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Abstract

In this thesis we consider the flip distance of triangulations and
pseudo-triangulations with and without the additional restriction of
bounded vertex degrees. We show that the flip distance of a subset
of all zigzag triangulations of n points in convex position in the plane
can be given as a function of n. Further, we are able to prove the
validity of this result in the degree bounded setting where the vertex
degree of k > 6 must not be exceeded during the transformation of
two triangulations.

For the degree bounded setting we present several approaches for
an input sensitive upper bound on the flip distance of two triangu-
lations of n points in general position in the plane with maximum
vertex degree k. By providing counterexamples, we show that these
approaches do not work in general.

We give account of a computer program that, on the one hand,
provides heuristics that approximate the flip distance of two (bounded
degree) triangulations or pointed pseudo-triangulations taking the ver-
tex degree bound during the transformation into consideration. On
the other hand, the construction of the flip graph and related calcu-
lations for very small point sets are implemented.



Zusammenfassung

Diese Arbeit beschäftigt sich mit der Flipdistanz von Tri-
angulierungen bzw. Pseudo-Triangulierungen unter Berücksichti-
gung oder Vernachlässigung begrenzter Knotengrade. Für Zigzag-
Triangulierugen einer n-elementigen Punktmenge in konvexer Lage
in der Ebene, die bestimmte Anforderungen an die Lage der Kan-
ten erfüllen, wird gezeigt, dass deren Flipdistanz als Funktion von
n angegeben werden kann. Außerdem bleibt dieser Zusammen-
hang gültig, wenn die beiden Triangulierungen maximalen Knoten-
grad k > 6 besitzen und zusätzlich gefordert wird, dass während der
Transformation der beiden Triangulierungen ineinander der maximale
Knotengrad aller temporären Triangulierungen kleiner oder gleich k
ist.

Ansätze zur Abschätzung der Flipdistanz unter der Hinzunahme
der Knotengradbeschränkung zweier gegebener Triangulierungen von
n Punkten in allgemeiner Lage in der Ebene werden vorgestellt. Durch
die Konstruktion von Gegenbeispielen wird gezeigt, dass die Ansätze
nicht allgemein gültig sind.

Verschiedene Heuristiken, die die Flipdistanz zweier Trianuglierun-
gen oder pointed Pseudo-Triangulierungen mit maximalen Knoten-
grad k annähern, wurden implementiert und werden vorgestellt.
Durch die Konstruktion des Flipgraphs bietet das Programm zusät-
zlich die Möglichkeit der Berechnung der exakten Flipdistanz und
des Durchmessers des Flipgraphs unter Berücksichtigung der Knoten-
gradbeschränkung.
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1 Introduction
The term “triangulation” is widely used and can be found in many fields
reaching from psychology (description of relationships) to land surveying.

In this thesis we turn to triangulations in the field of computational geom-
etry. To be more precise, we consider triangulations of n points P in general
position, i.e., subdivisions of the convex hull of P into interior-disjoint trian-
gles where the vertex set of the triangles coincides with P . First introduced
by Lawson in [15], the edge flip in a triangulation is a local operation that
transforms a triangulation into another. It exchanges a diagonal of a convex
quadrilateral built by two triangles of the triangulation. Since the result of
the edge flip is again a triangulation, we can say that the operation is closed
under the set of triangulations of P . Further, two arbitrary triangulations
of P can be transformed into each other with a maximum number of O(n2)
flips ([15]).

Given two triangulations of P , we are interested in the flip distance, i.e.,
the minimum number of flips that are needed to transform the triangulations
into each other. Since the number of triangulations is exponential in the size
of P , the efficient computation of the flip distance is in general an open
problem, see [9]. Only a few results for the exact and efficient calculation
of the flip distance can be found in the literature in [10] and [16]. In this
thesis, we extend the set of triangulations for which the flip distance can
be computed efficiently by a subset of the so-called zigzag triangulations
of convex point sets. The arising flip sequence is a result of the recursive
application of theorems shown in [4], where possibilities of the subdivision
of the flip distance into smaller problems are presented. The length of the
flip sequence depends on the size of the underlying point set. Thus, we can
define the flip distance in this case as a function of the number of points.

The flip graph of triangulations of P contains a vertex for each trian-
gulation and two vertices are connected in the flip graph by an edge if the
corresponding triangulations differ by a single edge flip. The diameter of a
flip graph is defined by the maximum length of the shortest path in the flip
graph. In [3] Aichholzer et al. consider the connectivity of a subgraph of the
flip graph that only consists of vertices that correspond to triangulations with
maximum vertex degree k ∈ N. In other words, they raise the question if two
given triangulations with maximum vertex degree k can be transformed into
each other without exceeding the vertex degree k. For P in convex position
they answer the question in the affirmative for any k > 6. Further, they
show that at most O(n2) edge flips are needed for the transformation. In
addition, they decrease that bound to O(n) in case of zigzag-triangulations.
With those results in mind, we are able to prove that the above mentioned
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flip distance does not exceed the vertex degree k > 6 and hence, holds for
the degree bounded setting, too.

As a contrast for bounded degree triangulations of convex point sets,
Aichholzer et al. show that the flip graph of bounded degree triangulations of
point sets in general position can be disconnected for any k. Nevertheless, we
are interested in an upper bound on the flip distance in the degree bounded
setting, assuming that two given triangulations are transformable without
exceeding the vertex degree k. We discuss several estimates with the intention
to get an input sensitive upper bound on the flip distance similar to the one
presented in [11] for triangulations.

Additionally, we study the latest results concerning the flip distance, the
flip graph and its diameter of pseudo-triangulations of point sets. Pseudo-
triangulations arose in the 1990’s as a generalization of triangulations. The
subdivision of the convex hull is done by pseudo-triangles, i.e., simple poly-
gons with three vertices, instead of triangles. Particularly, we consider a sub-
set of pseudo-triangulations — pointed pseudo-triangulations. In a pointed
pseudo-triangulation each vertex is incident to an angle larger than π. In
short, we say that each vertex is pointed in a pointed pseudo-triangulation.

Besides the theoretical considerations, a program is presented that
approximates the flip distance of two triangulations or pointed pseudo-
triangulations in the degree bounded setting by means of several heuristics.
Furthermore, the construction of the flip graph and related calculations such
as the flip distance and the flip diameter are implemented and described.

1.1 Thesis overview
In section 2 we start with some fundamental definitions and basic proper-
ties relating to triangulations (section 2.1) and pseudo-triangulations (sec-
tion 2.3). Further, we present important results of research dealing with the
flip graph, the flip distance and the flip diameter.

Section 3 addresses input sensitive upper bounds on the flip distance of
two (bounded degree) triangulations. We first show the results of Hanke et
al. [11], afterwards we elaborate some approaches for a similar estimate for
the degree bounded setting.

In section 4 we investigate the flip distance of two zigzag triangulations.
We introduce in section 4.1 some preliminary definitions and observations

related to zigzag triangulations and outline important results of Baril et
al. in [4], which mainly deal with the subdivision of the flip distance into
smaller problems. We prove in section 4.2 that the flip distance of two
zigzag triangulations can be defined as function of the number of points,
provided that both zigzag triangulations are subject to conditions concerning
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the position of the edges. Basically, two different flip sequences corresponding
to the flip distance arise. Section 4.3 reveals the equality between one of the
two flip sequences and the flip sequence used in [3] by means of proving that
zigzag triangulations can be transformed into each other without exceeding
the vertex degree k in O(n) time. With an additional extension of this result
in [3] we are able to show that the flip distance introduced in section 4.2 can
be transferred to the degree bounded setting for k > 6 (see Theorem 4.13 on
page 65).

In section 5 we give account of the developed computer program. We
describe the implemented heuristics and possible calculations related to the
flip graph. Finally, we give an overview of the program control.

Section 6 concludes the thesis with a short summary and an outlook on
future work.
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2 Basic properties
This section is divided into two main parts. One part deals with triangula-
tions (section 2.1), the other one considers pseudo-triangulations (section 2.3)
of point sets. Both parts have the same structure: First we give some basic
definitions in order to be able to define a (pseudo-)triangulation of a point set.
In this thesis only point sets in general position in the plane are considered.
Hence, we assume that no three points are collinear.

After some basic properties of a (pseudo-)triangulation, we consider the
terms “flip graph”, “flip diameter” and “flip distance” and give a brief
overview of some fundamental results related to these terms. Finally, we
consider the effect of applying vertex degree restrictions to these results.

Throughout the whole thesis, we denote with P a finite point set in
general position in the plane. If P is in convex position, i.e., all points lie on
the boundary of the convex hull, we write Pc (except for section 4, where we
only consider triangulations of convex point sets). Furthermore, we define n
to be the number of points of P and write m for the number of edges of a
(pseudo-)triangulation. We define the vertex degree, degT (v), v ∈ P , of v in
a (pseudo-)triangulation T as number of edges incident to v in T .

2.1 Triangulations
Before we are able to define a triangulation of a point set, we have to consider
the terms ”convex set” and “convex hull”. For each of them, there exists a
variety of different definitions. To some extent, they are even different in
their meaning, which emphasizes the importance of those definitions.

Definition 2.1 ([8]). A subset S of the plane is called a convex set iff S
entirely contains the line segment pq for all pairs p, q ∈ S.

Definition 2.2 ([8]). The convex hull of P , CH(P ), is the smallest convex
set that contains that point set.

Contrary to other definitions in the literature, the convex hull is not re-
duced to the boundary of the smallest convex set containing P . According to
Definition 2.2, we observe that if a convex hull has nh points on its boundary,
then the number of edges on the boundary of the convex hull is the same. We
refer to those edges as convex hull edges of P . The definition of the convex
hull of P enables us to define a triangulation of P :

Definition 2.3 ([12]). A triangulation of P is a partition of the convex
hull of P into a set of interior-disjoint triangles such that the vertices of each
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triangle are points of P . The points of P are called vertices of T . The
edges of the triangles are called edges of T . An edge is called inner edge
or diagonal if it is not a convex hull edge.

Based on Lawson [15], we alternatively say that a triangulation of P is the
result of connecting the vertices of P with non-crossing straight-line segments
such that a set of interior-disjoint triangles arises and the set of corners of
the triangles coincides with P . A more formal and short equivalent can
be found in [1], where a triangulation is characterized by a maximal planar
straight-line graph. That definition is useful in order to point out some basic
properties of triangulations. The following observations can be found in [1]:

There is a very well known and useful formula for planar graphs, which
relates the number of points, edges and faces (denoted by f) to each other.
It is Euler’s Polyhedron Formula that says n−m+f = 2. For a triangulation
with t triangles we therefore have t = f − 1. Taking a closer look on t, we
see that t is a function of the number of inner edges mi and the number of
convex hull edges mh, with m = mi +mh:

• Each triangle consists of exactly three edges.

• Each inner edge has two incident triangles.

• Each convex hull edge has one incident triangle.

Thus, we have t = 2mi+mh

3 . Accordingly, we can replace t and m in Euler’s
formula and get

n− (mh +mi) + 2mi +mh

3 = 1⇔ 3n−mi − 2mi = 3⇔ m = 3n−mh − 3.

Hence, we see that the number of edges depends on the number of points
and the number of convex hull edges. If we include the observation that each
triangulation has at least three convex hull edges, we finally get an upper
bound on the number of edges depending on n:

m = 3n−mh − 3 ≤ 3n− 6.

We summarize these basic properties in the following proposition:

Proposition 2.1 ([1]). Let T be a triangulation of P . Furthermore, we
denote with mh ≥ 3 the number of convex hull edges of P and abbreviate the
number of inner edges of T with mi such that m = mh +mi. Then T has the
following properties:

1. mh corresponds to the number of points in the boundary of CH(P ).
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2. m = 3n − mh − 3. Note that for P is in convex position, we have
m = 2n− 3 and mi = n− 3.

3. The number of triangles is given by 2mi+mh

3 and (n− 2) for P convex,
respectively.

4. m ≤ 3n− 6.

There are many possible ways to triangulate a point set. Note that each
triangulation of the same point set has the same number of edges. We ab-
breviate the set of all triangulations of P with TP . If P is in convex position,
we write Tn instead of TP .

In the following, we will introduce the edge flip in a triangulation, which
first appeared in [15] under the name “exchange”. It is a local, uniquely
reversible operation on T ∈ TP and closed in TP . Moreover, we will see that
it enables us to transform two arbitrary triangulations on the same point set
into each other.

Definition 2.4 ([12]). Let t1, t2 be two triangles of T ∈ TP , that share a
common edge e. If Q = t1 ∪ t2 is a convex quadrilateral, then an edge flip
exchanges e with the other possible diagonal e′ in Q. Furthermore, e′ is called
the flip target of e.

e

v1

v3

v4
v5

v2

(a) T1

v1

v3

v4
v5

v2
e′

(b) T2

Figure 1: T1, T2 ∈ TP , P = {v1, . . . , v5}. The edge flip from e to e′ in T1 results in T2.
Bold edges are flippable.

Figure 1 shows an example of an edge flip. Note that the edge (v3, v5)
is only flippable in T1 and thus the number of flippable edges changes from
2 in T1 to 1 in T2. Hence, the question on the number of flippable edges in
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T1 T2 T3

T4 T5 T6

Figure 2: FG(TP ) — the flip graph of P .

a triangulation arises. In [12] Hurtado et al. prove that each triangulation
has at least dn−4

2 e flippable edges. Furthermore, they provide two examples
in order to show that this bound is tight. As a consequence, the number of
triangulations on a point set in general position is exponential in the number
of points as at least a linear number of edges is independently flippable.

Definition 2.5 ([6]). A graph FG(TP ) = (VP , EP ) is called the flip graph
of triangulations of P if all vertices in VP are triangulations of P and two
vertices are connected by an edge if their corresponding triangulations differ
by exactly one edge flip.

Figure 2 depicts a flip graph of a point set of size 6. Each triangulation of
that point set is transformable into any other of the same point set. Hence,
we can say that the depicted flip graph is connected. Additionally, we ob-
serve that at most four flips are needed in order to transform two arbitrary
triangulations of that point set into each other.

Such observations are also interesting for any FG(TP ). Theorem 2.2 re-
veals the results for the general case. First, we have to define the following
terms:

Definition 2.6 ([11]). Given T1, T2 ∈ TP , the flip distance of T1 and T2,
denoted by fd(T1, T2), is defined by the minimum number of edge flips that
are needed to transform T1 into T2.
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Similar to [6] we equivalently say that fd(T1, T2) is given by the length of
the shortest path from T1 to T2 in FG(TP ).

The flip distance of two triangulations can also be seen as a similarity
measure in order to “compare” two triangulations. Together with the fact
that the number of nodes in FG(TP ) is exponential in n, we recognize that
the efficient computation of the shortest path of two nodes in FG(TP ) turns
out to be a real challenge, see [9]. Thus, we are interested in an upper
bound on the flip distance, i.e., the maximum length of the shortest path
to get information on the maximum number of edge flips that are needed
to transform two triangulations into each other. In other words, we are
interested in the diameter of the flip graph:

Definition 2.7 ([6]). The diameter of a flip graph FG(TP ) is defined by

max{fd(T1, T2)|T1, T2 ∈ TP}.

The flip graph depicted in Figure 2 has diameter 4, caused by T4 and T6.
All other triangulations have a flip distance less than 4.

With those definitions in mind we are able to consider the general case
of the connectivity and the diameter of a flip graph. Lawson [15] shows that
two triangulations can always be transformed into each other via edge flips.
The main idea is to find a triangulation TR — the reference or canonical
triangulation — into which any other triangulation of the same point set
can be transformed. In [15], TR is constructed in the following way: Assume
that (v1, . . . , vn) are the vertices in P , lexicographically sorted by their coor-
dinates. Let τ3 = (v1, v2, v3) be the initial triangulation. Successively, we add
all vertices vi, i = 4, . . . , n to the current triangulation τi−1 by connecting vi

with each visible vertex. Note that vi is called visible to vj, j = 0, . . . , i−1, if
the edge (vi, vj) does not cross any other existing edge in τi−1 in the interior.
Triangulation T2 in Figure 1 shows an example of TR for that point set.

The flip sequence for the conversion of T1, T2 ∈ TP can be found by first
transforming T1 into TR, followed by applying the flip sequence found for the
transformation of T2 to TR in reverse order on TR. Lawson describes how to
find a flip sequence from T1 ∈ TP to TR, T1 6= TR. The number of flips needed
for that transformation is bounded by O(n2). Hence, each triangulation can
be converted to any other triangulation of the same point set with O(n2)
flips. Thus, FG(TP ) is connected and its diameter is bounded by O(n2).

In [12] Hurtado et al. present an example of two triangulations with flip
distance Ω(n2) — the so-called “double chain”, see Figure 3. Basically, both
triangulations consist of a rectangle Q (w.l.o.g. we assume that it is axis-
aligned) and two concave chains C1, C2 with n vertices each. C1 and C2 lie
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C2

C1

C2

C1

1
1

1111

0
0 0 0 0

0

0 0 0 0 0
0

1 1 1 1 1
1

111111000000 000000111111

Figure 3: Two triangulations on the point set called the “double chain”. The depicted
triangulations have a flip distance of (n − 1)2 (for the triangulations between the upper
and lower chain) + Θ(n) (for the convex region above and below the chain, respectively)
with |P | = 2n.

in the interior of Q. Furthermore, C1 connects the upper two corners of Q
whereas C2 connects the lower two corners of Q.

Hurtado et al. show that there is a bijection between ordered sequences
of 2(n− 1) zeros and ones and the triangulations between C1 and C2: Each
triangulation between the chains consists of 2(n− 1) triangles. Such a trian-
gle has either two vertices in C1 or two vertices in C2. Dependent on that, we
label each triangle with 0 (2 vertices in C1) or 1 (2 vertices in C2). Reading
the assigned labels from left to right results in an ordered sequence of zeros
and ones, that uniquely identifies a triangulation and vice versa. Thus, each
triangulation can be encoded with such a sequence. We observe that an edge
flip is only possible if the incident triangles have different labels. Addition-
ally, it causes a label-switch of the corresponding triangles and consequently,
in the assigned encoding. Hence, if we consider triangulations with encod-
ings 1 . . . 10 . . . 0 and 0 . . . 01 . . . 1, we obviously need (n − 1)2 edge flips to
transform them into each other.

Theorem 2.2 ([15], [12]). The flip graph of P , FG(TP ), is connected. Its
diameter is bounded by O(n2) and this bound is thight.

However, for T1, T2 ∈ TP , O(n2) is a rough estimate for the flip distance.
Beside some exceptions for point sets in convex position, which will be dis-
cussed later in this section, there exist two approaches to specify that bound:
In [11] Hanke et. al. present an upper bound on the flip-distance that is sen-
sitive to the input triangulations. They show that the number of edge flips
needed to transform T1 into T2 is at most the number of intersections be-
tween the edges of the triangulations. (See section 3.1). For point sets that
include collinear points and do not have any empty pentagons, Eppstein [10]

9



Y X

A

B

A

X
X

Y

Y

B

X Y

C

C

rotation at X

rotation at Y

e
e′

flip e

flip e′

rootroot

4

5 6

7

8

9

10

2

3

4

5 6

7

8

10

2

3

1 1

9

4 7

5

4

2

3
7

6 9

10

8

1

2

3

6

5 9

10
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Figure 4: The bijection between triangulations of convex point sets and binary trees. An
edge flip corresponds to a rotation of the binary tree. Only interior nodes of the binary
trees are depicted.

shows how to compute the flip distance of two triangulations in O(n2) time.
Nevertheless, the efficient computation of the flip distance generally remains
an open problem.

Point sets in convex position A fundamental basis for many achieve-
ments concerning triangulations of n points in convex position is the bijection
to rooted binary trees with (n−2) internal nodes, shown by Sleator et al. [18].
The edge flip in a triangulation corresponds to a rotation in a binary tree,
see Figure 4. Hence, the flip graph FG(Tn) is isomorphically to the rotation
graph, which has a vertex for each binary tree with (n − 2) internal nodes
and two vertices are connected by an edge if the corresponding binary trees
differ by a single rotation ([18, Lemma 1]).

Each inner edge is a diagonal of a convex quadrilateral. Consequently,
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v

(a) (b)

Figure 5: 5(a) A triangulation with a “fan” at v. 5(b) A triangulation with exactly two
“fans”.

each inner edge is flippable. The number of triangulations of a point set in
convex position, Pc, is given by Cn−2 = 1

n−1

(
2(n−2)

n−2

)
, the (n− 2)nd Catalan

number. Thus, we still have a flip graph for which the number of vertices is
exponential in the size of the underlying point set. However, the diameter of
the flip graph decreases: According to Culik and Wood [13, Theorem 2.1],
the rotation distance of two binary trees with (n − 2) internal nodes is less
or equal to (2(n− 2)− 2) = (2n− 6). (The rotation distance is the number
of rotations needed to transform two binary trees of the same size into each
other.) Consequently, the diameter of the rotation graph is in Θ(n). To-
gether with the aforementioned isomorphism we can formulate the following
theorem:

Theorem 2.3 (Theorem 2.1 in [13], Lemma 1 in [18]). The diameter of the
flip graph of a convex point set in the plane is given by Θ(n).

A simple proof can be found in [6]: Each triangulation in Tn has (n− 3)
diagonals, see Proposition 2.1. Thus, we need at most (n − 3) edge flips to
transform a triangulation in Tn into a triangulation consisting of exactly one
“fan”, i.e., a triangulation where all inner edges have one common vertex,
see Figure 5(a). That triangulation acts as canonical triangulation. Conse-
quently, at most 2(n− 3) edge flips are needed for the transformation of two
triangulations in Tn.

A tighter bound for n > 12 can be found in [18, Lemma 2]. Sleator et al.
show that the diameter of a flip graph is at most 2n−10. Additionally, there
exist many polynomial time algorithms calculating good lower and upper
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Figure 6: Each triangulation of that point set has a maximum vertex degree of (n−1) [14].

bounds for the flip distance of two triangulations of Pc, see for example [4].
The algorithm is based on the fact that the calculation of the flip distance
of T1 and T2 can be subdivided, if T1 and T2 share a diagonal. It recursively
computes upper and lower bounds on the flip distance in O(n3) time. We
will show more results of that paper in section 4.

Moreover, Lucas [16] shows how to compute the shortest flip sequence
of a restricted kind of triangulations in O(n2) time. The presented flip se-
quence transforms triangulations with no inner triangles into triangulations
containing exactly one or two fans, see Figure 5.

However, in general the restriction to convex point sets does not imply a
known efficient calculation of the exact flip distance between two triangula-
tions. In section 4.2 we show the flip distance of another restricted kind of
triangulations — so-called zigzag triangulations — under certain restrictions
on the structure of the edge-positions.

2.2 Bounded degree triangulations
In this section we consider triangulations with bounded vertex degree. We
denote by TP,k the set of triangulations of P where each triangulation has a
maximum vertex degree of k. Again, we write Tn,k instead of TP,k if we know
that P is convex.

In [3], Aichholzer et al. consider the connectivity of FG(TP,k) — a sub-
graph of FG(TP ) — that only contains triangulations with a maximum vertex
degree k. Since there exist point sets for which each triangulation has a max-
imum vertex degree of (n− 1) (see Figure 6 for an example), they point out
that FG(TP,k) can be empty for any k = (n − 1). Nevertheless, it is worth
discussing the question if there exists a flip sequence transforming two arbi-
trary triangulations with maximum vertex degree k into each other without
exceeding that degree bound. Aichholzer et al. show that for each k there
exists a point set with two triangulations that can not be transformed into
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each other without exceeding the vertex degree k. Figure 7(a) and 7(b) give
an example for k = 8. That example can be modified for any k ≥ 7 with an
underlying point set of size n = Θ(k2).

(a) (b)

Figure 7: 7(a) For k = 8, only the bold edges are flippable. Thus, that triangulation
cannot be transformed into the triangulation depicted in 7(b) without exceeding the vertex
degree k. [3]

However, for two given triangulations T1, T2 ∈ TP,k, we are interested in
the measure of the flip distance assuming that they are transformable into
each other without exceeding the vertex degree bound. In section 3.2 we
discuss some estimates. Unfortunately, we could not find an input sensitive
upper bound as given in [11].

For point sets in convex position, Aichholzer et al. [3] show that FG(Tn,k)
is connected for k > 6. The main idea of the transformation for T1, T2 ∈ Tn,k

is to convert both triangulations into the “left-most zigzag triangulation”
without exceeding the vertex degree bound. For details on zigzag triangula-
tions see section 4. The required number of flips for the conversion is bounded
by O(n2), i.e., the flip diameter of FG(Tn,k) is in O(n2) for k > 6.

2.3 Pseudo-triangulations
In the same way as in section 2.1, we start with some preliminary definitions
in order to be able to define a pseudo-triangulation. Similar definitions can
be found in the literature, see for example [17] and [19].

Definition 2.8. A (simple) polygon is a connected subset of the plane,
delimited by n ≥ 3 (non-crossing) line segments such that every end point
of a line segment is shared by exactly two line segments. The end points
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are called vertices and the line segments edges. A polygon with n vertices is
called an n-gon.

For n = 3, we have a triangle, and a 4-gon is commonly known as quadri-
lateral. The boundary of a polygon is given by the set of edges and the
sequence of vertices of the polygon. The interior of the polygon is the finite
region delimited by the boundary. It is worth noting that according to that
definition, a polygon is the union of the boundary and the interior. Contrary
to that, there are many definitions in the literature that reduce a polygon to
the boundary.

Since pseudo-triangulations are a generalization of a triangulation, we
need to define the equivalent of a triangle. That equivalent is a pseudo-
triangle, which is a special case of a pseudo-k-gon.

Definition 2.9. A pseudo-k-gon is a simple polygon with exactly k convex
vertices, i.e., it has exactly k internal angles less that π. We call these vertices
corners. The sequence of edges and vertices connecting two consecutive
corners of a pseudo-k-gon is called side chain. The vertices that are part of
a side chain are reflex vertices, i.e., their internal angle is greater than π. A
pseudo 3-gon is called pseudo-triangle. For any edge e of a side chain s in
a pseudo-triangle, we refer to the corner that is not incident to s as opposite
corner of e (or s). For k = 4, we also say pseudo-quadrilateral.

Now, we are able to define a pseudo-triangulation analogously to Defini-
tion 2.3 in section 2.1:

Definition 2.10. A pseudo-triangulation is a partition of the convex hull
of P into interior-disjoint pseudo-triangles, whose vertex set is exactly P . An
edge is called inner edge if it is not a convex hull edge.

We denote the set of all pseudo-triangulations of P by PT P . Figure 8
depicts examples of pseudo-triangulations. They reflect a fundamental dif-
ference to triangulations: the number of edges of two pseudo-triangulations
with a common underlying point set varies. (Recall that each triangulation
of the same point set has the same number of edges.) Nevertheless, we know
that each triangulation is a pseudo-triangulation because each triangle is a
pseudo-triangle. Thus, we have TP ⊆ PT P . Furthermore, the sets even
coincide if and only if P is in convex position.

In addition to TP , we define the following subsets of PT P :

Definition 2.11 ([14]). A pseudo-triangulation T ∈ PT P is a minimal
pseudo-triangulation, if there is no edge that can be removed such that T
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remains a pseudo-triangulation. Contrary to that, we say that T is a min-
imum pseudo-triangulation if no other pseudo-triangulation on P has a
smaller number of edges.

According to [14], each minimum pseudo-triangulation also has to be a
minimal one, but not necessarily vice-versa. Figure 8(b) and Figure 8(c)
demonstrate an example: Neither T1 nor T2 result in a pseudo-triangulation
if one edge is removed. Thus, according to Definition 2.11, they are
both minimal. Considering the number of edges of both depicted pseudo-
triangulations, T1 has five inner edges, whereas T2 only has four. Addition-
ally, the underlying point set does not have a pseudo-triangulation with a
smaller number of inner edges than four. Consequently, T1 is not a minimum,
but only a minimal pseudo-triangulation.

(a) (b) T1 (c) T2

Figure 8: 8(a) A pseudo-triangulation that contains a minimum pseudo-triangulation (bold
edges). 8(b) A minimal pseudo-triangulation, that does not contain a minimum pseudo-
triangulation. 8(c) A minimum pseudo-triangulation of point set 8(b). Figure 8(b) and
Figure 8(c) are adapted from [14].

Definition 2.12. Given T ∈ PT P and v ∈ P , assume that
Ev = (e1, e2, . . . , el, e1) is the sequence of all edges incident to v in T , sorted
in a cyclic order around v. Then v is called pointed, if there is a pair of con-
secutive edges in Ev that spans an angle larger than π. Otherwise, v is non-
pointed. Furthermore, we say that T is a pointed pseudo-triangulation,
if each vertex in P is pointed.

We denote the set of pointed pseudo-triangulations of P by PPT P . Fig-
ure 8(a) contains a pointed pseudo-triangulation, indicated by the bold edges.
The pseudo-triangulation in Figure 8(c) is pointed, too. Hence, we ob-
serve that a pseudo-triangulation can be pointed and minimum at the same
time. In fact, we know that each pointed pseudo-triangulation is a minimum
pseudo-triangulation and vice versa, formulated in Theorem 2.4.
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Theorem 2.4 (Theorem 2.7 in [17], Theorem 2.3 in [19]). T ∈ PT P is a
minimum pseudo-triangulation, if and only if T is pointed.

Hence, we know that the minimum number of edges is reached if each
vertex is pointed. Additionally, it would be interesting to specify the number
of edges as a function of n, not only for pointed pseudo-triangulations, but
also for pseudo-triangulations. Note that since the number of edges of differ-
ent pseudo-triangulations of the same point set varies, we cannot reduce m
to be a function of n in the general case. The following considerations that
can be found in [17] provide the desired information:

Each edge in T is incident to two vertices, i.e., each edge increases the
degree of its incident vertices by one. Hence, the total sum of all vertex
degrees in T is given by 2m. Since the degree of a vertex equals the number
of incident angles of that vertex, we have 2m angles in T . Angles can be
categorized into convex and reflex ones. The latter are incident to a pointed
vertices. Thus, if the number of non-pointed vertices is given by nX , we
obviously have n − nX pointed vertices. Furthermore, each pseudo-triangle
in T has exactly three convex angles (incident to the corners). Consequently,
we have nX = 3t, where t is the number of pseudo-triangles in T . Accordingly,
the number of angles is given by

2m = 3t+ n− nX . (2.1)

Additionally, we know that pseudo-triangulations are planar graphs. Thus,
we can use Euler’s formula (see section 2.1) in order to eliminate t in equa-
tion (2.1) and get

2m = 3(m− n+ 1) + 3 + n− nX ⇔ m = 2n− 3 + nX

In the same way, we can replace m in equation (2.1) and get

2(n− t+ 1) = 3t+ n− nX ⇔ t = n− 2 + nX

We formulate those observations in the following proposition:

Proposition 2.5 ([17]). Given T ∈ PT P . Then T has the following prop-
erties:

1. m = 2n−3+nX , where nX is the number of non-pointed vertices in T .

2. m = 2n− 3, for T pointed.

3. t = n − 2, for T pointed, where t is the number of pseudo-triangles
in T .
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Analog to section 2.1, we want to define an edge flip in a pseudo-
triangulation. Recall that an edge flip in a triangulation is defined by ex-
changing the diagonals in a convex quadrilateral. That implies that not each
edge is flippable in a triangulation. For the edge flip in a pseudo-triangulation
we do not have such a restriction. In fact, we will see that each inner edge is
flippable even if its incident pseudo-triangles form another pseudo-triangle.

Speaking of diagonals in quadrilaterals, we realize that we have not yet
defined a diagonal of a pseudo-quadrilateral. Thus, the generalization of the
edge flip requires some preliminary definitions:

Definition 2.13 ([17], [19]). A line segment l ending in a vertex v ∈ P of a
pseudo k-gon R is tangent to a side-chain s of R if either

• v is a corner of R, s is a side chain incident to v and l lies in the convex
angle of v, or

• v is part of s and the two incident edges of v lie on the same side of
the supporting line of l.

l is called bitangent to two side chains of R if each endpoint of l is tangent
to one side chain. A geodesic path between two vertices of R is the shortest
path inside R connecting these vertices. A diagonal of R is a line segment
that is

• part of a geodesic path between two corners of R and

• bitangent to two side chains of R.

The bold edges in the right pseudo-triangle of Figure 9(a) build a geodesic
path between the lower two corners of the pseudo-triangle. Figure 9(b) de-
picts two diagonals (bold edges) of a pseudo-quadrilateral. The diagonals
are part of a geodesic path between the upper left and the lower right corner
and the lower left and the upper right corner, respectively. Note that both
diagonals are bitangents in the quadrilateral. Contrary to that, the bold edge
in the left pseudo-triangulation of Figure 9(a) is not bitangent to its incident
pseudo-triangles and equivalently not part of a geodesic path between two
corners.

With these terms in mind, we are ready to define an edge flip in a pseudo-
triangulation:

Definition 2.14 ([6]). Given T ∈ PT P and e ∈ T . Let t1 and t2 be the
incident pseudo-triangles of e and v1 and v2 be the opposite corners of e in
t1 and t2. Then the removal of e followed by the insertion of the edges of the
geodesic path between v1 and v2 that are not yet in T or the inversion of the
removal operation, is called an edge flip in T .
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Figure 9 depicts different scenarios of an edge flip. Contrary to the edge
flip in Figure 9(b), the edge flip in Figure 9(a) has an influence on the number
of edges. Thus, we classify the edge flips into three different types:

(a) (b)

Figure 9: 9(a) An insertion - deletion flip. 9(b) A diagonal flip.

Definition 2.15 ([17]). Given T ∈ PT P . Then the three different types of
the edge flip operation in T are defined as follows:

• Assume that T ′ is the result of removing an existing inner edge e in T .

1. Then the removal of e is called deletion, or edge-removal flip,
iff T ′ ∈ PT P .

2. Otherwise, the insertion of a new unique edge e′ 6= e leads to a
pseudo-triangulation. We call the exchange of e with e′ a diago-
nal flip.

• Let T ′ be the result of inserting a new edge e into T . Then the insertion
of e is called insertion flip, iff T ′ ∈ PT P .

According to [17] and [19], the diagonal flip is uniquely defined: On the
one hand, the removal of an edge e either results in a quadrilateral or in a
degenerate quadrilateral, see Figure 10. The degenerate case arises if one
incident vertex v of e has degree 2 before the removal. Thus, the deletion
of e causes an interior angle of 2π. Nevertheless, it can be seen as a pseudo-
quadrilateral: Let ẽ = (v, ṽ) be the remaining incident edge of v. Then ṽ
can be seen as fourth corner with ẽ as part of an incident side chain. On
the other hand, they show that each pseudo-quadrilateral has exactly two
diagonals that separate the pseudo-quadrilateral into two pseudo-triangles.

Since the result of an edge flip in a pseudo-triangulation is again a pseudo-
triangulation, that operation is closed in PT P . Furthermore, we know that
each edge flip in a pointed pseudo-triangulation is a diagonal flip, shown
in [7]. Hence, the diagonal flip is a closed operation in PPT P .
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Figure 10: T1, T2 ∈ TP , P = {v1, . . . , v5}. Flipping e in T1 to e′ results in T2.

The definition of a flip graph, its diameter and the flip distance is analog
to the definition for triangulations in section 2.1. Thus, the flip graph of
all pseudo-triangulations of P is denoted by FG(PT P ). According to [17],
FG(PT P ) as well as its subgraph FG(PPT P ) is connected. Furthermore,
the diameter of both flip graphs is given by O(n log n), shown in [2] for
pseudo-triangulations and in [5] for pointed pseudo-triangulations.

All in all, the efficient calculation of the exact flip distance between two
pseudo-triangulations remains an open problem. Contrary to triangulations,
not even an input sensitive lower nor upper bound on the flip distance is
known.

In section 5.1 we present implemented heuristics for the calculation of the
flip distance of pointed pseudo-triangulations.

2.4 Bounded degree pointed pseudo-triangulations
In this section, we restrict our considerations to pointed pseudo-
triangulations of P with maximum vertex degree k, denoted by PPT P,k.
In section 2.2 we saw that for particular point sets each triangulation has a
maximum vertex degree (n− 1).

Contrary to that, Kettner et al. [14] show that each point set has a pointed
pseudo-triangulation with maximum vertex degree five. Furthermore, they
prove that this bound is tight by providing an example of a point set for
which each pointed pseudo-triangulation has a vertex degree of at least five.
Figure 11 depicts that point set. We can observe that each pointed pseudo-
triangulation consists of one “real” pseudo-triangle tp incident to the vertex
in the interior of CH(P ). All other pseudo-triangles are triangles, since all
other vertices lie on the boundary of the convex hull and have interior angles
less that π. Obviously, the corners of tp lie on the boundary of the convex
hull. vc is part of the side chain s of tp and has vertex degree 2. W.l.o.g. we
assume that (vt, vc) is an edge of s. We can add two more edges incident to vc

19



vr

vc

vt

l

vl

tp

Figure 11: Each pointed pseudo-triangulation of that point set has a vertex degree of at
least 5.

or, equivalently, three triangles, each of which has one corner at vc, without
exceeding the vertex degree 4. That implies that at most 3 vertices lie on the
boundary of CH(P ) between the two corners incident to s. The line l, defined
by vertices vt and vc, separates P \ {vt, vc} such that on each side of l there
are 5 vertices. Consequently, none of the edges of tp is a convex hull edge.
Thus, each corner has vertex degree 4. W.l.o.g. suppose that the 3 vertices
between the two corners incident to s lie on the right side of l. Hence, one
corner of tp, vr, lies on the right side of l, too. Moreover, tp only consists of
inner edges because the opposite corner of s, vl, has to be on the left side of
l. Hence, there are still 4 vertices on the left side, that are not incident to a
triangle. In order to complete the pseudo-triangulation, we need to connect
one of these vertices with either vt or vl. That implies a vertex degree of five.

Accordingly, it would be interesting to study the connectivity of
FG(PPT P,k) for a k ≥ 5. Since the set of triangulations equals the set
of pseudo-triangulations for P convex, the results presented in section 2.1 for
Tn,k hold here as well.

For point sets in general position, Aichholzer et al. [3] show an example
of a pointed pseudo-triangulation in which no edge can be flipped without
exceeding the vertex degree of 9. Figure 12 depicts that example. Addition-
ally, there exist other pointed pseudo-triangulations of the same point set
in PPT P,9. Hence, we can say that FG(PPT P,k) can be disconnected for
any k ≤ 9.
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Figure 12: A pointed pseudo-triangulation in which no edge can be flipped without ex-
ceeding the vertex degree bound of 9 [3].The shaded parts in the left drawing correspond
to the figure depicted on the right side. The dark vertices indicate a vertex degree of 9.
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3 Input sensitive upper bounds on the flip
distance

In this section we consider input sensitive upper bounds on the flip distance
of two given (degree bounded) triangulations on P . On the one hand, we
present the main result of Hanke et al. [11], who introduce such a bound for
triangulations. On the other hand, we will check the validity of that estimate
for the degree bounded setting and discuss several approaches for a similar
result for bounded degree triangulations.

In the following, we abbreviate the number of intersections of edge e ∈ T1
with the edges in T2 with #(e, T2). Furthermore, we denote the number of
intersections between the edges of T1 and T2 by #(T1, T2). We say that two
edges intersect if they intersect in their interior. Note that the expression
“e ∈ T” alternatively stands for “T contains e”.

3.1 Results for triangulations
As already mentioned in section 2.1, we know that two given triangula-
tions T1, T2 ∈ TP can be transformed into each other with at most O(n2)
edge flips, see Theorem 2.2. Even though there exist pairs of triangulations
for which the flip distance is quadratic in the number of points, that estimate
is generally not tight. (Just assume that T1 and T2 only differ by a constant
number of edge flips.)

In [11] Hanke et al. introduce an input sensitive upper bound on the flip
distance of T1 and T2. That bound depends on the number of intersections
between the edges of T1 and T2.

Theorem 3.1 (Theorem 1 in [11]). Given T1, T2 ∈ TP . Then

fd(T1, T2) ≤ #(T1, T2) < (mi)2, (3.1)

where mi is the number of inner edges of a triangulation in TP .

The fundamental idea behind the proof of the theorem is formulated in
the following lemma:

Lemma 3.2 ([11]). Given T1, T2 ∈ TP . Then there exists a convex quadri-
lateral in T1 given by v1, . . . , v4 ∈ P , with diagonal e1 = (v1, v3) and the
property

#(e1, T2) = max{#(e, T2)|e ∈ T1}

such that the flip of e1 to (v2, v4) reduces the number of intersections.
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Thus, we know that as long as #(T1, T2) > 0 and equivalently, T1 6= T2,
there always exists an edge in T1 that can be flipped such that the number of
intersections is reduced by at least one. Therefore, the arising flip sequence,
which transforms T1 into T2, is bounded by #(T1, T2).

3.2 Adding vertex degree bounds
Generally speaking, we know according to section 2.2 that for each value
for k there exists a point set for which the subgraph FG(TP,k) of FG(TP ),
consisting of triangulations with maximum vertex degree k, is not connected.
However, that does not mean that FG(TP,k) is not connected for any point
set. Hence, we could ask for an upper bound on the flip distance of two par-
ticular triangulations T1, T2 ∈ TP,k, assuming that there is a path in FG(TP,k)
between them.

Theorem 3.1 remains valid, as long as the edges with the property of
Lemma 3.2 are flippable. Thus, Theorem 3.1 does not hold in general for
the degree bounded setting. Figure 13 shows an example. Edges (v10, v12)
and (v5, v11) ∈ T1 and (v1, v11) and (v6, v12) ∈ T2 satisfy the conditions of
Lemma 3.2: they are diagonals of convex quadrilaterals, they have the max-
imum number of intersections, which is one in this case, and each flip would
reduce the number of intersections by one. However, none of the edges is
flippable without exceeding the degree bound of 7. It is necessary to flip an-
other incident edge of vertex v11 or v12 first, which even increases the number
of intersections temporarily, before one of the diagonals can be flipped. Thus
the flip distance is given by 4.

v1 v10

v5 v6

v2 v9

v8

v7v4

v12

v11v3

(a) T1 ∈ TP

v1 v10

v5 v6

v2 v9

v8

v7v4

v3 v12
v11

(b) T2 ∈ TP

Figure 13: Two triangulations with degree restriction k = 7, whose edges with maximal
number of intersections cannot be flipped due to degree restriction.
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Hence, the input sensitive upper bound on the flip distance of two
bounded degree triangulations is not known. Several estimates will be dis-
cussed now.

We define T ∪ e as

• the result of the insertion of edge e into a triangulation T that does
not yet contain e, or

• T if e already is an edge in T .

Consequently, T1 ∪ T2 stands for the result of inserting of each edge of tri-
angulation T1 that does not exist in T2 into triangulation T2. We denote
by Vk(T1 ∪ T2) ⊂ P the set of vertices that exceed the vertex degree k in the
union of two triangulations T1, T2. Additionally, we define Vk(e, T ) as the set
of vertices that exceed the vertex degree k in T ∪ e. We write Ve,k(T1 ∪ T2)
for the set of vertices that are incident to edge e and exceed k in T1 ∪ T2.

An intuitive approach to estimate the overhead of needed flips in order to
transform two triangulations into each other in the degree bounded setting
is given by the following idea: For each edge e in T1, we add to the number
of intersections with T2 the number of vertices in T2 that exceed the vertex
degree in e ∪ T2. In fact, that estimate is correct for the triangulations
depicted in Figure 13. Since T1 and T2 only differ in two edges, the value of
the estimate depends on

#((v10, v12), T2) = #((v5, v11), T2) = 1

and
|Vk((v10, v12), T2)| = |Vk((v5, v11), T2)| = 1.

Thus, we would get a tight upper bound of 4 for the triangulations shown in
Figure 13. (Recall that the flip distance is 4, too.)

Contrary to that, the measure fails for the triangulations depicted in
Figure 14: For k = 5, their flip distance is given by 14, whereas the value of
the estimate is 12. Moreover, we can observe that inserting edges from T2
into T1 would increase the value of the estimate to 14. Since we are searching
for an upper bound, we have to take both values into consideration. Thus,
we have

Measure 1 (not valid in general).

fd(T1, T2) ≤ max
( ∑

e∈T1

(
#(e, T2) + |Vk(e, T2)|

)
,
∑
e∈T2

(
#(e, T1) + |Vk(e, T1)|

))
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Although Measure 1 is correct for the flip distance of the triangulations
in Figure 14, it fails for the triangulations depicted in Figure 15 and 16
(the values of Measure 1 are 4 in both cases, whereas the flip distances
of the triangulations are 14 and 6, respectively). Another disadvantage of
Measure 1 is the neglect of additional edge flips, needed for the case that we
have vertices with the following properties:

• v ∈ P has a high vertex degree in T1 as well as in T2 but still less
than k, and

• the number of common incident edges of v in T1 and T2 is small.

We can handle that problem by considering the vertex degree in T1 ∪ T2.
Consequently, we try to improve the estimate by the following measure:

Measure 2 (not valid in general).

fd(T1, T2) ≤ #(T1, T2) + |Vk(T1 ∪ T2)|

Thus, the value of Measure 2 depends on the number of intersections
between the edges in T1 and T2 and the number of vertices that exceed the
vertex degree k in T1 ∪ T2. It is a correct measure of the flip distance for the
triangulations depicted in Figure 13 (=2+2) and 14 (=10+4) and remains
incorrect for Figure 15 (=2+2) and 16 (=2+2).

v1

v2

v3

v4

v5

v6

v7

v8

v9

(a) T1

v1

v2

v3

v4

v5

v9

v7

v8

v6

(b) T2

v1

v2

v3

v4

v5

v6

v7

v8

v9

(c) T1 ∪ T2

Figure 14: For k = 5, the flip distance of T1 and T2 is given by 14. Furthermore, we have
#(T1, T2) = 10 and Vk(T1 ∪ T2) = {v4, v7, v8, v9}. In 14(a) and 14(b) the bold edges only
occur in T1 or T2. 14(c) Bold edges belong to T1, dashed ones to T2.

Though Measure 2 takes the vertex degree of T1 ∪ T2 into consideration,
only one additional edge flip for each degree exceeding vertex is included.
Of course, it would be more reasonable to consider the number of edges
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that only occur in one of both triangulations and are incident to a ver-
tex v ∈ Vk(T1 ∪ T2). Measure 3 takes that into account:

Measure 3 (not valid in general).

fd(T1, T2) ≤ max
( ∑

e∈T1∧e/∈T2

(
#(e, T2) + |Ve,k(T1 ∪ T2)|

)
,

∑
e∈T2∧e/∈T1

(
#(e, T1) + |Ve,k(T1 ∪ T2)|

))

For the flip distance of the triangulations depicted in Figure 13 and 14,
Measure 3 gives a correct upper bound with values (2 + 2) and (10 + 9).
Nevertheless, the resulting values for the triangulations in Figure 15 and 16
are still underestimates (given by 4 in both cases).

v1

v2

v3
v5

v6

v7

v8

v9

v4

Figure 15: Dashed edges only occur in T1. The bold edges belong to T2. For k = 5, we
have #(T1, T2) = 2, Vk(T1 ∪ T2) = {v8, v9} and fd(T1, T2) = 14.

Extending Measure 3 by taking into consideration all edges in T1 and T2
that are incident to vertices in Vk(T1 ∪ T2) results in a correct estimate for
the flip distance of the triangulations shown in Figure 15 and 16. Thus we
have

Measure 4 (not valid in general).

fd(T1, T2) ≤ #(T1, T2) +
∑

v∈Vk(T1∪T2)
deg(T1∪T2)(v)

Assuming that the estimate is valid for any two triangulations would
imply that the overhead of needed edge flips in order to transform two trian-
gulations in the degree bounded setting depends on the number of edges in T1
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and T2 that are incident to the vertices that exceed the degree restriction in
the union of both triangulations. Generally, that does not seem reasonable.
Furthermore, in section 3.3 we can show how to construct two triangulations
for which that estimate is wrong.

3.3 Construction of a counterexample
Figure 13 shows an example with flip distance 4, although the number of in-
tersections of T1 and T2 is 2. Here, two additional flips are necessary, because
the vertices v11 and v12 have — beside the edges of the two quadrilaterals
Q1 = (v1, v12, v11, v10) and Q2 = (v5, v6, v11, v12) — (k−4) additional incident
edges. These two flips have to take place in the outer region R1, defined by

R1 = {(v2, v12), . . . , (v4, v12), (v7, v11), . . . , (v9, v11)},

i.e., inner edges, which are not part of Q1 or Q2. Thus, the corresponding flip
sequence starts with an edge in the outer region, followed by the two diagonals
of Q1 and Q2 and ends by flipping the edge in the outer region back to its
original position. (Starting the transformation by flipping edge (v11, v12)
would lead to a flip sequence of length 7. Hence, we do not consider that
case.)

Extending the point set of Figure 13 leads to the triangulation shown in
Figure 16. A second region

v4,1
v4,2
v4,3
v4,4

v3,1

v3,2
v3,3

v2,1

v2,3
v2,4

v2,2

v7,1
v7,2
v7,3
v7,4

v8,1

v8,2

v8,3

v9,1
v9,2

v9,3
v9,4

v5 v6

v7v4

v1

v2

v10

v3 v8

v9

v12

v11

Figure 16: Extension of the pointset shown in Figure 13 with k = 5. T1 has the solid
diagonals, T2 the dashed ones.

R2 = {(v2, v2,1), . . . , (v4, v4,4), (v7, v7,1), . . . , (v9, v9,4)}
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arises. None of the edges in R1 are flippable anymore. The set of flippable
edges equals

Ef = {(v11, v12)} ∪ {
( ⋃

i∈{3,8}
(vi, vi,2)

)
∪
( ⋃

i∈{2,4,7,9}
j∈{2,3}

(vi, vi,j)
)
∪
( ⋃

i∈{2,9}
(vi, vi,4)

)
.

W.l.o.g. we want to flip edge (v5, v11) to (v6, v12) in T1. Again, it is necessary
to decrease the vertex degree of v12 first. Because none of the incident edges
(except (v11, v12)) is flippable, we have to start with an edge flip in R2,
say edge (v3, v3,2) ∈ Ef . Consequently, edge (v2, v12) is flippable in R1 and
finally, both diagonals (v5, v11) and (v10, v12) ∈ T1 can be flipped, too. After
two additional edge flips for the edges in R1, R2 that have to turn back to
their original position, T1 is converted into T2 with 6 edge flips.

That flip sequence corresponds to the same pattern as the flip sequence
of the triangulations depicted in Figure 13: The first edge that is flipped is
part of the outer region R2. The next one belongs to R1, which is the region
adjacent to R2. Afterwards, the two diagonals of Q1 and Q2 are flipped and
finally, the edges in R1 and R2 are flipped back to the original position.

In the same way, the point set in Figure 16 can again and again be ex-
tended with points and edges creating additional regions. To assure that the
shortest flip sequence has the same pattern as in the above described exam-
ples of that section, we have to exclude edge (v11, v12) from Ef . Otherwise,
it would be possible that at a certain point of extension the shortest flip
sequence contains that edge and therefore, differs from the above described
pattern of the flip sequence. To avoid that, we can move v11 and v12 as
depicted in Figure 17 such that (v11, v12) /∈ Ef .

In the same manner, we can create point sets and triangulations for any
arbitrary k > 5. For each triangulation with that structure, there exists a
shortest flip sequence, that equals the aforementioned pattern. In fact, their
flip distance depends on the number of regions. Hence, for two triangula-
tions T1, T2 of point sets with this structure we can estimate the flip distance
between T1 and T2 by

fd(T1, T2) ≤ #(T1, T2) +O(log n)

In summary, we could not find a correct input sensitive upper bound for
the flip distance of two bounded degree triangulations. We only showed a
few approaches, that work for some particular point sets, but not in general.
Thus, we can not say that for each degree exceeding vertex, or even each edge
that is incident to a degree exceeding vertex, we need a constant number of
additional flips. Probably, it is necessary to consider the whole structure of
the triangulation in order to obtain better upper bounds.
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Figure 17: Solid edges occur in T1 ∪ T2, bold ones belong to T1, dashed ones to T2. The
vertices v11, v12 are moved such that (v11, v12) is a diagonal of a concave quadrilateral.
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4 Zigzag Triangulations
In general, the efficient calculation of the flip distance of two arbitrary tri-
angulations of a convex point set P in the plane is an open problem. In this
section we focus on a special kind of triangulations of P — so-called zigzag
triangulations. Section 4.2 shows that the set of triangulations for which the
shortest flip sequence is efficiently computable can be extended by zigzag
triangulations that have restrictions on the cardinality of points and on the
structure of the edge-positions.

Furthermore, that result can be extended for the degree bounded setting
of triangulations. In [3, Lemma 4] Aichholzer et al. show that two zigzag
triangulations can be transformed into each other in O(n) time without ex-
ceeding a vertex degree of k > 6. The corresponding flip sequence presented
in the proof of that lemma, is equal to one of the two flip sequences discussed
in section 4.3.

4.1 Preliminaries
In this section, P is a set of n ≥ 4 points in convex position in the plane.
For simplicity the vertices are labeled from v1 to vn in counterclockwise
order, starting at the top (w.l.o.g. assume that the top vertex is unique).
We call visucc := v((i mod n)+1) the counterclockwise neighbor of vi ∈ P and
vipred

:= v(((i−2) mod n)+1) the clockwise neighbor of vi. In other words, if we
traverse the boundary of the convex hull in counterclockwise direction, then
vipred

is the immediate predecessor of vi and visucc the immediate successor
of vi. In case of 2 ≤ i ≤ (n − 1) we equivalently write vi−1 instead of vipred

and vi+1 instead of visucc .
Throughout this section, the distance between two vertices is defined by

the minimum number of consecutive edges on the boundary of the convex
hull of P connecting these vertices. For brevity, we often write vdistP (vi, vj)
for the distance of vi, vj ∈ P , or vdistP (vi, vj) if the considered point set is
clear from the context.

Recall that the set of all possible triangulations of P is denoted by Tn.
For T ∈ Tn and v ∈ P , idegT (v) stands for the number of diagonals incident
to v in T (i.e. the number of inner edges of T that have v as a vertex). Recall
that we write fd(T1, T2) as an alternative for the flip distance of T1, T2 ∈ Tn.

For the definition of a zigzag triangulation, we first consider the dual
graph DT of a triangulation T ∈ Tn. In DT , each vertex corresponds to a
triangle in T , and two vertices are connected in DT if their corresponding
triangles in T share an edge. Due to the convex position of P , DT is a tree
with (n− 2) nodes. (Recall that T has (n− 2) triangles.) We categorize the
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triangles of T into three different types:

• inner triangles, which consist of three diagonals; the corresponding
nodes in DT of such triangles have degree 3.

• path triangles, which have one convex hull edge and two diagonals;
in DT they are equivalent to nodes of degree 2.

• ears, which are composed of two convex hull edges and one diagonal;
they are dual to the leaves in DT . The tip of an ear is the vertex that
is not incident to a diagonal.

A set of path triangles that is dual to a subtree of DT whose nodes have
degree 2 in DT , is called a zigzag if the maximum vertex degree is 4.

Definition 4.1. T ∈ Tn is called a zigzag triangulation, if and only if T
satisfies the following two conditions:

1. DT is a path.

2. The maximum vertex degree in T is less or equal 4.

In other words, a zigzag triangulation consists of l = n − 4 consecutive
path triangles, p1, . . . , pl, and exactly two ears. Furthermore, the convex
hull edge of pi is adjacent to the convex hull edge of pi+2 on the boundary
of the convex hull of P , i ∈ {1, . . . , l − 2}. Figure 18 shows three zigzag
triangulations.

By Zn, we denote the set of all zigzag triangulations on P . For a Z ∈ Zn

that has an ear with the tip vi, we often abbreviate that vi is one tip of Z.
Taking a closer look to zigzag triangulations that have one tip at vi, we
notice that there exist exactly two possible triangulations in Zn for n > 4:
In one triangulation visucc has exactly one incident diagonal. For the other
triangulation the number of inner edges incident to visucc is two. For both
triangulations, we alternatively call vi the starting vertex. Additionally, we
can assign to both triangulations a starting diagonal dvi

, which corresponds
to the diagonal that is

• incident to the counterclockwise neighbor of visucc , visuccsucc
, and vipred

,
in case of idegZ(vi)(visucc) = 1, or

• incident to visucc and vipredpred
, the clockwise neighbor of vipred

, in case
of idegZ(vi)(visucc) = 2.

For n = 4, the number of diagonals of each triangulation in T4 = Z4 is one.
Thus, there is exactly one triangulation in Z4 with one tip at vi. This leads
us to
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Definition 4.2. Assume that Z1, Z2 ∈ Zn both have one tip at vi ∈ P and
Z1 6= Z2. Then Z1(vi)I = Z2 is called the inversion of Z1 with respect to vi.
For the sake of completeness, we define for Z ∈ Z4 with one tip at vi ∈ P ,
Z(vi)I := Z, i.e., the inversion of Z with respect to vi is again Z.

vj

v1

vk

vl

(a)

vj

v1

vk

vl

(b)

1

1

1

1

2

22

2

3

3

3

3

0

0

vj

v1

vk

vl

(c)

Figure 18: 18(a) A zigzag triangulation Z ∈ Z14 with tips at v1 and vk. 18(b) Z(v1)I =
Z(vk)I ; the inversion of Z with respect to v1 equals the inversion of Z with respect to vk.
18(c) ZN , the normal zigzag triangulation to Z.

In other words, if we assume that Z has one tip at vi, then Z(vi)I is
the result of flipping every second diagonal of Z, beginning with the starting
diagonal dvi

of Z. Trivially, the flip distance of Z and Z(vi)I is bn−3
2 c, because

Z has (n − 3) diagonals. Note that (Z(vi)I)I = Z. Figure 18(b) shows an
example for the inversion of the triangulation shown in Figure 18(a) with
respect to v1. The number of points is even and thus, the tips of the ears
remain the same for the inversion.

Observation 4.1. Given Z ∈ Zn with tips at vi and vk. If n is even, we
have (

idegZ(visucc) = 1
)
⇐⇒

(
idegZ(vksucc) = 1

)
and(

idegZ(visucc) = 2
)
⇐⇒

(
idegZ(vksucc) = 2

)
.

For the transformation from Z to Z(vi)I , the starting diagonal of vk, dvk
,

is flipped. Therefore, vk is the tip of the second ear in Z(vi)I . Hence,
Z(vi)I = Z(vk)I .
If n is odd, we observe that(

idegZ(visucc) = 1
)
⇐⇒

(
idegZ(vksucc) = 2

)
and(

idegZ(visucc) = 2
)
⇐⇒

(
idegZ(vksucc) = 1

)
.
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When flipping Z to Z(vi)I , the diagonal that is part of the ear with tip vk is
flipped. Hence, the position of the second ear changes and its tip moves to
vksucc or vkpred

. Consequently, we have Z(vi)I 6= Z(vk)I .

Observation 4.2. Given Z ∈ Zn with tips at vi, vk ∈ P . Then vj, vl ∈ P ,
i < j < k < l, are connected by an edge in Z, if and only if

1. vdist(vi, vj) = vdist(vi, vl) and

2. (a) vdist(vi, vj) =
(

vdist(vi, vl) + 1
)
and idegZ(visucc) = 1 or

(b)
(

vdist(vi, vj) + 1
)

= vdist(vi, vl) and idegZ(visucc) = 2.

In general, P has Θ(n) zigzag triangulations that differ in the position of
the tips and the “type” of inversion, meaning the two zigzag triangulations
in Zn that can be assigned to a tip. We observe that all statements valid for
Z ∈ Zn with one tip at v1 also hold for any Z ′ ∈ Zn: If we rotate P in such
a way that vi has in the rotated point set P ′ the position of v1 in P then Z ′
is a triangulation with one tip at the top vertex v′1 in P ′, whereas v′1 in P ′
corresponds to the transformed vi in P . Thus, Z ′ with the underlying point
set P ′ corresponds to Z on P . Hence, all definitions and results we show in
the following for a zigzag triangulation with one tip at v1 are equally valid
for any other zigzag-triangulation with one tip at vi ∈ P .

Definition 4.3 ([3]). Given Z1, Z2 ∈ Zn with tips at v1, vk and vj, vl,
i < j < k < l. Label each vertex in P with the minimum distance to the
tips of Z1. Then Z2 is the normal zigzag triangulation of Z1 if and only
if

1. Z2 contains each edge that connects two vertices with the same label and

2. (a)
(

idegZ1(v2) = 1
)
⇒
(

idegZ2(vj+1) = 1
)
or

(b)
(

idegZ1(v2) = 2
)
⇒
(

idegZ2(vj+1) = 2
)
.

We denote the normal zigzag triangulation of Z1 by ZN
1 .

Figure 18(c) shows the normal zigzag triangulation of the triangulation
depicted in Figure 18(a).

Observation 4.3. Given Z ∈ Zn with tips at v1 and vk and let vj, vl be
the tips of the ears of ZN . We call v2, . . . , vk−1 the “left side” of P and
vk+1, . . . , vn the “right side” of P . Then

1. vj belongs to the left side of P and vl to the right side and
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2. vj has the maximum value among all labels of the vertices on the left
side and, analogously, vl has the maximum value of all labels of the
vertices on the right side.

With Definition 4.2 and Definition 4.3 we introduced two types of zigzag
triangulations related to a Z ∈ Zn. This allows a combination of both types.
It is worth noting that, dependent on n and the order of building an inversion
and a normal zigzag triangulation, respectively, differences in the resulting
triangulation can occur:
Remark 4.1. For (n mod 4) = 2, the order of building an inversion of a zigzag
triangulation and creating a normal zigzag triangulation is a determining
factor for the resulting triangulation, see Figure 19. Otherwise, the results
are the same.
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Figure 19: Row 1: First, the initial triangulation Z is inverted with respect to v1, then
the resulting triangulation is the normal zigzag triangulation of Z(v1)I . Row 2: Starting
with the creation of the normal zigzag triangulation of Z leads to ZN with tips at v3, v8,
depicted in the second column. Neither (ZN )(v3)I nor (ZN )(v8)I equal (Z(v1)I)N .

Turning back to normal zigzag triangulations, we observe that the tips
of a normal zigzag triangulation are connected by an edge in the initial
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zigzag triangulation, if and only if (n mod 4) 6= 2. Thus, the aforementioned
irregularity in Remark 4.1 is not the only one for point sets of size n =
(4kn + 2).

Lemma 4.1. Given Z1, Z2 ∈ Zn with Z2 = ZN
1 and kn ∈ N. Furthermore

let v1, vk ∈ P be the tips of Z1 and vj, vl ∈ P be the tips of Z2, 1 < j < k < l.
Then

(i) edge (vj, vl) is a diagonal in Z1, if and only if (a) n = 4kn,
(b) n = (4kn + 1), or (c) n = (4kn + 3), and

(ii) edge (vj, vl) is not a diagonal in Z1, if and only if n = (4kn + 2).

Proof. To get an overview of the proof, we first present a rough structure:
We consider the cases (i)(a) - (i)(c), with (i)(b) and (i)(c) containing two
sub-cases caused by the need of distinction between idegZ1(v2) = 1 (called
Case 1) and idegZ1(v2) = 2 (called Case 2). Finally, we study case (ii), which
is again subdivided into Case 1 and Case 2.

We define VL := {v2, . . . , vk−1}, the vertices on the “left side” of Z1, and
VR := {vk+1, . . . , vn}, the vertices on the “right side” of Z1. Furthermore, we
define ñ := 4kn ∈ N.

We begin the proof with (i):

(a) n = ñ: Independent of idegZ1(v2), the index of the second tip of Z1 is
k = ñ

2 +1. Furthermore, the number of vertices on the left and right side
is odd:

|VL| = |VR| =
ñ− 2

2 = 4kñ − 2
2 = 2(2kñ − 1)

2 = (2kñ − 1)

Consequently, there exists exactly one vertex for each side with the
maximum value of ñ

4 among all labels. According to Observation 4.3
that label belongs to vj and vl. Additionally, the labels correspond
to min

(
vdist(vj, v1), vdist(vj, vk)

)
and min

(
vdist(vl, v1), vdist(vl, vk)

)
.

Hence, we have(
vdist(vj, v1) = vdist(vl, v1)

) Observation 4.2========⇒
(
Z1 contains edge (vj, vl)

)
.

Figure 20(a) shows an example.

(b) n = ñ+ 1: Compared to (a), we have one additional vertex. Depending
on idegZ1(v2), that vertex either belongs to VL or to VR. Thus, we have
to distinguish between the two zigzag triangulations in Zn that can be
assigned to v1 :
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(b) (n mod 4) = 1. One vertex is added
to the “left side” and vk is shifted coun-
terclockwise.

Figure 20: Solid lines indicate Z1, dashed lines are part of Z2 = ZN
1 (the heavier ones are

the connection between vertices with the same label). For both cases, we have (vj , vl) ∈ Z1.

Case (i)(b)1: idegZ1(v2) = 1: The index k of vk increases by one and
thus, equals ( ñ

2 +2). Therefore, the additional vertex belongs to VL.
Accordingly, |VL| = ñ−2

2 + 1, which is even. Hence, there are two
vertices vi1 , vi2 ∈ VL, (i1 +1) = i2, with the maximum label ñ

4 . (The
label of vi1 equals vdist(vi1 , v1) and the label of vi2 corresponds
to vdist(vi2 , vk).) Since vi1 and vi2 have the same label, they are
connected by an edge in ZN

1 . (vi1 , vi2) is a convex hull edge and
thus, both vertices have an inner degree of 0 before the remaining
diagonals are added during the process of building ZN

1 .
If we consider the clockwise neighbor of vi1 , vi1−1 and the counter-
clockwise neighbor of vi2 , vi2+1, we know that

vdist(v1, vi1−1) =
(

vdist(v1, vi1)− 1
)
and

vdist(vk, vi2+1) =
(

vdist(vk, vi2)− 1
)
.

Together with the fact that(
vdist(v1, vi1) = vdist(vk, vi2)

)
⇒
(

vdist(v1, vi1−1) = vdist(vk, vi2+1)
)

we know that ZN
1 contains the edge (vi1−1, vi2+1). Thus, before the

remaining diagonals are added in the process of building ZN
1 , the
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inner vertex degree of vi1−1 and vi2+1 is 1. Furthermore, we have
the precondition that(

idegZ1(v2) = 1
) Definition 4.3=======⇒

(
idegZ2(vj+1) = 1

)
Adding the edge (vi1 , vi2+1) during the process of building ZN

1 leads
inevitably to one tip at vi2 . Contrary to the aforementioned pre-
condition, the number of diagonals incident to vi2+1 is 2. Due to
that contradiction, we exclude vi2 as a tip of ZN

1 .
If we add the edge (vi1−1, vi2) for the construction of ZN

1 , then vi1 is
one tip of ZN

1 . Since, on the one hand, vi2 is the counterclockwise
neighbor of vi1 and on the other hand, vi2 has only one incident
diagonal in ZN

1 , we have vj = vi1 .
The number of vertices in VR is equal to |VR| in (a). Therefore, vl

is the vertex with the maximum label ñ
4 . Hence,(

vdist(vj, v1) = vdist(vl, v1) = ñ

4

)
Observation 4.2========⇒

(
Z1 contains edge (vj, vl)

)
.

Figure 20(b) shows an example of this case.
Case (i)(b)2: idegZ1(v2) = 2: The additional vertex compared to (a)

is part of VR and the index of vk remains the same. Therefore, we
can apply the same arguments used for the left side in (a) in order
to prove vdist(vj, v1) = ñ

4 .
|VR| = ñ−2

2 + 1, which is even. Analogous to the left side in
Case (i)(b)1, there are two vertices vi3 , vi4 ∈ VR, (i3 + 1) = i4,
with the maximum label ñ

4 . According to Definition 4.3:(
idegZ2(vj+1) = 2

) Observation 4.1========⇒
(

idegZ2(vl+1) = 1
)
⇒
(
vl = vi3

)
.

Thus, we have(
(vdist(vj, v1) + 1) = vdist(vl, v1)

)
Observation 4.2========⇒

(
Z1 contains edge (vj, vl)

)
.

(c) n = ñ + 3: We add three vertices to the point set in (a). Depending on
the value of idegZ1(v2), two vertices are added to VL and one to VR, or
vice-versa.
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Case (i)(c)1: idegZ1(v2) = 1: In this case, we have two additional ver-
tices on the left side. The index of vk, k = ( ñ

2 + 3), is odd. Conse-
quently, exactly one vertex, vj, in VL has the maximum value of all
labels. The maximum value equals ( ñ

4 + 1).
Compared to (a), |VR| increases by one. Thus, the number of
vertices on the right side is even. Again, we have two ver-
tices vi3 , vi4 ∈ VR, (i3 + 1) = i4, with label ñ

4 .(
idegZ2(vj+1) = 1

) Observation 4.1========⇒
(

idegZ2(vl+1) = 2
)
⇒
(
vl = vi4

)
.

The label of vi4 corresponds to the distance to v1. All in all, we
have (

vdist(vj, v1) =
(

vdist(vl, v1) + 1
))

Observation 4.2========⇒
(
Z1 contains edge (vj, vl)

)
.

See Figure 21(b) for an example.
Case (i)(c)2: idegZ1(v2) = 2: Compared to (a), the number of vertices

on the left side increases by one and VL has two more vertices. The
index of vk, k = ( ñ

2 +2), is even. Consequently, we have vi1 , vi2 ∈ VL,
i2 = (i1+1), with the maximum distance ñ

4 to v1 and vk, respectively.(
idegZ2(vj+1) = 2

)
⇒
(
vj = vi2

)
.

For the same arguments used for the left side in (c), Case 1, vl has
the distance ( ñ

4 + 1) to v1. Thus,((
vdist(vj, v1) + 1

)
=
( ñ

4 + 1
)

= vdist(vl, v1)
)

Observation 4.2========⇒
(
Z1 contains edge (vj, vl)

)
.

Finally, we turn to (ii):
n = ñ + 2 and k = ñ

2 + 2. Compared to case (i)(a), the number of vertices
on both sides increases by one and changes from odd to even. Therefore, the
vertices vi1 , vi2 ∈ VL, i2 = (i1 + 1), and vi3 , vi4 ∈ VR, i4 = (i3 + 1), have the
maximum value of all labels. Again, we distinguish two cases:

Case (ii)1: idegZ1(v2) = 1:(
idegZ1(v2) = 1

) Definition 4.3=======⇒
(

idegZ2(vj+1) = 1
)
⇒
(
vj = vi1

)
.
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(b) (n mod 4) = 3 and Z1 contains
edge (vj , vl).

Figure 21: Solid lines indicate Z1, dashed lines are part of Z2 = ZN
1 (the heavier ones are

the connection between vertices with the same label).

Furthermore, we have(
idegZ2(vj+1) = 1

) Observation 4.1========⇒
(

idegZ2(vl+1) = 1
)
⇒
(
vl = vi3

)
.

(
vdist(vi3 , v1) =

( ñ
4 + 1

)
=
(

vdist(vi1 , v1) + 1
))

Observation 4.2========⇒
(
Z1 does not contain the edge (vj, vl)

)
.

Figure 21(a) depicts an example.

Case (ii)2: idegZ1(v2) = 2: We conclude the proof analog to Case (ii)1.
Note that we have vj = vi2 and vl = vi4 .

Contrary to Lemma 4.1, we can observe the same behavior for each value
of n ≥ 4 if one zigzag triangulation is the normal of the inversion of the other
given zigzag triangulation. The starting vertex of the inversion depends on
the initial triangulation. We specify that observation in the following lemma.

Lemma 4.2. Given Z1, Z2 ∈ Zn with tips at v1, vk ∈ P and vj, vl ∈ P ,
respectively, 1 < j < k < l. Then edge (vj, vl) is a diagonal of Z1, if one of
the following is true:

(i) n is even and Z2 = (Z1(v1)I)N ,
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(ii) n = (4kn + 1) and

(a) idegZ1(v2) = 1 and Z2 = (Z1(vk)I)N , or
(b) idegZ1(v2) = 2 and Z2 = (Z1(v1)I)N ,

(iii) n = (4kn + 3) and

(a) idegZ1(v2) = 1 and Z2 = (Z1(v1)I)N , or
(b) idegZ1(v2) = 2 and Z2 = (Z1(vk)I)N ,

kn ∈ N.

Proof. Basically, the proof is analog to the proof of Lemma 4.1. Due to
the additional inversion with respect to either v1 or vk, we have to replace
arguments like (

idegZ1(v2) = 1
)
⇒
(

idegZ2(vj+1) = 1
)

by (
idegZ1(v2) = 1

)
⇒
(

idegZ1(v1)I (v2) = 2
)
⇒
(

idegZ2(vj+1) = 2
)
.

Furthermore, recall that Z(v1)I = Z(vk)I for n even and Z(v1)I 6= Z(vk)I for
n odd, see Observation 4.1 on page 32. That is the reason why we have to
distinguish between the Case 1 and the Case 2 in the cases (ii) and (iii).

We now turn from properties of two specific zigzag triangulations to pos-
sibilities to break down the calculation of the flip distance of two initial trian-
gulations in Tn into the calculation of the flip distance of sub-triangulations.
In this respect, Sleator et al. [18] show the base for all approaches presented
in this section.

Lemma 4.3 (Lemma 3 in [18]). Given T1, T2 ∈ Tn.

(a) If it is possible that one edge flip in T1 creates a triangulation T ′1 that
has one more diagonal in common with T2, than T1 has then there exists
a shortest path from T1 to T2 in which the first edge flip creates T ′1.

(b) If T1 and T2 have a diagonal in common, then a shortest path from T1 to
T2 never flips this diagonal. In fact, any path that flips this diagonal is
at least two flips longer than a shortest path.
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Consequently, if v ∈ P has one incident diagonal e in T1 ∈ Tn and no
incident diagonal in T2 ∈ Tn, then flipping e to e′ in T1 creates a triangulation,
that is part of one shortest path from T1 to T2. Furthermore, that path does
not contain a triangulation (except T1), in which e′ does not exist.

Corollary 4.1. Given T1, T2 ∈ Tn.

(a) If T ′1 is the result of one edge flip in T1 such that T ′1 has one more diagonal
in common with T2 than T1 has then

fd(T1, T2) = fd(T ′1, T2) + 1.

(b) If T1, T2 share a common diagonal, which separates T1 into sub-
triangulations T ′1 and T ′′1 , and T2 into T ′2 and T ′′2 , then the calculation of
the flip distance can be subdivided in the following way:

fd(T1, T2) = fd(T ′1, T ′2) + fd(T ′′1 , T ′′2 ).

Lucas presents that corollary in [16], where it is formulated for binary
trees. Additionally, Corollary 4.1 (b) can be found in [4] for triangulations
of convex point sets.

In the following, we will consider further ways that contribute to a pos-
sible simplification of the calculation of the flip distance. We introduce the
two preliminary definitions of a normalized and a double-normalized triangu-
lation. Note that these definitions have nothing in common with the normal
zigzag triangulation.

Definition 4.4 (see Definition 1 in [4] and [18]). Given T ∈ Tn and vi, vj ∈ P .
Then we define the normalized triangulation NT (vi, vj) (and analogously
N ′T (vi, vj)) of T with respect to the diagonal (vi, vj) as follows:

1. NT (vi, vj) and N ′T (vi, vj) contain the diagonal (vi, vj);

2. NT (vi, vj) and N ′T (vi, vj) contain every diagonal of T that does not
cross the diagonal (vi, vj);

3. if T contains a diagonal (vk, vl) that crosses the diagonal (vi, vj),
then NT (vi, vj) (N ′T (vi, vj)) contains the diagonals (vk, vj) and (vl, vj)
((vk, vi) and (vl, vi)).

If vdist(vi, vj) = 2 and vc is the vertex with distance one to vi as well as
vj, then we abbreviate NT (vi, vj) as NT (vc) (and analogously N ′T (vi, vj) as
N ′T (vc)). We call NT (vc) the normalized triangulation of T with respect to vc.
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(d) N ′′T (v2, v10)

Figure 22: 22(a) T ∈ T10. 22(b) One normalization of T with respect to v5, v8. 22(c) The
other normalization of T with respect to v5, v8. 22(d) The double-normalized triangulation
of T with respect to edge (v2, v10).

Figure 22(b) and 22(c) depict both normalizations of the triangulation in
Figure 22(a) with respect to v5 and v8.
Remark 4.2. Given T ∈ Tn and v ∈ P . Then

idegNT (v)(v) = idegN ′
T (v)(v) = 0,

i.e., each diagonal, which is incident to v in T , is flipped in NT (v) and N ′T (v).
Remark 4.3. Trivially, if (vi, vj) is an edge of T , then

T = NT (vi, vj) = N ′T (vi, vj),

T ∈ Tn, vi, vj ∈ P . Further, if idegT (v) = 1, v ∈ P , then

NT (v) = N ′T (v).

Furthermore, we observe that if idegT (vi) = 2 for any T ∈ T and vi ∈ P ,
then we only have to flip the diagonals e1, e2 that are incident to vi in order
to transform T into NT (vi) and N ′T (vi). Additionally, we know that NT (vi)
and N ′T (vi) differ by exactly one edge. That difference arises due to the
varying order of flipping e1, e2. In any case, the flip target of e1 or e2 is
edge (vipred

, visucc). The flip target of the other edge is incident to either vipred

or visucc . We summarize these results in the following observation:

Observation 4.4. Given T ∈ Tn and vi ∈ P with idegT (vi) = 2. Then the
following equations are valid:

(a) fd(T1, NT (vi)) = fd(T1, N
′
T (vi)) = 2 and

(b) fd(NT (vi), N ′T (vi)) = 1.
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The observation is essential to improve the understanding of the relation
between Lemma 4.4 and Theorem 4.5, presented later in this section.

Definition 4.5 (see Definition 3 in [4]). Let e = (vi, vj) be a diagonal of
T ∈ Tn with the property that idegT (vi) = idegT (vj) = 2. The double-
normalized triangulation of T with respect to e, called N ′′T (vi, vj), can be
obtained by the following edge flips:

1. flip edge e,

2. flip the remaining incident diagonal of vertex vi,

3. flip the remaining incident diagonal of vertex vj.

Figure 22(d) shows the double-normalized triangulation of the triangula-
tion depicted in Figure 22(a).
Remark 4.4. According to Definition 4.5, we have

idegN ′′
T (vi,vj)(vi) = idegN ′′

T (vi,vj)(vj) = 0.

Remark 4.5. Contrary to Definition 4.4, the edge (vi, vj) of Definition 4.5 has
to be a diagonal of the initial triangulation.

With those definitions and basic properties in mind, we are able to intro-
duce additional possibilities for the subdivision of the calculation of the flip
distance between two triangulations.

Lemma 4.4 (see Lemma 5 in [4]). Given T1, T2 ∈ Tn with v ∈ P such that
idegT1(v) = 2 and idegT2(v) = 0. Then there exists a shortest path from T1
to T2 in which the first two flips create either NT1(v) or N ′T1(v).

As a consequence of Lemma 4.4, the calculation of the flip distance of
T1 and T2 can be subdivided. Since NT1(v) or N ′T1(v) are part of a shortest
path from T1 to T2, both, the flip distance between NT1(v) and T2, as well
as the flip distance of N ′T1(v) and T2 has to be taken into consideration.
The minimum of both is crucial for the resulting flip distance of T1 and T2.
Together with Observation 4.4(a) we get equation (4.1) in Theorem 4.5.

Let P : T1 = τ0, τ1, . . . , τp = T2, τi ∈ Tn, 0 ≤ i ≤ p be a shortest path
from T1 to T2. Additionally, we assume that τ2 = NT1(v), i.e.,

min
(

fd
(
NT1(v), T2

)
, fd

(
N ′T1(v), T2

))
= fd

(
NT1(v), T2

)
= p− 2.

As a consequence of fd(NT1(v), N ′T1(v)) = 1 (see Observation 4.4(b)), there
exists a path

P ′ : T1 = τ ′0, τ
′
1, τ
′
2 = N ′T1(v), . . . , τ ′q = T2, τ

′
i ∈ Tn, 0 ≤ i ≤ q
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of a maximum length of p + 1: If q = p, then N ′T1(v) is the second trian-
gulation of another shortest path from T1 to T2 and thus, fd(NT1(v), T2) =
fd(N ′T1(v), T2). Otherwise, we can always flip N ′T1(v) to NT1(v) and receive a
path of length q = (2 + 1 + (p− 2)) = (p + 1). (2 flips from T1 to N ′T1(v), 1
flip from N ′T1(v) to NT1(v) and, according to the assumption, p− 2 flips from
NT1(v) to T2.) Generally speaking, the following inequality holds:

max
(

fd
(
NT1(v), T2

)
, fd

(
N ′T1(v), T2

))
≤ min

(
fd
(
NT1(v), T2

)
, fd

(
N ′T1(v), T2

))
+ 1.

Together with equation (4.1) that inequality leads to equation (4.2).
Theorem 4.5 (Theorem 1 in [4]). Given T1, T2 ∈ Tn and v ∈ P with
idegT1(v) = 2 and idegT2(v) = 0. Then we have

fd(T1, T2) = min
(

fd
(
NT1(v), T2

)
, fd

(
N ′T1(v), T2

))
+ 2 (4.1)

and
fd(T1, T2) ≥ max

(
fd
(
NT1(v), T2

)
, fd

(
N ′T1(v), T2

))
+ 1. (4.2)

Corollary 4.2. Given T1, T2 ∈ Tn and v ∈ P with idegT1(v) = 2 and
idegT2(v) = 0. Then we have(

fd
(
NT1(v), T2

)
+ 1

)
≤ fd(T1, T2) ≤

(
fd
(
NT1(v), T2

)
+ 2

)
. (4.3)

Moreover, we are able to specify the results of Theorem 4.5, if there exists
a so-called (2, 2)-diagonal:
Theorem 4.6 (see Theorem 2 in [4]). Given T1, T2 ∈ Tn and let
edge e = (vi, vj) of T1 be a (2,2)-diagonal, i.e., the incident vertices satisfy
the following properties:

• idegT1(vi) = idegT1(vj) = 2,

• idegT2(vi) = idegT2(vj) = 0.
Then the calculation of the flip distance of T1 and T2 can be subdivided:

fd(T1, T2) = fd
(
N ′′T1(vi, vj), T2

)
+ 3.

Figure 23 depicts two possible triangulations T1, T2 on which Theorem 4.6
can be applied. Thus, the two double-normalized triangulations are part of
a shortest path from T1 to T2.
Remark 4.6. N ′′T1(vi, vj) from Theorem 4.6 has two more edges in common
with T2 than T1 has. Those edges are given by (vipred

, visucc) and (vjpred
, vjsucc).
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Figure 23: (v2, v10) ∈ T1 and (v4, v8) ∈ T2 are (2,2)-diagonals.

4.2 Flip distance of two zigzag triangulations
Now, all basic preconditions are available to extend the subset of triangu-
lations in Tn for which the flip distance is efficiently computable. In fact,
the shown extension is only possible, if the given triangulations are zigzag
triangulations and

(a) one is the normal zigzag triangulation of the other one and
x = (n mod 4) ∈ {0, 1, 3}, see Theorem 4.9, or

(b) one is the normal zigzag triangulation of the inversion (with respect to
the starting vertex) of the other one and x = (n mod 4) ∈ {1, 2, 3},
see Theorem 4.10. The number of points and the inner vertex degree of
the neighbors of the tips are the determining factors for the inversions’
starting vertex.

For simplicity we assume in the following w.l.o.g. that v1 and vk are the tips
of Z ∈ Zn. Then one tip of the normal zigzag triangulation lies “on the left
side”, i.e., it is an element of the set {v2, . . . , vk−1}.

In order to be able to prove the above mentioned result, formulated in
Theorem 4.9 and 4.10, we first present two fundamental observations in
Lemma 4.7 and 4.8.

Lemma 4.7. Given Z1, Z2 ∈ Zn with Z2 = ZN
1 , Furthermore, let v1, vk ∈ P

be the tips of Z1. For (i) n = 4kn, (ii) n = (4kn + 1) and (iii) n = (4kn + 3),
kn ∈ N, kn > 1, the flip distance of Z1 and Z2 can be calculated by the
following equation:

fd(Z1, Z2) = fd(Z ′1, Z ′2) + 3
with Z ′1, Z ′2 ∈ Zn′, n′ = n− 2 and

(i) Z ′2 = (Z ′1(v1)I)N
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(ii)
(
Z ′2 = (Z ′1(v1)I)N iff idegZ1(v2) = 1

)
and(

Z ′2 = (Z ′1(vk)I)N iff idegZ1(v2) = 2
)

(iii)
(
Z ′2 = (Z ′1(vk)I)N iff idegZ1(v2) = 1

)
and(

Z ′2 = (Z ′1(v1)I)N iff idegZ1(v2) = 2
)

Proof. Since we have to distinguish many cases, we give a short overview of
the proof: We start with some definitions and basic observations valid for
all cases. Then we prove the cases (i) - (iii) provided that idegZ1(v2) = 1
(Case 1) and conclude the proof for the case idegZ1(v2) = 2 (Case 2) by
analogy with Case 1.

During the proof, we sometimes consider triangulations of P ′ ⊂ P . In
order to avoid confusion with expressions like vj−2 ∈ P ′, we clarify that the
index relates to P and not to P ′.

In the following, we assume that vj and vl are the tips of the ears in
Z2. According to Lemma 4.1, the edge e = (vj, vl) is a diagonal of Z1.
Furthermore, we have

vdist(v1, vj) ≥
n

4 ≥ 2

for kn > 1. The same holds for vdist(v1, vl). Therefore, vj and vl are not
vertices of an ear in Z1 and e is a (2, 2)-diagonal. According to Theorem 4.6,
the following equation holds:

fd(Z1, Z2) = fd(N ′′Z1(vj, vl), Z2) + 3.

Since there are two triangulations in Zn that can be assigned to the tip v1,
we have to distinguish between them:

Case 1: idegZ1(v2) = 1
In order to transform Z1 into N ′′Z1(vj, vl), we need the following edge flips:
For n = 4kn and n = (4kn + 1):

1.) (vj, vl) to (vj+1, vl+1),

2.) (vj, vl+1) to (vj−1, vj+1) and

3.) (vj+1, vl) to (vl−1, vl+1).

Figure 24(a), 24(b) and Figure 25(a), 25(c) show an example. We name those
edge flips Transformation 1a.

For n = (4kn + 3), there exists a slight difference to Transformation 1a:
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1.) (vj, vl) to (vj−1, vl−1),

2.) (vj−1, vl) to (vl−1, vl+1) and

3.) (vj, vl−1) to (vj−1, vj+1).

Figure 26(a) and 26(c) depict Z1 and N ′′Z1(vj, vl) for that setting. We call
those edge flips Transformation 1b. Note that both transformations
have the same consequence: N ′′Z1(vj, vl) and Z2 have two common edges:
(vj−1, vj+1) and (vl−1, vl+1). According to Corollary 4.1(b) the calculation of
the flip distance can be subdivided:

fd(N ′′Z1(vj, vl), Z2) = fd(Z ′1, Z ′2),

where Z ′1 and Z ′2 are two triangulations on the point set P ′ = P \ {vj, vl}.
The set of edges is defined by the corresponding edges in N ′′Z1(vj, vl) and Z2.

In the following, we define the sets

Vt1 := {v2, . . . , vj−1}, Vt2 := {vl+1, . . . , vn} and Vt := Vt1 ∪ Vt2 ∪ {v1}

as well as

Vb1 := {vj+1, . . . , vk−1}, Vb2 := {vk+1, . . . , vl−1} and Vb = Vb1 ∪ Vb2 ∪ {vk}.

Z ′1 consists of two zigzags S1, S2 and the diagonal dQ = (vj+1, vl+1) (for
(n mod 4) ∈ {0, 1}) or dQ = (vj−1, vl−1) (for (n mod 4) = 3), that separates
S1 and S2. S1 is the sub-triangulation of Z1, that covers the vertices in Vt.
The diagonals in S2 are given by the edges in Z1 connecting the vertices in
Vb. Trivially, the tips of Z ′1 are v1 and vk. Since, on the one hand, we have

vdistP ′(vj+1, v1) =
(

vdistP ′(vl+1, v1) + 1
)

for (n mod 4) ∈ {0, 1}, and

vdistP ′(vj−1, v1) = vdistP ′(vl−1, v1),

for (n mod 4) = 3, and on the other hand, idegZ′
1
(v2) = 1, we know that Z ′1

is a zigzag triangulation.
Obviously, we have Z ′2 ∈ Zn′ because Z ′2 is a sub-triangulation of Z2.

The tip of the ear on the “left side” of Z ′2 is vj+1: Due to Definition 4.3, the
number of diagonals incident to vj+1 in Z2 is one. The corresponding edge
is (vj−1, vj+1). In Z ′2, that edge is a convex hull edge. Therefore, we have
idegZ′

2
(vj+1) = 0. Moreover, idegZ′

2
(vj+2) = 2, whereas idegZ′

1
(v2) = 1.

For further properties of Z ′1 and Z ′2, we have to distinguish according to
(i) - (iii) from the lemma:
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(b) Z ′1 ⊂ N ′′Z1
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(c) Z ′1(v1)I
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(d)
Z ′2 ⊂ Z2 ∈ Z4kn

Figure 24: n = 4kn: 24(a) Z1 with (2, 2)-diagonal e = (vj , vl). 24(b) Z ′1 consist-
ing of edges S1, S2 and dQ = (vj+1, vl+1). It is a sub-triangulation of N ′′Z1

(vj , vl).
24(c) Z ′1(v1)I = Z ′1(vk)I . Therefore the labels remain the same. 24(d) Z2 = ZN

1 . Bold
edges indicate Z ′2.

(i) Figure 24 shows an example of this case (n = 4kn). In order to prove
that vl+1 is the second tip of Z ′2, we can use the same arguments as for vj+1
above. Recall that, according to Observation 4.1, we have idegZ2(vl+1) = 1,
too.

Finally, we have to show that Z ′2 = (Z ′1(v1)I)N : Compared to Z ′1, the tips
of (Z ′1(v1))I remain the same, see Observation 4.1 on page 32. Consequently,
the labels (defined in Definition 4.3) of the vertices in Z ′1(v1)I are equal to
the labels in Z ′1 and Z1. Hence, all edges connecting the vertices with the
same label are diagonals in Z ′2.

As already described in the proof of Lemma 4.1, the tips of the ears of
(Z ′1(v1)I)N are given by vj+1, vl+1. Furthermore, we have

ideg(Z′
1(v1)I)N (vj+2) = ideg(Z′

1(v1)I)N )(vl+2) = 2.

The same holds for the counterclockwise neighbors of the tips in Z ′2. Together
with the fact, that Z ′2 ∈ Zn′ , we have Z ′2 = (Z ′1(v1)I)N .

(ii) According to Observation 4.1, the number of diagonals incident to vl+1
in Z2 is 2. Consequently, vl−1 has an inner vertex degree of one in Z2. The
corresponding incident diagonal in Z2 is (vl−1, vl+1). As already mentioned
before, that edge is a convex hull edge in Z ′2. Thus, we have idegZ′

2
(vl−1) = 0

and vl−1 is the tip of the second ear of Z ′2, see Figure 25(a), 25(b) and 25(c).
The proof of Z ′2 = (Z ′1(v1)I)N in this case is more challenging than it

was for case (i): the inversion of Z ′1 with respect to v1 causes a clockwise
shift of the second tip, see Figure 25(d). In short, vk−1 is the second tip of
Z ′1(v1)I . Hence, all labels that correspond to the distance to v1 remain the
same. Since the label of each vertex in Vt equals the distance to v1, all labels

48



vj

vj+1

vj−1

vl

vl+1

vl−1

v1

vk
0

2

3

0

1 1

2

3

3 2

1

1

2

(a) Z1 ∈ Z4kn+1

vj

vj+1

vj−1

vl

vl+1

vl−1

v1

vk
0

2

3

0

1 1

2

3

3 2

1

1

2
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Figure 25: n = (4kn + 1): 25(a) Z1 with labels for building ZN
1 . 25(b) Z2 = ZN

1 with the
same labels. Bold edges indicate Z ′2. 25(c) Z ′1 - a sub-triangulation of N ′′Z1

(vj , vl). The
labels for (Z ′1)N or (N ′′Z1

(vj , vl))N , respectively, would not change. 25(d) Z ′1(v1)I with the
second tip vk−1 and the new labels for the vertices in Vb.

in Vt are unchanged. The labels of vertices in Vb1 decrease by one and the
labels of vertices {vk}∪Vb2 increase by one. The tips of (Z ′1(v1)I)N are given
by vj+1, vl−1. We can observe that

ideg(Z′
1(v1)I)N (vj+2) = idegZ′

2
(vj+2) = 2

and

ideg(Z′
1(v1)I)N (vl+1) = idegZ′

2
(vl+1) = 1.

Additionally, we consider the labels of Z2 that arose in building the normal
zigzag triangulation of Z1. Figure 25(b) depicts an example. We observe
that edge (vi1 , vi2) is a diagonal of Z2, if vi2 ∈ Vt and

(1) vi1 ∈ Vb and the label of vi1 is equal the label of vi2 , or
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(2) vi1 ∈ Vb1 and the label of vi1 equals the label of vi2 plus one , or

(3) vi1 ∈ Vb2 ∪ {vk} and the label of vi1 plus one equals the label of vi2 .

Hence, the edges in (Z ′1(v1))I , that connect vertices with equal labels, corre-
spond to the edges described in case (2) and (3). Therefore, they are edges
in Z ′2. In summary, we have Z ′2 = (Z ′1(v1)I)N .

(iii) Analog to (ii), vl−1 is the tip of the second ear of Z ′2. Moreover, the
fundamental idea behind the proof of Z ′2 = (Z ′1(vk)I)N is the same as in
case (ii): Due to the inversion with respect to vk, the tip of Z ′1(vk)I moves
to v2. Hence, each label that corresponds to the distance to v1 changes its
value in Z ′1(vk)I : The label of each vertex in Vt1 decreases by one, whereas
the labels of the vertices in Vt2 increase by one. Since the labels that arose
for ZN

1 of each vertex in Vb equal the distance to vk, the labels in Z ′1(vk)I

remain the same. In short, we only have changing labels in Vt. Figure 26
depicts an example. Note, that (Z ′1(v1)I)N 6= Z ′2.

Case 2: idegZ1(v2) = 2
For cases (i) and (ii), Transformation 1b converts Z1 into N ′′Z1(vj, vl). Oth-
erwise, we need Transformation 1a for case (iii). Hence, the assignment of
Case 1 switches. The proof concludes mutatis mutandis.

Remark 4.7. According to the proof of Lemma 4.7, the tips of Z ′2 are given
by

• vj+1, vl+1, for n = 4kn and

• vj+1, vj−1, for n odd,

if idegZ1(v2) = 1.
Otherwise, if idegZ1(v2) = 2, the tips of Z ′2 are

• vj−1, vl−1, for n = 4kn and

• vj−1, vl+1, for n odd.

Remark 4.8. Recall that for n = (4kn + 2) the edge (vj, vl) is not a diagonal
of Z1 ∈ Zn, Z2 = ZN

1 with tips at vj, vl ∈ P , see Lemma 4.1 on page 35.
We are able to expand the results of Lemma 4.7 even for n = (4kn + 2) if

one zigzag triangulation is the normal zigzag triangulation of the inversion
of the other given zigzag triangulation. The starting vertex of the inversion
depends on the initial triangulation.

50



0

0

1

1

1

1

2

2

2

2

3

3

3

34

v1

vk

vl

vl−1

vl+1

vj

vj+1

vj−1

(a) Z1 ∈ Z4kn+3

0

0

1

1

1

1

2

2

2

2

3

3

3

34

v1

vk

vl

vl−1

vl+1

vj

vj+1

vj−1
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(d) Z ′1(v1)I

Figure 26: n = (4kn + 3): 26(a) Z1 with labels for building ZN
1 . 26(b) Z2 = ZN

1 with the
same labels. Bold edges indicate Z ′2. 26(c) Z ′1 - a sub-triangulation of N ′′Z1

(vj , vl). The
labels for (Z ′1)N or (N ′′Z1

(vj , vl))N , respectively, would not change. 26(d) Z ′1(v1)I with the
second tip vk−1 and the new labels for the vertices in Vb. All edges, connecting vertices
with the same label in (Z ′1(v1)I)N are not in Z2.

Lemma 4.8. Given Z1, Z2 ∈ Zn. For

(i) n = 4kn and Z2 = (Z1(v1)I)N ,

(ii) n = (4kn + 1) and

(a) idegZ1(v2) = 1 and Z2 = (Z1(vk)I)N , or
(b) idegZ1(v2) = 2 and Z2 = (Z1(v1)I)N ,

(iii) n = (4kn + 2) and Z2 = (Z1(v1)I)N ,

(iv) n = (4kn + 3) and

(a) idegZ1(v2) = 1 and Z2 = (Z1(v1)I)N , or
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(b) idegZ1(v2) = 2 and Z2 = (Z1(vk)I)N ,

kn ∈ N, kn > 1, the flip distance of Z1 and Z2 can be calculated by

fd(Z1, Z2) = fd(Z ′1, Z ′2) + 3,

with Z ′1, Z ′2 ∈ Zn′, n′ = n− 2 and Z ′2 = (Z ′1)N .

Proof. Again, we need the same transformations defined in the proof of
Lemma 4.7. We have the following assignments:

For idegZ1(v2) = 1, we need
Transformation 1a, for (i) and (iv),
Transformation 1b, for (ii) and (iii).

In case of idegZ1(v2) = 2, the assignments switch.
Since case (iii) does not occur in the proof of Lemma 4.7, we give a proof

sketch for this case:

1. According to Lemma 4.2 edge (vj, vl) is a diagonal in Z1. Since

vdist(v1, vj) ≥
n

4 ≥ 2

for kn > 1, (vj, vl) is a (2,2)-diagonal. As a consequence of the application
of Transformation 1b and Corallary 4.1(b), we have

fd(Z1, Z2) = fd(Z ′1, Z ′2) + 3

2. We have to show that Z ′1 ∈ Zn−2 with an underlying point
set P ′ = P \ {vj, vl} with tips at v1, vk: The structure of Z ′1 consists of
two zigzags S1, S2 (see proof of Lemma 4.7 for details) and a diagonal dQ

separating S1 and S2. In this case, dQ = (vj−1, vl−1). According to the
proof of case (ii) Case 2 in Lemma 4.2, the labels of the tips of the ears
of Z2 correspond to vdistP (vj, vk) and vdistP (vl, v1). Thus,

vdistP (vj, v1) =
(

vdistP (vl, v1) + 1
)

and consequently,(
vdistP (vj−1, v1) + 1

)
= vdistP (vl−1, v1).

Furthermore,
vdistP (vj−1, v1) = vdistP ′(vj−1, v1).
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Since vl contributes to vdistP (vl−1, v1) and vl is not an element of P ′, we
have

vdistP ′(vl−1, v1) = vdistP ′(vj−1, v1).
According to Observation 4.2, we know that dQ is part of a zigzag trian-
gulation with underlying point set P ′. Together with S1 and S2, we have
Z ′1 ∈ Zn−2.

3. Finally, we have to prove that Z ′2 = (Z ′1)N . We refer to case (i), because
the behavior of an inversion of zigzag triangulation is the same for n even.

Thus, we conclude the proof analog to Lemma 4.7.

Remark 4.9. For idegZ1(v2) = 1 the tips of Z ′2 correspond to the vertices
listed in Remark 4.7, case idegZ1(v2) = 2. Otherwise, the tips are given by
the vertices, listed for case idegZ1(v2) = 1 (in Remark 4.7).

Each combination of Z ′1 and Z ′2, listed in the cases (i) - (iii) in Lemma 4.7,
occurs as Z1, Z2 in Lemma 4.8. Further, the combinations of Z ′1 and Z ′2 in
Lemma 4.8 occur as Z1 and Z2 in Lemma 4.7. Thus, we obviously can
apply both lemmata successively. The result of starting with Lemma 4.7 is
formulated in Theorem 4.9.
Theorem 4.9. Given Z1, Z2 ∈ Zn with Z2 = Z1

N , i.e., Z2 is the normal
zigzag triangulation of Z1. Then their flip distance equals one of the following
equations:
(i)

fd(Z1, Z2) = 6kn − 5 (4.4)
iff n = 4kn,

(ii)
fd(Z1, Z2) = 6kn − 4 (4.5)

iff n = (4kn + 1),

(iii)
fd(Z1, Z2) = 6kn − 1 (4.6)

iff n = (4kn + 3),
where kn ∈ N. For kn > 1, the equations can be reformulated to their recur-
sive equivalent:

fd(Z1, Z2) = fd(Z̃1, Z̃2) + 6 (4.7)

where Z̃1, Z̃2 ∈ Zñ and Z̃2 = Z̃1
N . The underlying point set P̃ is a set of

ñ = n− 4 = (i) 4(kn − 1), (ii)
(
4(kn − 1) + 1

)
, (iii)

(
4(kn − 1) + 3

)
points

in convex position.
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Proof. For simplicity, we first prove equation (4.7). Obviously, it is a con-
sequence of applying Lemma 4.7 followed by Lemma 4.8. Both lemmata
reduce the calculation of the flip distance of two given zigzag triangulations
to two zigzag triangulations for which the size of the underlying point set is
decreased by two. On the one hand, both lemmata have the precondition
kn > 1 and thus, n > 7. On the other hand, equation (4.7) has to be valid
for kn > 1 and the reduction of the calculation of the flip distance from Zi to
Z̃i, i = 1, 2, needs the application of both lemmata. Consequently, we have
to distinguish between kn = 2 and kn > 2:

kn = 2 :

• n = 4 ∗ 2 = 8: At first, we use Lemma 4.7 in order to get

fd(Z1, Z2) = fd(Z ′1, Z ′2) + 3,

with Z ′1, Z
′
2 ∈ Z6 and Z ′2 = (Z ′1(v1)I)N . Since n′ = 6, we cannot

continue with the application of Lemma 4.8. Hence, we take a closer
look to Z ′1, Z ′2:
Independent on idegZ′

1
(v2), three additional edge flips reduce the cal-

culation of fd(Z ′1, Z ′2) to the calculation of the flip distance of two
quadrilaterals with different diagonals. See Figure 27. Therefore, equa-
tion (4.7) holds for this case.

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

3

Z ′
1 N ′′

Z ′
1
(v3, v6) Z ′

2 = (Z ′
1(v1)

I)N

1

Figure 27: The edge (v3, v6) of Z ′1 is a (2,2)-diagonal. Three edge flips create tri-
angulation N ′′Z′

1
(v3, v6), that has two edges in common with Z ′2. Thus, we have

fd(Z ′1, Z ′2) = fd(Q1, Q2) + 3. Q1, Q2 are indicated by bold edges.

• n = (4 ∗ 2 + 1) = 9 : This case is analog to n = 8. Instead of quadri-
laterals, we have pentagons. See Figure 28 for the case idegZ′

1
(v2) = 1.
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1(v1)
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Figure 28: The edge (v3, v6) of Z ′1 is a (2,2)-diagonal. Three edge flips create tri-
angulation N ′′Z′

1
(v3, v6), that has two edges in common with Z ′2. Thus, we have

fd(Z ′1, Z ′2) = fd(P1, P2) + 3. P1, P2 are indicated by bold edges.

• n = (4 ∗ 2 + 3) = 11 : Since Lemma 4.7 and Lemma 4.8 can be applied
once without violating the precondition n > 7, we refer to case kn > 2.

kn > 2 :

It follows that n > 11. We apply Lemma 4.7 followed by Lemma 4.8.
The results can be described by following equation:

fd(Z1, Z2) = fd(Z ′1, Z ′2) + 3 = (fd(Z̃1, Z̃2) + 3) + 3 = fd(Z̃1, Z̃2) + 6,

with Z ′1, Z
′
2 as described in Lemma 4.7. Note, that the underlying point

set of Z ′1, Z ′2 still has size n′ = (n − 2) > 7. As already mentioned above,
each combination of Z ′1 and Z ′2, listed in that lemma, occurs as Z1 an Z2 in
Lemma 4.8. Thus, we can again subdivide the expression fd(Z ′1, Z ′2) and get
two zigzag triangulations Z̃1, Z̃2 ∈ Zñ, ñ = (n − 4) with Z̃2 = Z̃1. Taken
together, equation (4.7) is valid for kn > 1.

We prove equations (4.4) - (4.6) by recursively resolving equation (4.7).
Assume, that B1 and B2 are two zigzag triangulations with B2 = BN

1 . Ad-
ditionally, let nb < 8 be the size of the underlying point set. Thus, we have:

fd(Z1, Z2) = fd(Z̃1, Z̃2) + 1 ∗ 6 = fd(Z̃1
′
, Z̃2

′) + 2 ∗ 6 = . . .

. . . = fd(B1, B2) + (kn − 1) ∗ 6,
(4.8)

with Z̃1
′
, Z̃2

′
∈ Zñ′ , ñ′ = (ñ − 4) = (n − 8) > 8 and Z̃2

′ = Z̃2
N . In order

to complete the resolution of equation (4.8), we have to consider the flip
distance of B1 and B2. This includes the following base cases:
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(i) n = 1 ∗ 4. B1 and B2 equal to two quadrilaterals with different
diagonals. Obviously their flip distance is 1.

(ii) n = (1 ∗ 4 + 1) = 5. B1 and B2 are two zigzag triangulations of
a pentagon. See Figure 29. Independent on idegB1(v2), their flip distance is 2.

v1

v2

v3 v4

v5

v1

v2

v3 v4

v5

Figure 29: Two normal zigzag triangulations of a pentagon.

(iii) n = (1∗4+3) = 7. W.l.o.g. let v1 and v5 be the tips of the ears of B1.
For idegB1(v2) = 1, v3 and v7 are the tips of the ears of B2, see Figure 30. The
edge (v3, v7) in B1 is a (2,2)-diagonal. Thus, the flip distance is 3 plus the flip
distance of N ′′B1(v3, v7) and B2. They in turn have two common edges: (v1, v6)
and (v2, v4). According to Corollary 4.1(b), the calculation of the flip distance
can be reduced to the corresponding sub-triangulations B′1, B′2 of N ′′B1(v3, v7)
and B2 of the point set P \ {v3, v7}. Finally, applying Lemma 4.3, the edge
flips (v4, v6) and (v2, v6) create B2. The total number of flips is (3 + 2) = 5.

For idegB1(v2) = 2, the same arguments can be applied.
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Figure 30: Triangulations on the shortest path from B1 to B2.
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In summary, we have

fd(Z1, Z2) = . . .

· · · = fd(B1, B2) + (kn − 1) ∗ 6 =


(i)

(
1 + (kn − 1) ∗ 6

)
= 6kn − 5

(ii)
(
2 + (kn − 1) ∗ 6

)
= 6kn − 4

(iii)
(
5 + (kn − 1) ∗ 6

)
= 6kn − 1

Alternatively, we can assume that the initial triangulations Z1, Z2 sat-
isfy the preconditions of Lemma 4.8, cases (ii) - (iv). Thus, we can apply
Lemma 4.8 on Z1, Z2, followed by Lemma 4.7. The results are formulated in
Theorem 4.10.
Remark 4.10. We have to exclude case (i) of Lemma 4.8 because the re-
duced triangulations Z ′1, Z ′2 do not exist as initial triangulations Z1, Z2 in
Lemma 4.7. (In fact, we have Z ′1, Z

′
2 ∈ Z4kn+2 and Z ′2 = (Z ′1)N , see

Lemma 4.8.)

Theorem 4.10. Given Z1, Z2 ∈ Zn with

(i) n = (4kn + 1) and

(a) idegZ1(v2) = 1 and Z2 = (Z1(vk)I)N , or
(b) idegZ1(v2) = 2 and Z2 = (Z1(v1)I)N ,

(ii) n = (4kn + 2) and Z2 = (Z1(v1)I)N ,

(iii) n = (4kn + 3) and

(a) idegZ1(v2) = 1 and Z2 = (Z1(v1)I)N , or
(b) idegZ1(v2) = 2 and Z2 = (Z1(vk)I)N ,

kn ∈ N. Then the flip distance of Z1 and Z2 equals one of the following
equations:
(i)

fd(Z1, Z2) = 6kn − 4 (4.9)
(ii)

fd(Z1, Z2) = 6kn − 2 (4.10)
(iii)

fd(Z1, Z2) = 6kn − 1 (4.11)
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Proof. For kn > 1, we apply Lemma 4.8, followed by Theorem 4.9. Thus, we
have

fd(Z1, Z2) = fd(Z ′1, Z ′2) + 3 =


(i) (6(kn − 1)− 1) + 3 = 6kn − 4
(ii) (6kn − 5) + 3 = 6kn − 2
(iii) (6kn − 4) + 3 = 6kn − 1

with Z ′1, Z ′2 ∈ Zn′ , Z ′2 = Z ′N1 and n′ = (n − 2). Note, that kn decreases by
one for case (i):

n′ = (n− 2) =
(
(4kn + 1)− 2

)
=
(
4(kn − 1) + 3

)
Hence, Theorem 4.10 holds for kn > 1. We conclude the proof with the base
case kn = 1 for the cases (ii) - (iii):

(i) n = (4 ∗ 1 + 1) = 5:
For this case, Z1 and Z2 are two triangulations of a pentagon, see Figure 31.
The flip distance is 2: Applying Lemma 4.3 on both diagonals of Z1 results
in Z2. Thus, we have:

fd(Z1, Z2) = 2 = 4 = (6 ∗ 1− 4).

v1

v3 v4

v5

v1

v4

v5

v1

v4

v5

Z1 Z2 = (Z1(v4)
I)N

v2 v2

v3

v2

v3

Figure 31: A flip sequence with minimum length from Z1 to Z2.

(ii) n = (4 ∗ 1 + 2) = 6:
According to the proof of equation (4.7) in Theorem 4.9, we have

fd(Z1, Z2) =
(

fd(Q1, Q2) + 3
)

= 4 = (6 ∗ 1− 2),

where Q1, Q2 are two quadrilaterals with different diagonals. See Figure 27.
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(iii) n = (4 ∗ 1 + 3) = 7:
Again, we refer to the proof of equation (4.7) in Theorem 4.9. Consequently,
we have

fd(Z1, Z2) =
(

fd(P1, P2) + 3
)

= 5 = (6 ∗ 1− 1),

where P1, P2 are two zigzag triangulations of a pentagon with P2 = PN
1 , see

Figure 28 and 29. According to the proof of the base case of equation (4.6)
in Theorem 4.9, we have fd(P1, P2) = 2.

Finally, we consider the flip distance of Z1, Z2 ∈ Zn with Z2 = ZN
1 and

n = (4kn + 2), kn ∈ N. Recall that according to Lemma 4.1 on page 35,
the edge connecting the tips of Z2 is not a diagonal of Z1. Thus, Theo-
rem 4.6 cannot be applied. Nevertheless, vj and vl satisfy the preconditions
of Theorem 4.5 and Corollary 4.2 for kn > 1. That leads us to the following
Theorem:

Theorem 4.11. Given Z1, Z2 ∈ Zn with Z2 = ZN
1 and n = (4kn+2), kn > 1,

kn ∈ N. Then the flip distance of Z1 and Z2 is bounded by

(5kn − 2) ≤ fd(Z1, Z2) ≤ (7kn − 4). (4.12)

Proof. For kn > 1, vj and vl have at least distance n−2
4 = 2 to the tips of Z1

(see proof of Lemma 4.1). Consequently, we have

idegZ1(vj) = idegZ1(vl) = 2.

Thus, both vertices fulfill the preconditions of Corollary 4.2. Assume that
T1 = NZ1(vj). Then Corollary 4.2 applied on vertex vj leads to the following
estimate: (

fd(T1, Z2) + 1
)
≤ fd(Z1, Z2) ≤

(
fd(T1, Z2) + 2

)
.

Figure 32 depicts an example of the triangulations. Because vj and vl are
not connected by an edge in Z1, vl still has two incident diagonals in T1.
According to Corollary 4.2, we get(

fd(T2, Z2) + 1
)
≤ fd(T1, Z2) ≤

(
fd(T2, Z2) + 2

)
with T2 = NT1(vl) and consequently,(

fd(T2, Z2) + 2
)
≤ fd(Z1, Z2) ≤

(
fd(T2, Z2) + 4

)
.

T2 and Z2 share two edges: (vj−1, vj+1) and (vl−1, vl+1). Thus, we can subdi-
vide the calculation of the flip distance of T2 and Z2:

fd(T2, Z2) = fd(T ′2, Z ′2),
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1

Figure 32: 32(a) Z1 ∈ Z4kn+2. 32(b) The normalized triangulation of Z1 with respect
to vj . 32(c) Z2, the normal zigzag triangulation of Z1.

where T ′2 and Z ′2 are the sub-triangulations of T2 and Z2 on the point
set P ′ = P \ {vj, vl}, |P ′| = (n − 2). Furthermore, Z ′2 = (T ′2(v1)I)N , see
Figure 33.
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(a) T ′2 ⊂ T2 = NT1(vl)
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vj+1
vl−1

v1
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vj+2

(b) Z̃1 ⊂ N ′′T2
(vj+1, vl+1)

vk

vl+1

vj−1

vj+1
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v1
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vj
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vj+2

(c) Z ′2 ⊂ Z̃2 ⊂ Z2 = ZN
1

Figure 33: 33(a) T ′2 is a sub-triangulation of T2. Bold edges belong to T ′2. Edge (vj+1, vl+1)
is a (2, 2)-diagonal. 33(b) Bold edges are part of Z̃1, a sub-triangulation of N ′′T2

(vl+1, vj+1).
33(c) Z̃2, indicated by the bold edges, is a sub-triangulation of Z2. Z ′2 consists of Z2 less
the dashed edges.

According to Lemma 4.7, we have

fd(T ′2, Z ′2) =
(

fd(Z̃1, Z̃2) + 3
)

with Z̃1, Z̃2 ∈ Zn−4 and Z̃2 = Z̃1
N . Hence, we have again the initial problem

on the reduced point set P̃ = P \ {vj, vj+1, vl, vl+1} with size ñ = (n − 4) =(
4(kn − 1) + 2

)
:

(
fd(Z̃1, Z̃2) + 5

)
≤ fd(Z1, Z2) ≤

(
fd(Z̃1, Z̃2) + 7

)
.
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We resolve that inequation recursively to(
fd(B1, B2) + (kn − 1) ∗ 5

)
≤ fd(Z1, Z2) ≤

(
fd(B1, B2) + (kn − 1) ∗ 7

)
with B1, B2 ∈ Z6 and B2 = BN

1 . Finally, we conclude the proof with
fd(Z̃1, Z̃2) = 3 (see Figure 34).
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Figure 34: A shortest flip sequence from Z1 to Z2 .

Remark 4.11. For Z1, Z2 ∈ Z4kn+2, Z2 = ZN
1 and kn ∈ {1, . . . , 4}, calculations

showed that the flip distance is given by 3, 10, 17 and 24. Those values
correspond to the upper bound of Theorem 4.11.

4.3 From the shortest flip sequence to the degree
bounded setting

In this section we analyze the flip sequences that arise in the proofs of Theo-
rem 4.9 and 4.10. Assume, that Z1 andZ2 satisfy the preconditions of one of
the two aforementioned theorems. Then we can observe that the flip sequence
corresponds to the repetitive and recursive application of Transformation 1a
and/or 1b, defined in the proof of Lemma 4.7. Each time two transforma-
tions are applied, a triangulation that has 4 edges in common with the other
one is created. Since the number of diagonals of a triangulation with an
underlying convex point set is given by n − 3, the transformations can be
applied bn−3

4 c times. The final edge flips equal the base cases listed in the
proof of Theorem 4.9.

If we consider that flip sequence (see Figure 35) for n = 4kn and
Z2 = (Z1)N for the entire point set and its corresponding temporary triangu-
lations, which are all part of the shortest path from Z1 to Z2, the equality to
the flip sequence described in the proof of Lemma 4 by Aichholzer et al., [3],
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becomes visible. In their paper that flip sequence is used in the context of
proving that two normal zigzag triangulations can be transformed into each
other in O(n) time without exceeding a vertex degree of k > 6. The following
arguments are used:

Applying Transformation 1a and Transformation 1b, respectively, on Z1
creates a triangulation Z ′1 that can be divided into five sub-triangulations: a
quadrilateral Q with diagonal dQ, which delimits four zigzags: two shrinking
ones at the tip of the ears of Z1 (consisting of edges of Z1) and two grow-
ing zigzags at the tip of the ears of Z2 (containing edges equal to Z2), see
Figure 35.

vj vl vj vl vj vl
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v1

vk

v1

vk

v1

dQ dQ

S1

S2 S2

vj vl

vk
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S1

Transform. 1a

Z1 ∈ Z4kn
Z ′
1 = N ′′

Z1
(vj, vl) Z2 ∈ Z4kn

N ′′
Z ′
1
(vl+1, vj+1)

Transform. 1b

. . .

Figure 35: Transformation 1a and 1b applied recursively.

Regarding the vertex degree bound, the following invariant is established:
Each vertex v ∈ P is incident to two convex hull edges, at most two of four
zigzags and maybe the diagonal dQ. That results in a maximum degree of 7.
Each subsequent application of Transformation 1a or 1b (except the last one)
can alternatively be described by the following steps:

Step 1. Flip diagonal dQ.

Step 2. Flip the two edges that are common to Q and the shrinking zigzags.
Note that this step includes exactly two edge flips, before we can
apply Step 1 again. (Obviously, this case is only needed, if the
shrinking zigzags are not empty. Otherwise the target triangulation
has already been created by Step 1.)

All the resulting triangulations of those flips have the same structure as Z ′1.
Therefore, the invariant holds and the degree restriction is never violated.

In case of Z2 = (Z1(v1)I)N and n = (4kn + 2) the invariant holds, too:
Let Ẑ1, Ẑ2 ∈ Z4(kn+1) be two zigzag triangulations with Ẑ2 = ẐN

1 and say that
Ẑ ′1 is the result of Transformation 1a or Transformation 1b, respectively. It
arises from the proof of equation (4.7) in Theorem 4.9 that Z1 and Z2 appear

62



as sub-triangulations of triangulation Ẑ ′1 and Ẑ2. Since the vertex degree of
a sub-triangulation can only decrease, the invariant is true for Z1 and Z2.

For Z1, Z2 ∈ Z4kn+1 and Z2 = ZN
1 , the flip sequence that arises from the

proof of Theorem 4.9 corresponds to the repetitive and recursive application
of Transformation 1a (or Transformation 1b in case of idegZ1(v2) = 2), see
Figure 36. Alternatively, it can be presented as follows:
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Z1
(vj, vl) Z2 ∈ Z4kn+1

N ′′
Z ′
1
(vl+1, vj+1)

Figure 36: The repetitive recursive application of Transformation 1a leads to Z2.

1. The first application of Transformation 1a (or 1b, in case of
idegZ1(v2) = 2) on Z1 creates a triangulation with the same structure
as Z ′1 (case n = 4kn above): A quadrilateral Q with diagonal dQ de-
limits four zigzags: two shrinking ones with tips at v1 and vk and two
growing ones with tips at vj and vl.

2. Alternately, we perform the edge flips described in the following by 2a
and 2b in a loop, until only one edge of one shrinking zigzag remains:

(a) • flip the edge e that is common to Q and the shrinking zigzag
at vk. A new structure appears: A path triangle tp consisting
of dQ and the flip target of edge e, de. tp is adjacent to two
inner triangles t1, t2, where each delimits one shrinking zigzag
and one growing one.

• flip edge dQ. The structure created by the flip before is replaced
by a quadrilateral Q′, which has the same properties as Q.

• flip edge e′, which is common to Q′ and the shrinking zigzag
at vk. A new quadrilateral Q′′ is created. Q := Q′′.

(b) Replace vk in 2a by v1.

For idegZ1(v2) = 1, start the loop with 2a. (Otherwise begin with the edge
flips in 2b.) As soon as only one edge of the shrinking zigzags remains, the
flip sequence can be completed by the corresponding edge flips mentioned in
the base cases.
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The new structure that appears after the first edge flip described in 2a
and 2b above claims for an extension of the before defined invariant: Each
vertex v ∈ P is incident to two convex hull edges, at most two zigzags and at
most two diagonals dQ and de. In order to assure that the maximum vertex
degree remains less or equal 7 during the whole transformation from Z1 to
Z2, the following lemma is needed:

Lemma 4.12. Given Z1, Z2 ∈ (a) Z4kn+1, or (b) Z4kn+3 with Z2 = ZN
1 and

Ti ∈ P, where P is the shortest path from Z1 to Z2 that arises from the above
presented flip sequence. Assume that vertex v ∈ P is incident to two convex
hull edges, two zigzags and two diagonals dQ and de in Ti. Furthermore, the
zigzags incident to v are called zs (the shrinking one) and zg (the growing
one). Then zg has the property, that idegzg

(v) = 1, i.e., v has only one
incident edge that belongs to zg.

Proof. Assume that idegzg
(v) = 2. Then the edge flips e and e′ described in

2a and 2b above would stop the growth of the zigzag zs, which leads to a
contradiction. Figure 37 shows an example.

zs

zgdQ

e

v

e′

(a)

zs

zgdQ

v

e′

de

(b)

zs

zgdQ

v

de

(c)

Figure 37: 37(a)Triangulation T , which has the same structure as Z ′1. 37(b)edge e is
flipped to diagonal de, 37(c)edge e′ flipped, too. The flip target is incident to v

For Z4kn+3 and Z2 = ZN
1 , we can use the same arguments as for Z4kn+1.

Note, that for idegZ1(v2) = 1, we have to apply Transformation 1b in a
repetitive manner, instead of Transformation 1a before. For idegZ1(v2) = 2,
we use Transformation 1a. Figure 38 gives an example.
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Figure 38: Transformation 1b applied recursively.

Finally, we consider the remaining cases

idegZ1(v2) = 1, n = 4kn + 1 and Z2 = (Z1(vk)I)N

n = 4kn + 3, and Z2 = (Z1(v1)I)N

idegZ1(v2) = 2 n = 4kn + 1 and Z2 = (Z1(v1)I)N

n = 4kn + 3, and Z2 = (Z1(vk)I)N.

We can use the same arguments that are used in the case Z2 = (Z1(v1)I)N ,
n = (4kn +2). Hence, the extended invariant holds and the maximum vertex
degree of 7 is not exceeded during the whole transformation.

Taken together, we can extend Theorem 4.9 and 4.10 to

Theorem 4.13. Given Z1, Z2 ∈ Zn. According to Theorem 4.9 and 4.10,
the flip distance of Z1 to Z2 is given by

(a) (6kn − 5) flips, if n = 4kn and Z2 = ZN
1 ,

(b) (6kn − 4) flips, if n = (4kn + 1) and

(1) Z2 = ZN
1 ,

(2) Z2 = (Z1(vk)I)N and idegZ1(v2) = 1,
(3) Z2 = (Z1(v1)I)N and idegZ1(v2) = 2,

(c) (6kn − 2) flips, if n = (4kn + 2) and Z2 = (Z1(v1)I)N ,

(d) (6kn − 1) flips, if n = (4kn + 3) and

(1) Z2 = ZN
1 ,

(2) Z2 = (Z1(v1)I)N and idegZ1(v2) = 1,
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(3) Z2 = (Z1(vk)I)N and idegZ1(v2) = 2,

where v1 and vk are the tips of Z1. There exists a corresponding shortest path
P : T0 = Z1, T1, . . . , Tp−1, Tp = Z2 with the following property:

∀Ti ∈ P : Ti ∈ Tn,k,

where Tn,k is the set of all triangulations of P with a maximum vertex degree
of k > 6.

Proof. Follows from the above considerations.
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5 Software
This section describes a computer program that approximates the flip dis-
tance of two (pointed pseudo-)triangulations in the degree bounded setting
by several heuristics. In other words, the program computes a flip sequence
that transforms two given bounded degree (pointed pseudo-)triangulations
without exceeding the vertex degree bound k. Additionally, the construc-
tion of the flip graph of a given point set is implemented. That enables
the user to calculate the flip distance of two (pointed pseudo-)triangulations
in the degree bounded setting for very small point sets. In both cases,
the resulting flip sequence can be traced step by step. The bounded de-
gree (pointed pseudo-)triangulations have to be defined by the user. Since
many implemented functions are the same for triangulations and pointed
pseudo-triangulations, we denote the initial user-defined triangulations or
pointed pseudo-triangulations by T1 and T2. As soon as differences occur,
we will specify the type. Additionally, we reduce our considerations concern-
ing pseudo-triangulations to pointed pseudo-triangulations in this section.
Therefore, we will omit the word “pointed” in order to improve the readabil-
ity.

Recall that the expression e ∈ T stands for a (pseudo-)triangulation T
that contains the edge e. Furthermore, we denote the result of removing the
edge e of T by T \e. For brevity, we write #(e, Tj) for the number of interior
intersections between e ∈ Ti and the edges of Tj, i, j ∈ {1, 2} and i 6= j.
T1 ∪ T2 stands for the result of adding all edges of T2 to T1.

5.1 Description of the implemented heuristics
Basically, all implemented heuristics have the same principle: First, differ-
ent types of edge weights as described in section 5.1.1 are assigned to each
edge of T1 and T2. Then the edges are enqueued in a priority queue Q. The
prioritization of the edges depends on the Comparator that is assigned to
the heuristic. (A Comparator compares the weights of two edges. All im-
plemented Comparators are presented in section 5.1.2.) Afterwards, the two
following steps are repeated until either the flip sequence that transforms T1
and T2 into each other is found or an infinite loop appears:

• Flip the edge that is the first element in Q.

• Update the edge weights that are affected by the flip as well as Q.
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5.1.1 Edge weights

For triangulations two kinds of edge weights are defined: the edge crossing
weight and the node degree weight. For pseudo-triangulations a third weight
that deals with the pointedness of the vertices incident to the considered edge
is added: the non-pointed weight. For each kind of edge weight we can say
that the higher the value of the weight the higher the priority to flip that
edge.

In the following, we assume that Ti and Tj (Ti 6= Tj) are two arbitrary
(pseudo-)triangulations on the same point set that have a maximum vertex
degree k. Further, we let e′ = (v′k, v′l) be the flip target of e = (vk, vl) ∈ Ti in
case e is flippable with {vk, v

′
k, vl, v

′
l} ⊆ P . Additionally, we call T ′i the result

of flipping e to e′ in Ti.

Edge crossing weights There exist two different types of edge crossing
weights:

1. The edge crossing weight ecw1(e) depends on the number of interior in-
tersections of e with the edges in the other given (pseudo-)triangulation.
Thus, we have

ecw1(e) := #(e, Tj).

2. Since ecw1(e) disregards #(e′, Tj), we define ecw2(e) by the difference
between #(e, Tj) and #(e′, Tj). If e is not flippable, we assign to ecw2(e)
the value −∞.

ecw2(e) :=
#(e, Tj)−#(e′, Tj) if e is flippable, or
−∞ otherwise.

Node degree weights We subdivide the node degree weights into three
categories:

1. The node degree weight ndw1(e) can be seen as an indicator whether e is
flippable without exceeding k.

ndw1(e) :=


1

if e is flippable and
degTi\e(v′k) < k and degTi\e(v′l) < k,

−∞ otherwise.
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2. In case e is flippable, ndw2(e) equals the difference of the vertex degree
bound k and the maximum among the vertex degrees of the vertices inci-
dent to e′. If e is not flippable, we assign to ndw2(e) the value −∞. Thus,
the higher the value of ndw2(e) the smaller the maximum vertex degree
of v′k and v′l.

ndw2(e) :=


k −max

(
degT ′

i
(v′k), degT ′

i
(v′l)

) if e is flippable and
degTi\e(v′k) < k and
degTi\e(v′l) < k,

−∞ otherwise.

3. The third type of node degree weight takes the maximum vertex degree
of vk and vl as well as the maximum vertex degree of v′k and v′l into account:

ndw3(e) :=



max
(

degTi
(vk), degTi

(vl)
)
−

max
(

degT ′
i
(v′k), degT ′

i
(v′l)

) if e is flippable and
degT\e(v′i) < k and
degT\e(v′j) < k,

−∞ otherwise.

Non-pointed weights This kind of edge weight is intended for an ad-
ditional weight for edges of pseudo-triangulations. Two different types are
implemented:

1. npw1(e) takes the number of pointed vertices in Ti ∪ Tj incident to e
into consideration:

npw1(e) :=


2 if vk and vl are non-pointed in Ti ∪ Tj

1 if either vk or vl are non-pointed in Ti ∪ Tj

0 if vk and vl are pointed in Ti ∪ Tj.

2. For the second type of non-pointed weight the pointedness of the ver-
tices incident to e′ contributes to the value of the weight:

npw2(e) :=


npw1(e) if v′k and v′l are pointed in Ti ∪ Tj

npw1(e)− 1 if either v′k or v′l are non-pointed in Ti ∪ Tj

npw1(e)− 2 if v′k and v′l are non-pointed in Ti ∪ Tj.
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5.1.2 Comparators

Each edge weight contributes to the prioritization in Q. The extent of each
weight depends on the Comparator. Since there exists an additional edge
weight for T1, T2 ∈ PPT P , we distinguish Comparators for triangulations
and Comparators for pseudo-triangulations. The following Comparators are
implemented for T1,T2 ∈ TP,k:

1. The prioritization of the first Comparator is based on the product of the
edge crossing weight and node degree weight.

2. The second Comparator sorts Q according to the edge crossing weight. If
two edges have the same value of the edge crossing weight, this Compara-
tor takes the node degree weight into consideration.

3. The third Comparator priorizes the edges according to the product of the
edge crossing weight and the node degree weight. In case of equality, the
node degree weight is used.

4. The prioritization of the fourth Comparator is based on the node degree
weight.

For T1,T2 ∈ PPT P,k, the following Comparators exist:

1. The first Comparator sorts the edges according to the edge crossing
weight. If two edges have the same value of the edge crossing weight,
the non-pointed weight is used. If the non-pointed weights are also equal,
the node degree weight is taken into consideration.

2. The prioritization of the second Comparator is based on the node degree
weight. In case of equality the non-pointed weight is used.

5.2 Description of the flip graph construction and re-
lated calculations

Since the number of (pseudo-)triangulations of a given point set is expo-
nential in the size of the underlying point set, the construction of the flip
graph and hence all related calculations are time-consuming processes. It is
recommended to use them only in the case of very small point sets.
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5.2.1 Construction of the (subgraph of the) flip graph

Independent of the vertex degree bound, at first the complete
flip graph FG(TP ) (for triangulations) or FG(PPT P ) (for pseudo-
triangulations) is constructed. Since both flip graphs are connected, breadth-
first search can be used for the construction. The initial node corresponds
to T1. The subgraphs FG(TP,k) (for triangulations) and FG(PPT Pk

) (for
pseudo-triangulations) are built based on the complete flip graph.

5.2.2 Calculation of the flip distance

There are two possible ways to calculate the flip distance of T1 and T2.

1. Flip Graph→ Calculate Flip Distance: If the complete flip graph has al-
ready been constructed before, the subgraph FG(TP,k) or FG(PPT P,k)
is created. The shortest path between T1 and T2 in that subgraph is
calculated with Dijkstra’s algorithm. In fact, Dijkstra’s algorithm can
be replaced by using again breadth-first search, since we have no edge
weights in the subgraph.

2. Under Flip Graph → Calculate Parital Flip Graph a connected compo-
nent C of FG(TP,k) or FG(PPT P,k) is created by breadth-first search.
The initial node corresponds to T1. In this case, the vertex degree
bound is taken into consideration for the construction. Thus, C only
consists of nodes that correspond to (pseudo-)triangulations with max-
imum vertex degree k and are connected to T1. The construction stops
as soon as

• either T2 is an element of C or
• the maximum depth defined by the user is reached or
• T1 and T2 are not in the same connected component of FG(TP,k)

or FG(PPT P,k).

5.2.3 Calculation of the diameter of the flip graph

For each T ∈ FG(TP,k) or FG(PPT P,k) the node at the maximum length of
the shortest path to T is calculated by Dijkstra’s algorithm. The calculation
of the diameter in this way is definitely the most time-consuming process
among the calculations presented in this section. Hence, the implementation
of a heuristic would be a more efficient approach for that purpose.
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5.3 Program control
The user interface of the program contains two areas that are intended to
display the initial (pseudo-)triangulations T1 and T2. As soon as they are set,
the user has the possibility to trace the resulting flip sequences of different
implemented heuristics or even the shortest flip sequence. Moreover, the
diameter of the flip graph for the given point set can be calculated. As
already mentioned before, the calculation of the exact flip distance as well
as the calculation of the diameter of the flip graph is only recommended in
the case of very small point sets.

5.3.1 Defining T1 and T2

The definition of T1 and T2 consists of two steps: At first, the underlying
point set has to be defined. Afterwards, the edges can be set. For both steps
there are different ways that we will present now:

Defining the underlying point set In the Edit menu, different functions
to define a point set can be found. Independent of the chosen function, a
point editor appears. A provided area in that editor enables the user to set
points via left mouse click in that area and delete points by marking a point
(via left mouse click on this point) followed by pressing the Delete Point
button.

1. The selection of New Point Set enables the user to define a completely
new point set.

2. The Convex Point Set function creates a point set in convex position
of the user defined size. Note that the size is limited by at least 3 and
at most 100.

3. Under Random Point Set a set of random points is created. The num-
ber of points depends on the user input and has to lie between 3 and
300.

4. The Load Point Set function allows the user to load the point set from
a file that must not violate the format specified in section 5.3.3.

Independent of the chosen item, there is the possibility to edit the points. If
the point set is loaded from a file, a subsequent modification is not stored
automatically in the file. This only can be done afterwards by using the Save
Points As... function under the File menu.

After pressing the OK button, the editor disappears and the defined point
set is displayed in the two areas of the main frame.
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Defining the edge set of T1 and T2 and the vertex degree bound
Before the user has the opportunity to define the edge set of T1 and T2, a
number-input for the vertex degree bound is required. Afterwards, an editor
for (pseudo-)triangulations allows the user to flip, delete and set edges. It
contains an area, where at least the predefined point set appears. A left
mouse click on two points in this area results in either a new edge or marks
an existing edge. The latter allows the user to delete that edge via the Delete
Edge button or to flip it by pressing the Flip Edge button. A right mouse
click on an edge is the alternative way to flip an edge. There are three
possibilities to set the edges.

1. The selection of Edit → New (Pseudo-)Triangulation 1/2 allows the
user to create a new (pseudo-)triangulation. Only the convex hull edges
of the underlying point set are already set.

2. Under Edit → Edit (Pseudo-)Triangulation 1/2 the (pseudo-)triangu-
lations, which are displayed in the main frame, can be modified by the
(pseudo-)triangulations editor.

3. Under Edit → Load (Pseudo-)Triangulation 1/2 a (pseudo-)tri-
angulation can be loaded from a file. The corresponding
(pseudo-)triangulation appears in the (pseudo-)triangulation editor.
The demanded file format is described in section 5.3.3.

The edge sets of T1 and T2 can be stored by selecting the item Save
(Pseudo-)Triangulation 1 /2 in the File menu.

For the calculation of the diameter of the flip graph at least one
(pseudo-)triangulation has to be defined. This function can be found un-
der Flip Graph → Calculate Diameter of Flip Graph. As soon as the cal-
culation is completed, a dialog with the information of the diameter pops
up, which additionally gives the user the possibility to store all pairs of
(pseudo-)triangulations that have a flip distance equal to the diameter. If we
assume that there are p different (pseudo-)triangulations Ti,j, 0 ≤ j < p, for
a (pseudo-)triangulation Ti that are all elements of Tp,k or PPT P,k, respec-
tively, and have the property that fd(Ti, Ti,j) equals the diameter of the flip
graph, then the files corresponding to these (pseudo-)triangulations have the
following names: “t[i]_diameter.txt” and “t[i]_[j]_diameter.txt”.

Further, the flip graph and its corresponding (pseudo-)triangulations can
be saved optionally. The interpretation of the flip graph file is described in
section 5.3.3. This function has been developed to get an overview of the flip
graph. Loading the flip graph from a file has not been implemented.
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As soon as T1 and T2 are displayed in the predefined areas in the main
frame and the vertex degree bound of them is equal, the user has the possi-
bility to

• start the calculation of a heuristic by pressing the Start Heuristic but-
ton.

• calculate the flip distance. This function can be found under Flip Graph
→ Calculate Flip Distance.

• check if the flip distance is less or equal a number defined by the user.
Choose Flip Graph → Calculate Partial Flip Graph.

If the calculation of the heuristic does not create a circulation, the resulting
flip sequence can be traced step by step by means of pressing the Next and
Prev button. In the same way the flip sequence that corresponds to the
flip distance can be traced. Additionally, the flip graph, its corresponding
nodes and the (pseudo-)triangulations that arise due to the flip sequence can
optionally be saved.

5.3.2 Program settings

Under the Settings item following preferences can be set:

• The selection of one of four heuristics that is applied in case of pressing
the Start Heuristic button.

• If the item Log file is selected, a file named “flipdistanceheuristic.log”
is created in the program directory and reports the progress of the
program.

• In order to display the point id’s in the (pseudo-)triangulation areas in
the main frame as well as in the editors, the item Show Point Id’s has
to be selected.

• The assigned weights and the used Comparator for Heuristic 1 – 4 can
be set under Heuristics’ Settings. The default settings are depicted
in Table 1 and Table 2. The numbers refer to the enumeration in
section 5.1.1.

• The vertex degree bound for T1 and T2 can be reset if the item Set
Degree Restriction is selected. Note that this is only possible if none of
the vertices in T1 and T2 exceeds the new vertex degree bound.
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Edge crossing weight Node degree weight Comparator
Heuristic 1 1 1 1
Heuristic 2 2 1 1
Heuristic 3 2 2 2
Heuristic 4 1 3 3

Table 1: Default edge weights and Comparators of Heuristic 1-4 for triangulations.

Non-pointed w. Edge crossing w. Node degree w. Comp.
Heuristic 1 1 1 1 1
Heuristic 2 2 1 1 1
Heuristic 3 1 2 1 1
Heuristic 4 2 2 1 1

Table 2: Default edge weights and Comparators of Heuristic 1-4 for pointed pseudo-
triangulations.

• In order to switch between calculations for pseudo-triangulations and
triangulations the pseudo-triangulation mode has to be selected or de-
selected.

If the program is terminated via File → Exit, the current settings con-
cerning the log file, the display of point id’s, the pseudo-triangulation mode
and the last used path are stored in a file called “flipdistanceheuristic.ini”,
which is located in the program directory. If the application remains in the
same directory and is started again, those preferences are loaded from the
file.

5.3.3 File format

Point sets and the corresponding sets of edges creating
(pseudo-)triangulations are stored in and loaded from text files with
the following format:

Point set files The ith line contains two real numbers that are interpreted
as coordinates of the point with the label i. The numbers are separated by
a blank. The first one corresponds to the x-value of the point, whereas the
second number equals the y-value. Note that 1 ≤ i ≤ n.
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(Pseudo-)Triangulation files Each line contains two integers separated
by a blank. The integers stand for the labels of two points. Hence, each line
can be interpreted as an edge that is incident to the vertices with the label
of the given integers. The labels refer to the corresponding point set defined
before.

Flip graph files Files containing information about the flip graph can be
used to get an overview of the flip graph. The program provides only the
possibility to store flip graphs, but not to load them. Each line of a flip graph
file has the following structure:

[label of the node]: [label of neighbor 1]; . . . ; [label of neighbor j]

with the labels begin integers again. Note that they are unrelated to the
aforementioned labels of the point set. Here, we speak of labels of nodes in
the flip graph. Furthermore, we say that a node is a neighbor of another
node in the flip graph if they are connected by an edge.

Since the nodes of the flip graph correspond to (pseudo-)triangulations,
they can optionally be stored in the format of a (pseudo-)triangulation file.
These files have the name “t_n[label of the node].txt”.
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6 Conclusion and future work
In this thesis we showed that the flip distance of two zigzag triangulations
Z1, Z2 can be given as a function of n if

1. Z2 is the normal zigzag triangulation of Z1 and (n mod 4) ∈ {0, 1, 3}, or

2. Z2 is the normal zigzag triangulation of the inversion of Z1 and
(n mod 4) ∈ {1, 2, 3}. The starting vertex of the inversion depends on
n and the inner vertex degree of the counterclockwise neighbors of the
tips of Z1.

Moreover, we proved that the flip distance remains the same if we add a
maximum vertex degree bound k > 6 for Z1, Z2 and all intermediate trian-
gulations that arise during the transformation from Z1 into Z2.

Disregarding the maximum vertex degree, we established a tight lower
and upper bound on the flip distance in the case of:

1. (n mod 4) = 2 and Z2 is the normal zigzag triangulation of Z1, or

2. (n mod 4) = 0 and Z2 is the normal zigzag triangulation of the inversion
of Z1. (The starting vertex of the inversion is one of the two tips of Z1.)

In this context the question arises if these bounds can be replaced by the exact
flip distance as described at the beginning of this section. Furthermore, it
would be interesting to specify other pairs of zigzag triangulations for which
the exact flip distance or even a tight estimate of the flip distance can be
shown. What is more, it would be worth investigating the exact flip distance
or tight bounds on the flip distance of any two zigzag triangulations.

For point sets in general position we presented approaches for an input
sensitive upper bound on the flip distance in the degree bounded setting of
two triangulations. We have introduced several measures that do not only
take the number of interior intersections between the triangulations’ edges
into account but also the number of vertices that exceed the degree restriction
under different circumstances. By providing counterexamples we were able to
show that the discussed measures are not valid input sensitive upper bounds
for any two degree bounded triangulations of a point set in general position.

Besides those theoretical considerations, a computer program was devel-
oped. On the one hand, it approximates the flip distance of two degree
bounded triangulations and pointed pseudo-triangulations by several heuris-
tics. (Note that the resulting flip sequences do not exceed the vertex degree
bound.) On the other hand, the implemented construction of the flip graph
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and related calculations are described. For future work it would be interest-
ing to investigate the results of the heuristics shown in this thesis in order
to be able to establish structural characteristics of point sets for which the
heuristics give exact bounds.
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