Mag. rer. nat. Miran MULEC

Magnetohydrodynamic and
Kinetic Modelling of Resistive
Wall Modes

DOCTORAL THESIS

For obtaining the academic degree of
Doktor der Naturwissenschaften

Doctoral Programme of Natural Sciences
Technical Physics

TU

Grazm
Graz University of Technology

Graz University of Technology

Supervisor:
Ao. Univ.-Prof. Dipl.-Ing. Dr. phil. Martin F. HEYN

Institute of Theoretical and Computational Physics

Graz, March 2012



Abstract

The ideal kink mode and the resistive wall modes are studied in cylindrical
geometry within the magnetohydrodynamic (MHD) plasma model and the ki-
netic plasma model proposed by Heyn et al [Nucl. Fusion 46 (2006) S159, Phys.
Plasmas 18, 022501 (2011)]. The kinetic model accounts for Landau damping,
transittime magnetic pumping (TTMP), and Coulomb collisions. Results for
the reversed field pinch plasma are compared to the magnetohydrodynamic re-
sults obtained by Guo, Freidberg and Nachtrieb [Phys. Plasmas 6 (1999) 3868].
Stabilisation of the external kink mode by an ideal wall as well as stabilisation
of the resistive wall mode by toroidal plasma rotation are obtained. In contrast
to MHD modelling which predicts a stability window for the resistive wall posi-
tion, kinetic modelling predicts a one sided window only, i.e. the resistive wall
must be sufficiently close to the plasma to achieve rotational stabilisation of the
mode but there is no lower limit on the wall position. Stabilising rotation speeds
are found somewhat smaller when compared to MHD results. In addition, for
the present plasma configuration the kinetic model predicts resistive wall mode
stabilisation only in one direction of toroidal rotation. In the opposite direc-
tion a destabilising effect is observed. This is in contrast to MHD where mode
stabilisation is symmetric with respect to the direction of the toroidal plasma
rotation.



Kurzfassung

Ideale Kink Moden und resistive Wand Moden werden mittels eines magne-
tohydrodynamischen (MHD) Plasma Models sowie eines kinetischen Plasma
Models, welches in Heyn et al [Nucl. Fusion 46 (2006) S159, Phys. Plasmas
18, 022501 (2011)] aufgestellt wurde, unter Verwendung von Zylindersymmetrie
studiert. Das kinetsche Model beriicksichtigt Landau Dampfung, transittime
magnetic pumping (TTMP) sowie Coulomb Stosse. Resultate fiir die Anwen-
dung in einem reversed field pinch Plasma werden mit magnetohydrodynamis-
chen Ergebnissen von Guo, Freidberg and Nachtrieb [Phys. Plasmas 6 (1999)
3868| verglichen. Erzielt wird die Stabilisierung externer Kink Moden durch
eine ideale Wand sowie die Stabilisierung der resistiven Wand Moden durch
Plasma Rotation. Im Gegensatz zur MHD Modellierung, welche ein stabiles
Fenster fiir resistive Wandpositionen prognostiziert, wird durch das kinetsche
Model lediglich ein einseitiges Fenster vorherbestimmt, d.h. die resistive Wand
muss sich geniigend nah am Plasma befinden, um eine Stabilisierung durch Ro-
tation zu bewirken; es existiert jedoch kein unteres Limit fiir die Wandposition.
Rotationsgeschwindigkeiten welche zur Stabilisierung notwendig sind, erreichen
nur einen Bruchteil im Vergleich zu den MHD FErgebnissen. Zusétzlich prog-
nostiziert das kinetische Model fiir die vorliegende Plasmakonfugiration eine
Stabilisierung der resistiven Wand Moden fiir nur eine Richtung der toroidalen
Rotation. In entgegengesetzter Rotationsrichtung wird ein destabilisierender
Effekt beobachtet. Dies steht im Gegensatz zum MHD Model, bei welchem
die Rotationsstabilisierung symmetrisch beziiglich der Richtung der toroidalen
Plasmarotation ist.
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1 Introduction

After several years of development, magnetically confined plasmas are the best
investigated and best understood plasma configurations that are capable for
handling fusion processes. The huge amount of technological progress on toroidally
closed plasmas like the Tokamak makes this concept hopeful for reaching a com-
mercially interesting test-reactor level.

Experiment Tokamaks like JET, DITI-D or ASDEX, represent magnetically con-
fined plasma configurations which reach the most progressive fusion handling
that is achievable at the moment. The next step on the way to reactor scale
fusion experiments will be the ITER Tokamak where plasma phenomenons on
reactor scale should be studied.

Instability research turned out to be one of the most important topics in modern
fusion development. Various processes in fusion plasmas can lead to unstable
configurations during fusion operation. Mostly the energy release of these in-
stabilities is high enough to harm the vessel material of the reactor and lower
the efficiency of the plasma confinement and lower the output or even stop the
fusion process. Due to the different physical nature of the destabilising forces,
it was yet not possible to describe an universal model which would be able to
handle all instabilities at once and describe them at different plasma limits of
temperature, density, magnetic fields and plasma volume. A lot of work has
been done describing current and pressure driven instabilities by a fluid model.
The magnetohydrodynamic (MHD) approach is able to model instabilities under
changes of several plasma parameters like vessel dimension, density and tem-
perature changes, plasma rotation (plasma flows) and even resistivity. A second
approach is achieved by the kinetic descrition of particular particle motion, han-
dling their macroscopic behaviour from the thermodynamical point of view. It
is expected that the applicability of either the kinetic or the MHD model should
depend on the range of plasma density and temperature and the related particle
interactions in the plasma. In recent studies it was demonstrated that MHD
theory has strong limitations in its applicability for modern Tokamak parame-
ter range (Refs. [15,16]). Namely, the radial scale of resonant layers in plasma
is comparable to the ion Larmor radius. Therefore it is interesting to check
the MHD results for various instabilities connected with resonant magnetic flux
surfaces (kink modes, resistive wall modes) using the kinetic approach.

A comprehensive overview on existing modelling and experiments of the stabil-
isation of the external kink and the resistive wall mode is given in Ref. [6].

It turned out that the commonly used techniques for mode stabilisation are
changes of the position of the vessel wall and toroidal plasma rotation. An
ideal approximation considers an ideal conducting wall which is moved radially



inward until it reaches the position of mode resonance. If the wall is considered
to be resistive, a low frequent mode (resistive wall mode RWM) remains after
the resonance position is reached by the wall. These mode cannot be stabilised
by wall positioning but by a toroidal plasma velocity.

The used models are based on a numerical solution of the full set of Maxwell
equations in cylindrical geometry with the plasma current density taken from
either the MHD or the kinetic model. The approximations and derivation steps
of the method developed in Refs. [16,20] are discussed. The application of
action-angle variables done by Ref. [23], is used to solve the linearised Vlasov
equation analytically and describe how perturbations enter the plasma model.
Collisions are modelled by the use of a one-dimensional Fokker-Planck collision
operator (Ornstein-Uhlenbeck approximation) with a background distribution
function in the form of an inhomogeneous drifting Maxwellian.

In the general case, there are four different regions to be considered with in-
creasing radius: the plasma region followed by a vacuum region followed by
the ideal (or resistive) wall region followed by the outer vacuum region. The
vacuum as well as the resistive wall region solutions are obtained analytically.
Inside the plasma region, Maxwell’s equations with the current density obtained
from either the fluid model or the kinetic model are solved. The linear system
of matching equations is assembled and solved to determine the superposition
coefficients for the fundamental solutions in each region. Finite nonzero solu-
tions that correspond to stable or unstable eigenmodes (depending on a sign of
imaginary part of the eigenfrequency) are possible only when the determinant
of the system is zero.

The results of the present study are to be compared to existing MHD results
in particular to the results of the MHD calculations in Ref. [14]. The RFP
configuration is based on the o — 6y model with a constant density profile. The
stability of the resistive wall mode is studied in a (periodic) cylindrical MHD
model in which the effects of plasma pressure, compressibility, plasma inertia,
longitudinal rotation, and parallel viscosity have been taken into account. The
resistive wall is modelled in the above mentioned paper as well as in the present
study with finite thickness and constant conductivity.

The thesis is organised as follows. In Sec. 2 the main principles of magnetically
confined fusion and experimental research are discussed. A general overview
of the Tokamak is given. Sec. 3 shows MHD and kinetic modelling and men-
tions the numerical approach to solve the system of equations from which the
eigenfrequencies of the instabilities result. In Sec. 4 the different regions of
the cylinder and particular solutions of Maxwell equations with corresponding
boundary conditions at zone interfaces are discussed. Sec. 5 mentions MHD
instabilities like kinks and resistive wall modes, their driving mechanisms and



expected behaviour. The reversed field pinch RFP and its plasma equilibrium
model are described in Sec. 6. A detailled analysis of instabilities in a RFP
equilibrium by MHD and kinetic modelling is given in Sec. 7. A comparison
of different eigenmodes for analytically computed Tokamak like profiles by the
MHD and the kinetic model is given in Sec. 8.



plasma volume 1-100m?

n; 10 —10m—3
T 1 — 40 keV
D 0.1 - 5 bar
Vion 100 — 100052
Ve 0.01 —0.1c
B 1-10T

I 0.1 -7MA

Table 1: Typical Tokamak plasma values, taken from Ref. [38]

2 Confinement in a Tokamak

After several years of experiments on magnetically confined plasmas, the toroidal
shape of the plasma column seems to be the best capable design for controlled
magnetically confined fusion in outlook on creating a commercial fusion reac-
tor. Beside other upcoming toroidal devices like Stellarators or Spheromaks,
the Tokamak is at the moment the most auspicious design to satisfy most of
the desired demands.

2.1 Tokamak Principle

In general the Tokamak principle can be expressed in few words: A magnetic
field, closed to a torus, is for stability reasons overlapped by a weaker poloidal
field; together they form a helically twisting magnetic field in toroidal symmetry.
The plasma is confined by this fields and the charged particles are forced to
gyrate around the field lines.
Poloidal field coils produce the toroidal field. The whole Tokamak acts as
a transformer, where a central solenoid, positioned at vertical axis, acts as
primary winding and the plasma itself as secondary winding (Ref. [38]). This
effect drives a plasma current in toroidal direction and produces the poloidal
magnetic field. See Figure 1. The central solenoid is mostly an iron core. The
plasma itself is trapped inside a vacuum vessel on which the field coils are
mounted externally. Typical Tokamak plasma values are mentioned in Table 1.
Toroidal symmetry leads to the destabilising effect of occuring drift forces
due to the curvature of the magnetic field. A magnetic field gradient and the
curvature itself try to establish MHD equilibrium, what means to straighten

10



central solenoid

| <
\_\\ primary winding

main coils

Figure 1: Structure of a Tokamak. Toroidal and poloidal field coils produce magnetic
fields and confine the plasma. A toroidal plasma current is driven by the central
solenoid and vertical field coils are needed to improve plasma shape and stability.
Taken from Ref. [§]

the B-field lines again. For Tokamak equilibrium therefore a balance between
plasma pressure and forces exerted by the B-field must be established. Here the
so called pinch effect gets significance; a plasma column with a current flowing
along the symmetry axis contracts radially until the inward directed Lorentz-
force is balanced by the outward directed pressure gradient, (see Ref. [38])

jxB=Vp. (1)

It has been found, that better stability is reached if the plasma shape is modified
(see Ref. [7]).
To satisfy the condition V- B = 0, the toroidally spiralling B-field gets a radial

dependence
1
B x - 2
o )
where r is the Tokamak minor radius. A physical magnetic model field then

results in Equation (3),
B =(0,By(r),B.) (1 —e€cosb), (3)
where 6 is the poloidal angle, ¢ = & the ratio between both radii and By, B,

are poloidal and toroidal magnetic field components (similar in Ref. [38]).
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Coordinates in a Tokamak can be defined according to Ref. [38] like

x = (Ry + rcosf) cos ¢,
y = (Ro + rcosf)sin ¢,
z=rsinb,

R = Ry + rcosé.

3
6
7

~ N N
~— O ~— ~—

Ry is the major radius, r the minor radius, (z,y, z) are cartesian coordinates
expressed by toroidal coordinates, R is the effective radius, # is the poloidal
angle and ¢ is the toroidal angle. Toroidal effects like drift motion and mirror
configurations for the helically twisting magnetic field can be calculated in these
coordinates.

The Tokamak field from Equation (3) produces a magnetic field gradient which
results in drift motion and magnetic mirror configurations inside the torus for
particles with a low velocity parallel to the B-field. Because the plasma cur-
rent [, depends on r and has its maximum value at the toroidal symmetry axis
r = 0, an externally applied vertical B-field (by additional coils) would couple
to I, and produce a radially inward directed force, which would stabilise the
toroidal drift force.

As the established Tokamak equilibrium becomes independent of the azimuthal
angle ¢, in other words axis-symmetric, the force exerted on the plasma van-
ishes everywhere, like expressed by Equation (1). If now a B-field is added to
Equation (1) by scalar product, one gets

B-Vp=0, (8)

what means that there do not exist pressure gradients along B-field lines and
p = const. on radially nested surfaces, which are called fluz-surfaces. Applying
the same scalar method to the current density j with

one finds also the radially depending current lying on these flux-surfaces, see
Figure 2.

While speaking about flux constant surfaces, it makes sense to define a poloidal
flux function . Also ¢ = const. on a flux surface what means

B Vi = 0. (10)

That is in analogy to Equation (8).

12



Figure 2: left: nested flux surfaces in toroidal symmetry. right: surfaces of current
and magnetic field lines. Taken from Ref. [3§]

2.2 Safety Factor ¢

Helically twisting magnetic field lines on flux surfaces perform both poloidal
and toroidal transits over the torus. A ratio is defined as
m  Ag¢
= =_", 11

¢=—=5 (11)
Here m is the number of toroidal transits and n the number of poloidal transits
and A¢ is the change in poloidal angle. Every flux surface has a different twist
of magnetic field lines. A quantity called magnetic shear s describes the g-profile
in dependence on minor radius r like

s(r)= m (12)

It is possible to express ¢ by poloidal and toroidal magnetic fields. Tracing a
helically twisting field line, which takes a distance ds in poloidal direction while
moving in toroidal direction for d¢ gives

Rl B,

13
what gives
1 1B
- — ¢ —_—=24q 14

where R is the major radius. From Amperes law, the g-profile may be derived
to be inverse proportional to the plasma current I,, see Ref. [38]. Typically,
q reaches a minimum close to r = 0 and increases monotonically towards the

13



Profile 2, safety factor

0 05 1 15 2

rla
Figure 3: left: Magnetic field lines on a toroidally closed flux surface. A field line
closes after m toroidal and n poloidal transits. Taken from Ref. [5]. right: General
g-profile increasing with r.

plasma edge. This is essential to guarantee stability against MHD instabilities
which result from plasma shape and B-field configuration. Better stability is
achieved at higher values of ¢ like mentioned in Refs. [11,38]. If ¢ takes an
integer value, the magnetic field line closes one poloidal transit on the surface
after ¢ toroidal transits, see Figure 3. This defines the magnetic shear of each
flux surface.

2.3 Fusion Process

The fusion process which gives the most hope for reaching a reactor regime,
where the plasma is able to heat itself for operation, is the fusion of deuterium
and tritium by reaction

DT — 3He +in+ AE. (15)

For self heating the ion density should range at n; = 5 x 10**m~3, the ion
temperature at 7} = 15keV and the energy confinement time should be close to
g = 4s. Energies for resulting products of the fusion process in Equation (15)
are E/ (He) = 3.5MeV and F (n) = 14.1MeV, (see Refs. [7,38|). Such values give
a favourable triple product (n;7g7;) which can already be reached in present day
Tokamaks like JET, TFTR and JT-60. The high energetic a-particles can be
used to heat the plasma. The key parameters are ion density n; and confinement
time 7, which can be expressed as ratio beween the total stored kinetic energy

14



and the required power to sustain the fusion in steady state,

E in
TE = P:us' (16)

Essential are cross section and mean free path, so particles in a fusion plasma
have a long free path and collisions become possible although the cross sec-
tions are very small. Integrating over the distribution functions of both fusion
partners, which are both assumed to be Maxwellian, a rate of reaction per unit
volume can be derived, like it is done in Ref. [38]. After integration, the av-
eraged product of cross section ¢ and relative velocity v gives a total reaction
rate R per unit volume

R = ngni(ov), (17)

depending on particle densities of deuterium nq and tritium ny.

1014 T i

1013

10-16

10-17

{avy (cm/s)

10-18

10-19

10-20

T (keV)

Figure 4: Cross section (ov) for several fusion reactions depending on thermal energy.
The DT-reaction has the highest cross section.

Multiplied by the energy release per reaction e, Equation (17) gives the ther-
monuclear power per unit volume,

Pry = ngni(ov)e. (18)

The loss of energy is influenced by the energy confinement time. So the energy
loss becomes

P
p == (19)
E
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For confinement we have to mention, that 7. increases with plasma current I,
and decreases with increasing plasma pressure p.

Very important to avoid the confinement from deterioration is the handling of
impurities, what means control of impurity transport and radiative losses. For
that reason the plasma has to be isolated from the vessel material, to reduce
sputtering and erosion of wall material. This is possible to be achieved either by
limiters or by an additional magnetic field separatrix what is known as divertor
configuration. High concentrations of impurity atoms and electrons resulting
from ionistaion while atoms get inside the plasma core, deplete the efficiency
of plasma heating as well as they harm the confinement. The handling of this
problem leans on the idea to isolate the plasma from the wall material and leave
the fusion core inside closed flux surfaces. This attends the existence of a last
closed flux surface LCFS between fusion plasma and edge region.

Limiter

Limiters can be of various geometrical forms. The LCFS is tangent to the
limiter what defines the plasma boundary. In other words, the plasma is in direct
contact with the limiter material, see Figure 5. Limiters shape the plasma edge,
define a boundary and protect the vessel wall before direct expose to plasma
disruptions. Limiters are made of refractory material like carbon, molybdenum
and tungsten. (see Refs. [7,38])

Divertor

Towards limiters, the main difference is that divertors define the LCFS by a
magnetic field separatrix. Immediately inside the separatrix follows the LCFS.
The edge plasma is transported to the divertor target plates. Especially dur-
ing H-regime, the radial transport through the separatrix is nearly vanishing.
Impurities can be released fom the target plates by disruptions, they are ionised
in the divertor plasma and the majority is transported again back to the target
plates. The flow of impurities into the LCFS is strongly reduced but does not
vanish completely.

The divertor concept offers some efficient methods of power handling on plasma
facing components PFCs and divertor plates:

e adjusting the angle between field lines and target plates acts as flux ex-
pansion of the magnetic field, what reduces the power load,

e influencing transport properties and increasing power transfer to neutral

16



Scrape-off layer (SOL) plasma:

region of open field lines
e “Upstream”
l “}1 Core
/ Core A plasma Outer
plasma j midplane
)
\3
)
L' 't - Ty 3
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i N \
7 Private™ ¥
plasma
Vessel
walls Inner 4 4 outer

Divertor targets

Figure 5: left: Limiter configuration. The limiter material is in contact with the
plasma and defines the LCFS. right: Divertor configuration. Magnetic fields define
the separatrix and the LCFS isolates the inner core. Taken from Ref. [24].

particles.

Yet there are no absolute satisfactory solutions, and improvements are desired
in Ref. [38] like

e removal of a-particle power by heat transport,

e efficient use of a-particle power for plasma heating,

e operating at lower temperature of the divertor plasma to reduce sputter-
ing,
e removal of helium ash,

e power loss by radiation.

Due to plasma wall interactions, a rise of neutrals density at the edge would lead
to recombination and decelerations of ions, resulting in radiative losses. This
radiation called MARFEs, releases power at X-point and on divertor targets
and must be handeled with care.

For design diversity of divertors, several ideas exist. All of them base on the
same concept of defining a LCFS by magnetic fields where the edge plasma is
transported to divertor plates, like already explained. JET and ITER divertors

17



are operating at single null configuration with only one X-point. DITI-D uses a
double null configuration with two X-points, see Figure 6.

Figure 6: Double null divertor configuration at DIII-D, taken from Ref. [29]. Two
x-points and an inner core with high triangularity is achieved.

The advantage is that interaction area of divertor targets is doubled and a
higher triangularity of the plasma shape allows a higher pressure and 3 regime;
a disadvantage for two X-points is that the connection length of particles doubles
(see Ref. [38]). Other divertor types like DED at TEXTOR produce a rotating
ergodic field.

18



3 Model Description

3.1 MHD Modelling

Starting from the set of ideal MHD-equations

E+ivxB — 0, (20)
&
1 OB
VxB = 4—7TJ, (22)
C
V-B = 0, (23)
dv 1
Py = AXB-Vp, (24)
d (p
E(p—,y) ) (25)
P LT (v) = 0 (26)
at p - )

as basis to describe the plasma configuration, the expansion of all quantities is
done like

Q(x,t) = Qo (x) + Q1 (x,1). (27)

The zero order is the equilibrium contribution and the first order is the pertur-
bation contribution (see e.g. Refs. [11,38]). There, & = (2 +v-V), y =3
is the adiabatic constant, p is the mass density, p the pressure, ¢ the speed of
light, j the current density, v the plasma velocity, B and E the magnetic and
electric field. Vector x is the position vector in general symmetry, parameter
t is the time variable. If perturbations are small, % < 1, terms containing
products of first order terms can be neglected. The equilibrium is assumed not

to be time dependent and satisfies

VxE, = 0, (28)
4

V X B(] = ?ﬂ-j(], (29)

V-B = 0, (30)



V'p()V() = 0, (31)

1.
povo-Vvg = —Vpo+ _Jo X By, (32)
1
EO + -V X BO = 0, (33)
c
vo -V <p—3) = 0 (34)
Po

If there is no equilibrium electric field Eq = 0, and no plasma equilibrium flows
vy = 0, the equilibrium MHD equations simplify to

V-B = 0, (35)
1
Vpo = E (V X BQ) X BQ. (36)
The perturbed MHD-equations are:
0
§+V'p1V0+V'PoV1=O, (37)
0V1
e + p1vo - Vv + povi - Vvo + povo - Vv =
1
= —-Vp + yy [(V x Bg) x By +(V x By) x By, (38)
9 (p\ 9 (ypopr) _
8t pg 8t pg—H
Po P1 PoYp1
() @) ()
P4 I py!
10B;
-——+VxE =0 40
c 8t + X 1 ) ( )
4
V X B1 = ?ﬂ-jl, (41)
1 1
E1 + —-vy X BQ + —vp X B1 = 0, (42)
c c
V-B; = 0. (43)

It is common to express the perturbations by means of the displacement vector
& of a plasma element which is dislocated from it’s equilibrium position x,.

£€(x,t) =x— Xg. (44)
The perturbed velocity in terms of the displacement vector and the equilibrium
velocity are

o€ (x,1)

vy (x,1) = T +vy-VE—=&- Vv (45)

20



With substitution to the perturbed and equilibrium MHD-equations, the per-
turbed first order quantities p;, p1, B, ji can be expressed in terms of the
plasma displacement £ (x,t) as

pr = =V -(pk), (46)
o= —&-Vpo—po(V-§), (47)
B1 = VX(ﬁXBo), (48)
Ji= o (VX (Vx (€ x By)). (49)

The equilibrium flow v, does not enter explicitely to pi, p1, B1, ji and the
perturbed quantities have the same form like in the flowless case.

A substitution of Equation (45) into the linearised force balance Equation (38)
yields

9%¢ 33
P o +2po (Vo - V) 5

After Fourier transformation in time, the linearised compressible ideal MHD
equations with finite equilibrium flows vy can be written with the help of the
Lagrangian displacement vector € from Equation (44) as (see, e.g. Ref. [11])

—w’po € =Fy (), (51)

where the force operator Fy (§) is a function of the plasma displacement. The
force operator with flows F; (§) can be expressed by the force operator without

flows F (&) like
F; (&) =F (&) +V-[po€ (vo-V)vo—povo (vo- V)& + 2iwpy (vo- V)&, (52)

with

F (&) +V - [po& (vo- V) vo— povo (vo- V) E]. (50)

F(&)=V(§-Vpo+po(V-§))+
—|—% [(V xBg) x (Vx(&xByg))+(Vx(Vx(&xBy))) xBg|. (53)

3.1.1 MHD Eigenequation in Cylindrical Symmetry

In cylindrical symmetry one can expand all perturbations in the form

Q1 (x,t) = Q1 (r) exp (imb + ikz — iwt) (54)

where m is the toroidal mode number and k = % is the z-component of the

wave vector, n is the poloidal mode number and R the major toroidal radius.
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€ = grer + §989 + gzeza
! s Bl - Blrer + Blaea + Blzeza
4{ e h By = Byey+ By.e..

Figure 7: Cylindric symmetry. The equilibrium magnetic field has no radial compo-
nent, taken from Ref. [27].

All vector quantities are expressed in cylindrical coordinates by means of the
cylindrical basis vectors (e,, ey, e,),

Note that the equilibrium magnetic field is assumed to have no radial compo-
nent, see Figure 7.

A substitution of Equation (54) into the first order equations allows to calculate
the components of the perturbation magnetic field By in Equation (48). After a
transformation to the Fourier-space of toroidal and poloidal harmonics (m,n),
the Fourier amplitudes of B, are

Blr =1 (%BOG + kBOz) éra (55)
By = —(&Buw) — ik (Boé: — Bo-£o) (56)
Blz == _% (TBOzér), + ? (BOG£Z - BOZ&@) . (57)

The prime marks the radial derivative, the zero index the equilibrium quantity.
The 6 and z components of Equation (51) provide expressions for & and &,. The
resulting equations for & and &, represent an algebraic system of two equations.
This is true only if there are no radial equilibrium flows (v, = 0) because v,
would contribute terms of radial derivatives &, and ..
The equations for & and &, can be written in the form

,iGB,
GH = &To+(6) T e+ (V- 8w, (59)

wr

, 1GB
ENT' = 61— (&) T+ Eu (V6 (59)

wr

with

kng—;+k2 . G==B.— kB, (60)
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a1 k§B? f oo
H™ = po | —w’ =2iwf+ =+ V-(pvo) =+ f* ], (61)
4mpo Po

-1 kgBGQ f 2
N = po|—w?=2iwf+ -2+ V- (povo) = + f*), (62)
47 po Po
f = @vg + ikv,. (63)
r
and
m .
X0 = T’Vpoa Xz = tkypo, (64)
with
v ByB,
Ty = po (22w79 —V - (povo) 7 + 2 f + 2ik 43?7“ ) ; (65)
BZ
r, = —2ik—, 66
! Ay’ ( )
kngBz
Yy VY, = e (67)

After Fourier transformation to m and n harmonics, the divergence of the dis-
placement vector

V£ = (6 + e + ke, (68)
can be used in Equations (58) - (59) to obtain
S = Xo(Qo& +Wo(r&)), (69)

& = X, (ngr + W, (Tgr),) ) (70)
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with

Na
= g+ ——F—7—1,
Qo O T Ny,
Hp
. = I+ ——7+——-T,,
Q + Ty 0
v 1 — " Hyg Nap -
o H 1—ikNx./)
v _ (L=ikNx. HapB \ '
o N 1—"Hyy)
1GB,  Xe NKao
Wy = BV e
47r r  1—1ikNy.,
Wz = ; — K7
1 — =% Hxy ( dmr - r *
where
x. GB, m
K== — 67 Bzw—i__x,m
r 4dmr r
a =1+ tkxy.

(71)

(72)

(73)

(77)

(78)

Like already mentioned, the © and z component of the eigenequation (Equa-
tion (51)) represent an algebraic system of two equations for  and &,. After
substitution of & and £, to Equation (51), the radial component &, satisfies the

following ordinary differential equation

d B2 iG
— o2 - . —_ "+ — (&B. —E£.B
pite = 3 [m(V O+ o (16) + (@B~ &.50)
[ v2 v\’ , F? r
— & |V (povo) [+ pof* —pog +po | =) = 2iwpef + =+ =
r r 4w A4rw
[ ByB,
+ & —22'pr% — 2k 4y (povo) %}
i r 4mr r
B BZ U2
L |2ik—2 | — V- 20
& I ! 47?7’] V- (po) r’
with
, m
V- (p€)=po(V-&+pé , F= —B. +kBy. (80)
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Defining two additional functions

2 2\ / F2 BQ ! /2
A= po(v(povo)i+f2—“—9+(%) — itwf 4 — (—9) +@”_6),

00 r2 dmpy  4Ampg \ r? Po T
By B,
€ = —22&)% — 2k o + V . (p()V()) 2, (81)
r 477 po TPo

the radial force balance from Equation (79) becomes

d im  iGB, ] 1GB
0 = — |& [ XoQo [ ypo— + + X.Q. ( ypoik — —=2
dr r 47 47

1 B2 im  iGB, ) 1GB
+ (Tfr)/ (’Vpo; + T + XoWy (’VPOT + = ) + X, W, (’Ypolk — 47?0))]

2

. 2 BQ
+£, [pooﬂ — A+ XpQo (e - po@”—@) +X.Q. (M—G - ikﬂov—g)]
ror 4rr T

2 .9 B2 2
+(r&) {—@v—e + XoWe (e - /Jo@v—e) + X W, <2z'k;—9 — z’kpov—@” . (82)
ror ror A7r r

This differential equation can be written as a system of two first order partial
differential equations,

AS d

T (r&) = Cn(r&) — Cap’, (83)
AS%p* = Oy (r§) — Cop’, (84)

like in Refs. [2,3]. If one defines a generalised pressure p* as

By - B,

p*=—7poV-§—& Vpo + 1 (85)
7r
The remaining coefficients are
F2
A = i 86
Pow 471'7 ( )
B2 F?
S = (4—72 + ’Ypo) Pow” = P07 (87)
FB
T = 4—; + powug, (88)
o (B3 2
Q = pPow E PoVyy | + (BOGW + F'UOG) ) (89)



with

ST
011 == pQ(DQ—Q — 2m—3,
r r
m2
012 = p3@4 <k52 + F) S,
AS ST? 2
Cn = —Ci—4—+ Q_37
r r
Co = rCyy,
d (B2, — 4mpyv?
— A _ 00 00 )
Ca i "ar ( 472

Here, @ is the Doppler shifted frequency

w=w—

mMUog

— kI’UOZ.
r

(95)

The solutions of the two first order differential equation system (Equation (83)
and Equation (84)), are (1) and p*. From p* in Equation (85) it is then
possible to compute (r¢,)" as a function of p*:

pt = —k+AN&H+E

£

= —K-+ AXGQG&’ + AX6W9 (Tgr)/ + EXzngr + EXZWZ (Tgr),

= o (E)

B3

I BeBé

BZ

&

4rr

47

& <T£r>l -

A7r

+ AXGWG <T£r>/ + EXzngr + EXZWZ (Tfr),

_ [ B} 1 B

= (&) { A7y WJOT A7y

Iy Bg B By B, B B.B
"dnr A 4

what finally leads to

+ AXWy+ = XZWZ}

B.B!
47

(96)

gr - plogr + AX@Q@&T +

!
7Tz _'_AXGQG + = XzQz _p6:| 9

BB 1 AXoQp +E X.Q: — 7))

(Tf}), =
(

1

)

r Amr

B2 | AX,W, + = Xsz)
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where

Po / BG / Bz / /
= 42 20 (¢,B B
K 7 r (7“67») + A (gr 0) + Amr (’I“ zgr) +p0€ra (99)
ByB, . B?im

A = — k— == 1
Xo + A 1 Ay ) ( 00)

_ ByB.im B2

RV TR ) ) 101
Xzt 4ar 47TZ (101)

3.1.2 Matching Conditions

Inside the plasma region, model equations obtained from the magnetohydrody-
namic model (Sec. 3.1) are solved. A linear system of equations is assembled
and solved to determine superposition coefficients for fundamental solutions of
eigenfunctions in the plasma region, what is discussed in the following.

For an arbitrary complex mode frequency w, the system determinant det G (w)
is nonzero and therefore the solution (all superposition coefficients) is zero since
there are no sources (rhs equals zero) in the system. Finite nonzero solutions
that correspond to stable or unstable eigenmodes (depending on the sign of the
imaginary part of the eigenfrequency) are possible only when the determinant
is zero. A complex root solver is used to find all roots of the dispersion equation
det G (w) = 0, numerically.

The radial integration starts from two different boundaries and returns two fun-
damental solutions, which are superposed afterwards. In the plasma column the
integration starting points are

r=0,r=rp, (102)

at the cylinder axis and at the plasma radius, like this is shown in Figure 8.
Because of Equation (83) is getting singular at r — 0, a very small value
r = 10~%cm is there used as radial starting point of the numerical integration.
Both integrations match each other at an arbitrary matching position, (see
Ref. [11]).

r=ra , rac€ 0,7,
with boundary conditions
(r&),—o =0, <T£r>r:rp =0, (103)
(ré)_, =1, (ré)yy, = 1. (104)

The prime marks the radial derivative. As a result, the integration provides
two fundamental solutions & and &, which should be continuous at matching
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Figure 8: Two different intergations starting from z-axis and plasma radius r,. Both
solutions match at r = rp where the fundamental solutions of integration & and &
must be continuous.

point » = r5. The choice of boundary conditions is arbitrary for the derivative
values in Equation (104), see Ref. [11]|, mostly they are set to unity. Attention
has to be paid to the boundary conditions in Equation (103). These values are
very sensitive on the different kinds of MHD modes. Concerning kink modes,
the used boundary conditions in Equation (103) are set to zero, like this was
suggested in Ref. [11].

A combined solution covering the whole radial range of the plasma column is
constructed by superposition like

§r:{ Clgl , T € (OarA)a

0262 , T € (rAarp)a

Cy, Cy = const. (105)

At matching position rp, the continuity of the fundamental solutions determines
a homogeneous system, which equals the solutions from both sides:

Clgl = 02§2 61 _§2
= G (W) = . (106)
Ci&y = C28 & &

Matrix G remains to be a function of the frequency w. The homogeneous system
is solvable for such frequencies w, that

det G (w) = 0. (107)
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3.2 Kinetic Modelling

Both the kinetic and the MHD model are based on a numerical solution of
the full set of Maxwell equations in cylindrical geometry. The difference oc-
curs in the application of the plasma current density. This section discusses
the approximations and basic steps of the method developed in Refs. [16, 20].
Following Mahajan-Chen [23], action-angle variables are used to solve the lin-
earised Vlasov equation (no gyroaveraging) analytically with a simplified one-
dimensional Fokker-Planck collision operator (Ornstein-Uhlenbeck approxima-
tion). The background distribution function is taken in the form of an inho-
mogeneous drifting Maxwellian with parameters derived from the plasma and
magnetic field profiles that satisfy the MHD equilibrium. Maxwell equations
with displacement and plasma current densities together with the appropriate
boundary conditions for an ideal or a resistive wall are solved numerically to
find the eigenmodes existing in the system by a direct complex root search pro-
cedure.

The code KiLCA (Kinetic Linear Cylindrical Approximation) is a wave code
based on the described kinetic model of the tokamak plasma in a periodic cylin-
der geometry (Refs. [16,20]). The code has been successfully used (Refs. [17,21])
to study kinetic effects of the interaction of resonant magnetic perturbations and
the plasma in particular near resonant magnetic surfaces.

Following the linear kinetic model of a cylindrical inhomogeneous screw pinch
plasma introduced in Ref. [16] and recently upgraded in Ref. [20], the wave
fields (B, B) with frequency w are obtained from Maxwell’s equations,

i~ At~
VxE=2B, VXB———E+—7TJ, (108)
C

are solved numerically together with an appropriate set of boundary conditions,
mentioned in Sec. 4. The plasma response current density in Equation (108) is

evaluated as
— Z ea/d?’pvfa, (109)
a={e,i}

where e, is a charge of specii «, v is the velocity variable and fa the perturbed
distribution function (in the following we omit index « for brevity). The particle
distribution function f (r, v, ) enters the kinetic equation like

df  of of F of
&_E—FV 6r+m ov = Lof, (110)

with particles at position r and velocity v exposed to the Lorentz force F =
e (E + %v X B). The quantity Lo represents the collision operator and is spec-
ified later in this section.
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The application of linearisation of the distribution function, the magnetic and
the electric field like

f=fo+f, B=By+B, E=E(+E, (111)

and the use of derivations with respect to the momentum (% — m%) yield

the linearised form of Equation (110), as

g+v-Vf+e(—V<I>o+lvao) -g—fch:—e (E+1VX]§) -%.
ot c op c Jdp
(112)
Here, fy is the equilibrium distribution function consistent with plasma and
magnetic field equilibrium profiles including the toroidal plasma rotation (the
poloidal rotation is assumed to be zero), ®q is the equilibrium electrostatic po-
tential with Eq = —V®,. For the description of particle collisions (Coulomb in-
teraction) we use an one-dimensional Fokker-Planck collision operator (Ornstein-

Uhlenbeck approximation, see Ref. [35])

ij-2p [ o +““‘V“}f, (113)

6u|| 8u|| U%
where w is a particle parallel velocity, D is a constant diffusion coefficient in
velocity space, vy = /Tp/my is the thermal velocity, and V) is a bulk parallel
velocity of the given specii. Following the procedure outlined in Mahajan-Chen
[23], Equation (112) is solved analytically in action-angle variables (Refs. [16,
20]).
The Hamiltonian form of Equation (112) can be written like

0
Wty = Lef, (114)
using Poisson brackets

Jda 0Ob 0b Oa
{a,b} = % 555 Bp
da 0b 0Ob Oa

= 98 21 98 o1 (115)

which are valid for canonical transformations of coordinates. The canonical
action-angle variables are @ = (©',0% ©3) and J = (J;, Jy, J3) for actions
J = ¢ pdr, which are invariants.

A linearisation in sense of Equation (111) can be applied to the vector potential
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inVxA=B,by A=Aq+ A. Consequently, the scalar potential describing
the electric field must be linearised by ® = &, + ®. Using the radiation gauge

d =0, (116)

one can express the linearised Hamiltonian like

1 N\ 2 ~
H:—(p—3A0—9A> +e®y = Ho + H, (117)
2m c c

what gives the unperturbed Hamiltonian as

2 1
Hy= 20 4 edy,  vo=— (P - EAO) ; (118)
2 m c

with particle mass m.
The unperturbed part of the Hamiltonian can be expressed as a function of the
action variable J only as Hy = H, (J).
With the introduced action-angle variables, equations of unperturbed motion
for a particle of species o can be written like

' 9H, (J) ; 0H, (J)

O =" = oL, Jo = =50

= 0. (119)

The perturbation component of the Hamiltonian can be defined by means of
the time dependence of the complex form

H = Re (He "), A=Re (Ae™™). (120)

The perturbed Hamiltonian can now be expressed by the use of the perurbation
amplitudes H and A in temporal Fourier space like

H=-Svo - A= SuB, = S0, (121)
C w w

using curvilinear coordinates z¥ = ¥ (@, J) and corresponding (equilibrium)
velocities vf, which are in correlation to canonical frequencies Q% = Q% (J) by

k
ok = %Q“, 0° = 2510. (122)

The electric field components enter in covariant form as Ek = i%flk which are
transformed to canonical components by

k
Oz

bo = paa

(123)
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During linearisation all contributions containing squared factors of perturbation
quantities are ignored. The linearised kinetic equation then results as

af of 9fo 7

n +Q 8@a+J A = L.f, (124)

where attention has to be paid on J, which now in contrary to the equilibrium
expression from Equation (119) forms a perturbed expression

. afo_aﬁ 6f0 . or
Teg T aeeas T = F oo

(125)

with a perturbed Lorentz-force F = e (E + v X B)

It is convenient to use the angle variables ® for expansion of all perturbation
terms into Fourier series like

f(©,3.1) meJt im® (126)

with the Fourier expansion indices written in vector form m. The transforma-
tion rule to Fourier space of angle variables is
of ;

—— = iMafm- 127

L f (127)

The expansion from Equation (126) enables to express the linearised kinetic

equation (Equation (124)) by Fourier amplitudes of the perturbed distribution

function f(J,t) as

0 fm

ot

where all sources of perturbations are contained in the source term Q.

If the Coulomb collision operator from Equation (113) is applied to Equa-
tion (128), then results

+im - Qfm — Lefm = Qm, (128)

i(m-Q—w) fm

8D|:8 u”—

- +
Oup — [Ouw i

Vil - _

”} fio=Qm.  (129)
In cylindrical symmetry x = (r, 4, z) the parallel and perpendicular projections
of each vector can be expressed by using

By

h=—2

BO , €1 = h x €r. (130)
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It is useful to declare the velocity substitution
u = u” - V||. (131)

Further the expressions for electric particle drift wg and parallel and perpen-
dicular wave numbers kj, k£, which are

WE = kJ_VE, /{Z” = kﬁhﬁ + kzhz’ kJ_ = (h,zkﬁ — hﬁkz> /To, (132)

define
m-$ =wy= /{ZHVH + wg + lw,, (133)

where w, = fn—BC is the cyclotron frequency. With these substitutions, Equa-

tion (129) becomes

. :  Ofm O R T
tkyufm +iwofm+ —=———=—D | =—+ | fm = Om- 134
uf o/ ot Ju [814 v%} / @ (134)
Note that the expression is re-transformed by temporal Fourier transformation.
To be able to solve Equation (134) it is convenient to transform it to a partial
differential equation of first order. This can be achieved by Fourier transforma-
tion to velocity space of u using transformation

Fm (k,t) = /00 du e fo (u,t), (135)

oo

and k is the wave number in velocity space. The kinetic equation in velocity
space of the introduced velocity variable v then results as a partial differential
equation of first order

OF (k. 1)

T (iwo + DE?) Fin (k, 1) + 9 (kv — ky) Fin (k,t) = Qm (k,t), (136)

ok

with collision frequency v = UQQ. It is possible to solve Equation (136) by the

T
characteristics method to obtain the solution for the perturbed distribution
function in Fourier space in angle variables as

Jm (u,t) = /Ot—to dr /OO du'G (u, v, 7) Qum ('t — 7)), (137)

and Green’s function

! %(u—u')—c—i(u—u'e_”Jrz’b)

ex
Vima P {V 4a

2
)

G (u,u', 1) = (138)
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with characteristics

2

a(r) = %(1—62’”),
2
b(r) = 2T (1,

(%)
c(r) = |iwo+ | (139)

The solution of the perturbed distribution function from Equation (137) can
then enter the components of the perturbation of the current density

" (x,t) = e/dgpoka: %/dg(?/dgjé[x—xc(J,@)] X
xvk (J,0) f(J,0,t), (140)

where g = r? is the determinant of the metric tensor for transformations to

cylindrical coordinates. The ¢ function leads to the integral over the generalised
coordinate u’. This is necessary, because the canonical transformation is only
valid for the whole phase space.
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4 Maxwell Equations in Vacuum and Resistive
Wall Regions

To be able to model the cylindric plasma configuration with all its different re-
gions namely the plasma zone, the vacuum region and the resistive wall region,
the model equations for all regions must be available. This imposes that the
plasma model must be solved for each region separately. This chapter describes
the solutions of Maxwell equations and the plasma model from Sec. 3.1 in dif-
ferent zones of the cylinder, shows their derivations and gives a discussion of
electric and magnetic fields in each region.

4.1 Solution for a Resistive Medium

Modelling the resistive wall region requires the inclusion of a characteristic
medium property to the equilibrium Maxwell equations. This need can be
fulfilled by the electric conductivity o which is inverse proportional to the re-
sistivity of the medium o o< n~1. For this purpose the Maxwell equations from
Equation (21) and Equation (20) are written like

VxE = 2B, (141)
C
kK ,

VxB = —j-“g (142)
C C

Both equations are already Fourier transformed in time, i.e.% — —iw. In

Equation (20) the term containing the electric field %%—? must be added to the
right hand side because the electric field is assumed to be time dependent.

Further the scalar form of Ohm’s law
j=0cE (143)

enters the conductivity to Equation (142). Effects of resistivity represent a decay
of field amplitudes and are usually expressed by imaginary parts of frequencies.
In the case of conductivity this can be done like

wt = wHir, (144)
v = dro. (145)

Then Equation (142) changes to

A7 v w*

VxB=""g “p_—_

c 4r c c

E. (146)
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The curls in Equation (141) and Equation (146) must be expressed in cylindri-
cal symmetry by Fourier components.

For V x E:
g, —ikE, = =B, (147)
T »C
kB, — B = “B, (148)
C
1 ,im w
~(rEy) — —E, = —B,, 149
T<T 9) C C ( )
V x B:
"Mp kB, = -2 R, (150)
T »C
kB, - B, = - p, (151)
C
' . c,
— (B - B, = ““ R, (152)
r T C

The prime marks the radial derivative, m is the toroidal mode numer and £ is
the z-component of the wave number.

The radial components can be substituted into the ©- and z-components what
leads to

'k2 . .k
E = (Z - E) B,— B, (153)
w C w'r
1 . . 2 . k
S (B = (E _m g) B.+ 5B, (154)
T C wr wr
.k . * .k2
B = "M (M e C) E,, (155)
wr C w

o) = (

Ey. (156)

wr? c

im?c  iw* imkc
FE,
wr

In these system of partial differential equations of first order, it is possible to
consider two different cases. The transversal electric mode TE and the transver-
sal magnetic mode TM.
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4.2 TM-Mode

For the transverse magnetic mode the z-component of the magnetic field is set
to zero, B, = 0, what results in the remaining field components of both fields

.k 3
B =-—"F, B,=——2_F., (157)
(a*) (a*)"re
mk w* /
Ey = — ., By = I (158)
(a*) (a*)"c
Here o* contains the frequency w* in the following way
w2 ga  wWw”
()" :=k" — 2 (159)

The field components of Equation (157) and Equation (158) are all determined
by E.. If E, is known, then all other field components are known immediately.
Equation (152) can be written in terms of E, by use of Equation (157) and
Equation (158). The result can be written in form of a Bessel equation:

r2E! 4 rE. — (m*+ (a")?r?) B, = 0. (160)

The solution of Equation (160) consists of a linear combination of modified
Bessel functions 7,, and K,,,

E, = C\L, (a"r) + Co Ky, (a7r) . (161)

here C; and C, are constants.

4.3 TE-Mode

For the transverse electric mode the z-component of the electric field is set to
zero, E, = 0. Again this condition is put into Equations (153) to (156). The r-
and #-components of both fields then remain

wm ik

b (a)? e b= _(oz*)2B;’ (162
w , km

Ey = (Oz*)ZCBZ’ By = (a*)QTBZ’ (163)
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as expressions of only B,. After a substitution of these components a simi-
lar procedure like for the TM-mode is applied what finally results in a Bessel
differential equation for B,:

r?B! + 1B, — (m*+ («*)*r?) B, = 0. (164)

Like for the TM case, the solution of Equation (164) consists of a linear combi-
nation of the modified Bessel functions I,,, and K,,:

B, = DI, (a*r) + Do K, (a'7) (165)

with constants D; and Ds.

4.4 Vacuum Solution with Antenna and Resistive Wall

Vacuum Vacuum Vacuum
| 1 v
>
rl . . r2 r3 r
resistive
antenna wall

Figure 9: The antenna and the resistive wall in the cylinder are surrounded by vacuum
regions. The cylinder is radially splitted into four different regions. The antenna is
located at 71, the inner surface of the resistive wall at ro and the outer surface at
r3 = 79 + d, where d is the thickness of the resistive wall.

In each region, the general solution of magnetic and electric fields must be
known. At presence of the TM- and the TE-mode, both contributions must be
included to the total solution by superposition like

E=E"M  E"F, (166)
B =B™ + BTE, (167)

38



Let us first consider a cylinder with vacuum, antenna and a resistive wall like
shown in Figure 9. This is a very simple configuration which shows the be-
haviour of fields in vacuum and resistive media very good. The antenna divides
the inner vacuum in region I and region II at r;. The resistive wall has a finite
thickness and is placed between r, and rs (region III), outside r3 a vacuum
in region IV spreads to infinity. All field components of magnetic and electric
fields are computed inside each region separately. By the superposition rule in
Equation (166) and Equation (167), where the corresponding field components
from Sec. 4.3 and Sec. 4.2 must be substituted, all regions can be modelled in
the same way.

Region I:
L wm
E. = —?Cll';n (ar) + %Dllm (ar), (168)
r  mk w
Eg = Ecllm (O[T') + @Dll;n (Oﬁ“) s (169)
El = Cil, (ar), (170)
B! MY o ar) — it (ar) (171)
= —— ar) — — ar
" are 1M 2 Hm ’
I iw km
BG = —%Cll;n (Oé'r) + EDl[m (OZT) s (172)
B! = DI, (ar). (173)

One has to consider the cylindric geometry and the behaviour of Bessel func-
tions at cylinder axis r = 0. Modified Bessel functions of second order K, grow
to infinity for » — 0. To exclude these diverging contributions from solutions
in Region I, the terms containing K, are set to zero what guarantees a nonsin-
gular solution of field components at the cylinder axis.

In regions II and III both modified Bessel functions are present, whereas w*
and o* occur only in the medium description of region III, elsewhere ¢ = 0
and w* = w and a* = «. In region IV functions [, are excluded due to their
diverging behaviour for r — oo.

A set of 12 coefficients (C4, C3, Cy, Cs, Cg, C7) and (D4, D3, Dy, D5, Dg, D7) arises
from the field descriptions of the different regions in Equations (168) to (191).
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Region II:

B = _;_’; (CsI, (ar) + C4 KL, (ar)] + :2—:1 (D3I, (ar) + Dy (o)), (174)
I mk w
Byl = 5 [Cslm (or) + Cap (ar)] + —5- [Dsl}, (ar) + Dak, (ar)], - (175)
B = C3I, (ar) + C4K,, (ar), (176)
W ik
BI' = = [Csln (or) + CiKo (ar)] = — [DsI, (ar) + DaK;, (ar)] , (177)
Bl = _% [CaI}, (ar) + C4K], (ar)] + % (D3I, (ar) + DyKy, (ar)], (178)
Bil = DBIm (OH‘) + D4Km (OH‘) . (179)
Region III:
BT = _(Zk)2 [C5 I, (a'r) + Co Ky, (077)] (180)
a*
— [DsIy (a*r) + DKo (7)),
(a*)"re
BT = (L, (o) + CoKo (0] (181)
a*)r
Zw ! * ! *
+——=— [Ds1I), (a*r) + DK, (o 1)]
(a*)" ¢
EiH = Cslp (1) + Colp (a'1), (182)
BT = I (Col ('r) 4+ CoKom (a77)] (183)
(a*)"re
— DI, (ar) + DoK, (a"r)]
(a*)
BYT = — = [C5Il, (a"r) + CeKy (ar)] (184)
(a*)" ¢
k
+ 5= [Dsln (0*7) + DKo (0*7)]
(a*)"r
BT — Dil, (a*r) + DgKpm (o). (185)
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Region IV:

ik wm
Efv = __207K7,n (OéT) + a2T0D7Km (OZ’I") ) (186)
k
B = U [Col (a"r) + Coo (7)) (187)
(a*)r
w ’ * ! *
+ 57— (D51, (a'r) + DK, (a'r)]
a*)’c
BV = C:K,(ar), (188)
BY = g Crkn (or) = DK (o). 15
oo iw km
39 = —%07[(;1 (Oé'r) + ED7KWL (OZT) ) (190)
BlY' = D:Kp(ar). (191)

4.5 Application of Boundary Conditions

In the previous section it is described how the field components in the four
cylinder regions yield a set of 12 coefficients. To determine these coefficients, a
linear inhomogeneous system of equations must be solved,

A-c=h, (192)

which results from 12 boundary conditions at zone interfaces. Vector c contains
the ceofficients, A is a 12x12-matrix and b is a vector containing the boundary
conditions. The boundary conditions result from continuity conditions of the
electric and magnetic field at vacuum and medium interfaces and jumps of fields
at the antenna.
At the antenna

mxE] = 0, (193)
nx B — 4?”.1, (194)
a surface current density j produces a jump of the tangential B-components
[Bel,, = %jz, (195)
B, =~ (196)



while the tangential components are continuous
[Edl,, = 0, (197)
[E.]. = 0. (198)

Here the bracket operator represents the difference of quantity values x across
the boundary between region ¢ and j at position r = y like:

2], = r'— (199)

At the resistive wall, the magnetic field has no jump and all tangential compo-
nents are continuous

[Bs.2],. =0, [Bo.:],. g =0, (200)
[Ep,z], =0, [Eo.z),. 1q =0, (201)

there r, is the antenna position, r,, is the resistive wall position and d is the
resistive wall thickness.

From these 12 boundary equations, matrix A of the linear inhomogeneous sys-
tem results with

tI] —s1h -t}  —tK] s11q s1K1 0 0 0 0

0 -5 0 0 I K 0 0 0 0

ol —tI s siKi I LK} 0 0 0 0

-1 0 I K 0 0 0 0 0 0

0 0 I, tK), —sils —ssKo —p'Iy —p*Ky s3I siK

0 0 0 0 L, K, 0 0 I K3

0 0 —soly —soky —tI, —tK, s3Iy ssKy  t°I3 'Ky

0 0 -1 —Ky 0 0 I K3 0 0

0 0 0 0 0 0 p*I;' p*K3 —sily  —siKi —tK}
0 0 0 0 0 0 0 0 —I3 —K3

0 0 0 0 0 0 —sily  —siki Iy 'Ky s3Ks
0 0 0 0 0 0 =13 —-K3 0 0

_ (202)
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Vector b contains the continuity and jump conditions mentioned above,
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bl = —Jz, b2 = ——J0, (203)
C C
b3:b4:b5:b6:b7:b8:bg:blozbn:b12:0. (204)
Matrix A contains the abbreviations
p= e e e (205)
= QZC’ - (a*)2c’ p - (O[*)QC’

rT =T, Te = Tw, T3 =Ty + d7 (206)

ry is the antenna position, ro the position of the inner resistive wall surface and
r3 the position of the outer resistive wall surface. Further

[l' = [m (Oﬂ“i) s [Z* = [m (OZ*T’Z') s (207)
Ki = Km (Oﬂ“i) s KZ* = Km (OZ*T’Z') s (208)
k k
si= §=— (209)
acr; (a*)" 1y

all forz=1,2,3.

4.6 Computation of the Vacuum Field Components

The computation of vacuum field components from Sec. 4.4 is done by MAT-
LAB, where a linear inhomogeneous system from Equation (192) is solved.

The complex amplitudes of the magnetic and electric fields are evaluated over
all four regions of the cylinder like shown in Figure 9. The computation is done
for a resonant mode (m,n)—(12,4) with a frequency of f = ;= = 1kHz. The
antenna is placed at r; = 53cm and the resistive wall at 7o = 60cm with a
thickness of d = 3cm. The torus radius is R = 175cm and the applied antenna
current is Iy = 15kA = 4.5 - 103statamp. The tangential components of the

current density in the antenna are chosen to be

‘ 81 1 Statamp
=———=-2182-10" ——— 210
R tat
G, = —jgm— —=2.162- 10" w ) (211)
nry cm
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The ratio between the skin depth and wall thickness g with

C

5=

(212)

;

w2To

is a function of the conductivity ¢ and can be expressed in terms of v = 4no

(213)

= high conductivity ¢ means a small skin depth ¢.

Figure 10 and Figure 11 show all non-vanishing electric and magnetic field
components in all regions I - IV. To test the influence of the resistive wall, two
different conductivities are applied:

e 2 << 1is achieved by a high conducting wall with £ = 10'® and a small
skin depth 6 = 0.214cm. Such a wall has a visible effect on the field
components, like shown in Figure 10.

° g >> 1, represents a high resistive wall, where the fields are not shielded
inside it. At 2 = 0.1 the conductivity is very low. The corresponding skin
depth is § = 2.1 - 107cm. Figure 11 shows that such a wall behaves like a
vacuum region.

The real part of the radial electric field is the component which is most sensitive
on changes of the resistive wall properties.

Figure 12 compares the real part of the radial electric field on changes in con-
ductivity (change of Z) and changes of wall thickness d. The jump of Re(E,)
at the resistive wall is larger in case of a thinner wall.
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Figure 10: Components of the electric and magnetic field plotted over r: blue: vacuum
region I, green: vacuum region II, black: resistive wall region III, red: vacuum region
IV. f = 5= = 1kHz, resonant mode (m,n) = (12,4) with wall thickness d = 3cm and

antenna current [y = 15kA. High conducting wall with 2 = 10'® and a skin depth
6 = 0.214cm. The antenna position is r, = 53cm and the resistive wall at r, = 60cm.
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Figure 11: Components of the electric and magnetic field plotted over r: blue: vacuum
region I, green: vacuum region II, black: resistive wall region III, red: vacuum region
IV. f = 5= = 1kHz, resonant mode (m,n) = (12,4) with wall thickness d = 3cm

and antenna current Iy = 15kA. High resistive wall with 2 = 0.1 and a skin depth
§ = 2.1-107cm, antenna position r, = 53cm and the resistive wall at r,, = 60cm.
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Figure 12: left: Real part of the radial electric field over r for three different wall
conductivity cases £ = 0.1 (dotted), Z = 1 (solid) Z = 10 (dash-dotted) with d =
3cm. right: Real part of the radial electric field over r for two different wall thicknesses
d = 2cm (dash-dotted) and d = 10cm (solid) with £ = 1. For all cases f = 5= = 1kHz,
mode numbers m = 12, n = 4, Iy = 15kA, antenna position at r, = 53cm and the
resistive wall at r,, = 60cm are used.

5 MHD Instabilities

Magnetically confined plasmas face a big variety of conditions which can make
the plasma configuration unstable, lead to strong disruptions of energy or to
a shut down of the fusion process. Instabilities can arise from errors in MHD
equilibrium profiles, particle transport barriers or simply by unfavourable energy
distributions driven by current or pressure gradients (Ref. [15]).

From the technical point of view, the role of MHD instabilities is twofold. On
one hand a turbulent plasma motion can be used for heating, external error fields
can couple to internal fields to open transport barriers and avoid disruptions.
On the other hand an uncontrolled disruption harms the material components of
the fusion device and even the fusion process itself can be stopped (Refs. [15,18]).
MHD instabilities set operational limits for fusion devices. The most important
are plasma current, pressure, pressure gradient and density. Mitigation and
control of instabilities are therefore very important topics in fusion research.
The point of interest lies in the availability of a model which handles MHD
instabilities. For this purpose it is useful to neglect the plasma resistivity and
consider an ideal MHD description.

The following sections discuss the properties of the main ideal MHD instabilities
and give a commonly used approach to handle them.
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5.1 The Energy Principle

The energy principle is a concept which is used to determine whether a perturba-
tion of a system is stable or unstable (if the system returns back to equilibrium
or not). The energy principle is based on the change in potential energy of the
system caused by the perturbation. It assumes that the MHD model conserves
the total energy of the system (plasma configuration) completely,(see Ref. [11]).
For a change in potential energy 6W it holds that the perturbation for

OW >0, is stable, (214)
OW <0, is unstable. (215)

A perturbation force F causes a displacement £ and the change in potential
energy can be defined like

1
5W:—§/£-Td\/, (216)
as integral over the volume V' (Ref. [38]). The linearised MHD Equation (38)
determines . .
F = Ejl X BO —+ Ejo X B1 — Vpl, (217)

and by means of remaining perturbation quantities p;, B; and j; from Equa-
tion (47), Equation (48) and Equation (49), the energy contribution results
in

1

/[&vaov&e-ww

+ﬁ£-((VxVx(ExBO))><B0+(V><B0)><V><(£><BO)) dv. (218)

Using the Gauss integral relation

/V-AdV:/A-dS, (219)

where the volume integral over a vector field A is replaced by a surface integral,
the energy contribution can be written as

5W:1/[’Ypo(v'ﬁ)QﬂL(ﬁ'Vpo)v'ﬁ‘i‘%B%_%J'O'(BlXe) dv+

2
1 B, - B,
+§/(p1+ = >£-dS. (220)

From these equations it is evident that 61 is determined by &.
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5.2 1Ideal MHD Instability

The gradients of the plasma current and pressure are the driving forces of MHD
instabilities. Ideal modes assume that the plasma has no resistivity. Since this
is not valid in reallity, it must be noted that ideal MHD is an useful tool to
predict the occurence of instability, which will occur also for resistive cases, if
ideal MHD predicts it, but due to the resistivity it will not be possible to model
it exactly (Ref. [38]).

In general the modes can be separated (like e.g. in Ref. [11]) in:

e Internal modes:
It is assumed that a plasma is surrounded by vacuum. It turned out
that some instabilities do not change the position of the plasma-vacuum
interface. Such modes have a resonant surface m — gn = 0 inside the
plasma and are called internal modes with the boundary condition at
plasma surface n - £|s = 0. Here n is the normal vector pointing outward
of the plasma. (m,n) are toroidal and poloidal mode numbers.

e External modes:
Modes which move the plasma-vacuum interface away from its equilibrium
position have a resonant surface m — gn = 0 outside the plasma and
are called external modes with the boundary condition at plasma surface

n-§|s # 0.

Additionally to the separation in external and internal modes, instabilities can
be classified as:

e Pressure driven instability:
Modes driven by the pressure gradient are most unstable if they are in-
ternal (Ref. [11]). It is convenient to specify two classes:

— Interchange instabilities:
An unfavourable curvature of the magnetic field lines can lead to
instability. Because of the plasma pressure exerting force radially
outward, a force contribution from magnetic fields is stabilising for
convex field lines and destabilising for concave field lines (relatively
to the plasma interior). For the latter case, the field line curvature
produces magnetic tension to shorten the field lines and pushes them
to collapse inward. If two radially adjacent magnetic flux tubes are
interchanged by perturbation in such way, the interchange is unsta-
ble. So systems with field lines concave to the plasma are unstable
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to interchange perturbations. These instabilities can be influenced
by the shear between two flux tubes.

— Ballooning instabilities:
These modes represent a limit for the highest § which is possible
in a fusion device. Inside the plasma both possibilities of field line
curvatures do coexist. So if a perturbation changes along the field
lines, it destabilises regions with unfavorable curvature and stabilises
the other ones. The only possibility of stabilisation is to lower /3.

e Current driven instability:
Modes which are driven by the parallel current density j; can be either
internal or external and are often named kink modes because such per-
turbations kink the plasma surface into a helix, like shown in Figure 13.
External kinks are significantly stronger than internal kinks. Kinks can

27R,

.<--—-———-—""""*ff'_"'—_ft::;ff

Figure 13: Kinking of a magnetic flux tube by a current driven kink instability in
cylindrical symmetry. Shown are kink mechanisms for m = 1 (left plot) and m = 2
(right plot).

be stabilised by a perfectly conducting wall which is positioned close to
the plasma surface.

5.3 Self-Adjointness of the Force Operator F (&)

The force operator F (§) from Equation (51) turns out to be a very useful tool
in MHD instability research due to its mathematical property of being a self-
adjoint operator, what means

F = F", (221)

where F* is the complex conjugate of F. Self-adjointness is valid for the flowless
ideal MHD case of F in Equation (52) and for a plasma configuration with no
resistive walls. The general case is thus not self-adjoint. For two arbitrary vec-
tors £ and m, which satisfy boundary conditions like in Sec. 3.1.2, the following
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integrals
JanE©= [aeFm. (222)

are invariant on the interchange of both vectors & and m, what means self-
adjointness of F.

The indication of stability leans on the sign of w?, what is called the energy
principle. For unstable configurations the eigenvalues w? are pure real. This
is true for discrete modes, which satisfy the eigenequation Equation (51) for
discrete eigenvalues w?. The force operator is dot multiplied with £* and after-
wards integrated over the volume, then the conjugate F'* is dot multiplied with
& and integrated in the same way.

F@M/fwr,FW€n/f¢. (223)

With the use of the self-adjointness in Equation (222), one receives

(= @) [ plefax =0, (224)

what means
w? = (w*)?. (225)

This is only possible if w? is real. From the frequency dependence of the modes,
which is proportional to e~™?, it can further be pointed out that modes with
frequencies w? > 0 represent a pure oscillation and can therefore be considered
to be stable. Modes with w? < 0 have an exponentially growing contribution
and are considered to be unstable.

The change from stable to unstable mode happens at w? = 0. For self-adjoint
operators this is the case exactly at Im(w) = 0 and Re(w) = 0. In general
cases (non self-adjoint), transition to instability happens at Im(w) = 0, but at
Re(w)# 0, see Figure 14.

An another important property of eigenmodes of a self-adjoint operator is that
the eigenmodes are orthogonal on each other. For two modes (,,,w?) and
(€,,,w?) where n # m are indices of different modes, the eigenequation Equa-
tion (51) for the n-mode is dot multiplied by &,, and vice versa for the m-mode.

what leads under consideration of self-adjointness from Equation (222) to
(@2 =) [ 9 &ar =0 (227)
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Re(®)

Figure 14: Evolution of two symmetric MHD mode frequencies (solutions of w? = 0)
in the complex plane while a perfectly conducting wall is moved radially inward.
The stabilising wall position is reached at Im(w)=0. left: For the self-adjoint case
stabilisation happens also at Re(w)=0. right: Non-self-adjoint cases have nonvanishing
real parts of the mode frequency. Stabilisation happens at Im(w)=0 but in general at
Re(w) # 0.

and for two distinct modes with w? # w? immediately to

[re. g0 (228)

This means that the modes are orthogonal on each other with weight function
p, which is the mass density.

5.4 The Resistive Wall Mode RWM

In reality, the ideal wall has to be treated as a medium with finite conductivity o,
thus resistive. An analytic approach for modelling such a wall, is given in Sec. 4.
In fact, the Vessel wall is desired to be resistive, because this allows external
magnetic fields a better penetration into the plasma to control it by external
coils (Ref. [11]). It turns out that the resistivity of the wall has a significant effect
on wall stabilisation of plasma modes. A plasma configuration which is stable
for a perfectly conducting wall is unstable for a resistive wall. Modes get never
fully wall stabilised by a resistive wall. For wall positions above the stabilisation
of the ideal wall mode, the resistive wall case corresponds in mode growth rates
nearly to the ideal wall case. This is not true below the ideal wall stabilising
position, there the resitive wall case remains unstable with growth rates which
range at Im(w) ~ = (this behaviour was discussed in Refs. [4,11,39]), here 7,
is the characteristic resistive wall diffusion time,

B dmobd

2 J

(229)

Tw
C
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resistive wall

Figure 15: Resistive wall in cylindrical symmetry (r, 0, z). Plasma radius a, wall
thickness d and poloidal angle ©. Between plasma and resistive wall a vacuum region
is assumed. (source:Ref. [39]).

Im(m)z

Im(m)“

® J  Re(®)

Figure 16: Change of growth rates w = w, + iw; predicted by the MHD model.
left: Unstable mode (and symmetric stable mode) move on imaginary axis while the
ideal wall is moved radially inwards. At stabilisation the pure imaginary frequency
w becomes pure real. right: Increase of resistivity. Mode frequencies grow into the
imaginary plane. The RWM develops with Re(w)=0. (Ref. [11])

with conductivity o, speed of light ¢, wall position b and wall thickness d.

In other words, the use of a resistive wall results in the occurence of an addi-
tional mode with slow gowth rate, the RWM. Figure 16 describes the change of
a mode’s eigenfrequency in the complex plane during stabilisation by an ideal
wall and a following increase of the wall’s resistivity (the wall is moved radially
inwards and after stabilisation ¢ is increased) resulting from the MHD model.
The ideal wall case demands, that w? is real, what means that w can lie only on
the imaginary or on the real axis. With the ideal wall at stabilisation position, it
holds that w? = 0, in other words the mode changes at stabilisation from a pure
imaginary w to a pure real. For a self-adjoint case exactly at Re(w)=0. After
stabilisation, the mode (due to the w? term, always two symmetric solutions
+w are expected to exist, see Figure 16) moves on the real axis and w gets pure
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real. If the resistivity of the wall is continuously enlarged for such a stabilised
case with Im(w) = 0 and Re(w) # 0, see right plot of Figure 16, then the mode
frequency w moves into the imaginary plane and becomes complex, w = w, +iw;.
It can be observed, that the additional mode grows out of w? = 0 at Re(w)=0
after wall resistivity is applied. This mode is the resistive wall mode RWM.
The physical picture of the RWM is the following (discussed in Ref. [11]). An
unstable instability (perturbation) produces a plasma displacement which in-
duces currents inside the wall. According to Lenz’s law, these currents flow in
such a direction, that a reinduced motion acts against the perturbation plasma
flow to stabilise it. In the case of a resistive wall, these currents decrease due to
dissipation on the scale of the wall diffusion time 7,,. A consequence is that the
currents which counteract to the perturbation are not able to exist permanently,
what means that the perturbation can grow further on. Because this is true
only for instabilities with 7 =~ 7,,, the RWM growth rates are much smaller than
ideal MHD growth rates, which have myyp << 7, and are nearly unaffected by
dissipative effects inside the resistive wall.

RWM growth rates increase with g = 4”];—%” (< p > is an average value of p
throughout the plasma) and set a limit in /5 for fusion operation. Control of
RWNMs can be achieved by plasma rotation or by a feedback with error fields
which couple to the internal fields and are produced by external coils. Possible
is also a combination of both feedback and rotation. Effects of plasma rota-
tion have been modelled in Ref. [4] and experimentally underlined at DIII-D in
Refs. [33,34]. It was discovered that with use of rotation a small percentage
(about 20%) of the Alfven velocity is needed to stabilise RWMs fully (Ref. [15]).
Error fields are discovered to slow down the plasma rotation what is a matter
of RWM control by external fields (Refs. [12,28]).

The modelling by kinetic models is a very new approach and in stage of progress.
From first results it is expected that the MHD models overestimate the range
of plasma flow which is needed for stabilisation by up to 50%, (Ref. [15]). This
tendency is supported also by results from DIII-D, (Refs. [33,34]). Kinetic ef-
fects like collisions, temperature and viscosity effects are a purpose of actual
modellings.
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6 The Reversed Field Pinch RFP

Reversed field pinches RFPs are toroidal fusion experiments which are char-
acterised by short pulses and high currents and are thus unstable to a broad
spectrum of kink modes (Ref. [10]). Due to this properties, RFPs are very useful
for RWM investigation.

6.1 Description

The main property of the reversed field pinch is that the toroidal magnetic field
has a reversal point inside the plasma, what means that it changes its direction
there. The poloidal magnetic field has no reversal point. A schematic plot of
magnetic fields and the pressure profile is shown in Figure 17. In Ref. [11] it

0-54 Ba

Field

Figure 17: Schematic plot of typical poloidal and toroidal magnetic field components
in a reversed field pinch. The toroidal field B, has a reversal point where it changes
its direction. (source: Ref. [30])

is mentioned that cylindrical descriptions are appropriate for RFP modelling
because toroidal corrections are very small. Early studies of MHD stability
in Refs. [13,30] confirmed that the RFP profile is a good configuration for
keeping the plasma stable even at high 3 values (it is also possible to stabilise
ideal kinks by the presence of a perfectly conducting wall). The reversal of the
toroidal magnetic field acts stabilising on internal pressure driven instabilities
(in Ref. [11] this is shown by the application of the energy principle).

Various investigations on RWM in RFPs have been done using MHD models to
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describe stabilisation by wall and plasma rotation (e.g. Refs. [14,36]). These
aspects are further discussed in Sec. 7.4. The approach by kinetic modelling is
a matter of actual research.

In general, the stability of the RFP is strongly influenced by the shape of plasma
profiles. In Ref. [11] it is mentioned that a minimum in B, is required to
establish a MHD equilibrium. Compared to Tokamaks, the poloidal magnetic
field is very large and can be even larger than the toroidal field. This property
gives a large aspect ratio what leads to the important technological advantage,
that it is possible to heat the plasma up to ignition only by Joule heating.
Toroidal effects do not matter significantly in MHD stability because of the
strong poloidal field. This causes only a small toroidal plasma shift. It is
mentioned in Ref. [11] that toroidicity is needed only for closing of field lines.
Practically it is very challenging to generate RFP profiles with a B,-reversal
and a flat p-profile. Therefore a permanently present amount of turbulence is
needed for reversal maintenance (see Ref. [11]). The confinement properties
do not benefit from the presence of such turbulence. Although these processes
are not well understood so far, the RFP is an attractive fusion device due to
its operation at high (3, favorable properties concerning MHD stability at high
aspect ratio and the possibility of Joule heating up to ignition. A technological
disadvantage is the need of a perfectly conducting wall relatively close to the
plasma to achieve MHD stability.

6.2 RFP Equilibrium

The RFP equilibrium is described by the a-Oy equilibrium model used in
Ref. [14] and can be derived in cylindrical symmetry from the ideal MHD-
equilibrium

1.
Vpo = ~Jox By, (230)
4
VxB, = %jo, (231)

with Bg = (0, Bog(7), Bo.(r)) the equilibrium magnetic field, po(r) the equilib-
rium pressure, jo(r) the equilibrium current density, and ¢ the speed of light.
For brevity, subscript zero is dropped in the following.

Equation (230) and Equation (231) lead to the force balance in cylindrical sym-

metry
0 + Bé + B, + Bé =0 (232)
ar \P 8 drr
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The current density in Equation (231) is expressed by it’s components parallel
and prependicular to the magnetic field,

VxB=—(j+j). (233)

47
c

It is now possible to write the ©- and z-components of Equation (233) by means
of perpendicular and parallel current components

dB 47 47
= g =—(j ' 234
dr c Je c (]@J_ _'_j@H) ) ( )
1d 47 4
- Be) = —j.=— (4. 1) - 235
~ 3, (rBe) —J- = — (J=r + Ja1) (235)

For further steps, the current components are expressed as projections on the
magnetic field like

. j-B

I = B, (236)
. jxB

ji = - xB. (237)

To derive Equation (237), the relations

o = - (238)
(jXB)XB = (B-j)B—(B-B)j, (239)

have been used. From Equation (230) and Equation (237) the perpendicular
current density is

. c
JL= 5 (B x Vp). (240)

Effects of the parallel current are important for REP stability. To be able to
estimate the influence of j; better, Equation (236) is expressed by the parallel
current distribution p as

j-B cp

like in Refs. [1,25]. Here, c is the speed of light and

oo ()] o

a

with shape parameters a and ©y and plasma radius a. The parameter O is
related to the safety factor at the axis and the major radius by ¢ (0) = .F

57



From Equation (234) and Equation (235) the a-©q equilibrium model is now
given by the following equations,

dB, 47 B, dp
— —uBy— =P 24
dr T T (243)
1d 47 By dp
~ 2 (rBy) = uB,— ~20°F 944
rdr (rBs) a B? dr (244)
dp r (uB?> B, 2
= Ly (= ZF) 245
dr Xsr (QB@ r ) (245)
(246)

Here, y is a constant which determines the effect of pressure gradients. Equa-
tion (245) gives Suydam’s necessary condition for stability when y < 1. Derived
parameters describing this model are the poloidal beta 3,, the reversal param-
eter F', and the pinch parameter O,

8 8T 1 a
b= ) = Frmyma ) A2, (247
 B.a)  Bya)
F="5y ©~ By (248)

So each set of equilibrium parameters (o, x, ©g) defines a RFP equilibrium with
resulting parameters (F, 9, 3,) and vice versa.

6.3 Computation of the RFP Equilibrium

Equation (243), Equation (244) and Equation (245) represent a coupled sys-
tem of differential equations of first order which can be solved numerically by
a Runge-Kutta boundary value solver. The equations are normalised and after
integration multiplied by realistic RFP values. The magnetic fields are nor-
malised by the value of the poloidal magnetic field at the plasma surface Bg,,
the radius is normalised by the plasma radius a, the normalised pressure is

D= g@;’l . The resulting normalised RFP equilibrium equations are

dB. —  B.dp
= —nuBy— — 249
1d ,_— _— By dp
“ % By = #B, - L% 2

58



2?@ r
o= 20,1 (7)°]. (252)

—9 _ 2
dp uB B,
£::_ﬁ<i_—t>, (251)

The normalised quantities are overlined. For integration, the following bound-
ary conditions

E@‘O - O y §Z|O == BZO == 17 (253)
dBe dB,

= 0,8 = 254
dr ‘0 @0 20 > dr |0 07 ( 5 )

dp

@y 255

Zlo =0 (255)

are needed. The index |y represents the value at 7 = 0. The integration is
carried out from the cylinder axis 7 = 0 to the plasma radius 7 = 1.

RFP equilibria given in this section were computed by ode45 from MATLAB.
The influence of the parameters («, ©g, x) on the RFP equilibrium quantities
can be discussed like in Refs. [14,36]. Table 2 shows the influence on (F, 9, 3,).

(Nr.| a [&[x [ F O] 8 |
55 | 1.5 0.0] 0.18 | 148 | 0.0
80 [ 1500047 | 158] 0.0
3.63 | 1.7] 0.0 | 0.47 | 174 | 0.0
816 | 1.5 1.0 | 0.50 | 1.93 | 0.081
774 15| 15 | 059 | 2.08 | 0.126

Y =] W DN =

Table 2: RFP equilibrium parameters (F,©,[,) which result from parameters
(Oé,X,@O).

Case 1 corresponds to the zero pressure Equilibrium (1) in Figure 6 of Ref. [14].
The effect on F' and © can be estimated for the case that a (Case 2) or © (Case
3) are varied. Case 4 corresponds to Equilibrium 5 in Figure 6 of Ref. [14].
Case 5 shows the change in o and Oy if F' = const for a change in 3. Figure 18
shows the RFP equilibrium magnetic fields and the g-profile for Cases 1, 2 and
3 from Table 2. These three equilibria have zero pressure. Changes in the
pressure can be seen in Figure 19. There y is varied under constant F' and
©p. Pressure and pressure gradient profiles for Cases 4 and 5 are shown in
Figure 20. Figure 21 shows temperatures and the particle density for Case 4
in Table 2. The particle density is equal for ions and electrons and is chosen
to be constant like suggested in Ref. [14]. To scale the profiles to realistic REP
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Figure 18: RFP equilibrium profiles: Safety factor ¢, poloidal magetic field By, and
toroidal magnetic field Bp,. The solid line is for Case 1 in Table 2, the dashed line
corresponds to Case 2 and dash-dot to Case 3. All three cases have zero pressure.
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Figure 19: RFP equilibrium profiles: Safety factor ¢, poloidal magetic field By, and
toroidal magnetic field By,. The solid line corresponds to Case 1 in Table 2, the
dashed line corresponds to Case 4 and dash-dot to Case 5.

values, it is enough to set Bg, at plasma radius and all other quantities can
be unnormalised with correspondence to Bg,. All described RFP equilibria
have Bg, = 2400G what can also be seen in Figure 18 and Figure 19. The
temperatures are computed by T = k%n in [eV]| with T'= T, + T; and T, = 0.6T
and T} = 0.47. While using MHD, a splitting of temperatures into electron and
ion part does not enter the model. This step becomes important while using
the kinetic model, where particle interactions depend on the differing profiles
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Figure 20: Pressure (black) and pressure gradient (red) for Case 4 (solid) and Case
5 (dash-dot) from Table 2.

of electron and ion temperatures, see Sec. 7.8
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Figure 21: Background profiles for density ng, electron temperature T, and ion
temperature 7; for Equilibrium 4 in Table 2.
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7 Results of RFP Investigations

7.1 Zone Configurations for RFP Modelling

While modelling growth rates of ideal and resistive wall modes in RFP symmetry
by the KiLCA code, Maxwell equations have to be solved in different media like
discussed in Sec. 4. Figure 22 shows the zone configurations for MHD and
kinetic (flre) modelling of the ideal wall mode. Outside the plasma region a
vacuum region is assumed which is closed by an ideal wall at the outer edge.
The corresponding boundary conditions are discussed in Sec. 4. The KiLCA

VAC w VAC VAC iw

rl r2 rl r2 r3

Figure 22: left: Two zones for modelling the ideal wall mode by the MHD code.
Between plasma radius 71 and ideal wall (iw) at 2 a vacuum zone is applied. The
antenna can be placed exactly at plasma radius. right: Three zones for modelling the
ideal wall mode by the kinetic code. The vacuum zone from the MHD case is split
into two zones by the antenna at r2. Here r3 marks the ideal wall position.

£

VAC Wl VAC iw

VAC VAC VAC iw

S = n 23 r 5

Figure 23: left: Four zones for modelling the resistive wall mode by the MHD code
with antenna at plasma surface r1. right: Five zones for modelling the resistive wall
mode by the kinetic code, where the antenna is placed in the outer vacuum zone at
r4. Both configurations are closed by an ideal wall at the outer edge.

code is programmed in such a way that an antenna must always be added to
the zone configuration. During the calculation of ideal and resistive wall modes
the antenna currents are set to zero. When using the MHD code, the antenna
is placed exactly at plasma surface, because of numerical stability reasons this
is not possible for the kinetic code, where the antenna must be placed at the
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boundary of two media of the same type (e.g. vacuum - vacuum). Figure 23
shows the zone configuration of MHD and kinetic modelling for the resistive
wall mode. A resistive wall is placed outside the plasma surrounded by vacuum
regions. In case of kinetic modelling, the outer vacuum region is split into two
vacuum regions by the antenna at r4. Both configurations are closed by an
ideal wall at the outer edge what represents the vessel wall.

7.2 MHD Model Benchmarking

Investigations in Refs. [14, 36] provide a detailled discussion concerning RWM
stabilisation by plasma rotation in a RFP. This section discusses a reproduction
of the main results given in Ref. [14] using the KiLCA-MHD code. Equilibrium
4 from Table 2 in Sec. 6.3 is suitable for this purpose because it is equal to
Equilibrium 5 in Figure 6 of Ref. [14].

For investigations of the influence of the wall position on the growth rates, the
plasma rotation velocity is set to zero. Changes of growth rates by variation

0

10 . .
——mhd-ideal wall
= mhd-resistive wall
107
3,
:3/ 10 °f
E
107} e
10

1 1.2 1.4 1.6 1.8 2
b/a

Figure 24: MHD mode growth rates for ideal wall (solid) and resistive wall (dotted)
positions %, normalised by wa = 2.34e6s~! for Equilibrium 4 from Table 2 and mode
(m,n) = (1,3).

of the wall position for an ideal wall and a resistive wall with conductivity
o = 4.5el4s and wall thickness d = 5cm are shown in Figure 24. The ideal wall
mode is stabilised at 2 = 1.58 (solid). For a resistive wall a small growth rate
of w=0+1-7.8246953e2s"! at 2 = 1.05 remains (dotted) and is never fully
stabilised if a rotation is absent. The used MHD modes have (m,n) = (1, 3)

what results in a normalised z-component of the wave number k., = 5% =
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300an — ().75. This corresponds to the case discussed in Ref. [14] and matches

their results.
The curves are normalised by wy in the same way like this is done in Ref. [14].
For a plasma radius a = 50cm, one gets

N Va By(a)//Arp 117 x 10%cm/s
A = — = =

a a 50 cm

= 2.34 x 109571, (256)

The application of a plasma rotation opens an interval for g where the RWM can
be fully stabilised. The width of this interval is a function of the plasma rotation
speed. Figure 25 shows two cases of poloidal plasma rotation (V, = 0.5V, and
V. = 0.7V,) which are constant over radius. The width of the window increases

T T T 10 T T T T
RWM - V=05V, RWM - V=05V,
RWM - Vz=0.7 V, RWM - Vz=0.7 V, ~
107 ;
-1
10
-2
= ~ 10}
A 3
3 107 12
£ T
£ @ 107}
-3
10} | )
107}
4 -5
10 ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘
1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2
b/a b/a

Figure 25: Windows of stable wall positions for a plasma rotation with V, = 0.5V
and V, = 0.7V, for Equilibrium 4 from Table 2. Growth rates are shown by the left
plot and the real parts are shown by the right plot. Inside the window there is no
data. The normalisation is done by wy = 2.34e6s7!.

with V. The wall positions where the windows open differ little from the result
given by Figure 10 in Ref. [14] (in Ref. [14] the windows open: for V, = 0.5V,
at 3 = 1.46 and for V, = 0.7V, at g = 1.38), but the growth rates of Figure 25
match the given results at g = 1.05 and g = 2.0. The difference in window
position results from the range of the Alfven velocity which is not exactly known
from Ref. [14], because of the unknown range of magnetic fields. But the general
behaviour of RWM from Ref. [14] is successfully recomputed.

64



7.3 Estimate of the Influence of the Galileian Moving
Frame Velocity on Kinetic Modelling

All computations using the kinetic model are computed in a frame which moves
in toroidal direction. Consequently all results have to be transformed back to
the laboratory frame using Galileian transformation. One of the common needs
to receive trustable results, is the invariance of results on the choice of the
moving frame velocity, like described in Ref. [19]. The Galileian frame velocity
Vg1 transforms the plasma motion to a moving frame with velocity V/7¥™¢ and
enters to the kinetic code by

VITame = sV, — vga, (257)

where V, is the toroidal plasma background rotation and s is a constant which
is used to scale V,. Figure 26 shows the dependence of the normalised growth

10° : : : 10°
10} ; 10} ;
3" 3"
3 3
1072k B T e ] 1072
——imag rwl - 2.0
-»-imag rwl - 1.8 ——imag rwl- 1.8
5| ~*-imag rwl - 1.4 _s| ——imag rwl- 1.8 -ngc
10 : : : 10 : : :
-1 -0.5 v 0 / 0.5 1 -1 -0.5 v 0 / 0.5 1
sl [cmis] x 10° gl [cmis] x 10°

Figure 26: Dependence of the kinetic ideal wall mode frequency on the vg, velocity
of the moving frame. left: Plotted are growth rates of the rwil-mode for resistive
wall positions rw/a = 2.0, rw/a = 1.8 and rw/a = 1.4. right: Growth rates of the
rwi-mode for resistive wall position rw/a = 1.8 for an applied Galileian correction
term and without it.

rates on the Galileian frame velocity vga. The growth rates shown are computed
by the kinetic model including the collision term from Sec. 3.2 and an applied
resistive wall like discussed in Sec. 7.1. They correspond to the rwi-mode dis-
cussed in Sec. 7.4. The left plot compares the vg,-dependence for the three
different wall positions rw/a = 2.0, rw/a = 1.8 and rw/a = 1.4. The right plot
compares the vg,-dependence for the rwl-mode growth rates at rw/a = 1.8
while a Galileian correction term is used and without it.

The invariance is fullfilled up to values of +1e6 <*, here the change of the
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growth rates vary less than 10%. Outside this the Galileian invariance is sig-
nificantly violated. Modes propagating with the velocity of the moving frame
might become superalfenic. In this sense the wall might lose its effect on the
mode (current induction), within what the mode can change its frequency.

7.4 Sensitivity of Ideal Kink and RWM on the Wall Po-
sition

This section discusses results of computations done on RFP equilibria men-
tioned in Sec. 6.3 and published in Ref. [26].
It is desired to investigate instabilities of RFP equilibria both by the MHD and
the kinetic model and compare predictions of both models for a RFP plasma,
getting stabilised by changes in ideal and resistive wall positions and by appli-
cation of toroidal plasma rotation.
For investigations of this purpose, the equilibrium plasma background Case 4
from Table 2 in Sec. 6.3 is suitable (it is equal to Equilibrium 5 in Figure 6 of
Ref. [14]). The profiles are shown in Figure 19, Figure 20 and Figure 21.
The Alfven rotation frequency w, remains for the applied equilibrium as wy =
2.34 x 105571 (the same like in Equation (256)). The ideal time scale

TA = LR 107 7s, (258)

WA

is used to express the resistive wall time scale. The resistive wall time scale
Tw for wall position b = 50 cm, wall thickness d = 5cm, and wall conductivity
o=45-10" s7! is then

4mbdo

T = 0.0016s = 3.7-10° 74. (259)
For a big radius R = 200 cm, toroidal and poloidal mode numbers n = 3
and m = 1, the value for k = n/R agrees with the value in Ref. [14], namely
ka = 0.75. For the ideal wall positioned at b/a = 2 the normalised radial
magnetic field |B,| for the kink instability is shown in the left plot of Figure 27.
The right plot shows the normalised |B,| profile for modes with the resistive
wall positioned at b/a = 1.4. In this case, two kinetic roots rwl and rw2 have
been found whose growth rates are shown in Figure 28. The | B, | profiles for the
MHD and the kinetic model are seen in good qualitative agreement. Figure 28
shows the normalised growth rates of the ideal wall mode (iw) and the resistive
wall mode (rw) as a function of the wall position. The MHD result is the same
as shown in Figures 5 and 6 of Ref. [14]. The kinetic description of the kink type
mode (ideal wall) shows a slightly smaller growth rate for 1.6 < b/a < 2. More
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Figure 27: Profiles of the modulus of the radial magnetic field |B,| for the ideal wall
(left) at b/a = 2 (ideal kink mode) and the resistive wall (right) at b/a = 1.4 (resistive
wall mode) without toroidal plasma rotation. Toroidal and poloidal mode numbers
are n = 3 and m = 1 such that the toroidal wave number normalised to the small
radius a is ka = 0.75. left: Blue (dashed) - MHD model, red (solid) — kinetic model.
right: The ratio of resistive to Alfvénic (ideal) time scale is 7, /7a = 3.7 x 103. Blue

(dashed) — MHD model, red (solid for mode rw! and dotted for mode rw2) — kinetic

model.
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Figure 28: Normalised growth rates of the ‘kink’ and the ‘resistive’ mode plotted over
the ideal (iw) and resistive wall (rw) position. Mode numbers are m = 1 and n = 3.
The resistive time scale is 7y /7a = 3.7 - 103. Solid lines (square — MHD, diamond —
kinetic) for the ideal wall, dashed and dot-dashed lines for the resistive wall. There
exist two RWM kinetic solutions rw! and rw?2 for 1.35 < b/a < 1.52.
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remarkably one can observe a significant smaller value for mode stabilisation
about b/a ~ 1.3 compared to b/a ~ 1.6 for MHD. Nevertheless, the ideal mode
can be still stabilised by an ideal wall close enough to the plasma.

If the wall is resistive, the resistive wall mode appears. In the MHD case,
there exists now a mode even for values of b/a < 1.6 with growth rates three
orders of magnitude smaller, i.e. on the resistive time scale. In the kinetic case,
the situation is somewhat different. For values above the ideal stabilisation
values of b/a = 1.3 it holds for mode rw1 that there is, similar to MHD, not
much difference to the ideal wall case. For small values of the wall position,
1 < b/a < 1.52, there appears a new mode rw2, the kinetic resistive wall mode.
Between 1.3 < b/a < 1.52 both modes rw! and rw2 do coexist. Again, the
growth rates found by the kinetic model are in good qualitative agreement with
the MHD results.

7.5 Stabilisation by Plasma Rotation

The next point to be adressed is the role of mode stabilisation by toroidal ro-
tation of the plasma. For this purpose an uniform velocity profile (constant
over r) for V, is applied to the RFP equilibrium used in the previous sections.
Figure 29 shows the growth rates over toroidal rotation for different positions
of the resistive wall. On the left, the results for negative V, are shown, on the
right, the results for positive V, (plasma current is positive) are shown.

The first thing one can realise is that for MHD the mode stabilisation is sym-
metric with respect to the sign of V,. This can be also seen from the formulae in
the MHD modelling section if the poloidal velocity is zero. In contrast, kinetic
modelling shows stabilisation only for V, < 0 values, whereas for V, > 0 the
growth rates slightly increase instead. In the kinetic model the toroidal plasma
rotation velocity influences the background electric field and the parallel bulk
velocity parameter of the ion and electron background distribution functions.
In the expressions that define those quantities there is no symmetry that may
lead to such a symmetric behavior of the instability growth rates with respect
to direction of toroidal plasma rotation. Another difference can be found for
wall position b/a = 1.1. MHD predicts instability whereas kinetic theory does
not. That means instead of the stability window shown in Figure 25, in the
kinetic model there is an upper threshold, b/a ~ 1.68 for the wall position only:
if the wall is too far away the RWM is not stabilised even for large toroidal
rotation velocities. In MHD there is also a lower threshold, b/a ~ 1.4, and the
RWM is not stabilised for the resistive wall too close to the plasma.

For the case b/a = 1.4 one concludes from Figure 29 that in the kinetic model
toroidal velocities of about 3% of the Alfvén velocity stabilise the RWM whereas
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Figure 29: Normalised growth rates for the RWM (rwi) at different locations 1.1 <
b/a < 2 as a function of the normalised toroidal plasma velocity V,/Va. Mode numbers
are m = 1 and n = 3. The resistive time scale is 7y /7 = 3.7 - 103. Dashed lines
— MHD model, solid lines — kinetic model. left: — toroidal plasma rotation against,
right: — toroidal plasma rotation with the toroidal plasma current.

in the MHD model this value is about 30%. Small rotation speeds of a few per-
cent of the Alfvén velocity have also been found in Ref. [22] to be sufficient for
stabilisation of resistive wall modes in ITER by toroidal rotation.

To investigate the influence of the edge value of the toroidal plasma rotation on
the growth rates, three different rotation velocity profiles shown in Figure 30
have been tested.

Note that always the parameter s from Equation (257) sets the fraction of the
Alfven velocity (e.g. s -V like done in Figure 29).

The results in Figure 31 show that for smaller rotations speeds at the plasma
edge, the stabilisation value for the case b/a = 1.4 increases up to 10% of the
Alfvén speed. It is concluded that a high enough plasma rotation at the edge
is important for stabilisation, whereas differential rotation seems to have no
significant impact.
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Figure 30: Three different profiles for the toroidal plasma rotation velocity. The
constant value of V1 is equal to the Alfven velocity of the RFP equilibrium Case 4
from Table 2 in Sec. 6.3
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Figure 31: Normalised growth rates for the RWM at b/a = 1.4 as a function of
the normalised toroidal plasma velocity V./Va for different profiles of the toroidal
background plasma velocity shown in Figure 30: V1 solid, V2 dashed, V3 dashed-
dotted. blue curves — MHD model, red curves — kinetic model.
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7.6 Influence of Density Profiles
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Figure 32: Different density profiles used in the calculations.

To ensure that the jump in density at plasma - vacuum interface does not lead
to unphysical results, the density profile shown in Figure 32 has been applied.
The plots in Figure 33 show no significant difference of growth rates if two
different density profiles n1 and n2 are applied to kinetic modelling of RWMs.
So only small values of growth rates show a deviation from the nl profile results
of resistive wall modes rw1 and rw?2 from Sec.7.4. The effect of smooth density
n2 on the RWM stabilisation by rotation is shown in Figure 34. It can be seen
that the smooth density profile has no significant effect on the MHD model, but
the kinetic model reacts somehow more sensitive for higher rotation speeds.
Figure 25 discusses a stable window for a resistive wall position between 1.4 <
b/a < 1.6 predicted by the MHD model. To estimate the influence of the density
profile, the same computations have been done for the density profile n2. Both
results are compared in Figure 35. For each particular position of the resistive
wall the threshold value of the toroidal plasma velocity to stabilise the mode
is different. At a velocity of profile V1 with V,/Vy = 0.5 and density profile
n2 only wall positions 1.4 < b/a < 1.6 can be stabilised. This is shown in
Figure 36 for three different positions of the resistive wall b/a = 1.1, b/a = 1.4
and b/a = 2.0.

It is not possible to observe a stable window by the kinetic modelling, see
Figure 29. In general, it can be said that the results with a smooth density
profile n2 confirm the behaviour of the uniform density profile nl.
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Figure 33: Normalised growth rates for the resistive wall modes rw! and rw2 from

Sec.7.4 for density profiles nl and n2 computed by the kinetic model. A visible
difference can be recognised at small growth rates, but these differences are rather
small.

-1

10
——rwl-nl
- == -rwl-n2
—— imhd-rw-nl
= == - imhd-rw-n2
T Sl N
=
3
g . A
E % \
3 kK N
10 °f L h
1 1
1 1
T 1
' i
7 ;
-4 1
10 - — — .
10 10 10" 10°
V. IV

Figure 34: Normalised growth rates for resistive wall modes calculated by the kinetic
model (rw) and by the MHD model for both density profiles n1 and n2 in dependence

on absolute values of the toroidal rotation velocity (used profile V1). blue: MHD -
curves, red: kinetic - curves.
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Figure 35: The stable window for 1.4 < b/a < 1.6 of the RWM calculated by the
MHD model for two different density profiles and a toroidal velocity V. /Vy = 0.5.
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Figure 36: Normalised growth rates (real and imaginary part) for different positions
of the resistive wall as a function of the toroidal plasma velocity for the MHD model
and density profile n2.

7.7 Energy Dissipation

An important question is where the energy goes during RWM stabilisation. For
the frequency range typical to RWM only Cerenkov resonance will contribute
to the interaction between the electromagnetic field and particles that in the
present cylindrical model are all passing particles. However, it is most likely
that magnetic perturbation along the magnetic field lines acting via the grad
B force on the particles will add up to the parallel electric perturbation field
and thus to the work of the electric field on the parallel current. The relative
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Figure 37: Power densities (normalised to the maximum value of |B,|?) dissipated
to electrons (left) and to ions (right) for a stable (V,/Va = —0.04) and an unstable
(V./Va = —0.03) RWM and resistive wall position at b/a = 1.4.

impact of different sorts of particles on the mode stability can be analysed by
looking at the electromagnetic power dissipated to the respective species. If
total power dissipated to the electrons and ions together is positive, the mode
will damp. Vice versa, if it is negative, the mode will obtain energy from the
plasma particles and will grow, i.e. become unstable.

In Figure 37 shown are power densities dissipated to electrons and ions for
the case of a stable (plasma rotates with V, = —0.04V,4) and an unstable
(V, = —0.03V4) RWM mode with resistive wall position at b/a = 1.4. While
the power densities dissipated on both species have the same sign (positive for
the stable and negative for the unstable mode), it is the electrons which are
responsible for the RWM stability since the energy dissipated to the ions is
three orders of magnitude less.

7.8 Estimate of Kinetic Code Dependence on 71, and T;

Regarding to the temperatures from the used RFP equilibrium in Sec. 7, the re-
maining question concerning the influence of temperatures on the kinetic results
arises. While for the MHD model only the complete temperature 7' = T, + T;
enters to the equilibrium pressure in p = nkgT', the kinetic model depends on
both temperature components regarding to the separately considered collisions
of electrons and ions. Therefore the kinetic model is expected to be sensitive

74



: . 10
——rwl-T-exchange
- = -rw2-T-exchange
——rwl
107 r w2
107t
~ =
3 3
3 107 3 Lo
E g Pt
1070 .-
s et e
10 °f /’x:” ——rwl-T-exchange
AT - » -rw2-T-exchange
’_(_' I ——rwl
. Vi . -eow2
10 : : — : 10 : : : :
1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2
b/a b/a

Figure 38: left: Normalised growth rates of the kinetic RWM from Figure 28 for two
diffrent cases of T; and T,. Particular: p = nkgT = nkp (T, + T;) whereas T, = 0.6T
and 7; = 0.4T and exchanged T} < — > T,. right: Normalised real parts corresponding
to the left plot.

on the exchange of T, and T;. In the used equilibrium in Sec. 7, the ion tem-
perature 7} is smaller than the electron temperature 7,. Both fullfill Dalton’s
law p = nkgT = nkp (T, + T;) whereas T, = 0.6T and T} = 0.47.

Figure 38 shows the normalised growth rates and normalised real parts for the
kinetic resistive wall modes rw! and rw2 from Sec. 7.4 in comparison to the
case with exchanged temperatures. The exchange of temperatures has a visible
influence on both modes. The low frequent rw2 has a different stabilisation
position of the resistive wall, it changes from initially b/a = 1.52 to b/a = 1.54.
The change in stabilisation position is much larger for the rw! mode, where
it is shifted from initially b/a = 1.33 to b/a = 1.56. The consequence is now
that there is nearly no overlapping of RWMs at resistive wall positions between
b/a = 1.33 to b/a = 1.52, because both modes stabilise at approximately the
same wall position.
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8 Application of MHD and Kinetic Model to Toka-
mak Plasmas

In the following section we apply the developed kinetic and the MHD code to
a set of Tokamak like profiles without reversal point.

The task of these investigations is to show that it is also possible to model and
compare instabilities obtained by the kinetic and the MHD code on profiles
which approximate a Tokamak configuration in cylindrical symmetry. We have
developed a MATLAB program which computes profiles by analytic expressions
including shape parameters to influence the gradients of the profiles. This allows
to trace the frequencies of instabilities (frequency values in the complex plane),
which are known for simple profile configurations, up to realistic Tokamak scales.

8.1 Calculation of Profiles

This section describes the modelling of Tokamak like profiles in cylindrical sym-
metry. The profiles are computed from analytic expressions based on the tanh-
function. The equilibrium is calculated to be self-consistent, i.e. the MHD
equilibrium condition from Equation (232) is satisfied.

The basic idea is that the profiles of particle density n, ion and electron tem-
perature T} and T, plasma background velocities V, and Vi and current density
J, are determined by a tanh-function which can be varied by shape parameters
aribtrarily. From these profiles it is then possible to compute all remaining pro-
files (e.g. magnetic and electric fields) out of the MHD equilibrium equations.
The shape parameters for the tanh-function represent a set of six parameters
which determine the complete shape of a plasma quantity () and are namely:
the quantity value at cylinder axis (g, the value at cylinder wall Q;,¢, plasma
radius a, the degree of the curve deg and the shape coefficients D i, and Dyax.
A tanh-function can then be used to compute the plasma profiles by:

de
Q =2A <1+tanh (agr)) g"—Qinfa (260)

where @) represents one of the basic profiles mentioned above (e.g. n, T, etc.).
Further are

Dynax — D
5 — Dmln max min 3 _ , 261
+ I (r —ro) (261)
4= Q- Qu (262)

deg
2tanh <% + 1)
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The quantities with index zero represent the on axis values and r,, represents
the cylinder wall position. In Table 3 the set of shape parameters for Profile 1
from Sec. 8.2 is shown. Table 4 shows the equilibrium parameter set for Profile
2 and Table 5 shows the shape parameter set for equilibrium Profile 3.

[Profile 1| Qo [ Qi | @ | deg| Duin | Do |
n 5.0 - 108em™ | Qo/1e5 | 50cm | 5 3 20
T, 10%eV Qo/100 | 50cm | 5 15 10
T. 75-10%V | Qo/100 | 50cm | 5 15 10
V. 1002 0.02 |50cm | 2 | 15 | 30
J. 1.5- 101522 [ 0,055 [ 50cm | 5 | 5 30

Table 3: Shape parameter set for Profile 1 from Sec. 8.2 Tokamak profiles.

| Profile 2 | Qo | Qe | a ] deg| Duin | Diax |
n 5.0 - 108em™ | Qo/1e5 | 50cm | 5 2 20
T; 10%eV Q0/100 [ 50cm | 9 | 2 10
T, 7.5-10°V | Qp/100 | 50cm | 9 2 10
vV, 100 0.022 [50cm | 2 | 15 | 30
J. 1.5- 101252 [ 0.05252 [ 50cm | 5 | 10 | 30

Table 4: Shape parameter set for Profile 2 from Sec. 8.2 Tokamak profiles.

| Profile 3 | Qo | Quwe | a | deg| Duin | Dax |
n 5.0-108em™ | Qo/1e5 | 50cm | 5 2 20
T; 10%eV Q0/100 | 50cm | 9 2 10
T. 75-10%V | Qo/100 | 50cm | 9 2 10
V. 1002 0.02 |50cm | 2 | 15 | 30
J. 3.0 - 10"=2ER 1 00522 | 50cm | 5 | 10 | 30

Table 5: Shape parameter set for Profile 3 from Sec. 8.2 Tokamak profiles.
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8.2 Profile 1

Profile 1, safety factor

0 0.5 1 15 2
r/a

Figure 39: g¢-profile for Profile 1 which has ¢ = 1 at ry/a = 0.68 (rs = 34cm) and
qo = 0.85.

Profile 1 is computed analytically by MATLAB. All quantities satisfy the MHD
equilibrium condition for screw pinches

9, Bj + B? B3
p+ +

P - =0. (263)

A7y

All profiles are shown in Figures 39, 40, 41, 42 and 43.

(r =1073%cm) | (r = 70cm)
fee in Hz 2.2394e10 2.7585e10
fei in Hz 1.2276e7 1.5027e7
fpe in Hz 6.3489¢10 2.0771e8
fpi in Hz 1.0457€9 3.3131e6
Cs in <2 1.0167e6 1.2157e5

S

Va in <= 2.4698e8 9.6202e10

S

Table 6: Comparison of gyro and plasma frequencies feo = 52—, fpe = %\ / %,

2mmce’?
ion sound speed Cy = w/’YkB%i and Alfven velocity Vi = \/ﬁ for Profile 1.
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-3 Profile 1, background velocities
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Figure 40: Profile 1 velocities vy and v, normalised by the Alfven velocity as well as
current components jg and j, are plotted against the radius which is normalised by
the plasma radius a.
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Figure 41: Profile 1 particle density and radial electric field plotted against the
normalised radius.

The g-profile increases monotonically with r, the particle density at the axis is
ng = 5- 10—, there the toroidal magnetic field is B, = 8 - 10°G and the
poloidal magnetic field is zero, the major radius is R = 200cm.

The magnetic fields satisfy the Straight Tokamak approximation from Sec. 8.5.
In Figure 44 the characteristic gyro and plasma frequencies for Profile 1 as well
as Alfven and sound velocities are shown. Table 6 compares the values of the
quantities from Figure 44. Therefore two radial positions (r = 10~3cm) and

79



Profile 1, magnetic fields
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Figure 42: Profile 1 magnetic fields By and B, as well as ion and electron temperature

plotted against the normalised radius.
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Figure 43: Profile 1 magnetic pressure p,, = %ﬁ and gas pressure p, = nkgT’, plotted
against the normalised radius.

(r = 70cm) are chosen. At these radial ranges all quantities from Figure 44 are
nearly constant over radius r, what makes it useful to compare them there.
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Figure 44: Profile 1 characteristic frequencies. The plots show the ion and electron
plasma frequencies, the ion and electron gyro frequencies, the Alfven velocity Va and
the ion sound speed Cs plotted against the normalised radius.
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8.3 Profile 2

Profile 2, safety factor

0 0.5 1 15 2
r/a

Figure 45: g-profile for Profile 2 which has ¢ = 1 at r4/a = 0.9 (r; = 45cm) and
g=2atrs/a=1.16 (rs = 58cm).

Profile 2 is computed in the same way by MATLAB like Profile 1. The MHD-

(r =1073%cm) | (r = 70cm)
fee in Hz 2.7993e10 3.2273e10
fei in Hz 1.5241e7 1.7581e7
fpe in Hz 6.3489¢10 2.0771e8
fpi in Hz 1.0457€9 3.3131e6
Cs in <2 1.0167e6 1.2157e5

S

Va in <= 3.0871e8 1.1251el1

S

Table 7: Comparison of gyro and plasma frequencies fe, = 2;—560, fpe = %\ / %,
ion sound speed Cy = w/’YkB%i and Alfven velocity Vj = \/ﬁ for Profile 2.

equilibrium from Equation (263) is satisfied as well. The particle density is
ng = 5- 1015 the toroidal magnetic field at the axis is B.o = 10'G, the
poloidal field is zero there and the major radius is R = 400cm.
Figure 45, 46, 47, 48 and 49 show ¢-profile, magnetic fields, velocity and current
density components, temperatures, the radial electric field, the particle density
n, the magnetic pressure and the gas pressure.

Table 7 shows the characteristic frequencies and velocities at (r = 1073cm)
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-3 Profile 2, background velocities
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Figure 46: Profile 2 velocities vy and v, normalised by the Alfven velocity as well as
current density components jy and j, are plotted against the normalised radius.
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Figure 47: Profile 2 particle density and radial electric field E, plotted against the
normalised radius.

and (r = 70cm). It can be recognised, that ion and electron plasma frequencies
(in Figure 50) differ only in steepness at plasma edge. This is a consequence
of the particle density which is steeper compared to the particle density from
Profile 1. In general it can be said, that the temperatures of both profile sets
start from the same on axis values but Profile 1 is less steep. More differences
can be estimated at the current density drops, at Profile 1 the jg-peak is nearly
three times smaller, the E,.-component of Profile 1 is nearly five times smaller.
The g¢-profile has an axis value qo = 0.85, crosses ¢ = 1 at r, ~ 34cm and
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Figure 48: Profile 2 magnetic fields By and B, as well as ion and electron temperature

plotted against the normalised radius.
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Figure 49: Profile 2 magnetic pressure p,,
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against the normalised radius.
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%ﬁ and gas pressure p, = nkgT', plotted

increases afterwards monotonically with r, see Figure 45.
The most important differences between both profile sets are the values the
current peaks and FE,, the axis value of B, and the different positions of the

resonant surfaces for the g-profile.
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Figure 50: Profile 2 characteristic frequencies.The plots show the ion and electron
plasma frequencies, the ion and electron gyro frequencies, the Alfven velocity Va and
the ion sound speed Cs plotted against the normalised radius.
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8.4 Profile 3

Profile 3, safety factor

0 0.5 1 15 2
r/a

Figure 51: g¢-profile for Profile 3 which has ¢ =1 at r;/a = 1.16 (rs = 58cm).

Profile 3 is very similar to Profile 2 what means completely equal profiles of
particle density n, temperatures T, and 7T}, a velocity profile V, and a major
radius of R = 400cm. A larger current density j, triggers a larger gradient of
the magnetic field components compared to Profile 2. This results in a safety

(r =1073cm) | (r = 70cm)
fee in Hz 2.798¢e10 3.1412e10

fei in Hz 1.5248e7 1.711e7
fpe in Hz 6.3479e10 2.0771e8
fie in Hz 1.0485€9 4.685e6

Cs in <2 1.0167e6 1.2157e5

S

Va in <2 3.0871e8 1.0958el1

S

Table 8: Comparison of gyro and plasma frequencies fe, = %6—7516, fpe = %@ / 4’;?:2,
ion sound speed Cy = \/wkg%i and Alfven velocity Vj = \/ﬁ for Profile 3.

factor profile ¢ which has a resonant surface of ¢ = 1 at b/a = 1.16 (5 ~ 58cm)
what is outside the plasma, see Figure 51. Profile 3 is computed by the same
equilibrium solver like Profile 2, see Table 5.

Characteristic frequencies are provided in a similar way like for Profile 1 and
Profile 2, see Table 8 and Figure 56. It can be recognised, that the plots
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Figure 52: Profile 3 velocities vy and v, normalised by the Alfven velocity as well as

current density components jy and j, are plotted against the normalised radius.
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Figure 53: Profile 3 particle density and radial electric field E, plotted against the
normalised radius.

for ion sound speed C, electron and ion plasma frequency are equal to the
corresponding quantities of Profile 2.
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Profile 3, magnetic fields
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Figure 54: Profile 3 magnetic fields By and B, as well as ion and electron temperature
plotted against the normalised radius.
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Figure 55: Profile 3 magnetic pressure p,, = %ﬁ and gas pressure p, = nkgT’, plotted
against the normalised radius.
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16

Hz

x 10

10 Profile 3, electron plasma frequency

1
rla

0.5 15

Profile 3, ion gyro frequency

1.75

1
rla

0.5 15

Profile 3, electron gyro frequency

1'400 0.5 1 15 2 0.5 1 15 2
rla rla
x10° Profile 3, ion sound speed % 10%° Profile 3, Alfven velocity
11 12
10F
10
9l
8 8
7k
£ 2
£ 61 £ 6
(5} o
5l
4
ne
3 2
2,
1 " h n 0
0 0.5 1 15 2 0 0.5

r/a

rla

Figure 56: Profile 3 characteristic frequencies.The plots show the ion and electron

plasma frequencies, the ion and electron gyro frequencies, the Alfven velocity Va and
the ion sound speed Cs plotted against the normalised radius.
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8.5 Expected Behaviour of MHD Modes

For the investigation of modes with |m| > 1, the safety factor ¢ (r) plays an
important role regarding to the question if the plasma configuration is stable
due to p- and j-driven modes or not.

In a cylindrical screw-pinch configuration where the magnetic fields satisfy the
Straight Tokamak conditions:

B
ekl (264)
with € = % the Tokamak aspect ratio and
8 8
Bizf ~ € (ohmically heated) ; % ~ € (high B tokamak).

External and internal current driven modes turn out to be the most dangerous
instabilities, see Ref. [11]. Pressure driven modes are less dangerous, they can
be investigated by the Suydam criterion and are not focused here.

Internal Current Driven Modes

Internal modes are defined by the position of the resonant surface r,, where
k - B = 0 and the safety factor
q:M;at r=rs. (265)
n
An analytic expansion of the energy principle 6W = 6Wy 4+ W5 + ... with
O0W,, ~ €™ is needed for the screw pinch case whereas an unstable contribution

requires W, < 0, see Sec. 5.1
In Ref. [32] it was shown that the first nonvanishing contribution is

ow, _ 1 / ’ (ﬁ — 1) [r2¢% + (m® — 1) €] rdr, (266)
0

Wo a2 m q

where W, = M;}f & and a is the plasma radius. For arbitrary n and the
integrand never vanishes and is positive.

= 0W, > 0 and internal modes are stable.

The remaining case is an arbitrary n with : there the second integrand
vanishes and the contribution becomes stable if no resonant surface is present,
what means ¢ # 1.

The next contribution term was derived in Ref. [31] for n = 1,

Wy &[] o, 1 1 1
Wmaf (o) e )] e
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If a resonant surface with ¢ = 1 exists inside the plasma, both pressure and
current contribution terms make W, < 0, what is destabilising. The p-gradient
effects become important only in high beta regimes, see Ref. [11]. In other words,
the m = 1 instability for internal modes is a weak instability resulting from a
higher )W-expansion term and vanishes if the resonant surface is removed,
either by wall stabilisation or by choosing the g-value at the axis (at r = 0)

g >1. (268)

External Current Driven Modes

External modes are even stronger in energetic release and are defined by the
resonant surface being positioned in the vacuum region outside the plasma col-
umn. The analysis of unstable contributions to the energy principle in Ref. [32]
returned

SWo 1 [“(n  1\*,,
e A (___)[ﬂﬁ+4m%_ngnmm-

a? m q

[ CTCREREREY) A

Further considerations about the minimising conditions for §W, (e.g. by choos-
ing £(r) =&, (g)mfl with a monotonically increasing ¢ (r)) yield modes (m,n)
unstable for

—1
o << (270)
n n

what means that a resonant surface lies outside of the plasma. In Ref. [11] it
was mentioned, that instabilities with mode numbers m > 1 make much more
complicated constraints on the plasma background profiles than modes with
m = 1. So current and pressure gradients in the vicinity of the plasma surface
play an important but yet not fully understood role in triggering instabilities,
an investigation of that was given in Ref. [37].

An exemplary MHD investigation of higher m modes in cylindrical geometry
was performed in Ref. [9] where instabilities of (m,n) = (2,1) were found for
plasma profiles, for which the pressure profile at plasma edge has a step to zero,
see Figure 57. This step triggers a destabilising term in the energy principle
OW and produces an external m = 2 instability. The goal of the following
investigations is to run computations for m > 1 by kinetic and MHD approach.
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Figure 57: Profiles from Ref. [9] where p has a destabilising step at the plasma edge
a. The g-profile crosses resonance 7* inside the plasma. A perfectly conducting wall

is placed at r = b.

8.6 Method of Computation

Regarding to instabilities with |m| > 1, special care has to be paid on the shape
of the profiles, because the occurence of such instabilities is very sensitive on
profile shapes, see Ref. [9]. For symmetry reasons, the investigations discussed in
the following chapters use negative m numbers. In the KiLLCA-code a definition
of the g-profile like ¢ = == is used, what differs in sign of m from the original
case in Equation (265). This is just because of the toroidal direction, which is
defined to be opposite in the code. To keep a positive ¢ profile, the m values
have to be negative if n > 0.

Computations for Profile 1 returned no instabilities for m > 1 modes, but only
for m = 1, for both kinetic as well as for MHD. The drop in pressure and
current mentioned in Ref. [9] and discussed in Sec. 8.5, introduce the idea to
make the profiles of the background more steep at the plasma edge to trigger a
destabilising plasma configuration there.

As it can be seen from the discussed density profile in Profile 1 and Profile 2,
the densities have a steep drop at r ~ 50cm, where Profile 2 is steeper than
Profile 1. According to Figure 58, always two zones are used for computation.
In the used configuration the zone interface is always set to r, = 55cm, what
is the estimated plasma edge and what coincides with the particle density drop
(see Figure 41). The ideal wall is positioned at r,, = 100cm.

92



Ideal MHD Approach

The inner zone re[0,7,] is treated as ideal MHD zone, and the outer region
re[ra, ry] between plasma edge and the ideal conducting wall at 7, is treated
as vacuum. Several other plasma profiles have been checked using different zone
types (vacuum or plasma). So far the two zone MHD-vacuum configuration (see
Figure 58) with plasma Profile 2 is the only MHD case which returns results
for modes |m| > 1, Profile 1 gives only m = —1 results. Also different positions
of the plasma-vacuum interface were checked. Once the interface is placed at a
density which represents an acceptable vacuum, the resulting frequencies of the
found instabilities change less than 5%, what is no significant change. So the
plasma radius is placed at 7, = 55cm what ensures the case of vacuum.

iMHD VAC iw flre flre iw

0 r A r_w 0 r A rw

Figure 58: Schematic modell of two zones which are used to compute MHD and
kinetic results for Profile 1, Profile 2 and Profile 3. Between the plasma edge at r
and the ideal wall at r, the MHD case uses a vacuum zone and the kinetic case uses
a plasma zone.

Kinetic Approach

For the kinetic approach the splitting of the cylinder in radial zones remains
the same like for the MHD case, Figure 58. The difference is now, that no
vacuum zone is used and a plasma zone is applied there. This is done because
the kinetic model is expected to run more stable if the whole cylinder is treated
as medium.
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|mode [m |n| Re(f)inHz | Im(f)inHz | type |
1 -1]1 0 2.85794779026e4 | MHD
2 -1]1 0 -2.85794779026e4 | MHD
3 -1]1 0 3.47100254113e3 | MHD
4 -1]1 0 -3.47100254116e3 | MHD
5 -1 | 1] -1.76400298585e4 | 3.74525676191e4 | KiN
6 |-1]1]-1.23640183093¢4 | -3.91414857516e3 | KiN
7 [-1|1] 1.60796481388¢6 | -1.53712511445¢1 | KiN
8 | -1|1]-2.18950066542¢4 | 1.54056177065¢5 | KiN

Table 9: Frequencies of eigenmodes for modes with m = —1 for Profile 1 .

8.7 Results for Profile 1, m = —1

For both the kinetic and the MHD zones a zone-to-zone interface at ro = 55cm
and an ideal wall position at r, = 100cm are used. This section shows results
for kinetic and ideal MHD results of the configuration, mentioned in Sec. 8.5.
A kinetic code with the collision operator from Sec. 3.2 is used to compute the
eigenmodes. Table 9 lists the found kinetic and ideal MHD modes for m = —1,
v, = 0, 7y, = 100cm and ry = 55cm. A solution for an eigenmode is found if
the value of determinant is 10 orders of magnitude less than nearby. Figure 59
shows a comparison of the MHD eigenfunctions of mode 1 and mode 3 from
Table 9.

Figure 60 shows a comparison of B, for MHD mode 1 and mode 3 with kinetic
modes 5 and 8 from Table 9.

The curves for B, are normalised by By, which is the complex value for B at
ro = 20cm. After normalisation, the MHD case remains pure real and the kinetic
case results in a real and imaginary part of g—g. It can be clearly estimated
that the normalised curves cross zero at the resonant surface for m = —1 at
re ~ 34cm.  The ideal MHD code found four modes, two stable and two
unstable. For the kinetic root it is in principle possible to find more than four
roots.
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m=-1, n=1, Profile 1

—m'hd - mode 1
——mhd - mode 3
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Figure 59: Radial magnetic field B, (Fourier coefficients) for Profile 1 normalised at
ro = 20cm. Shown are the normalised MHD solutions for mode 1 and mode 3 from
Table 9 plotted against the normalised radius.

m=-1, n=1, Profile 1

2 T
—kin: Re(mode 8)
15 == kin: Im(mode 8)
A kin: Re(mode 5)
1r kin: Im(mode 5)
—mhd: Re(mode 1)
0.5r —mhd: Im(mode 3) |
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-0.5
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-1.5f
_2 ) . .
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Figure 60: Radial magnetic field B, (Fourier coefficients) for Profile 1 normalised
at 7o = 20cm. Resonance at rs ~ 34cm (dotted). Shown are the normalised MHD
solutions mode 1 and mode 3 in comparison to the kinetic modes 5 and 8.

95



8.8 Results for Profile 2, m = —1 and m = —2

Table 10 shows resulting frequencies for eigenmodes with m = —1 and m = —2.
Using Profile 2, it is possible to find an unstable mode for m = —1 by both
kinetic and MHD code, see mode 1 and mode 2 in Table 10. It is possible to

| mode [ m | n | Re(f) in Hz | Im(f) in Hz | type |
1 -11 0 3.9101334822214e3 | MHD
2 -1 | 1] -1.8133135503843e3 | 7.92362550836761e3 | KiN
3 201 0 1.1896940113354e4 | MHD
4 -2 | 1] -1.0769811356593ed | 2.9711995682725e4 | KiN
5 -2 | 1] -1.3184264271102e5 | 2.5539645015256e4 | KiN

Table 10: Frequencies of eigenmodes with m = —1 and m = —2 for Profile 2.

m=-1 and m=-2, n=1, Profile 2

' —mhd: m':—l, mode 1
—mhd: m=-2, mode 3

0 0.5 1 1.5 2
rla

Figure 61: Radial magnetic field B, (Fourier coefficients) normalised at 79 = 20cm.

Resonance at rg &~ 34cm for m = —1 and rg =~ 58cm for m = —2. Two MHD modes 1
and mode 3 for m = —1 and m = —2 from Table 10 are plotted against the normalised
radius.

find one MHD result and two kinetic for m = —2 (see Table 10).

Figure 61 displays the normalised Im(B,) curves for the two MHD modes m =
—1 and m = —2 (from Table 10: mode 1 and mode 3). The normalised B,
curves of the kinetic mode 4 and mode 5 are compared with the MHD mode 3
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m=-2, n=1, Profile 2

—kin: I'?e(mode 5)
ot ——kin: Im(mode 5) |
—mhd: Re(mode 3)

rla

Figure 62: Radial magnetic fields B, (Fourier coefficients) for Profile 2 from Table 10
normalised at rg = 20cm are plotted against the normalised radius. Resonance at
rs & b8cm for m = —2. The MHD mode 3 is compared to the kinetic mode 5 from
Table 10.

m=-2, n=1, Profile 2

—kin: I'?e(mode 4)
——kin: Im(mode 4) |
—mhd: Re(mode 3)

0 015 i lj5 2
rla

Figure 63: Radial magnetic fields B, (Fourier coefficients) for Profile 2 from Table 10

normalised at rg = 20cm are plotted against the normalised radius. Resonance at

rs & b8cm for m = —2. The MHD mode 3 is compared to the kinetic mode 4 from
Table 10.

for m = —2 in Figure 62 and Figure 63. Especially in the inner plasma region,
where < 30cm, the MHD curves shows a good correspondance to the kinetic
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curves. In the outer regions, outside the plasma radius ra, the kinetic mode 5
corresponds much better to the MHD mode 3 than the kinetic mode 4.

8.9 Results for Profile 3, m = —1

10
107t ﬁ
-2
/3\< 10 F
3
= _
= 10
107t
0.5 1 15 2

b/a

Figure 64: Normalised growth rates (normalised by wa = 6.174-10%s7!) for different
positions of the ideal wall modelled by the MHD-model using Profile 3 with mode
numbers (m,n) = (—1,1). The mode becomes stable (Im (w) < 0) when the wall
crosses the resonance position ¢ = == =1 at rs/a = 1.16.

Profile 3 has been investigated only by the MHD model under the application
of an ideal wall case.

It is interesting to investigate the influence of the wall position on this kind of
profiles where the resonant surface ¢ = = = 1 lies outside the plasma. The
results are normalised by

Va  1.9833- 107 9 1

wa=—= =0em =6.174-10"s™ ", (271)
where V) = 1.9833 - 109% is the Alfven velocity at the plasma edge and a =
50cm is the plasma radius.
Figure 64 shows a normalised ideal wall growth rate in dependence of the wall
position. The frequency of the mode with (m,n) = (—1,1) at b/a = 2.0 is listed
in Table 11.
The mode becomes stabilised at the moment when the ideal wall crosses the
position of the resonant surface ¢ = =" =1 at r,/a = 1.16.
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Figure 65: Normalised growth rates (normalised by wa = 6.174 - 10%s7!) of the ideal
wall mode (m,n) = (—1,1) from Figure 64 in dependence of the toroidal plasma
rotation V. Plotted are three cases of ideal wall positions.
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Figure 66: Absolute value of the normalised B, for the three ideal wall configurations
from Figure 65 at V, = 0. The eigenfunctions reach zero at the particular ideal wall
position. red: b/a = 1.3, blue: b/a = 1.2, black: b/a = 1.4,
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In Figure 64 the toroidal background rotation is set to zero. For the case that a
toroidal plasma velocity profile V, (like shown in Figure 52) is considered, it has
been shown that different positions of the ideal wall show a completely different
growth rate evolution while the plasma rotation V, is increased. Figure 65 shows
the normalised growth rates of the mode discussed in Figure 64 at the three
different positions of the ideal wall, b/a = 1.2, b/a = 1.3 and b/a = 1.4, for
increasing toroidal rotation V. The rotation velocity is expressed as fraction of
the Alfven velocity value at plasma edge. It can be seen that the stabilisation
threshold of V; is lower for lager values of g Further there exists a limit for the
ideal wall position, below which the mode cannot be stabilised by rotation any
more, e.g. at b/a = 1.2 where no stabilisation is visible.

Absolute values of the normalised eigenfunctions |B,| are shown in Figure 66.

m | n | Re(f) in Hz | Im(f) in Hz | b/a |

11 0 1.14314-10° | 2.0
111 0 9.56377 - 10* | 1.4
11 0 8.54002 - 10* | 1.3
11 0 6.49238 - 10* | 1.2
Table 11: Frequencies of eigenmodes with m = —1 and n = 1 and different positions

of the ideal wall b/a for Profile 3 with V, = 0.
The curves show growth rates of modes with (m,n) = (—1,1) at ideal wall

positions b/a = 1.4; 1.3; 1.2, with V, = 0. The corresponding frequency values
are listed in Table 11.
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9 Conclusions

The present thesis introduces a kinetic model to study global plasma instabili-
ties and compares the results with MHD modelling. In particular, resistive wall
mode stabilisation is investigated in cylindrical geometry for a RFP plasma
configuration by both models. For this purpose, the code KiLCA, originally de-
veloped for treating the plasma response due to external magnetic field pertur-
bation (RMPs), is adapted to deal with stable and unstable global eigenmodes
that are determined by plasma, vacuum and vessel parameters. The MHD
and kinetic models including equilibrium plasma flows are derived and adapted
to the KiLCA code. For modelling collisions, a Coulomb collision operator of
Fokker-Planck type is used which conserves the charge also with respect to
Galileian transformations. Solutions of Maxwell equations for different regions
like plasma region, vacuum and resistive medium are derived and implemented
in the code. The code can be used to study resistive wall modes in reversed
field pinch and Tokamak plasmas.

The external kink mode stabilised in ideal MHD by an ideal wall is found
also in the kinetic modelling with comparable growth rates. The wall position
for complete stabilisation of the ideal mode is less than predicted by MHD. A
resistive wall mode with growth rate on the resistive time scale is also seen in the
kinetic description. In analogy to MHD, this mode was found to be stabilised
by toroidal plasma motion. However, stabilisation in the kinetic modelling is
sensitive to the direction of the rotation and, in the present case, only negative
V, values have led to mode stabilisation. Stabilising rotation velocities are
found somewhat smaller when compared to MHD. Finally, it was not possible
to see the complete stabilising window predicted by MHD, that means that
no instability for very close positions of the resistive wall has been found. Tt
is found, that for some wall positions the ideal wall kink can be stabilised by
plasma rotation as well. There seems to exist a critical position of the ideal
wall, above which an increase in toroidal rotation does not lead to stabilisation
of the growth rates any more.

It was possible to show that the shape of the toroidal velocity profiles at plasma
edge has a visible effect on the rotational stabilisation of the resistive wall modes.
Further, an exchange of the ion and the electron temperature profiles shows a
shift of the growth rate values of the resistive wall modes. This confirms, that
the kinetic model is sensitive on electron and ion motion (collisions).

Eigenmodes for different mode numbers resulting from MHD and kinetic mod-
elling for Tokamak profiles turned out to be more different than for RFP profiles.
The kinetic effects responsible for these differences have still to be studied in
more detail.
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