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AbstratThe ideal kink mode and the resistive wall modes are studied in ylindrialgeometry within the magnetohydrodynami (MHD) plasma model and the ki-neti plasma model proposed by Heyn et al [Nul. Fusion 46 (2006) S159, Phys.Plasmas 18, 022501 (2011)℄. The kineti model aounts for Landau damping,transittime magneti pumping (TTMP), and Coulomb ollisions. Results forthe reversed �eld pinh plasma are ompared to the magnetohydrodynami re-sults obtained by Guo, Freidberg and Nahtrieb [Phys. Plasmas 6 (1999) 3868℄.Stabilisation of the external kink mode by an ideal wall as well as stabilisationof the resistive wall mode by toroidal plasma rotation are obtained. In ontrastto MHD modelling whih predits a stability window for the resistive wall posi-tion, kineti modelling predits a one sided window only, i.e. the resistive wallmust be su�iently lose to the plasma to ahieve rotational stabilisation of themode but there is no lower limit on the wall position. Stabilising rotation speedsare found somewhat smaller when ompared to MHD results. In addition, forthe present plasma on�guration the kineti model predits resistive wall modestabilisation only in one diretion of toroidal rotation. In the opposite dire-tion a destabilising e�et is observed. This is in ontrast to MHD where modestabilisation is symmetri with respet to the diretion of the toroidal plasmarotation.
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KurzfassungIdeale Kink Moden und resistive Wand Moden werden mittels eines magne-tohydrodynamishen (MHD) Plasma Models sowie eines kinetishen PlasmaModels, welhes in Heyn et al [Nul. Fusion 46 (2006) S159, Phys. Plasmas18, 022501 (2011)℄ aufgestellt wurde, unter Verwendung von Zylindersymmetriestudiert. Das kinetshe Model berüksihtigt Landau Dämpfung, transittimemagneti pumping (TTMP) sowie Coulomb Stösse. Resultate für die Anwen-dung in einem reversed �eld pinh Plasma werden mit magnetohydrodynamis-hen Ergebnissen von Guo, Freidberg and Nahtrieb [Phys. Plasmas 6 (1999)3868℄ verglihen. Erzielt wird die Stabilisierung externer Kink Moden durheine ideale Wand sowie die Stabilisierung der resistiven Wand Moden durhPlasma Rotation. Im Gegensatz zur MHD Modellierung, welhe ein stabilesFenster für resistive Wandpositionen prognostiziert, wird durh das kinetsheModel lediglih ein einseitiges Fenster vorherbestimmt, d.h. die resistive Wandmuss sih genügend nah am Plasma be�nden, um eine Stabilisierung durh Ro-tation zu bewirken; es existiert jedoh kein unteres Limit für die Wandposition.Rotationsgeshwindigkeiten welhe zur Stabilisierung notwendig sind, erreihennur einen Bruhteil im Vergleih zu den MHD Ergebnissen. Zusätzlih prog-nostiziert das kinetishe Model für die vorliegende Plasmakonfugiration eineStabilisierung der resistiven Wand Moden für nur eine Rihtung der toroidalenRotation. In entgegengesetzter Rotationsrihtung wird ein destabilisierenderE�ekt beobahtet. Dies steht im Gegensatz zum MHD Model, bei welhemdie Rotationsstabilisierung symmetrish bezüglih der Rihtung der toroidalenPlasmarotation ist.
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1 IntrodutionAfter several years of development, magnetially on�ned plasmas are the bestinvestigated and best understood plasma on�gurations that are apable forhandling fusion proesses. The huge amount of tehnologial progress on toroidallylosed plasmas like the Tokamak makes this onept hopeful for reahing a om-merially interesting test-reator level.Experiment Tokamaks like JET, DIII-D or ASDEX, represent magnetially on-�ned plasma on�gurations whih reah the most progressive fusion handlingthat is ahievable at the moment. The next step on the way to reator salefusion experiments will be the ITER Tokamak where plasma phenomenons onreator sale should be studied.Instability researh turned out to be one of the most important topis in modernfusion development. Various proesses in fusion plasmas an lead to unstableon�gurations during fusion operation. Mostly the energy release of these in-stabilities is high enough to harm the vessel material of the reator and lowerthe e�ieny of the plasma on�nement and lower the output or even stop thefusion proess. Due to the di�erent physial nature of the destabilising fores,it was yet not possible to desribe an universal model whih would be able tohandle all instabilities at one and desribe them at di�erent plasma limits oftemperature, density, magneti �elds and plasma volume. A lot of work hasbeen done desribing urrent and pressure driven instabilities by a �uid model.The magnetohydrodynami (MHD) approah is able to model instabilities underhanges of several plasma parameters like vessel dimension, density and tem-perature hanges, plasma rotation (plasma �ows) and even resistivity. A seondapproah is ahieved by the kineti desrition of partiular partile motion, han-dling their marosopi behaviour from the thermodynamial point of view. Itis expeted that the appliability of either the kineti or the MHD model shoulddepend on the range of plasma density and temperature and the related partileinterations in the plasma. In reent studies it was demonstrated that MHDtheory has strong limitations in its appliability for modern Tokamak parame-ter range (Refs. [15, 16℄). Namely, the radial sale of resonant layers in plasmais omparable to the ion Larmor radius. Therefore it is interesting to hekthe MHD results for various instabilities onneted with resonant magneti �uxsurfaes (kink modes, resistive wall modes) using the kineti approah.A omprehensive overview on existing modelling and experiments of the stabil-isation of the external kink and the resistive wall mode is given in Ref. [6℄.It turned out that the ommonly used tehniques for mode stabilisation arehanges of the position of the vessel wall and toroidal plasma rotation. Anideal approximation onsiders an ideal onduting wall whih is moved radially7



inward until it reahes the position of mode resonane. If the wall is onsideredto be resistive, a low frequent mode (resistive wall mode RWM) remains afterthe resonane position is reahed by the wall. These mode annot be stabilisedby wall positioning but by a toroidal plasma veloity.The used models are based on a numerial solution of the full set of Maxwellequations in ylindrial geometry with the plasma urrent density taken fromeither the MHD or the kineti model. The approximations and derivation stepsof the method developed in Refs. [16, 20℄ are disussed. The appliation ofation-angle variables done by Ref. [23℄, is used to solve the linearised Vlasovequation analytially and desribe how perturbations enter the plasma model.Collisions are modelled by the use of a one-dimensional Fokker-Plank ollisionoperator (Ornstein-Uhlenbek approximation) with a bakground distributionfuntion in the form of an inhomogeneous drifting Maxwellian.In the general ase, there are four di�erent regions to be onsidered with in-reasing radius: the plasma region followed by a vauum region followed bythe ideal (or resistive) wall region followed by the outer vauum region. Thevauum as well as the resistive wall region solutions are obtained analytially.Inside the plasma region, Maxwell's equations with the urrent density obtainedfrom either the �uid model or the kineti model are solved. The linear systemof mathing equations is assembled and solved to determine the superpositionoe�ients for the fundamental solutions in eah region. Finite nonzero solu-tions that orrespond to stable or unstable eigenmodes (depending on a sign ofimaginary part of the eigenfrequeny) are possible only when the determinantof the system is zero.The results of the present study are to be ompared to existing MHD resultsin partiular to the results of the MHD alulations in Ref. [14℄. The RFPon�guration is based on the α− θ0 model with a onstant density pro�le. Thestability of the resistive wall mode is studied in a (periodi) ylindrial MHDmodel in whih the e�ets of plasma pressure, ompressibility, plasma inertia,longitudinal rotation, and parallel visosity have been taken into aount. Theresistive wall is modelled in the above mentioned paper as well as in the presentstudy with �nite thikness and onstant ondutivity.The thesis is organised as follows. In Se. 2 the main priniples of magnetiallyon�ned fusion and experimental researh are disussed. A general overviewof the Tokamak is given. Se. 3 shows MHD and kineti modelling and men-tions the numerial approah to solve the system of equations from whih theeigenfrequenies of the instabilities result. In Se. 4 the di�erent regions ofthe ylinder and partiular solutions of Maxwell equations with orrespondingboundary onditions at zone interfaes are disussed. Se. 5 mentions MHDinstabilities like kinks and resistive wall modes, their driving mehanisms and8



expeted behaviour. The reversed �eld pinh RFP and its plasma equilibriummodel are desribed in Se. 6. A detailled analysis of instabilities in a RFPequilibrium by MHD and kineti modelling is given in Se. 7. A omparisonof di�erent eigenmodes for analytially omputed Tokamak like pro�les by theMHD and the kineti model is given in Se. 8.
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plasma volume 1 - 100m3

ni 1019 − 1020m−3

T 1− 40 keV
p 0.1 - 5 bar
vion 100− 1000km

s

ve 0.01− 0.1c
B 1 - 10 T
Ip 0.1 - 7 MATable 1: Typial Tokamak plasma values, taken from Ref. [38℄2 Con�nement in a TokamakAfter several years of experiments on magnetially on�ned plasmas, the toroidalshape of the plasma olumn seems to be the best apable design for ontrolledmagnetially on�ned fusion in outlook on reating a ommerial fusion rea-tor. Beside other upoming toroidal devies like Stellarators or Spheromaks,the Tokamak is at the moment the most auspiious design to satisfy most ofthe desired demands.2.1 Tokamak PrinipleIn general the Tokamak priniple an be expressed in few words: A magneti�eld, losed to a torus, is for stability reasons overlapped by a weaker poloidal�eld; together they form a helially twisting magneti �eld in toroidal symmetry.The plasma is on�ned by this �elds and the harged partiles are fored togyrate around the �eld lines.Poloidal �eld oils produe the toroidal �eld. The whole Tokamak ats asa transformer, where a entral solenoid, positioned at vertial axis, ats asprimary winding and the plasma itself as seondary winding (Ref. [38℄). Thise�et drives a plasma urrent in toroidal diretion and produes the poloidalmagneti �eld. See Figure 1. The entral solenoid is mostly an iron ore. Theplasma itself is trapped inside a vauum vessel on whih the �eld oils aremounted externally. Typial Tokamak plasma values are mentioned in Table 1.Toroidal symmetry leads to the destabilising e�et of ouring drift foresdue to the urvature of the magneti �eld. A magneti �eld gradient and theurvature itself try to establish MHD equilibrium, what means to straighten10



Figure 1: Struture of a Tokamak. Toroidal and poloidal �eld oils produe magneti�elds and on�ne the plasma. A toroidal plasma urrent is driven by the entralsolenoid and vertial �eld oils are needed to improve plasma shape and stability.Taken from Ref. [8℄the B-�eld lines again. For Tokamak equilibrium therefore a balane betweenplasma pressure and fores exerted by the B-�eld must be established. Here theso alled pinh e�et gets signi�ane; a plasma olumn with a urrent �owingalong the symmetry axis ontrats radially until the inward direted Lorentz-fore is balaned by the outward direted pressure gradient, (see Ref. [38℄)
j×B = ∇p. (1)It has been found, that better stability is reahed if the plasma shape is modi�ed(see Ref. [7℄).To satisfy the ondition ∇·B = 0, the toroidally spiralling B-�eld gets a radialdependene
B ∝ 1

r
, (2)where r is the Tokamak minor radius. A physial magneti model �eld thenresults in Equation (3),

B = (0, Bθ (r) , Bz) (1− ǫ cos θ) , (3)where θ is the poloidal angle, ǫ = r
R
the ratio between both radii and Bθ, Bzare poloidal and toroidal magneti �eld omponents (similar in Ref. [38℄).11



Coordinates in a Tokamak an be de�ned aording to Ref. [38℄ like
x = (R0 + r cos θ) cosφ, (4)
y = (R0 + r cos θ) sin φ, (5)

z = r sin θ, (6)
R = R0 + r cos θ. (7)

R0 is the major radius, r the minor radius, (x, y, z) are artesian oordinatesexpressed by toroidal oordinates, R is the e�etive radius, θ is the poloidalangle and φ is the toroidal angle. Toroidal e�ets like drift motion and mirroron�gurations for the helially twisting magneti �eld an be alulated in theseoordinates.The Tokamak �eld from Equation (3) produes a magneti �eld gradient whihresults in drift motion and magneti mirror on�gurations inside the torus forpartiles with a low veloity parallel to the B-�eld. Beause the plasma ur-rent Ip depends on r and has its maximum value at the toroidal symmetry axis
r = 0, an externally applied vertial B-�eld (by additional oils) would oupleto Ip and produe a radially inward direted fore, whih would stabilise thetoroidal drift fore.As the established Tokamak equilibrium beomes independent of the azimuthalangle φ, in other words axis-symmetri, the fore exerted on the plasma van-ishes everywhere, like expressed by Equation (1). If now a B-�eld is added toEquation (1) by salar produt, one gets

B · ∇p = 0, (8)what means that there do not exist pressure gradients along B-�eld lines and
p = const. on radially nested surfaes, whih are alled �ux-surfaes. Applyingthe same salar method to the urrent density j with

j · ∇p = 0, (9)one �nds also the radially depending urrent lying on these �ux-surfaes, seeFigure 2.While speaking about �ux onstant surfaes, it makes sense to de�ne a poloidal�ux funtion ψ. Also ψ = const. on a �ux surfae what means
B · ∇ψ = 0. (10)That is in analogy to Equation (8). 12



Figure 2: left: nested �ux surfaes in toroidal symmetry. right: surfaes of urrentand magneti �eld lines. Taken from Ref. [38℄2.2 Safety Fator qHelially twisting magneti �eld lines on �ux surfaes perform both poloidaland toroidal transits over the torus. A ratio is de�ned as
q =

m

n
=

∆φ

2π
. (11)Here m is the number of toroidal transits and n the number of poloidal transitsand ∆φ is the hange in poloidal angle. Every �ux surfae has a di�erent twistof magneti �eld lines. A quantity alled magneti shear s desribes the q-pro�lein dependene on minor radius r like

s (r) =
q (r)

r
. (12)It is possible to express q by poloidal and toroidal magneti �elds. Traing ahelially twisting �eld line, whih takes a distane ds in poloidal diretion whilemoving in toroidal diretion for dφ gives

Rdφ

ds
=
Bz

Bθ

, (13)what gives
q =

1

2π

∮

1

R

Bz

Bθ

ds, (14)where R is the major radius. From Amperes law, the q-pro�le may be derivedto be inverse proportional to the plasma urrent Ip, see Ref. [38℄. Typially,
q reahes a minimum lose to r = 0 and inreases monotonially towards the13
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Figure 3: left: Magneti �eld lines on a toroidally losed �ux surfae. A �eld lineloses after m toroidal and n poloidal transits. Taken from Ref. [5℄. right: General
q-pro�le inreasing with r.plasma edge. This is essential to guarantee stability against MHD instabilitieswhih result from plasma shape and B-�eld on�guration. Better stability isahieved at higher values of q like mentioned in Refs. [11, 38℄. If q takes aninteger value, the magneti �eld line loses one poloidal transit on the surfaeafter q toroidal transits, see Figure 3. This de�nes the magneti shear of eah�ux surfae.2.3 Fusion ProessThe fusion proess whih gives the most hope for reahing a reator regime,where the plasma is able to heat itself for operation, is the fusion of deuteriumand tritium by reation

2
1D+3

1 T → 4
2He +

1
0 n + ∆E. (15)For self heating the ion density should range at ni = 5 × 1020m−3, the iontemperature at Ti = 15keV and the energy on�nement time should be lose to

τE = 4s. Energies for resulting produts of the fusion proess in Equation (15)are E (He) = 3.5MeV and E (n) = 14.1MeV, (see Refs. [7,38℄). Suh values givea favourable triple produt (niτETi) whih an already be reahed in present dayTokamaks like JET, TFTR and JT-60. The high energeti α-partiles an beused to heat the plasma. The key parameters are ion density ni and on�nementtime τE, whih an be expressed as ratio beween the total stored kineti energy14



and the required power to sustain the fusion in steady state,
τE =

Ekin

Psus

. (16)Essential are ross setion and mean free path, so partiles in a fusion plasmahave a long free path and ollisions beome possible although the ross se-tions are very small. Integrating over the distribution funtions of both fusionpartners, whih are both assumed to be Maxwellian, a rate of reation per unitvolume an be derived, like it is done in Ref. [38℄. After integration, the av-eraged produt of ross setion σ and relative veloity v gives a total reationrate R per unit volume
R = ndnt〈σv〉, (17)depending on partile densities of deuterium nd and tritium nt.

Figure 4: Cross setion 〈σv〉 for several fusion reations depending on thermal energy.The DT-reation has the highest ross setion.Multiplied by the energy release per reation ε, Equation (17) gives the ther-monulear power per unit volume,
PTN = ndnt〈σv〉ε. (18)The loss of energy is in�uened by the energy on�nement time. So the energyloss beomes

PL =
PTN

τE
. (19)15



For on�nement we have to mention, that τe inreases with plasma urrent Ipand dereases with inreasing plasma pressure p.Very important to avoid the on�nement from deterioration is the handling ofimpurities, what means ontrol of impurity transport and radiative losses. Forthat reason the plasma has to be isolated from the vessel material, to reduesputtering and erosion of wall material. This is possible to be ahieved either bylimiters or by an additional magneti �eld separatrix what is known as divertoron�guration. High onentrations of impurity atoms and eletrons resultingfrom ionistaion while atoms get inside the plasma ore, deplete the e�ienyof plasma heating as well as they harm the on�nement. The handling of thisproblem leans on the idea to isolate the plasma from the wall material and leavethe fusion ore inside losed �ux surfaes. This attends the existene of a lastlosed �ux surfae LCFS between fusion plasma and edge region.LimiterLimiters an be of various geometrial forms. The LCFS is tangent to thelimiter what de�nes the plasma boundary. In other words, the plasma is in diretontat with the limiter material, see Figure 5. Limiters shape the plasma edge,de�ne a boundary and protet the vessel wall before diret expose to plasmadisruptions. Limiters are made of refratory material like arbon, molybdenumand tungsten. (see Refs. [7, 38℄)DivertorTowards limiters, the main di�erene is that divertors de�ne the LCFS by amagneti �eld separatrix. Immediately inside the separatrix follows the LCFS.The edge plasma is transported to the divertor target plates. Espeially dur-ing H-regime, the radial transport through the separatrix is nearly vanishing.Impurities an be released fom the target plates by disruptions, they are ionisedin the divertor plasma and the majority is transported again bak to the targetplates. The �ow of impurities into the LCFS is strongly redued but does notvanish ompletely.The divertor onept o�ers some e�ient methods of power handling on plasmafaing omponents PFCs and divertor plates:
• adjusting the angle between �eld lines and target plates ats as �ux ex-pansion of the magneti �eld, what redues the power load,
• in�uening transport properties and inreasing power transfer to neutral16



Figure 5: left: Limiter on�guration. The limiter material is in ontat with theplasma and de�nes the LCFS. right: Divertor on�guration. Magneti �elds de�nethe separatrix and the LCFS isolates the inner ore. Taken from Ref. [24℄.partiles.Yet there are no absolute satisfatory solutions, and improvements are desiredin Ref. [38℄ like
• removal of α-partile power by heat transport,
• e�ient use of α-partile power for plasma heating,
• operating at lower temperature of the divertor plasma to redue sputter-ing,
• removal of helium ash,
• power loss by radiation.Due to plasma wall interations, a rise of neutrals density at the edge would leadto reombination and deelerations of ions, resulting in radiative losses. Thisradiation alled MARFEs, releases power at X-point and on divertor targetsand must be handeled with are.For design diversity of divertors, several ideas exist. All of them base on thesame onept of de�ning a LCFS by magneti �elds where the edge plasma istransported to divertor plates, like already explained. JET and ITER divertors17



are operating at single null on�guration with only one X-point. DIII-D uses adouble null on�guration with two X-points, see Figure 6.

Figure 6: Double null divertor on�guration at DIII-D, taken from Ref. [29℄. Twox-points and an inner ore with high triangularity is ahieved.The advantage is that interation area of divertor targets is doubled and ahigher triangularity of the plasma shape allows a higher pressure and β regime;a disadvantage for two X-points is that the onnetion length of partiles doubles(see Ref. [38℄). Other divertor types like DED at TEXTOR produe a rotatingergodi �eld.
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3 Model Desription3.1 MHD ModellingStarting from the set of ideal MHD-equations
E+

1

c
v ×B = 0, (20)

∇× E+
1

c

∂B

∂t
= 0, (21)

∇×B =
4π

c
j, (22)

∇ ·B = 0, (23)
ρ
dv

dt
=

1

c
j×B−∇p, (24)

d

dt

(

p

ργ

)

= 0, (25)
∂ρ

∂t
+∇ (ρv) = 0, (26)as basis to desribe the plasma on�guration, the expansion of all quantities isdone like

Q (x, t) = Q0 (x) +Q1 (x, t) . (27)The zero order is the equilibrium ontribution and the �rst order is the pertur-bation ontribution (see e.g. Refs. [11, 38℄). There, d
dt

=
(

∂
∂t
+ v · ∇

), γ = 5
3is the adiabati onstant, ρ is the mass density, p the pressure, c the speed oflight, j the urrent density, v the plasma veloity, B and E the magneti andeletri �eld. Vetor x is the position vetor in general symmetry, parameter

t is the time variable. If perturbations are small, |Q1|
|Q0| ≪ 1, terms ontainingproduts of �rst order terms an be negleted. The equilibrium is assumed notto be time dependent and satis�es

∇× E0 = 0, (28)
∇×B0 =

4π

c
j0, (29)

∇ ·B = 0, (30)
19



∇ · ρ0v0 = 0, (31)
ρ0v0 · ∇v0 = −∇p0 +

1

c
j0 ×B0, (32)

E0 +
1

c
v0 ×B0 = 0, (33)

v0 · ∇
(

p0
ργ0

)

= 0. (34)If there is no equilibrium eletri �eld E0 = 0, and no plasma equilibrium �ows
v0 = 0, the equilibrium MHD equations simplify to

∇ ·B = 0, (35)
∇p0 =

1

4π
(∇×B0)×B0. (36)The perturbed MHD-equations are:

∂ρ1
∂t

+∇ · ρ1v0 +∇ · ρ0v1 = 0, (37)
ρ0
∂v1

∂t
+ ρ1v0 · ∇v0 + ρ0v1 · ∇v0 + ρ0v0 · ∇v1 =

= −∇p1 +
1

4π
[(∇×B0)×B1 + (∇×B1)×B0] , (38)

∂

∂t

(

p1
ργ0

)

− ∂

∂t

(

γp0ρ1

ργ+1
0

)

=

= −v1 · ∇
(

p0
ργ0

)

− v0 · ∇
(

p1
ργ0

)

+ v0 · ∇
(

p0γρ1

ργ+1
0

)

, (39)
1

c

∂B1

∂t
+∇× E1 = 0, (40)
∇×B1 =

4π

c
j1, (41)

E1 +
1

c
v1 ×B0 +

1

c
v0 ×B1 = 0, (42)
∇ ·B1 = 0. (43)It is ommon to express the perturbations by means of the displaement vetor

ξ of a plasma element whih is disloated from it's equilibrium position x0.
ξ (x, t) = x− x0. (44)The perturbed veloity in terms of the displaement vetor and the equilibriumveloity are

v1 (x, t) =
∂ξ (x, t)

∂t
+ v0 · ∇ξ − ξ · ∇v0. (45)20



With substitution to the perturbed and equilibrium MHD-equations, the per-turbed �rst order quantities ρ1, p1, B1, j1 an be expressed in terms of theplasma displaement ξ (x, t) as
ρ1 = −∇ · (ρ0ξ) , (46)
p1 = −ξ · ∇p0 − γp0 (∇ · ξ) , (47)
B1 = ∇× (ξ ×B0) , (48)
j1 =

1

4π
(∇× (∇× (ξ ×B0))) . (49)The equilibrium �ow v0 does not enter expliitely to ρ1, p1, B1, j1 and theperturbed quantities have the same form like in the �owless ase.A substitution of Equation (45) into the linearised fore balane Equation (38)yields

ρ0
∂2ξ

∂t2
+ 2ρ0 (v0 · ∇)

∂ξ

∂t
= F (ξ) +∇ · [ρ0ξ (v0 · ∇)v0 − ρ0v0 (v0 · ∇) ξ] . (50)After Fourier transformation in time, the linearised ompressible ideal MHDequations with �nite equilibrium �ows v0 an be written with the help of theLagrangian displaement vetor ξ from Equation (44) as (see, e.g. Ref. [11℄)

−ω2ρ0 ξ = Ff (ξ) , (51)where the fore operator Ff (ξ) is a funtion of the plasma displaement. Thefore operator with �ows Ff (ξ) an be expressed by the fore operator without�ows F (ξ) like
Ff (ξ) = F (ξ) +∇ · [ρ0ξ (v0 · ∇)v0 − ρ0v0 (v0 · ∇) ξ] + 2iωρ0 (v0 · ∇) ξ, (52)with

F (ξ) = ∇ (ξ · ∇p0 + γp0 (∇ · ξ)) +

+
1

4π
[(∇×B0)× (∇× (ξ ×B0)) + (∇× (∇× (ξ ×B0)))×B0] . (53)3.1.1 MHD Eigenequation in Cylindrial SymmetryIn ylindrial symmetry one an expand all perturbations in the form

Q1 (x, t) = Q̃1 (r) exp (imθ + ikz − iωt) , (54)where m is the toroidal mode number and k = n
R
is the z-omponent of thewave vetor, n is the poloidal mode number and R the major toroidal radius.21



ξ = ξrer + ξθeθ + ξzez,

B1 = B1rer +B1θeθ +B1zez,

B0 = B0θeθ +B0zez.Figure 7: Cylindri symmetry. The equilibrium magneti �eld has no radial ompo-nent, taken from Ref. [27℄.All vetor quantities are expressed in ylindrial oordinates by means of theylindrial basis vetors (er, eθ, ez),Note that the equilibrium magneti �eld is assumed to have no radial ompo-nent, see Figure 7.A substitution of Equation (54) into the �rst order equations allows to alulatethe omponents of the perturbation magneti �eld B1 in Equation (48). After atransformation to the Fourier-spae of toroidal and poloidal harmonis (m,n),the Fourier amplitudes of B̃1 are
B̃1r = i

(m

r
B0θ + kB0z

)

ξr, (55)
B̃1θ = − (ξrB0θ)

′ − ik (B0θξz − B0zξθ) , (56)
B̃1z = −1

r
(rB0zξr)

′ +
im

r
(B0θξz − B0zξθ) . (57)The prime marks the radial derivative, the zero index the equilibrium quantity.The θ and z omponents of Equation (51) provide expressions for ξθ and ξz. Theresulting equations for ξθ and ξz represent an algebrai system of two equations.This is true only if there are no radial equilibrium �ows (vr = 0) beause vrwould ontribute terms of radial derivatives ξ′θ and ξ′z.The equations for ξθ and ξz an be written in the form

ξθH
−1 = ξrΓθ + (rξr)

′ iGBz

4πr
+ ξzψ + (∇ · ξ)χθ, (58)

ξzN
−1 = ξrΓz − (rξr)

′ iGBθ

4πr
+ ξθψ + (∇ · ξ)χz, (59)with

k20 =
m2

r2
+ k2 , G =

m

r
Bz − kBθ, (60)22



H−1 = ρ0

(

−ω2 − 2iωf +
k20B

2
z

4πρ0
+∇ · (ρ0v0)

f

ρ0
+ f 2

)

, (61)
N−1 = ρ0

(

−ω2 − 2iωf +
k20B

2
θ

4πρ0
+∇ · (ρ0v0)

f

ρ0
+ f 2

)

, (62)
f =

im

r
vθ + ikvz. (63)and
χθ =

im

r
γp0, χz = ikγp0, (64)with

Γθ = ρ0

(

2iω
vθ
r
−∇ · (ρ0v0)

vθ
rρ0

+
vθ
r
f + 2ik

BθBz

4πr

)

, (65)
Γz = −2ik

B2
θ

4πr
, (66)

ψθ = ψz = ψ =
k20BθBz

4π
. (67)After Fourier transformation to m and n harmonis, the divergene of the dis-plaement vetor

∇ · ξ =
1

r
(rξr)

′ +
im

r
ξθ + ikξz, (68)an be used in Equations (58) - (59) to obtain

ξθ = Xθ

(

Qθξr +Wθ (rξr)
′) , (69)

ξz = Xz

(

Qzξr +Wz (rξr)
′) , (70)
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with
Qθ = Γθ +

Nα

1− ikNχz

Γz, (71)
Qz = Γz +

Hβ

1− im
r
Hχθ

Γθ, (72)
Xθ =

(

1− im
r
Hχθ

H
− Nαβ

1− ikNχz

)−1

, (73)
Xz =

(

1− ikNχz

N
− Hαβ

1− im
r
Hχθ

)−1

, (74)
Wθ =

iGBz

4πr
+
χθ

r
+

NKα

1− ikNχz

, (75)
Wz =

Hβ

1− im
r
Hχθ

(

iGBz

4πr
+
χθ

r

)

+K, (76)where
K =

χz

r
− iGBθ

4πr
, β = ψ +

im

r
χz, (77)

α = ψ + ikχθ. (78)Like already mentioned, the Θ and z omponent of the eigenequation (Equa-tion (51)) represent an algebrai system of two equations for ξθ and ξz. Aftersubstitution of ξθ and ξz to Equation (51), the radial omponent ξr satis�es thefollowing ordinary di�erential equation
−ρ0ω2ξr =

d

dr

[

γp0 (∇ · ξ) + B2

4πr
(rξr)

′ +
iG

4π
(ξθBz − ξzBθ)

]

− ξr

[

∇ · (ρ0v0) f + ρ0f
2 − ρ0

v2θ
r2

+ ρ0

(

v2θ
r

)′
− 2iωρ0f +

F 2

4π
+

r

4π

(

B2
θ

r2

)′]

+ ξθ

[

−2iωρ0
vθ
r
− 2ik

BθBz

4πr
+∇ · (ρ0v0)

vθ
r

]

+ ξz

[

2ik
B2

θ

4πr

]

−∇ · (ρ0ξ)
v2θ
r
, (79)with

∇ · (ρ0ξ) = ρ0 (∇ · ξ) + ρ′0ξr , F =
m

r
Bz + kBθ. (80)24



De�ning two additional funtions
λ = ρ0

(

∇ · (ρ0v0)
f

ρ0
+ f 2 − v2θ

r2
+

(

v2θ
r

)′
− 2iωf +

F 2

4πρ0
+

r

4πρ0

(

B2
θ

r2

)′
+
ρ′0
ρ0

v2θ
r

)

,

ǫ = −2iω
vθ
r
− 2ik

BθBz

4πrρ0
+∇ · (ρ0v0)

vθ
rρ0

, (81)the radial fore balane from Equation (79) beomes
0 =

d

dr

[

ξr

(

XθQθ

(

γp0
im

r
+
iGBz

4π

)

+XzQz

(

γp0ik −
iGBθ

4π

))

+ (rξr)
′
(

γp0
1

r
+
B2

4πr
+XθWθ

(

γp0
im

r
+
iGBz

4π

)

+XzWz

(

γp0ik −
iGBθ

4π

))]

+ξr

[

ρ0ω
2 − λ+XθQθ

(

ǫ− ρ0
im

r

v2θ
r

)

+XzQz

(

2ik
B2

θ

4πr
− ikρ0

v2θ
r

)]

+ (rξr)
′
[

−ρ0
r

v2θ
r

+XθWθ

(

ǫ− ρ0
im

r

v2θ
r

)

+XzWz

(

2ik
B2

θ

4πr
− ikρ0

v2θ
r

)]

. (82)This di�erential equation an be written as a system of two �rst order partialdi�erential equations,
AS

r

d

dr
(rξr) = C11 (rξr)− C12p

∗, (83)
AS

d

dr
p∗ = C21 (rξr)− C22p

∗, (84)like in Refs. [2, 3℄. If one de�nes a generalised pressure p∗ as
p∗ = −γp0∇ · ξ − ξ · ∇p0 +

B0 ·B1

4π
. (85)The remaining oe�ients are

A = ρ0ω̃
2 − F 2

4π
, (86)

S =

(

B2
0

4π
+ γp0

)

ρ0ω̃
2 − γp0

F 2

4π
, (87)

T =
FBθ

4π
+ ρ0ω̃vθ, (88)

Q = ρ0ω̃
2

(

B2
0θ

4π
− ρ0v

2
0θ

)

+
ρ0
4π

(B0θω̃ + Fv0θ)
2 , (89)25



with
C11 = ρ0ω̃

2Q

r2
− 2m

ST

r3
, (90)

C12 = ρ20ω̃
4 −

(

k2 +
m2

r2

)

S, (91)
C21 =

AS

r
C4 − 4

ST 2

r3
+
Q2

r3
, (92)

C22 = r C11, (93)
C4 = A+ r

d

dr

(

B2
0θ − 4πρ0v

2
0θ

4πr2

)

. (94)Here, ω̃ is the Doppler shifted frequeny
ω̃ = ω − mv0θ

r
− kv0z. (95)The solutions of the two �rst order di�erential equation system (Equation (83)and Equation (84)), are (rξr) and p∗. From p∗ in Equation (85) it is thenpossible to ompute (rξr)

′ as a funtion of p∗:
p∗ = −κ + Λ ξθ + Ξ ξz (96)

= −κ + ΛXθQθξr + ΛXθWθ (rξr)
′ + ΞXzQzξr + ΞXzWz (rξr)

′

= −γp0
1

r
(rξr)

′ − B2
θ

4πr
ξ′r −

BθB
′
θ

4π
ξr −

B2
z

4πr
(rξr)

′ − BzB
′
z

4π
ξr − p′0ξr + ΛXθQθξr +

+ ΛXθWθ (rξr)
′ + ΞXzQzξr + ΞXzWz (rξr)

′

= (rξr)
′
[

− B2
θ

4πr
− γp0

1

r
− B2

z

4πr
+ ΛXθWθ + Ξ XzWz

]

+ ξr

[

B2
θ

4πr
− BθB

′
θ

4π
− BzB

′
z

4π
+ ΛXθQθ + Ξ XzQz − p′0

]

, (97)what �nally leads to
(rξr)

′ =
p∗ − ξr

(

B2
θ

4πr
− BθB

′

θ

4π
− BzB

′

z

4π
+ ΛXθQθ + Ξ XzQz − p′0

)

(

− B2
θ

4πr
− γp0

1
r
− B2

z

4πr
+ ΛXθWθ + Ξ XzWz

) , (98)
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where
κ = γ

p0
r
(rξr)

′ +
Bθ

4π
(ξrBθ)

′ +
Bz

4πr
(rBzξr)

′ + p′0ξr, (99)
Λ = −χθ +

BθBz

4π
ik − B2

z im

4πr
, (100)

Ξ = −χz +
BθBzim

4πr
− B2

θ

4π
ik. (101)3.1.2 Mathing ConditionsInside the plasma region, model equations obtained from the magnetohydrody-nami model (Se. 3.1) are solved. A linear system of equations is assembledand solved to determine superposition oe�ients for fundamental solutions ofeigenfuntions in the plasma region, what is disussed in the following.For an arbitrary omplex mode frequeny ω, the system determinant detG (ω)is nonzero and therefore the solution (all superposition oe�ients) is zero sinethere are no soures (rhs equals zero) in the system. Finite nonzero solutionsthat orrespond to stable or unstable eigenmodes (depending on the sign of theimaginary part of the eigenfrequeny) are possible only when the determinantis zero. A omplex root solver is used to �nd all roots of the dispersion equation

detG (ω) = 0, numerially.The radial integration starts from two di�erent boundaries and returns two fun-damental solutions, whih are superposed afterwards. In the plasma olumn theintegration starting points are
r = 0 , r = rp, (102)at the ylinder axis and at the plasma radius, like this is shown in Figure 8.Beause of Equation (83) is getting singular at r → 0, a very small value

r = 10−2m is there used as radial starting point of the numerial integration.Both integrations math eah other at an arbitrary mathing position, (seeRef. [11℄).
r = rA , rA ǫ [0, rp] ,with boundary onditions

(rξr)r=0 = 0, (rξr)r=rp
= 0, (103)

(rξr)
′
r=0 = 1, (rξr)

′
r=rp

= 1. (104)The prime marks the radial derivative. As a result, the integration providestwo fundamental solutions ξ1 and ξ2, whih should be ontinuous at mathing27



Figure 8: Two di�erent intergations starting from z-axis and plasma radius rp. Bothsolutions math at r = rA where the fundamental solutions of integration ξ1 and ξ2must be ontinuous.point r = rA. The hoie of boundary onditions is arbitrary for the derivativevalues in Equation (104), see Ref. [11℄, mostly they are set to unity. Attentionhas to be paid to the boundary onditions in Equation (103). These values arevery sensitive on the di�erent kinds of MHD modes. Conerning kink modes,the used boundary onditions in Equation (103) are set to zero, like this wassuggested in Ref. [11℄.A ombined solution overing the whole radial range of the plasma olumn isonstruted by superposition like
ξr =

{

C1ξ1 , r ǫ (0, rA) ,
C2ξ2 , r ǫ (rA, rp) ,

C1 , C2 = const. (105)At mathing position rA, the ontinuity of the fundamental solutions determinesa homogeneous system, whih equals the solutions from both sides:
C1ξ1 = C2ξ2

C1ξ
′
1 = C2ξ

′
2

⇒ G (ω) =





ξ1 −ξ2

ξ′1 −ξ′2



 . (106)MatrixG remains to be a funtion of the frequeny ω. The homogeneous systemis solvable for suh frequenies ω, that
detG (ω) = 0. (107)28



3.2 Kineti ModellingBoth the kineti and the MHD model are based on a numerial solution ofthe full set of Maxwell equations in ylindrial geometry. The di�erene o-urs in the appliation of the plasma urrent density. This setion disussesthe approximations and basi steps of the method developed in Refs. [16, 20℄.Following Mahajan-Chen [23℄, ation-angle variables are used to solve the lin-earised Vlasov equation (no gyroaveraging) analytially with a simpli�ed one-dimensional Fokker-Plank ollision operator (Ornstein-Uhlenbek approxima-tion). The bakground distribution funtion is taken in the form of an inho-mogeneous drifting Maxwellian with parameters derived from the plasma andmagneti �eld pro�les that satisfy the MHD equilibrium. Maxwell equationswith displaement and plasma urrent densities together with the appropriateboundary onditions for an ideal or a resistive wall are solved numerially to�nd the eigenmodes existing in the system by a diret omplex root searh pro-edure.The ode KiLCA (Kineti Linear Cylindrial Approximation) is a wave odebased on the desribed kineti model of the tokamak plasma in a periodi ylin-der geometry (Refs. [16,20℄). The ode has been suessfully used (Refs. [17,21℄)to study kineti e�ets of the interation of resonant magneti perturbations andthe plasma in partiular near resonant magneti surfaes.Following the linear kineti model of a ylindrial inhomogeneous srew pinhplasma introdued in Ref. [16℄ and reently upgraded in Ref. [20℄, the wave�elds (Ẽ, B̃) with frequeny ω are obtained from Maxwell's equations,
∇× Ẽ =

iω

c
B̃, ∇× B̃ = −iω

c
Ẽ+

4π

c
j̃, (108)are solved numerially together with an appropriate set of boundary onditions,mentioned in Se. 4. The plasma response urrent density in Equation (108) isevaluated as

j̃ =
∑

α={e,i}
eα

∫

d3pvf̃α, (109)where eα is a harge of speii α, v is the veloity variable and f̃α the perturbeddistribution funtion (in the following we omit index α for brevity). The partiledistribution funtion f (r,v, t) enters the kineti equation like
df

dt
=
∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

= LCf, (110)with partiles at position r and veloity v exposed to the Lorentz fore F =
e
(

E+ 1
c
v×B

). The quantity LC represents the ollision operator and is spe-i�ed later in this setion. 29



The appliation of linearisation of the distribution funtion, the magneti andthe eletri �eld like
f = f0 + f̃ , B = B0 + B̃, E = E0 + Ẽ, (111)and the use of derivations with respet to the momentum ( ∂

∂v
→ m ∂

∂p
) yieldthe linearised form of Equation (110), as

∂f̃

∂t
+ v · ∇f̃ + e

(

−∇Φ0 +
1

c
v ×B0

)

· ∂f̃
∂p

− L̂C f̃ = −e
(

Ẽ+
1

c
v × B̃

)

· ∂f0
∂p

.(112)Here, f0 is the equilibrium distribution funtion onsistent with plasma andmagneti �eld equilibrium pro�les inluding the toroidal plasma rotation (thepoloidal rotation is assumed to be zero), Φ0 is the equilibrium eletrostati po-tential with E0 = −∇Φ0. For the desription of partile ollisions (Coulomb in-teration) we use an one-dimensional Fokker-Plank ollision operator (Ornstein-Uhlenbek approximation, see Ref. [35℄)
L̂cf̃ =

∂

∂u‖
D

[

∂

∂u‖
+
u‖ − V‖
v2T

]

f̃ , (113)where u‖ is a partile parallel veloity, D is a onstant di�usion oe�ient inveloity spae, vT =
√

T0/m0 is the thermal veloity, and V‖ is a bulk parallelveloity of the given speii. Following the proedure outlined in Mahajan-Chen[23℄, Equation (112) is solved analytially in ation-angle variables (Refs. [16,20℄).The Hamiltonian form of Equation (112) an be written like
∂f

∂t
+ {f,H} = LCf, (114)using Poisson brakets

{a, b} =
∂a

∂r
· ∂b
∂p

− ∂b

∂r
· ∂a
∂p

=

=
∂a

∂Θ
· ∂b
∂J

− ∂b

∂Θ
· ∂a
∂J
, (115)whih are valid for anonial transformations of oordinates. The anonialation-angle variables are Θ = (Θ1,Θ2,Θ3) and J = (J1, J2, J3) for ations

J =
∮

pdr, whih are invariants.A linearisation in sense of Equation (111) an be applied to the vetor potential30



in ∇×A = B, by A = A0 + Ã. Consequently, the salar potential desribingthe eletri �eld must be linearised by Φ = Φ0 + Φ̃. Using the radiation gauge
Φ̃ = 0, (116)one an express the linearised Hamiltonian like

H =
1

2m

(

p− e

c
A0 −

e

c
Ã
)2

+ eΦ0 = H0 + H̃, (117)what gives the unperturbed Hamiltonian as
H0 =

mv20
2

+ eΦ0, v0 =
1

m

(

p− e

c
A0

)

, (118)with partile mass m.The unperturbed part of the Hamiltonian an be expressed as a funtion of theation variable J only as H0 = H0 (J).With the introdued ation-angle variables, equations of unperturbed motionfor a partile of speies α an be written like
Θ̇α = Ωα =

∂H0 (J)

∂Jα
, J̇α = −∂H0 (J)

∂Θα
= 0. (119)The perturbation omponent of the Hamiltonian an be de�ned by means ofthe time dependene of the omplex form

H̃ = Re
(

He−iωt
)

, Ã = Re
(

Ae−iωt
)

. (120)The perturbed Hamiltonian an now be expressed by the use of the perurbationamplitudes H and A in temporal Fourier spae like
H = −e

c
v0 ·A =

ie

ω
vk0Ẽk =

ie

ω
ΩαEα, (121)using urvilinear oordinates xk = xkc (Θ,J) and orresponding (equilibrium)veloities vk0 , whih are in orrelation to anonial frequenies Ωα = Ωα (J) by

vk0 =
∂xkc
∂Θα

Ωα, Ωα =
∂H0

∂Jα
. (122)The eletri �eld omponents enter in ovariant form as Ẽk = iω

c
Ãk whih aretransformed to anonial omponents by

Eα =
∂xkc
∂Θα

Ẽk. (123)31



During linearisation all ontributions ontaining squared fators of perturbationquantities are ignored. The linearised kineti equation then results as
∂f̃

∂t
+ Ωα ∂f̃

∂Θα
+ J̇α

∂f0
∂Jα

= Lcf̃ , (124)where attention has to be paid on J̇α whih now in ontrary to the equilibriumexpression from Equation (119) forms a perturbed expression
J̇α
∂f0
∂Jα

=
∂H

∂Θα

∂f0
∂Jα

, ⇒ J̇α = F̃ · ∂r

∂Θα
, (125)with a perturbed Lorentz-fore F̃ = e

(

Ẽ+ 1
c
v× B̃

).It is onvenient to use the angle variables Θ for expansion of all perturbationterms into Fourier series like
f̃ (Θ,J, t) =

∑

m

f̃m (J, t) eim·Θ, (126)with the Fourier expansion indies written in vetor form m. The transforma-tion rule to Fourier spae of angle variables is
∂f̃

∂Θα
→ imαf̃m. (127)The expansion from Equation (126) enables to express the linearised kinetiequation (Equation (124)) by Fourier amplitudes of the perturbed distributionfuntion f̃ (J, t) as

∂f̃m
∂t

+ im ·Ωf̃m − Lcf̃m = Q̃m, (128)where all soures of perturbations are ontained in the soure term Q̃m.If the Coulomb ollision operator from Equation (113) is applied to Equa-tion (128), then results
i (m ·Ω− ω) f̃m − ∂

∂u‖
D

[

∂

∂u‖
+
u‖ − V‖
v2T

]

f̃m = Q̃m. (129)In ylindrial symmetry x = (r, ϑ, z) the parallel and perpendiular projetionsof eah vetor an be expressed by using
h =

B0

B0
, e⊥ = h× er. (130)32



It is useful to delare the veloity substitution
u = u‖ − V‖. (131)Further the expressions for eletri partile drift ωE and parallel and perpen-diular wave numbers k‖, k⊥, whih are

ωE = k⊥VE, k‖ = kϑh
ϑ + kzh

z, k⊥ = (hzkϑ − hϑkz) /r0, (132)de�ne
m ·Ω = ω0 = k‖V‖ + ωE + lωc, (133)where ωc = eB

mc
is the ylotron frequeny. With these substitutions, Equa-tion (129) beomes

ik‖uf̃m + iω0f̃m +
∂f̃m
∂t

− ∂

∂u
D

[

∂

∂u
+

u

v2T

]

f̃m = Q̃m. (134)Note that the expression is re-transformed by temporal Fourier transformation.To be able to solve Equation (134) it is onvenient to transform it to a partialdi�erential equation of �rst order. This an be ahieved by Fourier transforma-tion to veloity spae of u using transformation
Fm (k, t) =

∫ ∞

−∞
du e−iku f̃m (u, t) , (135)and k is the wave number in veloity spae. The kineti equation in veloityspae of the introdued veloity variable u then results as a partial di�erentialequation of �rst order

∂Fm (k, t)

∂t
+
(

iωo +Dk2
)

Fm (k, t)+
∂

∂k

(

kν − k‖
)

Fm (k, t) = Qm (k, t) , (136)with ollision frequeny ν = D
v2
T

. It is possible to solve Equation (136) by theharateristis method to obtain the solution for the perturbed distributionfuntion in Fourier spae in angle variables as
f̃m (u, t) =

∫ t−t0

0

dτ

∫ ∞

−∞
du′G (u, u′, τ) Q̃m (u′, t− τ) , (137)and Green's funtion

G (u, u′, τ) =
1√
4πa

exp

[

ik

ν
(u− u′)− c− 1

4a

(

u− u′e−ντ + ib
)2
]

, (138)33



with harateristis
a (τ) =

v2T
2

(

1− e−2ντ
)

,

b (τ) =
2k‖v

2
T

ν

(

1− e−2ντ
)

,

c (τ) =

(

iω0 +
k2‖v

2
T

ν

)

τ. (139)The solution of the perturbed distribution funtion from Equation (137) anthen enter the omponents of the perturbation of the urrent density
j̃k (x, t) = e

∫

d3p0v
kf̃ =

e√
g

∫

d3θ

∫

d3Jδ [x− xc (J,Θ)]×

×vk (J,Θ) f̃ (J,Θ, t) , (140)where g = r2 is the determinant of the metri tensor for transformations toylindrial oordinates. The δ funtion leads to the integral over the generalisedoordinate u′. This is neessary, beause the anonial transformation is onlyvalid for the whole phase spae.

34



4 Maxwell Equations in Vauum and ResistiveWall RegionsTo be able to model the ylindri plasma on�guration with all its di�erent re-gions namely the plasma zone, the vauum region and the resistive wall region,the model equations for all regions must be available. This imposes that theplasma model must be solved for eah region separately. This hapter desribesthe solutions of Maxwell equations and the plasma model from Se. 3.1 in dif-ferent zones of the ylinder, shows their derivations and gives a disussion ofeletri and magneti �elds in eah region.4.1 Solution for a Resistive MediumModelling the resistive wall region requires the inlusion of a harateristimedium property to the equilibrium Maxwell equations. This need an beful�lled by the eletri ondutivity σ whih is inverse proportional to the re-sistivity of the medium σ ∝ η−1. For this purpose the Maxwell equations fromEquation (21) and Equation (20) are written like
∇× E =

iω

c
B, (141)

∇×B =
4π

c
j− iω

c
E. (142)Both equations are already Fourier transformed in time, i.e. ∂

∂t
→ −iω. InEquation (20) the term ontaining the eletri �eld 1

c
∂E
∂t

must be added to theright hand side beause the eletri �eld is assumed to be time dependent.Further the salar form of Ohm's law
j = σE , (143)enters the ondutivity to Equation (142). E�ets of resistivity represent a deayof �eld amplitudes and are usually expressed by imaginary parts of frequenies.In the ase of ondutivity this an be done like

ω∗ = ω + iν, (144)
ν = 4πσ. (145)Then Equation (142) hanges to

∇×B =
4π

c

ν

4π
E− iω

c
E = −iω

∗

c
E. (146)35



The urls in Equation (141) and Equation (146) must be expressed in ylindri-al symmetry by Fourier omponents.For ∇× E:
im

r
Ez − ikEθ =

iω

c
Br, (147)

ikEr − E ′
z =

iω

c
Bθ, (148)

1

r
(rEθ)

′ − im

c
Er =

iω

c
Bz, (149)

∇×B:
im

r
Bz − ikBθ = −iω

∗

c
Er, (150)

ikBr − B′
z = −iω

∗

c
Eθ, (151)

1

r
(rBθ)

′ − im

r
Br = −iω

∗

c
Ez. (152)The prime marks the radial derivative, m is the toroidal mode numer and k isthe z-omponent of the wave number.The radial omponents an be substituted into the Θ- and z-omponents whatleads to

E ′
z =

(

ik2c

ω∗ − iω

c

)

Bθ −
ikmc

ω∗r
Bz, (153)

1

r
(rEθ)

′ =

(

iω

c
− im2c

ω∗r2

)

Bz +
imkc

ω∗r
Bθ, (154)

B′
z =

ikmc

ωr
Ez +

(

iω∗

c
− ik2c

ω

)

Eθ, (155)
1

r
(rBθ)

′ =

(

im2c

ωr2
− iω∗

c

)

Ez +
imkc

ωr
Eθ. (156)In these system of partial di�erential equations of �rst order, it is possible toonsider two di�erent ases. The transversal eletri mode TE and the transver-sal magneti mode TM.
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4.2 TM-ModeFor the transverse magneti mode the z-omponent of the magneti �eld is setto zero, Bz = 0, what results in the remaining �eld omponents of both �elds
Er = − ik

(α∗)2
E ′

z, Br = − mω∗

(α∗)2 rc
Ez, (157)

Eθ =
mk

(α∗)2 r
Ez, Bθ = − iω∗

(α∗)2 c
E ′

z. (158)Here α∗ ontains the frequeny ω∗ in the following way
(α∗)2 := k2 − ωω∗

c2
. (159)The �eld omponents of Equation (157) and Equation (158) are all determinedby Ez. If Ez is known, then all other �eld omponents are known immediately.Equation (152) an be written in terms of Ez by use of Equation (157) andEquation (158). The result an be written in form of a Bessel equation:

r2E ′′
z + rE ′

z −
(

m2 + (α∗)2 r2
)

Ez = 0. (160)The solution of Equation (160) onsists of a linear ombination of modi�edBessel funtions Im and Km,
Ez = C1Im (α∗r) + C2Km (α∗r) . (161)here C1 and C2 are onstants.4.3 TE-ModeFor the transverse eletri mode the z-omponent of the eletri �eld is set tozero, Ez = 0. Again this ondition is put into Equations (153) to (156). The r-and θ-omponents of both �elds then remain

Er =
ωm

(α∗)2 rc
Bz, Br = − ik

(α∗)2
B′

z, (162)
Eθ =

iω

(α∗)2 c
B′

z, Bθ =
km

(α∗)2 r
Bz, (163)37



as expressions of only Bz. After a substitution of these omponents a simi-lar proedure like for the TM-mode is applied what �nally results in a Besseldi�erential equation for Bz:
r2B′′

z + rB′
z −

(

m2 + (α∗)2 r2
)

Bz = 0. (164)Like for the TM ase, the solution of Equation (164) onsists of a linear ombi-nation of the modi�ed Bessel funtions Im and Km:
Bz = D1Im (α∗r) +D2Km (α∗r) , (165)with onstants D1 and D2.4.4 Vauum Solution with Antenna and Resistive Wall

Figure 9: The antenna and the resistive wall in the ylinder are surrounded by vauumregions. The ylinder is radially splitted into four di�erent regions. The antenna isloated at r1, the inner surfae of the resistive wall at r2 and the outer surfae at
r3 = r2 + d, where d is the thikness of the resistive wall.In eah region, the general solution of magneti and eletri �elds must beknown. At presene of the TM- and the TE-mode, both ontributions must beinluded to the total solution by superposition like

E = ETM + ETE, (166)
B = BTM +BTE. (167)38



Let us �rst onsider a ylinder with vauum, antenna and a resistive wall likeshown in Figure 9. This is a very simple on�guration whih shows the be-haviour of �elds in vauum and resistive media very good. The antenna dividesthe inner vauum in region I and region II at r1. The resistive wall has a �nitethikness and is plaed between r2 and r3 (region III), outside r3 a vauumin region IV spreads to in�nity. All �eld omponents of magneti and eletri�elds are omputed inside eah region separately. By the superposition rule inEquation (166) and Equation (167), where the orresponding �eld omponentsfrom Se. 4.3 and Se. 4.2 must be substituted, all regions an be modelled inthe same way.Region I:
EI

r = − ik

α2
C1I

′
m (αr) +

ωm

α2rc
D1Im (αr) , (168)

EI
θ =

mk

α2r
C1Im (αr) +

iω

α2c
D1I

′
m (αr) , (169)

EI
z = C1Im (αr) , (170)

BI
r = − mω

α2rc
C1Im (αr)− ik

α2
D1I

′
m (αr) , (171)

BI
θ = − iω

α2c
C1I

′
m (αr) +

km

α2r
D1Im (αr) , (172)

BI
z = D1Im (αr) . (173)One has to onsider the ylindri geometry and the behaviour of Bessel fun-tions at ylinder axis r = 0. Modi�ed Bessel funtions of seond order Km growto in�nity for r → 0. To exlude these diverging ontributions from solutionsin Region I, the terms ontaining Km are set to zero what guarantees a nonsin-gular solution of �eld omponents at the ylinder axis.In regions II and III both modi�ed Bessel funtions are present, whereas ω∗and α∗ our only in the medium desription of region III, elsewhere σ = 0and ω∗ = ω and α∗ = α. In region IV funtions Im are exluded due to theirdiverging behaviour for r → ∞.A set of 12 oe�ients (C1, C3, C4, C5, C6, C7) and (D1, D3, D4, D5, D6, D7) arisesfrom the �eld desriptions of the di�erent regions in Equations (168) to (191).39



Region II:
EII

r = − ik

α2

[

C3I
′
m (αr) + C4K

′
m (αr)

]

+
ωm

α2rc
[D3Im (αr) +D4Km (αr)] , (174)

EII
θ =

mk

α2r
[C3Im (αr) +C4Km (αr)] +

iω

α2c

[

D3I
′
m (αr) +D4K

′
m (αr)

]

, (175)
EII

z = C3Im (αr) + C4Km (αr) , (176)
BII

r = − mω

α2rc
[C3Im (αr) +C4Km (αr)]− ik

α2

[

D3I
′
m (αr) +D4K

′
m (αr)

]

, (177)
BII

θ = − iω

α2c

[

C3I
′
m (αr) + C4K

′
m (αr)

]

+
km

α2r
[D3Im (αr) +D4Km (αr)] , (178)

BII
z = D3Im (αr) +D4Km (αr) . (179)Region III:

EIII
r = − ik

(α∗)2
[

C5I
′
m (α∗r) + C6K

′
m (α∗r)

] (180)
+

ωm

(α∗)2 rc
[D5Im (α∗r) +D6Km (α∗r)] ,

EIII
θ =

mk

(α∗)2 r
[C5Im (α∗r) + C6Km (α∗r)] (181)

+
iω

(α∗)2 c

[

D5I
′
m (α∗r) +D6K

′
m (α∗r)

]

,

EIII
z = C5Im (α∗r) + C6Km (α∗r) , (182)

BIII
r = − mω∗

(α∗)2 rc
[C5Im (α∗r) + C6Km (α∗r)] (183)

− ik

(α∗)2
[

D5I
′
m (α∗r) +D6K

′
m (α∗r)

]

,

BIII
θ = − iω∗

(α∗)2 c

[

C5I
′
m (α∗r) + C6K

′
m (α∗r)

] (184)
+

km

(α∗)2 r
[D5Im (α∗r) +D6Km (α∗r)] ,

BIII
z = D5Im (α∗r) +D6Km (α∗r) . (185)40



Region IV:
EIV

r = − ik

α2
C7K

′
m (αr) +

ωm

α2rc
D7Km (αr) , (186)

EIV
θ =

mk

(α∗)2 r
[C5Im (α∗r) + C6Km (α∗r)] (187)

+
iω

(α∗)2 c
[D5I

′
m (α∗r) +D6K

′
m (α∗r)] ,

EIV
z = C7Km (αr) , (188)

BIV
r = − mω

α2rc
C7Km (αr)− ik

α2
D7K

′
m (αr) , (189)

BIV
θ = − iω

α2c
C7K

′
m (αr) +

km

α2r
D7Km (αr) , (190)

BIV
z = D7Km (αr) . (191)4.5 Appliation of Boundary ConditionsIn the previous setion it is desribed how the �eld omponents in the fourylinder regions yield a set of 12 oe�ients. To determine these oe�ients, alinear inhomogeneous system of equations must be solved,

A · c = b, (192)whih results from 12 boundary onditions at zone interfaes. Vetor c ontainsthe eo�ients, A is a 12x12-matrix and b is a vetor ontaining the boundaryonditions. The boundary onditions result from ontinuity onditions of theeletri and magneti �eld at vauum and medium interfaes and jumps of �eldsat the antenna.At the antenna
[n×E] = 0, (193)
[n×B] =

4π

c
j, (194)a surfae urrent density j produes a jump of the tangential B-omponents

[Bθ]ra =
4π

c
jz, (195)

[Bz]ra = −4π

c
jθ, (196)41



while the tangential omponents are ontinuous
[Eθ]ra = 0, (197)
[Ez]ra = 0. (198)Here the braket operator represents the di�erene of quantity values x arossthe boundary between region i and j at position r = y like:
[x]y = xi − xj . (199)At the resistive wall, the magneti �eld has no jump and all tangential ompo-nents are ontinuous

[Bθ,z]rw = 0, [Bθ,z]rw+d
= 0, (200)

[Eθ,z]rw = 0, [Eθ,z]rw+d
= 0, (201)there ra is the antenna position, rw is the resistive wall position and d is theresistive wall thikness.From these 12 boundary equations, matrix A of the linear inhomogeneous sys-tem results with
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Vetor b ontains the ontinuity and jump onditions mentioned above,
b1 =

4π

c
jz , b2 = −4π

c
jθ, (203)

b3 = b4 = b5 = b6 = b7 = b8 = b9 = b10 = b11 = b12 = 0 . (204)Matrix A ontains the abbreviations
t =

iω

α2c
, t∗ = iω

(α∗)2c
, p∗ =

iω∗

(α∗)2 c
, (205)

r1 = ra, r2 = rw, r3 = rw + d, (206)
r1 is the antenna position, r2 the position of the inner resistive wall surfae and
r3 the position of the outer resistive wall surfae. Further

Ii = Im (αri) , I∗i = Im (α∗ri) , (207)
Ki = Km (αri) , K∗

i = Km (α∗ri) , (208)
si =

mk

α2ri
, s∗i =

mk

(α∗)2 ri
, (209)all for i = 1, 2, 3.4.6 Computation of the Vauum Field ComponentsThe omputation of vauum �eld omponents from Se. 4.4 is done by MAT-LAB, where a linear inhomogeneous system from Equation (192) is solved.The omplex amplitudes of the magneti and eletri �elds are evaluated overall four regions of the ylinder like shown in Figure 9. The omputation is donefor a resonant mode (m,n)=(12,4) with a frequeny of f = ω

2π
= 1kHz. Theantenna is plaed at r1 = 53m and the resistive wall at r2 = 60m with athikness of d = 3m. The torus radius is R = 175m and the applied antennaurrent is I0 = 15kA = 4.5 · 1013statamp. The tangential omponents of theurrent density in the antenna are hosen to be

jθ = − 8I0
3πR

= −2.182 · 1011 statamp

cm2
, (210)

jz = −jθ
mR

nr1
= 2.162 · 1012 statamp

cm2
. (211)43



The ratio between the skin depth and wall thikness δ
d
with

δ =
c√
ω2πσ

(212)is a funtion of the ondutivity σ and an be expressed in terms of ν = 4πσ

δ =
c

√

ω ν
2

. (213)
⇒ high ondutivity σ means a small skin depth δ.Figure 10 and Figure 11 show all non-vanishing eletri and magneti �eldomponents in all regions I - IV. To test the in�uene of the resistive wall, twodi�erent ondutivities are applied:

• δ
d
<< 1 is ahieved by a high onduting wall with ν

ω
= 1015 and a smallskin depth δ = 0.214m. Suh a wall has a visible e�et on the �eldomponents, like shown in Figure 10.

• δ
d
>> 1, represents a high resistive wall, where the �elds are not shieldedinside it. At ν

ω
= 0.1 the ondutivity is very low. The orresponding skindepth is δ = 2.1 · 107m. Figure 11 shows that suh a wall behaves like avauum region.The real part of the radial eletri �eld is the omponent whih is most sensitiveon hanges of the resistive wall properties.Figure 12 ompares the real part of the radial eletri �eld on hanges in on-dutivity (hange of ν
ω
) and hanges of wall thikness d. The jump of Re(Er)at the resistive wall is larger in ase of a thinner wall.
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Figure 10: Components of the eletri and magneti �eld plotted over r: blue: vauumregion I, green: vauum region II, blak: resistive wall region III, red: vauum regionIV. f = ω
2π = 1kHz, resonant mode (m,n) = (12, 4) with wall thikness d = 3m andantenna urrent I0 = 15kA. High onduting wall with ν

ω
= 1015 and a skin depth

δ = 0.214m. The antenna position is ra = 53m and the resistive wall at rw = 60m.45
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Figure 11: Components of the eletri and magneti �eld plotted over r: blue: vauumregion I, green: vauum region II, blak: resistive wall region III, red: vauum regionIV. f = ω
2π = 1kHz, resonant mode (m,n) = (12, 4) with wall thikness d = 3mand antenna urrent I0 = 15kA. High resistive wall with ν

ω
= 0.1 and a skin depth

δ = 2.1 · 107m, antenna position ra = 53m and the resistive wall at rw = 60m.46
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Figure 12: left: Real part of the radial eletri �eld over r for three di�erent wallondutivity ases ν
ω

= 0.1 (dotted), ν
ω

= 1 (solid) ν
ω

= 10 (dash-dotted) with d =

3m. right: Real part of the radial eletri �eld over r for two di�erent wall thiknesses
d = 2m (dash-dotted) and d = 10m (solid) with ν

ω
= 1. For all ases f = ω

2π = 1kHz,mode numbers m = 12, n = 4, I0 = 15kA, antenna position at ra = 53m and theresistive wall at rw = 60m are used.5 MHD InstabilitiesMagnetially on�ned plasmas fae a big variety of onditions whih an makethe plasma on�guration unstable, lead to strong disruptions of energy or toa shut down of the fusion proess. Instabilities an arise from errors in MHDequilibrium pro�les, partile transport barriers or simply by unfavourable energydistributions driven by urrent or pressure gradients (Ref. [15℄).From the tehnial point of view, the role of MHD instabilities is twofold. Onone hand a turbulent plasma motion an be used for heating, external error �eldsan ouple to internal �elds to open transport barriers and avoid disruptions.On the other hand an unontrolled disruption harms the material omponents ofthe fusion devie and even the fusion proess itself an be stopped (Refs. [15,18℄).MHD instabilities set operational limits for fusion devies. The most importantare plasma urrent, pressure, pressure gradient and density. Mitigation andontrol of instabilities are therefore very important topis in fusion researh.The point of interest lies in the availability of a model whih handles MHDinstabilities. For this purpose it is useful to neglet the plasma resistivity andonsider an ideal MHD desription.The following setions disuss the properties of the main ideal MHD instabilitiesand give a ommonly used approah to handle them.47



5.1 The Energy PrinipleThe energy priniple is a onept whih is used to determine whether a perturba-tion of a system is stable or unstable (if the system returns bak to equilibriumor not). The energy priniple is based on the hange in potential energy of thesystem aused by the perturbation. It assumes that the MHD model onservesthe total energy of the system (plasma on�guration) ompletely,(see Ref. [11℄).For a hange in potential energy δW it holds that the perturbation for
δW > 0, is stable, (214)
δW < 0, is unstable. (215)A perturbation fore F auses a displaement ξ and the hange in potentialenergy an be de�ned like
δW = −1

2

∫

ξ ·F dV, (216)as integral over the volume V (Ref. [38℄). The linearised MHD Equation (38)determines
F =

1

c
j1 ×B0 +

1

c
j0 ×B1 −∇p1, (217)and by means of remaining perturbation quantities p1, B1 and j1 from Equa-tion (47), Equation (48) and Equation (49), the energy ontribution resultsin

δW = −1

2

∫

[ξ · ∇ (γp0∇ · ξ + ξ · ∇p0)+

+
1

4π
ξ · ((∇×∇× (ξ ×B0))×B0 + (∇×B0)×∇× (ξ ×B0))

]

dV. (218)Using the Gauss integral relation
∫

∇ ·A dV =

∫

A · dS, (219)where the volume integral over a vetor �eld A is replaed by a surfae integral,the energy ontribution an be written as
δW =

1

2

∫
[

γp0 (∇ · ξ)2 + (ξ · ∇p0)∇ · ξ +
1

4π
B2

1 −
1

c
j0 · (B1 × ξ)

]

dV+

+
1

2

∫
(

p1 +
B0 ·B1

4π

)

ξ · dS. (220)From these equations it is evident that δW is determined by ξ.48



5.2 Ideal MHD InstabilityThe gradients of the plasma urrent and pressure are the driving fores of MHDinstabilities. Ideal modes assume that the plasma has no resistivity. Sine thisis not valid in reallity, it must be noted that ideal MHD is an useful tool topredit the ourene of instability, whih will our also for resistive ases, ifideal MHD predits it, but due to the resistivity it will not be possible to modelit exatly (Ref. [38℄).In general the modes an be separated (like e.g. in Ref. [11℄) in:
• Internal modes:It is assumed that a plasma is surrounded by vauum. It turned outthat some instabilities do not hange the position of the plasma-vauuminterfae. Suh modes have a resonant surfae m − qn = 0 inside theplasma and are alled internal modes with the boundary ondition atplasma surfae n · ξ|S = 0. Here n is the normal vetor pointing outwardof the plasma. (m,n) are toroidal and poloidal mode numbers.
• External modes:Modes whih move the plasma-vauum interfae away from its equilibriumposition have a resonant surfae m − qn = 0 outside the plasma andare alled external modes with the boundary ondition at plasma surfae
n · ξ|S 6= 0.Additionally to the separation in external and internal modes, instabilities anbe lassi�ed as:

• Pressure driven instability:Modes driven by the pressure gradient are most unstable if they are in-ternal (Ref. [11℄). It is onvenient to speify two lasses:� Interhange instabilities:An unfavourable urvature of the magneti �eld lines an lead toinstability. Beause of the plasma pressure exerting fore radiallyoutward, a fore ontribution from magneti �elds is stabilising foronvex �eld lines and destabilising for onave �eld lines (relativelyto the plasma interior). For the latter ase, the �eld line urvatureprodues magneti tension to shorten the �eld lines and pushes themto ollapse inward. If two radially adjaent magneti �ux tubes areinterhanged by perturbation in suh way, the interhange is unsta-ble. So systems with �eld lines onave to the plasma are unstable49



to interhange perturbations. These instabilities an be in�uenedby the shear between two �ux tubes.� Ballooning instabilities:These modes represent a limit for the highest β whih is possiblein a fusion devie. Inside the plasma both possibilities of �eld lineurvatures do oexist. So if a perturbation hanges along the �eldlines, it destabilises regions with unfavorable urvature and stabilisesthe other ones. The only possibility of stabilisation is to lower β.
• Current driven instability:Modes whih are driven by the parallel urrent density j‖ an be eitherinternal or external and are often named kink modes beause suh per-turbations kink the plasma surfae into a helix, like shown in Figure 13.External kinks are signi�antly stronger than internal kinks. Kinks an

Figure 13: Kinking of a magneti �ux tube by a urrent driven kink instability inylindrial symmetry. Shown are kink mehanisms for m = 1 (left plot) and m = 2(right plot).be stabilised by a perfetly onduting wall whih is positioned lose tothe plasma surfae.5.3 Self-Adjointness of the Fore Operator F (ξ)The fore operator F (ξ) from Equation (51) turns out to be a very useful toolin MHD instability researh due to its mathematial property of being a self-adjoint operator, what means
F = F∗, (221)where F∗ is the omplex onjugate of F. Self-adjointness is valid for the �owlessideal MHD ase of F in Equation (52) and for a plasma on�guration with noresistive walls. The general ase is thus not self-adjoint. For two arbitrary ve-tors ξ and η, whih satisfy boundary onditions like in Se. 3.1.2, the following50



integrals
∫

dr η · F (ξ) =

∫

dr ξ · F (η) , (222)are invariant on the interhange of both vetors ξ and η, what means self-adjointness of F.The indiation of stability leans on the sign of ω2, what is alled the energypriniple. For unstable on�gurations the eigenvalues ω2 are pure real. Thisis true for disrete modes, whih satisfy the eigenequation Equation (51) fordisrete eigenvalues ω2. The fore operator is dot multiplied with ξ∗ and after-wards integrated over the volume, then the onjugate F ∗ is dot multiplied with
ξ and integrated in the same way.

F (ξ) |
∫

·ξ∗dr , F∗ (ξ∗) |
∫

·ξdr. (223)With the use of the self-adjointness in Equation (222), one reeives
(

ω2 − (ω∗)2
)

∫

ρ|ξ|2dr = 0, (224)what means
ω2 = (ω∗)2 . (225)This is only possible if ω2 is real. From the frequeny dependene of the modes,whih is proportional to e−iωt, it an further be pointed out that modes withfrequenies ω2 > 0 represent a pure osillation and an therefore be onsideredto be stable. Modes with ω2 < 0 have an exponentially growing ontributionand are onsidered to be unstable.The hange from stable to unstable mode happens at ω2 = 0. For self-adjointoperators this is the ase exatly at Im(ω) = 0 and Re(ω) = 0. In generalases (non self-adjoint), transition to instability happens at Im(ω) = 0, but atRe(ω) 6= 0, see Figure 14.An another important property of eigenmodes of a self-adjoint operator is thatthe eigenmodes are orthogonal on eah other. For two modes (ξm, ω2

m) and(ξn, ω
2
n) where n 6= m are indies of di�erent modes, the eigenequation Equa-tion (51) for the n-mode is dot multiplied by ξm and vie versa for the m-mode.

−ω2
mρξm = F (ξm) | · ξn , −ω2

nρξn = F (ξn) | · ξm, (226)what leads under onsideration of self-adjointness from Equation (222) to
(

ω2
n − ω2

m

)

∫

ρ ξm · ξndr = 0, (227)51



Figure 14: Evolution of two symmetri MHD mode frequenies (solutions of ω2 = 0)in the omplex plane while a perfetly onduting wall is moved radially inward.The stabilising wall position is reahed at Im(ω)=0. left: For the self-adjoint asestabilisation happens also at Re(ω)=0. right: Non-self-adjoint ases have nonvanishingreal parts of the mode frequeny. Stabilisation happens at Im(ω)=0 but in general atRe(ω) 6= 0.and for two distint modes with ω2
n 6= ω2

m immediately to
∫

ρ ξm · ξndr = 0. (228)This means that the modes are orthogonal on eah other with weight funtion
ρ, whih is the mass density.5.4 The Resistive Wall Mode RWMIn reality, the ideal wall has to be treated as a mediumwith �nite ondutivity σ,thus resistive. An analyti approah for modelling suh a wall, is given in Se. 4.In fat, the Vessel wall is desired to be resistive, beause this allows externalmagneti �elds a better penetration into the plasma to ontrol it by externaloils (Ref. [11℄). It turns out that the resistivity of the wall has a signi�ant e�eton wall stabilisation of plasma modes. A plasma on�guration whih is stablefor a perfetly onduting wall is unstable for a resistive wall. Modes get neverfully wall stabilised by a resistive wall. For wall positions above the stabilisationof the ideal wall mode, the resistive wall ase orresponds in mode growth ratesnearly to the ideal wall ase. This is not true below the ideal wall stabilisingposition, there the resitive wall ase remains unstable with growth rates whihrange at Im(ω) ≈ 1

τw
(this behaviour was disussed in Refs. [4, 11, 39℄), here τwis the harateristi resistive wall di�usion time,

τw =
4πσbd

c2
, (229)52



Figure 15: Resistive wall in ylindrial symmetry (r,Θ, z). Plasma radius a, wallthikness d and poloidal angle Θ. Between plasma and resistive wall a vauum regionis assumed. (soure:Ref. [39℄).
Figure 16: Change of growth rates ω = ωr + iωi predited by the MHD model.left: Unstable mode (and symmetri stable mode) move on imaginary axis while theideal wall is moved radially inwards. At stabilisation the pure imaginary frequeny
ω beomes pure real. right: Inrease of resistivity. Mode frequenies grow into theimaginary plane. The RWM develops with Re(ω)=0. (Ref. [11℄)with ondutivity σ, speed of light c, wall position b and wall thikness d.In other words, the use of a resistive wall results in the ourene of an addi-tional mode with slow gowth rate, the RWM. Figure 16 desribes the hange ofa mode's eigenfrequeny in the omplex plane during stabilisation by an idealwall and a following inrease of the wall's resistivity (the wall is moved radiallyinwards and after stabilisation σ is inreased) resulting from the MHD model.The ideal wall ase demands, that ω2 is real, what means that ω an lie only onthe imaginary or on the real axis. With the ideal wall at stabilisation position, itholds that ω2 = 0, in other words the mode hanges at stabilisation from a pureimaginary ω to a pure real. For a self-adjoint ase exatly at Re(ω)=0. Afterstabilisation, the mode (due to the ω2 term, always two symmetri solutions
±ω are expeted to exist, see Figure 16) moves on the real axis and ω gets pure53



real. If the resistivity of the wall is ontinuously enlarged for suh a stabilisedase with Im(ω) = 0 and Re(ω) 6= 0, see right plot of Figure 16, then the modefrequeny ω moves into the imaginary plane and beomes omplex, ω = ωr+iωi.It an be observed, that the additional mode grows out of ω2 = 0 at Re(ω)=0after wall resistivity is applied. This mode is the resistive wall mode RWM.The physial piture of the RWM is the following (disussed in Ref. [11℄). Anunstable instability (perturbation) produes a plasma displaement whih in-dues urrents inside the wall. Aording to Lenz's law, these urrents �ow insuh a diretion, that a reindued motion ats against the perturbation plasma�ow to stabilise it. In the ase of a resistive wall, these urrents derease due todissipation on the sale of the wall di�usion time τw. A onsequene is that theurrents whih ounterat to the perturbation are not able to exist permanently,what means that the perturbation an grow further on. Beause this is trueonly for instabilities with τ ≈ τw, the RWM growth rates are muh smaller thanideal MHD growth rates, whih have τMHD << τw and are nearly una�eted bydissipative e�ets inside the resistive wall.RWM growth rates inrease with β = 4π<p>

B2 (< p > is an average value of pthroughout the plasma) and set a limit in β for fusion operation. Control ofRWMs an be ahieved by plasma rotation or by a feedbak with error �eldswhih ouple to the internal �elds and are produed by external oils. Possibleis also a ombination of both feedbak and rotation. E�ets of plasma rota-tion have been modelled in Ref. [4℄ and experimentally underlined at DIII-D inRefs. [33, 34℄. It was disovered that with use of rotation a small perentage(about 20%) of the Alfven veloity is needed to stabilise RWMs fully (Ref. [15℄).Error �elds are disovered to slow down the plasma rotation what is a matterof RWM ontrol by external �elds (Refs. [12, 28℄).The modelling by kineti models is a very new approah and in stage of progress.From �rst results it is expeted that the MHD models overestimate the rangeof plasma �ow whih is needed for stabilisation by up to 50%, (Ref. [15℄). Thistendeny is supported also by results from DIII-D, (Refs. [33, 34℄). Kineti ef-fets like ollisions, temperature and visosity e�ets are a purpose of atualmodellings.

54



6 The Reversed Field Pinh RFPReversed �eld pinhes RFPs are toroidal fusion experiments whih are har-aterised by short pulses and high urrents and are thus unstable to a broadspetrum of kink modes (Ref. [10℄). Due to this properties, RFPs are very usefulfor RWM investigation.6.1 DesriptionThe main property of the reversed �eld pinh is that the toroidal magneti �eldhas a reversal point inside the plasma, what means that it hanges its diretionthere. The poloidal magneti �eld has no reversal point. A shemati plot ofmagneti �elds and the pressure pro�le is shown in Figure 17. In Ref. [11℄ it

Figure 17: Shemati plot of typial poloidal and toroidal magneti �eld omponentsin a reversed �eld pinh. The toroidal �eld Bz has a reversal point where it hangesits diretion. (soure: Ref. [30℄)is mentioned that ylindrial desriptions are appropriate for RFP modellingbeause toroidal orretions are very small. Early studies of MHD stabilityin Refs. [13, 30℄ on�rmed that the RFP pro�le is a good on�guration forkeeping the plasma stable even at high β values (it is also possible to stabiliseideal kinks by the presene of a perfetly onduting wall). The reversal of thetoroidal magneti �eld ats stabilising on internal pressure driven instabilities(in Ref. [11℄ this is shown by the appliation of the energy priniple).Various investigations on RWM in RFPs have been done using MHD models to55



desribe stabilisation by wall and plasma rotation (e.g. Refs. [14, 36℄). Theseaspets are further disussed in Se. 7.4. The approah by kineti modelling isa matter of atual researh.In general, the stability of the RFP is strongly in�uened by the shape of plasmapro�les. In Ref. [11℄ it is mentioned that a minimum in Bz is required toestablish a MHD equilibrium. Compared to Tokamaks, the poloidal magneti�eld is very large and an be even larger than the toroidal �eld. This propertygives a large aspet ratio what leads to the important tehnologial advantage,that it is possible to heat the plasma up to ignition only by Joule heating.Toroidal e�ets do not matter signi�antly in MHD stability beause of thestrong poloidal �eld. This auses only a small toroidal plasma shift. It ismentioned in Ref. [11℄ that toroidiity is needed only for losing of �eld lines.Pratially it is very hallenging to generate RFP pro�les with a Bz-reversaland a �at p-pro�le. Therefore a permanently present amount of turbulene isneeded for reversal maintenane (see Ref. [11℄). The on�nement propertiesdo not bene�t from the presene of suh turbulene. Although these proessesare not well understood so far, the RFP is an attrative fusion devie due toits operation at high β, favorable properties onerning MHD stability at highaspet ratio and the possibility of Joule heating up to ignition. A tehnologialdisadvantage is the need of a perfetly onduting wall relatively lose to theplasma to ahieve MHD stability.6.2 RFP EquilibriumThe RFP equilibrium is desribed by the α-Θ0 equilibrium model used inRef. [14℄ and an be derived in ylindrial symmetry from the ideal MHD-equilibrium
∇p0 =

1

c
j0 ×B0, (230)

∇×B0 =
4π

c
j0, (231)with B0 = (0, B0θ(r), B0z(r)) the equilibrium magneti �eld, p0(r) the equilib-rium pressure, j0(r) the equilibrium urrent density, and c the speed of light.For brevity, subsript zero is dropped in the following.Equation (230) and Equation (231) lead to the fore balane in ylindrial sym-metry

∂

∂r

(

p+
B2

Θ +B2
z

8π

)

+
B2

Θ

4πr
= 0. (232)56



The urrent density in Equation (231) is expressed by it's omponents paralleland prependiular to the magneti �eld,
∇×B =

4π

c

(

j⊥ + j‖
)

. (233)It is now possible to write the Θ- and z-omponents of Equation (233) by meansof perpendiular and parallel urrent omponents
dBz

dr
= −4π

c
jΘ = −4π

c

(

jΘ⊥ + jΘ‖
)

, (234)
1

r

d

dr
(rBΘ) =

4π

c
jz =

4π

c

(

jz⊥ + jz‖
)

. (235)For further steps, the urrent omponents are expressed as projetions on themagneti �eld like
j‖ =

j ·B
B2

B, (236)
j⊥ = −j×B

B2
×B. (237)To derive Equation (237), the relations

j⊥ = j− j‖, (238)
(j×B)×B = (B · j)B− (B ·B) j, (239)have been used. From Equation (230) and Equation (237) the perpendiularurrent density is

j⊥ =
c

B2
(B×∇p) . (240)E�ets of the parallel urrent are important for RFP stability. To be able toestimate the in�uene of j‖ better, Equation (236) is expressed by the parallelurrent distribution µ as

j‖ =
j ·B
B2

B =
cµ

4π
B, (241)like in Refs. [1, 25℄. Here, c is the speed of light and

µ =
2

a
Θ0

[

1−
(r

a

)α]

, (242)with shape parameters α and Θ0 and plasma radius a. The parameter Θ0 isrelated to the safety fator at the axis and the major radius by q (0) = a
Θ0R

.57



From Equation (234) and Equation (235) the α-Θ0 equilibrium model is nowgiven by the following equations,
dBz

dr
= −µBθ −

4πBz

B2

dp

dr
, (243)

1

r

d

dr
(rBθ) = µBz −

4πBθ

B2

dp

dr
, (244)

dp

dr
= −χ r

8π

(

µB2

2BΘ

− Bz

r

)2

. (245)(246)Here, χ is a onstant whih determines the e�et of pressure gradients. Equa-tion (245) gives Suydam's neessary ondition for stability when χ < 1. Derivedparameters desribing this model are the poloidal beta βp, the reversal param-eter F , and the pinh parameter Θ,
βp =

8π

B2
θ (a)

〈p〉 =
8π

B2
θ(a)

1

πa2

∫ a

0

dr 2πrp(r), (247)
F =

Bz(a)

〈Bz〉
, Θ =

Bθ(a)

〈Bz〉
. (248)So eah set of equilibrium parameters (α, χ,Θ0) de�nes a RFP equilibrium withresulting parameters (F,Θ, βp) and vie versa.6.3 Computation of the RFP EquilibriumEquation (243), Equation (244) and Equation (245) represent a oupled sys-tem of di�erential equations of �rst order whih an be solved numerially bya Runge-Kutta boundary value solver. The equations are normalised and afterintegration multiplied by realisti RFP values. The magneti �elds are nor-malised by the value of the poloidal magneti �eld at the plasma surfae BΘa,the radius is normalised by the plasma radius a, the normalised pressure is

p = 8πp
B2

Θa

. The resulting normalised RFP equilibrium equations are
dBz

dr
= −µBθ −

Bz

2B
2

dp

dr
, (249)

1

r

d

dr

(

rBθ

)

= µBz −
Bθ

2B
2

dp

dr
, (250)
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dp

dr
= −χr

(

µB
2

2BΘ

− Bz

r

)2

, (251)
µ = 2Θ0 [1− (r)α] . (252)The normalised quantities are overlined. For integration, the following bound-ary onditions
BΘ|0 = 0 , Bz|0 = Bz0 = 1, (253)

dBΘ

dr
|0 = Θ0Bz0 ,

dBz

dr
|0 = 0, (254)

dp

dr
|0 = 0. (255)are needed. The index |0 represents the value at r = 0. The integration isarried out from the ylinder axis r = 0 to the plasma radius r = 1.RFP equilibria given in this setion were omputed by ode45 from MATLAB.The in�uene of the parameters (α,Θ0, χ) on the RFP equilibrium quantitiesan be disussed like in Refs. [14,36℄. Table 2 shows the in�uene on (F,Θ, βp).Nr. α Θ0 χ F Θ β1 5.5 1.5 0.0 -0.18 1.48 0.02 8.0 1.5 0.0 -0.47 1.58 0.03 3.63 1.7 0.0 -0.47 1.74 0.04 8.16 1.5 1.0 -0.59 1.93 0.0815 7.74 1.5 1.5 -0.59 2.08 0.126Table 2: RFP equilibrium parameters (F,Θ, βp) whih result from parameters

(α, χ,Θ0).Case 1 orresponds to the zero pressure Equilibrium (1) in Figure 6 of Ref. [14℄.The e�et on F and Θ an be estimated for the ase that α (Case 2) or Θ0 (Case3) are varied. Case 4 orresponds to Equilibrium 5 in Figure 6 of Ref. [14℄.Case 5 shows the hange in α and Θ0 if F = const for a hange in β. Figure 18shows the RFP equilibrium magneti �elds and the q-pro�le for Cases 1, 2 and3 from Table 2. These three equilibria have zero pressure. Changes in thepressure an be seen in Figure 19. There χ is varied under onstant F and
Θ0. Pressure and pressure gradient pro�les for Cases 4 and 5 are shown inFigure 20. Figure 21 shows temperatures and the partile density for Case 4in Table 2. The partile density is equal for ions and eletrons and is hosento be onstant like suggested in Ref. [14℄. To sale the pro�les to realisti RFP59
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kBn
in [eV℄ with T = Te+ Ti and Te = 0.6Tand Ti = 0.4T . While using MHD, a splitting of temperatures into eletron andion part does not enter the model. This step beomes important while usingthe kineti model, where partile interations depend on the di�ering pro�les60
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7 Results of RFP Investigations7.1 Zone Con�gurations for RFP ModellingWhile modelling growth rates of ideal and resistive wall modes in RFP symmetryby the KiLCA ode, Maxwell equations have to be solved in di�erent media likedisussed in Se. 4. Figure 22 shows the zone on�gurations for MHD andkineti (�re) modelling of the ideal wall mode. Outside the plasma region avauum region is assumed whih is losed by an ideal wall at the outer edge.The orresponding boundary onditions are disussed in Se. 4. The KiLCA
Figure 22: left: Two zones for modelling the ideal wall mode by the MHD ode.Between plasma radius r1 and ideal wall (iw) at r2 a vauum zone is applied. Theantenna an be plaed exatly at plasma radius. right: Three zones for modelling theideal wall mode by the kineti ode. The vauum zone from the MHD ase is splitinto two zones by the antenna at r2. Here r3 marks the ideal wall position.
Figure 23: left: Four zones for modelling the resistive wall mode by the MHD odewith antenna at plasma surfae r1. right: Five zones for modelling the resistive wallmode by the kineti ode, where the antenna is plaed in the outer vauum zone at
r4. Both on�gurations are losed by an ideal wall at the outer edge.ode is programmed in suh a way that an antenna must always be added tothe zone on�guration. During the alulation of ideal and resistive wall modesthe antenna urrents are set to zero. When using the MHD ode, the antennais plaed exatly at plasma surfae, beause of numerial stability reasons thisis not possible for the kineti ode, where the antenna must be plaed at the62



boundary of two media of the same type (e.g. vauum - vauum). Figure 23shows the zone on�guration of MHD and kineti modelling for the resistivewall mode. A resistive wall is plaed outside the plasma surrounded by vauumregions. In ase of kineti modelling, the outer vauum region is split into twovauum regions by the antenna at r4. Both on�gurations are losed by anideal wall at the outer edge what represents the vessel wall.7.2 MHD Model BenhmarkingInvestigations in Refs. [14, 36℄ provide a detailled disussion onerning RWMstabilisation by plasma rotation in a RFP. This setion disusses a reprodutionof the main results given in Ref. [14℄ using the KiLCA-MHD ode. Equilibrium4 from Table 2 in Se. 6.3 is suitable for this purpose beause it is equal toEquilibrium 5 in Figure 6 of Ref. [14℄.For investigations of the in�uene of the wall position on the growth rates, theplasma rotation veloity is set to zero. Changes of growth rates by variation
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, normalised by ωA = 2.34e6s−1 for Equilibrium 4 from Table 2 and mode

(m,n) = (1, 3).of the wall position for an ideal wall and a resistive wall with ondutivity
σ = 4.5e14s and wall thikness d = 5m are shown in Figure 24. The ideal wallmode is stabilised at b

a
= 1.58 (solid). For a resistive wall a small growth rateof ω = 0 + i · 7.8246953e2s−1 at b

a
= 1.05 remains (dotted) and is never fullystabilised if a rotation is absent. The used MHD modes have (m,n) = (1, 3)what results in a normalised z-omponent of the wave number kz = na

R
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3·50cm
200cm

= 0.75. This orresponds to the ase disussed in Ref. [14℄ and mathestheir results.The urves are normalised by ωA in the same way like this is done in Ref. [14℄.For a plasma radius a = 50m, one gets
ωA =

VA
a

=
B0θ(a)/

√
4πρ

a
=

1.17× 108 cm/s

50 cm
= 2.34× 106 s−1. (256)The appliation of a plasma rotation opens an interval for b

a
where the RWM anbe fully stabilised. The width of this interval is a funtion of the plasma rotationspeed. Figure 25 shows two ases of poloidal plasma rotation (Vz = 0.5VA and

Vz = 0.7VA) whih are onstant over radius. The width of the window inreases
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Figure 25: Windows of stable wall positions for a plasma rotation with Vz = 0.5VAand Vz = 0.7VA for Equilibrium 4 from Table 2. Growth rates are shown by the leftplot and the real parts are shown by the right plot. Inside the window there is nodata. The normalisation is done by ωA = 2.34e6s−1.with Vz. The wall positions where the windows open di�er little from the resultgiven by Figure 10 in Ref. [14℄ (in Ref. [14℄ the windows open: for Vz = 0.5VAat b
a
= 1.46 and for Vz = 0.7VA at b

a
= 1.38), but the growth rates of Figure 25math the given results at b

a
= 1.05 and b

a
= 2.0. The di�erene in windowposition results from the range of the Alfven veloity whih is not exatly knownfrom Ref. [14℄, beause of the unknown range of magneti �elds. But the generalbehaviour of RWM from Ref. [14℄ is suessfully reomputed.
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7.3 Estimate of the In�uene of the Galileian MovingFrame Veloity on Kineti ModellingAll omputations using the kineti model are omputed in a frame whih movesin toroidal diretion. Consequently all results have to be transformed bak tothe laboratory frame using Galileian transformation. One of the ommon needsto reeive trustable results, is the invariane of results on the hoie of themoving frame veloity, like desribed in Ref. [19℄. The Galileian frame veloity
vgal transforms the plasma motion to a moving frame with veloity V frame

z andenters to the kineti ode by
V frame
z = sVz − vgal, (257)where Vz is the toroidal plasma bakground rotation and s is a onstant whihis used to sale Vz. Figure 26 shows the dependene of the normalised growth
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, here the hange of the65



growth rates vary less than 10%. Outside this the Galileian invariane is sig-ni�antly violated. Modes propagating with the veloity of the moving framemight beome superalfeni. In this sense the wall might lose its e�et on themode (urrent indution), within what the mode an hange its frequeny.7.4 Sensitivity of Ideal Kink and RWM on the Wall Po-sitionThis setion disusses results of omputations done on RFP equilibria men-tioned in Se. 6.3 and published in Ref. [26℄.It is desired to investigate instabilities of RFP equilibria both by the MHD andthe kineti model and ompare preditions of both models for a RFP plasmagetting stabilised by hanges in ideal and resistive wall positions and by appli-ation of toroidal plasma rotation.For investigations of this purpose, the equilibrium plasma bakground Case 4from Table 2 in Se. 6.3 is suitable (it is equal to Equilibrium 5 in Figure 6 ofRef. [14℄). The pro�les are shown in Figure 19, Figure 20 and Figure 21.The Alfven rotation frequeny ωA remains for the applied equilibrium as ωA =
2.34× 106s−1 (the same like in Equation (256)). The ideal time sale

τA =
1

ωA

= 4.27 · 10−7s, (258)is used to express the resistive wall time sale. The resistive wall time sale
τw for wall position b = 50 m, wall thikness d = 5 m, and wall ondutivity
σ = 4.5 · 1014 s−1 is then

τw =
4πbdσ

c2
= 0.0016s = 3.7 · 103 τA. (259)For a big radius R = 200 m, toroidal and poloidal mode numbers n = 3and m = 1, the value for k = n/R agrees with the value in Ref. [14℄, namely

ka = 0.75. For the ideal wall positioned at b/a = 2 the normalised radialmagneti �eld |Br| for the kink instability is shown in the left plot of Figure 27.The right plot shows the normalised |Br| pro�le for modes with the resistivewall positioned at b/a = 1.4. In this ase, two kineti roots rw1 and rw2 havebeen found whose growth rates are shown in Figure 28. The |Br| pro�les for theMHD and the kineti model are seen in good qualitative agreement. Figure 28shows the normalised growth rates of the ideal wall mode (iw) and the resistivewall mode (rw) as a funtion of the wall position. The MHD result is the sameas shown in Figures 5 and 6 of Ref. [14℄. The kineti desription of the kink typemode (ideal wall) shows a slightly smaller growth rate for 1.6 < b/a < 2. More66
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remarkably one an observe a signi�ant smaller value for mode stabilisationabout b/a ≈ 1.3 ompared to b/a ≈ 1.6 for MHD. Nevertheless, the ideal modean be still stabilised by an ideal wall lose enough to the plasma.If the wall is resistive, the resistive wall mode appears. In the MHD ase,there exists now a mode even for values of b/a < 1.6 with growth rates threeorders of magnitude smaller, i.e. on the resistive time sale. In the kineti ase,the situation is somewhat di�erent. For values above the ideal stabilisationvalues of b/a = 1.3 it holds for mode rw1 that there is, similar to MHD, notmuh di�erene to the ideal wall ase. For small values of the wall position,
1 < b/a < 1.52, there appears a new mode rw2, the kineti resistive wall mode.Between 1.3 < b/a < 1.52 both modes rw1 and rw2 do oexist. Again, thegrowth rates found by the kineti model are in good qualitative agreement withthe MHD results.7.5 Stabilisation by Plasma RotationThe next point to be adressed is the role of mode stabilisation by toroidal ro-tation of the plasma. For this purpose an uniform veloity pro�le (onstantover r) for Vz is applied to the RFP equilibrium used in the previous setions.Figure 29 shows the growth rates over toroidal rotation for di�erent positionsof the resistive wall. On the left, the results for negative Vz are shown, on theright, the results for positive Vz (plasma urrent is positive) are shown.The �rst thing one an realise is that for MHD the mode stabilisation is sym-metri with respet to the sign of Vz. This an be also seen from the formulae inthe MHD modelling setion if the poloidal veloity is zero. In ontrast, kinetimodelling shows stabilisation only for Vz < 0 values, whereas for Vz > 0 thegrowth rates slightly inrease instead. In the kineti model the toroidal plasmarotation veloity in�uenes the bakground eletri �eld and the parallel bulkveloity parameter of the ion and eletron bakground distribution funtions.In the expressions that de�ne those quantities there is no symmetry that maylead to suh a symmetri behavior of the instability growth rates with respetto diretion of toroidal plasma rotation. Another di�erene an be found forwall position b/a = 1.1. MHD predits instability whereas kineti theory doesnot. That means instead of the stability window shown in Figure 25, in thekineti model there is an upper threshold, b/a ≈ 1.68 for the wall position only:if the wall is too far away the RWM is not stabilised even for large toroidalrotation veloities. In MHD there is also a lower threshold, b/a ≈ 1.4, and theRWM is not stabilised for the resistive wall too lose to the plasma.For the ase b/a = 1.4 one onludes from Figure 29 that in the kineti modeltoroidal veloities of about 3% of the Alfvén veloity stabilise the RWM whereas68
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7.6 In�uene of Density Pro�les
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Figure 37: Power densities (normalised to the maximum value of |Br|2) dissipatedto eletrons (left) and to ions (right) for a stable (Vz/VA = −0.04) and an unstable(Vz/VA = −0.03) RWM and resistive wall position at b/a = 1.4.impat of di�erent sorts of partiles on the mode stability an be analysed bylooking at the eletromagneti power dissipated to the respetive speies. Iftotal power dissipated to the eletrons and ions together is positive, the modewill damp. Vie versa, if it is negative, the mode will obtain energy from theplasma partiles and will grow, i.e. beome unstable.In Figure 37 shown are power densities dissipated to eletrons and ions forthe ase of a stable (plasma rotates with Vz = −0.04 VA) and an unstable(Vz = −0.03 VA) RWM mode with resistive wall position at b/a = 1.4. Whilethe power densities dissipated on both speies have the same sign (positive forthe stable and negative for the unstable mode), it is the eletrons whih areresponsible for the RWM stability sine the energy dissipated to the ions isthree orders of magnitude less.7.8 Estimate of Kineti Code Dependene on Te and TiRegarding to the temperatures from the used RFP equilibrium in Se. 7, the re-maining question onerning the in�uene of temperatures on the kineti resultsarises. While for the MHD model only the omplete temperature T = Te + Tienters to the equilibrium pressure in p = nkBT , the kineti model depends onboth temperature omponents regarding to the separately onsidered ollisionsof eletrons and ions. Therefore the kineti model is expeted to be sensitive74
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8 Appliation of MHD and Kineti Model to Toka-mak PlasmasIn the following setion we apply the developed kineti and the MHD ode toa set of Tokamak like pro�les without reversal point.The task of these investigations is to show that it is also possible to model andompare instabilities obtained by the kineti and the MHD ode on pro�leswhih approximate a Tokamak on�guration in ylindrial symmetry. We havedeveloped a MATLAB program whih omputes pro�les by analyti expressionsinluding shape parameters to in�uene the gradients of the pro�les. This allowsto trae the frequenies of instabilities (frequeny values in the omplex plane),whih are known for simple pro�le on�gurations, up to realisti Tokamak sales.8.1 Calulation of Pro�lesThis setion desribes the modelling of Tokamak like pro�les in ylindrial sym-metry. The pro�les are omputed from analyti expressions based on the tanh-funtion. The equilibrium is alulated to be self-onsistent, i.e. the MHDequilibrium ondition from Equation (232) is satis�ed.The basi idea is that the pro�les of partile density n, ion and eletron tem-perature Ti and Te, plasma bakground veloities Vz and VΘ and urrent density
Jz are determined by a tanh-funtion whih an be varied by shape parametersaribtrarily. From these pro�les it is then possible to ompute all remaining pro-�les (e.g. magneti and eletri �elds) out of the MHD equilibrium equations.The shape parameters for the tanh-funtion represent a set of six parameterswhih determine the omplete shape of a plasma quantity Q and are namely:the quantity value at ylinder axis Q0, the value at ylinder wall Qinf , plasmaradius a, the degree of the urve deg and the shape oe�ients Dmin and Dmax.A tanh-funtion an then be used to ompute the plasma pro�les by:

Q = 2A

(

1 + tanh

(

a− r

δ

))deg

+Qinf , (260)where Q represents one of the basi pro�les mentioned above (e.g. n, Te, et.).Further are
δ = Dmin +

Dmax −Dmin

rn − r
· (r − r0) , (261)

A =
Q0 −Qinf

2tanh
(

a
r0
+ 1
)deg

. (262)76



The quantities with index zero represent the on axis values and rn representsthe ylinder wall position. In Table 3 the set of shape parameters for Pro�le 1from Se. 8.2 is shown. Table 4 shows the equilibrium parameter set for Pro�le2 and Table 5 shows the shape parameter set for equilibrium Pro�le 3.Pro�le 1 Q0 Qinf a deg Dmin Dmax

n 5.0 · 1013cm−3 Q0/1e5 50cm 5 3 20
Ti 104eV Q0/100 50cm 5 15 10
Te 7.5 · 103eV Q0/100 50cm 5 15 10
Vz 106 cm

s
0.0 cm

s
50cm 2 15 30

Jz 1.5 · 1011 stamp
cm2 0.0 stamp

cm2 50m 5 5 30Table 3: Shape parameter set for Pro�le 1 from Se. 8.2 Tokamak pro�les.Pro�le 2 Q0 Qinf a deg Dmin Dmax

n 5.0 · 1013cm−3 Q0/1e5 50cm 5 2 20
Ti 104eV Q0/100 50cm 9 2 10
Te 7.5 · 103eV Q0/100 50cm 9 2 10
Vz 106 cm

s
0.0 cm

s
50cm 2 15 30

Jz 1.5 · 1011 stamp
cm2 0.0 stamp

cm2 50cm 5 10 30Table 4: Shape parameter set for Pro�le 2 from Se. 8.2 Tokamak pro�les.Pro�le 3 Q0 Qinf a deg Dmin Dmax

n 5.0 · 1013cm−3 Q0/1e5 50cm 5 2 20
Ti 104eV Q0/100 50cm 9 2 10
Te 7.5 · 103eV Q0/100 50cm 9 2 10
Vz 106 cm

s
0.0 cm

s
50cm 2 15 30

Jz 3.0 · 1011 stamp
cm2 0.0 stamp

cm2 50cm 5 10 30Table 5: Shape parameter set for Pro�le 3 from Se. 8.2 Tokamak pro�les.
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8.2 Pro�le 1
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Figure 39: q-pro�le for Pro�le 1 whih has q = 1 at rs/a = 0.68 (rs = 34m) and
q0 = 0.85.Pro�le 1 is omputed analytially by MATLAB. All quantities satisfy the MHDequilibrium ondition for srew pinhes

∂

∂r

(

p+
B2

θ +B2
z

8π

)

+
B2

θ

4πr
= 0 . (263)All pro�les are shown in Figures 39, 40, 41, 42 and 43.(r = 10−3m) (r = 70m)

fce in Hz 2.2394e10 2.7585e10
fci in Hz 1.2276e7 1.5027e7
fpe in Hz 6.3489e10 2.0771e8
fpi in Hz 1.0457e9 3.3131e6
Cs in cm

s
1.0167e6 1.2157e5

VA in cm
s

2.4698e8 9.6202e10Table 6: Comparison of gyro and plasma frequenies fce = eB
2πmc

, fpe = 1
2π

√

4πne2

me
,ion sound speed Cs =

√

γkB
Te

mi
and Alfven veloity VA = B√

4πnimi

for Pro�le 1.
78



0 0.5 1 1.5 2

0

1

2

3

4

5

6

x 10
−3 Profile 1, background velocities

r/a

v/
v A

 

 
V

p

V
z

0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
11 Profile 1, current density

r/a

st
at

am
p/

cm
2

 

 
J

p

J
z

Figure 40: Pro�le 1 veloities vθ and vz normalised by the Alfven veloity as well asurrent omponents jθ and jz are plotted against the radius whih is normalised bythe plasma radius a.
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Figure 41: Pro�le 1 partile density and radial eletri �eld plotted against thenormalised radius.The q-pro�le inreases monotonially with r, the partile density at the axis is
n0 = 5 · 1013 1

cm3 , there the toroidal magneti �eld is Bz0 = 8 · 103G and thepoloidal magneti �eld is zero, the major radius is R = 200m.The magneti �elds satisfy the Straight Tokamak approximation from Se. 8.5.In Figure 44 the harateristi gyro and plasma frequenies for Pro�le 1 as wellas Alfven and sound veloities are shown. Table 6 ompares the values of thequantities from Figure 44. Therefore two radial positions (r = 10−3cm) and79
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Figure 42: Pro�le 1 magneti �elds Bθ and Bz as well as ion and eletron temperatureplotted against the normalised radius.
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Figure 43: Pro�le 1 magneti pressure pm = B2

8π and gas pressure pg = nkBT , plottedagainst the normalised radius.
(r = 70m) are hosen. At these radial ranges all quantities from Figure 44 arenearly onstant over radius r, what makes it useful to ompare them there.
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Figure 44: Pro�le 1 harateristi frequenies. The plots show the ion and eletronplasma frequenies, the ion and eletron gyro frequenies, the Alfven veloity VA andthe ion sound speed Cs plotted against the normalised radius.
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8.3 Pro�le 2
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Figure 45: q-pro�le for Pro�le 2 whih has q = 1 at rs/a = 0.9 (rs = 45m) and
q = 2 at rs/a = 1.16 (rs = 58m).Pro�le 2 is omputed in the same way by MATLAB like Pro�le 1. The MHD-(r = 10−3m) (r = 70m)

fce in Hz 2.7993e10 3.2273e10
fci in Hz 1.5241e7 1.7581e7
fpe in Hz 6.3489e10 2.0771e8
fpi in Hz 1.0457e9 3.3131e6
Cs in cm

s
1.0167e6 1.2157e5

VA in cm
s

3.0871e8 1.1251e11Table 7: Comparison of gyro and plasma frequenies fce = eB
2πmec

, fpe = 1
2π

√

4πne2

me
,ion sound speed Cs =

√

γkB
Te

mi
and Alfven veloity VA = B√

4πnimi

for Pro�le 2.equilibrium from Equation (263) is satis�ed as well. The partile density is
n0 = 5 · 1013 1

cm3 , the toroidal magneti �eld at the axis is Bz0 = 104G, thepoloidal �eld is zero there and the major radius is R = 400m.Figure 45, 46, 47, 48 and 49 show q-pro�le, magneti �elds, veloity and urrentdensity omponents, temperatures, the radial eletri �eld, the partile density
n, the magneti pressure and the gas pressure.Table 7 shows the harateristi frequenies and veloities at (r = 10−3m)82
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Figure 46: Pro�le 2 veloities vθ and vz normalised by the Alfven veloity as well asurrent density omponents jθ and jz are plotted against the normalised radius.

0 0.5 1 1.5 2
0

1

2

3

4

5
x 10

13 Profile 2, particle density

r/a

cm
−

3

0 0.5 1 1.5 2
−25

−20

−15

−10

−5

0

Profile 2, radial electric field

r/a

st
at

vo
lt/

cm

Figure 47: Pro�le 2 partile density and radial eletri �eld Er plotted against thenormalised radius.and (r = 70m). It an be reognised, that ion and eletron plasma frequenies(in Figure 50) di�er only in steepness at plasma edge. This is a onsequeneof the partile density whih is steeper ompared to the partile density fromPro�le 1. In general it an be said, that the temperatures of both pro�le setsstart from the same on axis values but Pro�le 1 is less steep. More di�erenesan be estimated at the urrent density drops, at Pro�le 1 the jθ-peak is nearlythree times smaller, the Er-omponent of Pro�le 1 is nearly �ve times smaller.The q-pro�le has an axis value q0 = 0.85, rosses q = 1 at rs ≈ 34m and83
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Figure 48: Pro�le 2 magneti �elds Bθ and Bz as well as ion and eletron temperatureplotted against the normalised radius.
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Figure 49: Pro�le 2 magneti pressure pm = B2

8π and gas pressure pg = nkBT , plottedagainst the normalised radius.inreases afterwards monotonially with r, see Figure 45.The most important di�erenes between both pro�le sets are the values theurrent peaks and Er, the axis value of Bz and the di�erent positions of theresonant surfaes for the q-pro�le.
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Figure 50: Pro�le 2 harateristi frequenies.The plots show the ion and eletronplasma frequenies, the ion and eletron gyro frequenies, the Alfven veloity VA andthe ion sound speed Cs plotted against the normalised radius.
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8.4 Pro�le 3
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Figure 51: q-pro�le for Pro�le 3 whih has q = 1 at rs/a = 1.16 (rs = 58m).Pro�le 3 is very similar to Pro�le 2 what means ompletely equal pro�les ofpartile density n, temperatures Te and Ti, a veloity pro�le Vz and a majorradius of R = 400m. A larger urrent density jz triggers a larger gradient ofthe magneti �eld omponents ompared to Pro�le 2. This results in a safety(r = 10−3m) (r = 70m)
fce in Hz 2.798e10 3.1412e10
fci in Hz 1.5248e7 1.711e7
fpe in Hz 6.3479e10 2.0771e8
fie in Hz 1.0485e9 4.685e6
Cs in cm

s
1.0167e6 1.2157e5

VA in cm
s

3.0871e8 1.0958e11Table 8: Comparison of gyro and plasma frequenies fce = eB
2πmec

, fpe = 1
2π

√

4πne2

me
,ion sound speed Cs =

√

γkB
Te

mi
and Alfven veloity VA = B√

4πnimi

for Pro�le 3.fator pro�le q whih has a resonant surfae of q = 1 at b/a = 1.16 (rs ≈ 58m)what is outside the plasma, see Figure 51. Pro�le 3 is omputed by the sameequilibrium solver like Pro�le 2, see Table 5.Charateristi frequenies are provided in a similar way like for Pro�le 1 andPro�le 2, see Table 8 and Figure 56. It an be reognised, that the plots86
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Figure 52: Pro�le 3 veloities vθ and vz normalised by the Alfven veloity as well asurrent density omponents jθ and jz are plotted against the normalised radius.
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Figure 53: Pro�le 3 partile density and radial eletri �eld Er plotted against thenormalised radius.for ion sound speed Cs, eletron and ion plasma frequeny are equal to theorresponding quantities of Pro�le 2.
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Figure 54: Pro�le 3 magneti �elds Bθ and Bz as well as ion and eletron temperatureplotted against the normalised radius.
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Figure 55: Pro�le 3 magneti pressure pm = B2

8π and gas pressure pg = nkBT , plottedagainst the normalised radius.
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Figure 56: Pro�le 3 harateristi frequenies.The plots show the ion and eletronplasma frequenies, the ion and eletron gyro frequenies, the Alfven veloity VA andthe ion sound speed Cs plotted against the normalised radius.
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8.5 Expeted Behaviour of MHD ModesFor the investigation of modes with |m| > 1, the safety fator q (r) plays animportant role regarding to the question if the plasma on�guration is stabledue to p- and j-driven modes or not.In a ylindrial srew-pinh on�guration where the magneti �elds satisfy theStraight Tokamak onditions:
Bθ

Bz

∼ ǫ , (264)with ǫ = r
R
the Tokamak aspet ratio and

8πp

B2
z

∼ ǫ2 (ohmically heated) ;
8πp

B2
z

∼ ǫ (high β tokamak) .External and internal urrent driven modes turn out to be the most dangerousinstabilities, see Ref. [11℄. Pressure driven modes are less dangerous, they anbe investigated by the Suydam riterion and are not foused here.Internal Current Driven ModesInternal modes are de�ned by the position of the resonant surfae rs, where
k ·B = 0 and the safety fator

q =
|m|
n

; at r = rs . (265)An analyti expansion of the energy priniple δW = δW0 + δW2 + ... with
δWn ∼ ǫn is needed for the srew pinh ase whereas an unstable ontributionrequires δWi < 0, see Se. 5.1In Ref. [32℄ it was shown that the �rst nonvanishing ontribution is

δW2

W0
=

1

a2

∫ a

0

(

n

m
− 1

q

)2
[

r2ξ′2 +
(

m2 − 1
)

ξ2
]

rdr, (266)where W0 =
πa2B2

0

2R
and a is the plasma radius. For arbitrary n and m ≥ 2 theintegrand never vanishes and is positive.

⇒ δW2 > 0 and internal modes are stable.The remaining ase is an arbitrary n with m = 1 ; there the seond integrandvanishes and the ontribution beomes stable if no resonant surfae is present,what means q 6= 1.The next ontribution term was derived in Ref. [31℄ for n = 1,
δW4

W0
=
ξ20
a2

∫ rs

0

[

rβ ′ +
r2

R2

(

1− 1

q

)(

3 +
1

q

)]

rdr . (267)90



If a resonant surfae with q = 1 exists inside the plasma, both pressure andurrent ontribution terms make δW4 < 0, what is destabilising. The p-gradiente�ets beome important only in high beta regimes, see Ref. [11℄. In other words,the m = 1 instability for internal modes is a weak instability resulting from ahigher δW -expansion term and vanishes if the resonant surfae is removed,either by wall stabilisation or by hoosing the q-value at the axis (at r = 0)
q0 > 1 . (268)External Current Driven ModesExternal modes are even stronger in energeti release and are de�ned by theresonant surfae being positioned in the vauum region outside the plasma ol-umn. The analysis of unstable ontributions to the energy priniple in Ref. [32℄returned
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)m−1 with a monotonially inreasing q (r)) yield modes (m,n)unstable for
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n
, (270)what means that a resonant surfae lies outside of the plasma. In Ref. [11℄ itwas mentioned, that instabilities with mode numbers m > 1 make muh moreompliated onstraints on the plasma bakground pro�les than modes with

m = 1. So urrent and pressure gradients in the viinity of the plasma surfaeplay an important but yet not fully understood role in triggering instabilities,an investigation of that was given in Ref. [37℄.An exemplary MHD investigation of higher m modes in ylindrial geometrywas performed in Ref. [9℄ where instabilities of (m,n) = (2, 1) were found forplasma pro�les, for whih the pressure pro�le at plasma edge has a step to zero,see Figure 57. This step triggers a destabilising term in the energy priniple
δW and produes an external m = 2 instability. The goal of the followinginvestigations is to run omputations for m ≥ 1 by kineti and MHD approah.
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Figure 57: Pro�les from Ref. [9℄ where p has a destabilising step at the plasma edge
a. The q-pro�le rosses resonane m

n
inside the plasma. A perfetly onduting wallis plaed at r = b.8.6 Method of ComputationRegarding to instabilities with |m| > 1, speial are has to be paid on the shapeof the pro�les, beause the ourene of suh instabilities is very sensitive onpro�le shapes, see Ref. [9℄. For symmetry reasons, the investigations disussed inthe following hapters use negative m numbers. In the KiLCA-ode a de�nitionof the q-pro�le like q = −m

n
is used, what di�ers in sign of m from the originalase in Equation (265). This is just beause of the toroidal diretion, whih isde�ned to be opposite in the ode. To keep a positive q pro�le, the m valueshave to be negative if n > 0.Computations for Pro�le 1 returned no instabilities for m > 1 modes, but onlyfor m = 1, for both kineti as well as for MHD. The drop in pressure andurrent mentioned in Ref. [9℄ and disussed in Se. 8.5, introdue the idea tomake the pro�les of the bakground more steep at the plasma edge to trigger adestabilising plasma on�guration there.As it an be seen from the disussed density pro�le in Pro�le 1 and Pro�le 2,the densities have a steep drop at r ≈ 50m, where Pro�le 2 is steeper thanPro�le 1. Aording to Figure 58, always two zones are used for omputation.In the used on�guration the zone interfae is always set to rA = 55m, whatis the estimated plasma edge and what oinides with the partile density drop(see Figure 41). The ideal wall is positioned at rw = 100m.
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Ideal MHD ApproahThe inner zone rǫ [0, rA] is treated as ideal MHD zone, and the outer region
rǫ [rA, rw] between plasma edge and the ideal onduting wall at rw is treatedas vauum. Several other plasma pro�les have been heked using di�erent zonetypes (vauum or plasma). So far the two zone MHD-vauum on�guration (seeFigure 58) with plasma Pro�le 2 is the only MHD ase whih returns resultsfor modes |m| > 1, Pro�le 1 gives only m = −1 results. Also di�erent positionsof the plasma-vauum interfae were heked. One the interfae is plaed at adensity whih represents an aeptable vauum, the resulting frequenies of thefound instabilities hange less than 5%, what is no signi�ant hange. So theplasma radius is plaed at rA = 55m what ensures the ase of vauum.
Figure 58: Shemati modell of two zones whih are used to ompute MHD andkineti results for Pro�le 1, Pro�le 2 and Pro�le 3. Between the plasma edge at rAand the ideal wall at rw the MHD ase uses a vauum zone and the kineti ase usesa plasma zone.Kineti ApproahFor the kineti approah the splitting of the ylinder in radial zones remainsthe same like for the MHD ase, Figure 58. The di�erene is now, that novauum zone is used and a plasma zone is applied there. This is done beausethe kineti model is expeted to run more stable if the whole ylinder is treatedas medium.
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mode m n Re(f) in Hz Im(f) in Hz type1 -1 1 0 2.85794779026e4 MHD2 -1 1 0 -2.85794779026e4 MHD3 -1 1 0 3.47100254113e3 MHD4 -1 1 0 -3.47100254116e3 MHD5 -1 1 -1.76400298585e4 3.74525676191e4 KiN6 -1 1 -1.23640183093e4 -3.91414857516e3 KiN7 -1 1 1.60796481388e6 -1.53712511445e1 KiN8 -1 1 -2.18950066542e4 1.54056177065e5 KiNTable 9: Frequenies of eigenmodes for modes with m = −1 for Pro�le 1 .
8.7 Results for Pro�le 1, m = −1For both the kineti and the MHD zones a zone-to-zone interfae at rA = 55mand an ideal wall position at rw = 100m are used. This setion shows resultsfor kineti and ideal MHD results of the on�guration, mentioned in Se. 8.5.A kineti ode with the ollision operator from Se. 3.2 is used to ompute theeigenmodes. Table 9 lists the found kineti and ideal MHD modes for m = −1,
vz = 0, rw = 100m and rA = 55m. A solution for an eigenmode is found ifthe value of determinant is 10 orders of magnitude less than nearby. Figure 59shows a omparison of the MHD eigenfuntions of mode 1 and mode 3 fromTable 9.Figure 60 shows a omparison of Br for MHD mode 1 and mode 3 with kinetimodes 5 and 8 from Table 9.The urves for Br are normalised by B0, whih is the omplex value for B0

r at
r0 = 20m. After normalisation, the MHD ase remains pure real and the kinetiase results in a real and imaginary part of Br

B0
r

. It an be learly estimatedthat the normalised urves ross zero at the resonant surfae for m = −1 at
rs ≈ 34m. The ideal MHD ode found four modes, two stable and twounstable. For the kineti root it is in priniple possible to �nd more than fourroots.
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Figure 59: Radial magneti �eld Br (Fourier oe�ients) for Pro�le 1 normalised at
r0 = 20m. Shown are the normalised MHD solutions for mode 1 and mode 3 fromTable 9 plotted against the normalised radius.
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Figure 60: Radial magneti �eld Br (Fourier oe�ients) for Pro�le 1 normalisedat r0 = 20m. Resonane at rs ≈ 34m (dotted). Shown are the normalised MHDsolutions mode 1 and mode 3 in omparison to the kineti modes 5 and 8.95



8.8 Results for Pro�le 2, m = −1 and m = −2Table 10 shows resulting frequenies for eigenmodes with m = −1 and m = −2.Using Pro�le 2, it is possible to �nd an unstable mode for m = −1 by bothkineti and MHD ode, see mode 1 and mode 2 in Table 10. It is possible tomode m n Re(f) in Hz Im(f) in Hz type1 -1 1 0 3.9101334822214e3 MHD2 -1 1 -1.8133135503843e3 7.92362550836761e3 KiN3 -2 1 0 1.1896940113354e4 MHD4 -2 1 -1.0769811356593e5 2.9711995682725e4 KiN5 -2 1 -1.3184264271102e5 2.5539645015256e4 KiNTable 10: Frequenies of eigenmodes with m = −1 and m = −2 for Pro�le 2.
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Figure 61: Radial magneti �eld Br (Fourier oe�ients) normalised at r0 = 20m.Resonane at rs ≈ 34m for m = −1 and rs ≈ 58m for m = −2. Two MHD modes 1and mode 3 for m = −1 and m = −2 from Table 10 are plotted against the normalisedradius.�nd one MHD result and two kineti for m = −2 (see Table 10).Figure 61 displays the normalised Im(Br) urves for the two MHD modes m =
−1 and m = −2 (from Table 10: mode 1 and mode 3). The normalised Brurves of the kineti mode 4 and mode 5 are ompared with the MHD mode 396
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Figure 62: Radial magneti �elds Br (Fourier oe�ients) for Pro�le 2 from Table 10normalised at r0 = 20m are plotted against the normalised radius. Resonane at
rs ≈ 58m for m = −2. The MHD mode 3 is ompared to the kineti mode 5 fromTable 10.
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Figure 63: Radial magneti �elds Br (Fourier oe�ients) for Pro�le 2 from Table 10normalised at r0 = 20m are plotted against the normalised radius. Resonane at
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urves. In the outer regions, outside the plasma radius rA, the kineti mode 5orresponds muh better to the MHD mode 3 than the kineti mode 4.8.9 Results for Pro�le 3, m = −1
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n

= 1 lies outside the plasma. Theresults are normalised by
ωA =

VA
a

=
1.9833 · 109 cm

s

50cm
= 6.174 · 109s−1, (271)where VA = 1.9833 · 109 cm

s
is the Alfven veloity at the plasma edge and a =

50m is the plasma radius.Figure 64 shows a normalised ideal wall growth rate in dependene of the wallposition. The frequeny of the mode with (m,n) = (−1, 1) at b/a = 2.0 is listedin Table 11.The mode beomes stabilised at the moment when the ideal wall rosses theposition of the resonant surfae q = −m
n

= 1 at rs/a = 1.16.98
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In Figure 64 the toroidal bakground rotation is set to zero. For the ase that atoroidal plasma veloity pro�le Vz (like shown in Figure 52) is onsidered, it hasbeen shown that di�erent positions of the ideal wall show a ompletely di�erentgrowth rate evolution while the plasma rotation Vz is inreased. Figure 65 showsthe normalised growth rates of the mode disussed in Figure 64 at the threedi�erent positions of the ideal wall, b/a = 1.2, b/a = 1.3 and b/a = 1.4, forinreasing toroidal rotation Vz. The rotation veloity is expressed as fration ofthe Alfven veloity value at plasma edge. It an be seen that the stabilisationthreshold of Vz is lower for lager values of b
a
. Further there exists a limit for theideal wall position, below whih the mode annot be stabilised by rotation anymore, e.g. at b/a = 1.2 where no stabilisation is visible.Absolute values of the normalised eigenfuntions |Br| are shown in Figure 66.m n Re(f) in Hz Im(f) in Hz b/a-1 1 0 1.14314 · 105 2.0-1 1 0 9.56377 · 104 1.4-1 1 0 8.54002 · 104 1.3-1 1 0 6.49238 · 104 1.2Table 11: Frequenies of eigenmodes with m = −1 and n = 1 and di�erent positionsof the ideal wall b/a for Pro�le 3 with Vz = 0.The urves show growth rates of modes with (m,n) = (−1, 1) at ideal wallpositions b/a = 1.4; 1.3; 1.2, with Vz = 0. The orresponding frequeny valuesare listed in Table 11.
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9 ConlusionsThe present thesis introdues a kineti model to study global plasma instabili-ties and ompares the results with MHD modelling. In partiular, resistive wallmode stabilisation is investigated in ylindrial geometry for a RFP plasmaon�guration by both models. For this purpose, the ode KiLCA, originally de-veloped for treating the plasma response due to external magneti �eld pertur-bation (RMPs), is adapted to deal with stable and unstable global eigenmodesthat are determined by plasma, vauum and vessel parameters. The MHDand kineti models inluding equilibrium plasma �ows are derived and adaptedto the KiLCA ode. For modelling ollisions, a Coulomb ollision operator ofFokker-Plank type is used whih onserves the harge also with respet toGalileian transformations. Solutions of Maxwell equations for di�erent regionslike plasma region, vauum and resistive medium are derived and implementedin the ode. The ode an be used to study resistive wall modes in reversed�eld pinh and Tokamak plasmas.The external kink mode stabilised in ideal MHD by an ideal wall is foundalso in the kineti modelling with omparable growth rates. The wall positionfor omplete stabilisation of the ideal mode is less than predited by MHD. Aresistive wall mode with growth rate on the resistive time sale is also seen in thekineti desription. In analogy to MHD, this mode was found to be stabilisedby toroidal plasma motion. However, stabilisation in the kineti modelling issensitive to the diretion of the rotation and, in the present ase, only negative
Vz values have led to mode stabilisation. Stabilising rotation veloities arefound somewhat smaller when ompared to MHD. Finally, it was not possibleto see the omplete stabilising window predited by MHD, that means thatno instability for very lose positions of the resistive wall has been found. Itis found, that for some wall positions the ideal wall kink an be stabilised byplasma rotation as well. There seems to exist a ritial position of the idealwall, above whih an inrease in toroidal rotation does not lead to stabilisationof the growth rates any more.It was possible to show that the shape of the toroidal veloity pro�les at plasmaedge has a visible e�et on the rotational stabilisation of the resistive wall modes.Further, an exhange of the ion and the eletron temperature pro�les shows ashift of the growth rate values of the resistive wall modes. This on�rms, thatthe kineti model is sensitive on eletron and ion motion (ollisions).Eigenmodes for di�erent mode numbers resulting from MHD and kineti mod-elling for Tokamak pro�les turned out to be more di�erent than for RFP pro�les.The kineti e�ets responsible for these di�erenes have still to be studied inmore detail. 101
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