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Abstract

Abstract

The application of near-infrared spectroscopy in the pharmaceutical industry is
an active field of research that has brought forward many interesting results in
the last years.

The distinguishing criteria of this thesis is the application of multipoint set-ups.
This is, not only a single probe is used in a pharmaceutical unit operation to
determine the process state and the product quality, but several probes at different
positions are harnessed, to enhance the gained knowledge. The availability of
several positions not only brings repetition of the same information, but enables
the mapping of concentration gradients, sensor functionality self-checks, tracing
of material and much more.

Hence, for the correct use of several probes, their comparability has to be ensured,
which is the starting point of this thesis. Different realizations of multiprobe-
able set-ups, namely fiber multiplexing, chemical imaging, and fiber-to-imaging
adapters were used.

For blending processes, traditionally sampling is a big issue. Hence, the new
options available when applying a multiprobe set-up for sampling have been
explored. This has direct consequences on how a blending state can be assessed.

As a second process, fluid-bed coating was investigated. The correct positioning
of a sensor in a fluid bed is a tender task, as a compromise has to be found
between a suitable position and the stability of the air flow pattern in the fluid
bed. Window fouling turned out to be a critical issue, and a method to circumvent
biased measurements by fouling was introduced.
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Kurzbeschreibung

Die Anwendung von Nahinfrarot-Spektroskopie in der pharmazeutischen In-
dustrie ist ein aktiver Forschungsbereich und hat in den letzten Jahren viele
Ergebnisse gezeitigt.

Das herausstechende Merkmal der vorliegenden Dissertation ist die Anwendung
von Multisondensystemen. Dies bedeutet, dass nicht nur eine Sonde in einer
Produktionseinheit verwendet wurde um den Prozess und die Produktqualität zu
bewerten, sondern mehrere Sonden an mehreren Positionen eingesetzt wurden
um das Wissen über den Prozess zu vervielfältigen. Der Einsatz mehrerer Sonden
bringt nicht nur eine Wiederholung der vorhandenen Information, sondern
ermöglicht unter anderem die Erkennung des Verlaufs von Konzentrationen, die
gegenseitige Kontrolle von Sensoren, die Verfolgung von Materialflüssen, und
vieles mehr.

Für den korrekten Einsatz von mehreren Sonden ist es notwendig, die Vergleich-
barkeit der Messungen zu sichern; dies ist der Startpunkt dieser Dissertation.
Verschiedene Möglichkeiten der Realisierung von Mehrsondensystemen wurden
verwendet, namentlich Faserschalter, bildgebende Spektroskopie, und Projektion
von mehreren Sonden auf ein bildgebendes System.

Für Mischprozesse ist die korrekte Probenahme seit jeher ein wichtiges The-
ma. Durch die Möglichkeit von Multisondensystem eröffnen sich bisher nicht
durchführbare Wege zur Bestimmung der Mischhomogenität, die hier dargestellt
und diskutiert werden.

Als weiterer Prozess wurde die Beschichtung von Partikeln in einer Wirbelschicht
betrachtet. Die korrekte Positionierung von Sonden wird hier durch die Emp-
findlichkeit der Strömungsverhältnisse erschwert. Es hat sich herausgestellt, dass
die Belegung der Nahinfrarotsonden kritisch im betrachteten Prozess ist; Daher
wurde eine Methode dies zu korrigieren entwickelt, die ebenfalls hier vorgestellt
werden soll.
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Motivation

Motivation

Talking about light, most people think of the optical region naturally. This is
a limitation of our eye. Light in the infrared range can be perceived with our
skin by the sensation of heat, but this does not allow us the reconstruction of
an image of the surroundings. Quite interestingly, while several animals have a
much broader range of perception and can detect ultraviolet light, the detection
of near-infrared light is rather rare, as as a prerequisite, the detecting element
must be cooler than the surroundings.

The detection of light, to asses the surroundings, is useful over a large range of
scales (from sub-millimeter up to several kilometers). Indeed the ability to “see”,
by cameras and optical sensors, is harnessed in a variety of applications. The
pharmaceutical industry which is in need to guarantee high quality standards, is
now adopting near-infrared measurement systems for that purpose.

Preferring near-infrared over the more familiar optical range is dictated by a
simple fact: Most pharmaceutical powders are white. This is caused by their particle
size leading to intense scattering. Hence the perceived optical image of a heap of
powder is isotropic at all wavelengths, and appears white. At larger wavelengths,
as in the near infrared region, absorption becomes more dominant over scattering,
hence powdered substances are “colored” again, allowing to distinguish them.
An example of this effect is shown in Figure 0.1. In the mid-infrared region, this
effect is even more enhanced. Unfortunately, absorbance is then so excessive
that sample preparation is necessary, and the sample to be analyzed cannot be
penetrated as deep as it would seem necessary.

Thus, near-infrared spectroscopy is the tool of choice, to monitor remotely, but
efficiently, a plethora of different processes and to ensure product quality.

1



Outline

Figure 0.1: Although for the naked eye, most powders look white and similar (as shown left),
they can be distinguished in the near-infrared region (as shown on the right; the color
encodes the score of the first principle component of the obtained NIR spectra).

Outline

Near Infrared (NIR) spectroscopy is a versatile tool for assessing process states
and quality. In the first chapter (Chapter 1) the reasons for the favorite role of
NIR are explained, and the state of the art regarding NIR applications in the
pharmaceutical industry is given. Hyperspectral imaging will be explained, and
the reasons, why sometimes it is beneficial to use a probe setup instead of an
imaging one (or vice versa).

In the second chapter (Chapter 2) the physical background of absorption spec-
troscopy will be explained shortly. Furthermore, the case of diffuse reflectance
spectroscopy is described and discussed. Also, a mathematical description of
the chemometric methods used, especially principal component analysis (PCA),
projection to latent space (PLS), and alternatives are explained. Types of spectral
pretreatments and their effects are introduced.

Complementary, the pharmaceutically relevant process step of blending is dis-
cussed. The linkage of multipoint/multiprobe setups, theory of sampling and
depth of scrutiny of the given applications is established.

After providing the necessary scientific context, the instrumentation which was
used is presented. The experimental devices are described in Chapter 3, with a

2



Published Work

special focus on the spectrometers, and the different set-ups enabling spectro-
scopic monitoring at several distinct positions in a process at the same time.

The next chapter (Chapter 4) deals with the concept of measuring at several
positions, and the avoidance of problems with calibration transfer.

Subsequently (Chapter 5), the results of the experiments (i.e. blending of pow-
der and coating of substrate particles), are presented and discussed. The focus
is herein on the consequences of the multipoint set-up. The value adding of
monitoring several positions with different blending dynamics, the possibilities
of cross checks by multiple sensors, and so on, is discussed. Furthermore, the
often occurring problem of window fouling is discussed and a possible solution
presented.

The final chapter (Chapter 6) is highlighting the application of multipoint set-
ups, and the more stringent interpretations enabled by said set-ups, compared
to single probes. It is shown that a multipoint setup is beneficial in terms of
process understanding, while the needed effort is just slightly larger, although
data handling of such set-ups can be fatiguing.

An appendix discussing practical aspects in data handling is enclosed (not in all
printed versions). It contains excerpts of created source code files to illustrate
data treatment.
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provided by the RCPE under the scientific lead of J. Khinast.

4



1

1 Introduction

1.1 Near-Infrared Spectroscopy for Process Monitoring

Near infrared spectroscopy (NIRS) has a wide field of applications, and has
gained a lot of attention in the recent years. Hence, an overview of the state-of-art,
with focus on the pharmaceutical industry, will be given first.

1.1.1 Process Analytical Technology

In the past, good manufacturing procedures (GMP) and numerous sequential
quality checks were introduced to guarantee the safety of products. However,
new monitoring and process-control methods are increasingly required by the
U.S. Food and Drug Administration (FDA) via the Process Analytical Technology
(PAT) initiative [1] and the International Conference on Harmonization of Techni-
cal Requirements for Registration of Pharmaceuticals for Human Use (ICH) via
the Quality-by-Design (QbD) guidelines [2–4].

The term Process Analytical Technology (PAT) was coined to describe “a system
for designing, analyzing, and controlling manufacturing through timely measurements
(i.e., during process) of critical quality and performance attributes of raw and in-process
materials and processes, with the goal of ensuring final prodcut quality” [1]. The aim
of these initiatives is to gain deeper insight in pharmaceutical manufacturing
processes, replacing empirical approaches by knowledge-based procedures. A
detailed understanding of a process, such as powder blending, and its impact on
the product quality allows companies to “build in quality” instead of “testing it
into the final product”.

Simply put, understanding the process allows for timely correction measures,
hence enabling quality even with varying raw products. Even more, fault pro-
duction, leading to material and money waste, should not happen if a process is
fully understood.

5



1 Introduction

As such near-infrared spectroscopy is one of the most used analytical tools
for PAT. Due to a variety of applications, it has gained a solid foothold in the
industry.

1.2 Near Infrared Spectroscopy as PAT-Tool

In the last years, near-infrared (NIR) spectroscopy has become a routinely used
tool for process analysis, especially in the pharmaceutical industry. A large
amount of literature is available and comprehensive reviews give a good overview
on the topic and state of the art [5–15]. Currently, even the majority of PAT
applications is based on the utilization of NIR spectroscopy [16].

The following discussions are restricted to spectroscopy on solid materials, pow-
ders, granular materials and similar materials and completely neglect the huge
field of NIR spectroscopy for, and inside, liquids and gases.

Although spectroscopy on powders and solids, with the aim of process monitor-
ing, started already some decades ago [17], NIR spectroscopy flourished with the
appearance of computer power, necessary to perform Fourier transformations,
and allow statistical assessment, of a large number of spectra [18].

Because of the amount of variables involved, the high correlation between spec-
tral variables, and the often subtle changes of the spectra, statistics need to be
used to evaluate spectra and create models for prediction and interpretation
[18]. However, experience and mathematical understanding is needed to avoid
common pitfalls [13].

Often enough it is possible to create a good correlation between acquired spectra
and the property to be investigated. However, only careful consideration and
background knowledge can assure that indeed the correct correlation is modeled.
Otherwise, correlations exist with a third (unknown) variable or just spurious
correlations are modeled which will lead to failure in prediction over the long
term. The proper testing of independent samples can, but must not, expose such
issues. Having physical understanding of the effects involved, during sample
preparation and presentation, as well as in the actual creation of the spectra, is a
key element for building reliable, robust and precise models.

6
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1.2 Near Infrared Spectroscopy as PAT-Tool

1.2.1 Applications of NIR Spectroscopy in the Pharmaceutical
Industries

Due to the high sensitivity of NIR to water, the determination of the progress
in drying operations was one of the first applications in the pharmaceutical
environment, and is still important today [19, 20].

A second large area, where NIR spectroscopy is applied, is the determination
of concentration of pharmaceutically active ingredients. This is especially useful
for the characterization of mixtures, and assessing the homogeneity of blends
[21–23]. For the analysis of blended granular samples the representativeness is a
critical issue, and work was invested connecting the “theory of sampling” and
NIR-measurements [24, 25].

As the penetration depth of NIR is very small, just small volumes are sampled
during a single measurement. For analytical approaches, integrating spheres can
be used, to gain the benefit of a diffusely illuminated and detected sample [26, 27].
For in-process measurements, this is not applicable straightforward; nonetheless
nowadays a variety of probes is available, offering different illumination and
detection geometries.

During transportation processes via pneumatic pipes or conveyer belts, and
during storage, segregation of powders might occur. NIR can detect segregation
by the change in spectra, on a pure qualitative basis, and without a provided
qualification model. Hence NIR was used to study powder streams inside the
dosing units of tablet presses [28].

The next possibility is right after compaction, not on powder anymore, but
on solid tablets [29]. The determination of API content in tablets, although a
traditional field for laboratory analysis, can be achieved by NIR. Even more,
it can be done without destroying any tablets, and not just on drawn samples
(off-line), but on all tablets leaving the press (in-line). Depending on the question
one wants to ask, the spatial resolution of the obtained spectra can be chosen,
either to determine the content uniformity of whole tablets, or to investigate the
API distribution across a tablet core [29–33]. Subsequently, in the same manner,
the coating of tablets can be analyzed [34, 35]. Even the dissolution behavior,
affected by API, density, etc. can be estimated by NIR which can take the role of
a soft sensor in this case [36, 37].

The mentioned examples above are just a few of all the ongoing work. With the
paradigm shift of the pharmaceutical industry to new, preferably continuous
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processes, and the strife for real-time-release, also the application of NIR for these
processes is coevolving [38, 39].

1.2.2 Regulatory Requirements for NIR in the Pharmaceutical
Environment

There are two important documents dealing with the qualification of NIR-
spectrometers. One is chapter <1119> in the U.S. Pharmacopeia 29, the other one
is the European equivalent, chapter 2.2.40 in the European Pharmacopeia 5.0.

However, the European Medical Agency (EMA) is concurrently drafting a new
“Guideline on the use of Near Infrared Spectroscopy (NIRS) by the pharmaceutical
industry and the data requirements for new submissions and variations”.

1.2.3 Trends in NIR

It is impossible to give a detailed overview of all the recent work and trends
to come, regarding the development and future of near infrared spectroscopy.
However, some examples shall be mentioned that might become important, or
even predominant in the next years.

A first issue is the availability of robust, small and handheld NIR spectrometers.
This actually is a corollary of in-situ field studies in the agricultural area, e.g.
the determination of fruit maturity, while those are still growing. However, the
ubiquitous availability of mobile and handheld NIR instruments, will lead to
their prevalence in the pharmaceutical environment, and produce large spectral
libraries, e.g. enabling the complete scanning of raw products and more.

Recent efforts of distinguishing between scattering and absorption of near-
infrared spectra must be mentioned. This offers the huge advantage that physical
and chemical information of measured samples can be distinguished, which is
just approximately done until now by various spectral pretreatments. Different
possibilities to do this exist. Here the usage of different simultaneous illumination
and detection set-ups have to be mentioned [40, 41], but also photon time of flight
resolved spectroscopy [42].

Near infrared spectroscopy is already dominating process analytical technology.
New advancements, ranging from technical aspects as new probe designs, up to
new possibilities of spectral interpretation via diverse mathematical methods, will
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also henceforth strengthen the utilization of near-infrared spectroscopy. Currently
the jump from idealistic lab-scale processes to more harsh environments of
manufacturing plants is going on. Herein, near-infrared spectroscopy is one of
many applied sensors, and the combination of NIR with traditional sensor data
will show for sure some synergies.

For many processes simply taking a sample is not enough, but regular sampling
at different places and at different times is necessary to develop process under-
standing and to enable control loops. Again spectroscopy offers a swift method
for supervision of processes and in combination with multivariate data analysis
methods the power to make decisions within seconds.

1.3 The Application of Hyperspectral Imaging

Chemical imaging (also termed hyperspectral imaging), i.e. spatially resolved
spectral images (like displayed in Figure 1.1), has to be mentioned in this context
[43]. This computer-power demanding field has grown in the recent years, and
a variety of applications has emerged. The ability to localize chemical compo-
nents, or show distributions of chemical species has initiated interest in the
pharmaceutical, agricultural and food processing industry [44, 45].

Hyperspectral imaging (HSI) is a development, combining the advantages of
machine vision and spectroscopy. Whereas spectroscopy exhibits chemical infor-
mation, composition and pollution of materials; machine vision gives information
about spatial distribution, texture, and shape [45–47].

HSI in the NIR region is already used for process and quality monitoring in the
pharmaceutical industry [43], for example for determining API distributions in
tablets [35], as well as in the food processing industry [47], e. g. for determining
meat quality [45], classifying fruits [48], and further in the waste management
industry for sorting plastics [49].

Examples of this method in the pharmaceutical industry are the supervision of the
goodness of powder blends [50, 51], the distribution of the active pharmaceutical
ingredient (API) in tablets [52] and identity control. As a special ability, the
availability of a spectrum for every spatial pixel allows dynamically changing the
sample size by summing up several pixels [50, 51, 53, 54].
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However, in the pharmaceutical industry problems arise, because a large enough
looking window or the open presentation of samples is often not possible due to
safety and hygiene considerations.

1.4 The Application of Multipoint Near-Infrared
Spectroscopy

An emerging field is the utilization of multiprobe systems. On the one hand,
this is very cost efficient, on the other hand, it allows the investigation of several
positions inside a process, or consecutive processes, without having to deal with
the problematic calibration transfer [55–57].

For simultaneous sampling with near-infrared spectroscopy (NIRS) different
strategies are possible:

• The contemporaneous operation of several spectrometers. This has the dis-
advantage of high costs and the problematic comparison between different
spectrometers.

• The use of a traditional spectrometer and an optical switch to access several
probes consecutively. This has the disadvantage of signal intensity loss
due to the switch and idle time during the switch operation. A successful
instrument with this set-up is the Matrix-F by Bruker. A similar setup was
used for several experiments in this work, and will be described in more
detail in section 5.4.2.

• Sampling at several, although adjacent, positions, is done by the already
mentioned imaging systems. A huge advantage of such systems is the high
throughput.

It is therefore beneficial to combine push-broom based systems with traditional
spectroscopic probing. This offers the following advantages:

• Synchronous measurements at multiple positions;
• Fast spectral acquisition;
• Versatile probes to fit the required process that can be docked into the

system due to standardized SMA 905 ports;
• Continuous self surveillance or simultaneous measured standards;

Such a combined device was used and will be introduced in section 3.1 in more
detail. Comparable systems to the one presented in here, are:

10



1

1.4 The Application of Multipoint Near-Infrared Spectroscopy

Figure 1.1: An example for chemical imaging. The obtained data forms a hypercube with
the axis of space, time, wavelength and intensity. Hence several different possibilities
to visualize the data are possible, as depicted here. The subject investigated was a
cellulose sheet, with a heap of acetylic salicylic acid powder on it. The upper-left image
shows the intensity for several wavelengths (labeled wavenumber, although just the
pixel number is shown), at the intersection of the black lines at the bottom image (hence
at space pixel 91, and timestep 505), etc.
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• Bruker offers for their CCD-based camera SureSpectrum adapters to connect
optical fibers with SMA-ports to their system. They offer attachments with
1 up to 19 fibers for the VIS and NIR spectral region.

• Specim offers for their NIR-Camera and SWIR-Camera optical attachments,
to focus 4 up to 110 fibers on their camera chip. The system was extensively
evaluated by the VTT Technical Research Centre of Finland [58].

Without regarding their kind of technical realization some applications of multi-
probe systems shall be mentioned:

• Monitoring of a powder blending process [59].
• Monitoring of a fluidized bed process; A multiplexer allows the simultane-

ous measurement of on-line and off-line samples [60].
• Identity control of tablets. Tablets were mapped on a spectrometer via an

optical fiber. The fiber itself was aimed at interesting positions by use of
mirror optics. [30].

• The supervision of a dissolution test with six optical probes, coupled via
a multiplexer with a spectrometer. The probes differed in their optical
pathlength, therefore it was possible to monitor a larger concentration
range [61].

• The supervision of several bio-reactors at the same time, again with an
optical multiplexer [57].

1.5 Controlled Blending Processes via NIR

Blending processes are key steps in pharmaceutical manufacturing as guarantee-
ing blend uniformity is crucial to ensure low dosage variability and high product
quality.

Clearly, the content of the active pharmaceutical ingredients (API) in the final
solid dosage form is particularly important. Tablets out of specifications lead to
expensive rework or even recalls, and even more important, dosage forms not
compliant with the therapeutic window may cause harm to patients. Another
crucial feature affected by powder homogeneity is downstream processability (i.e.,
compaction of tablets may lead to problems, if certain components are distributed
unevenly, e.g., during lubrication with magnesium stearate) [62, 63].

Thus, methods to monitor the various processing steps, especially focusing on
blending uniformity, agglomeration and segregation, are critical for maintaining
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high product quality and eliminating the risk of producing out-of-specification
products.

Despite numerous studies, the outcome of a blending process is hard to predict,
since it involves the highly complex interactions of many billions of individual
particles, each one with its own size, shape, surface characteristics and other
properties. In short, blending often depends on a variety of parameters [23, 64–
67], including

• operating conditions (fill level, loading order, blending time, etc.)
• material properties (particle size and shape, cohesivity, tendencies for seg-

regation or agglomeration, etc.)
• environmental conditions (humidity, temperature, etc.)
• equipment (blender type, shear rate, etc.)

Moreover, the dynamics of blending processes have been studied theoretically
[68, 69] and experimentally. This was done using model substances [70] and
pharmaceutically relevant powders [23]. However, using a single probe at a fixed
position usually does not provide a reliable assessment of the blending process
[21, 71]. In order to fully control and understand the process, temporally and
spatially resolved monitoring of blending processes is required.

Traditionally, manual thief sampling is performed to test blend uniformity, with
samples taken from different positions in the blender, as prescribed by standard
operational procedures. However, sampling may be a source of disturbance for the
powder bed, and may bias the results. What is more, to satisfy the requirements
of statistics a lot of samples need to be taken [72, 73].

In contrast, NIR probes make non-destructive and continuous monitoring possi-
ble. This is a very active field of research [21, 74, 75].

Many pharmaceutical processes are relatively easily accessible using NIR in
combination with fiber optics [76–78]. They can be monitored without changing
the process setup and barely require manual effort [5, 8].

For example, the monitoring of a components’ concentration on a quantitative
basis during blending has been successfully performed [79–81]. Overcoming the
problems associated with differences between calibration and measurement has
been discussed in the literature [71]. Various aspects of the monitoring of powder
blending processes have been addressed in the literature, e.g., problems arising
specifically when dealing with powders [82], the determination of a blending
end-point [22] and in-line monitoring of a blending process [80].
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Furthermore, blending performance parameters, such as homogeneity, depend
on the sample size [73]. Some publications describe the use of multiple positions
for assessing the blending process and the different strategies to achieve multiple
sampling positions. For example, the axis and the side of a bin blender have
been investigated using two spectrometers [83]. Different blending kinetics in
those two positions have been reported; therefore, NIR monitoring in more than
one position has strongly been recommended. El-Hagrasy et al. introduced a
V-blender with a set of windows [21]. The blending process was halted, and
a NIR fiber-optical probe was positioned against each window for multipoint
monitoring.

In the optimized case, to compare different positions, the same probe and spec-
trometer should be used in different positions without stopping the blending
process, as will be presented in this work. Interruptions may change the observed
effects and are not feasible in an industrial environment.

Chemical imaging is another method of obtaining more than one sample position.
It has been described in the literature [21] and adapted to analyze the distribution
of blend components [51, 84].
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2 Theoretical Background

2.1 Near-Infrared Light and Matter Interaction

2.1.1 Properties of Light

Electromagnetic radiation can be described, either as waves, or as particles. Which
description is chosen depends on the effect one wants to investigate. Basically,
the wave-nature of light is essential to describe interference, whereas light-matter
interactions are more conveniently described with the particle model.

Hence a photon can be described by the equation series

E = h̄ω = h f =
hc
λ

= h̄c
2π

λ
= h̄ck = pc, (2.1)

wherein E describes the energy, and p the momentum contained by a photon.
The wavelength λ, and the frequency f , respectively the angular frequency ω,
are interrelated by the constant speed of light c = 299792458 m/s. Finally, k = 2π

λ
is the so called wavevector.

Hence, a spectrum spanning a certain range of wavelengths, is at the same time a
description for a certain energy range. Wavelengths and wavenumbers ν, which
are the inverse wavelength, given in cm−1, are equally often used to describe
spectra in the near-infrared region. Figure 2.1 gives a comparison of both and
the corresponding energy range. The near infrared region spans the wavelengths
770-2500 nm.

2.1.2 Interaction of Light and Matter

When light is passing through a media, its intensity will be attenuated. This is
due to reflection, diffraction, scattering, and absorption. The overall attenuation
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Figure 2.1: Comparison of energy, wavelength and wavenumber for the near-infrared range. For
shorter wavelengths the visible region (VIS) borders, whereas for longer wavelengths
the mid-infrared (MIR) region commences.

is called extinction [85], and is described by

κ = α + σ (2.2)

with κ denoting the extinction, α the absorption and σ the scattering part. It
is also possible to describe scattering and absorption by the probability that a
photon scatters µs or absorbs µa inside a media, i.e. the inverse of the free path
length [9].

The basis of near-infrared spectroscopy is the analysis of light which has inter-
acted with a sample, thus both parts are important here.

2.1.3 Absorption

A photon can interact with matter; it can be annihilated and the energy is
transformed into an excited state (e.g. electron excitation, vibrational excitation
or rotational excitation).

Whereas visible light is in the range of electron excitations, near-infrared mostly
covers the range of molecular vibrations [11]. It is therefore helpful to recapitulate
the vibrational modes of molecules.

A simple approximation of a (diatomic) molecule is the quantum-mechanical
harmonic oscillator. The energy levels in the quantum-mechanically described
oscillator are quantified, and can be described by

Ev = h f
(

v +
1
2

)
(2.3)

16



2

2.1 Near-Infrared Light and Matter Interaction

with h being Planck’s constant, v the vibrational quantum number and f the vi-
brational frequency. However, real molecules do not exhibit a quadratic potential,
but a more complex behavior. A common approximation is the Morse-potential
which reflects the following attributes:

• At the dissociation energy, the molecule is destroyed. Hence, when more
energy is put into the molecule it dissolves.

• Energy levels are closer to each other, when approaching the dissociation
energy.

The energy levels can then be described with

Ev = h fv

((
v +

1
2

)
+ χ

(
v +

1
2

)2
)

(2.4)

where fv is the fundamental frequency and v is the vibrational quantum number
(0,1,2,. . . ); χ describes the anharmonicity.

A transition is only IR-active, if the dipole moment can be modulated by the
vibration, hence

∂µ

∂q
6= 0, (2.5)

with µ being the dipole moment and q the vibrational coordinate.

For the strictly harmonic oscillator only transitions with ∆v± 1 would be allowed,
interacting with a photon of the energy

∆E = Ev+1 − Ev = h f . (2.6)

However for the anharmonic oscillator this rule is relaxed, and overtones (|∆v| > 1)
are allowed. Due to anharmonicity however, the frequency of an overtone is not a
plain multiple of the fundamental frequency, but less. The observed frequencies
for a transition from v = i to v = j; n = j− i can be approximated by

fi,j =
fin− fiχn(n− 1)

1− 2χ
. (2.7)

For polyatomic molecules, transitions involving two vibrational modes (∆vm = 1,
∆vn = 1, . . .), so called combination bands, are possible [11].

Overtones and combinations as found in the NIR region are not as probable
as fundamental transitions, and hence absorption is less intense than in the
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mid-infrared region. Furthermore, they have a broader peak profile than the
corresponding fundamental peaks.

The most probable, and hence intense, overtones are found in the most extreme
anharmonic molecules. Hence functional groups including hydrogen, as e.g.
C–H, N–H, and O–H are the most intense features found in NIR-spectra [86]. In
combination with these, combination bands with C–C and C–O can be found.

Summed up, functional groups are prominent in near-infrared spectra and can
lead to fingerprint spectra, enabling to perform a chemical classification of the
samples analyzed, although the direct assigning of peaks and bonds is often very
complicated in the NIR-region, as peaks are broad and overlapping [87].

2.1.4 Scattering

A photon can interact with matter, in a way that its direction changes, but the
contained energy is still conserved. For describing scattering the wave picture is
more suitable than the particle picture. A simple effect of scattering on powder is
illustrated in Figure 2.2.

Figure 2.2: Different amounts of acetylic salicylic acid crystals. Isolated crystals, as on the left
hand side, are mostly transparent, and show a glossy behavior. In contrast, a legion of
crystals, as on the right hand side, has a lot of scattering possibilities, and hence looks
uniform and white in all directions.

Light Scattering on A Single Particle

The scattering on single particles is described by the Mie-equations which are
basically an exact solution of the Maxwell equations for the case of a sphere with
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a certain diffraction index. Although it holds for all size of spheres, it is just valid
for isolated spheres [85].

Some of the consequences of the Mie-theory are [88]

• For small particles (compared to the wavelength of light), the forward
scattered part is equal to the backscattered part which is described by
Rayleigh scattering.

• For large particles, the forward scattered amount is much larger.

Hence, the relative sizes of wavelength λ and encountered sphere are important.
In the Mie regime the wavelength dependence of scattering, described by the
scattering coefficient µs, can be assumed to be of the form

µs ∝ aλ−b (2.8)

with a and b being constants. When being scattered, the probability for scattering
directions, described by the deflection angle θ (and isotropic for the azimuthal
angle ψ), are often approximated by the Henyey-Greenstein phase function

p(cos(θ)) =
1− g2

2(1 + g2 − 2g cos(θ))
3
2

(2.9)

with the anisotropy factor g. A value of g = 0 describes isotropic scattering,
whereas g = 1 means totally forward scattering and g = −1 total backwards
scattering.

For larger particles, the light entering the sphere is absorbed. Further, for a bulk
of particles observed with NIR, scattering happens multiple times. This leads
again to an isotropic behavior in scattering for the whole sample [9] as shown in
Figure 2.2. Hence a theory describing densely packed particles is of advantage.

2.1.5 Description of Diffuse Reflection

Diffuse reflection appears if light penetrates into a powdered sample and reemerges
from the surface [17]. Effects of diffraction, refraction, absorption, elastic and
inelastic scattering are taking part in this process. Hence interfaces in a sample
play an important role. This is put to the extreme, for powder samples which
consists of small fragments, often with irregular surface, in contact with each
other, but also separated by (air-filled) voids.
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The fractions of transmitted light T = IT
I0

, reflected light R = IR
I0

and absorbed
light A has to sum up again

A(d) + T(d) + R(d) = 1. (2.10)

The individual fractions however, are dependent on the sample thickness d.

A well known equation describing the diffuse reflection is the Kubelka-Munk
function

F =
(1− R∞)2

2R∞
=

K
S

∝
α

σ
(2.11)

which relates the measured reflected light for an infinitely thick sample R∞, to
the ratio of scattering and absorption. The obtained absorption coefficient K and
scattering coefficient S however are “apparent” and only proportional to the
fraction α

σ describing scattering and absorption on the particle level. Moreover, as
K is proportional to the volume, but S proportional to the surface, the approximate
relationship F ∝ c is often used for the determination of concentration levels c.

In practice the condition of an “infinitely thick” sample can already be achieved
with a powder layer of several millimeter thickness, where practically no transmis-
sion occurs anymore. The second condition is the complete diffuse illumination
and detection of light which can be achieved with Ulbricht spheres [9, 41, 89].

2.1.6 Modes of Measurements

A sample is directly illuminated if the incoming light is coming from just one
defined direction. There are now several possibilities how light that has interacted
(i.e. scattered at) with the sample, can be collected again [9].

• Transmission: The light is collected on the opposite side of the sample.
• Reflection: The light is collected on the same side than the light source is.

– Specular reflection: The angle of incidence is the angle of detection.
– Diffuse reflection: At all other angles, light is called diffusely reflected.

For samples not glossy, the diffuse reflection is of higher intensity than the specu-
lar reflection. Hence spectroscopy on these samples is called “Diffuse Reflection
Spectroscopy” [9]. Examples of photon behavior, in a scattering medium, are seen
in Figures1

2.3 and 2.4.
1These images were created during the university course “Biooptics” at the Technical University

Graz.
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Figure 2.3: Monte-Carlo Simulation for photons in a media with g = 0.7, µa = 0.1 cm−1, µs =
0.5 cm−1. The positions of absorption are marked with a red x. Although the entry
point and direction of the ray are always the same, due to scattering, photon paths are
divergent.

For powders, especially reflection at the interfaces between particles and air lead
to the isotropic distribution of light. This causes the perception of powders as
white, the same effect can be observed with snow. Only very strong absorption
can overcome this effect in the visible range, leading to absorption already at
the surface, and hence suppressing other effects. Then powders can be colored,
as is observed for some metal powders, coal powders, etc. In the near-infrared
region, scattering effects are much smaller, and hence absorption can be used for
analytical purposes. Nonetheless, the mentioned effects lead to a background
intensity across all wavelengths [90, 91].

2.2 Near-Infrared-Spectroscopy

2.2.1 Spectrometer Instrumentation

Naturally, for the detection of NIR spectra, one needs a light source in the
respective wavelength region (usually a tungsten-lamp) and a detector (usually a
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Figure 2.4: Monte-Carlo Simulation for photons in a media with g = 0.7, µa = 0.1 cm−1, µs =
0.5 cm−1. Just photons which reach the detector (green) are shown. Evidently, the shape
of the sampled volume is not described easily.

semiconductor device). The most crucial part, however, is to separate different
wavelengths. Hence, two principle set-ups can be imagined. Either a dispersive
element is put into the beam path, and detection already happens at different
wavelengths, or the beam is sent through an interferometer, and the signal for
different wavelengths is obtained by Fourier-transformation.

Fourier-Transformation Based Spectrometers

The beam is sent through an interferometer device, and the interfered signal is
collected at a detector. By changing the pathlength of different beam arms, the
interference pattern is changed. Hence, by Fourier-transformation, it is possible
to obtain the intensity for every wavelength separately.

The advantage of Fourier based spectrometers is the very good signal-to-noise
ratio, and high wavelength resolution. However, as moving mechanical elements
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are involved, those spectrometers are rather slow, and sensitive to harsh condi-
tions (i.e. vibrations in the surroundings). As such, FT-spectrometers are usually
used in laboratories, although certain types with a robust interferometer are
suited for plant environments [92].

Spectrometers with Dispersive Elements

In such devices, dispersive elements are used to define at which wavelength is
measured. Such dispersive elements can be prisms and gratings, or a combination
of both, as well as interference based devices again, such as acoustical-optical
tunable filters.

The advantage of such devices is their robustness against environmental dis-
turbances, and their high-speed which makes them suitable for a production
environment. However, they do not reach the same wavelength resolution and
signal-to-noise ratio, as their FT-counterparts.

Imaging Methods

Methods for gaining spectral images are divided into three different classes,
according to the number of dimensions monitored at a time step [45].

• Whisker-Broom systems are working like traditional spectrometers. They
create an image by rastering an area. They produce high quality spectra at
the cost of low speed.

• Push-Broom systems project a spatial line through a dispersing element on a
detecting chip. Hence, on the chip one dimension is used for the spatial,
the other for the wavelength separation. Such systems can be very fast, as
no moving mechanical element is involved. Images can be created, when a
sample is moving perpendicular to the detection line.

• Staring-Imager systems indeed map a 2-dimensional area, however only at
one wavelength at a time, e.g. with the use of a filter wheel. Therefore, those
systems can be extremely fast, but the number of different wavelengths is
limited.

A push broom system is available from EVK and applied for the quality control
of paper [93], blueberries, potatoes and for waste management [49]. It was used
in this work for pharmaceutical purposes, as will be described in section 5.3.
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2.2.2 Near-Infrared Probes

Concerning the measurement of granular material, it has to be considered that

• NIR radiation has a very low penetration depth into powder. Hence to
sample a representative amount, a rather large area has to be illuminated
and detected.

• Measurements of powder is based on diffuse reflection. Hence, the occur-
rence of specular reflections should be minimized. Possibilities are the use
of optical diffusers or polarization filters, an arbitrary angle between illu-
mination and detection, and preferably several illumination and detection
spots.

• When measuring cohesive powders, it is very likely that window fouling
occurs. To avoid this the probe can be positioned remotely to the samples,
however this limits the detected volume to the surface of a passing material
stream. If the probe should be immersed into the powder bed, it can either
be cleaned by the good itself, if abrasive enough, or a cleaning mechanism,
e.g. a rotary valve, should be installed.

An example for a probe with several illumination fibers, the Hellma NIR dif-
fuse reflectance probe (Hellma Analytics, Müllheim, Germany), is shown in
Figure 2.5.

Figure 2.5: Picture of the probe head of the Hellma NIR diffuse reflectance probe. The detection
fiber in the center is surrounded by tilted illumination fibers.
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2.2.3 Quantitative Spectral Interpretation

Since the light source, and all optical elements in the beam path have their own
characteristics, a reference spectrum is needed to cancel out those influences
always.

For transmission mode, the reference spectra are usually recorded without any
sample in the beam path, or with an empty cuvette, etc. In diffuse reflection
mode, a highly reflective standard material is used. The material should be
diffuse reflective, and have the same reflectivity over the concerned wavelength
region. Most commonly used is Spectralon® (Labsphere, North Sutton, United
States), which is a derivative of Teflon. However, this exhibits the problem that
the geometry (especially the distance of the reference material to the probe) has a
strong influence on the spectra. Therefore, when the geometry is changed, spectra
are usually not directly comparable on an absolute scale.

Besides the identification of peaks which, if possible, can give information about
the chemical composition of a sample, quantification of materials is of interest.
This is based on the Beer-Lambert law

A = − log
(

I
I0

)
= ∑

i
ε icid (2.12)

hence the Absorbance A is the sum of the absorbance for every material i,
which can be calculated as the product of the specific absorption ε i times the
concentration ci and the sample thickness d. At the same time this is the negative
decade logarithm of the fraction of the gained intensity I to the reference intensity
I0. Furthermore this is true for every wavelength independently, but ε i(λ) is
wavelength dependent [9].

However, the Beer-Lambert law is strictly true for transmittance and total re-
flectance spectra only. Also, scattering is neglected. Therefore, for diffuse re-
flectance measurements (which are based on scattering, otherwise no light would
be detected) the Beer-Lambert law is actually not true. However, from a practical
point of view, the proportionality is often still retained over small concentration
changes, and hence the law is widely used, even for the interpretation of diffuse
scattering spectra [9].

Nonetheless, different effects have to be included in the spectral interpretation,
e.g. non-linearity of spectral absorbance, matrix effects, changing penetration
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depths, and so on. Prominent are difficult scattering characteristics, and hence
different spectra, due to changing physical sample attributes, like particle size and
shape [94]. Hence, multivariate data analysis can be a useful tool for interpreting
spectra, especially as one has to deal with a large number of different wavelengths,
and a large number of spectra, at the same time.

2.3 Multivariate Data Analysis for The Interpretation of
Spectra

When dealing with a large amount of spectra, each consisting of a large number
of wavelengths, it is not feasible to just use the intensity at a single wavelength,
as this would lead to an unnecessary loss of information. Hence multivariate
data analysis is used, and will be presented in the next chapter.

2.3.1 Spectral Transformations

First of all, one seeks to have the spectra in a way that the spectral pattern
is proportional to the investigated concentration. So the measured spectrum,
reflection and transmission spectra, are converted to absorbance spectra, as in
equation 2.12, or via the Kubelka-Munk function, as in equation 2.11 [95]. This
does not eradicate all other (unwanted) influences on the spectra, besides the
change in concentration, though. Hence spectral transformations are commonly
used to eradicate physical influences on the spectra, and promote chemical
ones.

Different transformations are discussed in the following. Which transformation
to chose is often an important question, and is strongly dependent on the experi-
mental set-up and the sample investigated. Assuming N spectra, where every
spectrum, consists of M different wavelengths. Hence, aλ,i denotes the absorbance
at wavelength λ of spectrum i. Some raw spectra, with different concentrations
of citric acid, lactose monohydrate and cellulose, are displayed in Figure 2.6.
Looking at the spectra, it becomes clear that just taking the intensity of a certain
peak, would not lead to a correct estimation of the concentration, because of the
baseline shift.
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Figure 2.6: Left: Raw spectra, with different concentrations of citric acid. Right: Absorbance at
6798 cm−1, where citric acid has a prominent spectral feature. On the raw spectra, the
correlation between spectral peak height and concentration is not evident.

Baseline Subtraction

Differences in baseline are often caused by different particle sizes, leading to a
different scattering behavior. [86] Also the distance of the probe to the sample,
and hence the possibility of light escaping the sampling volume undetected, leads
to an increase of “pseudoabsorbance” over all wavelengths.

There are different possibilities to remove the baseline

• The minimum value, or the mean of the whole spectrum, is removed.
• A polynomial is fit through the spectrum and removed.
• A spectral region, where no change should occur is chosen. A fit through

this region then determines a reference baseline which is removed from the
whole spectrum.

Standard Normal Variate (SNV)

This method is used to normalize the spectra, if the peak intensities changed,
because the amount of absorbing material in front of the probe, or its density has
changed.
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This is done by subtracting the mean of a spectrum ai, and dividing by its
standard deviation, as according to [95]

ai,SNV =
ai − ai

σai

, (2.13)

where ai denotes the mean over all wavelengths of spectrum ai and σai the
standard deviation over all wavelengths of spectrum ai.

The SNV-transformed spectra are shown Figure 2.7. Now, as indicated by the
coloring, certain spectral regions are aligned according to the concentration
change.

Figure 2.7: SNV-transformed spectra with different levels of citric acid. The absorbance at 6798 cm−1

now reflects the concentration, although the relationship is not completely linear.

Smoothing

Different smoothing algorithms can be used on spectral data.

• Low pass filtering. This reduces the noise level, but at the same time leads
to a broadening of spectral features.

• Spline fitting share the same effects.
• A Moving Median Filter is insensitive to single outliers, e.g. spikes in the

spectra caused by fault pixels of a CCD-detector. However, this method
leads to steps in the spectra.
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• Savitzky-Golay Smoothing is a type of Wiener-filter, and will be discussed
separately.

Savitzky Golay Smoothing and Derivative

The basic principle of Savitzky-Golay Filtering is to fit a moving window, con-
taining f data points of with a polynomial of order p. By changing the filter
coefficients, also derivatives of a discrete number series can be gained [96]. To a
number of f−1

2 points at the beginning and at the end of the series, the method
can not be applied, and thus those are neglected further.

Hence for SG-smoothing and derivative certain parameters, namely the size of
the moving window f and the degree of the polynomial p change the outcome.
By using the first derivative, constant baseline offsets are removed intrinsically.

An example for smoothed spectra and derivates of spectra are shown in Fig-
ures 2.8 and 2.9. In the 1st derivative, a former peak maximum is now placed at
the zero-crossing, hence the information of the peak shape is found in the adjoint
wavelengths.

Figure 2.8: Spectra smoothed with different Savitzky-Golay kernels; Left: quadratic, 15pt, Right:
quadratic, 45pt
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Figure 2.9: 1st derivative of spectra with Savitzky-Golay (quadratic, 15pt). The derived absorbance
at 6814 cm−1 shows a correlation to the content of citric acid, but the data points are
scattered widely.

Multiplicative Scatter Correction

This method is also known as Multiplicative Signal Correction. Diffuse reflectance
spectra often show differences due to different scatter effects, caused by different
pathlengths of the scatter photons, often caused by different particle sizes [95].

The motivation for this method is that small effects, and hence deviations of the
“usual” spectra, are linear. Hence a mean spectra a, of all the i available spectra
ai, eg. during a process, is created. Each spectra is then fit to the mean spectra
using least-squares regression, [97]

ai = αi + βia + ei (2.14)

and the gained coefficients αn, βn are used to create the MSC-corrected spectra

aλ,i,MSC =
aλ,i − αi

βi
. (2.15)

Transformed spectra are shown in Figure 2.10.

Extended Multiplicative Scatter Correction (EMSC) includes further terms into
these calculations. Reference spectra aref typical for the process (e.g. spectra of
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Figure 2.10: MSC transformed spectra, and the intensity at a wavenumber representative for the
citric acid level. In the present case MSC transformation leads to a good correlation
between spectra and citric acid content.

pure components, or the difference of spectra from start and end of a process)
can be included. Furthermore, wavelength dependent effects are included by a
term λ linear with wavlength, and λ2 quadratic with wavelength [98].

The formula to be regressed then looks like

ai,EMSC = αi + βia + hare f + δiλ + ε iλ
2. (2.16)

Either the corrected spectra, as well as the coefficients can contain valuable
information.

Further notes

It is common to use several pretreatments consecutively, then the order is of
importance. Apart from MSC, where the whole dataset is used, the spectral
transformations are individual to every spectra, hence the addition or exclusion
of spectra into the dataset does not change already transformed spectra.

What must be considered additionally is to chose a proper wavelength region.
On the one hand, having a broader region is beneficial, as the noise measured at
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a single wavelength cannot contribute that much to the final interpretation. On
the other hand, if spectral regions are included, where noise is dominating the
signal, the interpretation will become worse.

2.3.2 Variable Scaling

In the following the mostly used chemometric tools, i.e. principal component
analysis (PCA) and projection to latent space (PLS), (also termed partial least
squares regression) will be explained. The terminology of spectroscopy will be
used, although multivariate data analysis is of course much more diverse and
can be used to practically any area (where more than one variable occurs).

Assuming a number of N collected spectra, consisting of M different wavelengths;
in the notation of multivariate data analysis (MVDA), one speaks of N observa-
tions and M variables. Hence xij is variable j of observation i, or at the same time
absorbance at wavelength λj of spectrum i [95].

Variables undergoing multivariate data analysis are usually scaled. This is espe-
cially useful, if variables have to be compared that do not have the same source
and hence different units and scale range (e.g. temperature in K and pressure in
mbar).

For spectra however, different absorbances for different wavelengths are related,
and their absolute values can be compared. Hence, often just mean-centering is
applied. Scaling can be described the following way [95]

xij,scaled =
xij − xj

wj
(2.17)

where xj is the mean of variable j over all observations i. The weight wj determines
the scaling. If

• wj = 1, the variables are just mean-centered.
• wj = σj, with σj being the standard deviation of variable j over all observa-

tions, the scaling is called unit-variance (UV) scaling.
• wj =

√
σj is called Pareto scaling.

• wj =
1
2

(
maxi(xij)−mini(xij)

)
is called orthogonal scaling.

For clarification, the first SNV-transformed, then mean-centered and UV-scaled
spectra are shown in Figure 2.11. It can be seen that UV-scaling leads to an
amplification of the regions, carrying no signal, in the spectrum.
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Figure 2.11: Left: SNV-transformed and mean centered spectra, Right: SNV-transfomred and unit
variance scaled spectra. Notably, unit variance scaling overemphasizes the noisy region
above 8500 cm−1.

2.3.3 Principal Component Analysis (PCA)

Principal Component Analysis is a projection method, whose motivation is to
describe the same information with less amount of data.

The N observations consisting of M variables form a data matrix X with di-
mensions N × M. Hence, an observation can be thought to form a point in a
M-dimensional space; All observations will build up a cloud of points in this
space, as is indicated in Figure 2.12. Now, a new coordinate system is built, whose
basis vectors are linear combinations of the original basis. These are called load-
ings or principal components, and chosen in such a way that the first principal
component spans the largest variance of the data, the second is orthogonal and
describes the largest fraction of variance still remaining, and so on. The so-called
score values are the projections of the data points onto the principal components.
As indicated in Figure 2.12, when knowing the scores on, and the direction of, the
first principal component, this is already a good indication of the real position of
a data point. When using all principal components, the original position can be
restored again.

Especially for spectra which have a large number of correlated variables (e.g.
intensities of neighboring wavelengths) this method can reduce the number of
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variables needed drastically.

Figure 2.12: Two-dimensional illustration of the basics of principle component analysis. The pro-
jection of the data points onto the principal component is called score (indicated
with diamonds). The observations (points) can be described either in their original
variables (x1, x2) or via their scores (t1, t2) on the principal components (PC1,PC2). The
orientation of the principal components in the original coordinate system is described
by the loadings.

Mathematically speaking, the basis for PCA can be expressed as

X = TP′ + EA (2.18)

with T the so-called scores and P′ the loadings matrix. The loading matrix P
has a dimension of A×M, with every line representing a principal component.
Those are sorted according to explained variance until the last used principal
component A is reached. The score matrix T has a dimension of N × A and
every line gives the coordinates of observation i on the A principal components.
The matrix E finally describes the difference between the modeled data and the
original data. The more principal components are used, the less this difference
becomes, and finally for the possible maximum number of principal components
A = M, then E = 0, as no data reduction is done anymore.

In Figures 2.13 and 2.14 the loadings and scores plot of the SNV-transformed
spectra which were shown in the previous section, are displayed. When looking
at the first principal component, it is evident that it resembles the spectrum of a
chemical component, as shown in Figure 2.13. This confirms that the main reason
for differences in the observed spectra are because of composition changes. The
scores plot shows several things:
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• Spectra measured consecutively form clusters, as those are most similar.
• Although the concentration level was not included in the data, the obser-

vations are roughly aligned accordingly. The concentration of citric acid
decreases along the first principal component.

• Deviations along the second principal component reflect changes in the
samples, other then concentration of citric acid.

Hence, combining the loadings and scores: an observation having a large score
on the first principal component, can be expressed by deviating from the mean
spectrum of all samples, in the same kind as the loadings of the first PC. The
first PC was similar to the citric acid spectrum, but negative. Hence a large score
reflects a lack of citric acid. Indeed the concentration level of citric acid was lower
in those samples (knowledge which was not included into the analysis until
now).

Figure 2.13: Left: Loading plot of the SNV-transformed spectra. The loadings are normalized such
that ∑j p2

aj = 1; Right: For comparison the pure spectra of the involved substances are
plotted. The loadings reflect the pure spectra, although the sign of the first principal
component is inverse to the spectrum.

On the individual data point level PCA looks like

xij = xj +
A

∑
a=1

tia paj + eij(A) (2.19)

with xj being the mean value of xij over all observations i, sometimes called the
0th component. If the data is centered, xj is 0. paj represents the loading value for
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Figure 2.14: PCA - Score plot of the SNV-transformed spectra. The concentration of citric acid
decreases along the first principal component.

variable j and principal component a; whereas tia represents the score value of
observation i on principal component a.

Hence, when using only A principal components, xij can be estimated by

x̂ij(A) = xj +
A

∑
a=1

tia paj, (2.20)

and the difference between the real value xij and the estimated value x̂ij is given
by eij as

xij = x̂ij(A) + eij(A). (2.21)

Every principle component explains some part of the variation, therefore an
increasing number of principal components lowers the residual (unexplained
variance). Often just a few principle components contain the important informa-
tion one strifes for and are necessary to model the relevant data. Consecutive
principal components may describe insignificant properties or measurement er-
rors and lead to overfitting of the data. Chosing the right number of components
is therefore a critical task [95]. However, to do that it is necessary to know, how
much of the variance is described by a principal component.
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The total variance is given by [95]

s2 =
1

NM

N

∑
i=1

M

∑
j=1

(xij(A)− xtotal)
2, (2.22)

with xtotal being the total mean of all samples and variables. The contribution of
every principle component to an individual variable is given by

x̂ij(a) = tia paj, (2.23)

so the explained variance of principle component a can be calculated by

s2
PCA,a = s2 − 1

N
1
M

N

∑
i=1

M

∑
j=1

(x̂ij(a)− xij)
2, (2.24)

and the explained relative variance for component a is then

r2
a = 1−

s2
PCA,a

s2 . (2.25)

Often the overall explained variance

R2 =
A

∑
a=0

r2
a (2.26)

is given and called the coefficient of determination. As a counterpart, the unex-
plained variance can be calculated using the residual matrix E, containing the
elements eij [95, 97].

For the example above, the explained variance is given in Table 2.1. It can be
seen that with increasing number of principal components the explained variance
increases, and that 3 components (of 63 possible) already explain nearly 99% of
the variance contained in the data (R2 for a = 3).

Model and Data Quality Testing

To test the model for robustness, usually cross validation is used. For this method
the data is split into groups. Then a model is built without that group, and
consecutively the data of this group is projected into the model (i.e. their score
values are calculated with the principal components already set-up), and the
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a r2 R2 q2 Q2

0 Cent.
1 0.918 0.918 0.859 0.859

2 0.0572 0.976 0.662 0.953

3 0.0103 0.986 0.319 0.968

Table 2.1: Explained variance with increasing principal components. Column r2 gives the explained
variance per component a, and R2 is the cumulative sum. q2 and Q2 is the corresponding
cross validated explained variance. With only three components nearly 99% of the
variance, contained in the data set can be explained.

modeled and actual values are compared. This is repeated until every group has
been left out exactly once [97].

Naturally, great care has to be taken, when selecting how to group the data, as
this strongly influences the quality of cross validation. It has become common that
the number of groups should be around 7. When dealing with data of different
concentration levels, all measurements belonging to a certain level should be in
the same group. Otherwise predictions inside the group would be too easy, and
the evaluation of the model incorrectly well.

The difference between modeled and actual values is noted as PRESS, the “pre-
diction error sum of squares” given by

PRESS =
N

∑
i=1

M

∑
j=1

(
xij − x̂ij,CV(a)

)
(2.27)

with x̂ij,CV(a) denoting the modeled part according to equation 2.23 when the
observation i was in the group omitted for model building. Equivalently to R2 a
term

Q2 =

(
1− PRESS

s2

)
(2.28)

can be constructed. Whereas R2 indicates how good the model can describe the
data, Q2 is an indication how robust the model is against disturbances.

On the level of individual data points, statistical numbers, to asses the quality of
single data points can be calculated. Most commonly are the Hotelling’s T2 value
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which gives the distance of a data point to the origin of the model, in the model
plane, and is calculated for observation i by

T2
i = ∑

a

(
tia − tavg

)2

s2
ta

(2.29)

with tavg being the average score (which is 0 for centered data), and s2
ta being the

variance of the scores of component a in the model. Complementary, DModX
gives the distance of an observation i to the model plane, and is basically

DModXi =

√
1

N − 1 ∑
j

e2
ij (2.30)

[97].

2.3.4 Multiple Linear Regression (MLR)

Now for every observation i, there exists a dependent variable yi usually called
the response or target value. A possibility to create a statistical model, to further
estimate the target variable y by independent variables x is multiple linear
regression.

This method assumes a first order relationship between x and y

yi =
M

∑
j=1

bjxij + gi, (2.31)

respectively in matrix form
y = Xb + g. (2.32)

For the usual case M < N, i.e. more observations than variables, there is no exact
solution, but the strategy is to minimize the length of the residual vector g. This
is usually done with the least-squares method, where the parameters are estimated
by the inverse relationship

b = (X′X)−1X′y (2.33)

[99]. By using ANOVA (analysis of variance) confidence intervals for the gained
coefficients can be estimated [100, 101].

However MLR fails if there are collinearities in the X-data, and noise might make
it unstable.
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2.3.5 Projection to Latent Space (PLS)

A connection between an independent variable matrix X, and a matrix Y of K
dependent variables, or target variables, shall now be established [102].

The PLS estimates latent variables pa as linear combinations of the original
x-variables, similar to loadings in PCA. The X-matrix is reduced to an A-
dimensional plane, and the data points are represented by scores tia. In a similar
way the Y-matrix is reduced, giving the scores uia, representing the target vari-
ables yik. Concurrently, the pa, are chosen in such a way that the so-called “inner
relationship” between the scores tia and uia enables to predict Y by X. A PLS can
be performed on one or many dependent variables. However, if the responses
are not correlated, a separate PLS for every response is preferred [95].

To sum up, the same outer relations, as for the PCA (see equation 2.18), are now
used for both matrices, the independent variables X and dependent variables Y
[99]:

X = TP′ + E (2.34)
Y = UQ′ + F∗. (2.35)

When not using the full number of possible PLS components, a residual remains
for the independent and dependent variables (E and F∗ respectively). At the
same time the inner relationship connects both equations via

ûa = bhta, (2.36)

with

bh =
û′ata

t′ata
. (2.37)

In Figure 2.15 the inner relationship of the measured spectra (giving the scores
t and the concentration giving the scores u is shown. This leads to the mixed
relationship

Y = TBQ′ + F, (2.38)

where ||F|| is to be minimized.

Weights w∗ are introduced which can be interpreted the same way as loadings
before,

T = XW∗ (2.39)

W∗ = W(P′W)−1 (2.40)
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Figure 2.15: Inner Relation of the PLS. This connects the scores t, which stem from the spectral data,
and u from the target variables, respectively. Here, they show a non-linear relationship.

[102]. The scores and loadings for the current PLS-model are displayed in 2.16

and 2.17. Obviously, those are very similar to the PCA results. However, the first
PLS component has changed direction, as is reflected in the scores and loading
plots.

The difference between PCA and PLS is that the first describes the variance inside
the data X, whereas the latter describes the covariance between the independent
X and dependent Y variables.

For estimating y-values by measured x-values, the calculated scores and loadings
of the calibration are used and combined to a regression vector bk, forming the
columns of matrix B,

B = W∗Q′ (2.41)

and a constant term yk, the mean over all i of yik; hence predictions of the target
variables are gained by

ŷik = yk + xi
′bk (2.42)

[95, 97]. Such a regression vector can be seen in Figure 2.18.

When the maximum number of PLS-components A = M is used, the PLS and
multiple linear regression give the same coefficients. However the advantage of
the PLS is that collinearities and missing values can be handled.
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Figure 2.16: Loading weight plot of the SNV-transformed spectra. The loadings are similar to the
PCA loadings, but the first PLS component is now aligned positively. The values are
normalized, so that ∑j wj(a) = 1.

Figure 2.17: Score plot of the SNV-transformed spectra. The concentration level of acidic acid
increases along the first PLS-component.
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Figure 2.18: Regression coefficients for a PLS model. Especially for high wavenumbers, strong
noise can be seen. This is caused by this region not being specific for the change in
composition. Removing this region would lead to a better model.

Model and Data Quality Testing

The same quality variables as with PCA can now be calculated. However, instead
of only comparing x̂ij to xij, also the predictions ŷi can be compared to reference
values yi. Therefore, again R2 and Q2 can be calculated, and furthermore

DModYi =

√
1

N − 1 ∑
j

f 2
ij (2.43)

For PLS-models naturally R2 increases with the number of PLS-components used.
On the other hand Q2 increases, and then declines again, when overfitting takes
over. Hence a for maxa(Q2(a)) is the maximum number of useful components.
Again, chosing the number of components is dependent on experience, and
might involve the shape of the loadings, the percentage of variance explained,
the physical reasoning behind the useful number of components, and so on.

An important number describing the quality of the model is the root mean square
error (RMSE) given by

RMSE =

√
∑N

i=1 (ŷi − yi)
2

N
. (2.44)
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If the reference values yi are already included in the model, with which the pre-
dictions ŷi are calculated, one speaks of the root mean square error of calibration
(RMSEC). A more useful error is obtained, if cross validation is used, hence the
model calculating ŷi did not include yi; then this is called the root mean square
error of cross validation (RMSECV). As a rule of thumb, the uncertainty of a
predicted value is ±2 · RMSECV [20, 103]. If a completely independent test set is
used, this is called the root mean square error of prediction (RMSEP).

A graphical intuitive way of estimating the quality of a model is the observed vs.
predicted plot which shows the reference values, vs. the values obtained by the
model, as can be seen in Figure 2.19. This gives a good hint on the quality and
uncertainty of predictions, as well as an indication of a possible non-linearity in
the data.

Figure 2.19: Reference (or observed) values are plotted against their predictions. In the ideal case,
this would give a straight line. This so-called “observed vs. predicted plot” can provide
information about the quality and scattering of the predictions, non-linearity of the
model, outliers, etc.
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An uncertainty for predictions can also be gained using the leverage effect. This
is based on a fact that samples having a larger score, tend to be more influen-
tial in determining the principal components, or PLS-components. Therefore, a
confidence interval for coefficients and predictions can be gained, of the form

Ii = t α
2 ,N−df · si (2.45)

with t α
2 ,N−df being a student-t factor, dependent on the number of calibration

samples N and the used degrees of freedom df, and a standard deviation of the
prediction error s. Several possibilities to calculate s exist, as explained in [104,
105]. Different ones are implemented in different software, but they all share the
common important property that the error increases, if the observation is far
from the model plane (DModX is large).

Further, a point to stress is that the most extreme measured points of a model,
are also its borders of validity, and extrapolation is strictly not possible. Even
more so, it is recommended that observations of interest should be well inside the
model and not at the borders. Additionally, PLS is based on a linear relationship
which might not be true, if the region investigated (e.g. concentration range) is
too large; in such a case finer models, just covering a smaller subrange should be
introduced.

2.3.6 Alternative Methods for Quantitative Spectral Interpretation

PLS is clearly the most popular method for relating NIR-spectra to a target
variable. Nonetheless it is worth to take a look at competing methods.

First of all, PLS has spawned several more modern methods, most prominently
Orthogonal PLS (OPLS) [97], which has the advantage of separating variation
in X into a part related to Y and a part orthogonal to Y (and hence describing
variation in the data which is not related to the target variable) [106].

Multivariate Curve Resolution is based on PCA, but has the advantage that knowl-
edge, like pure component spectra, and other boundary conditions, like closure
can be included. This method further extracts feasible physical spectra from the
data, if the concentration levels are known [107].

Science Based Calibration is a regression based method which allows to include
models of the raw spectra and the measurement noise, and hence needs less
calibration samples than the other methods [108, 109].
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A completely different ansatz is brought forward by Indirect Hard Modeling,
which splits the spectra into individual peaks. Spectra of mixtures can than
be constructed from the peaks of individual components and hence allow the
estimation of concentration levels [110, 111].

2.4 Mixing of Solids

2.4.1 Mechanisms of Mixing and Segregation

Mixing is based on two different mechanisms. The first one is convective blending,
which is the transport of large volumes of the blend, forced by the blender. Hence,
convective blending is largely influenced by the geometry of the blender, the
direction of mixing is aligned with the direction of the particle movement, and
happens rather fast. Such, convective blending forms homogeneity on a large
scale [68, 112].

The second mechanism is diffusive blending. This is a result of the individual
particle movement with respect to the particle collective, and perpendicular to
the particle flow. Diffusive blending is based on the different mobility of particles
which is caused by different particle properties. Hence, the particle size and
shape, density, cohesion, and other factors affect diffusive blending. Diffusive
blending is slower than convective blending, and leads to homogeneity on a small
scale [112, 113].

A competitive mechanism to blending is segregation. This is the demixing and
spatial separation of mixture components [113] and is imminent if particles do
not have identical properties. Segregation occurs for several reasons, such as
differences in density, size, shape, surface properties, friction coefficients and
other physical parameters [59]. A well-known example is the “Brazil nut effect”,
caused by size differences of the particles. Movement of the powder particles
leads to an enlargement of the voids in the powder bed. Gravitational force acting
on the powder, allows smaller particles to pass downwards into voids. This leads
to a net upward motion of larger particles which accumulate at the top of a blend,
e.g. Brazil nuts in a muesli [112, 114].

Small difference in particle properties can already lead to segregation, but are
hard to quantify and predict, due to the many influential parameters. The final
state of a blend is a equilibrium between blending and segregation. Segregation
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can therefore alter blending times or even prohibit the formation of a sufficiently
homogenous blend [73, 112, 115]. Hence, whenever there is movement induced
in the powder bed, e.g. by vibration, the chance for segregation exists, making
the detection of segregation a vital task in an industrial environment.

2.4.2 Mixture Homogeneity

Figure 2.20: Examples for different homogeneity levels. The black and orange squares represent
blend fragments of different species, the colored frames represent samples taken.
Sketches a) and b) show completely separated mixtures; c) and d) show homogeneous
mixtures. Note that the degree of mixedness is the same in b) and d), but the sample
size, and hence the depth of scrutiny, at which homogeneity is tested, has changed.
Image e) represents a stochastic mixture, however due to the finite fragment size, only
discrete concentration levels of c = 0, 25, 50, 75, 100 % can be sampled.

Different possibilities to express the homogeneity of a mixture exist. However,
most of them are based on the variance in between different samples drawn from
the mixture [113].
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As the nominal concentration c is known, the empirical variance would be the
result of

s2 = ∑
N

1
N
(csampled − c)2. (2.46)

If a two component mixture is assumed, where one component is present in
concentration c, and the second component in concentration 1− c, the border
cases for the achieved variance can be constructed easily. A pictorial expression
of this procedure is shown in Figure 2.20.

• For a completely separated mixture, with a probability of c, a sample
containing only the first component (hence csampled = 1) is drawn, and
with probability c − 1 a sample containing only the second component
(csampled = 0) is drawn, giving the overall variance

σ2
0 = c ·∑

N

1
N
(1− c)2 + (c− 1) ·∑

N

1
N
(0− c)2 = c (1− c) (2.47)

• For a completely homogeneous mixture, every sample taken should have
the concentration c and hence the variance be

σ2
h = ∑

N

1
N
(c− c)2 = 0; (2.48)

• As mixing is a random process, a completely homogeneous mixture can
not be achieved. Thus, the aim is the stochastic homogenous mixture. In
such a mixture, the possibility to find a particle of the first component, is
proportional to its concentration, and independent of the surroundings.
Hence, when sampling a volume of VS, it should contain c · VA

VS
particles

with volume VA of the first component. This leads to the variance of the
stochastic homogenous mixture to be

σ2
z = c (1− c)

VA

VS
(2.49)

However, for this to be true, the particles should not be spherically hin-
dered. Hence VA actually is the effective particle volume (also including the
surrounding voids in the bulk) [116].

Hence, concentration of a granular media is slightly more complex than the
concentration of a liquid. This is based on the fact of the existence of finitely large
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fragments which can not be parted any more. A sample taken, therefore, consists
of a certain number of fragments.

The resulting measured variance therefore is the combination of

• Variance due to compositional heterogeneity (i.e. caused by finite particle
size)

• Variance due to distributional heterogeneity (i.e. a not well mixed blend)
• Variance due to measurement and model (e.g. detector noise, etc.)

As indicated in equation 2.49, the variances when measuring just a single compo-
nent therefore allow an estimation of the size of variance due to measurement
and model.

2.4.3 Concept of Depth of Scrutiny

Equation 2.49 shows that the measured homogeneity is determined by the size
of the sample [113]. Therefore, to determine homogeneity, one has to define the
scale, at which to look for it [67].

Figure 2.21: Typical length scales for the processes and measurement techniques in this work.

The obvious limit is the particle size at the lower end of scale (at which a
blend is necessarily inhomogeneous) and the whole container (e.g. blending
vessel) at the upper end of scale, at which homogeneity is given for sure (see
Figure 2.20). A proper sample should therefore be large enough, to avoid the
effect of individual particles, but much smaller than the overall mixture. At the
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end, the relevant sample size is dependent on consecutive operations, and their
demand on homogeneity.

Moreover, in the pharmaceutical industry, there is an overall relevant size: the
so-called “unit-dosage form”. This is the amount of material which is finally
administered to the patient at a time (in most cases, a tablet). Naturally, the
potency of the unit-dosage form has to be strictly defined and confirmed, and
homogeneity has to be assured at exactly this size level. As a drawback, the
final dosage form is at the end of the production process, hence for intermediate
products, the relevant size has to be estimated.

Unfortunately, the relevant size for downstream process steps, the size of single
samples sampled, and the overall batch size of the material can span several
orders of magnitude, as is depicted in Figure 2.21. Therefore, it is necessary to
determine the volume that is sampled by NIR. This can be done by geometrical
reasoning, and determining the penetration depth of NIR into the powder bed.
Methods to determine the penetration depth are described in [27], and quite some
literature deals with the determination of the effective sample volume, either
experimentally [117–119] or theoretically [120, 121].

To goal for supervising blending is [11]

1. to garantuee the homogeneity of the blend.
2. to determine the time, at which sufficient blending is reached, as to stop

the process timely.

2.4.4 Determining Homogeneity In-Process

Often homogeneity is determined by manually drawing samples at several
positions inside the blender [73, 122]. With near-infrared spectroscopy, manual
sampling (and hence interruption of the process) is not necessary anymore, but
can happen during the running process through a probe window.

Different strategies can be used to monitor the blending process with NIR-
spectroscopy. A possibility is to directly look at the spectra, and the changes
of spectra. A common concept is Moving Block Standard Deviation (MBSD). In
this procedure, the standard deviation for a certain wavelength, over a block of
spectra recorded consecutively, is calculated. Then the oldest spectra in the block
is removed, and a new one added, the calculation then redone, and this procedure
repeated as long as the process lasts. When the moving block standard deviation
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drops below a certain value, one can assume that the mixture is not changing
any more. This method does indicate, when a stationary state is reached, where
further blending does not influence the quality of blend anymore. However, it
does not give information on the actual concentration level, and hence the actual
homogeneity [22, 123].

Consequently, a chemometric model has to be applied, to give information on the
concentration measured with NIR [83]. If already the concentration is estimated
by the spectra, then the variance can be calculated based on the concentration
levels. In this case however, different samples have to be drawn, either at different
time steps, or at different positions. Naturally, measuring simultaneously at
several positions is an advantage here.

2.4.5 Confidence on Concentration and Homogeneity

As particle size and sample volume are now defined properly, the relationship

VA

VS
=

(
z (1− α)

∆c

)
(1− c) c (2.50)

can be used [113]. The important property is the number of fragments VA
VS

, which
can be placed in the sampled volume. This is connected to the confidence interval
∆c of the obtained concentration, just caused by the finite particle size. The factor
z(1− α) originates from a student-t factor and relates to the level of confidence
(for a 95% (α = 0.95) confidence interval z(1− α) = 1.65).

Now that the fundamental error in prediction is known, the error of homogeneity
can be assessed. When calculating the variance across several samples, the number
of samples determines the accuracy of the experimental variance. Experimental
variance s2 and theoretical variance σ2 are related in the following way

σ2

s2 =
f

χ2
1−α( f )

(2.51)

where f denotes the degrees of freedom and χ2
1−α( f ) is the χ2-distribution for a

confidence level α and f degrees of freedom which is in the empirical case the
number of samples n− 1. Hence an upper limit b2 of the true variance σ2 can be
given by

b2 =
f

χ2
1−α( f )

s2 > σ2. (2.52)
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2.5 Fluid Bed Coating

Fluidized beds are widely used in the pharmaceutical industry. Offering a large
particle-to-air contact surface, good mixing and excellent mass/heat transfer
characteristics, they often are the method of choice for drying and coating of
granular materials, as well as for granulation [124, 125]. In the latter two unit
operations, a liquid spray is introduced that adds the coating or granulation
liquid. Different set-ups, including bottom and top spray systems, Wurster de-
signs (intended to induce a toroidal recirculation pattern of particles) or designs
inducing a radial flow component have been introduced over the last years. Even
continuous fluidized beds have been introduced.

Nonetheless, the efficiency of fluid beds often depends on the experience of oper-
ators, since beds are sensitive to subtle changes that can significantly affect the
flow pattern or compromise the pneumatic transport enabled by a fluidized bed
process. Moreover, scale-up and scale-down are not trivial and no general rules
exist for a broad range of applications and materials. Nevertheless, significant
fundamental research (e.g., the work of Roy Jackson [126] and others) has been
performed and an extensive body of literature exists [127, 128]. Recently, fluidized
systems have been studied extensively via advanced simulation methods (e.g.,
the coupling of computational fluid dynamics and discrete particle methods) and
research is still ongoing [129, 130].

In addition to modeling and simulation which are prerequisites for the design,
optimization and implementation of advanced control strategies; real-time process
monitoring is another critical tool for making control strategies work. However,
placing sensors into a fluid-bed environment is challenging, in terms of the
quality and information content of the acquired data (e.g., spectra). Numerous
problems exist, window fouling being one of them.

Near-infrared spectroscopy (NIRS) is a proven monitoring technology that has
been used in fluidized beds [60, 131]. Due to the sensitivity of NIRS to water,
several applications involving end-point determination in fluidized bed dryers
and tablet coating have been reported [132, 133].
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3.1 Spectrometers

Three different spectrometers, with different working principles, have been used
in the course of this work.

Perkin Elmer Spectrum 400

The Perkin Elmer Spectrum 400 FT-IR/FT-NIR Spectrometer is a benchtop instru-
ment. For the current work, it was only used in its NIR configuration.

Spectra can be collected in the range of 15000 to 1250 cm−1. A deuterated
triglycine sulphate (DTGS) detector is used. Usually an external trigger probe,
connected via an optical fiber to the instrument was used. Hence the interesting
wavelength reagion was cut to 12000 to 4100 cm−1 due to absorptions in the
optical fiber [134].

When starting the instrument, and in regular intervals, a self-check is applied,
verifying the proper working of the instrument.

EVK Helios Starter Kit

The EVK Helios Starter Kit is a push-broom system for the NIR-region. Two
tungsten-halogen lamps provide the illumination of the sample. A line focus
determines the detection area. The beam path is then led through a disperse
element (in this case a prism-grating-prism system) and projected onto a focal
plane array.

This allows the determination of an individual spectrum for every pixels on
the detection line. The used system provided 256 spatial pixels, each offering a
spectrum in the range of 1000 - 1600 nm, distributed on 316 pixels.
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By moving a sample perpendicular to the detection line, an area can be scanned.
An image of the system is provided in Figure 3.1.

Figure 3.1: Experimental set-up with the EVK Helios Starter-Kit over a conveyer belt is shown on
the left. On the right the illuminated area can be seen, giving an idea about the line of
detection (orthogonal to the conveying direction).

EVK Helios EyeC Multiprobe System

The last system was considered a prototype during the time of this work. It
actually is a modification of the previously mentioned Helios Starter Kit, with
the following differences

• An optical adaption unit was added to the system. This allowed the docking
of typical NIR-probes (with SMA-905 connector) to the system. Up to 25

probes can be connected, and their signal is projected to the entrance slit of
the system. Hence, the imaging device has turned into a multiprobe system.
This can be seen in Figure 3.2.

• A more expensive MCT-FPA (mercury cadmium telluride - focal plane array)
was used, stretching the detectable wavelength range to 1000 - 2300 nm.
This range is split into 256 pixels.
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• An independent light source further enhances the flexibility of the system.
Here a transportable light source from Polytec SAS (Chatillon, France), with
a special adapter to plunge fiber optics was used.

As this system was a new development, it was thoroughly tested for its applica-
bility which is the topic of chapter 4.

Figure 3.2: Image of the laboratory workbench. On the right side the spectrometer with the 25

docking ports can be seen. On the left side, at the background the light source is located;
at the front an NIR probe and several reflection standards are pictured.

3.2 Optical Devices

Optical Switch

A fiberswitch (FSM2 (1x6) piezosystem jena GmbH, Jena, Germany) was used in
combination with the Perkin Elmer Spectrometer. Using the switch, any of the six
connected fiber pairs could be activated and connected to an additional incoming
pair that led to the ports of the spectrometer used for an external NIR-probe.

With this setup, not only one probe but any of the probes attached to the vessel
delivered information regarding the process status. In practice, an automated
program consecutively switched the channels, one after another, for short intervals
of time. However, only one position could be monitored at a time. A drawback of
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this system is that due the fiber switch and additional optical interfaces, some
light intensity is lost, deteriorating the signal-to-noise ratio. Moreover, spectra
acquired during the actual switching between channels must be discarded.

Optical Fibers

The used optical fibers were purchased from Ocean Optics (Ostfildern, Germany).
Fibers with a steel jacket and 600 µm core diameter were chosen. All fibers can
be connected to the spectrometer, and to each other by SMA905 gauges.

The fibers have a minimal bending radius of 15 cm which has to be adhered to
strictly, in order to avoid not only damage of the fiber, but also spectral artifacts.

3.2.1 Near-Infrared Probes

Cupped Bifurcated Fibers

A very simple NIR-probe set-up is the utilization of bifurcated fibers. Every probe
consisted of a sapphire window with a stainless steel frame and a bifurcated fiber
in direct contact with the window. The bifurcated fibers consisted of two optical
fibers each: one for illuminating the detection spot and the other one for collecting
the diffusely reflected light. The resulting detection spot was determined by the
fiber core diameter of 600 µm and the aperture angle at the fiber cutoff.

Hellma Diffuse Reflectance Probe

Such a probe offers more illumination spots, surrounding the detection spot, and
hence gives a more representative spectrum of the sample material, than the
above mentioned cupped fibers. More information on this probe can be acquired
by the manufacturer Hellma Analytics (Hellma GmbH & Co KG, Müllheim,
Germany); The whole probe is seen in Figure 3.2, and a close-up of the head in
Figure 2.5.

56



3

3.3 Powder Handling

3.3 Powder Handling

Tumbler Blender

A tumbler blender (Turbula T2F, Willy A. Bachofen AG Maschinenfabrik) was
used to prepare preblends of pharmaceutical powders. Because of its working
principle, i.e. rotation along several axis of a drum, the tumbler blender is suitable
for blending small amounts of powders rather well, without inducing a large
amount of stress on the material.

Electric Turntable

A typical laboratory turntable with tunable speed (Sensor Turn, WLD-TEC GmbH,
Göttingen, Germany), was used to simulate powder movement. A series resistor
was placed in the turntable, to further reduce its rotating speed.

Customized Blending Vessel

In our work we used a stainless steel blending vessel with an inner diameter of
10 cm (see Figure 3.3), and a four-bladed stirrer. To monitor different positions,
the vessel is equipped with seven ports for NIR-probes that were distributed
evenly along the side wall of the vessel. Additionally, three ports were positioned
at the base plate of the vessel, at different distances from the axis. The outermost
location was in the corner of the vessel - a critical position for the blending
process. The four-bladed stirrer was made from stainless steel and connected to a
gear motor (Heidolph RZR 2101, Heidolph Instruments, Schwabach, Germany).
Its diameter allowed gaps of 1 mm between the wall of the vessel and the stirrer
as well as between the bottom and the stirrer.

This set-up is a simplified model system for agitated industrial blenders and may
be seen as a scaled-down version of high-shear mixers or filter-bed dryers.
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Figure 3.3: Schematic illustration of the blending vessel. Arrows mark the positions of ports for
NIR measurements, and the dashed lines indicate different filling levels.1

Continuous Feeding

A Gericke feeder (Gericke DIW-KE-GLD87-15-VR, Gericke AG, Regensdorf,
Switzerland), with a spiral as conveying element, was used for the continuous
feeding of powder.

Continuous Blending

For continuous blending, the Hosokawa Micron BV (Hosokawa Micron Powders
GmbH, Köln, Germany) was used. This is a single axis paddle blender with
variable (but fixed in our case) paddle angle.

Hot Melt Coating Device

The coating apparatus was an Innojet® Laboratory System Ventilus® V-2.5/1 with
an Innojet®Hot-Melt-Device IHD-1, manufactured by Innojet Herbert Hüttlin

1With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., Figure 2.
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(Steinen, Germany). The device is a multi-purpose system for granulation, coat-
ing, and hot-melt coating which provides good up-scaling characteristics from
laboratory to production scale.

3.4 Analytic Devices

Particle Size Analysis

Particle size analysis was done with a system from Sympatec (System-Partikel-
Technik GmbH, Clausthal-Zellerfeld, Germany). The subunit VIBRI/L, a vibrating
chute, feeds the powder to a dry-dispersion unit (RODOS/L). The dispersed
particles are then analyzed, by acquiring two-dimensional images of the falling
particles, illuminated with a stroboscopic light and captured with a high speed
camera, in the QICPIC unit. The size of particles is then determined using the
method of EQPC (equivalent projected circle) diameter [135].

3.5 Software

Several different software products were used in this work.

Two programs are dedicated to multivariate data analysis. Hence, chemomet-
ric data analysis, spectral transformations and model building was done with
those.

• TheUnscrambler (Camo Software AS, Oslo, Norway) was used in the ver-
sions 9.8, 10.0, 10.1, and 10.2 .

• SIMCA (Umetrics, Umeå, Sweden) was used in the versions 12.0, 13.0, 13.0.3
.

For establishing experimental designs, and testing factors for significance, Modde
(Umetrics, Umeå, Sweden) in Version 9.0, 9.1 and 10.0 was used.

For large amounts of data, as delievered with the imaging system, but also
for data handling, consolidation, and conversion Matlab (MathWork, Natick,
Massachusetts, USA) was used in Version 2011b. Chemometric applications, like
PCA etc, are included in the Matlab Statistical Toolbox.
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For certain calculations and the creation of illustrations Microsoft Office Excel
2007 (Microsoft, Redmond, US) was used.

3.6 Materials

Materials for Dosing and Blending

Binary blends were produced from two model substances. The first one was
acetylsalicylic acid (ASA) from Rhodine by Rhodia group (La Défense, France),
which is a well-known active pharmaceutical ingredient (API). The second sub-
stance was Tablettose 80 from Meggle GmbH (Wasserburg, Germany) that consists
of α-lactose monohydrate (LM) but is granulated and has a well-defined size
distribution.

To illustrate the particle properties of the two materials, images were taken with
a reflective-light microscope (Wild Heerbrugg), as shown in Figure 3.4. Their
properties are summarized in Table 3.1.

Figure 3.4: Images of the particles used. Left: Acetylics salicylic acid, Center: Lactose mono-hydrate,
Right: Microcrystalline cellulose

Both substances are significantly different in shape and size. The smaller com-
ponent, LM, forms spherical granules, with a mean particle size of 184 µm. The
q3-distribution (Figure 3.5) shows a rather broad distribution. The prominent
shoulders indicate that particle breaking and agglomeration have occurred. More-
over, LM exhibits a larger porosity than ASA. The second material, ASA, forms
needle-shaped crystals. This non-spherical shape leads to a non-isotropic particle
orientation and different particle mobility.
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Figure 3.5: Size distributions of the materials obtained via a dispersion and imaging system
(Rhodos and QicPic-System by Sympatec GmbH), using the method of equivalent circle
projection diameter (EQPC). Blue diamonds: ASA (x50 = 409 µm, b = 1.04). Red circles:
LM (x50 = 184 µm, b = 1.93). The full lines represent the particle size distribution, the
dashed lines represent the cumulative distribution.

Powder ASA LM MCC
Bulk Density (kg/m3) 760 ± 20 640 ± 10 380 ± 20

True Density (kg/m3) 1400 1550 1500

Porosity 0.46 ± 0.01 0.59 ± 0.01 0.75 ± 0.01

d10 (µm) 252 ± 4 75 ± 1 63 ± 1

d50 (µm) 434 ± 9 192 ± 3 136 ± 1

d90 (µm) 706 ± 25 422 ± 6 260 ± 2

Table 3.1: True and bulk density of the materials. True density was taken from literature, bulk
density was measured with the FT4 Powder Rhoemeter (Freeman Technology, Tewkes-
bury, United Kingdom). Porosity was calculated by those two values. The particle sizes
refer to a q3-distribution, obtained with QICPIC. The mean and standard deviation of
3 measurements are given.
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Differences in particle density and mobility induce segregation. Nonetheless,
difference in particle size is the main cause for segregation [116] due to several
mechanisms, namely different trajectories of the particles, sifting segregation,
the percolation of fines, and the rise of coarse particles in a moving powder bed
[136]. Great care has therefore been taken to avoid segregation during the regular
handling of the blends.

The third used substance in the dosing experiments was micro-crystalline cel-
lulose, of the form Avicel 102 (FMC Biopolymer, Philadelphia, USA). Cellulose
forms spiky spheres, as shown in Figure 3.4. A summary of the particle properties
can be found in Table 3.1.

Materials for Coating

The substrate material was a crystalline material. To ensure a specific size range
it was sieved before the application. The substrate crystals were provided by
Hermes Arzneimittel GmbH.

The coating material was the lipid Compritol ATO 888 (Gattefossé, Nanterre
Cedex, France). The recrystallization temperature of molten Compritol ATO 888

is between 69-74° C. To have an idea about the behavior of this certain lipid,
butter is a fine model substance, as it exhibits the same low melting point, and
the same greasy behavior in its solid form.
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4 Determination of Equivalency for
Multipoint Measurements

4.1 Equivalency of Measurements

The crucial point for multipoint measurements is, naturally, to gain comparable
measurements. Differences in the acquired spectra can either stem from the
measurement set-up and probes, or the samples. However, as the difference in
samples is the property of interest, deviations caused by other sources have to be
eliminated. The equivalency of measurements has to be guaranteed.

Referring back to possible multipoint measurement set-ups, when using exactly
the same spectrometer, but for different probe positions consecutively, this is
already an issue. Even more so, this is true if the beam path is not the same. The
next sections deal with the validation of the new multipoint-spectrometer proto-
type, and give some insight which is important for the following experimental
work.

4.2 Concept of A Multipoint Spectrometer

For the already described multiprobe system, it is necessary to prove the compa-
rability between spectra measured with identical probes, but at different ports
of the same spectrometer. Two different methods have been used to ensure
the transportability of chemometric models between the different ports of the
spectrometer.

An obvious method is the direct comparison of the different ports. This is done
by measuring reference materials; here a reference set of gray standards for the
NIR region (FSS-08.-02c, Avian Technologies LLC, Sunapee, New Hampshire,
USA) was used. The ports were compared regarding:
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1. Measured intensity
2. Wavelength mapping
3. Signal to noise ratio and dynamic range

For all these points consideration has to be taken into account if it is necessary to
perform correction steps and in which way to do this. The following correction
methods are thinkable:

1. As the reflected intensity is transformed into pseudo absorbance, a different
intensity measured under the same circumstances for different channels
does not have any direct effect on comparability. The reason is that this
should be circumvented by the reference measurement of the white reflec-
tion standard. However, different gained intensities will be reflected in the
signal to noise ratio and the dynamic range of the regarding ports.

2. As usual regression-based chemometric models rely on a proper multipli-
cation of wavelength and regression vector, a shift in wavelengths will lead
to drastic effects. When the wavelength mapping function (i.e. the function
connecting pixel position and corresponding wavelength) is known for each
port, it is possible to establish a mapping model in between ports. However,
care has to be taken to choose the right way for determining interpolated
regression values.

3. Signal to noise ratio and dynamic range may not lead to a wrong predicted
value, but rather influence the performance of the model. A direct corrective
action (apart from hardware changes) is not apparent. However a very
practical approach is to assign probes, where the highest sensitivity is
needed (e.g. determining accurate concentration levels) to the most sensitive
ports.

By determining if the above mentioned correction methods are necessary trans-
portability of the chemometric model between ports should be guaranteed.

4.2.1 Hardware and Software Aspects

The system is based on the previously successful push broom spectrometer
series “Helios” by EVK DI Kerschhaggl GmbH. The detector is a new CCD-based
semiconductor detector with HgCdTe elements to span a larger wavelength
region. The detector chip consists of 256 x 320 pixels. The 320 pixels are grouped
to serve as targeting region for the respective 25 ports, as seen in figure 4.1.
However, only one pixel line congruent with the maximum intensity given by
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that port is reported. Nonetheless, for bad pixel correction neighboring lines are
considered. Along the 256 pixels the wavelengths are split up. The splitting is
achieved with a prism-grating-prism (PGP)-system.

Figure 4.1: Screenshot of the HeliosViewer. The image on the left represent the counts on the chip.
On one axis the different ports are mapped, the other axis the wavelenghts differ. On
the right side four spectra, currently on the chip, are displayed.

A new adoption is the dark current adjustment. To achieve this, a shutter closes
the light path on a regular basis and the dark current is detected. An algorithm
then adjusts the dark current correction.

The software used to command the spectrometer, was the HeliosViewer (Version
1.29.2012.1), also provided by EVK. This program allows some data pretreatment
steps:

• Region of Interest: That actually is the selection of the pixel lines representing
the ports. This can be deactivated to see the intensity distribution on the
whole chip. This was turned off sometimes for testing purposes. Usually
this was activated to reduce the amount of data that needed to be saved.

• Bad Pixel Replacement: For the characterization of the instrument this was
turned off. For the actual measurements this was turned on.

• Noise Suppression: This is an implementation of a low-band-pass-filter. This
was usually not used as it smoothed the spectra in a too large extent.

• Intensity Normalization: When a dark and a white reference picture have
been recorded, the program can calculate the normalized intensity which is
easily convertible into absorbance. This function was not used on a regular
basis.
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The spectra were exported as Matlab-Files and further processing steps happened
in Matlab mostly. For establishing multivariate models Matlab was used again,
or the data was parsed into the correct format to use it in SIMCA.

4.2.2 Calculation of Absorbance

The conversion of intensity on the chip to the absorbance values has been per-
formed by

Ameasured = − log10

(
Imeasured − Idark

Iwhite − Idark

)
. (4.1)

So for the measured absorbance Ameasured one needs the intensity on the chip
Imeasured and a reference measurement of the white background Iwhite as well as
of the dark current of the chip Idark.

To ensure that the errors of the actual measurement are homogeneously dis-
tributed around the mean, it is recommended to take the mean over several
spectra (e.g. 1000) for the white and dark reference.

4.3 Performance of The Instrument

In the following, the spectrometer prototype was tested extensively to assure
its correct functionality and extract its operating figures. The main point beside
basic functionality was to assure the comparability in between the different ports
of the instrument.

For testing the instrument, the Hellma Transflexion Probe was used, so the
following tests also partially include the behavior of that probe. During all tests
the frequency of the spectrometer was fixed at 105 Hz.

For testing purposes standard samples were used, namely a gray standard
calibration kit (Avian Technologies LLC, FSS-08-02c) also including a wavelength
standard (WC-PP-1920a-02c).
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4.3.1 Single Channel Performance

The following tests were performed for all of the 25 channels, however, here
just one channel shall be shown in detail. The other 25 channels showed equal
behavior. The differences between different ports are discussed later.

White and Dark Reference

In the following Figure 4.2 intensity on chip is displayed for white background
and the dark reference. The given intensity was gained by integrating the sig-
nal for 1500 µs for each spectrum. The mean of a number of 101 spectra was
calculated.

The intensity of the white background depends on wavelength due to several
reasons:

• The efficiency and sensitivity of the HgCdTe-detector depends on wave-
length.

• Several different optical gratings are used which have their own efficiency.
• Damping of the signal inside the optical fibers.
• Fiber connections, entrance and exit slits always lead to refraction and

diffraction and therefore lead to signal loss.
• The intensity curve of the light source.

The dark reference is gained with the optical path closed at the spectrometer exit
and is the sum of several sources:

• System Readout Noise: This is caused by the electronics and should be
independent of exposure time. Furthermore the largest portion is caused
by signal amplification and therefore uniformly distributed over all pixels.

• Shot Noise: This is statistical variation of photon incidence and occurs in
both, the dark signal and the white signal. The shot noise scales with the
square root of the signal.

• Dark Current: This is a result of thermally generated electrons in the CCD-
structure and is therefore highly dependent on device temperature.

However, the types of noise are not correlated and are therefore summed up as
independent disturbances.

The difference between white and dark reference is now the actual valuable
signal. Therefore, dynamic range and signal-to-noise ratio reflect the wavelength
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dependency of this signal. What has not been considered here is the occurrence
of stray light. External stray light can be avoided by proper probing and illumi-
nation. Additionally back-scattering occurs at the optical components inside the
spectrometer and adds an additional term to noise.

Figure 4.2: Intensity on chip for dark and white reference measurements. The valuable signal is
the difference, i.e. the subtraction of the dark reference from the white reference.

For the characterization experiments the distance between probe and sample was
adjusted in order to nearly reach the saturation level of the chip (which is set at
4096 counts), when measuring the white reference background to get the optimal
dynamic range and signal to noise ratio.

Wavelength Mapping

For determining the wavelength mapping, the wavelength standard was mea-
sured. The reference peaks were then found in the spectra by doing a derivation
(according to Savitzky-Golay with 5 points and 2

nd order polynomial and finding
the roots. This gives a more accurate description than just using the peak intensity
directly, because by modeling the spline, peaks can also be situated at non-integer
pixel numbers). Subsequently a regression was done in between the pixel number
and the peaks’ wavelengths. Example spectra of the wavelength standard and its
derivative can be found in Figures 4.3 and 4.4.
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Figure 4.3: Measurement of the wavelength standard sample. The reference peaks are indicated by
red crosses.

Figure 4.4: First derivative according to Savitzky-Golay of the measurement of the wavelength
standard. The positions of the reference peaks (now roots in the first derivative) are
indicated by red crosses.
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A linear regression and a quadratic regression were tested, and the results for
different ports can be seen in Table 4.2. However the quadratic term was always
lower than 10−3 nm/pixel2, so this would result in difference of 10−3 · 256

2
2
= 16 nm.

As the maximum spectral region covered ranges roughly from 940 to 2540 nm,
the difference from one pixel to the next is 1600

256 = 6.25 nm. Hence, the first order
model differs from the second order by a maximum of 1.5 pixels, thus a first
order model is satisfying. The regression lines can be seen in Figure 4.5.

Figure 4.5: Linear and quadratic regression between wavelength and pixel position.

Furthermore the reproducibility of the wavelength mapping has to be ensured.
For this purpose independent records of the wavelength standard along a time
span of three weeks have been performed. Comparing the positions of the
peaks one can see that the standard deviation of the peaks appearance is below
0.03 pixel in the central part of the spectral region and below 0.05 pixel in outer
parts (i.e. below 1500 and above 2000 nm) of the spectral region. Hence the
standard deviation for the wavelengths is in the range of 0.3 nm. As a result a
once established regression for mapping wavelengths to pixel positions stays
valid.

This further allows us to compare the nominal wavelength with the wavelength
established by the regression model as can be seen in Table 4.1. The deviations
from the nominal wavelengths are larger than the error due to reproducibility.
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Additionally there is no pattern in the deviations that would be visible, if the
mapping follows indeed a quadratic or an angular function. The seemingly ran-
dom deviations are consistent over all tests which indicates that the wavelength
mapping has different sections as a result of the different grid elements.

Nominal λ (nm) Pixel (#) λ by Regression (nm) Deviation (nm)
1261.08 52.15 1263.22 −2.14
1320.40 61.07 1319.17 1.23
1535.14 95.71 1536.38 −1.24
1681.70 118.42 1678.83 2.87
1757.80 130.78 1756.37 1.43
1847.11 145.23 1846.95 0.16
1935.83 159.32 1935.36 0.47
1970.94 165.13 1971.78 −0.84
2006.53 170.98 2008.47 −1.94

Table 4.1: Nominal and reconstructed wavelengths and their difference.

To extend the investigated region beyond the region defined by the used wave-
length standard an additional standard consisting of polystyrene was used. A
recording of the standard with the EVK prototype system and an FT-spectrometer
can be seen in Figure 4.6. Unfortunately, the peak resolution was not sharp enough
to determine the exact peak positions. However, a simultaneous plotting of the
polystyrene record on the scale based on the regular wavelength standard to-
gether with a reference measurement done on an FT-spectrometer shows that the
peaks are at the same (and correct) position.

Optical Resolution and Instrumental Bandpass

The previous section showed that one pixel differs from the next by ≈ 6.26 nm,
which is equivalent to the optical resolution. The second important property is
the instrumental bandpass, i.e. how broad appears a peak that is infinitely small,
when measured with the instrument. The broadness of the peaks depends on the
used optical elements. Here we estimated this value by taking a look at all the
collected spectra and see, whether two peaks next to each other could be resolved
separately or not. Hence, by comparing with the natural line-width, we can give
an estimation of the bandpass of 40 nm.
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Figure 4.6: Spectra of the regular wavelength standard and the polystyrene standard recorded
with the EyeC. For comparison the polystyrene standard was also recorded with an
FT-spectrometer (Perkin Elmer).

Dynamic Range and Signal-to-Noise Ratio

The dynamic range of a system is the full scale signal divided by the minimum
resolvable signal. As a result this gives an indication on the minimum detectable
signal, and the intensity accuracy for measurements.

The dynamic range was calculated according to

DR =
Ireference − Idark

s(Idark)
, (4.2)

where Ireference is either referring to the intensity, when measuring the 99 %,
respectively 10 % reflectance sample, to gain the dynamic range at a low and high
gain level. The s indicates the empirical standard deviation. In a similar way the
signal to noise (S/N)-ratio is given by

S/N =
Ireference − Idark

s(Ireference)
(4.3)

[45, 137, 138]. The resulting figures can be seen in Figure 4.7 and 4.8. Those were
determined by taking 101 consecutive spectra with an integration time of 1500 µs
into account.
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Figure 4.7: Dynamic ranges for low gain (left) and high gain (right) for 101 spectra.

Figure 4.8: Signal to noise ratio for low gain (left) and high gain (right) for 101 spectra.

The signal to noise ratio indicates how precisely the system can measure a certain
light level. It is comparable to the dynamic range, but also includes shot noise.
Here the S/N ratio is given for the whole wavelength range and close to the
saturation limit of the chip. Usually just the maximum value is given. By stating
that the S/N ratio should be at least 100 (=20 dB), which is a commonly chosen
level, the region above 2250 nm does not fulfill this criteria anymore.

Another possibility in quantifying the noise level is the Root-Mean-Square-Noise
as defined by

RMSN =

√√√√ 1
N

N

∑
i

(
Ai − Ã

)2, (4.4)

with N being the number of points in a spectral segment, Ai the absorbance at
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a point and Ã the mean absorbance of a segment. A single segment covers a
spectral range of 100 nm [139].

The signal to noise ratio depends on the number of spectra integrated. As the
shot noise is the dominating factor, the signal to noise ratio increases with the
square root of the number of integrated spectra. For testing purposes the number
of integrated spectra was varied as can be seen in Figure 4.9.

Figure 4.9: RMSN noise estimation for different spectral blocks, and for different number of spectra
integrated. The noise follows roughly the expected ∝ 1√

N
behavior. The dashed lines

mark recommended limits.

Linearity

The chip response should be linear, i.e. the reflectivity of a material should be
proportional to the number of counts on the chip. To test this, reference specimen
with different reflectivity have been measured as can be seen in Figure 4.10.

When converted to absorbance they can be compared to their nominal absorbance
on an absolute scale. The measured absorbance levels are displayed in Figure 4.11

and a comparison to the nominal values is found in Figure 4.12. The expected
performance is within specification. The specimen are designed to have the same
reflectivity over nearly the whole range of observed wavelengths which is also
reflected in the graphs. It can be seen that the measured absorbances are subject
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Figure 4.10: Intensity measured on chip for specimen with different reflectivity (given in %).

to change from one measurement to another which might be caused by not
identical distances and surface inhomogeneity.

4.3.2 Port Comparison

First of all we compare the direct intensity that is mapped onto the chip as can
be seen in Figure 4.13. The channels are well comparable. However, it is notable
that the center of the chip receives a slightly better illumination than the wings.
Remarkable also is the very low intensity gained by port number 21. Nevertheless,
the intensity is no primary concern when comparing channels as this should
be corrected by applying a white standard reference measurement anyway. In
contrast the intensity on the chip gives an indication, if the dynamic range (and
therefore the precision in quantifying) is effected by the position on the chip.

A second concern is the wavelength mapping. In general the mapping is well
comparable between channels. In Figure 4.14 the deviation of wavelength at a
certain position compared to the mean at that position is shown in a contour
plot. There is a slight distortion at the edge of the chip assigned to the longer
wavelengths. At a wavelength of 2250 nm there is a difference of 2 nm in the
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Figure 4.11: Absorbance measured, for specimen with different reflectivity (given in %). It can be
seen that the samples are prepared to give the same absorbance for a large spectral
region.

Figure 4.12: Comparison of expected and observed absorbance at three different wave-
lengths. Left: 1200 nm fit:1.018x + 0.029, Center: 1600 nm fit:1.004x + 0.044,
Right: 2000 nm fit:0.9927x + 0.044.
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Figure 4.13: Intensity on chip measurements for the same specimen for all channels and wave-
lengths. The color represents the number of counts. The white artefacts are undefined
values due to bad pixels.

assignment of wavelengths between ports at the edge and ports at the center of
the chip. The mapping functions for all channels are summarized in Table 4.2.

Cross Influence

When using one of the ports, there is a slight influence on neighboring ports. In
Figure 4.15, a pattern of different reflectance intensities was detected by a port.
The port next to it shows the same, albeit very much weaker pattern. Roughly
1/300 of the intensity of the primary port reaches the neighboring port. For the
next nearest neighbor, the pattern was not detectable any more.

The intensity profile for illuminated ports, across the chip can be seen in Fig-
ure 4.16. Here the ports 3, 5, and 6 were measuring the white reference standard.
The intensity represents the optical imaging of the exit slit, and therefore roughly
follows a sinc-function. It can be seen that the peak trails are overlapping.
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Figure 4.14: Comparison of the wavelength mapping along the chip. Shown in the graph is the
deviation of mapping (in nm) compared to the mean of all channels.

Figure 4.15: A signal pattern was detected at one port (left). The signal reproduces itself (although
much weaker) on the neighbouring port (right). Note that the scale between those two
pictures is a factor of 10.

78



4

4.3 Performance of The Instrument

Port (#) Inclination (nm/pixel) Interception (nm)
01 6.2604 936.6197

02 6.2637 936.4471

03 6.2655 936.4639

04 6.2687 936.1683

05 6.2695 936.5683

06 6.2700 936.4704

07 6.2744 935.8915

08 6.2719 936.3600

09 6.2733 936.2102

10 6.2754 935.8418

11 6.2739 936.0087

12 6.2759 935.8619

13 6.2723 936.3139

14 6.2734 936.1480

15 6.2721 936.5145

16 6.2747 935.9601

17 6.2731 936.0458

18 6.2728 935.9848

19 6.2714 936.1699

20 6.2701 936.3615

21 6.2678 936.5073

22 6.2676 936.1647

23 6.2659 936.1507

24 6.2644 936.2414

25 6.2600 936.5243

Table 4.2: Overview of the linear regression for mapping wavelength to pixel number, according to
wavelength = interception + pixel*inclination.
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Figure 4.16: The summed intensity of the pixel lines is shown for the channels 3, 5, and 6 simultane-
ously. It is important to note that the signals’ peak feet touch each other slightly. On a
side-note: The difference in intensity here is a direct result of the different illumination
intensity at the three ports of the illumination source.

4.3.3 Short and Long Term Stability

There are different time scales to consider, when talking about stability. First
of all, there is the noise from one measurement to the next which was already
considered in calculating the signal-to-noise-ratio. Secondly there is a drift caused
by dark current. To correct for this the drift is controlled regularly. Finally the
stability of the instrument has to be assured for longer time periods, namely the
time a process lasts which the system is measuring. More precisely, this is from
one possibility of applying a white reference to the next. Finally, recorded spectra
should be valid for many years. This is assured by the non-changing wavelength
mapping.

Dark Current Correction Interval

For now the correction of the dark current happens regularly at a 5 minute
interval. A shutter is closed and a dark reference spectra is collected which then
evokes a complex function, to keep the dark current in check.

How the drift of the dark current can look like can be seen in Figure 4.17. The
interesting question is now, if the correction interval is chosen correctly.
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Figure 4.17: Counts for dark current (mean across all wavelengths) over time. The five minute
interval of the dark correction is clearly visible as well as the changes from one
spectrum to the next. The smaller gaps are due to pauses in the measurement.

To answer this question we take a look at the fluctuations which appear from
one spectra to the next anyway, and at the drift of the dark current. To estimate
the drift a time interval from a longer measurement series was chosen, where
drift is most prominent, in order to give an estimation of the maximum drift that
might appear. In Figure 4.18 the standard deviation of the first 50 and the last 50

spectra of of a correction interval is displayed. The gap in between is a result of
the dark current drift.

The standard deviation between spectra is then compared to the dynamic range.
The same is done within blocks of spectra at the beginning and end of a dark
current correction interval as to estimate the dark current drift. The resulting
figure can be seen in Figure 4.19 and gives a description which fraction of the
acquired spectra is determined by the dark current.

Within the assumption that the drift of the dark current is linear (which is roughly
true for the short interval in between two automatic corrections as we can see in
Figure 4.17), we can estimate the ratio of the dark current for the given interval
in comparison to the dynamic range. Over the whole spectral region the error
induced by drift is roughly 2-3 times the minimum error one can achieve which
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Figure 4.18: Plotting the mean and standard deviation of the first and last 50 spectra of a dark
current correction interval.

Figure 4.19: Fraction of signal caused by dark current. For relevant wavelengths the fraction is
below 1%. However, this is only true for the best signal (i.e. if the full dynamic range
is used).
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is given by the shot noise.

Long Term Stability

A test for 100 hours has been performed for long term stability which is depicted
in Figure 4.20.

Obviously there is a certain warm-up time until the instrument reaches a steady
state. It is therefore strongly recommended to wait 30 min after the activation of
the instrument until the instrument is stabilized before measuring references and
starting the actual measurements.

After the warm-up phase the instrument is stable and does not show any system-
atic drift. There are smaller deviations of around 0.1 absorbance units, which can
have several reasons. However, as there is no overall drift a correctly performed
white reference measurement done at the beginning (and after the warm-up
phase) should stay valid for the observed time period.

Figure 4.20: Long term drift of the baseline for several wavelenghts. There is a certain warm-up
phase, but afterwards the instrument is stable. For this set-up a temperature stabilized
lamp was used.

83



4 Determination of Equivalency for Multipoint Measurements

4.3.4 Effect of Integration Time

Integration time has an effect on the measured signal and on the dark current.
Both values grow linearly with time as can be seen in Figure 4.21 until the
saturation limit of the chip is reached.

A larger dark current itself does not effect the quality of the signal as the fluc-
tuations in the dark current are practically still the same. One should therefore
always strive for the maximum dynamic range and signal to noise ratio but avoid
over-saturation even for unexpected occurrences. How both numbers change
with integration time for the test setup is shown in Figure 4.22.

Figure 4.21: Intensity on chip when measuring dark current (green) and white background re-
flectance (blue). Both follow a linear relationship as indicated by the fit lines. The red
line indicates the saturation level of the chip.

4.3.5 Binning

To increase the signal quality it might be possible to not just use one line, but to
sum up several lines on the chip next to each other. This has been done and the
resulting SNR and dynamic range can be seen in Figure 4.23. The figures are a
result of 50 consecutive spectra. Obviously both values increase until the weak
signal intensity (compare Figure 4.16) inverts this trend.
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Figure 4.22: Dynamic range and signal to noise ratio in the current setup. The red line indicates
the chip saturation limit. Although the integration time increases the dark current, the
signal to noise ratio rises until the saturation limit.

Figure 4.23: Dynamic range and signal to noise ration for a different amount of lines binned. The
binning always happens symmetrically from the center line.
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4.3.6 Comparison of Different Probes

Thanks to the standardized SMA905 ports a variety of probes can be attached to
the spectrometer. Simple reflection probes by OceanOptics, a diffuse reflection
probe by Hellma and an NIR-probing gun by Perkin Elmer have been tested in
the now mentioned case. It can be seen in Figure 4.24 that the signal dependens
on the probe quality. Nonetheless, the spectrometer works with every probe and
the spectra are comparable, albeit not in absolute intensity.

Figure 4.24: The same sample was monitored with three different probes. The different absolute
intensities are a result of not identical distances and illumination of the samples.

When establishing a multivariate model the probe can be added as another
qualitative variable. Hence it is possible to estimate the influence of the probe
on the spectra. However, the resulting importance is based on the spectrometer
port differences as well as on the probe differences, although those are nominal
the same. It turns out for several cases that the correction factors for the port are
negligible and chemometrical models can be carried from one port to another
without consequences. Further when looking for characteristics of certain ports
compared to others just random noise is found. In Figure 4.25 the coefficient plot
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of a partial least squares discriminate analysis classifying the different ports is
shown which shows that the differences are statistical noise and concentrated at
longer wavelengths (where there is a smaller signal to noise ratio). This is actually
not unexpected as this just supports, what the previous characterization of the
instrument has shown.

Figure 4.25: Differences for port 1 compared to the ports 2 and 3. The differences are basically
statistical noise. Larger differences appear for longer wavelengths, where the signal to
noise ratio is worse.

4.3.7 Conclusion

The direct comparison showed that the equivalency of different channels is given
in principal. Still there are issues to consider. For example the channels differ
marginally in performance and are not completely congruent in their wavelength
distribution. Ports which are projected to the center of the chip show a slightly
better performance (in terms of signal to noise ratio and dynamic range).
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4.4 Test of Equivalency with Multivariate Methods

4.4.1 Expanded Factor Set

As described in Section 2.3, a common method for investigation of spectra
and chemometric model building is principal component analysis (PCA) and
projection to latent space (PLS). The latent space is created by linear combinations
of the original variables (i.e. wavelengths). The regression coefficients of the PLS
represent the weighted sum of the latent variables, enabling the prediction of the
target variable by multiplication with a corresponding spectrum [102].

It is also possible to add qualitative variables (i.e. describing the occurrence of a
property, as opposed to quantitative variables describing the value of a property),
and to expand the variable space by taking interaction terms of variables into
account. Such coefficients of expanded variables describe, how the effect of one
variable changes with another. However, one has to keep in mind that expanding
leads to an enlarged amount of coefficients, and hence even more measurements
are needed to make reliable assumptions of those coefficients and avoid overfitting
[140].

The mentioned possibilities of PCA and PLS were selected for testing the equiva-
lency of measurements by building several models.

1. A classical model, establishing the correlation between measurements and
a target value.

2. Incorporating the port as model term, to test for significance.

a) Representing the port as a qualitative variable does not enlarge the
computational difficulty of model building and allows estimating if a
constant offset is induced by the port.

b) However, the port influence is likely a multiplicative factor. Hence
adding the interaction terms of (wavelength*port) for the analysis may
reveal specifically which spectral regions are interpreted unique for
every port.

Hence coefficients are gained for the base terms (as in the classical model), three
base coefficients for the three ports, as well as a set of crossed coefficients for every
port. Of the latter, the coefficients for just one port are shown in the Figures 4.27

and 4.29 for simplicity.
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Two data sets have been used here. First, the already mentioned reference gray
standards. For those tests the measurement set-up was left untouched, except
switching the detection fiber between the measurement ports. This was done in a
way that the equivalency of measurements was guaranteed, and only the effects
of the spectrometer itself were seen.

The second data set was gained by the application of the instrument to a pilot-
scale pharmaceutical process. A hot-melt-coating process was observed with three
identical probes, but at different height levels inside the fluidized bed vessel. The
target variable of the established chemometric model is the batch maturity which
is proportional to particle size and coating thickness. The increasing coating, and
hence maturity, was monitored for roughly 50 minutes. There is a large chance
that deviations between different ports appear, caused by different measurement
positions, sample presentation, process inhomogeneities, and much more.

4.4.2 The Ideal Test Case

First the results obtained by the gray-level standards shall be discussed. No
spectral pretreatment was used. A simple PCA shows that the reflectivity of the
measured materials is indeed the largest influence factor and covers 99.7% of
the data. The according graphs are found in Figure 4.26. However, taking a look
at the second principal component exhibits the differences of the measurement
ports, explaining 0.1% of the data. Indeed it would be sufficient to build a PLS
model with just one component to have a proper model estimating the reflectivity
of the samples as seen in Table 4.3.

The question arises if the model can be improved by implementing the knowledge
which measurement port was used. This has far-reaching consequences, as this
would mean that the measurement port has an influence on the model, and that
the models ought not to be the same for different measurement ports.

Hence additional PLS models were built, one including the port as a simple
qualitative variable, i.e. every port is corrected for a constant. A second model
then additionally includes the crossed terms of wavelength and port, hence if
sensitivity is different for certain wavelengths and a multiplicative factor should
be added that should be seen in the latter model.

The observed PLS coefficients, as shown in Figure 4.27 shall now be discussed.
The coefficients for the wavelength show all approximately the same value. This is
expected, as standards were measured that theoretically have the same reflectivity
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for the whole observed region and they all show the same proportional behavior.
The error bars, representing a 95% confidence interval, indicate that all of them
are significant. On a side note, the error bars also reflect the signal-to-noise ratio
of the spectrometer which is best around 1500 nm, where the smallest error bars
are found, and decreasing towards the edges of the spectrum indicated by the
growing error bars.

The coefficients for the ports are nearly zero and vastly excelled by their error bars
indicating the non-significance of the port, and that a simple additional term does
not improve the model. Finally looking at the crossed terms, the same behavior
can be seen. Therefore, equality of all ports is proven for this measurement. As
the experimental conditions and samples have been carefully chosen, it can be
concluded that the used spectrometer indeed has equivalent properties at each
port, and that models can be transferred from one port to another.

Figure 4.26: Model building on gray standard measurements. PCA scores plot of the measurements.
On the left, the markers are colored according to their reflectivity; on the right the
markers are colored according to the port. Both show clear distinctions with the
principal components.

4.4.3 The Non-Ideal Case

In addition to the lab-scale pharmaceutical process, a process exhibiting un-
steady and difficult experimental conditions was investigated. Now the same
methodology than before was applied for checking the equivalency of the ports.

Due to the fact that distances to the measured particles in the fluid bed were not
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Figure 4.27: Model building on gray standard measurements. The PLS-regression coefficients are
shown for the absorbance values (top), port variables (middle) and interaction variables
(bottom). Only absorbance values have an significant influence on the prediction of
the sample reflectivity.
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No. Description A R2X R2Y Q2 (refl.) Q2 (port)
1 spectra→ reflectivity 1 0.997 0.967 0.954 0.967

2 spectra + port→ reflectivity 1 0.979 0.967 0.954 0.967

3 spectra*port→ reflectivity 1 0.249 0.966 0.952 -0.1

Table 4.3: Statistics on the created PLS-models with gray standards, for 1) a usual correlation of
spectra as predictor variables and reflectivity as dependent variable 2) with port as
additional qualitative predictor variable 3) with the cross terms of wavelengths and port
as predictor variables; The number of PLS components is given by A; R2X and R22Y
are the explained variance of X and Y data, respectively. The Q2 values were gained by
Cross-Validation, grouping was done according to reflectivity or port. The Q2 of model 3

is negative, because no proper cross validation is possible, as every group represents one
discrete value of the qualitative port variable.

always the same, SNV was chosen as a pre-treatment. As shown in Figure 4.28 ,
the PCA nicely distinguishes between maturity at the first component, explaining
58% of the data, and the different measurement positions in the second principal
component, explaining 20% of the data.

The PLS coefficients regarding the wavelengths are a superposition of the sub-
strate and coating spectra, reflecting the growth of coating and masking of the
substrate particle material.

Adding coefficients representing the port, they show a difference in the mean
values of maturity, but no significance is given to these coefficients as there is no
valid overall offset across all the time.

Finally crossed terms of port and spectra were added. This enables the PLS model
to basically represent every port independent of the others. The coefficients hence
refer to the overall trend in the data (for the base terms) and the differences in
between ports (for the crossed terms). Most of the crossed coefficients are not
significant and represent statistical noise, as shown in Figure 4.29. Nonetheless
there are some wavelengths considered significant, especially a spectral block in
the region of 1450-1530 nm.

Blindly excluding this spectral block would result in a slightly better model, as
is indicated in Table 4.4. However, there needs to be some physical reasoning
for explaining the deviation. By comparison to offline samples, we came to the
conclusion that this might likely be an excess of coating in front of the probe,
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and hence was not removed in the final model. Opposed to that, it is aimed for a
mechanical way to overcome the deposition of coating in front of the probe.

Finally, the same model for all ports, just built on base terms, is preferred. The
introduction of expanded terms easily introduces overfitting as indicated in
Table 4.4 and should therefore just be used for diagnostic reasons, as presented
here. A further strategy would be to choose proper pretreatments in order to
overlap the different ports in the PCA scores plot.

Figure 4.28: Model building on a coating process in a fluid bed. PCA scores plot of the measure-
ments. On the left, the markers are colored according to their reflectivity; on the right
the markers are colored according to maturity. Both show clear distinctions with the
principal components.

4.5 Example Applications

4.5.1 Self Correction and Calibration

One advantage of a multipoint measurement system is that some of the ports
can be used to either correct the measurement system itself or to be kept as a
reference sample. This way, e.g. temperature drift or aging of a sample can be
measured and corrected on-line.
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Figure 4.29: Model building on a coating process in a fluid bed. The PLS-regression coefficients
are shown for the absorbance values (top), port variables (middle) and interaction
variables (bottom). Note the significant region between 1450-1530 nm for the interaction
variables, showing a difference between ports.
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No. Description A R2X R2Y Q2 (refl.) Q2 (port)
1 spectra→ maturity 2 0.755 0.983 0.971 0.967

2 spectra + port→ maturity 2 0.572 0.978 0.966 0.962

3 spectra*port→ maturity 2 0.327 0.806 0.706 -0.21

4 like no. 3, restricted range 2 0.341 0.813 0.708 -0.21

Table 4.4: Statistics on the created PLS-models on maturity, for 1) a usual correlation of spectra
as predictor variables and maturity as dependent variable 2) with port as additional
qualitative predictor variable 3) with the cross terms of wavelengths and port as pre-
dictor variables 4) with the spectral block 1450-1530 nm excluded; The number of PLS
components is given by A; R2X and R2Y are the explained variance of X and Y data,
respectively. The Q2 values were gained by Cross-Validation, grouping was done accord-
ing to reflectivity or port. The Q2 of model 3 and 4 are negative, because no proper cross
validation is possible, as every group represents one discrete value of the qualitative port
variable.

Correction of Lamp Fluctuations

Here a simple set-up is used, where the illumination is constantly measured by
one of the probes, and changes in the illumination of the sample are corrected
for in the measured spectra.

The calculation of absorbance is shown in Equation 4.1, and the reference mea-
surements, directed straight at the illumination source or at a reference sample,
give the intensity J(t). Beforehand a reference intensity J(0) and the dark current
of this probe Jdark where measured. Hence, when the illumination changes, the
effective intensity measured at the sample Imeasured(t)− Idark varies by a factor.
This is the same factor as for the reference probe which now detects J(t)− Jdark
instead of J(0)− Jdark before. Thus, one has to divide by this fraction to regain
the the signal as it would be under constant illumination conditions and Acorr(t)
is

Acorr(t) = − log10

(
Imeasured(t)− Idark

Iwhite − Idark
· J(0)− Jdark

J(t)− Jdark

)
= (4.5)

Acorr(t) = Ameasured(t) + log10

(
J(t)− Jdark

J(0)− Jdark

)
. (4.6)

Nonetheless, as two measurements are involved the corrected absorbance has its
noise enlarged by a factor of

√
2. The standard deviations at individual ports σporti
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are assumed to be the same, and hence the standard deviation of the corrected
values σcorr can be assumed to be

σcorr =
√

σ2
porti

+ σ2
portj
≈
√

2 · σporti
. (4.7)

To avoid that short-time fluctuations are enlarged by this effect, it is recommended
that the background of the reference and the actual measurement are taken
synchronously, and that the mean over a rather long time span is used.

An example application, where the influence of a changing illumination source
was corrected, can be seen in Figure 4.30.

Figure 4.30: Acquired spectra are shown in blue. The lamp setting has changed and therefore the
spectra have a different appearance. Spectra corrected with the reference measurement
at the lamp are shown in red. The sharp spike is a result of a bad pixel in the reference
spectra.
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5.1 Calibration On The Rotating Disk

Before measurements were performed in an actual blending process, a simplified
set-up, to study the emerging effects, was used.

A rotating disk was used to mimic the behavior of a moving powder bed. The
probes were placed hovering roughly 1 mm above the powder bed, without
touching it. This is necessary, as for a static powder bed, the sample size is too
small, to extract any meaningful information. With this set-up, the geometry was
well described, and the sample size could be estimated, as the detection spot,
penetration depth, and speed of the turntable were known.

For model substances blends of acetylic salicylic acid (ASA) and lactose monohy-
drate (LM) were used, as presented in section 3.6.

The set-up allowed to study several effects. Especially the influence of the ob-
served volume, and the effect of different spectral treatments were of interest.
Focus was put on the determination of the measured homogeneity, and its relation
to the mentioned factors.

First of all, for the theoretical investigation of homogeneity, the particle and
sample volume has to be determined.

5.1.1 Accurate Estimation of The Particle Volume

According to the assumptions of stochastic mixing, only the larger particle species
in a binary blend is of interest. As the condition, that the smaller particle species
can fill up voids between particles of the larger species is fulfilled, according
to x50,ASA >

√
2x50,LM, only the larger particle species (ASA) is of importance.

Its size was determined by QicPic measurement, and the result can be seen in
Figure 5.1.
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The first crude approximation of the particle volume is given by

VA =
4
3

VMD
2

3
π =

π

6
VMD3 = 4 · 10−10m3, (5.1)

with VMD being the volume mean diameter. However, the determination of the
VMD is based on EQPC, hence just strictly true for spheres. In contrast, ASA
particles are needle shaped, hence a correction factor has to be applied.

Therefore, the measured particle distribution is modeled by a logarithmic normal
distribution, whose parameters are different size fractions xr,%. The x denotes
the equivalent diameter, r the kind of distribution (r = 0 represents a number
distribution, r = 3 represents a volume distribution), and % the relative frac-
tion. Hence, x3,50 denotes the diameter, where 50% of the mass is contained in
particles with a smaller diameter than said diameter. Those size fractions where
determined experimentally and put into the model equation (according to ISO
9276-5)

qr(x) =
1

1
2 ln

(
xr,84
xr,16

)√
2π

1
x

exp

−1
2

 ln
(

x
xr,50

)
1
2 ln

(
xr,84
xr,16

)
2 . (5.2)

A comparison between the measured and the modeled data can also be found in
Figure 5.1.

Thus, the mean volume of a particle would be given by

VA =
π

6

∫ ∞

0
x3q3(x)dx =

π

6
exp

(
9
2

(
1
2

ln
(

x3,84

x3,16

))2
)

x3
3,50, (5.3)

still under the assumption that the particles are spheres. Assuming now a needle
shape, as shown in Figure 5.2, where a cylinder with length 3d is cupped by two
half spheres, a new form factor can be calculated.

As the QicPic uses EQPC (diameter of a circle of equal projection area) to
determine the particle size, we can establish a relation between the diameter x
obtained by the QicPic and the size d defining our needle shaped crystals. It
holds for smooth and convex particles that in random orientation 1/4 of their
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Figure 5.1: Comparison of measured and modeled size distribution of ASA crystals.

Figure 5.2: Assumed shape of ASA crystals as cylinders cupped with halph spheres.

surface is projected [141], leading to

OASA = 2
(

1
2

πd2
)
+ 3d · dπ = 4πd2 (5.4)

1
4

OASA = πd2 =
1
4

Ocircle =
1
4

πx2 (5.5)

x = 2d (5.6)

99



5 Experiments and Results

and using this relation to calculate the volume again

VASA = 2
(

1
2

π

6
d3
)
+

1
4

d2π · 3d =
11
12

πd3 (5.7)

=
11
12

π

(
1
2

x
)3

=
11
96

πx3 ≈ π

8
x3 (5.8)

revealing a form factor for the assumed ASA crystal shape of π
8 (instead of π

6
for a perfect sphere), which can be plugged into Equation 5.3 again. This finally
leads to an estimated mean particle volume of

VASA =
π

8

∫ ∞

0
x3q3(x)dx = 6.6 · 10−11m3. (5.9)

5.1.2 Determination of Sample Volume

The sample volume, i.e. the volume which is scanned during the integration time
(i.e. recording time of one spectra) and accumulation (i.e. the mean of several
consecutive spectra), as sketched in 5.3, can be determined by

VS = p · 2πr · d · t · s · τ. (5.10)

p is the penetration depth and shall be discussed in a separate section, however
0.5 mm is a good approximation for now. r is the distance to the center of the
rotating disk, hence defining the circumference of the scanned area.

The detection spot diameter d is determined by the fiber diameter. This diameter
is 600 µm. Although every optical fiber has a certain aperture, this is neglected
here, as it is very small compared to the effect of scattering in the sample. The time
required for acquiring one spectrum τ, with a resolution of 8 cm−1 is 0.35 s.

The parameters which were alterable in the given set-up were the number of
accumulated spectra t and the speed of the rotating disk s. The number of
integrated spectra should be above 8 to give a reasonable signal to noise ratio,
even in the static case, hence it was varied from 8 to 16. The different rotational
speeds of the turning table were 0.34, 0.55 and 0.77 rpm.
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Figure 5.3: Sketch of the sampling on the rotating disk. A certain amount of powder passes through
the probed volume.

Expected Fluctuations in Concentration

When accepting the penetration depth which will be determined in the next
section, and referring to Equation 2.50 the volume needed for a certain accuracy
in prediction can be calculated. Or in reverse, the fluctuations in concentration
to be expected can be calculated with the sample size known. This is shown in
Figure 5.4.

Effects of Sampling and Pretreatments on Variance

Now variances shall be calculated on the raw spectra, to illustrate the influ-
ence of chemometric pretreatments on the obtained variance. The first thing
done however is the selection of the spectral range from 7226 - 4570 cm−1, as a
representative region for the two used substances ASA and LM. Variance was
always calculated for one wavelength across spectra, and then the mean over all
wavelengths was used. A multiple linear regression was then used, to determine
the potential influential factors on the variance.

For unpretreated spectra the results are shown in Figures 5.5 and 5.6. The number
of accumulated spectra, as well as the concentration show a strong influence.
Furthermore the obtained variance is different from probe to probe. This is not
that surprising, as the different probes do not have the exactly same distance to
the powder bed. A change in distance results in a change of recorded intensity,
and hence a change in variance. More interesting is the nearly linear increase of
variance with increasing concentration. This is most likely caused by the change
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Figure 5.4: Relation of scanned volume and achievable concentration accuracy ∆c, for concentration
c = 0.5. The area marks the region achievable with different turntable speeds, whereas
the line represents the conditions in the latter blending setup.

of texture, and hence scattering behavior, of the binary blend. The change of
intensity level due to different scattering dominates over the change in variance
due to compositional heterogeneity in this case.

For SNV-pretreated spectra, this already changes, as can be seen in Figures 5.7
and 5.8. A curvature can be seen for the variance with concentration, indicating
the quadratic behavior due to compositional heterogeneity. Again, the number of
accumulated spectra shows a strong influence. The more spectra are accumulated,
the less the variance which is an indication, the measurement noise, from one
spectra to the next, still plays a role. At the same time the sample volume is
increased. Again the influence of the different probes does not disappear.

Variance, calculated on the concentration predictions, as shown in Figures 5.9
and 5.10 obtained by a chemometric model, clearly shows the dominant influence
of compositional heterogeneity. The quadratic behavior based on concentration
is dominant. Nonetheless, the number of accumulated spectra has a significant
influence on the obtained variances.

For a certain test (10 accumulations and lowest turntable speed) the measured
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Figure 5.5: Variance versus concentration for unpretreated spectra. The glossy appearance of ASA
leads to a more intense signal, and hence to an increased variance level.

Figure 5.6: Coefficients for variances of unpretreated spectra. The concentration (con), number of
accumulated spectra (Akk) and the probe number (Cha(#)) are influental.
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Figure 5.7: Variance versus concentration for SNV-pretreated spectra. The concentration has an
influence on the variance, as well as the number of accumulated spectra, as can be seen
by the difference of the mean values for different accumulation numbers.

Figure 5.8: Coefficients for variances for SNV-pretreated spectra. As opposed to Figure 5.6, a
quadratic term is necessary to describe the influence of the concentration (con*con).
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Figure 5.9: Variance versus concentration for predicted concentration levels. For the predictions,
the variance follows the theoretical ∝ c(1− c) behavior.

Figure 5.10: Coefficients for variances for predicted concentration levels. The non-significant coeffi-
cients are not shown; hence for the predicted concentration levels, the gained variance
is independent of the probe number.
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and theoretical variances are plotted in 5.11. The blue line indicates the theoretical
variance level, whereas the other lines represent the confidence levels (hence 50%
of all measured variances should be below the turquois line labeled with 50%).
This is in good agreement.

Figure 5.11: Empirical and theoretical variances for different concentration levels. σz is the theo-
retical variance, and the colored lines give the confindence level (i.e. the fraction of
measured variance values that should be below this level).

Selecting a certain concentration level, e.g. a mass fraction of 0.4 API, the afore-
mentioned relationship in equation 2.51 can be shown, as displayed in Figure 5.12,
which fits quite nicely. Please note that the degrees of freedom is 10-1 in our case,
as the empirical variance was calcualted over 10 spectra (each an accumulation
of 10 measurements.)

Furthermore, when knowing the theoretical variance and the measured variance
for several levels, it is possible to extract the variance of measurement and model
via OLS-based variance estimation [100]

s2
M =

∑i (si − σz,i)
2

n− 1
(5.11)

which yields the result s2
m = 2.5 · 10−5. Ergo, this is the lowest level of variance

we can measure with the current set-up. This fits quite nicely with the variance
measured for pure substances (which do not have compositional heterogeneity,
and hence should reflect model and measurement error only, too) which are at a
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Figure 5.12: Histogram of the ratio of empirical and true variance. The line gives the corresponding
χ2-distribution. This is a cross-section of Figure 5.11 at c = 0.4.

level of σ2
M,0 = 1.5 · 10−5, and can be estimated by Figure 5.11 at the border cases

(when zoomed in).

5.1.3 Conclusion

It is necessary to understand the behavior of measurements on the rotating
disk for two reasons. First, the disk is a simplified set-up, compared to the
actual blending vessel, and more possibilities for the intentional variation of
parameters exist. Hence, effects observed on the rotating disk help in interpreting
the blending.

Second, the disk was further used, in combination with the tumbler blender,
to present perfectly mixed samples to the NIR-probes, and to build models
which were then used in the following, to interpret spectra of actual blending
processes.

107



5 Experiments and Results

5.2 Penetration Depth

Penetration depth was measured by building a slope of powder with changing
thickness. For point measurements, this was done on the turntable, in order to
have sufficient statistics, like shown in Figure 5.13.

For the imaging system, a linear chock was used. A defined height of the powder
bed was constructed by using layers of aluminum foil for thickness determination.
A similar approach is described in [27].

Figure 5.13: Sketch for calculating the penetration depth on the turntable. The score values decline
at a certain powder bed thickness, when the powder bed is practically “infinitely
thick”.

108



5.
2

5.2 Penetration Depth

To calculate the penetration depth, a PCA was built from the data. The highest
principal component, showing the appearance of the chemical signature of the
underlying material was than used. (Others showed the change of detector-
sample distance, etc.) The gained score values were plotted against the powder
bed height at this position. The data was then fitted to the generalized logistics
regression function

Y(t) = A +
K− A(

1 + Q exp−B(t−M)
) 1

ν

(5.12)

where A, K, Q, B, M, ν are fit parameters and t the powder bed thickness. The
depth of penetration was defined by the powder bed thickness, when the score
value was only 1/e of its original value, hence

t 1
e
=

1
B
·
(

BM− ln
(

eν − 1
Q

))
(5.13)

Hereby, the wavelength dependence of the penetration depth was neglected.

Furthermore, penetration depth is dependent on the illumination and detection
setup, and strongly on the particle size. Even more, the voids separating particles,
and hence bulk density, effect the obtained penetration depth. Therefore, the
penetration depth was determined multiple times with different blend compo-
nents, in order to have an estimation of its change. Results can be seen in the
Figures 5.14 and 5.15.

Clearly, the main influence factor for the penetration depth in powders is the
particle size. Voids in between the particles allow the radiation to penetrate
further into the bed, without being absorbed or scattered.
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Figure 5.14: Penetration depth with the push-broom system for different substances, and a blend
of ratio 50:50. Further on, different illumination intensities were tested (80,100,120 W
of power).

Figure 5.15: Penetration depth with the cupped fiber, and different particle sizes. Smaller particles
exhibit a tremendously lower penetration depth.
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5.3 Continuous Dosing

5.3.1 Introduction

Powder flow is an ever occurring event, in industry as well as in nature. The issue
of granular material in movement, spans the length and time scale from debris
to filling a pharmaceutical capsule. Moreover, powders are a complex system of
solid granules, with a variety of attributes, and a gaseous filling phase, exhibiting
very different behaviour, dependent on current and past external factors [74, 112].
Therefore, the monitoring of powder flow is still a challenging task [142].

Here we use a push broom based imaging system, for monitoring a powder flow
leaving a dosing feeder. Not only can we determine the spatial distribution of
the substances; even more it is possible, to change the sample size on the fly, by
changing the number of pixels considered. This enables to change the scale we
look at and enables to asses heterogeneity on different scales of scrutiny.

5.3.2 Experimental Set-Up and Spectral Interpretation Techniques

Hyperspectral Imaging and Push-Broom Technique

The spatial resolution in one direction is determined by the detector and the
distance of the detector to the sample. To map a complete image, the sample is
moved beneath the detector with a constant velocity. Choosing time and space
as axis, a picture, at the detected NIR-wavelengths, can be reconstructed. The
collected information therefore is

I(x, t, λ) (5.14)

i.e. the reflected intensity I, in dependence of position x, time t and wavelength
λ. Hence the information forms a so called hypercube. Such a reconstructed image
is displayed in Figure 5.16.

Samples, Sample Preparation and Sample Presentation

1©2012 IEEE. Reprinted, with permission, from Scheibelhofer et al., Continuous Powder Flow
Monitoring via Near-Infrared Hyperspectral Imaging, I2MTC, May 2012
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Figure 5.16: Comparison of an optical image (left), and an hyperspectral NIR-image (right). Al-
though only the intensity of one certain wavelength is displayed in the image, the
whole spectra for every point in the image is measured and available. Hence the two
substances can be identified (below).1

Such push-broom based cameras are already in use for sorting in the fields of
recycling and food classification. However, here the focus is put on powders.
Therefore, the used model substances are pharmaceutical powders; those were
already presented in section 3.6.

As the samples have to move in front of the camera, the camera was tilted. A
ceramic plate served as glide for the powders, and at the same time as reference
image for the measurements. The powders were fed on the glide by a screw
feeder. A picture of the experimental setup can be seen in Figure 5.17.
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Figure 5.17: The experimental setup. The feeder can be seen left, its outlet deposits the powder on
the plate. The powder then glides past the camera detection area. This setup is similar
to the one used by [76].2

Data Acquisition and Pretreatment

The camera was operated at a rate of 25 Hz and the spectra were integrated for
10 ms. This proved to be sensitive enough and adequate in spatial resolution,
while the amount of data produced was still manageable. The spectral data were
pretreated as follows:

• Black and white adjustment: As the illumination at the detection line is not
uniformlyy equal, the measured intensities are adjusted.

• Transformation to pseudoabsorbance: Beer’s law states that concentrations
are linearly related to the absorbance in transmittance. Therefore, the gained
signal here, although a reflectance signal, is transformed the same way, in
order to achieve a roughly linear relationship between pseudoabsorbance
and chemical concentration.

• Smoothing: A Savitzky-Golay algorithm was used to smooth the spectral
data.

• Offset correction: As the distance of the sample surface to the detector is
not always the same, due to height patterns in the sample etc., an offset
correction was performed to reduce this influence.

2©2012 IEEE. Reprinted, with permission, from Scheibelhofer et al., Continuous Powder Flow
Monitoring via Near-Infrared Hyperspectral Imaging, I2MTC, May 2012
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Spectral Interpretation

For every image pixel, a spectrum is measured, and a PCA is performed on the
whole dataset.

This way, an acquired image can be analyzed relatively easy, and differences in
the sample, as caused by different chemical composition can be detected without
further human intervention. However, it is necessary to look at the loadings,
to asses on what they represent. Here, principal components often alternate in
between chemical information and geometrical information, for example intensity
differences due to slopes resulting in different reflection angles.

For establishing a quantitative model, premade blends have been prepared in a
tumbling blender. Then those blends and the pure substances have been presented
to the camera on the glide. As the glide was not fully covered by the calibration
samples, for every calibration step (at 0, 33, 50, 66, 100%) 100 spectra of the whole
image have been chosen. These spectra were selected by looking at the intensity
of certain wavelengths, and have been controlled manually, as demonstrated in
Figure 5.18. PLS was then used to establish a chemometric model. The resulting
model had sufficient accuracy, in order to resolve changes in concentration for
individual blends.

5.3.3 Monitoring Impurities

By performing a PCA on one of the measurements, impurities can be detected on
the fly. In Figure 5.19 some crystals of our model API have been put as impurities
onto a bed of LM.

The consecutive principal components show different attributes of the powder
bed. The colour of every pixel is determined by the score of this pixel for the
according principal component. Whereas the first component reflects the differ-
ence between the powder and the background plate, and the second component
shows the influence of the angle of the powder bulk surface, finally the third
component reflects the chemical difference between acetylic salicylic acid and
lactose. The resolution was high enough, to distinguish single ASA crystals.

In contrast, there are some limitations. As NIR just offers a penetration depth of
roughly 0.5 mm for such fine granular media, just the top surface of the powder
flow can be analysed. If some substance is hidden beneath the analysed powder
flow, it would not be detected in this setup.
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Figure 5.18: Powder flow across an inclined plate. The intensity at 1000 nm is shown, the vertical
axis represents spatial pixel, whereas the horizontal axis represents the consecutive
numbering of acquisitions. Spectra used for calibration later on were selected by the
intensity profile, and are marked by circles in the image.

5.3.4 Monitoring Powder Flow

In Figure 5.20 we can see the powder leaving the feeder in a very intuitive way.
A PLS model was used to determine the concentration of every pixel. Clearly
the chemical inhomogeneity can be seen. In this example this was induced by
layered filling of the feeder. As a contrasting example, we refer to Figure 5.21,
which is a homogeneous premixed sample.

However, at the border of the flow regime, the particle density becomes very
low. As the spectral intensity is lower, this is interpreted as a lower concentration.
This can be corrected by also taking a “concentration of the background” into
account or mathematically forcing a sum of 100% of the powder components.
This is successful for correcting the periodical feeding rate, as can also be seen
in the image very clearly. Although, for very low coverage, this is not feasible
any more and the predicted concentrations at the border of the powder flow bear
a large error. This is caused by the transition form diffuse reflectance to single
particle reflectance.
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Figure 5.19: A PCA was performed on the recorded data of the powder passing the sensor. The
impurities are clearly distinguished from the background substance in the third
principal component. The colour represents the score value. Thew lower left image is
a RGB-composition of all three score values.3

3©2012 IEEE. Reprinted, with permission, from Scheibelhofer et al., Continuous Powder Flow
Monitoring via Near-Infrared Hyperspectral Imaging, I2MTC, May 2012

Figure 5.20: PLS analysis of fed powders. The first three pictures represent colour coded the
concentration of the three different components. The intermittent flow caused by the
feeder can be seen, as well as the loss in reflected intensity at the edges of the flow.
Thew lower left image is a RGB-composition of all three score values.4

4©2012 IEEE. Reprinted, with permission, from Scheibelhofer et al., Continuous Powder Flow
Monitoring via Near-Infrared Hyperspectral Imaging, I2MTC, May 2012
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Figure 5.21: Example of a chemically homogeneous powder flow. Although the nominal concen-
tration should be the same, at small scale there are deviations due to subsampling.
Furthermore, there are miss-predictions at the edge of the flow.5

The confidence interval for the predictions was estimated by knowing the span
of the calibration data X, the residual matrix E, the number of samples N, and
the number of variables M, by

I =

√
abs

(
tr
(

X (XX′)−1 X
))
·∑j ∑i e2

ij

N −M
∗ Tα

2 ,N , (5.15)

where tr denotes the track, and Tα
2 ,N a student-t coefficient; the intervals can be

seen in Figure 5.22.

5.3.5 Depth of Scrutiny

Concentration and Sample Size

In the following we assume that our prepared samples (prepared in the tumbler
blender) are stochastically homogeneous which should be guaranteed by the

5©2012 IEEE. Reprinted, with permission, from Scheibelhofer et al., Continuous Powder Flow
Monitoring via Near-Infrared Hyperspectral Imaging, I2MTC, May 2012
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Figure 5.22: Estimated concentration of MCC with 95%-confidence interval, at pixel number 70 in
Figure 5.20.

working principle of the blender and a sufficient blending time. Hence, they show
no distributional heterogeneity.

It is then observed that our measurement device and mathematical interpretation
is sufficient enough, to detect compositional heterogeneity.

Sample Volume in the Near-Infrared Case

When using NIR for sampling, the sample size is determined by certain factors:

• Penetration depth of NIR which is dependent on the substance;
• Area of the detection spot which is an attribute of the spectrometer optics

and the sample distance;
• Integration time of the spectra;
• Amount of substance, passing this spot, during said time;

In the presented setup, we determined those parameters, and calculated the
sample size to be around 3.6 mm3.
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Figure 5.23: On the left hand side, a cutout of the measured homogeneous flow is presented. The
rectangle indicates the sample size which is increased by summing up pixels. On
the right hand side, a histogram of the concentrations is plotted. With increasing
sample size, the width of the histogram narrows down. The numerical value ∆ gives
the expected 2-σ interval of the histogram, centered around the nominal value of
c = 0.33.6

6©2012 IEEE. Reprinted, with permission, from Scheibelhofer et al., Continuous Powder Flow
Monitoring via Near-Infrared Hyperspectral Imaging, I2MTC, May 2012
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Effects of the Sample Volume

Due to constitutional heterogeneity a certain minimal variance has to be ex-
pected.

The particle size distribution of ASA was modeled by a log-normal distribution.
Therefore, we are able to estimate fraction/sample-volume ratio, and hence the
variance and deviations in concentration, we expect to be observed (according
to equation 2.50). In contrast, Figure 5.23 shows the experimentally determined
concentration levels as histogram. The width of the histogram nicely corresponds
to the expected (calculated) deviations of concentration due to finite particle
size.

As a benefit of spectral imaging, the sample size can be changed afterwards, as
indicated in the same Figure 5.23. By summing up pixels, after the measurement,
we can still increase the sample size. As expected, the measured variance goes
down.

On a further note, the measured variance will not be exactly the theoretical. As
samples are drawn at random position, the variance also has the character of a
random variable. Hence, the measured variances follow a χ2-distribution, with
its mean at the expected variance. This was also seen experimentally.

5.3.6 Conclusion

We have seen that NIR imaging can be used rather straightforward for monitoring
powder flow. Further, its resolution is high enough to detect impurities. Although
a homogeneous flow of equal thickness, without boundaries is preferred.

No general guideline for optimal sample size can be given, as this is dependent on
process, product and measurement equipment. However, one has to be aware that
fluctuations with a certain magnitude in concentration will appear intrinsically,
and are determined by the sampling size.
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5.4 Batch Blending Process

5.4.1 Introduction

In this work, simultaneous measurements of the powder composition at several
positions of an agitated lab-scale blender were conducted. In our setup an FT-
NIR spectrometer was connected to the blender via an optical fiber switch. The
blender was equipped with six NIR-diffuse reflection probes. Using the switch
made it possible to alter between those probes consecutively. One after another,
the signals were then directed into the spectrometer. Using only one spectrometer
made it easier to compare the spectra, as no corrections need to be made, for
example, to avoid a signal drift between two different spectrometers. This method
allowed us to continuously monitor a powder blending process and to study the
blending (and segregation) kinetics.

5.4.2 Experimental Set-Up

For the experiments, the three ports at the bottom of the stainless steel vessel
(position 1,2,3), and the three lowermost ports at the wall (position 4,5,6) were
plugged with NIR-probes, whereas the other ports were sealed. For an amount
of 140 g of material, the fill level was just above position 6, giving a height-
to-diameter ratio of about H/D = 0.35 (see Figure 3.3). The NIR-probes were
connected via a fiber switch to the FT-400 spectrometer, and the general setup
can be seen in Figure 5.24.

As a consequence, due to the materials’ tendency for segregation, it is not possible
to perform calibration measurements inside the blending vessel. Therefore, a
different calibration setup was used, namely the rotating disk described before.

Obtaining one spectrum with the spectrometer at a resolution of 2 cm−1 took
0.35 s. 12 spectra were accumulated for one position, this position was monitored
for 4.2 s. After monitoring, 23.1 s (5 · 4.2 s for the other five positions + 6 · 0.35 s
skipped spectra) elapsed before the same position was monitored again. There-
fore, this approach may be suitable for studying long-term process dynamics
rather than very fast ones.

An important advantage of our method, however, is that only one spectrometer
is used, and thus no further operational steps are required to compare the
measurements at different positions. Note that with NIR only the surface of the
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Figure 5.24: Set-up for lab-scale blending. The blending vessel, impeller gear, fiber switch and
FT-spectrometer can be seen.

blending volume can be probed, while information regarding processes inside
the blending vessel cannot be obtained.

5.4.3 Establishment of The Chemometric Model

Premixed binary powder blends with predefined concentrations were mixed in
the tumbler blender for 16 min at 50 rpm. A separate set of experiments using
hyperspectral imaging has shown that for these materials, after 8 minutes no
significant change in homogeneity could be detected for longer blending times
[143]. Hence 16 minutes for preparing the calibrations samples was chosen. The
resulting blends ranging from 10 to 90% (w/w) concentrations with increments
of 10% were used as calibration samples.

Several studies showed that there was a difference between measuring static and
moving samples [144]. Thus, it can be concluded that it is optimal to perform
calibration under the same conditions as the blending measurements. In our case,
this would require calibration inside the blending vessel which was impossible
for a number of reasons (i.e. the powders may segregate, window fouling may
occur, all sensors may not detect the same concentration, etc.)
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Therefore, a different setup was chosen to perform the calibration, using the
strategy described in the literature [144], and implemented the following way, as
already described in section 5.1.

This setup allowed fast calibration with predefined blends for all six positions
simultaneously. Furthermore, the conditions under which the calibration samples
were prepared are replicable. Thus, the powder bed is moving in front of the
sensor, making calibrations more similar to the actual experiment inside the
blender. At the same time, there is no movement of the powder bed itself that
could induce segregation.

PLS was used for correlating spectra and components’ concentration. It is ap-
plicable to our case since, to predict concentrations, a quantitative model was
required rather than a qualitative model that is based on principal components
analysis which can only identify steady-state levels. The spectra obtained from
the spectrometer were already the mean of twelve consecutive spectra. Next,
spectral pre-treatments were used to enhance the power of the predictive model.
The methods used consecutively were:

• Wavenumber averaging: The resolution of the spectrometer was 2 cm−1,
but the wave numbers were then averaged by taking the mean of 8 values
(therefore a range of 16 cm−1) to modify the signal-to-noise ratio.

• Cutting of the spectral band: the region of 4489 – 7171 cm−1 was ultimately
used, since due to the applied optics the regions with higher and lower
wave numbers showed mainly noise and disturbances but no chemically
relevant information.

• Standard normal variate (SNV) was used to account for physical differences,
mainly a change in the distance, powder bed to sensor window, between
calibration and measurement.

To account for the different optical paths and different fiber faces, a separate
model for every position was created. The number of PLS components was chosen
to be five.

The resulting model parameters are summarized in Table 5.1. Slope, offset and
R2 refer to the comparison of nominal and predicted concentrations. For an
optimal model, the slope should be 1, offset 0, and R2 = 1. However, these ideal
values cannot be achieved due to statistical errors and nonlinear behavior of
absorption and concentration [98]. The RMSE was used to estimate the error of
prediction [145]. All predictions by the model, as shown in the figures below,
have a standard deviation of about ±5% ASA.
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Slope Offset (%) RMSE (%) R2

Position 1 Cal. 0.98 0.91 3.67 0.98

Val. 0.96 1.98 4.81 0.98

Position 2 Cal. 0.99 0.48 2.67 0.99

Val. 0.98 0.81 3.07 0.99

Position 3 Cal. 0.99 0.54 2.82 0.99

Val. 0.98 1.05 3.38 0.99

Position 4 Cal. 0.99 0.5 2.72 0.99

Val. 0.98 1.01 3.13 0.99

Position 5 Cal. 0.98 0.82 3.47 0.98

Val. 0.97 1.64 4.02 0.98

Position 6 Cal. 0.97 1.41 4.55 0.97

Val. 0.96 2.04 5.88 0.96

Table 5.1: Parameters of the predictive PLS model. Separate models exist for every position. The
first row for every position displays the parameters for the calibration model for all
classes and RMSEC. The second row contains the statistics for the cross-validated model
and RMSECV. Slope, offset and R2 refer to the comparison of nominal and predicted
concentrations.

5.4.4 Sampling Considerations with NIRS in the Blending Vessel

To assess the homogeneity of the blend, the standard formula for empirical
variance was chosen, as mentioned in Equation 2.49. In contrast to traditional
thief sampling, the sample size is determined here by the optical set-up and
some considerations have to be made. The stochastic homogeneous mixture in a
binary blend is defined by σ2

z = c(1− c)1/η , where c is the concentration of one
component, and η is the number of particles of the larger-particle species in the
sampled volume [146]. As the particle size distributions of both substances are
known, their size distributions can be approximated by a log-normal distribution,
as seen in section 5.1.1.

An estimate of the sample volume based on geometrical considerations is VS =
(d/2)2π ∗ p ∗ (1+ k/d), where d is the opening of the fibre, and p the penetration
depth into the powder blend. The fiber opening has diameter of 600 µm. As the
fibers are separated from the material just by the sapphire window, this aperture
was neglected. The penetration depth has been determined experimentally and
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depends on the blend composition. A mean value of 350 µm was determined.
Hence the first part of the equation describes the illuminated and thus sampled
area in the static case. As the powder is dynamically moving in front of the
window, the fraction k/d estimates, how the sampled volume is enlarged by the
powder movement. In a first approximation, the powder moves at f times the
speed of the agitator’s blade tip. Hence, we can estimate k by k = f ∗ω ∗ r ∗ n ∗ t,
where ω · r is the angular speed of the impeller and n · t is the time during which
n spectra are recorded. The number of ASA particles η contained in the volume
has also to consider the porosity ε and is therefore estimated by η = VS/VA(1− ε),
with VA being the typical particle volume of the larger species, i.e. ASA in this
case.

Thus, in order to give a reliable prediction for the concentration estimated with
NIR measurements, we use the relationship described in Equation 2.51 and
can therefore estimate the number of particles in the sample volume which are
necessary to estimate up to a certain accuracy (∆c) the concentration [113]. For a
confidence of 95%, the factor z(S) = 1.65. Typical limits for the assumed sample
size are shown in Figure 5.4. The figure demonstrates that even for well-mixed
blends, concentration deviations in the order of 5% ASA and more should be
expected.

The overall variance of the concentrations measured during blending is hence a
sum of variances in the blend itself (σ2

z ), and errors originating in the chemometric
model (σ2

model) and the measurement devices (σ2
device) itself. The error of the model

was mentioned already and manifests itself in the RMSE value. The error induced
by the measurement devices itself has been estimated by repeatedly measuring the
pure components, and calculating the variances in between those measurements.
It turned out that the error caused by the devices is negligible (i.e., two orders of
magnitude smaller) compared to the error by the chemometric model and the
error due to the finite sample size.

As a result, the number of 12 accumulated spectra was chosen, providing suf-
ficient measurement accuracy, while still allowing a feasible number of time
steps measured during the process. Additionally, the number of spectra to be
discarded because of optical switching operations is acceptable. Although, for the
calibration disk, the observed volume is larger, the identical spectral acquisition
parameters were used, in order to avoid unexpected effects.

A second issue to consider is the size of the final dosage form. To ensure homo-
geneity at the size level of the solid dosage form, the measurement volume must
be equal or smaller. The volume of a tablet of 8 mm in diameter and 1.5 mm in
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thickness is about 75 mm3. The measured volume in our experiments was about
16 mm3. (In reality, the monitored volume may be even lower, as close to the wall
velocity gradients developed). Thus that the volume sampled was smaller than
the dosage form, especially under the consideration that the powder will undergo
a compression step later on.

5.4.5 Time-Evolution of Blending: Concentration Levels

Having estimated the sampled volume, blending experiments can be performed
and heterogeneity assessed.

In this study, experiments were conducted to study (a) blending dynamics in
the mixer, (b) to investigate whether segregation occurs and if it can be mon-
itored in real-time and (c) how different locations are affected by the mixing
dynamics in the system. The total amount of powder used was 140 g in each case.
Every experiment followed the same strict protocol to ensure comparability and
repeatability:

• Measurement of the spectral background. Spectralon©in contact with the
sapphire windows in the vessel was used as a reference material.

• The first powder component (or the premix) was placed into the empty
vessel.

• The four-bladed impeller was inserted and positioned 1mm above the vessel
bottom.

• Filling of the second powder component, or the premix.
• Simultaneous start of the powder blending process and the measurements.

Two different starting conditions were chosen, in order to elucidate the blending
process.

1. Preblended material of two species.
2. Two separated layers of material species.

Segregation of a Preblended Mixture

To test for segregation of the binary blends, a premix of 50% ASA and 50% LM
was prepared in the aforementioned turbula blender. The premix was then placed
into the blending vessel.
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Figure 5.25 shows the concentration at the 6 NIR probes for 400 revolutions.
It can be observed that most positions started at a concentration of 50% API,
with the notable exception of position 4. This position is at the same height as
the agitator blade and hence the recorded spectra are influenced by the blade
repeatedly passing the sensor. Thus, the premix was clearly well mixed and
neither the turbula blender nor the filling procedure did induce segregation.
However, after a few revolutions the concentrations changed dramatically. The
three positions at the bottom (positions 1, 2 and 3) showed a sudden decrease
in the amount of ASA. While the same was true for the lower position on the
side wall (position 4), the situation was the opposite for the positions higher
up on the side wall (positions 5 and 6). These observations strongly indicate
that segregation occurred quickly due to the movement of the agitator. Similar
observations were also made in the literature, e.g. [147].

Figure 5.25: Concentration of ASA over time, for the case of segregation. Dashed lines show the
nominal concentration. In the bottommost image the calculated variances are shown,
together with the limits for completely separated and stochastically mixed blend.7

7Reprinted from Powder Technology, 243, Scheibelhofer et al., Spatially resolved monitoring of
powder mixing processes via multiple NIR-probes, 161-170, (2013), with permission from Elsevier.
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Most likely due to a size segregation mechanism (sieving effect), during the
first few revolutions the larger ASA particles were transported upwards and LM
downwards, i.e. the smaller LM particles fall into the gaps between the larger
ASA particles. This is just possible inside a moving powder and leads to a net
flow of small particles downwards, and indirectly large particles upwards. Hence,
care has to be taken interpreting these results, as smaller particles trickle through
the larger ones and may form a layer on the bottom sensors, shielding the ASA
particles. However, as position 4 at the side wall also shows a decreased level of
ASA, this cannot be the exclusive reason for the observed effects.

Figure 5.26: Concentration of ASA over time, for the case of blending. Dashed lines show the
nominal concentration. In the bottommost image the calculated variances are shown,
together with the limits for completely separated and stochastically mixed blend.8

After approximately 100-150 revolutions, a steady state is achieved. Although
the concentrations showed fast fluctuations, due to the small sample volume,

8Reprinted from Powder Technology, 243, Scheibelhofer et al., Spatially resolved monitoring of
powder mixing processes via multiple NIR-probes, 161-170, (2013), with permission from Elsevier.

128



5.
4

5.4 Batch Blending Process

the long-term trends were constant. Further blending did not improve the blend
quality.

Note that while all the other positions showed fast fluctuations, position 3

maintained constant after 150 revolutions. The raw spectra still show the expected
absorbance pattern, and it can be concluded that it is not a void region in front of
the sensor interpreted wrongly. The static behavior of the raw spectra confirmed
that in this region no particle flow occurred, maybe due to the formation of
agglomerates and/or a densified region at this critical position.

Blending of Initially Separated Powder

In these experiments 70 g of LM were loaded on top of 70 g of ASA before
blending and measurements began. The results are presented in Figure 5.26. At
the start, the lower positions (positions 1-4) had an ASA content of (nearly) 100%
and the uppermost position (position 6) shows an excess of LM. Position 5 is
in the intermediate region, where blending already had begun, when the first
spectra were collected from this position. However, after only a few revolutions,
significant changes occurred. As before, ASA tended to move upwards after
a few revolutions, as indicated by the signals at the upper positions, whereas
LM was dominant in the lower positions. Thus, the filling order became almost
inversed.

As mixing continued, a steady state evolved after about 60 revolutions (except
for position 3). Concentrations fluctuated but the integral value remained steady
over a longer time period, and further mixing failed to increase the homogeneity.
This steady state again favors ASA at higher regions of the powder bed and LM
in the lower regions.

Interesting is also the radial behavior of the mixing process. Positions 1 and 2

first reached a steady state among the bottom sensors which indicates the largest
powder exchange in this region. Position 3 showed a much slower approach to
the steady state. Moreover, it cannot be decided, if the behavior is due to slow
powder movement or material stuck to the sensor, causing the long time span
until the final state is reached.
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5.4.6 Time-Evolution of Blending: Homo- and Heterogeneity

Determining Homogeneity

Another important issue of powder blending processes are the blending dynamics
which can be evaluated via a method that is similar to MBSD (moving block
standard deviation). In our approach, the MBSD methodology [22] is applied
to the PLS predictions instead of the raw spectra. Therefore, the weighting of
certain spectral regions, as defined in the PLS coefficient vector, was conserved.
This strategy was chosen since the deviations that may have been induced by the
movement of the powder (which can be seen in the raw spectra), but do not give
any information about the composition, were reduced in the PLS.

In principle, different methods can be used to calculate the variance for assessing
homogeneity. First, the predicted concentrations of different positions can be
used to calculate the variance. Second, separately for every position a moving
variance can be calculated and averaged over all positions. Moreover, variance
can be calculated with the empirical concentration mean of the measurements, or
with the nominal (expected) concentration (i.e., 50%).

These values can be compared to the variance of the completely segregated
mixture, and the variance of the stochastic homogeneous mixture which is in
theory, the lowest achievable value for variance by a mixing process. Taking into
account Equation 2.52 a confidence area can be defined. If the variance is below
this value, stochastic homogeneity is achieved with a certain confidence.

An example of the variance over a blending process is shown in Figure 5.27.
The experiment had the same conditions, as the previously discussed blending
experiment. Again position 3, at the corner of the vessel, shows reduced dynamics.
Therefore, this position was excluded for calculation of the variance. The decrease
of variance over time can be seen clearly, as well as the point of achieving a
stationary mixture. However, as indicated by the red arrow, when changing the
sample size, also all the according limits change.

Finally it has to be assured that the error due to measurement and model is lower
than the stochastic homogeneity, otherwise it can not be detected.
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Figure 5.27: Above: Measured concentration level at different positions. Below: Decrease in variance
during progression of blending. The achievable limit is dependent on the sample size.
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Revision of The Blending and Segregation Process

Now, the previously discussed blending processes, can be discussed in terms
of variance as well. Variance calculated by MBSD (σ2

MBSD) and by comparing
different positions (σ2

ch), always with nominal concentrations are shown below
the concentration trends in Figures 5.25 and 5.26. Position 3 was neglected due to
its critical positioning.

For the segregation experiment, shown in Figure 5.25 during the first revolutions
a rapid change of concentration is observed (e.g., position 2 and 3). The σ2

MBSD is
not able to capture this effect, as it occurs in just half the time of the considered
moving block. In contrast, the σ2

ch shows more fluctuations, but has lower values
at the beginning of the experiment.

The same trend as in the concentrations is seen in the calculated variances which
stay at a constant level over time, but do not reach the level of the stochastic
homogeneous blend.

The calculated variances for the blending experiment, as shown in the bottom
graph of Figure 5.26 show the typical behavior for a blending process, i.e., a
decrease with time. The process could have been stopped after 70 revolutions
already, as there was no change in mixing quality afterwards.

Similarities and Differences in Experiments

The initial states of both experiments are quiet contrary. The first experiment
started with a stochastically homogeneous blend, whereas the second one started
with a completely segregated blend. Nonetheless, the final blend qualities were
similar but not the same. For example, positions 4 and 6 showed higher amounts
of LM using the premix, compared to experiments with initially segregated
powders. This indicates that powder mixing is dependent on the initial state of the
system. Possibly, very slow mixing dynamics exist that after several thousands of
revolutions would result in identical final states. However, from a practical point
of view our experiments demonstrate that different steady-states are obtained for
different initial condition, underlining the importance of online monitoring of
blend quality.

The variances calculated reflect well the trends seen in the concentrations, and
both methods of calculation give the same results. Whereas σ2

MBSD reflects the
fluctuations in time, σ2

ch reflects the fluctuations in space. Note, the variances
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were based on the empirical concentration, attainment of a steady state would
indicate “well-mixedness”. This is avoided by calculating variances based on the
nominal concentration.

5.4.7 Improvement of The Chemometric Model

The presented chemometric model should be improved. Hence, the reasons for
bad model performance, and ways to improve the model were analyzed next, as
shown herein.

Difference between Calibration and Measurement

This time premixed blends were prepared in the tumbling blender for 20 min
at 50 rpm to ensure homogeneity. Blends, with more concentration levels than
before, i.e. with API contents of 0, 5, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 95

and 100% (w/w) were prepared for calibration. The premixes were placed on the
turntable and spectra recorded.

The following differences between the calibration and in-line measurements were
observed:

• Although the powders were moving in both cases (i.e., rotating disk and
blender vessel) ensuring that the sampled powder mass was sufficiently
high, the speed at which the powders were passing through the incident
beam of the optical fibers was different.

• During the blender measurements, only a sapphire window separates the
fiber from the vessel interior, whereas during the calibration there was a
small gap of air to prevent powder segregation due to the probes.

• The optical fibers were bent slightly differently which might have led to
artificial absorption bands in the spectra.

Spectral Acquisition and Pretreatment

Spectral pre-treatment was applied to separate the chemical signature contained
in the signal from the physical interferences due to differences in the geometries
and measurement conditions.
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The following spectral pre-processing methods were used in combination since
they enhance the spectral information related to capturing the blend evolution
and powder properties. They slightly changed compared to before, to enhance
the predictive power for the developed models.

• When exporting the spectra, intermediate points are interpolated automati-
cally by the software of the spectrometer, giving a resolution of 2 cm−1. To
avoid dealing with that unnecessarily large amount of correlated data, 8

measurement points were averaged again, restoring the range of 16 cm−1.
Thus, the final number of spectral points is 368.

• Performing a standard normal variate (SNV) of the spectra within the range
of 10,000 – 4560 cm−1. The cut-off at the low energy end of the recorded
spectra was chosen to ignore the region where the optical fibers cut the
signal.

• The region above 7226 cm−1 does not contain any of the constituents’ chem-
ical signatures, and was therefore neglected. This leaves the region of 7226

– 4560 cm−1 containing the (partly overlapping) specific bands of ASA and
LM, used for further analysis.

A principal component analysis (PCA) was carried out to determine the differ-
ences between the calibration and in-line spectra.

Every spectral measurement of the calibration samples is represented in Fig-
ure 5.28 by a colored dot. Overall, the calibration samples are arranged in the
form of an arch, ranging from 0% at the right end to 100% at the left end of the
arch. Superimposed on this is a typical blending experiment with 50% (w/w) of
LM on top of 50% (w/w) ASA.

These in-line measurements are represented by the line-connected points. Dif-
ferent measurement positions originated in different positions in the score plot,
due to their different initial concentrations of ASA. However, they stay on the
same curve as the calibration samples, and end up at 50% concentration of ASA,
indicating that steady state was reached where all positions showed similar
spectra. Moreover, the in-line measurements follow the same trajectory in scores
on the arch as the calibration measurements. This means that the model was not
affected by the difference in spectral acquisition.

However, the points representing the spectra measured in position 4 were slightly
off the trajectory. Changing the position of the impeller made it clear that the
deviation originated from the impeller blade which in this case was in front of
position 4, as seen in Figure 3.3.
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Figure 5.28: Score trajectory curve for the blending process. Calibration samples are represented
by the colored dots. The black line represents the measurements during an actual
blending process. The in-line measurements follow the trajectory of the calibration
mostly.9

9With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., figure 3.
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Calibration Based on Single vs. Multiple Probes

The multi-probe measurement system allows two different approaches for devel-
oping a predictive model:

• A model for every single probe (i.e., for each of the six measurement
probes).

• A general model for all six probes which incorporates all calibration data
of the different probes.

A distinct model for every position takes fiber-specific influences into considera-
tion which can be everything in the light path, ranging from the fiber switch to
the probe, including the unique bending of the fibers. In contrast, a general model
incorporates all of these effects in one global model. Although the predictions
may be less specific with respect to individual positions, this model is more
robust since all the disturbances are accounted for and unknown but similar
disturbances have little effect on the predictions.

Figure 5.29: Observed vs. predicted plot of the PLS regression, including all positions. The red
points represent the actual model, the blue points are obtained via cross validation.
The best-fit line for both is plotted.10

The statistics of single-probe and general models are summarized in Table 5.2, an
observed vs. predicted plot is shown in Figure 5.29. The models were based on

10With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., figure 4.
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the same original data and consist of 2 PLS-components. The statistical summary
for the regression models and the cross-validated models indicate that the single-
probe models seem to perform better. However, the confidence intervals on the
predicted values in the in-line experiments, as shown in Figure 5.30, indicate a
different behavior.

For the calculation of the confidence intervals, it is taken into account, how good
the PLS-models, based on offline spectra, can reflect the newly gained in-line
spectra. Unexplained differences between in-line and offline spectra lead to a
larger confidence interval. Hence, the confidence intervals give a more reliable
estimation of the models’ reliability.

A typical blending experiment predicted by the single-probe models and the
general model is shown in Figure 5.30. As can be seen the confidence inter-
val is larger in the single-probe models compared to the general model (with
the notable exception in position 4, where the passing impeller influenced the
measurement). A greater confidence interval typically suggests that there are
unexplained differences between calibration and in-line measurements, leading to
uncertainties in predictions. In our case, this may be due to the different bending
of the fibers for calibration and in-line measurements. We therefore opted for the
general probe model.

Determining Blending Dynamics, End Point and Homogeneity

In principle, two main questions arise during blending processes: (1) has the
blending process reached its end point (i.e., can the blend quality be improved
by further blending) and (2) is the blend homogenous?

Note that only a fraction of the whole powder volume was analysed, and thus
the sum of all measurement positions does not have to be 100%.

To determine dynamics MBSD was used. Before employing it, a Savitzky-Golay
Smoothing was applied to the predictions, with a window of 9 points and a
second-order polynomial to minimize short-term fluctuations. A window size
of 8 measurement points was chosen to calculate the MBSD as this reflects three
times the volume of the standard dosage form (for a tablet of 6 mm in diameter
and 3 mm in height).

For a blend to be considered homogenous, two requirements must be met. First,
the concentration should be within the same level everywhere which can be
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Figure 5.30: The same experiment predicted with the single probe and general models. The shaded
area represents the 95%-confidence interval which is strikingly different for the applied
models.11

11With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., figure 5.
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Slope Offset (%) RMSE (%) R2

Position 1 0.999 0.051 0.876 0.999

1.001 -0.105 1.079 0.999

Position 2 0.998 0.088 1.334 0.998

0.998 0.108 1.477 0.998

Position 3 0.996 0.196 1.985 0.996

0.994 0.250 2.161 0.996

Position 4 0.998 0.105 1.456 0.998

0.996 0.187 1.592 0.998

Position 5 0.998 0.103 1.438 0.998

0.999 0.042 1.555 0.998

Position 6 0.998 0.120 1.553 0.998

0.997 0.148 1.700 0.997

Overall 0.995 0.269 2.298 0.995

0.994 0.270 2.407 0.995

Table 5.2: Summary of the model statistics for the single-probe calibration and general model. The
first row of every pair gives the calibration statistics, whereas the second row gives the
cross-validated statistics.

tested by directly comparing the spectra. Secondly, the predicted concentrations
should be within the specification of the nominal concentration, according to the
fractions filled into the blender, for which a valid prediction model is needed
[83].

However, NIR is limited by the sampling position and only provides information
regarding the surface region of the blend. Our investigation offered the opportu-
nity to examine the blend in different positions at the bottom and on the side. As
such, concentration in the different positions, especially in the vertical direction,
could be monitored. However, we still cannot “look” inside the blend.

5.4.8 Different Blending Conditions

Replication experiments showed that the same dynamics were present inside the
vessel under the same conditions, as will be presented in the next section. Thus,
experiments were reproducible. In addition to that, the loading protocol of the
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vessel was varied in order to monitor the emergence of two blending regimes.
Fast blending which was observed for low fill levels and near the impeller, was
affected by segregation. Slow blending which was detected for high fill levels and
far from the impeller, took longer to approximate the homogenous mixture.

Reproducibility of Experiments

Several experiments with the same composition and fill order were performed
to investigate the reproducibility. 70 g of LM were loaded on top of 70 g of ASA
(resulting in H/D = 0.35). Positions 1, 2 and 3 were at the bottom of the vessel, as
shown in Figure 3.3. They were separated from the blade by a layer of powder. As
can be seen position 3 was a critical location, as it was located directly at the edge
of the vessel. Position 4 was on the side wall, at the height of the impeller blades
which affected the measurement signals. The integration time of the spectra was
optimized to reduce this effect, but it still resulted in a larger confidence interval
at this position. Position 5 was above the blade and position 6 was slightly under
the powder fill level.

Three runs with the same composition and fill order were performed to study
the reproducibility of our setup. The predictions made using the PLS model are
shown in Figure 5.31. Positions 1, 2 and 3 were at the bottom of the vessel.

As pointed out above, at the beginning of the experiment, pure ASA was at the
bottom and in the lower part of the vessel (positions 1-4), whereas LM was in
the upper part of the vessel (positions 5, 6). As can be seen in Figure 5.31 the
API concentration decreased to approximately 50% (the final value for a perfect
mixture) at positions 1 and 2 at the bottom of the vessel and seemed to reach a
homogeneous state within roughly 500 s.

At position 3 in the corner of the blending vessel, the API concentration decreased
as well. However, in 2 out of 3 experiments it reached a much lower value, while
in the third experiment, just a slight decrease occurred. In addition, different
experiments showed a different trajectory. Thus, some segregation occurred and
powder seems to have stuck to the wall at these positions. Additionally, there
were random events, e.g., when powder gets stuck and is removed again. Hence,
these positions are critical for mixing and powder stuck to the wall should not
be emptied into the processing container after blending, unless it is deemed
negligible in amount. Note however that if a large amount of a specific material
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Figure 5.31: Monitoring a blending process, where initially seventy grams of LM was deposited on
70g of ASA.12

12With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., Figure 6.
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Figure 5.32: Monitoring a blending process, where initially seventy grams of ASA was deposited
on 70g of LM. This is reversed compared to figure 5.31, whose mean concentration
and standard deviation are shown by the gray lines.13

13With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., Figure 7.
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selectively sticks to the wall (e.g., in small blenders with a high surface-to-volume
ratio), the overall blend composition may be significantly affected.

Position 4 showed an interesting behavior, as it started with pure ASA. However,
quickly LM concentrated at this position (overshoot) and it reached a final steady-
state of about 50% only after many revolutions. This seems to indicate that ASA
at the bottom of the vessel was pushed upwards by the blade, to the region above
the blade, and trickled down afterwards. Positions 5 and 6 showed a decrease
in LM and an increase in ASA concentrations. Position 6 which was the highest,
showed a slower convergence to the nominal state. However, the convergence
to the steady-state was faster at these positions compared to positions 1 and 2.
Overall, the experiments show fluctuations in the order of 10% API in the range
of 100 s. This was a real effect due to a small sample size but could be observed
for the whole duration of the experiments.

Influence of Loading Order

Since the two materials showed significant differences in particle size and shape,
variations in the mixing time and performance were expected, depending on the
loading order. Therefore, experiments with reversed loading order, i.e., 70 g of
ASA on top of 70 g of LM, were performed. They were repeated three times to
test the reproducibility of the results. The results are presented in Figure 5.32.

As before, similar mixing dynamics were observed. However, there were some
differences. For position 4 which was covered with LM in the beginning, the
previously observed overshoot did not appear. The ASA was only transported
down (and LM up). Moreover, the blending time until homogeneity in the lower
part of the vessel was reached was significantly increased. In contrast, the mixing
in the top part of the vessel was faster. For position 3 the deposition of powder
was observed again.

As in the previous experiments, we observed that there was more than the
expected concentration (i.e., 50%) of ASA in the upper half of the vessel and less
in the lower part, indicating the segregation tendencies of the two-component
system ASA and LM. However, in the latter experiments (ASA on top) the effect
was slightly more pronounced. Long term dynamical studies should reveal if
in both cases an identical final steady state could be reached. The times until a
steady state was reached, estimated via MBSD, are summarized Table 5.3.
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Choosing the loading order with ASA on top was favourable in terms of the
required time. However, the reproducibility of the blending time was rather low.
Further, homogeneity of the blend cannot be predicted based on the time it takes
to reach the stationary state, as in different locations different steady states may
exist, e.g., in the case of complete segregation. Therefore, the concentration levels
must be monitored directly at various spatial locations.

The time to reach steady state was defined when all positions (except position 3

due to its location at the corner of the blender) were below the set level of 5%
at the same time. The resulting times (see Table 5.3) provide estimates for the
blending end point. As mentioned earlier, the estimated times until the stationary
state was reached did not necessarily correspond with the overall homogeneity.

LM on ASA Blending Time (s) ASA on LM Blending Time (s)
Experiment 1 441 Experiment C1 339

Experiment 2 472 Experiment C2 315

Experiment 3 414 Experiment C3 458

Mean 442 ± 29 Mean 370 ± 76

Table 5.3: Blending times for different loading orders, until steady state is reached.

Different Fill Levels

The amount of powder used in the above-mentioned experiments was always
140 g which corresponds to a fill level of H/D=0.35. To investigate the respective
contribution of the convective and diffusive mixing mechanisms, the fill level was
varied (H/D= 0.25 (80 g), 0.35 (140 g), 0.50 (200 g), 0.60 (250 g), 0.95 (400 g)). The
height-to-diameter ratio is also shown in Figure 3.3. As for the vessel, diameter
and height are the same and the H/D values are directly the fractions of volumes
filled. Moreover, the fraction of ASA:LM was changed to 20:80, with LM on top.
The loading order was not chosen in order to optimize the blending time, but to
highlight the ASA transport within the powder bed. Clearly, the blending time
increased with the fill level, as shown in Figure 5.33, which illustrates the mixing
dynamics for position 2 at the bottom of the vessel. This position was chosen,
since it clearly reveals the delay in reaching the nominal concentration. For every
fill level, this position was covered by ASA at the start, and should reach the
nominal concentration of 20% ASA.
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Figure 5.33: Concentration change over time at position 2, for experiments with different H/D
ratios.14

The estimated blending times according to the MBSD methodology are sum-
marized in Figure 5.34. A higher fill level resulted in a longer blending time.
However, MBSD might not be suitable for this particular case since at high fill
levels mixing and changes in the spectra are very slow. Therefore, if the same
MBSD limit for all fill levels is used, the blending time for high levels may be
underestimated.

Further it was observed that for a fill ratio of H/D = 0.5, the blending time varied
unexpectedly, when compared to other fill levels. An additional third run was
performed, but showed the same result. The reason for this unexpected behavior
is not clear, and might be a result of a newly emerging powder flow pattern.

Of special interest is the experiment with H/D = 0.95, with blending occurring
rather fast in the beginning, i.e., during the first 500 s. However, after that a state
was reached with nearly no change in the API concentration, but far from the

14With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., Figure 9.
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Figure 5.34: Blending times for different fill levels. Not surprisingly, a higher fill level leads to elon-
gated blending time. Strange though, is the unanticipated behaviour for H/D = 0.5.

nominal value. The predicted concentrations are shown in Figure 5.35 for the
measurement position 2 at the bottom and 4, 5, 6, 7, 9 on the side of the vessel
(see Figure 3.3 for a geometrical sketch).

The different time scales of convective and diffusive mixing could clearly be
observed. First, ASA was at the bottom of the vessel (positions 2 and 4). During
the first minutes of mixing, ASA was transported into the upper regions of the
powder bed, as evidenced by the decrease in concentration in positions 2 and
4. Respectively, positions 5 and 6 showed a significant increase in concentration.
However, the probes at position 7 and 9 indicated no change in concentration.
This can be interpreted as follows: ASA is first transported up in the powder bed
due to the convective flow induced by the impeller. Then, in the intermediate
region of the vessel, ASA particles are transported upwards due to a segregation
mechanism that was already observed above. However, for segregation to occur
the particle bed must be agitated, i.e., a certain fluctuation level of particles (i.e.,
diffusive motion) must occur. This is the case in a defined region above the stirrer,
where an accumulation of ASA particles occurs (as seen in positions 5 and 6).
However, in the top part of the vessel the bed is stagnant, and the granular
temperature is very low. Thus, no accumulation of ASA occurs as can be seen in
Figure 5.35. After 73000 s (approximately 20 hours), the concentration still failed
to reach a steady state. Furthermore, the NIR probes at positions 2 to 6 showed
a concentration above the expected value of 20% ASA since a large portion of
pure LM was still accumulated in the upper part of the vessel and showed no
noticeable mixing at all.
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The edge of the mixing zone is roughly at position 7. Above this position very
little mixing occurs. For a long time, only LM is seen by sensor 7. Concentration
changes very slowly, indicating the slow movement of powder in front of the
sensor at position 7. This is further backed by the large confidence interval which
indicates a low moving speed. However, at a certain time point, concentration
rises continuously within 2000 s to a different concentration level of about 90%
ASA. As no rapid fluctuations can be seen, this might just be a volume containing
mainly ASA crystals, passing directly in front of the sensor. The overall powder
movement is very slow and the receptive area of the probe is just slightly larger
than the mean crystal diameter. Hence we can just predict the concentration of
LM and ASA in the small volume in front of the sensor, seeing the influence of
stray crystals, if the movement of the powder bed is not sufficiently fast.

5.4.9 Conclusions

Our study presents a multiple-probe NIR setup for a lab scale blender. The
interpretation of the spectra was performed using a chemometric model based
on partial least squares regression. Calibration samples for the models were
presented to the probes on a rotating disk. This eliminated the problems associ-
ated with calibrating inside the vessel. It proved to be a rather quick and easy
way to ensure good calibration samples and dynamic measurements, while still
reflecting the dynamic flow of powder inside the vessel.

The setup was suitable for monitoring slow blending processes, allowing us to
scrutinize the powder-blending and segregation dynamics inside the blending
vessel which is impossible with just a single probe. Segregation inside the vessel
during the blending process was observed.

Moreover, we studied the emerging concentration gradient in the vessel which
did not disappear with time. On the contrary, steady states were observed.

• Blending dynamics and time are different for different blender compart-
ments. Thus, monitoring the blender with one probe alone does not provide
a correct assessment of the blend quality. Alternatively, if only one sensor is
available, e.g. for estimating the blending end-point, its position has to be
chosen very carefully.

• The initial state has influence on the quality of the final blend. Initial
variations, e.g. of the loading order, will have influence on the outcome and
required time of a blending process.

147



5 Experiments and Results

Figure 5.35: Example for a long term blending experiment lasting 20 hours. Whereas there is a
large dynamic at the beginning, blending proceeds slower afterwards, and still has
not stopped after 20 hours.15

15With kind permission from Springer Science+Business Media: AAPSPharmSciTech, Moni-
toring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy, 14, 2004, 234-44,
Scheibelhofer et al., Figure 10.

148



5.
4

5.4 Batch Blending Process

• Blending of a premix enables a quick estimation for the possibility of
segregation during process steps.

• Material might get stuck at the wall and edges of the blending vessel which
cannot be observed with traditional sampling techniques, as those always
induce shear, thus breaking up such structures.

Developing a global model for all attached fibers and not separating the models
makes the global model more robust and versatile. Moreover, by considering
the confidence intervals of the predictions made via the PLS-model, additional
information regarding the investigated processes was obtained.

The multiple probe measurements allow a detailed analysis and understanding of
powder mixing processes by gaining spatial information of the local powder con-
centration. For example, we demonstrated how loading order of the investigated
materials resulted in different blending dynamics. Furthermore, increasing the
fill level affected the mixing dynamics, by creating different zones where different
mixing effects dominate, i.e., convective and diffusive mixing. Multi-probe NIR
monitoring allows the detailed monitoring of these spatial mixing dynamics.

Multiple measurement positions open up yet another possibility for determining
the blending end-point. As opposed to comparing subsequently taken spectra,
spectra at different positions can be used to calculate the standard deviation.
Hence, it is possible to find the time point, when a stationary state is reached.
Compared to traditional thief sampling, the advantage of the presented method
is that there is no interference with the blending process itself of any kind.
Nevertheless, as a drawback samples can only be taken at the interface of blend
and vessel. Additionally, it is important to place probes at locations where
sufficient powder movement is obtained, as the sample volume of the NIR probe
is small, and a single stagnant crystal may bias the results. That is, a stagnant
well-mixed area may be falsely reported as being demixed.

In summary, monitoring by multiple points showed that single-point measure-
ments with NIR could lead to misinterpretations of the entire blending process.
Hence, it is essential to choose a proper position – and even better multiple
positions - when monitoring blending processes.
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5.5 Continuous Blending Process

5.5.1 Introduction

Continuous blending is especially useful for the production of a low amount
of especially. The quality of the blend, produced by a continuous blender is
strongly influenced by the quality of the dosing feeders controlling the input of
the blender. The only remaining set-point that could influence the homogeneity
of the blend, despite different blender geometries, is the rotational speed of the
impeller inside the blender. Other possible parameters are predetermined by
production settings, as the substance ratios and throughput.

In the end, the describing quantity is the residence time distribution of the
material inside the blender. The broader the residence time distribution, the
more impeller passings were experienced by the material, leading to a more
homogeneous blend. However, dependent on the throughput and mixer geometry,
a higher rotational speed may either lead to a broadening of residence time, as
the flow pattern becomes more chaotic, or to a shortening, as the material leaves
the blender faster [64, 66, 67, 148–150].

5.5.2 Preparation Steps

In the presented case, basic requirements on the blender, regarding substance
properties and throughput settings were defined beforehand. The fulfillment of
those requirements, the quality of the blend, i.e. homogeneity, and the effect of
various settings should be determined by NIRS.

To successfully determine the concentration and homogeneity at the continuous
blender, several preparation steps were necessary.

• For interpretation of the spectral data, chemometric models were built
offline, and validated at the blender with preblended material. Again the
set-up including the turn-table was used.

• The penetration depth into the blends was determined, as described in
section 5.2. This is necessary to determine the sample volume, and hence
the scale of scrutiny on which homogeneity is tested. Measurements with
NIR usually sample a smaller volume, and thus show larger fluctuations,
than is defined in the requirements. Hence, the experimentally determined
homogeneity has to be corrected for the desired depth of scrutiny.
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• The mass flow leaving the blender was determined via a dynamic balance.
Furthermore the particle speed at the blender inlet and outlet was deter-
mined with the aid of a high speed camera, again in order to determine the
sample volume.

5.5.3 Experiments at The Blender

The multiprobe setup was used in the following to categorize the blender. An
experimental design was created to systematically vary the factors of throughput,
concentration, and impeller rotational speed. The resulting design is visualized
in Figure 5.36.

Figure 5.36: Scheme of the experimental design for testing the blender. The axis represent the
mass flow of the two ingredients. Accordingly, the relative fraction is indicated by
the colored lines. The circles represent testing points, whereas the varying circle size
reflects the different rotational speed settings of the blender.

For measuring during the blending process, fibers were placed at the inlet ports
of the blender, at the outlet, and/or on a conveyer belt placed after the outlet. A
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Figure 5.37: Illustration of the blender, by composition of several photographs. The impeller is
shown opaque, and the hull of the blender translucent. I1, I2, I3 are different inlet
ports, O1 names the outlet port, P1 and P2 are positions of a weir, to dam up material.

sketch of the blender is shown in Figure 5.37, and the acquired data in terms of
mass and concentration during a blending run can be found in Figure 5.38.

Figure 5.38 immediately reveals several facts:

• Between the start of feeding, as seen by the NIR-probe at the blender
entrance, and the blender outlet, time elapses. This time lapse is determined
by the material throughput and blender speed, and describes the amount
of time necessary for the powder to progress through the empty blender.
Furthermore this allows an estimation of the amount of material residing
inside the blender.

• Deviations in concentration are larger at the inlet than at the outlet. This
is a direct effect of homogenization of the powder inside the blender. This
ratio is sometimes used for describing the blender [64].

• The concentration level at the inlet and at the outlet does not agree. The
outlet concentration was ultimately confirmed by taking samples and per-
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Figure 5.38: Measurements acquired during a typical blending run. Shown are the cumulative mass
leaving the blender, as determined by a balance at the outlet, and the API concentration
at the blender inlet and outlet, gained by NIR spectroscopy.

forming HPLC analysis. The deviation at the inlet is caused by two main
reasons: (a) Dust development at the inlet led to a cloaking of the NIR
probe. (b) The powder stream at the inlet is not blended, but just a parallel
stream of two feeders, which leads to a different measured concentration
levels dependent on the point of view of the NIR probe.

The quality of the blender was assessed using two different strategies:

1. When determining the concentration at the output of the blender, vari-
ance and hence homogeneity can be determined. As the output should
be stationary, random samples over time were chosen and the variance
calculated.

2. By simultaneous measurement at the input and outlet of the blender, and
feeding a step function, the residence time distribution inside the blender
was calculated.
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5.5.4 Conclusion and Remarks

Hence, by performing the number of runs according to the experimental design,
the factors determining the hold-up time and mass inside the blender, and the
homogeneity regarding mass flow and API concentration could be determined.
This was done by multiple linear regression, which also allows to calculate a
confidence interval for the factor coefficients and hence a decision about the
significance of the individual factors.

For assessing heterogeneity, the Coefficient of Variation (CoV) was used. Its value
could be modeled with a quality of R2 = 0.78, and the resulting response plot,
showing the expected CoV for different settings, is shown in Figure 5.39.

It could be ensured that the quality of the blend is sufficient. However, only
rotational speed showed a significant influence on the homogeneity. Counter-
intuitively, a lower rotational speed leads to improved homogenization behavior.
Hence, the longer residence time of the material inside the blender outweighs
the slower movement, leading to better mixing.

Figure 5.39: Contour plot of the Coefficient of Variation (CoV) for different settings. Total through-
put and concentration range are predetermined by the process; rotational speed can
be varied. The lowest CoV and hence best mixture quality is found at lower rotational
speed of the blender.

For a more detailed description of the experimental design, the set-up and the
following analysis, the reader is kindly referred to the bachelor thesis of G. Weber
[151], who gives a detailed account therein.
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A next endeavor is to measure inside the blender, in order to evaluate the
development of the blend quality along the blender axis. However severe window
fouling prohibited the acquisition of exploitable data inside the blender.
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5.6 Window Fouling in A Coating Process

5.6.1 Introduction

Sample presentation and spectra acquisition greatly influences the quality of the
obtained spectra, complicating or disabling model building. Hence, effort has
been made to apply the theory of sampling [152] to near-infrared probes and to
present specimen accurately [27, 153, 154].

Especially, window fouling remains a severe issue (i.e., substances sticking to or
even growing on the sensor window, preventing an accurate measurement). This
happens during different processes and depends on humidity, the processed ma-
terial’s attributes, geometry and operating conditions. Once established, fouling
becomes persistent, and thus, must be prevented for accurate measurements [155,
156].

A variety of physical counter-measures has been developed to prevent window
fouling. A looking window in a suitable position that is not affected by fouling,
can serve as a suitable interface, as demonstrated in [157]. Clever design of the
apparatuses and the enclosed air and material streams can prevent window
fouling. [158].

A common method is to introduce a probe-cleaning mechanism (e.g., by wiping)
or at least to clean the probe in a regular interval. For example, Green et al.
proposed an air purge to clean the probe window [159]. A more complex approach
is to use a probe retracting mechanism (e.g., the Lighthouse Probe™ by GEA
Pharma Systems, Belgium) and to clean the probe with solvents and wiping
[160–162]. Additional strategies, e.g., the application of non-adhesive films [163]
and more, exist.

For the process investigated in this study, a hot-melt coating process in a fluidized
bed, such possibilities were considered and, for specific reasons, dismissed.
Specifically, the process deals with lipid coating of substrate crystals, and the
intention is to estimate the amount of lipid coating on substrate crystals. The
system design and the process conditions lead to severe window fouling. Due
to the temperature sensitivity of the lipid, heating of the probes was not an
option. Moreover, since no solvent is used in the actual process, introducing
one for cleaning the probe was not desired, as this might led to contamination.
Furthermore, using an air purge would disturb the sensitive air flow pattern of the
fluid-bed system. Finally, because several NIRS probes are applied simultaneously
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inside the fluidized bed as a strategy to perform three-dimensional process
analysis, there was limited space for cleaning devices.

Thus, a post-measurement strategy was required. The proposed mathematical
method of correcting for window fouling is founded on physical first principles.
As a prerequisite, Extended Multiplicative Signal Correction (EMSC) [98] is used
to split the spectra into different parts. The obtained coefficients are further
used to estimate the distance to the substrate crystals. Thus, these signal parts
provide the basis for correcting for window fouling. Although limited to certain
applications, the proposed method will allow accurate monitoring of complex
fluid-bed processes.

5.6.2 Experimental Setup

Hot-melt Coating

The process under consideration was a hot-melt coating process in a fluidized
bed. The coating process followed a precise sequence. The carrier material was
introduced into the hot-melt coater and a fluidized bed was established. The
product temperature was 55

◦ C. The molten coating, a lipid, was sprayed into the
fluid bed at a certain rate. The pump-head temperature and spray-air temperature
were set to 95

◦ C which ensured a stable process and sufficiently homogenous
coating of the substrate crystals. As a side effect, the probe window was covered
with the coating material too, i.e. fouling occurred.

The recrystallization temperature of the molten lipid is between 69-74
◦ C, and

the process temperature was slightly lower. Since the lipid used as coating has
a freezing point slightly below the feeding temperature, it solidified on contact
with the substrate material. Its behavior was plastic in the solid state. It was not
abraded off the surfaces by the moving crystals, showing a high sticking capacity
on most surfaces of the experimental pilot set-up.

Measurement Equipment

The spectrometer prototype, EVK Helios EyeC Multiprobe Spectrometer, was
used to monitor the process, with a frequency of 105 Hz. Every spectrum had an
illumination time of 1.5 µs. The probes were placed at different parts in the coating
equipment, and observed different levels of fouling. To find a location suitable
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for process monitoring, several probe positions inside the vessel at various
heights and looking in different directions were tested. In the end, the combined
information of three well-placed probes can be used for online evaluation of the
process state. A more elaborate comparison of the investigated positions can be
found in [164].

After every 5.3 s, a pause of 8.3 s was used to empty the computer memory. This
procedure resulted in about 60,000 spectra in 30 min process time.

Overview of Data Handling

When the process was started, spectra were recorded and saved with a timestamp.
Further treatment and calculations happened after the end of the process:

• Calculating the absorbance spectra by using the white and dark references.
• Cropping the spectra to the wavelengths of 1000-2100 nm.
• A median filter over 30 nm was used for the spectra to enhance signal to

noise ratio.
• All spectra with a mean absorbance level above 1.0 were disregarded, since

no or insufficient reflected light was collected to perform feasible EMSC
which would lead to erroneous results.

Further EMSC was performed independently for each time step. With the parame-
ters obtained by EMSC, the proposed procedure for fouling correction (described
in the next section) was applied.

5.6.3 Spectral Interpretation

Physical Background

According to Beer-Lambert’s law (see equation 2.12) the absorbance A is given
by the negative logarithm of the ratio of the collected intensity I (by transmission
or reflection) and the reference intensity I0 (when no sample is present or a
totally reflecting white background is observed, respectively). This absorbance
is a result of the specific absorptivity of the investigated material, multiplied
by its concentration c and the optical path length d in the material. As such, if
not known by other means, the path length and the concentration cannot be
separated by spectroscopic means [92].
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In order to measure the coating mass on the crystals by absorbance, a regression
model can be established and the growth of the coating layer during the process
can be determined. However, a priori it is not possible to distinguish between
coating on the crystal surface and coating on the sensor window, as it is the same
substance. Moreover, large variations between consecutively acquired spectra
exist.

As can be seen in Figure 5.40 the most prominent change in spectra is a large
baseline shift. The standard approach (and often a good choice) is to use a spectral
transformations and to average consecutive spectra which leads to clearer spectra
with less noise. Nonetheless, averaging consecutive spectra over a pre-defined
process time window results in the loss of short-time sensitivity related to process
and measurement variations.

Figure 5.40: Some of the spectra acquired throughout the coating process. A prominent change in
offset and peak heights can be seen.16

Due to the short illumination time, and the small detection area of the bifurcated
fibers, just one or at maximum a few crystals pass the field of view of the sensor
during the acquisition of a single spectrum. Fast captured spectra include the
distance-information of the crystals and avoid averaging out these differences over
time. If several instead of a single crystal pass through the probe’s field of view
during spectral acquisition, the mean distance of those crystals still differs from
one spectrum to the next. To perform this work, there are several requirements:
powders have to be able to be fluidized, to form a fluidized bed with a large

16Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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percentage of voids. In addition, a sufficient amount of material has to be present
in front of the sensor to obtain a strong signal and good signal-to-noise ratio.

Thus, a distinction can be made between the window and crystal coating. This,
however requires understanding of the spectral effects. Specifically, the measured
absorbance ameasured, which is noted down as a vector, as it contains a series of
wavelengths, can be split in several parts:

ameasured = acoating on substrate + amaterial of substrate+

+ adistance to crystal + acoating on window + aresidual (5.16)

In equation 5.16 a substantial part of the absorbance stems from the substrate ma-
terial amaterial of substrate. The contributions of the coating material acoating on window
and acoating on substrate have the same wavelength dependence since they originate
from the same substance.

The distance-to-the-crystal particles contribution has several effects. In general,
the air between the probe window and crystals does not have a notable influence
on the measured spectra. However, as the illumination and detection fiber of
the probes are placed next to each other, and the cupped fibers have a certain
aperture, light intensity is lost. Hence, if a substrate particle is far away, less light
reflected by the substrate crystals is detected; as is sketched in Figure 5.41. This
leads to a high baseline of the calculated absorbance (or pseudo-absorbance)
and comparably weak absorbance bands of substrate and coating material. In
Figure 5.41, the left peak in the sketched spectra corresponds to substrate material;
the right peak corresponds to coating material. In the top row particles are close
to the NIR probe and absorption peaks are clearly visible. In the bottom row
particles have a larger distance to the NIR probe. The absorption peaks are less
intense, but high baseline absorption can be found. On the left side of Figure 5.41

coating is only on the particles, but the probe is clean. Thus, the relative height
of substrate and coating material peaks are in a fixed ratio. On the right side also
the probe window is coated. Thus, the height of substrate and coating material
absorbance do change their ratio as more of the signal is absorbed by the window.
This establishes the basis of the developed method. In our case, at a distance of
more than roughly 0.5 cm, a single crystal is not detected any more.

Finally, the residual may contain the spectrometer drift, unconsidered substances,
stray light and other effects. Spectral transformations, including standard normal
variate (SNV) or Kubelka-Munk transformation are regularly used to remove such
effects, e.g. sample distance, from spectra and hence reduce spectra to contain

160



5.
6

5.6 Window Fouling in A Coating Process

only chemical information [95]. In contrast, here we use this very information of
sample distance contained in the spectra.

Figure 5.41: Sketch of probes (gray) and particles (grey with green coating) at different distances,
and the effect on the recorded spectra. Gray peaks in the spectra represent the substrate
materials, and green peaks the coating material. In the lower left graph, the parameters
as used in equation 5.17 are indicated.17

Spectral Decomposition with EMSC

To split up the measured absorbance into the parts described in equation 5.16,
we adopted the method of extended multiplicative signal correction (EMSC) [98,
165, 166]. The method was already explained in section 2.3.1, and is used here in
the form

ameasured = α · 1 + β · asubstrate + h · acoating + δ · λ + e · λ2 + R (5.17)

The constituents of ameasured represent different physical contributions. 1 was
set to be a constant additive value for all wavelengths and primarily reflects
the influence of the crystal distance. A high value of α corresponds to a larger
distance of the particles. asubstrate is a typical spectrum (taken offline) of pure
substrate material. Therefore, if substrate particles are near the probe window,
and give an intense absorption spectrum, β is high. Since α and β depend both
on particle distance, they show a correlation, as is shown in Figure 5.42.

17Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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Figure 5.42: EMSC parameters α and β during a coating process. Both are dependent on the particle
distance, and hence show a strong correlation.18

acoating describes the coating spectrum on the crystals. It was obtained by taking
offline-spectra of the samples collected during the coating process. A principal
component analysis was performed, and the loadings of the first component,
representing the coating, were taken. Unlike a pure coating sample, this takes
into account the matrix effects of the crystal substrate material.

λ and λ2 represent linear baseline offset and curvature. λ is a vector ranged
from -1 to 1, with the number of measured wavelengths defining the number of
elements. λ2 is the element-wise square of this vector. Therefore, the parameters
δ and ε can correct for the curvature of the spectra that was caused, for example,
by an outdated background measurement.

As the cropped spectra consist of 175 elements, the scalar parameters α, β, h, δ, ε
are overdetermined and estimated using a classical least squares algorithm, for
every time step independently. R is the residual which is the difference between
the sum of the constituents and the actual measured spectra. Hence the length
‖R‖ must be minimized in the least squares method. Furthermore, it serves as
a parameter indicating the overall quality of the least squares fit. A different
structure of a measured spectrum would lead to an unexpectedly large ‖R‖.

18Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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The obtained parameters provide valuable information regarding the process.
This is shown in Figure 5.43. The parameters α and β are fluctuating randomly
within a certain range. This reflects the varying distance of observed crystals.
While for parameter α no long-term trend can be observed, the mean of parameter
β shows a growth with time. The origin of this effect will be explained later. At
the beginning of the process, the fluid bed was not fully established yet, most
likely leading to a direct contact of the particles with the probe, resulting in the
peak at process start.

Figure 5.43: The obtained EMSC parameters over the coating process. The dots mark individual
measurements and the black line is a moving mean over 1 s.19

By examining the parameter h, the amount of coating in the field of view of the
probe can be estimated. However, as the coating spectra are the same on the
crystals and on the window, it is impossible to distinguish between these two
contributions yet.

The parameter δ shows a certain trend over time which might be related to a
slight shift in the background, connected to temperature changes in the measure-
ment set-up, or changes in the physical appearance of the investigated material.
Parameter ε does not show any trend. It is important to test if δ and ε are smaller

19Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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than the sum of α, β, h (with all the a’s normalized). If this is not the case, the
underlying corrections would be considered unrealistic. Although the residuals
also increase with time, they were very small, compared to the total sum of a
squared spectrum (>10), which confirms that above assumptions are valid.

Compensation for Window Fouling

The difference between the coating on the sensor window and that on the
substrate particles is: the former is visible at all times, while the latter just
appears when there is a substrate particle in front of the sensor. As particles pass
by the probe window at different distances, the parameter of coating h varies.
However, since the distance is also indirectly “measured” by the contribution
of the crystal material, one can distinguish between the contribution by crystal
coating or window fouling. Thus, there must be an additional term included in h
for the window coating which is influenced less by the distance to the crystal.
Ideally, only fouling would be observed when no crystal is present (i.e., when
β = 0). In practice, for reflected light to be detected a crystal must be in front of
the sensor since the coating on the sensor window is not opaque or thick enough
to act as a sufficient reflector. The spectral signal-to-noise ratio in that case is
insufficient for an accurate EMSC parameter estimation. As such, these spectra
have to be excluded from the analysis.

By plotting parameter h against parameter β, we observe, as expected, an increase
of h with β. It is now possible to represent the parameters as

h = hcoating · β + hfouling (5.18)

where h is still the coefficient obtained by EMSC; hcoating originates from the
coating on the particles and is directly proportional to β since the substrate shows
the same effect of distance (as indicated in Figure 5.41) and hfouling represents
the window fouling. When the probe is clean, the line passes through the origin
(β = 0, hfouling = 0), where no coating and no substrate material is observed.
However, as the amount of coating on the window increases, this line moves
towards a higher hfouling value, indicating the presence of coating without a
crystal, i.e. window fouling.

Figure 5.44 shows a whole coating process in terms of the parameters β and
h. Every spectrum corresponds to a single point in this parameter space. To
correct the crystal coating analysis for window fouling, the following strategy
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was adopted: For spectra with β < 0.1, which indicates that the substrate crystals
are far away, the moving mean for β and h over 60 spectra (equivalent to 0.57 s)
is calculated. For spectra with β > 0.2, which represent close-by crystals, again
a moving mean over the coefficients is calculated (indicated by the black lines
in Figure 5.44). The spectra between β = 0.1 and 0.2 are neglected. Those two
moving means are then used to determine hcoating and hfouling according to
equation 5.18.

When interpreting equation 5.18 as a straight line, the offset in Figure 5.44

represents the part of the coefficient h due to window fouling, and the inclination
the part due to the crystal coating as shown by the dashed line. For convenience,
hfouling is the inclination times 0.22 (the mean β value for all β > 0.2) in order to
preserve the size of the original coefficients.

Figure 5.44: EMSC parameters h over β during a coating process. Every point represents a recorded
spectrum, and color is chosen according to process time. In the beginning of the
process, no coating is visible, only crystals at different distances (lower blue part of the
data). With time passing, increasing coating becomes visible, as indicated by the shift
of the data points in the ordinate direction. On the right side of the figure this trend
is clear. It shows the superposition of coating on the pellets and the probe window.
On the left side, the coating on the probe window is dominant and the pellets and
their coating appear fainter to the sensor. The black lines represent the moving means
for low β and high β values (both start at zero.) The dashed straight line represents
equation 5.18 at the end of the coating process.20

20Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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To confirm this interpretation, two preliminary experiments were conducted.
First, a process without any coating was performed (Figure 5.45). The coefficient
β which represents the crystals, varied strongly according to the changing crystal
distance. The coefficient h which represents the coating, is scattered around zero.
No trend with time is observed.

Figure 5.45: The obtained EMSC parameters β and h for a process where no coating was applied.
Whereas the change in β still reflects the varying particle distance, h is distributed
around 0 during the whole process, as no coating is seen.21

Second, samples collected during various intervals in the coating process were
analyzed offline. Therefore, it is guaranteed that the probe window is free of
coating (Figure 5.46). The spectra were recorded at varying positions with respect
to the samples. When fitting a straight line through the coefficients obtained via
multiple measurements of one sample (i.e., one defined coating thickness), the
intercept at the y-axis is close to zero, and does not follow any trend.

To further confirm that the correction procedure for the amount of coating de-
livers correct results, offline samples (with a clean probe window) and inline
measurements (with gradual window fouling) are compared from several ex-
periments and time steps. The data treatment is exactly the same, except for
the fouling correction, and the corrected (hcoating) and uncorrected coefficients
(h) are compared in Figure 5.47. The corrected coefficients show a much better

21Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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agreement with their offline counterparts than the uncorrected. Additionally,
variations in the corrected coefficients are much smaller, indicating that the effects
of different probe positions, and hence fouling behavior, are corrected for.

Figure 5.46: The obtained EMSC parameters β and h for samples measured offline. β and h show
the same correlation as on-line. Points represent individual spectra and lines a linear
fit for the respective time window.22

As the coating forms a shell around the crystal, geometry factors must be taken
into account to establish a connection between the coating mass, measured by
NIR, and coating thickness which is the true “critical quality attribute” [132]. The
substrate particle size in our case was 250 µm Feret diameter, and the desired
coating thickness at the end of the process was 40 µm. For several runs, these
values were confirmed based on microscopic images obtained with a Leica DM
4000 microscope equipped with a Leica DFC 290 camera. This allows to establish a
relationship between the absolute coating thickness and the value of hcoating(t).

An automated script can now handle these corrections, and further work will
focus on the actual observation, state estimation, control of the fluid bed and
testing its general purpose.

22Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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Figure 5.47: Comparison between off- and in-line measurements. The upper and lower figures show
the coefficients without and with correction for fouling, respectively. Different colors
indicate different batches, the error bars are standard deviations for measurements in
different positions in the vessel (inline) and the thieved samples (offline). The statistics
of the regression line are in the top left corner. The corrected coefficients are in better
agreement with the offline samples. Furthermore, the deviations in different batches
are reduced, indicating that window fouling is not the same for every batch and
position.23

23Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.

168



5.
6

5.6 Window Fouling in A Coating Process

Limits of The Correction

There are limitations to the proposed correction. The procedure is based on
the assumption that the material causing the fouling is purely coating. Further,
crystals at different distances must be detected as discussed above. To enable this,
a sufficient signal to noise ratio is needed.

Figure 5.48: The obtained EMSC parameters β and h for a coating process. The regions mark
various extreme cases: I) Regular process, II) too large overall absorption, III) unusual
substrate absorption, IV) coating dominated spectra, V) negative coating;24

In Figure 5.48, a typical process is depicted in the β− h parameter space. Moreover,
the limitations are indicated, dividing the graph in several regions.

Regular measurements are found in region I, where the discussed correction
procedure can be applied. In region II, the signal of the substrate crystals is
very weak, and the signal to noise ratio would not be sufficient to perform
an EMSC. Such spectra were recorded, but were discarded by the exclusion
of measurements with a mean pseudo-absorbance higher than 1. As fouling
increases, more and more radiation is absorbed, leading to the broadening of
the region with increasing parameter h. The border between the regions I and
III is given by the most intense absorption spectra of the substrate material,
and spectra inside region III are usually not measured. Again with increasing

24Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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coating, the absorption of substrate material decreases, leading to the expansion
of region III along the y-axis. At the intersection of region I, II, III, and in region
IV, just coating and noise is seen, invalidating the mathematical correction. Finally
region V describes the physically impossible state of less than zero coating and
cannot be observed.

A time delay in interpreting the spectra is essential for the moving mean to be
calculated. A delay of about 10 s was required to correct the values. The quality
of spectra needed, and the time windows used in the calculations were based on
existing process understanding and initial testing experiments and calculations.
For other processes, these values may be different and must be determined which
may turn out to be a time-consuming procedure.

5.6.4 Process Examples

Various typical runs of the coating process are discussed in this section. In
the following figures, hcoating(t) will be given as fraction of the desired coating
thickness. Moreover, to reduce fluctuations, the mean of 100 acquisitions steps
(approx. 1 second) is shown, as well as the standard deviation for this 1 second.

A typical desired coating run is illustrated in Figure 5.49 (it is the same run
as in Figures 5.43 and 5.44). The upper line represents the amount of coating
(hcoating) detected on the substrate particles, in fractions of the desired amount.
After some disturbances at the beginning of the process, the continuous growth
of coating can be observed. The increase is linear in both cases, since the amount
of the added liquid is linear with time. The lower line represents the amount
of coating attributed to window fouling (hfouling). This indicates that the layer
of coating on the probe window also gradually grows with time. Without the
applied correction method, one would observe the sum of both curves. The
process ends after approximately 50 min, when the crystals have received the
desired amount of coating.

What is notable in Figure 5.49 is that it shows the simultaneous acquisition of
spectra at different positions inside the fluid bed. This allows a much more
powerful estimation of the process state, a rough location of fault development,
the cross control of different sensors, and much more. As this is a large topic
on itself, the reader is referred to [164], where the advantages of the multipoint
system for the fluid bed are discussed extensively.
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Figure 5.49: Example of a typical coating process, monitored at several positions. The blue lines
correspond to the estimated amount of window fouling, and the red line to the amount
of coating on the substrate material. The dashed lines give the standard deviation.

Two further examples are discussed. Figure 5.50 shows in the upper part a process
with an unclean probe, i.e., there is still a layer of coating on the probe from a
previous run. Already at the beginning, the layer of coating on the probe window
is detected. Nonetheless, the growth of coating on the crystals can be observed.
However, an unusual behavior can be seen in the beginning of the process, for
unclear reasons.

For the last example, the supply of the coating material was suspended for 25 min
(Figure 5.50, below). During that time the amount of coating remained the same
on the probe window but seemed to have slightly decreased on the crystals,
probably due to abrasion. The process was run for a longer time than usual and
the final amount of coating applied is more than desired.

For all three mentioned processes, the coating mass followed a linear growth
trend in the beginning of the coating process which reflects the linear nature
of feeding of the coating. However, as the process continued, this trend slowly
declined, due to the increasing thickness of the coating and the exponential decay
of near-infrared light in the coating layer, leading to a smaller contribution of
lower coating layers in the absorption spectra.
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Figure 5.50: Examples of untypical coating processes. The blue lines correspond to the estimated
amount of window fouling, and the red line to the amount of coating on the substrate
material. The dashed lines give the standard deviation. The upper picture shows a
process, where the probe was already coated at the beginning of the process. In the
lower picture the addition of coating material was halted for 25 minutes.25

25Reproduced from Scheibelhofer et. al., Journal of Near Infrared Spectroscopy, Pharmaceutical
Special Issue, 2014 (in press). Copyright IM Publications 2014.
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5.6.5 Results

A hot-melt coating process in a fluidized bed reactor was investigated, and the
growth of coating that resulted in window fouling was monitored. The proposed
mathematical treatment allowed the elimination of the influence of window
fouling on the measurements, without changing the measurement geometry.

Specifically, the presented method allows a distinction between coating on the
crystals and coating on the probe window resulting in fouling. We have shown
that, rather than averaging scans to eliminate the unwanted spectral variability,
this variability can be used to obtain information regarding the process state
which is a novel approach to monitor such processes.

The benefits of our method include the elimination of cleaning cycles during
the running process which may lead to a black out of measurement. However,
the presented approach cannot substitute window cleaning in between different
batches or over long operation times.

Although the presented method has limitations, it can be used for a variety of
other processes, where window fouling presents a problem. If sufficient spec-
tral data is available, the presented procedure may also be well-suitable for
reevaluation of historical data.
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Understanding production processes of pharmaceuticals is crucial, in order to
guarantee the potency and safety of the medicine. In this work, NIR spectroscopy
was used to create process data, and thereof process knowledge. To this advance,
systems enabling synchronous measurements at several positions were used. Such
systems are novel, and hence were reappraised for their utility and interpretation
possibilities, to afterwards add to process understanding.

Providing automatic and contact-free non-invasive monitoring, near-infrared
spectroscopy is the non-destructive method of choice. Furthermore, with the
current interest in continuous processing, the speed of spectroscopic methods,
in particular of near-infrared spectroscopy, offers a significant advantage. In this
work NIRS has proven to be a versatile tool for the monitoring of several different
processes.

Since pharmaceutical processes often involve air/moisture sensitive and/or high-
potency substances, transport between unit operations and processes must be
carefully contained. Hence, the proper probe should be chosen carefully. The
illumination and detection area, the position and probe to sample distance, the
chemical inertia, possibilities to clean the probe and much more have to be
considered. Therefore, the right set-up is crucial. As a consequence, the effect
of different sampling parameters; and the effect of spectral treatments was
considered in this work.

To maximize process information it is desirable to measure at multiple positions
either in parallel production lines or at consecutive steps or even at several
positions in one unit operation. Different possibilities enabling parallel sampling
exist, of which three were used in this work. So the question of comparability
between measurements and the transferability of chemometric models is of
imminent importance, and appears throughout the thesis several times.

For the monitoring of an open powder stream, leaving a dosing feeder unit,
hyperspectral imaging was used. Hyperspectral imaging successfully allowed to
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detect impurities, determine the concentration of trinary mixtures, and finally to
asses the homogeneity of the powder stream at varying scrutiny.

For the monitoring of a blending process, a FT-spectrometer in combination with
an optical fiber switch was used. A customized blending vessel enabled to access
the blending process at several positions. Thus, following the distribution of
chemical entities inside the blending vessel via spectroscopic means, gave access
to a picture of the blending dynamics inside the vessel, which would have been
impossible with just a single probe. Even more extreme, in the case of blending,
it was shown that the naive use of a single probe can lead to a misinterpretation
of the blending quality.

Finally, the combination of fiber connective optics and hyperspectral imaging
units leads to a synergy of the benefits using the versatility of probes with speed
and parallel abilities of imaging systems. In this work, such a multipoint NIR
spectrometer based on an adapted hyperspectral imaging system was used.

As such combined systems are still rare nowadays, a number of basic perfor-
mance tests were performed, to appraise the benefits of this system. Within the
pharmaceutical hot-melt-coating process discussed here that was monitored with
this device, it was shown that it is not useful to implement further variables into
the model to correct for port and position. In contrast, the simple application of
a model by joining all sensors shows the best performance, whereas overfitting
appears otherwise.

An emerging problem when operating the coating process, was window fouling.
As a counteract, a mathematical treatment was developed, to distinguish between
coating on the probe window, and coating on the processed particles, which is
also presented in this work.

In the end, it should not be concealed that handling the emerging large data
volume turned out to be a complex task, even for modern equipment.

All in all, the application of multipoint-measurements turned out to be a suitable
and powerful method to deliver information of the investigated processes. It
enables to clarify, if unexpected measured or predicted values are caused by errors
of the measurement system, or have their origin in the monitored process.

The ability of model transfer between ports, i.e. positions, opens up a field of
possibilities, e.g. several NIR probes at the same process allow the development
of self-referencing methods. Hence, different sensors can control and correct
themselves. For example, a mechanism of reacting to sensor failure can be
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established. Furthermore, having several points of investigation at a process step
clearly enhances the abilities for process control and understanding.

The sample size, and desired depth of scrutiny, when measuring at pharmaceuti-
cal processes is not straightforward, and discussions on the correct application
are still going on at the very moment. In future tasks, the combination of several
sources of information to understand a process will become increasingly impor-
tant. Measurements of spectrometer and probe combinations, suitable for the
task at hand, as well as information gained by univariate sensors, e.g. pH-values,
must be combined to enlarge the knowledge, and finally physically apprehend,
already existing, but often just poorly and empirically understood processes.
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