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1 Introduction

The exchange of information between two or more entities is one of the cornerstones of
our world. From an anthropological point of view it is the basis of all human interaction
and happens in many forms that are not restricted to written or spoken language. But not
only humans communicate. Machines such as computers, cell phones and (more recently)
even cars use various strictly defined protocols for the exchange of information with each
other, connected peripherals or their users.

One important consideration in this context is the level of confidentiality of the in-
formation exchanged. Two people talking about some shared secret they want to keep
confidential, can achieve this by avoiding the presence of a third person within earshot. In
a more general setting the same is not possible and we have to assume that the information
is exchanged via a potentially insecure channel such as a telephone line, the postal service,
radio communication, a wide area computer network such as the Internet or a wireless
local network.

The field of cryptography addresses precisely this problem. Whilst having been de-
veloped and used mostly in a military context for hundreds of years, the technological
advances of the 20th century introduced cryptographic applications into the everyday life
of most people. Whenever we communicate with our cellphones, send secure e-mails, log
on to on-line platforms for eg. electronic banking or use the chip on a smartcard (such as
an ATM-card, a modern passport or the Austrian E-card), we make use of a broad range
of cryptographic algorithms and protocols that protect our privacy.

1.1 Historic remarks and outlook

Before the dawn of the digital age, historic cryptosystems usually operated on texts of
human language. Cryptography was then more related to linguistics and encoding a given
text was based on substitutions and transformations of letters of the alphabet.

The 20th century saw a big change in cryptographic applications due to the inception
of computing devices. These were at first more mechanical than electrical machines that
were used both in the encryption and decryption of information, but also used to break
certain cryptosystems1, which means finding the secret key based solely on the knowledge
of certain plain texts, cipher texts or details of the encryption mechanism.

Since then the continued improvement of computers has had the consequence that
cryptosystems had to become more complex to prevent an easy algorithmical break of the
system by an automated statistical analysis of plain and ciphertext pairs or by a blunt
brute-force attack that tries out all possible keys until successful. This has lead to a
stronger influence of modern mathematics in cryptography.

An important milestone in the history of cryptography is the inception of asymmetric
cryptosystems in the 1970s. All the previous cryptosystems had the common property

1A notable example are the ultimately successful efforts of British cryptologists during the Second
World War to break the German Enigma code with the help of a machine that has become known as the
bombe.
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that if the parties A and B want to exchange any encrypted information, they both had
to be in possession of a shared secret key, which is used for both en- and decryption of the
information. Hence these systems are called symmetric cryptosystems. The weakness of
this system lies in the fact that in order to agree on such a key, the two parties have to
first communicate it via a secure channel.

Asymmetric cryptosystems work with different keys for encryption and decryption. If
A participates in an asymmetric cryptosystem, it has two keys kpub and kpriv, where kpriv is
the private key, which only A possesses and kpub is the so-called public key that A publishes
for everyone to see. If anybody wants to send an message p to A, this is done by encryption
with kpub, i.e. the ciphertext c is computed via

c = Ekpub(p).

Upon receiving c, A can decrypt the message with its private key kpriv, ie. computing

p = Dkpriv(c) = Dkpriv(Ekpub(p)).

In order for this idea to work, we need an encryption function Ek that can not easily be
inverted, even if k is known. These functions are sometimes called “trap-door”-functions
and an important example is the computation of powers in a finite field. If Fq is a finite
field with q = pn for some n ∈ N and a prime p and g is a prime element in Fq, then it is
hard to compute k given only g and gk. This is known as the discrete logarithm problem
(DLP).

A cryptographic protocol employing the discrete logarithm problem is the one proposed
by Whitfield Diffie and Martin Hellman in 1976. It enables two parties A and B to agree
on a shared key without any previously shared keys using only asymmetric methods. The
first asymmetric cryptosystem used for the exchange of information is the RSA cryptosys-
tem (named after Ronald Rivest, Adi Shamir and Leonard Adleman, who presented it in
1978). The security of the RSA system depends on the difficulty of computing the prime
factorization for large numbers n = pq, where p and q are large primes and only the product
is known.

From a mathematical standpoint, in comparison to symmetric cryptosystems, the the-
ory behind asymmetric cryptography has a much stronger connection to many fascinating
mathematical fields such as abstract algebra and number theory. Conversely, the need
for computerized analysis of possible weaknesses and other aspects of these systems has
inspired advances in several fields such as computational number theory. For an overview
of mathematical cryptography as well as an historic account see e.g. [15].

For the rest of this chapter, we will discuss some of the basics of elliptic curve cryp-
tosystems and why their performance has a strong connection to different representation
of integers, before presenting some results about Markov chains, which we will need later.

Afterwards, we will focus our attention entirely on these representations of integers
as digit expansions with various sets of digits and two different bases. In Chapter 2 we
will study different well known expansions. We will present their definitions and vari-
ous algorithms used to compute them. Of special interest for the performance of elliptic
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curve operations will be the number of nonzero digits in the digit expansions of any given
integer. In Chapter 3 we will focus on one basic type of expansion and study different
representatives of this class. Additionally we will present real-world data concerning the
effects on performance of an elliptic curve cryptosystem. For this we implemented all the
conversions for the different representations and used a cryptographic computer library to
test the speed of the cryptographic operations for each of them. The empiric timing results
solidify the theoretical knowledge gathered in Chapter 2.

In the final chapter of this document we want to find bounds for what the best digit
expansions can achieve on average in terms of a low number of non-zero digits. For some
cases, where the standard expansion already achieve this optimal value, this will already
have been answered in 2. For other cases, however it has been shown that it is impossible for
any of the well-known expansions to achieve optimality. We quantify what the performance
of an optimal expansion can be. We do so by computing these optimal expansions in a
manner that is not efficient enough for practical use, but provides us with an algorithm that
we can then model and analyze in order to compute the average weight of these optimal
expansions. For this we use a Markov chain model of our algorithm. Our main result is
Theorem 4, where we state the explicit and exact value of the optimal average number of
non-zero digits for three scenarios, where it has not been previously known.

1.2 Elliptic curve scalar multiplication and the role of digit ex-
pansions

Elliptic curves have been a topic of a great amount of research even before their use
for cryptographic purposes was presented by Neil Koblitz in [17]. Their cryptographic
relevance stems from the fact that they allow for a formulation of an analog to the discrete
logarithm problem, called the elliptic curve discrete logarithm problem (ECDLP).

An elliptic curve E(K) over a field K is defined as the set of solutions (x, y) ∈ K to
Equation (1) if char(K) /∈ {2, 3} or Equation (2) if char(K) = 2.

y2 = x3 + ax+ b (a, b ∈ K) (1)

y2 + cxy + dy = x3 + ax+ b (a, b, c, d ∈ K) (2)

It is well known ([18], [15]) that the points on these curves, together with the so-called
point at infinity O form an Abelian group, where the group operation is written additively.
For cryptographic applications we are specifically interested in elliptic curves over finite
fields Fq, where q = pn for some prime number p. In this case E(Fq) is a finite abelian
group and it can be shown that it is either cyclic, or the direct product of two cyclic
groups. As Koblitz states, one of the two groups is much smaller than the other for most
randomly generated curves. For cryptographic applications one typically works in a large
cyclic subgroup (G,+) of (E(Fq),+).

When given a curve point P in (G,+), we can compute multiples of P by defining
nP :=

∑n
k=1 P . This operation is called elliptic curve scalar multiplication. If r is the

order of G and P is a primitive element in G, then the elliptic curve discrete logarithm
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problem is finding k ∈ {1, 2, . . . , r − 1} such that kP = Q, when only knowing P and Q
beforehand.

Since EC cryptosystems consequently all involve such scalar multiplications as the
basic operation, finding good strategies for computing them is a crucial step in making
EC cryptosystems fast and efficient. In this section, we will see why this problem is very
closely connected to investigating digit expansions of the given scalar n.

As a starting point, we consider two basic arithmetic operations that we can perform
on a curve point P . They are addition and doubling. This approach can immediately
be improved by using the doubling operation in combination with additions of P . In
fact, elliptic curve scalar multiplication is analogous to modular exponentiation, where
the operations squaring and multiplication correspond to doubling and addition of the
exponents. Therefore many well-known techniques carry over to the problem at hand. The
standard algorithm is known as the binary method (see [16]) which describes a combination
of additions and doublings according to the binary expansion of k. So, as an example, for
n = 7 = (111)2, one would compute 7P as 2(2P +P ) +P and only need two additions and
two doublings instead of six addition.

A property specific to elliptic curves is the fact that subtraction of a point P is com-
putationally just as cheap as addition. This can be used to modify the binary method
to allow subtractions of P whenever this increases the efficiency of the operation. In our
example above, instead of 2(2P + P ) + P (two additions), we could simply write 7P as
2(2(2(P )))−P and compute the result with just one subtraction and three doublings. This
corresponds to the idea of allowing −1 as a digit in the expansion of n, which has first
been presented by Morain and Olivos in [19]. Doing so introduces ambiguity in the digit
representation and such signed binary expansions with digits {0,±1} have been widely
studied with the goal to find representations that lead to fast scalar multiplication. An-
other extension to the concept of digit expansions comes from the idea of precomputing
ηi · P for some small values ηi ∈ Z and also including these in the set of possible digits for
the expansion. The idea behind this is to reduce the overall number of non-zero digits (and
therefore additions in the scalar multiplication), at the memory and time cost associated
with the precomputation of the values ηi · P .

All the concepts above use different ways of adding multiples of P in the computation
combined with doubling. Hence all these expansions use 2 as the base of the expansion. We
will study these base 2 digit expansions in Section 2.1. A completely different approach,
suggested by Koblitz (in [17]), works with a certain type of elliptic curves now referred to
as Koblitz curves. They come equipped with a endomorphism on the curve points that
acts like multiplication by a complex number τ . This can be used to represent scalars
with digit expansions to the base τ and replace the double-and-add paradigm of the binary
method with a τ -and-add strategy. Just as in the case of base 2, we can again make use of
subtraction of points and a larger digit set combined with precomputations. We will study
these base τ digit expansions in Section 2.2.

A modification of the original problem of scalar multiplication is the computation of
linear combinations m · P + n ·Q for integers m and n and curve points P and Q. These
are needed in the verification algorithm for elliptic curve digital signatures. Instead of
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computing mP and nQ individually and adding the result, one can use a method proposed
by Strauss [25] (alternatively referred to as Shamir’s trick) in which one goes through the
binary expansions of m and n simultaneously and adds P , Q or P + Q to the result in
between doubling operations. The expansions of m and n, put together, can be seen as
a joint expansion of the vector

(
m
n

)
. Just as in the one-dimensional case, generalizations

have been made to allow digit sets other than {0, 1} and τ as a base instead of 2. We will
look at some properties and techniques for joint expansions in Section 2.3. To formalize
the ideas above we define the general form of an expansion:

Definition 1.1. A base b (digit-)expansion of an integer n is a sequence ε = (εj)j∈N0 =
(. . . , ε2, ε1, ε0) of digits εj ∈ D ⊆ Z where only finitely many digits are nonzero and

n = value(ε) :=
∑
j≥0

εjb
j.

D is called the digit set of the expansion, ` = max{j ∈ N0 | εj 6= 0} + 1 the length of the
expansion and we write ` = length(ε). The number of nonzero εj is called the weight of
the expansion and written as weight(ε).

1.3 Markov chains

Markov chains (see e.g. [21]) are a very common way to model a certain kind of random
process, which for a given time n is in a certain state s ∈ S, where S is a countable set.
The special property of Markov processes is their lack of memory, i.e. any step in the
process depends only on the current state and not on any previous history. We will only
be considering the case of discrete time Markov processes, which means that n will be in
N0.
Markov chains will be used in Chapter 4, to compute minimal Hamming weights of integers
encoded with special digit sets.

Definition 1.2. Let S be a countable set. A discrete time Markov chain is a sequence
(Xn)n≥0 of random variables with values in S, such that for n ≥ 0 and s0, . . . , sn+1 ∈ S

P(Xn+1 = sn+1 | Xn = sn, . . . , X0 = s0) = P(Xn+1 = sn+1 | Xn = sn).

We call S the state space and the distribution of X0 the initial distribution of the Markov
chain. Additionally, if P(Xn+1 = sj | Xn = si) = pij is independent of n, we say that the
Markov chain is time homogeneous and define

P = (pij)i,j≥0,

the transition matrix for the Markov chain (Xn)n≥0.

We will only be discussing time homogeneous discrete time Markov chains with a finite
state space S = {s0, s1, . . . , sN}. They are completely characterisized by giving an initial
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distribution λ, written as a row vector (λi)0≤i≤N = (P(X0 = si))0≤i≤N and the transition
matrix P . The matrix P corresponds to a directed graph where the vertices are the
elements of the state space and for every i, j ∈ N0 with pij > 0, there is an edge from si to
sj, labeled with its transition probability pij.
In a general graph theoretical context, it is a well known property of transition matrices,
that their n-th powers provide information about paths of length n. For Markov chains
the n-th power of P gives the probability of getting from one state to another in n steps.
In other words, setting P n = (p

(n)
ij )ij for n ≥ 0, we get

P(Xn = sj | X0 = si) = p
(n)
ij

and combining this with the initial distribution λ, we can compute the distribution of Xn

as
P(Xn = sj) = (λP n)j.

Definition 1.3. A distribution π = (π1, . . . , πN) for the Markov chain with transition
matrix P is called a stationary distribution if it satisfies

π · P = P.

Next we will sum up some definition and results that provide information on when a
Markov chain has a unique stationary distribution.

Definition 1.4. For two states si, sj ∈ S, we say

• j is reachable from i, written i→ j, if

P(Xn = sj | X0 = si) > 0 for some n ≥ 0

• i communicates with j, written i↔ j, if i→ j and j → i.

It is easy to see that ↔ is an equivalence relation on S and therefore partitions it into
classes. We call them the communicating classes of the Markov chain. A communicating
class C ⊆ S is called closed, if

∀i ∈ C : i→ j ⇒ j ∈ C,

which means that the the process will never leave this class again. A chain consisting of
one single communicating class is called irreducible.

Definition 1.5. The period of a state si is defined as

p(si) = gcd{n ∈ N | P(Xn = si | X0 = si) > 0}

and we call si aperiodic if p(si) = 1 and periodic otherwise.

Lemma. All states in one communicating class have the same period.
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Definition 1.6. An irreducible Markov Chain is aperiodic if and only if one of its states
is aperiodic.

Theorem. Let (Xn)n≥0 be a finite state space irreducible Markov chain with transition
matrix P . Then there exists a unique stationary distribution π and if (Xn)n≥0 is aperiodic,
we get that for all initial distributions λ,

lim
n→∞

λ · P n = π

2 Digit expansions — An overview

2.1 Base 2 digit expansions

Definition 2.1. A signed binary expansion of an integer n is a base 2 digit expansion with
digit set D = {0,±1}.

As discussed in Section 1.2, efficient scalar multiplication of an elliptic curve point P
with an integer n using only the two operations addition and doubling, can by done with
the binary method using the binary expansion of n. Modifying it to allow subtractions of
P yields Algorithm 1. It takes signed binary expansions as input.

Algorithm 1 (Signed) Binary Method

Input: Signed binary expansion ε = (εj−1, . . . , ε1, ε0) of an integer n, curve point P
Output: Point Q such that Q = nP
Q := 0
k := j − 1
while k ≥ 0 do
Q := 2Q
if εk = 1 then
Q := Q+ P

else if εk = −1 then
Q := Q− P

end if
k := k − 1

end while

The doubling step is performed in every iteration, so the total number of doublings
coincides with length(ε). The additions or subtractions are performed for every nonzero
digit in the input expansion. The number of these is given by the Hamming weight of the
expansion and we will write it as weight(ε). Since the representation of an integer by a
signed binary representation is by no means unique, it is the next logical step to find such
representations with minimal weight, to optimize the performance of scalar multiplication.
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2.1.1 The non-adjacent form

Definition 2.2. Then non-adjacent form (NAF, sometimes also “balanced binary repre-
sentation”) is a signed binary expansion with the additional property that there are no
adjacent (hence the name) nonzero digits:

∀i ∈ N : εi+1εi = 0.

It was discovered independently by several authors, we refer to Reitwiesner [22], who
also proved that the NAF minimizes weight(ε) under all signed binary expansions ε of any
given integer.

The computation of the NAF is quite straightforward. When starting with a standard
binary expansion of n, one simply scans it from right to left (least significant bit to most sig-
nificant bit) and corrects any violations of the NAF-condition by replacing digit-sequences
of the form (1, . . . , 1)︸ ︷︷ ︸

k bits

by ( 1︸︷︷︸
carry

, 0, . . . , 0,−1︸ ︷︷ ︸
kbits

).

Algorithm 2 expresses this in terms of modulo arithmetic.

Algorithm 2 Computing the NAF of n from right to left.
Input: Integer n.
Output: NAF ε = (εj−1, εj−2, . . . , ε1, ε0) of n.
c := n
i := 0
while c 6= 0 do
{n = c2i +

∑i−1
j=0 εj2

j}
if c is odd then
εi := 2− cmod 4
c := c− εi

else
εi := 0

end if
c := c/2
i := i+ 1

end while

Algorithm 2 terminates because |c| is decreased in every loop iteration. The loop-
invariant n = c2i +

∑i−1
j=0 εj2

j captures the fact that c is processed right-to-left, where
(εi−1, εi−2, . . . , ε1, ε0) holds the already computet rightmost i digits of the result. As soon
as c is 0, we get value(ε) = n. The NAF condition is satisfied, because nonzero digits
are only ever prepended to ε in the case where c is odd. Directly afterwards c is modified
to satisfy c = 0 (mod 4). Hence c will be even in the next loop iteration and the next
NAF-digit will be a zero.

In terms of efficiency impact on scalar multiplication, we are—as stated earlier—mainly
interested in the length and the Hamming weight of the expansion. With regards to the
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length, it is a known result ([23]) that the NAF of an integer can at most be one bit longer
than its standard binary expansion. The weight of the NAF for a given integer n < 2`

is minimal among all signed binary expansions of the same integer and on average it is
1
3
`+O(1) as demonstrated in [19], [13] or [14] for an analysis under various input statistics.

2.1.2 Window methods (w-NAF)

It is well known that if additional memory for precomputations is available, the number of
additions in the scalar multiplication algorithm can be further reduced by precomputing
η · P for some small η ∈ Z and allowing these η as digits in the expansion of n.

Definition 2.3. Let w ≥ 2, then the width-w-non-adjacent form or w-NAF of an integer
n is a base 2 integer expansion with the digit set Dw = {0,±1, . . . ,±(2w−1 − 1)} and the
additional property that among any w consecutive digits, there is at most one non-zero
digit.

This expansion is a direct consequence of applying the concepts of the sliding window
method to binary expansion of n. The name comes from the visual image of sliding a
window of width w along the expansion from right to left. Arithmetically this is done by
choosing digits from D according to the remainder of n modulo 2w.

On the other hand, looking at Algorithm 3 (cf. [23]), it becomes obvious that it is also
just the logical generalization of the NAF and in fact the ordinary NAF is identical to the
w-NAF for w = 2.

Algorithm 3 Computing the w-NAF of n from right to left.
Input: Integer n, w ≥ 0
Output: w-NAF ε = (εj−1, εj−2, . . . , ε1, ε0) of n.
c := n
i := 0
while c 6= 0 do
{n = c2i +

∑i−1
j=0 εj2

j}
if c is odd then

Let εi ∈ Dw s.t. εi ≡ c mod 2w

c := c− εi
else
εi := 0

end if
c := c/2
i := i+ 1

end while

As in the case for w = 2, the general w-NAF of an integer n is unique, it is at most
one bit longer than the binary expansion and it has minimal weight among all integer
expansions of n with digits of absolute value smaller then 2w. ([1], [20]).
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2.2 Base τ digit expansions

In [18], Koblitz discussed a class of elliptic curves that permit very efficient scalar multi-
plication. They are defined over F2 by the equation

Ea : Y 2 +XY = X3 + aX2 + 1,

where a ∈ {0, 1} and we are interested in the group Ea(F2n) of F2n-rational points on
the curve. The Frobenius map ϕ : F2n → F2n that sends x to x2 can be extended to
an automorphism on Ea(F2n), where ϕ((x, y)) = (x2, y2). When using a normal basis
representation for F2n , the computation of this mapping is done by a simple bit-shift and
hence virtually cost-free. Koblitz points out that (setting µ = (−1)1−a) ϕ satisfies the
identity

ϕ(ϕ(P ))− µϕ(P ) + 2 = 0 (3)

and therefore can be used to compute 2`P efficiently for ` ≤ 4 (cf. [18, Section 2]). This
would lead to a fast way of dealing with blocks of up to 4 zeros in a binary double-and-add
scheme. More importantly however, in Section 6 of the same paper, Koblitz mentions the
concept of a base-ϕ expansion, which leads away from doubling-based scalar multiplication
altogether.

The idea is further developed by Solinas in [23], where the author concludes that since
ϕ permutes the curve points and satisfies Equation (3), it can be seen as multiplication of
P by the complex constant τ , satisfying

τ 2 − µτ + 2 = 0. (4)

Explicitly, we get τ = µ+
√
−7

2
. For the Frobenius map to take the place of the doubling

operation in scalar multiplication, it is of interest, to represent any given integer n as

n =
∑̀
i=0

εiτ
i, (5)

where ` ∈ N and the εi are elements of some digit set D that remains to be found. In fact,
as Solinas states, it is worthwhile to regard n as an element in Z[τ ].

The first algorithm to generate an encoding to the base τ is based on the observation
that τ divides an element c0 + c1τ ∈ Z[τ ] if and only if c0 is even. In this case it is easy to
see that

c0 + c1τ

τ
=
µc0 + 2c1

2
− c0

2
τ .

Hence any n ∈ Z[τ ] can be uniquely written in the form of (5), with the digits in D = {0, 1}
by looking at the remainder modulo 2 and division by τ in between. According to an
observation made in [3, Example 2.7], this is just another way of saying that τ is the base
of a canonical number system in Z[τ ]. For the scalar multiplication this means that instead
of a double-and-add method, we now employ a “τ -and-add”-paradigm.

As in the binary case, it is now possible to allow digits other than {0, 1} in a base-τ
expansion and resolve the resulting ambiguity in favor of optimal expansions in terms of
minimal Hamming weight leading to fast scalar multiplication algorithms.
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2.2.1 The τ-NAF

The idea of using point subtractions works just as well for base τ -expansions as in the case
for base 2. The corresponding digit set is D = {0,±1} and Solinas uses it to construct
the so-called τ non-adjacent form or τ -NAF, which he shows to be unique. The natural
transcription of the ideas employed in the binary NAF suggest to pick the least significant
digit according to the remainder upon division by τ 2. The remainder modulo τ is either 1
or −1 and selecting it in order to guarantee that after subtracting it and dividing by τ , the
result is again divisible by τ gives exactly the desired non-adjacency property εjεj+1 = 0.

Algorithm 4 Computing the τ -NAF of n from right to left.

Input: z = z0 + z1τ ∈ Z[τ ].
Output: τ -NAF ε = (εj−1, εj−2, . . . , ε1, ε0) of z.

(c0, c1) := (z0, z1)
i := 0
while c0 + c1τ 6= 0 do
{z = (c0 + c1τ)τ i +

∑i−1
j=0 εjτ

j}
if c0 is odd then
εi := 2− (c0 − 2c1 mod 4)
c0 := c0 − εi

else
εi := 0

end if
(c0, c1) := (c1 + µc0/2,−c0/2)
i := i+ 1

end while

Solinas notes that τ -NAFs of a given length have the same average density as the
ordinary NAF, because the same bit-strings occur. A formal proof of the minimality of
the τ -NAF among all base τ expansions of a given n ∈ Z[τ ] with the digit set {0,±1} is
given in [2].

In contrast to the binary case, the τ -NAF of any given integer n can be roughly twice as
long as the binary expansion or the ordinary NAF of n. This problem is already mentioned
in [18], but Solinas points out that since in F2m , an m-fold concatenation of the Frobenius
map is the identity map (i.e. x2

m
= x), we get

τmP = P

for the curve points P ∈ Ea(F2m). It follows that (τm − 1)P = O and hence, for z1, z2 in
Z[τ ] we have z1P = z2P , whenever z1 ≡ z2 mod (τm − 1). This is even sharpened for the
subgroup G of Ea(F2m) of large prime order. With δ = τm−1

τ−1 , it follows that z1P = z2P ,
whenever z1 ≡ z2 mod δ. This is used to define a reduced version of the τ -NAF where
for a given n ∈ Z[τ ], the reduced τ -NAF is taken to be the τ -NAF of its remainder upon
division by δ.

16



2.2.2 The τ-w-NAF

When extending the ideas of the window method to base τ expansions, our width-w window
is represented by looking at the input modulo τw rather than 2w. This motivates looking at
the congruence classes of τw in Z[τ ] for possible digit sets. In analogy to only considering
odd digits for base 2 extensions, here, only residue classes coprime to τ are of interest. We
call a set containing exactly one representative for every prime congruence class modulo
τw a reduced residue system modulo τw and a logical choice for a digit set for the τ -w-NAF
would be 0 together with such a reduced residue system.

Such a digit set can be used to compute digits according to Algorithm 5. Not surpris-
ingly, it looks very similar to the encoding scheme for the base 2 w-NAF.

Algorithm 5 Computing the τ -w-NAF of z ∈ Z[τ ] from right to left.

Input: z ∈ Z[τ ], w ≥ 0, a digit set D = {0} ∪ D̃, where D̃ is a reduced residue system
modulo τw

Output: τ -w-NAF ε = (εj−1, εj−2, . . . , ε1, ε0) of z.
c := z
i := 0
while c 6= 0 do
{z = cτ i +

∑i−1
j=0 εjτ

j}
if τ | c then
εi := 0

else
Let εi ∈ D s.t. εi ≡ c mod τw

c := c− εi
end if
c := c/τ
i := i+ 1

end while

It is clear that the output satisfies the familiar width-w non-adjacency property and
we get the same low expected Hamming weight as in the case for base 2. What is unclear
however, is whether the algorithm terminates for any given reduced residue system D̃. This
is answered in [3], where the authors describe an algorithm recognizing exactly those digit
sets that guarantee the finiteness of Algorithm 5.

Using the fact that every element of Z[τ ] has a unique base-τ expansion with the digit
set {0, 1}, we see that {

∑w−1
j=0 εjτ

j | εj ∈ {0, 1}} is a complete residue system and there
are exactly 2w congruence classes modulo τw. In this system the elements with ε0 = 0 are
the ones divisible by τ , so eliminating them leaves 2w−1 prime congruence classes. The set
Dw = {0,±1, . . . ,±(2w−1−1)} which was used for the base 2 w-NAF also contains exactly
one representative for every prime congruence class module τw (and the digit 0). However,
as noted in [3], it does not admit a τ -w-NAF (i.e. Algorithm 5 does not terminate) for
some inputs whenever w /∈ {2, 3, 4, 5, 7, 8, 9, 10}.
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Solinas forgoes the discussion about different possible choices for digit sets and simply
suggests a digit set containing 0 and a representative of minimal norm from every prime
residue class modulo τw. We refer to this set as MNR(w). In his construction (cf. [23,
Section 5.1]) the author describes a division procedure in Z[τ ] and defines his digit set
as the remainder upon division of the elements of Dw by τw. He introduces a rounding
operation in C, where complex numbers are rounded to the nearest element of Z[τ ]. This
is achieved by partitioning the complex plane in Voronoi Cells Vu, where

V := V0 = {z ∈ C | ∀y ∈ Z[τ ] : N(z) ≤ N(z + y)},
Vu = V + u for u ∈ Z[τ ]

and every z ∈ C is rounded to the center of its Voronoi cell2. Here N(z) refers to the norm,
i.e. N(z) = zz̄. Note that N(a + bτ) = a2 + µab + 2b2 and N(τ) = 2. The cell V is a
hexagon, formed by 6 inequalities and all its corners lie on the circle formed by the set of
all points of norm 4

7
.

This region V is of particular interest, because a scaled version Ṽ := τwV can be used to
geometrically characterize MNR(w). Since Ṽ = {z ∈ C | ∀y ∈ Z[τ ] : N(z) < N(z + τwy)},
it is evident that the elements in Ṽ ∩ Z[τ ] are exactly those who have a smaller norm
than any of the elements in the same residue class modulo τw. So the minimal norm
representatives are made up of 0 and the elements a+ bτ inside of Ṽ with odd a.

Figure 1: The set MNR(4) including the Vu-grid and the single cell Ṽ (µ = −1)

Figure 1 shows the set MNR(4) for µ = −1 and the tiling of the complex plane into
Voronoi regions Vu, where coordinate points (x, y) correspond to x + yτ ∈ C. The larger
hexagon is the cell Ṽ and it can be seen that the multiplication of V by τw causes a scaling
and a rotation.

2To make this description completely unambiguous we would have to discuss what happens for points
on the border between two Voronoi cells. For such a discussion we refer to [3]
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2.2.3 Non-optimality of the τ-w-NAF

The question of optimality in case of the τ -w-NAF has already been answered positively
for w = 2 (where the τ -w-NAF is just the ordinary τ -NAF and MNR(2) = {0,±1}) and
w = 3 in [2]. As seen earlier, the base 2 w-NAF has lead to optimal expansions for all
values of w. It would therefore be quite plausible that a similar result can be obtained for
the τ -w-NAF. This is not the case as shown by Heuberger in [10]. For the case w = 4,
µ = −1 and D = MNR(4), the author gives a simple example illustrating the failure of the
w-NAF to produce an optimal expansion. Consider

ε = (1, 0, 0, 0,−1− τ, 0, 0, 0, 1− τ) and ε̃ = (−3− τ, 0, 0,−1).

Here, ε is the unique τ -4-NAF of −9 and ε̃ is a different base τ -expansion of −9 with
the same digit set, not satisfying the NAF-condition. However, ε has weight 3, while the
weight of ε̃ is only 2.

This example alone voids all speculation for general optimality of the base τ -w-NAF,
but in the main theorem of [10], the situation is further clarified. The problem is not that
the τ -w-NAF is just not good enough, but rather that for w ∈ {4, 5, 6}, it is impossible
to construct an online algorithm to give an optimal expansion. What is meant by that is
that in order to even determine the least significant bit of an optimal expansion, one may
have to read in the complete input, or more formally (cf. [10, Theorem 1]):

Theorem. Let w ∈ {4, 5, 6} and D = MNR(w)3. For every positive integer `, there exist
z` and z′` ∈ Z[τ ], such that

• z` ≡ z′` mod τ ` and

• minimal weight D-expansions of z` and z′` differ in their least significant digit.

2.3 Joint expansions

Joint expansions have been proposed by Solinas [24] in an effort to find a way to efficiently
compute expressions of the form

m · P + n ·Q, (6)

where P and Q are points on an elliptic curve and m and n are integers as before. These
computations represent a performance critical step in digital signature algorithms.

It had been known4 earlier that, in order to compute (6), it is not necessary to com-
pute mP and nQ individually (and subsequently add it). Instead, if one can precompute
the point R = P + Q, it is possible to go through the (binary) expansions of m and n
simultaneously in a double-and-add scheme. The doubling occurs in every step, just as in
the 1-dimensional case and if mj and nj are the current digits in the binary expansions of

3Heuberger additionally allows two other types of digit sets
4 as “Shamir’s Trick”, first introduced by Straus [25], see [12, Appendix A] for an algorithmic formu-

lation
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m and n respectively one then adds P if (mj, nj) = (1, 0), Q if (mj, nj) = (0, 1) and R if
(mj, nj) = (1, 1) in between. In analogy to the quest for low weights in our one-dimensional
expansion, we would now like to see the case (mj, nj) = (0, 0) as often as possible, since
it corresponds to no addition at all. In the case of binary expansions of course, we can
not influence the rate at which this happens, but as Solinas proceeds, one can allow signed
expansions for m and n and since those are not unique, try to align them in a special way
to get a low number of required additions when computing (6).

This motivates us to study joint expansions and we will define them in general terms
before formally writing down the algorithm sketched above. In the following, we will
denote the base of the expansion as b ∈ {2, τ}. The inputs and digits will come from the
set R := Z[b] (which of course is just Z in case b = 2).

Definition 2.4. Let b ∈ {2, τ}, d ≥ 1 and D ⊆ R. A base b joint D-expansion of a vector
of integers n ∈ Rd is a sequence ε = (εj)j∈N0 = (. . . , ε2, ε1, ε0) of digit vectors εj ∈ Dd,
where only finitely many digit vectors are nonzero5 and

n = value(ε) :=
∑
j≥0

εjb
j.

The number of nonzero5 εj is called the (joint) weight of the expansion and written as
weight(ε).

One way to look at joint expansions is seeing them as a matrix

ε =
(
ε
(k)
j

)
1≤k≤d
0≤j≤`

=

ε
(1)
` · · · ε

(1)
1 ε

(1)
0

...
...

...

ε
(d)
` · · · ε

(d)
1 ε

(d)
0


with sufficiently large ` and entries ε

(k)
j ∈ D. This way, we can write

n =

n
(1)

...
n(d)

 =

ε
(1)
` · · · ε

(1)
1 ε

(1)
0

...
...

...

ε
(d)
` · · · ε

(d)
1 ε

(d)
0

 ·

b`

...
b1

b0

 ,

the row ε(k) of the matrix is an integer expansion of n(k) and the joint weight of ε is the
number of nonzero columns.

Algorithm 6 is a generalization of the description above and works for general joint
D-expansions ε of n = (n(1), · · · , n(d))T and curve points P1, . . . , Pd, to compute

d∑
k=1

n(k) · Pk.

5In this context, “nonzero” means “not equal to the zero-vector”
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Algorithm 6 Straus’ algorithm

Input: ε =
(
ε
(k)
j

)
1≤k≤d
0≤j≤`

base b joint D-expansion of n = (n(1), · · · , n(d))T and

P1, . . . , Pd elliptic curve points
Output: Q =

∑d
k=1 n

(k) · Pk
for all η ∈ Dd do
Rη :=

∑d
k=1 η

(k) · Pk
end for
Q := Rε`

for j = `− 1→ 0 do
Q := b ·Q
if εj 6= 0 then
Q := Q+Rεj

end if
end for
return Q

The number of elliptic curve additions and hence the performance of this algorithm
depends on the joint weight of the expansion ε. As in the one-dimensional case it has been
the focus of a whole line of research to investigate expansions that minimize the weight for
given parameters d, b and D.

Obviously just generating minimal expansions of every n(k) individually is not a good
solution. Consider the example n = (45, 38)T and the two joint expansions ε and ε̃ of n
given by

ε =

(
1 0 −1 0 −1 0 1
0 1 0 1 0 −1 0

)
and ε̃ =

(
1 0 −1 0 0 −1 −1
1 0 −1 −1 0 −1 0

)
.

The rows of ε are the unique NAF-representations of 45 and 38 respectively with minimal
weights 4 and 3. The rows of ε̃ do neither satisfy the NAF-property, nor are they both
minimal expansions (ε̃1 is minimal, but ε̃2 is not). However, when we turn our attention
to the joint weights of the expansions, we have

5 = weight(ε̃) < weight(ε) = 7.

2.3.1 The joint sparse form and the simple joint sparse form

Solinas first investigated the most basic case, where b = 2, d = 2 and D = {0,±1}. His
approach (cf. [24, Chapter 4]) is based on a generalization of the non-adjacent form and
called the joint sparse form or JSF.

An base 2 joint expansion ε =
(
ε
(k)
j

)
1≤k≤2
0≤j≤`

with digits in D = {0,±1} is in joint sparse

form, if
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(JSF-1) Of any three consecutive columns, one is the zero-column,

(JSF-2) Adjacent terms do not have opposing signs, i.e. ε
(k)
j+1ε

(k)
j 6= −1 (k ∈ {1, 2}),

(JSF-3) If ε
(k)
j+1ε

(k)
j 6= 0, then ε

(3−k)
j+1 = ±1 and ε

(3−k)
j = 0.

Based on these three syntactical conditions, he proves that every pair of integers has a
unique JSF and that it minimizes the weight among all joint expansions of that pair with
the same digit set. The average density of a JSF is given as 1

2
and since it is at most one

bit longer than the binary expansion of the larger of the two integers, one can say that
using the JSF, (6) can be computed at the same cost as one simple scalar multiplication
using the binary method (on an ordinary binary expansion of the same length).

Of course Solinas also includes an algorithm for the computation of the JSF, but we
leave it out and instead present a slightly modified version of the JSF, which was described
by Grabner et al. in [8], has a simpler definition and yields a less elaborate algorithm. The
syntactical requirements for this simple joint sparse form (or SJSF) are

(SJSF-1) If
∣∣∣ε(k)j ∣∣∣ 6= ∣∣∣ε(3−k)j

∣∣∣, then
∣∣∣ε(k)j+1

∣∣∣ =
∣∣∣ε(3−k+1)
j+1

∣∣∣ and

(SJSF-2) If
∣∣∣ε(k)j ∣∣∣ =

∣∣∣ε(3−k)j

∣∣∣ = 1, then ε
(k)
j+1 = ε

(3−k+1)
j+1 = 0.

As remarked by its inventors, the SJSF is also unique and very closely related to the JSF.
It has the same (minimal) weight and in fact it even has the zero-columns in the same
positions. It does however not generally satisfy (JSF-2). Algorithm 7 (cf. [8, Algorithm
1]) shows how to generate the simple joint sparse form of a pair n = (n(1), n(1))T.

The basic idea behind the simple joint sparse form is that for odd integers x, we can
freely choose the least significant bit x0 of a signed binary encoding to be 1 or −1. When
making the next step in the right-to-left encoding scheme, we are then looking at (x−x0)/2.
Through our choice of x0, we can influence whether this value is even or odd. When looking
at a pair ( xy ), we basically have 3 cases. If x and y are even, we immediately get a zero
column in the encoding. If x and y are odd, we can pick x0 and y0 from {±1} in such a
manner, that (x − x0)/2 and (y − y0)/2 are both even and we get a zero column in the
next step. If wlog. x is odd and y is even, we can chose x0 ∈ {±1} in order to guarantee
(x− x0)/2 ≡ (y − y0)/2 mod 2, bringing us to one of the first two cases in the next step
and therefore getting a zero column within one or two steps.

2.3.2 Higher dimensions

One advantage of the SJSF over the JSF is that the authors of [8] were able to seamlessly
generalize it to higher dimensions d > 2. Solinas already classified this as problem of
interest, but admits that his JSF does not have an obvious generalization. The ideas of
the SJSF however, can be applied to the case were d > 2 as follows:
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Algorithm 7 Simple Joint Sparse Form

Input: n =
(
n(1)

n(2)

)
Output: The simple joint sparse form ε =

(
ε
(1)
` ··· ε(1)0

ε
(2)
` ··· ε(2)0

)
of n

j := 0
while n(1) 6= 0 or n(2) 6= 0 do
εj := n mod 2

if

(
ε
(1)
j

ε
(2)
j

)
=

(
1
1

)
then

εj := εj − ((n− εj) mod 4)

else if ε
(1)
j 6= ε

(2)
j then

if (n(1) − ε(1)j )/2 6≡ (n(2) − ε(2)j )/2 mod 2 then
εj := −εj

end if
end if
n := (n− εj)/2
j := j + 1

end while

One tries to get to the case, where after j steps, the inputs (n(1), . . . , n(d))T are all either

≡ 0 mod 4, or odd. By then again picking next digits ε
(k)
j ∈ {±1} for the columns k with

odd n(k), such that (n(k) − ε(k)j )/2 is even, we get a zero column in the net step.
The algorithm for this d-dimensional joint sparse form can be found in [8, Algorithm

2]. While computing the expansion ε from right to left, at every step j it keeps track of

the set of line indices of column j for which ε
(k)
j 6= 0.

Aj(ε) := {1 ≤ k ≤ d | ε(k)j 6= 0}

In step j, the set Aj+1(ε) is initialized with the indices of the lines where the remaining

input is odd. If Aj+1(ε) ⊆ Aj(ε), we simply set ε
(k)
j := −ε(k)j for all k ∈ Aj+1(ε) and after

the corresponding carries are considered, Aj+1(ε) becomes the empty set. Conversely, if

Aj+1(ε) \ Aj(ε) 6= ∅, set ε
(k)
j := −ε(k)j for all k ∈ Aj(ε) \ Aj+1(ε). Then we set Aj+1(ε) :=

Aj(ε) ∪ Aj+1(ε). Summing up, the algorithm works by generating the expansion ε, such
that it satisfies

Aj+1(ε) ) Aj(ε) or Aj+1(ε) = ∅ (7)

for all 0 ≤ j ≤ `. Since any chain of the form Aj+r(ε) ) · · · ) Aj(ε) 6= ∅ can at most have
d elements (i.e. r ≤ d), it follows that among d+ 1 consecutive digit columns, at least one
is a zero-column. This is the logical generalization of the condition (JSF-1) and as shown
in [8], for any n = (n(1), · · · , n(d))T ∈ Zd, a unique expansion ε of n satisfying (7) always
exists and is minimal among all joint expansions of n.
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2.3.3 Other generalizations

The d-dimensional SJSF addresses the limitations of the (S)JSF in terms of the value of
d. The two other restrictions that remains are the limitation to the digit set D = {0,±1}
and the sole use of base 2.

In [12], Heuberger and Muir consider base 2 joint expansions of arbitrary dimension
d ≥ 1 using the digit set D`,u = {a ∈ Z | ` ≤ a ≤ u} for integers ` ≤ 0 and u ≥ 1. They
describe an algorithm that computes minimal expansions and give the expectation of this
minimal joint weight.

To also introduce joint expansions when working in base τ , Ciet et al. generalized
Solinas’ joint sparse form to a τ -JSF (cf. [6]).

A base τ joint integer expansion

ε =

(
ε
(1)
j

ε
(2)
j

)
0≤j≤`

of n ∈ R2 is called a τ -JSF, if

(τ -JSF-1) Among three consecutive columns, at least one is a zero column.

(τ -JSF-2) For all j ≥ 0 and k ∈ {1, 2}, we have ε
(k)
j ε

(k)
j+1 6= µ.

(τ -JSF-3) If ε
(k)
j+1ε

(k)
j 6= 0 then

∣∣∣ε(3−k)j+1

∣∣∣ = 1 and ε
(3−k)
j = 0.

Existence and uniqueness of the τ -JSF is established in [6, Theorem 4]. The authors point
out6 that minimality does not carry over from the JSF, but claim that for large inputs, the
weight of the τ -JSF only deviates from the optimal weight by a small constant. As in the
one-dimensional case, Heuberger shows in [10, Section 7] that an optimal expansion can
not generally be computed by a right-to-left online algorithm.

3 Signed binary digit expansions

In this chapter we want to turn our attention to base 2 signed binary expansions, which
according to Definition 2.1 are base 2 digit expansion with digit set D = {0,±1}. With the
non-adjacent form, we already studied an expansion that has many desirable properties
for our applications. These are: (cf. [24])

• The NAF exists for every integer.

• The NAF is unique.

• The algorithm to compute the NAF of an integer is simple and efficient.

• The NAF of a positive integer is at most one bit longer than its binary expansion.

6via a simple example
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• The NAF of an integer has minimal Hamming weight among all its other signed
binary expansions.

• The expected density of a NAF is 1
3
.

This warrants the question if there is even a need to consider any other way of representing
integers as signed binary expansions than the NAF. To answer this, one can consider any
possible weaknesses and find expansions that address these while not compromising on the
properties above.

One such slight disadvantage of the NAF (and all its generalizations) is the way it is
computed from right to left. This is problematic, because in the double-and-add algorithm
used for scalar multiplication, we need the digits from left-to-right, so when using an
expansion that can only be computed right-to-left, we first have to compute and store
the whole expansion and then perform the multiplication. In the case of the basic NAF,
the remedy for this is a modification of the double-and-add method that, instead of the
intermediate result, doubles the point P in every step and works from the right to the left.

Algorithm 8 Right-to-left Binary Method using the NAF
Input: Integer n, curve point P
Output: Point Q such that Q = nP
Q := 0
c := n
while c 6= 0 do

if c ≡ 1 mod 2 then
ε := 2− c mod 4
c := c− ε
if ε = 1 then
Q := Q+ P

else
Q := Q− P

end if
end if
c := c

2

P := 2P
end while

Algorithm 8 illustrates this. In order to fully benefit from this situation, where the
expansion can be computed in the same direction as the scalar multiplication, one has
to combine the two algorithms to one online-algorithm and never even store the digit
expansion.

However, this approach is not applicable for any of the methods beyond the simple NAF
with D = {0,±1}. As soon as we use larger digit sets, or want to consider joint expansions,
the multiplication algorithm involves the usage of precomputations. So instead of a possible
addition or subtraction of one point P , we are facing addition or subtraction of a set of
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points (see for example Algorithm 6) and to get a right-to-left algorithm we would have to
double all these points in every step, which is not efficient.

A second albeit closely related drawback of the NAF is that since it is generally com-
puted from right to left, one can not determine an arbitrary digit in the NAF without first
computing the complete expansion up to this digit. As we will see, this is a limitation that
other expansions do not share.

In the following we will look at two signed binary expansions that where designed to
address some of these issues. One is the alternating greedy expansion presented in [9] and
the other one is based on building digit-wise complements in the binary expansion. As
we will see, it is a misconception to think that any of the two are better suited for use in
scalar multiplication than the NAF. At least the former of the two does have some very
interesting applications as a “helper expansion”.

3.1 Alternating greedy expansion

A signed binary expansion (εj)j∈N0 is called an alternating greedy expansion, if it fulfills
the following conditions:

(AG-1) If εj = εr 6= 0 for some j < r, then there is a k with j < k < r, such that
εj = −εk = εr.

(AG-2) The first and the last nonzero digit have opposing sign, ie. for a := max{j | εj 6= 0}
and b := min{j | εj 6= 0}, we have εa = −εb.

Existence of the alternating greedy expansion has been proved in [9] and uniqueness
is shown in [11]. We can hence speak of the alternating greedy expansion of an integer.
In fact it is easy to see that the alternating greedy expansion can be computed from the
binary expansion of an integer. Since we must also consider negative integers, we have to
note that the binary expansion of a negative integer n is the same as the binary expansion
of −n, except that all the nonzero digits are negative. This expansion consisting either
entirely of digits 0 and 1 (positive n) or 0 and −1 is sometimes referred to as unisigned
expansion and is of course unique.

So if n is given in its unisigned expansion, the alternating greedy expansion of n can
be computed by bitwise subtracting n from 2n. More formally, if η = (η`−1, . . . , η0) is the
unisigned expansion of n, then the alternating greedy expansion is given by ε = (ε`, . . . , ε0),
where

ε` = η`−1,

ε0 = −η0 and

εj = ηj−1 − ηj for 0 < j < `.

This expansion ε satisfies (AG-1), because if εj = εr 6= 0 for some j < r, we get that
ηj = ηr, ηj−1 = ηr−1 and ηr−1 6= ηj. So there is a k with j < k ≤ r− 1 such that ηk = ηr−1
and ηk−1 = ηj. It follows that εk = −εj = −εr.

26



It satisfies (AG-2), because setting a = max{j | εj 6= 0} and b = min{j | εj 6= 0}, we
get a = 1 + max{j | ηj 6= 0} and b = max{j | ηj 6= 0}. Therefore εa = ηa−1 and εb = −ηb
and because η is a unisigned expansion it follows that εb = −εa.

Algorithm 9 shows how to compute the alternating greedy expansion from left to right.

Algorithm 9 Computing the alternating greedy expansion from left to right

Input: η = (η`−1, . . . , η0) unisigned expansion of n ∈ Z
Output: the alternating greedy expansion ε = (ε`, . . . , ε0) of n
η` := 0
η−1 := 0
for j = `→ 0 do
εj = ηj−1 − ηj

end for

Note that if the input is already given in its unisigned binary expansion, the com-
putation of the alternating greedy expansion can be done in parallel and very efficiently
implemented in hardware. This is in strong contrast to the previously studied expansions,
where we have to compute the individual digits separately from right to left. The key
property of the alternating greedy expansion, however is that it can be used as a helper
expansion to facilitate the computation of minimal expansions from left to right. This was
actually the motivation to define this expansion as explained in the last chapter of [9].
There, the authors describe an algorithm that computes minimal base 2 joint expansion
of pairs of integers in the digit set D = {0,±1}. The main observation is that if the input(
n(1)

n(2)

)
∈ Z2 is given as a joint expansion

(
ε
(1)
`−1 ··· ε

(1)
0

ε
(2)
`−1 ··· ε

(2)
0

)
∈ Z2, where the rows (ε

(1)
j )0≤j<`

and (ε
(2)
j )0≤j<` are both alternating greedy expansions of n(1) and n(2) respectively 7, one

can compute a minimal joint expansion from left to right by looking at blocks of at most
three consecutive columns at a time. These blocks can always be manipulated in order to
produce one zero-column, without creating any carries that leave the block. A complete
list of possible blocks and the necessary manipulations is given in [9, Table 6].

This was generalized for the d-dimensional joint expansions of minimal weight in [11].
There the input is also converted to a joint alternating greedy expansion and then the
simple joint sparse form of blocks of columns is computed from left to right. The concate-
nation of these blocks in SJSF is then (though not a SJSF) an expansion of minimal joint
weight.

3.2 Complementary recoding

In [4], the authors introduce a method for elliptic curve scalar multiplication that works
based on building complements.

7We call a joint expansion consisting of rows of alternating greedy expansions a joint alternating greedy
expansion.
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Given a positive integer n in its binary representation (η`−1, . . . , η0), performing a com-
plementary recoding of n refers to the representation

n = 2` −
`−1∑
j=0

η̄j2
j − 1, (8)

where η̄j := 1− ηj is the binary complement of ηj (hence the name of this approach).
The correctness of Equation (8) follows from the fact that

`−1∑
j=0

η̄j2
j =

`−1∑
j=0

(1− ηj)2j =
`−1∑
j=0

2j −
`−1∑
j=0

ηj2
j = 2` − 1− n.

The corresponding integer expansion of n is somewhat loosely described in [4]. It is clear
that the term 2`−

∑`−1
j=0 η̄j2

j can be represented as ε̃ = (1,−η̄`−1, . . . ,−η̄0) and that this can
be done very efficiently. In the examples, the authors suggest that their integer expansion
ε of n also includes the subtraction of 1 at the end of (8). This is straightforward if η̄0 = 0,
i.e. if n is odd, since then ε = (1, η̄`−1, . . . , η̄1,−1) is an signed binary expansion of n.
However, if n is even and η̄0 = 0 subsequently odd, a carry occurs when subtracting 1 from
the representation ε̃. This is undesirable since it negates the strength of this method which
is that it can otherwise be computed by bit-shifts and complement-building only.

A possible remedy for this is to represent n as ε̃− 1 without changing ε̃, and applying
this to scalar multiplication, by computing nP as (n + 1)P − P , whenever n is even. We
suspect that this is what the authors actually meant and a look at the origin of their
method (cf. [5]) also suggests this to be the case. From our point of view this workaround
is equivalent to allowing −2 as a digit for the least significant bit of the resulting expansion
ε and augmenting the signed binary method to accommodate for that by subtracting P
twice.

Along these lines, we will from now on refer to the output of Algorithm 10 given the
input n as the complementary recoded form of n.

Algorithm 10 Computing the complementary recoded form

Input: Positive integer n in its binary representation η = (η`−1, . . . , η0)
Output: ε = (ε`, . . . , ε0), the CRF of n
η` := 1
for j = `− 1→ 0 do
εj = −η̄j

end for
η0 := η0 − 1

Note that the loop in this algorithm would practically be implemented by fast low-level
machine operations. With xor being the familiar bit-wise exclusive or and 	 representing
digit-wise subtraction, we could write it as 2l 	 ((2` − 1) xorn).
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Since we are always interested in the contribution our digit expansions can make to fast
elliptic scalar multiplication, the efficiency with which the expansions can be computed is
only one part of our considerations. The far more important part is the weight of such
expansions, as explained in Chapter 2. In this respect, the CRF does not compare favorably
with optimal expansions such as the NAF. It is obvious that the expected hamming weight
of the binary expansion of any given integer n is exactly the same as the expected hamming
weight of the complement of said expansion.

What the authors of [4] neglect to mention, is that for their approach to be an improve-
ment to even the ordinary binary expansion, the complementary recoding is only performed
for `-bit integers whose binary expansion has Hamming weight larger than `

2
. Even if we

consider this modification, the expected Hamming weight does not decrease dramatically8.
As a final remark, we give an example comparing different signed binary expansion of

n = 271. We get

n = (0, 1, 0, 0, 0, 0, 1, 1, 1, 1) (binary expansion, weight 5)

= (1, 0,−1,−1,−1,−1, 0, 0, 0,−1) (CRF, weight 6)

= (0, 1, 0, 0, 0, 1, 0, 0, 0,−1) (NAF, weight 3)

3.3 Empirical performance comparison

In an effort to try and reproduce the results presented in [4], we implemented a scalar mul-
tiplication test-suite in C++, using the same cryptographic library that was used there9.

Table 1 shows the average timings for a series of elliptic curve scalar multiplications
on five different curves. These are some of the curves standardized by NIST10 in [7] and
widely used in cryptographic protocols today. As inputs we use positive integers n with
n < 2p, where n is the size of the underlying field.

We compare the performances of 6 different implementations of integer expansions.
They are:

BIN: The standard binary expansion; here no recoding whatsoever is performed,
but only the standard binary method is used.

AG: The alternating greedy expansion,

NAF: The non-adjacent form,

CRF: The complementary recoded form, computed digit-wise from left to right,

CRF1: Here we only apply complementary recoding if the binary expansion of
length ` has weight larger than `/2.

8and definitely not to l
4 as claimed in [5]

9A C/C++ library for number theory and cryptography called MIRACL, see http://www.shamus.ie
10The National Institute of Standards and Technology, a regulatory agency of the United States’ gov-

ernment
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CRF2: In this implementation of the CRF, we tried to capitalize on its suitability
for parallel computation as much as possible.

The data produced by our tests nicely exemplifies several theoretical results. If we take
a look at the average weights of our expansions, we see that the non-adjacent form always
prevails. From our theoretical results we know of course that it is a minimal expansion for
any given integer n, so this also shows when averaging over many inputs. All the other
expansions fail to show any significant weight reduction over even just the ordinary binary
expansion. For the alternating greedy this is not surprising since its purpose is not that of
being a low weight expansion itself, but to assist in the left-to-right computation of minimal
expansions. For the complementary recoded form, we see that an unconditional recoding
for all inputs (corresponding to the label CRF in Table 1) even increases the average
weight when compared to that of the binary expansion. The improved implementation
where recoding is only done if more than half of the digits of the binary expansion are
non-zero (label CRF1) has a slightly improved average weight, but is still far off from that
of the NAF.

In an effort to bring out the strengths of the complementary recoding approach, we im-
plemented a version (CR2), where the recoding operations where largely done in parallel.
We show the overall computation time (ttotal) and its composition as the sum of recoding
time (trecode) and time used for the actual scalar multiplication (tmult). While the imple-
mentation CR2 does achieve a considerable speedup by a factor between 10 and 30 when
compared to the NAF, it becomes apparent that the time needed for the multiplication
procedure far outweighs any gains made in the recoding step.

4 Automated minimal weight analysis

In this chapter, our goal is to compute values for the minimal average Hamming weight
of integers achievable by any expansion, given a fixed digit set D. So far we have always
seen a more constructive approach in which one typically chooses a digit set, gives a
method specifying how to encode the input and then analyzes how these choices affect
average weight (and possibly length) of the resulting expansions. The encoding methods
are typically designed to be efficiently carried out in an on-line-algorithm.

Now we focus on the minimal average weight that can be achieved, given a certain digit
set, without imposing any syntactic restrictions or encoding rules on the result. Our goal
is not to devise an algorithm that actually delivers these expansions in a computationally
competitive fashion, but to determine what the optimal bound for such an algorithms is.

This has been done in [26], although restricted to a limited type of digit set and only
for expansions with base 2. The basic steps are as follows:

1. We describe an algorithm that computes minimal weight D-expansions.

2. We observe that even for arbitrary length inputs, our algorithm only goes through
a finite number of states. Based on this observation we model it as a finite state
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NIST-F(2m)-163
Representation Average weight trecode tmult ttotal

BIN 81.18 0 1.395 1.395
AG 81.36 0.0046 1.415 1.421

NAF 54.20 0.0038 1.180 1.184
CRF 87.86 0.0032 1.495 1.497
CRF1 78.74 0.0010 1.380 1.382
CRF2 87.86 0.0004 1.495 1.495

NIST-F(2m)-283
Representation Average weight trecode tmult ttotal

BIN 140.85 0 4.26 4.260
AG 141.79 0.0080 4.27 4.278

NAF 94.51 0.0064 3.58 3.586
CRF 148.13 0.0056 4.39 4.395
CRF1 137.40 0.0022 4.22 4.222
CRF2 148.13 0.0002 4.39 4.390

NIST-Kob-163
Representation Average weight trecode tmult ttotal

BIN 81.01 0 1.43 1.431
AG 81.34 0.0046 1.44 1.447

NAF 54.39 0.0038 1.21 1.214
CRF 88.01 0.0032 1.53 1.535
CRF1 78.95 0.0010 1.42 1.422
CRF2 88.01 0.0004 1.52 1.520

NIST-Kob-283
Representation Average weight trecode tmult ttotal

BIN 140.81 0 4.12 4.122
AG 140.76 0.0080 4.12 4.131

NAF 93.84 0.0064 3.44 3.447
CRF 148.16 0.0054 4.26 4.271
CRF1 137.03 0.0018 4.05 4.053
CRF2 148.16 0.0004 4.26 4.260

NIST-F(p)-256
Representation Average weight trecode tmult ttotal

BIN 127.91 0 3.83 3.837
AG 128.27 0.0072 3.87 3.882

NAF 85.95 0.0060 3.37 3.378
CRF 129.06 0.0048 3.95 3.967
CRF1 122.10 0.0024 3.83 3.835
CRF2 129.06 0.0002 3.94 3.941

Table 1: Elliptic curve multiplication timing results for different integer expansions
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machine, where each state transition corresponds to reading a new input digit. With
each such transition we also associate a change of the overall Hamming weight of the
result.

3. Using Markov chain terminology, we can then determine the asymptotic average
weight change when reading a randomly distributed new digit. This is the expected
density of the expansion, which directly gives us the minimum average joint Hamming
weight.

We will use this idea, extend it to integer expansions with base τ and a more general
class of digit sets. For base 2, the digit set under examination will be of the form D =
{0,±1, . . . ,±(2h+ 1)} (for some h ≥ 0) whereas for base τ , we will use the minimal norm
representatives introduced Chapter 2 (cf. [23]) and can then compare our results to the
performance of expansions studied there. Depending on the base chosen, the domain for
the input will either be Z or Z[τ ]. We will always denote it by R.

Note that we will in fact be studying joint expansions (c.f. Section 2.3), where the input
is actually d-dimensional and what we will call digit, will in fact be a d-dimensional vector
for some d > 0. However, due to the way our algorithm works, the explicit value of d is
not a big consideration for the construction and in order to understand it, one only needs
to understand the case d = 1. Our notation will largely avoid stressing the dimension of
the problem. In fact we will be calling our digit set D := Dd0, where D0 in an ordinary
one-dimensional digit set as discussed before. Properties like being divisible by τ , or being
zero will be intended component-wise.

4.1 Minimal weight expansion: A dynamic programming ap-
proach

Definition 4.1. Let b ∈ {2, τ} be the base, d ∈ N \ {0} and D a suitable digit set. A joint
D-expansion of z ∈ Rd is a sequence η = (. . . , η2, η1, η0) of elements in D such that

1. only finitely many ηj are nonzero and

2. value(η) :=
∑

j≥0 ηjb
j = z, so η is an expansion of z.

We call n = max{j ∈ N0 | ηj 6= 0} the length of the expansion and write n = length(η). The
number of nonzero ηj is called the (joint) weight of the expansion and we write weight(η).
A joint D-expansion of z with minimal weight among all joint D-expansions of z is called
a minimal weight joint D-expansion of z and we refer to its weight as mwD(z).

Definition 4.2. For D, d as above and n ∈ N, let

Rn = {z ∈ Rd | the unique {0, 1}-expansion of z has length ≤ n}.

Then we define the minimal average joint weight of all z ∈ Rn as

majwD(n) =
1

2n

∑
z∈Rn

mwD(z)
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and the asymptotic minimal joint density as

amjdD = lim
n→∞

1

n
majwD(n).

Now we will discuss the algorithm that gives a minimal weight joint D-expansion. We
assume that the input has already been encoded to base b using digits from what we will
call the input digit set Din = {0, 1}d. In the binary case this is the standard binary encoding
of integers. With base τ , we can also easily encode every z ∈ Z this way by just looking at
the last digit mod τ . Another way to look at it, is that our input always comes from Z[τ ]
to begin with.

As noted in [10], it is in principle easy to compute optimal expansions of z ∈ R
recursively. If b divides the input, the least significant digit is always zero. If that is not
the case, one simply picks d ∈ D \ {0}, such that z−d

b
has minimal joint weight (which is

to be computed recursively) among all possible choices for d. This is basically how our
algorithm works, except that we avoid the recursion and introduce a dynamic programming
scheme processing the input from left to right.

. . . η(n− 1)η(n− 2) . . . η(k + 1)

ε(k)

η(k) ε(k − 1) . . . ε(1) ε(0)

k

cRcL 0

Figure 2: Scheme for minimal weight conversion

When at step k, we read the input digit εk ∈ Din and recode it as some ηk ∈ D. This
recoding triggers a carry cL, which we pass on to the left, just as we receive a carry of cR
from the right (see Figure 2). In order not to change the value of the expansion, cL and
ηk must fulfill

b · cL + ηk = εk + cR. (9)

4.1.1 The carry set

The first question that arises is, what values we can expect for the carries cL and cR. We
say that a carry c occurs while recoding a Din-expansion ε = (. . . , ε1, ε0) to a D-expansion
η = (. . . , η1, η0) if for some ` ≥ 0,

c =
1

b`

`−1∑
j=0

(εj − ηj)bj

and define the set of all possible carries below.
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Definition 4.3. Let D be a digit set as before, then we define the associated carry set C
as

C =

{
1

b`

`−1∑
j=0

(εj − ηj)bj
∣∣ εj ∈ Din, ηj ∈ D, value(. . . , ε1, ε0) = value(. . . , η1, η0), ` ≥ 0

}
.

Proposition 4.4. Setting M = max{||ε||+ ||η|| | ε ∈ Din, η ∈ D}, we get that

||c|| <

{
M (if b = 2)

M(1 +
√

2) (if b = τ)

holds for all c ∈ C.

Proof. Let z =
∑l−1

j=0 εj · bj ∈ R with εj ∈ Din and z = c · b` +
∑`−1

j=0 ηj · bj an encoding with
ηj ∈ D and c ∈ C. We have

`−1∑
j=0

εj · bj = c · b` +
`−1∑
j=0

ηj · bj,

c · b` =
`−1∑
j=0

(εj − ηj) · bj,

c =
`−1∑
j=0

(εj − ηj) · bj−`.

Now, using ||εj − ηj|| ≤M , we get

||c|| ≤M
`−1∑
j=0

|b|j−` = M
∑̀
j=1

(
1

|b|

)j
< M

1

|b|
1

1− 1
|b|

=

{
M (if b = 2),

M(1 +
√

2) (if b = τ).

Proposition 4.5. Let c ∈ R. Then we have c ∈ C if and only if there are ` ∈ N0,
ε`−1, . . . , ε0 ∈ Din, η`−1, . . . , η0 ∈ D and c0, c1, . . . , c` ∈ R with c0 = 0, c` = c and

ci+1 =
ci + εi − ηi

b
(10)

for all 0 ≤ i ≤ `. In this case, all ci are elements of C.
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Proof. If c ∈ C, the definition of C gives us ` ∈ N0, (εj)0≤j≤`−1 and (ηj)0≤j≤`−1 with

c = 1
b`

∑`−1
j=0(εj − ηj)b

j. We show that the claim holds using ci := 1
bi

∑i−1
j=0(εj − ηj)b

j.
Obviously c0 = 0, c` = c and all ci ∈ C, so we only need to show (10):

ci+1 =
1

bi+1

i∑
j=0

(εj − ηj)bj =
1

bi+1

(
i−1∑
j=0

(εj − ηj)bj + (εi − ηi)bi
)

=
1
bi

∑i−1
j=0(εj − ηj)bj + (εi − ηi)

b

=
ci + εi − ηi

b

Conversely, again using ci = 1
bi

∑i−1
j=0(εj−ηj)bj, it follows immediately that c = c` ∈ C.

Proposition 4.5 implies C can be computed by starting with C = {0} and repeatedly
applying Equation (10) to the carries that have already been found. The only restriction is
that carries must be in R, i.e. b must divide ci + εi− ηi, which is equivalent to saying that
. . . η1, η0 is a valid recoding of (. . . ε1, ε0). The complete process is executed by Algorithm
11. The Algorithm is correct because of the observation above and it terminates because
of Proposition 4.4.

Algorithm 11 algCarryset: Generating the carry set C for a given D
Input: The digit set D and the base b
Output: The associated carry set C
C := {0}
N := C {New carries yet to be explored}
while N 6= {} do
cR :=POP(N)
for all εk ∈ Din, ηk ∈ D do
d := εk − ηk + cR
if (b divides d) and (d

b
/∈ C) then

cL :=d/b
PUSH(C,cL)
PUSH(N ,cL)

end if
end for

end while

Remark 4.6. While our definition and the algorithm for the carry set are valid for a d-
dimensional digit set D = D̄d, it is obviously more straightforward to compute the carry
set C0 as the carry set associated to D0 and then set C = Cd0 .

Example 4.7. We want to compute the carry set C for the case b = τ , µ = 1 and D =
{0,±1}. Table 2 shows the set N from Algorithm 11 with the element under examination
in bold in the first line and the discovered carries below.
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N {0} {1− τ} {−1,−τ} {−τ ,−1 + τ}

cL 1− τ = 1+1+0
τ

−1 = 0−1+(1−τ)
τ −1 + τ = 0−1+(−1)

τ−τ = 0+1+(1−τ)
τ

N {−1 + τ} {τ , 1} {1, 2− τ} {2− τ}

cL
τ = 0−1+(−1+τ)

τ 2− τ = 1+1+τ
τ 1− 2τ = 1+1+(2−τ)

τ1 = 0+1+(−1+τ)
τ

N {1− 2τ} {−2,−1− τ} {−1− τ} {−2 + τ}

cL
−2 = 0−1+(1−2τ)

τ −2 + τ = 0−1+(−1−τ)
τ−1− τ = 0+1+(1−2τ)

τ

Table 2: Computing the carry set for base τ , D = {0,±1} and µ = 1

So in this case the complete carry set is given by

C = {0,±1,±τ,±(τ − 1),±(τ − 2), 1− 2τ,−2,−τ − 1},

has 12 elements and we observe that it is not symmetric.

Example 4.8. Somewhat surprisingly, the carry set C for b = τ , D = {0,±1} as above, but
µ = −1 is quite a bit smaller than the one for µ = 1. It is given by

C = {0,±1,±τ,±(1 + τ),−2− τ}

and has only 8 elements.

So apparently the size of the carry set depends on the size of the digit set as well as
the base used and for b = τ , even the choice of the curve parameter µ ∈ {±1} has a
non-negligable impact. Next we see that the digit set is not necessarily a subset of the
carry set.

Example 4.9. Let b = 2 and D a finite digit set with δ := max{|d| | d ∈ D} and {±δ} ⊆ D.
We want to check if −δ is in the carry set. By Proposition 4.5, we get that if this were the
case, we could find η ∈ D, ε ∈ Din and cR already in the carry set, such that

−δ =
cR + ε− η

2
and hence

cR = −2δ + η − ε
≤ −2δ + δ − 0 = −δ,

which means that cR = −δ. So in Algorithm 11, −δ would already have to be in the carry
set, to be discovered as a new carry. Since the carry set is initialized with {0}, this can
not happen.
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w |D| |C|
b = 2 b = τ , µ = 1 b = τ , µ = −1

2 3 2 12 8
3 5 6 27 28
4 9 14 85 75
5 17 30 159 178

Table 3: Dimensions of digit and carry sets

Remark 4.10. In the examples presented in [26], the carry set does include the element
−δ as described above. It is unclear why that is the case considering that the algorithm
to compute the carry set is equivalent to ours. However as a consequence, for b = 2, the
carry sets we use are smaller, which reduces the number of states that our algorithm goes
through.

Table 3 gives an overview for the behavior of this size depending on the input param-
eters. As we will see, the complexity of the minimal weight algorithm and the size of the
model we will use to compute the minimal average weight also depend strongly on the size
of the carry set. For joint expansions, the numbers in Table 3 have to be taken to the
power of d and ultimately this restricts the feasibility of our approach to relatively small
values of d and w.

4.1.2 Minimal weight strategy

Now that we have identified the carry set, we know the domains for all the terms in
Equation (9). Our goal is to give a recoding, i.e. specify the left hand side of the equation.
The only variable that is predetermined (by the input) is εk ∈ Din, the input digit at
step k. The carry cR, from the right is not known at this point, because it depends on
the recoding of (εk−1εk−2 . . . ε0), which is yet to be computed. So we have to consider all
possible cR ∈ C. For any given cR, we can compute all possible values for cL and ηk:

Definition 4.11. For v ∈ R, we define

Cand(v) = {(c, η) ∈ C × D | b · c+ η = v},

the set of candidates for encoding the value v.

Cand(v) can be computed by running through all η ∈ D and checking for divisibility
of v − η by b (See Algorithm 12).

All pairs (cL, ηk) ∈ Cand(εk + cR) would yield a valid encoding, but we are looking for
an encoding of minimal weight.

Definition 4.12. Let (. . . 0 εl−1 . . . ε1ε0) be the input. To keep track of weight-information
we define wk : C → N0 (0 ≤ k ≤ l) as

wl(cR) := mwD(cR),

wk(cR) := min{wk+1(c) + weight(η) | (c, η) ∈ Cand(εk + cR)} (0 ≤ k < l).
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Algorithm 12 Cand(v): Computing all possible carry-representations of a value v ∈ R
Input: The input value v ∈ R
Output: A list C of all tuples (c, η) ∈ C × D with bc+ η = v
C = {}
for all η ∈ D do

if b divides v − η then
C :=C ∪ {(v−η

b
, η)}

end if
end for

Proposition 4.13. The function wk(cR) gives the minimal weight of a D-encoding of∑l−1
j=k εjb

j−k + cR. The minimal weight among all D-encodings of
∑l−1

j=0 εjb
j is given by

w0(0).

Our definition of w doesn’t tell us how to compute wl(cR) = mwD(cR). The next result
will give us more information about the initial state.

Definition 4.14. Define a sequence of functions vi : C → N0 ∪ {∞}, i ≥ 0 as

v0(cR) :=

{
0 if cR = 0,

∞ else,

vi(cR) := min{vi−1(c) + weight(η) | (c, η) ∈ Cand(cR)} (k > 0).

Lemma 4.15. Let D be a suitable digit set and C the corresponding carry set as before.
There exists a k ∈ N such that ∀c ∈ C : vk(c) = mwD(c). Furthermore, we have vk+j = vk
for all j ∈ N0.

Remark 4.16. This means that we can compute the elements of the sequence (vi)i∈N0 and
as soon as we see the sequence stabilizing, i.e. find k ∈ N such that vk = vk+1, we set
wl := vk.

Proof. We start with the second part, which is quite simple, because

vk+1(c) = min{vk(cL) + weight(η) | (cL, η) ∈ Cand(c)}
= min{mwD(cL) + weight(η) | (cL, η) ∈ Cand(c)}
= mwD(c),

therefore vk = vk+1 and inductively also vk = vk+j for all j ∈ N.
For the first part of the claim, we set

k = max
c∈C
{n ∈ N0 | There exists a minimal weight D-expansion η of c and length(η) = n},

i.e. k is the greatest D-bitlength of any minimal weight expansion of any c ∈ C.
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For i ≥ 0, we set

mwi,D(c) = min{weight(η) | η = (ηi−1, . . . η1, η0) is a length i D-expansion of c}

where the convention min ∅ =∞ is used. We show that

vi(c) = mwi,D(c) (11)

holds for all i ≥ 0 and c ∈ C.
For i = 0, the right side only looks at expansions of length 0. Only c = 0 has such an

expansion, which is the empty word and has weight 0 per convention. For any other c, the
right side is min ∅ which we consider to be ∞ and the case i = 0 is dealt with.
If the claim holds for i, we get

vi+1(c) = min{vi(cL) + weight(η) | (cL, η) ∈ Cand(c)}
= min{mwi,D(cL) + weight(η) | (cL, η) ∈ Cand(c)}
= min{mwi+1,D(b · cL + η) | (cL, η) ∈ Cand(c)}
= mwi+1,D(c).

This proves the claim made in (11) and for i = k we get vk(c) = mwk,D(c). Since no
minimal weight expansion of any c ∈ C is longer than k, we get mwk,D(c) = mwD(c) and
the proof is complete.

4.1.3 Complete algorithm

For our algorithm to give us an actual minimal weight D-expansion as an output, we have
to keep track of the digits used to achieve minimality. This will not be used for the analysis
of the average weight, but aides in understanding the algorithm and writing an example.

Definition 4.17. Let cR ∈ C and

(c, η) ∈ {(c, η) ∈ Cand(εk + cR) | wk+1(c) + weight(η) = wk(cR)} 6= {0}

arbitrarily chosen. For 0 ≤ k < l set

ηk(cR) := η

cL,k(cR) := c

to be the information necessary to generate a minimal weight expansion after the minimal
weight has been computed.

With this terminology we can compute the expansion by setting:

η0 = η0(0)

ηk = ηk(cL,k−1) 0 < k < l

Algorithm 13 puts together all the pieces and in Example 4.18, we see it at work.
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Algorithm 13 algMinWeightExp: Computing a minimal joint weight expansion

Input: The input expansion εl−1 . . . ε1ε0 and the target digit set D
Output: The minimal weight expansion ηl−1 . . . η1η0 with digit set D
C :=algCarryset(D)
for all cR ∈ C do
wl(cR) :=mwD(cR)

end for
k :=l − 1
while k > 0 do

for all cR ∈ C do
wk(cR) :=min{wk+1(c) + weight(η) | (c, η) ∈ Cand(εk + cR)}
(cL,k(cR), ηk(cR)) :=First({(c, η) ∈ Cand(εk + cR) | wk+1(c) + weight(η) = wk(cR)})
k :=k − 1

end for
end while
w0(0) :=min{w1(c) + weight(η) | (c, η) ∈ Cand(ε0)}
(cL,0(0), η0(0)) :=First({(c, η) ∈ Cand(ε0) | w0+1(c) + weight(η) = w0(0)})
η0 :=η0(0)
k :=k + 1
while k < l do
ηk :=ηk(cL,k−1)
k :=k + 1

end while

Example 4.18. In the following example, we shall compute a minimal weight expansion for
z = 374, given in its binary representation (101110110)2, i.e. b = 2. We will use the digit
set D = {0,±1} for which the carry set evaluates to C = {0, 1}.

Our first operation is setting w9(0) = 0 and w9(1) = 1. We then start our iteration for
k = 8, where we see an input bit of ε8 = 1. Looking at all carries cR, we compute:

• cR = 0: This yields εk + cR = 1, and Cand(1) = {(0, 1), (1,−1)}.
Now w9(0) + weight(1) = 0 + 1 = 1 and w9(1) + weight(−1) = 2. So we pick
(cL,8(0), η8(0)) = (0, 1) ∈ Cand(1) to get w8(0) = 1.

• cR = 1: This yields εk + cR = 2, and Cand(2) = {(1, 0)}.
Now w9(1) + weight(0) = 1 and we set (cL,8(1), η8(1)) = (1, 0) to get w8(1) = 1.

This process is now repeated for decreasing k and Table 4 shows all the steps. Note that
all elements from Cand(εk + cR) are listed, the first one with minimal weight is chosen
for (cL,k(cR), ηk(cR)). In the last row we find our result for the minimum weight, which
is w0(0) = 4. Now we backtrack up through the table to get the output expansion with
that weight, which is 11000(−1)0(−1)0. The corresponding ηk(cR) are marked bold in the
table.
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k εk cR εk + cR Cand wk(cR) cL,k(cR) ηk(cR)

9
0 0
1 1

8 1
0 1 {(0, 1), (1,−1)} 1 0 1
1 2 {(1, 0)} 1 1 0

7 0
0 0 (0, 0) 1 0 0
1 1 {(0, 1), (1,−1)} 2 0 1

6 1
0 1 {(0, 1), (1,−1)} 2 0 1
1 2 (1, 0) 2 1 0

5 1
0 1 {(0, 1), (1,−1)} 3 0 1
1 2 (1, 0) 2 1 0

4 1
0 1 {(0, 1), (1,−1)} 3 1 −1
1 2 (1, 0) 2 1 0

3 0
0 0 (0, 0) 3 0 0
1 1 {(0, 1), (1,−1)} 3 1 −1

2 1
0 1 {(0, 1), (1,−1)} 4 0 1
1 2 (1, 0) 3 1 0

1 1
0 1 {(0, 1), (1,−1)} 4 1 −1
1 2 (1, 0) 3 1 0

0 0 0 0 (0, 0) 4 0 0

Table 4: MinWeight computation for input 101110110

4.2 Asymptotic analysis

As stated at the beginning of this chapter, the minimal weight algorithm is just a stepping
stone on our way to computing the minimal average joint weight of digit expansions in a
given digit set D. To do this we no longer look at individual input bit-strings, but rather
consider all possible inputs of arbitrary length and see how the minimal weight behaves
asymptotically. We do so by building an automaton that models the algorithm’s behavior.
We have to define a set of states that our algorithm traverses through on an arbitrary
length input string and hope that we can find a way to keep this set finite. Fortunately the
authors of [26] have suggested just that and their idea can be applied to base-τ -expansions
and their respective digit sets as well.

Our computation of the minimal asymptotic density is in effect an automated proof for
the minimal weight of all digit expansions using the same digit sets. Section 4.2.2 deals
mostly in proving that our algorithm terminates, by showing that the number of states it
has to explore is finite (Theorem 1). Our methods are different from what was done by
the authors of [26] and our proof covers expansions of base τ as well as base 2. We have
to note however that the results leading up to Theorem 1 only cover the case d = 1 and so
the guarantee for the state space exploration to terminate can not be given for d ≥ 2. As
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can be seen in the presentation of our results, our analysis method also succeeds in quite
a few cases with d ≥ 2 and while the number of states grows exponentially with d, we
strongly believe that even for the cases where memory constraints of our computational
environment prevent the computation of all the states, the number of states remains finite
(albeit very large).

4.2.1 States and transitions

When looking at the way the minimum weight algorithm works, it becomes apparent that
all the information concerning minimum weight is concentrated in the functions

wk : C → N0 (k ≥ 0)

and the values for these functions depend only on the input at step k and on the previous
weights, wk+1. So it would seem like a good idea to use the wk as states and have a
transition wk+1

ε−→ wk, whenever we arrive at state wk, after reading the input ε in state
wk+1. Unfortunately the values wk(c) tend to grow with the length of the input (unless it
is a null-string, which doesn’t concern us as we are looking at randomized input) and so
there is definitely an infinite number of such states.
Even though for any state wk, the values wk(c) are not individually bounded, one could
conjecture that they are relatively close together. Hence, the idea will be to just look at
the variability of wk(c) for different c ∈ C.

Definition 4.19. Let W = {w : C → Z ∪∞}, then we define the equivalence relation ≡
for any wα, wβ ∈ W as

wα ≡ wβ ⇔ ∃z ∈ Z ∀c ∈ C : wα(c) = wβ(c) + z.

Example 4.20. In Example 4.18, we see w6 and w8 ∈ W satisfying w6 ≡ w8, because
∀c ∈ C : w6(c) = w8(c) + 1.

In the example above we see a second equivalence, between w5 and w7, which are direct
successors (on same input ε6 = ε8 = 1) of w6 and w8 respectively.

Definition 4.21. We define the transition function by

t : W ×Din → W

t(wα, ε) = wβ,

with wβ defined by wβ(c) = min{wα(cL) + weight(η) | (cL, η) ∈ Cand(ε+ c)}.

Lemma 4.22. The transition function is compatible with our definition of ≡, i.e.

∀w, v ∈ W : w ≡ v ⇒ t(w, ε) ≡ t(v, ε).
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Proof. By definition, there is a z ∈ Z such that w(c) = v(c) + z holds for all c ∈ C. Thus

t(w, ε)(c) = min{w(cL) + weight(η) | (cL, η) ∈ Cand(ε+ c)}
= min{(v(cL) + z) + weight(η) | (cL, η) ∈ Cand(ε+ c)}
= z + min{v(cL) + weight(η) | (cL, η) ∈ Cand(ε+ c)}
= z + t(v, ε)(c)

≡ t(v, ε)(c).

Thanks to Lemma 4.22, we can now consider our transition function as a function

t : V̄ ×Din → V̄ ,

where V̄ := W/≡ will be called the state space and we will represent its classes by the
unique member w ∈ W with w(0) = 0. Sometimes we will write a succession of transitions
from v0 to vn with vk+1 = t(vk, εk) (0 ≤ k ≤ n− 1) as t(v0, ε0ε1 . . . εn−1) = vn.
Next we introduce a notation to preserve the information about the change of weight that
occurs with such a transition. We introduce the function wc: V̄ ×Din → Z, with

wc(w, ε) = min{w(cL) + weight(η) | (cL, η) ∈ Cand(ε)}.
Now we can finally give the description of our model of the algorithm:

Definition 4.23. We define the initial state w0 ∈ V̄ as

w0(c) = mwD(c)

and the set V ⊂ V̄ of states that Algorithm 13 can actually reach, by

• w0 ∈ V

• ∀w ∈ V , ε ∈ Din : t(w, ε) ∈ V .

The set E ⊆ V × V × Z of all possible transitions is given by

E = {(v, w, ρ) ∈ V × V × Z | ∃ ε ∈ Din : t(v, ε) = w, wc(v, ε) = ρ}.
Now the states and transitions form a directed graph G = (V,E). We call it the state

graph for Algorithm 13. It is of different structure for every choice of b, d and D and the
number of states also depends on the size of the carry set.

The initial state of the state graph is w0. On every read input bit εi, the transition
w → t(w, εi) is made. After reading the input εl−1εl−2 . . . εk the current state is v ∈ V ,
which by our choice of the representative we can write as

v(c) = mwD

(
c+

l−1∑
j=k

εjb
j−k

)
−mwD

(
l−1∑
j=k

εjb
j−k

)
.

The value of wc(v, εk) gives the (signed) change of minimal weight after reading εk, i.e.

wc(v, εk) = mwD

(
l−1∑
j=k

εjb
j−k

)
−mwD

(
l−1∑

j=k+1

εjb
j−k−1

)
.
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4.2.2 The Markov chain model and its stationary distribution

After the careful design of the graph (V,E) for the minimum weight algorithm, we will
now prove a few properties that enable us to apply the knowledge about Markov chains,
we introduced in Chapter 1.3 to get stationary distribution of (V,E), respectively the
Markov chain that we will associate it to. This distribution holds the information about
the probability that the algorithm is in a certain state after reading long inputs, which in
turn will give us the data needed to compute the minimal average joint weight.
First, we show that V is in fact finite.

Note that as stated in the beginning of this chapter, the results leading up to and
including 1 are only valid for d = 1.

Lemma 4.24. For any two digits ε, δ ∈ D, we have mwD(ε+ δ) ≤ 2

Proof. Consider the case b = 2: If ε = 0 or δ = 0, the claim is trivially true, hence let
ε 6= 0 and δ 6= 0. Our digit sets for base 2 always have the form {0,±1, . . . ,±(2h+ 1)} for
some h ∈ N0. Let k = max{n ∈ N | ε+δ

2n
∈ Z}. Since we know that ε+ δ is even, we know

that k ≥ 1 and therefore γ = ε+δ
2k

is odd and |γ| ≤ |ε|+|δ|
2
≤ max{|d| | d ∈ D}. This means

that γ ∈ D and (. . . 0γ 0 . . . 0︸ ︷︷ ︸
k

) is an expansion of ε+ δ of weight 1.

For base τ , we recall that since we are using the minimal norm representatives as our
digit set, we get that ε ∈ Z[τ ]\{0}, coprime to τ is in D if and only if ε ∈ τwV , where V is
the Voronoi region defined in [23, Section 5.1]. In the following we will use subset-relations
between different sums of complex multiples of V . Since these expressions do not maintain
the original shape of V , we will use U , the circumdisc of V and I, the inndisc of V . Since
V is convex and symmetric with respect to inversion through 0, I has its center in 0, and
its radius rI is given by the closest distance that any of the edges of V pass by 0. The
edges of V are the borders between the Voronoi region of 0 and the Voronoi regions of
±1,±τ,±1± τ , thus we get

rI =
1

2
min{|1| , |τ | , |1 + τ | , |1− τ |} =

1

2
.

All the vertices of V have absolute value 2√
7

and together with its convexity this means

that U has a radius of 2√
7
. Summing up, we have

U =

{
z ∈ C | |z| ≤ 2√

7

}
,

I =

{
z ∈ C | |z| ≤ 1

2

}
and

I ⊆ V ⊆ U .

Additionally, let Ṽ := τwV , Ũ := τwU = 2w/2U and Ĩ := τwI = 2w/2I and in analogy to
the previous case, let k = max{n ∈ N | ε+δ

τn
∈ Z[τ ]}.
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ε δ ε+ δ optimal expansion

1 1 2 (−1− τ, 0)
1 1 + τ 2 + τ (−1, 0, 0)
1 −1− τ −τ (−1, 0)

1 + τ 1 + τ 2 + 2τ (−1, 1, 0)

Table 5: Sums of two digits ε+ δ for w = 4 and µ = −1

If k ≥ 4, let γ := ε+δ
τk

. We get

γ ∈ 2Ṽ

τ k
⊆ 2

2k/2
· Ũ =

2

2k/2
· 4√

7
Ĩ ⊆ 2

24/2
· 4√

7
Ĩ ⊆ Ĩ ⊆ Ṽ

and since γ is not divisible by τ it follows that γ ∈ D and (. . . 0γ

k︷ ︸︸ ︷
0 . . . 0) is an expansion

of ε+ δ of weight 1.
For k ∈ {1, 2, 3}, we pick η ∈ D such that η ≡ ε+δ

τk
(mod τw) which exists and is unique

since D contains exactly one representative for every residue class modulo τw. Now let

r = max{n ∈ N | ε+δ−τkη
τn

∈ Z[τ ]} and γ = ε+δ−τkη
τr

. Then

γ ∈ 2Ṽ + τ kṼ

τ r
⊆ 2 + 2k/2

2r/2
Ũ =

2 + 2k/2

2r/2
· 4√

7︸ ︷︷ ︸
=:f(k,r)

Ĩ.

We get

f(k, r) ≤ 1⇐


k = 1 and r ≥ 5, or

k = 2 and r ≥ 6, or

k = 3 and r ≥ 6

and since we know that r ≥ k + w, the proof is complete for all w ≥ 4 and an expansion
of ε+ δ of weight 2 is given by (. . . 0γ 0 . . . 0η0︸ ︷︷ ︸

r

).

For w = 2 it is easily verified, that since D = {0,±1}, the only interesting case is
ε+ δ = ±2 and we get ε+δ

τ
= ±µ∓ τ , which yields a trivial D-expansion of weight 2.

For w = 3 the digit set has 4 non-zero elements. There are 12 nonzero sums of the form
ε + δ (ε, δ ∈ D) and only 4 of them need to be checked (the rest follows from symmetry).
Table 5 and Table 6 show those four elements for µ = −1 and µ = 1 respectively and we
see that all their minimal expansions have weight less than or equal to 2.

Proposition 4.25.

∀x, y ∈ R : mwD(x+ y) ≤ mwD(x) + mwD(y).
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ε δ ε+ δ optimal expansion

1 1 2 (1− τ, 0)
1 1− τ 2− τ (−1, 0, 0)
1 −1 + τ τ (1, 0)

1− τ 1− τ 2− 2τ (1, 0, 0, 1, 0)

Table 6: Sums of two digits ε+ δ for w = 4 and µ = 1

Proof. Given x, y ∈ R, we will prove the proposition by constructing a D-expansion of
x + y with weight mwD(x) + mwD(y). Any minimal weight expansion of x + y then has
weight less or equal to mwD(x) + mwD(y). In the following let (αj)j≥0 = (. . . , α1, α0) be a
minimal weight expansion of x and (βj)j≥0 = (. . . , β1, β0) be a minimal weight expansion
of y. Furthermore let

n = mwD(x) + mwD(y) and v = v(x, y) = max

{
k ∈ N | x+ y

bk
∈ R

}
.

Using induction on (n, v) we are going to prove that x + y has a D-expansion of weight
mwD(x) + mwD(y):
n = 0: The claim is trivially true since x = y = x+ y = 0.
v = 0, n > 0: Without loss of generality, let α0 = 0 and β0 6= 0. Define x̃ = x

b
and ỹ = y−β0

b
.

Applying the induction hypothesis for (n− 1, ∗) we get an expansion (. . . , γ1, γ0) of x̃+ ỹ
with weight mwD(x̃) + mwD(ỹ). Now (. . . , γ1, γ0, β0) is an expansion of x+ y with weight
mwD(x) + mwD(y).
n > 0, v > 0: There are two cases:

• α0 = β0 = 0:
Let x̃ = x

b
and ỹ = y

b
. Now v(x̃, ỹ) = v(x, y) − 1 and mwD(x̃) + mwD(ỹ) =

mwD(x) + mwD(y). So via the induction hypothesis for (n, v − 1), we get an ex-
pansion (. . . , γ1, γ0) of x̃ + ỹ with weight mwD(x) + mwD(y). Now (. . . , γ1, γ0, 0) is
an expansion of x+ y with weight mwD(x) + mwD(y).

• α0 6= 0, β0 6= 0:
Let x̃1 = x+β0

b
, ỹ1 = y−β0

b
. Now we use the induction hypothesis twice: Let x̃2 = x

and ỹ2 = β0. We want to use the hypothesis for (n−1, ∗), but mwD(x) + mwD(β0) =
mwD(x) + 1 < n is only true if mwD(y) > 1. We will check the case mwD(y) = 1
separately below. For mwD(y) > 1, the hypothesis gives us mwD(x̃1) ≤ mwD(x) +
1. So we can use it a second time on x̃1 and ỹ1 because v(x̃1, ỹ1) = v − 1 and
mwD(x̃1)+mwD(ỹ1) ≤ n. Once more we get an expansion (. . . , γ1, γ0) of x̃1 + ỹ1 with
weight mwD(x) + mwD(y). Now (. . . , γ1, γ0, 0) is an expansion of x + y with weight
mwD(x) + mwD(y).
mwD(y) = 1:
If mwD(x) > 1, we can set x̃ = y, ỹ = x and continue above. So we consider the
case mwD(x) = mwD(y) = 1. Since α0 6= 0 and β0 6= 0, it follows that x, y ∈ D and
Lemma 4.24 completes the proof.
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Proposition 4.26. For any choice of b and D, we can find an M ∈ N such that for all
w ∈ V in our state graph,

∀c ∈ C : |w(c)| ≤M

Proof. First off, we recall that |w(c)| = |mwD(z + c) − mwD(z)| for some z ∈ R. By
Proposition 4.25, mwD(z + c) ≤ mwD(z) + mwD(c) and if we set z̄ := z + c and c̄ = −c,
we get

mwD(z) = mwD(z̄ + c̄) ≤ mwD(z̄) + mwD(c̄) = mwD(z + c) + mwD(c)

So summing up, we get

|mwD(z)−mwD(z + c)| ≤ mwD(c)

and to complete the proof we set M = max
c∈C
{mwD(c)}.

Theorem 1. The set V is finite.

Proof. Let C = {c0, c1, . . . , c|C|) and every w ∈ V be represented by the vector uw =
(w(c0), w(c1), . . . , w(c|C|)). Then, by Proposition 4.26, we have |w(c)| ≤ M , so uw is an
element of {−M,−(M − 1), . . . ,M}|C|, which is a finite set.

Remark 4.27. From now on we will write V = {w0, w1, . . . , wm}, where w0 is the initial
state as in the definition of V and the remaining states are numbered in an arbitrarily but
fixed order. For d = 1 we can do this because of Theorem 1. For d > 1 we can do it if the
state generation algorithm terminates.

Lemma 4.28. The matrix P = (pij)0≤i,j≤m ∈ [0, 1]m×m, with

pij =
1

|Din|
|{(v, w, ρ) ∈ E | v = vi, w = vj}|

satisfies ∀i ∈ {0, 1, . . . ,m} :

n∑
j=0

pij =
1

|Din|

n∑
j=0

|{(v, w, ρ) ∈ E | v = vi, w = vj}|

=
1

|Din|
|{(v, w, ρ) ∈ E | v = vi}| =

1

|Din|
|Din| = 1

Definition 4.29. Let (V,E) be the state graph for Algorithm 13. We define the corre-
sponding discrete time, time homogeneous Markov chain (Xn)n≥0 with the finite set of
states V = {w0, w1, . . . wm−1}, by giving its initial distribution (λi)0≤i<m, with λ0 = 1 and
λj = 0 for 0 < j < m and transition matrix P as above.

47



Lemma 4.30. Let x ∈ R, then

∀y ∈ R ∃ky ∈ N : ∀k > ky : mwD(xbk + y) = mwD(x) + mwD(y)

.

Proof. By Proposition 4.25, we know

mwD(xbk + y) ≤ mwD(x) + mwD(y).

Let x ∈ R. With δ := max{mwD(c) | c ∈ C}, define:

Exp(D, n, x) := {(εi)i∈N0 | (εi)i∈N0 is a D-expansion of x and ∃m ≥ n : εm 6= 0} and

ky := min{n ∈ N | ∀(εi)i∈N0 ∈ Exp(D, n, y) : weight(εn−1, . . . , ε0) > mwD(y) + δ}

Let k > ky and (. . . , γ1, γ0) be a minimal weight expansion of xbk+y. If (γk−1, . . . , γ1, γ0)
is an expansion of y, then (. . . , γk+1, γk) is an expansion of x and both must be of minimal
weight. Then we have: mwD(xbk + y) = mwD(x) + mwD(y).
On the other hand, if (γk−1, . . . , γ1, γ0) is not an expansion of y, but of y − cbk, for some
c ∈ C, then weight(γk−1, . . . , γ1, γ0) > mwD(y)+δ by definition of k, weight(. . . , γk+1, γk) =
mwD(x+ c) and mwD(x+ c) ≥ mwD(x)− δ by Proposition 4.26. Altogether we get

mwD(xbk + y) = weight(. . . , γ1, γ0)

= weight(. . . , γk) + weight(γk−1, . . . , γ0)

> (mwD(x)− δ) + (mwD(y) + δ),

which is a contradiction.

Proposition 4.31. The state w0 is reachable from any other state in V and t(w0, 0) = w0.

Proof. Let (αr, . . . , α0) be the input that brought the automaton to v, i.e. t(w0, αr . . . α0) =
v and x = value(αr, . . . , α0). Now, because of the proposition above, we can find a kc for
every c ∈ C, such that

∀k > kc : mwD(xbk + c) = mwD(x) + mwD(c).

Let k := max{kc | c ∈ C}, and w := t(v,

k︷ ︸︸ ︷
0 . . . 0) = t(w0, αr . . . α0

k︷ ︸︸ ︷
0 . . . 0) the state after k

times reading the digit 0 starting from state v. Then

w(c) = mwD(xbk + c)−mwD(xbk)

= mwD(xbk) + mwD(c)−mwD(xbk)

= mwD(x) + mwD(c)−mwD(x)

= mwD(c)
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and therefore w = w0 and we just described a way to reach w0 from an arbitrary state v,
which means that w0 can be reached from any other state.
For the second claim, for v = t(w0, 0) and c ∈ C, consider:

v(c) = min{w0(cL) + weight(η) | (cL, η) ∈ Cand(c)}
= min{mwC(cL) + weight(η) | (cL, η) ∈ Cand(c)}
= mwC(c)

Hence v = t(w0, 0) = w0 and the proof is complete.

Theorem 2. The Markov chain (Xn)n∈N0 corresponding to the state graph (V,E) is irre-
ducible and aperiodic. Therefore it has a unique stationary distribution π : V → [0, 1].

Proof. Any state v ∈ V is communicating with w0, since V was defined as all the set of
all reachable states starting from w0 and conversely in Proposition 4.31, we showed that
w0 is reachable from any state in V . Therefore the whole graph just consists of the one
communicating class containing w0 which means it is irreducible.
Since the loop (w0, w0, 0) is always in E, w0 is aperiodic and therefore the whole Markov
chain is aperiodic.
The rest follows by Theorem 1.3.

4.2.3 Asymptotic minimal joint density

Now that we established the existence and uniqueness of the stationary distribution of
the Markov chain representing our problem, we describe how to compute it and how to
subsequently compute the asymptotic minimal joint density of D-expansions of inputs
z ∈ Rd. In the following, let D be a suitable digit set for the given base b, (V,E) the
state graph corresponding to all possible states V = {w0, . . . , wm−1} during a run of the
minimal weight algorithm and (Xn)n∈N the associated Markov chain with transition matrix
P ∈ [0, 1]m×m and initial distribution λ = (1, 0, . . . , 0).
We already established that the stationary distribution (Xn)n∈N exists and is unique. We
write it as a row vector π = (π0, . . . , πm−1). It satisfies π = πP , πi ≥ 0 and

m−1∑
i=0

πi = ||π||1 = 1 (12)

in other words it is the left eigenvector to the eigenvalue 1 of P , or the solution to the
system

x(P − I) = 0, (13)

scaled to satisfy (12). Solving (13) presents the computational challenge that—unless done
numerically—ultimately limits the applicability of our approach in cases with very large
digit sets or high choices of d (see Section 4.4). Once the stationary distribution π is
computed however, it leads us directly to the asymptotic minimal joint density as shown
in the following theorem.
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Theorem 3. The asymptotic minimal joint density can be computed as

amjdD =
∑
wi∈V

∑
ε∈Din

1

|Din|
· πi · wc(wi, ε).

Proof. Let π(n) be the probability distribution of Xn, which is

π(0) = λ

π(n) = π(n−1) · P = λ · P n.

Now we define the average weight change at step n:

awc(n) =
∑
wi∈V

∑
ε∈Din

1

|Din|
· π(n−1)

i · wc(wi, ε)

Upon closer inspection we see that there is a connection between awc(n) and majwD(n),
which is

majwD(n) =
n∑
j=1

awc(j).

Now if we divide by n and let n→∞, we get

lim
n→∞

1

n
majwD(n) = lim

n→∞

1

n

n∑
j=1

awc(j)

amjdD = lim
n→∞

1

n

n∑
j=1

awc(j)

and since

lim
n→∞

awc(n) =
∑
wi∈V

∑
ε∈Din

1

|Din|
· πi · wc(wi, ε) and

lim
n→∞

xn = x ⇒ lim
n→∞

1

n

n∑
j=0

xj = x,

we get

amjdD =
∑
wi∈V

∑
ε∈Din

1

|Din|
· πi · wc(wi, ε).

4.3 Implementation notes

In this section we will take a brief look at the implementation of the concepts introduced in
Section 4.2. We will give the complete algorithm for the generation of the finite automaton
and discuss some precomputation strategies. We will still be using a somewhat simplified
pseudo-code notation, but the relevant pieces of real-world Mathematica source code can
be found in Appendix A.
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4.3.1 State graph

The main framework for building the state graph is established in Algorithm 16. In it, we
make use of the subroutines algCarrySet (covered earlier as Algorithm 11), getInitialState
and getNextState.

The real work is done in Algorithm 14, where for a given state v ∈ V and input ε ∈ Din,
we compute the successor w ∈ V with

w(c) = min{v(cL) + weight(η) | (cL, η) ∈ Cand(ε+ c)}.

At this point we note, that elements in w ∈ V are implemented as arrays of the form
(w(0), w(c1), . . . , w(c|C|), where C = {0, c1, . . . , c|C|−1} and c1, . . . , c|C|−1 is an arbitrary but
fixed enumeration of the elements of C.
We recall the definition of Cand(ε+ c) as

Cand(v) = {(c, η) ∈ C × D | b · c+ η = v, for some b ∈ R}

and realize that given that our algorithm has to compute this set for every combination
of c ∈ C and ε ∈ Din every time we compute a transition, we can boost performance by
precomputing it once and then just use a lookup-table. In fact for (c, η) ∈ Cand(ε+ c) we
don’t even need the actual value of η, but only its weight. Also in our real world imple-
mentation we don’t store values for cL, but just indexes (as in positions in the enumeration
c1, . . . , c|C| mentioned above). In the code here however we leave this detail out and hide
it behind an associative array notation.

From here on out, let CandList(v) be a list of elements (c, ω), such that there exists an
elements (c, η) ∈ Cand(v) with weight(η) = ω. We precompute it once for every possible
value v of c+ ε for c ∈ C, ε ∈ Din via a simple adaptation of Algorithm 12.
When given the input v and ε, Algorithm 14 now loops through all carries c ∈ C and looks
at CandList(c + ε). Out of this list, we generate a list W of all the candidates for the
minimal weight, by looking up v(cL) and computing v(cL) + ω, for the elements (c, ω) in
CandList(c+ ε). The value for w(c) is then simply found by taking the minimum of W .

One remark to be made for Algorithm 14 is that in the Mathematica implementation
it runs for all c ∈ C independently by taking a lookup-table of the form

{CandList(ε),CandList(ε+ c1), . . . ,CandList(ε+ c|C|)}

and performing the operations within the outer for loop on all elements of the table in
parallel. This directly transforms the table into the result w.
The routine to compute the initial state w0 is given in Algorithm 15. It is a direct applica-
tion of Definition 4.23 of the initial state and Algorithm 14. We have already shown that
the algorithm terminates and we note that our way of dealing with the initial state also
presents an improvement on the method suggested by the authors of [26], which leads to
a slight reduction in states of the resulting automaton.

Finally the process of building the state graph (Algorithm 16) is a simple breadth
first search by means of maintaining a list Vu of not yet explored states. We could just
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Algorithm 14 algGetNextState: Computes t(v, ε) for v ∈ V and ε ∈ Din

Input: The current state v and an input ε ∈ Din

Output: The successor state w, such that w = t(v, ε)
w(0):=0
for all c ∈ C do
W := {}
C :=CandList(ε+ c)
for all (cL, ω) ∈ C do
W :=W ∪ {v(cL) + ω}

end for
w(c) :=minW − w(0)

end for

Algorithm 15 algGetInitialState: Finding the initial state w0

Input: The carry set C
Output: The initial state w0 with w0(c) = mwD(c) ∀c ∈ C
w := {}
v(0) := 0
for all c ∈ C do
v(c) :=∞

end for
while w 6= v do
w := v
v := getNextState(v, 0)

end while
w0 := v
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as easily use a depth first search approach without any changes in the result except for
the sequence in which states and edges are discovered (which does of course not matter
for the resulting graph since its states and edges both form sets). A subtlety in terms
of performance considerations hides behind the check w /∈ V . This step is necessary, to
differentiate between states that we come across for the first time and states that are just
re-visited (in which case they don’t have to be explored again, but only the new edge on
which we found them needs to be recorded). For cases where the number of states in the
automaton gets sufficiently large, this check which corresponds to a search for w in the ever
growing set V , gets slower as V grows. So it makes sense to optimize the representation
of states and the way they are stored with this problem in mind. We solved this problem
by using functionality native to our programming environment.

Algorithm 16 algStateGraph: Generating the state graph (V,E)

Input: The base b and digit set D
Output: The state graph (V,E)
C := algCarrySet(D, b)
w0 := getInitialState()
V := {w0}
Vu := {w0}
E := {}
while Vu 6= {} do
v :=POP(Vu)
for all ε ∈ Din do
w := getNextState(v, ε)
if w /∈ V then

PUSH(V ,w)
PUSH(Vu,w)

end if
end for
PUSH(E,(v, w,wc(v, w)))

end while

Example 4.32. We will show how the algorithm works at the example of the state machine
for the case b = 2, D = 0,±1 and d = 1. As shown earlier, the carry set is C = {0, 1}
and therefore our states can be represented by two-dimensional vectors w = (w(0), w(1))
with w(0) = 0 at all times. In Table 7, we show our computational progress. To find the
initial state we start with w = (0,∞) and repeatedly read inputs ε = 0 until we find a
loop w0 = getNextState(w0, 0). The two runs (for the two elements of C) of the for-loop in
getNextState are represented by two-fold subdivision of the lines for any given w. Note that
for ε + c = 1, we have CandList(1) = {(1, 1), (0, 1)}, because Cand(1) = {(1,−1), (0, 1)}
but in contrast to before, we are now only interested in the weight of the digit written.
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w ε c ε+ c CandList t(w, ε) wc(w, ε) Remark

(0,∞) 0
0 0 {(0, 0)}

(0, 1) 0
1 1 {(1, 1), (0, 1)}

(0, 1) 0
0 0 {(0, 0)}

(0, 1) 0 w0 found
1 1 {(1, 1), (0, 1)}

(0, 1) 1
0 1 {(1, 1), (0, 1)}

(0, 0) 1
normalized

1 2 {(1, 0)} by −1

(0, 0) 0
0 0 {(0, 0)}

(0, 1) 0
1 1 {(1, 1), (0, 1)}

(0, 0) 1
0 1 {(1, 1), (0, 1)}

(0,−1) 1
normalized

1 2 {(1, 0)} by −1

(0,−1) 0
0 0 {(0, 0)}

(0, 0) 0
1 1 {(1, 1), (0, 1)}

(0,−1) 1
0 1 {(1, 1), (0, 1)}

(0,−1) 0
1 2 {(1, 0)}

Table 7: Computing the state graph for b = 2, D = 0,±1 and d = 1

(0, 1) (0, 0) (0,−1)

ε = 1
wc= 1

ε = 1
wc= 1

ε = 0
wc= 0

ε = 0
wc= 0

ε
=

0

w
c=

0 ε
=

1

w
c=

0

Figure 3: The graph G = (V,E) for b = 2, D = 0,±1 and d = 1

4.3.2 Computation of the asymptotic minimal joint density

After the state graph has been generated, we use the information contained in its edges
to compute the asymptotic minimal joint density. The theory is established in Theorem 3
and Algorithm 17 translates it into code. Note that the sum in the computation of amjdD
goes over all the edges in E, which is equivalent to summing over all states v ∈ V and
input digits ε ∈ Din. The transition matrix P for our Markov chain is generated by going
through the list of edges and adding 1

|D| at position i, j for an edge (vi, vj, ρ). The weight of
the edge is not relevant for P, but double edges have to be accounted for. P is of dimension
m×m, where m = |V | is the number of states in the graph.

The statement computeStationary(P ) refers to finding a vector π satisfying πP = P
(i.e. the left eigenvector to the eigenvalue 1) which can be done by non-trivially solving the
linear system

π(P − I) = 0.

Our result about the uniqueness of the stationary distribution of the Markov chains we
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Algorithm 17 algcomputeAMJD: Computing the asymptotic minimal joint density

Input: The set of edges E and the number of states m
Output: The asymptotic minimal joint density amjdD

pij :=
1

|Din|
|{(v, w, ρ) ∈ E | v = vi, w = vj}| (0 ≤ i, j < m)

P :=(pij)0≤i,j<m
π :=computeStationary(P )
π := π

||π||1

amjdD :=
∑

(vi,vj ,ρ)∈E

1

|Din|
· πi · ρ

are studying, tells us that the solution space is one-dimensional. In our computational
experiments11, we were able to find an exact rational solution with standard methods of
linear algebra for values of m up to around 11000.

For greater m, we can only solve our problem numerically, using iterative methods to
find a good approximation for the stationary distribution π. One such method is simply
computing the probability distribution of the Markov chain after n steps for large values
of n:

x(0) ∈ Rm

x(n+1) = x(n)P = x(0)P n

This amounts to a simple power iteration to find the eigenvector π for the largest eigenvalue
in magnitude. The properties of stochastic matrices like P dictate this to be λ1 = 1 and
the Perron-Frobenius theorem tells us that all other eigenvalues are smaller in magnitude.
The convergence rate of the power iteration is O(|λ2|n), where λ2 is the second largest
eigenvalue in magnitude. We can use the Rayleigh quotient

RP (x) =
xTPx

xT · x

to get an idea about the error of our approximation.
The value of an approximated numerical solution to our problem however is to be

questioned. Our computation of the asymptotic joint weight for different digit sets, can be
seen as an automated proof and unless we can compute it as an exact rational expression, we
are not proving anything, but rather just giving a ballpark number (to whatever precision
it may be) for orientation so to speak.

In certain cases, we manage to use the iterative solution as a stepping stone for finding
the exact solution in a second step. The idea is to first compute an approximation π̃ for our
stationary distribution as described above and in the second step converting π̃ to a vector

11Computations carried out on a 32-bit Unix machine with a 2 GHz processor, 2 GB of main memory
running Mathematica 6.0
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of rationals, by replacing every entry π̃i by a rational π̄i = ai
bi

, where ai
bi

is the fraction with
the smallest denominator bi in a certain neighborhood δr of π̃i. Setting π̄ = (π̄i), we can
then check if we found the correct solution, by verifying π̄ = π̄ · P .

As m gets larger for the more involved cases, the entries of π get smaller and their
denominators get bigger. This has two consequences: Firstly, we need to decrease δr, in
order to only have rationals with even bigger denominators within (π̃i − δr, π̃i + δr, ) and
secondly it becomes more and more computationally challenging to compute π̄ · P when
checking for correctness of the rationalization.

It takes some experimentation to find the appropriate precision and number of iterations
for the first step and a good value for δr, but with this method we are definitely able to
compute exact solutions for some cases where explicitly solving the linear system is not an
option.

4.4 Results

The results of our computations shall be divided into two sections, for the two different
bases 2 and τ . We will give exact values for the the asymptotic minimal joint density of
every case where the computation of (V,E) and subsequently amjd were computationally
feasible with the hardware at hand.

4.4.1 Base 2

The results for base b = 2 and digit sets D = {0,±1,±3, . . . ,±(2h + 1)} are shown in
Table 8. For d = 1 we are actually capable of computing results for higher values of h than
shown in the table. For d = 2, we run into computational limitations at h = 2 and can
not directly find an exact solution to the linear system at hand. This is one of the cases,
where we succeed in finding an exact rational solution by first iteratively approximating
the stationary distribution and then rationalizing the result.

For d ∈ {3, 4, 5}, the computation was completed only for h = 0 and exact results were
achieved in all cases. For greater h, the graph becomes to large immediately because of
the exponential growth with d.

When we compare our results for base b = 2 with [26], we see a slight difference in the
number of states |V | for most cases. This is most likely due to differences in the carry sets
as noted earlier. The results for the densities are the same. In some of the results in their
paper it is unclear whether they are exact or approximated. For d = 2 and h ∈ {3, 4, 5},
the results for the density are only shown in decimal with a precision of 10−4 and we
don’t know if this is just the product of an approximation, the actual exact value or just a
rounded version of the exact value for better readability in the paper. Since we were unable
to find exact values in precisely these cases, we can not comment. The result given for
d = 3 and h = 1 seems to be exact, since in this case the actual rational expression is given
as 20372513

49809043
. While our algorithm—given enough time and memory—is perfectly capable of

building the state graph for that case, it is very questionable that we could devise an exact
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d h |C| |V | amjd

1 0 2 3 1/3
1 6 23 1/4
2 10 46 2/9
3 14 83 1/5
4 18 108 4/21
5 22 144 2/11

2 0 4 11 1/2
1 36 2074 281/786
2 100 14920 1496396/4826995a

3 0 8 81 23/39
4 0 16 681 115/179
5 0 32 5921 4279/6327a

aStationary distribution approximated - exact solution found by rationalization.

Table 8: Number of states and amjd for b = 2, D = {0,±1, . . . ,±(2h+ 1)}d

solution for a graph with more than 1 million nodes by means of the techniques presented
in this document.

4.4.2 Base τ

With the results of our analysis for base b = τ , we break new ground in terms of the
application of this automated minimal weight computation approach. The values which
we compare our results against come from the expansions studied in Chapter 2.

Table 9 shows the number of states |V | and the asymptotic minimal joint density for
several instances of our problem. Note that due to the different carry sets for different
values of the curve parameter µ ∈ {±1}, the state graph also looks different for those two
cases. Our table reflects that by showing the size of the carry set and the state graph for
µ = 1 and µ = −1 separately. For the cases we computed, the value of amjd was invariant
with respect to the choice of µ. This is by no means a proven statement for general D
and d, but our results would certainly lead to a suspicion in that direction. A consequence
would be that in our algorithm, for any given value of w, one would always chose the value
of µ yielding the smaller carry set and subsequently the smaller state graph.

These choices definitely do matter in terms of computation time, as can be seen in the
case d = 2, w = 2, where the number of states for µ = 1 is almost five times higher then
the value for µ = −1.

Theorem 4. The asymptotic minimal density for base τ integer expansions using the digit
set D = MNR(w) is given by 28

141
for w = 4 and 30

181
for w = 5. The asymptotic minimal

joint density for base τ expansions of pairs of integers using the digit set D = MNR(2)2 =

57



d w
µ = 1 µ = −1

amjd|C| |V | |C| |V |

1

2 12 54 8 27 1/3
3 27 324 28 336 1/4
4 85 3746 75 3202 28/141
5 159 9065 178 10404 30/181

2 2 144 730121 64 151593 ∼ 0.4649a

aExact value given in Theorem 4

Table 9: Number of states and amjd for b = τ , D = MNR(w)d

{0,±1}2 is given by

144860476952258069960970532866106253274447934570976220749495791797

311568669055610401810908730777373617652152489224682841359224538895
≈ 0.4649.

Remark 4.33. In [10] it is shown that it is impossible to devise an online algorithm that
generates optimal expansions achieving the asymptotic weights given in Theorem 4.

A Source code

The algorithms covered in Chapter 4 were all implemented in Mathematica12. In the
program code, τ is written as tau and treated as a symbolic quantity by Mathematica.
Its arithmetic interpretation is established through the implementation of division by τ
in the function tauDiv[] and the Norm function in Z[τ ], written as Ntau[]. The curve
parameter µ ∈ {±1} is a global variable and written as mu.

mu = 1;

(* mu = -1; *)

tauDiv[{a1_Integer, a0_Integer}] := ({-a0/2, a1 + mu*a0/2});

tauDiv[z_] := (tauDiv[{Coefficient[z, tau, 1],Coefficient[z, tau,0]}]

/. {a1_,a0_}-> a1*tau + a0);

Ntau[{b_, a_}] := a^2 + mu*a*b + 2*b^2;

Ntau[z_] := Ntau[{Coefficient[z, tau, 1], Coefficient[z, tau, 0]}]

12Version 6.0, see www.wolfram.com for details
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A.1 Building the state machine

The following is the Mathematica-Module we implemented for computing the state machine
for given dimension d, digitset Ds and base base.

genStateMachine[d_, Ds_, base_] := Module[

{

divVec, checkDivByBase,

getNextState, normalize, getMStateID, getStateID, getState, explore,

getInitialState, computeCarrylookup,

carrylookup,DsIn = {0, 1}, Cs, csvecs,

V = {}, (* vertices / states *)

numstates,

E = {}, (* edges / state-transitions *)

Vu, (* states yet to be explored *)

newstate, curstate

},

(******* Helper functions *******************************************)

checkDivByBase[val_] :=

If[And @@ EvenQ[Coefficient[val, tau, 0]], True,False];

divVec[val_, 2] := val/2;

divVec[val_, tau] := tauDiv /@ val;

(* The norm function *)

Ntau[{b_, a_}] := a^2 + mu*a*b + 2*b^2;

Ntau[z_] :=

Ntau[{Coefficient[z, tau, 1], Coefficient[z, tau, 0]}]

(******* SUB-MODULE: computeCarrylookup *****************************)

(* This sets up a table that, given an input-vector in and a *)

(* carry-vector C_R holds a list of pairs {IndexOf(C_L),weight(out)} *)

(* corresponding to all possible recodings: *)

(* base*C_L + out = in + C_R *)

computeCarrylookup[] := Module[{},

carrylookup = Map[

Function[in,

Map[

Function[carry,

Map[Function[out, {carry + in - out, colweight[out]}],

Tuples[Ds, d]]
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], csvecs]]

, Tuples[DsIn, d]];

carrylookup =

Map[Function[list, Select[list, checkDivByBase[ #[[1]]] &]],

carrylookup, {2}];

carrylookup =

Map[{divVec[#[[1]], base], #[[2]]} &, carrylookup, {3}];

carrylookup =

Map[{First[Position[csvecs, #[[1]]]], #[[2]]} &,

carrylookup, {3}];

];

(******* SUB-MODULE: getNextState ***********************************)

getNextState[curstate_, input_] := Module[

{nextstate },

nextstate =

carrylookup[[ Position[Tuples[DsIn, d], input][[1, 1]] ]];

nextstate =

Map[curstate[[ #[[1]] + 2]] + #[[2]] &, nextstate, {2}];

nextstate = Min /@ nextstate;

nextstate = Join[{"ID", "hash"}, nextstate];

Return[nextstate];

];

(******* SUB-MODULE: normalize *************************************)

(* subtracts entry for carry 0 from all weights *)

(* this gives the representative for this state *)

(* additionally we also compute and store the hash *)

normalize[state_] := Module[{res, k},

k = state[[3]];

If[k == \[Infinity],

Print["Error in normalize: \[Infinity] on 0-carry"];

Abort[];

];

res = Delete[state, {{1}, {2}}] - k; (* normalizing *)

res = Join[{"ID", Plus @@ res}, res]; (* add hash info *)

Return[res];

];

(******* SUB-MODULE: getMStateID ************************************)
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(* assigns a sequential ID to new states, *)

(* adds them to V and just returns the ID on *)

(* subsequent calls with same argument *)

getMStateID[state_] := Module[{newID},

newID = ++numstates;

V = Append[V, Prepend[Rest[state], newID]];

getMStateID[state] = newID;

];

(******* SUB-Function: getState *************************************)

getState[stateID_] := Return[V[[stateID]]];

(******* SUB-Function: getInitialState *********************)

getInitialState[] := Module[{ st, stold = {}},

st =

Join[{1, \[Infinity], 0},

Table[\[Infinity], {(Length[Cs]^d) - 1}]];

While[st != stold,

stold = st;

st = getNextState[st, Table[0, {d}]];

];

st[[2]] = Plus @@ st[[3 ;; -1]]; (* hash *)

Return[st];

];

(******* SUB-MODULE: explore ***************************************)

(* This function returns all IDs of new states that are *)

(* found as direct sucessors of startstate *)

explore[startStateID_] := Module[

{newstateIDs = {}, startState,

nextState, numstates0, weightchange, nextStateID, digit,

allinputs},

startState = getState[startStateID];

allinputs = Tuples[DsIn, d];

Do[ (* for digit in all possible digit vectors \[Element] Ds^d *)

numstates0 = numstates;

digit = allinputs[[digitindex]];

nextState = getNextState[startState, digit];

weightchange = nextState[[3]];
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nextState = normalize[nextState];

nextStateID = getMStateID[nextState];

If[nextStateID > numstates0,

newstateIDs = Append[newstateIDs, nextStateID]];

E = Append[E, {startStateID, nextStateID, weightchange}];

, {digitindex, 1, Length[allinputs]}

];

Return[newstateIDs];

];

(******* Main Code ***************************************************)

Cs = Sort[genCarrySet[Ds, base], Ntau[#1] < Ntau[#2] &];

csvecs = Tuples[Cs, d];

computeCarrylookup[];

numstates = 0;

newstate = getInitialState[];

getMStateID[newstate]; (* adds it to V and indexes it *)

Vu = {1};

While[Vu != {},

Vu = Flatten[Map[explore, Vu]];

];

Return[{V, E}];

];

A.2 Computing weight

Once the state machine in form of the graph (V,E) has been computed, we can compute
the asymptotic minimal joint density. As a first step the helper routine getSysMat[]

generates the (sparse) transition Matrix. Note that the Tally[]-Function helps us deal
with double edges. for (V,E).

getSysMat[E_, d_] := Module[

{digitProb, EdgesCount},

digitProb = 1/(2^d);

EdgesCount = Tally[E[[All, {1, 2}]]];

Return[

SparseArray[{#[[1, 1]], #[[1, 2]]} -> #[[2]]*digitProb & /@

EdgesCount]

];

62



];

Next we show the Function to directly compute an exact solution for the station-
ary distribution of the Markov chain by solving the linear system x(P − I) = 0. The
NullSpace[]-Routine runs into trouble if the matrix is too big. At some point during
the computations, the matrix is transformed from a sparse to a normal matrix which is a
problem and we get an error:

parseArray::ntb: "Cannot convert the sparse array SparseArray[...] to an

ordinary array because the 22980437649 elements required exceeds the

current size limit."

For Graphs with less than 10000 vertices, the code worked fine in our system environment.
We can blindly take the first part of the result from the call to NullSpace[], because in
the theoretic part we already established that the solution is one-dimensional. Another
noteworthy comment is that since NullSpace[A] gives a basis for the solution of Ax = 0
and since we need a solution for xP = x, we call NullSpace[P T − I].

computeStationaryExact[P_] := Module[

{Eye, timing, statDist},

Eye = SparseArray[{{i_, i_} -> 1}, {Length[P], Length[P]}];

deb[5, "Computing marginal distribution..."];

timing = Timing[

statDist = NullSpace[(P\[ConjugateTranspose] - Eye)][[1]];

][[1]];

deb[5, "Finished computing marginal distribution (", timing, " s)"];

statDist = statDist/(Plus @@ statDist);

Return[statDist];

];

Computing the asymptotic minimal joint density is easily done by summing over all
edges as described in the theoretical part. Note that the function below provides the
possibility to supply the stationary distribution directly when calling it. We will need this
later. For now, it suffices to know, that when the optional third argument sD is left out,
the stationary distribution is computed via computeStationaryExact[].

computeAMJD[E_, d_, sD_: Null] := Module[

{P, statDist, amjd, DsIn = {0, 1}},

If[sD === Null,

P = getSysMat[E, d];

statDist = computeStationaryExact[P],

statDist = sD; (* else *)

];
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amjd = (Plus @@ (statDist[[ #[[1]] ]]*#[[3]] & /@ E))/(Length[DsIn]^d);

Return[amjd];

];

Next we take a look at the source code for the numeric approximation of the stationary
distribution for the transition matrix. There are two mechanisms to control the number of
iterations. One is a hard limit for the number of iterations, the other is the specification
of the floating point precision precisionIter. By specifying this as the optional second
argument to N[] when generating the start vector x1, all computations are starting off with
this precision. Anytime a numeric operation causes a loss of precision, Mathematica just
drops the additional, numerically dirty digits. Such numerically problematic operations are
subtractions and divisions. This leads to the (intended) behavior, that the variable error

drops to zero at a certain point, meaning the quantity, by which our approximation fails
to fulfill xP = x is no longer measurable in the given precision precisionIter and the
iteration stops. Note that the result suffers only a negligible loss of precision (one digit) in
the last step, when it is normed to sum to one.

computeStationaryIter[P_, precisionIter_, maxIt_] := Module[

{pnorm, numit = 0, x1, x2, error, xact, xactOK = True},

pnorm[x_] := x/Plus @@ x;

x1 = Table[N[RandomInteger[{0, 20}], precisionIter], {Length[P]}];

While[True,

x2 = x1.P;

error = Norm[pnorm[x1] - pnorm[x2]];

x1 = x2;

If[error == 0,

deb[5, "Error no longer numerically significant after ",

numit,"steps"];

Break[];

];

If[numit == maxIt,

Print["Iteration Limit ", maxIt, " reached"];

Break[];

];

numit++;

];

Return[pnorm[x1]];

];

The iterative solution for the stationary distribution of P , can be used to compute an
approximation for amjd:
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(* Edges either computed earlier or loaded from file *)

P = getSysMat[Edges, d];

SDiter = computeStationaryIter[P, 25, 200];

amjdapprox = computeAMJD[Edges, d, SDiter];

The more important role of the iterative solution is that of a base point for an at-
tempt to find an exact solution by rationalization. The function implementing this is
computeStationaryRational[]. The actual rationalization is done by the Mathematica-
native function Rationalize[] and we just follow that up with doing several validity
checks on the result.

computeStationaryRational[P_, SDiter_, precisionRationalize_] :=

Module[

{SDratio, xactOK = True},

SDratio = Rationalize[SDiter, 10^(-precisionRationalize)];

If[Or @@ (MatchQ[#, _Real] & /@ SDratio),

xactOK = False;

deb[5, "No rationalisation in desired bounds found"];

Return[False];

];

If[Not[And @@ (# >= 0 & /@ SDratio)],

xactOK = False;

deb[4, "Result of rationalisation not positive"]];

If[Plus @@ SDratio != 1,

xactOK = False;

deb[4, "Result of rationalisation is not a density (sum=",

N[Plus @@ SDratio, precisionRationalize], ")"]];

If[SDratio.P != SDratio,

xactOK = False;

deb[4, "Result of rationalisation is not stationary"];

];

If[xactOK,

deb[6, "Found exact solution by rationalisation!"],

deb[6, "No valid rationalisation found."];

];

Return[SDratio]

];
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