics, slightly longer local collisions may help. Hence message word
W12 is used, which can produce -step local collisions between the first and the second
round. A drawback of using W12 is, that four state variables with differences are in
the second round of the left stream and seven state variables contain differences in
the second round of the right stream. On the other hand a local collision produced by
W12 in both streams would lead to a step-reduced collision up to step , as W12 is
introduced late in the third round.
In this search process the search areas were refined again. The goal is to make at least
the last few state variables sparse, so the last few Ai containing differences. As the
most sensitive step considering the last Ai containing differences is four steps later,
where a zero difference has to be produced, Ai and Di+4 are put together in one set.
The same can be done up to the last four state variables containing differences. It can
be observed that the sensitivity producing a zero output difference through the sum of
Ai ≪ 10 and Di+4 reduces, the further the steps go back. Hence first it was tried to
fully determine Ai and Di+4 before searching in Ai−1 and Di+3 and so on. Hence the
set U1 is divided into the small sets U∗1 , . . . , U∗k with k ≤ 4 containing the unrestricted
bits of up to the last four state variables and U ′1 containing the remaining unrestricted
bits of U1.
Although the approach works as expected and produces the desired sparse state vari-
ables considering differences, it was not possible in the experiments to connect these
state variables with the rest of the local collision, at least not in both streams. Fur-
ther trying to get state variables sparse considering differences, multiple other bits in
the state variables get fixed to ’1’ or ’0’. A differential characteristic e.g. for the right
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stream could be found using all sets, so U∗1 , U∗2 , U∗3 , U∗4 , U ′1 and U2. Table . illustrates
the relevant area.

i ∇Bi ∇W
 -------------0111-01001001------ -------------------------------- = W1

 1110110--01000001100001111111111 -------------------------------- = W10

 1-1111100-0100000011110110100000 011-----011100-1---------------0 = W3

 uuuuuuuuuuuuuuuuuuuuuuuuuuuuu--0 --n----------------------------- = W12

 1un0111-01001001n-n11-nu1-00-uu0 -------------------------------- = W6

 00u0111-nnu111100-100-101-n0-00u ------------110----------------- = W11

 nn---00101--10100u0000-0nuuuu1u1 011-----011100-1---------------0 = W3

 011-nuu111----10000-010-1---0111 ---0100-0---000----------------- = W7

 001001-0-----1011111110----unnnn 0---------------------------0--0 = W0

 ----------------1010101nu--11--0 ----------------------------0-11 = W13

 --------0000u--1000011---------- -------------------00----------0 = W5

 -------------------------------- -------------------------------- = W10

 -------------------------------- -------------------------------- = W14

 -----------11------------------- -------------------------------- = W15

 -------------------------------- -------------------------------- = W8

 -------------------------------- --n----------------------------- = W12

Table .: -step local collision differential characteristic between the first and the second round of
the right stream using multiple subsets of unrestricted bits

Hence the sequence of choosing the different sets was adopted as follows:

. Use set D1 as usual.

. Use a control sequence to choose between the different U∗i .

. If all U∗i are empty use U ′1.

. If U ′1 is empty as well and also D1, use U2 and pick randomly, preferring neither
’x’-bits nor ’?’-bits.

The control sequence was influenced by the above made observations, so the set con-
taining the last state variable with differences was preferred over the set containing
the second last, and so on. But as again no results could be achieved the restriction,
that U ′1 is chosen after all U∗i are empty was weakened and another control sequence
was used to pick bits from U ′1 before the U∗i are empty respectively not all four sets
were used.

Using this strategy by only considering four separated sets for the unrestricted bits,
so U∗1 , U∗2 , U ′1 and U2 a differential characteristic for the left stream could be found
for an already found differential characteristic of the right stream, where the default
setting of search areas described in Subsection .. was used. It was tried to find
another differential characteristic for the right stream using the same strategy as for
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the left stream, which was unfortunately not possible. As can be seen in Table .
the characteristic is dense again and contains multiple trailing differences. But these
results were the only relevant results that could be produced between the first and
second round and were therefore as well reused to find a confirming message pair. The
starting point and the full differential characteristic can be found in Tables  and  in
the Appendix.

i ∇Ai W ∇Bi W
 ------------------1------------- W10 -------------------------------- W15

 -----------------0---------00--- W11 -------------------------------- W8

 ----------------0011----un-00--- W12 -------------------------------- W1

 -------100-----0-uu0------------ W13 0000-----1------------0000000000 W10

 --1--0--1u---nuuu111---000------ W14 1111------------------0111111111 W3

 -n0--u-1nnn--00100001111100----- W15 0000000000--unnnnnnnnnnnnn----00 W12

 -0100-1u0nnnnnnn0------10--0-111 W7 0111111111---------0000000000011 W6

 0----1nnunuuuuuuuuuuuuuuuuuuuuuu W4 --01111111---------0unnnnnnnnnnn W11

 00001011100100111111110un1111-11 W13 ---------nuuuuuuuuuu111111------ W3

 10000nuuuu100000011111-10--10010 W1 -----00001100000111111--------01 W7

 -----00110---11---------------00 W10 -----000010000000001----------11 W0

 ----------------------0----10100 W6 -----111111111111111un---------- W13

 ------------1------------------- W15 uuuuuuuuuu-----------------nuuuu W5

 -------------------------------0 W3 ------------------1------------- W10

 -------------------------------- W12 ------------------0------------- W14

 -------------------------------- W0 -------------------------------- W15

 -------------------------------- W9 -------------------------------0 W8

 -------------------------------- W5 -------------------------------- W12

∇W W
-------------------------------- W0

-----10------------------------- W1

-------------------------------- W2

-------------------------------0 W3

-------------------------------- W4

-------------------------------- W5

--01-1-------------------------1 W6

-------------------000---------- W7

-------------------------------- W8

-------------------------------- W9

---------0---------------------- W10

-------------------------------- W11

-------------------------------u W12

-------------------------------- W13

-------------------------------- W14

-------------------------------- W15

Table .: -step local collision differential characteristic between the first and the second round of
both streams

Considering the found differential characteristic, it is interesting that there are only a
few bits fixed in the message words. Also worth mentioning is that in the left stream
in the state variables B19 and B20 there are no differences.

To complete the observations, it was also tried to limit the occurring differences to
areas within the state variables without any success.

Conclusion

While it seems almost impossible to find multiple short local collisions, longer local
collisions in both streams can be found. Due to the structure of RIPEMD- the
found differential characteristics tend to be dense.
Using different strategies it is possible to reduce the number of differences in certain
areas of the local collisions, but really sparse differential characteristics have not been
found. Moreover, predictions on how strong the different strategies influenced the whole
process of finding a differential characteristic are hard to make, as not many results
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could be produced. Practically all observations that have been made are based on inter-
mediate results, that lead to contradictions at some stage. Therefore only the effects of
the considerations concerning the goals of the used strategies, e.g. getting certain state
variables more sparse concerning differences, could be verified in the different cases,
but it is not clear if the described methods would lead to a differential characteristic
for both streams.
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 Finding a Confirming Message
Pair

In the previous chapter a differential characteristic for both streams could be found
together with conditions on the state variables. In order to find a confirming message
pair the conditions on single bits of the differential characteristic need to be fulfilled.
This is not an easy task as the found characteristic is very dense. But there are also
plenty of two-bit conditions, which are not obvious in the differential characteristic.
So the task is to find a message pair, which fulfills all conditions, such that the differ-
ential characteristic leads to a collision. As one independent condition is fulfilled with
probability 1/2, a random message fulfills all conditions with probability 2−n, where
n denotes the number of conditions. Hence the complexity can be denoted as 2n. As
there are plenty of conditions, randomly searching for confirming message pairs would
result in higher complexity than a birthday attack. In order to reduce this complexity,
message modification techniques are used, such that the modified message pair fulfills
as many conditions as possible.
In this chapter the different attempts to find a confirming message pair for the obtained
differential characteristics are described. Further an approach is presented, which com-
bines the search for a differential characteristic with the search for an confirming mes-
sage pair.

. Separated Search

In this section the different attempts to find a confirming message pair for the differen-
tial characteristic found in the previous chapter are described. If such a message pair
can be found, a step-reduced collision for RIPEMD- can be produced. Note that
the found differential characteristics are very dense in both streams as well as in the
second attacked round.

Furthermore, there are numerous two-bit conditions, which mostly concern the state
variables within the local collisions in the start setting of the message search, i.e. the
differential characteristic.





. Separated Search

Due to the Boolean functions also the two state variables prior to the beginning of the
local collision may be heavily affected.
As a simple example we take the IF function used in the second round of the left
stream. Suppose that the local collision starts at step i and that there is a single non-
zero bit difference in Ai. In step i + 1 the IF function, i.e. IF(Ai, Ai−1, (Ai−2 ≪ 10))
should lead to a zero output difference. Hence we review the following property of the
IF function:

IF (x, y, z) = IF (¬x, y, z) if and only if y = z

Now we consider the state variables again. For a single non-zero bit difference in Ai at
position k the bits of Ai−1 and (Ai−2 ≪ 10) at position k have to be equal in order to
lead to a zero bit difference at position k in the output of the IF function. Therefore
we get one two-bit condition affecting one bit of Ai−1 and one bit of Ai−2. Note that a
single independent two-bit condition is fulfilled with probability 1/2.
Assume now that there are eight non-zero bit differences in Ai and in step i+ 1 the IF
function should lead to a zero output difference. Then, the observations made above
suggest that already eight two-bit conditions are needed to produce the desired zero
output difference.

Furthermore, the other state variables prior to the first step of the local collision may be
affected by multiple two-bit conditions due to the carry. Further details on propagating
conditions on two bits can be found in Subsection ...
Also the message words that are used within the local collision steps may already
contain multiple bits that need to fulfill two-bit conditions. Moreover, bits are often
not only related to one other bit through a two-bit condition, but to multiple other
bits through two-bit conditions.
Hence the search gets even harder, as in order to lead to a confirming message pair,
not only the bit conditions but also those two-bit conditions have to be fulfilled.

Message Modification Techniques

In the first round, i.e. for the first  steps, the freedom of all message words Wi can
be used to find a confirming message pair. If only a single stream is considered, a basic
message modification technique would be sufficient for the first round. The method
can be shortly described as follows:

. Choose confirming state variables

. Invert the update process of each step to calculate the confirming message word

This technique is also called single-message modification and can be found in [Wan+].
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 Finding a Confirming Message Pair

But as RIPEMD- uses two parallel streams, message modification is more compli-
cated as the conditions on both streams have to be fulfilled by using the same message
words. This was also already noted by Wang et al. in [Wan+]. There they over-
come the problem for RIPEMD by applying two further modification techniques to
the second stream. The first one uses carry effects to fulfill conditions. The second one
basically uses the Boolean function to fulfill the condition by modifying bits of the
input state variables of the function, which do not have to fulfill a condition. Those
bits in the input state variables are modified by previous message words.
But while in RIPEMD the same permutation of message words is used in both streams,
i.e. the same message word in the same step, RIPEMD- uses different permuta-
tions in each stream. Furthermore, in RIPEMD also the same Boolean function is used
in each round of both streams, which is not the case in RIPEMD-. The different
permutation of message words increases the complexity of applying message modifica-
tion significantly. Also the same rotation values in both streams of RIPEMD simplify
the used technique. In this case, message modification can be applied from the least
significant to the most significant bit. But as in RIPEMD- different rotation val-
ues are used in each stream, it is possible that previously corrected conditions may
become invalid again. These complications have already been noted in [MNS] for
RIPEMD-.

RIPEMD- Message Modification

There exist several dedicated advanced message modification techniques that can be
used to fulfill conditions on two state variables by using a single message word. E.g. for
MD the multi-message modification by Wang and Yu [WY] or the multi-message
modification by Klìma [Klí] have been proposed.
In this thesis a more generalized approach proposed in [MNS; MNS] is used to
simplify the message modification. The same automatic search tool, which is used to
find differential characteristics, is used for message modification instead of dedicated
and complicated techniques. Instead of imposing ’-’ or ’x’ for ’?’ respectively ’u’ or
’n’ for ’x’ like in the search for a differential characteristic, in the message search we
look for valid assignments of ’-’ to ’0’ or ’1’ in the first round. As this is a bit-wise
approach the different message word permutations and different rotation values as well
as carry effects are handled by the tool automatically. The drawback is the slightly
higher complexity compared to word-wise approaches. Similar observations have been
made on RIPEMD- in [MNS].

The overall search strategy for a confirming message pair can be described as follows:
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. Separated Search

Let U be the set of all ’-’ in the defined search area and repeat the following until U
is empty.
Decision

. Pick randomly a bit in U .

. Impose randomly a ’0’ or ’1’.

Deduction

. Compute the propagation.

. If no contradiction is detected, go to step , else start backtracking.

Backtracking

. Try the second choice of the decision bit.

. If still a contradiction occurs mark bit as critical.

. Jump back until the critical bit can be resolved.

. Continue with step .

Again the optimized backtracking part of the algorithm used to attack SHA- is used
[MNS].

Message Search Based on Two-bit Conditions

An observation made in [MNS] influences the choice of the decision bit in the mes-
sage search. It seems wise to first pick bits that are related to multiple other bits
by two-bit conditions. Through fixing the value of such a bit multiple other bits are
determined as well, which may even lead to further determined bits through distinct
two-bit conditions on those other bits. Through the propagation of all those bits also
new two-bit conditions may arise. So a single bit with many two-bit conditions has
many consequences. Therefore they should be picked first.

The reasoning should be illustrated by the following example.
Assume we are picking bits with no conditions as well and randomly set them to ’1’ or
’0’. After several bits with no conditions have been set we pick a bit, which is related
to k other bits. By setting this decision bit multiple other bits are determined (at
least k). Through propagating those bits it is likely that multiple new conditions on
other bits arise, also on bits with previously no condition, which have already been
randomly set. Through the multiple new conditions, it is likely that a contradiction
occurs somewhere. Hence backtracking needs to be done. If the contradiction affects
a bit with previously no condition, the contradiction could have been avoided by not
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setting this bit randomly but according to the condition. Therefore backtracking could
have been avoided as well.

Another observation is that the later a bit causing many consequences is chosen, the
more likely it gets that both choices (’1’ and ’0’) lead to a contradiction somewhere.
Hence the message search can be carried out more effectively, if the bits are chosen
from the bits with the most two-bit conditions to the ones with few two-bit conditions.

A further advantage of first picking bits with many relations to other bits is, that
multiple bits can be marked as critical in the backtracking part of the algorithm.

Therefore the set U of ’-’-bits in the overall search strategy is split into k subsets
containing the bits with two-bit conditions and one subset containing the bits with no
two-bit conditions. As already mentioned two-bit conditions are created dynamically
in the search process by determining bits, hence also the different subsets change
dynamically. So the overall search strategy is slightly adapted by using the following
subsets in the decision part:

• For 1 ≤ i ≤ k: Ui contains the ’-’-bits, which are related to i other bits.

• U ′ contains the ’-’-bits, which are related to no other bits.

Those subsets are chosen in the following order:

. Pick randomly a bit in Uk. If Uk is empty, pick randomly a bit in Uk−1 and so on.

. If all Ui, so Uk, . . . , U1 are empty, pick randomly a bit in U ′

Using this strategy for the whole collision area, so from step  to step , it is possible
to find message words, which are able to follow the differential characteristic roughly
in the local collision areas of both streams. This local collision areas extend from step
 to  in the left stream and from step  to  in the right stream. What remains is
to connect this area with the initial values. Unfortunately there is not enough freedom
left in the remaining message words to achieve this goal in the first round of both
streams. An example of such a try can be found in Table  in the Appendix.

Sequential Message Modification

Another approach is to do message modification sequentially. So the used search areas
to apply the overall search strategy are the state variables Ai and Bi for step i. The
message words are then modified according to the state variables. If a contradiction is
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encountered, backtracking is done until the contradiction can be resolved.

A first simple approach would be to start at step  and modify the message words W0

and W5 according to randomly chosen A0 and B0. Then go to step  and do the same.
But this way it is not even possible to get near the local collision areas.
Another approach is to start at step  and do the modifications in backward direction
instead of forward direction. Also this way the search is not getting far.
Considering only one stream first, using the same methods does not lead to satisfying
results either.

Furthermore, we use the same approaches in combination with the two-bit based search
strategy. I.e. the message modification is done sequentially, but within the state vari-
ables we pay attention to the bits with two-bit conditions. Again no solution can be
achieved.

Altogether none of the described methods leads to a confirming message pair for the
first round.

The problem is that some message words have to be used to fulfill many conditions in
the local collision areas of both streams and can therefore barely be used for message
modification in the first round. As each message word is used in both streams, it is
at least used twice until the end of the local collisions. Hence, there seems to be not
enough freedom in the message words to find a confirming message pair for such a
dense differential characteristic in both streams.
Therefore it is tried to simplify the problem by not starting at the beginning of round
 but at a certain step of round , such that the gained freedom in some message words
allows to produce a collision from step i in the first round to step  in the third round.
If we start e.g. at step , W4 is only used once until the end of the local collisions in
both streams. Some are only used twice instead of three or four times (e.g. W7) and
some only three instead of four times (e.g. W13).
But again no confirming message pair could be found for both streams using the de-
scribed methods. It is worth to note that considering only one stream and starting at
step , message pairs could be found quite fast, although some message words are
used twice within the local collisions.

Moreover, it is tried to use the found differential characteristic to construct a semi-free
start collision for RIPEMD- without any success.
To simplify the problem we consider a RIPEMD- variant. In order to use the found
differential characteristic the interaction between the two lines after each round of





 Finding a Confirming Message Pair

RIPEMD- is removed. This way it is possible to construct a -step semi-free start
collision for this RIPEMD- variant, which can be found in Table  in the Ap-
pendix.

. Combined Search

As the separated search for differential characteristics and confirming message pairs
turned out to be infeasible with the used methods, the idea is to combine the search
for a differential characteristic with the search for a confirming message pair.
Therefore a similar search strategy to the one in the SHA- attack [MNS] is used.
Here also the whole search process is split into two phases and it is switched between
both phases dynamically. Generally speaking bits related to many other bits are al-
ready considered at a certain point in the search for a differential characteristic.

As a first modification the two separated modular additions, so

Di = (((Ai−5 ≪ 10) + Fi +Wi +Ki) ≪ s)

Ai = Di + (Ai−4 ≪ 10)

respectively

Ei = (((Bi−5 ≪ 10) +Gi +Wi +Ki) ≪ s)

Bi = Ei + (Bi−4 ≪ 10)

are combined into one modular addition:

Ai = (((Ai−5 ≪ 10) + Fi +Wi +Ki) ≪ s) + (Ai−4 ≪ 10)

respectively

Bi = (((Bi−5 ≪ 10) +Gi +Wi +Ki) ≪ s) + (Bi−4 ≪ 10)

Di respectively Ei are used as intermediate variables.

Basically the overall search strategy for the differential characteristic denoted as phase
 stays the same except for refining the different sets and the switching point to phase
. In phase  the overall search strategy for the confirming message pair is used with
adapted sets and a change in the last step of the backtracking process.
The last step of the backtracking can be described as follows:

. If it is necessary jump back to phase , otherwise continue with step .
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Switching Point

It makes sense to start the second phase after the state variables Ai respectively Bi are
determined or almost determined. Furthermore, in phase  not too many bits should
be determined in order to find a differential characteristic. Therefore, in phase  only
bits in Ai respectively Bi are picked, which are at least related to e.g.  other bits.

Early Switching Point Not taking Di (and Fi) respectively Ei (and Gi) into account
in phase  leads faster to a possible solution for Ai respectively Bi. Therefore we can
switch to the second phase very early. But then again contradictions are detected very
late (Subsection ..).

Late Switching Point On the other hand taking all Di respectively Ei into account
leads to later determination of Ai respectively Bi and hence to a later meaningful switch
to the second phase. Furthermore, it is more likely, that Ai respectively Bi already
contain multiple bits with many relations to other bits, such that the second phase
leads to many further determined bits. Then again contradictions are encountered,
because there is not enough freedom to find a differential characteristic.

So neither a very early nor a very late switching point leads to any results in the ex-
periments in reasonable time.

Hence it is tried to take Di respectively Ei into account, but not in the whole search
area, e.g. only over a certain amount of steps. This way contradictions at least in that
certain area are detected early, before we start switching to phase . Unfortunately also
using this approach no differential characteristic could be found in reasonable time.

Finally we try to construct longer local collisions hoping to find a differential charac-
teristic with not too many conditions on single bits and fewer bits with relations to
many other bits. So e.g. message word W14 is used between round  and  in the left
stream and between round  and  in the right stream. Although intermediate states
of the search process show that there are less bits, which are related to many other
bits, there are still plenty of conditions on single bits to be fulfilled. Also not even a
differential characteristic could be found in reasonable time. An intermediate state at
a very late stage of the search before contradictions occur can be found in Table  in
the Appendix.
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 Conclusion

This thesis concentrated on a differential attack on the collision resistance of RIPEMD-
. Therefore methods for differential cryptanalysis have been defined and discussed
focusing on the used functions in RIPEMD-. The main goal of the attack was to
construct a collision for step-reduced but otherwise unmodified RIPEMD-. The
attack itself consists of three parts: finding a starting point, finding a differential char-
acteristic and finding a confirming message pair.

There exist several RIPEMD- specific difficulties in the attack.
In the first part of the attack a good starting point needs to be found. Due to the
dual-stream design of RIPEMD- and the different message word permutations in
both streams it is not easy to find a single message word or more message words, that
may lead to a collision with a reasonable probability.
Also in the second part different difficulties arise. Especially the extra modular addition
in combination with the different rotations poses a problem. Not only an intermediate
result in the update process of one step is rotated, but also other input variables. Due
to those difficulties the found differential characteristics tend to be very dense.
Finally in the third part, the search for a confirming message pair turns out to be
far from being easy. The different message word permutations for both streams make
message modification for the first round already hard. Since only dense differential
characteristics in both streams could be found, the many conditions prevented to find
a confirming message pair.
Several distinct approaches for each part of the attack have been presented as well as
their advantages and disadvantages. Also different intermediate results illustrating the
different approaches have been provided.

In general the different message word permutations for both streams of RIPEMD-
in combination with the modular addition and different rotations complicate attacks
significantly.

Although no collision could be found, the used methods indicate that collisions for a
step-reduced variant of RIPEMD- can be found, if it is possible to overcome certain
problems, which arose in the methods used in this thesis.
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Results and Intermediate Results

i ∇Ai ∇Bi ∇Wi

- --------------------------------
- --------------------------------
- --------------------------------
- --------------------------------
- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------

 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 ???????????????????????????????? -------------------------------- ???????????????????????????????x
 ???????????????????????????????? -------------------------------- --------------------------------
 ???????????????????????????????? -------------------------------- --------------------------------
 ???????????????????????????????? ???????????????????????????????? --------------------------------
 ???????????????????????????????? ????????????????????????????????
 ???????????????????????????????? ????????????????????????????????
 ???????????????????????????????? ????????????????????????????????
 ???????????????????????????????? ????????????????????????????????
 -------------------------------- ????????????????????????????????
 -------------------------------- ????????????????????????????????
 -------------------------------- ????????????????????????????????
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------

Table : -step local collision starting point
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Results and Intermediate Results

i ∇Ai ∇Bi ∇Wi

- --------------------------------
- --------------------------------
- --------------------------------
- --------------------------------
- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- -----10-------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- -------------------------------0
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --01-1-------------------------1
 -------------------------------- -------------------------------- -------------------000----------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- -------------------------------- --------------------------------

 ------------------1------------- -------------------------------- ---------0----------------------
 -----------------0---------00--- -------------------------------- --------------------------------
 ----------------0011----un-00--- -------------------------------- -------------------------------u
 -------100-----0-uu0------------ 0000-----1------------0000000000 --------------------------------
 --1--0--1u---nuuu111---000------ 1111------------------0111111111 --------------------------------
 -n0--u-1nnn--00100001111100----- 0000000000--unnnnnnnnnnnnn----00 --------------------------------
 -0100-1u0nnnnnnn0------10--0-111 0111111111---------0000000000011
 0----1nnunuuuuuuuuuuuuuuuuuuuuuu --01111111---------0unnnnnnnnnnn
 00001011100100111111110un1111-11 ---------nuuuuuuuuuu111111------
 10000nuuuu100000011111-10--10010 -----00001100000111111--------01
 -----00110---11---------------00 -----000010000000001----------11
 ----------------------0----10100 -----111111111111111un----------
 ------------1------------------- uuuuuuuuuu-----------------nuuuu
 -------------------------------0 ------------------1-------------
 -------------------------------- ------------------0-------------
 -------------------------------- --------------------------------
 -------------------------------- -------------------------------0
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------

Table : -step local collision differential characteristic
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i ∇Ai ∇Bi ∇Wi

- 01100111010001010010001100000001
- 11000011110100101110000111110000
- 00010000001100100101010001110110
- 10011000101110101101110011111110
- 11101111110011011010101110001001
 11100011111000111100110000000010 11110100110011000110111111101010 01110011101110011011110000011011
 01000000010010101001100010101000 10000001100001000100111000011110 01100101100110000100000010001000
 --00011101001----------------10- 01010110001001000111000111001101 ------00----1100-110110001011011
 -----------------0----0011001100 11110001010101011011111101110110 01101111111010111001000010111110
 -------------------------------- 11000010110101111001000101000110 11100010101111000010010110101110
 -------------------------------- 1-0110101001101--------------010 00110010000101101111011000110000
 10101-0--1-------------------01- -------------------------------- 01011100111111000010111110000011
 10101010100010110001110111000111 -------------------------------- 00011111011001110100001000100001
 01010001010110101101011001011010 -------------------------------- 100000011010110100101111011100-0
 10110000010101000000011111001110 -------------------------------- 10010100100110011000101010001111

 00010111000000110111001100011101 ---------1---------------------- 10011100001000000000000100001111
 10101000010111010011010100100100 ---------10----00--------------- -------------------01-11100-00-1
 010110101010000000111011un000110 10110-01-1---------------------- 1110110000000100011111111010011u
 11111011000000101uu0001101110111 00000010110101001111110000000000 00000010110010101110001100001110
 101110111u001nuuu111011000010000 11110110010010101011000111111111 10110100110000010111101010101111
 1n001u01nnn010010000111110011111 000000000011unnnnnnnnnnnnn100000 00110000001001001011010000010011
 1010011u0nnnnnnn0111111100100111 01111111111000111110000000000011
 000011nnunuuuuuuuuuuuuuuuuuuuuuu 11011111111000111010unnnnnnnnnnn
 00001011100100111111110un1111011 110010111nuuuuuuuuuu111111011111
 10000nuuuu1000000111110101010010 00010000011000001111111011000001
 00001001101011110001001101110000 00010000010000000001110100010011
 11011000100010100010100000110100 01100111111111111111un0001111101
 10100011001010111111100011111000 uuuuuuuuuu00011111001011100nuuuu
 10010001010100110010010101101000 01101110010001111111011101000010
 11001100011010001001110011011111 10101001100110111101011101000010
 11111110011000101111011001000110 00011001001101100101001100011010
 11100101110011001101010011100101 010111000000011100-1100101101110
 00101111001110001111010010001010 11110011110100100000111000011010
 -001--0110110100110------------- 01111001111000110110111111110011
 00100001-----------------1-----1 10100100001101100001011001111111
 -------------------------------- 11001100-11101111011001100010100
 ------------------------1------- ------00100010001100------------
 -------------------------------- 1100101011-----001---1-------010
 -------------------------------- ------01011--------------------1
 -------------------------------- --------------0----1------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------

Table : -step local collision message search at a late state before contradictions occur
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Results and Intermediate Results

i ∇Ai ∇Bi ∇Wi

- 10011010011110100101111011101111 01001000101011101110101101001001
- 10011101101011010110111011010000 00110111110100100111010000110100
- 10111001111011010101100001111011 00000100111110001101110101000001
- 10000010111101110111111110001011 00100001100000010111111001100011
- 01100010001001110011000011000111 10100011010101110100000011001011
 00011011110101001011110100000011 10011011001011111110111111100110 11010010101110000100111011000011
 11100011100100001111001011100101 11001011111001101100100010100011 00100111111011011001001111101111
 10011011110100011100000010000010 11100001101000000110110001000000 00001011000001100011101001010010
 10101000101100100001100100010110 01110011110110110010101000000110 00001011001101000000000101011100
 01011100001110110101101001100101 00000001110000010011101010110100 10100010110111101100111011001101
 00000100110010010011101101010100 00101101110110100101101111110010 11000000010000011010100000011000
 10010001011100111110011100001000 11101101110111100100101001000010 01011110001100110001000010011000
 11101101001000111101010010010100 01010011000110101001011111111111 00111001001111010000110000100001
 01001111001101011000011010110110 01100001011110000110001000001010 00000111101010100111101101001101
 01100101100000001011001101000000 10011100111100010000010111101100 10111110011101011111111011000100

 00011110000010000101101010101010 00001010001010010100101011001101 00010110110000001000001101011011
 11000100110111111000010000011110 00001111111000001110100001111110 11100011101001100001011111111111
 100001001011101111000000un101000 01010010101111010010111101000011 0100101101001101010100001100011u
 11101100011101100uu0001111111111 00000011011110000100100000000000 10011100101010011000110010111010
 011000101u010nuuu101101000111100 11111111101000101011110111111111 11001000011101011101101010111110
 0n000u01nnn110010000111110001001 000000000111unnnnnnnnnnnnn001100 11110011011101010100010001001011
 0010001u0nnnnnnn0010010100000111 01111111111011010000000000000011
 010011nnunuuuuuuuuuuuuuuuuuuuuuu 10011111111011011110unnnnnnnnnnn
 00001011100100111111110un1111011 000001000nuuuuuuuuuu010001000101
 10000nuuuu1000000111111101100010 00011000011000001111010000011001
 00001001100001111110111100110101 00011000010000000001111111110011
 01110100001010111100101100110100 00001111111111111111un0101000100
 00110111101110010001011100010101 uuuuuuuuuu00000000101111111nuuuu
 10010111001010101000001011111100 10000001000000000000100001110101
 10011100100100001001010111011001 11001010100111111110100001110101
 11110101000000101101010111100100 11110001001010100011001100100111
 01100101010111110000011111110101 10111010001100100001001011101000
 11101111110001001101110100101000 01000010101010111110000110110101
 10011111110010010100001000011001 00000001110111111011111101101110
 10011110100111111011111001111110 01101110000101000110111001101100
 10100001010000001001001011000010 01110110101101000000111001010100
 01101111100001000100100111100100 01001111011011010010101000111100
 01101110010010101000001011110101 00000100010000100101011101100101
 11110001001110001010111101010100 00011111010011000101100101000000
 10111011010101101111100011101010 00010110111110011110101100010000
 00000001001000001011010010010010 11010101000101111010101110000001
 01000010001010011000111100011100 11010010010110010111011100111000
 11010001100100111011111000100110 01010111100111100011101001010100
 01001010000101100110010111110101 01101101111011111010001100100010
 00100010100010111010010101111010 10111111011010110010111001000101
 00001010110010010110111001111001 11001110101110010111101010111110
 00001101000011010011101100011010 10011010110110111001101011000011

Table : -step semi-free start collision for RIPEMD- variant





i ∇Ai ∇Bi ∇Wi

- --------------------------------
- --------------------------------
- --------------------------------
- --------------------------------
- --------------------------------
 -------------------------------- -------------------------------- --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? ------------------------------11
 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------

 -------------------------------- ???????????????????????????????? --------------------------------
 -------------------------------- ???????????????????????????????? --------------------------------
 ---1-0-------------------------- ???????????????????????????????? --------------------------------
 ---------------------------0---- ???????????????????????????????? --------------------------------
 --0n---------------------------- ???????????????????????????????? -----------nu---------0---------
 ---1-----1--------------1--u---- ???????????????????????????????? --------------------------------
 ---1--------------------u1-0n-0- ????????????????????????????????
 --------00-------1u-111100111--- ????????????????????????????????
 -------1------0-0011n---1n0--010 ????????????????????????????????
 nn----uu100---0-un-11----0----un ????????????????????????????????
 10----00-n1---u111-n-011------00 ????????????????????????????????
 n1-01-00u0u1101----100nu--1-11-u ????????????????????????????????
 nB--1-un0n1uu--10-----10-u1-11-0 ????????????????????????????????
 n--1-001000001--n----11u-nn-nn1n ????????????????????????????????
 100--u11-1-----10-----1--10-0nuu ????????????????????????????????
 u----1-------1-01u11-101-u01-1n0 ????????????????????????????????
 nuu---------00-1-0-1-10----1--1u ????????????????????????????????
 1000---1----uunnDx-u0nn001-0-011 ????????????????????????????????
 ---n--------1010-0-010011------- ????????????????????????????????
 --1100-0-1-11unnnnnnnnn--------- ????????????????????????????????
 ----11--1--1001000-1011--1------ ?????????x??????????????????????
 ----00--0--0000----------------- ----------????????????????????x-
 -------------------------------- ----------????????????x---------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 -------------------------------- --------------------------------
 . . . . . .

Table : -step local collision differential characteristic search at a very late stage in the left stream
before contradictions are encountered
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Notation

List of Abbreviations

ARX modular Addition, Rotation and XOR
MD Message Digest
MDC Modification Detection Code or Manipulation Detection Code
RIPEMD RACE Integrity Primitives Evaluation Message Digest
SHA Secure Hash Algorithm

List of Used Symbols

¬X One’s complement of X
X ≪ s X rotated over s bits to the left
X ≫ s X rotated over s bits to the right
X ⊕ Y Bitwise exclusive OR (XOR) of X and Y
X ∧ Y Bitwise AND of X and Y
X ∨ Y Bitwise OR of X and Y
X + Y Addition of X and Y modulo 232

X − Y Subtraction of X and Y modulo 232
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