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Abstract 

 

Background: MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene 

expression at the post-transcriptional level. Recent studies suggest that miRNAs are involved in 

the initiation and progression of many cancers types accompanied by changes in the immune 

system.  We performed a computational-experimental study to identify miRNA signatures and 

high confidence miRNA target genes driving tumor progression in colorectal cancer (CRC). 

Results: We measured the expression of 365 microRNAs and selected genes for samples from 

103 and 125 CRC patients, respectively and performed microarray analyses for samples from 

105 patients. We could identify miRNAs and high confidence targets showing a strong 

association with a higher UICC stage compared to normal colon mucosa. Our results 

demonstrated in different tumor stages a significant negative correlation between 4 miRNAs and 

Fractalkine (CX3CL1) expression, an activator of T-cell function previously shown to be a good 

prognostic factor for CRC. Genomic deletion events detected by array-CGH data provide a 

mechanism by which that miRNA could be involved in the progression of the disease. Finally we 

selected high-confidence miRNA target genes to reconstruct miRNA-mRNA networks and 

pinpointed immune processes controlling tumor progression. 

Conclusion: Our results suggest that miRNAs and their high-confidence targets may have a 

functional effect on tumor progression. Furthermore, some miRNAs with prognostic potential 

could provide the basis for an in-depth study of certain miRNAs as clinical prospective markers 

and as new pharmaceutical targets. 

Keywords: MicroRNA, Colorectal Cancer, High Confidence Target 

 

 

 

 

 



Zusammenfassung 

 

Hintergrund: MicroRNAs gehören einer Klasse von kleinen nicht-kodierenden RNAs an, die 

die Genexpression auf post-transkriptionelle Weise regulieren können. Laut neuesten Studien 

sind MicroRNAs im Entstehen von verschiedenen Krebsarten und den dazugehörigen 

Änderungen im Immunsystem involviert. Wir verfolgten einen kombinierten Ansatz um 

MicroRNAs und deren Zielgene zu identifizieren, welche  am Fortschreiten von Dickdarmkrebs 

beteiligt sind. 

Ergebnisse:  Wir haben für Tumorproben von 103 Patienten die Expression von 365 

MicroRNAs und von 125 Patienten die Expression ausgewählter Gene mittels qPCR bestimmt 

sowie für Proben von 105 Patienten Microarray-Experimente durchgeführt. Wir konnten eine 

Reihe von MicroRNAs und Zielgenen identifizieren, die einen Zusammenhang in 

fortgeschrittenen Stadien von Dickdarmkrebs im Vergleich zu normaler Dickdarmschleimhaut 

aufwiesen. Die Ergebnisse zeigten für unterschiedliche Tumorstadien eine signifikante negative 

Korrelation zwischen 4 MicroRNAs und der Expression von Fraktalkine (CX3CL1), einem 

Aktivator der T-Zellfunktion und guten prognostischen Marker von Dickdarmkrebs. Mittels 

array-CGH detektierter genomischer Ereignisse (Deletionen) könnten erklären warum eine dieser 

MicroRNAs direkt im Entstehen von Dickdarmkrebs beteiligt ist.  Schließlich wurden noch 

MicroRNA-Zielgene ausgewählt sowie MicroRNA-Gen-Netzwerke konstruiert, die es 

ermöglichen Immunprozesse die im Krebsverlauf eine Rolle spielen aufzuzeigen. 

Schlussfolgerung: Unsere Ergebnisse zeigen, dass MicroRNAs und deren Zielgene einen 

direkten Einfluss auf den Krebsverlauf haben könnten und dass einige microRNAs sich als gute 

prognostische Marker und pharmazeutische Targets eignen würden und als Basis für weitere 

eingehendere Studien dienen. 

Schlüsselwörter:  MicroRNAs, Dickdarmkrebs, Zielgene, Prognose 
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Background 

 
Globally, colorectal cancer (CRC) is the third most common form of cancer 

and the second cause of cancer-related death in the western countries, causing 

655,000 deaths around the world per year [1]. This type of cancer is more common in  

developed than developing countries [2]. The life time risk of colorectal 

adenocarcinoma is approximately 6% and of colorectal adenoma approximately 50% 

with an increasing age depending risk, especially after 60 years [3].  

 

CRC develops sporadically, in the setting of hereditary cancer syndromes, or 

on the basis of inflammatory bowel diseases [2]. Human CRC occurs when some of 

the cells that line the colon or the rectum become abnormal and grow out of control. 

Tumors of the colon and rectum are growths arising from the inner wall of the large 

intestine. This type of cancer can invade and damage adjacent tissues and organs. 

Surgery is the one choice of offering a potential cure. However, 30-40% of patients 

have loco regionally advanced or metastatic disease on a presentation which cannot be 

cured by surgery alone [4]. In addition, more than half of patients initially believed to 

be cured by surgery develop recurrence and die of the disease [5]. Adjuvant therapies 

have improved treatment and survival in patients with advance diseases but five years 

survival remains at approximately 50% both of colonic and rectal tumors [6].  

 

The staging of CRC is determined by many systems but the two most common 

are the Dukes staging and TNM classification. Several different forms of the Dukes 

classification were developed and placed patients into four stages, A, B, C and D 

according to the degree of the extent of cancer spread [7-9]. More recently, the 

American Joint Committee on Cancer (AJCC) has introduced the TNM staging 

system [10-12], which relies on the depth of tumor invasion and the absence or 

presence of nodal and distance metastasis. The objectives of both classifications are to 

aid the clinician in the planning of treatment, give some indication of prognosis, assist 

in the evaluation of the results of treatment, and facilitate the exchange of 

information. 
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Cancer is a complex disease that involves the interaction of many cell types 

and appears at different scales from the subcellular to macroscopic one. It is well 

known that tumors induce immune response. The activation of the host immune 

system through tumor cells is complex cascade involving both the innate and adaptive 

immune systems. The immune system can respond to cancer cells in two ways: by 

reacting against tumor-specific antigens (molecules that are unique to cancer cells) or 

against tumor-associated antigens (molecules that are expressed differently by cancer 

cells and normal cells) [13]. The concept that the immune system can recognize and 

eliminate malignant tumors was originally embodied in the cancer 

immunosurveillance hypothesis of Burnet and Thomas [14]. Cancer 

immunosurveillance is considered to be an important host protection process to inhibit 

carcinogenesis and to maintain cellular homeostasis [15]. This hypothesis was 

abandoned shortly afterwards because of the absence of strong experimental evidence 

supporting the concept [16]. Extensive work in experimental systems has elucidated 

the mechanisms underlying spontaneous antitumor immunity, and has formed the 

basis for the cancer immunoediting hypothesis. This hypothesis divides the immune 

response to cancer into the “three E’s” which are elimination, equilibrium, and escape 

[16, 17]. Several publications reported that solid cancers (ovarian, colorectal, lung, 

head and neck, melanoma, so on) have immunogenic properties and evidence that 

host immune response can influence survival. The adaptive immune reaction within 

the tumor appeared to be the most important parameter predicting the outcome after 

surgical treatment with curative intent [18, 19].  

 

Immunotherapy offers one such strategy. The demonstration that CRC has 

immunogenic properties and evidence that host immune response can influence 

survival [20-27]. Tumor infiltrating lymphocytes (TILs) have been isolated from the 

variety of solid human cancers. In a study using 959 specimens of resected CRC 

analyzed the correlation between tumor metastasis and T cell activation that tumor 

infiltrating memory and effector memory T cells (TEM) are less likely to discriminate 

to lymphovascular, perineural structures and to the regional lymph nodes [28]. Taken 

together, this has been attributed to a beneficial outcome, and the enhancement of T 

cell activation through T cell receptor stimulation and co-stimulatory signal provides 

promising strategies for immunotherapy of CRC [29]. 
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However, further studies are necessary to identify immune signatures. Recent 

biochemical and genetic studies have revealed that a class of small non-coding RNAs 

called microRNAs (miRNAs) supported a role in crucial physiological and biological 

processes such as cell proliferation [30], apoptosis [31], development [32], 

differentiation [33] and metabolism [34]. Given the global effect of miRNAs on gene 

expression, it is not surprising that miRNAs have been implicated in a common 

feature of various human diseases (developmental abnormality of muscular [35, 36], 

cardiovascular disorders [37, 38], cancers [39-48] and most recently inflammatory 

diseases [45, 49, 50]. 

 

Biological characteristics of miRNAs 

 

MiRNAs is a class of non-coding small RNAs, typically about 21–23 

nucleotides long [51]. Since the first discovered miRNA in 1993, there are almost 800 

miRNAs identified in human beings and the discovery of miRNA has led to great 

progression in the understanding of human cancers [52]. Forming mature miRNA 

involves transcription from DNA and two cleavages by Drosha and Dicer, the two 

main enzymes in the procession. The mature miRNA forms RNA-induced silencing 

complex (RISC) with Argonaut proteins and the target mRNA. In animal cells, mature 

miRNAs work through binding to the 3’-UTR of their target mRNAs with imperfect 

or perfect complementarily (Fig.1). MiRNAs can repress the expression of target 

genes either through disruption the translation or decomposition the target mRNAs 

[53, 54]. Currently, there are several hundred miRNAs that have been identified [55]. 

Although miRNA-mediated mRNA degradation occurs in mammals, most miRNAs 

are thought to use a second mechanism of gene regulation via imperfect base paring to 

the 3´-untranslated regions (3´-UTRs) of their miRNA targets. This results in the 

repression of target gene expression post-transcriptional, likely that the translational 

level of gene expression [56, 57]. 

 

MicroRNA and the Immune Response 

 

The discovery of miRNAs as regulators of developmental events in model 

organisms suggested to many investigators that miRNA might be involved in the 

immune system. In the past few years, widespread examination of this possibility has 
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produced notable results. The first indication that miRNAs might regulate the immune 

responses was a report in 2004 showing selective expression of miR-142a, miR-181a 

and miR-223 in immune cells [33]. Many results have shown that miRNAs affect 

mammalian immune cell; regulation of maturation, proliferation, differentiation and 

activation of immune (Fig.2) [33, 45, 58-63].  

 

 

Figure 1: Pathway of microRNA biogenesis and action adopted from [64]. 

MiRNAs are non-coding, single-stranded RNAs of ~22 nucleotides and generally 

transcribed by RNA polymerase II (Pol II) into long primary miRNA transcripts of 

variable size (pri-miRNA), which are recognized and cleaved in the nucleus by the 

RNase III enzyme Drosha [65, 66] and its cofactor, DGCR8, to a pre-miRNA 

precursor product. The pre-miRNA is transported from the nucleus to the cytoplasm 

by exportin 5 [67]. Another RNase enzyme called Dicer [68] which produces a 

transient, 22 nucleotide duplex. Only one strand of the miRNA duplex (mature 

miRNA) is incorporated into a large protein complex called RISC (RNA-induced 

silencing complex). The mature miRNA leads RISC to cleave the mRNA or induce 

translational repression, depending on the degree of complementarily between the 

miRNA and its target.  
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Figure 2: MiRNAs involved in the differentiation and maturation of innate and adaptive immune cells. Upregulated miRNAs are shown in green, 

downregulated miRNAs are shown in red. 
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The role of the immune system is to protect against infection and to eliminate 

disease from the host [69]. There are two type of the defense; innate and adaptive 

immunity. Most are detected and destroyed within minutes or hours by defense 

mechanisms that do not require a prolonged period of induction because they do not 

rely on the clonal expansion of antigen-specific lymphocytes: these are the 

mechanisms of innate immunity [70]. The specific pathogen destroying is known as 

an adaptive immune response. In the immune system, miRNA appear to have a key 

role in the early differentiation and effector differentiation of B cells [71-77]. In T 

cells, miRNAs have been shown to be key regulators of the lineage induction 

pathways, and to have a strong role in the induction, function and maintenance of the 

regulatory T-cell lineage [71-77]. MiRNAs are also important for regulating the 

differentiation of dendritic cells and macrophages via toll-like receptors, with 

responsibilities in suppressing effector function before activation and enhancing 

function after stimulation [69-81]. 

 

MicroRNA and Cancer 

 

Human cancer studies are always the hotspots in the life science research. The 

possible involvement of miRNAs in cancers was based on following observations. 

Firstly, miRNAs play important roles in cell fate determination, proliferation, and cell 

death [74, 78-84]. Those are key mechanisms involved in cancer. Moreover, many 

genes encoding miRNAs are located in regions of the genome known to be frequently 

amplified or deleted in human cancers [78, 85, 79]. Finally, the expression profile of 

miRNAs in normal tissues and tumor tissues is different [86-90]. Significant progress 

in miRNAs and cancer has been made in the past few years. Two major categories of 

miRNAs, oncomiRs and tumor suppressor miRNAs (Fig.3 and Tab.1), have been 

described based on their effects in cancer [80, 91-94]. OncomiRs can act as 

oncogenes and have a negative impact on patient outcome [93, 94]. Their expression 

can be either positively influence oncogenes or inhibit tumor suppressor genes. 

Conversely, tumor suppressor miRNAs have a positive impact on patient outcome 

when high expressed [91-94]. Their expression may either inhibit oncogenes or 

activate tumor suppressor genes. 
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Figure 3: Effects of miRNAs on oncogenes and tumor suppressor genes. OncomiRs and 

tumor suppressor miRNAs impact is shown in red and green, respectively. + means 

promotion, - means inhibition. 

 

Table 1: MiRNAs with experimental data supporting a tumor suppressor or oncogene 

function in cancer [64]. 

 

microRNA Expression in patients Functions 

miR-15a, miR-16-1 Down-regulated in CLL Tumor suppressor 

let-7 (a,-b,-c,-d) Down-regulated in lung and breast cancers  Tumor suppressor 

miR-29 (a,-b,-c) Down-regulated in CLL, AML (11q23), lung 

and breast cancers, and cholangiocarcinoma 

Tumor suppressor 

miR-34 (a,-b,-b) Down-regulated in pancreatic, colon, and breast 

cancers 

Tumor suppressor 

miR-155 Up-regulated in CLL, DLBCL, FLT3-ITD 

AML, BL, and lung and breast cancers 

Oncogene 

miR-17-92 cluster Up-regulated in lymphomas and in breast, lung, 

colon, stomach, and pancreas cancers 

Oncogene 

miR-21 Up-regulated in breast, colon, pancreas, lung, 

prostate, liver, and stomach cancers; 

AML(11q23); CLL; and glioblastoma 

Oncogene 

miR-372, miR373 Up-regulated in testicular tumors Oncogene 
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Abbreviations: CLL, chronic lymphocytic leukemia; AML, acute myeloid leukemia; 

DLBCL, diffuse large B cell lymphoma; FLT3-ITD, FMS-like tyrosine kinase 3 in 

tandem duplication mutations; BL, Burkitt lymphoma. 

 

Different tumors and tumor subtypes have specific miRNA signatures which 

may be useful as diagnostic and prognostic markers. Lu et al [95] used a new bead-

based flow cytometric miRNA expression profiling method to present a systematic 

expression analysis of 217 mammalian miRNAs from 334 samples, including 

multiple human cancers. The miRNA profiles are surprisingly informative, reflecting 

the developmental lineage and differentiation state of the tumors. Furthermore, they 

were able to successfully classify poorly differentiated tumors using miRNA 

expression profiles, whereas messenger RNA profiles were highly inaccurate when 

applied to the same samples. These findings highlight the potential of miRNA 

profiling in cancer diagnosis. Bloomston et al reported 23 miRNAs that significantly 

distinguish pancreatic cancer from chronic pancreatitis, with several of these miRNAs 

being capable of predicting overall survival in the cancer patients [96]. In stage II 

colon cancer, miRNA expression profiles were capable of predicting recurrence rates 

with an accuracy of >80%, suggesting that miRNA profiling can also be used to 

determine a tumor’s aggressiveness [97]. Similarly, miRNA profiling of 

hepatocellular carcinoma could accurately differentiate between the tumors and 

matched normal liver [98]. Here, we summarized miRNA profiling studies in human 

malignancies and examine the role of miRNAs in the pathogenesis of cancer in Tab.2 

[99]. 
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Table 2: Cancer-related miRNAs summarizing miRNA expression in the major cancer 

types [99]. 

 

Cancer Up-regulated miRNAs Down-regulated miRNAs 

Breast cancer miR-21, miR-155, miR-29b-2 miR-143, miR-145, miR-155, 

miR-200 

Lung cancer miR-21, miR-189, miR-200b, 

miR-17-92 cluster 

let-7 family, miR-126, miR-30a, 

miR-143, miR-145, miR-188, 

miR-331, miR-34s 

Colon cancer miR-223, miR-21, miR-17, miR 

106m, miR-34s 

miR-143, miR-145, miR-195, 

miR-130a, miR-331 

Prostate cancer let-7d, miR-195, miR-203, miR-

125b, miR-20a, miR-221, miR-22 

miR-143, miR-145, miR-128a, 

miR-146a, miR-126 

Brain cancer miR-21, miR-221 miR-181 

Hepatocellular carcinoma miR-34s, miR-224, miR-18, miR-

21 

miR-17-19b cluster, miR-200a, 

miR-125a, miR199a, miR195 

Chronic lymphocytic 

leukemia 

miR-15, miR-16  

Ovarian cancer miR-200a,b,c, miR-141 miR-199a, miR-140, miR-145, 

miR-125b 

Pancreatic cancer miR-221, miR-181a, miR-21, miR148a,b 

Papillary thyroid 

carcinoma 

miR-221, miR-222, miR-146, 

miR-181 

 

Stomach cancer miR-21, miR-103, miR223 miR-218 

 

Since miRNAs are involved in multiple biological processes, metabolic 

regulation, including cell proliferation, differentiation, and programmed cell death, 

miRNAs can be viewed as major contributors to the pathogenesis of cancer, including 

initiation and progression of cancer [100].  

  

Recently, Kataro et al [101, 86] reported miR-222 and miR-339 in cancer cells 

down-regulate the expression of ICAM-1, thereby regulating the susceptibility of 

cancer cell to cytotoxic T lymphocytes. This is among the first reports to demonstrate 

the role of miRNAs in cancer immunosurveillance. Hideho et [71] identified miR-17-
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92 family, miR-155, and miR-181a are targets in T cells. In macrophages, miR-125b, 

miR-146, and miR-155 act as Pathogen Associated Molecular Pattern Molecule-

associated microRNAs and miR-34C and miR-214 as Damage Associated Molecular 

Pattern Molecules-associated miRs. We have also demonstrated that the ability of 

tumors to serve as targets for cytolytic effectors is regulated by miR-222 and miR-

339. In this discovery suggested that roles of miRNAs in immune-regulation will 

advance the field of cancer immunology and immunotherapy.   

 

MicroRNA and Colorectal Cancer 

 

In 2003, Michael et al [102] published the first study of miRNA in CRC, 

identifying novel dysregulated miRNAs, miR-143 and miR-145. Akao et al [103] 

examined the down regulation of let-7 miRNAs and DLD-1 in human colon cancer 

tumors and cell lines. These findings suggest the involvement of let-7 miRNA in the 

growth of colon cancer cells. Yang et al [104] reviewed the existing literature 

pertaining to the study specific expression patterns of miRNAs in CRC. Currently, 

two different approaches are applied to investigate the connection between miRNAs 

and CRC. On the one hand, miRNAs seem to regulate many known oncogenic and 

tumor suppressor signaling pathways involved in the pathogenesis of CRC. Their 

dissection in function studies is critical for better understanding of cancer biology, 

eventually aiming for identifications of novel pharmaceutical targets. On the other 

hand, expression profiles of hundreds of different miRNAs have been shown to bear a 

much higher potential as biomarkers than their mRNA counterparts. This allows a 

prediction of prognosis and distinctive stages of disease [105]. 

 

Many strong evidences showed that miRNAs have essential roles in the 

development malignancies and the regulation of immune system. We therefore 

initiated a study to identify the impact of miRNAs and their target genes on the tumor 

progression of CRC. The miRNA signatures identified from these clinical studies may 

serve as potential diagnostic and prognostic disease makers. 
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Objectives 
 

The objective of this study was to reconstruct miRNA-mRNA networks. We 

therefore applied a computational-experimental approach to identify miRNA- target 

genes relationships. As a starting point we chose miRNA expression profiling since 

this class of small non-coding RNAs was implicated in both, the regulation of the 

immune system and contribution to the pathogenesis of cancer, including initiation 

and progression of cancer. Towards this end we performed miRNA and mRNA 

expression profiling in human colorectal cancer and used statistical methods to 

identify miRNAs associated with tumor progression. Additionally, bioinformatics 

methods were applied to select high-confidence miRNA target genes, reconstruct 

miRNA-mRNA networks and pinpoint immune processes controlling tumor 

progression.  
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Results 
 

The MicroRNome profile from a cohort of 105 CRC patients 

 

The expression of 365 miRNAs was analyzed by qPCR using Low Density 

Arrays in 73 CRC patients (see Materials and Methods). For all the patients a long-

term follow-up (>10 years) was available. The data and the corresponding clinical 

information were stored in a dedicated patient database, the Tumor 

MicroEnvironment (TME.db). The data was normalized in Genesis [106]. 

Unsupervised complete linkage clustering based on Pearson Uncentered algorithm 

was performed without taking into account the corresponding clinical information: i.e. 

cancer stage or patient outcome. High expressed miRNA profiles were represented in 

green and the low expressed miRNA in red. Three clusters of patients were revealed 

(Fig.4). The risk to relapse of those groups of patients was investigated using a Cox 

proportional hazards model and the significance was assessed by the logrank test. 

Interestingly, the groups of patients had a significant different risk to relapse (logrank 

P-value = 2.3e-03, HR = 1.5 [0.09-2.24]). Cluster2 patients showed a significant 

lower risk to relapse compared to the other patients. In contrast, Cluster3 patients 

showed a significantly higher risk to relapse. Cluter1 patients had a similar risk to 

relapse with the other patients. The overrepresentation of relapsing patients in the 

patient clusters was calculated using the two-sided Fisher’s exact test (P-value = 

0.0021). A significant predominance of relapsing patients was found in Cluster3 

compared to Cluster1 (P-value = 0.0509). In the same time, Cluster2 had significant 

more non relapsing patients compared to Cluster3 (P-value = 6.0e-04). Cluster1 and 

Cluster2 had a similar distribution of relapsing patients. Kaplan Meier (KM) curves 

for three patient clusters based on miRNA expression at the tumor side. (A) 

Significant separation between the three groups of patients at the minimum p-value 

cutoff (logrank P-value = 2.3e-03, HR = 1.5 [0.09-2.24]). (B) Significant lower risk to 

relapse for patients in Cluster2 (P-value = 5.4e-03, HR = 2.7 [1.29-5.65]) and 

significant higher risk for (C) Cluster3 (P-value = 1.3e-03, HR = 2.63 [1.43-4.82]) 

compared to the rest of the cohort. 
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Figure 4: Hierarchical clustering of 365 miRNA expression from a cohort of 73 CRC 

patients. The data was normalized and hierarchical clustered in Genesis [107]. High 

expressed miRNA profiles were represented in red and the low expressed miRNA in 

green. Three patient clusters were defined. 
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Figure 5: MiRNA expression impact on CRC patients DFS. A) Kaplan Meier (KM) curves for three patient clusters. Cluster1 in red, Cluster2 in green, 

Cluster3 in black. KM curves for Cluster2 (B) and Cluster3 (C) compared to the rest of the cohort. Cluster 2 and 3 in red, the rest of the cohort in 

black. 
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Univariate survival analysis on Low density array (LDA) Real-Time Taqman PCR 

and microRNome data using Log-Rank and Cox Regression 

 

Log-Rank survival analysis could show the predictive strength of single 

miRNA marker predicting patient recurrence. Hazard Ratios (HR) were calculated for 

overall survival (OS) and disease free survival (DFS) using a univariate Cox 

regression model on the 381 genes for 125 patients and 365 miRNAs measured for 

103 patients.  Patients were separated into two groups (high, represented in red, and 

low, represented in black) depending on the level of expression of miRNAs at the 

median cutoff. Hazard ratios (HR) are shown in (Fig. 6). The miRNAs can be divided 

into two groups: good prognosis (HR<1), e.g. miR-626 and poor prognosis (HR>1), 

e.g. miR-519d.  

 

Differential expression of miRNAs and tumor progression 

 

Differential expression of a molecule in tumor and normal tissues often 

represents an important basis for cancer biomarker exploration and development. For 

diagnostic biomarkers, one would commonly focus on overexpressed targets, while 

for prognostic and predictive biomarkers, as well as for defining potential therapeutic 

targets, both over- and underexpression could be biologically interesting. To evaluate 

the changes in miRNA expression during tumor progression, we compared the  

miRNA expression in normal colon mucosa with the miRNA expression in different 

tumor stages. We found the expression of 12 miRNAs (miR-660, miR-657, miR-29a, 

miR-519d, miR-518c, miR-302a, miR-558, miR-603, miR-609, miR-376a, miR-130a, 

and miR-211) showing a strong association with a higher UICC stage compared to 

normal colon mucosa (Fig.7). The expression levels of miR-302a, miR-558, and miR-

603 have been shown to be gradually decreased from normal mucosa to T4. In 

contrast, the expression of miR-660, miR-657, miR-29a and miR-519d were found to 

be differentially up-regulated in the different T-stage. The expression of a miRNAs 

may also decrease (or increase) at a particular stage of cancer (for example, miR-211 

has shown down-regulated in T1, T2 and T4 but up-regulated in T3). 
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Figure 6: MiRNA impact on CRC patient DFS. (A) miRNAs with positive (marked in green) and negative impact (marked in red) on 

DFS. (B) Kaplan Meier curves for representative miRNAs with good (miR-626) and bad (miR-519d) impact on patient outcome, 

respectively. CRC patients with high miRNA expression are shown in red and with low expression in black. 



Figure 7: MiRNAs expression during tumor progression. Red and green arrows show miRNAs up- or downregulated in each tumor stage (T1, T2, T3, 

T4) compared to the normal epithelium. In yellow, miRNAs over- or underexpressed at different tumor stages.  
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Identification of miRNA-target genes for tumor progression 

 
First we used 10 prediction tools (TargetScan (conserved), TargetScan 

(nonconserved), PicTar (4-way), PicTar (5-way) miRanda (miRBase), miRanda 

(microrna.org), PITA, EIMMo, RNA22, DIANA-microT) to obtain, based on public 

data, candidate miRNA-mRNA target interactions for 365 miRNAs. The predictions 

reflect miRNA:mRNA paring, site location, conservation, site accessibility, multiple 

sites and expression profile (see Materials and Methods). The resulting gene-miRNA 

pairs were used as input for GenMiR++. 

In the next step we used a customized GenMiR++ code (see Materials and 

Methods) to integrate the in silico predicted pairs with miRNAs and mRNA 

expression profiles from colorectal tumors. 365 miRNAs and 19,806 mRNAs were 

investigated in 73 tumors from CRC patients in all tumor stages. The top 25% 

predicted pairs (365 miRNAs and 381 target genes) were selected as representative 

for CRC at a false detection rate of 0.05. This analysis allowed us to identify 12,065 

high confidence miRNA-mRNA pairs. Since, the miRNAs will degrade their target 

genes, so miRNA expression should show a negative correlation with the respective 

target gene. We calculated Pearson correlation coefficients between miRNAs and 

their targets with a strong negative correlation (R < 0, P-value < 0.05). In total, we 

associated both analyses and obtained 788 specific pairs for CRC. Figure 8 shows the 

landmark of the 12 most differential expressed miRNA and their target genes specific 

for tumor progression. 

Interestingly, our results have shown that miR-302a and miR-660 are 

significantly negative correlated in every stage of tumor (T1-T4) with their target 

gene, Fractalkine (CX3CL1). Additionally, CX3CL1 was one of the target genes of 

miR-29a and miR-519d. Significant negative correlation between CX3CL1 and those 

miRNAs was shown in tumor stages T2-T4. 
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Figure 8: A landmark of specific miRNAs and their target genes in colon cancer 

tumor progression. 78 high confidence miRNA-gene pairs, negatively correlated, 

from 73 CRC patients were visualized in Genesis [107]. In red, pairs specific for 

different tumor stages: T1, T2, T3 and T4. In black, absence of correlation. 

 

From the total of 78 high confidence miRNA-target genes selected 48 were 

specific for T1, 18 were specific for T2, 6 for T3 and 2 for T4.  We could also show 5 

miRNA-gene pairs specific for early stages (T1 and T2), miRNA-gene pairs present 

in more advanced stages (T2, T3 and T4) as well as miRNA-genes present in all 

tumor stages. 

 

We hypothesized on predicted “direct” target of miRNA following the 

involvement of miRNAs in cancer [91, 92, 87, 108] and has significant negative 

correlation between miRNA and its target. To gain our confident on predicted direct 
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target, CX3CL1, of miR-29a, miR-519d, miR-302a and miR-660 based on expression 

profiles and regulation, we used the definition of “oncomiRNAs” as the over 

expression of miRNAs can downregulate the expression of tumor suppressor genes 

following [91-94, 108]. Similarly, miRNAs can downregulate oncogenes, we referred  

as “tumor suppressor miRNAs” [91-94, 108]. As a result of this study, miR-660, miR-

29a and miR-519d can be oncomiRNAs and showed strong negative correlation with 

tumor suppressor gene, CX3CL1. We may suggest that CX3CL1 is the direct target of 

these miRNAs. In contrast, based on functional of miRNA defined miR-302a as 

tumor suppressor miRNA and showed significant negative correlation with CX3CL1, 

we may conclude that CX3CL1 is “not” the direct target of miR-302a because of its 

role in caner.    

 

We used the median expression value of CX3CL1 over the 43 patients as 

cutoff to define a low and high gene expression patient group. For each of the two 

patient groups the expression of selected miRNAs was calculated and plotted (Fig.9). 

MiR-29a and miR-660 were significantly different (t-test; P-value < 0.05) but miR-

302a and miR-519d were not significant difference between two patient groups. Thus, 

we concluded that CX3CL1 is the predicted direct target of miR-29a and miR-660 

and be predicted “indirect” target of miR-302a and miR-519d.  

 

In the next step we investigated the miR-302a, miR-660, miR-29a and miR-

519d expression in relation to the expression CX3CL1. We used the median 

expression value of CX3CL1 over the 43 CRC patients as cutoff to define a low (Lo) 

and high (Hi) gene expression patient group. For each of the two patient groups the 

expression of selected miRNAs was calculated and plotted (Fig.9). In the CX3CL1 Lo 

group, miR-29a showed a significant higher expression compared to the CX3CL1 Hi 

group (Fig.9A, P-value = 0.037). A similar result was found for miR-660 (Fig.9D, P-

value = 0.004). Those findings are in concordance with our previous results showing a 

significant negative correlation between miR-29a and miR-660 and their target gene, 

CX3CL1. In contrast, the expression of miR-302a and miR-519 was higher in the 

CX3CL1 Hi group compared to the CX3CL1 Lo group.  
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Figure 9: Expression of miR-29a, miR-302a, miR-519d and miR-660 in 43 CRC 

patients. The patients are split into a high (Hi) and a low (Lo) group based on the 

CX3CL1 expression level. The t-test significant different miRNA expression is 

marked in red. 

 

Target gene networks and involvement in immunological processes of miR-29a, miR-

519d, miR-302a and miR-660  

 

Further we performed functional analysis for the four selected miRNAs (miR-

29a, miR-519d, miR-302a, miR-660). For each tumor stage we investigated the 

immune roles of the target genes predicted for all those miRNAs. A Cytoscape [109] 

network presents the miRNA and its predicted target genes, selected based on high 

confidence scoring and significant negative correlation (upper panel of Fig.10-13). 

Triangles, circles and diamonds in the network are indicating miRNAs, target genes, 

and transcription factors, respectively. Survival analysis results were included in the 
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network. The impact of the miRNAs and target genes on the patients’ DFS was shown 

by using two different node colors: green (good outcome, HR<1) and red (bad 

outcome, HR>1). The size of the nodes is based on log2 (HR) for disease free 

survival. Triangles, circles and dimonds in the network indicated miRNAs, target 

genes, and transcription fators, respectively. The impact of the miRNAs and target 

genes on the patients’ DFS was shown by using two different node colors: green 

(good outcome, HR<1) and red (bad outcome, HR>1). The size of the nodes is based 

on log2 (HR) for disease free survival. Edge represents significant negative 

correlation between miRNAs and mRNAs.  

 

We investigated the functions of miRNAs target genes and using Gene 

Ontology [110]  annotations. Functional analysis was performed for the negative 

correlated high confidence pairs. Cytoscape [109], a public available software was 

used to visualize the miRNAs and their target genes. Further, the immune functions 

triggered by the miRNA through its target genes were investigated using ClueGO 

[111], a Cytoscape plugin. For miR-29a and miR-302a, GO annotations revealed 

specific terms like “T cell differentiation” in tumor stage T1. The common 

functionality of each selected miRNAs refers to characteristics of lymphocytes 

(chemotaxis) and leukocyte (adhesion). In the tumor stage T3-T4, the function of 

these miRNAs is involved in both the innate (macrophage) and adaptive immune 

response (T helper 1 cell).     

 

The impact of the miRNAs and target genes in tumor recurrence 

 

The expression level of miRNA and target genes have, for some cancers, been 

reported to associated with clinical diseased courses [39, 97, 98, 112-114]. Hence, we 

were interested in evaluating the prognostic potential of the four miRNAs (miR-29a, 

miR-519d, miR-302a and miR-660) of their target gene, CX3CL1. Survival analysis 

in a cohort of 63 CRC patients could show that patients with high expression of 

CX3CL1 have a significant lower risk to relapse compared to the patients with low 

expression of this gene (Fig.14A, P-value = 2.39e-03, HR = 1.84 [1.08-3.33]). 

Similar, a significantly lower risk to relapse was shown in patients with high 

expression of miR-302a (Fig.14D, P-value = 8.07e-03, HR = 2.21 [1.18-4.15]). In 

contrast, a significant higher risk to relapse was shown for the patients having high 
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expression of the miR-660 (Fig.14E, P-value = 5.68e-04, HR = 3 [1.54-5.85]). 

Patients having a high expression of miR-29a (Fig.14B) and miR-519d (Fig.14C) had 

a higher risk to relapse (HR = 1.66 [0.903-3.07], HR = 1.59 [0.852-2.99], 

respectively) but not significantly different compared to the patients with low 

expression of those miRNAs.  
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Figure 10: Functional analysis of miR-29a and of its target genes with tumor progression. Panel A miR-29a and its target genes at different tumor 

stages. Triangles, circles and diamonds are miRNAs, target genes, and transcription factors, respectively. The node color shows the good (green, 

HR<1) and bad (red, HR>1) outcome. The size of the nodes is based on log2 (HR) for DFS.  Panel B Networks of Gene Ontology, KEGG and 

BioCarta terms were visualized in ClueGO. The size of the nodes shows the significance of the terms and the links are based on kappa statistics. 
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Figure 11: Functional analysis of miR-519d and of its target genes with tumor progression. Panel A miR-519d and its target genes at different tumor 

stages. Triangles, circles and diamonds are miRNAs, target genes, and transcription factors, respectively. The node color shows the good (green, 

HR<1) and bad (red, HR>1) outcome. The size of the nodes is based on log2 (HR) for DFS.  Panel B Networks of Gene Ontology, KEGG and 

BioCarta terms were visualized in ClueGO. The size of the nodes shows the significance of the terms and the links are based on kappa statistics. 
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Figure 12: Functional analysis of miR-302a and of its target genes with tumor progression. Panel A miR-302a and its target genes at different tumor 

stages. Triangles, circles and diamonds are miRNAs, target genes, and transcription factors, respectively. The node color shows the good (green, 

HR<1) and bad (red, HR>1) outcome. The size of the nodes is based on log2 (HR) for DFS.  Panel B Networks of Gene Ontology, KEGG and 

BioCarta terms were visualized in ClueGO. The size of the nodes shows the significance of the terms and the links are based on kappa statistics. 



Figure 13: Functional analysis of miR-660 and of its target genes with tumor progression. Panel A miR-660 and its target genes at different tumor 

stages. Triangles, circles and diamonds are miRNAs, target genes, and transcription factors, respectively. The node color shows the good (green, 

HR<1) and bad (red, HR>1) outcome. The size of the nodes is based on log2 (HR) for DFS.  Panel B Networks of Gene Ontology, KEGG and 

BioCarta terms were visualized in ClueGO. The size of the nodes shows the significance of the terms and the links are based on kappa statistics. 
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Figure 14: Kaplan-Meier survival curves for miR-29a, miR-302a, miR-519d, miR-660 and CX3CL1 at the median cutoff. High and low   

expression is shown in red and black, respectively. 
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Array comparative genomic hybridization (aCGH) analysis for selected miRNAs 

correlated with tumor progression 

 
At the cellular level, cancer is a genetic disease; genetic changes in somatic 

cells are essential events in neoplasia. The importance of DNA copy number 

aberrations has been demonstrated in many tumors [115]. Detecting these aberrations 

by array comparative genomic hybridization (array-CGH) provides information on the 

locations of important cancer genes and can have clinical use in diagnosis, cancer 

classification and prognostic. For example, Geigl et al [116] proposed a new protocol 

for single-cell isolation and whole genome amplification by array-CGH which is 

crucial and suitable for genomic instability patterns within primary tumors. Other 

technical considerations related to array-CGH analysis of tumor cells have been 

proposed and reviewed [117, 118]. 

 

In this study, we used array-CGH from 216 CRC patients to investigate the 

amplification and deletion status of the 11 miRNAs identified as specific for CRC 

tumor progression. The patients were split in groups based on their tumor stage. The 

amplification score (Fig. 15A) was calculated for each miRNA considering the mean 

amplification of the miRNA and its frequency in a group. The deletion score 

(Fig.15B) was calculated in the same way. 

 

 

Figure 15: Array-CGH data for 11 miRNAs involved in CRC tumor progression from 

216 CRC patients. Mean amplification (A) and deletion (B) score for each tumor 

stage visualized in Genesis [107]. 
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The amplification score of miR-29a was gradually increased in tumor stages 

T1-T3 and decreased in T4. Conversely, the amplification score of miR-657 were 

rapidly increased in from T1 to T2 and slightly decreased in tumor stages T2 to T4. 

As a result of the deletion scores of miR-302a which were rapidly increased in all 

tumor stages (T1-T4), suggested that miR-302a could be involved in the progression 

of the disease. 

  

In the next step we investigated the impact of the amplifications/deletions of 

the selected miRNAs on patient survival. Interestingly, the patients having deleted 

miR-302a on chromosome 4 showed a significantly higher risk to relapse compared to 

the patients that had no aberration (Fig.16A, logrank P-value = 0.007, HR= 1.945). 

Furthermore, patients with low expression of miR-302a showed a higher risk to 

relapse compared to patients having high miR-302a expression (Fig.16B, logrank P-

value = 8.07e-03, HR = 2.21 [1.18-4.15]). Thus, the decreased expression of miR-

302a is likely due to deletion of chromosome region and correlate with bad outcome.  
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Figure 16: Disease-free survival of colorectal cancer patients according to expression 

of miR-302a and deletions in genomic area. Kaplan Meier curves for mirR-302a 

deletion (A) and expression (B). Hi expressed miRNA and the absence of aberration 

is shown in black. Lo expressed miRNA and deletion is shown in red.
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Discussion
 

In this study we propose a landmark of miRNAs and high confidence targets 

in human colorectal cancer showing a strong association with a higher UICC stage 

compared to normal colon mucosa. We used expression profiles of miRNA and 

mRNA and analyzed the data using customized prediction tool (GenMiR++) as well 

as 10 public prediction tools to score and then to select high confidence miRNA-

mRNA pairs. We hypothesized that predicted “direct” target gene has significant 

negative correlation with miRNA. Interestingly, our results demonstrated that miR-

302a and miR-660 demonstrate significant negative correlations with Fractalkine 

(CX3CL1) which is their target genes in every stage of tumor development (T1-T4). 

Furthermore, miR-29a and miR-519d also show significant negative correlations with 

CX3CL1 which is their target gene as well in tumor stages T2-T4.  On our previous 

study by Mlecnik et al [119] we proposed that the high expression of this chemokine 

showed a good prognostic factor in CRC. This observation was confirmed by Xin et 

al [120] showing strong evidence that CX3CL1 can be a suitable candidate for 

immunogene therapy of cancer because CX3CL1 induces both innate and adaptive 

immunity, and can act as tumor suppressor gene. Thus, the data suggested that these 

four miRNAs may suppress the function of CX3CL1 which may also be involved in 

tumor progression. 

 

However, correlation analysis alone is not adequate to conclude that CX3CL1 

may be direct target gene of these miRNAs. We therefore compared significant 

difference of expression of these miRNAs between two patient groups (based on 

mean cutoff value of CX3CL1 expression profiles). Our results demonstrated that 

miR-29 and miR-660 were significantly different (t-test; P-value < 0.05) but miR-

302a and miR-519d were not significantly different between two patient groups. 

Thus, we conclude that CX3CL1 is a direct predicted target of miR-29a and miR-660 

and can be an indirect predicted target of miR-302a and miR-519d. 

 

Differential expression of gene/miRNA in tumor and normal tissues often 

represents an important basis for cancer biomarker exploration and development 

[121]. In general, miRNA expression levels have been shown to be decreased in 
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cancerous compared to corresponding normal tissue [122]. However, contrasting 

these findings are numerous studies on clinical samples showing that specific 

miRNAs can be differentially up- and down-regulated in different cancer types [123, 

88, 93, 80]. Thus, for the development of diagnostic biomarkers, both over- and 

underexpression of candidate genes/miRNAs could be interesting. We found that the 

expression levels of miR-302a, miR-558, and miR-603 are decreased in cancerous 

compared to corresponding normal tissue. In contrast, the expression of miR-660, 

miR-657, miR-29a and miR-519d were found to be differentially up-regulated in the 

different T-stage. These 7 miRNAs may be involved in cancer relevant processes such 

as proliferation and differentiation. 

 

In cancer, miRNAs function as regulatory molecules, acting as oncogenes 

which downregulate expression of tumor suppressor genes, so-called “oncomiRNAs”. 

Similarly, miRNAs can function as “tumor suppressor miRNAs” by downregulated 

expression of oncogenes. Then following a result of a landmark of miRNA suggest 

that miR-29a, miR-519d and miR-660 act as oncogenes and miR-302a may act as 

tumor suppressor gene. It is interesting to note that some miRNAs may have “dual” 

functions depending on the context. For example, miR-29a has been to shown to 

function as tumor suppressor in lung cancer [124, 125] and chronic lymphocytic 

leukemia [80, 126, 127]. In our in this study we found that miR-29a may act as 

oncogene in CRC. Hence, in appears that in different cancer types, some miRNAs 

may exhibit this type of dual function. Since misregulation of miRNA has been 

associated with various cancers, the identification of specific regulators of miRNAs 

will be helpful in developing new therapeutic agents. 

 

In order to elucidate the mechanisms by which the identified miRNAs are 

driving tumor progression we used array-CGH to pinpoint genomic deletion events. 

Array-CGH is one of a growing number of “top-down” approaches that able to 

provide comprehensive information about aspects of biological status and functions 

[118]. Here, we found that patients with deletion of miR-302a (on Chromosome 4) 

have more risk to relapse and the decreased expression of miR-302a also showed a 

significant difference in DFS compare with the high expression. Following these 

strong evidences, the decreased expression of miR-302a is likely due to deletion of 
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chromosome region and correlate with poor outcome. Thus, miR-302a may be 

proposed as novel therapeutic marker of CRC. 

 

Finally, we investigated the functions of miRNAs target genes and using Gene 

Ontology [110] annotations. Functional analysis was performed for the negative 

correlated high confidence pairs. Cytoscape [109], a public available software was 

used to visualize the miRNAs and their target genes. Further, the immune functions 

triggered by the miRNA through its target genes were investigated using ClueGO 

[111], a Cytoscape plugin. For miR-29a and miR-302a, GO annotations revealed 

specific terms like “T cell differentiation” in tumor stage T1. The common 

functionality of each selected miRNAs refers to characteristics of lymphocytes 

(chemotaxis) and leukocyte (adhesion). In the tumor stage T3-T4, the function of 

these miRNAs is involved in both the innate (macrophage) and adaptive immune 

response (T helper 1 cell).     

 

   In summary, the identified miRNA candidates, the analysis of their target 

genes, genome wide screening by array-CGH together with the analysis of clinical 

parameters show promising potential of selective miRNAs as a novel therapeutic 

means to treatment of CRC. The clinical validation of suggested miRNAs and their 

target genes is required to confirm these results. Generating a more complete picture 

of miRNA expression and clinical relevance in CRC and gaining knowledge of targets 

and cellular effects is a major task, but acknowledging the potential utility of mRNA 

as biomarkers it is worth the effort. 

 

Conclusions 
 

The discovery of miRNAs as regulators of developmental events in model organisms 

suggested that miRNA might be involved in the regulation of immune system and the 

tumor progression. Our results suggest that miRNAs and their high-confidence targets 

may have a functional effect on tumor progression. Furthermore, some miRNAs with 

prognostic potential could provide the basis for an in-depth studies as clinical 

prospective markers and as new pharmaceutical targets.  
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Materials and Methods 
 

Patient cohort 

  

 The records of 415 colorectal cancer (CRC) patients who underwent a primary 

resection of their tumor at the Laennec-HEGP Hospitals between 1990 and 2003 were 

reviewed and previously described in (Pagès et al. 2005). The observation time in the 

cohort was the interval between diagnosis and last contact (death or last follow-up). 

Data were censored at the last follow-up for patients without relapse, or death. The 

mean duration of follow-up was 45.3 months. The min:max values until 

progression/death or last follow-up were (0:166) months, respectively. Time to 

recurrence or disease-free time was defined as the interval from the date of surgery to 

confirmed tumor relapse date for relapsed patients and from the date of surgery to the 

date of last follow-up for disease-free patients. 

 

Histopathological and clinical findings were scored according to the UICC-

TNM staging system (Dukes, Weitz). Post-surgical patient surveillance was 

performed at Laennec-HEGP Hospitals for all patients according to general practice 

for CRC patients. Adjuvant chemotherapy was administered to patients with stage III 

CRCs, to high-risk stage II CRCs, and palliative chemotherapy to patients with 

advanced colorectal cancers (stage IV) and to patients without complete resection of 

the tumor. Adjuvant chemotherapy was fluorouracil (FU)-based. Follow-up data were 

collected prospectively and updated.  

 

Low density array (LDA) Real-Time Taqman PCR analysis 

 

This study was based on tissue sample material collected at the Laennec-

HEGP Hospitals (Hôpital Européen Georges Pompidou) which was snap-frozen 

within 15 minutes after surgery and stored in liquid nitrogen. From this material 154 

frozen tumor specimens were randomly selected for RNA extraction. The total RNA 

was isolated by homogenization with the RNeasy isolation kit (Qiagen, Valencia, 

CA). A bioanalyzer (Agilent Technologies, Palo Alto, CA) was used to evaluate the 

integrity and the quantity of the RNA. The 125 analyzed RNA samples were all from 
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different patients. 381 genes were selected for real-time TaqMan analysis. This gene 

selection covers the representative cell subpopulations according to the Immunome 

selection. The RT qPCR experiments were all performed according to the 

manufacturer’s instructions (Applied- Biosystems, Foster City, CA). The quantitative 

real-time TaqMan qPCR analysis was performed using Low Density Arrays and the 

7900 robotic real-time PCR-system (Applied Biosystems). As internal control 18S 

ribosomal RNA primers and probes were used. The data was analyzed using the SDS 

Software v2.2 (Applied Biosystems) and TME.db statistical module. 

 

Affymetrix gene chip analysis 

 

The tissue sample material was collected at the Laennec-HEGP Hospitals 

(Hôpital Européen Georges Pompidou) which was snap-frozen within 15 minutes 

after surgery and stored in liquid nitrogen. 105 frozen tumor specimens and 5 normal 

specimens from distant tissue were randomly selected for RNA extraction. The total 

RNA was isolated by homogenization with the RNeasy isolation kit (Qiagen, 

Valencia, CA). A bioanalyzer (Agilent Technologies, Palo Alto, CA) was used to 

evaluate the integrity and the quantity of the RNA. From this RNA 110 Affymetrix 

gene chips were done on the same platform (HG-U133A plus) than the Immunome 

using the HG-U133A GeneChip 3’ IVT Express Kit. The raw data was normalized 

with CARMAweb [22], using the GCRMA-algorithm. Finally, the log2 intensities of 

the gene expression data were used for further analysis. For correlation analysis the 

spots which were not significant with MAS5Calls and had a log2 intensity lower than 

3 were excluded from the analysis due to insufficient sensitivity. 

 

MicroRNAs expression analysis 

 

Tissue samples were snap-frozen within 15 minutes after surgery and stored in 

liquid nitrogen. Randomly selected frozen tumor specimens from Laennec-HEGP 

Hospitals were extracted for RNA. Total RNA was isolated by homogenization with 

RNAnow (Biogentex, Seabrook, TX). The integrity and the quantity of the total RNA 

were evaluated on a bioanalyzer-2100 (Agilent Technologies, Palo Alto, CA). 103 

samples from different patients were analyzed for 365 mature miRNA expressions. 

Low Density Arrays for multiplex miR expression analysis were performed according 
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to the manufacturer’s instructions (Applied-Biosystems, Foster City, CA). RT-PCR 

experiments and quantitative real-time TaqMan-PCR was performed using the 7900 

robotic real-time PCR-system (Applied-Biosystems). Mean Ct values obtained with 

small ribonucleotide primers (8 replicates of RNU44 and 8 replicates of RNU48) were 

used as internal control and for calculation of dCt values. Data were analyzed using 

the SDS Software v2.2 (Applied-Biosystems) and TME statistical module.  

 
Array comparative genomic hybridization (array-CGH) 

 

This study was based on tissue sample material collected at the Laennec-

HEGP Hospitals (Hôpital Européen Georges Pompidou) which was snap-frozen 

within 15 minutes after surgery and stored in liquid nitrogen. From this material 216 

frozen tumor specimens were randomly selected for DNA extraction. Samples were 

homogenized (ceramic beads and FastPrep-24, MP biomedical) in 430 ul of a lysis 

buffer (Tris 1M – EDTA 0,5M pH8; SDS 20%; proteinase K), and incubated 

overnight at 37°C. Genomic DNA was extracted by phenol–chloroform extraction and 

ethanol precipitation. Genomic DNA was re-suspended in 200 ul of highly pure water. 

Concentrations were evaluated by Optic Density measurement. Samples were labeled 

using a Bioprime Array CGH Genomic Labeling Kit according to the manufacturer's 

instructions (Invitrogen, Carlsberg, CA). 500 ng test DNA and reference DNA 

(Promega, Madison, WI) were differentially labeled with dCTP-Cy5 and dCTP-Cy3, 

respectively (GE Healthcare, Piscataway, NJ). Genome-wide analysis of DNA copy 

number changes was conducted using an oligonucleotide array containing 44,000 

probes with a spatial resolution of 35 kb according to the manufacturer's protocol 

version 6.0 (Agilent, Santa Clara, CA). Slides were scanned using Agilent's 

microarray scanner G2505B and analyzed using Agilent DNA Analytics software 

4.0.76 (statistical algorithm: ADM-2; sensitivity threshold: 6.0; consecutive clone 

filter: 10). 

 

Computational and Bioinformatics Methods 

 

The data resulting from those diverse high-throughput technologies were 

integrated using in house developed tools: TME.db, ClueGO [111] and Genesis [106] 

and public available tools: Cytoscape [109], TargetScan [128], PicTar [129] , 
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miRanda [130], PITA  [129], ElMMo [131], RNA22  [132] , DIANA-microT [133] 

and GenMiR++ [134], 

 

The Tumoral Microenvironment Database (TME.db) 

 

TME.db is a Web based application built on a 3-tier architecture which is 

implemented using the Java2 Enterprise Edition (J2EE) technology and is accessible 

via a standard web browser. The underlying relational database model is designed as a 

cancer patient oriented database which takes all the patients anamnesis and clinical 

and medical history information into account whereby all patients are linked to a 

specific hospital. The patient information additionally includes personal problems, 

surgery and detailed cancer information. Additionally the model allows storing a 

variety of different high-throughput experiments: Flow Cytometric (FACs) 

phenotyping, proliferation analysis data, Real Time TaqMan qPCR gene expression 

assay data and Immunohistochemical Tissue Micro Array (TMA) data, Microsatelite 

Instability (MSI), Single Nucleotide Polymorphism (SNP). Most of these experiments 

were performed on the available dissected cancer patient tissue samples. TME.db 

joins and integrates all different types of data analyses and stores them in a common 

place where all the determined analysis parameters are linked in a clear way 

dependent on the sample material and the experiment type. For accessing all the 

stored information again sophisticated query methods were developed in order to 

retrieve the data in a pre-modified way, already prepared for statistical analysis. The 

web interface to TME.db also provides a statistical module that connects to 

customized R services which allow for the automatic testing of normality, calculation 

of logrank tests and Cox-Regression hazard ratios by using R and Bioconductor 

packages. Hypergeometric test is used for over-significance calculations. If multiple 

hypotheses are tested, P-value correction methods are applied. The analysis result 

includes all raw data files, a description of the methods used and comprehensive 

tables and graphs created during the analysis. The analysis is fast, reliable and 

transparent. 
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Computational analysis to find predicted target genes of miRNAs 

 

Identifying miRNA targets in animals has been very challenging. Many 

biological features of miRNA targeting have been revealed experimentally and 

computationally. We divided the miRNA target features into 6 categories; 

miRNA:mRNA paring, site location, conservation, site accessibility, multiple sites 

and expression profile [135]. Many target prediction tools have been developed 

(Tab.4) 

 

Table 4: List of miRNA target prediction tools 

 

Tool Pair Site Consv Access Multi Expr Link 

TargetScan • • • • •  http://www.targetscan.org/ 

PicTar •  • • •  http://pictar.mdc-berlin.de/ 

miRanda •  • • •  http://www.mirbase.org/ and 

http://www.microrna.org/ 

PITA •  • • •  http://genie.weizmann.ac.il/ 

EIMMo •  •  •  http://www.mirz.unibas.ch/ElMMo2/ 

RNA22 •  • • •  http://cbcsrv.watson.ibm.com/rna22.html 

DIANA-

microT 
•  • •   http://diana.cslab.ece.ntua.gr/microT/ 

GenMiR++ •   •  • http://www.psi.toronto.edu/genmir/ 

 

Correlation of miRNAs and their prediction targets 

 

After we validated the miRNA-mRNA pairs for both the global and stage 

analysis, we investigated the linear relationship between miRNAs and their high 

confidence target genes by using Pearson correlation coefficients, Px,y, which is 

defined as: 

 

 

where X and Y are miRNA and gene expression patterns, with mean expression value,  

 



40 
 

Statistical analysis 

 

For pairwise comparisons of parametric and non-parametric data the Student's 

t-test and Wilcoxon rank-sum test were used, respectively. Kaplan Meier estimators 

of survival were used to visualize the survival curves. Hazard ratio (Cox proportional 

hazards model) and the logrank test were used to compare disease-free and overall 

survival between patients in different groups. All through the text a p-value < 0.05 

was considered statistically significant. All analyzes were done with the statistical 

software R (survival package) and Statview. 

 

Network and Landscape Visualization 

 

Cytoscape was used for the creation and visualization of correlation analysis 

based networks of different datasets. A Cytoscape filtering of the edges with low 

confidence and positive correlation R > 0 was performed. No positive correlation 

remained after filtering. The organic algorithm that determines the node positions 

based on their connectivity was used for laying out the network. The color of the 

nodes is based on different node attributes available for the analyzed dataset: i.e. 

mean cell count, log2 HR, log2 Maximal HR. 

 

The ClueGO cytoscape plug-in 

 

For an improved biological interpretation of large lists of genes, ClueGO, a 

Cytoscape plug-in, was developed. ClueGO integrates Gene Ontology (GO) terms as 

well as KEGG/BioCarta pathways and uses kappa statistics to create a functionally 

organized GO/pathway term network. A variety of flexible restriction criteria allow 

for visualizations in different levels of specificity. It can analyze one or compare two 

lists of genes and comprehensively visualizes functionally grouped terms. A one-click 

update option allows ClueGO to automatically download the most recent GO/KEGG 

release at any time. New organisms and ID types can be easily included in a 

transparent, plug-in like manner. ClueGO provides an intuitive representation of the 

analysis results and can be optionally used in conjunction with the GOlorize plug-in. 

In the attempt to define phenoclusters of CRC patients, ClueGO was used to calculate 

the enrichment in certain cell types of gene clusters of interest. A left sided 
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(Enrichment) test based on hypergeometric distribution was performed. The 

enrichment was calculated as reported to the Immunome Ontology that includes the 

analyzed immune cell types and the corresponding preferentially expressed genes in a 

flat hierarchy. 
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1. Introduction

Many developments have occurred in prevention and treatment of
cancer, but death from this disease is still common. Of the 58 million
people who died worldwide in 2005, 7.6 million died of cancer. Based
on projections, cancer deaths will continue to rise with an estimated
9 million people dying from cancer in 2015, and 11.4 million dying in
2030. Despite extensive characterization of environmental, intrinsic
and underlyingmechanisms (Hanahan &Weinberg, 2000), markers of
the oncogenic process remain so far poorly predictive of patient
survival and fail to prove their reliability in clinical use.

Genetic and molecular tumor prognostic factors have been
proposed to identify patients who may be at risk for recurrence.
None has yet been sufficiently informative for inclusion in clinical
practice (Locker et al., 2006). Identification of patients with a high-
risk of recurrence is therefore a major clinical issue. However, in order
to develop stratified or personalized strategies for such complex
multifactorial disease it is of importance to understand how
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numerous and diverse elements function together in human pathol-
ogy. With the advance of new technologies including high-through-
put techniques for DNA sequencing, RNA expression profiling,
protein quantification, multiplexed immunohistochemistry (tissue
microarrays), cell sorting and analyses, we have now the means to
comprehensively analyze cells and tissues for various biomolecules
and identify new cancer biomarkers and targets for therapy.

There has been a growing desire to integrate these high-
throughput data sets and make them publicly available. Considerable
efforts were undertaken to integrate specific data types into a
centralized database. For example gene expression data from
heterogeneous platforms can be stored and retrieved in GEO (Edgar
et al., 2002) or ArrayExpress (Parkinson et al., 2007), whereas PRIDE
was designed for proteomics data (Martens et al., 2005) turning
publicly available data into publicly accessible data. While these
repositories which integrate heterogeneous data for single data type
are of great value for the research community, it soon became clear
that the ability to integrate data from multiple sources is becoming
critical (Chaussabel et al., 2009).

The quest for new cancer biomarkers and targets for therapy
requires not only the aggregation and analysis of heterogeneous
biomolecular data but also the integration of clinical data with all
relevant parameters (e.g., tumor staging, treatment, and cancer
relapse). Recently, the National Institutes of Health (NIH) launched
The Cancer Genome Atlas (TCGA) pilot project to integrate clinical
data and high-throughput data for three tumor types: glioblastoma,
ovarian (serous cystadenocarcinoma) and lung (squamous carcino-
ma). Encouraged by the broad use of publicly available data sets, the
scope was expanded to include more than 20 tumor types and
thousands of samples over the next 5 years. These systematic efforts
to generate reference data sets are tremendously helpful. In
combination with targeted research addressing cancer subgroups,
employing additional large-, medium-, and small-scale techniques
will facilitate the identification of new biomarkers.

In order to fully exploit the available TCGA reference data sets and
newly generated data sets novel tools for integrative analysis and
visualization of the biomolecular and clinical data are required. While
the need for data integration has been appreciated in the past (Searls,
2005), specific solutions are rare and focus either on particular
methodological aspects or technical solutions. Due to the complexity
of the problem as well as logistical and legal issues, there are no out-
of-the-box packages but rather customized and seldom transferable
solutions. Additional difficulties are imposed by the fast development
of information technology and short half-life time of software
applications.

In general, there are three possibilities for addressing the problem
depending on the size of the available resources: 1) centralized IT
solutionwith customized hardware and software as available for large
academic institutions (e.g., several hundred PIs) or pharmaceutical
companies (see for example Mathew et al., 2007; Waller et al., 2007),
2) decentralized andmedium-scale departmental solutions for groups
of labs working on a specific topic, and 3) small scale solutions for
individual research labs. In this paper, we present IT solutions for the
integration of biomolecular and clinical data for the identification of
new cancer biomarkers and targets for therapy at the departmental
level. Additionally, we review the computational methods including
data integration, data analysis, visualization and mathematical
modelling which can be used alone or in combination at the
departmental level or in single research labs.

2. IT solutions

The search for biomarkers and new targets for complex diseases in
general and for cancer in particular requires several data sources
(Fig. 1). As of today, the majority of the large-scale technologies like
transcriptomics or proteomics deliver data that can be archived with
reasonable resources. There is a common sense in the community that
archiving data from next generation sequencing (or deep sequencing)
instruments is best done using inexpensive hard disks. In both cases,
raw data are preprocessed and imported into a data warehouse, i.e., a
repository of stored data.

2.1. Data warehouse

The central process is data warehousing which includes three
steps: 1) to develop a unified model that can accommodate all the
information from single databases, 2) transformation of the data into
this model and loading to the data warehouse, and 3) retrieval of data
from the source databases in one environment (‘one-stop shop’) as
well as integrated access to the data requiring knowledge, that the
individual sources cannot provide (Stein, 2003). This concept has
been applied for a long time to many different (business) applications
and also found its way into biology (Ritter et al., 1994; Schonbach
et al., 2000; Hu et al., 2004; Kasprzyk et al., 2004; Shah et al., 2005; Lee
et al., 2006; Rhodes et al., 2007). For an in-depth overview of data
warehouse technology we refer the reader to Chaudhuri and Dayal
(1997), Devlin (1997), and Inmon (2002).

A centralized solution in which a data warehouse houses all
relevant databases including public sources (e.g., Shah et al., 2005),
interfaces to laboratory management systems, and holds patient
records has several advantages. First, the solution can be customized
to specific needs. Second, it can be optimized so that performance can
be increased. And third, maintenance and adaptation can be done
more effectively. However, such a solution requires a long planning
and testing phase (e.g., several person-years), expensive installation
and operation. For example interfacing laboratory information
management systems (LIMS) is difficult (Stephan et al., 2010). In
general, these sophisticated systems are able to manage and analyze
data generated for only a single type or a limited number of
instruments, and were designed for only one type of data (Maurer
et al., 2005; Hartler et al., 2007). Thus, addressing a biological question
relying on several complementary technologies requires a specific off-
the-shelf database. It should be noted that such a database could
absorb several person-years of software engineering and this effort
tends to be underestimated. Thus, only large institutions can afford
this type of solution.

At the departmental level a preferable setting is a local database
hosting only the necessary data. In this case primary data are archived
at separate locations. Only preprocessed and normalized data are
stored in a dedicated database. Although it is tempting to upload and
analyze all types of data in a single system, experience shows that
primary data are mostly used once. This approach is even more
advisable for large-scale data including microarrays, proteomics or
sequence data. However, links to the primary data need to be secured
so that later re-analyses using improved tools can be guaranteed. In
this context it is noteworthy that in the majority of published studies
the analyses were based on medium-throughput data, meaning that
the number of analyzed molecular species was in the range of 100–
1000 (after filtering and preselection). With this number of elements
the majority of the tools perform satisfactorily on a standard desktop
computer. Performance is a crucial issue if the number of molecules
detected in a single patient sample increases to N10,000 i.e., in
microarray studies or N100,000 (proteomics studies). In this situation
the methods and the IT infrastructure require re-evaluation.

Incorporation of clinical data into the data warehouse (Hu et al.,
2004) poses major challenges. Many institutions have electronic
patient records and in principle, extracting the information could be
straightforward. However, technical, ethical, and legal issues might
delay or even prohibit the process of data collection. Heterogeneous
clinical and departmental information systems, accessibility of patient
data, and managing sensitive information can introduce several
levels of complexity and require extensive stakeholder discussions.



Fig. 1. Data flow in translational cancer research. Shown are the heterogeneous data sources from which large-scale data is generated. These data sets have to be integrated with
clinical data and medical records. Applying analytical methods on the integrated data can provide list(s) of targets and biomarkers, highlight deregulated pathways, or establish
predictive models, which can be then applied to treat patients individually.
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Therefore the preferable IT solution for a department is based on a
relatively small database for only a few specific cohorts. The patient
data should be first de-identified, entered into the database, and then
provided to the biologists and bioinformaticians.

The data warehouse depicted in Fig. 1 requires state-of-the-art IT
infrastructure. IT basis for consecutive data management, data
analysis and data integration consists of a reliable computational
environment which can handle the storage of diverse data, deliver
data to the computing cluster and provide raw and processed data to
the end user. The computational infrastructure of a bioinformatics
environment can be divided into three corner stones: 1) storage
architecture, 2) high-performance computing infrastructure, and 3)
application servers (Fig. 2).
2.2. Storage architecture

Over the last decade bioinformaticians have faced a considerable
challenge of storage and processing of huge amounts of biological
data. With the advance of next generation sequencing the data flood
rose into the range of petabytes (1000 terabytes). Hence, appropriate
storage solutions are of utmost importance. Storage devices can be
categorized in several types (see Box 1).

In addition to the hardware requirements, the choice of a database
management system is crucial. In the biological context it is necessary
to differentiate between flat file databases and relational databases.
Flat file databases are frequently used to exchange and archive
biological information like sequences and annotations in a structured
form using either binary or text format. The format can vary from tab
delimited single line entries over text delimited multi-line entries to
non-relational data stores termed NoSQL.

In contrast, relational database and the associated management
system (RDBMS) is a software systemwhich stores attributes and their
associations in a non-redundant – normalized – manner. Connected
attributes are grouped in tables and can be accessed using structured
query language (SQL). In data warehouse systems the degree of
normalization can be decreased in favor of improved performance.
RDBMS in productive environments are usually installed on a central
database server, which has sufficiently dimensioned storage. Often, this
server acts as backend for remote applications.

2.3. High-performance computing infrastructure

The increasing need for intensive calculations is met by processor
manufacturers by switching from single-processor/single-core archi-
tecture to multi-processor/multi-core architecture in one single
computer. This paradigm shift away from the speed race for single
processors towards processing in parallel using multiple processors
influenced also the development of bioinformatics applications. The
hardware used for HPC can significantly vary in terms of application,
performance, and flexibility (Box 2).

The choice of the appropriate HPC environment depends on many
parameters including available resources, expertise, amount of data
generated, type of number-crunching applications, requirements
concerning the data availability, or security issues. But the choice
depends also on the biological applications, the nature of the data as
well as the utilized algorithms, i.e., the question is if the problem can
be parallelized (Stein, 2008; Schadt et al., 2010). E.g. if genetic
associations between thousands of gene expression traits and
hundreds of thousands of SNP genotypes are computed then each
SNP-trait pair can be computed independently of the other pairs
(Schadt et al., 2010). In another parallelized approach (relative
quantitation by MS/MS analysis) it was shown that the computing
time decreases linearly with the number of used processors (Hartler
et al., 2007). Certain applications, such as microarray analysis or
constructing weighted co-expression networks operate on the data
most efficiently if they are held in a computer's random access
memory (RAM).The analysis and management of the vast amount of
high-throughput sequencing data is accompanied by a trend in using
latest HPC developments such as cloud computing. Often the
infrastructure at the departmental level is a mixture of available
technologies: multi-core CPU for single workstations, local HPC
cluster for the bulk of intensive calculations, and cloud computing
for less critical data.

In general, in cases where a single high-throughput instrument
is used, purchasing servers and hiring a system administrator



Fig. 2. IT infrastructure for translational cancer research. The IT infrastructure can be divided into three components: 1) storage component including database management system,
2) high-performance computing infrastructure (HPC), and 3) application servers providing services of applications to remote users. State-of-the-art implementation of application
servers uses layered architecture separating different tiers (see text for details).

Box 1
Storage solutions

Direct attached storage (DAS): a DAS consists of one or more
disks which are directly connected to the accessing computer
using input/output interfaces.
Network attached storage (NAS): a NAS provides file-based
access over a network protocol direct attached storage devices.
Ready to use NAS boxes can be easily integrated into existing
infrastructure and can be extended as well. NAS are usually
located in a local area network.
Storage area network (SAN): a storage area network is a
dedicated network specifically designed to offer computers
block-wise access to storage devices like disks, disk arrays or
backup-devices and libraries. This network is optimized for data
transfer.
iSCSI: similar to the concept of SAN iSCSI offers block-wise
access to remote storage devices but instead of using expensive
fibre channel network, an inexpensive Ethernet network is
applied.
DAS/NAS hybrids: there are special hybrid solutions which
combine SAN and NAS into one single storage appliance.
Hereby computers can access a central disk system using file-
based protocols as well as block-based protocols.

491H. Hackl et al. / Pharmacology & Therapeutics 128 (2010) 488–498
are sufficient to process the generated raw data. Often core faci-
lities are providing the appropriate infrastructure and a researcher
can focus on the data analysis and interpretation. Multiple
instruments and/or several high-throughput platforms require
dedicated hardware and personnel and hence, medium to long-
term commitment of the institution to maintain IT infrastruc-
ture including housing with appropriate power supply and air
conditioning.
2.4. Application servers

An application server is a program, which provides services or
applications to remote (web)-accessing clients. Basically it can
provide dedicated services like file service, mail service or web
service but can also be an execution environment for custom-made
applications. In the latter case an application server offers applications
a standardized environment and provides infrastructure services like
connections to databases, web services, as well as coordinated and
simultaneous data access. An application deployed into an application
server consumes the services and implements its specific functionality
like managing microarray data or running server-side processing
steps. Examples for application server environments are Java EE or
Microsoft .NET Server.

image of Fig.�2


Box 2
High-performance computing solutions

Custom-made processor chips: the lowest level of hardware
implementation is a specialized chip which processes the data
through an integrated circuit and returns the data back to a
control system. The control system can be a regular PC.
FPGA-boards: field programmable gate arrays (FPGA) are
integrated circuits which can be programmed. For some
commonly used bioinformatics algorithms there are commer-
cially available FPGA-boards, which can be accessed by
custom-made software.
Graphics processing unit (GPU): rendering of 3D graphics is a
numerical intensive task for which manufacturers of graphic
cards have already implemented parallel processing pipelines.
Single multi-processor/core computer: the more conventional
and more frequently used approach of running HPC infrastruc-
ture is to use standard central processing units (CPU).
Algorithms can be implemented with high-level programming
languages and therefore development is much easier.
High-performance computing (HPC) cluster: a HPC cluster can
be defined as a set of multiple computing devices, which
communicate via a high-performance computing network. The
communication- and file-service- networks are in most cases
dedicated networks which can be reached from outside.
Grid computing: compared to local HPC cluster grid computing
is a more generalized approach and describes a network of IT
resources, which are spread over different locations and
communicate with each other via Internet.
Cloud computing: cloud computing describes the approach of IT
infrastructure which can be adapted on demand according to
the specific needs of the cloud consumer. The services are billed
according to the usage of the service and therefore cost
effective usage without having a datacenter / HPC infrastruc-
ture. Currently cloud computing is offered by various datacen-
ters like Amazon and Google.
Distributed computing: the most loosely coupled approach to
achieve distributed data processing can be achieved by using
computers attached to the internet. When the computer is not
used, input data is fetched from a central dispatch server and
calculation is performed on the remote computer. Results are
sent back to the dispatching server.
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It is a well-established software engineering to introduce a layered
architecture, which separates presentation tier, middle tier (also
called business tier) and persistence tier (Fig. 2). The advantage of this
approach lays in the encapsulation and reusability of tiers. E.g.
different presentation tiers like web applications or web services offer
users customized views and functionality by accessing always the
same middle tier. Examples for applications which use these
technologies were recently published (Hartler et al., 2007; Stocker
et al., 2009).

Otherweb-based application server environments are Zope orweb
servers with script extensions like PHP, Perl, Ruby, or Python. Most of
these frameworks introduce tiered views of applications comparable
to the approach described above. Recently, also cloud computing
providers offered comparable application server environments
known as “platform as a service”which are hosted in well-established
data centers. In this case there is no need for expensive production
server environments and hence, it is a preferable choice for public
web-based applications which do not handle critical patient data.
However, this solution is limited to the capabilities offered by the
service provider to the application developer.

Alternative approach is a hybrid solution which combines local
rich client applications with remote accessed web services. Hereby,
locally installed applications are used for interactively composing
analysis workflows which consume remote applications over the
internet during execution. The used application is independent
from the infrastructure behind the web services. A popular
example for such a hybrid solution which integrates local analysis
functionality and remote SOAP web services is Taverna (Oinn et al.,
2004).

3. Computational methods

Not only the information technology aspects as described above
are of importance but also the analytical methods for the integration
of diverse datasets. There is a plethora of computational methods for
the analyses of biomolecular and clinical data including bioinfor-
matics and statistical tools. The number of bioinformatics tools
developed in the past ten years is exponentially increasing. In
Table 1 commonly used tools for gene expression and functional
analysis are listed. For a summary of statistical tools we refer to
textbooks (i.e., Altman, 1990). In the following chapter we are
reviewing approaches for data integration: data aggregation, integra-
tive data analysis, pathways and networks, and mathematical
modelling.

3.1. Data aggregation and meta-analysis

One approach in data integration is the aggregation (meta-
analysis) of the same type of data, which can increase sample size
and hence improve statistical power (Mathew et al., 2007). Due to the
maturity of the technology and the availability of the data, expression
profiling data can be analyzed using this approach. Several platforms
of microarray technology have been applied now for over a decade
and gene expression profiles and datasets in many different tumor
samples, heterogeneous cells within the tumor and its micro-
environment, cancer types and subtypes, and other neoplastic events
were performed and have been made partly available through public
repositories like GEO or ArrayExpress.

Direct comparison and integration implies a number of issues to
be considered: 1) normalization of raw data to exclude study-,
platform-, batch-specific effects (e.g., see Orlov et al., 2007). As an
example results across all studies have to be included for quantile
normalization as used for Affymetrix GeneChips analysis. 2)
Detection of differentially expressed genes (e.g., Motakis et al.,
2009) and correction for multiple hypothesis testing, 3) a correct
annotation of probesets, transcripts/genes is crucial to compare
expression levels of the same entity (e.g., transcript isoform), and 4)
sample nomenclature and consistency in clinical (histological)
sample description across studies. There are two approaches:
different microarray experiments are put together to form a single
dataset (clustering or intersection operations can then be easily
performed) or each individual microarray experiment is analyzed
first and then the statistical results from all experiments are aggre-
gated as for example in the rank aggregation approach (Pihur &Datta,
2008). A number of procedures exist for the combination of statistical
results (e.g., p-values) and classical statistical methods as used for
the meta-analysis in clinical trials (Whitehead & Whitehead, 1991)
can be also applied to microarray data (Grutzmann et al., 2005).
Other classical approaches include the Mantel–Haentzel method as
used in the case of stratified groups (Mantel & Haenszel, 1959) or
meta-regression to explore the relationship between study char-
acteristics. There are also more advanced methods specifically
developed for this purpose including the latent variable approach
(Choi et al., 2003; Wang et al., 2004; Choi et al., 2007). Ultimately
meta-analyses are indispensible for identification of robust prognosis
signatures and (gene) biomarkers in cancer as demonstrated by
several examples (Rhodes et al., 2004a; Grutzmann et al., 2005;
Wirapati et al., 2008; Dreyfuss et al., 2009). But meta-analyses play



Table 1
Selected tools and resources for gene expression and functional analysis.

Function Tools Reference

Clustering,
classification,
visualization

Genesis
GeneSpring
PAM
TM4
OmniViz
GEPAS
ExpressionProfiler
Cluster

Sturn et al., 2002
(Agilent)
Tibshirani et al., 2002
Saeed et al., 2003
Valk et al., 2004
Herrero et al., 2003
Kapushesky et al., 2004
Eisen et al., 1998

Gene ontology,
enrichment analysis

GSEA
DAVID,
g:Profiler
AmiGO
Onto-Tools
ClueGO
Golorize
FatiGO
GoStat

Subramanian et al., 2005
Huang et al., 2009
Reimand et al., 2007
Carbon et al., 2009
Draghici et al., 2003
Bindea et al., 2009
Garcia et al., 2007
Al-Shahrour et al., 2004
Beissbarth and Speed, 2004

Pathways, mapping KEGG
HumanCyc
BioCarta Pathways
Reactome
Cancer Cell Map
PathwayExplorer
GenMAPP
INOH
PANTHER
Science signaling maps

Kanehisa et al., 2004
Romero et al., 2005
(BioCarta)
Joshi-Tope et al., 2005
http://cancer.cellmap.org
Mlecnik et al., 2005
Dahlquist et al., 2002
http://www.inoh.org
Mi et al., 2005
(http://stke.sciencemag.org/cm/)

Proteins, interactions HPRD
BIND
DIP
BioGRID
STRING
Annotator
Pfam
PROSITE
InterPro
ProDom
SMART
BLOCKS
UniProt

Peri et al., 2003
Bader et al., 2003
Xenarios et al., 2002
Stark et al., 2006
Jensen et al., 2009
Schneider et al., 2010
Sonnhammer et al., 1997
Hulo et al., 2008
Hunter et al., 2009
Servant et al., 2002
Schultz et al., 1998
Henikoff et al., 2000
UniProt-Consortium, 2010

Networks Cytoscape
ARACNe
WGCNA
IPA
Bibliosphere

Shannon et al., 2003
Basso et al., 2005
Langfelder and Horvath, 2008
(Ingenuity)
(Genomatix)

Databases, repositories GEO
ArrayExpress
SMD
Oncomine

Edgar et al., 2002
Parkinson et al., 2005
Sherlock et al., 2001
Rhodes et al., 2004b

Software
environments,
tool collections

R
Bioconductor
Matlab
GenePattern

(http://www.r-project.org)
Gentleman et al., 2004
(MathWorks)
Reich et al., 2006

Table 2
Large-scale cancer (informatics) initiatives and frameworks.

Initiative/framework Abbreviation Institution

Cancer Biomedical Informatics Grid CaBIG NCI, NIH
Cancer Genome Atlas TCGA NCI/NHGRI, NIH
Cancer Genome Anatomy Project CGAP NCI, NIH
Cancer Molecular Analysis Project CMAP NCI, NIH
Oncomine U-M, Compendia
Biomedical Informatics Research Network BIRN NCRR, NIH
Repository for Molecular Brain Neoplasia Data REMBRANDT NCRR, NIH
Glioma Molecular Diagnostic Initiative GMDI NCI/NINDS, NIH
ASCENTA® GeneLogic
BioExpress® (Oncology suite) GeneLogic
National Cancer Research Institute
(Informatics Initiative)

NCRI NCRI
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not only an important role in gene expression studies but also for
genome-wide association studies in cancer (Landi et al., 2009).
Further methods for meta-analyses and integration of genomics and
genetics data are summarized in Guerrero et al. (2009).

An outstanding database for cancer gene expression data is
Oncomine combining a compendium of N39,000 cancer genomic
profiles (Rhodes et al., 2004b; Rhodes & Chinnaiyan, 2005;
Rhodes et al., 2005a; Rhodes et al., 2007). It includes a microarray
data pipeline, a gene annotation data warehouse, and analytical
tools for differential expression, co-expression, enrichment mod-
ules and interaction networks. The integrated method Cancer
Outlier Profile Analysis (COPA) (Tomlins et al., 2005) is useful to
identify outlier expression profiles in cases where only a small
subset of tumor samples shows overexpression. Further large-scale
informatics initiatives and frameworks for cancer research are
shown in Table 2.
3.2. Integrative data analysis: methodological aspects

The development of high-throughput technologies including
technologies for measuring genetic variations, quantitation of gene
expression, protein levels, posed challenges for the storage and
analyses of the vast amount of generated data. One approach for
integrating genomic data, transcriptomic data, and proteomic data
is the concept of a data warehouse (often a relational database),
where heterogeneous data are organized and merged to allow a
consistent access for integrative data analysis, data mining (search
for new patterns in the underlying data), and supervised machine
learning (using patterns within the data to build classifiers for new
data).

As previously shown for functional interaction of genes/proteins
(Fraser & Marcotte, 2004; Rhodes et al., 2005b; Jensen et al., 2009),
data sets from diverse experiments can be individually tested for
their quality against a benchmark set and weighted accordingly.
Various statistical approaches can then be used for the integration.
In the Naïve Bayesian integration model the resulting likelihood
ratio (LR) is basically the product of the LR ratio from each
individual dataset, where the likelihood ratio shows the relation
between the posterior odds and the prior odds given the evident
interaction within each dataset (Rhodes et al., 2005b; Laubenbacher
et al., 2009).

Another proposed integration methodology uses an optimization
algorithm to minimize the numbers of false positives and false
negatives (Hwang et al., 2005). It makes no assumptions about the
number of data sets integrated and may be applied to data from any
existing and future technologies. In a common situation when the raw
data are not available, perhaps the simplest method to combine
independent p-values is the one developed by Fisher (Fisher, 1954;
Hamid et al., 2009). Also graph models (Steiner trees) were
successfully applied for integration of proteomic, transcriptomic,
and interactome data in signaling and regulatory networks (Huang &
Fraenkel, 2009).
3.3. Integrative data analysis: examples

3.3.1. Integration of genetic data,
genomic variation, and gene expression data

There are several successful examples for integrated analyses for the
identification of cancer genetic events like gene fusion and gene
rearrangement in prostate cancer andmelanoma(Garrawayet al., 2005;
Tomlins et al., 2005). The heterogeneity between individual tumors,
however, will make it difficult to apply multiple targeted therapies and
patient stratification based on a mutational signature of defined key
genes (Wood et al., 2007; Fox et al., 2009). Similar heterogeneity was
observed by deep sequencing of the hematopoetic cancer genome:
identified genes aremutated in only a small fraction ofAML cases (Ley et
al., 2008; Fox et al., 2009). In any case, the new sequencing technologies

http://cancer.cellmap.org
http://www.inoh.org
http://stke.sciencemag.org/cm/
http://www.r-project.org
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are instrumental to many aspects in cancer biology (transcriptome,
genome, methylome, and genomic variations).

Genomic variations in cancer are another important data type for
integrative analysis including single nucleotide polymorphisms
(SNPs), insertions and deletions (Indels), copy number variations
(CNVs), loss-of-heterozygosity, chromosomal aberrations and rear-
rangements. For example somatic copy number alterations were
recently identified across multiple cancer types (Beroukhim et al.,
2010). First step in this analysis is usually to map the variations to
genomic positions within exons, genes, or the whole genome –

comprising also regulatory sequences – or alignment to chromosomes
or cytogenetic regions. An interesting approach is to combine genetic
data with gene expression analysis (eQTL, eSNPs, and stepwise
linkage analysis of microarray signatures — SLAMS) (Adler et al.,
2006; Zhong et al., 2010).

3.3.2. Integrating clinical and gene expression data
Clinical data from patients are collected during standard treatment

procedures and during clinical trials and include a number of
parameters, i.e., cancer stages and scores (e.g., Gleason Score for
prostate cancer), prognosis (survival time and relapse time), subtyp-
ing, or cancer biology parameters like ER-status for breast cancer
(Mathew et al., 2007; Sims, 2009). Again, IT solutions and databases
are inevitable for the access to these data and mining of electronic
medical records. However, there are legal issues such as patient
confidentiality. Lack of standardization between hospitals and
institutions also makes gathering clinical data difficult (Baudot
et al., 2009).

Integration of clinical and gene expression data can be divided into
2 approaches: unsupervised and supervised analysis (Quackenbush,
2006). Unsupervised clustering is used disregarding prior knowledge
to subgroup tumors/patients by similarity in their expression profiles
and can be used to identify (new) molecular subtypes (with
cytogenetic or molecular abnormalities) and uncover biologically
interesting patterns. In most cases hierarchical clustering or k-means
clustering is used, where the latter needs a priori knowledge of the
expected numbers of clusters. Factor analyses, which reduce the
dimensionality of the expression data such as principal component
analysis (PCA) (Raychaudhuri et al., 2000) or correspondence analysis
(CA) (Fellenberg et al., 2001) are instrumental to identify most
informative gene expression patterns and associated genes, indicating
potential biomarkers. A plethora of clustering algorithms and distance
measurements (e.g., Pearson correlation coefficient or Euclidean
distance) has been developed so far and many of them are integrated
in dedicated software applications (see Table 1). Either genes or
samples/patients can be grouped based on their expression profiles
across samples or across genes, respectively. In case of biclustering
genes and samples are both clustered simultaneously.

Classification is a supervised approach, which takes external
factors (clinical data) into account. The first need is a feature selection
process to identify which genes best distinguishes two (or more)
classes of patients/tumors in the data set. For this purpose a wide
variety of statistical methods can be used including t-test, analysis of
variance (ANOVA), and significance analysis of microarrays (SAM)
(Tusher et al., 2001) and the selected genes and their patterns of
expression can be used as biomarkers for diagnostic and prognostic
applications. The question is whether a set of genes and their
expression patterns in an initial set of patients can be used to classify
disease in new patients (Valk et al., 2004; Quackenbush, 2006).
Classification algorithms like support vector machines (SVM) or
nearest shrunken centroids (Tibshirani et al., 2002) can be applied on
a training set resulting in classifiers which then can be used on test
data for class prediction.

In several studies these approaches turned out to be very
successful in predicting cancer subclasses (Alizadeh et al., 2000;
Perou et al., 2000; van 't Veer et al., 2002; Valk et al., 2004). In a
leukemia study the authors demonstrated that a classification with
100% specificity and 100% sensitivity (Haferlach et al., 2005) can be
achieved. Classification of different cancer types was not only shown
for gene expression profiles (Ramaswamy et al., 2001) but also for
microRNAs profiles (Lu et al., 2005).

Depending on which clinical data are used, feature selection
(identification of biomarkers) can also be based on correlation of gene
expression values with continuous clinical parameter of the
corresponding patient or in case of binary data logistic regression.
Prognosis (survival probability) can be estimated by survival analysis
(Kaplan–Meier curves) for overall survival or event-free survival,
taking censored data into account. Integration of survival times and
gene expression can be done based on comparison of survival curves
between gene sets or clusters from preceding clustering analyses
(Valk et al., 2004). Significant difference in survival curves can be
assessed by a log-rank test or a proportional hazard model and the
magnitude of the difference by estimating the hazard rate. To test
individual genes (or biomolecules) for the effect on prognosis,
patients are dichotomized into two groups, one with high expression
and the other group with low expression (based on median or
minimal p cutoff).

3.4. Biomolecular pathways and networks

Biomolecular networks have an instrumental role in the integra-
tion of medical information for the translation of high-throughput
genomics into a greater understanding of the disease and into
personalized medicine (Baudot et al., 2009). In cancer a number of
network modelling approaches showed to be very promising
(Pujana et al., 2007; Tomlins et al., 2007; Wong et al., 2008; Kreeger
& Lauffenburger, 2010; Mlecnik et al., 2010b).

The first step in networkmodelling is usually to construct gene co-
expression networks, where two genes (nodes) are connected if the
global correlation between their expression profiles (strength of
relationship) over the tumors/patients is above a certain cutoff (e.g.,
Pearson correlation coefficient N0.6) or if there is significant
correlation (e.g., pb0.05). For weighted co-expression networks
these connections can be weighted with a (sigmoid) adjacency
function. Hierarchical clustering of a topological overlap measure
(taking also connections between neighbouring genes into account)
was effective in detection of gene co-expression modules in
glioblastoma (Horvath et al., 2006). Another association measure is
mutual information used by two common approaches, namely
Algorithm for the Reconstruction of Accurate Cellular Networks
(ARACNe) (Basso et al., 2005) and Relevance Networks (Butte &
Kohane, 2000).

It is impossible based on gene expression to identify causal
relationships. However, there are some approaches such as data
process inequality (Basso et al., 2005), partial correlation (de la Fuente
et al., 2004), and conditional independence (Friedman et al., 2000)
resulting in more reliable predictions. Common modifiers might be
detected by an algorithm called MINDy, which identifies genome-
wide post-translational modifiers based on gene expression profiles of
a transcription factor, target, and the modulator (Wang et al., 2009).
Global correlation analysis may miss patterns that only cover a subset
of samples in each class, caused by heterogeneity of the disease cause
and differential co-expression analyses might take this into account
(Fang et al., 2010).

A network can be also built based on a measure such as the kappa-
score if there is an agreement between two gene sets (e.g., target
genes for transcription factors or microRNAs) or if they are sharing
gene ontology terms as applied in ClueGO (Bindea et al., 2009) and
DAVID (Huang et al., 2009). For cancer metastasis networks the co-
occurrence measures Phi-correlation and relative risk were used
(Chen et al., 2009). In addition to gene expression a number of
different resources can be integrated into networks providing further
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insights otherwise hidden in the complex data sets. Especially
protein–protein interaction (association) data provide a meaningful
complementary source for this purpose as evident from following
examples.

Co-expression profiling and a network modelling strategy based
on interactome networks among other data starting from 4 known
breast cancer associated genes and their product resulted in
identifying HMRR as a factor responsible for centrosome dysfunction
(Pujana et al., 2007). Ideker and colleagues introduced an algorithm
and demonstrated extracting relevant subnetworks from protein–
protein interaction networks based on coherent expression patterns
of their genes (also in case where genes were not significantly
differentially expressed). This approach was successfully applied in
the network based classification of breast cancer metastasis (Chuang
et al., 2007).

A B-cell interactome (BCI) was determined by Naïve Bayes
integration of protein–protein, protein–DNA, and modulatory inter-
action clues. Network dysregulation analyses was performed in that
way that BCI edges with aberrant behaviour in phenotype show a
difference in the mutual information between gene pairs Applying
this method oncogenes and molecular perturbation targets in B-cell
lymphomas could be identified (Mani et al., 2008; Laubenbacher et al.,
2009). The STRING database (Jensen et al., 2009) was used in a recent
study (Mlecnik et al., 2010b) to predict protein/gene associations (see
Section 4). Probabilistic models to identify functional and regulatory
modules from gene expression data showed not only to be relevant in
yeast (Segal et al., 2003) but also applicable to cancer (Segal et al.,
2004; Wong et al., 2008).

The limitations of the pathway analyses arise from the incomplete
or incorrectly defined data. As a result, the network and pathway
predictions are often becoming not reproducible soon after the
publication. Hence, it is of utmost importance to experimentally verify
at least some of the predictions. Nevertheless, pathway and network
analyses are becoming increasingly popular for several reasons. First,
proteins are social and do not act individually in a cellular context.
Second, complex diseases are characterized by deregulated pathways
and it is therefore necessary to study pathways instead of individual
genes. And finally, in many cases the predicted interactions are robust
and the likelihood for experimental validation is high.

3.5. Mathematical models

Another way of integrating data is mathematical modelling.
Modelling has been successfully applied in physiology for many
decades but only recently the quality and the quantity of biomolecular
data became available for the development of causative and predictive
models. Interactions between tumor cells and the surrounding cells
are highly complex and mathematical models and computational
simulation can help to delineate molecular processes and support the
identification of novel key players. Computational tools can investi-
gate mechanisms on different biological scales and predict tumor
behaviour, which may highlight promising direction of the experi-
mental work for cancer diagnosis and therapy.

3.5.1. Mathematical models of cancer
The number of mathematical models that describe solid tumor

dynamics has increased dramatically. Mathematical models of cancer
can be divided into two groups: descriptive and mechanistic
(Anderson & Quaranta, 2008).

Descriptive models explain the regulation of growth such as size
and cell numbers without emphasis on cell biological detail (Araujo &
McElwain, 2004; Kozusko & Bourdeau, 2007; Anderson & Quaranta,
2008). There are several reviews of multi-scale mathematical models
of tumor growth (Bellomo et al., 2003; Bellomo et al., 2008; Macklin
et al., 2009). Zhang et al. (2009) explained applicability of a multi-
scale tumor modelling platform that understands brain cancer. The
spatial model for avascular tumor growth which is described by
partial differential equations or cellular automata provides a pattern
on the surface of multi-cell spheroids (Roose et al., 2007; Chaplain,
2008).

Mechanistic models focus on a specific aspect of tumor progression
(e.g., molecular mechanisms) in order to understand biological
processes that derive cancer therapy (Araujo & McElwain, 2004;
Anderson & Quaranta, 2008; Joshi et al., 2009; Ribeiro & Pinto, 2009).
Johnston et al. discussed two mechanisms that could regulate the
growth of cell numbers and maintain the equilibrium that is normally
observed in the crypt. Results show that an increase in cell renewal
can lead to the growth of cancers and the long lag phases in tumor
growth, during which new, higher equilibria are reached, before
unlimited growth in cell numbers ensues (Johnston et al., 2007).

3.5.2. Mathematical models of cancer-immune cells interactions
Recently, a large number of studies have accumulated indicating

that the immune system can recognize and eliminate tumor cells
(Smyth et al., 2001; Parish, 2003; Eftimie et al., in press). There are still
many unanswered questions about how the immune system interacts
with the growing tumors and which components of the immune
system play significant roles in responding to immunotherapy (De
Pillis et al., 2005). Mathematical modelling of tumor–immune system
interactions and chemotherapy treatment would provide an analyt-
ical predictive framework to address such questions. In this context, it
is noteworthy that early model developments (Kuznetsov et al., 1994)
alreadymimicked a number of phenomena that are seen in vivo. Later,
numerical simulations lead to a deeper understanding of the solid
cancer dormancy (Matzavinos et al., 2004).

In a recent study Kim et al. (2008) used a mathematical model
together with the new experimental data to hypothesize that there
may be a feasible, low-risk, clinical approach to enhancing the effects
of imatinib treatment (Kim et al., 2008). Moore et al. modelled the
interaction T cell subpopulations and CML cancer cells in the body,
using a system of ordinary differential equations (ODEs). In doing so,
parameters were determined which play a critical role in remission or
clearance of the cancer (Moore & Li, 2004). Byrne et al. (2004)
developed a simple mathematical model that described interactions
between normal cells, tumor cells and infiltrating macrophages. De
Pillis et al modelled the interaction of the NK and CD8+ T cells with
various tumor cell lines using a system of differential equations (De
Pillis & Radunskaya, 2003) and proposed new forms for the tumor-
immune competition terms, and validate these forms through
comparison with the experimental data (Diefenbach et al., 2001).

4. Case study: integrating biomolecular and clinical data for
the identification of immunological marker in colorectal cancer

We have recently integrated biomolecular data and clinical data
for colorectal cancer to identify new prognostic markers (Pages et al.,
2005; Galon et al., 2006; Pages et al., 2009). The database incorporates
N1700 patients with associated clinical data and biomolecular
measurements. The detailed description of the database has been
described elsewhere (Mlecnik et al., 2010a). Here we demonstrate the
use of several computational methods to explore the data and
formulate new hypotheses.

The infrastructure of choice was the departmental type, i.e., local
database for the selected patient cohort. The database TME.db (Tumor
MicroEnvironment database) (Mlecnik, et al., 2010a) includes only
processed data and clinical data, whereas the raw data are stored
elsewhere. The database provides R-based statistical tools imple-
menting parametric and nonparametric tests and methods for
survival analysis.

The high-dimensionality and complexity of the biomolecular data
leads to a real interpretation challenge. In our approach (Mlecnik
et al., 2010b), we integrated experimental data with prior knowledge
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from publicly available databases and took advantage of publicly
available tools (Sturn et al., 2002; Shannon et al., 2003; Jensen et al.,
2009). After identifying the genes whose expression was significantly
associated with patient disease-free survival, we reconstructed a
gene–gene network. The reconstructed molecular interaction net-
work was then visualized. These analyses enabled the investigation of
deregulated pathways as well as detailed maps of interactions
between genes/proteins/metabolites within a single pathway.

In the context of IT solutions for integrating clinical and
biomolecular data this case study shows few points that need to be
considered. First, as science is becoming driven by data as a source of
hypotheses, data management should be made an integral part of the
research activities. Retrospective data management not only takes
considerable efforts but it is often hindered or even impossible.
Second, managing data requires long-term commitment since the
infrastructural and personnel resources are not negligible. In-house
solutions are preferable due to changing requirements. And third,
iterative cycles of computational and experimental work can not only
improve the tools and leverage the data, but also provide answers to
scientific questions.

5. Conclusion

In this paper we presented IT solutions and computational tools
required for the integration of biomolecular and clinical data for the
identification of cancer markers and targets for therapy. Although
used to address cancer, the approach is generic and can be applied
also to other multifactorial diseases such as diabetes or cardiovascular
diseases.

It is evident that high-throughput genomic technologies rely on
high-performance computing infrastructure. An increasing use of
high-end computational infrastructure in a clinical settingwill be seen
in the future. Integration of patient archiving systems for imaging data
(PACS), genomic and pharmacogenomic databases, as well as other
laboratory and patient-relevant data will require novel solutions.
Integration of patient databases represents significant challenges for
designers and administrators of information management systems.
The lack of international standards in patient care and management
and different accounting systems will require the development
and installation of country-specific (or even regional-specific)
systems. Security issues arising from the sensitivity of certain
types of information need to be addressed and solved in a proper
manner. This development is inevitable and requires institutional
commitment. However, the necessary resources should not be
underestimated.

While institutional solutions are under way, it will take time until
researchers are able to fully exploit the potential of integrating
biomolecular and clinical data. Meanwhile, a more pragmatic
approach is to establish a medium-scale solution at the departmental
level as shown here. Such a focused infrastructure requires only a
fraction of the costs and time as compared to an institutional one. It
should be noted that due to the available technology the computa-
tional infrastructure can be dislocated from the actual site where the
data are generated. Web-based interfaces to databases and software
applications and appropriate security measures are common in many
scientific as well as in other areas. As demonstrated in a series of
studies with our collaborators, this lean IT solution for integrating
biomolecular and clinical data can indeed identify new cancer
biomarkers for improving diagnosis and clinical outcome (Pages
et al., 2005; Galon et al., 2006; Pages et al., 2009; Mlecnik et al., 2009).

Although the design of the IT solution is specific for cancer
immunology, the development and installation of similar settings is
straightforward for several reasons. First, there are a number of
academic packages for the storage and preprocessing of raw data for
specific molecules, which can be easily installed. Second, bioinfor-
matics analysis and visualization tools, which can handle various
types of processed data are available. And third, software technology
as well as computational infrastructure at the departmental level is
affordable and does not represent a limitation for the analysis of
medium-scale data sets — normally the case after preprocessing and
filtering. We strongly believe that similar specific solutions will
provide insights into molecular mechanisms of cancer and support
the identification of novel cancer biomarkers and targets for therapy.
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Abstract

Cancer progression is a complex process involving host-tumor interactions by multiple molecular
and cellular factors of the tumor microenvironment. Tumor cells that challenge immune activity
may be vulnerable to immune destruction. To address this question we have directed major efforts
towards data integration and developed and installed a database for cancer immunology with more
than 1700 patients and associated clinical data and biomolecular data. Mining of the database
revealed novel insights into the molecular mechanisms of tumor-immune cell interaction. In this
paper we present the computational tools used to analyze integrated clinical and biomolecular data.
Specifically, we describe a database for heterogenous data types, the interfacing bioinformatics and
statistical tools including clustering methods, survival analysis, as well as visualization methods.
Additionally, we discuss generic issues relevant to the integration of clinical and biomolecular data,
as well as recent developments in integrative data analyses including biomolecular network
reconstruction and mathematical modeling.
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Background
Despite extensive characterization of environmental and
intrinsic and underlying mechanisms [1,2], markers of
the oncogenic process remain so far poorly predictive of
patient survival and fail to prove their reliability in
clinical use. For example, colorectal cancer is one of the
most common malignancies for both men and women
[3]. The rate of localized cancers (stage I-II; UICC-TNM
classification) is about 40% [4,5]. Despite surgery with
curative intent, the risk of recurrence of these early-stage
patients is high (approximately 20-30%). To subject all
of these patients to post-operative chemotherapy may be
inappropriate and costly [6]. Genetic and molecular
tumor prognostic factors have been proposed to identify
patients who may be at risk for recurrence. None has yet
been sufficiently informative for inclusion in clinical
practice [5]. Identification of patients with high-risk of
recurrence is therefore a major clinical issue. However, in
order to develop stratified or personalized strategies for
such complex multifactorial disease it is of importance
to understand how numerous and diverse elements
function together in human pathology. A comprehensive
understanding of cancer requires the integration and
analysis of data not only from the tumor but also its
microenvironment including the immune cells.

Tumors are composed of a complex network of tumor
cells, immune cells, stromal components including
fibroblasts, and a complex vasculature. To grow, invade,
and metastasize, a tumor interacts with its microenvir-
onment, composed of diverse cells of various origins.
The microenvironment contains cells of the immune
system, including inflammatory infiltrates of innate
immunity and infiltrates of the adaptive immune
response. In colorectal cancer, previous studies have
suggested a clinical role of the immune infiltrates [7-11].
In order to investigate the role of the immune infiltrates
and analyze the tumor immunological microenviron-
ment in humans we developed and installed a database
for cancer immunology with more than 1700 patients
and associated clinical data and biomolecular data. By
analyzing the data we showed the importance of early-
metastatic invasion in colorectal cancer and could
pinpoint a novel prognostic marker for survival [10].
We evidenced that the recently characterized immune
cell subpopulation of effector-memory T cells (TEM),
may have a central role in the control of tumor spreading
to lymphovascular and perineural structures but also to
lymph node or distant organs. In subsequent study we
demonstrated the role of the adaptive immune system
for predicting clinical outcome [9]. Furthermore, we
revealed the importance for patient prognosis of the
nature, the functional orientation, the density and the
localization of immune cell populations within the

primary tumor. Thus, adaptive immune reaction and
intratumoral T-cell subpopulations were better predictor
of survival than traditional staging based on a cancer's
size and spread [9].

In the light of these studies it was of utmost importance
to integrate the data and develop tools for analysis and
visualization. In this paper, we present the solutions
developed to analyze the tumor immunological micro-
environment in humans including database, analytical
tools, and tools for visualization. Specifically, we
describe here the database for clinical and biomolecular
data, the interfacing bioinformatics and statistical tools
including clustering methods, survival analysis, as well
as visualization methods. Furthermore, we discuss
upcoming developments for integrative data analyses
including biomolecular network reconstruction and
mathematical modeling.

Bioinformatics and statistics tools for cancer
immunology
Database for cancer immunology
The database developed for cancer immunology (Tumor
Microenvironment (TME)) integrates clinical and bio-
molecular data. The underlying relational database
model is designed as a cancer patient oriented database
which takes all the patients anamnesis and clinical and
medical history information into account whereby all
patients are linked to a speci?c hospital. Security issues
were treated in regard to the interest of patients. Ethical,
Legal and Social Implications (ELSI) have been fulfilled
(agreement #903434), security modules implemented,
and anonymous information stored. The patient infor-
mation additionally includes medical problems, surgery
and detailed cancer information. Additionally TME.db
allows the storage of a variety of different high-
throughput experiments including:

• Real-Time TaqMan qPCR gene expression data (Low
density arrays, single probes, T-cell repertoire analysis)

• Microsatellite instability (MSI) and mutations data

• Flow cytometric (FACS) phenotyping data

• Protein quantification (ELISA, Quantibody, cytometric
beads assays) data

• Functional data (proliferation, survival, apoptosis,
migration assays)

• Immunohistochemical data (Tissue Micro Array (TMA)
and whole slide analysis)
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TME.db joins and integrates all different types of data
and stores them in a common place where all the
determined analysis parameters are linked in a clear way
dependent on the sample material and the experiment
type. For accessing all the stored information again
sophisticated query methods were developed in order to
retrieve the data in a pre-modi?ed way, already prepared
for statistical analysis. As of May 2009, the database
incorporates 1784 patients with associated clinical data
with 60 parameters (e.g. tumor staging, treatment, cancer
relapse) and 16400 different material information as
well as biomolecular measurements (including qPCR for
400 genes from 125 patients, 820 FACS parameters from
40 patients, 20 tissue microarray assays for 600 patients).

Software architecture
TME is a multi-tier client-server application and can be
subdivided into different functional modules which
interact as self-contained units according to their defined
responsibilities: presentation tier, business tier and
runtime environment. The presentation tier within TME
is formed by a Web interface, which allows programming
access to parts of the application logic. Thus, on the
client side, a user requires an Internet connection and a
recent Web browser with Java support, available for
almost every platform. The business tier is realized as
view-independent application logic, which stores and
retrieves datasets by communicating with the persistence
layer. The internal management of files is also handled
from a central service component, which persists the
meta-information for acquired files to the database. All
services of this layer are implemented as STRUTS and are
using SITEMESH.

Model driven development
In order to reduce coding and to increase the long term
maintainability, the model driven development environ-
ment AndroMDA is used to generate components of the
persistence layer and recurrent parts from the above
mentioned business layer. AndroMDA accomplishes this
by translating an annotated UML-model into a JEE-
platform-specific implementation using Enterprise Java
Beans (EJB), STRUTS and SITEMESH. Due to the
flexibility of AndroMDA, application external services,
such as the user management system, have a clean
integration in the model. Dependencies of internal
service components on such externally defined services
are cleanly managed by its build system. By changing the
build parameters in the AndroMDA configuration, it is
also possible to support different relational database
management systems. This is because platform specific
code with the same functionality is generated for data
retrieval. Furthermore, technology lock-in regarding the
implementation of the service layers was also addressed

by using AndroMDA, as the implementation of the
service facade can be switched during the build process
from Spring based components to distributed Enterprise
Java Beans. At present, TME is operating on one local
machine and, providing the usage scenarios do not
demand it, this architectural configuration will remain.
However, chosen technologies are known to work on
Web server farms and crucial distribution of the
application among server nodes is transparently per-
formed by the chosen technologies.

Data retrieval, collaboration and data sharing
TME offers search masks which allow keyword based
searching in the recorded projects, experiments and
notes. These results are often discussed with collabora-
tion partners to gain different opinions on the same raw
data. In order to allow direct collaboration between
scientists TME is embedded into a central user manage-
ment system which offers multiple levels of access
control to projects and their associated experimental
data. The sharing of projects can be done on a per-user
basis or on an institutional basis. For small or local
single-user installations, the fully featured user manage-
ment system can be replaced by a file-based user
management which still offers the same functionalities
from the sharing point of view, but lacks institute-wide
functionalities.

Bioinformatics analysis tools
The database was mined using standard bioinformatics
tools. Specifically, qPCR and FACS data were explored
using two-dimensional hierarchical clustering of correla-
tion matrices (i.e. gene-wise correlation of the respective
patient groups [9]). Genesis clustering software was used
to visualize the correlation matrix and to perform
Pearson un-centered hierarchical clustering [12]. This
tool was developed for large-scale gene expression cluster
analysis and integrates various tools for microarray data
analysis such as filters, normalization and visualization
tools, distance measures as well as common clustering
algorithms including hierarchical clustering, self-orga-
nizing maps, k-means, principal component analysis,
and support vector machines [12].

Statistical analysis
Survival analysis provides a statistical framework for the
modeling and statistical analysis of the time to event for
a cohort of patients [13]. Since the distribution of
survival times might have an unusual and often
unknown form, nonparametric Kaplan-Meier estimates
are widely used when censoring is present for the
characterization of groups of patients with different
underlying characteristics, i.e. calculating median survi-
val times and patients at risk after a given period.
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Similarly, the log-rank non-parametric test is used to
check the null hypothesis that at any time point there is
no difference in the probability of the event of interest
between the groups [14]. The magnitude of the
difference and its confidence interval can be calculated
using a Cox proportional hazards model. Furthermore
the effect of a novel biomarker can be adjusted for
traditional parameters if this modeling strategy is used
on several covariates.

TME implements the previous tests within a statistical
analysis module. Calculations are done using the
survival package from R [15] to which TME connects
using RServe [16]. The aim is the automatic detection of
biomarkers or sets of biomarkers that - alone or in
combination with other parameters - are able to
discriminate groups of colorectal cancer patients with
good prognosis from those with bad prognosis for both,
overall and disease-free survival. In particular, TME
provides:

- Kaplan-Meier curves, estimates of the median survival
time and number of patients at risk after a certain time
period for the different groups of patients

- Log-rank test for the analysis of the differences in
survival between groups of patients with different
underlying characteristics

- Univariate Cox proportional hazards model to estimate
the magnitude of the effect of the covariate in survival

- Tools for the categorization of numeric covariates into a
fixed number of levels. This can be useful for the
classification of the patients into groups based on the
biomolecular markers stored in TME for each patient,
such as the expression level of a gene or the number of
cells of a given type found at different locations of the
tumor sample.

Although categorization of the patients into groups
might result in loss of information [17], this is often
done in clinical practice. The way the cut-off is set for
dichotomizing a continuous variable is also controver-
sial: A previously described value or a biologically
justified level can be used as suggested by Altman et al
[18]. In the absence of a biologically sound cut-off value,
using a statistic of the sample (such as the median)
balances the number of cases per group but results in
different levels across studies making the comparison of
results from different groups difficult [17]. Hence, the
analysis must be repeated in an independent cohort of
patients categorized using the cut-off previously selected.
The same is true when using the “minimum p-value”
approach [19], i.e. taking the point yielding the

“maximum” significance between groups. This approach
has additional important problems such as the over-
estimation of the prognostic importance of the covariate
and multiple testing issues that might be accounted for
[18]

TME allows the inspection of the covariates dichotomiz-
ing them based in any of the previous options. In
particular, if the minimum p-value approach is used the
log-rank p-value can be corrected using either the
formula proposed by Altman et al [18] or with cross-
validation as proposed by Faraggi & Simon [20].
Additionally, TME implements the shrinkage method
proposed by Holländer et al [21] to correct the hazard
ratios.

Next version of TME will also include multivariate
analysis using a Cox proportional hazards model and
decision trees, which can easily accommodate hetero-
geneous variables and have yielded already satisfactory
results in the discovery of biomarkers for breast cancer
[22].

Data visualization
Data visualization was carried out using the publicly
available software tools Cytoscape, ClueGO, and GOlor-
ize. Cytoscape is free software package for visualizing,
modeling and analyzing molecular and genetic interac-
tion networks [23-26]. In Cytoscape, the nodes represent
genes or proteins and they are connected with edges
which representing interactions. Typical biological net-
works at the molecular level are gene regulation net-
works, signal transduction networks, protein interaction
networks, and metabolic networks. In order to capture
biological information, ClueGO [25], a Cytoscape plug-
in, uses Gene Ontology [27] categories that are over-
represented in selected one or two lists of genes. ClueGO
takes advantage of GOlorize [26] plug-in, an efficient
tool to the same class node-coloring and the class-
directed layout algorithm for advanced network visuali-
zation.

Discussion
In this paper we described computational tools devel-
oped specifically to address biological questions in
cancer immunology. The computational tools include:
1) a database for clinical and biomolecular data
comprising >1700 patients with associated clinical
information, FACS data, qPCR data, tissue microarray
data; 2) bioinformatics tools developed for the analyses
of medium and large-scale data, 3) statistical tools for
the survival analysis; and 4) tools for visualization of the
data. The power of the dedicated informatics solution is
leveraged by the integration of all computational
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resources using various interfaces. During the course of
the development of the database, the implementation of
the analytical tools, and the analysis of the data we have
learned several important lessons.

Lessons learned
First, development of a dedicated database is time-
consuming but indispensable task. In recent years, the
biology community has expended considerable effort to
confront the challenges of managing heterogeneous data
in a structured and organized way and as a result
developed information management systems for both
raw and processed data. Laboratory information man-
agement systems (LIMS) have been implemented for
handling data entry from robotic systems and tracking
samples as well as data management systems for
processed data including microarrays, proteomics data,
and microscopy data. In general, these sophisticated
systems are able to manage and analyze data generated
for only a single type or a limited number of
instruments, and were designed for only a specific type
of molecule. Thus, addressing a biological question
relying on several complementary technologies requires
a specific off-the-shelf database. It should be noted that
such a database could absorb several person-years of
software engineering and this effort tends to be under-
estimated.

Second, incorporation of clinical data poses additional
challenges. Many institutions have electronic patient
records and in principle, extracting the information
could be straightforward. However, technical, ethical,
and legal issues might delay or even prohibit the process
of data collection. Heterogeneous clinical and depart-
mental information systems, accessibility of patient data,
and managing sensitive information can introduce
several levels of complexity and require extensive
stakeholder discussions. A complex information man-
agement system that captures in a secure way the relevant
data is suggestive only for large (i.e. several hundred PIs)
institutions. The majority of the labs are better off with a
design of a relatively small, departmental database for
only few specific cohorts. The patient data should be first
de-identified and then provided to the biologists and
bioinformaticians.

Third, primary data should be archived at a separate
location and only preprocessed and normalized data
should be stored in the dedicated database. Although it
is tempting to upload and analyze all types of data in a
single system, experience shows that primary data is
mostly used once. This approach is even more advisable
for large-scale data including microarrays, proteomics of
sequence data. However, links to the primary data need

to be secured so that later re-analyses using improved
tools can be guaranteed. In this context it is noteworthy
that in the analyses we have performed so far only
medium-throughput data was used, meaning that the
number of analyzed molecular species was in the range
of 100-1000. With this number of elements the majority
of the tools perform satisfactorily on a standard desktop
computer. Performance is a crucial issue if the number of
molecules detected in a single patient sample increases
to >10.000 (like in microarray studies) or >100.000
(proteomics studies) and the used methods need to be
re-evaluated.

In this paper we show a powerful approach for
integrative analyses of heterogenous biomolecular data
and clinical data. Although powerful, our approach was
sequential, i.e. the data was integrated in the database
and the query masks allowed sequential analyses of
specific biomolecular data, and their correlation with
clinical data. We strongly believe that integrative data
analyses methods will provide additional insights
otherwise hidden in the complex data sets. Several
approaches were sugges ted prev ious ly (e .g .
[23-26,28-30]). However, normalization of the data,
availability of reference datasets, and scarcity of the data
(specific measurements are not available for all patients)
are non-trivial issues which are difficult to address. In
this context, novel data integration approaches are
highly desirable. In the following paragraphs we high-
light two approaches, namely biomolecular network
reconstruction and mathematical modelling, which have
the potential to provide mechanistic insights and
ultimately translation of this knowledge to clinical
applications.

Biomolecular network reconstruction
One emerging field, which was not addressed in this
paper is biomolecular network reconstruction. The data
we have so far used are actual measurements and are
limited to the available technology and/or samples.
There is a wealth of information stored in public
databases on protein-protein interactions, text mining,
two-hybrid screens, or gene silencing using siRNA. The
integration of this datasets in databases like STRING [31]
and the visualization tools like Cytoscape [23] and
associated-software such as ClueGO [25] opens new
avenues of exploration of biomolecular networks.

Mathematical modeling
Since the pathophysiological mechanisms underlying
cancer are highly complex and involve many different
cell types and processes, mathematical modeling is
becoming an important tool to integrate the biological
information and enhance our understanding of
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interaction between cancer and immune system. More-
over, mathematical modeling may direct direction of
experimental work for treatment and diagnosis. Here we
briefly describe relevant modeling efforts for tumour-
immune cells interaction.

Mathematical models of cancer
Traditionally, mathematical models of cancer fall into
two broad camps: descriptive and mechanistic [32].
Descriptive models tend to focus on reproducing the
gross characteristic of tumors such as size and cell
numbers, are generally used to investigate tumor cell
population dynamics, without emphasis on cell biolo-
gical detail [32-34]. Over the last decades, many
mathematical models have been proposed that focus
on tumor growth. Macklin et al. [35] performed a new
multiscale mathematical model for solid tumor growth
which couples an improved model of tumor invasion
with a model of tumor-induced angiogenesis. A large
number of studies have described deterministic models
which have been used to model the spatio-temporal
spread of tumors [36]. By contrast, mechanistic models
focus on specific aspects of tumor progression in order to
explain the underlying biological processes that drive
them [32,33,37].

Mathematical models of immune response
The regulation of immune system involves the interac-
tion between populations of pathogen and immune cell.
Immunological memory and specificity are property of
the immune system. This ability to respond more rapidly
and effective than to the first exposure [38]. Under-
standing of these aspects requires quantitative models of
proliferation and differentiation of T lymphocytes.
Mathematical modeling can describe these behaviors as
deterministic or stochastic models. De Boer et al.
proposed the simple mathematical model in which
parameters can be estimated (proliferation and death
rate) during clonal expansion and contraction phase
[39,40]. Three models have been proposed by Ganusov
[41] to discriminate between alternative memory cell
differentiation pathways.

Mathematical models of cancer-immune interactions
Mathematical modeling of tumor growth that includes
the immune response and chemotherapy treatment
would provide an analytical predictive framework. Kim
et al. developed a mathematical model with the new
experimental data to gain insights into the dynamics and
potential impact of the resulting anti-leukemia immune
response on chronic myelogenous leukemia (CML) [42].
Moore et al. modeled the interaction T cell subpopula-
tions and CML cancer cells in the body, using a system of
ordinary differential equations [43]. Steffen et al.

presented a mathematical model of melanoma invasion
into healthy tissue with an immune response. They used
this model as a framework with which to investigate
primary tumor invasion and treatment by surgical
excision [44].

Conclusion
In this paper we presented computational tools devel-
oped to manage and explore clinical and biomolecular
data for the identification of molecular mechanisms in
the tumor microenvironment. The presented bioinfor-
matics and statistics solutions were applied on a patient
cohort with colorectal cancer and revealed novel insights
in the tumor-immune cells interaction. Although used to
address a specific question, the approach is generic and
can be applied also to different cancers as well as to other
multifactorial diseases like diabetes or cardiovascular
diseases.
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ACKGROUND & AIMS: Colorectal cancer is a complex
isease involving immune defense mechanisms within the
umor. Herein, we used data integration and biomolecular
etwork reconstruction to generate hypotheses about the
echanisms underlying immune responses in colorectal

ancer that are relevant to tumor recurrence. METHODS:
echanistic hypotheses were formulated on the basis of

ata from 108 patients and tested using different assays
gene expression, phenome mapping, tissue-microarrays, T-
ell receptor [TCR] repertoire). RESULTS: This integrative
pproach revealed that chemoattraction and adhesion play
mportant roles in determining the density of intratumoral
mmune cells. The presence of specific chemokines
CX3CL1, CXCL10, CXCL9) and adhesion molecules
ICAM1, VCAM1, MADCAM1) correlated with different
ubsets of immune cells and with high densities of T-cell
ubpopulations within specific tumor regions. High ex-
ression of these molecules correlated with prolonged
isease-free survival. Moreover, the expression of certain
hemokines associated with particular TCR repertoire
nd specific TCR use predicted patient survival. CON-
LUSIONS: Data integration and biomolecular net-
ork reconstruction is a powerful approach to un-

over molecular mechanisms. This study shows the
tility of this approach for the investigation of ma-

ignant tumors and other diseases. In colorectal can-
er, the expression of specific chemokines and adhe-
ion molecules were found as being critical for high
ensities of T-cell subsets within the tumor and as-
ociated with particular TCR repertoire. Intratu-

oral-specific TCR use correlated with the prognosis
f the patients.

eywords: Integrative Biology; Colorectal Cancer; Chemo-
ines; Immune Reaction.

o develop stratified or personalized strategies for
complex multifactorial diseases it is important to

nderstand how numerous and diverse elements func-
ion together in human pathology.1,2 A comprehensive

nderstanding of diseases such as cancer not only will
equire the integration and analysis of data from the
umor in its microenvironment, but also of other data
ources from model organisms stored in public data-
ases.1,2 Cancer is the result of an accumulation of ge-
etic alterations that allows growth of neoplastic cells.3,4

he adenoma– carcinoma sequence underlies the devel-
pment of colorectal cancer (CRC), and distinct path-
ays (microsatellite instability and chromosomal insta-
ility pathways) have been identified.5 The natural
volution of a cancer also involves antagonistic interac-
ions of the tumor with the defense mechanisms of the
ost.6,7 Inflammatory mediators can promote tumor pro-
ression and metastases.8 The innate and adaptive im-
une systems also can protect the host against tumor

evelopment through mechanisms of immunosurveil-
ance.9 The increased susceptibility of immunodeficient

ice to carcinogen-induced and spontaneous tumors
howed the role of innate and adaptive immunity in the
ontrol of tumor development.9 –11 More recent data pro-
ide support for a role for adaptive immunity also during
he equilibrium phase of cancer.12

In human CRC, adaptive immune reaction was found,
nd densities of immune cells are very different from
atient to patient.7 Numerous HLA-restricted T cells spe-
ific for tumor peptides have been described.13 Lympho-
ytes infiltrating solid tumors have been associated with
mproved prognosis.14 –16 Tumors from CRC patients
ontaining a high density of infiltrating memory and
ffector memory T cells were found to be less likely to
isseminate to lymphovascular and perineural structures
nd to regional lymph nodes.17 Tumor recurrence and
verall patient survival times correlated broadly with the

mmune context and the presence of memory T cells
ithin the tumor.18,19 Tumors also contain a variety of

ytokines, chemokines, and inflammatory and cytotoxic

Abbreviations used in this paper: CT, center; CRC, colorectal cancer;
FS, disease-free survival; HR, hazard ratio; IM, invasive margin; PCR,
olymerase chain reaction; TCR, T-cell receptor; TH, T-helper–specific.

© 2010 by the AGA Institute
0016-5085/10/$36.00
doi:10.1053/j.gastro.2009.10.057
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1430 MLECNIK ET AL GASTROENTEROLOGY Vol. 138, No. 4
ediators. This complex network reflects the heteroge-
eity underlying tumor biology and tumor– host interac-
ions.7,9 The reasons for the very different densities of
mmune cells found within tumors, however, remain
nknown.
To gain an improved understanding of tumor– host

nteractions in human CRC, we developed and applied an
ntuitive data integration strategy to analyze immune
eaction in CRC. We used a method that effectively cre-
ted hypotheses permitting us to detect an immune net-
ork relevant to prognosis. Predicted molecules involved

n lymphocyte chemoattraction and adhesion were ana-
yzed together with immune populations in situ. Biolog-
cal hypotheses then were validated in a large cohort of
atients by a combination of high-throughput ap-
roaches. The novel aspects of our study revealed mech-
nisms resulting in high or low densities of specific
mmune cells at the tumor site. Chemokines and adhe-
ion molecules associated with immune effector T cells
ith particular TCR repertoire. Furthermore, the pres-

nce of a specific intratumoral TCR repertoire correlated
ith the survival of the patient. Thus, we provided a

ramework for predicting effective host-immune reaction
gainst cancer in human beings. This study shows the
tility of data integration and biomolecular network re-
onstruction for the investigation of malignant tumors
nd other diseases.

Materials and Methods
Patients and Database
The records of CRC patients who underwent a

rimary resection of their tumor at the Laennec George
ompidou European Hospital (HEGP) Hospitals be-
ween 1996 and 2004 were reviewed and described previ-
usly.18 Histopathologic and clinical findings were scored
ccording to the International Union Against Cancer
UICC)-TNM staging system. For details, see the Supple-

entary Materials and Methods section and Supplemen-
ary Table 1. A secure web-based database Tumor Micro-
nvironment Database (TME.db) was built in our lab for
he management of patient data. Ethical, legal, and social
mplications were approved by the ethical review board.

Gene Expression Analysis
Frozen tumor samples (cohort 1, n � 108; reval-

dation cohort 2, n � 27) of randomly selected patients
vailable from Laennec-HEGP Hospitals (1996 –2004),
ith sufficient RNA quality and quantity, were selected

or gene expression analysis. Total RNA was isolated by
omogenization with the RNeasy isolation kit (Qiagen,
alencia, CA). Quantitative real-time TaqMan polymer-
se chain reaction (PCR) was performed using low-den-
ity arrays and the 7900 robotic real-time PCR system
Applied Biosystems, Foster City, CA). Data were ana-
yzed using SDS Software v2.2 (Applied Biosystems) and

he TME.db statistical module. t
Large-Scale Flow Cytometric Analysis
After mechanical dispersion, cells from fresh tu-

ors were washed and subjected to 4-color flow cytom-
try. Cells were resuspended in phosphate-buffered sa-
ine/0.5% bovine serum albumin and incubated for 30

inutes at 4°C with antibodies and relevant isotype
ontrols. Forty thousand cells were analyzed per run.
nalyses were performed with a FACScalibur flow cytom-
ter and CellQuest software (Becton Dickinson, San Di-
go, CA).

T-Cell Receptor Repertoire Analysis
The complementarity determining region 3 (CDR3)

ength distribution analysis was achieved by performing
everse-transcription of V and V–J gene composition and
ranscripts into complementary DNA; CDR3-encoding

essenger RNA (mRNA) was amplified by PCR using
pecific V and C primers. The intratumoral T-cell reper-
oire was performed on 10 randomly selected colorectal
umors using the TcLandscape technology (TcLand,
antes, France).

Tissue Microarray and Immunohistochemistry
By using a tissue-array instrument (Beecher In-

truments, Alphelys, Plaisir, France), 2 representative re-
ions of the tumor (center [CT] and invasive margin
IM]) were punched from paraffin-embedded tissue blocks.
issue-microarray sections were incubated with monoclonal
ntibodies against CD3 (SP7), CD8 (4B11), CD45RO
OPD4), GZMB (GrB-7), CD57 (NK1), CD1A (O10), cy-
okeratin (AE1AE3), and cytokeratin-8 (Neomarkers, Fre-

ont, CA), T-bet (4B10) (Santa Cruz Biotechnology,
anta Cruz, CA), and CD68 (PG-M1) (Dako, Copenhagen,
enmark). Envision� system and 3.3=-diaminobenzidine

etrahydrochloride– chromogen (DAB) were applied
Dako). Slides were analyzed using an image analysis
orkstation (Spot Browser; Alphelys).

Statistical Analysis
The gene prediction network in Figure 1 was cre-

ted using the Search Tool for the Retrieval of Interact-
ng Proteins (STRING) database and Gene Ontology
GO). Correlation matrix was performed using Pearson
ncentered hierarchical clustering. For pairwise compar-

sons of parametric and nonparametric data the Student
test and the Wilcoxon rank-sum test were used, respec-

ively. Kaplan–Meier estimators of survival were used to
isualize the survival curves. Hazard ratio (Cox propor-
ional hazards model) and the log-rank test were used to
ompare disease-free and overall survival between pa-
ients in different groups. To avoid overfitting, hazard
atios obtained by the minimum P value approach were
orrected.18 P values for gene combination analysis with
igh gene expression in CT and IM (HiHi) vs low expres-
ion in those two regions (LoLo) were corrected for mul-

iple testing using the Benjamini-Hochberg method. We
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April 2010 BIOMOLECULAR NETWORKS AND TUMOR–HOST INTERACTIONS 1431
pplied the Kruskal–Wallis 1-way analysis of variance to
etermine if any of the patient cohorts was significantly
ifferent regarding the clinical parameters; no significant
ifference was found between cohorts. All through this
rticle a P value less than .05 was considered statistically
ignificant. All analyses were performed with the statisti-
al software R (survival package) and Statview (Cary, NC).
or details, see the Supplementary Materials and Meth-

igure 1. Biomolecular network using gene expression data in a coh
vailable knowledge. The network illustrated experimental data (colored
ene expression data were acquired by a reverse-transcription PCR st
he network was reconstructed based on a subset of 12 genes, which re
redicted in silico plus the genes analyzed by reverse-transcription PCR
ere predicted by STRING. The node sizes of the network are based
order had significant log-rank P values (P � .05). The edge weights o
earson correlation value between the 47 reverse-transcription PCR ge
y STRING (see Supplementary Materials and Methods section for d
xpression correlations (blue lines), STRING scores (gray lines), and t
hickness levels show the relation strength based on the integrated
ccurrences in different GO categories (Supplementary Table 2).
ds section. a
Results
Immune-Related Genes Are Associated With
the Absence of Tumor Recurrence
We first investigated gene expression in colorectal

umors. We determined the median cut-off values for
ach gene, and performed survival analysis for up to 10
ears after primary tumor resection. Log-rank P values
ssociated with disease-free survival then were calculated

f patients with CRC and predicted gene–gene interactions based on
s) and in silico prediction (white nodes surrounded by a red border). The
r 47 genes in a cohort of 108 CRC patients (Supplementary Table 1).
d a significant log-rank level for DFS. The network shows the top genes
CL1 was the top predicted gene. All nodes surrounded by a red border
e HR for DFS (Supplementary Table 1). Nodes surrounded by a black
network are based on the integrated score of the pairwise uncentered
nd the combined edge scores for all genes predicted in silico provided
). The network node layout was based on Gene Ontology (GO), gene
tegrated association strength between genes (edge thickness). Edge
e value between the nodes. Nodes are colored based on multiple
ort o
node
udy fo
ache

. CX3
on th
f the
nes a
etails
he in
scor
nd hazard ratios were illustrated by the size of each node
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n a network (Figure 1). The expression of genes associ-
ted with tumor invasion (CEACAM1, CD97), metastasis
preading (ACE, EBAG9, MMP7), tumor anti-apoptotic
survivin/BIRC5), and angiogenesis (vascular endothelial
rowth factor) was assessed. Surprisingly, the duration of
isease-free survival (DFS) did not correlate significantly
ith the expression of these tumor-related genes. Host-

mmune response-related genes, particularly proinflamma-
ory, immunosuppressive, T-helper–specific (TH1, TH2), in-
ate, and adaptive immune response—related genes also
ere assessed. The patterns of expression of proinflam-
atory-related (PTGS2, IRAK4), TH2-related (GATA3),

nd immunosuppression-related (IL10, FoxP3) genes did
ot vary according to tumor recurrence. In contrast,

nnate and adaptive immunity-related genes Granulysin
GNLY), Signal Transducer and Activator of Transcrip-
ion 1 (STAT1), Interferon Regulatory Factor 1 (IRF1),
nterferon Gamma (IFNG), T-Box 21/T-bet (TBX21), In-
erleukin 18 Receptor (IL18RAP), Inducible T-cell co-
timulator (ICOS). TH1 (STAT1, IRF1, IFNG, TBX21), as
ell as genes involved in T-cell activation, TH1, and neg-
tive regulation of the immune response (PDCD1,
DCD1LG1, PDCD1LG2) stratified patients into groups
ith statistically different DFS rates (P � .05).

Reconstructed Biomolecular Network Predicts
Interacting Chemokines and Adhesion Molecules
Based on the gene expression data we recon-

tructed a gene– gene network (see Supplementary Mate-
ials and Methods section). By using the subset of genes
elevant to tumor recurrence and with statistically differ-
nt DFS (Supplementary Table 2), we further combined
ublicly available databases and prior knowledge20 to
nrich the network. The prediction of genes was based on
onserved genomic neighborhood, phylogenetic profil-
ng, co-expression analysis, protein–protein interaction,
unctional genomic public databases, and literature co-
ccurrence. The reconstructed network was visualized
Figure 1) using a network layout visualization that uses
O annotations as a source of external class information

o direct the network layout process and to emphasize
he biological function of the nodes (Supplementary Ta-
le 3).21

This integration and visualization of both experimen-
al and in silico data on the network revealed putative
unctional interactions and new groups of genes associ-
ted with the patient’s prognosis. Among the prediction
f network membership (nodes with red border) were

™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™
igure 2. Gene expression levels from 108 colorectal tumors (cohort 1

he duration of DFS, according to the expression of the predicted gene
erformed. Patients with high (Hi) expression for both genes (red line) o
xpression (HiLo or LoHi, green line) are represented. (B) HRs were calcu
atients). A HR-matrix (heatmap) followed by unsupervised hierarchical

rognosis HR, 2.5 (blue). All HR with HR less than 0.55 or HR greater than 1
olecules involved in leukocyte and myeloid cell differ-
ntiation, the regulation of apoptosis, the protein kinases
ascade, adhesion, and chemotaxis (Supplementary Fig-
re 1).22 To test whether the association between pre-
icted genes and patient survival might be a result of
heir correlation with the seed genes (used for predic-
ion), we performed STRING analysis without co-expres-
ion data. The network constructed without using co-
xpression information was highly similar to the initial
etwork prediction (Supplementary Table 4).
The first top-ranked predicted gene was CX3CL1.
ther chemokines, such as CXCL9, CXCL10, CCL2,
CL5, and CCL11, and adhesion molecules, such as
ADCAM1, ICAM1, and VCAM1, were predicted to be

nteracting molecules (Figure 1).

Chemoattractants and Adhesion Molecules
Are Associated With Improved Prognosis
This reconstructed biomolecular network both

enerated testable hypotheses and predicted novel inter-
ctions. Among the predictions of network memberships
ere chemokines. These molecules could attract distinct

ell subpopulations associated with patient survival. To
alidate the predictions, we analyzed the gene expression
f CX3CL1, CXCL9, and CXCL10 in primary tumors in 2

ndependent cohorts (n � 108 and n � 27). In the first
ohort, an association between high chemokine expres-
ion and improved patient survival (cut-off level at me-
ian of the dataset hazard ratio [HR], 2.06, 1.78, and
.76, respectively; P � .05) was observed for each marker

CX3CL1, CXCL9, and CXCL10). The HRs for CX3CL1,
XCL9, and CXCL10 were increased (2.21, 2.38, and 2.92,

espectively) by using the cut-off value that yielded the
inimum P value for DFS (Figure 2A). Similar results

lso were found in the second cohort (Supplementary
igure 2).
Patients with increased expression of other predicted che-
okines and adhesion molecules, such as CCL2, CCL5,

CL11, ICAM1, and MADCAM1, showed prolonged DFS
HR Lo vs Hi, 1.81–2.21). In contrast, patients with de-
reased expression of Epidermal Growth Factor Receptor
EGFR) showed prolonged DFS. For control purposes we
ested the expression of a nonpredicted chemokine,
XCL5. The expression of this chemokine did not vary
ccording to tumor recurrence (Figure 2A). To investigate
hether the combined analysis of predicted genes could

mprove the prediction of patient prognosis, we plotted a
-dimensional hierarchical cluster matrix according to

™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™
re analyzed by real-time quantitative PCR. (A) Kaplan–Meier curves for
3CL1, CXCL9, CXCL10, CCL2, CCL5, CCL11, and MADCAM1) were
(Lo) expression for both gene densities (black line), and heterogeneous
for high and low gene expression compared with the whole cohort (108
ering was represented from favorable prognosis: HR, 0.4 (red) to poor
™™™
) we

s (CX
r low
lated
clust
.66, were significant.
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he HR between patient groups (Figure 2B). By using this
ethod, the DFS time differences found between pa-

ients (HiHi vs LoLo) were larger than those found by
ingle chemokine analysis (Hi vs Lo) (HR, 2.30 and 1.78,
espectively). The combined analysis of predicted adhesion

olecules and chemokines revealed a statistically different
FS as illustrated for ICAM1/CX3CL1, ICAM1/CXCL10, and
XCL9/MADCAM1 (Figure 2). Combined analysis re-
ealed 4 major clusters. High levels of genes from cluster

or a combination of genes from cluster A had little
mpact on patient survival. Patients with low levels of
GFR or high levels of CXCL10, CX3CL1, CCL11, MAD-
AM1, or CXCL9 (cluster B), had a very favorable prog-
osis compared with the whole cohort (all HR, �0.61).
igh levels of the chemokine CX3CL1, together with high

evels of CXCL9, CXCL10, CCL2, CCL5, CCL11, VCAM1,
CAM1, or MADCAM1, further increased DFS (HR range,
.54 – 0.29). In contrast, patients with a combination of
enes from clusters C and D had a poor prognosis com-
ared with the whole cohort (HR, 1.33–2.37). Thus,
aplan–Meier curves and HR matrix displaying the du-

ation of DFS according to the gene combinations
howed that an improved prognosis is associated with
he expression of specific chemoattractants and adhesion

olecules.

Phenotypes of Intratumoral Immune Cells
Correlated With DFS
The intratumoral immune cell infiltrate varies

reatly between patients with CRC. To understand the
easons for this heterogeneity, the distribution of infil-
rating immune cells was determined in tumors with
igh and low chemokine gene expression levels (CX3CL1,
XCL9, CXCL10). Immunostaining of tissue microarrays

or CD8 T-cell effectors was performed as illustrated in
igure 3 for 2 representative patients with high and low

evels of chemokine gene expression, respectively. The
umors of patients with high expression levels of
X3CL1, CXCL9, and CXCL10 were found to contain a
ignificantly higher density of CD8 T cells (P � .05)
Figure 3A). To further investigate functional patterns
nd the coordination of immune cell populations within
he primary tumor in relation to CX3CL1, CXCL9, and
XCL10 gene expression, we performed a phenotypic

™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™
igure 3. (A) Tissue-microarray spots of representative tumors with low

llustrated. Stainings for tumor cells (cytokeratin-8�, blue staining) and c
mmune cell densities as measured by flow cytometry from 39 freshly r
CR�� (CD3�TCR���) T cells were analyzed in the tumors from patie
r CXCL10 gene expression. (C) Hierarchical clustering of correlation m
orrelation coefficients (R) were calculated between the combination o
-cell subpopulations and CX3CL1, CXCL9, and CXCL10. Correlation c

red), and R � 0 (yellow), in matrix representation followed by unsupervis
D) Comparison of the mean of immune cell densities (cell/mm2) as mea
CD8�, GZMB�), Th1 (T-Bet�), and memory (CD45RO�) T cells were a

istogram) CX3CL1, CXCL9, or CXCL10 gene expression. *P � .05.
nalysis of cell surface markers of the same tumors by
ow cytometry. Increased memory CD3�CD45RO� T-
ell infiltration was observed for patients with high ex-
ression levels of CXCL9 and CXCL10, but not of CX3CL1.
ncreased CD3�CD8� and CD3�TCR��� T-cell infil-
ration furthermore was detected for patients with high
X3CL1, CXCL9, and CXCL10 expression levels (Figure
B). Pairwise comparisons were performed by measuring
he similarity between profiles using Pearson correlation
oefficients. The results of the correlation analysis were
isualized using hierarchical clustering of a correlation
atrix18 of 149 cell surface markers analyzed by flow

ytometry (Figure 3C). The correlation matrix revealed 6
ajor clusters. CX3CL1 showed positive correlations

cluster D, P � .05 for all combinations) with the total
ensity of infiltrating T cells (total T cells, total
D3�CD8�, total CD3�CD4�). CXCL9 and CXCL10

howed a strong positive correlation (cluster C, R � 0.76;
� .01) and clustered together with a subpopulation of
emory CD8 T cells (CD3�CD8�CD45RO�). Other

mmune cell populations were located in different clus-
ers. For example, naive T cells (total CD3�CD45RA�
D27�) were located in cluster A, and natural killer (NK)

total CD3�CD56�) and B cells (total CD19�) were
ocated in cluster F. These results thus indicate a high
egree of functional coordination of specific types of

ntratumoral immune cells with the expression levels of
pecific subsets of chemokines.

To confirm these results, we investigated the density of
mmune cell populations in 2 specific regions of colorec-
al tumors using tissue microarrays: the CT and the IM of
he tumor. Total T lymphocytes (CD3), CD8 T-cell effec-
ors and their associated cytotoxic molecule (Granzyme
, GZMB), subset of activated cytotoxic T cells and NK
ells (CD57), memory T cells (CD45RO), TH1 cells (T-
et), immature dendritic cells (CD1A), and macrophages

CD68), were in each case quantified by immunostaining
Figure 3D). A significant correlation was observed be-
ween specific immune cell densities and chemokine ex-
ression levels (Table 1, Supplementary Figure 3, and
upplementary Table 5). The tumors of patients with
igh CX3CL1 expression levels contained a significantly

ncreased density of effector-activated cytotoxic T cells

™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™
) or high (bottom) CX3CL1, CXCL9, and CXCL10 gene expression are
xic T cells (CD8�, brown staining) were performed. (B) Comparison of
ed tumors. Cytotoxic (CD3�CD8�), memory (CD3�CD45RO�), and
ith high - (blue histogram) or low- (white histogram) CX3CL1, CXCL9,
of the flow cytometry data from 39 freshly resected tumors. Pearson
markers for major immune cell populations (“total” prefix) and specific
ients were plotted with negative correlation (green), positive correlation
pearman hierarchical clustering. Six major clusters (A–F) are illustrated.
by tissue-microarrays from 108 paraffin-embedded tumors. Cytotoxic
ed in the tumors from patients with high- (blue histogram) or low- (white
™™™
(top

ytoto
esect
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nd TH1 cells in situ (P � .05 for GZMBCT, T-BetCT,
D8CT, CD57CT, CD3CT, and for GZMBIM, T-BetIM, and
D57IM). The tumors of patients with high CXCL9 and
XCL10 expression levels, in contrast, contained a signif-

cantly increased number of memory CD8 T cells and
acrophages in situ (P � .05 for CXCL9 and CD8CT,
D45ROCT, CD68CT, CD8IM, CD45ROIM, and P � .05 for
XCL10 and CD3CT, CD8CT, CD57CT, CD68CT,
D45ROIM, and CD68IM). Thus, the chemokines CXCL9,
XCL10, and CX3CL1 may attract different subsets of

mmune cells to different locations in the tumor. We
erformed Cox multivariate analysis combining soluble
actors and immune cells. Each chemokine was depen-
ent on the density of T-cell subsets, whereas the density
f T-cell subsets remained significant, indicating the re-

ationships between these factors (data not shown). In
ummary, these data showed that the phenotypes of the
ntratumoral immune cells are associated strongly with
pecific chemokines and adhesion molecules, indicating a
igh degree of functional coordination.

Intratumoral T-Cell Repertoire, Chemokines,
and Prognosis
Although total T-cell subpopulations correlated

ith chemokine levels, one might expect that certain T
ells, that selectively are attracted to the tumor site, are
pecific in nature. To test this hypothesis, we analyzed
he T-cell repertoire of tumor-infiltrating T cells for 10
andomly selected patients. All TCR V� chain families
V�1–V�24) and 13 different CDR3 lengths for each V�
ere quantified. Three-dimensional density plots repre-

enting the total quantity of each TCR are represented
or each patient. The results showed that all V� and most
DR3 lengths are present within the tumor of the pa-

ients (Figure 4A and C). They also showed that the
mount of each TCR was different for each patient.
otably, the TCR repertoire of patients with a high
X3CL1 level was clearly distinguishable from the reper-

oire of patients with a low CX3CL1 expression level. An

able 1. Median Immune Cell Densities According to Chemo

Cells
CCL5-

Hi
CCL5-

Lo P value
CXCL9-

Hi
CXCL9-

Lo P va

D3-CT 416.5 188 .0007** 367.8 188 .009
D3intra-CT 42 13 .3912 52 10 .099
.Bet-CT 2.6 1.6 .2976 4.6 0 .026
.Bet-IM 2.5 0 .5264 3.9 0 .408
ZMB-CT 44.5 10.7 .0539(*) 40 7.3 .156
ZMB-IM 124 63.4 .1014 83 71.3 .300
D57-CT 44.1 14.8 .0025** 53.1 15.8 .002
D8-CT 166.2 46 .0004** 134 46.7 .004
D45RO-CT 416 135.5 �.0001** 366.7 136.5 .002
D68-CT 921.3 323.3 �.0001** 914.6 375.7 .000
D1a-CT 3.1 2 .7600 3.2 1.8 .256

.1 � P � .05
*.05 � P � .01
xample is illustrated for V�2 (Figure 4B and D). The o
evels of V�2 were higher in patients with high CX3CL1
evels than in patients with low CX3CL1 levels. By extend-
ng the analysis of the specificity of the V�2 T cells to the
DR3 lengths, it was found that all patients with high
X3CL1 levels possessed significantly increased levels of

he V�2L03, V�2L07, V�2L06, and V�2L09 T-cell recep-
ors than patients with low CX3CL1 levels (P � .01, P �
008, P � .05, and P � .05, respectively) (Figure 5B, and
ata not shown). The other CDR3 lengths for V�2 did
ot differ significantly between patients. To analyze the
-cell repertoire in a global manner, we calculated a
orrelation matrix between all TCR rearrangements to-
ether with chemokine expression levels (Figure 5E, Sup-
lementary Table 6). This visualization method revealed
major clusters of specific comodulated TCR rearrange-
ents. Subsets of specific T cells thus simultaneously are

verrepresented in the same patients. The majority of T
ells were found in the same cluster (cluster C). Interest-
ngly, CX3CL1, CXCL9, and CXCL10 gene expression levels
orrelated with specific T-cell rearrangements within an-
ther cluster (cluster E). This indicated that these che-
okines may attract subsets of T cells with a distinct
CR.
We lastly investigated whether the densities of these

pecific T cells correlated with patient survival. Specific T
ells (eg, V�2L04, V�5.2L05, or V�5.2L04) found in clus-
er C whose intratumoral densities did not differ accord-
ng to the level of CX3CL1, CXCL9, and CXCL10 gene
xpression (Figure 5A) were not associated with patient
urvival (Figure 5C). In contrast, specific T cells found in
luster E or whose density was higher in tumors with
igh expression levels of CX3CL1, CXCL9, or CXCL10 (eg,
�5.2L08, V�2L03, or V�2L07) (Figure 5B) did correlate
ith patient survival (Figure 5D). Overall survival rates at
years were 100% and 28%, respectively, in patients with

umors with high and low levels of infiltration by
�5.2L08, V�2L03, or V�2L07 T cells. Kaplan–Meier
lots displaying the duration of overall survival (7 years

Expression Levels

CXCL10-
Hi

CXCL10-
Lo P value

CX3CL1-
Hi

CX3CL1-
Lo P value

380.5 191.6 .0046** 377 188 .0163*
42 10 .3015 53.5 10 .0359*
2 1.6 .4149 6.5 0 .0020**
3.9 0 .3282 5.3 0 .0315*

40 22 .4298 52.7 0 .0011**
124 71.3 .1713 139 19.5 .0036**
49.3 13.7 .0013** 40.4 15.9 .0020**

134 37.6 .0013** 118.4 53.8 .0542(*)
380.2 141.8 .0059** 282 143.9 .3483
864.2 329.3 �.0001** 613.2 438.1 .0967(*)

3.1 1.8 .8923 3.4 1.8 .3298
kine

lue

4**
2(*)
5*
1
6
0
7**
2**
5**
1**
0

f follow-up evaluation) according to intratumoral T-cell
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igure 4. T-cell repertoire analyses were performed on tumors from 10 randomly selected CRC patients using the quantitative expression of the 26
CR V� chain families. Results were expressed in a V�/hypoxanthine phosphoribosyltransferase (HPRT) ratio. These quantitative data were
epresented by the height of the peak in the (A and C) TcLandscapes and on the (B and D) histograms. T-cell repertoire analysis was performed by
ombining qualitative alterations of V� use at the CDR3 length level (13 different CDR3 lengths) with the magnitude of expression of each V� mRNA
pecies. (A and C) The CDR3 lengths were represented in the TcLandscapes. (E) Pearson correlation coefficients (R) were calculated between the
uantity of all V� for each of the 13 different CDR3 lengths and CX3CL1, CXCL9, and CXCL10 gene expression. Correlation coefficients were plotted
ith negative correlation (green), positive correlation (red), and R � 0 (yellow), in matrix representation followed by unsupervised Spearman

ierarchical clustering. Six major clusters (A–F) were represented on the matrix.
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ensities showed the improved prognosis associated with
pecific T cells (Figure 5D).

Discussion
The staggering complexity of multifactorial dis-

ases such as cancer poses significant challenges for the
evelopment of stratified or personalized therapies. The

ntegrated analysis of diverse datasets might circumvent
hese challenges and provide an enhanced understanding
f complex systems, such as the tumor microenviron-
ent. We applied such an integrated approach and per-

ormed global analyses of the phenome (large-scale flow
ytometry experiments), transcriptome, tissue microar-
ays of specific tumor regions, and T-cell repertoire anal-
sis in the tumor microenvironment of patients with
RC. Our data revealed mechanisms resulting in high or

ow densities of specific immune cells at the tumor site.
hemokines and adhesion molecules appeared to target

mmune effector T cells with a specific TCR repertoire
ithin the tumor. Furthermore, the presence within a

umor of T cells with a specific TCR repertoire correlated
ith patient survival.
It has been proposed that the limitations of individual

tudies that are owing to experimental design can be
vercome by analyzing data obtained from 2 or more
ifferent approaches.23 Our study, in which we have ob-
ained concordant results using different experimental
pproaches, shows the potential of this general approach.
e provide support for hypothesis-driven research in

uman beings using prior knowledge and integrative
iology. The prediction of genes associated with progno-
is was based on biomolecular network reconstruction
sing different data sets (conserved genomic neighbor-
ood, phylogenetic profiling, co-expression analysis, pro-
ein–protein interaction, functional genomic public da-
abase, literature co-occurrence). Interpretation of our
ata was facilitated by a novel visualization method com-
ining HR values, a structured description of known
iologic information at different levels of granularity
GO), and tools for data integration and visualization
Cytoscape). The functional patterns of biological mark-
rs that we uncovered led us to formulate hypotheses
ssociating specific chemokines with immune cells found
t the tumor site. Specifically, predictions for the roles of
pecific chemokines (CX3CL1, CXCL9, CXCL10, CCL2,
CL5, and CCL11) and adhesion molecules (MADCAM1,

CAM1, and VCAM1) were corroborated experimentally.
Binding of chemokines and adhesion molecules such

s CX3CL1 and MADCAM1 to their receptors (CX3CR1
nd A4�7 integrin, respectively)24,25 controls the recruit-
ent and the adhesion of effector CD8� T cells to the

ntestine. CX3CL1 binds to CD8� T cells, displaying
trong cytotoxicity and expressing Perforin�, GZMB�,
D57�, CD11a�, CCR7-, and CD62L-. We showed that

he combined expression of CX3CL1 and other predicted
igure 5. (A and B) The CDR3 lengths of the TCRs from 10 randomly
elected CRC patients (A–J) are represented in the histograms. (C and
) Kaplan–Meier curves illustrate the overall survival of patients accord-

ng to particular TCR expression at the median of the dataset. (C) Three
CRs (V�2L04, V�5.2L05, or V�5.2L04) not associated with CX3CL1
ene expression, and (D) 3 TCRs (V�5.2L08, V�2L03, and V�2L07)
hemokines or MADCAM1 induced a significant delay in
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umor recurrence. Our data suggest that, in CRC, the
ajority of cells attracted by CX3CL1 were TH1 and ef-

ector-activated cytotoxic T cells, whereas CXCL9 and
XCL10 attracted mostly memory CD45RO� T cells. We
reviously showed that patients without tumor recur-
ence had higher memory T-cell densities than those
hose tumors had recurred.18 Patients with increased
ensities of CD57� or T-Bet� cells in each tumor region
resented with statistically prolonged DFS. Combina-
ions of effector-activated cytotoxic T cells (CD8, GZM,
D57, and T-Bet) and memory T cells (CD45RO) led to

ncreasing HRs for DFS (data not shown). Several reports
nalyzed chemokines or adhesion molecules in CRC.
hemokine receptors (CXCR4, CXCR5, CCR7) and adhe-

ion molecules (CD44, E-cadherin) previously have been
ssociated with tumor invasion and bad prognosis.26,27 In
studies, chemokines (CX3CL1, CXCL16) were associated
ith good prognosis.28,29 However, the power of the re-

onstructed predictive biomolecular network approach
e described herein is that it simultaneously integrates
ultiple molecules, including specific chemokines and

dhesion molecules that could act in a coordinated man-
er. These results suggested possible mechanisms result-

ng in high or low densities of specific immune cells in
RC. Thus, the combined expression of chemokines and
dhesion molecules, and the resultant density of T-cell
ubsets within the primary tumor, may prevent tumor
xpansion and recurrence.

The constant genomic metamorphosis of tumor cells30

ventually may give rise to new phenotypes that display
ncreased or reduced immunogenicity. The subset of ef-
ector cytotoxic T cells found within the tumor, however,
s likely to recognize multiple antigens expressed by the
umor cells. Thus, tumor infiltration by cytotoxic and

emory T lymphocytes could reflect a level of antitumor
mmunity shaped by multiple tumor parameters, such as
ltered expression level of HLA molecules, the expression
attern of tumor antigens, and the mutational pathways

microsatellite instability, chromosomal unstability
ethylator phenotype (CIMP), chromosomal instabil-

ty).5,7 Several studies previously reported oligoclonal or
olyclonal intratumoral T-cell repertoire in solid tu-
ors.31 However, none of these studies analyzed the

ntratumoral TCR repertoire in relation with chemokine
xpression or prognosis. First, by analyzing the TCR use,
e clearly found a highly polyclonal intratumoral T-cell

epertoire because all V� and most of the CDR3 lengths
ere present within the tumor. Second, it can be hypoth-

sized that a majority of T cells are inflammation-related
cluster C), whereas CXCL9, CXCL10, and CX3CL1 chemo-
ines attract a subset of specific antitumor T cells with a
articular repertoire (cluster E). Third, the presence of a
pecific intratumoral TCR repertoire correlated with the
urvival of the patient.

In summary, we revealed mechanisms determining the

ensities (high or low) of specific immune cells in colo-
ectal tumors. Chemokines and adhesion molecules ap-
eared to target immune effector T cells with particular
CR repertoire within the tumor. Furthermore, the pres-
nce of a specific intratumoral TCR repertoire correlated
ith the survival of the patient. This study also suggests

hat the creation of similar predictive networks could be
sed to focus biologic research on specific molecules or
athways in a broad range of physiologic and pathologic
rocesses.

Supplementary Material

Note: To access the supplementary material
ccompanying this article, visit the online version of
astroenterology at www.gastrojournal.org, and at doi:
0.1053/j.gastro.2009.10.057.
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ABSTRACT

Summary: We have developed ClueGO, an easy to use Cytoscape
plug-in that strongly improves biological interpretation of large lists
of genes. ClueGO integrates Gene Ontology (GO) terms as well
as KEGG/BioCarta pathways and creates a functionally organized
GO/pathway term network. It can analyze one or compare two lists
of genes and comprehensively visualizes functionally grouped terms.
A one-click update option allows ClueGO to automatically download
the most recent GO/KEGG release at any time. ClueGO provides an
intuitive representation of the analysis results and can be optionally
used in conjunction with the GOlorize plug-in.
Availability: http://www.ici.upmc.fr/cluego/cluegoDownload.shtml
Contact: jerome.galon@crc.jussieu.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Since the number of genes that can be analyzed by high-throughput
experiments by far exceeded what can be interpreted by a single
person, different attempts have been initiated in order to capture
biological information and systematically organize the wealth
of data. For example Gene Ontology (GO) (Ashburner et al.,
2000) annotates genes to biological/cellular/molecular terms in
a hierarchically structured way, whereas Kyoto encyclopedia of
genes and genomes (KEGG) (Kanehisa et al., 2002) and BioCarta
assigns genes to functional pathways. Several functional enrichment
analysis tools (e.g. Boyle et al., 2004; Huang et al., 2007; Maere
et al., 2005; Ramos et al., 2008; Zeeberg et al., 2003) and algorithms
(e.g. Li et al., 2008) were developed to enhance data interpretation.

As most of these tools mainly present their results as long lists
or complex hierarchical trees, we aimed to develop ClueGO a
Cytoscape (Shannon et al., 2003) plug-in to facilitate the biological
interpretation and to visualize functionally grouped terms in the form
of networks and charts. Other tools like BiNGO (Maere et al., 2005)
or PIPE (Ramos et al., 2008) assess overrepresented GO terms

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as Joint First Authors.

and reconstruct the hierarchical ontology tree, whereas ClueGO
uses kappa statistics to link the terms in the network. Compared
with the approach of Ramos et al. (2008) which creates an
in silico annotation network based on pathways and protein
interaction data and maps the gene list of interest afterwards,
ClueGO generates a dynamical network structure by already initially
considering the gene lists of interest. ClueGO integrates GO terms
as well as KEGG/BioCarta pathways and creates a functionally
organized GO/pathway term network.Avariety of flexible restriction
criteria allow for visualizations in different levels of specificity.
In addition, ClueGO can compare clusters of genes and visualizes
their functional differences. ClueGO takes advantage of Cytoscape’s
versatile visualization framework and can be used in conjunction
with the GOlorize plug-in (Garcia et al., 2007).

2 METHODS AND IMPLEMENTATION
ClueGO has two major features: it can be either used for the visualization
of terms corresponding to a list of genes, or the comparison of functional
annotations of two clusters.

2.1 Data import
Gene identifier sets can be directly uploaded in simple text format or
interactively derived from gene network graphs visualized in Cytoscape.
ClueGO supports several gene identifiers and organisms by default and is
easy extendable for additional ones in a plug-in like manner (Supplementary
Material).

2.2 Annotation sources
To allow a fast analysis, ClueGO uses precompiled annotation files including
GO, KEGG and BioCarta for a wide range of organisms. A one-click update
feature automatically downloads the latest ontology and annotation sources
and creates new precompiled files that are added to the existing ones. This
ensures an up-to-date functional analysis. Additionally ClueGO can easily
integrate new annotation sources in a plug-in like way (Supplementary
Material).

2.3 Enrichment tests
ClueGO offers the possibility to calculate enrichment/depletion tests for
terms and groups as left-sided (Enrichment), right-sided (Depletion) or two-
sided (Enrichment/Depletion) tests based on the hypergeometric distribution.

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Furthermore it provides options to calculate mid-P-values and doubling
for two-sided tests to deal with discreetness and conservatism effects as
suggested by (Rivals et al., 2007). To correct the P-values for multiple testing
several standard correction methods are proposed (Bonferroni, Bonferroni
step-down and Benjamini-Hochberg).

2.4 Network generation and visualization
To create the annotations network ClueGO provides predefined functional
analysis settings ranging from general to very specific ones. Furthermore,
the user can adjust the analysis parameters to focus on terms, e.g. in certain
GO level intervals, with particular evidence codes or with a certain number
and percentage of associated genes. An optional redundancy reduction
feature (Fusion) assesses GO terms in a parent–child relation sharing similar
associated genes and preserves the more representative parent or child
term. The relationship between the selected terms is defined based on
their shared genes in a similar way as described by Huang et al. (2007).
ClueGO creates first a binary gene-term matrix with the selected terms
and their associated genes. Based on this matrix, a term–term similarity
matrix is calculated using chance corrected kappa statistics to determine the
association strength between the terms. Since the term–term matrix is of
categorical origin, kappa statistic was found to be the most suitable method.
Finally, the created network represents the terms as nodes which are linked
based on a predefined kappa score level. The kappa score level threshold
can initially be adjusted on a positive scale from 0 to 1 to restrict the
network connectivity in a customized way. The size of the nodes reflects the
enrichment significance of the terms. The network is automatically laid out
using the Organic layout algorithm supported by Cytoscape. The functional
groups are created by iterative merging of initially defined groups based on
the predefined kappa score threshold. The final groups are fixed or randomly
colored and overlaid with the network. Functional groups represented by
their most significant (leading) term are visualized in the network providing
an insightful view of their interrelations. Also other ways of selecting the
group leading term, e.g. based on the number or percentage of genes per
term are provided. As an alternative to the kappa score grouping the GO
hierarchy using parent–child relationships can be used to create functional
groups.

When comparing two gene clusters, another original feature of ClueGO
allows to switch the visualization of the groups on the network to the cluster
distribution over the terms. Besides the network, ClueGO provides overview
charts showing the groups and their leading term as well as detailed term
histograms for both, cluster specific and common terms.

Like BiNGO, ClueGO can be used in conjuntion with GOlorize for
functional analysis of a Cytoscape gene network. The created networks,
charts and analysis results can be saved as project in a specified folder and
used for further analysis.

3 CASE STUDY
To demonstrate how ClueGO assesses and compares biological
functions for clusters of genes we selected up- and down-regulated
natural killer (NK) cell genes in healthy donors from an expression
profile of human peripheral blood lymphocytes (GSE6887, Gene
Expression Omnibus). For upregulated NK genes ClueGO revealed
specific terms like ‘Natural killer cell mediated cytotoxicity’ in
the group ‘Cellular defense response’. Downregulated in NK cells
compared with the reference (a pool of all immune cell types) were
genes involved in the innate immune response (Macrophages), but
also in the adaptive immune response (T and B cell). The common
functionality refers to characteristics of leukocytes (chemotaxis),
besides other terms involved in cell division and metabolism (Fig. 1).

Fig. 1. ClueGO example analysis of up- and down-regulated NK cell genes
in peripheral blood from healthy human donors. (a) GO/pathway terms
specific for upregulated genes. The bars represent the number of genes
associated with the terms. The percentage of genes per term is shown as bar
label. (b) Overview chart with functional groups including specific terms for
upregulated genes. (c) Functionally grouped network with terms as nodes
linked based on their kappa score level (≥0.3), where only the label of
the most significant term per group is shown. The node size represents the
term enrichment significance. Functionally related groups partially overlap.
Not grouped terms are shown in white. (d) The distribution of two clusters
visualized on network (c). Terms with up/downregulated genes are shown
in red/green, respectively. The color gradient shows the gene proportion of
each cluster associated with the term. Equal proportions of the two clusters
are represented in white.
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4 SUMMARY
ClueGO is a user friendly Cytoscape plug-in to analyze interrelations
of terms and functional groups in biological networks. A variety
of flexible adjustments allow for a profound exploration of gene
clusters in annotation networks. Our tool is easily extendable to
new organisms and identifier types as well as new annotation
sources which can be included in a transparent, plug-in like manner.
Furthermore, the one-click update feature of ClueGO ensures an
up-to-date analysis at any time.
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Paris 6; 3Université Paris-Descartes; Departments of 4Immunology, 5General and Digestive Surgery, and 6Pathology, Georges Pompidou
European Hospital, Paris, France; and 7Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria

Abstract

A role for the immune system in controlling the progression of
solid tumors has been established in several mouse models.
However, the effect of immune responses and tumor escape on
patient prognosis in the context of human cancer is poorly
understood. Here, we investigate the cellular and molecular
parameters that could describe in situ immune responses in
human colorectal cancer according to clinical parameters of
metastatic lymph node or distant organ invasion (META� or
META+ patients). Primary tumor samples of colorectal
carcinoma were analyzed by integrating large-scale pheno-
typic ( flow cytometry, 39 patients) and gene expression (real
time reverse transcription-PCR, 103 patients) data sets related
to immune and protumoral processes. In META� colorectal
cancer primary tumors with high densities of T cells, we
observed significant positive correlations between markers
of innate immune cells [tumor-associated macrophages,
dendritic cells, natural killer (NK) cells, and NKT cells] and
markers of early-activated T cells. Significant correlations
were also observed between markers of cytotoxic and effector
memory T-cell subpopulations. These correlation profiles
were absent in tumors with low T-cell infiltrates and were
altered in META+ tumors with high T-cell infiltrates. We show
that the coexpression of genes mediating cytotoxicity (GNLY)
and Th1 adaptive immune responses (IRF1) accurately
predicted patient survival independently of the metastatic
status. High intratumoral mRNA expression of the proangio-
genic mediator vascular endothelial growth factor was
associated with significantly reduced survival rates in patients
expressing high mRNA levels of GNLY . Investigation of the
colorectal cancer primary tumor microenvironment allowed
us to uncover the association of favorable outcomes with
efficient coordination of the intratumoral immune response.
[Cancer Res 2009;69(6):2685–93]

Introduction

Cancer progression is a complex process involving host-tumor
interactions through multiple molecular and cellular factors of the
tumor microenvironment (1). Tumors may be vulnerable to

immune destruction. As revealed by experiments in immune-
deficient mice, immune responses mediated by IFNg (2, 3) and
cytotoxic mediators such as perforin (4, 5) secreted by lymphocytes
are involved in cancer immunosurveillance (6, 7). In human cancer,
complex tumor-host interactions are less well documented.
However, lymphocytes were also shown to participate in anti-
tumoral responses (8). Consistent with findings in melanoma (9)
and ovarian cancer (10, 11), tumor-infiltrating T cells were
associated with improved clinical outcome and survival in
colorectal cancer patients (12–16).

We recently highlighted intratumoral memory T cells as the
major immune effector cells significantly associated with the
decrease of early metastatic events (tumor emboli) and the pre-
vention of relapse in colorectal cancer patients (17). Furthermore,
we revealed the importance to patient prognosis of the nature,
functional orientation, density, and localization of immune cell
populations within the primary tumor. Multivariate Cox analysis
showed that immune patterns remained the unique parameter
significantly associated with prognosis, whereas T stage, N stage,
and differentiation of the tumor were not significant when adjusted
to immune patterns (18). Patients with cancers at nonmetastatic
stages had prognoses as bleak as patients with metastatic
tumors, if presenting a low intratumoral adaptive immune
reaction. Conversely, patients with metastatic tumors eliciting a
high intratumoral immune reaction were of better prognosis.
Thus, the amplitude of adaptive immune reaction within the
primary tumor was a better predictor of survival than traditional
clinical parameters (19).

However, the intrinsic capability of tumor cells to promote their
own development (20) may allow tumors to overwhelm immune
system activity. For instance, angiogenesis mediated by vascular
endothelial growth factor (VEGF) is critical to the growth (by
providing oxygen and nutrients) and malignant dissemination
(providing a route for metastases) of solid tumors (21, 22).
Furthermore, under the pressure of antitumoral immune activity,
selection and outgrowth of variant tumor cells with reduced
immunogenicity could occur (8, 22, 23). Thus, during cancer
progression, tumor cells may acquire immune tolerance mecha-
nisms by generating complex immunosuppressive networks at the
tumor site (24, 25) involving interleukin (IL)-10 and transforming
growth factor h (TGFh; refs. 26, 27) as well as T-cell–specific
coinhibitory molecules (CTLA-4 and PD-1; refs. 28, 29).

In this work, we attempted to describe in a comprehensive
manner the immune reaction in primary colorectal tumors of
patients with high or low densities of infiltrating T cells.
Furthermore, we compared the immune microenvironment in
patients presenting with invaded lymph nodes and/or distant
metastases [META+ patients: Union Internationale Contre le

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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Cancer (UICC) tumor-node-metastasis (TNM) stages III–IV] or
without such metastases (META� patients: UICC-TNM stages I–II;
ref. 30). We analyzed immune cell phenotypic clusters, or
‘‘phenoclusters’’ (31), obtained by grouping markers according to
similar levels of expression. This allowed us to uncover functional
marker patterns of efficient and coordinated antitumoral immune
responses that represent powerful prognostic criteria for colorectal
cancer clinical outcome. At the cellular level, a high degree of
functional coordination between intratumoral immune cells could
be observed at the primary tumor sites of both META� and
META+ colorectal cancer patients. At the molecular level, the
coexpression of genes related to the Th1 immune response [IFN-
regulatory factor 1 (IRF1)] and cytotoxicity [granulysin (GNLY )]
had strong prognostic values. Finally, we studied several tumor-
promoting mechanisms including immunosuppression, angiogen-

esis, tumor survival, and local and metastatic invasion. Analysis of
in situ gene expression of protumoral markers in combination with
immune parameters revealed that angiogenesis (VEGF) was
associated with increased risks of colorectal cancer relapse in
patients nonetheless presenting evidence of strong intratumoral
immune responses.

Materials and Methods

All details about Materials and Methods are available online.

Patients and database. Patients with colorectal cancer (n = 566) who

underwent a primary resection at the Laennec/HEGP Hospital between
1986 and 2004 were randomly selected. Time to recurrence or disease-free

time was defined as the time period from the date of surgery to confirmed

tumor relapse date for relapsed patients and from the date of surgery to the

date of last follow-up for disease-free patients.

Figure 1. Immune cell populations
within primary colorectal tumors. Patients
(n = 39) were classified according to the
mean percentage of CD3+CD5+ cells
among total cells within tumors (white
columns, CD3+CD5+Hi; black columns,
CD3+CD5+Lo) and the metastatic status
(META� Hi, n = 6; META� Lo, n = 10;
META+ Hi, n = 7; META+ Lo, n = 16).
Cell populations were represented as the
mean percentage of positive cells; bars,
SE. *, P < 0.05, Mann-Whitney test.
A, T cells (CD3+CD5+, CD3+TCRah+),
cytotoxic T cells (CD3+CD8+), helper
T cells (CD3+CD4+), memory T cells
(CD3+CD45RO+), and lymphoid cells
(CD45+). B, tumor-associated
macrophages (TAMs ; CD45+CD14+),
immature dendritic cells (iDCs ;
CD45+CD1a+CD14�CD83�),
activated dendritic cells (aDCs ;
CD45+CD1a�CD14�CD83+), NK cells
(CD3�CD56+), NKT cells (CD3+CD56+),
and B cells (CD19+). C, left, T cells
(CD3+TCRah+), cytotoxic T cells
(CD3+CD8+), helper T cells (CD3+CD4+),
and regulatory T cells (Tregs :
CD4+CD25hi). Right, ratios of CD8+/CD4+

and CD8+/CD3+ cell subpopulations. D,
memory T cells (CD3+CD45RO+), cytotoxic
memory T cells (CD3+CD8+CD45RO+),
and helper memory T cells
(CD3+CD4+CD45RO+).
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Large-scale flow cytometric analysis. Cells were extracted from 39
fresh tumors, resuspended in PBS/0.5% bovine serum albumin and

incubated for 30 min at 4jC with antibodies against immune cell markers

for large-scale phenotypic analysis of T cells and with relevant isotype

controls. Analyses were done with a four-color fluorescence-activated
cell sorter (FACSCalibur, Becton Dickinson) and CellQuest software

(Becton Dickinson). Analyzed markers are presented in Supplementary

Fig. S3. Complete-linkage hierarchical clustering was applied and the results

were displayed with the use of the Genesis program (32, 33). Correlation
matrices were constructed by calculation of Pearson correlation coefficients

for all marker combinations, followed by unsupervised hierarchical

clustering.

Real-time reverse transcription-PCR assay. Tissue samples were
snap-frozen. Total RNA was extracted by homogenization with RNeasy

isolation kit (Qiagen). The integrity and the quantity of the RNA were

evaluated on Bioanalyzer-2100 (Agilent Technologies). Samples (n = 103) were
assessed for gene expression analysis of the following 17 genes (see details

about gene expression and name in Supplementary data): CD3f, CD4, CD8a,
TBX21, IRF1, IFNc, GNLY, GZMB, GATA3, FOXP3, CEACAM1, CEA, EBAG9,

BIRC5, IL-10, TGFb, and VEGF . Quantitative real-time TaqMan PCR was done
using Low-Density-Arrays and the 7900 robotic real-time PCR system

(Applied Biosystems). 18S primers and probes were used as internal controls.

Construction of tissue microarrays. Using a tissue microarray

instrument (Beecher Instruments, Alphelys), we removed two representative
areas of the tumor (center and invasive margin from paraffin-embedded

tissue blocks). Tissue microarrays were cut into 5-Am sections for

immunohistochemical staining.
Immunohistochemistry. After antigen retrieval and quenching of

endogenous peroxidase activity, sections were incubated for 60 min at

room temperature with monoclonal antibodies against CD3 (SP7), CD8

(4B11), CD1a (O10), Ki67 (SP6; Neomarkers), CD68 (PGM1; DAKO), FoxP3
(ab20034; Abcam), and M30 cytoDEATH (Alexis Biochemicals). The

Envision+ system (enzyme-conjugated polymer backbone coupled to
secondary antibodies) and 3,3¶-diaminobenzidine chromogen were applied

(DAKO). Tissue sections were counterstained with Harris’s hematoxylin.

Isotype-matched mouse monoclonal antibodies were used as negative

controls.
Statistical analysis. Kaplan-Meier curves were used to assess the

influence of immune and tumoral parameters on disease-free survival. The

significance of these parameters was assessed by univariate analysis with

the use of the log-rank test. To identify markers with significant different
levels of expression among tissues, Wilcoxon-Mann-Whitney and t tests

(ANOVA) were used. P < 0.05 was considered to indicate statistical

significance. All analyses were done with the use of statistical software

programs R and StatView.

Results

Intratumoral distribution of immune cell populations. We
first investigated the immune cellular profiles of patients by flow
cytometry with 39 freshly resected primary tumors. Percentages of
positive cells for distinct markers were calculated among all cells
(tumor and immune cells), thus reflecting the density of cells
within tumors. Intratumoral T-cell densities were evaluated
according to the mean percentage of double-positive cells for the
T-cell–specific markers CD3 and CD5 among all samples. Patients
presenting a percentage of CD3+CD5+ T cells superior to this mean
(6.7% of all cells) were named ‘‘Hi patients’’ and otherwise ‘‘Lo
patients.’’ As a control, the percentages of CD3+CD5+ and
CD3+TCRah+ T cells were represented (Fig. 1A). In Hi patients,
there were significant higher densities of T cells of both cytotoxic
(CD3+CD8+) and helper (CD3+CD4+) phenotypes and of memory

Figure 2. T-cell populations within primary
colorectal tumors. A, T-cell memory
differentiation markers (white squares,
META� Hi; white triangles, META+ Hi;
black squares, META� Lo; black triangles,
META+ Lo). Cell populations were
represented as the mean percentage of
positive cells; bars, SE. P values
(Mann-Whitney test) were presented in
Supplementary Fig. S1 (*, P < 0.05).
B, hierarchical clustering of 11 marker
combinations among CD3+ cells with
significant differential expression among
the four groups of patients (P < 0.05).
Combinations of surface markers were
plotted from the minimal (blue ) to the
maximal (red) level of expression. Gray,
not determined.
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phenotype (CD3+CD45RO+) compared with Lo patients (Fig. 1A).
The distribution of global lymphoid cell populations (CD45+) was
consistent with those of T cells (Fig. 1A).

We compared the distributions of the major intratumoral
immune cell populations according to the metastatic status of
the patients: META� patients, no metastases (stages I–II); META+
patients, metastases in lymph node (stage III) and/or distant organ
(stage IV). In Lo patients, no differences were found between
META� and META+ patients in the distribution of tumor-
associated macrophages, immature dendritic cells, activated
dendritic cells, natural killer (NK) cells, NKT cells, or B cells. In
contrast, in Hi patients, significantly lower percentages of
tumor-associated macrophages and NKT cells were observed in

META+ Hi patients compared with META� Hi patients. Conversely,
B-cell density was significantly higher in META+ Hi patients
compared with META� Hi patients (Fig. 1B). META+ Hi patients
had significantly decreased densities of cytotoxic T cells
(CD3+CD8+) compared with META� Hi patients, whereas no
significant differences were observed for helper T cells (CD3+CD4+)
or regulatory T cells (CD4+CD25hi; Fig. 1C, left). Finally, CD8+/CD4+

and CD8+/CD3+ cell ratios were significantly higher in META�
Hi patients compared with META+ Hi and META+ Lo patients
(Fig. 1C, right).

Memory T-cell differentiation. No differences in the distribu-
tion of CD45RO+ memory T-cell subpopulations were observed
among the patient groups (Fig. 1D). However, we more precisely
assessed the density of T cells along memory differentiation steps
based on the differential expression of CCR7, CD45RA, CD27, and
CD28 markers by CD3+ T cells (Fig. 2A). Very few naive (CCR7+) T
cells were detected within primary tumors. In META� Lo (black
squares) and META+ Lo patients (black triangles), despite low
densities of T cells, similar levels of memory T-cell subpopulations
from early (CD28+) to late (CD45RA�CD27�) memory were
observed. META� Hi patients (white squares) presented high
densities of all memory T-cell subpopulations. In contrast, META+
Hi patients (white triangles) presented a significant decrease in the
densities of T cells at late stages of memory differentiation (CD27�,
CD45RA�) with percentages comparable to Lo patients and
significantly inferior to META� Hi patients.

Eleven marker combinations expressed among CD3+ T cells were
found significantly differentially expressed between META� Hi and
META+ Hi patients. After hierarchical clustering of these markers,
two major clusters (C.1 and C.2) were found (Fig. 2B). In C.1, CD4+

T-cell subpopulation markers (CD3+CD4+) and related memory
markers (CD3+CD8�CD45RO+) grouped with early memory T-cell
markers (CD3+CD127+, CD3+CD27+, CD3+CD45RA�CD27+). In C.2,
CD8+ T-cell subpopulation markers (CD3+CD8+) and related
memory/effector T-cell markers (CD8+CD45RO+/�) grouped with
effector memory T-cell markers (CD3+CD45RA�CD27�) and final
effector T-cell markers (CD3+CD45RO�, CD3+CD62L�CD127�).
Whereas no distinct pattern was observed in Lo patients, META�
Hi patients presented a significant increase of CD8/effector
memory T-cell subpopulations (red squares ; C.2) compared with
META+ Hi patients that had a majority of CD4/early memory T
cells (C.1). These observations suggested that complete memory
T-cell differentiation was associated with a higher proportion of
cytotoxic T cells within highly infiltrated tumors and preferentially
occurred in META� Hi patients compared with META+ Hi
patients.

Association between CD8 T cells and complete memory
T-cell differentiation. Evaluation of intratumoral immune coor-
dination was assessed by analyzing the correlations between 62
combinations of cell surface markers of total intratumoral immune
cell populations and T-cell subpopulations. For each patient group,
pairwise comparisons of the markers were done by measuring
Pearson correlation coefficients (r) and related P values (Supple-
mentary Fig. S2). The relationships implied by these correlations
were visualized by using unsupervised hierarchical clustering of
r values (Fig. 3). The clustered markers were presented in
Supplementary Fig. S3. Comparison of META� Hi patients
(Fig. 3A, top) with other patients was assessed by the construction
of META+ Hi (Fig. 3A, center), META� Lo (Fig. 3B, top), and META+
Lo (Fig. 3B, center) correlation matrices arrayed according to
META� Hi matrix unsupervised clustering.

Figure 3. Correlation matrices of flow cytometry data. P values and Pearson
correlation coefficients (r ) were calculated between 62 marker combinations
that were specific for T cells (markers in combination with CD3) and for major
immune cell populations (‘‘total’’ prefix), presented in Supplementary Fig. S2. r
values were plotted from r = min (green ) to r = max (red) in matrix representation,
followed by unsupervised hierarchical clustering. Clustered markers were
presented in Supplementary Fig. S3. Correlation matrices were independently
clustered or arrayed according to the clustering of other correlation matrices
(gray area). A, top, META� Hi patients; center and bottom, META+ Hi patients.
B, top, META� Lo patients; center and bottom, META+ Lo patients.
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META� Hi patients displayed a correlation matrix with four
major clusters (Fig. 3A, top). Cluster 1 contained markers of total
T cells, CD4 T cells, B cells, NK cells, and activated dendritic cells,
as well as CD4 T-cell subpopulation markers (CD4+ or CD8� in
combination with CD25+/�, CD26+/�, CD103+/�, CCR7�, CD45RO�)
and early memory T-cell markers (CD28+, CD27+, CD45RA�CD27+).
Significant positive correlations were found for the CD4 marker
with CD27 and CD45RA�CD27+ markers (P = 0.03 for both
correlations). Cluster 2 contained naive CCR7+ T cells. Total CD8
T-cell marker from this cluster positively correlated with total
T cells in cluster 1 (P = 0.03). In cluster 4, CD8 T-cell subpopulation
markers (CD8+ or CD4� in combination with CD25+/�, CD26�,
CD103+, CCR7�, CD45RO+) were grouped with markers of late-
stage memor y T-cell dif ferentiation (CD45RA�CD27�

CD127�CD62L�). Significant positive correlations were found
between CD8 T-cell subpopulation markers and effector memory
T-cell markers (CD45RA�CD27�/CD4�CD103+; P = 0.02) and final
effector T-cell markers (CD127�CD62L�/CD8+CCR7�; P = 0.02). As
a control, correlation between CD4 and CD8 T-cell subpopulation
markers was negative (CD3+CD4+/CD3+CD8+; r = �0.871, P = 0.02).
Interestingly, cluster 4 (CD8/effector memory T cells) and cluster 1
(CD4/early memory T cells) were, globally, strongly inversely
correlated. In cluster 3, early differentiated (CD45RA+CD27+) and
activated (CD25+, CD26+, CD69+) T-cell markers, as well as the global
memory T-cell marker (CD45RO+), were grouped with markers of

innate immune cell populations: tumor-associated macrophages,
immature dendritic cells, and NKT cells. Strong positive correlations
were found between all markers of early T-cell activation
(CD45RA+CD27+/CD25+/CD26+/CD69+; P < 0.05 for all combinations)
and the markers of tumor-associated macrophages and immature
dendritic cells (P = 0.01). These two functional groups of markers
were positively correlated (tumor-associated macrophages/CD25+/
CD26+/CD69+ and immature dendritic cells/CD25+/CD26+; P < 0.05
for all combinations). Thus, cluster 3 may illustrate the role of the
innate immune compartment for T-cell priming, activation, and mem-
ory differentiation required for efficient adaptive immune responses.

In contrast, cluster 3 was entirely disrupted in META+ Hi
patients (Fig. 3A, center). Indeed, the META+ Hi clustered
correlation matrix (Fig. 3A, bottom) displayed two inversely
correlated groups of clusters (cluster 1 versus clusters 2 and 3).
As observed in the META� Hi matrix, cluster 1 in META+ Hi
matrix contained the markers of CD4 and early memory T-cell
subpopulations markers (CD4+/CD28+; P = 0.008), as well as
markers of total T cells, CD4 T cells, and B cells. In clusters 2 and 3,
CD8 memory T-cell marker (CD8+CD45RO+) was significantly
positively correlated with both effector memory (CD45RA�CD27�)
and final effector (CD127�CD62L�) T-cell markers (P = 0.04 and
P = 0.001, respectively). Markers of NK and NKT cells, dendritic
cells (immature and activated), and tumor-associated macrophages
were also grouped in clusters 2 and 3 (Fig. 3A, bottom).

Figure 4. Disease-free survival of
colorectal cancer patients according to
expression of genes. A to C, disease-free
survival of 103 patients according to high
(red lines ) or low (black lines ) mRNA
expression levels of IRF1 (A ), GNLY (B ),
and VEGF (C ) genes. D, disease-free
survival of patients according to the
expression levels of the GNLY gene
in combination with IRF1 (top ) and
VEGF (bottom ) genes (thin red lines,
GNLY-Hi/IRF1-Hi, GNLY-Hi/VEGF-Hi;
bold red lines, GNLY-Hi/IRF1-Lo,
GNLY-Hi/VEGF-Lo; thin black lines,
GNLY-Lo/IRF1-Hi, GNLY-Lo/VEGF-Hi;
bold black lines, GNLY-Lo/IRF1-Lo,
GNLY-Lo/VEGF-Lo). The cutoff value for
the expression of each gene was defined
at the median of the cohort. *, P < 0.05,
log-rank test.

Intratumoral Immune Reaction in Human Colorectal Cancer

www.aacrjournals.org 2689 Cancer Res 2009; 69: (6). March 15, 2009



Compared with Hi patients, META� Lo (Fig. 3B, top) and META+
Lo (Fig. 3B, center and bottom) patients had very distinct
correlation profiles with a majority of noncorrelated markers
(yellow). Furthermore, except for the only significant positive
correlation between final effector and CD8+ T-cell subpopulations
(CD8+/CD127�CD62L�; P = 0.03) in the META+ Lo matrix, all
patterns of significant positive correlations observed in Hi patients
were lost in Lo patients (Supplementary Fig. S2).

This analytic approach allowed us to visualize the absence of
immune coordination in patients with low intratumoral T-cell
densities, whereas patients with high intratumoral T-cell densities
presented correlation patterns consistent with continual recruit-
ment and proliferation of activated CD8 T cells associated with
complete memory T-cell differentiation at the primary tumor site
(CD8 T-cell/effector memory T-cell correlations). This profile of
efficient immune reaction is in balance (negative correlation) with
patterns that could illustrate altered immune responses (CD4/early
memory T-cell/B-cell correlations). Because in Hi patients the
presence of metastases was associated with (a) a significant
decrease of CD8 and late memory T cells and innate cells and (b) a
significant increase of B cells (Figs. 1 and 2), our data suggest
altered immune reactions in META+ Hi patients.

Prognostic value of cellular immune coordination. We next
assessed the effect of immune coordination on the proliferation/
apoptosis status of primary tumor cells by Ki67/M30 immunohis-
tochemical stainings of cognate tumor samples (Supplementary
Fig. S4). No differences were observed among the patient groups,
suggesting that the effect on cancer progression of the immune
system may be inefficient for the destruction of the primary tumor.
To validate the effect of the coordination of in situ immune
response on colorectal cancer prognosis, we evaluated the density
of intratumoral immune T cells in a large cohort of 435 patients.

We investigated the CD8/CD3 T-cell density ratio in relation
to clinical outcome in TMA experiments. Increased densities of
T-cell infiltrates exhibiting high proportions of CD8 cytotoxic
T cells within the primary tumor of colorectal cancer patients were
associated with a significant protection against tumor recurrence
(Supplementary Fig. S5).

To better characterize the mechanisms involved in antitumoral
activity at the tumor-host interface, we investigated the effect on
clinical outcome of mRNA expression levels of 17 mediators
involved in immune or tumoral mechanisms. For each gene,
patients were defined as high or low according to median gene
expression. Disease-free survival rates were then calculated for
each patient group. The prognostic value of the expression levels
of genes related to T-cell populations (CD3f, CD4, CD8a), Th1
adaptive immune responses (TBX21/T-BET, IRF1, IFNc), and
cytotoxicity (GNLY, GZMB) were assessed. High expression of
TBX21/T-BET, IFNc, IRF1 , and GNLY was associated with signifi-
cantly improved disease-free survival rates (P = 0.02, P = 0.02, P =
0.0003, and P = 0.0004, respectively). Disease-free survival Kaplan-
Meier curves according to GNLY and IRF1 gene expression were
illustrated (Fig. 4A and B , respectively). Conversely to immune
mediators, the expressions of cancer-promoting genes involved in
tumor invasion (CEACAM1), metastasis spreading (EBAG9 and
CEA), tumor cell antiapoptosis (BIRC5/Survivin), immune suppres-
sion (IL-10 and TGFb ; data not shown), and angiogenesis (VEGF ;
Fig. 4C) had no prognostic values.

Immune coordination at the molecular level was assessed by
analyzing combined expression of genes. We found significantly
improved disease-free survival rates in patients with high
combined gene expressions (Hi/Hi) of marker combinations
related to CD4 T cells of Th1 phenotype (CD4/T-BET, CD4/IFNg,
CD4/IRF1 patients) and cytotoxic CD8 T cells (CD8/GNLY)

Figure 5. Proposed model: control of
colorectal cancer outcome by the immune
system. Before surgery, immune strength
and coordination are in balance with
mechanisms of tumor escape (tumor
immunogenicity, inflammation, and
angiogenesis) to control metastatic
invasion from the primary tumor site. Four
major immune coordination profiles within
colorectal cancer primary tumors are
found: (a ) Strong and coordinated adaptive
immune responses mediated by cytotoxic
(blue cells ; GNLY ) and Th1 (yellow cells ;
IRF1 ) effector memory T cells (green cells )
may contribute to the elimination of
migrating tumor cells (red cells ).
(b) Angiogenic (VEGF ) and inflammatory
processes may facilitate metastatic
invasion and (c ) noncoordinate immune
responses. (d) Weak (Lo ) immune
reactions (immune ignorance?). After
surgical removal of clinically detectable
tumors, the parameters defining this
balance are significantly associated
with the risks of cancer relapse [2-y
disease-free survival (DFS)]. It could be
postulated that the amount of invading
occult tumors and the amount of circulating
memory T cells, generated within distinct
primary tumor microenvironment, are in
balance to control cancer re-emergence in
the periphery (after surgery).
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compared with patients expressing low levels of these genes (Lo/
Lo; P = 0.04, P = 0.002, P = 0.002, and P = 0.004, respectively;
Supplementary Fig. S6). High coexpression of IRF1 and GNLY genes
(GNLY-Hi/IRF1-Hi) was essential for beneficial outcome with
median disease-free survival >140 months, whereas patients
expressing low levels of one of these genes or both (GNLY-Hi/
IRF1-Lo, GNLY-Lo/IRF1-Hi, GNLY-Lo/IRF1-Lo) had median disease-
free survival <15 months (Fig. 4D, top). These observations
confirmed the importance of a strong coordination between
immune mediators of cytotoxic and Th1 adaptive immune
responses for favorable colorectal cancer outcome.

Finally, we assessed the effects of the tumor microenvironment
on in situ antitumoral immune responses. We analyzed the
prognostic value of the expression of protumoral mediators in
combination with GNLY . Among all tested genes, only VEGF
showed a profound effect on patient survival when expressed with
GNLY . Patients expressing high levels of GNLY and VEGF genes
(GNLY-Hi/VEGF-Hi) and patients expressing low levels of GNLY
(GNLY-Lo/VEGF-Hi and GNLY-Lo/VEGF-Lo) had similar disease-
free survival rates that were significantly lower than the disease-
free survival rates of GNLY-Hi/VEGF-Lo patients (P < 0.004 for all
comparisons; Fig. 4D, bottom).

Discussion

The mechanisms controlling tumor progression and cancer
relapse are not clearly characterized. Here, we investigated the
quality of the immune reaction at the primary tumor site during
cancer progression (i.e., according to the density of tumor-
infiltrating T cells and the metastatic status of the patients). We
showed that coordination of the immune response was drastically
impaired in patients with low densities of intratumoral T cells
compared with patients with high densities of such cells.
Phenotypic correlation analyses showed matrices that were highly
fragmented with no particular functional relevance in both META�
Lo and META+ Lo patients. This suggested the absence of
coordinated immune response independently of the metastatic
status in Lo patients. Conversely, a high density of tumor-
infiltrating T cells (Hi patients) was associated with strong immune
coordination. Significant positive correlations between T cells of
late memory and cytotoxic phenotypes indicated continual
recruitment, activation, and memory differentiation of CD8 T cells
at the primary tumor site. In larger cohorts of patients using tissue
microarrays, we also showed that high densities of T cells
associated with a high CD8/CD3 density ratio correlated with a
very good prognosis. In contrast, low adaptive immune coordina-
tion was associated with very poor prognosis. Consistently, patients
presenting high and coordinated intratumoral expression of the
global Th1 immune response marker IRF1 and the cytotoxicity-
specific marker GNLY had significantly better survival rates
compared with patients expressing heterogeneous or low levels
of these genes.

Yet, in Hi patients, the presence of metastases was associated
with (a) a significant decrease of innate immune cells, (b) a
significant decrease of CD8 T cells and fully differentiated memory
T cells, (c) loss of the phenocluster of markers of innate cells and
early activated T cells (illustrating innate/adaptive immune
compartment interactions), and (d) a significant increase of B
cells (suggesting immune deviation mechanisms; refs. 34, 35).

According to the coexpression of IRF1 and GNLY, the
frequencies of strong immune coordination parameters were

reduced in META+ patients (data not shown). META+ patients
represented only 48% of GNLY-Hi/IRF1-Hi patients and 65% of
GNLY-Lo/IRF1-Lo patients. Overall, these observations represent
clues of altered immune responses when metastases are present.
However, a significant number of META+ patients displayed a
high degree of immune coordination preventing relapse events.
This raises two hypotheses: Does the alteration of the immune
reaction at the primary tumor site facilitate metastatic invasion?
Is the immune system overwhelmed and affected by the presence
of metastases? Interestingly, some patients without lymph node
and/or distant organs (META� patients) have an absence of
immune coordination and low densities of T cells. Thus, local
immune escape mechanisms may exist in the primary tumor even
before metastatic spread. Because proliferation and apoptosis
rates of tumor cells were not significantly different between the
patient groups, the outgrowth of the primary tumor may
overcome the destruction by the immune system. Whichever
hypothesis on the mechanisms of long-term relapse prevention
after surgery may be related to the quality of the immune
reaction at the primary tumor site even in patients with advanced
colorectal cancer.

Among the distinct factors potentially involved in immune escape
at the primary site, several mechanisms or cell types may participate,
such as immature dendritic cells, regulatory T cells, Th1/Th2
immune response switch, immunosuppression, local metastatic
invasion, inflammation, and angiogenesis. In patients with metas-
tases or low intratumoral T-cell densities, there was no increased
expression of markers of regulatory T cells, tumor-associated
macrophages, and immature dendritic cells by flow cytometry
(CD4+CD25hi, CD45+CD14+, and CD45+CD1a+CD14�CD83�, respec-
tively) and by tissue microarray (Foxp3+, CD68+, and CD1a+,
respectively) experiments (data shown). This may suggest the
existence of immune ignorance or reduced tumor immunogenicity
mechanisms for differential immune cell recruitment among
patients. Interestingly, we found that only the proangiogenic factor
VEGF had a deleterious effect on relapse prevention mechanisms
associated with strong antitumoral immune reaction. VEGF
expression levels had no prognostic value per se, in agreement with
immunohistochemical-based studies (36, 37). Our data indicate that
cytotoxic Th1 adaptive immune responses may be necessary, but not
sufficient, to prevent tumor recurrence. At the primary tumor site,
inflammatory cytokines (such as IL-1A, IL-6, IL-8, oncostatin M, and
tumor necrosis factor a) can enhance tumorigenic processes by up-
regulating important mediators of angiogenesis, such as VEGF (38).
In this context, the effect on colorectal cancer outcome of the
balance between GNLY/IRF1 and VEGF expressions may reflect
beneficial cytotoxic Th1 adaptive immune responses versus
deleterious inflammatory reaction (39–41). However, other roles of
angiogenesis may affect cytotoxic Th1 adaptive immune responses.
In the primary tumor site, the role of angiogenesis in promoting
nutrient supply (21) may not explain the obliteration of the beneficial
role of strong immune responses. In contrast, the induction of
vascular exit paths for migrating tumor cells (42) could result in
increased metastatic dissemination favoring relapse occurrence. In
this case, even strong in situ cytotoxic Th1 adaptive immune
responses may not be sufficient to counteract metastatic invasion.
Thus, in the periphery, great number of occult tumor cells may
overwhelm immunosurveillance mechanisms during the equilibrium
phase. Furthermore, if the migrating tumor cells inherit the strong
angiogenic properties of their resident counterparts, occult tumor
outgrowth may be further enhanced (43). This idea that angiogenesis
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and adaptive immune responses are strongly linked in cancer
recurrence should be taken into account when considering
therapeutic options.

We were able to describe four major immune coordination
profiles within colorectal cancer primary tumors depending on the
balance between tumor escape and immune coordination: (a)
strong and coordinate cytotoxic Th1 immune responses (GNLY/
IRF1) without or (b) with tumor angiogenesis (VEGF), (c)
noncoordinate immune responses, and (d) weak (Lo) immune
reactions (immune ignorance?). These distinct immune profiles are
associated with significant distinct cancer outcome (relapse risks),
as summarized in Fig. 5.

It is suspected that metastatic invasion can lead to the
dissemination of tumor cells that can remain in an asymptomatic
and nondetectable state of dormancy (i.e., not expanding in mass)
for long periods of time before cancer re-emergence (44). Control
of cancer dormancy involves various mechanisms such as cellular
dormancy (G0-G1 arrest), angiogenic dormancy, and immunosur-
veillance (45). Recently, Koebel and colleagues (46) showed that
stable lesions of transformed immunogenic cells in mice were
controlled by the adaptive immune system of the host in a
condition of ‘‘equilibrium.’’ In these experiments, loss of either
immunocompetence or immunogenicity could lead to tumor
outgrowth. We previously showed that the absence of microscopic
evidence of early metastatic invasiveness within lymphovascular
vessels was associated with high densities of effector memory T
cells within primary tumors and that both criteria were powerful
indicators of improved prognosis in human colorectal cancer (17).
Based on these data, it could be proposed that the immune system
exerts its protective role against cancer relapse (a) at the primary
tumor site by eliminating migrating tumor cells, subsequently
reducing the number of disseminated occult tumors, and (b) in the
periphery by controlling occult tumor evolution from dormancy
state to cancer re-emergence (equilibrium phase). Moreover, these
two antitumoral functions of the immune system could be tightly
associated. As suggested in mice (47), cytotoxic effector memory
T cells reacting at the primary tumor site might also, after surgical

removal of tumors, be in charge of long-term antitumoral
immunity in colorectal cancer.

In conclusion, our study argues for the involvement of
immune coordination and late memory and cytotoxic T-cell
populations in antitumoral activity against human colorectal
cancer (Fig. 5). First, due to their enhanced cytotoxic capabilities,
effector memory T cells may be involved in the control of
metastatic invasion at the primary tumor site. Second, due to
their memory properties, effector memory T cells may provide
long-term protection against outgrowth of disseminated occult
tumor cells potentially involved in relapse events. Depending on
the strength and coordination of antitumoral immune responses
elicited in primary tumor microenvironments (level of immuno-
genicity and angiogenesis), populations of T cells with distinct
quantity (number of clones) and quality (memory differentiation
state) could be generated. Subsequently, distinct potentials for
long-lived antitumoral immunity may be maintained after
surgical resection of primary and secondary tumors. Future
comparative studies of tumors according to immune parameters
and angiogenesis may reveal biological mechanisms involved in
emergence and cancer progression. More adapted treatment and
therapeutic strategies may ultimately be proposed to cure
colorectal cancer.
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