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Abstract

In this thesis three fundamental tasks in computer vision for object detection are ad-

dressed: a) shape-based feature extraction, description and matching, b) object category

modeling for detection, and c) joining detection, localization and segmentation for im-

proving performance. All of these topics are highly related to each other and novel and

faster solutions are provided for the task of object detection.

The goal of this thesis is in partial shape description and matching, category model

learning, as well as joining the multiple stages of the object detection into a coherent

optimization. The focus is placed on the following underlying challenges. First, feature

extraction for shape-based recognition is investigated. The extraction is brought from

single pixel evidence to a method integrating mid-level information based on regions.

This context integration helps to better distinguish local edge information by consider-

ing the underlying region boundaries. Second, considering the essential cue of shape

one requires a description, which captures the geometry of the object in a structured

and efficient form. This description is built on the sequential information derived from

Gestalt laws such as continuity and connectedness. Third, the recognition of shape fea-

tures requires partial matching. A balance between partiality and similarity is achieved

by efficiently evaluating all correspondences and lengths in a 3D similarity tensor for

matches between two sequences of points. Fourth, the partial matching of shape is then

investigates for rigid template models and learning implicit category models for object

detection. Fifth, a method for joining bottom-up processes for semantic detection is

investigated. The low-level features are used for classification, detection and segmenta-

tion of object instances by combining their evidence from multiple stages into a single

optimization.

State-of-the-art results are achieved for edge extraction, shape retrieval, shape-based

object detection and localization of overlapping and distorted object instances, each

evaluated on respective reference datasets.
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Kurzzusammenfassung

In der vorliegenden Arbeit werden drei fundamentale Aufgaben für Objektdetektion in

der Bildverarbeitung behandelt: Extraktion und strukturierte Beschreibung von Formen

für das Finden von partiellen Ähnlichkeiten, die Modelling von Objektkategorien, sowie

das Verbinden von Lokalisierung und Segmentierung für Objektdetektion. Alle diese

Themen sind eng miteinander verknüpft und neue und schnellere Lösungen für den

Bereich Objektdetektion werden gezeigt.

Das Ziel dieser Arbeit ist die partielle Beschreibung und der Abgleich von Formen

sowie das Verbinden mehrere Stufen der Objektdetektion zu einer vereinheitlichten

Optimierung. Der Fokus ist daher auf den folgenden zugrunde liegenden Heraus-

forderung: Erstens wird die Extraktion von Merkmalen für die automatische Erken-

nung untersucht. Die Extraktion basierend auf einzelnen Pixeln wird auf eine Methode

erweitert, welche Informationen aus Regionen integriert. Zweitens wird eine Beschrei-

bung von Form vorgestellt, welche die Geometrie in einer strukturierten und effizienten

Weise beschreibt. Dies baut auf Sequenzinformationen auf, die durch Gestaltregeln wie

Kontinuität abgeleitet werden. Drittens verlangt die Erkennung von Formen einen par-

tiellen Abgleich. Es wird eine Balance zwischen Teillänge und Ähnlichkeit durch einen

Abgleich aller Korrespondenzen und Längen erzielt. Viertens, diese partiellen Korre-

spondenzen werden für Objektdetektion und Kategorie-Lernen gezeigt. Fünftens wird

eine Methode zur Verbindung der einzelnen Schritte für eine semantische Detektion un-

tersucht. Die Bildmerkmale werden durch Klassifikation, Detektion und Segmentierung

von Objektinstanzen in einer gemeinsamen Optimierung kombiniert.

State-of-the-art Ergebnisse werden in den Bereichen Kantendetektion, Form-Suche

sowieso Detektion von Objekten erzielt, was durch Evaluierungen auf Referenzdaten-

sätzen für die jeweiligen Aufgaben gezeigt wird.
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1
Introduction

A major challenge in computer vision is the automatic detection and segmentation of

objects in real-life images containing clutter and noise. For humans the recognition of

an object and consequent localization is highly interleaved, however often seems like a

trivial task. Questions like what is that object and where is it in the world can already

be answered by young children.

In computer vision one goal is to teach a computer how to recognize, detect and

segment objects in images automatically. Though tremendous progress in this field has

been achieved over the years, the tasks are not yet solved. These tasks are difficult due

to complexity in real-life images. The images can contain background clutter or have

low contrast. Additionally, the object can have a different appearance since its color

or texture changed. Further, there can be many overlapping objects, which makes it

difficult to distinguish them.

In this thesis we propose several methods for improving the performance and speed

for such object detection systems. In particular the following three topics are addressed:

a) shape extraction, description and matching, b) object category modeling for detection,

and c) joining detection, localization and segmentation for improving performance.

3
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1.1 Motivation

The central goal in this thesis is an automatic and efficient solution for object detection.

However, this goal has a number of challenges, which provide many aspects for research.

Images may contain many visual variations and background information confusing

the object detection task. These stem from various sources such as low contrast, varying

textures, noise from background clutter and deformations due to articulations or occlu-

sions. For humans, it is still possible to recognize the object categories, detect where

the objects are, and even draw their exact outlines. For most of the objects as shown in

Figure 1.1 this is because there is an underlying cue.

Shape is one of the most promising cues in images, as it describes the outline and

layout of objects while providing invariance to a number of these variations in images.

For example, it is sufficiently invariant to changes in texture and illumination. However

it captures the common properties of instances of the same kind of category. Early

research showed that in many cases shape is more generic to categories than color or

texture [21]. It is argued that the function of an object is defined by its shape and not its

low-level appearance [122].

Further, despite the deformations due to articulation and occlusion of the object,

the perception of the shape of objects remains easily understandable - at least for hu-

mans. Early research showed that for humans small parts are enough to recognize

objects [22]. Even if only a fraction of the object is visible, humans can cope with the

partial recognition and understand the visual content. There is another underlying cue,

which organizes object parts inherent to an object category. If parts are occluded from

the perception, humans also group parts and then infer missing information [104].
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Contrast Texture Clutter Articulation Occlusion

Figure 1.1: Complexity of real-world images containing low contrast, varying texture,
background clutter, articulation and occlusion while still maintaining the common parts,
which is the shape of the objects. Despite this complex nature, for humans there is little
difficulty in recognizing and locating the object instances.

1.2 Thesis Goals

The grand goal is to find novel methods for improving the detection performance and

speed for large scale applications, for example understanding urban environments cap-

tured in massive amounts of street-level imagery. This requires a lot of tolerance to

variation and high efficiency in processing. Hence the research in this thesis is concen-

trated on three topics within object detection.

First, a focus is placed on the powerful underlying cue of shape. It provides a

generalization for object categories and an unrivalled efficiency due to the vast amount

of data reduction from richly texture images to mere contour responses. For this it is

investigated how to extract shape features from images. Further, it is researched how

the extracted shape can be efficiently described and matched. The goal is to exploit the

underlying ordered structure of shape for better discrimination, partiality and efficiency

in runtime.

Second, a focus is set on the generalization of groups of objects into categories.

Along this line it is researched how to develop object detection approaches, which can

deal with the variations present in images and objects. The goal is to develop partial

matching methods, which rely on rigid template models, and learned category models,

which implicitly handle the underlying noise and deformations in images.

Third, a focus is placed on semantic detection for improving detection performance.

For this it is investigated how to join multiple stages of object detection approaches.

Each of the underlying tasks has benefits, which can be exploited in a combined solution.

The goal is a scene understanding, where the recognition provides the detection with
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Image Features Detection Local Support Segmentation Multiple
Instances

Figure 1.2: Five parts of recognition covered in this thesis: Shape-based feature extrac-
tion and structured description, coarse detection up to bounding boxes, finer localization
of the local supporting parts, accurate outlines by full object segmentation, and last but
not least recognition of multiple instances of objects within an image.

instance evidence and further the localization guides the accurate segmentation of object

instances, which in turn loops to the recognition.

Figure 1.2 gives an overview of these goals in this thesis, including feature extrac-

tion, detection, localization and segmentation objects. For all these tasks the basis is

the extraction of shape-based features, which are described to capture the structure in

sequences. Detection is the coarse process of finding where an object is present in an

image. Localization of its local support is a fine process to align the feature evidence.

Segmentation is the most accurate process exactly outlining all parts of an object. An

additional stage not to be underrated is detection of multiple instances, which requires

discrimination between objects, when more than one instance is present in the image.

1.3 Outline and Contributions

In the following we briefly outline each of the chapters, the related work in this field,

and our contributions introduced in this thesis.

1.3.1 Contours from Region Boundaries

In the second chapter, we look at a novel extraction and perceptual grouping of shape

in terms of image contours. Contours are a low-level reduction of information in an

image, which describe the changes between the visual content. These changes, caus-

ing a contour, have four sources, which are discontinuities in depth, discontinuities in

the orientation of the surface, changes in material properties and changes in scene il-
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lumination [135]. Related work focuses on small support windows for detecting such

underlying sources. As a result this limits the success of perceptual grouping as post-

processing leading to fragmentation of contours.

The research in this chapter introduces a novel method for contour extraction by

finding the most stable region boundaries [51, 163]. The idea is to move away from

analyzing interactions of local pixelwise gradients, and instead integrate mid-level in-

formation by analyzing underlying regions that support the local gradient magnitudes.

The integration of region support uses a hierarchical data structure denoted as the com-

ponent tree, which is a unique multi-level representation of the obtained gradients.

Contrary to related work we detect stable contours by comparing the shape of regions

along this hierarchy. In such a way, we are able to measure the stability for every re-

gion boundary and return the most stable ones as our boundary detection result. As

our stability analysis uses regions as basic perceptual units, we are bringing region con-

text into contour detection without additional complex perceptual grouping. The main

contributions are

• Novel integration of mid-level context cues from regions

• Efficient calculation of shape similarity between regions

• Linked region boundaries without perceptual grouping

1.3.2 Structure in Partial Description

In the third chapter, we look at the description of shape and what characteristics and

invariances are important when trying to capture the shape of an object. Related work

in this field focuses on global, semi-local or local description, which is often affected

by drawbacks. Global descriptions do not cope well with occlusion whereas local de-

scriptions are missing a global structure. Ideally the description is invariant to rigid

transformations and articulations. Further it is robust to non-rigid deformation, occlu-

sion and is unaffected by background clutter.

The research in this chapter proposes a novel structured description of shape [49, 50,

53, 108, 164, 165]. This description denoted as Structural Measurement Descriptor (SMD)

is inspired by the psychological principles of good continuation and collinearity [104].

We focus on the continuity of points and our representation of shape is defined as an

ordered sequence of points. Since each point has a unique predecessor and successor, it
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allows us to take measurements in a structured fashion. Further, it builds a hierarchical

and partial description within a single coherent descriptor. From the general formula-

tion we derive specific instances for shape description of closed regions given by binary

masks, arbitrary long image contours and local shape fragments in cluttered images.

The main contributions are

• Novel structured description of shape exploiting continuation

• Efficient formulation to include hierarchical and partial shape information

• Specific description instances for regions, contours and fragments

1.3.3 Partial Similarity for Region Matching

In the fourth chapter, we look at the partial similarity for closed region matching. Re-

lated work has a long history looking at closed regions for shape retrieval and cluster-

ing. For global descriptions there exist distance functions and deformation costs, which

however often require known correspondences or assigned parts. The novel shape de-

scription Structural Measurement Descriptor encodes all parts into one coherent descriptor,

where the spatial extent of parts is not known, which makes this approach incompatible

with standard matching or detection frameworks.

Research in this chapter introduces a 3D tensor containing all combinations for corre-

spondence, length and similarity [49, 50]. Focusing on matching closed regions given by

a binary mask, we propose a novel method for measuring a balanced partial similarity

by means of the Salukwadze distance. The main contributions are

• Efficient comparison of matches in a 3D similarity tensor

• Novel partial matching of arbitrary long point sequences

• Partial region similarity measure for shape matching and clustering

1.3.4 Partial Contour Matching for Object Detection

In the fifth chapter, we look into the partial matching of cluttered image contours for

object detection. Related work in this field either relies on piecewise contour approxima-

tions, requires meaningful supervised decomposition, or matches coarse shape-based

descriptions at local interest points. This has drawbacks due to the error-prone pre-

processing steps for edge grouping and loss of structure for independent interest points.
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Research in this chapter proposes a novel method for object detection by partially

matching image contours to a single hand-drawn rigid shape template [164]. Our

method uses all obtained contours for partial matching. The matched contours are

efficiently summarized to long salient matches and aggregated by a star-model to form

location hypotheses. The efficiency and accuracy of our edge contour based voting step

yields high quality hypotheses in low computation time. The main contributions are

• Novel true partial matching of cluttered image contours

• Efficient extraction and grouping of partial matches for center voting

• Partial contour-based object detection by a single rigid template model

1.3.5 Discriminative Fragments for Object Detection

In the sixth chapter, we look into the graphical representations and approaches when

learning and evaluating object category models. Related work incorporates learning

techniques only for object model generation or for verification after detection. The actual

object detection is often performed by low-level chamfer matching [153, 183], which is

sensitive to noise and clutter.

Research in this chapter introduces a novel method for object category localization

by jointly learning discriminative contour fragments and also the model for the object

category [108]. In the learning phase, we interrelate local shape fragments of the object

contour with their corresponding spatial location. The shape description is based on

the Structural Measurement Descriptor and is well-suited for discriminative learning in a

random forest learning scheme. For detection we hypothesize object locations and the

back-projection of the category model alongside the shape fragments allows to delineate

the object outline. The main contributions are

• Novel formulation of shape fragments and category models

• Discriminative fragments and center votes for joint learning and evaluation

• Efficient non-rigid object detection and outlining by actual image evidence

1.3.6 Joining Classification, Localization and Segmentation

In the seventh chapter, we look into the joining of classification, localization and seg-

mentation for object detection. Related work in this field exists in the segmentation of
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known objects, complex interaction learning of instances, or full-blown scene under-

standing goal. The drawbacks of high computational requirements and known object

location hypotheses limit the general use of these approaches.

Research in this chapter proposes a novel method which jointly optimizes and im-

plicitly provides detection hypotheses and corresponding segmentations [166]. It is

attached to any available generalized Hough voting method. We describe our method

denoted as Hough Regions formulating the problem as a two-layer graph of the image

space and the Hough space, which are connected through the object center votes. This

exploits classifier responses, object center votes and low-level cues like color consis-

tency, which are solved by a global energy formulation. For object detection we obtain

a pixel-wise assignment for each detected object instance. The main contributions are

• Novel joint formulation of classification, localization and segmentation

• Two-layer image and Hough graph for enumeration of object instances

• Increased tolerance for overlapping instances, changes in scale and aspect ratio

1.4 Applications

The methods developed in this thesis have many applications. They are used in large-

scale tasks such as city-scale window and other object detection, which is feasible due

to the focus on high efficiency and generalization to other object categories.

The grand goal of object detection is realized in four implementations for this task.

A chamfer matching framework based on the novel stable boundaries is a very efficient

shape-based detection method. A partial contour matching framework allows clutter-

independent and articulation-invariant detection of objects given a single hand-drawn

reference template. A category model learning and evaluation framework provides a

balance between high efficiency and discrimination power for shape-based object detec-

tion. Finally, the joint localization and segmentation framework using rich appearance

produces state-of-the-art results, especially for detection of overlapping and articulated

objects at reduced runtime.

Further, the partial shape description and matching have been used for object

tracking [52], video segmentation [53] and a sketch-based content retrieval for image

search [165].



The important thing in science is not so much to obtain

new facts as to discover new ways of thinking about them.

Sir William Bragg

2
Contours from Region Boundaries

Many shape-based category recognition methods require stable, connected and labeled

contours as input. This chapter introduces a novel method to find the most stable re-

gion contours in grayscale images for this purpose. In Section 2.2 we review common

edge detection algorithms, of which most only analyze local discontinuities in image

brightness, where in contrast our method integrates mid-level information by analyz-

ing regions that support the local gradient magnitudes. In Section 2.3 we describe our

method using a component tree where every node contains a single connected region

obtained from thresholding the gradient magnitude image. Edges in the tree are de-

fined by an inclusion relationship between nested regions in different levels of the tree.

Region boundaries which are similar in shape (i. e. have a low chamfer distance) across

several levels of the tree are included in the final result. Since the component tree can

be calculated in quasi-linear time and chamfer matching between nodes in the compo-

nent tree is reduced to analysis of the distance transformation, results are obtained in

an efficient manner. The novel detection algorithm labels all identified edges during

calculation, thus avoiding the cumbersome post-processing of connecting and labeling

edge responses. In Section 2.4 we evaluate our method on two datasets and demonstrate

improved performance for shape prototype based localization of objects in images.

11
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2.1 Introduction

Despite the tremendous progress in the of contour extraction, it is still not clear what

the main features are that help to group local evidence into objects and further into

categories. Early research showed that in many cases shape is often more generic to

categories than color or texture [21]. Hence different authors like [63, 122, 153, 182]

proposed methods outperforming appearance-based approaches for several object cat-

egories by relying on shape features. All these methods implicitly require stable, con-

nected and labeled contours in the image as underlying representation. This has the

purpose of reducing the data amount while retaining the important information about

the image content. Such contours are a low-level reduction of information in an image,

which describe the changes between the visual content. These changes causing a contour

have four sources, which are discontinuities in depth, discontinuities in the orientation

of the surface, changes in material properties and changes in scene illumination [135].

Most approaches however rely on the post-processed results of standard pixelwise gra-

dient analysis [35] or learned boundary responses [136, 137]. These methods are consid-

ered as state of the art in this field, yet only consider local cues and provide pixelwise

results. Post-processing is hence necessary because most detection frameworks require

labeled lists of connected edges in images. Perceptual grouping obtains these by analyz-

ing T-junctions [35, 109], multi-branch contour groups and networks [66], or eigenvalue

analysis of the contour grouping graph [219].

In this chapter we introduce a novel boundary detection method, designed for the

application of object detection, which extends purely local edge detectors by addition-

ally analyzing mid-level cues, i. e. regions that support the local gradient magnitude are

analyzed to extract the most stable edges. It is this mid-level context information that
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determines the stability of boundaries. The extraction is based on analyzing a hierar-

chical data structure denoted as component tree where connected regions, which are

separated by high gradient magnitudes along their boundaries, are linked into a tree

structure. Finding the most stable nodes in the tree, by considering shape similarity of

the region contours, removes noise and clutter and preserves the important contours for

detection. Furthermore, our method automatically labels all obtained contours during

calculation. Therefore, no further post-processing is required and the results can be

directly passed to any of the available shape-based object localization methods.

The outline of this chapter is as follows. Section 2.2 gives an overview on related

work concerning contour detectors and outlines similarities of our method to recent

state of the art. Section 2.3 describes our novel boundary detection method in detail.

In Section 2.4 we demonstrate on two well-known object recognition datasets that the

proposed method reduces clutter and maintains the most important contour responses.

We furthermore outline a potential application in the area of object localization by using

our boundary responses in an oriented chamfer matching step. Finally, Section 2.5

discusses our results and gives an outlook on future work in this area.

2.2 Related Work

In general, contour detection is one of the most intensively studied problems in com-

puter vision and has many other applications like stereo matching, segmentation, 3D

reconstruction or tracking. We follow the distinction between edges and boundaries out-

lined in [137]. Edges are defined abrupt changes in a low-level image feature like bright-

ness or color gradients, whereas boundaries are connected pixels in the image, which

represent a change in pixel ownership between two neighboring objects or entities. The

approaches in this field hence can be divided into methods, which simply analyze local

intensity differences and the recently popular group of learning based methods, which

focus on learning the appearance of boundaries, e. g. for specific tasks [48], or in a more

general way for natural images [107, 137]. Of course, learning-based boundary detec-

tion methods provide improved results making use of training images. However, these

methods have the main drawback of high computation time, for example in the range of

twelve seconds [48] and 90 seconds [216, 217]. Even a highly optimized implementation

for GPUs using 30 cores still requires about two seconds per image [36]. Furthermore,

they require ground truth to learn application specific detectors. Therefore, local edge

detectors are still of high interest due to their computational simplicity and speed.
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(a) Canny (b) Berkeley (c) Stabs

Figure 2.1: Contour extraction by a) Canny edge detection [35] using a 3× 3 Sobel kernel
and subsequent linking, b) boundary probability estimation by supervised learning of
image features in a local support window [137], and c) our proposed method analyzing
the hierarchy of underlying regions for boundary similarity.

Figure 2.1 gives an overview of the most commonly used contour detection ap-

proaches. One example is Canny [35] because of its simplicity, effectiveness and high

efficiency. Canny detects edges in the image by several consecutive steps. First, Gaus-

sian blurring is applied to reduce the noise of individual pixels. Second, 2D Gaussian

derivative responses are calculated to detect pixels of sharp intensity changes by the

magnitude and the orientation of the gradient response. The gradient image undergoes

a non-maxima suppression to filter out weaker responses. Finally, a connected compo-

nent analysis based on a hysteresis thresholding heuristic returns the set of final edges.

In [75] it is shown that already very local figure-ground cues provide a better contour

support than individual pixel evidence. The local cues, which are derived from area ra-

tios, mass centers and convexity, are combined using a logistic function. The Berkeley

edge detector [137] is a supervised algorithm specifically tuned to natural scenes. It

is based on analyzing several image features like raw and oriented energy and texture

gradients. These image features are then combined to improve boundary detection in

natural images. For feature combination, supervised learning is used which exploits a

ground truth dataset built from multiple human segmentations, where humans were

asked to draw boundaries of equally important things in the training images. This

ground truth is used in a logistic regression model to learn an optimal feature combi-

nation for natural images. Further work models the image as a fully connected graph

and derives a multi-scale probability (mPb) and a saliency of boundaries (sPb). Weights
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for these two are then learned for a linear combination of a global probability of bound-

aries (gPb) [136], which is considered state of the art in the field.

More specific to individual categories is the work for boosted edge learning

(BEL) [48]. For BEL the local features are combined with category labels and specific

edge responses are learned for a specific task. In [94] contour detection is lifted to

recovering occlusion boundaries. The depth discontinuities of an image are estimated

from local gradient and 3D depth cues together. Along this research in [191], the object

boundaries are extracted by learning motion cues from short sequences, but still only

from local pixel evidence.

Our method aims to incorporate larger context than pixels and local support win-

dows inspired by [216, 217]. For this we analyze the underlying regions and exploit

a hierarchical data structure denoted as component tree to obtain our stable boundary

detection results. Building and analyzing such a hierarchy of nested regions for edge

detection was proposed by Najman and Schmitt [149] for image segmentation.

In [149] the dynamics of watershed contours were used to define edges. The method

is based on identifying watersheds by a standard flooding process. Starting from local

minima in the gradient magnitudes, the image is flooded and when regions merge, the

watershed height defines the saliency of the local contour. In contrast to our approach,

contour saliency is defined as the minimal intensity contrast between two merged re-

gions along their common boundary. Any stability analysis of the contour is neglected.

Most similar to our approach is the boundary extraction method proposed by Ar-

belaez [7]. Arbelaez et al. also builds a hierarchical data structure using a stratification

index and outlines its equivalence to an ultra-metric distance between regions [8, 9].

This data structure is denoted as an ultrametric contour map, where each level pro-

vides a segmentation of the image at various levels of detail. Contrary to our approach,

color information is exploited in terms of a contrast function and a color uniformity

measure per segment. Furthermore an image pre-segmentation by means of a Voronoi

tessellation is required, which increases computational complexity. Arbelaez [7] further

exploits the concept of strong causality to provide a saliency value for each segment

contour. This in turn allows to extract boundaries of different strengths.

Our work determines the boundaries by analyzing their similarity in shape. This

provides a strong cue for consistent regions and hence stable boundaries. An under-

lying region implicitly encodes the visual changes caused by discontinuities in depth,

discontinuities in the orientation of the surface, and changes in material properties.
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2.3 Region-based Contour Detection

Our novel boundary detection and labeling method uses regions as basic perceptual

units. The context of an underlying region is what gives stability to a contour. In this

chapter we propose a method, which uses - similar to most local edge detection methods

- a fast standard gradient pre-processing as outlined in Section 2.3.1 and then integrates

mid-level context from regions to provide stable clutter-free contour detection. The in-

tegration of region support uses a hierarchical data structure denoted as the component

tree, which is a unique multi-level representation of the obtained gradients. The compo-

nent tree and its efficient calculation is presented in Section 2.3.2. The most important

part for detecting stable contours is our analysis of the component tree by comparing the

shape of regions at different levels. In such a way, we are able to measure the stability

for every region boundary and return the most stable ones as our boundary detection

result. This stability analysis is defined in Section 2.3.3 and provides the key insight to

bringing region context into contour detection without additional perceptual grouping.

2.3.1 Pre-processing

As a first step we obtain a gradient magnitude image, which is used as input to the

component tree analysis outlined in Section 2.3.2. Please note, that we can use any

gradient map for our stable boundary detection method, for example the gradient re-

sponses obtained by the Berkeley detector [137]. But due to its simplicity and much

lower computational complexity, we only use simple Gaussian derivatives.

In general image derivatives emphasize high frequencies and thus amplify noise.

Therefore, it is required to smooth the image with a low-pass filter prior to gradient

calculation using a circularly symmetric filter, since contour responses should be inde-

pendent of orientation. We use the same sequence of pre-processing steps as the Canny

edge detection approach [35]. We first convolve the image with a 2D Gaussian to remove

noise and then apply a first order 2D Gaussian derivative filter. Since Gaussian filtering

is separable we can use two 1D convolutions in order to achieve the effect of convolving

with a 2D Gaussian. As a result we obtain gradient magnitudes and orientations per

pixel. In this chapter we neglect orientation information in the following steps and sim-

ply use the obtained gradient magnitude map I. The component tree as described in the

next section requires pixel values coming from a totally ordered set as input. Therefore,

we further normalize the magnitudes and quantize them to an integer range.
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2.3.2 Component tree

For detection and labeling of stable boundaries in an image, we build a unique data

structure denoted as component tree for the obtained gradient magnitude image. It

was originally introduced in statistics [92, 206] for classification and clustering and was

redefined by Jones [100] for the field of image analysis as a "representation of a gray-level

image that contains information about each image component and the links that exist between

components at sequential gray-levels in the image". It is this inclusion relationship, which

we exploit to access the underlying regions in an image. Our method compares the

stability of the shape of regions across various gradient strengths, which is possible via

the nodes in the tree hierarchy.

The component tree can be built for any vertex-weighted graph defined by a triplet

G = (V, E, I). V is a finite set of vertices, i. e. the set of pixels from our image with

V being a subset of Z2. Therefore a vertex x ∈ V in our case is defined by its two

coordinates (x1, x2). E is the set of edges defining the neighborhood relation of the

graph, where Γ is a map from a x ∈ V to a subset of V, such that for every pixel

x ∈ V , Γ (x) = {y ∈ V | (x, y) ∈ E}. If a pixel y ∈ Γ (x), we say that y is a neighbor

of x. In our image setting, the neighborhood relation is defined by the standard 4-pixel

neighborhood as

E = {(x, y) ∈ V ×V, |x1 − y1|+ |x2 − y2| = 1} (2.1)

where I is a map from V to D, and D is any finite set allowing to order all points,

e. g. a finite subset of integers. In our case, D = {0, 1, . . . , 255} and the mapping I is

defined by the normalized gradient magnitudes that are scaled up to an unsigned 8-bit

integer range. The magnitude values I are inverted so that a low value represents a high

gradient value. A cross-section of the vertex weighted graph at a level t is defined as

It = {x ∈ V | I (x) ≥ t} (2.2)

where each possible cross section It is a standard non-weighted graph defined by a

tuple Gt = (V, E), where E is a binary relation on V being anti-reflexive (x, x) /∈ E and

symmetric (x, y) ∈ E ⇔ (y, x) ∈ E. E for a cross section It connects neighboring pixels

(x, y) only if I (x) ≥ t and I (y) ≥ t.

We further define linkage between two vertices x and y, if there is a path P =

(p0, p1, . . . , pN) with pi ∈ V between x and y so that for every pixel along the path
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Figure 2.2: Illustration of component tree representation. First row on the left shows
the input image and the obtained gradient magnitude response (dark values equal high
gradients). Second row shows label results after thresholding the magnitude image at
two different levels. Regions correspond to connected areas separated by high gradient
values along their boundaries. Cross-sections are related by an inclusion relationship,
i. e. regions can only become smaller. This region nesting defines the hierarchical data
structure denoted as component tree, as shown on the right. Outer boundaries of these
regions are analyzed concerning shape similarity over the levels of the component tree
to detect stable ones.

(pi, pi+1) ∈ E is valid. We denote a subset X ⊆ V as connected, if any x, y ∈ X are

linked. A connected component C is defined as a maximal subset C ⊆ V, where it is not

possible to add another pixel z ∈ V which is linked to any x ∈ C of the component.

These definitions now allow to define the component tree. We first find the minimum

level tmin = min {I (x) | x ∈ V} and the maximum level tmax = max {I (x) | x ∈ V}. We

then calculate all cross-sections It of the vertex-weighted graph in the range of tmin to

tmax and find in each cross-section It the connected components Ct as defined above

to build the component tree structure from the top to the bottom. The obtained con-

nected components Ct can be organized in a hierarchical data structure denoted as

component tree because they are nested and their inclusion relationship is defined by

∀x ∈ Ct , ∃y ∈ Ct+1 : x = y. Therefore, region size can only decrease from the top to the

bottom of the component tree and the root node contains all components merged into a

complete representation of the input image. Please note, that in contrast to the hierar-

chical structure in [7] the localization of the contours is not preserved through different

levels of the tree as single pixels are included each level instead of a superpixels.

The component tree can be implemented in many efficient ways [99, 100, 147, 148,

169]. We use the algorithm proposed by Najman and Couprie [42] since it has the

lowest computational complexity. Their algorithm runs in quasi-linear time, where the

term quasi is an amortization of the costs required for the union-find problem. Thus,

the worst-case complexity is O(N × α(N)) with α(N) being the inverse Ackermann
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function [1], i. e. practically linear. On a side note, the component tree is also the basis for

the calculation of Maximally Stable Extremal Regions (MSER) [139]. Recently Nistér and

Stewénius [150] even showed that calculating MSERs is possible in linear time returning

an ellipse instead of a pixel representation for each region.

In summary, the component tree is a unique multi-level representation encoding the

gradient magnitude structure of the input image as illustrated in Figure 2.2. As can be

seen regions within the cross-sections of the component tree correspond to connected

areas in the image separated by high gradient magnitude values along their boundaries,

related to the concept of watershed segmentation. Every node of the tree contains data

about the corresponding outer region boundaries, the tree level and the hierarchical

relations to other component tree nodes. The shape of some regions stays the same over

several levels of the tree, which is the criterion that we use to detect stable boundaries

as it is outlined in the next section. Furthermore, since we only want to detect stable

boundaries, which are supported by an underlying region, we exclude all regions below

a fixed threshold Ω for the region area size.

2.3.3 Stable Region Boundaries

We now use the component tree structure, built as described in Section 2.3.2, for de-

tecting and immediately labeling boundaries in the input image. The underlying idea

is similar to the concept of Maximally Stable Extremal Region (MSER) detection as pro-

posed by Matas et al. [139]. MSER detection builds the component tree directly on the

intensities of the image and returns the most stable nodes (extremal regions) of the tree

as interest region detection results. The stability is estimated by comparing region sizes

between nodes in adjacent levels of the tree. Thus, a region is considered stable when

its statistical area size does not change abruptly.

We follow a similar principle but focus on analysis of the boundary shape stability

between the regions. In contrast to MSER detection, which compares region sizes, we

measure how similar the actual shape of the regions is, i. e. if parts of the region bound-

ary remain more or less the same over several levels of the component tree. We define

the stability value Ψ(Ct
i ) of a connected component Ct

i at a component tree cross-section

It at level t by comparing its shape to a region Ct−∆
j , which is the connected component

linked to Ct
i by moving along the hierarchical structure up to a level t − ∆ (see Fig-

ure 2.2), where ∆ is a stability parameter of the method. Increasing the value ∆ yields
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stricter stability constraints, i. e. region boundaries have to be stable over more levels of

the tree, which leads to a reduced number of detected boundaries.

To measure the shape similarity between Ct
i and Ct−∆

j and to identify similar contour

parts between the regions, we apply a simplified version of chamfer matching. Since re-

gions within the tree can only grow from level t to level t− ∆ and always are fixed at

the same location, chamfer matching is reduced to an analysis of the distance trans-

formation values. In this work we employ a standard chamfer matching, but please

note that more sophisticated methods, for example methods additionally considering

orientation [183] or in general any partial shape matching method, can be integrated.

Let Bi and Bj be the sequence of outer boundary pixels for the current region Ct
i

and its linked neighbor Ct−∆
j . As a first step we calculate the distance transformation

DTi on the binary image solely containing the boundary pixels of Bi, which assigns to

each pixel the minimum distance to a boundary point. This distance transformation DTi

enables to find partial matches between the boundaries Ci and Cj by finding connected

boundary fragments C j ⊆ Cj fulfilling

C j ⊆ Cj → ∀x ∈ C j : DTi (x) ≤ Φ, (2.3)

where Φ is a maximum boundary distance parameter. Finally, for the region Ct
i we set

the corresponding stability value Ψ(Ct
i ) to the average chamfer distance of the matched

boundary pixels C j by

Ψ(Ct
i ) =

1
N

N

∑
n=1

DTi (xn) where xn ∈ C j (2.4)

and N is the number of matched pixel. In such a way we get a stability score Ψ(Ct
i ) and

matched connected boundary fragments for every region in an efficient manner, since

we only have to look up corresponding distance transformation values.

After calculating the stability values Ψ(Ct
i ) for every node in the component tree, we

detect the most stable nodes along each path in the component tree similar to [139] and

return the corresponding matched boundary parts as detection result. We further assign

the level in the component tree in which a boundary is detected as its saliency value.

This gives a measurement of the importance of the boundary, since detection at a level

t means that all gradient magnitude values of the boundary have to be higher or equal

than t. Furthermore, since every detected boundary is connected to a specific node in

the component tree, a unique boundary ID can be assigned on-the-fly during component
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Figure 2.3: Contour detection performance of our proposed stable region boundary
extraction method on the five classes of the ETHZ Shape dataset [66].

tree analysis. Therefore, cumbersome post-processing to link and clean contours is not

required and the final output of our method is a labeled set of connected boundaries.

Please note, that boundaries detection results as shown in Figure 2.3 are quite dif-

ferent from simply returning the region contours of MSER detection results. First of

all, we use the gradient magnitude image instead of the intensity image as underlying

representation. Second, we have a different stability criterion analyzing the stability of

the shape of the region contours instead of region size stability. Finally, since we identify

parts of the region contours that are similar, the returned boundaries need not be closed.
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2.4 Experimental Evaluation

The focus of experimental evaluation lies on demonstrating the reduced noise and

high retrieval of valuable stable contours. In Section 2.4.1 we use the Berkeley bench-

mark [138] for experimental evaluation on two well-known object detection datasets.

Since our proposed method returns well-connected and stable boundaries, it is well-

suited for both partial shape matching and template comparison methods. For binary

template search a mask is shifted over the image and similarities to the provided tem-

plate are calculated. Therefore, in Section 2.4.2 we use our boundaries in an oriented

chamfer matching method and illustrate results in comparison to Canny and Berkeley

contour detection methods.

Our method has four parameters, which are fixed for all experiments. The minimum

considered region size Ω is 400. The stability parameter ∆ is 5 and the shape similarity

parameter Φ is 10. Furthermore, after obtaining the results, we remove all boundaries

with a length below 70 pixels, which is easily done because each boundary is already

linked and can be directly accessed by its unique ID.

2.4.1 Object Boundary Evaluation

As a first experiment we adopt the framework of the Berkeley segmentation bench-

mark [138], which allows us to measure the overlap of detected contours compared to

human ground truth data. We evaluate on two well-known object detection datasets,

namely the ETHZ Shape classes [66] and the Weizmann Horses [29]. However, instead

of human drawn annotation as ground truth, we use the detection annotation for both

datasets as a set of figure/ground segmentations. For the ETHZ dataset, we created a

new figure/ground segmentation, whereas for the Weizmann Horses they are already

provided. In both cases the segmentations highlight the outline of the objects that should

be detected in the test image. For evaluation of the performance respective to the defined

object-centric ground truth data, different contour detection method are compared to the

ground truth in the same manner as specified in the Berkeley segmentation benchmark.

We use precision and recall to measure the quality of the obtained contour responses.

Precision in our case is the probability that a detected contour pixel is a true contour

pixel. Recall is the probability that a true contour pixel is detected by the algorithm.

We calculate the F-measure as a final comparison value defined as weighted harmonic

mean of precision and recall. The Berkeley benchmark provides exactly these precision
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Algorithm Canny Berkeley Our detector
Class P R F P R F P R F

ETHZ applelogos 0.02 0.99 0.05 0.08 0.95 0.15 0.12 0.90 0.21
ETHZ bottles 0.06 0.99 0.11 0.16 0.95 0.28 0.17 0.84 0.29
ETHZ giraffes 0.10 0.99 0.10 0.20 0.90 0.32 0.16 0.69 0.26
ETHZ mugs 0.08 0.98 0.15 0.19 0.94 0.32 0.18 0.86 0.30
ETHZ swans 0.05 0.98 0.10 0.15 0.94 0.27 0.24 0.82 0.38
Weizmann horses 0.14 0.94 0.25 0.18 0.94 0.30 0.33 0.53 0.41

Average 0.08 0.98 0.13 0.16 0.94 0.27 0.20 0.77 0.31

Table 2.1: Comparison of the overall precision, recall and F-measure performance of
each algorithm for the two datasets ETHZ Shape classes [66] and Weizmann Horses [29].
Please note, that the benchmark is very strict given that only true boundaries of objects-
of-interest are marked in the ground truth segmentation (resulting in a low precision
value). Our boundray detector provides an encouraging improvement over the Canny
(18%) and the learned Berkeley edge responses (4%).

and recall curves for each threshold of the image. Since object recognition systems often

require binary decisions as input where contour are located, we thus evaluate the pure

binary response performance. We select all contours with a gradient magnitude above

zero and retrieve a single F-measure per test image. By analyzing binary responses

containing all contours, we can focus on the performance benefit for a consequent object

detection approach.

Table 2.1 summarizes results of this experiment, outlining the calculated precision,

recall and F-measures. We compare results for the ETHZ Shape classes and the Weiz-

mann Horses obtained by the Canny edge detector using default parameters, by the

Berkeley edge detector and by our proposed method. The improvements achieved by

our stable boundary detector are encouraging for both datasets, yielding an average

F-measure improvement over all analyzed classes of 18% compared to standard Canny

and of 4% compared to the learned Berkeley detector. It thus matches the quality of the

detection results of a supervised method and the speed of a standard Canny method.

The improvements achieved by our boundary detector in these experiments demon-

strate how contours become stable when they exhibit region support. The applelogo,

bottle, swan and horse classes all contain strong region support for its boundaries. On

the other hand, giraffes due to their strong texture deliver less stable region support,

which in turn results in a lower recall for our obtained boundaries.
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Figure 2.4: Results for the ETHZ Shape class applelogo [66] and Weizmann horses [29]
given by the input images, the ground truth, the Berkeley [137] and Canny edge [35]
responses, and our boundary detection labels. Best viewed under zoom.

The advantages of our algorithm are clear when looking at Figure 2.4, which shows

some examples of our stable boundary responses for the ETHZ Shape classes. Our

boundary detector produces far less noise, since only stable boundaries are returned,
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Figure 2.5: First row shows edge detection results from Canny, Berkeley and our bound-
ary detection method. Second row shows corresponding vote maps when oriented
chamfer matching is applied on the responses using a car shape prototype.

which have a strong support from underlying regions. This removes a lot of cluttered

results, which are present in other edge responses only considering local pixelwise ev-

idence. Occasionally some contours are missing, which for example are present in the

highly dense responses of Canny. This is reflected in the lower recall of our method, nev-

ertheless our precision is consistently higher. In general, the precision values are very

low since our evaluation strategy is very strict. Only boundaries for the respective object

category are marked as ground truth, and thus any other pixel response is declared as

a false positive. This is less severe in the case of the Weizmann horses, since the horses

are the only dominant object in the images without much background. In comparison,

the images of the ETHZ dataset contain much more background information including

strong discontinuities in depth, texture and illumination.

A further advantage is the implicit labeling returned by our approach. In contrast

to the edge responses from Canny or Berkeley, our boundaries are already connected

in a sequence and uniquely labelled. This provides a great benefit, since no perceptual

grouping post-processing is required to dissect contour from the clutter, group their

continuity across T-junctions, and finally link them into ordered lists. Linking contour

responses at T-junctions leave three or more contour parts of the original contour be-

hind. The holistic underlying shape is lost unless even more costly perceptual grouping

is performed. Our boundary detector directly provides these grouped results, as we

implicitly consider regions as perceptual units for the boundary extraction.
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Figure 2.6: Vote maps returned by oriented chamfer matching using a window (first
row) and human (second row) shape prototype. First result is always from Canny,
second from Berkeley and third from our boundary detector.

2.4.2 Oriented Chamfer Matching

As a second experiment, we evaluate a shape-based object detection approach on our

novel stable boundaries to demonstrate the increased performance in precision, recall

and speed. Since many of the state-of-the-art recognition approaches [80, 182, 183]

implicitly rely on local shape template matching by chamfer matching to localize objects

in images, we adopt this method for the experiment. Chamfer matching strongly relies

on well-connected and undisturbed contours, where clutter has a strong adverse effect

on the recognition performance. Therefore, improving chamfer matching performance

is a key research area, where our novel boundary detector provides new insight due to

the reduction of clutter through region stability.

We show the qualitative detection performance on several image types for detecting

categories like humans, cars or windows. The corresponding shape prototypes are man-

ually drawn or chosen as mean shape when ground truth was available. As matching

method we use oriented chamfer matching in [182]. For comparison, we additionally

evaluated on Canny and Berkeley edge responses. Figure 2.5 illustrates detected con-

tours and voting maps returned by oriented chamfer matching for the three methods

using a car prototype, and Figure 2.6 shows results for localizing humans and windows.
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As can be seen our detector returns far less noise while retaining the most important

contours for localization, which is illustrated by the much more precise vote maps.

Further, we evaluate the quantitative detection performance on the ETHZ Shape

classes dataset [66]. It consists of five object classes (applelogos, bottles, giraffes, mugs

and swans) and a total of 255 images. All classes contain intra-class variations (espe-

cially giraffes and mugs) and significant scale changes. The images sometimes contain

multiple instances of a category and have a large amount of background clutter. For

evaluation we follow the protocol defined in [66, 129], where the hand-drawn prototype

is searched in the images of the category and evaluate bounding box overlap by the

50%-PASCAL criterion. We use the fast directional chamfer matching framework [129]

and only exchange the type of contour detector used for the distance transform. The

parameters for the framework are numDir = 70, dirCost = 0.8, maxEdgeCost = 60, and

the detection threshold = 1.0 for limiting number of detection hypotheses returned.

Figure 2.7 shows the precision / recall plots for the five categories using the 50%-

PASCAL criterion. Although chamfer matching for fixed template models has severe

limits on a challenging dataset like the ETHZ, the performance curves show the benefit

of our novel boundary responses. In all categories our stable boundaries reduce the

clutter and thus provide better contours for detection than a standard Canny response.

This results in significant increase in performance and speed.

2.5 Conclusion

In this chapter we introduce a novel boundary detection algorithm for the purpose of

shape-based object localization. The benefit of our detector is the integration of mid-

level context information in terms of support by connected regions. It is based on the

analysis of a hierarchical data structure denoted as component tree containing connected

regions, which are separated by high gradient values at different magnitudes. We de-

tect the most stable nodes within the component tree, which are returned as labelled

boundaries preventing cumbersome post-processing and perceptual grouping required

by other methods. We show that our method matches the performance of a supervised

learning method and the speed of a standard low-level method.

Experimental evaluations using an object contour benchmark on two well-known

object detection datasets, namely the ETHZ Shape classes and the Weizmann Horses,

demonstrate the applicability and performance benefits of our method. Our method

accurately removes noise and clutter and delivers cleaner, more precise and still rich



28 Chapter 2. Contours from Region Boundaries

contour responses. The implicit connection to underlying regions eliminates the need

for common perceptual grouping, as the regions are used as perceptual units and hence

its boundaries are available as linked sequences.

Future work will focus on evaluating our detector in different object localization

frameworks and on investigating the benefit of integrating color and texture informa-

tion. Further ideas are to specifically learn the appearance for certain classes as new

input to improve the contour detection results. We are also investigating the integration

our mid-level region information into other contour extraction methods.
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Figure 2.7: Detection performance for chamfer matching on the ETHZ Shape classes as
precision/recall curves using the 50%-PASCAL criterion. Our novel stable boundaries of
region significantly reduce clutter and thus outperform the standard Canny approach.





Connectedness is a fundamental powerful driving force

under-exploited in object detection.

Vittorio Ferrari

3
Structure in Partial Description

In this chapter we propose a novel structured description of shape. The term shape

is used to describe the perceived holistic geometric layout of points of an object. Re-

lated work in this field has a long history. We provide an overview of representations,

characteristics and notations of shape in Section 3.2 and review related work for shape

description in Section 3.3. Our description is inspired by the psychological principles of

good continuation and collinearity. We thus focus on the continuity of points and our

representation of shape is defined as an ordered sequence of points. This structure in

continuity covers a wide range of shape representation, which includes local fragments,

salient contour parts and goes up to closed region outlines of an object. Since each point

has a unique predecessor and successor, it allows us to take measurements in a struc-

tured fashion. The novel description is called Structural Measurement Descriptor (SMD)

and is discussed in Section 3.4 with regard to transformation invariance, hierarchy, par-

tial description and robustness to noise, articulation and occlusion. In the following we

derive specific instances of the general Structural Measurement Descriptor for closed re-

gions given by binary masks, or arbitrary long contours and local fragments of shape in

cluttered images, as shown in Section 3.5. Experimental evaluation demonstrates better

classification performance of our description in Section 3.6.

31
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3.1 Introduction

Visual perception consists of many cues which make up the perception ranging from

color, texture, shape and so on. Each of these cues carries information, which depending

on the specific object or category, will vary in its importance. For example, when looking

at the desk in front of you and the objects lying on top of it, what distinguishes object

categories and what identifies specific object instances? It is the color, the texture or the

shape of these objects? For a large number of objects, it is the shape which will be the

most important and common cue to identify the object category. In this chapter we focus

on the description of the shape of either regions, contours or fragments. We introduce

a class of descriptors denoted as Structural Measurements Descriptors (SMD), which are

used to encode the shape of the underlying ordered sequence boundary points. In

the following we will describe seven characteristics of shape descriptors and discuss

their benefits. The SMDs build a general description, which is more powerful than

previous shape descriptors in terms of discrimination, hierarchical decomposition, and

partiality to handle occlusion and articulation. These advantages stem from exploiting

the underlying structure of the points given by their continuity and connectedness.

3.2 Representation and Notation

The most important part of designing a shape description is the choice of the shape

representation. It has a significant effect on how the description and later matching are

performed. There are numerous ways how shape can be represented. Figure 3.1 gives

an overview of the most popular forms of object representations. The representations
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(a) Points (b) Fragments (c) Region (d) Silhouette (e) Texture

Figure 3.1: A range of 2D visual perception in descending levels of abstraction: a)
sparse set of unordered points, b) local fragments with limited spatial extent, c) contours
as continuous connected parts, d) the boundary of a region, e) the binary silhouettes
encoding figure/ground assignment, and f) the full richness including shape, color and
texture of an object.

range from unordered sets of points over fully enclosing region mask to the full richness

when color and texture are available.

Starting from the least detailed representation, an unordered set of points is exactly

this - a set of points without explicit order or structure adhered to. It is difficult to

extract a meaning as this point set is only hinting at the original shape. The human per-

ception groups the points trying to make sense out of the unordered chaos, for example

by grouping and connecting. This follows the Gestalt principle of continuation [104],

which states that the human eye is compelled to follow lines and curves. This flow

along a line enables us to complete missing information. It also helps us to connect

the dots. Ferrari stated that "connectedness is a fundamental powerful driving force under-

exploited in object detection" [66]. The next representation hence are small connected

fragments, which hint at the shape by including connectedness of a few ordered con-

nected points. Biederman [22] describes in his theory of recognition by components the

principles of non-accidental relations introduced by Lowe [130], such as collinearity and

curvilinearity of points. These state that this connectedness is a non-accidental feature,

which is derived from the view of higher dimensional object. Further up the continuum

are local contours, which capture larger parts of the shape by increasing the local size

and connectivity to bring more structure into the representation. When the contours

are closed, they form the boundary of a region. It is a single closed representation cap-
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turing the holism of the shape. As a binary silhouette separating figure and ground,

shape is encoded as a filled region, which includes the boundary as well as its area. The

final level adds color and texture, which then provide the full richness of an object in

2D. In general, one is looking for a description of shape, which captures the following

invariances and characteristics.

• Rigid transformation invariance is a concept in Kendall’s theory of shape [102],

which defines the deformation a shape must be able to undergo and still be per-

ceived as the same shape to be invariant to rigid transformations. These rigid

transformations are composed of translation, rotation and scale, which still keeps

the perception of a shape. Hence, any description should be able to provide in-

variance to similarity transformations, unless otherwise required.

• Non-rigid transformation insensitivity requires that the description is insensi-

tive to small deformations caused by transformations, which slightly change the

perception of shape but still keep its essence, for example, stretching or shearing.

• Sequence is a main driving force in human perception, which exploits the continu-

ation and proximity of a set of points to group them and hence derive an ordering

for point sequence.

• Hierarchical description implicitly includes local and global information within a

single description. A descriptor is thus the combination of multiple levels of scale.

It also determines that the description has a common representation for an object

or its parts, for example as in regions, contours, and fragments.

• Partial description allows the self-containing description of parts of the shape

within a single description. A descriptor is thus the division into its individual

parts, the sum of these parts and more so its configuration. This benefit enables

holistic grouping of parts and handles occlusion and articulation.

• Articulation and occlusion are deformations, which affect the shape due to chang-

ing configuration of parts or noise disturbing parts of the shape. A description

should be able to handle the presence of articulation and occluded parts.

• Detachment of clutter is the property that the context used to describe the shape

is solely based on the shape itself. Proximate other information in neighborhood

reduces the focus on the shape and often belongs to a different part, background

clutter or noise.
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In this chapter we focus on the continuity of contours and our representation of

shape is defined as an ordered sequence of points. This structure in continuity allows

a wide range over the continuum of how shape may be represented, which may range

from local fragments over contour parts to fully closed outlines of a shape. Hence, our

representation consists of a sequence of points, which is derived from the boundary of

a region or parts of it. They are sampled points without a specific sampling strategy

and are denoted as boundary points. Each of the points has a unique predecessor and

successor, which allows us to take measurements in a structured fashion. Throughout

this chapter, the word shape is used as a general term to describe the perceived holistic

geometric layout of points of an object. It will be used when the general meaning of

the internal and external form of an object is expressed. For specific representation and

description, we use the following terminology and notation.

Point is any single point somewhere on a shape and denoted as P = {Px, Py}, where

Px and Py are coordinates of the point.

Landmark point is a point, which distinguishes itself from the other points by a special

characteristic, such as low or high curvature, and is denoted as L = {Lx, Ly}.

Boundary is an ordered sequence of points and is denoted as B = (P1, P2, . . . , PN),

where Pi is a single or a landmark point and N is the number of the boundary points in

the sequence. This boundary may stem from a closed silhouette or a partial image edge.

Region is a special case of a boundary sequence denoted as R = (P1, P2, . . . , PM),

where the boundary is closed, i. e. P1 and PM are the identical points.

Contour is the standard case of a boundary sequence denoted as C = (P1, P2, . . . , PM),

where the boundary is open, i. e. no points are used twice from the boundary points.

Fragment is a local form of the boundary denoted as F = (P1, P2, . . . , PK), where P1

to PK is again a connected subset of the boundary points. Thus it is also an ordered

sequence, however of known finite length. It contains only a fixed number of points K,

which is significantly less than for a contour (K � N).
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Silhouette is a binary representation of the region of a shape denoted as

S = {P1, P2, . . . , PA}, where each point in the set is defined as a foreground point. It

expresses the area of a shape without explicitly specifying the sequence or individual

points on the boundary.

Throughout this work, shape is hence defined as a set of boundaries B, which itself

are composed of a sequence of points P . In the related work the terminology and

representation vary strongly, and its analysis in the next section will be grouped into

the notions of global, semi-local and local capturing of the shape instead. This will

hopefully give a good overview of the numerous approaches.

3.3 Related Work

In this section we summarize the related work for the most popular types of shape de-

scription. We will focus on the range of descriptions and provide an analysis according

to the seven characteristics, which one is looking for when describing shapes. As there

is a range of ways to represent shape, ranging from the silhouettes of a region, over con-

tinuous curve representations to sets of unordered points, there is an equal multitude

of ways for description of these shape representations. Hence, we divide the related

literature into three categories: global, semi-local and local approaches.

Global methods analyze the overall shapes of the input objects by defining a global

matching distance. This has a holistic notion of shape, however suffers when parts of

the shape are missing or articulated. Semi-local shape approaches are the pendent of

local interest points, which describe the underlying information within a spatially lim-

ited support window. This lifts some of the constraints on occlusion, articulation, etc.

However, it requires shape category models to fill the missing global structural infor-

mation. Local approach go one step further and extract shape information from a single

point. This renders the description further invariant towards effects of occlusion and

articulation, yet requires strong higher-order graphical models to bring global structure

back into the shape.

3.3.1 Statistical global representations

Global statistical representations for shape have a long history. They capture the global

spatial layout of the object and maintain a holistic representation. However, these often
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require the object of interested to be well-segmented and hence are susceptible to noise,

occlusion and articulation when dealing with real life images.

Examples are coordinate frames [26], curves [178], image moments [96, 103], Fourier

descriptors [124], skeletonic graph-based representations like Medial Axis [25], Shock

Graph [186], Symmetry Sets [111], Poisson Shape [85] and more complex methods uti-

lizing optimization for adapting to the image such as the Active Shape Models [40]. In

the following we will outline some of the basic underlying concepts for global statistical

shape representations.

3.3.1.1 Bookstein coordinates

Bookstein [26, 27] derived a method to statistically describe shape, once they are trans-

formed to a common coordinate frame. Bookstein introduced the baseline concept,

where a local coordinate frame is constructed on two landmark points. The first land-

mark A is set as the origin (0,0) and the second landmark B is rotated and scaled so

that its coordinates lies at (1,0). This creates the basis for a rigid transformation. The

remaining boundary points are then transformed in the same way, which provides a

representation that is invariance to scale, rotation and translation (similarity transforms)

as defined by

p = u× ps
x + v× ps

y (3.1)

where the scalar quantities u and v define the similarity transformation given by the

baseline landmark points. This single coordinates frame transforms all remaining

boundary points into a common frame, which can be used for statistical measurements.

The choice of the baseline however may strongly effect the global representation, and

hence the selection of the initial two landmark points is critical.

3.3.1.2 Procrustes Analysis

Procrustes analysis [84] is a method for statistical analysis of shape by comparing the

points after they have been aligned by translation, scale and rotation. The two sets of

point can be independently normalized by translation and scale by shifting to the mean

point and normalizing by the mean distance, respectively. Rotation alignment requires

a reference orientation, for which usually one of the shapes itself is used. The two sets

of points are overlayed and a difference between the superimposed points, for example
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Euclidean distance between the coordinates, determines how well two shapes align. For

rotation alignment, the optimal orientation is given by the smallest difference between a

rotated shape and the reference shape. This distance is then used to describe the quality

of matching between the two shapes by

N

∑
i=1

= ||µ− βi × exp(i× θi)(zi − γi × 1k)||2 (3.2)

where βi determines the relative scale, θi the relative rotation, γi the relative location,

and µ which represents a centered and scaled set of points. This approach only uses

global statistical information to align two sets of points, however ignores any pairwise

information. Hence, the corresponding alignment is stretched and scaled to best fit the

reference point set.

3.3.1.3 Image Moments

Image moments are a method that captures the statistical properties of a shape by view-

ing it as a probability density function over its range. The range is an image of a shape,

in which each pixel is equally important (in case of a binary image) or weighted (accord-

ing to gradient intensities). The idea is to calculate moments, which capture geometric

properties of the shape by characteristic values such as area, center, centroid, covariance,

and so on. These values are then combined into higher-order moments, which express

invariance towards translation, rotation, scale, etc. Well-known sets of such moments are

described in the centralized moments, the Hu invariant set [96], Zernike moments [103],

and many more.

This approach provides a compact description of a set of points under similarity

transform (Zernike), however also requires the full shape to be segmented. The descrip-

tions are thus not robust to occlusions or articulation. If a part is missing, the description

is changed, for example by shifting the center of mass and decreasing the total area.

3.3.1.4 Fourier Transforms

Fourier Transforms [188] of shape have been used to describe closed boundaries around

a region. The two-dimensional coordinates are used within a complex plane. Following

the sequence of points along the boundary (in an anti-clockwise direction), a complex

function z(t) is obtained as the sum over coefficients Tn called the Fourier descriptors for

this boundary. They are influenced by the boundary shape and its initial starting point.



3.3. Related Work 39

Choosing an appropriate coordinate system renders the Fourier descriptors invariant to

translation and rotation. This has been employed for digital character recognition [185].

Since small changes the boundary will produce global changes in the Fourier descrip-

tors. Wavelets are a local variant in both frequency and time, and therefore analyze

the shape of boundaries at different scales. Their representation uses a smaller basis

function, for example, the Haar wavelet function [91], which is more robust to changes.

3.3.1.5 Axis-based representations

Graph-based representations have been introduced as the medial axis by [25], which

are a skeleton representation of the binary shape. The medial axis is a set of points at

equidistance from the outer boundary of the shape. This axis is determined by searching

for the centers of maximally sized circles within the region of the binary shape. Straight

skeletons [2] are an alternative formulation to the curved segments of the axis by de-

riving straight lines. These skeletons are formed by moving the point on the boundary

of the shape into the region at constant velocity. Both methods require well-segmented

object shapes and the final description is very sensitive to occlusion and noise.

Shock graphs [186] view the evolution of such axes during their formation, and de-

scribe the singularities in a graph representation, for example the corners, bridges, lines

and points. The graph is representation as a tree and the edit events (adding or remov-

ing nodes) are defined as the similarity when matching two shapes [177]. Matching is

be viewed as finding subtrees of the graph and thus occlusion handling is now possible.

However all the methods require a closed region as input to infer the axis and are not

applicable to contours.

3.3.2 Local feature representations

Local representations of shape also share a long history of research. Their main benefit

lies in the independence of the features by describing only a small local area around

a boundary point. This enables the features to be independent of global properties or

other information in the local neighborhood of the shape. While it can be difficult to

robustly determine global properties such as center of gravity or global orientation, local

approaches are robust to occlusion and articulation of the shape. In the following we

outline some of the local features based on turning angles, tangents, normals, distances

and arc lengths, which are the basic building blocks for local shape analysis. However,
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their strength is derived from a combination of multiple local features and graphical

models constraining the global geometry [20, 63, 122, 195].

3.3.2.1 Curvature and Tangents

The most frequently used local features are the curvature (also referred to as turning

angle) and the tangent space (referred to as the slope). Since these features are computed

locally, they determine a single value for a single given boundary point. For an entire

shape, the sequence of local features form a 1D signature. Such a signature is a 1D

description of following the region boundary of a shape. This results in a compact and

local description of the shape.

The information extracted by turning angles is the change in direction encoded in

radians. This bears similarity to the well-known chain codes, which quantize the change

in direction into eight angular directions [76]. An alternative description defines the rate

of change of direction, which requires a support window to calculate the rate of change.

Essentially this determines a derivative of the curvature. Curvature scale space (CSS)

analysis [144] uses successive Gaussian blurring to determine inflection points by zero-

crossings along the blurred outline. These extrema are used for detecting landmarks

points at high and low curvature. On the other hand, tangents represent the normal

vector at a given boundary point. The tangent is calculated by the slope of the shape at

the boundary point.

The notion of curvature is intuitive and in theory robust to deformation induced by

articulation or occlusion. However recent work by Arkin et al. [11] and Basri et al. [17]

stated that the invariance due to local representation is too high. Hence, for exam-

ple, a single change in curvature can drastically alter the outline of the shape. Tur-

ney et al. [199] thus used the tangent by slope and additionally arc length as local rep-

resentation for shape. Similarly, Schindler and Suter [172] proposed a probabilistically

motivated shape distance based on tangents which requires a closed contour in the

images. Chen et al. [37] defined the curvature by the turning angle (TA) calculated be-

tween a three consecutive points (Pi−1, Pi, Pi+1) on a boundary. The normal at middle

point Pi dissects the outline of the other side of the shape at point P′i . The distance PiP′i
is called the Distance Across the Shape (DAS). The distance description is normalized

by its maximal distance, and the TA and DAS features are then linearly combined.

The set of points used in this description are boundary points on the outline of

the shape. The landmarks are selected at high/low curvature points and at maximal
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distance between each landmark point. This reduces the number of points and hence

the description, however it requires a stable extraction of landmark points to make the

description repeatable. Further, this local approach lacks information about the global

shape, and is thus more sensitive to noise and articulation.

3.3.3 Semi-local representations

Semi-local representations capture local features, however over a larger support window

marginalizing over the denser observation. The semi-local support allows moving away

from the individual well-segmented object representation and allows part description

of objects. As a consequence the descriptions are less susceptible to cluttered edges by

spatial distance weighting or independently representing each detached contour edge.

The main two paradigms are the marginalization of the multiple local descriptions into

distributions, and the use of the complete set as redundant observation combined with

a graphical model. In the following we will outline some semi-local methods and how

they are used for partial shape description.

3.3.3.1 Geometric Hashing

Geometric Hashing is a method proposed by Wolfson and Rigoutsos [208] for repre-

senting two-dimensional shapes by encoding each pair of points by an affine-invariant

basis. This basis is another pair of points, which rotates the local coordinate frame

and allows invariance towards similarity transformations (scale, translation, rotation),

similar to Bookstein coordinates as

p− ps
0 = u× ps

x + v× ps
y (3.3)

where ps
0 = (pi + pj)/2 is the center between the point pair (Pi, Pj) defining the baseline.

Given a base pair, the scalar quantities v and u allow a description invariant under

similarity transformation. This representation is repeated for all combinations of base

lines and remaining points. The quantities v and u are further used as a 2D hash index

to quantize and store the set of points. In the matching stage, boundary points are

detected and hashed using randomly selected base pairs. Each matching hash entry

from the database then votes for the matching baseline until an object can be localized.

This method has been applied in for 2D and 3D alignment of shapes [140] as well as
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in other fields, for example, protein alignment in bio-informatics and star constellation

search in astronomy.

3.3.3.2 Pairwise features

Pairwise interactions of simple features are proposed by Leordeanu et al. [122] to model

how two contours preserve their geometric relationships. The method uses seven mea-

surements such as orientation angles, distances and normal orientation to encode a

feature vector between two landmark points. Each landmark point resides on a con-

tour associated with a normal vector. For a pair of landmarks (Pi, Pj) they define a

translation-invariant feature by

eij = {θi, θj, σij, σji, αij, βij, dij} (3.4)

where dij is their distance and βij is the angle between their normals θi and θi. The

remaining angles α and σ encode orientation information about the line between the

two landmark points.

The individual landmark points sampled on the contours are used as model parts

in their learning and detection stages. The power behind this approach comes from the

grouping of multiple simple features to encode their pairwise geometry in a graphical

model. Each pair (Pi, Pj) describes a local feature which encodes part of the object shape

independently. Hence, they are operating with a set of local landmark pairs, which in

turn then defines a category model and enables it handle occlusion and articulation.

3.3.3.3 Shape Context

Shape Context is a method proposed by Belongie et al. [18, 19], which captures the effect

of the neighborhood for a specific location of the shape. The idea is that the context

encodes the configuration of the boundary points relative to a reference point. Instead

of calculating pairwise properties of the points, the shape is stored in log-polar space

where the context of a given boundary point. The space around the boundary point

is divided into d angular directions and r logarithmic spaced radii. Each point is then

assigned to one of these r× d bins and the description is a histogram by

hi(k) = #{P 6= Pi : (P− Pi) ∈ bin(k)} (3.5)
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where Pi is the given reference boundary and P are the remaining points. The log-polar

space allows a linear increase in position uncertainty, which makes the descriptor more

less sensitive to faraway boundary points. The histogram counts the frequency of a

certain shape context leading translation invariance. Scale invariance is either achieved

by normalizing all distances by the mean distance of all pairs of points, or by a support

window to reduce the set of points. Rotation invariance is not typically used, as it

requires the selected of a dominant direction, which sorts the directional bins and thus

normalized all measurements by a common basis.

Since the Euclidean distances are used to select the log-spaced bins, the description is

sensitive to articulations. An adaptation of the method known as Inner-Distance Shape

Context introduced by Ling and Jacobs [126] uses the inner distance between two points

moving only inside the shape. This inner distance brings the benefit of invariance to

articulation as the description is now a canonical form of the shape.

Each boundary point in the shape is described by a separate descriptor. Since the

complexity of the descriptor is constrained by the histogram binning, the set of bound-

ary points used densely without resampling. Belongie et al. mention that using only

inflection and extrema points will populate the histograms less densely leading to a less

distinctive robust description.

A further extension is that of Berg et al. [20], who propose a continuous form of the

Shape Context denoted as Geometric Blur. Instead of using binary edge points, the image

gradients are accumulated in the histogram and the spatial uncertainty is realized by

successive Gaussian blurring.

3.3.3.4 k Adjacent Segments

The k-Adjacent Segment (kAS) is a method by Ferrari et al. [63, 66], which connects

neighboring line segments to a local description. This is done by building a contour

segmentation network (CSN) to define a graph of all edges in an image, abstracted by

straight lines and linked at junctions. A single segment is one straight line, which is

defined by its endpoints, centroid, angle and length. The k-Adjacent Segments (kAS)

is a higher-order composition of k such segments leading to mid-level complexity of

local shapes, for example as L- or T-shapes (for k=2) or Z- and U-shapes (for k=3).

Ferrari et al. defined a scale, translation and rotation invariant description for kAS and

used these for object detection by
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where ri = (rx
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i ) is the vector between midpoints of two segments, the distance Nd is

the maximum of all midpoint distances, and θi and li the orientation and length of the

segment. Due to the normalization factor Nd, the descriptor is thus scale and translation

invariant.

One benefit of this description based on segments is the detached encoding of part

of an object shape without being affected by nearby clutter or noise, unlike local context-

based methods such [18, 179].

However, the main benefit lies in the connectedness of the local segments forming

more complex shapes. Instead of an independent local feature, multiple segments form

more complex local shapes. This way the kAS provide abstract landmark points by

their mean centroid, which define then further are grouped to defined a shape model.

However, the length of any segment is constrained by its local curvature, which limits

the spatial extent of a segment. Since each segment represents a straight line abstracting

the actual underlying shape.

3.3.3.5 Shape Tree

Shape Tree is a method by Felzenszwalb and Schwartz [61], which builds a hierarchi-

cal description of a contour inspired by Mokhtarian and Mackworth’s curvature scale

space [144]. The hierarchy is built by spitting a contour at its mid-point and creating a

binary tree. The left and right nodes are filled with the corresponding divided contours.

Hence each contour is placed at a new level starting with the midpoint of the previous

level. This representation has the benefit of encoding global (nodes further up the tree)

and local (lower nodes) information about a shape. Each node stores the relative coor-

dinates of the midpoint and its two endpoints. Further, Bookstein coordinates on these

relative coordinates are used to achieve invariance towards similarity transformations.

Hence, the representation is very sparse for global nodes and more detailed for lower

nodes describing only very local parts of the shape. Felzenszwalb and Schwartz used

Shape Trees for matching objects by measuring the deformation between two Shape

Trees by recursive calculation the matching cost each level.
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3.3.3.6 Chord distributions

Chord distributions are introduced by Cootes et al. [40] as a method to obtain trainable

parametric descriptions of shapes. A chord is a line joining two boundary points on a

shape. Instead of viewing it as a baseline for a coordinate system, the chord itself is

described. The description of a chord is either performed by a distance measurement.

Multiple such chord descriptions for a shape are then combined into chord length dis-

tributions (CLD), which measure the global shape and frequency of the chords. Further,

a shape model is built by describing the covariance between a chord and the chord

distributions.

In a similar fashion, the line between two landmark points has been used by

Saber et al. [168], who also sort the landmarks and Arica et al. [10], who denote them

as beam angle statistics (BAS). A beam angle is the angle of a line between a reference

point and all other points on a shape. Multiple beam angles are summarized in a

compact histogram representation. Payet and Todorovic [159] presented an approach

for object detection by mining repetitive spatial configurations of contours and

representing them as sequences of weighted beam angle histograms.

The description is a global combination of multiple semi-local chords. Such distri-

butions combine multiple observations into a robust statistical measurement, however

lose all knowledge about the actual location of the chords.

3.3.3.7 Chordiograms

Chordiogram is a method proposed by Toshev et al. [194, 195], which is a joint histogram

capturing the distribution over all chords with the shape of an object. Each chord PQ

is described by four geometric measurements. The information collected is the chord

length, its orientation, and normal vectors pointing inwards. These simple features are

quantized into bins and stored in a histogram as

chk = ∑ (p, q)| fpq ∈ bin(k)where fpq = (rpq, θpq, ωp, ωq) (3.7)

which gives a global description of the entire shape by adding each individual chord

to the joint description. The benefit of this representation is the explicit representation

of figure/ground by means of the interior oriented normals. This is used in the match-

ing stage to guide perceptual grouping and increase the robustness over pure contour

description.
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3.3.4 Summary

The range and characteristics of the related work is summarized in Table 3.1. The

overview shows that many approaches fulfill Kendall’s theory of shape transformation

invariance in terms of invariance to similarity transformation. However, most approach

aim for one level of scale in terms of local or global description and do not construct

hierarchies. Further, notions of self-containing description which enables the partial de-

scription leading to occlusion and articulation invariance as well as detachment are rare.

In the next section we will describe the family of shape descriptors denoted as Structural

Measurement Descriptors, which satisfies all of these requirements.
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Bookstein + + + + + +
Procrustes + + + + +
Moments + + + + +
Fourier + + + +
Medial Axis + + + +
Shock Graph + + + + + + +
Curvature + + + + + + +
Tangent + + + + + + +
Geometric Hashing + + + + + +
Pairwise Features + + + + + + +
Shape Context + + + +
Inner-Distance SC + + + + +
Adjacent Segments + + + + + + + + +
Shape Tree + + + + + + + + +
Chord Distribution + + + + + +
Chordiogram + + + + + + +
SMD + + + + + + + + + + + + +

Table 3.1: Overview of related shape descriptor and their properties in contrast to the
proposed Structural Measurement Descriptors (SMD).
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3.4 Structural Measurement Descriptors

In this section we describe the concept for shape description denoted as Structural Mea-

surement Descriptor (SMD). The measurements are inspired by simple features such as

angles and distances over chords, however combining pairs of chords to form a mea-

surement. Further, we build a new hierarchical representation that allows partial match-

ing along the actual sequence of the contours. The description encodes the shape of a

contour by recursively defining its parts. Yet this hierarchy is represented in a flat ma-

trix form, which allows efficient description and later matching techniques. The partial

matching is directly connected to this structural measurement descriptions and is not

built on matching individual boundary points.

It is our goal to exploit the ordering of the measurements to derive a description and

consequential matching which is order-preserving. Hence, the descriptor should exploit

the available point ordering information. In comparison, other descriptors, for example

the Shape Context or Chord Distributions, lose all the ordering information due to the

histogram quantization. Hence they do not consider the influence of the sequence infor-

mation in the local neighborhood on single point matches. Further, we present a general

form for representing pairwise information between two chords, which are defined by

two points. Further, our description allows to combine pairs of chords to achieve higher

abstractions of the representation. In the following we show examples with angles and

distances, however the representation is not limited to these and may include additional

information about chord pairs, such as gradient or color profiles [192].

3.4.1 Structured Measurements

The new description is inspired by chord distributions introduced by Cootes et al. [40].

They define a chord as the line joining two points on a shape. Our descriptor uses such

chords, but instead of building statistical distribution histograms, we use the relative

information between specific chords and exploit their order. This has two main benefits.

First, this description holds pairwise information which makes it more robust and can

abstract information to undergo invariance to similarity transformation. Second, the

description is based on the specific ordering of any relative pair information. Hence,

we derive a representation which captures this ordering implicitly. The measurements

represent information from very local up to global chords. This builds a powerful hi-

erarchical description. In contrast to related approaches, this hierarchical description
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Figure 3.2: The Structured Measurement Descriptor (SMD) is based on deriving infor-
mation from N × N chords for each tuple of points (Pi, Pj) on the boundary of a shape.
The measurements are designed such that each part of the boundary is also a sub-matrix
of the full description.

describes a local boundary point, but also the combination of multiple boundary points

within the same description.

Given a boundary B, which is defined by the sequence B = (P1, P2, . . . , PN), a chord

is the line connection between any two of these points. Since we have the ordered

sequence of these points, we can also order any information extracted from the chords.

We thus defined a chord by an ordered tuple of points (Pi, Pj). For the first point Pi we

can derive N different measurements ψi1, . . . , ψiN . Additionally, every other point on the

boundary is selected as first point of the tuple, and thus an N × N matrix Ψ defined as

Ψ =


ψ11 · · · ψ1N

...
. . .

...

ψN1 · · · ψNN

 (3.8)

which is used to redundantly describe the structure and sequence of the entire bound-

ary. The matrix contains dense measurements between any two points of the boundary

and thus captures the essence of the structure we want to measure. Along each sides,

we index the order of the points along the boundary. The columns are measurements

between an index point Pi and any other point Pj on the boundary. Thus for small

differences between the indices i and j, these are points close to each other providing

local information. For large differences, the points far apart providing global informa-

tion. Elements on the main diagonal ψ11, . . . , ψNN represent the information between a



3.4. Structural Measurement Descriptors 49

boundary point and itself. This description implicitly includes local (close to the main

diagonal) and global information (further away from the diagonal).

Further, each part of boundary is an independent part of the matrix description.

Given a sequence of boundary points B = (P1, P2, . . . , PN), its structural measurement

descriptor is defined as in Equation 3.8. A part of the sequence defined by a subset of

the points B′ = (Pk, Pk+1, . . . , Pn) where k and n are smaller than N, is defined by

Ψ′ =


ψkk · · · ψkn

...
. . .

...

ψnk · · · ψnn

 (3.9)

which is a sub-matrix of the complete structural measurement descriptor. Figure 3.2

shows this property by outlining the tuples (Pk:n, Pk:n), which define the chords in only

a part of the boundary.

3.4.2 Holism

In this chapter we present a shape description which captures the holism of a shape,

partly inspired by the principles of the Gestalt school of perception. Holism is the nota-

tion that there is an extra value to a collection of parts. This is perhaps best portrayed

by the words of Koffka as "the whole is other from the sum of its parts" [104] hinting that

there is something different about a entire object than merely its parts. Agreeing with

this is also the evidence discovered by Palmer [156] that configuration of parts provides

more information than which is contained of its individual parts alone.

In the proposed Structural Measurement Descriptors we capture such information by

including local parts and configuration between those parts. These configurations are

the global aspects of the shape, and are collected further away for the diagonal. Con-

trary to many related descriptors, our description implicitly includes a hierarchy and

configuration of parts. The parts of a boundary are contained within the full description

and can be addressed separately. We denote this property as self-containment. It allows

to describe and match each part independent of its extent and possible occlusions.

The self-containment is a main benefit which enables partial description. Unlike the

global shape description methods, our description encodes each part independently as

well as within the full description. Chordiograms [195] achieve this by designing their

descriptor the non-negative summation of part description. While this makes it power-

ful to marginalize over multiple parts and compare a joint description, it also introduces
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Figure 3.3: The holism of a shape is captured by the Structural Measurement Descriptor.
Each part is individually description and captures, however the off-diagonal elements
of our description capture the configuration of parts.

limitations of the marginalization. This description does not allow to a reversely extract

single parts from the joint description and suffers from noise introduced by articula-

tion of the parts. Out description explicitly encodes each part and extends each part’s

description as more and more boundary points are connected. This implicitly results

in a local and global description, which captures the parts, their configuration and the

holism of the shape.

Consider the following example in Figure 3.3 showing three creatures: A horse, a

man and a centaur. Partially they are very similar as the torso is used in the horse and

the centaur, and the upper body for the centaur and man are both human. Hence, the

descriptions of these parts are also very similar and outlined with their respective colors.

In the unmarked regions are the parts which encode the configurations. For example, it

reflects how the human upper body interacts with the horse torso.

3.4.3 Articulation

This benefit of self-containment also results in a part-based and global description. A

common drawback of related work following holism is that the description is affected

by articulation or clutter. For example, pure semi-local and global approaches include

all information in a descriptor and thus also include nearby clutter. Similarly the whole

descriptor is effected when parts of it are changed or removed. Methods like Shape
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(a) SMD Closed (b) Closed (c) Open (d) SMD Open

Figure 3.4: Articulation invariance is handled by returning a set of partially matching
boundary parts. Corresponding boundary parts are depicted by the same color.

Figure 3.5: Detachment from clutter is an important requirement, as it only encodes part
of the shape that is to be described.

Context, k-Adjacent Segments and Chordiogram methods are not able to match articu-

lated shapes because of the non-detachment and articulation-sensitive descriptor. The

hierarchy and partial description of our description enables invariance towards these

deformations. This ability is illustrated in Figure 3.4 showing two scissors and its four

main components of the shape. Due to the self-containment each articulated part is de-

scribed on its own. However, the off-diagonal elements encode the configuration of the

parts. The smaller parts (shafts along the blades or handles) remained the same, hence,

their description and configuration remained the same using our approach.



52 Chapter 3. Structure in Partial Description

3.4.4 Detachment

A further benefit is that of contour detachment from cluttered images. The notion of de-

tachment describes how a shape description is influenced by near by shape information,

which is not part of the current boundary of interest. A part description is detached, if

it is not affected by any other information than its own boundary. Descriptions based

on patches or support regions extend the information used for a description to a sur-

rounding area. While this is well-suited for interest points within an object, interest

points at the boundary of an object are influenced by background information. Since

shape description deals solely with boundary information, any additional information

which is not part of the boundary, is obfuscating the description. Figure 3.5 illustrates

this detachment by highlighting a single contour of the object of interest (in green). It

is separately encoded and therefore is not affected by the near by clutter of background

edges in the image.

3.4.5 Features

In the following we describe the sources of information for describing a pair of chords.

In this chapter we discuss the two such sources, namely distance and angles, which

we use for calculating the pairwise information between chords. There are many more

sources available from local features such as normals, tangents up to richer features such

as line profiles [192], Haar-like features [202], and so on. First, distances are explored

as the absolute distance between any two boundary points is converted to relative mea-

surement using global information. Second, angular measurements describe the relative

spatial arrangement between two points on the boundary. However, as this requires a

third point to allow determining an angle, we propose several of third point selection

procedures. Figure 3.6 illustrates the information collected from the two sources. It

shows the measurements from (a) the distance to determine the ratio of chord lengths,

and (b) the angles between a pair of chords.

3.4.5.1 Distances

One source of information for the description is distance between two points Pi and Pj

on the boundary. This descriptor is on the distance dij which describe the length of the

chord between the boundary points. The length dij is calculated, which is defined as the

Euclidean distance between the coordinates of the boundary point tuple (Pi, Pj) as
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Figure 3.6: Our Structured Measurement Descriptors use the information of a pair of
chords to derive invariant information about shape. We measure distances (a) to deter-
mine the ratio of chord lengths, and angles (b) of enclosed by the chords.

dij = ‖PiPj‖ =
√
(xi − xj)2 + (yi − yj)2, (3.10)

where the points are Pi = P(xi, yi) and Pj = P(xj, yj). Such distance measurements

are invariant to translation and rotation. One can use a normalization to achieve scale

invariance. For example, the median distance between all combinations of the boundary

points Pi and Pj may be used to robustly normalize the other distances, resulting in

invariance to similarity transformation. The resulting descriptor has values in the range

between 0 and 1. However, our goal is to define pairwise chord interactions, which

measure the ratio of length two chords (Pi, Pj) and (Pi, Pk). We measure the relative

difference of their lengths by

γij =

∥∥PiPj
∥∥∥∥PiPk
∥∥ , (3.11)

where ‖ . . . ‖ denotes the length of a chord line as defined above, and PiPj define a chord

and Pk is a third point used to define a second chord PiPk.

3.4.5.2 Angles

The second source of information are angular measurements. The descriptor based on

angles αij describe the relative spatial arrangement of the sampled points. An angle αij
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is calculated between a chord PiPj from a index point Pi to another sampled point Pj and

a chord PiPk from Pi to Pk by

αij = �
(

PiPj, PiPk
)

, (3.12)

where � ( . . .) denotes the angle in the range of 0 to Pi (later normalized to 1) between

the two chords and a third point Pk which defines the second chord. The selection of

the third point is crucial and defines different properties on the description, which we

will discuss in the following section. However, since relative angles are preserved by a

similarity transformation, this description is invariant to translation, rotation and scale.

3.5 Region, Contour and Fragment Descriptors

The Structural Measurement Descriptor is designed to allow more flexible part description

yet discriminative description for the consequent matching of parts. In the following

we discuss the characteristics of our description and show specific formulations for

capturing the essence of their underlying extent of shape in terms of closed regions,

contours or local fragments.

As defined in our notation, a region is a closed boundaries around an object of

interest. This property defined a circular ordering of the points, where the first point

is also the last point. It allows to capture the connections between close by points. For

contours, the definition states that they define an open sequence of points anywhere

on the boundary of the object. There is no knowledge about where the end points lie

and only that they are not the same. The property of contours is that they may be of

arbitrary length, which is also not known in advance. Fragments are defined as finite

sequences of boundary points, with a known and equal length. The fragments capture

the smaller amount of information of a shape as their extent is limited. Each of these

types of boundaries defines different characteristics, which we capture by a different

selection of the pairs of chords. Figure 3.7 gives an overview of the types of boundaries

and their chord selection methods. Figure 3.8 illustrates the descriptors for these chord

selection methods for different shape primitives, and Figure 3.9 for different scales of

the shape shape primitive.
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Figure 3.7: Structured measurement descriptors use different selection of chord pairs
for different types of boundaries: regions, contours, fragment description.

Figure 3.8: Visualization of the Structural Measurement Descriptors for selected a set
of primitives. Second row shows the region descriptors. Third row shows the contour
descriptors. Note how each part of primitive is included in its respective closed primitive
(square and circle), except for the last row which the fragment descriptors.

3.5.1 SMD for Region Description

Regions form closed boundaries around an object of interest. This means that the se-

quence of boundary point is circular and may have an arbitrary starting point. This

property is used when matching closed shapes as discussed in Chapter 4. For descrip-

tion, we are interested in the circularity of region boundaries points, as it allows us to

build a description in the following fashion. For example, an angle αij is calculated be-
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Figure 3.9: Scale is implicitly included in the Structured Measurement Description. The
further measurements are apart, the more globally they capture the underlying shape.

tween a chord PiPj from a reference point Pi to another sampled point Pj and a chord

PiPj−∆ from Pi to Pj−∆ by

αij = �
(

PiPj, PiPj−∆
)

, (3.13)

where Pi and Pj are the ith and jth points in the sequence of sampled points of the contour

and ∆ is an offset parameter of the descriptor. The point Pj−∆ is ∆ positions before Pj

in the sequence. As the sequence is circular and the first and last points overlap, this

captures the essence of a region descriptor, which follows the circular sequence along

the shape back to the starting point.

3.5.2 SMD for Contour Description

Contours are parts of a boundary of an object, can be arbitrarily long and may contain

occlusions as discussed in Chapter 5 For the contours we build a description as follow-

ing. The measurement for an angle αij is calculated between the two chords PiPk and

PjPk and Pk is again ∆ positions away as defined by

αij =


�(PiPj, PiPj−∆) if i < j

�(PiPj, PiPj+∆) if i > j

0 if abs(i− j) ≤ ∆

(3.14)

where Pk is the third point and is chosen depending on the position of the other two

points to ensure that the selected point is always inside the contour. This allows us to

further enforce the self-containment of the description of any of its parts. It is important

for contours as the source of information for the boundary stems from from underly-
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ing image edges. Hence the boundary of the shape is often broken up into parts or

contaminated with noise and occlusion contours.

3.5.3 SMD for Rotation-Variant Description

The contour descriptions are designed for rotation invariance. However, often rotation-

invariance is not required and the additional invariance would leads to less discrimi-

nation. Thus the orientation should be separately encoded to not lose any additional

information [67]. This is especially valuable when the contour parts only contain limited

information about the local structure. Hence, for contours we can build a description in

the following fashion. An angle αij is calculated between a chord PiPj from a reference

point Pi to another sampled point Pj and a chord PiP∞ from Pi to P∞ by

αij = �
(

PiPj, PiP∞
)

, (3.15)

where P∞ is the point at infinity, which results in a rotation-dependent description. For

some tasks the orientation is known beforehand or is explicitly desired, for example

when drawing the sketch of a object by hand or analyzing subsequent video frames.

3.5.4 SMD for Fragment Description

Fragments are very small parts of a contour and only deal with a very limited spatial ex-

tent. This brings various benefits, however also reduces the information that is captured

by such local structures. The spatial extent now determines the size of the part. Con-

trary to a contour description, only a subset of points are available to derive a fragment

description. The support window is given by the number of boundary points surround-

ing the fragment in each direction. Additionally, since the extent is limited we can infer

a clockwise sorting of the boundary points. Thus the points are not only in a sequence,

yet also the representation is now invariant towards the direction of the sequence.

For fragments it is especially valuable to maintain as much of the information as pos-

sible due to their limited local structure. Hence, we build a description in the following

fashion encoding its orientation using a reference point on its bounding rectangle. An

angle αij is calculated between a chord PiPj from a reference point Pi to another sampled

point Pj and a chord PiP∗ from Pi to P∗, which is defined by the upper left corner of the

bounding box of a fragment. In such a way, we define
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αij = �(PiPj, PiP∗), (3.16)

where P∗ is a fixed reference point relative to the fragment. It is defined by the upper left

corner of the bounding box of the boundary points for this fragment. This description

encodes the limited spatial environment of each fragment. This limited support window

leads to a compacter description as less points (K � N) are included compared to

contour description. Partial description is achieved through redundant overlapping of

such fragments. In this way a fixed length of K points results in a fixed descriptor of K2,

which can be used for machine learning as shown in Chapter 6.

3.6 Experimental Evaluation

Due to the large variety of shape-based descriptors, it is difficult to express the indi-

vidual benefits and the best use. Most importantly, a direct comparison for region and

contour matching is not possible because one requires partial matching. This is dis-

cussed and evaluated in the next chapters in detail. In this section, we compare the

distinctiveness of local fragment description, which have only a local support window.

Therefore we design an evaluation looking at the classification rate of our structural

shape description compared to related work for local interest point description.

In this experiment, we evaluate different shape descriptors within different algo-

rithms for a classification task. In particular, we compare our proposed structural de-

scriptors for regions, contours and fragments to three other descriptors from related

work, beam angle (BA) [10], turning angle (TA) [37] and shape context (SC) [19]. The

classification algorithms we used were a random forest, linear SVM and a simple nearest

neighbor classifier.

In the experimental setup we classify individual edge pixels on the detected edges in

the test images into foreground or background. Specifically, we compare the per-pixel

classification results to the ground-truth annotations. Hence, we define a classification

error, describing the ratio of false classifications to all edge pixels. The protocol for the

experiment uses 50% of the images for learning a classifier and 50% for testing. We

extracted fixed-length fragments (or quadratic patches containing edges for SC) at vary-

ing sizes from the images, such that for all images a reasonable number of foreground

edges remained in the test set. For data we use an object class from the ETHZ Shape

dataset [66], which expresses the highest intra-class variability, namely the giraffe class.
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Length Region BA [10] Contour TA [37] SC [19] Fragment
l=51 41.67 41.61 41.13 40.49 37.13 33.60
l=41 43.15 42.67 42.68 42.14 37.51 35.93
l=31 43.43 43.48 42.99 42.81 38.33 38.58

Table 3.2: Classification error of shape fragment descriptors at several lengths, showing
the per-pixel classification error in % (see text for definition) when learned in a ran-
dom forest classifier. Our fragment descriptor yields the lowest classification error of
33.60% for a length of 51 points, significantly lower than previous state-of-the-art shape
descriptors.

In Table 3.2 we list some results for fragment lengths / patch sizes of 31, 41 and

51 pixels, when learning the individual descriptors in a random forest framework. As

shown, the longer the fragments, the better the discrimination is. The fragment descrip-

tor outperforms the other descriptors at these very limited local support windows. It

achieves its best performance at length N = 51 and hence, it is the best suited setup for

use in a discriminative setting. Please note that increasing the length even more may re-

sult in better classification scores, however, the number of edges belonging to the object

category decreases. Many extracted edges have a smaller length and the best tradeoff

between best classification and maximum recall.

We also evaluate different sampling strategies for selecting the individual points

on the fragments and found that there was no significant change in the classification

performance. Specifically, our descriptor does not show a drop in performance for

different sampling distances between one and ten pixels. However, this comes with a

positive side effect in terms of speedup due to the reduced data and quadratic descriptor

dimensions, which are used for processing. Changing the sampling density for the

patch based descriptors reduced the data and hence the robustness of the statistical

description, and we noticed slight drops in performance.

Using linear support vector machine (SVM) for classification results in approxi-

mately similar relative distributions of the scores. However, the absolute mean error

is on average about 5% to 10% higher, which suggests that random forest classifiers are

better suited for our task for two reasons. First, the random forest classifier is able to

handle non-linear data implicitly, where as the linear SVM on linear decision bound-

aries. For the SVM, one would need to design a non-linear kernel mapping for this

shape description to improve the results [63, 134]. Second, the random forest is known

to better cope with label noise and high-dimensional descriptors. Using a nearest neigh-
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bor search, the performance is much slower yet identical, as it seems that enough data

is available to always find the best match.

3.7 Conclusion

In this chapter we proposed a novel description of shape denoted as Structured Mea-

surement Descriptors (SMD) to capture the perceived holistic geometric layout of points

of an object. The description is inspired by the psychological principles of good contin-

uation of Gestalt and collinearity of Biedermann. Further, the design of the descriptor

captures local as well as global information about a shape. Each subpart is individually

described and also captures the configuration of parts in a holistic manner. This allows

partial description and matching for handling deformations caused by noise, articula-

tion, or occlusion.

The underlying representation is a sequence of boundary points, which may come

a closed region, an open contour from edge images or as small fragments describing a

local support window. Our novel formulation of Structured Measurement Descriptors

generalizes these sources of boundaries and description. However, each level of shape

abstraction has its own specific method for use in retrieval, classification, and detection

tasks. Region description captures the full scale of an object and incorporates the most

information compared to the other types.

In Chapter 4 we show how a partial similarity measure for regions is used to per-

form retrieval and clustering of closed regions. The contour description has an implicit

unknown scale, however partial matching to a reference template allows to find align-

ment and scale though the correspondence. In Chapter 5 we show how partial contour

matches can be used for efficiently locating objects in cluttered images. The fragment

description carries the least information from the limited local support window, how-

ever we show how this local window allows to exploit the sequence ordering for a

known direction and fixed-length feature description. In Chapter 6 we show how such

local shape fragments are used to efficiently train a robust category model by jointly

optimizing the classification and constellation of shape fragments.



The whole is other from the sum of its parts.

Kurt Koffka

4
Partial Similarity for Region Matching

In this chapter we propose a novel method for matching the shape of regions, which

has applications in many computer vision tasks. Related work deals with robust dis-

tance functions or employs graphical models to infer coherent structure when matching

local interest points, as reviewed in Section 4.2. In contrast, we show that the Structural

Measurement Descriptor (SMD) is well-suited for enforcing coherent structure. The hi-

erarchical description encodes all parts into one coherent descriptor, where the spatial

extent of parts is not known, which makes this approach incompatible with standard

matching or detection frameworks. Our solution is a 3D tensor containing all combina-

tions for correspondence, length and similarity. In this chapter we focus on matching

closed regions given by a binary mask and propose a novel method for measuring a

balanced partial similarity, as described in Section 4.3. In the experimental evaluation

our partial similarity measure achieves superior computational efficiency of only 3 ms

per match as well as competitive results to state of the art in shape retrieval and cluster-

ing on the well-known KIMIA-25, KIMIA-99 and MPEG-7 silhouette datasets, as shown

in Section 4.4. For the task of object detection in cluttered images, however, another

method is required for extracting partial matches and is shown in the next chapter.

61
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4.1 Introduction

Shape matching is a well investigated problem in computer vision and has versatile ap-

plications, for example in shape retrieval [19, 173, 180, 213], object detection [57, 66, 153],

image retrieval [146], object tracking [203], or action recognition [204]. Most of these

tasks require a shape similarity measure between shapes and a way to cope with the

occlusions and deformations. The large field of related work deals with these problems

in two ways. First, distance functions are designed for robust comparison of shapes in

terms of statistical distribution of global point sets capturing coarse structures, or edit

distances in shock graphs to explain topological changes. Second, deformation costs

and graphical models are introduced to infer coherent structure during matching of

semi-local interest points.

In this chapter we follow a different strategy, namely that of partial matching of

a hierarchical description of shape. The shape description introduced in the previous

chapter is designed for exactly this purpose. The Structural Measurement Descriptor

is a holistic description allowing each part of a shape to be described and matched in-

dependently as well as jointly. However, this unique property is not compatible with

standard matching or detection frameworks. The principle difference is that the Struc-

tural Measurement Descriptor is a single coherent descriptor for the entire shape, which

is hierarchical and each part may be of arbitrary spatial extent. This is contrary to most

related work, which uses known spatial extents in their global or local shape descrip-

tions. For closed regions most approaches use global descriptors and distance functions

which are robust to occlusions. For cluttered images local descriptions are used with a

focus on coping with clutter and occlusions.

A partial shape matching algorithm has to fulfill several conflicting requirements.

First, the method has to provide a distance function to measure the similarity of two
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shapes, returning a single similarity value as result. Second, it has to be able to retrieve

partial results between similar parts of the two shapes. Third, it has to provide corre-

spondences between the matching parts to align the matching and complete the missing

part of the shape. Finally, the algorithm has to be efficient due to the large number

of possible matching combinations. This chapter deals with the structure in matching

shapes. We propose a novel method for matching the structure of shapes by exploiting

their sequence information. This sequence is implicitly encoded in the Structural Mea-

surement Descriptor and hence can be further exploited to extract structurally coherent

partial matches.

The main aspect is the design of a partial similarity distance and its efficient calcula-

tion. Such a distance deals with the balance between partiality and similarity while also

considering the structure of the shapes. We build a 3D tensor containing all combina-

tions for matching two shapes. This tensor calculation however is generic to allow any

content to be matched. It does not necessarily have to be shape information, as long as

the sequential ordering requirement is fulfilled. Our matching method focuses on the

order-preservation and pairwise geometric properties inherent in the Structural Mea-

surement Descriptor. We define a global optimal Pareto frontier to calculate a similarity

measure between shapes balancing the partiality and similarity of two shapes.

In this chapter we focus on a novel method for measuring partial shape of closed

regions and show vast performance improvements over state of the art. The method is

two orders of magnitude faster than comparable work, requiring only a 3 milliseconds

per match. Experimental validation in tasks of shape clustering and shape retrieval on

standard shape datasets like KIMIA-25, KIMIA-99 and MPEG-7 show that we achieve

state-of-the-art results at greatly reduced computational costs. In the following chapter

we show how to use the 3D similarity tensor to extract valid partial matches, which are

used for category object detection in cluttered images.

4.2 Related Work

There exists a long history in related work for shape matching. Considering the ways

previous work deals with coping with noise, occlusions and defining a similarity mea-

sure for the matched parts, there are two approaches. First, distance function are de-

signed for robust comparison of the data points distribution. Second, deformation costs

in graphical models are introduced to infer coherent structure during matching of (semi-

local interest) points. These two ideas relate to measuring the energy for aligning the
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data, or measuring the difference between the data and its alignment. The latter follows

in spirit the idea of Kendall’s theory of shape [102], which defines a shape as what re-

mains after normalization, which removed deformations by similarity transformations.

4.2.1 Distance measures

A distance function measures the similarity between two given sets of data, for example,

as feature vectors, in color space, as point sets or closed regions of shape. Since par-

tial matching requires a form of measuring the quality of the correspondence between

shapes, one needs a distance function which captures the similarity of two shapes robust

to occlusions and noise. In this section we will review some of these distance functions.

The most direct way is to determine a similarity between individual points. The

general form is denoted as the Minkowski distance [142] and defined as

Lp(a, b) = (
d

∑
i=0

= ||ai − bi||p)
1
p (4.1)

where ai is the ith dimension of the point. For specific cases of p, this simplifies to the

well-known Euclidean distance (L2-norm, p=2) or Manhattan distances (L1-norm, p=1).

It gives a measure how far apart two points are. For a set of points this becomes more

difficult, as we need to handle outliers and the assignment between points.

Robust distance functions are based on the principle idea that only the minimum

distance is sufficient to measure shape similarity. The Bottleneck distance [56] is defined

as the minimum over the largest distance for all combination of two points. The Haus-

dorff distance [97] is defined as the largest minimum distance over the point sets (and

is sensitive to outliers and ignores order of points). Fréchet distance [3] is defined as

smallest distance over all combinations of two points while preserving the adjacency of

points along a curve, employing the metaphor or a man and a dog on a leash to measure

how far apart the points are allowed to be.

The Procrustes shape analysis [84] uses Euclidean distance between two sets of

points. The two sets of points are overlayed and a distance between the superimposed

points determines the quality of the shape alignment, refer to Equation 3.2.

For statistical histograms as available in chord distributions by [41, 155], the Earth

Mover’s Distance (EMD) [167] is a well-suited distance, which measures the amount

of changes required between the discrete histogram bins to find the minimal distance.

Recently faster methods for Earth Mover’s Distance have been proposed in [88, 128].
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Chamfer matching [16] is a popular method for comparing two shapes in terms of

images. The chamfer distance measures the average distance from a set of points to its

nearest neighbors. It is commonly used for matching in edge images rather than the

comparing shapes. However, it is sensitive to clutter [129, 193], yet its superiority in

computational performance makes it popular. There have been numerous extensions

including hierarchy [30], orientation [183] and direction [129]. Still it is based on a rigid

template and requires explicit search of rotation and scale.

Edit distances stem from the field of string sequence matching and forms a class of

distance measures which count the number of operations required to transform a string

into another, deleting, inserting, or skipping string elements. Shock graphs [186] view

the evolution of such Medial Axes transforms [25] during their formation, and describe

the singularities in a graph representation. The graph is represented as a tree and the

edit events (adding or removing nodes) are defined as the similarity measure.

4.2.2 Deformation measures

The second approach is measuring the deformation costs for transforming one shape

onto another. This often requires an initial set of correspondences to calculate the costs

and infer a subsequent transformation update.

One example is the Thin Plate Spline (TPS) transform [54], which has been used in

non-rigid matching method for aligning two point sets [38]. It measures the amount

of bending energy required to fit one shape onto another. Both require identified point

sets which have to be aligned, either by cleanly segmenting the points from clutter or

providing correspondences between them.

Similar, in [178] and [17] the deformation energy is measured as the minimal effort

needed to transform one contour into the other. [116, 118] define their similarity func-

tion by only allowing a simplification of the shape to occur. Further they propose not

to measure the cost of deforming a shape, however instead the shape similarity after

deformation has been carried out, similar to aligning after Procrustes analysis.

The more general correspondence assignment is a optimization problem in many

fields. The assignment between two sets of points consists of a weighted graph. The

graph connects each point combination of the two sets with an edge, which has a weight

corresponding to the cost of assigning these two points. Depending on the knowledge

available, this graph may be reduced to a bipartite graph or even a sequence of points.

[20] uses a quadratic assignment problem to align two sets of interest points. [18] uses a
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linear assignment solver known as the Hungarian algorithm [110] for aligning the point

sets. This has been extended in [175] by defining it as an cyclic order-preserving assign-

ment problem (COPAP), which is essentially matching the point in a sequence. Further

variants include the cyclic dynamic time warping solution by [33] and the dynamic

programming for aligning sequences by [58].

4.3 Structure in Partial Matching

In this chapter, we propose an alterative to the coarse statistical distance function and

time intensive correspondence assignment via graph matching. The most important

part of designing a shape matcher is the choice of the shape representation which has

a significant effect on the matching step. We directly exploit the properties included in

the Structural Measurement Descriptors (SMD). First, the description is a hierarchy of

the entire shape, which includes all part descriptions and configurations. The nature

of this full description does not limit the spatial extent. In comparison, local interest

points always have a limited local support window, which may limit the distinctiveness

of the local description. In the Structural Measurement Descriptor the matching decides

the spatial extent. Second, the description contains the ordering sequence due to the

ordered measurements stored in the structured description.

For example, the Shape Context [19] descriptor loses all the ordering information

due to the histogram quantization and for that reason does not consider the influence

of the local neighborhood on single point matches. This has to be recovered by solving

the expensive assignment problem, even for the special case of the order-preserving as-

signment problem [175]. The main challenges in this field lie in the implicit handling

of occlusions, measuring the partiality of a match and reducing the computation of the

solutions. For example, the method in [175] is lacking the ability to handle occlusions.

Figure 4.1 illustrates a result of our proposed method, where our partial matching en-

ables to handle occlusion.

We introduce a novel shape matching method denoted as IS-Match (Integral Shape

Match). The matching exploits the structure and sequence information given by an

ordered sequence of points on a boundary, which is encoded in the Structural Measure-

ment Descriptors (SMD). In this way, there is no need for expensive graph matching,

since the structure is already encoded in the description. The proposed method is di-

vided into the three following parts:
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Figure 4.1: Result of our partial shape matching where sampled points are indicated by
the crosses, and matching results are shown with circles.

• The Structural Measurement Description (SMD) is used for a region specific

shape descriptor. The closed region information enables specific properties such

as known scale and cyclic sequence which allow to match across the starting and

end points of a region.

• The 3D Similarity Tensor compares the descriptor matrices of two shapes by an

efficient integral image-based algorithm. This allows calculation of the similarity

for any subparts of the shapes with an runtime complexity of O(n2).

• The Pareto-Optimal Partial Similarity analysis the partial similarities on its global

optimal Pareto frontier and calculates the corresponding Salukwadze distance as

a measure between shapes optimally balancing between partiality and similarity.

In this chapter, we focus on the problem of matching the shapes of closed regions,

which enables the region-specific shape description. However, it requires a cyclic search

along the region boundary points and a measure to evaluate the partiality as well as

the distance between shapes. The 3D similarity tensor is a general method for matching

two Structural Measurement Descriptors, and as shown in the next Chapter it is used

for partial matching of contours using a different matching strategy.

In Section 4.3.1 we describe the shape description for closed regions. In Section 4.3.2

we propose a method for efficient calculation of all combinations in correspondence

and lengths the matching of two shapes which is stored in a 3D similarity tensor. In

Section 4.3.3 we show how to derive an optimal balance between partiality and similarity

for measuring shape similarity. In Section 4.3.4 we analyze the required computational

complexity for a matching of two shapes.
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4.3.1 Region Description

As we focus on closed regions in this chapter, our input data for shapes are either binary

masks containing a single region or an otherwise extracted sequence of boundary points

R = {P1, P2, . . . , PM}, where the boundary is closed, i. e. P1 and PM are the identical

points. We use these boundary points as a representation and exploit the ordering of

the points to formulate the description and the matching to preserve the order. We

use the Structural Measurement Descriptors (SMD) introduced the previous chapter to

derive a description specific for closed regions. For description, we are interested in

the circularity of region boundaries points, as it allows us to build a description in the

following fashion. An angle αij is calculated between a chord PiPj from a reference point

Pi to another sampled point Pj and a chord PiPj−∆ from Pi to Pj−∆ by

αij = �
(

PiPj, PiPj−∆
)

, (4.2)

where Pi and Pj are the ith and jth points in the sequence of sampled points of the contour

and ∆ is an offset parameter of the descriptor. The point Pj−∆ is ∆ positions before Pj in

the sequence. As the sequence is circular and the first and last points overlap, this cyclic

sequence captures the essence of a region descriptor.

Since the description depends on which point is chosen as the starting point of the

sequence. Given a region and its closed boundaries around an object of interest, the

starting point is also the ending point. Yet the starting point may be any point along

the region and the descriptor depends on which point is chosen as the first point of the

sequence. For example the descriptor matrix Ψ changes to

Ψ(k) =



ψkk . . . ψk1 . . . ψk(k−1)
...

. . .
... . . .

...

ψ1k . . . ψ11 . . . ψ1(k−1)
... . . .

...
. . .

...

ψ(k−1)k . . . ψ(k−1)1 . . . ψ(k−1)(k−1)


(4.3)

if the kth point is set as the first point of the sequence. For closed boundaries, these two

matrices Ψ(k) and A are directly related by a circular shift. Matrix Ψ can be obtained by

shifting the Ψ(k) matrix k− 1 rows up and k− 1 columns to the left. This is an important

property for the efficient descriptor matching. Note this property is only valid for closed

regions, as open contours do not require to set a fixed starting point.
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4.3.2 Partial Similarity Tensor

The Structural Measurement Descriptor (SMD) for a shape is single coherent hierarchical

description of all parts and configurations. In this section we describe how to extract

similarities for all these parts. Matching a part requires finding the correspondence

between the reference and query descriptor. The description for shapes constitute the

basis for matching a point of the reference shape to a point of the query shape. Since the

structure is implicitly order-preserving, thus is the consequent matching formulation.

To find a partial match between two given shape regions R1 and R2 the corresponding

descriptor matrices Ψ1 with size M × M and Ψ2 with size N × N are compared. For

notational simplicity we assume that M ≤ N.

The aim of partial shape matching is to identify parts of the two shapes which are

similar to each other. In terms of comparing the two descriptor matrices this equals to

finding l × l sized blocks starting at the main diagonal elements Ψ1(r, r) and Ψ2(q, q) of

the two descriptors which yield a small average difference value ∆(r, q, l) defined by

∆(r, t, l) =
1
l2

l−1

∑
i=0

l−1

∑
j=0
‖Ψ1 (r + i, r + j)−Ψ2 (q + i, q + j) |2 (4.4)

where |...|2 is the L2-norm between the blocks. This is possible due to the previously ex-

plained property that a different starting point leads to a circular shift of the descriptor

matrix, see Equation 4.3. To find the matching blocks, all different matching possibil-

ities for correspondence and length have to be considered and the brute-force method

becomes inefficient for larger number of points. A closer look into Equation 4.4 shows

that three different loops for the variables q, r and l have to be handled.

• Changing the reference starting point (r): There are N ≥ M possibilities to match

the two boundaries onto each other by rotating the shape R1 with the lower num-

ber of sampled points M within the shape R2.

• Changing the query starting point (q): Once a reference assignment between the

two shapes is fixed by the previously described loop, the starting point for the

query boundary must be chosen. There are again M ≤ N possibilities to choose

this starting point.

• Adapting sequence length (l): Once the starting points are fixed, the length l of

the sequence can be adapted, which is the most challenging part.
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This presents a high combinatory complexity, therefore a high efficiency of this step

is important. The adaptive length makes the matching unique and challenging. In

contrast to quadratic assignment problems where all combinations of two points are

considered, the number of points considered in matching is variable.

We propose an algorithmic optimization to overcome the limitations of the sole

brute-force approach, which is based on an adaption of the Summed-Area-Table

(SAT) [44] or more popularly known as integral images [202] to calculate all the

descriptor differences ∆(q, r, l). The integral image approach allows to calculate the

value of rectangle features, for example, the sum of all pixel values for any size and any

location in constant time. The approach works by precalculating the values according

to an integral function, which combines the results of all smaller rectangles into one

value. When an arbitrary location is evaluated, only four constant lookup operations

for adding and subtracting are performed to determine the value.

We use this concept to precalculate the differences between the Structural Measure-

ment Descriptors. Hence, we calculate integral difference matrices, which store the

difference between two descriptors. For calculating the similarity scores for all possible

configuration triplets {q, r, l} in the most efficient way N integral images Int1 . . . IntN

each of size M×M are built for N descriptor difference matrices ∆n defined by

∆n = Ψ1 (1 : M, 1 : M)−Ψ2 (n : n + M− 1, n : n + M− 1) , (4.5)

where Ψ1 (1 : M, 1 : M) is the cropped M × M square sub-block of Ψ1 including all

elements of the first to the Mth row and the first to the Mth column. The difference

matrices ∆n represent the N possibilities to match the boundaries onto each other. Based

on these N integral images Int1 . . . IntN the difference values Θ(r, q, l) can be calculated

for every block of any size starting at any point on the diagonal in constant time, which

reduces the computational complexity. The resulting triplets {r, q, l} provide a similarity

measure for every starting point in the reference, query, as well as every length.

4.3.3 Region Shape Similarity

Having defined all similarities between the correspondences and length, we are one step

closer to defining the similarity between the shape of closed regions. It is important to

provide a reasonable similarity measure in addition to the identified matching point

sequences, e. g. for tasks like shape retrieval. Commonly, a combination of descriptor

difference, matched shape distances like the Procrustes distance [84] and bending en-
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ergy of an estimated transformation like a Thin Plate Spline (TPS) [54] given a set of

correspondences is used. However, since we are analyzing more than just the statistical

similarity of two shapes, we seek an assignment between all the points on the reference

shape onto the query shape. This assignment however requires the knowledge of occlu-

sions and partial similarity, which is not compatible with a pure transformation-based

similarity estimation calculated of the complete shapes.

The straight-forward way is to select the best matching correspondence by select-

ing the lowest distance value from the 3D tensor. However, this will result in a trivial

solution of minimal length. Therefore we focus on partial similarity evaluation, and

we define a partial similarity measure over the 3D similarity tensor inspired by Bron-

stein et al. [34]. The Pareto frontier for quantitative interpretation of partial similarity

defines the two quantities:

• Partiality λ (X′, Y′), which describes the length of the parts in terms of percentage

covered of the entire region boundary between 0 and 1 (the higher the value, the

larger the partiality and hence the smaller the part).

• Dissimilarity ε (X′, Y′), which measures the dissimilarity between the correspond-

ing parts, where X′ and Y′ are the two parts of the shape (the smaller the value,

the more similar the parts).

A pair Φ(X∗, Y∗) = (λ (X∗, Y∗) , ε (X∗, Y∗)) of partiality and dissimilarity values,

fulfilling the criterion of lowest dissimilarity for the given partiality, defines a Pareto

optimum. All Pareto optimums can be visualized as a curve, and are referred to as the

set-valued Pareto frontier.

Since finding the Pareto frontier is a combinatorial problem in the discrete case,

mostly rough approximations are used as final distance measure. Our matching algo-

rithm automatically evaluates all possible matches for all possible lengths resulting in

the 3D tensor similarity. Therefore, by focusing on the discretization defined by our

point sampling and the property that we are dealing with closed regions, we can calcu-

late a global optimal Pareto frontier, by returning the minimum descriptor difference for

all partialities. Thus for every part in the reference region we can infer the best similarity

and partiality criteria in the parts of the query region.
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Figure 4.2: Our shape matching algorithm IS-Match analysis all possible correspon-
dences for all sequence lengths which allows calculating a global optimal Pareto fron-
tier. The Salukwadze distance is returned as similarity score balancing the partiality and
similarity of the match.

Finally, we determine a single value measuring the overall similarity between two

provided shapes to allow comparison using the Salukwadze distance [170]. This dis-

tance DSalukwadze is calculated based on the Pareto frontier by

DSalukwadze = inf
(X∗,Y∗)

|Φ(X∗, Y∗)|1 , (4.6)

where |...|1 is the L1-norm of the vector. Therefore, DSalukwadze(X, Y) measures the dis-

tance from the utopia (0, 0) to the closest point on the Pareto frontier. The Salukwadze

distance now delivers a similarity score when matching between the shapes of two

closed regions. Figure 4.2 illustrates the calculation of the global optimal Pareto frontier

and Salukwadze distance in the example of a centaur and a human.

4.3.4 Computational Complexity

Our integral image based matching algorithm detects partial matches with lower com-

putational complexity. The method returns the set of partial matches by evaluating a

global optimal Pareto frontier to define a partial similarity measure between shapes.
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Method N Complexity Runtime

Sebastian et al. [178] - - 1000 ms
Tu and Yuille [197] - - 200 ms
Felzenszwalb et al. [61] 100 O(t3k3) 500 ms
Scott and Nowak [175] 100 O(mnl) 450 ms
Ling and Jacobs [127] 100 O(t2n) 310 ms
Belongie et al. [19] 100 O(t2n) 200 ms
Schmidt et al. [173] 200 O(t2log(t)) -
Brendel and Todorovic [33] 100 O(nm) 200 ms
Our work 100 O(nm) 120 ms
Our work 30 O(nm) 3 ms

Table 4.1: Comparison of computational complexity and runtime in milliseconds for
a single match for best performance. For typical 100 points we require the smallest
runtime. Yet we our algorithm only requires 30 points to achieve competitive results on
reference datasets. Hence, an additional significant speedup of runtime is achieved!

These partial matches therefore allow alignment between differently articulated and oc-

cluded shapes.

An exhaustive search over all possible matches for all possible lengths has a com-

plexity of O(2n+m). Our proposed approach based on integral image analysis enables

matching in O(nm) time, where n and m are the number of sampled points on the two

input shapes.

For comparison, Table 4.1 summarizes complexities and runtime of current state-of-

the-art shape matching methods. As it is shown in Section 4.4, only 30 sampled points

are required to provide close to state-of-the-art shape retrieval results, which is possible

within only 3 ms. Please note, that the runtime may vary due to differences in implemen-

tations and machine configurations. But as can be seen in general IS-Match outperforms

state-of-the-art concerning computational complexity and actual runtime. To the best

of our knowledge this constitutes the fastest method for combinatorial matching of 2D

shapes published so far.

4.4 Experimental Evaluation

In the experimental evaluation we analyze the overall quality of our partial shape match-

ing method IS-Match on three common datasets. We use the KIMIA-25 and KIMIA-99

from Sharvit et al. [180] and further evaluate on the largest and currently most important

benchmark for evaluating shape matching algorithms, the MPEG-7 silhouette dataset



74 Chapter 4. Partial Similarity for Region Matching

Figure 4.3: MPEG-7 silhouette dataset [117] consisting of 70 shape categories each with
20 different images with high intra-class variability.

from Latecki et al. [117]. All three datasets are binary masks of various shape categories

with multiple images per category, see Figure 4.3 for an overview of the MPEG-7.

In Section 4.4.1 we focus on the task of shape retrieval and analyze the influence of

the number of sampled points N, the chord offset ∆ and fusion of descriptor features

on the performance using the KIMIA-25 and KIMIA-99 datasets. In Section 4.4.2 we
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analyze the performance of IS-Match for the task of shape clustering in combination

with various cluster methods.

The first step of our method is to represent the shapes by a sequence of points

sampled from the outline of the region. There are two different variants for point sam-

pling: (a) sampling the same number of points from the closed region or (b) equidistant

sampling, i. e. fixing the distance between sampled points. The type of sampling sig-

nificantly influences the invariance properties of our method. Based on equidistant

sampling occlusions are ideally handled, but then only shapes at the same scale are cor-

rectly matched. By sampling the same number of points our method becomes invariant

to similarity transformations, but strong occlusions can disturb the performance. In this

chapter we focus on the equidistant sampling for the task of shape retrieval on single

scale datasets. Nevertheless all subsequent parts of the method are defined in a manner

independent of the sampling type. Therefore, we can switch the sampling type without

requiring any modifications of the method.

4.4.1 Shape Region Retrieval

The task of shape retrieval is defined as given a reference shape, rank all other query

shapes in order or similarity. We apply our method to shape retrieval on three frequently

used datasets. We use the KIMIA-25 and KIMIA-99 from Sharvit et al. [180] and evaluate

the influence of parameters, such as the number of sampled points N and ∆ for the

region shape description. Further, we evaluate on the MPEG-7 silhouette dataset from

Latecki et al. [117] and compare the retrieval performance.

4.4.1.1 KIMIA-25 dataset

The first dataset KIMIA-25 consists of 25 images of six different classes. Each shape of

the dataset was matched against every other shape of the dataset and the global optimal

Salukwadze distance as described in Section 4.3.3 was calculated for every comparison.

Then for every reference image all the other shapes were ranked by increasing similarity

value. To evaluate the retrieval performance the number of correct first-, second- and

third ranked matches that belong to the right class was counted. In all the experiments

∆ was set to 5, but experimental evaluations with different parameterizations revealed

that changing ∆ only has a small effect on shape retrieval performance.

Figure 4.4 illustrates the performance of our algorithm on this dataset, where the

sum over all correct first-, second- and third ranked matches is shown. Therefore, the
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Figure 4.4: Shape Retrieval results in dependence of number of sampled points on the
KIMIA-25 dataset [180] consisting of 25 shapes of 6 different classes. Maximum achiev-
able score is 75.

Algorithm Top 1 Top 2 Top 3 Sum

Sharvit et al. [180] 23/25 21/25 20/25 64
Gdalyahu et al. [82] 25/25 21/25 19/25 65
Belongie et al. [19] 25/25 24/25 22/25 71
Scott and Nowak [175] 25/25 24/25 23/25 72
Biswas et al. [24] 25/25 25/25 23/25 73
Ling and Jacobs [126] 25/25 24/25 25/25 74
Our work 25/25 25/25 24/25 74

Table 4.2: Comparison of retrieval rates on the KIMIA-25 dataset of [180]. The number
of correct first-, second- and third ranked matches is shown.

best achievable performance value is 75. We present results of IS-Match in dependence

of the number of sampled points in a range from 20 to 100 sampled points. As can be

seen by sampling 30 points, we achieve the highest score of 25/25, 25/25, 24/25 which

represents state of the art for this dataset as shown in Table 4.2.

4.4.1.2 KIMIA-99 dataset

The second dataset we analyze is the KIMIA-99 [180], which contains nine classes each

consisting of eleven images each. We again performed an all vs. all comparison and

ranked the similarity values for each reference shape. The performance of the rank-
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Figure 4.5: Shape retrieval results for different variants on the KIMIA-99 dataset [180]
consisting of 99 shapes of nine different classes. Maximum achievable score is 990.

ing properties of our approach is analyzed by evaluating how many of the ten closest

matches to each reference image are in the same category.

For this dataset we also analyze the combination of complementary features. For

this we calculate the region descriptor using angles as well as distances. Figure 4.5

shows the result for feature combination. Looking at feature alone, the angular features

outperform the distance features by a few percent on average. However, when fusing

the results the total performance increases. The best fusion result was obtained with an

early fusion of the features with equal weighting between them.

Figure 4.5 also shows the effect of scale, when a different number of points are

sampled on the region boundary. Again the best performance requires only 30 points

and in Table 4.3 we compare our retrieval results to related work for shape retrieval. We

again achieve competitive results, e. g. the top-4 ranks in our results were always correct.

In summary, our algorithm achieves state-of-the-art results on the two datasets with

only 30 sampled points, which allows to perform a single match within 3 ms, outper-

forming the running time of all other shape matching algorithms by two orders of mag-

nitude. But please note, that since our method heavily depends on the ordering of the

sampled silhouette points, it might be quite sensitive to noise. This is not a problem

for the clean shapes of the standard shape matching datasets but might be an issue for

application in different real-world scenarios.
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Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Belongie et al. [19] 97 91 88 85 84 77 75 66 56 37
Kuijper and Olson [111] 99 96 93 93 87 82 75 71 57 56
Tu and Yuille [198] 99 97 99 98 96 96 94 83 75 48
Biswas et al. [24] 99 97 98 96 97 97 96 91 83 75
Ling and Jacobs [126] 99 99 99 98 98 97 97 98 94 79
Sebatian et al. [176] 99 99 99 98 98 98 96 95 94 86
Felzenszwalb et al. [61] 99 99 99 99 99 99 99 97 93 86
Our method 99 99 99 99 98 92 90 85 82 75

Table 4.3: Comparison of retrieval rates on KIMIA-99 dataset [180] consisting of 99
shapes of nine different classes.

4.4.1.3 MPEG-7 dataset

As a third dataset we evaluate IS-Match on the MPEG-7 silhouette dataset [98, 117] which

is one of the most popular dataset for shape matching evaluation. The dataset consists

of 70 shape categories, where each category is represented by 20 different images with

high intra-class variability. The parametrization of our algorithm is based on the results

shown in the previous section.

The overall shape matching performance was evaluated by calculating the so-called

bullseye rating, in which each image is used as reference and compared to all of the

other images. The mean percentage of correct images in the top 40 matches (the 40

images with the highest shape similarity scores) is taken as bullseye rating.

The measured bullseye rating for IS-Match was 84.79% and is compared to state-

of-the-art algorithms in Table 4.4. As can be the seen the score is close to the best

ever achieved by Felzenszwalb et al. [61] of 87.70%. But please note that [61] uses a

more complex descriptor and requires about 500ms per match. Therefore, analyzing the

entire dataset takes approximately 136 hours for [61], while with IS-Match all similarity

scores are provided within a single hour!

Figure 4.6 further illustrates the bullseye scores for all the 70 different classes inde-

pendently, revealing that most of the classes are retrieved well. Only two classes (Device

6 and Device 9) have a retrieval score below 50%. These are shape categories of the

MPEG-7 dataset, where the outer boundary of the shape is different for each image. It

makes one wonder what shape really is.
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Algorithm Mokhtarian Belongie Scott Ling Felzenszwalb Our work
[143] [19] [175] [126] [61]

Score 75.44% 76.51% 82.46% 86.56% 87.70% 84.79%
Runtime - 54 h 122 h 84 h 136 h 1 h

Table 4.4: Comparison of retrieval rates and estimated overall runtime in hours for
calculating the full N×N similarity matrix on MPEG-7 dataset consisting of 1400 images
showing 70 different classes.

Figure 4.6: Shape matching result for the MPEG-7 silhouette dataset. For each of the
70 different classes the bullseye score, i. e. the number of correct matches in the 40 first
ranked shapes, is shown. A total bullseye score of 84.79% is achieved.

4.4.2 Shape Region Clustering

The previous section showed experiments on the shape retrieval datasets, which re-

vealed that the global optimal Salukwadze distance provided by IS-Match captures a

meaningful notion of shape dissimilarity.

Therefore, we now investigate it for clustering shapes, which has versatile applica-

tions in computer vision. For example, shape clusters are used to improve the efficiency

of current object detection methods [81, 125] by providing a hierarchical shape structure,

which allows to perform detection in a coarse-to-fine approach. It enables automatic la-

beling in image datasets by outlining existing groups and relations between them [213].

Finding similar shapes also facilitates the unsupervised clustering of object categories.
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F-Value / MI K-Center Agglom. Clustering Affinity Propagation

Shape Context 0.52/0.66 0.56/0.70 0.77/0.76
COPAP 0.65/0.76 0.72/0.84 1.00/0.97
Our work 0.70/0.84 1.00/1.00 1.00/1.00

Table 4.5: Comparison of combinations of shape matching and clustering methods on
the KIMIA-25 [180] dataset consisting of 25 shapes for 6 classes. The F-values and the
mutual information scores are shown.

Shape clustering methods were recently presented by Schmidt et al. [173] who clus-

tered 40 shapes of four classes using dynamic time warping matching and k-means

clustering. Yankov and Keogh [213] clustered shapes for grouping together objects

in large collections by a manifold clustering approach. We use a two-step approach

for shape clustering. First, we build a pairwise similarity matrix by comparing every

possible combination of shapes in the input dataset. Second, we apply a pairwise or

proximity-based clustering method on the similarity matrix to find the clusters.

The shape similarity measure is not necessarily metric (asymmetric, violation of the

triangle inequality) which has to be taken into account by the clustering method. While

most classical methods for pairwise clustering [93, 158, 181] only consider symmetric

similarity matrices, recent methods as e. g. affinity propagation clustering [78] also work

in non-metric spaces. To evaluate the quality of the provided similarity scores of IS-

Match and to find the best suited clustering algorithm we evaluated all combinations

between three shape matching algorithms (Shape Context [19], COPAP [175] and IS-

Match) and three clustering algorithms (k-center clustering, hierarchical agglomerative

clustering and affinity propagation clustering).

K-center clustering starts with a random initialization of the class centers and itera-

tively refines these centers by decreasing the sum of squared errors. Since it is sensitive

to the random initialization it is usually rerun many times to find a good solution.

Hierarchical agglomerative clustering is initialized by setting each data point as an

individual class. Then, again it iteratively agglomerates the closest pair of clusters by

satisfying a similarity criteria.

Affinity propagation enables clustering of data points analyzing a pairwise simi-

larity matrix. It is based on iteratively exchanging messages between the data points

until a good solution emerges. While most clustering methods only keep track of some

candidate exemplars during search, affinity propagation considers all data points as

candidates and is able to handle non-metric similarity measures. Therefore, its perfectly
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F-Value / MI K-Center Agglom. Clustering Affinity Propagation

Shape Context 0.56/0.67 0.65/0.83 0.89/0.87
COPAP 0.56/0.70 0.38/0.61 0.92/0.87
Our work 0.69/0.84 0.81/0.92 0.97/0.96

Table 4.6: Comparison of combinations of shape matching and clustering methods on
the KIMIA-99 [180] dataset consisting of 99 shapes for 9 classes. The F-values and the
mutual information scores are shown.

suited for shape clustering, because in general shape similarities do not lie in a metric

space, and thus cannot be compared with Euclidian distances.

The performance is analyzed on two datasets, namely the KIMIA-25 and the KIMIA-

99, for which the corresponding clustering results for a range of possible combinations

of shape matchers and clustering algorithms are shown in Table 4.5 and Table 4.6 re-

spectively. We analyze the results in six combinations of clustering methods and shape

matchers, for which we use the default parametrization. Furthermore, for both k-center

clustering and hierarchical agglomerative clustering, we set the number of clusters to

the true value, whereas for affinity propagation all preference parameters are set to the

median of the similarity values, i. e. affinity propagation finds the number of clusters

by itself. The k-center algorithm was repeated 10 000 times to cope with the random

initialization.

Clustering quality is measured by the F-Value analyzing precision and recall and the

information theory based mutual information (MI) value. Therefore, in both cases the

higher the value the better the corresponding clustering result. As can be seen IS-Match

strongly outperforms the Shape Context and COPAP method in terms of clustering

quality. Furthermore, affinity propagation clustering leads to better results compared to

k-center and hierarchical agglomerative clustering and additionally does not require to

fix the number of clusters.

Finally, to demonstrate the high quality and efficiency of the shape clustering

method, we applied it to the MPEG-7 dataset. To be able to cluster the entire MPEG-7

dataset (1400 shapes) the full similarity matrix, containing matching results for 1 960 000

shape comparisons (non-symmetric scores), has to be calculated. This is possible

using IS-Match in only 50 minutes on a single-core desktop PC. Performing clustering

on such datasets based on Shape Context or COPAP is not possible in reasonable time.

Figure 4.7(b) shows the confusion matrix of the shape clustering result on MPEG-7

demonstrating excellent clustering quality. The corresponding F-Value is 0.81 and the
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(a) KIMIA-25 (b) MPEG-7

Figure 4.7: Clustering results: a) Two-dimensional multi-dimensional scaling visualiza-
tion of perfect clustering results on KIMIA-25 dataset [180]. Different colors reflect the
different clusters identified by affinity propagation. b) Confusion matrix for clustering
on MPEG-7 dataset consisting of 1400 shapes for 70 classes. Please note, the results are
achieved by affinity propagation without specifying the number of actual clusters.

mutual information value is 0.90. Please note, that these results are achieved with-

out pre-specifying the number of clusters, since affinity propagation finds a reasonable

number (91) using default parameters in an autonomous manner.

In order to be able to visualize the results of shape clustering we projected the shapes

to a two-dimensional space by applying non-metric multi-dimensional scaling (MDS) to

the calculated shape similarity matrix. Because MDS requires a symmetric similarity

matrix, we use the minimum distance of the shape pair comparisons. Figure 4.7(a) illus-

trates the clustering result of IS-Match and affinity propagation with color coded cluster

assignment, where we get a perfect clustering result (without specifying the number of

clusters). Furthermore, as can be seen in Figure 4.8 high quality clustering results are

achieved, although MDS is not able to appropriately visualize class assignments.

4.5 Conclusion

In this chapter we introduced a novel method for partial matching of structured de-

scriptors. In contrast to related work which focuses on local interest points and graph-

ical models for structure, we show how the Structural Measurement Descriptor (SMD) is
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Figure 4.8: Two-dimensional visualization of clustering results on the KIMIA-99
dataset [180] reduced by multi-dimensional scaling (MDS). Different colors reflect the
different clusters identified by affinity propagation. The cluster prototype is highlighted
by the circles. There are only two false assignments. The other 97 shapes are correctly
classified although MDS is not able to appropriately visualize class assignments.

well-suited for enforcing coherent structure. The hierarchical description encodes all

parts into one coherent descriptor, where the spatial extent of parts is not known. This

is solved by an integral image-based efficient calculation of a 3D tensor containing all

combinations for correspondence, length and similarity. We focused on matching closed

regions given by a binary mask and proposed a novel method for measuring a balanced

partial similarity. The experimental evaluation demonstrates that our partial similarity

measure achieves superior computational efficiency of only 3 ms per match as well as

competitive results to state of the art in shape retrieval and clustering on the well-known

KIMIA-25, KIMIA-99 and MPEG-7 silhouette datasets. Due to the efficiency of the pro-

posed algorithm it is well-suited for real-time applications as e. g. in action recognition

by matching human silhouettes to reference prototypes or for tracking applications.

Further focus of future work is the task of object detection in cluttered images, which

requires a different strategy for extracting and grouping partial shape matches.





When the going gets tough, the tough get going.

Joseph Kennedy

5
Partial Contour Matching for Object Detection

In this chapter we propose a method for object category localization by partially match-

ing image edge contours to a single hand-drawn shape prototype of the category. Pre-

vious work in this field either relies on piecewise contour approximations, requires

meaningful supervised decomposition, or matches coarse shape-based descriptions at

local interest points, as reviewed in Section 5.2. Our method avoids error-prone pre-

processing steps by using all obtained edges in a partial contour matching setting. The

matched contours are efficiently summarized to long salient matches and aggregated

by a star-model to form location hypotheses, as described in Section 5.3. The efficiency

and accuracy of our edge contour based voting step yields high quality hypotheses in

low computation time. The experimental evaluation achieves excellent performance in

the hypotheses voting stage and yields competitive results on challenging datasets like

ETHZ Shape classes and INRIA Horses, as shown in Section 5.4.
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5.1 Introduction

Object detection is a challenging problem in computer vision. It allows localization of

previously unseen category instances in images. The most common approach involves

detecting interest points, which are described over a limited local support window.

These descriptions are then compared to a category model, which evaluates the like-

lihood of an object to be present in the image at various locations. In general, two main

paradigms for describing the local interest points are distinguished. First, appearance-

based approaches form the dominant paradigm using, for example, the a) orderless bag-

of-words model [187], or b) the structured sliding windows [59] and generalized Hough

transforms [13] for localization. The former approach analyzes an orderless distribu-

tion of local image features and achieves impressive results mainly because of rich local

appearance description [141]. The latter approaches also use rich image features, how-

ever employ rigid or deformable graphical models to infer the constellation of selected

parts. Second, the shape-based detection paradigm has a long history in computer vi-

sion and has recently become popular again. Both paradigms have several benefits and

drawbacks. For example, shape provides a powerful and often more generic feature [21]

since an object contour is invariant to extreme lighting conditions and large variations

in texture or color.

In this chapter, we propose a novel method for partial matching of object contours,

which is a problem not often investigated so far. Most related work can be described

in four categories of breaking down full contour. The research [153, 182] focuses on

the aspect of learning local sets of contours in codebooks, where chamfer matching is

used to evaluate local shape similarity. Other research uses piecewise approximations

of contour by short segments [65, 162] or employ manual supervision to derive decom-

positions [218, 220]. In [20, 134, 152] the problem is cast as a graph matching between
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shape-based descriptors on local interest points. Hence, most approaches deal with lo-

cal parts already and incorporate graphical models for grouping the local features into

a coherent model.

The main motivation for our method is the Gestalt principle of continuation [104],

which states that the human eye is compelled to follow lines and curves. This flow along

a line enables us to complete missing information. Such "connectedness is a fundamental

powerful driving force underexploited in object detection" [63]. Viewing edge contours as

connected sequences of any length instead of short segment approximations or local

patches on interest points provides more discrimination against background clutter.

In this chapter we focus on the partial matching of noisy image edges to relax the

constraints on local neighborhoods and to assign entire edges as background disre-

garding local similarities. We propose a category localization method which efficiently

retrieves partial edge contours which are similar to a single reference prototype. We

introduce a self-containing hierarchical description for edge contours. This enables par-

tial matching and an efficient selection and aggregation of partial matches to identify

and merge similar overlapping contours up to arbitrary length. A key benefit is that

the longer the matches are, the more they are able to discriminate between background

clutter and the object instance. In this way we lift standard figure / ground assignment

to another level by providing local similarities for all edges in an image. We retrieve

these partial contours and combine them directly in a similarity tensor.

Many complex graphical models exist to group local features into a coherent cate-

gory model, for example the pictorial structures [60, 73]. In this chapter we employ an

ISM-style clustering-based center voting step [120] to hypothesize object locations. Due

to our long salient partial matches, this greatly reduces the search space to a handful of

hypotheses and shows excellent performance compared to state of the art in the voting

stage. For a full system evaluation, the hypotheses are further verified by a standard

multi-scale histogram of gradients (HOG) classifier.

5.2 Related Work

There exists a long history of work in the shape-based paradigm which achieved state-

of-the-art performance over the years for several object categories using contour infor-

mation. See Figure 5.1 for a brief overview of the most related approaches of matching

contours in images. The research falls into four main categories, namely (i) learning

codebooks of contour fragments, (ii) approximating contours by piecewise segments,
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Figure 5.1: Overview of related work: Our approach relaxes the piecewise approxi-
mations and local neighborhoods. We use partial matching to find contour fragments
belonging to the foreground rather than discarding entire edges, see Section 5.2.

(iii) using local description of the contour at selected interest points, or (iv) assigning

entire edges to either foreground or background. Additional techniques are used, for ex-

ample learning deformation models, sophisticated cost functions or probabilistic group-

ing. In this chapter, we focus the review of related work on the aspect of the contour

description and matching. In the next chapter, we discuss the aspect of discriminative

learning of category models.

5.2.1 Learning codebooks

Shotton et al. [182] and Opelt et al. [153] concurrently proposed to construct shape frag-

ments tailored to specific object classes. Both find matches to a pre-defined fragment

codebook by chamfer matching to the query image and then find detections by a star-

shaped voting model. Their methods rely on chamfer matching which is sensitive to

clutter and rotation. In both approaches the major aspect is to learn discriminative

combinations of local contour parts as weak classifiers using boosting to build a strong

category model detector.

5.2.2 Piecewise approximation

Ferrari et al. [63, 66] build groups of approximately straight adjacent segments (kAS) to

work together in a team to match the model parts. The segments are matched within a

contour segmentation network which provides the combinations of multiple simple seg-

ments using the power of connectedness. In later work they show how to automatically

learn segment codebooks [63], and how to learn category shape models from training

images [64]. In a verification step they use a thin-plate-spline (TPS) matching to accu-
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rately localize the object boundary. Similar to this, Ravishankar et al. [162] use short

segments to approximate the outer contour of objects. In contrast to straight segments,

they prefer slightly curved segments to have better discriminative power between the

segments. They further use a sophisticated scoring function which takes local deforma-

tions in scale and orientations into account. However, they break the reference template

at high curvature points to be able to match parts, again resulting in disjoint approxi-

mations of the actual contour. In their verification stage, the gradient maps are used as

underlying basis for object detection avoiding the error-prone detection of edges.

5.2.3 Shape-based interest points

This category uses descriptors for interest points to capture and match coarse descrip-

tions of the local extent of shape around sparse landmark points in the image.

Leordeanu et al. [122] use geometric features based on normal orientations and pair-

wise interactions between them to learn and detect object models in images. Their

simple features are represented in pairwise relations in category specific models that

can learn hundreds of parts. Berg et al. [20] formulate the object detection problem as a

deformable shape matching problem. However, they require hand-segmented training

images and do not learn deformation models in training. Fidler et al. [67, 72] show a

method for hierarchical statistical learning of local configurations of Gabor filters for

category classification, which is later extended to generic shapinals as layer-independent

shape terminals [68], and further for object detection by generic shape vocabulary learn-

ing [70, 71].

Further in the line is the research of Maji and Malik [134] and Ommer and Ma-

lik [152] which match richer Geometric Blur features to training images. The former

use a max-margin framework to learn discriminative weights for each feature type to

ensure maximal discrimination during the voting stage. The latter provide an interest-

ing adaptation of the usual Hough-style center voting. Ommer and Malik transform

the discrete scale voting to a continuous domain where the scale is another unknown in

the voting space. Instead of multiple discrete center vectors, they formulate the votes as

lines and cluster these to find scale-coherent hypotheses. The verification is done using

a HOG-based fast Support Vector Machine kernel (IK-SVM).
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5.2.4 Figure / ground assignment

Similar in concept but not in practice is the research of Zhu et al. [220] and Lu et al. [132].

They cast the problem as figure / ground labeling of edges and decide for a small

set of long edges which of these belong to the foreground and which are background

clutter. By this labeling they reduce the clutter and focus on salient edges in their

verification step. Lu et al. use particle filters under static observation to simultaneously

group and label the edge contours. They use a shape descriptor based on angles to

decide edge contour similarity as a whole. Zhu et al. use landmark points along the

reference contour to find possible edge contour combinations and then solve a cost

function efficiently using linear programming. They find a maximal matching between

a set of query image contours and a set of salient contour parts from the reference

template, which was manually split into a set of finite length reference segments.

Both assume to match entire edge contours to the reference sets and require long

salient contours. Recent work by Bai et al. [12] is also based on a background clutter

removal stage called shapeband. Shapeband is a new type of sliding window adapted

to the shape of objects. It is rigid yet includes separation of foreground and back-

ground to provide location hypotheses and to select edge contour candidates. However,

in their runtime intensive verification step they iteratively compute shape context de-

scriptors [19] to select similar edge contours as a whole. Another recent approach by

Gu et al. [90] proposes to use regions instead of local interest points or contours to better

estimate the location and scale of objects.

5.3 Partial Contour Matching for Object Detection

In this chapter we propose a novel method for partial matching of noisy contour edges to

relax the constraints on the neighborhood. Contrary to local interest points and figure

/ ground assignment of entire edges, we do not have a finite length descriptor of an

edge contour. This is a major challenge of partial matching as one needs to measure

local and global similarities of the contours and then extract partial matches. In contrast

to region-based similarity measures, one cannot aim for a balance between contour

similarity and partiality, as an arbitrary part of the contour may be background noise.

We use edge contours in the query image and match them at any length from short

contour segments up to full regions boundaries using partial shape matching. In such
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a setting the similarity to the prototype shape decides the complexity and length of the

considered contours.

In the following we describe our approach to detect objects by computing partial

similarities between edge contours in a query image and a reference template. We define

the following terminology to describe each aspect of the detection steps. We use the

term query contour to refer to any extracted linked edge from an image, while we use a

partial contour to denote a part of such an edge contour. Contours have quite an arbitrary

nature and require special care due to its sources of noise from low-level linking or

occlusions. First, contours can be arbitrarily long as the perceptual grouping properties

of edge linking process determines the starting and end points of a contour. Second,

contours may contain irrelevant parts, may be incomplete due to missing edge detection

responses, or may contain occlusions which make parts of the object invisible. In this

chapter, we use a single reference contour for comparison, which is a single hand-drawn

model of the object’s outer boundary. A valid match is defined as a correspondence of

parts, which are similar between a partial contour of the query and that of the reference

contour.

Our goal is to identify matches from the query contours of arbitrary length (con-

tained within the query edges) to the reference contour, by analyzing a self-contained

representation and description of the shape of the detected edge contours. We exploit

the representation containing the whole as well as any part of a contour, which enables

matching independently from the remaining parts.

Our detection method consists of four parts. First, edges are extracted from an image

and linked as lists of coordinates. Second, this representation is described using the

structural measurement descriptor for contours. Third, the partial similarity between the

reference contour and all query contours are evaluated and valid matches are grouped

using an analysis of the tensor space. Fourth, each valid match has a correspondence

to the reference contour, which is used to infer a center vote to estimate the location of

the searched object and sixth, aggregate coherent fragments based on their voting, scale

and correspondence to the reference contour.

5.3.1 Edge Extraction

For the task of category object detection, we are dealing with noisy cluttered image. The

images contain one or multiple objects of the category in search, but for the most part

the image contains background clutter. Contrary to the classical interest point detection
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methods, our method is designed for binary images without additional edge weights,

which can however be included later on, and uses all image edges densely. For this we

extract binary edges from the images by using an edge extraction and linking methods.

The result is a set of query image edge lists, which define the edges as a sequence

of ordered points. Specifically, we employ apply the Berkeley edge detector [137] and

link the results to a set of coordinate lists [109], through any other method may also

be employed. For the obtained query contours, points are sampled at equal distance,

resulting in a sequence of points C = (P1, P2, . . . , PM) per contour, where the contour is

open, i. e. no points are used twice from the contour points.

5.3.2 Contour Description

Since we are analyzing up to hundreds of query contours for partial matches, we re-

quire an efficient description and matching. Only this will allow to compare every edge

contour in an image to the given reference contour in reasonable time. The structural

measurements descriptors and tensor similarity distance is the powerful and low com-

plexity method required to perform partial contour matching of this magnitude as it

only requires about 3 ms per match (as opposed to the fastest related work of 200 ms).

The sampling distance d between the points allows to handle different scales. Sam-

pling with a larger distance equals to a larger scale factor, and vice versa. For detecting

objects in query images we perform an exhaustive search over a range of scales, which

is efficiently possible due to the properties of our descriptor and matching method.

As a first step, we sample points are at equal distance dr from the reference con-

tour, which is denoted as R = (P1, P2, . . . , PN). For the obtained query contours, also

equidistant points are sampled, resulting in a sequence of points C = (P1, P2, . . . , PM) per

contour, where N and M are the length of the contours. Changing the sampling distance

dc between the points of the query contour allows to handle different scales. Sampling

with a larger distance equals to a larger scale factor, and vice versa. For detecting ob-

jects in query images we perform an exhaustive search over a range of scales, which is

efficiently possible due to the properties of our descriptor and matching method. The

details for selecting the sampling distance dc are described in the experimental section.

We use a the Structural Measurement Descriptor for contours, which encode the ge-

ometry of the sampled points leading to a translation and rotation invariant description

for a query contour. The descriptor is calculated from the relative spatial orientations

between lines connecting the sampled points. We calculate only angles αij between a
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line connecting the points Pi and Pj and a line to a third point relative to the position

of the previous two points. The measurement for an angle αij is calculated between the

two chords PiPk and PjPk and Pk is again ∆ positions away as defined by

αij =


�(PiPj, PiPj−∆) if i < j

�(PiPj, PiPj+∆) if i > j

0 if abs(i− j) ≤ ∆

, (5.1)

where Pi and Pj are the ith and jth points in the sequence of sampled points of the

contour and ∆ is an offset parameter of the descriptor. The value of ∆ is fixed to 5 for all

experiments. See Figure 5.2 for an illustration of the choice of points along the contour.

The third point is chosen depending on the position of the other two points to ensure

that the selected point is always inside the contour. This allows us to formulate the

descriptor as a self-containing descriptor of any of its parts. It is important for contours

as the source of information for the boundary stems from from underlying image edges.

Hence the boundary of the shape is often broken up into parts or contaminated with

noise and occlusion contours.

The angles αij are calculated between every pair of points along a contour. In such

a way a contour defined by a sequence of M points is described by an M × M matrix

where an entry in row i and column j yields the angle αij. The proposed descriptor has

four important properties. First, its angular description makes it translation and rotation

invariant. Second, a shift along the diagonal of the descriptor handles the uncertainty of

the starting point in edge detection. Third, it represents the connectedness of contours

by using the sequence information providing a local (close to matrix diagonal) and

global (far from matrix diagonal) description. And most importantly, the definition as

a self-containing descriptor allows to implicitly retrieve partial matches, which is a key

requirement for cluttered and broken edge results.

5.3.3 Valid Contour Matches

Matching and merging partial contours is an important part of our approach and is

based on the Structural Measurement Descriptor for contour defined in the previous

section. For any two descriptors representing two contours, the aim of matching is to

identify parts of the two contours which are similar to each other. In terms of comparing

corresponding descriptor matrices, one has to compare all sub-blocks of the descriptor
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Figure 5.2: Illustration of 2D angle description and matching. a-b) An angle is measured
between any two sampled points bi and bj, which define a fragment inside an edge
contours, c) shows partial matches in an occluded edge to a reference contour.

matrices to find all matching possibilities and lengths. For efficient calculation of all

similarity scores, we apply the tensor similarity method from Chapter 4 to access the

partial descriptor differences in constant time, which returns the similarities (differences

between our angle descriptors) for all matching triplets {r, q, l} stored in a 3D similar-

ity and correspondence tensor Θ(r, q, l). The first two dimensions identify the starting

points of the match in the reference (r) and query contour (q) and the third dimen-

sion defines the length (l) of the match. Note that this tensor fully defines all possible

correspondences between the reference and the edge contour. However, the length is

constrained to the longest possible length given the total length of each contour and the

respective starting point. However, since we are dealing with closed regions, match-

ing may overlap across the first point in the sequences of points. Hence, the maximum

length is equal to the full length of shapes. Hence, the reduced tensor similarity Θ(r, q, l)

is defined as

Θ(r, q, l) =

{
∆n if min(r+l,q+l) < min(M,N)

∞ otherwise
(5.2)

where M and N are the number of points in the open contours for reference and query,

which limit the possible correspondences. Figure 5.3 shows the similarity tensor for the

partial matching example in Figure 5.2. The two matched fragments correspond to the

peaks (a) in the tensor, here a single slice at a fixed length l = 11 is shown.

The main challenge lies in the immense redundancy within the tensor as there may

be many overlapping and repetitive matches. For a given reference contour of N points

and a query contour of M points, there are ∑l ∑q(N − M + 1 + q − l) possibilities for
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matching arbitrary lengths of the two contours. This poses a problem for object detection

in cluttered images and collecting a minimal set of coherent. Our goal is to find the

longest and most similar matches and merge repetitive matches instead of retrieving all

individual matches. First, it is necessary to outline some of the properties of the 3D

similarity and correspondence tensor Θ(r, q, l). The following are observations about

the nature of the 3D tensor:

I. A partial contour (r, q, l) is assigned a similarity (Euclidean distance between an-

gular descriptors) by Θ(r, q, l).

II. Length variations (r, q, l2) with l2 < l define the same correspondence, yet shorter

in length.

III. Diagonal shifts in the indices (r + 1, q + 1, l) also represent the same match, yet

one starting point later.

IV. Unequal shifts (r + 1, q, l) define a different correspondence, however very similar

and close.

V. Occlusions or noise cause multiple matches per edge contour to exist. The exam-

ple in Figure 5.2 is a shifted match much later (r + 13, q + 32, l) defining the same

correspondence, yet skipping (32-13=19) points of noise.

VI. Matches near the end of each contour (if not closed) have a maximal length given

by the remaining points in each contour sequence.

Perfect matches would result in singular peaks in a slice. However due to these small

shifts along the same correspondence or with an unequal offset, matches result in a

hill-like appearance of the similarity, see Figure 5.3(a). Given these properties we now

define a matching criterion to deliver the longest and most similar matches, i. e. finding

the peaks not once per slice but for the entire 3D tensor. This summarization is made of

three steps: (a) finding valid correspondences satisfying the constraints on length and

similarity, (b) merging all valid correspondences to obtain the longest combination of

the included matches (property II) and (c) selecting the maximal similarity of matches

in close proximity (property IV). The steps are in detail as following. First, we define a

function L(r, q, l) which gives the lengths at a given valid correspondence tuple (r, q) as

L(r, q, l) =

l if Θ(r, q, l) ≤ slim and l ≥ llim

0 else
, (5.3)
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where the value at L(r, q, l) is the length of a valid fragment. A valid fragment has a

similarity score below the limit slim and a minimal length limit of llim. This function is

used to define a subset of longest candidates by

Γ(r, q) = ∀r,q : arg max
l∈min(N,M)

L(r, q, l), (5.4)

where Γ(r, q) is a subset of Θ(r, q, l) containing the longest matches at each correspon-

dence tuple (r,q). This set contains matches for every possible correspondence given by

the constraints on similarity and matching positions (see property II, VI). However, we

further want to reduce this to only the local maxima (conserving property IV). Since the

set can now be considered as a 2D function, we find the connected components C satis-

fying Γ(r, q) > 0. The final set of candidates are the maxima per connected component

and is defined as

Υ(r, q, l) = ∀ci ∈ C : arg max
Θ(r,q,l)

(Γ(r, q) ∈ ci), (5.5)

where Υ(r, q, l) holds the longest possible and most similar matches given the constraints

on minimum similarity slim and minimal length llim. In the example shown in Figure 5.2

and 5.3 the final set contains two matches, which are the longest possible matches. Note

that shorter matches in the head and back are possible, but are directly merged to longer

and more discriminative matches by analyzing the whole tensor.

Furthermore, obtained matches are local maxima concerning similarity scores. This

provides an elegant and efficient summarization leading to coherent and discriminative

matches and reduced runtime.

5.3.4 Hypothesis Voting

Matching as described in the previous section provides a set of matched partial contours

for the query edges. Since the object contours in the image are likely to be broken

into multiple edge contours, these matches have to be combined as well to form object

location hypotheses. In the following we describe how matched contours are grouped

for object locations hypotheses and scores are calculated.
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Figure 5.3: Illustration of the similarity and correspondence tensor Θ(r, q, l) at length
l = 11 for example shown in Figure 5.2(c): (a) the two peaks correspond to the matches
found. Matching uncertainty results in multiple peaks in a hill-like appearance. (b)
shows the same similarity in a flat view, where red signals high similarity and dark blue
defines invalid matches due to length constraints.

5.3.4.1 Contour Aggregation

Up to this point we have a set of triplets Υ(r, q, l) of matched partial contours of image

edges detected in a query image which are highly similar to the provided reference con-

tour. Every match has a certain similarity and length. For grouping together multiple

matches we use a star-shape model for center voting. We calculate the center votes for

every contour point on the reference contour to the mean of all reference contour points.

We then map each matched contour to its reference contour and estimate the object cen-

troid from the given correspondence triplet, by a generalized Hough transformation [13]

defined by

H : (r = q, R)→ Rr −
1
N

N

∑
i
Ri) (5.6)

where H is the center vote for a given correspondence (q, r) from the mean position

over all reference contours points R. The aggregation of the individual contour matches

identifies groups of contours which compliment each other and form a more complete

object location hypothesis. For this step we cluster the matched fragments analyzing

their corresponding center votes and their scale by mean-shift mode detection [39] with

a scale-dependent bandwidth. The bandwidth resembles an analogy to the classical
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Hough transformation [55, 95] accumulator bin size, however with the added effect that

we combine the hypotheses locations in the continuous domain rather than discrete bins

and the mean-shift automatically detects the number of modes, i. e. location hypotheses.

5.3.4.2 Hypothesis Ranking

All obtained hypotheses are ranked according to a confidence. For this purpose we in-

vestigate two ranking methods. The first is based on the coverage of detected fragments,

where ζCOV is a score relative to the amount of the reference contour that is covered by

the matched fragments, defined as

ζCOV :=
1
N

N

∑
i=1

( fi × Si), (5.7)

where fi is the number of times the ith contour point has been matched and Si is the cor-

responding weight of this point. This is normalized by the number of contour points N

in the reference contour. The coverage score ζCOV provides a value describing how many

parts are matched to the reference contour for the current hypothesis. In this chapter,

we use a uniform weight of Si = 1. However, contour flexibility [209] or discriminative

importance of the reference contour can provide these weights.

As a second score, we evaluate a ranking as proposed by Ommer and Malik [152].

They define the ranking score ζPMK by applying an SVM classifier to the image windows

around the location hypotheses. The kernel is the pyramid match kernel (PMK) [89]

using histograms of oriented gradients (HOG) as features. Positive samples for each

class are taken from the ground truth training set. Negative samples are retrieved by

evaluating the hypotheses voting and selecting the false positives. The bounding boxes

are resized to a fixed height while keeping median aspect ratio. Since the mean-shift

mode detection may not deliver the true object location, we sample locations in a grid,

a fourth of width and height to each side, of windows around the mean-shift center. At

each location we evaluate the aforementioned classifier and retrieve the highest scoring

hypothesis as new detection location.

5.4 Experimental Evaluation

We demonstrate the performance of our proposed object category localization method

on two different shape datasets: ETHZ Shape (Section 5.4.1) and INRIA Horses (Sec-
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Figure 5.4: Reference contours for the ETHZ Shape and the INRIA Horses datasets.

tion 5.4.2). For each dataset we use a single reference prototype as category more, which

is used to partially match again the image contours. See Figure 5.4 for an overview of

the reference prototypes used. The first five are the provided hand-drawn models in the

ETHZ Shape classes, while the right-most is an example segmentation of a single horse,

see Figure 5.6 for some exemplary successful detections and some failure cases.

We significantly outperform related methods in the hypotheses generation stage,

while attaining competitive results for the full system. Results demonstrate that exploit-

ing the connectedness of edge contours in a partial contour matching scenario enables

to accurately localize category instances in images in efficient manner. Gradient mag-

nitude information, although unreliable since its originates from image contrast, plays

important role in related work [63, 134, 152, 162] and could be integrated in future work.

For all experiments the parameters are as follows: The offset ∆ is set to 5 for a

fine grained descriptor. The similarity limit is slim = 0.005 and the minimum length is

llim = 0.3 ∗ N, where N is the number of points in the reference contour. The contour

matching is not inherently scale invariant. We analyze 10 scales per image, where scale is

defined by the distance d = dN×s between the sampled points and s is a scale from a set

of 10 neighboring octaves of 21/4. The mean-shift bandwidth wb = 10× s. Localization

of an object over all scales (!) requires on average only 5.3 seconds per image for ETHZ

Shape dataset in a Matlab implementation.

5.4.1 ETHZ Shape Classes

The ETHZ Shape classes is a challenging dataset introduced by [66] for evaluating shape

detection methods. It consists of five object classes (applelogos, bottles, giraffes, mugs

and swans) and a total of 255 images. All classes contain intra-class variations (espe-

cially giraffes and mugs) and significant scale changes. The images sometimes contain

multiple instances of a category and have a large amount of background clutter. This

dataset has received a lot of research focus, which shows in the large range of compet-

itive work and different test protocols, complexity of category models and mixtures of

shape and appearance features.
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Voting and Ranking Stage (FPPI=1.0) Verification Stage (FPPI=0.3/0.4)
ETHZ Hough wac M2HT Our PMK Our M2HT PMK KAS System Our
Classes [65] [152] [134] work [152] work [134] [152] [63] Full [65] work

Apples 43.0 80.0 85.0 90.4 80.0 90.4 95.0/95.0 95.0/95.0 50.0/60.0 77.7/83.2 93.3/93.3
Bottles 64.4 92.4 67.0 84.4 89.3 96.4 92.9/96.4 89.3/89.3 92.9/92.9 79.8/81.6 97.0/97.0
Giraffes 52.2 36.2 55.0 50.0 80.9 78.8 89.6/89.6 70.5/75.4 49.0/51.1 39.9/44.5 79.2/81.9
Mugs 45.1 47.5 55.0 32.3 74.2 61.4 93.6/96.7 87.3/90.3 67.8/77.4 75.1/80.0 84.6/86.3
Swans 62.0 58.8 42.5 90.1 68.6 88.6 88.2/88.2 94.1/94.1 47.1/52.4 63.2/70.5 92.6/92.6
Average 53.3 63.0 60.9 69.4 78.6 83.2 91.9/93.2 87.2/88.8 61.4/66.9 67.2/72.0 89.3/90.5

Table 5.1: Hypotheses voting, ranking and verification stages show competitive detection
rates using PASCAL criterion for the ETHZ Shape dataset [66] compared to related
work. For the voting stage our coverage score increases the performance by 6.5% [152],
8.5% [134] and 16.1% [65] leading to state-of-the-art voting results at reduced runtime.

In general, for the ETHZ Shape classes there exist two main methods for evaluation.

First, a class model is learned by training on half of the positive examples from a class,

while testing is done on all remaining images (half of positive examples and all other

negative classes) averaged over five random splits. Second, the ETHZ dataset addition-

ally provides hand-drawn templates per class to model the categories. This step requires

no training and has shown to provide slightly better results in a direct comparison [65].

Further, the detection performance may be evaluated using one of the two measures,

namely the stricter 50%-PASCAL or the 20%-IOU criterion, which require that the in-

tersection of the bounding box of the predicted hypotheses and the ground truth over

the union of the two bounding boxes is larger than 50% or 20% respectively. Additional

aspects in the evaluation are the use of 5-fold cross validation, aspect ratio voting and

most influential the use of features. Using strong features including color and appear-

ance information naturally has a benefit over gradient information and again over pure

binary shape information, which is the case for our method.

The goal of the partial matching in this chapter is to evaluate how well one can

detect objects by partially matching their outlines. Thus in our approach we use the

hand-drawn models to match only binary edges in an query image and for a full system

including geometric and appearance verification, we verify the location hypotheses us-

ing a standard gradient-based classifier trained on half of the positive training samples

(PMK) and average over five random runs of training sample selection.

Class-wise results for ETHZ Shape classes using the strict PASCAL criterion are

given in Table 5.1. The focus of our method lies on hypothesis voting stage, where

we can show excellent results of 69.4% and 83.2%, without and with a PMK classifier
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ETHZ Shape classes: Verification Stage (FPPI = 0.3/0.4) using 20%-IoU
Supervised Template Template Template Codebook Learned Template+Learned

Lu [132] Ravishankar [162] Ferrari [66] Ferrari [64] Ferrari [63] Ferrari [64] Our work

90.3/91.9 93.0/95.2 70.5/81.5 82.4/85.3 74.4/79.7 71.5/76.8 94.4/95.2

Table 5.2: Average detection rates for related work on hand-drawn and learned models.

ranking. The PMK ranking increases the scores for three classes (bottles, giraffes and

mugs). The reason is that the classifier is better able to predict the instance of these

classes, especially for mugs, where our system produces twice as many hypotheses

compared to the other classes (on average 20 for mugs compared to 8 for the other

classes). The coverage score performs better on compact object classes (applelogos and

swans). See Figure 5.5 for the precision/recall curves for the ETHZ Shape classes.

We achieve an overall improvement over related work ranging from 6.5% [152],

8.5% [134] to 16.1% [65] without classifier ranking, and 4.6% over [152] using a clas-

sifier ranking. Some of these methods do not use hand-drawn prototypes. We also

achieve competitive results after verification of 90.5% compared to 66.9% [63], 72.0% [65],

88.8% [152] and 93.2% [134] at 0.4 FPPI.

Due to the lack of separate hypothesis voting results for other approaches, we also

provide a range of comparisons with previous work using the full system. We eval-

uate our method using the 20%-IOU criterion and summarize the results in Table 5.2.

Compared to these related work we also achieve excellent results using this criterion.

5.4.2 INRIA Horses

As a second dataset we use the INRIA Horses [65, 101], which consists of 170 images

with one or more horses in side-view at several scales and cluttered background, and

170 images without horses. We use the same training and test split as [65] of 50 positive

examples for the training and test on the remaining images (120+170). We again use

only a single reference template which was chosen from the pixel-wise segmentation

of a random horse from the training set. For this dataset the performance is 83.72% at

FPPI=1.0 and thus is better than recent results 73.75% by [64], 80.77% by [63] and almost

as good as 85.27% by [134], which additionally vote for aspect ratios. Presumably this

would also increase our recall for the strongly articulated horses, since a single rigid

reference contour does not capture the articulation and hence center vote changes.
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Figure 5.5: Detection performance for the ETHZ Shape classes (single best out of five
runs) as detection/FPPI and INRIA Horses as precision/recall curve, both using 50%-
PASCAL criterion.
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5.5 Conclusion

In this chapter we have introduced a novel approach in the paradigm of contour-based

object detection based on partial contour matches to a reference contour and show com-

petitive results on state-of-the-art datasets like ETHZ Shape classes and INRIA Horses.

In contrast to related work, we demonstrate how our novel contour matching relaxes

the approximations by piecewise segments. By providing partial matches of contours

we extending the search beyond local neighborhoods of interest points or figure/ground

assignment for complete contours. Our system implicitly handles parts of a contour and

thus does not require grouping long salient curves or harmful splitting of contours to be

able to match parts. Though a verification stage is a vital part for a full object detection

system, we believe the focus should lie on better reflecting the hypotheses voting space,

since this has a direct effect on the speed and accuracy of the full detector performance.

The proposed method achieves excellent performance in the hypotheses voting de-

spite employing less complex cost functions, category models or even rich appearance

features as seen in related work. The main challenges however lies in two aspects. First,

more complex interactions between contour fragments inspired by [63, 122, 133] are

a powerful concept to provide stronger category models and grouping [87]. Second,

learning implicit hierarchies [68] and discriminative weights [134, 182] for the contours

will help distinguish the object contours from background clutter. We will investigate

this in more detail in the next chapter.
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Figure 5.6: Illustration of qualitative results for ETHZ Shape classes and INRIA Horses,
showing the reference template used for partial matching and its matched contour parts
in corresponding colors.



It is the shape of an airplane that enables it to fly.

Marius Leonardeau

6
Discriminative Fragments for Object Detection

In this chapter we propose a method for object category localization by jointly learning

discriminative contour fragments and a model for the object category. Previous work,

as described in Section 6.2, incorporates learning techniques only for object model gen-

eration or for verification after detection. We present an object detection method solely

focusing on shape as underlying cue as opposed to rich appearance-based local features

used in most approaches. In the learning phase, we interrelate local shape descriptions

(fragments) of the object contour with the corresponding spatial location of the object

centroid, described in Section 6.3. The local shape description exploits properties like

distinctiveness, robustness and insensitivity to clutter and is well-suited for discrimina-

tive learning in a random forest learning scheme. For detection we hypothesize object

locations in a generalized Hough voting scheme and the back-projected votes from the

fragments allow to approximately delineate the object contour. We evaluate our method

on the well-known ETHZ Shape classes and INRIA Horses datasets, where for both we

achieve competitive results for the full framework and state-of-the-art performance for

the hypotheses voting, as shown in Section 6.4.
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6.1 Introduction

Object localization in cluttered images is a major challenge in computer vision. Most

methods in this field learn an object category model, for example, from a set of labeled

training images and use this model to localize previously unseen category instances

in novel images. The final detection results are usually returned as bounding boxes,

highlighting coarse instance locations and some methods also return object outlines.

In general, the model-based detection approaches can be divided into appearance-

and contour-based methods. Appearance-based approaches first detect interest points

and then extract powerful image patch descriptors from the local neighborhoods of the

detected points using versatile features like color, texture or gradient information. In

contrast, contour-based methods exhibit interesting properties like invariance to illu-

mination changes or variations in color or texture. It is further well-established in the

field of visual perception theory [23] that humans are able to identify specific objects

despite only seeing a limited number of contour fragments, without considering any

appearance information.

In this chapter we propose a method showing that it is sufficient to solely rely on

shape cues for the task of object detection, i.e. we are deliberately neglecting appearance

information. In particular, we determine discriminative contour fragments of an object

category in combination with learning a category model. Hence, we show that the

integration of local shape fragment descriptors into a generalized Hough voting scheme

enables us to outperform previous methods on challenging reference datasets like the

ETHZ Shape classes and INRIA Horses.
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6.2 Related Work

There exists a vast history of related work for model-based category recognition and

localization. In this section we will briefly review some of the basic graphical models

used for learning the layout of an object category, and then compare state-of-the-art

appearance- and contour-based methods for category learning. For a review of shape

descriptors, we refer to the related work section in Chapter 3.

6.2.1 Graphical Models

A category model is a representation of a class of objects for describing the layout and

interactions of the important parts of this category. For example, for a bicycle the im-

portant parts are the two wheels, the seat and the steering wheel. The layout now con-

tains and constrains the position of the part to a feasible and valid configuration. This

eliminates unlikely configurations and combines the individual local parts to a holistic

representation of the entire object. A graphical model is commonly used to describe

the connection between parts of an object. Such a graph is then defined as G = (V, E),

where V are the vertices or parts of the graphical model, and E are the edges or spatial

connections between the parts. This formulation captures the layout and groups local

parts to a more complete representation.

The range of models varies from nodes only over rich spatial relationships to rigid

template models. A bag-of-words approach [187] is a loose model, where the parts are

not connected at all and only the occurrence of parts is evaluated. The spatial relation-

ships can be represented in multiple ways. The main differences are the representation

of direction and loops in the graphical models. Markov Random Fields (MRF) [83]

represent undirected models which focus more on correlation than causality. K-fan

models [43] with on n nodes represent a family of graphical models that lie between

the completely disconnected graph (k = 0) and the complete graph (k = n - 1). The

k-fan model generalizes a single center star-graph to multiple center graphs. Star-graph

models are essentially a tree connecting every part to a single center node [79, 121, 154].

This model is often used in connection with the generalized Hough transform [13] or

center voting lines [152].

Richer connections of more spatial relationships are, for example, the constellation

model [62]. A category is modeled by parts and the edges are modeled by spring costs,

which allow a flexible movement of the parts while keeping the overall structure. In-
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ference is however NP-hard when loops exist in the graph. Acyclic graphs are usually

considered to overcome the computational costs. Such tree-shaped models are powerful

to model kinematic structures of animate objects, where the nodes are parts and the

edges are the joints connecting the parts. One example for such models are the pictorial

structures [59, 60], where the inference is efficiently optimized by dynamic program-

ming. More rigid models use a regular-spaced grid to form a template for objects used

in a sliding window search [45, 119].

6.2.2 Appearance-based Approaches

Following is a review of examples of these graphical models dealing with appearance-

based modeling. The most common approach in this field is the bag-of-visual-words

model [187] where Sivic and Zisserman represent the object class as a collection of or-

derless local image descriptors [141]. In [119], Lazebnik et al. extended this approach

by incorporating spatial arrangements of features in a pyramidal matching setup and

showed improved detection performance. Another related appearance-based represen-

tative is the Implicit Shape Model (ISM) [120, 121]. Leibe et al. introduced the ISM as a

class-specific codebook of local appearance features, where each descriptor additionally

contains information about the relative object centroid location.

During recognition in test images, extracted image patches are matched to the code-

book and cast probabilistic votes in terms of a generalized Hough transform [13] to

hypothesize object locations. However, unsupervised integration of a large number of

object parts in a generative codebook approach involves a large-scale clustering problem

and a time-consuming matching step. Hence, research focused on replacing the gener-

ative codebooks by discriminative learning of the object model parts to overcome these

problems.

In computer vision problems, the commonly used learning methods are Support Vec-

tor Machine (SVM), Boosting, and Decision Trees. Vapnik introduced the SVM [200] as

a method to select a weighted subset of the training features to build a decision margin

between two classes. Schapire proved that for boosting [77, 171] multiple weak classi-

fier can be combined and weighted to create a strong classifier. Quinlan introduced the

decision tree [160] as a set of decisions leading to a final classification, where the infor-

mation gain determines the importance of the decisions. Recently random forests [32]

have been introduced where an ensemble of decision trees are used for automatic train-

ing and testing. For example, random forests are frequently applied for the tasks of
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image classification and semantic image segmentation as addressed in [145, 174, 184].

Gall and Lempitsky introduced an extension of the discriminative random forest frame-

work, denoted as Hough forests [79, 151]. Instead of only learning the appearance of

the model parts, they learn a discriminative combination for mapping image patch ap-

pearance and corresponding center votes.

Another approach incorporating the Hough transform in a discriminative learning

approach was introduced by Maji and Malik [134]. They focus on finding object parts

that are consistent in their locations and have high repeatability and assign them higher

weights based on a maximum-margin learning for the voting step. Ommer and Ma-

lik [152] presented an extension for the Hough transform by extending conventional,

spatial Hough voting with a dimension for scale. They analyze the voting space by

agglomerative clustering of voting lines to deduce an initial set of detection hypotheses.

6.2.3 Contour-based Approaches

In this section, we review the main approaches addressing contour-based object category

localization. The Active Shape Model (ASM) is a method by Cootes et al. [41], which

models the shape variation using statistical point distributions of the boundary points.

In [62], Fergus et al. showed a learning approach, which incorporates shape alongside

appearance information for learning a joint spatial layout distribution in a Bayesian

setting for a limited number of shape parts.

Ferrari et al. [66] build a contour segment network, which partitions image edges of

the object model into groups of adjacent approximately straight contour segments. For

matching, they find matching paths through the network of segments which resemble

the outline of the modeled categories. In a later approach [63] they define the contour

segments in groups of k adjacent segments (kAS) for learning a codebook of adjacent

contours from cropped training images [64] in combination with Hough-based center

voting and non-rigid thin-plate spline matching. Ravishankar et al. [162] also use short

fragments, yet selecting slightly curved segments allows certain articulations by splitting

edges at high curvature points, instead of approximating them by straight lines.

Shotton et al. [182, 183] and Opelt et al. [153] simultaneously introduced similar

recognition frameworks based on selecting and boosting contour-based features. Both

methods construct a codebook and employ local shape features in a star-graph around

the object centroid. The contour fragments used in the codebook are selected by an Ad-

aBoost [171] learning stage after clustering similar fragments. Each fragment is aware
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of its position along the object contour and holds information about its spatial displace-

ment to the object centroid. In the recognition phase, they compare contours learned

from the training set to the edges found in the test images using clutter-sensitive cham-

fer matching and then cast center votes in a generalized Hough transformation to find

object hypotheses. The main differences are that [182] use a single fragment per weak

detector while [153] have a variable number. Further the centroid localization in [182]

uses a discrete grid for vote accumulation and [153] employs mean shift for determining

localization clusters.

In [122], Leordeanu et al. introduce a recognition system that models an object cate-

gory using pairwise geometrical interactions of simple gradient features. The resulting

category shape model is represented by a fully connected graph with its edges being an

abstraction of the pairwise relationships. The detection task is formulated as a quadratic

assignment problem. Lu et al. showed a method for grouping local interest points de-

scribed by Shape Context [18] in a particle filter formulation [132] and evolved consis-

tent models for detection under static observation. Bai et al. [12] captured and penalized

intra-class shape variations within a certain bandwidth of the object by introducing a

sliding window-style contour object model called Shapeband.

Zhu et al. [218, 220] formulated object detection as a many-to-many fragment match-

ing problem. They utilize a strong perceptual contour grouping method to obtain long,

salient edge contours. For finding matching candidates, these are compared using Shape

Context descriptors. The large number of possible matchings is handled by encoding

the shape descriptor in a linear form, where optimization can be done by linear pro-

gramming. In an extending work [189, 190], Srinivasan et al. showed promising results

for automatically obtaining object models from training data instead of using a single

category shape prototype. However, their method also relies on the availability of long,

salient contours and has high complexity with detection times in the range of minutes

per image. In the previous chapter we performed object detection by partially matching

detected edges to a prototype contour in the test images in combination with Hough-

based center voting. In such a way, piecewise contour approximations and error-prone

matches between coarse shape descriptions at local interest points are avoided.

A recent approach proposed by Yarlagadda et al. [214] aims on grouping mutually

dependent object parts of uniformly sampled probabilistic edges. In their Hough voting

stage, object detection is formulated as optimization problem which groups dependent

parts, correspondences between parts and object models and votes from groups to ob-
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ject hypotheses from the nearest neighbor matches without a priori training. Payet and

Todorovic [159] proposed mining repetitive spatial configurations of contours in unla-

beled images for training an object detector. The contours are represented as sequences

of weighted beam angle histograms and are transferred into a graph of contours, whose

maximum a posteriori assignment represents the shapes of discovered objects.

The approach of Amit and Geman [4] used randomized trees to perform shape recog-

nition for handwritten digits by recursively partitioning the shape space and growing

binary classification trees using geometric arrangements among local topographic codes

as splitting rules. Fidler et al. [67, 69, 72] show a method for hierarchical statistical

learning of local configurations of Gabor filters for category classification. This is ex-

tended to object detection by learning a hierarchical vocabulary for simple and complex

parts [70, 71].

Another hierarchical approach by Kokkinos and Yuille [106] formulated the task as

image parsing to provide fast coarse to fine matches. Other approaches employed game-

theoretic grouping strategies such as dominant set clustering [157] to group shape-based

part descriptions into coherent models [133, 210].

6.2.4 Summary

Recently, reasonable effort was placed onto fusing appearance- and contour-based meth-

ods like [123, 195]. Toshev et al. incorporate appearance information by using superpixel

segmentations together with shape information derived from boundaries [195], and

Li et al. exploit multiple overlapping figure-ground segmentations for an appearance-

based recognition task [123]. The extensive related work stresses the importance of

category model learning and exploitation of shape information for object detection.

However, in our observations we found that many approaches place an enormous

effort into learning a suitable object model from training data [64, 153, 182], yet then

neglect to apply this gained knowledge in a similar fashion during the matching phase.

Instead, techniques like error-prone chamfer matching are used for inference whether

an object is present or not.

In this chapter we propose a shape-based detection method, which benefits from

inherently unifying the strengths of the strong shape-based edge description and dis-

criminative learning for training and testing, instead of relying on separate techniques

in concatenation. Hence, we show a method to jointly learn a novel shape fragment

description with its spatial location information about the object contour. For recog-
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nition, we directly apply the learned category model in a generalized Hough voting

manner. The overall goal is to simultaneously focus on object model generation and

object detection within a single description, classification, and localization approach.

A key issue of such an approach is to use a powerful local shape descriptor, which

fulfills the requirements of distinctiveness, robustness to clutter and noise, invariance

and efficiency. Since most common local shape descriptors are limited concerning these

requirements, we propose a novel fragment shape descriptor which describes relative

spatial arrangements of sampled points by means of angular information. We employ

the Structured Measurement Descriptors introduced in Chapter 3 and use a shape descrip-

tion especially suited for local fragment description. As it is shown in the experiments

in Section 3.6, this descriptor outperforms related methods like Shape Context [19] for

the classification scenario.

6.3 Discriminative Learning of Category Models

In this section we present our novel joint approach for shape-based category model

learning and inference for object detection. The proposed method combines powerful

local shape description and part knowledge with machine learning to derive a category

shape model. This category model is implicitly used during the object detection phase

to determine the location and outline of the underlying object instances.

The four main parts of our proposed object category localization method are illus-

trated in Figure 6.1. First, as underlying representation we use connected and linked

edges as it is described in Section 6.3.1. Second, from the obtained edges we extract lo-

cal fragment descriptions using a structured shape descriptor that captures local angu-

lar information along edges, as described in Section 6.3.2. Third, for the discriminative

learning of fragments and their category model, we train from a set of labeled positive

and negative training images. We use a random forest approach on the obtained de-

scriptors and storing the relative location and scale of the fragments with respect to the

object centroid for the positive training samples, as explained in Section 6.3.3. Fourth,

at run-time, we cast probabilistic votes for possible center locations of the target ob-

jects in a generalized Hough voting manner. The resulting local maxima in the Hough

space serve as detection hypotheses. For ranking and verification we process location

hypotheses using a standard histogram of gradients (HOG) verification step, as outlined

in Section 6.3.4.
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(a) (b) (c) (d)

Figure 6.1: Illustration of our object category learning and localization: Local edge
fragments are extracted and discriminatively trained in a random forest, which analyzes
a triplet {Ψi, di, ci}, where Ψi is our shape fragment descriptor, di its corresponding
center voting vector and ci its class label. During testing, the fragments are classified
and cast a vote for object centroid to hypothesize the object locations in the image.

6.3.1 Edge Extraction

As a first step we extract edges of the input image. We use the Berkeley edge de-

tector [137] in all experiments and link the binary image [109] into oriented, con-

nected point coordinate lists of points. Please note the importance of perceptual link-

ing [66, 219] which has great influence on the type of obtained fragments, since different

splits of T-junctions or gap closing yield or exclude very different fragments. The ob-

tained sequences of connected points are the basis for all subsequent steps. For this,

we use the following terminology: A point is single point in a binary edge image and

is defined as P = {Px, Py}, where Px and Py are coordinates of the point. We define

the linked sequences of points as boundaries B = (P1, P2, . . . , PN), where Pi is a single

point and the number of points is N, which is arbitrarily long due to the underlying

perceptual linking. Hence we denote all overlapping parts of a boundary as fragments

F = (P1, P2, . . . , PK), where P1 to PK is a subset of the sequence of points in a bound-

ary. In our proposed method all analyzed fragments have the same length, consisting of

exactly K points, which are short yet highly overlapping fragments as opposed to long

boundaries.
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6.3.2 Fragment Description

For discriminative contour description and learning of local shape, we need a discrim-

inative yet robust shape descriptor. These requirements are challenging as the edge

extraction method only extracts very limited support windows for each fragment of

constant size. Further we require a fast and repeatable way to describe the local shape.

Previous related work on shape description either relies on very local features coupled

with complex category models [20, 62, 122], or complex rich features [20, 45, 131].

In this chapter we focus solely on shape fragments as features and thus employ the

Structural Measurement Description introduced in Chapter 3. Contrary to region or

contour boundaries, fragments are very small parts of a contour and only deal with

a very limited spatial extent. This brings various benefits, however also reduces the

information that is captured by such local structures. The spatial extent now determines

the size of the part. Contrary to a contour description, only a subset of points are

available to derive a fragment description and the support window is given by the

number of points surrounding the fragment in each direction.

For such short fragments it is especially valuable to maintain as much of the infor-

mation as possible due to their limited local structure. Hence, we build a description Ψ

in the following fashion encoding its orientation using a reference point on its bounding

rectangle. An angle αij is calculated between a chord PiPj from a reference point Pi to

another sampled point Pj and a chord PiP∗ from Pi to P∗, which is defined by the upper

left corner of the bounding box of a fragment. In such a way, we define

αij = �(PiPj, PiP∗), (6.1)

where P∗ is a fixed reference point relative to the fragment. It is defined by the upper left

corner of the bounding box of the boundary points for this fragment. This description

encodes the limited spatial environment of each fragment. This limited support window

leads to a compacter description as less points (K � N) are included compared to

contour description. Partial description is achieved through redundant overlapping of

such fragments. In this way a fixed length of K points results in a fixed descriptor

size of K2.

We are using a fragment-dependent reference point which is defined by the frag-

ment’s bounding box. Therefore it also contributes to a discriminative and local de-

scription of each considered fragment (see Figure 6.2). This reference sampling strategy

is carefully chosen together with the discriminative learning framework and is crucial
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Figure 6.2: Fragment description for
intra-class variations of similar part loca-
tions on the object.

Figure 6.3: Selected shape primitives
(first row) and their corresponding
fragment description (second row).

for reasonable performance. Otherwise the learning algorithm would not be able to

distinguish between different locations on regularly shaped object parts as for example

the corner parts of a rectangle shown in Figure 6.3.

The three most important properties of this form of description are the increased dis-

tinctiveness, invariance and efficiency. First and most importantly, descriptors generated

from fragments that are part of the foreground object need to be discriminative against

those calculated from mere background clutter. The idea is to utilize the properties of

the fragments within the Structured Measurement Descriptor to derive similar descrip-

tors for similar parts of the object. We want the descriptors to be tolerate intra-class

variations and small perturbations of the same fragments describing the same parts of

the object. For different parts of the object, the fragment description should hence be

distinguishable, as illustrated in Figures 6.3 and 6.2. The corner fragments of the rectan-

gle each produce different descriptors, whereas the parts of the apple produce similar

descriptors. The random forest learning framework is later employed to further boost

this difference by learning discriminative weights.

Second, features are commonly classified according to their level of invariance to ge-

ometrical transformations. For example, features invariant to Euclidean transforms keep

unchanged after applying translation and rotation. Increasing the degree of invariance

generally decreases the distinctiveness and thus weakens the distinctiveness property.

The fragment descriptor is invariant to translation and actively encodes orientation in-

formation, which increases the amount of information one can capture in such a limited

local shape description.

Third, the feature description is efficiently computable by means of a lookup-table.

We precompute the values for the angular measurements, hence reduce actual feature

description to a constant-time lookup-operation. Since the angular description in Equa-
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tion 6.1 corresponds to a surjective mapping f : I ⊂ R2 → [0, π], a lookup-table can

be created for all possible fragment tuples {Pi, Pj} ∈ I as follows. The maximum Eu-

clidean distance between the reference point P∗ and any fragment point Pi is bounded

by the fragment length K. Hence, the area of the bounding box around the fragment

corresponds to the total number of possible fragment point locations and defines I.

Consequently, we can precompute a square matrix of size |I| × |I| holding the angular

descriptions for all tuples (Pi, Pj) ∈ I. This matrix then serves as lookup table during

feature calculation for arbitrary fragment points.

6.3.3 Discriminative Fragment Learning

For discriminatively learning our the fragment descriptor jointly with the category

model, we use a formulation of the random forests [32] learning method. In addi-

tion to finding optimal splits of the training data, we use it to also optimize grouping

of class-specific attributes like object center votes [79]. In such a way, a test sample is a

local shape fragment extracted from the image, which is classified both according to its

feature description as well as spatial configuration.

Random forests were initially introduced by Breiman [32] and are widely used for

machine learning tasks in computer vision problems like recognition, visual tracking

and classification. They inherently handle multi-class problems, are robust to certain

amounts of label noise, and their performance is competitive to other learning methods.

A random forest is a set of decision trees, where each node in the tree hierarchy contains

a binary test, except for the final level of leaf nodes. For classification, a test sample is

propagated on the way from the root to a single specific leaf node, depending on the

binary test results in every intermediate node along its path. The training process of

conventional random forests follows supervised and recursive construction of the trees

by selecting binary split test to optimally separate class distributions. At the last level,

the leaf nodes are used for storing information about the training sample distributions.

The binary tests are chosen randomly and the training procedure aims for splits of

the input training samples to obtain disincentive class distributions, such that a Gini

impurity or information gain is optimized. Recently, Gall and Lempitsky introduced

an extension denoted as Hough forests [79], which in addition to finding optimal splits

of the training data also optimizes grouping of class-specific object center votes. We

employ this extension to learn and evaluate our shape fragment description and center

vote vectors for category object localization.
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Each tree is constructed on a set of training samples Si = (Ψi, ci, di), where Ψi is

the fragment descriptor matrix, ci its corresponding class label and di the center voting

vector, describing the displacement to the center for positive training samples. Positive

samples are selected by taking all edges within the ground truth bounding box anno-

tations, and negative samples are selected from outside this bounding box. The binary

test are chosen according to [79], randomly selecting to reduce the uncertainty in either

class label or center offset information.

In every intermediate node, a binary test is selected for the training fragment de-

scriptors Ψi. A test t(Ψi) → {0, 1} is defined on two randomly chosen positions (p, q)

and (r, s) in the N × N descriptor according to

t(Ψ) =

{
0 if Ψi(p, q) < Ψi(r, s) + τ

1 otherwise
, (6.2)

where τ is a node-specific threshold value, that optimizes the data split in the interme-

diate nodes. Knowing the underlying features are the Structural Measurement Descrip-

tors, the randomly chosen positions in the descriptor matrices are measurements about

chord lines. A chord is a line joining two points on a shape fragment. Hence, the binary

test compares two angles measured between two chords per angle. So contrary to sim-

ple pixelwise brightness comparison, these binary tests perform a local shape analysis

of the spatial configuration of four chord lines. A large number of these randomized

binary tests performed on training samples where the training labels c are known and

allow to approximate the class distributions of the respective test data.

The 2D offset vectors di play an important role during the training of the category

models and state the main difference to conventional random forests. Every positive

training sample carries a directed voting vector from its fragment center point Pc to the

center of the object bounding box Pbbox. The voting vectors for negative samples are

defined as the origin (0,0). After training is complete, the ratio between positive and

negative samples pc, and a list of all center offset vectors DL = {di} are stored in each

of the leaf nodes.

Similar to the construction of random forests, the trees are recursively built from the

root node and the training data is split in the intermediate nodes into two sets according

to an optimality test. For the optimality test, we follow the approach in [79], where both,

the class ratios pc and the offset lists DL are used in the optimality tests to reduce the

decision uncertainties towards the leaf nodes in each tree. The quality of the binary
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tests, applied to a subset of samples Snj = {Si = (Ψi, ci, di)} available in the current

node nj, is evaluated either by the class-label uncertainty or the offset uncertainty. The

class-label uncertainty is defined as

U1(S) = |S| · H(ci) (6.3)

where |S| is the size of the current set of training samples and H is the binary entropy

of the class labels ci, which is defined as

H(ci) = pc · log pc − (1− pc) · log(1− pc) (6.4)

where pc is the probability of the class ratios stored in the current node. This measure

defines the impurity of all class labels {ci} reaching this node.

The second measure evaluates the center voting offset and thus essentially the spatial

configuration of the parts. The offset uncertainty is defined as

U2(S) = ∑
∀i|ci=1

(di − dmean) (6.5)

where dmean is the mean offset vector over all offset vectors contained in training sample

set Snj at this node. This measure describes the scatter of all offset vectors reaching the

current node. The goal is to minimize the scatter and thus group together similar spatial

configurations.

For a split, we define three parameters, which determine the binary split of the

training data. A set of position tests {tk} is selected with uniformly sampled locations

(p, q, r, s). Further a random decision x = {1 ∨ 2} determines whether the class-label

or the offset uncertainty is optimized. The test-specific threshold value τk is chosen at

random in the range of real-valued differences for a test tk. Over all selected tests in

{tk}, we choose the split for which the training data is best minimized by the selected

uncertainty measure according to

min
k

(
Ux({pi|tk(Ψi) = 0}) + Ux({pi|tk(Ψi) = 1})

)
. (6.6)

As a result of randomly selecting between both criteria U1(S) and U2(S), the classi-

fication and voting direction uncertainties for a given test sample alternatingly decrease

on its way through a tree.
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Once the entire forest built from multiple decision trees is constructed, the implicity

category model is trained and the detection process is ready to start evaluation on the

test images. Edges are extracted from the test images and arranged into ordered, con-

nected edge lists B with |B| = N ≥ K. For each B, again a total number of (|B| −N + 1)

overlapping fragment descriptors {Ψj} are computed, and then classified down the trees

into leaf nodes. Please note, the descriptors are only computed along edges, which sig-

nificantly reduces the computational costs in comparison to a sliding window approach

or dense sampling as used in [79].

Since the voting vectors DL and class label probabilities pc are known in every leaf

node, we are able to cast the voting vectors into the Hough space V and accumulate the

voting probabilities. Finally, the resulting Hough image is Gauss-filtered and its local

maxima hypothesize the detected object locations. Back-projecting the votes collected in

a location hypotheses allows to approximately delineate the object outline, as illustrated

for several test images and category models in Section 6.4.

6.3.4 Ranking and Verification

The previous stage of our method provides object hypotheses in the test image and a

corresponding score obtained from the Hough voting space. For verification of these

hypotheses, we additionally provide a ranking employing a pyramid matching kernel

(PMK) [89]. Since our hypotheses generation stage delivers only a small set of hy-

potheses per image, a local verification is still efficient. Opposed to sliding window

approaches, an order of magnitude fewer candidates are considered as hypotheses.

The PMK classifier is trained on Histograms of Oriented Gradient (HOG)

features [45] from the same training examples selected also for training the category

models in the previous section. We use the classifier for ranking and for verification,

where additional nearby locations and scales around the proposed hypotheses are

searched, similar to the related work [134, 152, 164].
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6.4 Experimental Evaluation

In order to demonstrate the benefits of our proposed method for discriminative shape

and category model learning, we show the performance of our method on challenging

datasets like the ETHZ Shape classes [66] and the INRIA Horses [65, 101]. As our

proposed approach is contour-based and does not exploit color appearance or additional

segmentations as in [123, 195], we compare our results to several related contour-based

recognition approaches.

For all our experiments, we use the following parameters. The random forest classi-

fier consists of 12 decision trees, each with a depth of 15. The fragment length is fixed to

N = 51, as the classification task in the Chapter 3 suggested is a good balance between

recall and discrimination. We randomly extract 10 000 positive training samples from

edges within the bounding box annotation. The positive training images are all scaled

to the median height of the selected training dataset and the aspect ratio is fixed. 10 000

negative training samples are extracted from the same training images, yet outside of the

bounding boxes. Detection performance is evaluated using the strict PASCAL-50% cri-

terion, which requires that the intersection of the bounding box of the object hypotheses

and the ground truth over the union of the two bounding boxes is larger than 50%.

Since our method is not implicitly scale invariant, we run the detector on multiple

scales. However, this is efficiently done since descriptor calculation takes constant time

when using the lookup tables and traversing the trees has logarithmic complexity. In

practice, the average evaluation time is a few seconds per image for our C implementa-

tion, while the dense sampling used in [79] take minutes to evaluate all scales.

6.4.1 ETHZ Shape Classes

The ETHZ Shape dataset consists of five object classes (applelogos, bottles, giraffes,

mugs and swans) and a total of 255 images. The images contain at least one and often

multiple instances of a class instance and have a large amount of background clutter. All

classes contain significant intra-class variations and scale changes. Therefore, we run the

detector on 15 different scales, equally distributed between factors of 0.2 and 1.6. We use

the same test protocol as specified in [65], where a class model is learned by training on

half of the positive examples from a class, while testing is done on all remaining images

from the entire dataset.
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Figure 6.4: Examples of back-projected contour fragments for a detected object hypoth-
esis for all classes of ETHZ. The back-projection allows to approximately delineate the
object outline (intensity of the outline indicates the weight).

The hypotheses locations are ranked according to their confidence scores. In the

voting stage this confidence corresponds to the accumulated values in the Hough voting

space. We provide a ranking according to a pyramid matching kernel (PMK) [89]. The

PMK classifier is trained on the same half of the positive example from the training

set and an equal number of windows sampled from negative training images. This is

according to the verification step as proposed by Maji and Malik [134]. We use the

classifier for ranking and for verification, where we also sample nearby locations and

scales in a small grid around the proposed hypotheses locations. Including the local

search is still very efficient since our hypothesis stage delivers on average 3.5 bounding

boxes per image, which is orders of magnitudes lower than a sliding window detectors

require [90]. Figure 6.4 further illustrates several examples of cropped bounding box

hypotheses showing the back-projected fragments into the original image locations.

In Table 6.1 we compare the results of our described object detector for each object

class in relation to current state of the art [134, 152, 164, 214], where divisions into

voting, ranking and verification stages are applicable. However, due to the large number

of competing methods, we only provide the scores of the initial Hough voting stage

and the PMK ranking stage evaluated at 1.0 FPPI. Recognition performance is evaluated

by ranking the hypotheses according to their confidence scores. Finally, we also show

results of our method for the full verification step (where also nearby locations and scales

are tested around the returned hypotheses) at FPPI = 0.3/0.4, which is the standard

measure for comparing results on the ETHZ Shape classes dataset.



122 Chapter 6. Discriminative Fragments for Object Detection

Voting Stage (FPPI=1.0) Ranking Stage (FPPI=1.0) (FPPI=0.3/0.4)
ETHZ Hough wac M2HT PC Group Hough Our [152] + [164] + Ours Our work
Classes [65] [152] [134] [164] [214] Forest [79] work PMK PMK PMK Verification

Apples 43.0 80.0 85.0 90.4 84.0 80.0 94.4 80.0 90.4 100.0 94.4/100
Bottles 64.4 92.4 67.0 84.4 93.1 70.8 90.9 89.3 96.4 95.5 100/100
Giraffes 52.2 36.2 55.0 50.0 79.5 60.5 86.7 80.9 78.8 93.3 91.1/93.3
Mugs 45.1 47.5 55.0 32.3 67.0 73.1 92.3 74.2 61.4 88.5 80.8/87.2
Swans 62.0 58.8 42.5 90.1 76.6 81.3 73.3 68.6 88.6 93.3 100/100
Average 53.3 63.0 60.9 69.4 80.0 73.1 87.5 78.6 83.2 94.2 93.3/96.1

Table 6.1: Hypothesis voting and ranking showing detection rates (measured using
PASCAL-50% criterion) for the ETHZ Shape classes [66]. For the voting stage our cover-
age score increases the performance by 7.5% [214], 18.1% [164], 24.5% [134], 26.6% [152]
and 34.2% [65]. After ranking the hypotheses, we achieve an improvement of 11.0%
over [164] and even 15.6% over [152].

As shown in Table 6.1, we substantially outperform the currently best scoring meth-

ods for both, Hough-voting and ranking stage. We achieve a performance boost of 7.5%

over the previously best voting method in [214], 18.1% over [164], 26.6% over [152],

24.5% over [134] and even 34.2% over [65]. After applying the learned HOG models for

ranking we are 11.0% better than the previously best scoring method [164] and 15.6%

better than [152]. Finally, our method also shows high performance for the full veri-

fication system, providing an average recognition score of 93.3/96.1% at 0.3/0.4 FPPI,

which is approximately on par with the highest scores reported from contour-based ap-

proaches in [190] (95.2/95.6%). However, the authors in [190] do not provide scores for

detection and refinement stages individually which makes direct comparison difficult.

Furthermore, their method has a high computational complexity and detection takes

minutes per image. Further recent work incorporates appearance-based color segmen-

tations to perceptually group the shape information in the work [195] (94.3/96.0%) and

in [123] (average precision of 90.25% at 0.02 FPPI).

To further emphasize the contribution of our proposed shape descriptor with respect

to the original Hough forest framework, we trained and evaluated on the same number

of trees using all 32 provided features of [79], which are mostly pixelwise appearance

information including color channels, gradients and small HOG-like features. To have a

fair comparison and accomplish each of the 15 individually considered scales in reason-

able time, we evaluated on the same locations as we did for our descriptor. As shown in

Table 6.1, our single feature descriptor clearly outperforms the standard Hough forest

method using all 32 features (14.4% better).
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Figure 6.5: Object detection performance on the ETHZ Shape classes and INRIA Horse
datasets. Each plot shows curves for the 50%-PASCAL and 20%-IOU criterion of the
methods. Our results are shown in thick solid black/blue curves. Note, that we outper-
form the related work [63, 65] consistently over all classes.
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In Figure 6.5 we show the detection rate vs. FPPI plots for all ETHZ Shape classes

in comparison to all results provided by Ferrari et al. [63, 65] and also the recent results

on INRIA Horses dataset. Figure 6.6 illustrates some detection results for different

classes. We show the highly cluttered edge responses of the test images which are used

for localization and the corresponding back-projections of the classified fragments for

an object hypothesis which enables to additionally approximately delineate the object

contour. The circles indicate the voted center locations of the hypotheses. The degree of

intensity along the edges corresponds to the weights of the extracted fragment around

this point, where darker is more important.

Figure 6.6: Examples for successful object localizations for all classes of ETHZ Shape
classes [66]. The cluttered edge responses (in blue) and the back-projected fragments (in
red) for the object hypothesis with the highest confidence per image are shown.
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INRIA Horses: Final detection (FPPI = 1.0)
M2HT Group PC PAS KAS Our work
[134] [214] [164] [63] [64] [108]

85.30 87.3 83.72 80.77 73.75 85.50

Table 6.2: Detection performance for discriminative shape fragment-based object detec-
tion for the INRIA Horses [101] reported at 1.0 FPPI using 50%-PASCAL.

6.4.2 INRIA Horses

The INRIA Horses dataset [65, 101] contains a total number of 340 images where 170

images belong to the positive class showing at least one horse in side-view at several

scales and 170 images without horses as background images. The experimental setup is

chosen as in [65], where the first 50 positive examples are used for training and the rest

of the images are used for evaluation (120+170). We run the detector on eight different

scale factors between 0.5 and 1.5. As shown in Table 6.2 compared to recently published

results, we achieve a competitive detection performance of 85.50% at 1.0 FPPI.

6.5 Conclusion

In this chapter we investigated the use of shape description and discriminative cate-

gory model learning for the task of object detection. Our novel method discriminatively

learns local shape fragment descriptors in combination with their spatial location rela-

tive to the object center in a random forest classifier to build a category object model.

The design of the fragment descriptor abstracts connected edge image points into angu-

lar relations and learns their spatial configuration at a local descriptor level as well as

for the category model layout. As demonstrated the proposed descriptor shows distinc-

tive patterns for differently shaped fragment primitives, while allowing to tolerate small

perturbations and intra-class variations. The experimental evaluation shows excellent

results on the well-known ETHZ Shape and INRIA Horses datasets. Our method out-

performs the currently highest scoring contour-based methods by approximately 8% at

1.0 FPPI after the Hough voting stage at reduced runtime of only a few seconds per im-

age. In addition, we demonstrated that back-projections of the shape fragments voting

for a hypothesis allows delineating the object outline. Future work will focus on turning

back-projection information into concise image segmentations.





What we need are a few crazy people;

look at what we’ve achieved with the normal ones.

George Bernard Shaw (1856-1950)

7
Joining Classification, Localization and

Segmentation

In this chapter we propose a method which jointly optimizes over object detection and

segmentation. These are usually considered as independent consequent steps, as dis-

cussed in Section 7.2. Our method is attached to any available generalized Hough voting

method and implicitly provides detection hypotheses and corresponding segmentations.

In Section 7.3 we describe our method denoted as Hough Regions formulating the prob-

lem of Hough space analysis as Bayesian labeling of a random field exploiting provided

classifier responses, object center votes and low-level cues like color consistency, which

are combined into a global energy term. We propose a greedy approach to solve this

energy minimization problem providing a pixel-wise assignment of each pixel in a test

image as background or as belonging to a specific category instance. In such a way we

bypass the parameter sensitive non-maximum suppression that is required in related

methods. Experimental evaluation in Section 7.4 demonstrates that state-of-the-art de-

tection and segmentation results are achieved and that our method is able to inherently

handle overlapping instances, larger range of articulations, aspect ratios and scales in

comparison to related approaches on multiple instance localization.
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7.1 Introduction

Detecting instances of object categories in cluttered scenes is one of the main challenges

in computer vision. Standard recognition systems define this task as localizing category

instances in test images up to a bounding box representation, which limits overlapping

instances due to the ambiguous assignment within overlapping bounding boxes. In

contrast, semantic segmentation methods try to accurately outline the object of interest.

Inherently this is the same task, as the segmentation of an object delivers the localization

and the assignment of pixels which belong to the object. This assignment makes the

recognition part easier, since misleading background information is discarded.

Both tasks have recently enjoyed vast improvements and we are now able to accu-

rately recognize, localize and segment objects in separate stages using complex process-

ing pipelines. Problems still arise where the recognition is confused by background

clutter or occlusions, localization is confused by proximate features of other classes, and

segmentation is confused by ambiguous assignments to foreground and background.

In this chapter we propose an object detection method which combines instance lo-

calization with segmentation in an implicit manner for jointly finding optimal solutions.

Related work in this field, as will be discussed in detail in the next section, tries to

combine detection and segmentation in separate subsequent stages [161], mostly con-

sidering objects independently by a crude separation using bounding boxes. In contrast,

full scene understanding jointly estimates a complete scene segmentation of an image

for all object categories [114], which is not the goal in this chapter. However, our instance

segmentations could be used as input for the higher-order potentials in [114].

We place our method in the middle and combine localization and segmentation

jointly by considering individual object instance localization and their segmentation iter-

atively. We achieve the instance localization by the extraction of so-called Hough regions,
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(a) (b) (c) (d)

Figure 7.1: Hough regions (a) find reasonable instance hypotheses (b) despite strongly
smeared vote maps. By jointly optimizing over both segmentation and detection, we
identify even strongly overlapping instances (c) compared to standard non maximum
suppression (d), which fails (red BB) to identify all instances.

exploiting available information from a generalized Hough voting method as illustrated

in Figure 7.1. Hough regions are an alternative to the de-facto standards of bounding

box non-maximum suppression or vote clustering, as they are directly optimized on the

Hough vote space. Since we are considering maxima regions instead of single maxima,

articulation and scale become far less important. Our method is thus more tolerant

against diverging scales and the number of overall scales in testing is reduced. Further,

we outline the object instances and achieve better recall for overlapping instances.

7.2 Related Work

In this chapter we consider the problem of localizing category instances in images and

additionally provide accurate segmentations per instance. For providing such results

mainly three different related research fields should be considered: non-maximum sup-

pression, segmentation and scene understanding.

One of the most prominent approaches for improving object detection performance

is non-maximum suppression (NMS) and its variants. NMS aims for suppressing all hy-

potheses (i. e. bounding boxes) within a certain distance (e. g. the widespread 50% PAS-

CAL criterion) and localization certainty with respect to each other. Barinova et al. [14,

15] views the Hough voting step as an iterative procedure, where each bounding box of
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an object instance is greedily considered. Desai and Ramaman [46, 47] see the bounding

box suppression as a problem of context evaluation. In their work they learn pairwise

context features, which determine the acceptable bounding box overlap per category.

For example, a couch may overlap with a person, yet not with an airplane.

The second approach for improving object localization is to use the support of seg-

mentations. The work of Leibe et al. [121] introduced an Implicit Shape Model (ISM)

which captures the structure of an object in a generalized Hough voting manner. They

additionally provide segmentations per detected category instance, but require ground

truth segmentations for every positive training sample. To recover from overlapping

detections, they introduce a minimum description length (MDL) criterion to combine

detection hypotheses based on their costs as separate or grouped hypotheses. Boren-

stein and Ullman [28] generate class-specific segmentations by a combination of object

patches, yet this approach is decoupled from the recognition process. Yu and Shi [215]

show a parallel segmentation and recognition system in a graph theoretic framework,

but are limited to a set of a priori known objects. Amit et al. [5] are treating parts as

competing interpretations of the same object instances. Larlus and Jurie [115] showed

how to combine appearance models in a Markov Random Field (MRF) setup for cate-

gory level object segmentation. They used detection results to perform segmentation in

the areas of hypothesized object locations. Such an approach implicitly assumes that the

final detection bounding box contains the object-of-interest and cannot recover from ex-

amples not sticking to this assumption, which is also the case for methods in full scene

understanding. Gu et al. [90] use regions as underlying reasoning for object detection,

however rely on a single over-segmentation of the image, which cannot recover from

initial segmentation errors. Tu et al. [196] propose the unification of segmentation, de-

tection and recognition in a Bayesian inference framework where bottom-up grouping

and top-down recognition are combined for text and faces.

The third approach for improving localization is to strive for a full scene understand-

ing to explain every object instance and all segmentations in an image. Gould et al. [86]

jointly estimate detection and segmentation in a unified optimization framework, how-

ever with an approximation of the inference step, since their cost formulation is in-

tractable otherwise. Such an approach cannot find the global optimum solution. Wojek

and Schiele [207] couple scene and detector information, but due to the inherent com-

plexity the problem is not solvable in an exact manner. Winn and Shotton [205] propose

a layout consistent Conditional Random Field (CRF) which splits the object into parts
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and enforces a coherent layout when assigning the labels and connects each Hough

transform with a part to extract multiple objects. Yang et al. [211, 212] propose a lay-

ered object model for image segmentation, which defines shape masks and explain the

appearance, depth ordering, and labels of all pixels in an image.

Ladicky et al. [112, 114] combine semantic segmentation and object detection into

a framework for full scene understanding. Their method trains various classifiers for

"stuff" and "things" and incorporates them into a coherent cooperating scene expla-

nation. So far, only Ladicky et al. managed to incorporate information about object

instances, their location and spatial extent, as important cues for a complete scene un-

derstanding, which allows to answer a question like what, where and how many object

instances can be found in an image. However, their system is designed for difficult full

scene understanding and not for an object detection task, as they only integrate detector

responses and infer from the corresponding bounding boxes. This limits the ability to

increase the detection recall or to improve the accuracy of instance localization.

Our method improves the accuracy of object detectors by using the object’s support-

ing features for joint segmentation and reasoning between object instances. We achieve

a performance increase in recall and precision, through the ability to better handle ar-

ticulations and diverging scales. Additionally, we do not require a parameter sensitive

non-maximum suppression since our method delivers unique segmentations per object

instance. Please note, in contrast to related methods [74, 121] these segmentation are

provided without learning from ground truth segmentation masks for each category.

7.3 Joint Reasoning of Instances and Support

The main goal of this chapter is the joint reasoning about object instances and their

segmentations. Our starting point is any generalized Hough voting method like the

Implicit Shape Model (ISM) [121], the Hough Forests [79] or the max-margin Hough

transform [134]. We formulate our problem in terms of a Bayesian labeling of a first-

order Conditional Random Field (CRF) aiming at the minimization of a global energy

term. Since global inference in the required full random field is intractable, we propose

a greedy method which couples two stages iteratively solving each stage in a global op-

timal manner. Our model inherently links classifier probabilities, corresponding Hough

votes and low-level cues such as color consistency and centroid proximity.

We first describe in Section 7.3.1 the global energy term for providing pixel-wise

assignments to category instances, analyzing unary and pairwise potentials. In Sec-
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tion 7.3.2 we introduce our approach for minimizing the energy term by a greedy ap-

proach. Finally, in Section 7.3.3 we directly compare the properties of our method to

related approaches in this field.

7.3.1 Probabilistic Global Energy

We assume that we are given any generalized Hough voting method like [79, 121, 134,

151], which provides our N voting elements Xi within the test image and corresponding

object center votes Hi into the Hough space. We further assume that we are given

p (C|Xi, Di) per voting element, which measures the likelihood that a voting element Xi

belongs to category C by analyzing a local descriptor Di, for example feature channel

differences between randomly drawn pixel pairs as in [79]. All this information can

be directly obtained from the generalized Hough methods, see experimental section for

implementation details.

The goal of our method is to use the provided data of the generalized Hough voting

method to explain a test image by classifying each pixel as background or as belonging

to a specific instance of an object category. We formulate this problem as Bayesian

labeling of a first-order Conditional Random Field (CRF) by minimizing a global energy

term to derive an optimal labelling.

Such random field formulations are widespread, especially in the related field of se-

mantic segmentation, e. g. [184]. In a standard random field X each pixel is represented

as a random variable Xi ∈ X , which takes a label from the set L = {l1, l2, . . . , lk} indi-

cating one of k pre-defined object classes as e. g. grass, people, cars, etc. Additionally,

an arbitrary neighborhood relationship N is provided, which defines cliques c. A clique

c is a subset of the random variables Xc, where for ∀i, j ∈ c holds i ∈ Nj and j ∈ Ni,

i. e. they are mutually neighboring concerning the defined neighborhood system N .

In our case, we not only want to assign each pixel to an object category, we addi-

tionally aim at providing a unique assignment to a specific instance of a category in the

image, which is a difficult problem if category instances are highly overlapping. For

the sake of simplicity, we define our method for the single class case, but the method is

easily extendable to a multi-class setting.

We also represent each pixel as random variable Xi with i = 1 . . . N and aim at

assigning each pixel a category-specific instance label from the set L = {l0, l1, . . . , lL},
where L is the number of instances. We use label l0 for assigning a pixel to the back-
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ground. We seek for the optimal labeling x of the image which is taken from the set

L = LN . The optimal labeling minimizes the general energy term E (x) defined as

E (x) = −log P (x|D)− log Z = ∑
c∈C

ψc(xc), (7.1)

where Z is a normalization constant, D is the observed data, C is the set of considered

cliques defined by the neighborhood relationship N and ψc(xc) is a potential function

of the defined clique. The Maximum a Posteriori (MAP) labeling x∗ is then found by

minimizing this energy term as

x∗ = arg minx∈L E (x) . (7.2)

To obtain reasonable label assignments it is important to select powerful potentials,

which range from simple unary terms (e. g. evaluating class likelihoods), pairwise poten-

tials (e. g. the widespread Potts model) or even higher order potentials. While unary po-

tentials ensure correct label assignments, pairwise potentials aim at providing a smooth

label map, e. g. by avoiding the assignment of identical labels over high image gradients.

The overall goal is to provide a smooth labeling consistent with the underlying data.

Our energy is modeled as the sum of unary and pairwise potentials. In the following,

we assume that we are given a set of seed variables S which consist of L subsets Sl ∈ X
of random variables for which we know the assignment to a specific label in the image,

i. e. we know the instance it belongs to. We again assume that the set S0 represents the

background. These assignments are an essential step of our method and how to obtain

them is discussed in Section 7.3.2.

Based on the given assignments Sl, we define our instance-labeling problem as min-

imizing the following energy term

E(x) = ∑
Xi∈Sl

Θ (Xi) + ∑
Xi∈Sl

Υ (Xi) + ∑
Xi∈Sl

Ω (Xi) + ∑
Xi ,Xj∈N

Ψ
(
Xi, Xj

)
, (7.3)

which contains a unary, instance-specific class potential Θ, a color based unary potential

Υ, a distance based unary potential Ω and a pairwise potential Ψ. The first unary

potential Θ contains the estimated likelihoods for a pixel taking a certain category label

as provided by the generalized Hough voting method as

Θ = − log p (C|Xi, Di) , (7.4)
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i. e. the unary potentials Θ describe the likelihood of getting assigned to one of the iden-

tified seed regions or the background. Since we do not have a background likelihood,

the corresponding values for l0 are set to a fixed constant value pback, which defines the

minimum class likelihood we want to have. The term Θ drives our label assignments to

correctly distinguish background from actual object hypotheses.

The unary potential Υ analyzes the likelihood for assigning a pixel to one of the

defined seed regions, e. g analyzing local appearance information in comparison to the

seed region. In general any kind of modeling scheme is applicable in this step. We

model each subset Sl ∈ X by Gaussian Mixture Models (GMM) Gl and define color

potentials for assigning a pixel to each instance by

Υ = − log p (Xi|Gl) . (7.5)

The corresponding likelihoods for the background class l0 are set to

1 −maxl∈L log p (Xi|Gl) since the background is mostly too complex to model. The

term Υ ensures that pixels are assigned to the right instances by considering the

appearance of each instance.

The third unary potential Ω defines a spatial distance function analyzing how close

each pixel is to each seed region Sl by

Ω = ∆ (Xi, Sl) , (7.6)

where ∆ is a distance function. The term Ω ensures that correct assignments to instances

are made considering constraints like far away pixels with diverging center votes are not

assigned to the same instance.

Finally, our pairwise potentials encourage neighboring pixels in the image to take

the same label considering a standard Potts model Ψ analyzing pixels included in the

same cliques c defined as

Ψ =

{
0 if xi = xj

K if xi 6= xj
, (7.7)

where K is an image specific gradient measure on local color difference. The term Ψ

mainly ensures that smooth label assignments are achieved. In such a way we can

effectively incorporate not only the probability of a single pixel belonging to an object,

but also consider the spatial extent and the local appearance of connected pixels in our
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inference. Please note, that this formulation can be extended to superpixels [201] to infer

coherent groups [113] or include higher-order potentials [105].

Finding an optimal solution without knowledge of the seeds Sl is infeasible since

inference in such a dense graph is NP-hard. Therefore, in the next section we propose a

greedy algorithm for solving the above presented energy minimization problem, which

alternately finds optimal seed assignments and then segments instances analyzing the

hough vector support. The final result of our method is a segmentation of the entire

image into background and individual category instances.

7.3.2 Instance Labeling Inference

We propose a novel, greedy inference concept to solve the energy minimization problem

defined in Equation 7.3. The core idea is to alternately find a single, optimal seed re-

gion analyzing the provided Hough space (Eq. 7.8), and to afterwards use this seed

region to find an optimal segmentation of the corresponding instance in the image

space (Eq. 7.3). The obtained segmentation is then used to update the Hough space

information (Eq. 7.10), and in such a way we greedily obtain our final image labeling.

We formulate our instance labeling problem as a conventional Conditional Random

Field (CRF). Due to the known votes Hi of each pixel into the Hough vote map, we have

a connection between pixelwise feature responses and projected Hough centers. Hence,

we can build a two layer graph for any image, where the nodes in the first layer I

(image graph) are the underlying random variables Xi for all pixels in the image, and

the second layer H (Hough graph) contains their transformed counterpartsH(Xi) in the

Hough vote map. Figure 7.2 illustrates this two-layer graph setup.

The first step is to optimally extract a seed-region from the corresponding Hough

graph H. Therefore, we propose a novel paradigm denoted as Hough regions which

formulates the seed pixel extraction step itself as a segmentation problem. A Hough

region is defined a connected, arbitrarily shaped subset of graph nodes Hl ∈ H, which

are projections of the pixels belonging to the object instance into the Hough space. The

idea and benefit of our paradigm is that in the physical world Hough center votes are

imperfect. Even despite recent research to decrease the Hough vector impurity [79, 151],

the Hough center is not a single pixel. This arises from various sources of error such

as changes in global and local scales, aspect ratios, articulation, etc. Perfect Hough

maxima are unlikely and there will always exist inconsistent centroid votes. However,
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Figure 7.2: Two-layer graph design (top: Hough and bottom: image) to solve proposed
image labeling problem. We identify Hough regions as subgraphs of the Hough graph
H. The back-projection into the image space, in combination with color information,
distance transform values and contrast sensitive Potts potentials defines instance seg-
mentations in the image graph I.

Hough regions are designed exactly for this purpose: they capture the uncertainty not in

a single Hough maximum point, but a region!

Thus, our goal is to identify Hough regions Hl in the Hough space H, which then

allows to directly define the corresponding seed region Sl by the back-projections into

the image space, i. e. the random variables Xi ∈ Sl are the nodes in the image graph I

which project into the Hough region Hl. For this reason, we define a binary image

labeling problem in the Hough graph by

E(x) = ∑
Xi∈X

Θ(H(Xi)) + ∑
N

Φ(H(Xi),H(Xj)), (7.8)

which contains the projected class-specific unary potentials Θ and a pairwise potentia Φ.

The potential Θ for each variable Xi is projected to the Hough graph using H(Xi). The

unary potential at any node H(Xi) is then the sum of the classifier responses voting for

this node, as it is common in general Hough voting methods. The pairwise potential Φ

is defined on this very same graph H as a gradient-sensitive Potts model, where the

gradient is calculated as the difference between the unary potentials of two nodesH(Xi)

and H(Xj) in the Hough graph H. This binary labeling problem can be solved in a

global optimal manner using any available graph cut based inference algorithm [31],

and the obtained Hough region Hl is then back-projected to the seed region Sl.

The second step, after finding the optimal seed region Sl, is to identify all supporting

pixels of the category instance in the image graph I. Since we have now given the

required seed region Sl, we can apply our energy minimization problem defined in

Equation 7.3 and again solve a binary labeling problem, for assigning each pixel to the
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background or the currently analyzed category instance. The final part is the distance

function ∆ (Xi, Sl), which we define as

∆ (Xi, Sl) =

{
0 if H(Xi) ∈ Hl

DT(Xi) otherwise
, (7.9)

where H(Xi) is the Hough transformation of an image location to its associated Hough

nodes and DT(Xi) is the distance transform over the elements of the current seed pixels,

which are given by the Hough region Hl. Again this binary labeling problem can be

solved using graph cut methods [31] and returns a binary segmentation mask Ml for

the current category instance.

After finding the optimal segmentation Ml for the currently analyzed category in-

stance in the image space, we update the Hough vote map, considering the already

assigned Hough votes. In such a way our framework is not error-prone to spurious

incorrect updates in the Hough voting space as it is common in related methods. This

directly improves the detection performance, as occluded object instances are not re-

moved. On the contrary, occluded instances are now more easily detectable by their

visible segmentation, as they require less visibility with competing object instances or

other occlusions.

In detail, the update considers each image location and its (independent) votes,

which are accumulated in the nodes of the Hough graph. An efficient update is possi-

bly by subtracting the previously segmented object instance from classwise potentials,

which are initially Θ0(Xi) = Θ(Xi), by

Θt+1(Xi) = Θt(Xi)−Θ(XMl ), (7.10)

where each random variable XMl within the segmentation mask Ml of the category

instance is used to reduce the full graph. Using our obtained segmentations, we focus

the update solely on the areas of the graph where the current object instance plays a role.

This leads to a much finer dissection of the image and Hough graphs for the detections

and their image support, as shown in Figure 7.2.

After updating the Hough graph H with the same update step, we repeat finding

the next optimal seed region and afterwards segmenting the corresponding category

instance in the image graph I. This guarantees a monotonic decrease in max(Θt+1) and

our iteration stops when max(Θt+1) < pback, i. e. we have identified all Hough regions

(object instances L) above a threshold.
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7.3.3 Comparison to Related Approaches

Our implicit step of updating the Hough vote maps by considering optimal segmenta-

tions in the image space, is related to other approaches in the field of non-maximum

suppression. In general, one can distinguish two different approaches in this field.

Bounding boxes are frequently selected as underlying representation to perform non-

maximum suppression and are the de-facto standard for defining the number of de-

tections from a Hough image. In these methods the Hough space is analyzed using a

Parzen-window estimate based on the Hough center votes. Local maxima in the Parzen

window estimate determine candidates for the seed regions Sl by placing a bounding

box considering the current scale onto the local maxima. Conflicting bounding boxes,

e. g. within a certain distance and quality with respect to each other are removed (NMS).

Each bounding box finally represents one seed region Sl and additionally defines a bi-

nary distance function ∆ (Xi, Sl) by setting ∆ = 1 for all pixels within the bounding box

and ∆ = 0 to all other pixels.

Non-maximum suppression comes in many different forms like: a) Finding all local

maxima and performing non-maximum suppression in terms of mutual bounding box

overlap in image space to discard low scoring detections. b) Extracting global maxima

iteratively and eliminating these by deleting the interior of the bounding box hypothesis

in Hough space [79]. c) Iteratively finding global maxima for the seed pixels [14] and

estimating bounding boxes and subtracting the corresponding Hough vectors. All pixels

inside the bounding box are used to reduce the Hough vote map. This leads to a

coarse dissection of the Hough map which leads to problems since it includes much

background information and overlapping object instances.

Clustering methods allow more elegant formulation since they attempt to group

Hough vote vectors to form the set of seed variables Sl. The Implicit Shape Model

(ISM) [121], for example, employs a mean-shift clustering on sparse Hough center

locations to find coherent votes. They define the distance function ∆ (Xi, Sl) in terms of

an L2 norm on the Hough vectors Hi. The work by Ommer and Malik [152] extends

this to clustering Hough voting lines, which are infinite lines as opposed to finite

Hough vectors. The benefit lies in extrapolating the scale from coherent Hough lines, as

the line intersection in the 3D x–y–scale space determines the optimal scale. In general,

these methods elegantly find the seed pixel selection by considering them as clusters,
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however such approaches assumes well-distinguishable cluster distributions and are

not well-suited for scenarios including many overlaps and occlusions. Furthermore,

similar to the bounding box methods which require a Parzen-window estimate to bind

connected Hough votes, clustering methods require an intra- to inter cluster balance. In

terms of a mean-shift approach this is defined by the bandwidth parameter considered.

An unfortunate drawback of clustering methods is often the limited scalability in terms

of number of input Hough vectors that can be efficiently handled. An interesting

alternative is the grouping of dependent object parts [214], which yields significantly

less uncertain group votes compared to the individual votes.

Our proposed approach has several advantages compared to the discussed related

methods. A key benefit is, that we do not have to fix a range for local neighborhood

suppression, as it is for example required in non-maximum suppression approaches. As

it is also demonstrated in the experimental section, our method is robust to an increased

range of variations in object articulations, aspect ratios and scales, which for example

allows to reduce the number of analyzed scales during testing. We implicitly also pro-

vide segmentations of all detected category instances, without requiring segmentation

masks during training. In overall, the benefits of our Hough Regions approach lead to

higher precision and recall compared to related approaches.

7.4 Experimental Evaluation

In general, we can use any available general Hough voting method as starting point for

our method. The most related approaches for non-maxima suppression are [14, 79]. We

use their publicly available code to provide required class likelihoods and the centroid

votes. For not overlapping datasets like PASCAL VOC, we achieve the same perfor-

mance as our baseline method. For better direct comparison, we therefore evaluate

against their challenging datasets for overlapping detections, namely TUD crossing and

TUD campus. Additionally, we evaluate on a novel window detection dataset GT240

designed for testing aspect ratio and distortion. We use two GMM components, equal

weighting between the energy terms and a background constant pback = 0.125. The

overall runtime of our method is a moderate 10 seconds on average per image.
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Figure 7.3: Object detection performance as Recall/Precision curve for the TUD campus
and TUD crossing sequences showing analysis at multiple scales for highly overlapping
instances. See text for details.

7.4.1 TUD Campus

To demonstrate the ability of our system to deal with occluded and overlapping object

instances (which results in an increased recall using the PASCAL 50% criterion), we

evaluated on the TUD campus sequence, which contains 71 images and 303 highly over-

lapping pedestrians with large scale changes. We evaluated the methods on multiple

scale ranges (one, three and five scales) and Figure 7.3 shows the Recall-Precision curve

(RPC) for the TUD campus sequence. Aside the fact that multiple scales benefit the

detection performance for all methods, one can also see that our Hough regions method

surpasses the performance at each scale range (+3%, +8%, +8% over [14]) and over fewer

scales. For example, using Hough regions we only require three scales to achieve the recall

and precision, which is otherwise only achieved using five scales. Hence, our methods

is better in handling scale changes, which requires fewer scales during test time and

thus reduced runtime complexity. The ISM approach of Leibe et al. [121] reaches a very

good precision, but at the costs of recall. The MDL criterion limits their ability to find

all partially occluded objects, resulting in a lower recall.

7.4.2 TUD Crossing

The TUD crossing dataset [6] contains 201 images showing profile views of pedestrians

in a relatively crowded scenario. The annotation by Andriluka et al. [6] contains 1008

tight bounding boxes designed for pedestrians with at least 50% visibility, ignoring

highly overlapping pedestrians. For this reason we created a segmentation-accurate
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annotation. The new annotation is based on the original bounding box annotation and

now contains 1212 bounding box annotations with corresponding segmentations. In

addition to bounding boxes we also annotated the visibility of pedestrians in fully visible

body parts: head, front part of upper body, back part of upper body, left leg or right leg.

Typically, in this sequence three scales are evaluated, however to show ability to

handle scale, we evaluate only on a single scale for all methods. Figure 7.3 shows

the Recall-Precision curve (RPC) for the TUD crossing sequence in comparison to an

Implicit Shape Model (ISM) [121] and the probabilistic framework of [14]. Our method

achieves a better recall compared to the other approaches. We increase the recall as

well as precision indicating that our method can better handle the overlaps, scale and

articulation changes.

7.4.3 GT240

We also evaluated our method on a novel street-level window detection dataset (de-

noted as GT240), which consists of 240 buildings with 5400 redundant images with a

total of 5542 window instances. Window detection itself is difficult due to immense

intra-class appearance variations. Additionally, the dataset includes a large range of

diverging aspect ratios and strong perspective distortions, which usually limit object

detectors. In our experiment we trained a standard detection framework based on [79]

and tested on three different scales and a single aspect ratio. As shown in Figure 7.4

we can substantially improve the detection performance in both recall and precision

(12% at EER) compared to the baseline. Our Hough regions based detector consistently

delivers improved localization performance better suppressing false positives and han-

dling different aspect ratios and perspective distortions, because we are not limited to

axis-aligned bounding boxes.

7.4.4 Segmentation

As final experiment we analyze achievable segmentation accuracy on the TUD crossing

sequence [6], where we created binary segmentations masks for each object instance

for the entire sequence. Segmentation performance is measured by the ratio between

the number of correctly assigned pixels to the the total number of pixels (segmentation

accuracy). We compared our method to the Implicit Shape Model (ISM) [121], which

also provides segmentations for each detected instance. Please note, that the ISM re-

quires segmentation masks for all training samples to provide reasonable segmentations
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Figure 7.4: Object detection performance as Recall/Precision curve on the window de-
tection dataset GT240 with strong distortion and aspect ratio changes in 5400 images.

Figure 7.5: Illustration of the segmentations for TUD crossing and TUD campus datasets.

whereas our method learns from training images only. Nevertheless, we achieve com-

petitive segmentation accuracy of 98.59% compared to 97.99% for the ISM. Illustrative

results are shown in Figure 7.5.
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7.5 Conclusion

In this chapter we proposed an object detection method to jointly solve instance local-

ization and segmentation. It requires only a generic classifier response, which gives the

feature-wise class probabilities and the object center location. Our novel Hough regions

determine the locations of object instances, which implicitly handles large location un-

certainty due to articulation, aspect ratio and scale. As shown in the experiments, our

method jointly and accurately delineates the location and outline of object instances,

leading to increased detection recall and precision for overlapping detections. These re-

sults confirm related research where combining the tasks of detection and segmentation

improves performance, because of the joint optimization benefit over separate individ-

ual solutions. Future work entails using our method during the training of classifiers

to provide more accurate estimation of foreground and background without increase

of manual supervision. Further, an analysis whether verification of the segmentation

rejects false positives and improves the precision is interesting.





I never see what has been done;

I only see what remains to be done.

Buddha

8
Conclusion and Outlook

In this thesis we addressed the following topics in computer vision: mid-level infor-

mation for contour extraction, structured description of shape, partial matching of this

structured shape, grouping of partial contour matches, discriminative learning of shape

category models, and joint localization and segmentation of multiple object instances.

The main underlying feature in the proposed solutions is shape, as it is invariant to

changes in texture and illumination yet still captures the common properties of objects

from the same category.

The contributions of the thesis include a novel integration of mid-level context cues

from regions to increase the stability and precision of contour extraction. A novel struc-

tured description of shape, denoted as Structural Measurement Descriptor (SMD), exploit-

ing the sequence of points to include hierarchical and partial shape information, which

can be efficiently accessed and compared. The structural descriptor is generic, which

allows various features and different levels of shape abstraction, for example closed

regions, open contours or local contour fragments. A novel partial matching method

is proposed for the structured description independent of the features, which results

in an efficient 3D tensor similarity for arbitrary length matches. This is employed for

partial region matching for shape retrieval. A novel partial contour aggregation, which
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summarizes redundant partial matches for performing object detection in cluttered im-

ages, is proposed. Further, a novel method for joint shape fragment and category model

learning for object detection is shown. And finally, a novel formulation for joining classi-

fication, localization and segmentation is described using a two-layer image and Hough

graph for enumeration of object instances to increase the robustness over overlapping

instances and changes in scale and aspect ratio.

Future work has many directions and in the following a few topics are discussed.

The overall goal is a method which entails all parts joining the shape and appearance

feature extraction up to the final segmentation and scene explanation. Additionally the

range of applications for shape-based description and matching as it has been intro-

duced here may be extended to partial shape retrieval in user drawings, tracking of

contours in time or space for multiple view reconstruction.

Features are the essential part of contour extraction and shape description. Future

work will investigate the integration of the proposed mid-level context cues from region

into related contour detection and semantic classification approaches. Further research

may also be directed to evaluating the similarity of contour during their extraction. In

terms of the component tree analysis the individual similarity of regions can directly

be computed by comparing the region to the category model. This will result in an

category-specific contour extraction and further to an object instance localization.

Description of features requires a notion of support. The design of support windows

for local shape fragment description will result in a higher discriminability of the de-

scriptor. Similar to the support window from local interest points given a scale estimate,

the support window may be estimated from the local curvature scale space. This will

result in more suitable context for local fragment description and result in an increase

of classification accuracy.

Non-rigid deformation of objects is a natural phenomenon, which occurs whenever

the object undergoes changes in pose and articulation. In this work we have considered

rigid template models and a partial similarity measure to determine matching parts of

objects. An interesting direction for future work is to automatically determine rigid and

non-rigid parts of an object and learn a weighted deformation model for these parts to

incorporate into the partial matching cost.
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Complexity is a vital topic in terms of the computational requirements. There is an

additional speed up when moving from partial matching of contours to classifying over-

lapping local shape fragments due to the reduced complexity in description and match-

ing. However, a loss in discriminative power is consequently present. Thus future work

may focus on combining the partial matching and classification learning techniques.

One direction is the introduction of the partial distance functions for hierarchical divide

and conquer schemes.

Prior knowledge for specific category models is often a benefit for highly accurate

results. In this work we placed a focus on generic object detection, and future work

may focus on incorporating prior knowledge for specific object classes. For example,

pedestrian detection and segmentation will benefit from an estimation of the human

pose, shape priors and reasoning about visibility of parts.

Grouping is one of the most vital parts of retrieving partial matches. The current

methods aim for either maximizing the length of matches for regions or extracting mul-

tiple highly similar partial matches of image contour. A future direction for the matching

is to incorporate regularization terms, which optimize over length, similarity and frag-

mentation. The additional energies in the optimization over the best partial matches will

help group the similarity and partiality to more coherent parts. One idea, for example,

is to incorporate a constraint on the number of parts and not only the similarity and

length of matches.

A second direction entails joining high-level information into the grouping opti-

mization for part matching. Future research will look into holistic grouping as a role in

selection of valid partial matches. This will discard many ghost matches due to unlikely

inclusion in accordance with the global holistic layout of the category model.

Joint Understanding is the overall final goal, where one jointly estimates the class of

the object (classification), the position (localization) and the spatial extent (segmenta-

tion). This direction entails not only modeling these three aspects, but further looking

at the relationships between multiple object instances (interaction) and the underlying

scene structure (surface geometry). Future research will investigate novel optimization

strategies to update each task with knowledge from the other tasks and provide a holis-

tic interrelated joint understanding.





Careful. We don’t want to learn from this.

Bill Watterson, "Calvin and Hobbes"
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