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Abstract

The surface structure and surface dynamics of Bi(111) have been studied using
elastic and inelastic scattering of helium atoms. Elastic helium atom scattering
experiments on Bi(111) exhibit diffraction peaks up to third order whose position
is in excellent agreement with previous structure determinations.
The surface corrugation was modeled using the eikonal approximation as well as
the GR-method. The surface charge density corrugation obtained from the best
fit results gives rise to a corrugation height of approximately 10% of the surface
lattice constant. This rather large corrugation height is not expected for a surface
with metallic behavior and may be a consequence of the surface electron pocket
states at the Fermi level of Bi(111).
The vibrational dynamics of Bi(111) were investigated by measurements of the
Debye-Waller attenuation of the elastic diffraction peaks and a surface Debye
temperature of (84± 8) K was determined. A decrease of the surface Debye tem-
perature at higher sample temperatures that was recently observed on Bi nanofilms
could not be confirmed in the case of the single crystal measurements.
It was shown that Bi(111) supports bound states of the helium atom on the sur-
face from which information on the corresponding atom-surface potential could be
extracted. Using the angular position of bound state resonance effects the bound
state energies were determined and a 9-3 atom-surface interaction potential was
fitted. The well depth D = (8.32 ± 0.73) meV of the potential is consistent with
previously determined values for noble metals.
Using inelastic helium atom scattering measurements the surface phonon disper-
sion of Bi(111) could be determined for the first time whereupon measurements
at a surface temperatures of 123 K and at room temperature were carried out. In
both high-symmetry directions the phonon dispersion exhibits a Rayleigh mode, a
strong longitudinal resonance and a nearly dispersionless branch at approximately
4 meV.
The Rayleigh mode shows an indication for a Kohn anomaly along ΓK which could
be related to a non-adiabatic effect. The longitudinal resonance, which is a com-
mon feature on metal surfaces, exhibits the largest amplitude in the second layer
as shown by comparison of the phonon dispersion with calculations from density
functional perturbation theory.
The calculations also confirm the flat phonon branch at approximately 4 meV
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which seems to originate from an atomic displacement in the third layer. The
observation of this subsurface mode in helium scattering is only possible due to
the electron phonon-coupling. Thereby oscillations of the electron charge density
above the first layer are caused by the movement of the atoms in subsurface layers.
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Kurzfassung

Im Rahmen dieser Arbeit wurde die Struktur und die Dynamik der Bi(111) Ober-
fläche mithilfe von elastischer und inelastischer Streuung von Heliumatomen unter-
sucht. Die elastische Streuung von Heliumatomen zeigt Beugungspeaks bis zur
dritten Ordnung, deren Position genau mit vorhergehenden Strukturbestimmungen
übereinstimmt.
Die Oberflächenkorrugation wurde unter Verwendung der eikonalen Approxima-
tion sowie der GR-Methode modelliert. Die hierbei erhaltene Korrugation der
Oberflächenladungsdichte besitzt eine Amplitude von 10 % der Gitterkonstante
an der Oberfläche. Eine dermaßen große Amplitude ist für eine Oberfläche mit
metallischem Charakter in keiner Weise zu erwarten und könnte im Vorhandensein
von Elektronenpockets am Fermi-Niveau der Obefläche begründet liegen.
Des weiteren wurde die Temperaturabhängigkeit der elastisch gestreuten Peaks
bestimmt, um über den Debye-Waller Faktor Rückschlüsse auf die Gitterschwin-
gungen der Bi(111) Oberfläche zu ziehen. Dabei wurde die Oberflächen-Debye-
Temperatur mit (84 ± 8) K bestimmt. Eine Abnahme der Oberfläche Debye-
Temperatur bei höheren Temperaturen, welche kürzlich auf Bi Nanoschichten
beobachtet wurde, konnte für die Messungen am Einkristall nicht bestätigt wer-
den.
Außerdem konnte gezeigt werden, dass gebundene Zustände des Heliumatoms
auf der Bi(111) Oberfläche existieren, welche Informationen über das Wechsel-
wirkungspotential zwischen Heliumatom und Oberfläche enthalten. Anhand der
Winkelpositionen, an denen Resonanzeeffekte der gebundenen Zustände sichtbar
sind, konnten die Energien der gebundene Zustände ermittelt werden und ein
9-3 Atom-Oberflächen-Wechselwirkungspotential wurde gefittet. Die Tiefe der
Potentialmulde beträgt D = (8.32±0.73) meV, was in guter Übereinstimmung zu
den Potentialtiefen für Edelmetalle ist.
Mithilfe der inelastischen Streuung von Heliumatomen konnte zum ersten Mal
die Phononendispersionsrelation der Bi(111) Oberfläche ermittelt werden. Die
Messungen hierzu wurden bei einer Oberflächentemperatur von 123 K und bei
Raumtemperatur durchgeführt. Die Dispersionskurve zeigt einen Rayleighmode,
einen longitudinalen Resonanzmode und einen nahezu dispersionslosen Mode bei
etwa 4 meV.
Die Dispersion des Rayleighmode zeigt Indizien für eine Kohn-Anomalie entlang
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ΓK, welche in einem nicht-adiabtischen Effekt begründet liegen könnte. Der longi-
tudinale Resonanzmode, welcher ein typisches Merkmal für Metalloberflächen ist,
besitzt die größte Amplitude in der zweiten Atomlage, wie durch Vergleich der
Phononendispersion mit Berechnungen anhand der störungstheoretischen Dichte-
funktionaltheorie gezeigt werden kann.
Diese theoretischen Rechnungen bestätigen auch den flachen Phononenmode bei
etwa 4 meV, welcher sogar in der dritten Atomlage lokalisiert ist. Die Beobach-
tung von solchen Moden in unteren Lagen ist nur aufgrund der Elektron-Phonon-
Kopplung möglich welche eine Oszillation der Ladungsdichte über der ersten Atom-
lage verursacht.
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1. Introduction

An important task of surface science is the investigation of interactions between
atoms or molecules with a solid surface including effects of surface layers and
structures. The findings in the experimental and theoretical framework of this
field of science are not only interesting in terms of interface and nanostructure
science; they are also of essential importance for applied fields such as nano-
electronics, catalysis and nanostructured materials1,2.
The experimental technique of helium atom scattering is used as an advantageous
tool in surface science. Among other prominent methods for the investigation
of surfaces, helium atom scattering can be viewed as the only genuinely non-
destructive surface sensitive diffraction method3. Furthermore, the impinging
helium atoms exhibit momenta comparable to those of lattice vibrations and can
thus provide information on surface phonons4.
In the course of this work a helium atom scattering apparatus was characterized
using measurements on the well-known lithium fluoride surface. The apparatus
was then used to investigate the structural properties and the vibrational dynamics
of the bismuth (111) surface.
The properties of bismuth and in particular the Bi(111) surface will be addressed
at the beginning of section 6. To emphasize the increasing interest in this material
an article recently published by Parameswaran et al.5 with the title: “Unfinished
bismuth” shall be cited. The authors describe anisotropies in the conductivity
of bismuth and conclude with the remark “ [...] it seems likely that resolving the
nature of the anisotropic phase will involve a careful re-examination of several
tenets of solid state theory - and some fascinating new physics” 5.

1.1. Organization of this Thesis

A first introduction to the elementary concepts of helium atom scattering from
surfaces is given in the following. Section 2 then deals with the theoretical concepts
in describing the surface structure and vibrations. Furthermore, the generation of
a supersonic expansion and the time-of-flight principle are briefly described.
Section 3 is devoted to the theoretical background for the helium atom scattering
technique. The atom-surface scattering theory is introduced and the necessary
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procedures in analyzing experimental measurements are described including pos-
sible complications and pitfalls. It provides the necessary background to become
familiar with this kind of measurement tool which might be helpful with respect
to future students planning to work on the described apparatus.
The apparatus used in this work is briefly described in section 4 together with
the vacuum setup. Section 5 deals with a first characterization of the apparatus
whereupon mainly scattering experiments from a lithium fluoride surface were
used. Finally, in section 6 the experimental results for scattering of helium from
a bismuth (111) single crystal are presented and the new insights into the physics
of this material that the measurements may provide.

1.2. Introducing the Principle of Helium Atom
Scattering

Figure 1.1 shows a typical experimental setup used in a Helium Atom Scattering
(HAS) experiment. Pure helium gas is used to create an atomic beam in a super-
sonic expansion whereupon the gas expands from a high pressure region (typical
pressure in the experiments: 50 bar) through a small nozzle into a region of vac-
uum. The expansion gives rise to an adiabatic cooling of the gas whereupon the
internal energy of the gas is transformed into translational kinetic energy6.

Figure 1.1.: Schematic drawing of a helium atom scattering machine

About 10 mm from the nozzle the outer part of the expanding gas cloud is sep-
arated from the forward moving atoms using a conical skimmer. Further down

2



1.2. Introducing the Principle of Helium Atom Scattering

the beam line a chopper can be located allowing time-of flight experiments by
chopping the beam into short pulses.
The intense, nearly monoenergetic helium beam is then directed towards a target
surface at a particular angle of incidence and the scattered intensity is monitored
at a given angle using a mass spectrometer. Therefore the sample is mounted on
a manipulator which allows to position and rotate the sample.

1.2.1. Elastic Scattering - Surface Structure

Elastic measurements i.e. measurements where the helium atoms are scattered
elastically at the surface, are used to determine the surface structure.

Figure 1.2.: Elastic scattering of He-atoms at the surface: The periodic arrange-
ment of the surface atoms gives rise to an interference pattern due to the wave-
particle duality. Information such as the surface structure and lattice constants
may be extracted from the interference pattern.

Thus the surface structure is studied by scattering the helium beam at the surface
and observing the resulting interference pattern. Interference occurs due to wave-
particle duality, which states that the incident helium atoms can be described as
waves giving rise to a diffraction pattern just as in the case of X-ray diffraction3,7–9.

1.2.2. Inelastic Scattering - Surface Dynamics

Inelastic measurements include energy transfer to or from the surface which re-
veals information about the surface dynamics. Thus the helium atoms are scat-
tered inelastically through excitation or deexcitation of the surface vibrational
modes (phonon creation or annihilation). This process can be understood as a
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diffraction from a moving lattice in analogy with the elastic diffraction from a
static lattice. The alteration of the energy has the classic analogue in the change
of the frequency of a wave, diffracted from a moving lattice, due to the Doppler
effect10.
Hence inelastic scattering of helium atoms is used to determine surface phonon
modes located at the surface. The scattered helium atom may either loose en-
ergy by exciting a phonon or gain energy via energy transfer from a phonon to
the He atom. The scattered helium atom exhibits an energy (velocity) that is
lower/higher than the velocity before the interaction.

Figure 1.3.: Principle of the time-of-flight measurement: The helium beam is
chopped into narrow bunches and interacts with the surface whereupon the helium
atoms can change their velocity. After interaction the He atoms propagate to
the detector whereupon faster atoms arrive earlier at the detector than slower
particles.

To achieve information about the different velocities in the helium beam a so called
time-of-flight measurement is carried out. Therefore it is necessary to modulate
the beam by a rotating chopper disk: A slit in the chopper rotates past the beam
and chops the beam into narrow bunches of He-atoms. The atoms in the bunch
are then propagating to the detector whereby faster atoms tend to arrive earlier
at the detector than slower particles3,4,7,10–12.
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1.2.3. Why Use Helium Atoms?

Using helium atoms to probe a surface holds several advantages compared with
X-rays, neutrons or electrons. Hence the lightweight helium atoms in the energy
range of 10-200 meV do not penetrate into the bulk material giving rise to the
only surface characterization method that is strictly surface sensitive. This means
in addition, that using helium atoms to probe a surface is truly non-destructive
to the sample3.

Figure 1.4.: Energy-wavevector relation for various probe particles used in study-
ing phonons. The gray region indicates the approximate energy range of surface
phonons. Neutrons are ideal for measuring bulk phonons but due to their large
penetration depth those are rather insensitive to surface phonons. He atoms and
low energy electrons are most suitable for the measurement of surface phonons.
Whilst low energy electrons tend to penetrate into the solid for a few atomic layers,
He atoms do not penetrate into the bulk at all. Furthermore, the method of inelas-
tic X-ray scattering under gracing incidence condition can detect surface phonons
as well but it is He atom scattering which provides the best resolution13,14.

Since the helium atoms are neutral they are insensitive to surface charges thus
allowing the investigation of insulating materials. Furthermore, as a noble gas, the
helium atoms are chemically inert thus offering a completely inert investigation
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method (chemically, electrically, magnetically and mechanically)3.
Finally, He atom scattering provides the best resolution for the determination of
phonon dispersion curves. From figure 1.4 which shows the energy-wavevector
relationship of several probe particles it can be seen that the relation for neutrons
and He atoms overlaps ideally with the region of phonons. However, as mentioned
before, neutrons have the disadvantage of penetrating into the bulk4,7,10,14.
Hence a helium beam is capable of studying the surface structure and dynamics
for a wide range of materials, including those with reactive or metastable sur-
faces3,4,7,11,12.
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2. Theoretical Background

2.1. Surface Description

2.1.1. Description of Crystals

Most aspects of surface descriptions and surface crystallography are extensions
of the concepts used to describe the structure of bulk materials. Since the main
concepts of bulk crystallography can be found in every textbook about solid state
physics (e.g15), these concepts will not be covered in great detail.
Usually the periodic structure of an ideal crystal is characterized in terms of a
lattice. The crystal lattice is a three-dimensional arrangement of points. All the
information that is necessary to describe the crystal is given by a subunit of this
lattice: The unit cell. The unit cell itself is specified by three unit cell vectors
(~a,~b,~c). A stacking of these unit cells in all three dimensions fills the space of the
lattice and describes the crystal. In terms of translational symmetry, the crystal
looks exactly the same when viewed from a point ~r as when viewed from point ~r′

~r′ = ~r + n1 · ~a+ n2 ·~b+ n3 · ~c (2.1)

where n1, n2 and n3 are integers16. However, the lattice is a mathematical ab-
straction. The crystal structure is formed when an atom or a group of atoms, the
so-called basis, is attached to every lattice point17. Hence the basis indicates the
position of the atoms within the unit cell.

2.1.2. Description of Surfaces

An ideal crystal surface is prepared via a planar cut through an ideal bulk crystal.
The resulting surface structure is usually given in terms of the Miller indices of
the bulk plane16. Consequently, crystal surfaces are in principle three-dimensional
objects since the atoms of the uppermost layer are not necessarily situated in
one plane. However, all symmetry properties of the surface are two-dimensional,
and for the description of the surface lattice only two translation vectors are
sufficient17:

~r′ = ~r + n1 · ~a+ n2 ·~b (2.2)
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Table 2.1.: The common names of the 5 Bravais lattices in two dimensions together
with their restrictions on the unit cell vectors ~a and ~b and the angle γ.

oblique |~a| 6= |~b| γ 6= 90◦

rectangular |~a| 6= |~b| γ = 90◦

centered rectangular |~a| 6= |~b| γ = 90◦

square |~a| = |~b| γ = 90◦

hexagonal |~a| = |~b| γ = 120◦

According to the three-dimensional translation (equation 2.1), equation 2.2 corre-
sponds to a geometry where the z-axis is perpendicular to the surface and the x-
and y-axes lie in the surface plane. The unit cell is now specified by the vectors
~a and ~b or simply by the norm of the vectors and the enclosed angle γ. The
convention for the choice of these unit cell vectors is the following16:

• ~b is always longer than or equal to ~a. ( |~b| ≥ |~a| )

• The angle between ~a and ~b must always be greater than or equal to 90◦.
(γ ≥ 90◦)

In the two-dimensional case there are only five possible unit meshes which have
the possibility to cover the entire plane of the lattice via translation. These dis-
tinct lattice types are commonly named as Bravais lattice1,16. The properties and
common names of the 5 Bravais lattices for the tow-dimensional case are listed in
table 2.1.
In figure 2.1 those Bravais lattices are shown. Note that for the rectangular cen-
tered lattice two types of unit cells are displayed: The rectangular unit cell which
is non-primitive and the primitive unit cell which is non-rectangular. Thereby the
primitive unit cell is the unit cell with the smallest area, having lattice points only
at their corners16. Consequently in the case of the rectangular centered lattice the
rectangular unit cell is non-primitive but the primitive unit cell does not reflect
the full symmetry of the lattice.
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2.1. Surface Description

Figure 2.1.: The five two-dimensional Bravais lattices in real and reciprocal space
together with the first Brillouin zone. For the rectangular centered lattice two
types of unit cells are displayed in real space: The rectangular and the primitive
unit cell.
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2. Theoretical Background

2.1.3. The Reciprocal Space

Another lattice, the reciprocal lattice, has proven to be very useful when dealing
with diffraction experiments1,17. The two-dimensional reciprocal lattice is con-
structed analogous to the three-dimensional one15. Hence the unit cell vectors
of the two-dimensional reciprocal lattice ~a∗ and ~b∗ are defined in terms of the
real-space lattice vectors ~a and ~b by

~a∗ = 2π
~b× ~n
~a(~b× ~n)

, ~b∗ = 2π
~n× ~a
~a(~b× ~n)

(2.3)

where ~n is the unit vector normal to the surface. A general translation vector of
the reciprocal lattice is:

~Ghk = h~a∗ + k~b∗ (2.4)

where h and k are integer numbers, referred to as Miller indices. Each point of
the two-dimensional reciprocal lattice can be reached by a reciprocal lattice vector
~Ghk.
The reciprocal lattices of the 5 Bravais types are given in figure 2.1. Thereby,
for the centered rectangular lattice the primitive unit cell should be used for the
reciprocal lattice since the choice of non-primitive unit vectors results in different
unit vectors in both real and reciprocal space16.

2.1.4. The Wigner-Seitz Cell and the Brillouin Zone

The Wigner-Seitz cell is a special primitive unit cell which is defined by a unique
construction instruction. The construction in real space is given by the following
steps:

• The origin (00) of the lattice is taken at an arbitrarily chosen lattice point.
From the origin lines are drawn to the neighboring (closest) lattice points.

• At the midpoint of each line perpendicular lines are dawn (in 3D: planes).

• The smallest area (in 3D: volume) around the (00) lattice point that is
enclosed by these perpendicular lines defines the Wigner-Seitz primitive cell.

The primitive cell that is constructed in this manner has the advantage that it
contains only one lattice point located at its center17.
In reciprocal space the Wigner-Seitz cell is known as the first Brillouin zone. Note
that the enclosing line segments of the first Brillouin zone are called the Brillouin
zone boundary16. The first Brillouin zones of the two-dimensional Bravais lattices
are shown in the right hand column of figure 2.1.
In reciprocal space the first Brillouin zone is the usual choice for the primitive cell.
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2.2. Generation of a Helium Beam

It is used in the description of diffraction, electronic band structure and lattice
vibrations16. The center of the Brillouin zone is labeled by Γ, whereupon high
symmetry points are labeled by upper case roman letters. This notation is the
BSW (Bouckaert-Smoluchowski-Wigner) notation18.
In the case of surface Brillouin zones the symmetry points are usually written with
a bar, e.g. Γ, to distinguish them from those in the bulk16. The two-dimensional
surface Brillouin zone can be related to the bulk Brillouin zone. Therefore the
points of the three-dimensional zone are projected onto the two-dimensional zone
which is shown in figure 2.2 for the fcc(111) surface.

Figure 2.2.: Relation between the surface and the bulk Brillouin zone in case of
the fcc(111) surface taken from19.

2.2. Generation of a Helium Beam

As a matter of fact HAS requires the generation of an atomic He beam. In order
to provide sharp diffraction peaks and to resolve small changes in the velocity of
the scattered beam, the velocity distribution of the generated He beam has to
be as narrow as possible. Therefore the He beam is generated in a supersonic
expansion which gives rise to a quasi-monochromatic beam.
The comparison of a supersonic source with a He beam generated in an effu-
sive source shows the advantage of a supersonic source: In an effusive beam the
Maxwell-Boltzmann distribution of the source is more or less maintained in the
beam. The difference of the velocity spread for both sources is illustrated in figure
2.3. It shows the measured velocity distribution of a supersonic He source and the
Maxwell-Boltzmann distribution for a He gas at the same temperature. Note that
the actual velocity spread of the supersonic beam is even smaller, since effects
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2. Theoretical Background

introduced due to the measurement of the velocity distribution add to the spread
of the beam (see section 2.4.1).
The principle of a supersonic expansion is as follows:20 He gas (He 6.0 which cor-

Figure 2.3.: Comparison of an effusive with a supersonic source: The measured
velocity distribution of a supersonic He source at 70 K and the corresponding
Maxwell-Boltzmann distribution for a He gas at the same temperature are shown.

responds to a purity > 99.9999%) with a high pressure p0 is provided and expands
through a nozzle with a diameter of 10 µm into a vacuum chamber at low pressure
pa. If the ratio p0/pa is sufficiently large the gas flow will reach sonic speed (Mach
number Ma = 1) at the nozzle outlet. Typical values for the experiments are
p0 = 30 bar up to p0 = 60 bar and pa ≤ 1 · 10−6 mbar.
Due to the quick expansion the process may be considered as adiabatic, giving
rise to an adiabatic cooling of the gas whereas the internal energy of the gas is
transformed into translational kinetic energy. The gas leaves the nozzle in the
continuum flow regime whereupon energy exchange between the He atoms is pos-
sible but with increasing expansion a transition to molecular flow occurs21.
The skimmer, a conically shaped aperture with a certain diameter, selects a part
of this expansion, usually beyond the continuous flow region to obtain a laminar
flow helium beam. It also transfers the helium beam into the following vacuum
chamber.

This expansion can be described by means of the theory of continuous media and
equilibrium thermodynamics. A short survey will be given in the following sec-
tions.
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2.2. Generation of a Helium Beam

Figure 2.4.: Setup of the supersonic expansion: He gas with a high pressure p0

expands through a nozzle into the source chamber at low vacuum pressure pa.
The skimmer selects the central part of the expanding gas beyond the continuous
flow region and transfers the helium beam into the following vacuum chamber.

2.2.1. Thermodynamics of Free Jet Expansion

Since helium is a monoatomic gas, rather small and does not have a dipole moment
(because it is spherical) it may be considered as quite close to an ideal gas. Starting
with the specific heat capacity at constant pressure P and constant volume V which
are:

cP =

(
∂h

∂T

)
P

, cV =

(
∂u

∂T

)
V

(2.5)

where u is the specific internal energy and h the specific enthalpy. Forming the
total derivative of u(V,T) and h(P,T) gives:

du = cV · dT (V = const), dh = cp · dT (p = const) (2.6)

For an ideal gas (pV = nRT ):

cp − cV = R (2.7)

holds. Due to the quick expansion the process may be considered as adiabatic.
Assuming reversibility this yields an isentropic process. For an ideal gas the
adiabatic exponent γ = cP/cV is constant and the pressure and temperature
before the expansion P1, T1 are related to pressure and temperature after the
expansion P2, T2 by:

P2

P1

=

(
T2

T1

) γ
γ−1

(2.8)
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2.2.2. Continuum Properties of Free Jet Expansion

Treating the free jet expansion as a steady flow of a homogeneous gas wherein heat
transfer and external forces are negligible, according to Pauly20 the conservation
of energy can be written as:

D

Dt

(
h+

w2

2

)
= 0 (2.9)

Thus the sum of the specific enthalpy h and the specific kinetic energy w2/2 is
constant along a streamline which is expressed by the convective derivative D/Dt.
Together with equation 2.6 this yields:

w2
2 − w2

1

2
= h2 − h1 =

∫ T1

T2

cP · dT (2.10)

If the specific heat is assumed to be constant the integration can be carried out
immediately:

w2
2 − w2

1

2
= 2cP · T1

(
1− T2

T1

)
(2.11)

The gas in the source (point 1) can be assumed as steady at the pressure p0 and the
stagnation temperature T0 whereby the flow velocity is negligibly small (w1 ≈ 0).
Point 2 represents any other point along the isentropic flow where the velocity
v = w2 is reached. Using equation 2.8 to insert the pressure relation instead of
the temperature relation yields:

v ≈

√√√√2 · cp · T0

[
1−

(
pa
p0

) γ−1
γ

]
(2.12)

Dealing with helium and thus with a monoatomic gas, cP = 5/2 · kB/m and
γ = 5/3. Furthermore, due to the low background pressure pa in the vacuum
chamber pa/p0 � 1 and the final speed that is reached by the Helium atoms is
given by:

v ≈
√

5 · kB · T0

mHe

(2.13)

with the atomic mass mHe of Helium.

Another useful variable to characterize continuum gas flow is the Mach number
Ma which is defined as the speed of the gas atoms, divided by the speed of sound
va in the gas:

Ma =
v

va
=

v√
γR·T
ma

(2.14)
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2.2. Generation of a Helium Beam

with the molar mass ma. All thermodynamic variables of the jet can also be
expressed in terms ofMa

6. Let us consider again the free jet expansion whereupon
the gas in the source is at rest (pressure p0). Given a short converging nozzle where
the flow can be assumed to be isentropic and friction and heat conduction can be
neglected, at the nozzle exit sonic speed (Ma = 1) is attained as long as the ratio
p0/pa satisfies the condition:

p0

pa
≥
(
γ + 1

2

) γ
γ−1

(2.15)

In the case of helium gas p0/pa ≥ 2.05 holds. However, if the pressure ratio in-
creases beyond the critical value the flow is said to be underexpanded and as a
consequence, a further expansion toward the ambient pressure pa occurs. Thus the
flow becomes supersonic (Ma > 1) and the Mach number increases with increasing
distance from the nozzle20.

In the proximity of the nozzle the collisions between the gas particles are very fre-
quent. However, as the free jet expands into vacuum the density decreases rapidly
with increasing distance from the nozzle. Beyond a certain distance the number
of collisions is so low that it can be neglected21.

2.2.3. Transition to Nonequilibrium Conditions

The theoretical description of the transition from continuous flow to free molecular
flow is rather difficult. A very simple but useful concept is that of an unsteady
transition, the so called quitting surface model. Thereby the expansion is divided
by a quitting surface into the two regions (see figure 2.5).
In the free-molecular collisionless region, the continuous media results must be
modified to account for the free molecular flow. Thus the physical meaning of
the Mach number gets gradually lost with decreasing gas density and is therefore
often replaced by the speed ratio:

S =
v||
v||w

(2.16)

whereupon v||w is the most probable speed20. The speed ratio is in turn related
to the Mach number by

S =

√
γ

2
Ma (2.17)

A detailed theoretical consideration of this transition requires an approximate
solution of the Boltzmann equation. Thus the velocity distribution of the beam is
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described using a distribution function called the ellipsoidal drifting Maxwellian
model. It takes account of the fact that the velocity components in direction
parallel to the streamlines (v||) and perpendicular to the streamlines (v⊥) behave
differently during the expansion. The velocity distribution is the product of two
Maxwell-Boltzmann distributions with two temperatures T|| and T⊥ (see figure
2.5)21.
In the continuum region the number of collisions between the gas particles is high

Figure 2.5.: Illustration of the quitting surface model: The continuum flow and
free-molecular flow regimes are separated by the quitting surface. The spread
in parallel velocities f(v||) is characterized by T|| and the spread in velocities
perpendicular to the streamline f(v⊥) by T⊥.

enough to maintain local equilibrium T|| = T⊥. Using the quitting surface model
at distances beyond the quitting surface no collisions between the particles occur,
therefore the distribution of parallel velocities does not change in this region.
However, the perpendicular velocities continue to decrease which gives rise to an
decreasing temperature T⊥ whereas the temperature T|| of the parallel velocity
distribution remains constant20.
According to Miller6 the terminal speed ratio achieved by supersonic expansion
may be estimated by

S||,∞ = α ·

[ √
2 · p0 · d

100 · kB · T0

(
53 · C6

kB · T0

)1/3
]β

(2.18)

with the pressure of the source p0 in bar, the source temperature T0 in K and the
nozzle diameter d in mm. For a helium beam (γ = 5/3) the parameters α = 0.527

and β = 0.545 should be chosen6. C6 is the parameter of the Lennard-Jones
potential with C6 = 2.1252 · 10−67J · cm6.
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Using equation 2.17 the terminal Mach number M||,∞ is given by

M||,∞ =

√
2

γ
S||,∞ (2.19)

Furthermore the distance of the quitting surface can be estimated as the distance
at which the continuum expansion reaches the terminal Mach number. Accord-
ing to Miller6 the distance xq of the quitting surface with respect to the nozzle
(diameter d) on the jet axis is then calculated using:

xq
d
≈
(
S||,∞
3.232

)3/2

(2.20)

2.3. Kinetic Parameters of the He-Beam

According to the quantum formalism every particle may be treated as a wave with
a wavelength:

λi =
h

p
=

h

m · v
=

h√
2mE

(2.21)

Given the maximum velocity which is reached after the supersonic expansion
(equation 2.13 with T0 = TN) the particles impinging on the surface exhibit an
energy Ei

Ei =
1

2
mHe · v2

He =
5

2
kBTN (2.22)

where TN is the temperature of the helium nozzle. Since the wavevector ~ki is
related to the wavelength via |~ki| = 2π/λi the energy may also be expressed in
terms of the wavevector:

Ei =
~2

2mHe

k2
i (2.23)

The nozzle temperature TN can be varied so that the energy of the impinging he-
lium atoms changes. Some typical kinetic parameters of the He-beam at different
nozzle temperatures TN are given in table 2.2.

Table 2.2.: Kinetic parameters of a He-beam generated in supersonic expansion
with different nozzle temperatures TN :

TN (K) v (m/s) Ei (meV) λ (Å) ki (Å−1)
50 718 10.8 1.38 4.6

100 1016 21.5 0.97 6.4
200 1437 43.1 0.69 9.1
300 1759 64.6 0.56 11.2
400 2032 86.2 0.49 12.9
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2.4. Time of Flight Measurements

The time-of-flight (TOF) method is based on a fairly simple principle: From a
measurement of the time t required for an atom to travel a given distance L the
speed of the atom is determined:

v =
L

t
(2.24)

To measure the velocity distribution of a helium beam it is necessary to modulate
the beam by a rotating chopper disk: A slit in the chopper rotates past the beam
and chops the beam into narrow bunches of He-atoms. The atoms in the bunch
are then propagating to the detector whereby faster atoms tend to arrive earlier
at the detector than slower particles. By repeating this measurement many times
the detector yields a distribution of flight times g(t) from which the velocity dis-
tribution f(v) or the energy distribution f(E) may be calculated11,20,22,23.
In practice the chopping of the beam marks the starting time of the TOF mea-
surement and a LED/phototransistor pair mounted at the chopper slit, produces
a synchronous timing pulse. This trigger pulse initiates a multichannel analyzer to
store the detected beam intensity as a time histogram. The limiting restraints in
the resolution of this time-of-flight measurement will be discussed in the following
section.

2.4.1. TOF-Resolution

For the resolution in a TOF spectrum the width of the peaks is of importance.
The velocity spread of the beam contributes to this width. It is, however, usually
not the dominant factor, which is rather the time width introduced by the TOF
analysis itself3.
Firstly, the chopper modulates the beam with a frequency νch which can be de-
scribed by a chopper transmission function C(t). The ideal C(t) is a delta function
but due to the finite slit width of the chopper it is usually described using a func-
tion with a trapezoidal shape23. Secondly, the resolution is limited by the detector
which exhibits a finite ionization length and thus can be described by a function
D(x) giving the ionization probability. Both contributions by C(t) and D(x) can
be included in an effective transmission function Teff (t)23.
The experimentally determined time-of-flight distribution G(t) includes both the
finite width of the chopper function and the finite length of the ion source. The
relation of G(t) to the true time-of-flight distribution g(t) is mathematically ex-
pressed by means of a convolution integral:

G(t) ∝
∫ ∞
−∞

Teff (t− τ)g(τ)dτ (2.25)
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2.4. Time of Flight Measurements

Figure 2.6.: Schematic illustration of the TOF principle from24: A continuous
beam is chopped into particle bunches which travel along the flight path to the
detector. Due to the velocity spread of the particles the narrow bunch disperses.

To determine g(t) it is necessary to use the deconvolution of equation 2.25. Accord-
ing to Pauly23 both G(t) and Teff (t) can be approximated by Gaussian functions
to a very high degree of accuracy. Thus the desired true time-of-flight distribution
g(t) is also a Gaussian function. For the corresponding halfwidths of the Gaussian
functions, integration of equation 2.25 yields:

∆t2G = ∆t2g +∆t2T = ∆t2g +∆t2C +∆t2D︸ ︷︷ ︸
=∆t2T

(2.26)

with ∆tT , the halfwidth of Teff (t), ∆tC the halfwidth of C(t) and ∆tD the
halfwidth of D(x).
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2.4.2. Corrections of TOF measurements

A multichannel analyzer with a selectable channel width tmc sums up the single
TOF spectra during the measurement time. The rotating chopper disk triggers
the starting point of the multichannel analyzer and the real time of flight tf is
composed of

tf = tp − tc − tmc/2 (2.27)

where tp is the peak time given in the TOF spectra and tc is a correction which is
necessary due to the influence of a delayed triggering. Hence tc is dependent on
the chopper frequency νch by:

tc = α · 1

νch
(2.28)

with α = −(5.4 ± 1.2) ms/s (see section 5.2). In addition, when using a small
channel width, tmc/2 is negligible.

2.4.3. TOF-measurements using a Pseudo Random Chopper

The use of a chopper as described so far requires two restrictions:

• A short opening time of the chopper to ensure a good resolution.

• The overlapping of different particle bunches at the detector is forbidden.
Hence an adequate interval between two adjacent pulses has to be chosen to
exclude that faster and slower particles of the two adjacent pulses overlap
at the detector.

Both requirements give rise to a relatively small time that the chopper slit re-
mains open for the beam. The ratio which gives the fraction of intensity that is
transmitted through the chopper is called “duty factor” and is usually ≈ 0.01 for
a single slit chopper disk22. Therefore the intensity of the helium beam is reduced
to only a few percent after chopping which gives rise to rather long measuring
times.
This disadvantage can be overcome using the pseudo random chopper technique
that gives rise to an average beam intensity of 50% of the unmodulated beam25.
Using this technique the beam is pulsed at time intervals that are much shorter
than the spread of inelastic beams at the detector which gives rise to an overlap
of TOF spectra from different chopper pulses. However, provided the beam is
chopped in a specific sequence of pulses, the superposition can be deconvoluted26.
The crucial point in using this technique is the extraction of the TOF distribution
from the measured detector signal. The distribution measured at the detector
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2.4. Time of Flight Measurements

D(t) is determined by the convolution of the desired TOF distribution F (t) with
the shutter functionZ(t):

D(t) = U(t) + (C � F )(t) (2.29)

whereupon � denotes the convolution integral:

D(t) = U(t) +

∫
C(t− t′′)F (t′′)dt′′ (2.30)

and U(t) accounts for a background in the detector signal23. Given several con-
straints it is possible to calculate the TOF distribution via a simple algebraic
transformation. Hence we gain the deconvoluted TOF distribution F (t) by con-
voluting equation 2.29 with the chopper function C(t):

F (t) = (C �D)(t)− (C � U)(t) (2.31)

Assuming that the background U is constant gives rise to

F (t) =

∫
C(t′)D(t+ t′)dt′ − U

∫
C(t′)dt′ (2.32)

This convolution integral, that is also referred as cross-correlation method, can
easily be handled using the Fourier transformation24.
The pseudo random chopping concept is now based on the fact that the cross-
correlation function of a random function is a delta function22. In other words,
modulating the beam with a random function and deconvoluting it using the same
random function would give rise to the same result as modulating the beam with
a delta function.
Of course, in practice it is not possible to use a random modulation since there
is no random number generator which is fully uncorrelated27. Therefore we are
looking for an experimentally realizable “pseudo-random” function that resembles
a random function. This is possible using a binary pseudo-random sequence with
discrete intervals, where the length of the sequence equals N = 2k − 1 and the
sum of the sequence equals 1. Hence the conventional single slot is replaced by a
pseudo-random sequence of slots and teeth22,28 as shown in figure 2.7.
In an experiment the function D(t) measured with the detector consists of discrete
values. These discrete values are delivered by the channels of the multi channel
analyzer and are then deconvoluted using the above described cross correlation
method. Details on this deconvolution procedure can be found in Mayrhofer-
Reinhartshubers master’s thesis24 as well as in the literature25,28.
Finally it should be noted that the pseudo-random chopper technique adds com-
plexity to the experimental apparatus since the chopper has to be phase-locked
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2. Theoretical Background

Figure 2.7.: Image of a chopper disc for a pseudorandom modulation. The addi-
tional slit provides a synchronization light pulse at the start of the pseudo-random
sequence and the off-center hole is for balancing.

Figure 2.8.: Graphical representation of the pseudo random sequence C(t) with
N = 511 elements that is used in the TOF measurements. The binary value of
1 corresponds to a slit where the chopper is open for the helium beam whereas 0
corresponds to the time where the chopper is closed for the beam.

to the multichannel analyzer (MCA) and the chopper period must exactly match
the cycle time of the MCA within a small fraction of one MCA time channel22,26.
Yet the pseudo-random chopper technique can greatly improve the signal-to-noise
ratio in TOF measurements23 giving rise to shorter measurement times than com-
pared to TOF measurements with a single slit chopper disc.
However, the method is not well suited in all cases. Hence pseudo-random chop-
ping works poorly if the TOF spectra contain very small peaks in the presence of
very large peaks. In that case the statistical noise of the large peaks will be dis-
tributed across the spectrum and after the deconvolution the small peaks cannot
be distinguished from the noise any more26. Thus a key to the successful use of
pseudo-random chopping is to arrange the scattering geometry in a way that only
phonon peaks of comparable intensities appear in the TOF spectrum26.
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2.5. Crystal Vibrations - Phonons

2.5. Crystal Vibrations - Phonons

In a first attempt to describe crystal vibrations, the crystal is described using
a one-dimensional chain of atoms. A lot of basics about crystal vibrations in
three-dimensional solids can be learned from this model, whereupon detailed de-
scriptions are found in most solid state textbooks15.

Figure 2.9.: Schematic representation of a one-dimensional crystal with one atom
per unit cell. The atoms with mass M are connected by springs with the force
constants C.

2.5.1. Crystals with a Monoatomic Basis

The simplest model we can think of is a one-dimensional monoatomic crystal
consisting of atoms with the mass M and separated by the lattice vector of length
a as shown in figure 2.9. Considering only nearest-neighbor interactions, each
atom is bound to its neighbors via harmonic springs with the force constant C.
The force Fs acting on the atom s is given in terms of the displacement u:4,15

Fs = C(us+1 − us) + C(us − us−1) (2.33)

Hence the force acting on the atom s is linearly dependent on the difference of
the displacement u with respect to the nearest neighbors (s− 1 and s+ 1). This
expression is of the form of Hook’s law and is applicable as long as the deformation
is small. Thus the equation of motion for atom s becomes:

M
d2us

dt2
= C(us+1 + us−1 − 2us) (2.34)

The periodic time dependence is fulfilled using us(t) = us · e(−iωt) in accordance
to a harmonic oscillator and equation 2.34 gives rise to:

−Mω2us = C(us+1 + us−1 − 2us) (2.35)

which is now a difference equation with respect to the displacement u. The dis-
placement of the atoms can be described as traveling waves:15

us±1 = u · e(i(s±1)qa) (2.36)
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where q is the wavevector. Substituting this in equation 2.35 yields:

ω2M = −C
(
e(iqa) + e(−iqa) − 2

)
(2.37)

This is a dispersion relation for the angular frequency ω(q):

ω2(q) =
2C

M
(1− cos(qa))

or

ω(q) =

√
4C

M

∣∣∣sin
(qa
2

)∣∣∣ (2.38)

where the norm ensures only positive frequencies ω. This solution describes waves
that are propagating along the chain. At q = 0 (the Γ-point) ω becomes 0, and
for small values of q, ω is approximately linear: ω =

√
C/Maq. ω(q) reaches

its maximum at the zone boundary (q = π
a
). The dispersion continues then

periodically with a period equal to the reciprocal lattice vector 2π/a. Hence
the first Brillouin zone contains all physically relevant information4,15.

2.5.2. Crystals with two Atoms per Unit Cell

The situation for two atoms per unit cell is very similar to the case with one atom
per unit cell. Figure 2.10 illustrates the case for two different atoms with mass
M1 and M2 whereupon the lattice spacing is again a but one atom is located at
the origin and one at a/2.

Figure 2.10.: Schematic representation of a one-dimensional crystal with two
atoms of mass M1 and M2 per unit cell. The force acting on each atom is given
in terms of the displacements u and v with respect to the equilibrium position.

Considering again only nearest-neighbor interactions the equation of motion is
obtained in a similar manner as above:15

M1
d2us

dt2
= C (vs+1 + vs−1 − 2us) (2.39)

M2
d2vs
dt2

= C (us+1 + us−1 − 2vs)

which is a system of two coupled differential equations. Using the same ansatz
for plane waves as before, a homogeneous linear system of equations for the dis-
placements u and v is obtained. The system of equations has only a solution if
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2.5. Crystal Vibrations - Phonons

the determinant of the coefficient matrix vanishes:

M1M2ω
4 − 2C (M1 +M2)ω2 + 2C2 (1− cos(qa)) = 0 (2.40)

Equation 2.40 exhibits two solutions with a positive frequency ω which are referred
to as the acoustical branch (ω−) and the optical branch (ω+):

ω2
± = C

( 1

M1

+
1

M2

)
±

√(
1

M1

+
1

M2

)2

− 4

M1M2

sin2
(qa

2

) (2.41)

The dispersion is shown in the dispersion relation ω(q) 2.11: For each q there
are two values of ω whereupon the two solutions give rise to a different kind of
dispersion. The acoustical branch shows a similar behavior as the dispersion for
the monoatomic case (equation 2.38). This branch goes to zero for q = 0 and cor-
responds to a vibration where all atoms of the unit cell oscillate in phase. Since it
corresponds to the propagation of sound in the long wavelength limit it is called
acoustic branch15.

Figure 2.11.: Dispersion relation ω(q) of the one-dimensional diatomic crystal
obtained by solving equation 2.40. There appear two branches: The acoustical
branch and the optical branch. The acoustic branch (corresponding to the negative
sign in equation 2.41) always goes to zero for q = 0, whereas the optical branch
exhibits a finite value for q = 0. The gap between the optical and acoustic branch
increases with increasing difference of the masses M1 and M2.
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In the case of the optical branch ω exhibits a finite value as q approaches zero.
At q = 0 this is a vibration in which the two atoms per unit cell move exactly out
of phase. The dispersion branch is called optical due to the possibility to couple
these vibrations to an electromagnetic field: If the two atoms in the unit cell carry
different charges, the vibration corresponds to a changing dipole moment which
in turn can be coupled to an external light source4.
The approximations of this simple model are still just valid for a one-dimensional
chain of atoms. However, in a majority of cases there are high symmetry directions
in a three-dimensional crystal where the movement of a crystal plane reduces to
a one-dimensional problem29. Moreover, the model can even be further extended
to include nextnearest-neighbor interaction forces and so on4.

Figure 2.12.: Bulk phonon dispersion of bismuth according to the calculation of
Diaz-Sanchez et al.30. On the right hand side the first Brillouin zone of bismuth
is shown together with the directions that are plotted in the graph. The branches
of the ΓT-direction are labeled as:
TA: transversal acoustic, LA: longitudinal acoustic, TO: transversal optical, LO:
longitudinal optical

In this treatment only longitudinal vibrations have been considered so far. Vibra-
tions with a transverse polarization can be treated in a similar way, with similar
results but with a different force constant. The branches are then labeled as LO
and LA for longitudinal polarization and TO and TA for transverse polarization.
In general, for a three-dimensional crystal, each atom has three degrees of freedom
corresponding to displacements in the three lateral directions x, y and z. A crystal
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2.5. Crystal Vibrations - Phonons

with n atoms per unit cell gives rise to 3n dispersion branches with three of them
being acoustic and the remaining 3n − 3 branches showing an optical character.
Due to symmetry operations in the crystal, the branches can be degenerate in
energy15.
Figure 2.12 shows the calculated dispersion curves according to Diaz-Sanchez et
al.30 for a few high-symmetry directions of a bismuth crystal.

2.5.3. Quantized Lattice Vibrations

What has been neglected so far is the quantized character of lattice vibrations.
Due to this character the quantized energy of a lattice vibration is called a phonon
in analogy with the photon, the quantum of light. In a quantum mechanical
treatment, these lattice vibrations are described by a Hamiltonian equivalent to
the one of a harmonic oscillator. Thus, the energies of a lattice vibration with the
angular frequency ω are quantized with:15

El =

(
l +

1

2

)
~ω (2.42)

with the quantum number l. The mode is excited to l, hence l is the total num-
ber of phonons in this state. The zero point energy of the mode is given by the
term 1/2~ω. As in the case of photons, phonons are bosons and are therefore not
subject to the Pauli exclusion principle.
A lot of material properties are determined by the number and energy of the oc-
cupied phonon states, e.g. the heat capacity or the thermal conductivity since the
thermal movement of the crystal atoms can be described in terms of phonons15,29.

2.5.4. Surface Phonons

At the surface the altered environment with respect to the bulk modifies the dy-
namics to give rise to new vibrational modes31. This “new” vibrational modes are
called surface phonons due to their localization at the surface: Their amplitude
exhibits a wavelike characteristics parallel to the surface and decays rapidly into
the bulk, perpendicular to the surface. This property is associated with the bro-
ken translational invariance at a surface32.
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The crystalline symmetry at the surface is reduced from three dimensions to the
two dimensions in the plane parallel to the surface. The two-dimensional states at
the surface are then characterized by the vector ~Q = (qx, qy). Usually for a given
~Q = (qx, qy) there exist a lot of of bulk phonon modes with different values of qz.
Hence when the bulk modes are projected onto the surface (where qz vanishes) one
obtains a whole band of bulk vibrational frequencies that appear at the surface4.
This can be clearly seen in the dispersion relation which is illustrated in figure
2.13. For the case of a real surface, e.g. Ag(111) this procedure is shown in 2.14.

Figure 2.13.: Illustration of the projection of the bulk phonon modes onto the
surface: A 3-dimensional set of dispersion curves with parallel ( ~Q) and normal
(qz) wavevector components is projected onto the surface. The set of dispersion
curves is converted into a broad two-dimensional band since for every ~Q there
exist a lot of of bulk modes with different values of qz.

Theoretical calculations of surface phonon dispersions are usually carried out using
the slab method. Therefore the crystal is considered as a slab with typically 20-50
layers. The layers are extending to infinity in the directions parallel to the surface
using periodic boundary conditions.
In doing so both the bulk and the surface modes are found whereupon the surface
localized modes are identified due to the decay of the vibrational amplitudes into
the bulk4,31. Figure 2.14(d) shows such a calculation for the Ag(111) surface.
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2.5. Crystal Vibrations - Phonons

With increasing number of layers the number of dispersion curves increases and
the projected bulk modes become denser, whereupon for a real crystal these curves
even form a continuum. However, beyond a certain slab thickness, the position of
the surface localized modes does not change with increasing number of layers31.

(a) Relation between the
fcc(111) and the fcc bulk
Brillouin zone from19†.

(b) The calculated phonon dispersion curves (solid
lines) of silver from33§. The bulk values are projected
onto the surface according to 2.14(a).

(c) Brillouin zone of
the fcc(111) surface.

(d) Theoretical surface phonon spectrum of Ag(111) taken
from34‖. Black dots denote theoretical surface modes and open
symbols show experimental data.

Figure 2.14.: Formation of surface phonon modes exemplified for Ag(111): The
phonon dispersion of the surface consists of the bulk bands, which are due to
the projection of bulk phonons onto the two-dimensional Brillouin zone and the
localized surface phonon modes originating in the broken translational invariance
at the surface.
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In most crystals, the modification of the forces at the surface is in such a way
that the surface localized modes exhibit frequencies which lie below the associ-
ated projected bulk modes. They appear like a mode that is “peeled” down from
the bulk band4. Thereby, despite the truncation of the crystal, the presence of
the surface introduces another perturbation: An alteration of the force constants
near the surface since the surface atoms exhibit fewer neighboring partners. In
most cases this alteration gives rise to a softening of the total forces acting on the
surface atoms31.
Hence the modes are found below or in gaps of the bulk vibrational spectrum, e.g.
the modes S1, S2 or S3 in figure 2.14(d). If the alteration of the force constants
is strong enough, several layers can be affected. Therefore the modes are labeled
according to the layer in which the mode is primarily localized e.g. S2 is primarily
localized in the second layer31.
For many materials a surface localized mode with optical character occurs in the
gaps between the bulk acoustic and optical bands. The surface phonon mode with
the lowest energy (S1 in figure 2.14(d)), usually derives from the bulk transverse
acoustic band. This branch is referred to as the Rayleigh mode. In this mode the
vibration of the atoms is preferentially in the plane defined by the surface normal
and the propagation direction4.
Despite the modes that lie below the bulk bands or in a gap inside the bulk bands
there are two other cases. Along symmetry lines that are associated with a mirror
plane, a surface mode can fall into a region that is occupied by a sub-band of bulk
modes to which it is orthogonal. Then it is still a surface mode. However, if the
surface mode appears in a region filled by bulk modes to which it is not automat-
ically orthogonal, it is no longer referred as a pure surface mode31. These modes
exhibit maximum amplitudes in the surface layer but non-vanishing amplitudes
in the bulk and are called mixed modes or surface resonances32.
In figure 2.14(d) the mode labeled MS3 is caused by such a resonance: The so-
called longitudinal resonance which appears below the lower edge of the band
formed by the projected longitudinal bulk modes. The origin of this anomalous
resonance has been discussed controversially. It was first attributed to a large
softening of the force constants in the first layer35 which is however, unexpected
since the surface shows no significant relaxation or reconstruction.
The occurrence of this resonance could then be explained by taking into account
the crucial role of surface electrons which gives rise to electron-mediated force
constants in the case of noble and transition metal surfaces36–39. In some cases it
was even explained in terms of an inherent character of the He-surface interaction
as a consequence of the HAS technique34.
§ Copyright (2006) by Springer ¶ Copyright (1999) by the American Physical Society
‖ Copyright (2003), with permission from Elsevier
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2.5.4.1. The Rayleigh Wave in the Continuum Limit

Surface phonons have already been mentioned by Lord Rayleigh in 1885, who
predicted the existence of a surface acoustic wave with a velocity below that in
the bulk. It was also him to derive an equation for the Rayleigh wave, by approx-
imating the semi-infinite solid in terms of a continuous and isotropic medium32,40.
An equation for surface acoustic waves propagating in the x-direction of the plane
with z = 0 can be derived in the continuum limit using Hooke’s law. In doing so
the speed of the surface acoustic wave v is determined by equation:40

c33c55ρ
2v2
(
c11 − ρv2

)
=
(
c55 − ρv2

) [
c33

(
c11 − ρv2

)
− c2

13

]2 (2.43)

where ρ is the mass density of the medium and cij are the elements of the elas-
ticity (stiffness) tensor which links the stress tensor ←→σ with the strain tensor ←→ε
according to Hooke’s law in Voigt notation: σi = cijεj. The physical solution of
this equation is the phase velocity of a propagating wave with ω = vk which shall
be referred to as vRW .
Equation 2.43 is valid as long as either the x- or the z-axis of the crystal is along
a two-fold rotation axis or perpendicular to a mirror plane40. The solution of this
equation gives rise to a general result (for the given assumptions): The speed of a
surface acoustic wave vRW is always lower than the speed of the slowest bulk wave
propagating in the same direction. For the special case of an isotropic medium
equation 2.43 reduces to:

ξ6 − 8ξ4 + 8ξ2

(
3− 2

v2
t

v2
l

)
− 16

(
1− v2

t

v2
l

)
= 0 (2.44)

with vl and vt the speed of sound of the longitudinal and the transverse wave in
the bulk and ξ = vRW/vt. The displacements of such a Rayleigh wave, calculated
within the continuum theory are shown in figure 2.15.
The condition for the existence of a localized wave, ξ < 1, is only fulfilled by the
solution of equation 2.44 for ξ2 with the smallest value2,40. Hence using equation
2.44 the velocity of the Rayleigh wave can be calculated from the bulk values vl
and vt. However, it is important to keep in mind that this holds only for the case
of an isotropic medium.
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(a) Displacement components ux and uz.
Both components decrease exponentially with
distance z from the surface into the medium
whereupon the decay length is proportional to
the wavelength λ.

(b) Decrease of the transverse component uz
with increasing depth z.

(c) Displacement pattern of the Rayleigh wave. The displacements are neither
longitudinal nor transverse, but the transverse component is dominant giving
rise to a quasi-transverse mode. Only in a particular depth the displacements
are purely transverse.

Figure 2.15.: Displacement of the Rayleigh wave for NaCl calculated within the
continuum theory and the assumption of an isotropic medium. Force constants
of NaCl according to41. Note that the figures are just for illustration purposes
since a more realistic treatment would require to account for the anisotropy of the
elastic constants2.
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Figure 3.1 gives an impression of the different processes that occur for scattering
of He atoms on a crystal surface. These processes will be described in the following
sections. A more detailed description, which is beyond the scope of this work can
be found in a lot of articles3,4,8,9,14.

Figure 3.1.: Graphical representation of the different processes for the scattering
of He atoms on a crystal surface.

3.1. The Atom-Surface Potential

As figure 3.1 already suggests, the He atom scattering process differs from the
scattering mechanism of electrons, neutrons or X-rays. Hence He atoms are scat-
tered by the electron density on the surface whereas the other probe particles are
scattered by the ion cores. In the case of inelastic scattering this corresponds to
a scattering of the He atom by phonon-induced electron charge oscillations39.
The interaction of the impinging He-atom with a solid surface can be described in
terms of an interaction potential. Therefore it is assumed that the He atom inter-
acts with all surface atoms of the crystal via a total potential V (�r). Obviously the
potential depends on the actual position of the impinging atom with respect to the
surface, �r = (�R, z), usually expressed in terms of coordinates in the surface plane
(�R) and perpendicular to it (z). In principle the potential is time dependent but
for the description of elastic scattering the time average of the potential 〈V (�r, t)〉
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is sufficient. This average potential is determined by the surface atoms which are
fixed at their equilibrium positions at a given temperature3,29.
The interaction of a closed-shell atom like He with the surface can be divided
into two parts. At distances close to the surface, the Pauli repulsion Vrep(~r) arises
due to the overlap of the closed-shell electrons of the He-atom with the electrons
of the surface. Further away from the surface Van-der-Waals forces give rise to
an attractive potential Vatt(~r): Due to quantum induced polarizations an attrac-
tive force between the impinging atom and the surface charge distribution arises.
Therefore the potential can be broken down into3,42:

V (~r) = Vrep(~r) + Vatt(~r) (3.1)

To calculate the actual interaction potential of a surface with the He atom, a
summation over all two-body potentials between the He atom and the atoms of
the surface has to be carried out. Thereby the potentials are assumed to be
identical to the corresponding gas phase two-body potentials. This method is
accurate for solids with a closed-shell character (e.g. ionic crystals) but should be
treated with care in the case of semiconductors and metals since the bonding is
partly mediated by conduction electrons in the latter case43,44.
Furthermore, even for the gas phase, two-body potentials are not known with
high accuracy for most systems and the effective two-body potentials have to be
estimated using an approximate model3,42. A popular choice for this two-body
potential is the Lennard-Jones 12-6 potential:

vLJ = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(3.2)

where r is the distance between the particles, ε is the well depth of the potential
and σ is the distance at which the potential equals zero9.
The resulting atom-surface potential that is achieved after summation over all
individual Lennard-Jones potentials in the continuum limit, is the 9-3 potential
which will be described in section 3.6.4.
Figure 3.2 shows an illustration of the He-LiF(001) interaction potential. In gen-
eral the potential energy depends on the lateral position at which the impinging He
atom approaches the surface. The potential as a function of the distance normal
to the surface is shown for two extreme cases in figure 3.2(b): Case A corresponds
to a He atom approaching on-top of a surface atom, whereas case B accounts for
an approach on a bridging site between two surface atoms.
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3.2. Elastic Scattering of He on Surfaces

(a) Contour plot of the equipotential lines for the He-
LiF(001) interaction potential.

(b) Potential energy vs. dis-
tance z normal to the surface.

Figure 3.2.: Visualization of the He-LiF(001) interaction potential (Lennard-
Jones-Devonshire potential) according to the parameters determined by Celli et
al.45. The left-hand graph shows a contour plot of the potential with z being the
direction normal to the surface. The right hand graph shows the potential as a
function of z for the two different positions corresponding to A and B in the left
part. The laterally averaged potential is also shown.

Consequently, the potential follows the periodicity of the surface which can be
seen from the contour plot in figure 3.2(a). This fact suggests that the potential
V (~r) can be written according to the Fourier series:

V (~r) = V (~R, z) =
∑
~G

V ~G(z) · ei ~G~R (3.3)

where the sum is taken over ~G, the surface reciprocal lattice vectors3,29,42. At this
point the discussion about the atom-surface potential is finished, though further
aspects of the atom-surface potential will be addressed in section 3.6.

3.2. Elastic Scattering of He on Surfaces

A scattering process with Helium atoms is considered elastic if the energy does
not change (Ei = Ef ). Given the diffraction on a periodic structure the Laue
equations give three conditions for incident waves to be diffracted by a crystal
lattice. Thus the change in the momentum of the incident and the final beam
has to be equal to a reciprocal lattice vector ~g: ∆~k = ~g. Together this yields 4
conditions that have to be fulfilled for diffraction peaks in elastic scattering:9,46

Ei = Ef (3.4)
~kf = ~ki + ~g (3.5)
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Figure 3.3.: Geometry in elastic HAS experiments: �ki, �kf ...incoming and outgoing
wavevectors, �Ki, �Kf ... wavevector component parallel to the surface, θi, θf ...
polar angle and φi, φf ... azimuthal angle.

The usual convention for the notation of directions, vectors and angles in diffrac-
tion geometries is shown in figure 3.3. The surface lies in the x - y - plane and the
normal z is perpendicular to the surface. The wavevector describing the incom-
ing beam of particles is named �ki and the outgoing one �kf . Since He scattering
is purely surface sensitive, the wave vectors are usually separated into wave vec-
tors with components parallel to the surface (designated by capital letters) and
components perpendicular to the surface (designated by subscript z):9,47

�ki = ( �Ki, kiz), �kf = ( �Kf , kfz) (3.6)

The polar angles θi, θf are defined by the incoming wavevector and z and by the
outgoing wavevector and z, respectively. �Ki and �Kf assign the azimuthal angles
φi, φf together with the x-axis. The azimuthal angle can be changed by rotating
the surface along the z-axis. Furthermore, diffraction processes that lie within
the plane defined by the incoming wavevector and the z-axis are called in plane
diffraction which will always be the case for the experiments described in this
work.
Using this notation the Laue condition 3.5 for scattering on a surface yields the
famous Bragg condition:9,46

∆ �K = �Kf − �Ki = �Ghk (3.7)

whereupon �Gh,k is a reciprocal surface vector with the Miller-indices h and k. The
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3.2. Elastic Scattering of He on Surfaces

Figure 3.4.: Example of an elastic scattering process: The Bragg condition 3.7 is
fulfilled for ~Ghk = ~G01. Hence ~Kf = ~Ki + ~G01.

conservation of energy together with equation 2.23 yields:

∆E = Ef − Ei =
~2

2m

(
~k2
f − ~k2

i

)
= 0 ⇒ ~k2

f = ~k2
i (3.8)

where m is the mass of the He atom. For elastic in plane diffraction, the mo-
mentum transfer parallel to the surface ∆K may be expressed using the incoming
wavevector ~ki and the initial and final scattering angle θi and θf (see figure 3.3
and 3.6):9,47

∆K (θi) =
∣∣~ki∣∣ (sin θf − sin θi) = 2

∣∣~ki∣∣ · cos

(
θSD
2

)
· sin

(
θi −

θSD
2

)
(3.9)

with θSD = θi + θf , the fixed source-detector angle. Combining equation 3.9 and
the Bragg condition 3.7 yields:

θi =
θSD
2
− arcsin

[
Ghk

2 · ki · cos
(
θSD

2

)] (3.10)

This equation gives the initial scattering angle θi for a diffraction peak corre-
sponding to the reciprocal lattice vector Ghk. Hence it may be used to calculate
the position of diffraction peaks (h, k) for a given surface structure and incoming
wavevector ki. On the other hand, if the surface structure is unknown one can
determine Ghk from the experimentally measured diffraction peak at θi.

3.2.1. The Ewald Sphere Construction

The well known Ewald construction can be adapted for the two-dimensional ge-
ometry given by the surface. Therefore a 2D lattice can be considered as a 3D
lattice with infinite periodicity in the direction perpendicular to the surface, i.e.
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for the corresponding lattice vector �c holds: |�c | → ∞. In reciprocal space this
yields to |�c∗| → 0. Hence the reciprocal lattice points along the surface normal
are infinitely dense giving rise to the formation of lattice rods. The intersection
points of these rods with the Ewald sphere define the scattered wave vectors for
which diffraction occurs17.
In other words, the restriction of the third Laue condition (along the surface nor-
mal) is relaxed: In the 3D case there are discrete reciprocal lattice points rather
than rods in the 2D case, which is the source of the third Laue condition for
scattering on a 3D solid1.

Figure 3.5.: Example of the Ewald sphere for diffraction from a square lattice. The
intersection points of the lattice rods with the Ewald sphere define the scattered
wave vectors for which diffraction occurs

In figure 3.5 the construction of the Ewald sphere for scattering on a 2D lattice
is shown. Usually, in a typical elastic HAS experiment the angular distribution
of the diffracted beam at different angles θi (see figure 3.3) is determined which
gives rise to a one-dimensional diffraction image. Therefore the Ewald sphere is
often simplified to the construction of a circle corresponding to an angular scan
along a certain crystallographic direction. In figure 3.5 this would correspond to
the red circle for a scan along the 〈10〉 direction.

The left graph in figure 3.6 illustrates an example for the construction of such a
circle. The incoming angle θi according to the scattering geometry is given by the
wavevector �ki and the surface normal whereupon the endpoint of �ki lies at the
intersection of the surface with the 00 lattice rod. According to the conservation

38



3.3. Inelastic Scattering of He on Surfaces

Figure 3.6.: The Ewald construction for diffraction from surfaces. On the left
hand side the conventional Ewald sphere construction is shown for a fixed angle
of incidence θi. On the right hand side the modified Ewald sphere construction
for a fixed source detector angle θSD, which is the case in our apparatus, is shown.

of energy (equation 3.8), |�ki| = |�kf | holds which corresponds to a circle of radius
|�ki| around the origin of �ki. Possible diffraction peaks are given by the Bragg
condition 3.7: At the intersection points of the circle with the reciprocal lattice
rods in the graphical representation.
The scattering geometry in the apparatus used for this work is somewhat different
since the source-detector angle, θSD = θi + θf , is kept constant and the surface
is rotated. The right graph in figure 3.6 shows the graphical representation for
this situation. Again, conservation of energy gives rise to |�ki| = |�kf | but since
θSD = constant, the wavevectors �ki and �kf enclose a fixed angle. Thus, if the
incoming angle θi is changed, the incoming and outgoing angle have to be rotated
simultaneously. This corresponds to a circle of radius |�ki+ �kf | around the endpoint
of �ki. The direction for diffraction peaks is again given by the Bragg condition
which corresponds to intersection points of the circle with the reciprocal lattice
rods. Note that only a part of the circle is drawn in figure 3.6 since θi can only
be varied within 0 < θi < 90◦.

3.3. Inelastic Scattering of He on Surfaces

In the case of inelastic scattering the impinging particle interacts with surface
phonons. As described in section 2.5.4 phonons are quantized modes of crys-
tal lattice vibrations and surface phonons are vibrational modes localized at the
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surface.

3.3.1. Classification of Surface Phonons

Surface phonon modes are usually classified according to their polarization, very
much in the same manner as for bulk modes. The polarization is referred to the
sagittal plane which is defined by the incident wave vector ~ki and the surface
normal4,10,14.

Figure 3.7.: The three types of polarization of surface phonon modes14:
(a) transverse: Polarization parallel to the sagittal plane, mainly perpendicular to
the propagation direction. (b) longitudinal: Polarization parallel to the sagittal
plane, mainly in propagation direction. (c) shear horizontal: Polarization within
the surface plane.

Each surface branch reflects approximately the polarization of its “parent” bulk
band from which it originates, although it may be strongly affected by symmetry
constraints at the surface. Due to these symmetry constraints, surface phonons
propagating in a high-symmetry direction must either be polarized in the sagittal
plane or parallel to the surface plane (in the plane perpendicular to the sagittal
plane)4,10,14. Figure 3.7 shows the classification for these surface modes.
Surface phonon modes that are polarized within the surface plane (case (c) in
figure 3.7) are called shear horizontal (SH) since they are perfectly transverse
and parallel to the surface plane. The modes that are oscillating in the sagittal
plane are called sagittal (case (a) and (b) in figure 3.7). These modes usually
exhibit shear vertical (transverse) and longitudinal components of the displace-
ments giving rise to an elliptical polarization. Their name indicates which is the
dominant component in the sagittal plane4,14. Hence they are either designated
as quasi-transverse (shear vertical, ∼SV) corresponding to case (a) of figure 3.7
or as quasi-longitudinal (∼L) illustrated in case (b) of figure 3.7.
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Only at high symmetry points of the reciprocal space these sagittal modes re-
cover an exactly linear polarization. This is the case either at the origin or the
boundaries of the Brillouin zone, where the group velocity of the sagittal modes
vanishes. The Rayleigh wave which was already described in section 2.5.4 has a
quasi-transverse (∼SV) polarization in the sagittal plane. However, the polariza-
tion of the Rayleigh wave remains elliptical even at the Γ-point which is consistent
with the finite value of the group velocity at this point. Furthermore, there can
be surface phonons with optical or acoustic characteristics for each of the above
mentioned polarizations4,10,14.
The experiments presented in this work have always been performed for in plane
scattering along a high-symmetry direction of the crystal. In this case the sagit-
tal plane coincides with the scattering plane. If the sagittal plane is also a mirror
plane for the crystal, SH modes cannot be excited because they are anti-symmetric
with respect to the sagittal plane. In this scattering geometry the incident He-
atoms can only couple with phonons that exhibit a displacement field which is
symmetric with respect to the sagittal plane4,10.

3.3.2. Measuring Surface Phonons by means of TOF

Since the interaction with surface phonons includes energy transfer to or from
the surface it is important to gain information about the energy of the scattered
helium atoms. Therefor a chopped beam allows to measure differences in the
time-of-flight of scattered helium atoms (see section 2.4). Therewith the energy
exchange between helium atoms and the surface can be determined to identify
surface phonons.
In the event of inelastic scattering the He-atom looses or gains energy via energy
transfer to or from the surface phonons. However, conservation of energy and mo-
mentum still holds if the whole system is considered: The energy and momentum
exchange due to the phonon have to be taken into account. For simplification
only single phonon events (in each inelastic scattering event only one phonon is
created or annihilated) and in plane inelastic scattering will be considered in this
work. Thus conservation of energy becomes:

Ef = Ei + ∆E = Ei ± ~ω (3.11)

where ~ω states the energy of a phonon with the frequency ω. +~ω holds for the
annihilation of a phonon and −~ω for the creation3,11,48,49. The alteration of the
Ewald construction due to the creation or annihilation of phonons is shown in the
right hand graph of figure 3.8. Using equation 2.23 the conservation of energy can
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also be written as:
�2

2m
k2
f =

�2

2m
k2
i ± �ω (3.12)

(a) Schematic illustration of elastic (specular
peak) and inelastic scattering events.

(b) Ewald sphere for inelastic scattering
from a surface with Ghk = 0.

Figure 3.8.: The left hand graph shows a schematic illustration of elastic and
inelastic scattering events. The right hand graph shows the construction of the
Ewald sphere for an inelastic process.

The conservation of parallel momentum is given by

�Kf = �Ki +∆ �K (3.13)

where ∆ �K describes the momentum change of the helium atoms by the scattering
process4,11. For scattering in the plane of the incident beam and the surface
normal it simplifies to:

kf · sin(θf ) = ki · sin(θi) + ∆K (3.14)

Combining both conservation of energy 3.12 and momentum 3.14 gives the energy
∆E of a phonon:

∆E = �ω(∆K) =
�2

2 m · sin2(θf )

[
ki · sin(θi) + ∆K

]2
− Ei

Or in the more neatly arranged form:

∆E

Ei

+ 1 =
sin2 θi
sin2 θf

(
1 +

∆K

Ki

)2

(3.15)

42



3.3. Inelastic Scattering of He on Surfaces

Equation 3.15 is the so-called scancurve for inelastic scattering of atoms by a
surface. It determines the experimentally accessible phonon energy ∆E and mo-
mentum range ∆K for a given angle θi and beam energy Ei (see figure 3.9). To
access different phonon momentum transfers ∆K the incident angle θi has to be
varied. By varying θi it is possible to cover a wide range of ∆K which is shown in
figure 3.10. This in turn allows the determination of the dispersion relation over
the entire Brillouin zone4,11.

Figure 3.9.: Scan curve for scattering of He from LiF(001) along the 〈100〉 direc-
tion. The parabolic scan curve (according to equation 3.15 with a nozzle Temper-
ature of 90 K and θi = 40◦) is superimposed on the phonon dispersion curves. The
dispersion curves are plotted according to Brusdeylins et al.48. Each intersection
of the scan curve with the phonon dispersion curve (highlighted by the orange
circles) may give rise to an inelastic peak in the TOF measurement.

Inelastic peaks can be expected for positive as well as negative ∆K and ∆E: ∆E

designates whether phonons are created or annihilated whereas the momentum
exchange ∆K describes scattering in the forward (parallel to ~Ki) or backward
direction11. The resulting four possible events occur in different quadrants of the
(∆K,∆E)-plane which is shown in figure 3.11.
According to this, phonon events are sometimes abbreviated using the following
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notation: The energy exchange is labeled with A for annihilation and C for creation
and the momentum exchange with F for forward and B for backward scattering.
The phonon event may then be labeled as AF, AB, CF or CB50.

Figure 3.10.: Scan curves for scattering of He from LiF(001) along the 〈100〉
direction. The right branches of the scan curves with a nozzle temperature of 90
K and θi varying from 0◦ to 90◦ are again superimposed on the phonon dispersion
curves determined by Brusdeylins et al.48

The common presentation of phonons is the dispersion curve where the phonon
energy ~ω( ~Q) is plotted over the phonon wave vector ~Q as described in section 2.5.
For this purpose the phonon energy is determined by time of flight measurements
which will be described in the following section 3.3.3. The phonon wave vector ~Q
or parallel momentum transfer (∆ ~K = ~Ghk + ~Q for single phonon events) is then
determined using the scan curve 3.15 rearranged in the following way:7

∆K

Ki

=

√
sin2 θf
sin2 θi

(
∆E

Ei
+ 1

)
− 1 (3.16)

At this point it shall be noted that these inelastic events appear also in elastic HAS
measurements i.e. measurements that are not energy-analyzed. In particular, the
background in the angular distribution which appears between the Bragg peaks
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is caused by inelastically scattered atoms. At each incident angle, all phonons
which are met by the scan curve contribute to the inelastic background in this
direction14.
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Figure 3.11.: Classification of inelastic scattering events according to their energy
exchange ∆E and momentum exchange ∆K with respect to the incident atom
with Ei and Ki. The (∆K,∆E)-plane is divided into four quadrants for phonon
creation and annihilation processes in the forward or backward direction. The scan
curves according to equation 3.15 are crossing through three of the four quadrants
except the scan curve for the specular peak (θi = θSD/2) which passes through
the origin.

3.3.3. From TOF to Phonon Energies

The phonon energies ∆E can be determined from the TOF spectra. The energy
of a particle can easily be calculated for a given length and the corresponding
time-of-flight TOF according to its kinetic energy:

E =
m

2

(
length

TOF

)2

(3.17)

The energy of a phonon is given via equation 3.11: ∆E = Ef − Ei where Ei
is the energy of the incident beam and equals the energy of elastically scattered
helium atoms. Hence one can use the elastic time of flight te (from chopper to
detector) to calculate Ei. For inelastically scattered atoms the important distance
is the target detector distance LTD since the particles gain or loose energy after
interaction with the surface (target):

Ef =
m

2

(
LTD
tTD

)2

(3.18)
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where tTD is the flight time of the inelastically scattered particles from the target
to detector. tTD can be readily obtained considering the fact the velocity of the
He atoms traveling along the the chopper to detector distance LCT is given by the
elastic TOF te via:11

tTD = tCD −
LCT
LCD

te (3.19)

Thus, if the HAS apparatus lengths LCD (chopper to detector) and LTD (target
to detector) are known, the TOF spectra can be transformed into energy spectra
by:11

∆E = Ef − Ei = Ei

( LTD
LCD

te

tCD − LCT
LCD

te

)2

− 1

 . (3.20)

The relation between ∆E and the TOF according to 3.20 is non-linear and hence
introduces a distortion to the peak heights11,50. This non-linearity is clearly seen
from figure 3.12 which shows a TOF spectrum and its transformation to the en-
ergy scale. The x-axis of the energy spectrum is plotted in reverse direction to
maintain the same left-to-right ordering of the peaks with respect to the TOF
spectrum.
In order to compensate for the non-linearity of the energy scale the intensity of
the measured spectrum must be multiplied by the corresponding Jacobian deter-
minant:11,50 ∣∣∣∣d tTDd ∆E

∣∣∣∣ =
t3TD

m · L2
TD

(3.21)

The Jacobian scaling changes the height as well as the width of the peaks. How-
ever, it is necessary to maintain the overall intensity of the spectrum. The Ja-
cobian scaling has been included in figure 3.12. On the annihilation side, peaks
become wider and lower, whereas on the creation side the peaks are smaller and
higher. Therefore the scaling also increases the height of experimental noise on
the creation side, making it difficult to distinguish peaks from noise in the creation
region with large energy loss11,14,50.
This effect can be partly overcome by a simple approach first suggested by Bracco51.
Usually noise in the TOF spectra is suppressed using the moving average method
whereupon the sample width equals a quarter of the FWHM of the incident He-
beam. However, on the energy scale the distance between two data points de-
creases with decreasing ∆E (the further going to the region of extreme creation
energy loss in figure 3.12). Hence Bracco suggested to increase the sample width
for the averaging as the creation side is approached.
Furthermore, the described non-linearity gives rise to another effect: Annihilation
events are more likely observed than creation events since proportionally more
intensity is compressed into a given TOF channel on the annihilation side50.
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Figure 3.12.: Transformation of a TOF spectrum (upper graph) to the energy
scale (lower graph) according to equation 3.20 and 3.21. The non-linearity of the
energy transformation (illustrated in the middle graph) is compensated using the
corresponding Jacobian. The Jacobian scaling increases the height of experimental
noise on the creation side. The spectra show an inelastic measurement for LiF(001)
along the 〈11〉 azimuth with Ei = 20.4 meV and θi = 27.5◦.

Finally, the width of the TOF peaks is governed by another effect: Strictly speak-
ing, the scan curve is not a true line curve but has a finite width given by the
velocity and angular spread of the He beam. Therefore the width of the TOF
peaks should increase with increasing angle between the scan curve and the dis-
persion curve11,50.
The extreme case is a tangency of the scan curve and the dispersion curve known
as the kinematical focusing effect. This kinematical focusing effect can cause an
intensity enhancement in the TOF spectrum at the kinematic focusing angle. At
such a tangency point an extended section of the dispersion curve is sampled by
the inelastic scattering and a broad but intense peak appears in the TOF spec-
trum11,52,53.
Furthermore, it may even cause maxima in the angular distribution: The uniform
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inelastic background is enhanced at the kinematic focusing angle since a larger
fraction of He atoms is scattered inelastically at this position. These maxima ex-
hibit typically an asymmetric wedge-like shape in the angular distribution. When
the intersection between the scan curve and the dispersion curve approaches the
tangency condition a smooth rise is visible in the angular distribution followed by
an abrupt decrease in intensity at an angle where the scan curve does not intersect
the dispersion curve any more52,53.
In the angular distribution the features caused by kinematical focusing are often
obscured by the tails of intense diffraction peaks and bound state resonance fea-
tures (section 3.6). However, these disturbances can be reduced if the crystal is
rotated to azimuthal angles a few degrees away from the high symmetry direction.
This reduces the diffraction peak intensity but hardly affects the phonon disper-
sion and the kinematical focusing features14,52,53.

3.3.4. The Weare Criterion and Thermal Population of
Phonons

The analysis of TOF spectra, as it has been described so far, is based on the
predominance of single phonon with respect to multi phonon processes. Descrip-
tions on the analysis of multiple phonon inelastic scattering can be found in the
literature54. In general, single phonon processes give rise to sharp peaks in the
TOF-spectra while multi phonon processes produce broad structures. A criterion
for the predominance of one phonon processes according to Weare is:11,55

m

M

Eiz
kBθD

TS
θD

. 0.01 (3.22)

where M is the mass of the surface atom, TS the surface temperature, θD the
surface Debye temperature and Eiz the energy perpendicular to the surface. The
fulfillment of this criterion mainly depends on the thermal population of the sur-
face phonons and the kinetic energy of the incident beam11.
The occupation number for a given phonon energy is determined by the Bose-
statistics:19,56

n (~ω) =
1

e~ω/kBT − 1
(3.23)

The probability that either a phonon annihilation or creation occurs is then given
by the Bose-factors n(~ω) and n(~ω) + 1 respectively11,14. In figure 3.13 these
Bose-factors are plotted versus the surface temperature.
According to this, there exists an ideal surface temperature TS to observe phonon
annihilation processes. At very low temperatures the thermal population of phonon
states decreases giving rise to a declining amplitude of the annihilation peak.
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However, if the surface temperature is too high (according to 3.22), multi phonon
processes are beginning to deteriorate the sharp single-phonon peaks in the TOF
signal.
On the other hand, the “freezing” of high frequency phonon modes at low tem-
peratures does not affect the creation events. Hence their peak height is mainly
determined by the deterioration due to multi-phonon events that increases steadily
with increasing temperature. Therefore creation peaks are found to be sharp at
low temperatures11,50.

Figure 3.13.: Bose factors plotted versus the reduced inverse temperature ~ω/kBT .
The Bose factors provide the probability for phonon creation and annihilation as
a function of the surface temperature. For T � ~ω/kB hardly any annihilation
events are expected.
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3.4. Calculation of Elastic Scattering Intensities

The interaction of a He atom with the surface can be described by means of an
atom-surface interaction potential which has already been addressed in section
3.1. Since the He atoms are scattered by the electron distribution at the surface,
a comparison of the measured diffraction peak intensities with calculations allows
the determination of the surface charge distribution. However, due to the strong
interaction of the He atoms with the surface electron distribution, HAS data is
rather difficult to interpret57.
Especially at low beam energies the scattering process can be described by quan-
tum theory. According to this the diffraction of atoms from a surface can be
treated by solving the Schrödinger equation8,9,57:[

~
2m
∇2 + V (~r)

]
Ψ(~r) = EΨ(~r) (3.24)

Due to the two-dimensional periodicity of the surface, the wavefunction Ψ(~r) will
be of the form of Bloch waves parallel to the surface3:

Ψ(~r) = Ψ(z, ~R) = ei
~Ki·~R +

∑
~G

ei
~G·~RΨG(z) (3.25)

In order to solve the Schrödinger equation 3.24 a model of the atom-surface poten-
tial V (~r) is necessary. Thereby the turning point of a He atom scattered off the sur-
face is determined by the locus where the atom surface potential V (~r) = V (~R, z)

equals the z-component of the incident energy:

V (~R, z) = Eiz (3.26)

The solution of equation 3.26 is an equipotential surface which describes the clos-
est approach of the He atom depending on the lateral position ~R (see also figure
3.2). Therefore, the position of the classical turning points follows a periodically
modulated surface with constant total electron density8.
To obtain now a complete description of the scattering process an exact solution
of equation 3.24 is required. In the most general case this can be done using
the close coupling method. However, under certain conditions the problem can
be solved using approximate methods with a sufficient accuracy. Those methods
have the advantage of less computational effort with respect to the close-coupling
formalism3,8.

3.4.1. The Hard Corrugated Wall Model

A simple approximate model of the atom-surface potential V (~r) is given by the
hard corrugated wall (HCW)8,9. It describes the surface by an infinitely repulsive
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barrier with a periodic corrugation according to the crystalline symmetry. Thereby
the potential V (~R, z) is represented as:

V (~R, z) =

{
0 for z > ξ(~R)

∞ for z ≤ ξ(~R)
(3.27)

with z representing the direction of the surface normal and ~R the lateral position
parallel to the surface. ξ(~R) describes the spatial modulation of the surface that
represents the surface structure and hence the periodicity given by ~a and ~b (see
section 2.1). The HCW potential of a simple one-dimensional corrugation ξ(x)

with height h and periodicity a represented by a cosine is illustrated in figure 3.14.

Figure 3.14.: Schematic image of the hard wall potential in one dimension: The
potential represents a stationary periodic hard corrugated surface with the lattice
parameter a and z being the direction perpendicular to the surface.

The function ξ(~R) holds the complete information that is obtainable from the
surface in elastic scattering measurements. Strictly speaking ξ(~R) describes the
spatial modulation of the surface electron density since the incoming He atoms are
scattered due to the Pauli repulsion between the closed He shell and the electrons
of the surface.
As a general trend, a strong modulation is expected for solids with a closed shell
character (e.g. ionic crystals) whereas metallic surfaces should give rise to a rather
smooth corrugation ξ(~R). This effect, known as the Smoluchowski effect58, is
attributed to the quasi-free valence electrons on metal surfaces which tend to smear
out the electron distribution with respect to the position of the ion cores32(see
figure 3.15). To return to the problem of solving the Schrödinger equation 3.24, the
atom-surface potential is approximated using the HCW-potential. Consequently,
the Schrödinger equation has to fulfill the boundary condition given by 3.27: The
wavefunction Ψ has to vanish as z approaches the hard corrugated wall:

Ψ
[
z = ξ(~R), ~R

]
= 0 (3.28)
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Figure 3.15.: Illustration of the Smoluchowski effect on metal surfaces: Redistri-
bution of the quasi-free electrons gives rise to a smoothing of the electron density
with respect to the sharp contour of the potential. This smoothing can be at-
tributed to the attempt of the electrons to lower their kinetic energy19,32.

3.4.2. The Rayleigh Ansatz

A simple procedure to calculate the diffraction peak intensities using the HCW
starts with the so-called Rayleigh assumption8. In doing so the incoming and
outgoing beams are treated as plane waves up to the surface, which is in principle
only true far away from the surface. Hence the wavefunction Ψ(z, ~R) becomes:

Ψ(z, ~R) = ei(
~Ki ~R+kiz ·z) +

∑
~G

A ~G · e
i[( ~Ki+ ~G)~R+kGz ·z] (3.29)

Thereby the first term describes the incident beam and the second term describes
the sum over all scattered beams corresponding to a reciprocal lattice vector ~G.
A ~G are the scattering amplitudes for each reciprocal lattice vector ~G. kGz is the
z-component of the scattered/final wavevector.
By applying the boundary condition Ψ[z = ξ(~R), ~R] ≡ 0 according to 3.27 we
obtain for equation 3.29:

∑
~G

A ~G · e
i[ ~G·~R+kGz ·ξ(~R)] = −ei[kiz ·ξ(~R)] (3.30)

Hence if the periodic surface corrugation ξ(~R) is known, the scattering amplitudes
A ~G can be directly obtained from these equation. Therefore equation 3.30 must
be fulfilled for every point ~R in the unit cell which can be solved using different
approaches that will be described in the following.
However, it should be noted that the convergence of the Rayleigh assumption is
limited to a corrugation amplitude of 0.188a in the two-dimensional case with a
being the lattice constant9. Though it has been shown that alternative methods
give rise to a validity of the Rayleigh assumption much beyond this limit59.
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3.4.3. The Eikonal Approximation

By multiplying both sides of equation 3.30 by exp{−i[~G′ · ~R + kG′z · ξ(~R)]} and
integration over the unit cell we obtain a matrix equation:∑

~G

M ~G~G′ = A0
~G′

M ~G~G′ =
1

S

∫
u.c.

ei[(
~G− ~G′)~R+(kGz−kG′z)ξ(~R)]d~R (3.31)

A0
~G′

= − 1

S

∫
u.c.

e−i[
~G′ ~R+(kG′z−kiz)ξ(~R)]d~R

where the integral is carried out over the unit cell (u.c.) and S denotes the area of
the unit cell. In the case of the so-called eikonal approximation, the off-diagonal
elements of M ~G~G′ are neglected and since the diagonal elements are unity, A ~G =

A0
~G′

8,60. Hence the scattering amplitudes can easily be calculated by evaluating
the integral:

A ~G = − 1

S

∫
u.c.

e−i[
~G~R+(kGz−kiz)ξ(~R)]d~R (3.32)

The eikonal approximation holds under the condition that the corrugation func-
tion ξ(~R) is smooth i.e. the corrugation height has to be smaller than 0.1a.
Furthermore, the angle of incidence must be small, so that all mainly contributing
diffraction beams are far away from grazing incidence8,9.
For some simple functions ξ(~R) the integration of equation 3.32 can be carried
out analytically, whereas in the case of more complicated functions this has to be
done numerically. However, the integration can also be replaced by a summation
where ξ(~R) is evaluated at a set of special points ~Ri within the unit cell.61. For
a periodic function F (~R) over the unit cell the integration can be replaced by a
summation for these special points:∫

F (~R)d~R =
1

N

∑
i

F (~Ri) (3.33)

Methods for the choice of these points can be found in the literature61–63.
A drawback of the eikonal approximation is that it does not include multiple scat-
tering events8. Hence the introduced approximation corresponds to a neglect of
the contribution of evanescent waves (k2

Gz < 0).
However, especially for large corrugation amplitudes and at grazing incidence an-
gles (large θi) multiple scattering becomes important: A part of the incoming or
outgoing beams is shadowed by the hard wall potential57. An example of such
a multiple scattering event is illustrated in figure 3.16. Yet another approxima-
tive method which includes the contribution of these evanescent waves is the GR
method.
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3.4. Calculation of Elastic Scattering Intensities

Figure 3.16.: Illustration of a multiple scattering event within the hard corrugated
wall model.

3.4.4. The GR Method

The GR method is also based on the Rayleigh assumption. Starting again with
equation 3.30, both sides are multiplied with exp[ikiz · ξ(�R)] which gives rise to a
matrix equation:

∑
�G

A �GM �G�R = −1

M�G�R = ei[(kGz−kiz)ξ(�R)+ �G·�R] (3.34)

which must be satisfied for every point �R within the unit cell8,9. The principle of
the GR method is to solve equation 3.34 for a set of n linear equations by matrix
inversion for the A �G’s.
Therefor a finite set of n vectors �Rn which are uniformly distributed over the
surface unit cell is chosen. Those are related to the same number of uniformly
distributed reciprocal lattice vectors �G. This method which was developed by
Garcia64,65 has been implemented by Mayrhofer-Reinhartshuber24,66 in a compu-
tational code.

3.4.5. The Close Coupling Approach

In the case of large corrugations or for scattering with low perpendicular momen-
tum transfer a full quantum mechanical treatment must be used instead of the
hard wall approximation. In contrast to the hard wall potential which is infinite,
the real atom-surface potential is “soft”. Hence the HCW model tends to limit the
number of available multiple scattering channels. Under certain conditions these
additional channels contribute significantly to the overall scattered intensity57.
The close coupling approach accounts also for another effect which is neglected
by the HCW model: The occurrence of resonance effects (see section 3.6). Due
to the attractive part of the potential the incoming He atom can be temporarily
trapped in a bound state under certain kinematical conditions which in turn can
give rise to peaks and dips in the scattered intensity57.
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The principle of the close coupling approach is as follows: The two-dimensional
potential 3.3 and the wavefunction 3.25 are inserted in the Schrödinger equation
which results in a set of coupled second order differential equations. In contrast to
the hard wall potential the boundary conditions are now that ΨG(z) is an outgo-
ing scattered wave far away from the crystal (z → +∞) and that ΨG(z) becomes
vanishingly small deep inside the crystal (z → −∞).
To solve the set of coupled equations, the infinite number of ~G-vectors is truncated
to a finite size N that is large enough to achieve the desired numerical accuracy3.
Hence the coupled equations are solved for a set of N functions ΨG(z).
It should be noted that there exists no general criterion for conditions under which
the HCW model is accurate or whether the close coupling approach should be used
instead. Certainly, if the well depth D of the attractive atom-surface potential
is comparable to the energy of the incident beam, resonance effects will become
more important requiring the application of the close coupling approach57. Fur-
thermore, in the case of very large corrugations and grazing incidence angles HCW
intensities should also be treated with care.

3.4.6. Determination of the Surface Corrugation from HAS
Measurements

Since the scattered intensity maps the surface corrugation, measured HAS in-
tensities can be used to determine the corrugation. So far only the scattering
amplitudes A ~G have been treated. The related scattered intensities P ~G which are
usually obtained in scattering experiments are8:

P ~G =
kGz
kiz
|A ~G|

2 (3.35)

where the ratio for the normal component of the incoming and outgoing momen-
tum accounts for the cross section ratio of the incoming and outgoing beam. For
elastic scattering the diffracted intensities have to satisfy the unitarity condition∑

~G P ~G = 1 i.e., the incoming flux equals the outgoing flux9.
The kinematical factor of equation 3.35 is valid for a scattering geometry accord-
ing to the “classical Rutherford configuration”. The definition of this configuration
is that the incident beam illuminates a well-defined spot on the surface and that
the detector acceptance angle is large enough that it “views” the entire illuminated
spot67.
The eikonal and GR method, discussed in the previous section dealt with the
problem of calculating diffraction peak intensities for a given corrugation function
ξ(~R). However, the experimentalist usually faces the problem of determining ξ(~R)

from a set of measured diffraction intensities. Hence in order to relate the mea-
sured intensity to the surface corrugation a structural model must be proposed.
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3.4. Calculation of Elastic Scattering Intensities

A possible approach is to assume ξ(~R) as a Fourier series expansion, i.e. a series
of cosines and sines according to the geometry of the surface unit cell8,57. The
coefficients and hence the amplitudes of the trigonometric functions are then var-
ied until optimum agreement between the measured and the calculated intensities
is obtained. The accuracy of the agreement is usually judged by evaluating a
reliability factor8:

R =
1

N

√∑
G

(
P exp
G − P calc

G

)2 (3.36)

where N denotes the number of experimentally observed diffraction peaks, and
P exp
G and P calc

G are the experimental and calculated diffraction intensities for each
G. Note that in the current form of the reliability factor all diffraction peaks are
weighted equally, without considering their intensities. Therefore the reliability
factor can be modified in a way that different peaks are weighted according to
their intensities9.
In principle, an exact determination of the surface corrugation requires measure-
ments at different incident energies and at different surface temperatures. Firstly,
realistic atom-surface potentials are not infinite. Hence the classical turning point
depends on the energy of the incident He beam (equation 3.26). A He beam with
a higher incident energy Ei will sample the charge distribution ξ(~R) slightly closer
to the ion core than for lower Ei. Therefore, each set of measured intensities at a
given incident energy yields a different corrugation ξ(~R)57.
Secondly, to exclude temperature effects, the corrugation ξ(~R) should be deter-
mined for TS = 0 K. Consequently, the measured intensities must be linearly
extrapolated to TS = 0 K. This can be done by measuring the intensity of the
specular peak as a function of the surface temperature (see section 3.4.7) and ap-
plying this correction to all diffraction peaks. However, for surface temperatures
up to 300 K the corrugation function can be accurately determined without the
application of temperature corrections implying an error of ±10% in the peak
intensities8,68.

3.4.6.1. The Beeby Correction

Although only the close coupling approach accounts for a realistic potential, a
slightly better approximation of the HCW model can be achieved by inclusion
of the attractive part of the atom-surface potential. The attractive part of the
potential has the simple effect of first accelerating the incoming He atoms towards
the HCW barrier and then decelerating the scattered atoms as they leave the sur-
face57

This effect can be introduced in the previous treatment of the HCWmodel through
a correction know as the Beeby correction. The attraction can be approximately
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accounted for by adding the energy of the well depth D to the incident energy.
Hence, the influence of the attractive well is considered by replacing the perpen-
dicular momentum transfer ∆kz by8,69:

∆k
′

z = ki

[√
cos2(θf ) +

D

Ei
+

√
cos2(θi) +

D

Ei

]
(3.37)

In doing so the attractive part of the potential is included by assuming a spatially
uniform well of depth D which is usually in the range of 4-10 meV for HAS57.
The well depth can be accurately determined using resonant scattering phenomena
which are described in section 3.6. However, the Beeby correction neglects the
contribution of these bound state resonances to the scattered intensity.

3.4.7. The Debye-Waller factor

The theoretical models presented for the calculation of diffraction intensities as-
sume that the atoms of the sample are at rest. This is not the case for real systems
where zero-point motion and thermal vibrations of the surface atoms cause addi-
tional inelastic scattering of the incoming particles. This can be observed in the
thermal attenuation of the coherent diffraction intensities without a change in the
peak shapes.
The attenuation is described by the Debye-Waller factor which relates the diffrac-
tion intensity I(TS) of a sample at temperature TS to the intensity I0 of a sample
at rest by8:

I(TS) = I0 · e−2W (TS) (3.38)

where exp[−2W (TS)] is the Debye-Waller factor. The Debye-Waller factor is de-
scribed using

2W (TS) =
〈

(~u ·∆~k)2
〉
TS
. (3.39)

with ~u, the displacement of a lattice atom out of its equilibrium position and ∆~k

the momentum transfer during the scattering process. The outer brackets indicate
that the thermal average has to be taken8. Assuming that the momentum transfer
parallel to the surface equals zero, equation 3.39 reduces to:

2W (TS) =
〈
u2
z

〉
· (∆kz)2 (3.40)

where 〈u2
z〉 describes the average displacement of a crystal atom perpendicular to

the surface. For a classical harmonic oscillator 1/2 Mω2〈u2〉 = 3/2 kBT holds.
Using the Debye model and the definition of the Debye temperature15 in terms of
ωD: ~ωD/kBT = θD/T , equation 3.40 becomes:

W (TS) =
3(~2∆k2

z)TS
2MkBθ2

D

(3.41)
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where M is the mass of the surface atom and θD the surface Debye-temperature.
The effect of the attractive well near the surface can be taken into account using
the Beeby correction. Consequently, the momentum transfer ∆kz is replaced by
equation 3.37. In the case of the specular beam, θi = θf holds and the Debye
Waller factor (equation 3.41) together with the Beeby correction can be expressed
as:

W (TS) =
12m [Ei cos2(θi) +D]TS

2MkBθ2
D

(3.42)

where m is the impinging particle mass. Although equation 3.42 is strictly valid
only for the specular beam, it is also a reasonable approximation for final angles
θf that are not too different from the incident angle θi.
In general the thermal attenuation of the diffraction intensities due to the vibration
of the surface atoms can be described in a good approximation using the Debye
Waller factor from equation 3.41 together with the Beeby correction (equation
3.37). However, for an exact description of the thermal attenuation multi-phonon
processes have to be considered8.

3.5. Inelastic Scattering Intensities

In order to describe inelastic scattering the full dynamical Hamiltonian has to be
considered. The system can be described by

H = H0 +Hc + V (~r, t)

V (~r, t) = V (~r) + δV (~r, t) (3.43)

where H0 and Hc are the unperturbed operators of the incident free particle
and the vibrating semi-infinite lattice respectively. V (~r, t) describes the time-
dependent atom-surface coupling potential and can be decomposed in the static
atom-surface potential V (~r) (see section 3.1) and the time-dependent perturba-
tion δV (~r, t) due to the vibration of the lattice atoms. It is the static part which
describes the elastic diffraction from the surface whereas the dynamic part δV (~r, t)

accounts for inelastic scattering3,14,49.
Typically one starts with the transition rate wfi from an initial to a final state of
total energies Etot

i and Etot
f :

wfi =
2π

~
|Tfi|2 δ

(
Etot
f − Etot

i

)
(3.44)

which is the generalized from of Fermi’s golden rule. The subscripts f and i refer
to the collective set of both the wavevector of the particle and the occupation
number of phonons in each vibrational mode of the crystal. |Tfi|2 are the matrix
elements of the transition operator3,49,56.
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Figure 3.17.: Schematic illustration with the important parameters used in the
definition of the reflection coefficient. The surface area A is illuminated by the
incident beam with the density of particles ρ.

The experimentally relevant parameter is the transition rate of the particle with
initial state �ki to the final state �kf in terms of the reflection coefficient R(�kf , �ki)

divided by the incident particle flux3,49:

Ji =
�kiz
m

ρ · A (3.45)

with the surface area A, illuminated by the incident beam and the density ρ of
particles above this area (see figure 3.17). The experimentally measured quantity
is then obtained by multiplying the reflection coefficient with the available volume
in phase space, i.e. the fraction of incident particles which are scattered into
the solid angle dΩf and the energy interval dEf (momentum between �kf and
�kf + d�kf ):

d2 R

dEf dΩf

=
m2

8π3�2ρ
|�kf |
Ji

wfi =
m2

8π3�3ρ2A
|�kf |
kiz

wfi (3.46)

In the experiment only differences in the phonon states are observed. Therefore,
the transition rate (equation 3.44) summed over all final phonon states and aver-
aged over all initial phonon states inserted in equation 3.46 yields:

d2 R

dEf dΩf

=
m2

4π2�4ρ2A
|�kf |
kiz

∑
{ni}{nf}

p ({ni}) |Tfi|2 δ
(
Etot

f − Etot
i

)
(3.47)

where the averaging over all initial phonon states is simply the sum over the ini-
tial states weighted by the temperature dependent distribution p({ni}) of initial
phonons14,49,56. Consequently, all information on the scattered intensity depends
upon the knowledge of the matrix elements Tfi of the transition operator. In
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3.5. Inelastic Scattering Intensities

order to obtain these matrix elements the dynamical problem, expressed by the
Hamiltonian (equation 3.43) that describes the interaction of the He atom with
the vibrating surface, has to be solved.
Since in HAS the inelastic processes are usually small compared to the elastic
processes the same holds for the dynamic and static components of the potential
in equation 3.43. Hence it is usually sufficient to treat the static part V (~r) ex-
actly and the dynamical part δV (~r, t) using first order perturbation theory. This
approach is known as the distorted-wave Born approximation (DWBA)14,49,70.
δV (~r, t) can be expanded in a Taylor series with respect to the time-dependent
displacement of the atoms around their equilibrium position considering that the
vibrational amplitudes are small with respect to the interatomic distances14. If
merely one-phonon processes are considered, only the linear term to the first order
will be involved and the occupation number changes by ±1.

3.5.1. The Born Approximation

In the first-order Born approximation, which is even cruder than the DWBA,
Tfi is replaced by Vfi, which means that multiple scattering and resonances with
bound states, are neglected. In doing so, V (r, t) is described as a sum of pair-
wise interactions. The differential reflection coefficient for one-phonon processes
(corresponding to energies that differ by the phonon energy ~ω) in the Born ap-
proximation is then:3,56,71–73

d2R

dEf d Ωf

=
m2

4π2~4ρ2A

|~kf |
kiz

∑
~Qν

∣∣∣~Ffi · ~u ~Qν ∣∣∣2
×

{
n[~ω( ~Qν)]

n[~ω( ~Qν)] + 1

}
δ
(
Ef − Ei ∓ ~ω( ~Qν)

) (3.48)

where n(~ω) is the occupation number (according to equation 3.23) for annihila-
tion and n(~ω) + 1 for creation of a phonon. The conservation of energy is given
by the δ-function. ~Ffi is the atom-phonon coupling force and ~u ~Qν the planar
displacement of the surface layer.3,19,71,72 According to equation 3.48 the differen-
tial reflection coefficient is proportional to the surface-phonon spectrum which is
weighted by |~Ffi · ~u ~Qν |

2, the square of the coupling potential energy72.
Although the Born-approximation is not a particularly good description for HAS,
the structure of the differential reflection coefficient in equation 3.48 remains valid
in further developments, as long as the linear atom-phonon coupling force ~F is
given the appropriate form19,72.
Since the occupation number n(~ω) according to equation 3.23 enters the differ-
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ential reflection coefficient 3.48 the intensities of phonon annihilation and creation
events are related by:19

Ian
Icr

=
n(~ω)

n(~ω) + 1
= e−~ω/kBT (3.49)

Therefore, if the experimentally determined intensities of annihilation and creation
events are compared, they have to be corrected for the Bose factor14,32,70.

3.5.2. The Distorted-Wave Born Approximation

In both the distorted-wave Born approximation (DWBA) and the Born approxi-
mation the contribution of inelastic scattering is obtained by the matrix element
of the time-dependent perturbing potential. For the “pure” Born approximation
this matrix element is taken with respect to plane waves. However, in the DWBA
the matrix element is now taken with respect to initial and final wavefunctions
which are distorted by the reflection from the static surface potential3,56,72,73.

3.5.3. The Cut-Off Factor

Due to the fact that the He atoms are scattered by the surface electron distribution
several angstroms from the surface away, they tend to interact with more than
one surface atom simultaneously. This gives rise to a strong damping in the
intensity of surface phonons with large wavevectors ~Q, described by the “cut-off”
factor4,14,74–76.
Thereby the He atom interacts with only one surface atom if the atom-surface
interaction potential is short ranged. But with increasing interaction range the
He atom will interact with several surface atoms simultaneously and the excitation
of phonons with short wavelengths will be suppressed. Therefore the dependence
of the intensity of single phonons with respect to the phonon wavevector ~Q can
be described by3,14:

I (Q) = I0 · e−Q
2/Q2

c (3.50)

with Qc the cut-off value. The cut-off at Q > Qc is not absolute but exhibits a
rapid decay of the phonon intensity with vectors Q beyond the cut-off Qc.
Consequently, since the He atom can interact with several surface atoms at once
according to the range of the atom-surface interaction, the inverse of Qc describes
the range of the lateral atom-surface interaction76. In general Qc is found to be
small on metallic surfaces (e.g.: Qc = 0.74 Å−1 for Ag(111) ) making it difficult
to detected phonons beyond the first Brillouin zone. For closed-shell solids (e.g.:
LiF) Qc is typically much larger and phonon events are usually detected over
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several Brillouin zones32,74. A comparison of the cut-off factor for Ag(111) and
LiF(001) is shown in figure 3.18.
Within the classical picture of the He atom being a sphere scattered from an
isotropic elastic continuum this effect can be understood as follows: The imping-
ing atom produces a deformation of the surface with approximately the size of
the atom. This deformation can be expanded in terms of a Fourier series of the
normal vibration modes. The “large” and “slow” He atom will be unable to excite
modes with high frequencies or short wavelengths, giving rise to a cut-off in the
inelastic scattering beyond a certain phonon energy and wavevector3.

Figure 3.18.: Cut-off factor (equation 3.50) versus phonon wavevector for Ag(111)
and LiF(001). The values of Qc are according to Bortolani et al.74.

Since the turning point depends on the energy of the incident He beam (equation
3.26), the cut-off effect can be partially counterbalanced by using higher beam
energies. This is however limited by the onset of multi-phonon scattering processes
(equation 3.22)3,32.
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3.6. Resonance Effects in HAS

In section 3.4 the intensities of diffraction peaks have been discussed for a given
corrugation and scattering geometry. However, the influence of the surface poten-
tial has been neglected in this considerations so far. In cases where the incident
beam energy Ei is comparable to the well depth D, the attractive well of the
potential can give rise to selective adsorption resonances. These resonances can
cause a disturbance in the intensities of the diffracted beams characterized by the
sudden appearance of maxima (or minima)8.
The appearance of a resonance can be explained in the following way: An incoming
He-atom can be temporarily trapped in a bound state of the atom-surface poten-
tial. After some time the He-atom then leaves the bound state by interaction with
a �G-vector and / or a phonon. Due to the interaction with the surface phonon
the quantum-mechanical phase of the He atom is changed. Therefore, interfer-
ence between a directly reflected He-atom and the He-atom that has been going
through the bound state gives rise to an alteration of the scattered intensity8,42.
The process is illustrated in figure 3.19.

Figure 3.19.: Schematic illustration of the selective adsorption resonance process
(according to77): The incoming He-atom (A) can either be scattered directly from
the surface (B) or enter selective adsorption where it is temporarily trapped in one
of the energy levels of the atom-surface interaction potential. The He-atom leaves
the bound state by interaction with a G-vector and / or a phonon (C). Interaction
with the surface phonon changes the quantum-mechanical phase of the He atom
(C) with respect to the directly scattered atom (B) and interference occurs.

In general there exist various processes for the He atom to transit into a bound
state or to leave the bound state which are summarized in figure 3.22. However, a
modulation in the final beam intensity is always produced by the interference of a
bound-state scattering channel with the respective direct scattering channel50,78.
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The involved temporary bound state can act as intermediate state causing a res-
onance behavior in the diffraction process which appears in the form of dips or
peaks in the scattered intensity at specific, characteristic energies. Therefore the
phenomenon is termed a selective adsorption resonance or a bound state reso-
nance3,8,79.
The transition of the incoming He-atom into a bound state is as follows: An in-
cident He atom can be transferred to a bound state by diffraction. In this bound
state the atom is bound normal to the surface in the gas-surface potential with a
discrete binding energy En < 0. The process requires that the initial energy and
angle are such that the total incident energy can be split into a negative bound
state energy in the direction normal to the surface and a parallel kinetic energy.
Therefore the energy Ei of the incident atom has to equal the kinetic energy of the
atom moving on the surface plus the binding energy En of the adsorbed atom8,42.

Figure 3.20.: Illustration of the resonance condition: The parallel kinetic energy
of the He atom is increased from �2

2m
�K2
i to �2

2m
( �Ki + �G)2 by taking up a �G-vector.

The normal energy (motion along z) is decreased by the same amount from �2
2m

k2
iz

to the bound state energy −|En|. This process is only possible if the final state
after this transition matches a bound state En; hence it appears only at selected
incident angles.

In other words: The initial kinetic energy is transferred into a bound state with
negative energy and extra translational energy of the helium atom parallel to the
surface by taking up a G-vector. Hence the energy of an atom moving parallel
to the surface in the periodic gas-surface potential with the wave vector �K + �Ghk

surmounts the incident energy just by the binding energy3,42.
The condition for this resonance into a bound state can be derived from the
conservation of energy and parallel momentum8,42,79:

Ei =
�2

2m
k2
i =

�2

2m

(
�Ki + �Ghk

)2

+ En( �Ki, �Ghk) (3.51)

which is illustrated in figure 3.20. Note that the kinematical condition known from
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elastic scattering is “altered” due to the transition into the bound state. The Bragg
condition states that ∆ ~K = ~Ghk and the kinematically allowed reciprocal lattice
vectors ~Ghk for scattering are found through conservation of energy. However, it
is also possible for a particle to be diffracted temporarily into a channel which is
kinematically forbidden via transition into a bound state: For certain diffraction
angles the energy of the particle perpendicular to the surface becomes equal to
the binding energy En of one of the bound states and resonant transitions into
this state can occur without violating energy conservation3.
Such selective adsorption processes give rise to sharp changes in the reflectivity as
the resonance condition is passed, either as the scattering geometry is changed or
as the incident helium energy changes. Thereby the resonance may cause either
a maximum or a minimum depending on whether the interference is constructive
or destructive, respectively. The sharp modulation of the peak intensity is due
to the fact that the channel going through the bound state is only allowed at
special angles, whereas the directly reflected part is continuously allowed at all
angles42,79,80.
The kinematical condition for the selective adsorption process 3.51 involves ~Ki

and Ei of the incoming He atom; hence it affects the incident state. The reverse
process, affecting the final state, is also possible in HAS and referred to as selective
desorption. Consequently the corresponding kinematical condition involves ~Kf

and Ef in the latter process52. To sum up, the inclusion of a bound state in a
scattering process requires that two conditions are fulfilled simultaneously:

• The Bragg condition: The parallel component of the incident wavevector
~Ki or of the final wavevector ~Kf must be equal to ~K + ~Ghk for a reciprocal
lattice vector ~Ghk 6= 0.

• For this value of ~K the total energy has to satisfy E( ~K) = ~2
2m
~K2 − |En|

where E( ~K) is equal to either Ei or Ef .

These kinematic conditions can be satisfied in both elastic and inelastic surface
scattering52,81,82. The different processes are illustrated in figure 3.22 and de-
scribed below.

3.6.1. Elastic Resonant Scattering

For elastic resonant scattering (figure 3.22(c)) the incident He atom enters elasti-
cally into a bound state of energy En and exits elastically into a final state3,8,52.
The interference is then caused between the directly scattered channel (figure
3.22(a)) and the part of the wave which passed through the bound state (figure
3.22(c)) and the intensity of either the specular or of Bragg peaks is modulated
due to the resonant coupling to the bound state n.
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Figure 3.21.: Illustration of a selective adsorption process: The interference be-
tween the direct reflection and the reflection through bound states gives rise to a
modulation in the intensity I00 of the specular beam.

Besides this effect, peaks or dips in the angular distribution may also occur due to
interference between the direct inelastic channel (figure 3.22(b)) and the channel
involving the bound state (figure 3.22(c)). Usually in the angular distribution of
the scattered He beam (intensity vs. θi) the background in between the Bragg
peaks is caused by inelastic scattering of He atoms3,14.
Due to the fact that the final state can be reached via two channels - the direct
inelastic and the one including the bound state - the intensity may sum up if the
channels are in phase or decrease if they interfere negatively. This sharp peaks or
dips in the angular distribution appear also at different angular positions as the
diffraction peaks and can be used to identify the bound state energies8,42

In a precise treatment of the latter process, the trapped atom actually creates a
phonon when it leaves the bound state. However, to cause an interference this has
to be the same phonon as in the direct inelastic process. Hence the phonon energy
or wavevector does not affect the kinematical resonance condition which is why
the effect is still regarded as elastic resonance. The phonon causes the phase shift
of the bound atom and therefore determines whether a maximum or minimum
occurs but the position of the elastic resonance is independent of the exchanged
phonon50,78

Finally, as the name suggestes, elastic resonance scattering events do not have any
effect on the time-of-flight distribution. It was shown by Doak et al.50 that the
lifetime of the atom in the bound state is in the order of 10−12 s which cannot be
resolved in the TOF distribution50,83.
However, apart from the modulation of the intensity, a broadening of scattering
features due to the finite lifetime of the atom in the bound state can occur. Indeed
the angular width of resonant scattering events can even be related to the lifetime
of the atoms in the bound states. Therefore the measured width ∆tot has to be
corrected for the finite angular resolution of the apparatus ∆app using the simple
formula for two folded Gaussian distributions50,83: (∆res)

2 = (∆tot)
2 − (∆app)

2.
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Figure 3.22.: Diagram showing different resonance processes. Features in the
intensity of the scattered beam are due to the interference of the part of the wave
which is going through a bound-state (c,d,e,f) with the direct scattering channel
(a,b).

3.6.2. Inelastic Resonant Scattering

Inelastic resonance processes involve the contribution of a phonon, either in tran-
sition to the bound state (figure 3.22(d)) or when leaving the bound state (fig-
ure 3.22(e)). Consequently a single surface phonon with energy �ω and parallel
wavevector �Q is involved in the kinematical conditions78.
If the incident atom enters the bound state inelastically in which it is elasti-
cally resonant with the final state the process is called final-state resonance. On
the other hand, if the incident atom is elastically resonant with a bound state
and exits inelastically into the final state it is known as an incident-state reso-
nance3,46,52,78,82,84.
Final state resonances do not give rise to any features in the angular distribution.
Since the He atom enters the bound state inelastically it can always “find” the ap-
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propriate phonon out of the continuum spectrum which fits the energy and there
is no definite incident angle at which the resonance occurs. Therefore this effect
contributes to the inelastic background in the angular distribution. Otherwise,
incident-state resonances cause features in the angular distributions sometimes
also known as phonon assisted selective adsorption resonances82,84.
Yet the effect on the TOF spectrum in the case of incident-state resonances is just
a uniform enhancement. Final-state resonances however, can give rise to a reso-
nance enhancement of inelastic events at specific positions of the (∆ ~K, ω)-plane.
To identify such an event for the involved phonon a relation similar to the scan
curve can be derived and superimposed onto the dispersion relation. A phonon
can then participate in such an event if it lies simultaneously on a resonance curve,
a scan curve and a phonon dispersion curve50,52,81.
Furthermore, there exists also the possibility that signatures of this final state
resonance occur in the angular distribution as selective desorption peaks. This is
the case if the surface phonon involved in the process has a large weight in the
differential reflection coefficient which is the case for the Rayleigh wave84.

Finally, figure 3.22(e) shows a further resonance process that can appear under
special kinematical conditions: If the kinematical conditions are fulfilled for two
surface phonons simultaneously, with the first one meeting a bound state Em and
the second fulfilled for a bound state En, a double resonance occurs with a tran-
sition of the trapped atom from a bound state to another due to the annihilation
or creation of a surface phonon. This double resonance can be viewed as a final-
state resonance which is reinforced by an initial-state resonance and is therefore
expected to cause an intense feature in the angular distribution3,50.
If a double resonance occurs at the same angle as a focused inelastic resonance (if
the curve representing the resonance condition is tangent to the scan curve and
the tangency point falls within the surface phonon spectrum) a huge peak occurs
in the angular distribution comparable to the intensity of an elastic peak85,86.

A careful analysis of angular distributions and time-of-flight measurements usually
allows to sort out the exact nature of resonance processes. In particular, resonance
processes can be separated from competing phenomena such as kinematical focus-
ing effects50,52,87.
At this juncture it is also important to keep in mind that equation 3.51 only holds
within the framework of the free atom approximation: The motion of the atom
trapped in the bound state is treated as free and unrestricted in the direction par-
allel to the surface (according to the dispersion relation E( ~K) = ~2

2m
~K2 − |En|).

Strictly speaking, this case only applies in the limit of zero corrugation where-
upon the resonantly scattered atom experiences only a laterally averaged poten-
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tial. Therefore the approximation is analogous to the free electron model but with
resonantly scattered atoms instead of electrons in solids88.
Yet this is somewhat contrary to the occurrence of bound state resonances: In
order to enter a bound state elastically the atom needs to exchange a ~G-vector,
consequently it is necessary that the surface potential has a G-component. In
other words, the surface must be corrugated. In a more general treatment this
corrugation yields band-structure effects i.e. there appear gaps in the bound state
dispersion curves. To include this effect in the description of the bound states so
called Celli diagrams are used82,89.

Further descriptions regarding resonance processes and examples can be found
throughout the literature3,8,29,30,42,52,78,79,82,84,85,87–93.

3.6.3. Measurement of Resonance Effects

The measurement of resonance effects in HAS is of prominent importance since
they contain information about the interaction potential (figure 3.24) via the
bound state energy levels. Thereby, if the binding energies of at least two bound
states are known then the potential parameters can be determined3,8,42.
Therefore the condition for elastic resonances can be illustrated in a geometrical
way similar to the concept of the Ewald-sphere: Using equation 3.51 the sum of
the incident surface wave vector ~Ki and the lattice vector ~Ghk lies on a circle with
the radius: ∣∣ ~Ki + ~Ghk

∣∣ =

√
2m

~2

(
Ei + |En|

)
(3.52)

In figure 3.23 the resonance circle is illustrated. The figure clearly shows that
the resonance condition can only be fulfilled at certain conditions of incidence.
Hence the investigation of resonance effects can be performed via variation of the
following experimental parameters:

(a) Variation of the angle of incidence θi changes the length of Ki = ki sin θi so
that at certain values of θi a ~Ghk vector coincides with a resonance circle.

(b) Variation of the azimuthal angle φ at fixed θi by rotating the crystal around
the surface normal corresponds to rotating the reciprocal lattice around the
origin of the resonance circle.

(c) Variation of the incident energy Ei gives rise to a similar effect as in case
(a) however, it also changes the radius of the resonance circle42.

It should be noted that from an experimental point of view (a) is the easiest to
apply. In addition, a useful set of rules describing the effect of resonances on the
specular beam can be found in Engel et al.9 or Krzyzowski et al.94.
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Figure 3.23.: Geometrical representation of the resonance condition according to
equation 3.52. The situation for a cubic lattice in the reciprocal space is shown.
The resultant vector �Ki + �Ghk that leads to a resonant transition lies on a circle
with the radius rresonance =

√
2m/�2 (Ei + |En|).

3.6.4. The 9-3 Potential

The energies En and the number of bound states depends on the actual shape of
the potential. In a first attempt the atom-surface interaction potential has been
addressed in section 3.1. Thereby it has already been mentioned that an effective
atom-surface potential is achieved by summation over the two-body potentials
between the He atom and the atoms of the solid.
In case of the Lennard-Jones potential (equation 3.2) this can be done by replacing
the surface lattice with a continuum giving rise to an integral instead of the sum.
The resulting atom-surface potential is the so-called 9-3 potential:8,42,95

V (z) =

(
33/2

D

2

)[(σ
z

)9

−
(σ
z

)3
]

(3.53)

where, D denotes the well depth, σ the distance at which the potential vanishes
and z = 31/6σ is the equilibrium position of a bound atom.
The atom-surface potential is now only dependent on z whereupon the origin of
the z-dependence can be understood in the following manner: The z-dependence
of the Lennard-Jones 12-6 potential (equation 3.2) is reduced by the integration.
Thereby the first integration yields the potential for a He-atom interacting with a
one-dimensional continuous string of atoms and the second yields the interaction
with a two-dimensional plane. Finally the third integration is performed along
the depth of the solid giving rise to the 9-3 z-dependence.
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The eigenvalue spectrum of this potential can be calculated using the distorted
wave Born approximation95:

En = −D

[
1− π�

3.07

n+ 1
2

σ
√
2mD

]6
(3.54)

with En, the bound state energy of the probe atom in the level with quantum
number n. n varies from zero up to a maximum value for which 3.54 remains
negative (En < 0 )42 In figure 3.24 the 9-3 interaction potential for He-LiF(001)
is given which also shows the discrete energy states which are represented by the
horizontal lines.
The 9-3 potential as well as the corresponding eigenvalue spectrum are determined
by an analytical formula and the potential reflects the correct asymptotic form of
the attractive part. However, the z−9 repulsion term is somewhat arbitrary for an
interatomic interaction42.

Figure 3.24.: The 9-3 interaction potential (equation 3.53) for the system He-
LiF(001) according to the parameters by Celli et al.45. As the atom approaches
the surface (along z) it experiences first the attractive part of the potential and
may be bound in one of the discrete energy states En which are represented by the
horizontal lines. Hereby the He-atom is then bound normal to the surface with
the binding energy En

3.6.5. The Corrugated Potential

In section 3.1 the dependence of the potential energy on the lateral position at
which the impinging He atom approaches the surface has been described. Conse-
quently the potential follows the corrugation at the surface and V (�R, z) is usually
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written according to a Fourier series (equation 3.3). Figure 3.25 shows a plot of
such a corrugated atom-surface potential.

Figure 3.25.: Corrugated 9-3 interaction potential for the the system He-LiF ac-
cording to the parameters by Celli et al.45. The typical dependence along the
direction z normal to the surface is modulated by the surface corrugation along
the lateral direction x. Consequently at the position of a surface atom (x = ±a)

the potential is slightly higher.

However, in the experiment it is not possible to detect a single He atom that ap-
proaches the surface on a specific lateral site. Actually, the He beam illuminates
a rather large area on the sample surface. Therefore the potential which is deter-
mined via HAS reflects the lateral average of the atom-surface interaction.
This laterally averaged potential V00(z), which depends only on the distance z to
the surface, is the first term (~G = 0) of the Fourier series expansion 3.3 according
to the surface periodicity47:

V (~R, z) = V00(z) +
∑
~G6=0

V ~G(z) · ei ~G~R (3.55)
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4.1. Construction of the Apparatus

Figure 4.1 provides a 3-dimensional illustration of the whole helium atom scatter-
ing apparatus. The experiments are performed under high and ultra high vacuum
conditions. High vacuum conditions are needed to provide the appropriate mean
free path for the He beam and to maintain the supersonic expansion (2.2). Fur-
thermore, to keep the surfaces on which the measurements take place clean, UHV
is needed. This is necessary to avoid an unintentional coverage of particles in the
residual gas during the required timescales of the experiment96. Therefore, the
sample is mounted in a separately evacuated chamber.
In particular, the used vacuum system consists of three separately evacuated cham-
bers which are shown in figure 4.1: The source chamber, the main or scattering
chamber and the detector chamber. The He-beam is generated in the source cham-
ber. The sample holder and all necessary devices that are used to perform sample
preparations are situated in the main chamber. Scattered He-atoms are finally
monitored in the detector chamber using a quadrupole mass spectrometer.
The experimental setup of most HAS machines is usually similar and detailed de-
scriptions about the design and setup can be found throughout the literature9,12.
Hence the reader who is not interested in the experimental details of the apparatus
may skip the following parts of this chapter. The apparatus described in this work
was actually constructed at the FU Berlin and then transfered to Graz University
of Technology. However, a detailed description of most parts of the apparatus
is missing so far which is why a few parts of the apparatus will be described in
greater depth in the following sections.
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Figure 4.1.: 3-dimensional illustration of the experimental setup showing the main
components: The He-beam (symbolized by the blue line) is generated in the source
chamber, interacts with the sample in the main chamber and is then monitored
in the detector chamber using a quadrupole mass spectrometer. The sample is
mounted on a manipulator in the main chamber which allows movements around
6 axes. The red parts represent the vacuum pumps.

4.1.1. The Source Arm

The He beam is generated in a supersonic expansion of helium gas of typically
50 bar pressure through a 10 µm nozzle. The central part of the beam is then
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selected using a 380 µm skimmer. The He nozzle can be cooled using a cold head
according to the Gifford McMahon-process (Leybold RGD 510). Therefore, the
pipe supplying the He gas is first wound around the cold head and the cold head
is connected thermally with the He nozzle using oxygen-free copper braids (not
shown in the figure).

Figure 4.2.: 3-dimensional cut of the source arm. The He beam is generated in
the source chamber via supersonic expansion through a 10 µm nozzle. The central
part of the beam is transfered using a skimmer into the chopper chamber where
the beam can be chopped in order to allow time-of-flight measurements.

The temperature of the cold head is determined using a Si-diode (LTC 60 tem-
perature controller) and the temperature of the nozzle is measured using a Pt100
resistance thermometer. The nozzle can also be heated resistively. Typical inter-
mediate nozzle temperatures (70−140 K) are obtained by both cooling the nozzle
and heating it. Furthermore, the nozzle is wrapped with a superinsulation foil to
ensure minimal thermal losses due to radiative heating.
The position of the nozzle and the distance with respect to the skimmer can be
varied via a flexible bellow. In order to allow time-of-flight measurements a chop-
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per is situated in the 2nd stage (chopper chamber) after the source chamber. Both
a single slit chopper disk and a pseudo random chopper are available whereupon a
pseudo random sequence with 511 bits is used in the latter case (see section 2.4).

4.1.1.1. The chopper chamber

(a) View of the chopper chamber with the
feedthroughs. The topmost feedthrough is re-
sponsible for the motion of the chopper disc
whereas the 2nd and 3rd ones enable the mo-
tion of the apertures that is shown in (b).

(b) The spot size of the helium beam
can be manipulated using one of the 5
apertures. Lateral motion of the aper-
tures, indicated by the red arrows, is
possible via the feedthroughs in (a)

(c) The apertures that can be in-
troduced into the helium beam
(diameters given in mm).

Figure 4.3.: Motion of the chopper disc and the apertures in the chopper chamber
via mechanical feedthroughs from outside the vacuum chamber. The designated
directions in the figure are always with respect to the incident helium beam.

In the 2nd stage after the source chamber the chopper is located together with a
plate with different apertures. The chopper disc can be moved into the beam or
out of the helium beam using a mechanical feedthrough from outside the chopper
chamber (see figure 4.3(a)). Furthermore the spot size of the helium beam can
be manipulated using different apertures. Therefore a plate with 5 apertures of
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different diameters is available. This plate is placed at the backside of the vacuum
chamber (behind the chopper) and its lateral position may be changed using two
feedthroughs outside the vacuum chamber.
In figure 4.3 the motion of these apertures together with the diameter of the
apertures is illustrated. Note that the designated directions in the figure are
always with respect to the incident He beam. In the movement of the apertures
one full turn of the mechanical feedthrough corresponds to a lateral motion of
0.5 mm. However, the best way is to monitor the He-signal using the QMS in the
main chamber for guidance during the motion of the apertures.

4.1.2. The Main Chamber

Figure 4.4.: Illustration of the lower level of the main chamber. Despite the sample
the ion sputtering gun and a QMS for residual gas analysis are situated at this
level.
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In the main chamber or scattering chamber the sample is situated together with
additional devices that are necessary to prepare and analyze the sample. Most
mounting flanges of the main chamber are arranged at two levels of the z direc-
tion. The lower level is shown in figure 4.4. It includes the He scattering plane
whereupon the angle between the source and the detector arm θSD is 91.5◦.
In addition, an ion sputtering gun (Omicron ISE 10) and a quadrupole mass spec-
trometer (Hiden Analytical) are mounted onto the lower level. The sputtering gun
is used to clean the surface in situ by Ar+ ions. The QMS allows to determine the
composition of the residual gas and to measure the partial pressure in the main
chamber.
The upper level provides two further surface analysis methods: A LEED (low
energy electron diffraction) and an XPS (X-ray photoelectron spectrometer). The
LEED (Omicron Spectaleed) is mainly used to obtain additional information
about the surface structure and to align the sample. The XPS (Specs RQ 20/38
X-ray tube with a Mg anode and a VG Scientific CLAM 2 hemispherical elec-
tron energy analyzer) permits the determination of the surface composition e.g.
whether the surface is clean. A short description of the different analyzing meth-
ods is given at the end of this chapter (section 4.3).

4.1.2.1. The Sample Holder

The sample is mounted on the sample holder in the main chamber with the sample
holder itself being attached to a 6-axes manipulator. Most parts of the manip-
ulator are shown in figure 4.5. The manipulator allows motions in the 3 lateral
directions, a tilt around the x- and y-axis and a rotation around the z-axis. Fur-
thermore the sample can be rotated around the surface normal (azimuthal rota-
tion).
The sample temperature can be measured using a chromel-alumel thermocouple
and it may be either heated resistively using a button heater (HeatWave Labs,
UHV Button Heater 101137) or cooled down using liquid nitrogen (LN2). There-
fore, a small reservoir at the lower end of the manipulator is filled with liquid
nitrogen which is connected via a cooper braid to the sample holder. Thus the
sample can be cooled down to −170◦C. Moreover, the liquid nitrogen reservoir
can also be heated by a Thermocoax wire which is wound around the reservoir.
Parts of the sample holder were actually rebuilt after a vacuum leak had ap-
peared (the figure shows the current version). During this reconstruction several
improvements were introduced including an enhanced liquid nitrogen cooling and
the azimuthal rotation of the sample. Originally, the azimuthal motion was carried
out via a wheel and rope system which had a considerable lack of reproducibility.
It was replaced by a gear-wheel system which is also illustrated in figure 4.5.
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Figure 4.5.: Drawing of the manipulator. The leftmost image shows the manipu-
lator which enables the lateral motion along the x- y- and z-axis. Both images on
the right display the lowest part of the manipulator: The liquid nitrogen cooling
reservoir and the sample holder together with the sample. The rightmost image
shows the azimuthal motion of the sample via a gear-wheel system.

The z-motion and the rotation of the sample around the z-axis are performed via
stepper motors. These stepper motors are controlled using a home-built interface
that is connected to the serial port of a computer. Therefore these manipulator
motions are operated using a number of MATLAB programs that communicate
via serial port with the stepper motors. This enables an automatic realization of
various HAS measurements e.g. of an angular distribution.
The realization of the control and measurement system and the implementation of
the MATLAB programs were part of this work. However, it will not be addressed
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here since it is of no scientific relevance.

4.1.3. The Detector Arm

The detector chamber with the quadrupole mass spectrometer is connected to the
main chamber using several apertures and differential pumping stages which allows
to distinguish between He-atoms that are scattered directly from the sample and
background particles.

Figure 4.6.: A cut of the detector arm. It exhibits four differentially pumped
stages which are separated by small apertures. He atoms are detected using a
QMS with a cross-beam ion source and a quadrupole mass analyzer.

The He atoms are detected using a commercial QMS (Balzers QMA 400 with a
cross beam ion source and a 90◦ off axis secondary electron multiplier). The ECL
output signal from the QMS is converted to a TTL signal which is then recorded
using a home-built multi-channel analyzer (MCA). The position of the QMS can
be adjusted via a flexible bellow as to allow the He beam to enter the ionization
volume.
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4.1.4. Beam-defining Geometry

The geometry of the beam is mainly defined by the dimensions of the apertures.
Figure 4.7 shows all apertures of the apparatus in mm together with their lateral
positions. In addition, the relevant distances for the time-of-flight measurements
(chopper - target - detector) are given. Note that the aperture dimensions in the
drawing have been expanded relative to the distances.

Figure 4.7.: Schematic drawing with the significant dimensions of the apparatus
in mm. All apertures which are drawn in red have a diameter of approximately
4 mm. The only exception is the aperture right behind the chopper labeled with
A1. This aperture can be varied between 0.2 mm and 3 mm (see figure 4.3).

4.2. Vacuum Setup

The whole vacuum system is illustrated in figure 4.8. All vacuum pumps and
pressure gauges are listed in detail in the following tables 4.1, 4.2 and 4.3. The
abbreviations that are used in the tables are:
S (N2) ... nominal pumping speed (based on N2)
cbp ... critical backing pressure
diff. pump ... oil diffusion pump
TMP ... turbo molecular pump
i.g. ... inspection glass
DC ... Dow Corning (diffusion pump oil)
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4.2. Vacuum Setup

Table 4.1.: Vacuum pumps of the source arm and the main chamber
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Table 4.2.: Vacuum pumps of the detector arm
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Table 4.3.: Pressure gauges

In the main and the detector chamber several additional actions are performed
to obtain pressures in the range of p = 1 · 10−10 mbar. Thus, each time after the
vacuum system has been opened the evacuation process is followed by a bake-
out of the chambers. Therefore the whole system is held at a temperature of
about 130◦C for at least 24 hours, mainly to reduce the amount of water in the
chambers96.

Vapor Pressure

Materials used inside the vacuum system evolve vapors of their constituent parts
whereupon these vapors add to the gas load in the system. Therefore the vapor
pressure of these materials has to be considered97.

(a) Vapor pressure of Bi (fitted below and
above 800 ◦C)

(b) Vapor pressure of Sb (fitted below and
above 700 ◦C)

Figure 4.9.: Vapor pressure of bismuth and antimony versus temperature: Several
experimental data points have been fitted using the Antoine equation. To cover
the whole temperature range this was done using two adjacent fits.

87



4. Experimental Setup

If the vapor pressure of a material is higher than the required ultimate pressure of
the vacuum system the material will limit the achievable ultimate pressure. Since
the vapor pressure is a function of temperature the material’s vapor pressure
must remain low at the highest applied temperature (e.g. during the baking
procedure)97.
This is not only relevant for the construction of the vacuum chamber but also for
materials used inside the chamber and hence also for the sample. Thus the vapor
pressure of bismuth and antimony are shown in figure 4.9. Both Bi and Sb exhibit
a vapor pressure that remains low enough in the relevant temperature range.

4.3. Additional Measuring Equipment

As already mentioned, the upper level of the main chamber provides a LEED and
an XPS system. The principle of both surface analysis methods is described in
the following together with the principle of a QMS and an ion sputtering gun.

4.3.1. QMS

Quadrupole mass spectrometers are used to detect particles according to their
mass and to determine the partial pressure. In general, a mass spectrometer
consists of an ion source, an analyzer and a detector. The particles are fist ionized
in the ion source followed by a separation according to their mass to charge ratio
in the analyzer.
In case of a QMS, the analyzer is built of four parallel electrodes in such a way that
opposite electrodes have the same potential. A voltage of U(t) = ±U+V cos(ωt)

is applied between two opposed electrodes. Consequently, the voltage determines
the trajectories of the ions, that are moving along the center of the four electrodes.
Thus for each voltage only particles with a certain mass to charge ratio are moving
along a stable track and reach the detector where they are finally detected by a
secondary electron multiplier19,96.

4.3.2. Ion Sputter gun

Surface contaminants can be sputtered off together with the top layers of the
sample by bombardment of the surface with noble gas ions (e.g. Ar+). Therefore,
a beam of ions is produced using an ion gun: Argon gas is admitted through
a dosing valve into the ionization chamber of the gun, where the gas atoms are
ionized via electron impact. The produced ions are then accelerated and directed
towards the sample surface.
A side effect of the ion bombardment is the degradation of the smooth surface.
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Hence subsequent annealing is required to restore the surface crystallography and
to remove embedded and adsorbed Ar atoms. During this annealing process the
sample is heated and then maintained at a suitable temperature for an appropriate
time17,96

4.3.3. LEED

The main elements of a four-grid LEED system are shown in figure 4.10.

Figure 4.10.: Schematic diagram of a four-grid LEED

An electron gun is used to produce a beam of collimated low-energy electrons in
the energy range of 30-500 eV. These electrons are directed towards the sample
surface, where they are scattered. The de Broglie wavelength of the electrons is
then given by17

λ[Å] ≈

√
150

E(eV)
(4.1)

which corresponds to a wavelength (≈ 1 − 2 Å) of the order of the interatomic
distances and hence satisfies the atomic diffraction condition.
In a four grid LEED system the sample and the first grid are at earth potential.
Consequently, after the scattering process the electrons propagate through the
field-free space towards the grid. In order to reject the inelastically scattered
electrons, the potential of the second and the third grid is close to that of the
cathode but somewhat lower in magnitude. Finally, the fourth gird is at earth
potential again to screen other grids from the field of the fluorescent screen. After
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passing the retarding field, the elastically scattered electrons are then reaccelerated
towards the fluorescent screen, where they cause a light spot and the diffraction
pattern is observed2,17,96.

4.3.4. XPS

X-ray photoelectron spectroscopy is based on the photoelectric effect, where elec-
trons are emitted from matter after the absorption of electromagnetic radiation
such as X-rays (see figure 4.11(a)). The electron with an initial binding energy

(a) Principle of an XPS (b) Schematic illustration of the
photoemission process

Figure 4.11.: Illustration of the principle of an X-ray photoelectron spectrometer

Ebi absorbs a photon of energy ~ω and leaves the solid with a kinetic energy Ekin

according to:
Ekin = ~ω − Ebi − φ (4.2)

where φ = Evacuum − EFermi is the work function of the material (see figure
4.11(b))1,17. The X-rays are generated in a tube where a Mg anode is bombarded
with high-energy electrons which gives rise to the emission of X-ray radiation with
the characteristic Kα1,2 radiation at 1253.6 eV. A hemispherical electron energy
analyzer is used to record the spectra of the photoemission electrons.
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Apparatus

Although the apparatus described in this work was actually constructed at the
FU Berlin, no HAS measurements were performed on it, before it was transferred
to Graz. This fact and the reconstruction in Graz made it necessary to perform
a number of measurements to characterize the apparatus and to ensure that it is
running properly.
Most measurements were performed on LiF(001) since it is one of the most exten-
sively studied surfaces by means of HAS48,79,82–84,87,90,98,99 and it is easy to keep
the surface clean even under poor vacuum conditions. In addition, some measure-
ments were also conducted on Bi(111) which will be described in greater detail
later on.

5.1. First Measurements on LiF and Calibration

5.1.1. Structure of LiF and Preparation

Figure 5.1.: Structure of the LiF crystal, purple spheres: Li, green spheres: F.
The shaded area shows the (001) plane of the crystal whereupon the highlighted
red square indicates the surface unit cell.
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The structure of LiF and the (001) plane are illustrated in figure 5.1. Note that
the surface unit cell (the red square) is rotated with respect to the bulk direction
by 45◦ so that the 〈110〉 bulk direction corresponds to the 〈10〉 direction at the
surface. The labeling of measurements on LiF(001) within this work always refers
to the surface unit cell: A square with a side length of a = 2.84 Å45.
The LiF(001) single crystal used for the HAS measurements was purchased from
MaTecK. 3− 4 mm slices were cleaved from the single crystal with a cross-section
of 10× 10 mm2 in air and mounted onto the manipulator. The cleavage results in
an atomically flat surface with large terraces suitable for HAS experiments100.
Active sites on the surface can be removed by annealing the crystal in vacuum at
430◦C for several hours100. Hence the adsorption of water from the residual gas
inside the vacuum chamber is prevented. The presence of sharp diffraction peaks
as seen in figure 5.2 can also be regarded as evidence for a well-ordered and clean
surface48.

5.1.2. First Elastic Measurements

Figure 5.2 shows an angular distribution for He scattered from LiF(001) along
the 〈11〉 azimuth. The angular position of the diffraction peaks (equation 3.10)
is determined by the incident wavevector ki (or the incident energy Ei) of the He
beam. Using equation 2.22 and 2.23 ki is given by the temperature of the nozzle
TN according to:

ki =

√
5mkBTN

~

Figure 5.2.: He diffracted from LiF(001) along the 〈11〉 azimuth with
Ei = 15.5 meV and the crystal at room temperature.
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Although the nozzle temperature is measured using a Pt100 the actual tempera-
ture of the helium beam may differ from this value since the Pt100 is positioned
next to the opening of the nozzle.
Therefore, an exact value for the incident energy Ei is best obtained either by
using the position of diffraction peaks from a well-known surface structure or
the time-of-flight of the elastic peak. To employ the TOF measurement for this
purpose, an exact knowledge of the flight length is essential (section 5.1.4).

5.1.3. Determination of θSD
The construction of the apparatus is such that the mounting flanges that are con-
necting the main chamber with the source arm and the detector arm respectively,
enclose an angle of approximately 90◦. However, HAS measurements on a well
defined surface structure can be used to obtain a more accurate value for the fixed
angle θSD between source and detector.
According to equation 3.10 the incident angle θi of a diffraction peak is given by
θSD, the incident wavevector ki and the reciprocal lattice vector ~Ghk. Hence the
measurement of the angle θi at which a diffraction peak occurs can be used to
calculate θSD if ki and the involved ~G-vector are known. Thus θSD can be readily
calculated from equation 3.10.

Figure 5.3.: Calibration of the fixed source detector angle θSD: ki · cos(θSD/2) is
plotted versus the incident wavevector ki.

However, to exclude any uncertainties introduced by the measurement of the noz-
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zle temperature, several measurements at different nozzle temperatures were per-
formed. θSD was then calculated from the measured values of θi and ki ·cos(θSD/2)

which was plotted versus ki as shown in figure 5.3. Consequently, the slope of this
plot determines θSD. From a linear fit, the fixed angle between source and detector
is determined to be:

θSD = (91.5± 0.6)◦

5.1.4. Determination of LCD
In addition to the source-detector angle the length between chopper and detector
can also be determined experimentally with the aid of time-of-flight measure-
ments. Therefore, a series of TOF spectra with varying nozzle temperature TN
were recorded. In figure 5.4(a) a few of the spectra are displayed. It clearly shows
that the peak shifts to smaller times with increasing nozzle temperature. Since
v = LCD/TOF, this can be used to determine LCD.

(a) Shift of the elastic TOF with
increasing TN

(b) Velocity of the He-beam as a function of the inverse
TOF on the specular position

Figure 5.4.: Determination of LCD using TOF measurements at different nozzle
temperatures TN : In a plot of the He velocity versus the inverse time-of-flight
(figure (b)), the slope determines the chopper detector distance LCD.

The TOF spectra were then fitted using a Gaussian function and the inverse time-
of-flight was plotted versus the He velocity (figure 5.4(b)). Using a linear fit LCD
is determined by the slope according to v = LCD/TOF:

LCD = (1643± 5) mm

Since this requires an exact knowledge of the velocity, elastic measurements were
recorded previous to each time-of-flight measurement. The position of the diffrac-
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5.2. Calibration of Time-of-Flight Measurements

tion peaks in the elastic measurement was then used to calculate the corresponding
velocity.

5.2. Calibration of Time-of-Flight Measurements

The restraints to the resolution of a TOF spectrum have already been discussed
in section 2.4.1 and it was shown that the TOF spectrum can be approximated
by a Gaussian function with adequate accuracy.
Figure 5.5 shows a TOF spectrum of the elastic peak due to He scattered from
LiF(001) using a single slit chopper disc. From the Gaussian fit of the data, the
center of the peak tp = (2.0300± 0.0002) ms and the full width at half maximum
FWHM= (44±1) µs is obtained. Note that the FWHM equals 2

√
2 ln(2)·σ where

σ2 is the variance of the fitted Gaussian function.

Figure 5.5.: TOF spectrum of the specular peak on LiF(001) surface. Nozzle
temperature TN = 64 K, chopper frequency νCh = 253 Hz, channel width tmc = 1

µs, number of channels Nmc = 1000.

The true flight time tf may be calculated according to tf = tp+tc−tch/2 (equation
2.27) whereupon the correction according to the channel width tmc/2 is negligible
for tmc = 1 µs. However, the correction time tc is necessary due to the triggering
of the chopper which causes a slightly altered time-of-flight47:
The time-of-flight measurement starts with a trigger signal which is caused when
the emitted light of a diode passes through the chopper slit and is detected by
a phototransistor. Due to the fact that the measurement starts with the falling
edge of the trigger signal the measured flight time is slightly shorter than the true
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flight time which is illustrated in figure 5.6.

(a) Triggering at the falling edge causes a
measurement of the flight time that is slightly
shorter (by tc) than the true flight time.

(b) With increasing chopper frequency νch
(compared to graph (a)) the correction time
tc decreases.

Figure 5.6.: Schematic illustration of the correction time tc for the time-of-flight
peaks due to the triggering.

Figure 5.6(a) and 5.6(b) show a comparison of the effect with increasing chopper
frequency νch. Thus tc decreases with increasing νch, whereby for νch → ∞ the
correction time approaches zero: tc → 0. In general

tc = α · 1

νch
(5.1)

holds47. Hence when measuring the peak time tp at different νch, α can be deter-
mined by calculating the slope in a plot of tp versus 1/νch. In figure 5.7 a plot
of the described measurement on the LiF(001) specular position is shown. There-
fore, a series of TOF spectra recorded with different νch have been fitted using a
Gaussian function and the center tp was plotted versus 1/νch. The slope of the
linear fit gives a value of:

α = −(5.4± 1.2) ms/s

Thus with α the correction time tc(νch) can be calculated according to equation
5.1 for any chopper frequency νch.
With the knowledge of the flight time tf (according to equation 2.27) and an exact
knowledge of the flight length LCD the beam velocity v and the beam energy Ei
for figure 5.5 can be calculated:

v =
LCD
tf

= (801± 15) m/s

Ei =
mv2

2
= (13.3± 0.5) meV
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5.2. Calibration of Time-of-Flight Measurements

Note that the determined broadening of the velocity and the incident energy is
not the same as the broadening due to the velocity spread of the incident beam.
The velocity spread of the supersonic beam is much smaller and it is the resolution
of the apparatus which adds to the initial spread of the beam. This broadening
effects will be addressed in section 5.3.4.

Figure 5.7.: Measured TOF peak position tp against inverse chopper frequency
1/νch. TN = 65 K, tmc = 1 µs, Nmc = 1000.
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5.3. Resolution of the Apparatus

5.3.1. Influence of the Scattering Geometry on the
Intensities

The scattered intensities in HAS measurements were addressed in section 3.4 from
a theoretical point of view. However, the intensities that are measured in the ex-
periment are also influenced by the geometry of the apparatus e.g. the diameter
of the He beam or the acceptance angle of the detector.
So far, only the geometrical situation of a “classical Rutherford” scattering exper-
iment has been considered. In this scattering configuration the incident He beam
illuminates an area on the surface which is smaller than the area “seen” by the
detector67. This situation is illustrated in figure 5.8 for the fixed source-detector
geometry. In this case the illuminated area of the incident beam is so small with
respect to the acceptance angle of the detector that A′

f > A
′
i holds14.

However, the reverse configuration can also be realized. In particular if the illumi-
nated area is considerably large and the detector arm is rather long the detector
only “views” a small area within the illuminated spot, i.e. A′

f < A
′
i. This situation

is mainly the case for many HAS machines constructed by Toennies in Göttingen
which is why this type will be regarded as the Toennies-type67.

Figure 5.8.: Schematic graph illustrating the geometrical reduction of the surface
area “seen” by the detector. In the displayed situation the area on the surface
which is illuminated by the He beam (A′

i) is smaller than the area “seen” by the
detector (A′

f ) since A
′

f > A
′
i holds. Note that A

′
i and A

′

f are functions of the
scattering angles θi and θf .

Equation 3.35 introduced in section 3.4 which relates the scattered intensities
P �G with the scattering amplitudes A �G via P �G = kGz

kiz
|A �G|2 is only correct for the
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5.3. Resolution of the Apparatus

Rutherford scattering configuration.
For such a scattering configuration in the case of a fixed source-detector geometry,
a surface corrugation that is symmetric in the scanning direction would give rise
to |A+G|2 = |A−G|2. That is, |A ~G|2 is the same e.g. for ~G11 and ~G1̄1̄ which is a
consequence of the time reversal invariance of the Schrödinger equation67.
However, the diffraction peaks corresponding to +G and −G do not have the
same intensity. This is because the scattered intensity P ~G at position +G is not
the same as it is at position −G due to the kinematical factor kGz

kiz
which is different

at the two positions.
The conclusions made above hold for the Rutherford scattering configuration but
for a Toennies-type HAS apparatus the situation is altered by the fact that the
detector only “views” a small portion of the illuminated He spot on the surface.
It can be seen from figure 5.8 that the effective surface areas are determined by
A
′
i = Ai · cos(θi) and A′f = Af · cos(θf ).

Now, in order to compensate for the intensity of the illuminated spot as a func-
tion of incident angle, the intensity P ~G must be multiplied by cos(θi). The area
within the illuminated spot that is “seen” by the detector increases with increas-
ing θf , hence the intensity must be divided by cos(θf ) for compensation. Since
cos(θi)/ cos(θf ) = kiz/kGz this factor exactly cancels the kinematical prefactor of
equation 3.35 (P ~G = kGz

kiz
|A ~G|2) and the measured intensity becomes simply |A ~G|2.

Therefore, in a Toennies-style apparatus with fixed source-detector geometry, the
intensity of the +G and −G diffraction peak should give rise to the same scattered
intensity in the case of a symmetric surface corrugation67.

According to this conclusions the distinction between a Toennies-type apparatus
and a classical Rutherford configuration can be simply made by carrying out a
diffraction measurement on a surface that exhibits a symmetric corrugation. If
the sample is properly aligned, the corresponding positive and negative diffraction
peak intensities should be equal in case of a Toenneis type apparatus whereas the
intensities should differ by the the kinematical prefactor for a Rutherford type
apparatus67.
In addition it shall also be noted that for a purely spectroscopic analysis e.g. if
only the surface structure and the phonon dispersion curves are of interest the
configuration of the machine is not important. While the position of the diffrac-
tion peaks gives rise to the surface structure, the phonon dispersion is determined
via the position of the inelastic peaks relative to the diffuse elastic peak and the
intensities do not come into play67.
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5.3.2. Broadening of the Angular Distribution

The finite width of the diffraction peaks in the angular distribution is mainly
governed by two effects: The velocity spread and the angular width of the incident
beam. The angular distribution which is recorded at the detector is a convolution
of both broadening effects50 which is illustrated in figure 5.9. For this consideration
the detector width shall be treated as negligible fist.

Figure 5.9.: A schematic illustration of the broadening effects due to the velocity
and the angular spread of incident beam on the angular distribution. While the
velocity spread affects only the diffraction peaks (c), the angular spread affects
the specular peak as well (b). The angular distribution at the detector is the
convolution of both effects (d).

In the case of an infinitesimally small velocity and angular spread the diffraction
peaks would be small delta-like functions if a perfectly flat surface is provided
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5.3. Resolution of the Apparatus

(case (a) of figure 5.9).
If an angular spread of the incident beam is introduced (case (b) of figure 5.9)
both the diffraction and the specular peaks are broadened. This is a consequence
of the fact that the angular width of the incident beam ∆θi influences both the
angle at which diffraction peaks appear (via equation 3.10) as well as the mirror
reflection.
However, the broadening due to the finite velocity spread ∆v (case (c) of figure
5.9) affects only the diffraction peaks but not the specular peak. This is because
the velocity does not enter the condition for the mirror reflection ( ~G = 0), whereas
it affects the position of the Bragg peaks according to equation 3.10 via ki. In the
picture of the Ewald construction the Ewald sphere is no longer a distinct sphere
but a spherical shell due to ∆v of the incident beam.
The final angular distribution shown in case (d) of figure 5.9 is the convolution of
both effects50.
In order to address this question from an experimental point of view, several an-
gular distributions have been recorded using different apertures to manipulate the
spot size. Figure 5.10 shows the angular distribution for He scattered from Bi(111)
along the 〈11〉 azimuth. The slight asymmetry in the angular scans is likely to be
caused by alignment problems.
The upper trace of figure 5.10 displays the elastic peaks with the x-axis greatly
expanded to show the angular half-widths. Apparently, the angular distribution
corresponds to case (d) of figure 5.9 where the broader width of the diffraction
peaks with respect to the specular peak is caused by the velocity spread of the
incident beam.
To gain further insight, the peaks were fitted with the sum of two Gaussian func-
tions to account for the narrow coherent elastic contribution and for the broad
diffuse elastic and multiphonon contribution9. The peak width of the narrow elas-
tic contribution was then used to describe the broadening of the diffraction peaks.
In particular, the angular width of the specular peak can be used to estimate the
size of the He spot on the surface.

5.3.2.1. Angular Width of the Specular Peak

In order to estimate the size of the He spot on the surface the peak widths from
the angular distribution can be used. For this purpose it makes sense to have
a look at the specular peak rather than the diffraction peaks, since the specular
peak is not affected by the velocity spread of the incident beam. It is solely the
angular distribution which determines the width of the specular peak50,67.
Figure 5.11 displays the fitted coherent elastic contribution that was extracted
from figure 5.10. Obviously the diffraction peaks (graph (a) and (c)) are hardly
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influenced by the aperture dimensions since their width is mainly governed by the
energy spread of the incident beam. However, the angular width of the specular
peak (b) clearly shows a decrease in the width for the smaller apertures.

Figure 5.10.: Angular distributions for He scattered from Bi(111) along the 〈11〉
azimuth with Ei = 19.4 meV and TS = 300 K. The three spectra were recorded
using different apertures A1 (see figure 4.7) to manipulate the spot size. The
upper trace displays a magnification of the elastic peaks which have been fitted
with a sum of two Gaussian functions to account for the narrow coherent elastic
contribution and for the broad diffuse elastic and multiphonon contribution.

Since the specular peak is to a first approximation simply mirror scattering, its
size at the detector can be extrapolated back by using the distance from the sam-
ple to the detector to estimate the size of the illuminated spot on the sample
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5.3. Resolution of the Apparatus

from the angular distribution measurement. This can be done using simple linear
geometry according to the dimensions of the apparatus in figure 4.7.
Using FWHM= 0.45◦ for the specular peak monitored with the 3 mm aperture
at the detector the extrapolated spot size at the position of the sample is 9 mm.
The spot size on the sample is then enlarged by 1/ cos(θf ) giving rise to an area
with a diameter of approximately 13 mm.
On the other hand, the approximate beam diameter on the sample as seen from the
source can also be calculated using simple geometrical considerations. Therefore,
the beam diameter at the position of the sample is given by the size of aperture
A1 and its distance with respect to the source and the sample.
The actual spot size on the sample gets enlarged by the inverse cosine of the
incident angle θi (see figure 5.8) yielding a value of approximately 10 mm. Conse-
quently the estimated value of the spot size is comparable to the size extrapolated
back from the measurement.

(a) (11) diffraction peak (b) Specular peak (c) (1̄1̄) diffraction peak

Figure 5.11.: Fitted coherent elastic contribution for the angular distributions of
figure 5.10. The maximum of the peaks has been normalized to one in order to
compare the measurements with different apertures.

Furthermore, the acceptance angle of the detector can be estimated using the
distance between the detector and the aperture closest to the sample. Using this
acceptance angle the area on the surface that is “seen” by the detector can be
calculated. For the specular geometry this corresponds to an effective area with
a diameter of 9 mm on the sample.
Notably, this value is also comparable to the two estimates of the illuminated spot
size calculated above. Hence the surface area illuminated by the He beam may
not always be wholly within the confines of the detector acceptance angle. In fact
this suggests that the geometry in this case is neither a pure “Rutherford” type,
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nor a “Toennies” type, but in a region in between the two67.
Applying the same geometrical considerations for the remaining two apertures,
it is only the 0.4 mm aperture which gives rise to an estimated spot size that is
small enough to be completely within the acceptance angle of the detector. This
geometrical situation would correspond to the “classical Rutherford configuration”,
at least for values of θi not too far away from the specular position.
However, by using this aperture, the overall intensity decreases giving rise to
a trade-off between resolution and intensity. Thus in most measurements the
3 mm aperture was used since this issue is not important in a purely spectroscopic
analysis as mentioned above.

Figure 5.12.: FWHM of the specular peak from (figure 5.11(b)) as a function of
the aperture diameter.

The above described crude estimate of the detector acceptance angle does not
include the possibility of misalignments e.g. of the apertures in the detector arm.
Therefore, it shall be tried to extract an estimated value of the acceptance angle
from the experimentally measured widths that have been recorded with different
apertures.
Plotting the FWHM of the specular peak (from figure 5.11(b)) versus the aperture
size gives rise to a straight line as shown in figure 5.12. Assuming that an aperture
size approaching zero corresponds to a beam width of vanishing diameter, the
width at the detector would solely be determined by the acceptance angle of the
latter.
In doing so, the intersection of the linear fit in figure 5.12 with the y-axis yields
an acceptance angle ∆θdet = (0.15±0.01)◦. Certainly, this estimated value should
be treated with care, in particular its use for quantitative conclusions.
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5.3.2.2. Angular Width of the Diffraction Peaks

The angular width of the diffraction peaks is governed by both the angular width
and the velocity spread of the incident beam. According to Valbusa the angular
width of the diffraction peaks due to the velocity spread of the incident beam is
determined by55:

∆θ =
G

ki cos(θf )

∆v

v
(5.2)

where the angular broadening of the incident beam is neglected. In a more realistic
consideration of the experimental setup, the angular width of the incident beam
has to be considered as well as the dimensions of the apparatus.
According to Doak the angular distribution as it is recorded in figure 5.10 suggests
a geometrical situation where the beam width wb is larger than the detector width
wd: wb > wd. This is supported by the fact that in the reverse case the angular
broadening would be determined by wd and the effect of velocity broadening would
not be seen in the diffraction peaks50.
Based on wb > wd an expression for the beam width wb at the detector position
can be derived using the final scattering angle θf according to the Bragg equation
3.7: θf = arcsin[G/ki + sin(θi)]. For each reciprocal lattice vector G, wb is then
calculated via50:

wb = ∆θi · LSD +

(∣∣∣∣∂θf∂θi

∣∣∣∣ ·∆θi +

∣∣∣∣∂θf∂ki

∣∣∣∣ ·∆ki)LTD (5.3)

where ∆θi is the angular broadening of the incident beam and LSD is the distance
from source to detector. The first term of equation 5.3 describes the angular
broadening of the incident beam along LSD and the second term describes the
broadening of the scattered beam due to ∆ki and ∆θi along LTD.
Indeed, equation 5.3 assumes that the respective contributions add linearly whereas
they actually correlate in a rather complex fashion and effects that are associ-
ated with the clipping of the beam by target edges or apertures are neglected11.
Nonetheless equation 5.3 can be used to calculate an approximate value for wb.
The relative angular width of the diffraction peaks at the detector is then given
by wb associated with the diffraction peak relative to wb of the specular peak.
The experimentally determined FWHM (using the coherent elastic contribution)
in the angular distribution of figure 5.10 recorded with the 3 mm apertures are:

(11): FWHM = (0.71± 0.05)◦

(00): FWHM = (0.45± 0.03)◦

(1̄1̄): FWHM = (0.64± 0.04)◦

By applying 5.3 with ∆ki/ki = 0.01 to this measurement, the predicted angular
broadenings are (0.80± 0.08)◦ for the (11) diffraction peak and (0.48± 0.03)◦ for
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the (1̄1̄) peak. Although the angular broadening of the (11) peak is somewhat
over-estimated and the (1̄1̄) is under-estimated the overall trend in the angular
distribution is reproduced. The deviations may be attributed to clipping effects
introduced by the target edges or the apertures in combination with enlargement
of the effective surface area (figure 5.8) at the diffraction angles.

5.3.3. Transfer Width and Surface Coherence Length

The transfer width is a quantum length, describing the size of the quantum me-
chanical wave packet assigned to an individual He atom67. As described in chapter
3 diffraction patterns in HAS are caused due to the superposition of individual
diffraction events. Each diffraction event corresponds to the interference of an
incoming particle with itself, whereupon the measured signal is a superposition
of many individual diffraction events in a given time interval8. Therefore, the
coherence of the helium beam as well as the perfection of the crystal surface are
essential.
Comsa101 addressed the question of the angular width of the peaks and whether
they are limited by the apparatus itself or the surface imperfections. Thereby the
transfer width represents the minimum lateral dimension over which the surface
must be perfect to give rise to diffraction peaks which are limited in width solely by
the resolution of the instrument8. According to Comsa the angular spread at the
detector which is caused by the geometry of the apparatus is given approximately
by9,46,101:

(∆θ · θf )2 ≈
(
cos θi
cos θf

δs
DS

)2

+

(
cos θi
cos θf

δa
Da

)2

+

(
cos θf
cos θi

Ds

Dd

δa
Da

)2

+

(
δd
Dd

)2

(5.4)

The four terms represent the contribution of the source dimension, of the aperture,
of the spot size and of the detector opening101. Figure 5.13 illustrates the relevant
geometrical dimensions which can be found in section 4.

Figure 5.13.: Schematic diagram illustrating the geometrical parameters used to
calculate the angular broadening according to equation 5.4.
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The contribution to the transfer width due to this geometrical factor is then given
by9,46:

wθ ≈
λ

∆θ · θf cos(θf )
(5.5)

Using equations 5.4 and 5.5 with the same parameters as in the measurement
shown in figure 5.14, ∆θ = 1.1◦ and wθ ≈ 100 Å are calculated. However, the
experimentally determined angular broadening of the peak exhibits only a FWHM
of (0.26± 0.02)◦.
This suggests that equation 5.5 cannot be applied to the geometry of the used
HAS apparatus in the current form. The origin of the smaller than expected an-
gular width could be caused due to a clipping of the He beam by an improper
alignment of the apertures.
Furthermore, Comsa has received criticism on how he develops the idea of a trans-
fer width67,102,103. In particular John Pendry who derived a formula for the corre-
lation length in LEED measurements concludes that it cannot be used to predict
any specific broadening103. Hence equation 5.4 should be treated carefully in the
prediction of any angular broadening.

Nevertheless, Comsa obtains an important result for the transfer width w in atom
diffraction in analogy to LEED experiments. Depending on the angular and the
energy spread, w is given by8,9,46:

w ≈ λ√
(∆θ · θf )2 cos2(θf ) + [sin (θi)− sin (θf )]

2 (∆E)2/E2

(5.6)

where (∆E)2 is the mean square energy spread of the beam. Certainly, equation
5.6 requires an accurate determination of ∆θ but it is widely excepted by the com-
munity since it can be derived in analogy to concepts known from LEED103. Note
that the contribution of the energy spread disappears for the mirror geometry
θi = θf . Hence it has no influence on the angular width of the specular beam101.
In order to obtain a large transfer width, the angular divergence of the incident
beam has to be minimized and a small acceptance angle of the detector is desir-
able. However, these steps will also give rise to a reduction of the intensity at the
detector8,9.

While the transfer width describes the limitations that are imposed by the ap-
paratus on the diffraction experiment, an additional broadening originates from
the so-called surface coherence length. This dimension describes the part of the
broadening which is caused by surface imperfections rather than the restraints of
the apparatus9.
Usually, all real surfaces exhibit a finite concentration of defect sites e.g. steps
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and terraces which adds the broadening ∆θw to the peak width104. The measured
overall width in the angular distribution ∆θtot is then given by the formula for
two folded Gaussian distributions:

∆θ2
tot = ∆θ2

w + ∆θ2
app (5.7)

where ∆θapp is the contribution due to the instrumental limitations discussed
above and ∆θw is the broadening caused by the finite domain sizes of the crystal.
Thereby the crystal can be thought of as being composed of perfectly ordered
domains which have however, only a finite diameter and are separated by grain
boundaries and steps. Consequently, the trajectories of He atoms scattered from
two domains, e.g. from an upper and a lower terrace will interfere which adds in
the case of destructive interference to a broadening of the peak width3.
Assuming that the trajectories from various domains add incoherently, the peak
broadening is proportional to the average domain size lc also known as the surface
coherence length3,9,105.

Figure 5.14.: Specular peak for He scattered from Bi(111) with Ei = 17.7 meV
and TS = −110◦C. The data points (open circles) were fitted with the sum of
two Gaussians to account for the coherent elastic peak (red curve) and the broad
diffuse elastic/multiphonon background (green curve). The blue line is the overall
fit to the measured data. The full width at half maximum of the narrow coherent
elastic peak is FWHM= (0.26± 0.02)◦.
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Using equation 5.7 ∆θw can be readily calculated form the measured width of the
diffraction peak if ∆θapp is known. ∆θw can then be used to determine the average
domain size lc by69,104,105:

lc =
5.54

∆θw · ki cos(θf )
(5.8)

This equation can be applied to determine lc for Bi(111) from the measurement
of the specular peak which is shown in figure 5.14. Therefore, the measured data
was fitted with two Gaussian functions in order to account for the narrow coherent
elastic contribution and the broad diffuse elastic/multiphonon contribution9,69. A
FWHM= 0.26◦ was determined from the fit of the coherent elastic contribution.
Since we are dealing with the broadening of the specular peak, the velocity spread
does not come into play. In a first estimate we will use the acceptance angle of
the detector determined in section 5.3.2.1 for the broadening of the apparatus
∆θapp = 0.15◦.
Therefore, the FWHM of the specular peak θtot = 0.26◦ gives rise to an average
domain size of approximately 400 Å as calculated from equation 5.7 and 5.8. This
value is reasonable in comparison with other experimentally determined surface
coherence lengths69,104, although it should be treated with care if used for any
quantitative conclusions.

5.3.4. Resolution of TOF Measurements

The question of resolution effects in TOF measurements was addressed shortly in
section 2.4.1. According to equation 2.26 the halfwidth (FWHM) of the measured
TOF peaks ∆tG is caused by several contributions11,14,47:

∆t2g velocity distribution of the He beam
∆t2C finite width of the chopper slit
∆t2D finite ionization length of the QMS

To extract the true width of the TOF distribution a precise knowledge of the
broadening caused by the mechanical restraints (∆tC and ∆tD) is essential. The
broadening effects may be estimated according to11,14,23:

∆tg = LCD ·
∆v

v2
(5.9)

∆tD =
XD

v
(5.10)

∆tC =
wch + wbe

2π · rch · νch
(5.11)

with the beam velocity v, ∆v the FWHM of the velocity distribution and XD the
ionization length of the QMS detector. The broadening due to the chopper opening
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5.11 is described using a trapezoidal shape rather than a Gaussian function due to
the fact that the He beam width wbe is larger than the slit width wch of the chopper.
In this case ∆tC is determined by wch, wbe, rch the radius of the chopper disk at
the position of the entering He beam and νch the frequency of the chopper23.
The width of the He beam at the position of the chopper is calculated using
geometrical considerations according to figure 4.7) giving rise to wbe = (2.9 ±
0.1) mm. For the single chopper disc and the ionization length of our detector the
following values hold:

rch = (84± 1) mm

wch = (0.55± 0.05) mm

XD = (8± 1) mm

For the measurement shown in figure 5.5 the broadening according to equations
5.10 and 5.11 becomes:

∆tD = (10± 1) µs

∆tC = (26± 1) µs

It is important to note that the broadening due to the finite ionization length
∆tD(v) is a function of the beam velocity v i.e. with increasing nozzle temperature
TN , ∆tD(v) will consequently become smaller due to the increasing v.
If the fact that the chopper gating function is not a true Gaussian is neglected,
the broadening ∆tT of the apparatus according to equation 2.26 becomes :

∆tT =
√

∆t2C + ∆t2D = (27.6± 1.5)µs

The broadening due to the finite chopper opening can also be determined ex-
perimentally. Therefore a series of time-of flight spectra with varying chopper
frequency νch is recorded. The TOF spectra are fitted using a Gaussian and the
FWHM ∆tG is then plotted versus the inverse chopper frequency 1/νch (figure
5.15).
Using equation 5.11 for νch →∞(1/νch → 0), the chopper broadening approaches
zero: ∆tC → 0. Hence the broadening of the TOF peak ∆tG according to equation
2.26) simplifies to:

∆tG(νch →∞)→
√

∆t2g + ∆t2D

From the linear fit in figure 5.15 the value for 1/νch = 0 is determined to be
∆tG(1/νch = 0) = (33 ± 1) µs. Using this value the experimentally determined
broadening for νch = 253 Hz is:

∆tC =
√

∆t2C(νch = 253 Hz)−∆t2C(νch →∞) = (29.1± 2.5) µs
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The broadening of the apparatus becomes:

∆tT =
√

∆t2C + ∆t2D = (30.8± 2.8) µs

Figure 5.15.: FWHM ∆tG of the TOF peak on the specular position against 1/νch.
TN = 65 K, tmc = 1 µs, Nmc = 1000.

Once the broadening of the apparatus is known the broadening of the velocity
distribution of the He beam ∆t2g is calculated using equation 2.26:

∆t2g = ∆t2G −∆t2T = ∆t2g −
(
∆t2C + ∆t2D

)︸ ︷︷ ︸
=∆t2T

Using the calculated value for the broadening of the chopper ∆tg becomes:

∆tg = (34± 2) µs

∆v/v = (1.7± 0.1) %

The experimentally determined value of ∆tC gives rise to:

∆tg = (32± 4) µs

∆v/v = (1.5± 0.2) %

The broadening introduced due to non ideal components of the apparatus accord-
ing to equation 5.9-5.11 can in principle be minimized. Hence it is advantageous
to minimize LCT and XD and to maximize LTD. However, from an experimental
point of view the minimization is limited by the need of accessibility and vacuum
pumping considerations and LTD is limited by the intensity loss with increasing
length106.
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5.3.5. Resolution of Phonon Dispersion Measurements

In the previous section the resolution of TOF measurements was addressed. In
determination of the phonon dispersion from TOF measurements this resolution
as well as additional aspects that will be discussed in in the following come into
play.
According to Doak11 a feature in the TOF spectrum with the energy transfer ~ω
and a time of flight broadening ∆t gives rise to an energy spread ∆Ef of the final
energy by:

∆Ef
Ei

= 2

(
1 +

~ω
Ei

)3/2
∆t

teTD
(5.12)

where teTD is the elastic target-to-detector flight time. Equation 5.12 describes the
effective energy resolution of the apparatus for a certain phonon energy and TOF
broadening. According to this the resolution becomes best if ∆Ef

Ei
approaches

zero, i.e. for extreme creation events (~ω < 0, ~ω ≈ Ei). However, due to
the conversion from TOF to phonon energy this is hardly accessible for reasons
described in section 3.3.3. On the other hand, the resolution becomes very poor
for extreme annihilation events or very low beam energies14.
In order to deal with the energy resolution the broadening shall be treated on
the energy scale. Assuming the individual broadening components to be Gaussian
distributions, the energy spread that is made up of four components is given
by:14,106:

∆E2
f = ∆E2

C + ∆E2
D + ∆E2

CT + ∆E2
en (5.13)

The first three terms describe the resolution of the apparatus in TOF measure-
ments (see section 5.3.4) and appear also in the case of an energy analyzed elastic
event.
They can be readily calculated from the corresponding contributions in the TOF
broadening (equations 5.9, 5.10, 5.11) with ∆EC the broadening of the chopper
opening function, ∆ED the broadening due to the ionizer length and ∆ECT the
broadening caused by the velocity spread of the incident beam along the chopper
target distance11,106.
In contrast to this, the last term ∆Een of equation 5.13 is inherent to any inelastic
scattering event that involves surface phonons. It adds an additional broadening
after the phonon creation or annihilation process, due to the dispersion in the
passage time from target to the detector and is composed of two components106:

∆Een = dEi + d~ω (5.14)

where dEi accounts for the dispersion resulting from the velocity spread in the
incident beam. d~ω describes the so-called kinematic smearing effect.
As described in section 3.3.3, the observation of phonon events is restricted to
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5.3. Resolution of the Apparatus

intersection points between the scan curve and the phonon dispersion relation.
Therefore, the term d�ω describes the uncertainty in the phonon energy at this
intersection point106.
In the case of an ideal beam with zero velocity and angular spread, the scan curve
is a narrow line. In this case the uncertainty is mainly given by the angle of in-
tersection between the scan curve and the dispersion curve. Hence the resolution
is worst at angles where kinematic focusing appears14, i.e. when the scan curve
is tangent to the dispersion curve. This is illustrated by the green curve in figure
5.16.
Therefore, the scattering geometry should be chosen in a way that the scan curve
crosses the dispersion curve as close to right angles as possible. The effect of kine-
matic focusing can be mainly avoided by measuring only annihilation-backward
and creation-forward phonons14,106.

Figure 5.16.: Illustration of the kinematic smearing effect due to the velocity
spread of the incident beam. Scan curves at different θi with ki ranging from
6.18 Å−1 to 6.38 Å−1 are superimposed onto the dispersion relation according
to48. In addition, the scan curve for a kinematical focusing angle (green curve) is
plotted.

For a “real” beam the scan curve is no longer a narrow line. Depending on the
velocity and angular spread of the incident beam the scan curve is smeared out
over a certain region. An intersection of this scan curve with the phonon dispersion
relation occurs if the scan curve S according to equation 3.15 equals the phonon
energy �ω:

�ω = S [ki, θi, θf ,∆K (�ω)] (5.15)
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The uncertainty d~ω at this intersection point is then given by14,106:

d~ω =
∂S

∂ki
dki +

∂S

∂θi
dθi +

∂S

∂θf
dθf +

∂S

∂∆K

∂∆K

∂~ω
d~ω (5.16)

where the last term accounts for the kinematical focusing effect described above.
The first three terms account for the velocity and angular spread of the incident
beam.
The consequence of this fact on the uncertainty of the intersection point can be
visualized graphically. In figure 5.16 the influence of the velocity spread is shown:
A number of scan curves are plotted for an incident beam with ki±∆ki (somewhat
exaggerated with respect to the actual velocity spread). The intersection with the
dispersion relation is no longer a single point but a range of phonon energies and
wave vectors.
Despite this smearing due to the velocity spread, the angular spread of the in-
cident beam has a similar effect. However, it can be seen from 5.16 that it is
generally possible to pick scattering angles at which kinematic smearing is not a
major concern in terms of resolution3.
Finally, an explicit expression for the kinematical smearing given in terms of the
angular spread ∆θi, ∆θf and the velocity spread ∆Ei can be found in the publi-
cation of Smilgies et al.106.

In addition to resolution considerations, resonance effects described in section 3.6
can be used to enhance inelastic processes under certain kinematic conditions.
Thereby phonon modes to which HAS is less sensitive, e.g. optical modes, can be
amplified using final-state inelastic resonances or focused inelastic resonances85,86.

5.3.6. Elastic Effects in Inelastic Measurements

The analysis of TOF measurements has to be carried out carefully since the TOF
spectrum may contain peaks that appear to be phonons but are not. In the
literature those events are called deceptons or spurions due to their deceptive /
spurious nature11,99

One of the most commonly observed effects is due to an elastic scattering event
that is falsely assigned as an inelastic event. These deceptons are caused due
to elastic diffraction from the wings of the incident velocity distribution99. It
is evident that the elastic diffraction of He atoms with a velocity v∗ that differs
significantly from the most probable speed v0 gives rise to a flight time that is
considerably shifted from the median elastic scattering flight time by:14

∆tTOF = LCD

(
1

v0

− 1

v∗

)
(5.17)
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(a) Elastic diffraction of the low-intensity tails of the incident beam that could
be mistaken as phonons (red dots) .

(b) The origin of a decepton due to
elastic diffraction of helium with k∗i il-
lustrated in k-space. The false assump-
tion of an incident wavevector ki yields
to a deceptive phonon event with the
momentum transfer ∆K

Figure 5.17.: Appearance of deceptons in TOF measurements and the origin of
the peaks illustrated in reciprocal space.

Hence assigning this peak in the TOF spectra falsely to an inelastic event and
determining the dispersion relation using the usual scan curve gives rise to an
“anomalous” dispersion which is illustrated in figure 5.17.
The intensity of these decepton peaks in the TOF measurements is comparable
to the intensity of true phonon features. Thus the tails that give rise to them
must be only about 10−3 of the peak intensity11,107. For that reason the undesired
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elastic components can be explained due to the presence of a very weak additional
beam component with a broad Maxwellian velocity distribution14.
However, once knowing the origin of the deceptons it is relatively easy to distin-
guish between deceptons and “real” phonons in the dispersion relation. Since the
deceptons are due to diffraction they only occur in the vicinity of diffraction peaks
and not near the specular peak11.
Furthermore a pseudo “dispersion” of the deceptons can be plotted together with
the phonon dispersion relation whereupon points that lie on this decepton “dis-
persion” curve are likely due to the undesired elastic components. Therefore, the
energy exchange ∆E and the parallel momentum transfer ∆K are calculated for
a range of velocities v∗ in the following way:
The typical conversion from TOF to ∆E and ∆K for each v∗ is determined.
Thereby the energy exchange ∆E is calculated according to equation 3.20 using
the flight time tCD = LCD/v

∗. The actual scattering angle θi is determined using
the Bragg condition, given k∗ and Ghk (which is the reciprocal lattice vector in
whose vicinity the deceptons are visible) via equation 3.10. Finally, the parallel
momentum transfer can be calculated with the aid of equation 3.16 whereupon
the just mentioned values of θi and ∆E have to be used.

Figure 5.18.: Dispersion relation for a few inelastic measurements on LiF(001) with
Ei = 10.6 meV and the crystal at room temperature. The blue circles correspond
to phonon modes; they fit the Rayleigh mode (according to Brusdeylins et al.48)
very well. The measured decepton peaks (red circles) in the vicinity of the (1, 1)

peak can be described by the plotted “dispersion” in a good way.

In figure 5.18 the dispersion relation for a set of inelastic measurements on LiF(001)
at room temperature with a beam energy of 10.6 meV is shown. The blue cir-
cles correspond to phonon modes which is confirmed by the fact that they fit the
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5.3. Resolution of the Apparatus

Rayleigh mode (blue dash-dotted line, according to Brusdeylins et al.48) very well.
The plotted “dispersion” relation of the deceptons in the vicinity of the (1, 1) peak
gives a very good fit to the measured decepton peaks.
It is remarkable that the measured decepton peaks correspond to a range of ve-
locities v∗ that go even up to to 1.2 v0. Compared to the usual halfwidth of the
incident beam with ∆v/v ≈ 0.01 the spread is much larger. This has already been
noticed by Doak11.
Therefore, the origin of the beam component that gives rise to the deceptons is
not fully understood yet. Toennies concludes that the undesired component must
originate in vacuum chambers used for differential pumping further downstream
from the source chamber14.
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6. HAS from Bi(111)

There has been an increasing interest in bismuth in the recent years since it turned
out to be a prime candidate for the study of quantum size effects in solids108–113.
In particular a phase transition in Bi involving electron pockets that host Dirac
electrons has received much attention109,114,115. Despite anisotropies in conductiv-
ity measurements of bismuth with increasing magnetic field strength or decreasing
temperature5,116, oscillations of the Nernst coefficient in bismuth have been ob-
served108,117–121.
While the strong spin-orbit interaction in bismuth remains challenging from a
theoretical point of view, it is a promising property of Bi surfaces and interfaces
with respect to applications in spintronics111. Furthermore, superconductivity of
Bi cluster films, nanowires and Bi bicrystals has been observed122–126.
Over the past decades HAS has been widely used to investigate the surfaces of
ionic crystals, semiconductors and metals but so far no attention has been given
to semimetal surfaces, with the only exception of graphite127–129. This is a bit
surprising since the diffraction patterns in HAS contain information about the
electronic structure, i.e. it reflects the surface electron density at the scattering
turning point8,9,12.
Although semimetal surfaces are usually conducting it is expected that contrary
to ordinary metals, semimetals exhibit corrugated surface profiles due to the fact
that their surface electrons and holes at the Fermi level are concentrated into fairly
narrow pockets in the surface Brillouin zone (SBZ)111,130.
In this respect the Bi(111) surface also plays a central part in the question what
marks the transition to a metal since its surface has been reported to be a much
better metal than the bulk111,112,131. Moreover, the present interest in topologi-
cal insulators (e.g.: Bi2Se3) has been a stimulus for helium scattering measure-
ments132–134.

6.1. Structure and properties of Bi(111)

Bismuth crystallizes in the rhombohedral A7 structure with two atoms per unit
cell as displayed in figure 6.1(a). The side view of the Bi(111) surface in figure
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6.2(a) shows that the crystal consists of puckered bilayers of atoms perpendicular
to the [111] direction. The covalent bonding within each of these bilayers is much
stronger than the Van der Waals character of the interbilayer bonding. Due to
those weak bonds the crystal is easily cleaved along the [111] direction111,135,136.

(a) Rhombohedral unit cell (drawn
with the aid of XCrySDen137)

(b) LEED pattern of
Bi(111)

Figure 6.1.: Rhombohedral unit cell of bismuth with 2 atoms per unit cell on the
left and a LEED pattern of the Bi(111) surface with a beam energy of 29.4 eV on
the right-hand side.

The first LEED patterns of Bi(111) was reported by Jona et al.138 and Mönig et
al.139 investigated the detailed structural parameters using LEED and ab-initio
calculations. They showed that the only relaxation on the surface is a rather small
deviation of the interlayer distances with respect to the bulk values.

(a) Side view (b) Top view

Figure 6.2.: Side and top view of the Bi(111) surface structure (structural parame-
ters according to139). Atoms in different layers are indicated using different colors
with red, green, blue and pink for the 1st, 2nd, 3rd and 4th layer respectively135.
The plot was generated with the aid of XCrySDen137.

A model of the geometric surface structure is shown in figure 6.2. Alternatively to
the rhombohedral structure, Bi may also be described using a hexagonal structure
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with six atoms per unit cell or as a pseudocubic structure with one atom per unit
cell111,138. Thereby the hexagonal lattice is the natural choice when labeling the
Bi(111) surface since it describes its first layer in an intuitive way. The unit cell in
using this notation is a rhombus with a = 4.538 Å (according to Mönig et al.139)
which is highlighted in red in figure 6.2(b).
The majority of previous experimental investigations concerning the Bi(111) sur-
face concentrates on photoemission studies112,113,131,140–144. One of the most im-
portant conclusions of this work was that the number of surface charge carriers is
much higher than the corresponding number of bulk carriers111 giving rise to the
fact that the surface is a much better metal than the bulk. Koroteev et al. showed
that this metallic character of the Bi(111) surface can be explained in terms of a
strong spin-orbit splitting135,140.

6.1.1. Sample Preparation

The Bi(111) single crystal used in this study was obtained from Metal Crystals
& Oxides Ltd. in the shape of a circular disk with a diameter of 15 mm and a
thickness of 2 mm. Prior to the measurements the surface was cleaned by Ar+

sputtering (1.5 kV, 2 µA) and annealing to 423 K.

Figure 6.3.: Diagram showing the incident angle θi of diffraction peaks on Bi(111)
versus the incident wavevector ki (left plot) and the nozzle temperature TN (right
plot) respectively. For incident angles θi < 15◦ and θi > 75◦ the helium beam is
shadowed by the sample holder which is designated by the dashed lines.
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LEED was used to determine the azimuthal alignment of the crystal (see figure
6.1(b)). Figure 6.3 shows which diffraction peaks should be observable. Therefore
the calculated incident angle for various diffraction peaks on Bi(111) is plotted as
a function of the incident wavevector and the nozzle temperature, respectively.

6.2. Elastic Scattering on Bi(111)

Figure 6.4 shows a scan of the He intensity scattered from Bi(111) along the 〈10〉
azimuth. The measurement that was carried out at an incident energy Ei =

25.5 meV with the Bi surface at room temperature, displays sharp diffraction
peaks up to second order.

Figure 6.4.: Scattered intensity of He vs. incident angle for He diffracted from
Bi(111) along the 〈10〉 azimuth with the sample at room temperature.

According to Bragg’s law (equation 3.7) for elastic in-plane scattering the recipro-
cal lattice vector Ghk can be readily obtained from the momentum transfer parallel
to the surface. Thereby the structural parameters determined from the scattering
angles agree very well with those determined by Mönig et al.135,139.
In figure 6.5(a) the 〈10〉 and the 〈11〉 scanning directions are displayed. Note that
those are the only low-index directions with a different spacing of atoms as long as
only the top-most atomic layer is considered. This is a consequence of the sixfold
symmetry of the first atomic layer136.
However, if the second layer is taken into account, the 〈11〉-direction is no longer
a mirror plane (see figure 6.5(a)). Hence the sixfold symmetry is reduced to a
threefold symmetry and diffraction intensities along the 〈10〉 azimuth would no
longer be expected to be symmetric about the specular direction136.
Usually in HAS measurements only the top-most atomic layer is considered since
the He atoms are scattered by the surface electron density due to the Pauli re-
pulsion (see section 3.4). Since the turning point depends on the energy of the
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incident He beam (equation 3.26) He atoms tend to penetrate deeper into the
surface electron corrugation with increasing incident energy. To tackle the prob-
lem of a possible interaction with second layer atoms ab-initio calculations were
performed by D. Campi and G. Benedek145.
Their calculations are summarized in figure 6.5 which shows the He turning point
due to the surface electron density for two different incident energies. For a He
beam with Ei = 60 meV a small difference in the calculated corrugation of ≈ 4%
appears. However, for He atoms with an incident energy of 17 meV (which was
the case for the measurements performed to determine the corrugation function)
the difference in the turning points is so small that it is reasonable to neglect any
influence of the second layer in the scattering of He atoms at this beam energy.

(a) 〈10〉 and 〈11〉 scatter-
ing direction for Bi(111)

(b) Ab-initio surface charge density corrugation for different beam
energies calculated by Davide Campi145.

Figure 6.5.: Ab-initio calculation of the He turning point due to the surface elec-
tron density for two different incident energies. The dashed hexagon in (a) repre-
sents the region for which the turning point in (b) was calculated. For Ei = 60 meV
the turning point at the two hollow sites indicated by the arrows is 2.74 Å at the
position of a second layer atom and 2.62 Å at the position of a third layer atom,
respectively. With respect to a maximum of 3.4 Å this gives rise to a difference of
≈ 4%. For Ei = 17 meV the difference between the two sites is just 0.04 Å and
can thus be neglected.

By cooling the sample down to a temperature of 123 K and using incident energies
of Ei = 31.7 meV (〈10〉 azimuth) and Ei = 24.1 meV (〈11〉 azimuth) of the helium
beam diffraction patterns with peaks up to third order were observable136. They
are shown in figure 6.6 as a function of the incident angle with the zero-order
diffraction peak at θi = 45.75◦.
The positions of the peaks are again in excellent agreement with the already
known structure136,139. As an advantage of the cooling, much higher intensities
compared to the measurements with the sample at room temperature could be
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achieved. There is a slight asymmetry in the angular scans which is likely to be
caused by steps in the Bi(111) surface146 and alignment problems136. In a few
measurements the bad alignment was caused by the following effect: While trying
to align the sample in a way that yields the same peak height of both second
order diffraction peaks, it turned out later, that the angular position of one of the
second order diffraction peaks coincides with a surface resonance condition. Thus
the peak height was influenced by this resonance and the sample alignment was
somewhat incorrect.

Figure 6.6.: Scattered intensity of He vs. incident angle for He diffracted from
Bi(111) along the 〈10〉 azimuth (upper part) and along the 〈11〉 azimuth (lower
part). The crystal has been cooled down to 123 K.

The angular distribution measurements illustrate that a large fraction of the scat-
tered He atoms is found in the diffraction peaks which is unusual for a surface
with metallic character. As seen from the view of the Bi(111) surface in figure
6.2b) the ion cores of the first bilayer exhibit a corrugation of 1.59 Å. Due to this
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highly corrugated surface one would expect strong diffraction peaks which is in-
deed confirmed by our measurements. However, considering the reported metallic
character of the surface one would expect a smoothing of the contour due to the
Smoluchowski effect58, yet the large diffraction peaks imply an increased impor-
tance of the surface corrugation for HAS on Bi(111) compared to other metals.
To provide a more thorough investigation of this effect a detailed analysis of the
diffraction peak intensities has been carried out135,136.

6.2.1. The Surface Corrugation

In order to determine the corrugation of the He-Bi(111) surface interaction po-
tential, intensity calculations based on the hard corrugated wall model were per-
formed. Therefore, the assumptions of the eikonal approximation8,9 as well as the
GR-method64,147 as described in section 3.4 were used. The surface was modeled
using the simple two-parameter Fourier ansatz for the surface corrugation function

ξ(x, y) = ξ01 ·
{

cos

[
2π

a

(
x− y√

3

)]
+ cos

[
2π

a

(
x+

y√
3

)]
+ cos

[
2π

a
· 2y√

3

]}
+ ξ11 · h.o. (6.1)

with x and y being rectangular coordinates with respect to the oblique geometry
of the surface and h.o. corresponding to higher order Fourier terms. Hard wall
intensities were calculated for various ξ01 and ξ11 and compared to the relative
experimental diffraction possibilities. The best-fit coefficients have then been de-
termined by varying the amplitudes ξ01 and ξ11 until optimum agreement between
the measured and the calculated intensities was reached135,136.
For this purpose the diffraction peak intensities for each G are normalized by di-
viding by the intensity of the specular peak. The accuracy of the agreement was
judged by evaluating a reliability factor R according to equation 3.36. Both az-
imuthal directions were included in the determination of the corrugation function.
The fitting procedure has been applied to angular HAS scans with the Bi crystal
at room temperature and cooled down to 123 K to account for dynamic effects
that may be related to the structure. As described in section 3.4 this approach
for fitting hard wall corrugation functions is sufficiently accurate8,68,136.
Figure 6.7 shows the corresponding angular scans along the 〈10〉 and the 〈11〉
azimuth with a beam energy Ei = 17.7 meV. In the appendix A.1 a tabular list-
ing of all diffraction peak intensities on Bi(111) that have been measured in the
framework of this thesis can be found.
For comparison with the calculated intensities the experimental peak areas were
determined. The reason for using the peak areas is due to the broadening of the
elastic peaks caused by the energy spread of the He beam and the broadening
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caused by the apparatus and the domain size of the crystal surface101,105. There-
fore the elastic peaks were fitted with two Gaussian functions to account for the
narrow coherent elastic contribution and for the broad diffuse elastic and multi-
phonon contribution69,136.
The area of the narrow coherent elastic peaks was then compared with the calcula-
tions. The asymmetries in the measurements were attributed to a poor alignment
and peak areas of corresponding peaks were averaged. In figure 6.7 the peak areas
are indicated as circles while the solid curves show the experimental count rates
versus the incident angle. Figure 6.7 also shows the calculated intensities obtained
by the eikonal approximation, indicated by the triangles and those obtained by
the GR method designated by the squares136.

Figure 6.7.: Scattered intensity of He vs. incident angle for He diffracted from
Bi(111) along the 〈10〉 and 〈11〉 azimuth for Ei = 17.7 meV. The shown mea-
surements were performed with the crystal at 300 K. The circles correspond to
the experimentally determined peak areas, the triangles indicate the calculation
using the eikonal approximation and the squares show the results using the GR
method.

To account approximately for the attractive well near the surface, the Beeby cor-
rection has been applied in the calculations8. In both cases (GR and eikonal
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approximation), a Beeby correction of 8 meV was found to provide a good fit136

which is also confirmed by bound state resonance measurements that will be de-
scribed section 6.4130.
The best fits to the data are summarized in table 6.1 with the reliability factor
according to (3.36) and the peak-to-peak corrugation in percentage of the surface
lattice constant a. The experimental results agree well with the calculations; in
terms of R the deviation is smaller than 2.8% for the GR method and smaller
than 4.0% using the eikonal approximation136.
However, it should be mentioned that the application of the eikonal approxima-
tion for such a large corrugation should be treated with caution whereas the GR
method has proven its reliability for corrugations as large as 0.18a8.

Table 6.1.: Best fit corrugations in percent of the lattice constant a corresponding
to the experimental measurements at TS = 123 K and TS = 300 K.
The results were obtained with the eikonal approximation and the GR
method by modeling the surface with the Fourier ansatz (6.1). All
calculations were performed with the Beeby correction (D = 8 meV).

R-factor (%) corr. height/a (%)
TS (K) Eikonal GR Eikonal GR

123 4.0 2.8 10.6 9.7
300 1.6 1.4 11.2 10.1

The obtained corrugation height at both surface temperatures is ≈10% of the
lattice constant. This rather large value is by no means expected at a metal-like
surface142. The reported metallic character of the surface should give rise to a
smoothing of the contour due to the Smoluchowski effect. This would imply a
nearly flat surface charge density corrugation as it has been reported for (111)

metal surfaces such as Ag(111) or Pt(111) whose spatial modulation is one to two
orders of magnitude smaller91,135,148.
Indeed such a large corrugation height is comparable to those obtained for semimet-
als such as graphite149. Although this is somewhat in contradiction to the reported
metallic character of the Bi(111) surface, the actual corrugation due to the ion
core positions seems to be the dominant effect for helium scattering135.
In figure 6.8 a surface plot together with a density plot of the best fit corrugation is
shown. At a closer look it is quite remarkable that a linearly shaped enhancement
of the electron density between the positions of the Bi atoms seems to appear.
This is not due to any contribution of atoms in the second layer since the inter-
action of He atoms with the second layer can be neglected for an incident energy
of 17.7 meV.

127



6. HAS from Bi(111)

Furthermore it should be mentioned that the calculation of the corrugation shows
a slight increase of the corrugation height with increasing surface temperature.
While this tendency is still within the uncertainty of the calculations both calcu-
lation methods, the eikonal approximation as well as the GR method show the
same trend. However, this effect could also be caused by a slight difference in the
Debye temperatures of the diffraction peaks8,68,136.

Figure 6.8.: Plot of the hard-wall potential surface for the Bi(111) surface at an
incident energy of Ei = 17.7 meV and a temperature of 300 K. The corruga-
tion was obtained by fitting the observed helium diffraction intensities within the
eikonal approximation. The peak to peak amplitude is 0.51 Å.

6.3. Surface Debye Temperature of Bi(111)

The thermal attenuation of the diffraction peaks provides insight into the surface
vibrational dynamics8. Figure 6.9 shows the decay of the specular peak intensity
with increasing surface temperature TS. Therefore scans of the scattered intensity
around the zero order peak were collected for an incident energy of Ei = 17.7 meV
while the Bi surface temperature was varied between 118 K and 408 K.
The thermal attenuation of the diffraction peak intensities is caused by vibrations
of the surface atoms giving rise to inelastic scattering of the incoming atoms. This
attenuation is described by the Debye-Waller factor which has been addressed in
section 3.4.7.
According to (3.38) and (3.41) a plot of ln(I(TS)/I0) versus the surface tempera-
ture TS gives rise to a linear decay within the Debye model whereupon the surface
Debye temperature can be calculated from the slope. In figure 6.10 the decay of
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the specular and the first order diffraction peak intensity versus temperature are
depicted. Both measurements have been carried out at an incident beam energy
Ei = 17.7 meV.
The experimental data perfectly fits a linear decay over the experimental range
consistent with the Debye model. The intensity of the first order diffraction peak
shows small deviations which could be the effect of a slightly misaligned symmetry
axis due to elongation effects when cooling down the sample with liquid nitrogen.

Figure 6.9.: Plot of the attenuation of the specular peak with increasing surface
temperature TS of the Bi(111) sample. The scattered intensity of the helium beam
with an incident energy of Ei = 17.7 meV is shown.

The slopes obtained from the linear fits of figure 6.10 are −12.1 · 10−3 K−1 for
the decay of the specular peak intensity and −15.8 · 10−3 K−1 for the first order
diffraction peak. Using equation 3.41 - 3.42 the surface Debye temperature θD
can be calculated from the slope if the mass of the helium atom scatterer M and
the potential well depth D are known136.
Due to the enhanced metallic character of the Bi(111) surface a considerable well
depth can be expected150,151. Therefore, a value of D = 8 meV was used for the
calculation of the Debye temperature. This value was also found to provide a
good fit for the calculations of the surface corrugation and is confirmed by bound
state resonance measurements (section 6.4)130,136.
With M equal to the mass of a single Bi atom, the Debye temperature θD was
determined to be (84 ± 8) K from the measurements of the specular peak and
(75±8) K from the measurements of the first order peak. Hence the surface Debye
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temperature of Bi(111) is reduced significantly with respect to the bulk value which
is 120 K152,153. This is in good agreement with the theoretical approximation of
van Delft154 that estimates a reduction of the surface Debye temperature by a
factor of 1/

√
2 with respect to the bulk value136.

Figure 6.10.: Decay of the specular and first order diffraction peak intensity I(TS)

versus surface temperature TS for an incident beam energy Ei = 17.7 meV. In
both cases the natural logarithm of I(TS)/I0 exhibits a linear slope.

Even though the determination of the surface Debye temperature using LEED
measurements usually includes the measurement of scattered electrons that are
penetrating into the first layers of the bulk, it shall be tried to compare the LEED
results with the HAS measurements. Mönig et al.139 determined a surface Debye
temperature of Bi(111) with θD = 71(+7/ − 5) K for the first layer using LEED
experiments, which is slightly smaller in comparison136

Considering collisions of the impinging helium atom with more than one surface
atom due to the cooperative motion of the surface atoms would give rise to a
helium scatterer mass M greater than that of a single Bi atom and consequently
a lower θD 155,156. However, the uncertainty in our calculation of the Debye tem-
perature results primarily from the well depth D.
Yaginuma et al.157 reported a decrease of the surface Debye temperature above
350 K which they attribute to a softening transition of the outermost interbilayer
bonds accompanied by a hardening of the topmost intrabilayer bonds. Using
LEED experiments they determined the surface Debye temperature of a bismuth
nanofilm that adopts the same structure as the bulk truncated Bi(111) surface.
Thereby θD decreases from 76 K to 50 K for TS > 350 K157.
However, in the HAS measurements there is no evidence for such a drop in the
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surface Debye temperature. The fact that this transition is not observed in the
measurements of the bulk truncated surface may be caused by different properties
of the nanofilm or a signature of the substrate136.
However, it has been shown that the nanofilm surface takes the same atomic con-
figuration with a lattice constant that is almost the same as the one of the bulk
truncated surface158. Therefore the reason for the different behavior of the surface
Debye temperature is likely due to the different nature of the LEED experiments
in comparison to HAS where the helium atoms are scattered at the surface electron
density136.

6.4. Selective Adsorption Resonances

Besides the elastic diffraction peaks, which contain information about the surface
structure and the associated surface electron density, small features can occur in
the angular distribution of HAS measurement at angular positions different to
the diffraction peak positions. They necessarily correspond to inelastic processes
involving single surface phonons and can be caused either by kinematical focusing
or due to phonon assisted selective adsorption resonances (see section 3.6).
Figure 6.11a displays the angular distribution for He with Ei = 15.1 meV scat-
tered from Bi(111) along the 〈11〉 azimuth. The y-axis is greatly magnified which
shows several small additional features. The position of these additional features
due to bound state resonances, which can be either peaks or dips, allows the de-
termination of the bound state energies.
The features observed at θi = 32◦, 37◦, 42◦ and 51◦ in the angular regions be-
tween the specular and the first order diffraction peaks are attributed to selective
adsorption. The bound state energies of these resonances are calculated using the
resonance condition (equation 3.51). Therefore, the curve corresponding to the
resonance condition (equation 3.51) as a function of θi is superimposed onto the
angular distribution for different ~G-vectors130.
The two broken lines plotted in figure 6.11a correspond to the smallest ~G-vectors
indexed by (1, 1) and (1, 0). The three resonances on the left-hand side of the spec-
ular peak are clearly associated with the (1, 1) channel (in-plane resonances) and
three different bound states. The large resonance at 51◦ can be associated with
the (1,0) channel (out-of-plane resonance) and the same bound state energy as the
feature at 32◦. The (1,0)-channel provides two further resonances associated with
deeper bound state energies that are expected at 58◦ and 66◦. The corresponding
signatures in the angular distribution could correspond to the broad bump and
the small sharp peak in figure 6.11a which are however, hardly detectable above
the background noise130.
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Figure 6.11.: (a): Angular distribution of the scattered intensity (ordinate scale on
the left-hand side) for He scattered from Bi(111) along the 〈11〉 azimuth. Besides
the specular and the two first order diffraction peaks, the angular distribution
shows additional features corresponding to selective adsorption resonances. The
bound state energies that may give rise to a feature in the angular distribution
are plotted as functions of the incident angle (broken lines) for the two smallest
�G-vectors indexed by (1, 1) and (1, 0). The vertical arrows associate the resonant
features with the energies of three bound states whereupon the ordinate on the
right-hand side corresponds to the bound state energy.
(b): Same as (a) for the 〈10〉 azimuth

The binding energies determined from these resonance features in figure 6.11 are:

E0 = (6.18± 0.55) meV

E1 = (3.49± 0.28) meV (6.2)

E2 = (1.42± 0.30) meV
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After the energy values have been calculated from the most prominent resonances,
other weaker features can eventually be assigned to other combinations of recipro-
cal lattice vectors ~Ghk with bound states n: (~Ghk)n. Those are for example (1, 1)2

and (1, 0)1 along the 〈10〉 azimuth (fig. 6.11b)130.
In contrast to the 〈10〉 azimuth the measurement along the 〈11〉 azimuth (figure
6.11b shows only one strong resonance feature that appears right next to the spec-
ular peak. This peak can be identified as the (1, 0)2 resonance.

6.4.1. He-Bi(111) Interaction Potential

The experimentally determined bound state energies can be used to evaluate the
He-Bi(111) interaction potential. A good description of this interaction potential is
given in terms of the 9-3 potential (equation 3.53 in section 3.6.4). The eigenvalue
spectrum provided by the 9-3 potential according to equation 3.54 is fitted with
the experimentally determined bound state energies by a least-squares method.
The potential parameters resulting from the fit are130:

D = (8.32± 0.73) meV (6.3)

σ = (0.297± 0.012) nm

Figure 6.12.: Best fit 9-3-potential (equation 3.53) for the He-Bi(111) atom-surface
interaction with D = 8.32 meV and σ = 0.297 nm. The red lines indicate the
experimentally determined bound state energies and their uncertainties, the green
lines correspond to the analytical bound state values from equation 3.54

Figure 6.12 displays the 9-3-potential according to the best fit parameters, to-
gether with its three bound states and the respective confidence intervals. The
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calculated potential well depth D is consistent with previously determined values
for noble metal vicinal (corrugated) surfaces such as D = 7.41 meV for Cu(117)159

and D = 9.3 meV for Ag(111)130,160.
Note that in a more general treatment as shortly outlined in section 3.6 the poten-
tial follows the corrugation at the surface which gives rise to band structure effects
such as gaps in the bound-state dispersion relation. These effects are more pro-
nounced for deeper bound states, i.e., for atoms moving closer to the surface89.
Nonetheless, they are sufficiently small and the restraints of the experimental
measurements allow only the determination of a laterally averaged potential130.

6.4.2. Resonance Effects in the Specular Intensity

In addition to the measurement of resonances in the angular distribution two
further experimental approaches are possible (3.6): While the intensity variation
with the azimuthal rotation of the crystal is difficult to perform in the apparatus,
variation of the incident energy Ei is easily applied. Therefore, the intensity of
the specular peak is recorded as a function of the incident energy Ei or the corre-
sponding incident momentum ki.
The resonant features which are expected to occur in this measurement are calcu-
lated by solving the resonance condition (equation 3.51) with respect to ki for the
specular θi and for a given ~G and |En|. The nozzle temperatures TN corresponding
to the values of ki at which resonances in the intensity of specular peak can occur
are summarized in table 6.2.

Table 6.2.: Nozzle temperatures TN at which bound-state resonances are expected
to cause a dip in the intensity of the specular peak with the sample
aligned along the 〈10〉 azimuth. Resonances are labeled by (~G)n

Resonance TN(K)

(0, 2)0 33
(1, 1)0 70
(0, 2)1 83
(0, 2)2 114
(1, 1)1 127
(1, 1)2 163

In principle this measurement could be performed at any angular position θi, but
fixing the incident angle at the specular peak provides the best signal-to-noise
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ratio. Figure 6.13 shows the peak height of the specular peak recorded while the
nozzle temperature was varied between 60 K and 200 K (4.5 < ki < 9 Å−1)130.
Since the flux of He atoms through the nozzle is a function of the nozzle tempera-
ture via T−

1
2

N according to Miller6, the specularly reflected intensity should exhibit
a similar continuous decay with increasing nozzle temperature if resonance effects
are not considered and the sample is held at a constant temperature. However,
besides this expected continuous decrease of the intensity, figure 6.13 shows some
clear and intense dips at 76, 86 and a broad feature at 116 K.
According to the predictions of table 6.2, the observed dips can be associated to
the (1, 1)0, the (0, 2)1 and the (0, 2)2 resonances. Hence the measurement of res-
onance feature in the specular intensity confirms the values of the 9-3 potential
that have been determined from the resonances in the angular distribution130.

Figure 6.13.: Peak height of the specularly reflected helium beam vs. the nozzle
temperature in the 〈1, 0〉 scattering plane. The dips at 76 K, 86 K and the broad
feature at 116 K can be explained with the aid of bound state resonances.

The knowledge of the He-Bi(111) interaction potential does not only provide fun-
damental information about the atom surface interactions and the main trends
of surface phenomena. Bound-state resonances can also be applied to enhance
inelastic HAS intensities e.g. of optical surface phonon modes85,86,130.
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6.5. Determination of the Phonon Dispersion
Relation

As opposed to the electronic structure nothing is known about the surface phonons
on Bi(111) so far which is where HAS plays fully on its strength. Inelastic HAS
measurements are of particular interest on Bi surfaces since the phonon energies
are too low to be accessible for other scattering techniques such as electron scatter-
ing111 and HAS has been demonstrated to be a method of choice for the study of
surface phonons in the low energy regime with resolutions better than 0.1 meV10.

Figure 6.14.: Time-of-flight spectra converted to energy transfer spectra for helium
atoms scattered from the Bi(111) surface along the 〈11〉 azimuth (ΓM). The crystal
was cooled down to TS = 103 K

In figure 6.14 a series of TOF spectra that have been converted to the energy
scale is shown. The measurements have been carried out with the Bi crystal
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cooled down to 103 K at different incident angles θi along the 〈11〉 azimuth. The
energy transfer spectra reveal several peaks on the creation and annihilation side.
In order to identify the peak maxima and to resolve merged peaks, the spectra
were least squares fitted by multiple Gaussian peaks whereupon an example is
shown in figure 6.15.
The diffuse elastic peak at ∆E = 0 in figure 6.14 is due to the small concentra-
tion of surface defects which are even found on perfectly structured surfaces161.
The small magnitude of this diffuse elastic peak approves the good quality of the
surface.
Peaks at positions corresponding to bound state resonances (illustrated by the
vertical red lines in figure 6.15 have not been included in the surface phonon dis-
persion since they may correspond to resonance-enhanced bulk modes and are
thus no longer localized on the surface.

Figure 6.15.: Energy transfer spectra for helium atoms scattered from the Bi(111)
surface along the 〈11〉 azimuth at θi = 40.3◦ and TS = 103 K. The blue line
represents a least squares fit of the experimental data (gray circles) with a sum of
Gaussian peaks whereupon the green lines correspond to the individual Gaussian
peaks. The vertical red lines illustrate the position of bound state resonances
according to the 9-3 potential with the parameters from equation 6.3 and are
labeled by (~G)n.

To determine the entire phonon dispersion curve up to the Brillouin zone bound-
ary a series of time-of-flight spectra was measured at incident angles between the
first-order diffraction peaks. The phonon dispersion was then obtained by trans-
forming each TOF spectrum into an energy spectrum from which the phonon en-
ergy ∆E = ~ω was extracted. The phonon wave vector ~Q was calculated from the
conservation of parallel momentum and energy known as the scan curve (equation
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3.16). Finally, wavevectors extending beyond the fist Brillouin zone were folded
into the first Brillouin zone.
Using the measurement of a few hundred time-of-flight spectra, the surface phonon
dispersion relations for both high symmetry directions as well as for the cooled
sample and the sample at room temperature were obtained. The phonon disper-
sion relation for the cooled sample is shown in figure 6.16.

Figure 6.16.: Measured surface phonon dispersion relation for Bi(111). The crystal
was cooled down to TS = 123 K for the measurement along the ΓM-azimuth and
to TS = 103 K for the ΓK-azimuth. Different colors represent possible different
modes.

The different colors of the data points represent a first attempt to attribute them
to different modes. The blue squares, which correspond to the mode with the
lowest energy are likely to be due to the Rayleigh mode.
In the measurement along ΓM there appears a flat mode at approximately 14 meV
plotted as purple squares in figure 6.16. In comparison to the phonon dispersion of
the bulk from Díaz-Sánchez et al.30 which is displayed in figure 6.17 this mode is
situated somewhat above the bulk edge. This suggests that it is an optical surface
mode.
While the mode is detected along ΓM, where it is barely recognizable above the
noise in the TOF measurements, there is no hint for this mode along ΓK. This is
probably due to the fact that surface optical modes are usually less sensitive to
HAS86.
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There appear to be two further modes in the dispersion relation: The red circles
which appear in an energy region that is typical for a longitudinal resonance,
a common feature on metal surfaces39 and a mysterious mode displayed by the
green triangles. In order to gain further insight into the nature of these modes, the
measured dispersion shall be compared with calculations of the surface phonons
on Bi(111).

Figure 6.17.: Bulk phonon dispersion of bismuth according to the calculation of
Diaz-Sanchez et al.30.

The dispersion curves of Bi(111) which are shown in figure 6.18 have been calcu-
lated by Davide Campi145 from DFPT (density functional perturbation theory).
The calculations were performed using a 6-layer slab without the spin orbit interac-
tion since the calculation of the complete dispersion is computationally expensive.
Campi performed also a calculation at the Γ-point including the spin orbit inter-
action which gives rise to a softening of the phonon modes of approximately 8%
with respect to the calculation without spin orbit coupling. This can be seen as
a rough trend for the entire phonon dispersion although an exact calculation is
required for definitive conclusions145.
In order to compare the calculated surface lattice dynamics with the measured sur-
face phonon dispersion the experimental data in the energy region of the acoustic
modes is plotted in figure 6.19. The data for both the cooled sample and the sam-
ple at room temperature are shown to account for temperature dependent effects
related to the phonon dispersion.
Obviously the data measured at room temperature shows a larger variation which
can be attributed to the peak broadening due to the increasing multi-phonon
contribution with higher temperature11. Furthermore, significantly shorter TOF
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measurement times were used along the ΓM-azimuth at room temperature.

Figure 6.18.: Dispersion curves of a Bi(111) 6-layer slab from a DFPT calculation
without spin orbit coupling performed by D. Campi145. Highlighted branches rep-
resent surface localized modes and resonances. The left hand graph shows modes
with longitudinal polarization of the first three layers (L1-L3). The right hand
graph displays modes with shear vertical polarization (SV1-SV3). The intensity
projected onto the corresponding layer is given by the color coding.

The Rayleigh mode (blue squares) was fitted using a simple force constant model
considering only the first atomic layers with nearest and next nearest neighbor
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interactions. The fitted curves are illustrated by the solid blue lines in figure
6.19. From these fits the group velocity was determined which is illustrated by
the dashed lines in figure 6.19.
Along the the ΓK-azimuth a group velocity of 9.0 meV is obtained for the cooled
sample and 8.0 meV for the sample at room temperature. Along ΓM the group ve-
locity changes from 8.7 meV for the crystal at low temperature to 7.9 meV at room
temperature. This decrease in the phonon energy with increasing temperature is
a common effect in the phonon dispersion33.

(a) Sample at 123 K for the measurement along the ΓM-azimuth and at 103 K
for the ΓK-azimuth

(b) Sample at room temperature

Figure 6.19.: Measured surface phonon dispersion of Bi(111). The solid blue lines
were fitted using a simple force constant model of the first atomic layer. The black
dashed lines represent the corresponding group velocities of the Rayleigh mode.
The solid red and green lines serve as a guide to the eye.
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Due to the pseudocubic character of the Bi(111) surface it is reasonable to com-
pare the data with those of fcc(111) metals e.g. measurements of the surface
phonon dispersion on Pt(111) by Harten et al.35. Using the proportion of the
surface Debye temperatures on Bi(111) and Pt(111)139,162 and the data by Harten
et al. one would expect a group velocity between 6 meV and 6.8 meV for Bi(111).
The actual group velocity determined from the phonon dispersion of Bi(111) is
significantly larger, which is however confirmed by the DFPT calculations of D.
Campi145 shown in figure 6.18.
The DFPT calculations also illustrate that the intensity of the Rayleigh mode
is rather weak, in particular in the vicinity of Γ it exhibits hardly any intensity.
Indeed this is confirmed in the measurements where the Rayleigh mode cannot be
observed for small wavevectors along ΓM up to approximately 0.2 Å (figure 6.19).
Furthermore, the calculations also show the existence of the strong longitudinal
resonance (red circles in figure 6.19). According to the calculations this mode is
located in the first bilayer and exhibits the largest amplitude in the second layer
(L2 in figure 6.18). The high intensity of this mode also confirms the fact that
the corresponding peak in the TOF spectra is higher than the one of the Rayleigh
mode.
Interestingly for the cooled sample (figure 6.19(a)) the Rayleigh mode tends to
bend down before reaching the zone edge. In particular, the zone edge energy of
the Rayleigh mode is even lower at the K-point than it is at the M-point which
is in contrast to the calculations. This behavior and the phonon dispersion along
ΓK in figure 6.19(a) look very much as in the case of an avoided crossing.
A similar avoided crossing has been observed in the phonon dispersion of metal
surfaces such as Cu(111) and Al(001)39. Thereby on Cu(111) a large avoided
crossing between the Rayleigh branch and the longitudinal resonance is observed
which has been attributed to an intrinsic feature of metal surface dynamics39,163.
Moreover, in the phonon dispersion of Cu(111) there appears also an avoided cross-
ing between the longitudinal resonance with a 2nd-layer surface optical mode163

which shows a behavior quite similar to the flat mode represented by the green
triangles in figure 6.19(a).
In the following the longitudinal resonance and the flat mode at approximately
4 meV shall be discussed in greater detail and in particular, why they can be
observed using HAS.

6.5.1. The Longitudinal Resonance

The DFPT calculations of the Bi(111) phonon dispersion (figure 6.18) clearly show
the presence of a strong mode with longitudinal polarization in the first and the
second layer which appears in the same energy region as the mode represented by
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the red dots in the measured dispersion curve (figure 6.19).
This fact may again be an indication of the reported metallic character of Bi(111)
since the existence of a surface acoustic phonon branch which is not predicted by
the continuum theory is a common feature on metal surfaces. This so-called lon-
gitudinal resonance has only recently been discussed for surfaces such as Cu(111)
and Al(001)39,163. While Heid et al.34 first conjectured that this acoustic longitu-
dinal resonance is an artifact of HAS it could be shown that this resonance is an
intrinsic feature of the surface dynamics on metals38,39.
Indeed this is quite intriguing since the displacement field of this phonon mode is
located subsurface to a large extent and the question arises how HAS, a strictly
surface-sensitive technique, can measure these modes with intensities that are of-
ten exceeding those of the Rayleigh wave38,39.
However, HAS does not measure the phonon amplitudes but the corresponding
surface charge density oscillations. Therefore, the intensities in inelastic HAS
measurements can only be explained via the calculation of these charge density
oscillations. These calculations showed that certain surface modes, that exhibit a
negligible displacement in the surface layer, can nevertheless induce large charge
density oscillations on the surface and give rise to large inelastic HAS ampli-
tudes38,39,163.
Notably, via this charge density oscillations, HAS intensities contain even infor-
mation on the surface electron-phonon interaction163.

6.5.2. The S3 Mode

Phonon modes with a similar dispersion as the flat mode at approximately 4 meV
(green triangles in figure 6.19) have been observed for the vibration of adsorbates
on surfaces. Those nearly dispersionless branches appear in a similar energy re-
gion and have been attributed to a collective motion of the adsorbate layer164–166.
However, the influence of adsorbates on the Bi(111) surface can be excluded, since
the diffuse elastic peak remains small during the timescale of the experiment. Fur-
thermore, this mode cannot be explained by means of surface resonances, since
the position of the peaks in the energy transfer spectra does not coincide with any
resonance features with probable G-vectors.
The calculation of the surface phonon dispersion of Sb(111) by Campi et al.167

already showed a flat strong resonance that appears in exactly the same energy
region as on Bi(111) if the phonon dispersion of Sb is scaled accordingly. Interest-
ingly, this branch appears in the projection onto the third layer (second bilayer).
As pointed out above, even though the He atoms are scattered by oscillations of
the surface electron density about 2 − 3 Å away from the first atomic layer, it
has been shown that such subsurface modes are accessible for HAS. In the case
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of a strong electron-phonon interaction the electron charge density above the first
layer can oscillate up and down due to movement of the atoms in subsurface lay-
ers. Thereby it was shown that in the case of Pb(111) overlayers on Cu(111) even
deep subsurface modes that are localized at the seventh layer could be observed
by HAS161,168.
Indeed, the calculations of the Bi(111) surface phonons seem to confirm the lo-
calization of this mode in the third layer. In particular, in the vicinity of the
Γ-point a strong longitudinally polarized mode appears at 4 meV (L3 in figure
6.18). Furthermore, there appears a strong shear vertical mode at approximately
5 meV, localized on the third layer, which extends nearly dispersionless over the
entire Brillouin zone (SV3 in figure 6.18). Yet the SV mode is a little too high in
comparison with the experiment, but this could be compensated by the expected
softening if the spin orbit coupling were included in the calculations.
Therefore, the experimentally measured points in this energy region are likely to
be caused due to the modes localized in the third layer. This is also supported by
calculations which show that the SV3 mode produces an important surface charge
density oscillation, which is of the same size as the highest optical mode145.

6.5.3. Indication for a Kohn Anomaly

Figure 6.20 shows a magnification of the Rayleigh mode along ΓK for the measure-
ment with the crystal cooled down to 103 K. Although there are unfortunately
only a few points available the dispersion curve exhibits distinct anomalies along
ΓK: There appear two drops in the energy of the Rayleigh mode at the position
of 0.11 Å−1 and 0.39 Å−1. Such a softening of the phonons at a discrete value of
Q can be caused by a so-called Kohn-anomaly169.
It was Kohn who showed that dips in the phonon dispersion, known as Kohn
anomalies, can be caused by electron-hole excitations which appear across the
Fermi-surface with 2kF

170,171. The alternating compressions and expansions of
the lattice caused by a phonon propagating through a metal can give rise to the
excitation of an electron-hole pair. Due to this process each electron subtracts the
energy that is necessary for the transition from the energy and momentum of the
phonon.
Under so-called nesting conditions this is the case for a multitude of electrons and
a strong coupling between phonons and electron-hole excitations occurs. There-
fore at values of Q, where this nesting condition is fulfilled, a dip appears in the
phonon dispersion10

At T = 0 K the drop-off in the phonon energy is proportional to ln | q+2kF
q−2kF

|, hence
the dip appears exactly at q = 2kF . However, as demonstrated by Kröger169 this
static approximation also holds at higher temperatures for the phonon energies
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which are considered in this work. Consequently, the behavior of the phonon
dispersion at q = 2kF is related to the topology of the involved Fermi surface.169

Figure 6.20.: Measured surface phonon dispersion for Bi(111) along ΓK with the
crystal at 103 K. The solid blue line was fitted using a simple force constant model
of the first atomic layer. The red line acts as a guide to the eye with the typical
shape of a Kohn anomaly at Q = 0.11 Å−1 and Q = 0.39 Å−1.

From the ARPES intensity map at the Fermi level (figure 6.21) which was mea-
sured by Ast et al112 it can be seen that a good nesting region along ΓK appears
for a transition between the two opposite sides of the small hexagon representing
the electron pockets. The nesting vector for the small hexagon was determined to
be 2kF = 0.106 Å−1 by Kim et al.172. Since the position of the Kohn anomaly in
the phonon dispersion is related to the Fermi surface via the condition Q = 2kf
this corresponds perfectly to the first dip in figure 6.20.
Note that the hexagonal element of the Fermi surface as shown in figure 6.21, is
rotated by 30◦ with respect to the surface Brillouin zone which corresponds to a
strong nesting in the ΓK-direction172. This confirms also the fact that along ΓM
no dips appear in the measurement. In particular, along ΓK the contours of the
Fermi surface exhibit parallel segments, hence the necessary condition is fulfilled
by various electronic states169.
Another evidence for the existence of a Kohn anomaly is found in the tempera-
ture dependence, since the indentation of the dispersion curve due to the Kohn
anomaly should decrease with increasing temperature169. While there appears
no clear indication for any dips in the measurement at room temperature, they
emerge in the dispersion determined with the crystal at 103 K.
Furthermore, theory predicts that the dip in the phonon dispersion increases as
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the dimensionality of the system is reduced169. Therefore, the rather large dip in
the phonon dispersion may be a hint towards a two-dimensional system.
The second anomaly observed at 0.39 Å−1 in the phonon dispersion could be
caused by transitions between the drop-like hole-pockets in figure 6.21. In contrast
to the former intraband process the nesting condition involves now an interband
transition whereupon there are four different ways along ΓK for this nesting.

(a) Intensity map at the Fermi level from112 (b) Surface Brillouin zone

Figure 6.21.: ARPES intensity map at the Fermi level of Bi(111) from Ast et
al.112†. The small hexagon corresponds to electron pockets whereas the drop-like
contours are hole pockets.

It is important to note that, if there exist Kohn anomalies, those are non-adiabatic
Kohn anomalies. As demonstrated by Kim et al.172, the two opposing electron
states on the hexagon of the Fermi surface exhibit opposing spin. Hence a transi-
tion between those two states would require a spin flipping process which can no
longer be explained in terms of an adiabatic process.
Therefore, the anomaly observed in the phonon dispersion must be related to a
non-adiabatic effect such as the sharp anomalies in hydrogen covered systems e.g.
W(110):H and Mo(110):H39,169,173.
Non-adiabatic anomalies can be attributed to an avoided crossing between the
surface phonon branch with the quasi-1D electron-hole excitation branch. In this
case HAS does no longer create a phonon but an electron-hole excitation due to a
† Copyright (2001) by the American Physical Society
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strong electron-phonon coupling. In general, these non-adiabatic anomalies can be
measured with HAS which is sensitive to charge density oscillations whereas EELS
(electron-energy-loss-spectroscopy) is relatively insensitive to the charge density
oscillations39,174.
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7. Summary

The present work describes the experimental technique of helium atom scattering
(HAS) from surfaces to gain information on both surface structure and surface
dynamics. While one part of the work concentrates on a first characterization of
the apparatus, the novel findings on the structure and dynamics of Bi(111) are
summarized below.

Surface Structure

Elastic HAS measurements on Bi(111) at a surface temperature of 123 K exhibit
diffraction peaks up to third order whose positions are in an excellent agree-
ment with the structural data previously obtained by Mönig et al.139. The high
intensities of the diffraction peaks indicate a large corrugation both at surface
temperatures of 123 K and 300 K.
With the eikonal approximation and the GR method a corrugation function was
determined with a corrugation height of approximately 10% of the surface lat-
tice constant. This is somewhat surprising since the reported metallic character
of Bi(111) would imply a smoothing of the charge density corrugation by the
Smoluchowski effect and hence a nearly flat corrugation. However, the observed
corrugation height is comparable to those obtained for semimetals and may also
be a consequence of the surface electron pocket states at the Fermi level.
Thermal attenuation effects in the intensities of the diffraction peaks were studied
in a temperature range between 118 K and 408 K. A typical Debye-Waller behav-
ior revealed surface Debye temperatures of (84± 8) K from the measurements of
the specular peak and (75± 8) K from the measurements of the first order peak.
In contrast to LEED measurements of a Bi nanofilm with a similar structure the
surface Debye temperature measured with HAS remains constant over the whole
temperature range, probably due to the different nature of electrons and helium
atoms in scattering experiments.
Moreover, the corrugated Bi(111) surface allows also the observation of bound
state resonances from which the corresponding surface potential profile can be
determined. From the angular distribution three bound state levels were identi-
fied with binding energies of 6.18, 3.49 and 1.42 meV. These bound states were
fitted with a 9-3 atom-surface interaction potential giving rise to a well depth
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7. Summary

of D = (8.32 ± 0.73) meV. The determined values of the 9-3 potential could
be confirmed by the measurement of resonance features in the specular inten-
sity. The well depth D is consistent with previously determined values for noble
metals130,160.

Surface Dynamics

Using inelastic helium atom scattering the surface phonon dispersion of Bi(111)
has been determined for the first time. Notably, due to the low energies the sur-
face phonons on Bi(111) are hardly accessible for other scattering techniques such
as electron scattering.
The surface phonon dispersion curve up to the Brillouin zone boundary was deter-
mined from a series of time-of-flight spectra. Thereby the phonon dispersion was
measured at surface temperatures of 123 K and at room temperature. In both
high-symmetry directions the phonon dispersion exhibits a Rayleigh mode, a lon-
gitudinal resonance and a nearly dispersionless branch at approximately 4 meV.
The group velocity of the Rayleigh mode gives rise to values between 7.9 meV ·Å
and 9.0 meV ·Å depending on the azimuthal direction and the surface temperature
whereupon the group velocity shows the typical decrease with increasing surface
temperature. A comparison of the dispersion with DFPT (density functional per-
turbation theory) calculations by D. Campi145 confirms the rather weak intensity
of the Rayleigh mode in particular close to the Γ-point.
Furthermore, the calculations also show the existence of the strong longitudinal
resonance which exceeds the intensity of the Rayleigh mode. The appearance of
such a phonon branch is a common feature on metal surfaces39 which is again
an indication of the metallic character of the Bi(111) surface. Interestingly, the
DFPT calculations show that this mode exhibits the largest amplitude in the sec-
ond layer. However, since HAS measures the surface charge density oscillations
corresponding to the phonon amplitudes this mode can cause a large inelastic HAS
amplitude via the electron-phonon interaction.
At first sight the origin of the flat phonon branch at approximately 4 meV, which
appears in the energy region of the acoustic bulk modes, seems even more puz-
zling. While the influence of adsorbates on the surface can be excluded, scaled
calculations of the surface phonon dispersion of Sb(111) already showed such a
mode in the projection onto the third layer167. Indeed, the DFPT calculations for
Bi(111) are able to reproduce the localization of this mode in the third layer (the
second bilayer).
Thereby this branch is likely to be caused by a longitudinally polarized mode in
the vicinity of Γ which turns into a shear vertical mode that extends nearly disper-
sionless over the entire Brillouin zone. In particular the DFPT calculations show
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that the shear vertical mode produces a surface charge density oscillation, which is
of the same size as the highest optical mode145. The underlying mechanism is the
electron phonon-coupling which causes the electron charge density above the first
layer to oscillate up and down due to the movement of the atoms in subsurface
layers. Whereas such subsurface modes have already been observed with HAS in
the case of Pb(111) overlayers on Cu(111)161, this effect is observed for the first
time on a single crystal surface.
Finally, the Rayleigh mode shows an indication for a Kohn anomaly along ΓK.
While the position of this anomaly coincides with nesting vectors across the Fermi
surface involving the electron pockets and hole pockets, the anomaly must be re-
lated to a non-adiabatic effect which cannot be reproduced by DFPT. To confirm
this indication of a Kohn anomaly, further measurements are on their way where-
upon it should even be possible to calculate the dimensionless electron-phonon
coupling parameter from the temperature dependence169.
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A. Appendix

A.1. Tabular Listing of the Measured Diffraction
Intensities on Bi(111)

Table A.1.: Diffraction peak intensities for He scattered from Bi(111) along the
〈11〉 azimuth at different incident energies Ei and surface temperatures
TS.

~Ghk Peak inten- Peak area Relative Relative
Ei (meV) TS (K) h k sity (cps) (◦ cps) intensity area

1 1 1390 957 0.14 0.22
17.9 113 0 0 10141 4437 1.00 1.00

-1 -1 1262 830 0.12 0.19
1 1 1387 1054 0.10 0.20

21.4 113 0 0 13271 5308 1.00 1.00
-1 -1 885 627 0.07 0.12
1 1 688 541 0.07 0.14

24.1 113 0 0 9574 3903 1.00 1.00
-1 -1 645 369 0.07 0.09
1 1 2072 1211 0.17 0.33

15.5 123 0 0 12229 3635 1.00 1.00
-1 -1 902 588 0.07 0.16
1 1 86 89 0.02 0.07

39.7 122 0 0 3918 1199 1.00 1.00
-1 -1 46 28 0.01 0.02
1 1 153 97 0.04 0.07

31.7 197 0 0 4113 1366 1.00 1.00
-1 -1 97 88 0.02 0.06
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A. Appendix

Table A.2.: Diffraction peak intensities for He scattered from Bi(111) along the
〈11〉 azimuth at different incident energies Ei and the crystal at room
temperature (TS = 300K).

~Ghk Peak inten- Peak area Relative Relative
Ei (meV) TS (K) h k sity (cps) (◦ cps) intensity area

1 1 494 318 0.20 0.29
16.8 300 0 0 2477 1082 1.00 1.00

-1 -1 394 236 0.16 0.22
1 1 431 259 0.16 0.27

17.9 300 0 0 2615 976 1.00 1.00
-1 -1 337 198 0.13 0.20
1 1 379 239 0.13 0.20

20.3 300 0 0 2999 1203 1.00 1.00
-1 -1 230 119 0.08 0.10
1 1 260 161 0.14 0.22

22.4 300 0 0 1865 736 1.00 1.00
-1 -1 177 106 0.09 0.14
1 1 165 84 0.11 0.14

24.8 300 0 0 1549 584 1.00 1.00
-1 -1 134 66 0.09 0.11
1 1 127 66 0.09 0.13

27.2 300 0 0 1347 527 1.00 1.00
-1 -1 87 51 0.06 0.10
1 1 107 47 0.10 0.12

29.3 300 0 0 1048 408 1.00 1.00
-1 -1 72 31 0.07 0.08
1 1 72 20 0.10 0.08

31.7 300 0 0 702 261 1.00 1.00
-1 -1 47 19 0.07 0.07
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A.1. Tabular Listing of the Measured Diffraction Intensities on Bi(111)

Table A.3.: Diffraction peak intensities for He scattered from Bi(111) along the
〈10〉 azimuth at different incident energies Ei and surface temperatures
TS.

~Ghk Peak inten- Peak area Relative Relative
Ei (meV) TS (K) h k sity (cps) (◦ cps) intensity area

2 0 783 432 0.07 0.24
1 0 5074 1458 0.47 0.81

17.7 123 0 0 10730 1805 1.00 1.00
-1 0 2784 1004 0.26 0.56
-2 0 531 341 0.05 0.19
3 0 37 27 0.01 0.03
2 0 413 328 0.09 0.35
1 0 797 577 0.17 0.61

30.8 123 0 0 4572 945 1.00 1.00
-1 0 578 323 0.13 0.34
-2 0 439 328 0.10 0.35
-3 0 26 33 0.01 0.04
1 0 1558 613 0.24 0.63

15.5 203 0 0 6592 978 1.00 1.00
-1 0 1465 584 0.22 0.60
2 0 214 125 0.13 0.30
1 0 582 272 0.36 0.64

15.5 303 0 0 1606 422 1.00 1.00
-1 0 695 317 0.43 0.75
-2 0 99 47 0.06 0.11
2 0 329 170 0.13 0.28
1 0 1113 401 0.43 0.66

17.7 300 0 0 2580 605 1.00 1.00
-1 0 943 364 0.37 0.60
-2 0 211 124 0.08 0.21
2 0 182 83 0.24 0.54
1 0 189 90 0.25 0.58

30.8 300 0 0 748 155 1.00 1.00
-1 0 168 82 0.23 0.53
-2 0 157 76 0.21 0.49
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