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Abstra
tThe ideal kink mode and the resistive wall modes are studied in 
ylindri
algeometry within the magnetohydrodynami
 (MHD) plasma model and the ki-neti
 plasma model proposed by Heyn et al [Nu
l. Fusion 46 (2006) S159, Phys.Plasmas 18, 022501 (2011)℄. The kineti
 model a

ounts for Landau damping,transittime magneti
 pumping (TTMP), and Coulomb 
ollisions. Results forthe reversed �eld pin
h plasma are 
ompared to the magnetohydrodynami
 re-sults obtained by Guo, Freidberg and Na
htrieb [Phys. Plasmas 6 (1999) 3868℄.Stabilisation of the external kink mode by an ideal wall as well as stabilisationof the resistive wall mode by toroidal plasma rotation are obtained. In 
ontrastto MHD modelling whi
h predi
ts a stability window for the resistive wall posi-tion, kineti
 modelling predi
ts a one sided window only, i.e. the resistive wallmust be su�
iently 
lose to the plasma to a
hieve rotational stabilisation of themode but there is no lower limit on the wall position. Stabilising rotation speedsare found somewhat smaller when 
ompared to MHD results. In addition, forthe present plasma 
on�guration the kineti
 model predi
ts resistive wall modestabilisation only in one dire
tion of toroidal rotation. In the opposite dire
-tion a destabilising e�e
t is observed. This is in 
ontrast to MHD where modestabilisation is symmetri
 with respe
t to the dire
tion of the toroidal plasmarotation.
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KurzfassungIdeale Kink Moden und resistive Wand Moden werden mittels eines magne-tohydrodynamis
hen (MHD) Plasma Models sowie eines kinetis
hen PlasmaModels, wel
hes in Heyn et al [Nu
l. Fusion 46 (2006) S159, Phys. Plasmas18, 022501 (2011)℄ aufgestellt wurde, unter Verwendung von Zylindersymmetriestudiert. Das kinets
he Model berü
ksi
htigt Landau Dämpfung, transittimemagneti
 pumping (TTMP) sowie Coulomb Stösse. Resultate für die Anwen-dung in einem reversed �eld pin
h Plasma werden mit magnetohydrodynamis-
hen Ergebnissen von Guo, Freidberg and Na
htrieb [Phys. Plasmas 6 (1999)3868℄ vergli
hen. Erzielt wird die Stabilisierung externer Kink Moden dur
heine ideale Wand sowie die Stabilisierung der resistiven Wand Moden dur
hPlasma Rotation. Im Gegensatz zur MHD Modellierung, wel
he ein stabilesFenster für resistive Wandpositionen prognostiziert, wird dur
h das kinets
heModel ledigli
h ein einseitiges Fenster vorherbestimmt, d.h. die resistive Wandmuss si
h genügend nah am Plasma be�nden, um eine Stabilisierung dur
h Ro-tation zu bewirken; es existiert jedo
h kein unteres Limit für die Wandposition.Rotationsges
hwindigkeiten wel
he zur Stabilisierung notwendig sind, errei
hennur einen Bru
hteil im Verglei
h zu den MHD Ergebnissen. Zusätzli
h prog-nostiziert das kinetis
he Model für die vorliegende Plasmakonfugiration eineStabilisierung der resistiven Wand Moden für nur eine Ri
htung der toroidalenRotation. In entgegengesetzter Rotationsri
htung wird ein destabilisierenderE�ekt beoba
htet. Dies steht im Gegensatz zum MHD Model, bei wel
hemdie Rotationsstabilisierung symmetris
h bezügli
h der Ri
htung der toroidalenPlasmarotation ist.
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1 Introdu
tionAfter several years of development, magneti
ally 
on�ned plasmas are the bestinvestigated and best understood plasma 
on�gurations that are 
apable forhandling fusion pro
esses. The huge amount of te
hnologi
al progress on toroidally
losed plasmas like the Tokamak makes this 
on
ept hopeful for rea
hing a 
om-mer
ially interesting test-rea
tor level.Experiment Tokamaks like JET, DIII-D or ASDEX, represent magneti
ally 
on-�ned plasma 
on�gurations whi
h rea
h the most progressive fusion handlingthat is a
hievable at the moment. The next step on the way to rea
tor s
alefusion experiments will be the ITER Tokamak where plasma phenomenons onrea
tor s
ale should be studied.Instability resear
h turned out to be one of the most important topi
s in modernfusion development. Various pro
esses in fusion plasmas 
an lead to unstable
on�gurations during fusion operation. Mostly the energy release of these in-stabilities is high enough to harm the vessel material of the rea
tor and lowerthe e�
ien
y of the plasma 
on�nement and lower the output or even stop thefusion pro
ess. Due to the di�erent physi
al nature of the destabilising for
es,it was yet not possible to des
ribe an universal model whi
h would be able tohandle all instabilities at on
e and des
ribe them at di�erent plasma limits oftemperature, density, magneti
 �elds and plasma volume. A lot of work hasbeen done des
ribing 
urrent and pressure driven instabilities by a �uid model.The magnetohydrodynami
 (MHD) approa
h is able to model instabilities under
hanges of several plasma parameters like vessel dimension, density and tem-perature 
hanges, plasma rotation (plasma �ows) and even resistivity. A se
ondapproa
h is a
hieved by the kineti
 des
rition of parti
ular parti
le motion, han-dling their ma
ros
opi
 behaviour from the thermodynami
al point of view. Itis expe
ted that the appli
ability of either the kineti
 or the MHD model shoulddepend on the range of plasma density and temperature and the related parti
leintera
tions in the plasma. In re
ent studies it was demonstrated that MHDtheory has strong limitations in its appli
ability for modern Tokamak parame-ter range (Refs. [15, 16℄). Namely, the radial s
ale of resonant layers in plasmais 
omparable to the ion Larmor radius. Therefore it is interesting to 
he
kthe MHD results for various instabilities 
onne
ted with resonant magneti
 �uxsurfa
es (kink modes, resistive wall modes) using the kineti
 approa
h.A 
omprehensive overview on existing modelling and experiments of the stabil-isation of the external kink and the resistive wall mode is given in Ref. [6℄.It turned out that the 
ommonly used te
hniques for mode stabilisation are
hanges of the position of the vessel wall and toroidal plasma rotation. Anideal approximation 
onsiders an ideal 
ondu
ting wall whi
h is moved radially7



inward until it rea
hes the position of mode resonan
e. If the wall is 
onsideredto be resistive, a low frequent mode (resistive wall mode RWM) remains afterthe resonan
e position is rea
hed by the wall. These mode 
annot be stabilisedby wall positioning but by a toroidal plasma velo
ity.The used models are based on a numeri
al solution of the full set of Maxwellequations in 
ylindri
al geometry with the plasma 
urrent density taken fromeither the MHD or the kineti
 model. The approximations and derivation stepsof the method developed in Refs. [16, 20℄ are dis
ussed. The appli
ation ofa
tion-angle variables done by Ref. [23℄, is used to solve the linearised Vlasovequation analyti
ally and des
ribe how perturbations enter the plasma model.Collisions are modelled by the use of a one-dimensional Fokker-Plan
k 
ollisionoperator (Ornstein-Uhlenbe
k approximation) with a ba
kground distributionfun
tion in the form of an inhomogeneous drifting Maxwellian.In the general 
ase, there are four di�erent regions to be 
onsidered with in-
reasing radius: the plasma region followed by a va
uum region followed bythe ideal (or resistive) wall region followed by the outer va
uum region. Theva
uum as well as the resistive wall region solutions are obtained analyti
ally.Inside the plasma region, Maxwell's equations with the 
urrent density obtainedfrom either the �uid model or the kineti
 model are solved. The linear systemof mat
hing equations is assembled and solved to determine the superposition
oe�
ients for the fundamental solutions in ea
h region. Finite nonzero solu-tions that 
orrespond to stable or unstable eigenmodes (depending on a sign ofimaginary part of the eigenfrequen
y) are possible only when the determinantof the system is zero.The results of the present study are to be 
ompared to existing MHD resultsin parti
ular to the results of the MHD 
al
ulations in Ref. [14℄. The RFP
on�guration is based on the α− θ0 model with a 
onstant density pro�le. Thestability of the resistive wall mode is studied in a (periodi
) 
ylindri
al MHDmodel in whi
h the e�e
ts of plasma pressure, 
ompressibility, plasma inertia,longitudinal rotation, and parallel vis
osity have been taken into a

ount. Theresistive wall is modelled in the above mentioned paper as well as in the presentstudy with �nite thi
kness and 
onstant 
ondu
tivity.The thesis is organised as follows. In Se
. 2 the main prin
iples of magneti
ally
on�ned fusion and experimental resear
h are dis
ussed. A general overviewof the Tokamak is given. Se
. 3 shows MHD and kineti
 modelling and men-tions the numeri
al approa
h to solve the system of equations from whi
h theeigenfrequen
ies of the instabilities result. In Se
. 4 the di�erent regions ofthe 
ylinder and parti
ular solutions of Maxwell equations with 
orrespondingboundary 
onditions at zone interfa
es are dis
ussed. Se
. 5 mentions MHDinstabilities like kinks and resistive wall modes, their driving me
hanisms and8



expe
ted behaviour. The reversed �eld pin
h RFP and its plasma equilibriummodel are des
ribed in Se
. 6. A detailled analysis of instabilities in a RFPequilibrium by MHD and kineti
 modelling is given in Se
. 7. A 
omparisonof di�erent eigenmodes for analyti
ally 
omputed Tokamak like pro�les by theMHD and the kineti
 model is given in Se
. 8.
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plasma volume 1 - 100m3

ni 1019 − 1020m−3

T 1− 40 keV
p 0.1 - 5 bar
vion 100− 1000km

s

ve 0.01− 0.1c
B 1 - 10 T
Ip 0.1 - 7 MATable 1: Typi
al Tokamak plasma values, taken from Ref. [38℄2 Con�nement in a TokamakAfter several years of experiments on magneti
ally 
on�ned plasmas, the toroidalshape of the plasma 
olumn seems to be the best 
apable design for 
ontrolledmagneti
ally 
on�ned fusion in outlook on 
reating a 
ommer
ial fusion rea
-tor. Beside other up
oming toroidal devi
es like Stellarators or Spheromaks,the Tokamak is at the moment the most auspi
ious design to satisfy most ofthe desired demands.2.1 Tokamak Prin
ipleIn general the Tokamak prin
iple 
an be expressed in few words: A magneti
�eld, 
losed to a torus, is for stability reasons overlapped by a weaker poloidal�eld; together they form a heli
ally twisting magneti
 �eld in toroidal symmetry.The plasma is 
on�ned by this �elds and the 
harged parti
les are for
ed togyrate around the �eld lines.Poloidal �eld 
oils produ
e the toroidal �eld. The whole Tokamak a
ts asa transformer, where a 
entral solenoid, positioned at verti
al axis, a
ts asprimary winding and the plasma itself as se
ondary winding (Ref. [38℄). Thise�e
t drives a plasma 
urrent in toroidal dire
tion and produ
es the poloidalmagneti
 �eld. See Figure 1. The 
entral solenoid is mostly an iron 
ore. Theplasma itself is trapped inside a va
uum vessel on whi
h the �eld 
oils aremounted externally. Typi
al Tokamak plasma values are mentioned in Table 1.Toroidal symmetry leads to the destabilising e�e
t of o

uring drift for
esdue to the 
urvature of the magneti
 �eld. A magneti
 �eld gradient and the
urvature itself try to establish MHD equilibrium, what means to straighten10



Figure 1: Stru
ture of a Tokamak. Toroidal and poloidal �eld 
oils produ
e magneti
�elds and 
on�ne the plasma. A toroidal plasma 
urrent is driven by the 
entralsolenoid and verti
al �eld 
oils are needed to improve plasma shape and stability.Taken from Ref. [8℄the B-�eld lines again. For Tokamak equilibrium therefore a balan
e betweenplasma pressure and for
es exerted by the B-�eld must be established. Here theso 
alled pin
h e�e
t gets signi�
an
e; a plasma 
olumn with a 
urrent �owingalong the symmetry axis 
ontra
ts radially until the inward dire
ted Lorentz-for
e is balan
ed by the outward dire
ted pressure gradient, (see Ref. [38℄)
j×B = ∇p. (1)It has been found, that better stability is rea
hed if the plasma shape is modi�ed(see Ref. [7℄).To satisfy the 
ondition ∇·B = 0, the toroidally spiralling B-�eld gets a radialdependen
e
B ∝ 1

r
, (2)where r is the Tokamak minor radius. A physi
al magneti
 model �eld thenresults in Equation (3),

B = (0, Bθ (r) , Bz) (1− ǫ cos θ) , (3)where θ is the poloidal angle, ǫ = r
R
the ratio between both radii and Bθ, Bzare poloidal and toroidal magneti
 �eld 
omponents (similar in Ref. [38℄).11



Coordinates in a Tokamak 
an be de�ned a

ording to Ref. [38℄ like
x = (R0 + r cos θ) cosφ, (4)
y = (R0 + r cos θ) sin φ, (5)

z = r sin θ, (6)
R = R0 + r cos θ. (7)

R0 is the major radius, r the minor radius, (x, y, z) are 
artesian 
oordinatesexpressed by toroidal 
oordinates, R is the e�e
tive radius, θ is the poloidalangle and φ is the toroidal angle. Toroidal e�e
ts like drift motion and mirror
on�gurations for the heli
ally twisting magneti
 �eld 
an be 
al
ulated in these
oordinates.The Tokamak �eld from Equation (3) produ
es a magneti
 �eld gradient whi
hresults in drift motion and magneti
 mirror 
on�gurations inside the torus forparti
les with a low velo
ity parallel to the B-�eld. Be
ause the plasma 
ur-rent Ip depends on r and has its maximum value at the toroidal symmetry axis
r = 0, an externally applied verti
al B-�eld (by additional 
oils) would 
oupleto Ip and produ
e a radially inward dire
ted for
e, whi
h would stabilise thetoroidal drift for
e.As the established Tokamak equilibrium be
omes independent of the azimuthalangle φ, in other words axis-symmetri
, the for
e exerted on the plasma van-ishes everywhere, like expressed by Equation (1). If now a B-�eld is added toEquation (1) by s
alar produ
t, one gets

B · ∇p = 0, (8)what means that there do not exist pressure gradients along B-�eld lines and
p = const. on radially nested surfa
es, whi
h are 
alled �ux-surfa
es. Applyingthe same s
alar method to the 
urrent density j with

j · ∇p = 0, (9)one �nds also the radially depending 
urrent lying on these �ux-surfa
es, seeFigure 2.While speaking about �ux 
onstant surfa
es, it makes sense to de�ne a poloidal�ux fun
tion ψ. Also ψ = const. on a �ux surfa
e what means
B · ∇ψ = 0. (10)That is in analogy to Equation (8). 12



Figure 2: left: nested �ux surfa
es in toroidal symmetry. right: surfa
es of 
urrentand magneti
 �eld lines. Taken from Ref. [38℄2.2 Safety Fa
tor qHeli
ally twisting magneti
 �eld lines on �ux surfa
es perform both poloidaland toroidal transits over the torus. A ratio is de�ned as
q =

m

n
=

∆φ

2π
. (11)Here m is the number of toroidal transits and n the number of poloidal transitsand ∆φ is the 
hange in poloidal angle. Every �ux surfa
e has a di�erent twistof magneti
 �eld lines. A quantity 
alled magneti
 shear s des
ribes the q-pro�lein dependen
e on minor radius r like

s (r) =
q (r)

r
. (12)It is possible to express q by poloidal and toroidal magneti
 �elds. Tra
ing aheli
ally twisting �eld line, whi
h takes a distan
e ds in poloidal dire
tion whilemoving in toroidal dire
tion for dφ gives

Rdφ

ds
=
Bz

Bθ

, (13)what gives
q =

1

2π

∮

1

R

Bz

Bθ

ds, (14)where R is the major radius. From Amperes law, the q-pro�le may be derivedto be inverse proportional to the plasma 
urrent Ip, see Ref. [38℄. Typi
ally,
q rea
hes a minimum 
lose to r = 0 and in
reases monotoni
ally towards the13
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Figure 3: left: Magneti
 �eld lines on a toroidally 
losed �ux surfa
e. A �eld line
loses after m toroidal and n poloidal transits. Taken from Ref. [5℄. right: General
q-pro�le in
reasing with r.plasma edge. This is essential to guarantee stability against MHD instabilitieswhi
h result from plasma shape and B-�eld 
on�guration. Better stability isa
hieved at higher values of q like mentioned in Refs. [11, 38℄. If q takes aninteger value, the magneti
 �eld line 
loses one poloidal transit on the surfa
eafter q toroidal transits, see Figure 3. This de�nes the magneti
 shear of ea
h�ux surfa
e.2.3 Fusion Pro
essThe fusion pro
ess whi
h gives the most hope for rea
hing a rea
tor regime,where the plasma is able to heat itself for operation, is the fusion of deuteriumand tritium by rea
tion

2
1D+3

1 T → 4
2He +

1
0 n + ∆E. (15)For self heating the ion density should range at ni = 5 × 1020m−3, the iontemperature at Ti = 15keV and the energy 
on�nement time should be 
lose to

τE = 4s. Energies for resulting produ
ts of the fusion pro
ess in Equation (15)are E (He) = 3.5MeV and E (n) = 14.1MeV, (see Refs. [7,38℄). Su
h values givea favourable triple produ
t (niτETi) whi
h 
an already be rea
hed in present dayTokamaks like JET, TFTR and JT-60. The high energeti
 α-parti
les 
an beused to heat the plasma. The key parameters are ion density ni and 
on�nementtime τE, whi
h 
an be expressed as ratio beween the total stored kineti
 energy14



and the required power to sustain the fusion in steady state,
τE =

Ekin

Psus

. (16)Essential are 
ross se
tion and mean free path, so parti
les in a fusion plasmahave a long free path and 
ollisions be
ome possible although the 
ross se
-tions are very small. Integrating over the distribution fun
tions of both fusionpartners, whi
h are both assumed to be Maxwellian, a rate of rea
tion per unitvolume 
an be derived, like it is done in Ref. [38℄. After integration, the av-eraged produ
t of 
ross se
tion σ and relative velo
ity v gives a total rea
tionrate R per unit volume
R = ndnt〈σv〉, (17)depending on parti
le densities of deuterium nd and tritium nt.

Figure 4: Cross se
tion 〈σv〉 for several fusion rea
tions depending on thermal energy.The DT-rea
tion has the highest 
ross se
tion.Multiplied by the energy release per rea
tion ε, Equation (17) gives the ther-monu
lear power per unit volume,
PTN = ndnt〈σv〉ε. (18)The loss of energy is in�uen
ed by the energy 
on�nement time. So the energyloss be
omes

PL =
PTN

τE
. (19)15



For 
on�nement we have to mention, that τe in
reases with plasma 
urrent Ipand de
reases with in
reasing plasma pressure p.Very important to avoid the 
on�nement from deterioration is the handling ofimpurities, what means 
ontrol of impurity transport and radiative losses. Forthat reason the plasma has to be isolated from the vessel material, to redu
esputtering and erosion of wall material. This is possible to be a
hieved either bylimiters or by an additional magneti
 �eld separatrix what is known as divertor
on�guration. High 
on
entrations of impurity atoms and ele
trons resultingfrom ionistaion while atoms get inside the plasma 
ore, deplete the e�
ien
yof plasma heating as well as they harm the 
on�nement. The handling of thisproblem leans on the idea to isolate the plasma from the wall material and leavethe fusion 
ore inside 
losed �ux surfa
es. This attends the existen
e of a last
losed �ux surfa
e LCFS between fusion plasma and edge region.LimiterLimiters 
an be of various geometri
al forms. The LCFS is tangent to thelimiter what de�nes the plasma boundary. In other words, the plasma is in dire
t
onta
t with the limiter material, see Figure 5. Limiters shape the plasma edge,de�ne a boundary and prote
t the vessel wall before dire
t expose to plasmadisruptions. Limiters are made of refra
tory material like 
arbon, molybdenumand tungsten. (see Refs. [7, 38℄)DivertorTowards limiters, the main di�eren
e is that divertors de�ne the LCFS by amagneti
 �eld separatrix. Immediately inside the separatrix follows the LCFS.The edge plasma is transported to the divertor target plates. Espe
ially dur-ing H-regime, the radial transport through the separatrix is nearly vanishing.Impurities 
an be released fom the target plates by disruptions, they are ionisedin the divertor plasma and the majority is transported again ba
k to the targetplates. The �ow of impurities into the LCFS is strongly redu
ed but does notvanish 
ompletely.The divertor 
on
ept o�ers some e�
ient methods of power handling on plasmafa
ing 
omponents PFCs and divertor plates:
• adjusting the angle between �eld lines and target plates a
ts as �ux ex-pansion of the magneti
 �eld, what redu
es the power load,
• in�uen
ing transport properties and in
reasing power transfer to neutral16



Figure 5: left: Limiter 
on�guration. The limiter material is in 
onta
t with theplasma and de�nes the LCFS. right: Divertor 
on�guration. Magneti
 �elds de�nethe separatrix and the LCFS isolates the inner 
ore. Taken from Ref. [24℄.parti
les.Yet there are no absolute satisfa
tory solutions, and improvements are desiredin Ref. [38℄ like
• removal of α-parti
le power by heat transport,
• e�
ient use of α-parti
le power for plasma heating,
• operating at lower temperature of the divertor plasma to redu
e sputter-ing,
• removal of helium ash,
• power loss by radiation.Due to plasma wall intera
tions, a rise of neutrals density at the edge would leadto re
ombination and de
elerations of ions, resulting in radiative losses. Thisradiation 
alled MARFEs, releases power at X-point and on divertor targetsand must be handeled with 
are.For design diversity of divertors, several ideas exist. All of them base on thesame 
on
ept of de�ning a LCFS by magneti
 �elds where the edge plasma istransported to divertor plates, like already explained. JET and ITER divertors17



are operating at single null 
on�guration with only one X-point. DIII-D uses adouble null 
on�guration with two X-points, see Figure 6.

Figure 6: Double null divertor 
on�guration at DIII-D, taken from Ref. [29℄. Twox-points and an inner 
ore with high triangularity is a
hieved.The advantage is that intera
tion area of divertor targets is doubled and ahigher triangularity of the plasma shape allows a higher pressure and β regime;a disadvantage for two X-points is that the 
onne
tion length of parti
les doubles(see Ref. [38℄). Other divertor types like DED at TEXTOR produ
e a rotatingergodi
 �eld.

18



3 Model Des
ription3.1 MHD ModellingStarting from the set of ideal MHD-equations
E+

1

c
v ×B = 0, (20)

∇× E+
1

c

∂B

∂t
= 0, (21)

∇×B =
4π

c
j, (22)

∇ ·B = 0, (23)
ρ
dv

dt
=

1

c
j×B−∇p, (24)

d

dt

(

p

ργ

)

= 0, (25)
∂ρ

∂t
+∇ (ρv) = 0, (26)as basis to des
ribe the plasma 
on�guration, the expansion of all quantities isdone like

Q (x, t) = Q0 (x) +Q1 (x, t) . (27)The zero order is the equilibrium 
ontribution and the �rst order is the pertur-bation 
ontribution (see e.g. Refs. [11, 38℄). There, d
dt

=
(

∂
∂t
+ v · ∇

), γ = 5
3is the adiabati
 
onstant, ρ is the mass density, p the pressure, c the speed oflight, j the 
urrent density, v the plasma velo
ity, B and E the magneti
 andele
tri
 �eld. Ve
tor x is the position ve
tor in general symmetry, parameter

t is the time variable. If perturbations are small, |Q1|
|Q0| ≪ 1, terms 
ontainingprodu
ts of �rst order terms 
an be negle
ted. The equilibrium is assumed notto be time dependent and satis�es

∇× E0 = 0, (28)
∇×B0 =

4π

c
j0, (29)

∇ ·B = 0, (30)
19



∇ · ρ0v0 = 0, (31)
ρ0v0 · ∇v0 = −∇p0 +

1

c
j0 ×B0, (32)

E0 +
1

c
v0 ×B0 = 0, (33)

v0 · ∇
(

p0
ργ0

)

= 0. (34)If there is no equilibrium ele
tri
 �eld E0 = 0, and no plasma equilibrium �ows
v0 = 0, the equilibrium MHD equations simplify to

∇ ·B = 0, (35)
∇p0 =

1

4π
(∇×B0)×B0. (36)The perturbed MHD-equations are:

∂ρ1
∂t

+∇ · ρ1v0 +∇ · ρ0v1 = 0, (37)
ρ0
∂v1

∂t
+ ρ1v0 · ∇v0 + ρ0v1 · ∇v0 + ρ0v0 · ∇v1 =

= −∇p1 +
1

4π
[(∇×B0)×B1 + (∇×B1)×B0] , (38)

∂

∂t

(

p1
ργ0

)

− ∂

∂t

(

γp0ρ1

ργ+1
0

)

=

= −v1 · ∇
(

p0
ργ0

)

− v0 · ∇
(

p1
ργ0

)

+ v0 · ∇
(

p0γρ1

ργ+1
0

)

, (39)
1

c

∂B1

∂t
+∇× E1 = 0, (40)
∇×B1 =

4π

c
j1, (41)

E1 +
1

c
v1 ×B0 +

1

c
v0 ×B1 = 0, (42)
∇ ·B1 = 0. (43)It is 
ommon to express the perturbations by means of the displa
ement ve
tor

ξ of a plasma element whi
h is dislo
ated from it's equilibrium position x0.
ξ (x, t) = x− x0. (44)The perturbed velo
ity in terms of the displa
ement ve
tor and the equilibriumvelo
ity are

v1 (x, t) =
∂ξ (x, t)

∂t
+ v0 · ∇ξ − ξ · ∇v0. (45)20



With substitution to the perturbed and equilibrium MHD-equations, the per-turbed �rst order quantities ρ1, p1, B1, j1 
an be expressed in terms of theplasma displa
ement ξ (x, t) as
ρ1 = −∇ · (ρ0ξ) , (46)
p1 = −ξ · ∇p0 − γp0 (∇ · ξ) , (47)
B1 = ∇× (ξ ×B0) , (48)
j1 =

1

4π
(∇× (∇× (ξ ×B0))) . (49)The equilibrium �ow v0 does not enter expli
itely to ρ1, p1, B1, j1 and theperturbed quantities have the same form like in the �owless 
ase.A substitution of Equation (45) into the linearised for
e balan
e Equation (38)yields

ρ0
∂2ξ

∂t2
+ 2ρ0 (v0 · ∇)

∂ξ

∂t
= F (ξ) +∇ · [ρ0ξ (v0 · ∇)v0 − ρ0v0 (v0 · ∇) ξ] . (50)After Fourier transformation in time, the linearised 
ompressible ideal MHDequations with �nite equilibrium �ows v0 
an be written with the help of theLagrangian displa
ement ve
tor ξ from Equation (44) as (see, e.g. Ref. [11℄)

−ω2ρ0 ξ = Ff (ξ) , (51)where the for
e operator Ff (ξ) is a fun
tion of the plasma displa
ement. Thefor
e operator with �ows Ff (ξ) 
an be expressed by the for
e operator without�ows F (ξ) like
Ff (ξ) = F (ξ) +∇ · [ρ0ξ (v0 · ∇)v0 − ρ0v0 (v0 · ∇) ξ] + 2iωρ0 (v0 · ∇) ξ, (52)with

F (ξ) = ∇ (ξ · ∇p0 + γp0 (∇ · ξ)) +

+
1

4π
[(∇×B0)× (∇× (ξ ×B0)) + (∇× (∇× (ξ ×B0)))×B0] . (53)3.1.1 MHD Eigenequation in Cylindri
al SymmetryIn 
ylindri
al symmetry one 
an expand all perturbations in the form

Q1 (x, t) = Q̃1 (r) exp (imθ + ikz − iωt) , (54)where m is the toroidal mode number and k = n
R
is the z-
omponent of thewave ve
tor, n is the poloidal mode number and R the major toroidal radius.21



ξ = ξrer + ξθeθ + ξzez,

B1 = B1rer +B1θeθ +B1zez,

B0 = B0θeθ +B0zez.Figure 7: Cylindri
 symmetry. The equilibrium magneti
 �eld has no radial 
ompo-nent, taken from Ref. [27℄.All ve
tor quantities are expressed in 
ylindri
al 
oordinates by means of the
ylindri
al basis ve
tors (er, eθ, ez),Note that the equilibrium magneti
 �eld is assumed to have no radial 
ompo-nent, see Figure 7.A substitution of Equation (54) into the �rst order equations allows to 
al
ulatethe 
omponents of the perturbation magneti
 �eld B1 in Equation (48). After atransformation to the Fourier-spa
e of toroidal and poloidal harmoni
s (m,n),the Fourier amplitudes of B̃1 are
B̃1r = i

(m

r
B0θ + kB0z

)

ξr, (55)
B̃1θ = − (ξrB0θ)

′ − ik (B0θξz − B0zξθ) , (56)
B̃1z = −1

r
(rB0zξr)

′ +
im

r
(B0θξz − B0zξθ) . (57)The prime marks the radial derivative, the zero index the equilibrium quantity.The θ and z 
omponents of Equation (51) provide expressions for ξθ and ξz. Theresulting equations for ξθ and ξz represent an algebrai
 system of two equations.This is true only if there are no radial equilibrium �ows (vr = 0) be
ause vrwould 
ontribute terms of radial derivatives ξ′θ and ξ′z.The equations for ξθ and ξz 
an be written in the form

ξθH
−1 = ξrΓθ + (rξr)

′ iGBz

4πr
+ ξzψ + (∇ · ξ)χθ, (58)

ξzN
−1 = ξrΓz − (rξr)

′ iGBθ

4πr
+ ξθψ + (∇ · ξ)χz, (59)with

k20 =
m2

r2
+ k2 , G =

m

r
Bz − kBθ, (60)22



H−1 = ρ0

(

−ω2 − 2iωf +
k20B

2
z

4πρ0
+∇ · (ρ0v0)

f

ρ0
+ f 2

)

, (61)
N−1 = ρ0

(

−ω2 − 2iωf +
k20B

2
θ

4πρ0
+∇ · (ρ0v0)

f

ρ0
+ f 2

)

, (62)
f =

im

r
vθ + ikvz. (63)and
χθ =

im

r
γp0, χz = ikγp0, (64)with

Γθ = ρ0

(

2iω
vθ
r
−∇ · (ρ0v0)

vθ
rρ0

+
vθ
r
f + 2ik

BθBz

4πr

)

, (65)
Γz = −2ik

B2
θ

4πr
, (66)

ψθ = ψz = ψ =
k20BθBz

4π
. (67)After Fourier transformation to m and n harmoni
s, the divergen
e of the dis-pla
ement ve
tor

∇ · ξ =
1

r
(rξr)

′ +
im

r
ξθ + ikξz, (68)
an be used in Equations (58) - (59) to obtain

ξθ = Xθ

(

Qθξr +Wθ (rξr)
′) , (69)

ξz = Xz

(

Qzξr +Wz (rξr)
′) , (70)

23



with
Qθ = Γθ +

Nα

1− ikNχz

Γz, (71)
Qz = Γz +

Hβ

1− im
r
Hχθ

Γθ, (72)
Xθ =

(

1− im
r
Hχθ

H
− Nαβ

1− ikNχz

)−1

, (73)
Xz =

(

1− ikNχz

N
− Hαβ

1− im
r
Hχθ

)−1

, (74)
Wθ =

iGBz

4πr
+
χθ

r
+

NKα

1− ikNχz

, (75)
Wz =

Hβ

1− im
r
Hχθ

(

iGBz

4πr
+
χθ

r

)

+K, (76)where
K =

χz

r
− iGBθ

4πr
, β = ψ +

im

r
χz, (77)

α = ψ + ikχθ. (78)Like already mentioned, the Θ and z 
omponent of the eigenequation (Equa-tion (51)) represent an algebrai
 system of two equations for ξθ and ξz. Aftersubstitution of ξθ and ξz to Equation (51), the radial 
omponent ξr satis�es thefollowing ordinary di�erential equation
−ρ0ω2ξr =

d

dr

[

γp0 (∇ · ξ) + B2

4πr
(rξr)

′ +
iG

4π
(ξθBz − ξzBθ)

]

− ξr

[

∇ · (ρ0v0) f + ρ0f
2 − ρ0

v2θ
r2

+ ρ0

(

v2θ
r

)′
− 2iωρ0f +

F 2

4π
+

r

4π

(

B2
θ

r2

)′]

+ ξθ

[

−2iωρ0
vθ
r
− 2ik

BθBz

4πr
+∇ · (ρ0v0)

vθ
r

]

+ ξz

[

2ik
B2

θ

4πr

]

−∇ · (ρ0ξ)
v2θ
r
, (79)with

∇ · (ρ0ξ) = ρ0 (∇ · ξ) + ρ′0ξr , F =
m

r
Bz + kBθ. (80)24



De�ning two additional fun
tions
λ = ρ0

(

∇ · (ρ0v0)
f

ρ0
+ f 2 − v2θ

r2
+

(

v2θ
r

)′
− 2iωf +

F 2

4πρ0
+

r

4πρ0

(

B2
θ

r2

)′
+
ρ′0
ρ0

v2θ
r

)

,

ǫ = −2iω
vθ
r
− 2ik

BθBz

4πrρ0
+∇ · (ρ0v0)

vθ
rρ0

, (81)the radial for
e balan
e from Equation (79) be
omes
0 =

d

dr

[

ξr

(

XθQθ

(

γp0
im

r
+
iGBz

4π

)

+XzQz

(

γp0ik −
iGBθ

4π

))

+ (rξr)
′
(

γp0
1

r
+
B2

4πr
+XθWθ

(

γp0
im

r
+
iGBz

4π

)

+XzWz

(

γp0ik −
iGBθ

4π

))]

+ξr

[

ρ0ω
2 − λ+XθQθ

(

ǫ− ρ0
im

r

v2θ
r

)

+XzQz

(

2ik
B2

θ

4πr
− ikρ0

v2θ
r

)]

+ (rξr)
′
[

−ρ0
r

v2θ
r

+XθWθ

(

ǫ− ρ0
im

r

v2θ
r

)

+XzWz

(

2ik
B2

θ

4πr
− ikρ0

v2θ
r

)]

. (82)This di�erential equation 
an be written as a system of two �rst order partialdi�erential equations,
AS

r

d

dr
(rξr) = C11 (rξr)− C12p

∗, (83)
AS

d

dr
p∗ = C21 (rξr)− C22p

∗, (84)like in Refs. [2, 3℄. If one de�nes a generalised pressure p∗ as
p∗ = −γp0∇ · ξ − ξ · ∇p0 +

B0 ·B1

4π
. (85)The remaining 
oe�
ients are

A = ρ0ω̃
2 − F 2

4π
, (86)

S =

(

B2
0

4π
+ γp0

)

ρ0ω̃
2 − γp0

F 2

4π
, (87)

T =
FBθ

4π
+ ρ0ω̃vθ, (88)

Q = ρ0ω̃
2

(

B2
0θ

4π
− ρ0v

2
0θ

)

+
ρ0
4π

(B0θω̃ + Fv0θ)
2 , (89)25



with
C11 = ρ0ω̃

2Q

r2
− 2m

ST

r3
, (90)

C12 = ρ20ω̃
4 −

(

k2 +
m2

r2

)

S, (91)
C21 =

AS

r
C4 − 4

ST 2

r3
+
Q2

r3
, (92)

C22 = r C11, (93)
C4 = A+ r

d

dr

(

B2
0θ − 4πρ0v

2
0θ

4πr2

)

. (94)Here, ω̃ is the Doppler shifted frequen
y
ω̃ = ω − mv0θ

r
− kv0z. (95)The solutions of the two �rst order di�erential equation system (Equation (83)and Equation (84)), are (rξr) and p∗. From p∗ in Equation (85) it is thenpossible to 
ompute (rξr)

′ as a fun
tion of p∗:
p∗ = −κ + Λ ξθ + Ξ ξz (96)

= −κ + ΛXθQθξr + ΛXθWθ (rξr)
′ + ΞXzQzξr + ΞXzWz (rξr)

′

= −γp0
1

r
(rξr)

′ − B2
θ

4πr
ξ′r −

BθB
′
θ

4π
ξr −

B2
z

4πr
(rξr)

′ − BzB
′
z

4π
ξr − p′0ξr + ΛXθQθξr +

+ ΛXθWθ (rξr)
′ + ΞXzQzξr + ΞXzWz (rξr)

′

= (rξr)
′
[

− B2
θ

4πr
− γp0

1

r
− B2

z

4πr
+ ΛXθWθ + Ξ XzWz

]

+ ξr

[

B2
θ

4πr
− BθB

′
θ

4π
− BzB

′
z

4π
+ ΛXθQθ + Ξ XzQz − p′0

]

, (97)what �nally leads to
(rξr)

′ =
p∗ − ξr

(

B2
θ

4πr
− BθB

′

θ

4π
− BzB

′

z

4π
+ ΛXθQθ + Ξ XzQz − p′0

)

(

− B2
θ

4πr
− γp0

1
r
− B2

z

4πr
+ ΛXθWθ + Ξ XzWz

) , (98)
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where
κ = γ

p0
r
(rξr)

′ +
Bθ

4π
(ξrBθ)

′ +
Bz

4πr
(rBzξr)

′ + p′0ξr, (99)
Λ = −χθ +

BθBz

4π
ik − B2

z im

4πr
, (100)

Ξ = −χz +
BθBzim

4πr
− B2

θ

4π
ik. (101)3.1.2 Mat
hing ConditionsInside the plasma region, model equations obtained from the magnetohydrody-nami
 model (Se
. 3.1) are solved. A linear system of equations is assembledand solved to determine superposition 
oe�
ients for fundamental solutions ofeigenfun
tions in the plasma region, what is dis
ussed in the following.For an arbitrary 
omplex mode frequen
y ω, the system determinant detG (ω)is nonzero and therefore the solution (all superposition 
oe�
ients) is zero sin
ethere are no sour
es (rhs equals zero) in the system. Finite nonzero solutionsthat 
orrespond to stable or unstable eigenmodes (depending on the sign of theimaginary part of the eigenfrequen
y) are possible only when the determinantis zero. A 
omplex root solver is used to �nd all roots of the dispersion equation

detG (ω) = 0, numeri
ally.The radial integration starts from two di�erent boundaries and returns two fun-damental solutions, whi
h are superposed afterwards. In the plasma 
olumn theintegration starting points are
r = 0 , r = rp, (102)at the 
ylinder axis and at the plasma radius, like this is shown in Figure 8.Be
ause of Equation (83) is getting singular at r → 0, a very small value

r = 10−2
m is there used as radial starting point of the numeri
al integration.Both integrations mat
h ea
h other at an arbitrary mat
hing position, (seeRef. [11℄).
r = rA , rA ǫ [0, rp] ,with boundary 
onditions

(rξr)r=0 = 0, (rξr)r=rp
= 0, (103)

(rξr)
′
r=0 = 1, (rξr)

′
r=rp

= 1. (104)The prime marks the radial derivative. As a result, the integration providestwo fundamental solutions ξ1 and ξ2, whi
h should be 
ontinuous at mat
hing27



Figure 8: Two di�erent intergations starting from z-axis and plasma radius rp. Bothsolutions mat
h at r = rA where the fundamental solutions of integration ξ1 and ξ2must be 
ontinuous.point r = rA. The 
hoi
e of boundary 
onditions is arbitrary for the derivativevalues in Equation (104), see Ref. [11℄, mostly they are set to unity. Attentionhas to be paid to the boundary 
onditions in Equation (103). These values arevery sensitive on the di�erent kinds of MHD modes. Con
erning kink modes,the used boundary 
onditions in Equation (103) are set to zero, like this wassuggested in Ref. [11℄.A 
ombined solution 
overing the whole radial range of the plasma 
olumn is
onstru
ted by superposition like
ξr =

{

C1ξ1 , r ǫ (0, rA) ,
C2ξ2 , r ǫ (rA, rp) ,

C1 , C2 = const. (105)At mat
hing position rA, the 
ontinuity of the fundamental solutions determinesa homogeneous system, whi
h equals the solutions from both sides:
C1ξ1 = C2ξ2

C1ξ
′
1 = C2ξ

′
2

⇒ G (ω) =





ξ1 −ξ2

ξ′1 −ξ′2



 . (106)MatrixG remains to be a fun
tion of the frequen
y ω. The homogeneous systemis solvable for su
h frequen
ies ω, that
detG (ω) = 0. (107)28



3.2 Kineti
 ModellingBoth the kineti
 and the MHD model are based on a numeri
al solution ofthe full set of Maxwell equations in 
ylindri
al geometry. The di�eren
e o
-
urs in the appli
ation of the plasma 
urrent density. This se
tion dis
ussesthe approximations and basi
 steps of the method developed in Refs. [16, 20℄.Following Mahajan-Chen [23℄, a
tion-angle variables are used to solve the lin-earised Vlasov equation (no gyroaveraging) analyti
ally with a simpli�ed one-dimensional Fokker-Plan
k 
ollision operator (Ornstein-Uhlenbe
k approxima-tion). The ba
kground distribution fun
tion is taken in the form of an inho-mogeneous drifting Maxwellian with parameters derived from the plasma andmagneti
 �eld pro�les that satisfy the MHD equilibrium. Maxwell equationswith displa
ement and plasma 
urrent densities together with the appropriateboundary 
onditions for an ideal or a resistive wall are solved numeri
ally to�nd the eigenmodes existing in the system by a dire
t 
omplex root sear
h pro-
edure.The 
ode KiLCA (Kineti
 Linear Cylindri
al Approximation) is a wave 
odebased on the des
ribed kineti
 model of the tokamak plasma in a periodi
 
ylin-der geometry (Refs. [16,20℄). The 
ode has been su

essfully used (Refs. [17,21℄)to study kineti
 e�e
ts of the intera
tion of resonant magneti
 perturbations andthe plasma in parti
ular near resonant magneti
 surfa
es.Following the linear kineti
 model of a 
ylindri
al inhomogeneous s
rew pin
hplasma introdu
ed in Ref. [16℄ and re
ently upgraded in Ref. [20℄, the wave�elds (Ẽ, B̃) with frequen
y ω are obtained from Maxwell's equations,
∇× Ẽ =

iω

c
B̃, ∇× B̃ = −iω

c
Ẽ+

4π

c
j̃, (108)are solved numeri
ally together with an appropriate set of boundary 
onditions,mentioned in Se
. 4. The plasma response 
urrent density in Equation (108) isevaluated as

j̃ =
∑

α={e,i}
eα

∫

d3pvf̃α, (109)where eα is a 
harge of spe
ii α, v is the velo
ity variable and f̃α the perturbeddistribution fun
tion (in the following we omit index α for brevity). The parti
ledistribution fun
tion f (r,v, t) enters the kineti
 equation like
df

dt
=
∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

= LCf, (110)with parti
les at position r and velo
ity v exposed to the Lorentz for
e F =
e
(

E+ 1
c
v×B

). The quantity LC represents the 
ollision operator and is spe
-i�ed later in this se
tion. 29



The appli
ation of linearisation of the distribution fun
tion, the magneti
 andthe ele
tri
 �eld like
f = f0 + f̃ , B = B0 + B̃, E = E0 + Ẽ, (111)and the use of derivations with respe
t to the momentum ( ∂

∂v
→ m ∂

∂p
) yieldthe linearised form of Equation (110), as

∂f̃

∂t
+ v · ∇f̃ + e

(

−∇Φ0 +
1

c
v ×B0

)

· ∂f̃
∂p

− L̂C f̃ = −e
(

Ẽ+
1

c
v × B̃

)

· ∂f0
∂p

.(112)Here, f0 is the equilibrium distribution fun
tion 
onsistent with plasma andmagneti
 �eld equilibrium pro�les in
luding the toroidal plasma rotation (thepoloidal rotation is assumed to be zero), Φ0 is the equilibrium ele
trostati
 po-tential with E0 = −∇Φ0. For the des
ription of parti
le 
ollisions (Coulomb in-tera
tion) we use an one-dimensional Fokker-Plan
k 
ollision operator (Ornstein-Uhlenbe
k approximation, see Ref. [35℄)
L̂cf̃ =

∂

∂u‖
D

[

∂

∂u‖
+
u‖ − V‖
v2T

]

f̃ , (113)where u‖ is a parti
le parallel velo
ity, D is a 
onstant di�usion 
oe�
ient invelo
ity spa
e, vT =
√

T0/m0 is the thermal velo
ity, and V‖ is a bulk parallelvelo
ity of the given spe
ii. Following the pro
edure outlined in Mahajan-Chen[23℄, Equation (112) is solved analyti
ally in a
tion-angle variables (Refs. [16,20℄).The Hamiltonian form of Equation (112) 
an be written like
∂f

∂t
+ {f,H} = LCf, (114)using Poisson bra
kets

{a, b} =
∂a

∂r
· ∂b
∂p

− ∂b

∂r
· ∂a
∂p

=

=
∂a

∂Θ
· ∂b
∂J

− ∂b

∂Θ
· ∂a
∂J
, (115)whi
h are valid for 
anoni
al transformations of 
oordinates. The 
anoni
ala
tion-angle variables are Θ = (Θ1,Θ2,Θ3) and J = (J1, J2, J3) for a
tions

J =
∮

pdr, whi
h are invariants.A linearisation in sense of Equation (111) 
an be applied to the ve
tor potential30



in ∇×A = B, by A = A0 + Ã. Consequently, the s
alar potential des
ribingthe ele
tri
 �eld must be linearised by Φ = Φ0 + Φ̃. Using the radiation gauge
Φ̃ = 0, (116)one 
an express the linearised Hamiltonian like

H =
1

2m

(

p− e

c
A0 −

e

c
Ã
)2

+ eΦ0 = H0 + H̃, (117)what gives the unperturbed Hamiltonian as
H0 =

mv20
2

+ eΦ0, v0 =
1

m

(

p− e

c
A0

)

, (118)with parti
le mass m.The unperturbed part of the Hamiltonian 
an be expressed as a fun
tion of thea
tion variable J only as H0 = H0 (J).With the introdu
ed a
tion-angle variables, equations of unperturbed motionfor a parti
le of spe
ies α 
an be written like
Θ̇α = Ωα =

∂H0 (J)

∂Jα
, J̇α = −∂H0 (J)

∂Θα
= 0. (119)The perturbation 
omponent of the Hamiltonian 
an be de�ned by means ofthe time dependen
e of the 
omplex form

H̃ = Re
(

He−iωt
)

, Ã = Re
(

Ae−iωt
)

. (120)The perturbed Hamiltonian 
an now be expressed by the use of the perurbationamplitudes H and A in temporal Fourier spa
e like
H = −e

c
v0 ·A =

ie

ω
vk0Ẽk =

ie

ω
ΩαEα, (121)using 
urvilinear 
oordinates xk = xkc (Θ,J) and 
orresponding (equilibrium)velo
ities vk0 , whi
h are in 
orrelation to 
anoni
al frequen
ies Ωα = Ωα (J) by

vk0 =
∂xkc
∂Θα

Ωα, Ωα =
∂H0

∂Jα
. (122)The ele
tri
 �eld 
omponents enter in 
ovariant form as Ẽk = iω

c
Ãk whi
h aretransformed to 
anoni
al 
omponents by

Eα =
∂xkc
∂Θα

Ẽk. (123)31



During linearisation all 
ontributions 
ontaining squared fa
tors of perturbationquantities are ignored. The linearised kineti
 equation then results as
∂f̃

∂t
+ Ωα ∂f̃

∂Θα
+ J̇α

∂f0
∂Jα

= Lcf̃ , (124)where attention has to be paid on J̇α whi
h now in 
ontrary to the equilibriumexpression from Equation (119) forms a perturbed expression
J̇α
∂f0
∂Jα

=
∂H

∂Θα

∂f0
∂Jα

, ⇒ J̇α = F̃ · ∂r

∂Θα
, (125)with a perturbed Lorentz-for
e F̃ = e

(

Ẽ+ 1
c
v× B̃

).It is 
onvenient to use the angle variables Θ for expansion of all perturbationterms into Fourier series like
f̃ (Θ,J, t) =

∑

m

f̃m (J, t) eim·Θ, (126)with the Fourier expansion indi
es written in ve
tor form m. The transforma-tion rule to Fourier spa
e of angle variables is
∂f̃

∂Θα
→ imαf̃m. (127)The expansion from Equation (126) enables to express the linearised kineti
equation (Equation (124)) by Fourier amplitudes of the perturbed distributionfun
tion f̃ (J, t) as

∂f̃m
∂t

+ im ·Ωf̃m − Lcf̃m = Q̃m, (128)where all sour
es of perturbations are 
ontained in the sour
e term Q̃m.If the Coulomb 
ollision operator from Equation (113) is applied to Equa-tion (128), then results
i (m ·Ω− ω) f̃m − ∂

∂u‖
D

[

∂

∂u‖
+
u‖ − V‖
v2T

]

f̃m = Q̃m. (129)In 
ylindri
al symmetry x = (r, ϑ, z) the parallel and perpendi
ular proje
tionsof ea
h ve
tor 
an be expressed by using
h =

B0

B0
, e⊥ = h× er. (130)32



It is useful to de
lare the velo
ity substitution
u = u‖ − V‖. (131)Further the expressions for ele
tri
 parti
le drift ωE and parallel and perpen-di
ular wave numbers k‖, k⊥, whi
h are

ωE = k⊥VE, k‖ = kϑh
ϑ + kzh

z, k⊥ = (hzkϑ − hϑkz) /r0, (132)de�ne
m ·Ω = ω0 = k‖V‖ + ωE + lωc, (133)where ωc = eB

mc
is the 
y
lotron frequen
y. With these substitutions, Equa-tion (129) be
omes

ik‖uf̃m + iω0f̃m +
∂f̃m
∂t

− ∂

∂u
D

[

∂

∂u
+

u

v2T

]

f̃m = Q̃m. (134)Note that the expression is re-transformed by temporal Fourier transformation.To be able to solve Equation (134) it is 
onvenient to transform it to a partialdi�erential equation of �rst order. This 
an be a
hieved by Fourier transforma-tion to velo
ity spa
e of u using transformation
Fm (k, t) =

∫ ∞

−∞
du e−iku f̃m (u, t) , (135)and k is the wave number in velo
ity spa
e. The kineti
 equation in velo
ityspa
e of the introdu
ed velo
ity variable u then results as a partial di�erentialequation of �rst order

∂Fm (k, t)

∂t
+
(

iωo +Dk2
)

Fm (k, t)+
∂

∂k

(

kν − k‖
)

Fm (k, t) = Qm (k, t) , (136)with 
ollision frequen
y ν = D
v2
T

. It is possible to solve Equation (136) by the
hara
teristi
s method to obtain the solution for the perturbed distributionfun
tion in Fourier spa
e in angle variables as
f̃m (u, t) =

∫ t−t0

0

dτ

∫ ∞

−∞
du′G (u, u′, τ) Q̃m (u′, t− τ) , (137)and Green's fun
tion

G (u, u′, τ) =
1√
4πa

exp

[

ik

ν
(u− u′)− c− 1

4a

(

u− u′e−ντ + ib
)2
]

, (138)33



with 
hara
teristi
s
a (τ) =

v2T
2

(

1− e−2ντ
)

,

b (τ) =
2k‖v

2
T

ν

(

1− e−2ντ
)

,

c (τ) =

(

iω0 +
k2‖v

2
T

ν

)

τ. (139)The solution of the perturbed distribution fun
tion from Equation (137) 
anthen enter the 
omponents of the perturbation of the 
urrent density
j̃k (x, t) = e

∫

d3p0v
kf̃ =

e√
g

∫

d3θ

∫

d3Jδ [x− xc (J,Θ)]×

×vk (J,Θ) f̃ (J,Θ, t) , (140)where g = r2 is the determinant of the metri
 tensor for transformations to
ylindri
al 
oordinates. The δ fun
tion leads to the integral over the generalised
oordinate u′. This is ne
essary, be
ause the 
anoni
al transformation is onlyvalid for the whole phase spa
e.

34



4 Maxwell Equations in Va
uum and ResistiveWall RegionsTo be able to model the 
ylindri
 plasma 
on�guration with all its di�erent re-gions namely the plasma zone, the va
uum region and the resistive wall region,the model equations for all regions must be available. This imposes that theplasma model must be solved for ea
h region separately. This 
hapter des
ribesthe solutions of Maxwell equations and the plasma model from Se
. 3.1 in dif-ferent zones of the 
ylinder, shows their derivations and gives a dis
ussion ofele
tri
 and magneti
 �elds in ea
h region.4.1 Solution for a Resistive MediumModelling the resistive wall region requires the in
lusion of a 
hara
teristi
medium property to the equilibrium Maxwell equations. This need 
an beful�lled by the ele
tri
 
ondu
tivity σ whi
h is inverse proportional to the re-sistivity of the medium σ ∝ η−1. For this purpose the Maxwell equations fromEquation (21) and Equation (20) are written like
∇× E =

iω

c
B, (141)

∇×B =
4π

c
j− iω

c
E. (142)Both equations are already Fourier transformed in time, i.e. ∂

∂t
→ −iω. InEquation (20) the term 
ontaining the ele
tri
 �eld 1

c
∂E
∂t

must be added to theright hand side be
ause the ele
tri
 �eld is assumed to be time dependent.Further the s
alar form of Ohm's law
j = σE , (143)enters the 
ondu
tivity to Equation (142). E�e
ts of resistivity represent a de
ayof �eld amplitudes and are usually expressed by imaginary parts of frequen
ies.In the 
ase of 
ondu
tivity this 
an be done like

ω∗ = ω + iν, (144)
ν = 4πσ. (145)Then Equation (142) 
hanges to

∇×B =
4π

c

ν

4π
E− iω

c
E = −iω

∗

c
E. (146)35



The 
urls in Equation (141) and Equation (146) must be expressed in 
ylindri-
al symmetry by Fourier 
omponents.For ∇× E:
im

r
Ez − ikEθ =

iω

c
Br, (147)

ikEr − E ′
z =

iω

c
Bθ, (148)

1

r
(rEθ)

′ − im

c
Er =

iω

c
Bz, (149)

∇×B:
im

r
Bz − ikBθ = −iω

∗

c
Er, (150)

ikBr − B′
z = −iω

∗

c
Eθ, (151)

1

r
(rBθ)

′ − im

r
Br = −iω

∗

c
Ez. (152)The prime marks the radial derivative, m is the toroidal mode numer and k isthe z-
omponent of the wave number.The radial 
omponents 
an be substituted into the Θ- and z-
omponents whatleads to

E ′
z =

(

ik2c

ω∗ − iω

c

)

Bθ −
ikmc

ω∗r
Bz, (153)

1

r
(rEθ)

′ =

(

iω

c
− im2c

ω∗r2

)

Bz +
imkc

ω∗r
Bθ, (154)

B′
z =

ikmc

ωr
Ez +

(

iω∗

c
− ik2c

ω

)

Eθ, (155)
1

r
(rBθ)

′ =

(

im2c

ωr2
− iω∗

c

)

Ez +
imkc

ωr
Eθ. (156)In these system of partial di�erential equations of �rst order, it is possible to
onsider two di�erent 
ases. The transversal ele
tri
 mode TE and the transver-sal magneti
 mode TM.

36



4.2 TM-ModeFor the transverse magneti
 mode the z-
omponent of the magneti
 �eld is setto zero, Bz = 0, what results in the remaining �eld 
omponents of both �elds
Er = − ik

(α∗)2
E ′

z, Br = − mω∗

(α∗)2 rc
Ez, (157)

Eθ =
mk

(α∗)2 r
Ez, Bθ = − iω∗

(α∗)2 c
E ′

z. (158)Here α∗ 
ontains the frequen
y ω∗ in the following way
(α∗)2 := k2 − ωω∗

c2
. (159)The �eld 
omponents of Equation (157) and Equation (158) are all determinedby Ez. If Ez is known, then all other �eld 
omponents are known immediately.Equation (152) 
an be written in terms of Ez by use of Equation (157) andEquation (158). The result 
an be written in form of a Bessel equation:

r2E ′′
z + rE ′

z −
(

m2 + (α∗)2 r2
)

Ez = 0. (160)The solution of Equation (160) 
onsists of a linear 
ombination of modi�edBessel fun
tions Im and Km,
Ez = C1Im (α∗r) + C2Km (α∗r) . (161)here C1 and C2 are 
onstants.4.3 TE-ModeFor the transverse ele
tri
 mode the z-
omponent of the ele
tri
 �eld is set tozero, Ez = 0. Again this 
ondition is put into Equations (153) to (156). The r-and θ-
omponents of both �elds then remain

Er =
ωm

(α∗)2 rc
Bz, Br = − ik

(α∗)2
B′

z, (162)
Eθ =

iω

(α∗)2 c
B′

z, Bθ =
km

(α∗)2 r
Bz, (163)37



as expressions of only Bz. After a substitution of these 
omponents a simi-lar pro
edure like for the TM-mode is applied what �nally results in a Besseldi�erential equation for Bz:
r2B′′

z + rB′
z −

(

m2 + (α∗)2 r2
)

Bz = 0. (164)Like for the TM 
ase, the solution of Equation (164) 
onsists of a linear 
ombi-nation of the modi�ed Bessel fun
tions Im and Km:
Bz = D1Im (α∗r) +D2Km (α∗r) , (165)with 
onstants D1 and D2.4.4 Va
uum Solution with Antenna and Resistive Wall

Figure 9: The antenna and the resistive wall in the 
ylinder are surrounded by va
uumregions. The 
ylinder is radially splitted into four di�erent regions. The antenna islo
ated at r1, the inner surfa
e of the resistive wall at r2 and the outer surfa
e at
r3 = r2 + d, where d is the thi
kness of the resistive wall.In ea
h region, the general solution of magneti
 and ele
tri
 �elds must beknown. At presen
e of the TM- and the TE-mode, both 
ontributions must bein
luded to the total solution by superposition like

E = ETM + ETE, (166)
B = BTM +BTE. (167)38



Let us �rst 
onsider a 
ylinder with va
uum, antenna and a resistive wall likeshown in Figure 9. This is a very simple 
on�guration whi
h shows the be-haviour of �elds in va
uum and resistive media very good. The antenna dividesthe inner va
uum in region I and region II at r1. The resistive wall has a �nitethi
kness and is pla
ed between r2 and r3 (region III), outside r3 a va
uumin region IV spreads to in�nity. All �eld 
omponents of magneti
 and ele
tri
�elds are 
omputed inside ea
h region separately. By the superposition rule inEquation (166) and Equation (167), where the 
orresponding �eld 
omponentsfrom Se
. 4.3 and Se
. 4.2 must be substituted, all regions 
an be modelled inthe same way.Region I:
EI

r = − ik

α2
C1I

′
m (αr) +

ωm

α2rc
D1Im (αr) , (168)

EI
θ =

mk

α2r
C1Im (αr) +

iω

α2c
D1I

′
m (αr) , (169)

EI
z = C1Im (αr) , (170)

BI
r = − mω

α2rc
C1Im (αr)− ik

α2
D1I

′
m (αr) , (171)

BI
θ = − iω

α2c
C1I

′
m (αr) +

km

α2r
D1Im (αr) , (172)

BI
z = D1Im (αr) . (173)One has to 
onsider the 
ylindri
 geometry and the behaviour of Bessel fun
-tions at 
ylinder axis r = 0. Modi�ed Bessel fun
tions of se
ond order Km growto in�nity for r → 0. To ex
lude these diverging 
ontributions from solutionsin Region I, the terms 
ontaining Km are set to zero what guarantees a nonsin-gular solution of �eld 
omponents at the 
ylinder axis.In regions II and III both modi�ed Bessel fun
tions are present, whereas ω∗and α∗ o

ur only in the medium des
ription of region III, elsewhere σ = 0and ω∗ = ω and α∗ = α. In region IV fun
tions Im are ex
luded due to theirdiverging behaviour for r → ∞.A set of 12 
oe�
ients (C1, C3, C4, C5, C6, C7) and (D1, D3, D4, D5, D6, D7) arisesfrom the �eld des
riptions of the di�erent regions in Equations (168) to (191).39



Region II:
EII

r = − ik

α2

[

C3I
′
m (αr) + C4K

′
m (αr)

]

+
ωm

α2rc
[D3Im (αr) +D4Km (αr)] , (174)

EII
θ =

mk

α2r
[C3Im (αr) +C4Km (αr)] +

iω

α2c

[

D3I
′
m (αr) +D4K

′
m (αr)

]

, (175)
EII

z = C3Im (αr) + C4Km (αr) , (176)
BII

r = − mω

α2rc
[C3Im (αr) +C4Km (αr)]− ik

α2

[

D3I
′
m (αr) +D4K

′
m (αr)

]

, (177)
BII

θ = − iω

α2c

[

C3I
′
m (αr) + C4K

′
m (αr)

]

+
km

α2r
[D3Im (αr) +D4Km (αr)] , (178)

BII
z = D3Im (αr) +D4Km (αr) . (179)Region III:

EIII
r = − ik

(α∗)2
[

C5I
′
m (α∗r) + C6K

′
m (α∗r)

] (180)
+

ωm

(α∗)2 rc
[D5Im (α∗r) +D6Km (α∗r)] ,

EIII
θ =

mk

(α∗)2 r
[C5Im (α∗r) + C6Km (α∗r)] (181)

+
iω

(α∗)2 c

[

D5I
′
m (α∗r) +D6K

′
m (α∗r)

]

,

EIII
z = C5Im (α∗r) + C6Km (α∗r) , (182)

BIII
r = − mω∗

(α∗)2 rc
[C5Im (α∗r) + C6Km (α∗r)] (183)

− ik

(α∗)2
[

D5I
′
m (α∗r) +D6K

′
m (α∗r)

]

,

BIII
θ = − iω∗

(α∗)2 c

[

C5I
′
m (α∗r) + C6K

′
m (α∗r)

] (184)
+

km

(α∗)2 r
[D5Im (α∗r) +D6Km (α∗r)] ,

BIII
z = D5Im (α∗r) +D6Km (α∗r) . (185)40



Region IV:
EIV

r = − ik

α2
C7K

′
m (αr) +

ωm

α2rc
D7Km (αr) , (186)

EIV
θ =

mk

(α∗)2 r
[C5Im (α∗r) + C6Km (α∗r)] (187)

+
iω

(α∗)2 c
[D5I

′
m (α∗r) +D6K

′
m (α∗r)] ,

EIV
z = C7Km (αr) , (188)

BIV
r = − mω

α2rc
C7Km (αr)− ik

α2
D7K

′
m (αr) , (189)

BIV
θ = − iω

α2c
C7K

′
m (αr) +

km

α2r
D7Km (αr) , (190)

BIV
z = D7Km (αr) . (191)4.5 Appli
ation of Boundary ConditionsIn the previous se
tion it is des
ribed how the �eld 
omponents in the four
ylinder regions yield a set of 12 
oe�
ients. To determine these 
oe�
ients, alinear inhomogeneous system of equations must be solved,

A · c = b, (192)whi
h results from 12 boundary 
onditions at zone interfa
es. Ve
tor c 
ontainsthe 
eo�
ients, A is a 12x12-matrix and b is a ve
tor 
ontaining the boundary
onditions. The boundary 
onditions result from 
ontinuity 
onditions of theele
tri
 and magneti
 �eld at va
uum and medium interfa
es and jumps of �eldsat the antenna.At the antenna
[n×E] = 0, (193)
[n×B] =

4π

c
j, (194)a surfa
e 
urrent density j produ
es a jump of the tangential B-
omponents

[Bθ]ra =
4π

c
jz, (195)

[Bz]ra = −4π

c
jθ, (196)41



while the tangential 
omponents are 
ontinuous
[Eθ]ra = 0, (197)
[Ez]ra = 0. (198)Here the bra
ket operator represents the di�eren
e of quantity values x a
rossthe boundary between region i and j at position r = y like:
[x]y = xi − xj . (199)At the resistive wall, the magneti
 �eld has no jump and all tangential 
ompo-nents are 
ontinuous

[Bθ,z]rw = 0, [Bθ,z]rw+d
= 0, (200)

[Eθ,z]rw = 0, [Eθ,z]rw+d
= 0, (201)there ra is the antenna position, rw is the resistive wall position and d is theresistive wall thi
kness.From these 12 boundary equations, matrix A of the linear inhomogeneous sys-tem results with
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Ve
tor b 
ontains the 
ontinuity and jump 
onditions mentioned above,
b1 =

4π

c
jz , b2 = −4π

c
jθ, (203)

b3 = b4 = b5 = b6 = b7 = b8 = b9 = b10 = b11 = b12 = 0 . (204)Matrix A 
ontains the abbreviations
t =

iω

α2c
, t∗ = iω

(α∗)2c
, p∗ =

iω∗

(α∗)2 c
, (205)

r1 = ra, r2 = rw, r3 = rw + d, (206)
r1 is the antenna position, r2 the position of the inner resistive wall surfa
e and
r3 the position of the outer resistive wall surfa
e. Further

Ii = Im (αri) , I∗i = Im (α∗ri) , (207)
Ki = Km (αri) , K∗

i = Km (α∗ri) , (208)
si =

mk

α2ri
, s∗i =

mk

(α∗)2 ri
, (209)all for i = 1, 2, 3.4.6 Computation of the Va
uum Field ComponentsThe 
omputation of va
uum �eld 
omponents from Se
. 4.4 is done by MAT-LAB, where a linear inhomogeneous system from Equation (192) is solved.The 
omplex amplitudes of the magneti
 and ele
tri
 �elds are evaluated overall four regions of the 
ylinder like shown in Figure 9. The 
omputation is donefor a resonant mode (m,n)=(12,4) with a frequen
y of f = ω

2π
= 1kHz. Theantenna is pla
ed at r1 = 53
m and the resistive wall at r2 = 60
m with athi
kness of d = 3
m. The torus radius is R = 175
m and the applied antenna
urrent is I0 = 15kA = 4.5 · 1013statamp. The tangential 
omponents of the
urrent density in the antenna are 
hosen to be

jθ = − 8I0
3πR

= −2.182 · 1011 statamp

cm2
, (210)

jz = −jθ
mR

nr1
= 2.162 · 1012 statamp

cm2
. (211)43



The ratio between the skin depth and wall thi
kness δ
d
with

δ =
c√
ω2πσ

(212)is a fun
tion of the 
ondu
tivity σ and 
an be expressed in terms of ν = 4πσ

δ =
c

√

ω ν
2

. (213)
⇒ high 
ondu
tivity σ means a small skin depth δ.Figure 10 and Figure 11 show all non-vanishing ele
tri
 and magneti
 �eld
omponents in all regions I - IV. To test the in�uen
e of the resistive wall, twodi�erent 
ondu
tivities are applied:

• δ
d
<< 1 is a
hieved by a high 
ondu
ting wall with ν

ω
= 1015 and a smallskin depth δ = 0.214
m. Su
h a wall has a visible e�e
t on the �eld
omponents, like shown in Figure 10.

• δ
d
>> 1, represents a high resistive wall, where the �elds are not shieldedinside it. At ν

ω
= 0.1 the 
ondu
tivity is very low. The 
orresponding skindepth is δ = 2.1 · 107
m. Figure 11 shows that su
h a wall behaves like ava
uum region.The real part of the radial ele
tri
 �eld is the 
omponent whi
h is most sensitiveon 
hanges of the resistive wall properties.Figure 12 
ompares the real part of the radial ele
tri
 �eld on 
hanges in 
on-du
tivity (
hange of ν
ω
) and 
hanges of wall thi
kness d. The jump of Re(Er)at the resistive wall is larger in 
ase of a thinner wall.

44



20 30 40 50 60 70 80

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−6

radius in cm

R
e
(
E
r
)
 
i
n
 
s
t
a
t
v
o
l
t
/
c
m

Re(E
r
)

0 20 40 60 80
−100

0

100

200

300

400

500

radius in cm

I
m
(
B
r
)
 
i
n
 
G
a
u
s
s

Im(B
r
)

10 20 30 40 50 60 70 80 90

−4

−3

−2

−1

0

1
x 10

−5

radius in cm

I
m
(
E

θ)
 
i
n
 
s
t
a
t
v
o
l
t
/
c
m

Im(Eθ)

0 10 20 30 40 50 60 70 80 90
−500

−400

−300

−200

−100

0

100

200

300

400

500

radius in cm

R
e
(
B

θ)
 
i
n
 
G
a
u
s
s

Re(Bθ)

0 20 40 60 80
−1

0

1

2

3

4

x 10
−4

radius in cm

I
m
(
E
z
)
 
i
n
 
G
a
u
s
s

Im(E
z
)

0 20 40 60 80
−50

−40

−30

−20

−10

0

10

20

30

40

50

radius in cm

R
e
(
B
z
)
 
i
n
 
G
a
u
s
s

Re(B
z
)

Figure 10: Components of the ele
tri
 and magneti
 �eld plotted over r: blue: va
uumregion I, green: va
uum region II, bla
k: resistive wall region III, red: va
uum regionIV. f = ω
2π = 1kHz, resonant mode (m,n) = (12, 4) with wall thi
kness d = 3
m andantenna 
urrent I0 = 15kA. High 
ondu
ting wall with ν

ω
= 1015 and a skin depth

δ = 0.214
m. The antenna position is ra = 53
m and the resistive wall at rw = 60
m.45
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Figure 12: left: Real part of the radial ele
tri
 �eld over r for three di�erent wall
ondu
tivity 
ases ν
ω

= 0.1 (dotted), ν
ω

= 1 (solid) ν
ω

= 10 (dash-dotted) with d =

3
m. right: Real part of the radial ele
tri
 �eld over r for two di�erent wall thi
knesses
d = 2
m (dash-dotted) and d = 10
m (solid) with ν

ω
= 1. For all 
ases f = ω

2π = 1kHz,mode numbers m = 12, n = 4, I0 = 15kA, antenna position at ra = 53
m and theresistive wall at rw = 60
m are used.5 MHD InstabilitiesMagneti
ally 
on�ned plasmas fa
e a big variety of 
onditions whi
h 
an makethe plasma 
on�guration unstable, lead to strong disruptions of energy or toa shut down of the fusion pro
ess. Instabilities 
an arise from errors in MHDequilibrium pro�les, parti
le transport barriers or simply by unfavourable energydistributions driven by 
urrent or pressure gradients (Ref. [15℄).From the te
hni
al point of view, the role of MHD instabilities is twofold. Onone hand a turbulent plasma motion 
an be used for heating, external error �elds
an 
ouple to internal �elds to open transport barriers and avoid disruptions.On the other hand an un
ontrolled disruption harms the material 
omponents ofthe fusion devi
e and even the fusion pro
ess itself 
an be stopped (Refs. [15,18℄).MHD instabilities set operational limits for fusion devi
es. The most importantare plasma 
urrent, pressure, pressure gradient and density. Mitigation and
ontrol of instabilities are therefore very important topi
s in fusion resear
h.The point of interest lies in the availability of a model whi
h handles MHDinstabilities. For this purpose it is useful to negle
t the plasma resistivity and
onsider an ideal MHD des
ription.The following se
tions dis
uss the properties of the main ideal MHD instabilitiesand give a 
ommonly used approa
h to handle them.47



5.1 The Energy Prin
ipleThe energy prin
iple is a 
on
ept whi
h is used to determine whether a perturba-tion of a system is stable or unstable (if the system returns ba
k to equilibriumor not). The energy prin
iple is based on the 
hange in potential energy of thesystem 
aused by the perturbation. It assumes that the MHD model 
onservesthe total energy of the system (plasma 
on�guration) 
ompletely,(see Ref. [11℄).For a 
hange in potential energy δW it holds that the perturbation for
δW > 0, is stable, (214)
δW < 0, is unstable. (215)A perturbation for
e F 
auses a displa
ement ξ and the 
hange in potentialenergy 
an be de�ned like
δW = −1

2

∫

ξ ·F dV, (216)as integral over the volume V (Ref. [38℄). The linearised MHD Equation (38)determines
F =

1

c
j1 ×B0 +

1

c
j0 ×B1 −∇p1, (217)and by means of remaining perturbation quantities p1, B1 and j1 from Equa-tion (47), Equation (48) and Equation (49), the energy 
ontribution resultsin

δW = −1

2

∫

[ξ · ∇ (γp0∇ · ξ + ξ · ∇p0)+

+
1

4π
ξ · ((∇×∇× (ξ ×B0))×B0 + (∇×B0)×∇× (ξ ×B0))

]

dV. (218)Using the Gauss integral relation
∫

∇ ·A dV =

∫

A · dS, (219)where the volume integral over a ve
tor �eld A is repla
ed by a surfa
e integral,the energy 
ontribution 
an be written as
δW =

1

2

∫
[

γp0 (∇ · ξ)2 + (ξ · ∇p0)∇ · ξ +
1

4π
B2

1 −
1

c
j0 · (B1 × ξ)

]

dV+

+
1

2

∫
(

p1 +
B0 ·B1

4π

)

ξ · dS. (220)From these equations it is evident that δW is determined by ξ.48



5.2 Ideal MHD InstabilityThe gradients of the plasma 
urrent and pressure are the driving for
es of MHDinstabilities. Ideal modes assume that the plasma has no resistivity. Sin
e thisis not valid in reallity, it must be noted that ideal MHD is an useful tool topredi
t the o

uren
e of instability, whi
h will o

ur also for resistive 
ases, ifideal MHD predi
ts it, but due to the resistivity it will not be possible to modelit exa
tly (Ref. [38℄).In general the modes 
an be separated (like e.g. in Ref. [11℄) in:
• Internal modes:It is assumed that a plasma is surrounded by va
uum. It turned outthat some instabilities do not 
hange the position of the plasma-va
uuminterfa
e. Su
h modes have a resonant surfa
e m − qn = 0 inside theplasma and are 
alled internal modes with the boundary 
ondition atplasma surfa
e n · ξ|S = 0. Here n is the normal ve
tor pointing outwardof the plasma. (m,n) are toroidal and poloidal mode numbers.
• External modes:Modes whi
h move the plasma-va
uum interfa
e away from its equilibriumposition have a resonant surfa
e m − qn = 0 outside the plasma andare 
alled external modes with the boundary 
ondition at plasma surfa
e
n · ξ|S 6= 0.Additionally to the separation in external and internal modes, instabilities 
anbe 
lassi�ed as:

• Pressure driven instability:Modes driven by the pressure gradient are most unstable if they are in-ternal (Ref. [11℄). It is 
onvenient to spe
ify two 
lasses:� Inter
hange instabilities:An unfavourable 
urvature of the magneti
 �eld lines 
an lead toinstability. Be
ause of the plasma pressure exerting for
e radiallyoutward, a for
e 
ontribution from magneti
 �elds is stabilising for
onvex �eld lines and destabilising for 
on
ave �eld lines (relativelyto the plasma interior). For the latter 
ase, the �eld line 
urvatureprodu
es magneti
 tension to shorten the �eld lines and pushes themto 
ollapse inward. If two radially adja
ent magneti
 �ux tubes areinter
hanged by perturbation in su
h way, the inter
hange is unsta-ble. So systems with �eld lines 
on
ave to the plasma are unstable49



to inter
hange perturbations. These instabilities 
an be in�uen
edby the shear between two �ux tubes.� Ballooning instabilities:These modes represent a limit for the highest β whi
h is possiblein a fusion devi
e. Inside the plasma both possibilities of �eld line
urvatures do 
oexist. So if a perturbation 
hanges along the �eldlines, it destabilises regions with unfavorable 
urvature and stabilisesthe other ones. The only possibility of stabilisation is to lower β.
• Current driven instability:Modes whi
h are driven by the parallel 
urrent density j‖ 
an be eitherinternal or external and are often named kink modes be
ause su
h per-turbations kink the plasma surfa
e into a helix, like shown in Figure 13.External kinks are signi�
antly stronger than internal kinks. Kinks 
an

Figure 13: Kinking of a magneti
 �ux tube by a 
urrent driven kink instability in
ylindri
al symmetry. Shown are kink me
hanisms for m = 1 (left plot) and m = 2(right plot).be stabilised by a perfe
tly 
ondu
ting wall whi
h is positioned 
lose tothe plasma surfa
e.5.3 Self-Adjointness of the For
e Operator F (ξ)The for
e operator F (ξ) from Equation (51) turns out to be a very useful toolin MHD instability resear
h due to its mathemati
al property of being a self-adjoint operator, what means
F = F∗, (221)where F∗ is the 
omplex 
onjugate of F. Self-adjointness is valid for the �owlessideal MHD 
ase of F in Equation (52) and for a plasma 
on�guration with noresistive walls. The general 
ase is thus not self-adjoint. For two arbitrary ve
-tors ξ and η, whi
h satisfy boundary 
onditions like in Se
. 3.1.2, the following50



integrals
∫

dr η · F (ξ) =

∫

dr ξ · F (η) , (222)are invariant on the inter
hange of both ve
tors ξ and η, what means self-adjointness of F.The indi
ation of stability leans on the sign of ω2, what is 
alled the energyprin
iple. For unstable 
on�gurations the eigenvalues ω2 are pure real. Thisis true for dis
rete modes, whi
h satisfy the eigenequation Equation (51) fordis
rete eigenvalues ω2. The for
e operator is dot multiplied with ξ∗ and after-wards integrated over the volume, then the 
onjugate F ∗ is dot multiplied with
ξ and integrated in the same way.

F (ξ) |
∫

·ξ∗dr , F∗ (ξ∗) |
∫

·ξdr. (223)With the use of the self-adjointness in Equation (222), one re
eives
(

ω2 − (ω∗)2
)

∫

ρ|ξ|2dr = 0, (224)what means
ω2 = (ω∗)2 . (225)This is only possible if ω2 is real. From the frequen
y dependen
e of the modes,whi
h is proportional to e−iωt, it 
an further be pointed out that modes withfrequen
ies ω2 > 0 represent a pure os
illation and 
an therefore be 
onsideredto be stable. Modes with ω2 < 0 have an exponentially growing 
ontributionand are 
onsidered to be unstable.The 
hange from stable to unstable mode happens at ω2 = 0. For self-adjointoperators this is the 
ase exa
tly at Im(ω) = 0 and Re(ω) = 0. In general
ases (non self-adjoint), transition to instability happens at Im(ω) = 0, but atRe(ω) 6= 0, see Figure 14.An another important property of eigenmodes of a self-adjoint operator is thatthe eigenmodes are orthogonal on ea
h other. For two modes (ξm, ω2

m) and(ξn, ω
2
n) where n 6= m are indi
es of di�erent modes, the eigenequation Equa-tion (51) for the n-mode is dot multiplied by ξm and vi
e versa for the m-mode.

−ω2
mρξm = F (ξm) | · ξn , −ω2

nρξn = F (ξn) | · ξm, (226)what leads under 
onsideration of self-adjointness from Equation (222) to
(

ω2
n − ω2

m

)

∫

ρ ξm · ξndr = 0, (227)51



Figure 14: Evolution of two symmetri
 MHD mode frequen
ies (solutions of ω2 = 0)in the 
omplex plane while a perfe
tly 
ondu
ting wall is moved radially inward.The stabilising wall position is rea
hed at Im(ω)=0. left: For the self-adjoint 
asestabilisation happens also at Re(ω)=0. right: Non-self-adjoint 
ases have nonvanishingreal parts of the mode frequen
y. Stabilisation happens at Im(ω)=0 but in general atRe(ω) 6= 0.and for two distin
t modes with ω2
n 6= ω2

m immediately to
∫

ρ ξm · ξndr = 0. (228)This means that the modes are orthogonal on ea
h other with weight fun
tion
ρ, whi
h is the mass density.5.4 The Resistive Wall Mode RWMIn reality, the ideal wall has to be treated as a mediumwith �nite 
ondu
tivity σ,thus resistive. An analyti
 approa
h for modelling su
h a wall, is given in Se
. 4.In fa
t, the Vessel wall is desired to be resistive, be
ause this allows externalmagneti
 �elds a better penetration into the plasma to 
ontrol it by external
oils (Ref. [11℄). It turns out that the resistivity of the wall has a signi�
ant e�e
ton wall stabilisation of plasma modes. A plasma 
on�guration whi
h is stablefor a perfe
tly 
ondu
ting wall is unstable for a resistive wall. Modes get neverfully wall stabilised by a resistive wall. For wall positions above the stabilisationof the ideal wall mode, the resistive wall 
ase 
orresponds in mode growth ratesnearly to the ideal wall 
ase. This is not true below the ideal wall stabilisingposition, there the resitive wall 
ase remains unstable with growth rates whi
hrange at Im(ω) ≈ 1

τw
(this behaviour was dis
ussed in Refs. [4, 11, 39℄), here τwis the 
hara
teristi
 resistive wall di�usion time,

τw =
4πσbd

c2
, (229)52



Figure 15: Resistive wall in 
ylindri
al symmetry (r,Θ, z). Plasma radius a, wallthi
kness d and poloidal angle Θ. Between plasma and resistive wall a va
uum regionis assumed. (sour
e:Ref. [39℄).
Figure 16: Change of growth rates ω = ωr + iωi predi
ted by the MHD model.left: Unstable mode (and symmetri
 stable mode) move on imaginary axis while theideal wall is moved radially inwards. At stabilisation the pure imaginary frequen
y
ω be
omes pure real. right: In
rease of resistivity. Mode frequen
ies grow into theimaginary plane. The RWM develops with Re(ω)=0. (Ref. [11℄)with 
ondu
tivity σ, speed of light c, wall position b and wall thi
kness d.In other words, the use of a resistive wall results in the o

uren
e of an addi-tional mode with slow gowth rate, the RWM. Figure 16 des
ribes the 
hange ofa mode's eigenfrequen
y in the 
omplex plane during stabilisation by an idealwall and a following in
rease of the wall's resistivity (the wall is moved radiallyinwards and after stabilisation σ is in
reased) resulting from the MHD model.The ideal wall 
ase demands, that ω2 is real, what means that ω 
an lie only onthe imaginary or on the real axis. With the ideal wall at stabilisation position, itholds that ω2 = 0, in other words the mode 
hanges at stabilisation from a pureimaginary ω to a pure real. For a self-adjoint 
ase exa
tly at Re(ω)=0. Afterstabilisation, the mode (due to the ω2 term, always two symmetri
 solutions
±ω are expe
ted to exist, see Figure 16) moves on the real axis and ω gets pure53



real. If the resistivity of the wall is 
ontinuously enlarged for su
h a stabilised
ase with Im(ω) = 0 and Re(ω) 6= 0, see right plot of Figure 16, then the modefrequen
y ω moves into the imaginary plane and be
omes 
omplex, ω = ωr+iωi.It 
an be observed, that the additional mode grows out of ω2 = 0 at Re(ω)=0after wall resistivity is applied. This mode is the resistive wall mode RWM.The physi
al pi
ture of the RWM is the following (dis
ussed in Ref. [11℄). Anunstable instability (perturbation) produ
es a plasma displa
ement whi
h in-du
es 
urrents inside the wall. A

ording to Lenz's law, these 
urrents �ow insu
h a dire
tion, that a reindu
ed motion a
ts against the perturbation plasma�ow to stabilise it. In the 
ase of a resistive wall, these 
urrents de
rease due todissipation on the s
ale of the wall di�usion time τw. A 
onsequen
e is that the
urrents whi
h 
ountera
t to the perturbation are not able to exist permanently,what means that the perturbation 
an grow further on. Be
ause this is trueonly for instabilities with τ ≈ τw, the RWM growth rates are mu
h smaller thanideal MHD growth rates, whi
h have τMHD << τw and are nearly una�e
ted bydissipative e�e
ts inside the resistive wall.RWM growth rates in
rease with β = 4π<p>

B2 (< p > is an average value of pthroughout the plasma) and set a limit in β for fusion operation. Control ofRWMs 
an be a
hieved by plasma rotation or by a feedba
k with error �eldswhi
h 
ouple to the internal �elds and are produ
ed by external 
oils. Possibleis also a 
ombination of both feedba
k and rotation. E�e
ts of plasma rota-tion have been modelled in Ref. [4℄ and experimentally underlined at DIII-D inRefs. [33, 34℄. It was dis
overed that with use of rotation a small per
entage(about 20%) of the Alfven velo
ity is needed to stabilise RWMs fully (Ref. [15℄).Error �elds are dis
overed to slow down the plasma rotation what is a matterof RWM 
ontrol by external �elds (Refs. [12, 28℄).The modelling by kineti
 models is a very new approa
h and in stage of progress.From �rst results it is expe
ted that the MHD models overestimate the rangeof plasma �ow whi
h is needed for stabilisation by up to 50%, (Ref. [15℄). Thistenden
y is supported also by results from DIII-D, (Refs. [33, 34℄). Kineti
 ef-fe
ts like 
ollisions, temperature and vis
osity e�e
ts are a purpose of a
tualmodellings.
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6 The Reversed Field Pin
h RFPReversed �eld pin
hes RFPs are toroidal fusion experiments whi
h are 
har-a
terised by short pulses and high 
urrents and are thus unstable to a broadspe
trum of kink modes (Ref. [10℄). Due to this properties, RFPs are very usefulfor RWM investigation.6.1 Des
riptionThe main property of the reversed �eld pin
h is that the toroidal magneti
 �eldhas a reversal point inside the plasma, what means that it 
hanges its dire
tionthere. The poloidal magneti
 �eld has no reversal point. A s
hemati
 plot ofmagneti
 �elds and the pressure pro�le is shown in Figure 17. In Ref. [11℄ it

Figure 17: S
hemati
 plot of typi
al poloidal and toroidal magneti
 �eld 
omponentsin a reversed �eld pin
h. The toroidal �eld Bz has a reversal point where it 
hangesits dire
tion. (sour
e: Ref. [30℄)is mentioned that 
ylindri
al des
riptions are appropriate for RFP modellingbe
ause toroidal 
orre
tions are very small. Early studies of MHD stabilityin Refs. [13, 30℄ 
on�rmed that the RFP pro�le is a good 
on�guration forkeeping the plasma stable even at high β values (it is also possible to stabiliseideal kinks by the presen
e of a perfe
tly 
ondu
ting wall). The reversal of thetoroidal magneti
 �eld a
ts stabilising on internal pressure driven instabilities(in Ref. [11℄ this is shown by the appli
ation of the energy prin
iple).Various investigations on RWM in RFPs have been done using MHD models to55



des
ribe stabilisation by wall and plasma rotation (e.g. Refs. [14, 36℄). Theseaspe
ts are further dis
ussed in Se
. 7.4. The approa
h by kineti
 modelling isa matter of a
tual resear
h.In general, the stability of the RFP is strongly in�uen
ed by the shape of plasmapro�les. In Ref. [11℄ it is mentioned that a minimum in Bz is required toestablish a MHD equilibrium. Compared to Tokamaks, the poloidal magneti
�eld is very large and 
an be even larger than the toroidal �eld. This propertygives a large aspe
t ratio what leads to the important te
hnologi
al advantage,that it is possible to heat the plasma up to ignition only by Joule heating.Toroidal e�e
ts do not matter signi�
antly in MHD stability be
ause of thestrong poloidal �eld. This 
auses only a small toroidal plasma shift. It ismentioned in Ref. [11℄ that toroidi
ity is needed only for 
losing of �eld lines.Pra
ti
ally it is very 
hallenging to generate RFP pro�les with a Bz-reversaland a �at p-pro�le. Therefore a permanently present amount of turbulen
e isneeded for reversal maintenan
e (see Ref. [11℄). The 
on�nement propertiesdo not bene�t from the presen
e of su
h turbulen
e. Although these pro
essesare not well understood so far, the RFP is an attra
tive fusion devi
e due toits operation at high β, favorable properties 
on
erning MHD stability at highaspe
t ratio and the possibility of Joule heating up to ignition. A te
hnologi
aldisadvantage is the need of a perfe
tly 
ondu
ting wall relatively 
lose to theplasma to a
hieve MHD stability.6.2 RFP EquilibriumThe RFP equilibrium is des
ribed by the α-Θ0 equilibrium model used inRef. [14℄ and 
an be derived in 
ylindri
al symmetry from the ideal MHD-equilibrium
∇p0 =

1

c
j0 ×B0, (230)

∇×B0 =
4π

c
j0, (231)with B0 = (0, B0θ(r), B0z(r)) the equilibrium magneti
 �eld, p0(r) the equilib-rium pressure, j0(r) the equilibrium 
urrent density, and c the speed of light.For brevity, subs
ript zero is dropped in the following.Equation (230) and Equation (231) lead to the for
e balan
e in 
ylindri
al sym-metry

∂

∂r

(

p+
B2

Θ +B2
z

8π

)

+
B2

Θ

4πr
= 0. (232)56



The 
urrent density in Equation (231) is expressed by it's 
omponents paralleland prependi
ular to the magneti
 �eld,
∇×B =

4π

c

(

j⊥ + j‖
)

. (233)It is now possible to write the Θ- and z-
omponents of Equation (233) by meansof perpendi
ular and parallel 
urrent 
omponents
dBz

dr
= −4π

c
jΘ = −4π

c

(

jΘ⊥ + jΘ‖
)

, (234)
1

r

d

dr
(rBΘ) =

4π

c
jz =

4π

c

(

jz⊥ + jz‖
)

. (235)For further steps, the 
urrent 
omponents are expressed as proje
tions on themagneti
 �eld like
j‖ =

j ·B
B2

B, (236)
j⊥ = −j×B

B2
×B. (237)To derive Equation (237), the relations

j⊥ = j− j‖, (238)
(j×B)×B = (B · j)B− (B ·B) j, (239)have been used. From Equation (230) and Equation (237) the perpendi
ular
urrent density is

j⊥ =
c

B2
(B×∇p) . (240)E�e
ts of the parallel 
urrent are important for RFP stability. To be able toestimate the in�uen
e of j‖ better, Equation (236) is expressed by the parallel
urrent distribution µ as

j‖ =
j ·B
B2

B =
cµ

4π
B, (241)like in Refs. [1, 25℄. Here, c is the speed of light and

µ =
2

a
Θ0

[

1−
(r

a

)α]

, (242)with shape parameters α and Θ0 and plasma radius a. The parameter Θ0 isrelated to the safety fa
tor at the axis and the major radius by q (0) = a
Θ0R

.57



From Equation (234) and Equation (235) the α-Θ0 equilibrium model is nowgiven by the following equations,
dBz

dr
= −µBθ −

4πBz

B2

dp

dr
, (243)

1

r

d

dr
(rBθ) = µBz −

4πBθ

B2

dp

dr
, (244)

dp

dr
= −χ r

8π

(

µB2

2BΘ

− Bz

r

)2

. (245)(246)Here, χ is a 
onstant whi
h determines the e�e
t of pressure gradients. Equa-tion (245) gives Suydam's ne
essary 
ondition for stability when χ < 1. Derivedparameters des
ribing this model are the poloidal beta βp, the reversal param-eter F , and the pin
h parameter Θ,
βp =

8π

B2
θ (a)

〈p〉 =
8π

B2
θ(a)

1

πa2

∫ a

0

dr 2πrp(r), (247)
F =

Bz(a)

〈Bz〉
, Θ =

Bθ(a)

〈Bz〉
. (248)So ea
h set of equilibrium parameters (α, χ,Θ0) de�nes a RFP equilibrium withresulting parameters (F,Θ, βp) and vi
e versa.6.3 Computation of the RFP EquilibriumEquation (243), Equation (244) and Equation (245) represent a 
oupled sys-tem of di�erential equations of �rst order whi
h 
an be solved numeri
ally bya Runge-Kutta boundary value solver. The equations are normalised and afterintegration multiplied by realisti
 RFP values. The magneti
 �elds are nor-malised by the value of the poloidal magneti
 �eld at the plasma surfa
e BΘa,the radius is normalised by the plasma radius a, the normalised pressure is

p = 8πp
B2

Θa

. The resulting normalised RFP equilibrium equations are
dBz

dr
= −µBθ −

Bz

2B
2

dp

dr
, (249)

1

r

d

dr

(

rBθ

)

= µBz −
Bθ

2B
2

dp

dr
, (250)
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dp

dr
= −χr

(

µB
2

2BΘ

− Bz

r

)2

, (251)
µ = 2Θ0 [1− (r)α] . (252)The normalised quantities are overlined. For integration, the following bound-ary 
onditions
BΘ|0 = 0 , Bz|0 = Bz0 = 1, (253)

dBΘ

dr
|0 = Θ0Bz0 ,

dBz

dr
|0 = 0, (254)

dp

dr
|0 = 0. (255)are needed. The index |0 represents the value at r = 0. The integration is
arried out from the 
ylinder axis r = 0 to the plasma radius r = 1.RFP equilibria given in this se
tion were 
omputed by ode45 from MATLAB.The in�uen
e of the parameters (α,Θ0, χ) on the RFP equilibrium quantities
an be dis
ussed like in Refs. [14,36℄. Table 2 shows the in�uen
e on (F,Θ, βp).Nr. α Θ0 χ F Θ β1 5.5 1.5 0.0 -0.18 1.48 0.02 8.0 1.5 0.0 -0.47 1.58 0.03 3.63 1.7 0.0 -0.47 1.74 0.04 8.16 1.5 1.0 -0.59 1.93 0.0815 7.74 1.5 1.5 -0.59 2.08 0.126Table 2: RFP equilibrium parameters (F,Θ, βp) whi
h result from parameters

(α, χ,Θ0).Case 1 
orresponds to the zero pressure Equilibrium (1) in Figure 6 of Ref. [14℄.The e�e
t on F and Θ 
an be estimated for the 
ase that α (Case 2) or Θ0 (Case3) are varied. Case 4 
orresponds to Equilibrium 5 in Figure 6 of Ref. [14℄.Case 5 shows the 
hange in α and Θ0 if F = const for a 
hange in β. Figure 18shows the RFP equilibrium magneti
 �elds and the q-pro�le for Cases 1, 2 and3 from Table 2. These three equilibria have zero pressure. Changes in thepressure 
an be seen in Figure 19. There χ is varied under 
onstant F and
Θ0. Pressure and pressure gradient pro�les for Cases 4 and 5 are shown inFigure 20. Figure 21 shows temperatures and the parti
le density for Case 4in Table 2. The parti
le density is equal for ions and ele
trons and is 
hosento be 
onstant like suggested in Ref. [14℄. To s
ale the pro�les to realisti
 RFP59
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Figure 18: RFP equilibrium pro�les: Safety fa
tor q, poloidal mageti
 �eld B0p andtoroidal magneti
 �eld B0z. The solid line is for Case 1 in Table 2, the dashed line
orresponds to Case 2 and dash-dot to Case 3. All three 
ases have zero pressure.
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Figure 19: RFP equilibrium pro�les: Safety fa
tor q, poloidal mageti
 �eld B0p andtoroidal magneti
 �eld B0z. The solid line 
orresponds to Case 1 in Table 2, thedashed line 
orresponds to Case 4 and dash-dot to Case 5.values, it is enough to set BΘa at plasma radius and all other quantities 
anbe unnormalised with 
orresponden
e to BΘa. All des
ribed RFP equilibriahave BΘa = 2400G what 
an also be seen in Figure 18 and Figure 19. Thetemperatures are 
omputed by T = p

kBn
in [eV℄ with T = Te+ Ti and Te = 0.6Tand Ti = 0.4T . While using MHD, a splitting of temperatures into ele
tron andion part does not enter the model. This step be
omes important while usingthe kineti
 model, where parti
le intera
tions depend on the di�ering pro�les60
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7 Results of RFP Investigations7.1 Zone Con�gurations for RFP ModellingWhile modelling growth rates of ideal and resistive wall modes in RFP symmetryby the KiLCA 
ode, Maxwell equations have to be solved in di�erent media likedis
ussed in Se
. 4. Figure 22 shows the zone 
on�gurations for MHD andkineti
 (�re) modelling of the ideal wall mode. Outside the plasma region ava
uum region is assumed whi
h is 
losed by an ideal wall at the outer edge.The 
orresponding boundary 
onditions are dis
ussed in Se
. 4. The KiLCA
Figure 22: left: Two zones for modelling the ideal wall mode by the MHD 
ode.Between plasma radius r1 and ideal wall (iw) at r2 a va
uum zone is applied. Theantenna 
an be pla
ed exa
tly at plasma radius. right: Three zones for modelling theideal wall mode by the kineti
 
ode. The va
uum zone from the MHD 
ase is splitinto two zones by the antenna at r2. Here r3 marks the ideal wall position.
Figure 23: left: Four zones for modelling the resistive wall mode by the MHD 
odewith antenna at plasma surfa
e r1. right: Five zones for modelling the resistive wallmode by the kineti
 
ode, where the antenna is pla
ed in the outer va
uum zone at
r4. Both 
on�gurations are 
losed by an ideal wall at the outer edge.
ode is programmed in su
h a way that an antenna must always be added tothe zone 
on�guration. During the 
al
ulation of ideal and resistive wall modesthe antenna 
urrents are set to zero. When using the MHD 
ode, the antennais pla
ed exa
tly at plasma surfa
e, be
ause of numeri
al stability reasons thisis not possible for the kineti
 
ode, where the antenna must be pla
ed at the62



boundary of two media of the same type (e.g. va
uum - va
uum). Figure 23shows the zone 
on�guration of MHD and kineti
 modelling for the resistivewall mode. A resistive wall is pla
ed outside the plasma surrounded by va
uumregions. In 
ase of kineti
 modelling, the outer va
uum region is split into twova
uum regions by the antenna at r4. Both 
on�gurations are 
losed by anideal wall at the outer edge what represents the vessel wall.7.2 MHD Model Ben
hmarkingInvestigations in Refs. [14, 36℄ provide a detailled dis
ussion 
on
erning RWMstabilisation by plasma rotation in a RFP. This se
tion dis
usses a reprodu
tionof the main results given in Ref. [14℄ using the KiLCA-MHD 
ode. Equilibrium4 from Table 2 in Se
. 6.3 is suitable for this purpose be
ause it is equal toEquilibrium 5 in Figure 6 of Ref. [14℄.For investigations of the in�uen
e of the wall position on the growth rates, theplasma rotation velo
ity is set to zero. Changes of growth rates by variation
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Figure 24: MHD mode growth rates for ideal wall (solid) and resistive wall (dotted)positions b
a
, normalised by ωA = 2.34e6s−1 for Equilibrium 4 from Table 2 and mode

(m,n) = (1, 3).of the wall position for an ideal wall and a resistive wall with 
ondu
tivity
σ = 4.5e14s and wall thi
kness d = 5
m are shown in Figure 24. The ideal wallmode is stabilised at b

a
= 1.58 (solid). For a resistive wall a small growth rateof ω = 0 + i · 7.8246953e2s−1 at b

a
= 1.05 remains (dotted) and is never fullystabilised if a rotation is absent. The used MHD modes have (m,n) = (1, 3)what results in a normalised z-
omponent of the wave number kz = na

R
=63



3·50cm
200cm

= 0.75. This 
orresponds to the 
ase dis
ussed in Ref. [14℄ and mat
hestheir results.The 
urves are normalised by ωA in the same way like this is done in Ref. [14℄.For a plasma radius a = 50
m, one gets
ωA =

VA
a

=
B0θ(a)/

√
4πρ

a
=

1.17× 108 cm/s

50 cm
= 2.34× 106 s−1. (256)The appli
ation of a plasma rotation opens an interval for b

a
where the RWM 
anbe fully stabilised. The width of this interval is a fun
tion of the plasma rotationspeed. Figure 25 shows two 
ases of poloidal plasma rotation (Vz = 0.5VA and

Vz = 0.7VA) whi
h are 
onstant over radius. The width of the window in
reases
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Figure 25: Windows of stable wall positions for a plasma rotation with Vz = 0.5VAand Vz = 0.7VA for Equilibrium 4 from Table 2. Growth rates are shown by the leftplot and the real parts are shown by the right plot. Inside the window there is nodata. The normalisation is done by ωA = 2.34e6s−1.with Vz. The wall positions where the windows open di�er little from the resultgiven by Figure 10 in Ref. [14℄ (in Ref. [14℄ the windows open: for Vz = 0.5VAat b
a
= 1.46 and for Vz = 0.7VA at b

a
= 1.38), but the growth rates of Figure 25mat
h the given results at b

a
= 1.05 and b

a
= 2.0. The di�eren
e in windowposition results from the range of the Alfven velo
ity whi
h is not exa
tly knownfrom Ref. [14℄, be
ause of the unknown range of magneti
 �elds. But the generalbehaviour of RWM from Ref. [14℄ is su

essfully re
omputed.
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7.3 Estimate of the In�uen
e of the Galileian MovingFrame Velo
ity on Kineti
 ModellingAll 
omputations using the kineti
 model are 
omputed in a frame whi
h movesin toroidal dire
tion. Consequently all results have to be transformed ba
k tothe laboratory frame using Galileian transformation. One of the 
ommon needsto re
eive trustable results, is the invarian
e of results on the 
hoi
e of themoving frame velo
ity, like des
ribed in Ref. [19℄. The Galileian frame velo
ity
vgal transforms the plasma motion to a moving frame with velo
ity V frame

z andenters to the kineti
 
ode by
V frame
z = sVz − vgal, (257)where Vz is the toroidal plasma ba
kground rotation and s is a 
onstant whi
his used to s
ale Vz. Figure 26 shows the dependen
e of the normalised growth
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imag rw1− 1.8 −ngcFigure 26: Dependen
e of the kineti
 ideal wall mode frequen
y on the vgal velo
ityof the moving frame. left: Plotted are growth rates of the rw1-mode for resistivewall positions rw/a = 2.0, rw/a = 1.8 and rw/a = 1.4. right: Growth rates of therw1-mode for resistive wall position rw/a = 1.8 for an applied Galileian 
orre
tionterm and without it.rates on the Galileian frame velo
ity vgal. The growth rates shown are 
omputedby the kineti
 model in
luding the 
ollision term from Se
. 3.2 and an appliedresistive wall like dis
ussed in Se
. 7.1. They 
orrespond to the rw1-mode dis-
ussed in Se
. 7.4. The left plot 
ompares the vgal-dependen
e for the threedi�erent wall positions rw/a = 2.0, rw/a = 1.8 and rw/a = 1.4. The right plot
ompares the vgal-dependen
e for the rw1-mode growth rates at rw/a = 1.8while a Galileian 
orre
tion term is used and without it.The invarian
e is full�lled up to values of ±1e6 cm

s
, here the 
hange of the65



growth rates vary less than 10%. Outside this the Galileian invarian
e is sig-ni�
antly violated. Modes propagating with the velo
ity of the moving framemight be
ome superalfeni
. In this sense the wall might lose its e�e
t on themode (
urrent indu
tion), within what the mode 
an 
hange its frequen
y.7.4 Sensitivity of Ideal Kink and RWM on the Wall Po-sitionThis se
tion dis
usses results of 
omputations done on RFP equilibria men-tioned in Se
. 6.3 and published in Ref. [26℄.It is desired to investigate instabilities of RFP equilibria both by the MHD andthe kineti
 model and 
ompare predi
tions of both models for a RFP plasmagetting stabilised by 
hanges in ideal and resistive wall positions and by appli-
ation of toroidal plasma rotation.For investigations of this purpose, the equilibrium plasma ba
kground Case 4from Table 2 in Se
. 6.3 is suitable (it is equal to Equilibrium 5 in Figure 6 ofRef. [14℄). The pro�les are shown in Figure 19, Figure 20 and Figure 21.The Alfven rotation frequen
y ωA remains for the applied equilibrium as ωA =
2.34× 106s−1 (the same like in Equation (256)). The ideal time s
ale

τA =
1

ωA

= 4.27 · 10−7s, (258)is used to express the resistive wall time s
ale. The resistive wall time s
ale
τw for wall position b = 50 
m, wall thi
kness d = 5 
m, and wall 
ondu
tivity
σ = 4.5 · 1014 s−1 is then

τw =
4πbdσ

c2
= 0.0016s = 3.7 · 103 τA. (259)For a big radius R = 200 
m, toroidal and poloidal mode numbers n = 3and m = 1, the value for k = n/R agrees with the value in Ref. [14℄, namely

ka = 0.75. For the ideal wall positioned at b/a = 2 the normalised radialmagneti
 �eld |Br| for the kink instability is shown in the left plot of Figure 27.The right plot shows the normalised |Br| pro�le for modes with the resistivewall positioned at b/a = 1.4. In this 
ase, two kineti
 roots rw1 and rw2 havebeen found whose growth rates are shown in Figure 28. The |Br| pro�les for theMHD and the kineti
 model are seen in good qualitative agreement. Figure 28shows the normalised growth rates of the ideal wall mode (iw) and the resistivewall mode (rw) as a fun
tion of the wall position. The MHD result is the sameas shown in Figures 5 and 6 of Ref. [14℄. The kineti
 des
ription of the kink typemode (ideal wall) shows a slightly smaller growth rate for 1.6 < b/a < 2. More66



0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
|B

r|

r/a

 

 
mhd iw
kin iw

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

|B
r|

r/a

 

 
mhd rw
kin rw 1
kin rw 2

Figure 27: Pro�les of the modulus of the radial magneti
 �eld |Br| for the ideal wall(left) at b/a = 2 (ideal kink mode) and the resistive wall (right) at b/a = 1.4 (resistivewall mode) without toroidal plasma rotation. Toroidal and poloidal mode numbersare n = 3 and m = 1 su
h that the toroidal wave number normalised to the smallradius a is ka = 0.75. left: Blue (dashed) � MHD model, red (solid) � kineti
 model.right: The ratio of resistive to Alfvéni
 (ideal) time s
ale is τw/τA = 3.7 × 103. Blue(dashed) � MHD model, red (solid for mode rw1 and dotted for mode rw2) � kineti
model.
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) for the ideal wall, dashed and dot-dashed lines for the resistive wall. Thereexist two RWM kineti
 solutions rw1 and rw2 for 1.35 < b/a < 1.52.
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remarkably one 
an observe a signi�
ant smaller value for mode stabilisationabout b/a ≈ 1.3 
ompared to b/a ≈ 1.6 for MHD. Nevertheless, the ideal mode
an be still stabilised by an ideal wall 
lose enough to the plasma.If the wall is resistive, the resistive wall mode appears. In the MHD 
ase,there exists now a mode even for values of b/a < 1.6 with growth rates threeorders of magnitude smaller, i.e. on the resistive time s
ale. In the kineti
 
ase,the situation is somewhat di�erent. For values above the ideal stabilisationvalues of b/a = 1.3 it holds for mode rw1 that there is, similar to MHD, notmu
h di�eren
e to the ideal wall 
ase. For small values of the wall position,
1 < b/a < 1.52, there appears a new mode rw2, the kineti
 resistive wall mode.Between 1.3 < b/a < 1.52 both modes rw1 and rw2 do 
oexist. Again, thegrowth rates found by the kineti
 model are in good qualitative agreement withthe MHD results.7.5 Stabilisation by Plasma RotationThe next point to be adressed is the role of mode stabilisation by toroidal ro-tation of the plasma. For this purpose an uniform velo
ity pro�le (
onstantover r) for Vz is applied to the RFP equilibrium used in the previous se
tions.Figure 29 shows the growth rates over toroidal rotation for di�erent positionsof the resistive wall. On the left, the results for negative Vz are shown, on theright, the results for positive Vz (plasma 
urrent is positive) are shown.The �rst thing one 
an realise is that for MHD the mode stabilisation is sym-metri
 with respe
t to the sign of Vz. This 
an be also seen from the formulae inthe MHD modelling se
tion if the poloidal velo
ity is zero. In 
ontrast, kineti
modelling shows stabilisation only for Vz < 0 values, whereas for Vz > 0 thegrowth rates slightly in
rease instead. In the kineti
 model the toroidal plasmarotation velo
ity in�uen
es the ba
kground ele
tri
 �eld and the parallel bulkvelo
ity parameter of the ion and ele
tron ba
kground distribution fun
tions.In the expressions that de�ne those quantities there is no symmetry that maylead to su
h a symmetri
 behavior of the instability growth rates with respe
tto dire
tion of toroidal plasma rotation. Another di�eren
e 
an be found forwall position b/a = 1.1. MHD predi
ts instability whereas kineti
 theory doesnot. That means instead of the stability window shown in Figure 25, in thekineti
 model there is an upper threshold, b/a ≈ 1.68 for the wall position only:if the wall is too far away the RWM is not stabilised even for large toroidalrotation velo
ities. In MHD there is also a lower threshold, b/a ≈ 1.4, and theRWM is not stabilised for the resistive wall too 
lose to the plasma.For the 
ase b/a = 1.4 one 
on
ludes from Figure 29 that in the kineti
 modeltoroidal velo
ities of about 3% of the Alfvén velo
ity stabilise the RWM whereas68
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 model. left: � toroidal plasma rotation against,right: � toroidal plasma rotation with the toroidal plasma 
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ent of the Alfvén velo
ity have also been found in Ref. [22℄ to be su�
ient forstabilisation of resistive wall modes in ITER by toroidal rotation.To investigate the in�uen
e of the edge value of the toroidal plasma rotation onthe growth rates, three di�erent rotation velo
ity pro�les shown in Figure 30have been tested.Note that always the parameter s from Equation (257) sets the fra
tion of theAlfven velo
ity (e.g. s · VA like done in Figure 29).The results in Figure 31 show that for smaller rotations speeds at the plasmaedge, the stabilisation value for the 
ase b/a = 1.4 in
reases up to 10% of theAlfvén speed. It is 
on
luded that a high enough plasma rotation at the edgeis important for stabilisation, whereas di�erential rotation seems to have nosigni�
ant impa
t.
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7.6 In�uen
e of Density Pro�les
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r/aFigure 32: Di�erent density pro�les used in the 
al
ulations.To ensure that the jump in density at plasma - va
uum interfa
e does not leadto unphysi
al results, the density pro�le shown in Figure 32 has been applied.The plots in Figure 33 show no signi�
ant di�eren
e of growth rates if twodi�erent density pro�les n1 and n2 are applied to kineti
 modelling of RWMs.So only small values of growth rates show a deviation from the n1 pro�le resultsof resistive wall modes rw1 and rw2 from Se
.7.4. The e�e
t of smooth densityn2 on the RWM stabilisation by rotation is shown in Figure 34. It 
an be seenthat the smooth density pro�le has no signi�
ant e�e
t on the MHD model, butthe kineti
 model rea
ts somehow more sensitive for higher rotation speeds.Figure 25 dis
usses a stable window for a resistive wall position between 1.4 <
b/a < 1.6 predi
ted by the MHD model. To estimate the in�uen
e of the densitypro�le, the same 
omputations have been done for the density pro�le n2. Bothresults are 
ompared in Figure 35. For ea
h parti
ular position of the resistivewall the threshold value of the toroidal plasma velo
ity to stabilise the modeis di�erent. At a velo
ity of pro�le V1 with Vz/VA = 0.5 and density pro�len2 only wall positions 1.4 < b/a < 1.6 
an be stabilised. This is shown inFigure 36 for three di�erent positions of the resistive wall b/a = 1.1, b/a = 1.4and b/a = 2.0.It is not possible to observe a stable window by the kineti
 modelling, seeFigure 29. In general, it 
an be said that the results with a smooth densitypro�le n2 
on�rm the behaviour of the uniform density pro�le n1.71
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ity for the MHD modeland density pro�le n2.7.7 Energy DissipationAn important question is where the energy goes during RWM stabilisation. Forthe frequen
y range typi
al to RWM only Cerenkov resonan
e will 
ontributeto the intera
tion between the ele
tromagneti
 �eld and parti
les that in thepresent 
ylindri
al model are all passing parti
les. However, it is most likelythat magneti
 perturbation along the magneti
 �eld lines a
ting via the gradB for
e on the parti
les will add up to the parallel ele
tri
 perturbation �eldand thus to the work of the ele
tri
 �eld on the parallel 
urrent. The relative73
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Figure 37: Power densities (normalised to the maximum value of |Br|2) dissipatedto ele
trons (left) and to ions (right) for a stable (Vz/VA = −0.04) and an unstable(Vz/VA = −0.03) RWM and resistive wall position at b/a = 1.4.impa
t of di�erent sorts of parti
les on the mode stability 
an be analysed bylooking at the ele
tromagneti
 power dissipated to the respe
tive spe
ies. Iftotal power dissipated to the ele
trons and ions together is positive, the modewill damp. Vi
e versa, if it is negative, the mode will obtain energy from theplasma parti
les and will grow, i.e. be
ome unstable.In Figure 37 shown are power densities dissipated to ele
trons and ions forthe 
ase of a stable (plasma rotates with Vz = −0.04 VA) and an unstable(Vz = −0.03 VA) RWM mode with resistive wall position at b/a = 1.4. Whilethe power densities dissipated on both spe
ies have the same sign (positive forthe stable and negative for the unstable mode), it is the ele
trons whi
h areresponsible for the RWM stability sin
e the energy dissipated to the ions isthree orders of magnitude less.7.8 Estimate of Kineti
 Code Dependen
e on Te and TiRegarding to the temperatures from the used RFP equilibrium in Se
. 7, the re-maining question 
on
erning the in�uen
e of temperatures on the kineti
 resultsarises. While for the MHD model only the 
omplete temperature T = Te + Tienters to the equilibrium pressure in p = nkBT , the kineti
 model depends onboth temperature 
omponents regarding to the separately 
onsidered 
ollisionsof ele
trons and ions. Therefore the kineti
 model is expe
ted to be sensitive74
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tron temperature Te. Both full�ll Dalton'slaw p = nkBT = nkB (Te + Ti) whereas Te = 0.6T and Ti = 0.4T .Figure 38 shows the normalised growth rates and normalised real parts for thekineti
 resistive wall modes rw1 and rw2 from Se
. 7.4 in 
omparison to the
ase with ex
hanged temperatures. The ex
hange of temperatures has a visiblein�uen
e on both modes. The low frequent rw2 has a di�erent stabilisationposition of the resistive wall, it 
hanges from initially b/a = 1.52 to b/a = 1.54.The 
hange in stabilisation position is mu
h larger for the rw1 mode, whereit is shifted from initially b/a = 1.33 to b/a = 1.56. The 
onsequen
e is nowthat there is nearly no overlapping of RWMs at resistive wall positions between

b/a = 1.33 to b/a = 1.52, be
ause both modes stabilise at approximately thesame wall position.
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8 Appli
ation of MHD and Kineti
 Model to Toka-mak PlasmasIn the following se
tion we apply the developed kineti
 and the MHD 
ode toa set of Tokamak like pro�les without reversal point.The task of these investigations is to show that it is also possible to model and
ompare instabilities obtained by the kineti
 and the MHD 
ode on pro�leswhi
h approximate a Tokamak 
on�guration in 
ylindri
al symmetry. We havedeveloped a MATLAB program whi
h 
omputes pro�les by analyti
 expressionsin
luding shape parameters to in�uen
e the gradients of the pro�les. This allowsto tra
e the frequen
ies of instabilities (frequen
y values in the 
omplex plane),whi
h are known for simple pro�le 
on�gurations, up to realisti
 Tokamak s
ales.8.1 Cal
ulation of Pro�lesThis se
tion des
ribes the modelling of Tokamak like pro�les in 
ylindri
al sym-metry. The pro�les are 
omputed from analyti
 expressions based on the tanh-fun
tion. The equilibrium is 
al
ulated to be self-
onsistent, i.e. the MHDequilibrium 
ondition from Equation (232) is satis�ed.The basi
 idea is that the pro�les of parti
le density n, ion and ele
tron tem-perature Ti and Te, plasma ba
kground velo
ities Vz and VΘ and 
urrent density
Jz are determined by a tanh-fun
tion whi
h 
an be varied by shape parametersaribtrarily. From these pro�les it is then possible to 
ompute all remaining pro-�les (e.g. magneti
 and ele
tri
 �elds) out of the MHD equilibrium equations.The shape parameters for the tanh-fun
tion represent a set of six parameterswhi
h determine the 
omplete shape of a plasma quantity Q and are namely:the quantity value at 
ylinder axis Q0, the value at 
ylinder wall Qinf , plasmaradius a, the degree of the 
urve deg and the shape 
oe�
ients Dmin and Dmax.A tanh-fun
tion 
an then be used to 
ompute the plasma pro�les by:

Q = 2A

(

1 + tanh

(

a− r

δ

))deg

+Qinf , (260)where Q represents one of the basi
 pro�les mentioned above (e.g. n, Te, et
.).Further are
δ = Dmin +

Dmax −Dmin

rn − r
· (r − r0) , (261)

A =
Q0 −Qinf

2tanh
(

a
r0
+ 1
)deg

. (262)76



The quantities with index zero represent the on axis values and rn representsthe 
ylinder wall position. In Table 3 the set of shape parameters for Pro�le 1from Se
. 8.2 is shown. Table 4 shows the equilibrium parameter set for Pro�le2 and Table 5 shows the shape parameter set for equilibrium Pro�le 3.Pro�le 1 Q0 Qinf a deg Dmin Dmax

n 5.0 · 1013cm−3 Q0/1e5 50cm 5 3 20
Ti 104eV Q0/100 50cm 5 15 10
Te 7.5 · 103eV Q0/100 50cm 5 15 10
Vz 106 cm

s
0.0 cm

s
50cm 2 15 30

Jz 1.5 · 1011 stamp
cm2 0.0 stamp

cm2 50
m 5 5 30Table 3: Shape parameter set for Pro�le 1 from Se
. 8.2 Tokamak pro�les.Pro�le 2 Q0 Qinf a deg Dmin Dmax

n 5.0 · 1013cm−3 Q0/1e5 50cm 5 2 20
Ti 104eV Q0/100 50cm 9 2 10
Te 7.5 · 103eV Q0/100 50cm 9 2 10
Vz 106 cm

s
0.0 cm

s
50cm 2 15 30

Jz 1.5 · 1011 stamp
cm2 0.0 stamp

cm2 50cm 5 10 30Table 4: Shape parameter set for Pro�le 2 from Se
. 8.2 Tokamak pro�les.Pro�le 3 Q0 Qinf a deg Dmin Dmax

n 5.0 · 1013cm−3 Q0/1e5 50cm 5 2 20
Ti 104eV Q0/100 50cm 9 2 10
Te 7.5 · 103eV Q0/100 50cm 9 2 10
Vz 106 cm

s
0.0 cm

s
50cm 2 15 30

Jz 3.0 · 1011 stamp
cm2 0.0 stamp

cm2 50cm 5 10 30Table 5: Shape parameter set for Pro�le 3 from Se
. 8.2 Tokamak pro�les.
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8.2 Pro�le 1
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Figure 39: q-pro�le for Pro�le 1 whi
h has q = 1 at rs/a = 0.68 (rs = 34
m) and
q0 = 0.85.Pro�le 1 is 
omputed analyti
ally by MATLAB. All quantities satisfy the MHDequilibrium 
ondition for s
rew pin
hes

∂

∂r

(

p+
B2

θ +B2
z

8π

)

+
B2

θ

4πr
= 0 . (263)All pro�les are shown in Figures 39, 40, 41, 42 and 43.(r = 10−3
m) (r = 70
m)

fce in Hz 2.2394e10 2.7585e10
fci in Hz 1.2276e7 1.5027e7
fpe in Hz 6.3489e10 2.0771e8
fpi in Hz 1.0457e9 3.3131e6
Cs in cm

s
1.0167e6 1.2157e5

VA in cm
s

2.4698e8 9.6202e10Table 6: Comparison of gyro and plasma frequen
ies fce = eB
2πmc

, fpe = 1
2π

√

4πne2

me
,ion sound speed Cs =

√

γkB
Te

mi
and Alfven velo
ity VA = B√

4πnimi

for Pro�le 1.
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Figure 40: Pro�le 1 velo
ities vθ and vz normalised by the Alfven velo
ity as well as
urrent 
omponents jθ and jz are plotted against the radius whi
h is normalised bythe plasma radius a.
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Figure 41: Pro�le 1 parti
le density and radial ele
tri
 �eld plotted against thenormalised radius.The q-pro�le in
reases monotoni
ally with r, the parti
le density at the axis is
n0 = 5 · 1013 1

cm3 , there the toroidal magneti
 �eld is Bz0 = 8 · 103G and thepoloidal magneti
 �eld is zero, the major radius is R = 200
m.The magneti
 �elds satisfy the Straight Tokamak approximation from Se
. 8.5.In Figure 44 the 
hara
teristi
 gyro and plasma frequen
ies for Pro�le 1 as wellas Alfven and sound velo
ities are shown. Table 6 
ompares the values of thequantities from Figure 44. Therefore two radial positions (r = 10−3cm) and79
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Figure 42: Pro�le 1 magneti
 �elds Bθ and Bz as well as ion and ele
tron temperatureplotted against the normalised radius.
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Figure 43: Pro�le 1 magneti
 pressure pm = B2

8π and gas pressure pg = nkBT , plottedagainst the normalised radius.
(r = 70
m) are 
hosen. At these radial ranges all quantities from Figure 44 arenearly 
onstant over radius r, what makes it useful to 
ompare them there.
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Figure 44: Pro�le 1 
hara
teristi
 frequen
ies. The plots show the ion and ele
tronplasma frequen
ies, the ion and ele
tron gyro frequen
ies, the Alfven velo
ity VA andthe ion sound speed Cs plotted against the normalised radius.
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8.3 Pro�le 2
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Figure 45: q-pro�le for Pro�le 2 whi
h has q = 1 at rs/a = 0.9 (rs = 45
m) and
q = 2 at rs/a = 1.16 (rs = 58
m).Pro�le 2 is 
omputed in the same way by MATLAB like Pro�le 1. The MHD-(r = 10−3
m) (r = 70
m)

fce in Hz 2.7993e10 3.2273e10
fci in Hz 1.5241e7 1.7581e7
fpe in Hz 6.3489e10 2.0771e8
fpi in Hz 1.0457e9 3.3131e6
Cs in cm

s
1.0167e6 1.2157e5

VA in cm
s

3.0871e8 1.1251e11Table 7: Comparison of gyro and plasma frequen
ies fce = eB
2πmec

, fpe = 1
2π

√

4πne2

me
,ion sound speed Cs =

√

γkB
Te

mi
and Alfven velo
ity VA = B√

4πnimi

for Pro�le 2.equilibrium from Equation (263) is satis�ed as well. The parti
le density is
n0 = 5 · 1013 1

cm3 , the toroidal magneti
 �eld at the axis is Bz0 = 104G, thepoloidal �eld is zero there and the major radius is R = 400
m.Figure 45, 46, 47, 48 and 49 show q-pro�le, magneti
 �elds, velo
ity and 
urrentdensity 
omponents, temperatures, the radial ele
tri
 �eld, the parti
le density
n, the magneti
 pressure and the gas pressure.Table 7 shows the 
hara
teristi
 frequen
ies and velo
ities at (r = 10−3
m)82
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Figure 46: Pro�le 2 velo
ities vθ and vz normalised by the Alfven velo
ity as well as
urrent density 
omponents jθ and jz are plotted against the normalised radius.
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Figure 47: Pro�le 2 parti
le density and radial ele
tri
 �eld Er plotted against thenormalised radius.and (r = 70
m). It 
an be re
ognised, that ion and ele
tron plasma frequen
ies(in Figure 50) di�er only in steepness at plasma edge. This is a 
onsequen
eof the parti
le density whi
h is steeper 
ompared to the parti
le density fromPro�le 1. In general it 
an be said, that the temperatures of both pro�le setsstart from the same on axis values but Pro�le 1 is less steep. More di�eren
es
an be estimated at the 
urrent density drops, at Pro�le 1 the jθ-peak is nearlythree times smaller, the Er-
omponent of Pro�le 1 is nearly �ve times smaller.The q-pro�le has an axis value q0 = 0.85, 
rosses q = 1 at rs ≈ 34
m and83
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Figure 48: Pro�le 2 magneti
 �elds Bθ and Bz as well as ion and ele
tron temperatureplotted against the normalised radius.

0 0.5 1 1.5 2
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

x 10
6 Profile 2, magnetic pressure

r/a

dy
n/

cm
2

0 0.5 1 1.5 2
0

5

10

15
x 10

5 Profile 2, gas pressure

r/a

dy
n/

cm
2

Figure 49: Pro�le 2 magneti
 pressure pm = B2

8π and gas pressure pg = nkBT , plottedagainst the normalised radius.in
reases afterwards monotoni
ally with r, see Figure 45.The most important di�eren
es between both pro�le sets are the values the
urrent peaks and Er, the axis value of Bz and the di�erent positions of theresonant surfa
es for the q-pro�le.
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Figure 50: Pro�le 2 
hara
teristi
 frequen
ies.The plots show the ion and ele
tronplasma frequen
ies, the ion and ele
tron gyro frequen
ies, the Alfven velo
ity VA andthe ion sound speed Cs plotted against the normalised radius.
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8.4 Pro�le 3
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Figure 51: q-pro�le for Pro�le 3 whi
h has q = 1 at rs/a = 1.16 (rs = 58
m).Pro�le 3 is very similar to Pro�le 2 what means 
ompletely equal pro�les ofparti
le density n, temperatures Te and Ti, a velo
ity pro�le Vz and a majorradius of R = 400
m. A larger 
urrent density jz triggers a larger gradient ofthe magneti
 �eld 
omponents 
ompared to Pro�le 2. This results in a safety(r = 10−3
m) (r = 70
m)
fce in Hz 2.798e10 3.1412e10
fci in Hz 1.5248e7 1.711e7
fpe in Hz 6.3479e10 2.0771e8
fie in Hz 1.0485e9 4.685e6
Cs in cm

s
1.0167e6 1.2157e5

VA in cm
s

3.0871e8 1.0958e11Table 8: Comparison of gyro and plasma frequen
ies fce = eB
2πmec

, fpe = 1
2π

√

4πne2

me
,ion sound speed Cs =

√

γkB
Te

mi
and Alfven velo
ity VA = B√

4πnimi

for Pro�le 3.fa
tor pro�le q whi
h has a resonant surfa
e of q = 1 at b/a = 1.16 (rs ≈ 58
m)what is outside the plasma, see Figure 51. Pro�le 3 is 
omputed by the sameequilibrium solver like Pro�le 2, see Table 5.Chara
teristi
 frequen
ies are provided in a similar way like for Pro�le 1 andPro�le 2, see Table 8 and Figure 56. It 
an be re
ognised, that the plots86
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Figure 52: Pro�le 3 velo
ities vθ and vz normalised by the Alfven velo
ity as well as
urrent density 
omponents jθ and jz are plotted against the normalised radius.
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Figure 53: Pro�le 3 parti
le density and radial ele
tri
 �eld Er plotted against thenormalised radius.for ion sound speed Cs, ele
tron and ion plasma frequen
y are equal to the
orresponding quantities of Pro�le 2.
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Figure 54: Pro�le 3 magneti
 �elds Bθ and Bz as well as ion and ele
tron temperatureplotted against the normalised radius.

0 0.5 1 1.5 2
3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4
x 10

6 Profile 3, magnetic pressure

r/a

dy
n/

cm
2

0 0.5 1 1.5 2
0

5

10

15
x 10

5 Profile 3, gas pressure

r/a

dy
n/

cm
2

Figure 55: Pro�le 3 magneti
 pressure pm = B2

8π and gas pressure pg = nkBT , plottedagainst the normalised radius.
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Figure 56: Pro�le 3 
hara
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 frequen
ies.The plots show the ion and ele
tronplasma frequen
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tron gyro frequen
ies, the Alfven velo
ity VA andthe ion sound speed Cs plotted against the normalised radius.
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8.5 Expe
ted Behaviour of MHD ModesFor the investigation of modes with |m| > 1, the safety fa
tor q (r) plays animportant role regarding to the question if the plasma 
on�guration is stabledue to p- and j-driven modes or not.In a 
ylindri
al s
rew-pin
h 
on�guration where the magneti
 �elds satisfy theStraight Tokamak 
onditions:
Bθ

Bz

∼ ǫ , (264)with ǫ = r
R
the Tokamak aspe
t ratio and

8πp

B2
z

∼ ǫ2 (ohmically heated) ;
8πp

B2
z

∼ ǫ (high β tokamak) .External and internal 
urrent driven modes turn out to be the most dangerousinstabilities, see Ref. [11℄. Pressure driven modes are less dangerous, they 
anbe investigated by the Suydam 
riterion and are not fo
used here.Internal Current Driven ModesInternal modes are de�ned by the position of the resonant surfa
e rs, where
k ·B = 0 and the safety fa
tor

q =
|m|
n

; at r = rs . (265)An analyti
 expansion of the energy prin
iple δW = δW0 + δW2 + ... with
δWn ∼ ǫn is needed for the s
rew pin
h 
ase whereas an unstable 
ontributionrequires δWi < 0, see Se
. 5.1In Ref. [32℄ it was shown that the �rst nonvanishing 
ontribution is

δW2

W0
=

1

a2

∫ a

0

(

n

m
− 1

q

)2
[

r2ξ′2 +
(

m2 − 1
)

ξ2
]

rdr, (266)where W0 =
πa2B2

0

2R
and a is the plasma radius. For arbitrary n and m ≥ 2 theintegrand never vanishes and is positive.

⇒ δW2 > 0 and internal modes are stable.The remaining 
ase is an arbitrary n with m = 1 ; there the se
ond integrandvanishes and the 
ontribution be
omes stable if no resonant surfa
e is present,what means q 6= 1.The next 
ontribution term was derived in Ref. [31℄ for n = 1,
δW4

W0
=
ξ20
a2

∫ rs

0

[

rβ ′ +
r2

R2

(

1− 1

q

)(

3 +
1

q

)]

rdr . (267)90



If a resonant surfa
e with q = 1 exists inside the plasma, both pressure and
urrent 
ontribution terms make δW4 < 0, what is destabilising. The p-gradiente�e
ts be
ome important only in high beta regimes, see Ref. [11℄. In other words,the m = 1 instability for internal modes is a weak instability resulting from ahigher δW -expansion term and vanishes if the resonant surfa
e is removed,either by wall stabilisation or by 
hoosing the q-value at the axis (at r = 0)
q0 > 1 . (268)External Current Driven ModesExternal modes are even stronger in energeti
 release and are de�ned by theresonant surfa
e being positioned in the va
uum region outside the plasma 
ol-umn. The analysis of unstable 
ontributions to the energy prin
iple in Ref. [32℄returned

δW2

W0
=

1

a2

∫ a

0

(

n

m
− 1

q

)2
[

r2ξ′2 +
(

m2 − 1
)

ξ2
]

]rdr+

+ξ2a

[(

n

m
− 1

qa

)(

|m|
(

n

m
− 1

qa

)

+
n

m
+

1

qa

)]

. (269)Further 
onsiderations about the minimising 
onditions for δW , (e.g. by 
hoos-ing ξ (r) = ξa
(

r
a

)m−1 with a monotoni
ally in
reasing q (r)) yield modes (m,n)unstable for
m− 1

n
≤ qa ≤

m

n
, (270)what means that a resonant surfa
e lies outside of the plasma. In Ref. [11℄ itwas mentioned, that instabilities with mode numbers m > 1 make mu
h more
ompli
ated 
onstraints on the plasma ba
kground pro�les than modes with

m = 1. So 
urrent and pressure gradients in the vi
inity of the plasma surfa
eplay an important but yet not fully understood role in triggering instabilities,an investigation of that was given in Ref. [37℄.An exemplary MHD investigation of higher m modes in 
ylindri
al geometrywas performed in Ref. [9℄ where instabilities of (m,n) = (2, 1) were found forplasma pro�les, for whi
h the pressure pro�le at plasma edge has a step to zero,see Figure 57. This step triggers a destabilising term in the energy prin
iple
δW and produ
es an external m = 2 instability. The goal of the followinginvestigations is to run 
omputations for m ≥ 1 by kineti
 and MHD approa
h.
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Figure 57: Pro�les from Ref. [9℄ where p has a destabilising step at the plasma edge
a. The q-pro�le 
rosses resonan
e m

n
inside the plasma. A perfe
tly 
ondu
ting wallis pla
ed at r = b.8.6 Method of ComputationRegarding to instabilities with |m| > 1, spe
ial 
are has to be paid on the shapeof the pro�les, be
ause the o

uren
e of su
h instabilities is very sensitive onpro�le shapes, see Ref. [9℄. For symmetry reasons, the investigations dis
ussed inthe following 
hapters use negative m numbers. In the KiLCA-
ode a de�nitionof the q-pro�le like q = −m

n
is used, what di�ers in sign of m from the original
ase in Equation (265). This is just be
ause of the toroidal dire
tion, whi
h isde�ned to be opposite in the 
ode. To keep a positive q pro�le, the m valueshave to be negative if n > 0.Computations for Pro�le 1 returned no instabilities for m > 1 modes, but onlyfor m = 1, for both kineti
 as well as for MHD. The drop in pressure and
urrent mentioned in Ref. [9℄ and dis
ussed in Se
. 8.5, introdu
e the idea tomake the pro�les of the ba
kground more steep at the plasma edge to trigger adestabilising plasma 
on�guration there.As it 
an be seen from the dis
ussed density pro�le in Pro�le 1 and Pro�le 2,the densities have a steep drop at r ≈ 50
m, where Pro�le 2 is steeper thanPro�le 1. A

ording to Figure 58, always two zones are used for 
omputation.In the used 
on�guration the zone interfa
e is always set to rA = 55
m, whatis the estimated plasma edge and what 
oin
ides with the parti
le density drop(see Figure 41). The ideal wall is positioned at rw = 100
m.
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Ideal MHD Approa
hThe inner zone rǫ [0, rA] is treated as ideal MHD zone, and the outer region
rǫ [rA, rw] between plasma edge and the ideal 
ondu
ting wall at rw is treatedas va
uum. Several other plasma pro�les have been 
he
ked using di�erent zonetypes (va
uum or plasma). So far the two zone MHD-va
uum 
on�guration (seeFigure 58) with plasma Pro�le 2 is the only MHD 
ase whi
h returns resultsfor modes |m| > 1, Pro�le 1 gives only m = −1 results. Also di�erent positionsof the plasma-va
uum interfa
e were 
he
ked. On
e the interfa
e is pla
ed at adensity whi
h represents an a

eptable va
uum, the resulting frequen
ies of thefound instabilities 
hange less than 5%, what is no signi�
ant 
hange. So theplasma radius is pla
ed at rA = 55
m what ensures the 
ase of va
uum.
Figure 58: S
hemati
 modell of two zones whi
h are used to 
ompute MHD andkineti
 results for Pro�le 1, Pro�le 2 and Pro�le 3. Between the plasma edge at rAand the ideal wall at rw the MHD 
ase uses a va
uum zone and the kineti
 
ase usesa plasma zone.Kineti
 Approa
hFor the kineti
 approa
h the splitting of the 
ylinder in radial zones remainsthe same like for the MHD 
ase, Figure 58. The di�eren
e is now, that nova
uum zone is used and a plasma zone is applied there. This is done be
ausethe kineti
 model is expe
ted to run more stable if the whole 
ylinder is treatedas medium.
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mode m n Re(f) in Hz Im(f) in Hz type1 -1 1 0 2.85794779026e4 MHD2 -1 1 0 -2.85794779026e4 MHD3 -1 1 0 3.47100254113e3 MHD4 -1 1 0 -3.47100254116e3 MHD5 -1 1 -1.76400298585e4 3.74525676191e4 KiN6 -1 1 -1.23640183093e4 -3.91414857516e3 KiN7 -1 1 1.60796481388e6 -1.53712511445e1 KiN8 -1 1 -2.18950066542e4 1.54056177065e5 KiNTable 9: Frequen
ies of eigenmodes for modes with m = −1 for Pro�le 1 .
8.7 Results for Pro�le 1, m = −1For both the kineti
 and the MHD zones a zone-to-zone interfa
e at rA = 55
mand an ideal wall position at rw = 100
m are used. This se
tion shows resultsfor kineti
 and ideal MHD results of the 
on�guration, mentioned in Se
. 8.5.A kineti
 
ode with the 
ollision operator from Se
. 3.2 is used to 
ompute theeigenmodes. Table 9 lists the found kineti
 and ideal MHD modes for m = −1,
vz = 0, rw = 100
m and rA = 55
m. A solution for an eigenmode is found ifthe value of determinant is 10 orders of magnitude less than nearby. Figure 59shows a 
omparison of the MHD eigenfun
tions of mode 1 and mode 3 fromTable 9.Figure 60 shows a 
omparison of Br for MHD mode 1 and mode 3 with kineti
modes 5 and 8 from Table 9.The 
urves for Br are normalised by B0, whi
h is the 
omplex value for B0

r at
r0 = 20
m. After normalisation, the MHD 
ase remains pure real and the kineti

ase results in a real and imaginary part of Br

B0
r

. It 
an be 
learly estimatedthat the normalised 
urves 
ross zero at the resonant surfa
e for m = −1 at
rs ≈ 34
m. The ideal MHD 
ode found four modes, two stable and twounstable. For the kineti
 root it is in prin
iple possible to �nd more than fourroots.
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Figure 59: Radial magneti
 �eld Br (Fourier 
oe�
ients) for Pro�le 1 normalised at
r0 = 20
m. Shown are the normalised MHD solutions for mode 1 and mode 3 fromTable 9 plotted against the normalised radius.

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
m=−1, n=1, Profile 1

r/a

B
r

 

 
kin: Re(mode 8)
kin: Im(mode 8)
kin: Re(mode 5)
kin: Im(mode 5)
mhd: Re(mode 1)
mhd: Im(mode 3)

Figure 60: Radial magneti
 �eld Br (Fourier 
oe�
ients) for Pro�le 1 normalisedat r0 = 20
m. Resonan
e at rs ≈ 34
m (dotted). Shown are the normalised MHDsolutions mode 1 and mode 3 in 
omparison to the kineti
 modes 5 and 8.95



8.8 Results for Pro�le 2, m = −1 and m = −2Table 10 shows resulting frequen
ies for eigenmodes with m = −1 and m = −2.Using Pro�le 2, it is possible to �nd an unstable mode for m = −1 by bothkineti
 and MHD 
ode, see mode 1 and mode 2 in Table 10. It is possible tomode m n Re(f) in Hz Im(f) in Hz type1 -1 1 0 3.9101334822214e3 MHD2 -1 1 -1.8133135503843e3 7.92362550836761e3 KiN3 -2 1 0 1.1896940113354e4 MHD4 -2 1 -1.0769811356593e5 2.9711995682725e4 KiN5 -2 1 -1.3184264271102e5 2.5539645015256e4 KiNTable 10: Frequen
ies of eigenmodes with m = −1 and m = −2 for Pro�le 2.
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Figure 61: Radial magneti
 �eld Br (Fourier 
oe�
ients) normalised at r0 = 20
m.Resonan
e at rs ≈ 34
m for m = −1 and rs ≈ 58
m for m = −2. Two MHD modes 1and mode 3 for m = −1 and m = −2 from Table 10 are plotted against the normalisedradius.�nd one MHD result and two kineti
 for m = −2 (see Table 10).Figure 61 displays the normalised Im(Br) 
urves for the two MHD modes m =
−1 and m = −2 (from Table 10: mode 1 and mode 3). The normalised Br
urves of the kineti
 mode 4 and mode 5 are 
ompared with the MHD mode 396
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Figure 62: Radial magneti
 �elds Br (Fourier 
oe�
ients) for Pro�le 2 from Table 10normalised at r0 = 20
m are plotted against the normalised radius. Resonan
e at
rs ≈ 58
m for m = −2. The MHD mode 3 is 
ompared to the kineti
 mode 5 fromTable 10.
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Figure 63: Radial magneti
 �elds Br (Fourier 
oe�
ients) for Pro�le 2 from Table 10normalised at r0 = 20
m are plotted against the normalised radius. Resonan
e at
rs ≈ 58
m for m = −2. The MHD mode 3 is 
ompared to the kineti
 mode 4 fromTable 10.for m = −2 in Figure 62 and Figure 63. Espe
ially in the inner plasma region,where r < 30
m, the MHD 
urves shows a good 
orrespondan
e to the kineti
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urves. In the outer regions, outside the plasma radius rA, the kineti
 mode 5
orresponds mu
h better to the MHD mode 3 than the kineti
 mode 4.8.9 Results for Pro�le 3, m = −1
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b/aFigure 64: Normalised growth rates (normalised by ωA = 6.174 · 109s−1) for di�erentpositions of the ideal wall modelled by the MHD-model using Pro�le 3 with modenumbers (m,n) = (−1, 1). The mode be
omes stable (Im (ω) < 0) when the wall
rosses the resonan
e position q = −m
n

= 1 at rs/a = 1.16.Pro�le 3 has been investigated only by the MHD model under the appli
ationof an ideal wall 
ase.It is interesting to investigate the in�uen
e of the wall position on this kind ofpro�les where the resonant surfa
e q = −m
n

= 1 lies outside the plasma. Theresults are normalised by
ωA =

VA
a

=
1.9833 · 109 cm

s

50cm
= 6.174 · 109s−1, (271)where VA = 1.9833 · 109 cm

s
is the Alfven velo
ity at the plasma edge and a =

50
m is the plasma radius.Figure 64 shows a normalised ideal wall growth rate in dependen
e of the wallposition. The frequen
y of the mode with (m,n) = (−1, 1) at b/a = 2.0 is listedin Table 11.The mode be
omes stabilised at the moment when the ideal wall 
rosses theposition of the resonant surfa
e q = −m
n

= 1 at rs/a = 1.16.98
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In Figure 64 the toroidal ba
kground rotation is set to zero. For the 
ase that atoroidal plasma velo
ity pro�le Vz (like shown in Figure 52) is 
onsidered, it hasbeen shown that di�erent positions of the ideal wall show a 
ompletely di�erentgrowth rate evolution while the plasma rotation Vz is in
reased. Figure 65 showsthe normalised growth rates of the mode dis
ussed in Figure 64 at the threedi�erent positions of the ideal wall, b/a = 1.2, b/a = 1.3 and b/a = 1.4, forin
reasing toroidal rotation Vz. The rotation velo
ity is expressed as fra
tion ofthe Alfven velo
ity value at plasma edge. It 
an be seen that the stabilisationthreshold of Vz is lower for lager values of b
a
. Further there exists a limit for theideal wall position, below whi
h the mode 
annot be stabilised by rotation anymore, e.g. at b/a = 1.2 where no stabilisation is visible.Absolute values of the normalised eigenfun
tions |Br| are shown in Figure 66.m n Re(f) in Hz Im(f) in Hz b/a-1 1 0 1.14314 · 105 2.0-1 1 0 9.56377 · 104 1.4-1 1 0 8.54002 · 104 1.3-1 1 0 6.49238 · 104 1.2Table 11: Frequen
ies of eigenmodes with m = −1 and n = 1 and di�erent positionsof the ideal wall b/a for Pro�le 3 with Vz = 0.The 
urves show growth rates of modes with (m,n) = (−1, 1) at ideal wallpositions b/a = 1.4; 1.3; 1.2, with Vz = 0. The 
orresponding frequen
y valuesare listed in Table 11.
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9 Con
lusionsThe present thesis introdu
es a kineti
 model to study global plasma instabili-ties and 
ompares the results with MHD modelling. In parti
ular, resistive wallmode stabilisation is investigated in 
ylindri
al geometry for a RFP plasma
on�guration by both models. For this purpose, the 
ode KiLCA, originally de-veloped for treating the plasma response due to external magneti
 �eld pertur-bation (RMPs), is adapted to deal with stable and unstable global eigenmodesthat are determined by plasma, va
uum and vessel parameters. The MHDand kineti
 models in
luding equilibrium plasma �ows are derived and adaptedto the KiLCA 
ode. For modelling 
ollisions, a Coulomb 
ollision operator ofFokker-Plan
k type is used whi
h 
onserves the 
harge also with respe
t toGalileian transformations. Solutions of Maxwell equations for di�erent regionslike plasma region, va
uum and resistive medium are derived and implementedin the 
ode. The 
ode 
an be used to study resistive wall modes in reversed�eld pin
h and Tokamak plasmas.The external kink mode stabilised in ideal MHD by an ideal wall is foundalso in the kineti
 modelling with 
omparable growth rates. The wall positionfor 
omplete stabilisation of the ideal mode is less than predi
ted by MHD. Aresistive wall mode with growth rate on the resistive time s
ale is also seen in thekineti
 des
ription. In analogy to MHD, this mode was found to be stabilisedby toroidal plasma motion. However, stabilisation in the kineti
 modelling issensitive to the dire
tion of the rotation and, in the present 
ase, only negative
Vz values have led to mode stabilisation. Stabilising rotation velo
ities arefound somewhat smaller when 
ompared to MHD. Finally, it was not possibleto see the 
omplete stabilising window predi
ted by MHD, that means thatno instability for very 
lose positions of the resistive wall has been found. Itis found, that for some wall positions the ideal wall kink 
an be stabilised byplasma rotation as well. There seems to exist a 
riti
al position of the idealwall, above whi
h an in
rease in toroidal rotation does not lead to stabilisationof the growth rates any more.It was possible to show that the shape of the toroidal velo
ity pro�les at plasmaedge has a visible e�e
t on the rotational stabilisation of the resistive wall modes.Further, an ex
hange of the ion and the ele
tron temperature pro�les shows ashift of the growth rate values of the resistive wall modes. This 
on�rms, thatthe kineti
 model is sensitive on ele
tron and ion motion (
ollisions).Eigenmodes for di�erent mode numbers resulting from MHD and kineti
 mod-elling for Tokamak pro�les turned out to be more di�erent than for RFP pro�les.The kineti
 e�e
ts responsible for these di�eren
es have still to be studied inmore detail. 101
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