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Introduction

In this work we analyze the behavior of random walks and branching random

walks in different settings. The first structure that we consider is a free product

of groups, where we investigate the evolution of transient random walks and

branching random walks. The other setting is a Cartesian product of groups,

where we answer different questions about branching random walks.

This work is split into three parts.

In the first one we investigate the long-term behavior of a random walk

on free products of groups, more precisely we study the possible asymptotic

behaviors of its return probabilities, in dependence of the properties of the

groups and of the measure governing the random walk itself.

In the second part we study branching random walks on free products of

groups. Here the main goal of our work is to understand how “big” (in the

sense of the Hausdorff dimension) the limit set of accumulation points of the

process can be, in relation to the boundary of the underlying structure.

The third part deals with critical branching random walks on Cartesian

products. Our investigation aims at answering the following questions posed

to Matthew Roberts and myself by Itai Benjamini: denoting by T3 the binary

tree, does the trace (i.e., the subgraph of sites visited by particles of the

branching random walk) of a critical process on T3 × Z have infinitely many

ends, or only finitely many? What happens if we consider a critical branching

random walk on T3 × T3?

Part One: Random Walks on Free Products

The main results that we present in Part One appeared in [6].

Consider Γ1 and Γ2 finitely generated groups with identity elements e1 and

e2 respectively. The free product of these two groups is defined as

Γ := Γ1 ∗ Γ2 :=
{
x1x2 . . . xn : xj ∈ (Γ1 \ {e1}) ∪ (Γ2 \ {e2}) , j ∈ {1, . . . , n},
and xj ∈ Γi ⇒ xj+1 /∈ Γi

}
∪ {e}.

In other words, the group Γ consists of all finite words whose letters (the

“blocks” xj) are elements of one of the two starting groups. The condition

xj ∈ Γi ⇒ xj+1 /∈ Γi

means that all words are reduced, i.e., two consecutive blocks do not belong to

the same group.
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In order to define a random walk on Γ we start with random walks defined

on each of the two starting groups. Let µ1 and µ2 be probability measures

defined on the generators of Γ1 and Γ2 respectively. Then we can define a

probability measure µ on Γ as follows:

µ := α1µ1 + (1− α1)µ2,

where α1 ∈ (0, 1).

The goal is to estimate the asymptotic behavior of the quantities µ(n)(x)

(by this we denote the n-th convolution power of µ): µ(n)(x) is the probability

that a random walk starting at x returns to x in n steps. In most situations,

it is of the form

µ(n)(x) ∼ Cxρ
nδn−λ, (∗)

where ρ < 1 is the spectral radius of the random walk governed by µ, δ is its

period and λ a positive parameter. Cx is a positive constant dependent only

on x.

Gerl (see [22]) conjectured that if µ is symmetric and the asymptotic be-

havior of µ(n)(x) is of the form (∗), then the parameter λ is a group invariant.

This conjecture was disproved by Cartwright (see [10]), who showed that

on the free product Zd ∗Zd (with d ≥ 5) there are at least two random walks,

governed by symmetric probability measures, that yield different values for λ.

In one case λ = 3/2 and in the other λ = d/2, being d the dimension of the

lattices.

A natural question (see [13]) is whether there are other possible types of

asymptotic behaviors. In our work we give a positive answer to this question.

In particular, we prove that on a free product of the form Zd1 ∗· · · ∗Zdr (where

all dj ’s are integers strictly larger than 4) we get up to (r+1) different possible

behaviors. Moreover, we study the case Γ = Γ1 ∗ Γ2 for finitely generated

groups and we give precise phase transitions in dependence of the parameter

α1.

Our investigation starts from the works by Cartwright (see [10]) and Woess

(see [64]), but work in this direction has been done also by Gerl and Woess

(see [23]), Sawyer (see [54]), Woess (see e.g. [63]), Cartwright and Soardi (see

e.g. [11]) and Lalley (see e.g. [35]).

For finite range random walks on free groups it is known (see [63] and [35])

that

µ(n)(x) ∼ Cxρ
nδn−3/2.

The same estimate holds for random walks on free products of finite groups:

results in this direction can be found in [22], [61] and [63].

In order to achieve more general results, Cartwright and Soardi (see [11]),

Woess (see [63]), Voiculescu (see [58]) and McLaughlin (in his PhD thesis, see

[43]), found a method to express the Green function defined on Γ in terms of

a functional equation of the Green functions defined on each factor.

We generalize their methods to a much wider set of free products, and then

apply the method of Darboux (described in Appendix A) to extrapolate the

asymptotic behavior of µ(n) from the singular expansion of the Green function.
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Organization of Part One : After two introductory chapters (namely 1

and 2, contained in “Part 0”), where we recall the fundamental results and

definitions useful for our discussions, we split Part One into four chapters.

The aim of Part One is to find the asymptotic behavior of the n-step return

probabilities of a random walk defined on the free product of r ≥ 2 groups

(denoted by Γ). These behaviors depend on the structure of the free factors

and on the chosen measure defined on Γ. In the particular case of r = 2 we

find explicit phase transitions.

In Chapter 3 we explain how to define a random walk on a free product

of groups, given probability measures on each free factor. We recall the most

important generating functions, in particular the Green function, because their

properties play a fundamental role all throughout the first part of the work.

Following the structure of [64, Section II.9] we introduce a functional equation

concerning the Green function. Different properties of this functional equation

can lead to different behaviors for the random walk.

In Chapter 4 we consider the case of a product of two free factors. We make

a case distinction under some assumption on the Green functions associated

with the random walks defined on each factor. In each situation we find the

explicit singular expansion of the Green function associated with the random

walk on Γ, and by Darboux’s method (see Appendix A) we get the asymptotic

behavior of its return probabilities.

In Chapter 5 we investigate the general case r > 2, and present a few

concrete examples where the asymptotic behavior of the return probabilities

can be easily computed.

We conclude Part One with Chapter 6, where we find explicit phase tran-

sitions with respect to the measure that governs the random walk on Γ.

Part Two: Branching Random Walks on Free Products

The main results that we present in Part Two appeared in [7].

A branching random walk (BRW for short) is a stochastic process charac-

terized by two different kinds of randomness. It starts with one particle at a

vertex, and can be defined inductively as follows. At each unit of time, the

alive particles split (independently of each other) into a random amount of

offspring, according to a probability measure ν defined on the non-negative

integers. Afterwards, the newly-born particles make one step independently

of each other, according to an underlying random walk.

The study of branching processes started around 1874 to answer a prob-

lem about survival of surnames. In their work (see [60]) Galton and Watson

investigate the survival of the surname of a family that reproduces according

to a probability measure ν defined on the non-negative integers.

Denote by νk the probability that an individual has exactly k descendants, and

let Eν :=
∑

k≥0 kνk be the expected value of ν. Galton and Watson showed
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that

if Eν ≤ 1 =⇒ P(process dies out within finite time) = 1;

if Eν > 1 =⇒ P(process dies out within finite time) < 1.

A BRW on a graph is called recurrent if every vertex of the graph is visited

infinitely often by the particles of the BRW. On the other side, it is said to be

transient if every finite set of vertices is eventually free of particles.

In 1994 Benjamini and Peres (see [4]) showed that:

if Eν < ρ−1 =⇒ BRW is transient;

if Eν > ρ−1 =⇒ BRW is recurrent,

being ρ, once again, the spectral radius of the underlying random walk.

Some years later Gantert and Müller (see [20]) proved that at criticality,

i.e., if Eν = ρ−1, the BRW is still transient.

The main “source of inspiration” for our investigation is a work by Hueter

and Lalley (see [31]): they prove that the limit set of a supercritical branching

random walk on a homogeneous tree presents a phase transition in the dimen-

sion. More precisely: if the process is transient, its Hausdorff dimension can

reach at most 1/2 the Hausdorff dimension of the boundary of the tree; if it

is recurrent, then the two dimensions coincide.

Lalley and Sellke (see [36]) studied this type of phase transitions for branch-

ing Brownian motion on the hyperbolic disc.

Karpelevich, Pechersky, and Suhov (see [32]) generalized these results to higher

dimensional Lobachevsky spaces, while Grigor’yan and Kelbert (in [26]) stud-

ied recurrence and transience for branching diffusion processes on Riemannian

manifolds.

Cammarota and Orsingher (see [5]) investigated a “linear” growing system of

particles on the hyperbolic disc.

What we prove in the setting of free products of groups, is a more general

version of the main result in [31]. In addition, we show that there are two

possible types of accumulation points in the limit set of the process. One type

will be called “typical”, and the other one “atypical”. This is due to the fact

that the first one is always present, while for the second one we need some

extra condition (which we state precisely).

Our motivation to analyze the behavior of branching random walks on free

products came from the results of the first part: selecting different measures

or different groups to build the structure, we can get different asymptotic

behaviors for a random walk. Does a similar phenomenon happen in the case

of BRW’s as well?

Intuitively speaking, by considering a BRW, the phenomena we see in a

single random walk should be “amplified” in some sense: how does this fact

affect the limit set of the process?

Organization of Part Two : The aim of Part Two is to study BRW’s on

free products of groups: we consider a transient BRW conditioned on survival.
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It turns out that the Hausdorff dimension of the limit set of the process is

a function only of the expected value of the offspring distribution governing

the branching phenomenon. Moreover, this function is continuous up to the

critical value, that determines a phase transition for the process from tran-

sience to recurrence.

At this point, the Hausdorff dimension of the limit set can be at most 1/2 the

Hausdorff dimension of the whole boundary of Γ. For every larger value of the

mean of the offspring distribution, the two Hausdorff dimensions coincide.

Another important result that we get in Part Two is the following: if at

least one of the free factors is infinite, we can get different types of accumu-

lation points for the process. We state precise conditions for this to happen,

and we see that the “atypical” accumulation points do not contribute to the

Hausdorff dimension of the limit set of the BRW.

More precisely, Part Two is organized as follows.

In Chapter 7 we explain how to define the BRW on Γ and recall some useful

results, moreover we introduce the definition of the two types of accumulation

points of the process. With the help of an auxiliary Galton-Watson process,

we find when the “atypical” accumulation points can come in play: we show

that when this new Galton-Watson process is supercritical, the ends of the

infinite free factor turn out to be inside the limit set of the process.

In Chapter 8 we introduce the growth functions, which are the tools we

need in order to find the growth rate of the BRW.

We also show that the box-counting dimension and the Hausdorff dimension

of the limit set of the BRW coincide, and we determine these values explicitly.

Chapter 9 is essentially devoted to finding the Hausdorff dimension of the

boundary of Γ, while in Chapter 10 we present some simplified formulas that

we obtain in case all free factors are finite. We end Part Two with a short

description (see Section 10.2) of BRW’s on free products with amalgamation.

Part Three: Branching Random Walks on Cartesian Products

In this part of the work we present some preliminary results obtained by

Matthew Roberts and myself ([8]).

Given d ≥ 2 finitely generated groups Γ1, . . . ,Γd, we can construct their

Cartesian product Γ1 × · · · × Γd in the following way:

Γ1 × · · · × Γd := {(a1, . . . , ad) | ai ∈ Γi for all i ∈ {1, . . . , d}} .

In 1921 Pólya (see [52]) showed that on a Cartesian product where all the

factors Γi ≡ Z, a symmetric nearest neighbor random walk presents different

behaviors depending on the value d. More precisely, he showed that for all

d ≥ 3 the walk is transient, otherwise it is recurrent.

Pólya’s proof relies on finding explicit asymptotics for the return probabil-

ities, i.e., denoting by 0 := (0, . . . , 0) the origin of Zd, we can summarize his

result as follows:

µ(2n)(0) ∼ n−d/2.
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Here µ(n)(0) denotes the probability that the symmetric random walk comes

back to the origin after n steps, and the symbol ∼ in this context means that

the estimate is accurate up to a constant.

Another result in this direction is due to Cartwright and Soardi (see [12]).

They consider a Cartesian product of the form Γ1 × · · · × Γd, where every Γi

is finitely generated and equipped with a probability measure µi defined on

its generators. Given positive values α1, . . . , αd such that
∑d

i=1 αi = 1, the

measure on the Cartesian product is defined as follows:

µ := α1µ1 + . . . + αdµd.

Denote by (Xn)n the random walk governed by µ. One of the main results

of [12] can be summarized as follows (see Theorem 12.2.2). Suppose that for

every element yj ∈ Γj we have

P(Xj
n = yj) ∼ Cjρ

n
j /n

aj , for all j ∈ {1, . . . , d},

where (Xj
n)n is the random walk on Γj governed by µj; ρj its the spectral

radius, and aj > 0 numbers independent of n. Then the random walk (Xn)n
on Γ satisfies:

P(Xn = y) ∼ C(α1ρ1 + . . . + αdρd)
n

na1+...+ad
,

for all y = (y1, . . . , yd). For more details and further explanations we refer the

interested reader to [64, Sections I.4.B and III.18].

In this part of our work, we investigate critical branching random walks on

some Cartesian products. In particular we consider two settings:

1. the Cartesian product of a homogeneous tree with the d-dimensional grid

Zd;

2. the Cartesian product of two homogeneous trees.

Our aim is to understand some properties of the trace of a critical BRW: does

it have finitely or infinitely many ends?

The two approaches presented in these two settings are quite different,

because the methods that we can use to solve the first case, drastically fail in

the second case.

The idea came up in a very nice environment: during the 41st Probabil-

ity Summer school in St. Flour, a meeting with Itai Benjamini brought my

collaborator Matthew and myself to work together on the following problems.

Given the Cartesian product of a homogeneous tree T and the set Z (this

product is non-amenable, has exponential growth and has only one end in the

graph topology), we can consider a critical BRW on it. The question looks

very simple: does the trace of this process have finitely many, or infinitely

many ends?

We could find that in the isotropic case (we can replace the simple random

walk defined on T by any nearest neighbor random walk on T ) it has infinitely
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many ends, but if the underlying random walk defined on Z has a bias towards

one direction, then the BRW on T × Z has only one end.

The next problem, looked very similar to the previous one: does the trace

of a critical BRW on T × T have finitely many, or infinitely many ends? The

expectation to get an answer quickly exploiting similar techniques used to

solve the first problem was high, but as it happens quite often, these methods

could not be applied to this new structure.

We investigate the model under two different points of view: we consider

the process with respect to the Martin topology and with respect to the graph

topology. We show that there are two types of accumulation points for the

process in the Martin topology, but just one in the graph topology.

At the end we manage to show that the limit set of the trace of an isotropic

BRW on T3 × T3 has infinitely many ends almost surely, even in the critical

case.

Organization of Part Three : In Chapter 11 we start by introducing a

BRW on a Cartesian product of two groups. In Section 11.1 we show that

the isotropic, critical BRW on Td × A (where Td is a homogeneous tree of

degree d and A any finitely generated amenable group) has infinitely many

ends almost surely. On the contrary, in Section 11.2 we show that a critical

BRW on Tq × Zd, whose underlying random walk has a bias in one direction,

has only one end.

In Section 11.3 we present a generalization of the results to the case T × Zd,

where T is a Galton-Watson tree satisfying some additional conditions.

Chapter 12 is organized as follows: in Section 12.1 we give a small intro-

duction on the Martin compactification of the Cartesian product. We show

that despite the fact that every element of the Martin boundary is an accumu-

lation point of the process, we can distinguish two cases: there are elements

which are “attractive” for the BRW (we call them stable) and others that are

“repulsive” (we call them unstable).

In Section 12.2 we show that the trace of an isotropic BRW on T3 × T3 has

infinitely many ends almost surely.

We conclude Chapter 12 with Section 12.3, where we present an example of a

critical BRW whose underlying random walk has a bias but, in contrast with

what happens in the case of T3 × Z, its trace has infinitely many ends almost

surely.
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Chapter 1

Background: a flavor of

Algebra and Geometry

1.1 Groups and Cayley Graphs

In this section we recall the basic concepts and fix the notation that will be

used in the rest of the work.

1.1.1 Groups

A group is a set G endowed with a binary operation (·) : G × G −→ G that

satisfies the following properties:

• associativity: for every a, b, c ∈ G it holds (a · b) · c = a · (b · c);

• existence of the identity: there is an element e ∈ G such that for all

a ∈ G it holds a · e = e · a = a;

• existence of an inverse: for every a ∈ G there is an element b ∈ G such

that a · b = b ·a = e. This element is unique and usually denoted by a−1.

Given a group G and a set X, a left group-action of G on X is a map from

G×X −→ X such that:

• for all x ∈ X it holds e · x = x;

• for all g, h ∈ G and x ∈ X it holds (g · h) · x = g · (h · x).

Analogously, a right group-action of G on X is a map from G×X −→ X such

that:

• for all x ∈ X we have x · e = x;

• for all g, h ∈ G and x ∈ X we have x · (g · h) = (x · g) · h.

All throughout this work, the considered groups always act from the right.



4 Background: a flavor of Algebra and Geometry

1.1.2 Graphs

By a graph Γ we mean a set V (Γ) of vertices and a set E(Γ) of edges, each

edge being associated to an unordered pair of vertices.

Every vertex x ∈ Γ is associated to (or “contained in”) a certain number

of edges. Denote by dx ≥ 0 this value: dx is called the degree of x. A graph is

locally finite if each vertex has finite degree. In this work we always consider

locally finite graphs, in which for every x ∈ Γ we have dx ≥ 1.

A graph is said to be connected if every two vertices can be joined by a

sequence of edges, which are called paths. A cycle (or loop) is a non-trivial

path connecting a vertex with itself, without repetition of other vertices.

A tree is a connected graph with no loops. A d-regular tree is a tree where

every vertex has degree d. A symmetry of a graph Γ is a bijection α : Γ −→ Γ

taking vertices to vertices and edges to edges, such that

α({v,w}) = {α(v), α(w)}

for every {v,w} ∈ E(Γ), v, w ∈ V (Γ). The set of all symmetries is a group,

called the symmetry group.

If for any two vertices v,w ∈ V (Γ) there is a symmetry α such that α(v) =

w, we say that Γ is vertex transitive.

Analogously, if for any two edges {v,w} and {v′, w′} there is a symmetry α

such that α({v,w}) = {v′, w′}, we say that Γ is edge transitive.

Consider a group G with a subset S. We write that G = 〈S〉 meaning

that S generates G if every element g ∈ G can be expressed as a product of

elements of S. The group is finitely generated if the cardinality of S is finite.

At this point we can state the theorem that allows us to work with graphs

rather than directly with groups:

Theorem 1.1.1 (Cayley’s Theorem). Every finitely generated group can be

represented as a symmetry group of a connected, directed (every edge is an

ordered pair of vertices), locally finite graph.

For a proof of Cayley’s Theorem we refer to [44, Section 1.5.2].

The graph we can associate to a group using Cayley’s Theorem is called

the Cayley graph.

Roughly speaking, the Cayley graph of a group G generated by S, is a

graph Γ(G,S) whose vertices are the elements ofG and whose edges are labeled

by some s ∈ S.

Throughout this work we assume that S is symmetric, i.e. if an element is

contained in S then also its inverse is in S.

For more details and examples we refer once more to [44].

1.2 Introduction to Free Products of Groups

In this section we would like to give an overview on how free products arise

in literature as purely algebraic objects, as well as fundamental groups of

geometric structures.
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For details we refer e.g. to [44, Chapter 3] or [15, Chapter 2].

1.2.1 Free Groups

Consider a group G generated by a finite set S.

A word ω ∈ G is said to be freely reduced if it does not contain two

consecutive letters (elements of the generating set S) that are one the inverse

of the other. For example, for s, t ∈ S, the word ω = sts−1 is freely reduced

but ω′ = ss−1t is not.

The group G generated by S is a free group if all freely reduced words that

are equivalent to the identity are trivial.

The cardinality of the set S is called rank, and the free group of rank 2n

is denoted by Fn.

The following fundamental criterion holds (see [44, Theorem 3.20]):

Theorem 1.2.1. A group is free if and only if it acts freely on a tree.

Remark 1.2.2. Here is a reason why free groups are fundamental objects in

algebra: if G is a group generated by n elements, then G is a quotient of Fn

(see [44, Corollary 3.17] and [15, Chapter 2, Corollary 6]).

1.2.2 Free Products

Let us consider Γ1,Γ2, . . . ,Γm finitely generated groups, and denote their iden-

tity elements by e1, e2, . . . , em respectively. Their free product (we will denote

it by Γ) is defined as the set of all finite words whose letters are elements of one

of the groups, and two consecutive letters do not belong to the same group.

In formulas we can write:

Γ := Γ1 ∗ . . . ∗ Γm =
{
x1x2 . . . xn : xj ∈

m⋃

i=1

Γi \ {ei}, j ∈ {1, . . . , n},

and xj ∈ Γi ⇒ xj+1 /∈ Γi

}
∪ {e}.

(1.1)

The element e denotes the empty word. The group operation on Γ can be

described as follows: if u = u1 . . . um, v = v1 . . . vn ∈ Γ then uv stands for

their concatenation as words with possible contractions and cancellations in

the middle.

It is clear that Γi embeds naturally into Γ, while ei is identified with the

empty word e in Γ.

We can look at these object also from a topological point of view: recall

that given two topological spaces X (with a base point x0) and Y (with a base

point y0), their wedge sum is defined as the “point union”. This means it is

the quotient of their disjoint union modulo the identification of x0 ∈ X with

y0 ∈ Y . Roughly speaking, we “attach” X to Y through one point.

In order to understand the connection between topology and free products

of groups, we need another tool known as the fundamental group. Without

going into technical details of its formal definition, we can think of it as a group
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associated to a topological space X and a base point x ∈ X. It gives a precise

description of whether two paths in X can be continuously deformed into each

other. The fundamental group is the first and simplest of the homotopy groups.

Example 1.2.3. The wedge sum of two circles is shaped like the number “8”,

and analogously the wedge sum of k circles is shaped like a flower with k petals.

This construction is related to free products, because the fundamental

group of a wedge sum of k circles is a free group of degree k. Indeed, every

petal is generated by only one element and there are no relations between the

petals.

Example 1.2.4. The fundamental group of the wedge sum of two circles is

the free group F2.

More in general, it is true that the fundamental group of any connected

graph is free. (For more details and an idea of the proof, the interested reader

can refer to e.g. [29, Section 1.2].)

Example 1.2.5. For two positive, relatively prime integers m and n, we can

consider the so called torus knot Km,n, which is the image in R3 of the fol-

lowing map

f : S1 −→ S1 × S1

z 7−→ (zm, zn),

where S1 denotes the unit circle in R2 and therefore S1×S1 denotes the torus

in R3. It turns out (see e.g. [29, Example 1.24]) that the fundamental group

of R3 \ Km,n is isomorphic to the free product Zm ∗ Zn, being Zj the cyclic

group of order j.

For more detailed explanations and a better understanding of free products

of groups arising as a consequence of the Seifert – van Kampen Theorem, the

reader can refer e.g. to [42, Chapter 4]. For a more algebraic approach we

refer to [14].

For completeness, we give a more abstract definition of a free product of

groups in terms of a universal property (see e.g. [15, Chapter II]):

Universal Property : given m ≥ 2 groups Γ1, . . . ,Γm, and a family of

homomorphisms (hj : Γj → Γ)j=1,...,m, where Γ is itself a group, then there

exists a unique homomorphism h : ∗j=1,...,mΓj → Γ that extends hj : Γj → Γ.

1.2.3 Free Products with Amalgamation

Free products of groups are a particular case of the well-known amalgamated

products: consider two groups Γ1 and Γ2 that have a common subgroup H.

There are two homomorphisms h1 : H → Γ1 and h2 : H → Γ2. The amalga-

mated product is then defined as the free product Γ1 ∗Γ2, modulo the relation

h1(a) = h2(a), for all a ∈ H, and this product is denoted by

Γ1 ∗H Γ2. (1.2)
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The universal property that characterizes the free product with amalgamation

is as follows: for a group Γ and two homomorphisms h1 : H → Γ1 and

h2 : H → Γ2 such that h1(a) = h2(a), for all a ∈ H, there is a unique

homomorphism h : Γ1 ∗H Γ2 → Γ that extends h1 and h2. More details can

be found in [15, Section III.14].

1.3 Introduction to Amenability

Amenability is a widely used concept, defined in several (equivalent) ways: we

will give a brief description of a few different definitions.

1.3.1 Definition by von Neumann

The original definition was given by von Neumann. In his work [59], he was

referring to amenable structures calling them measurable, here we quote his

words:

“Sei M eine beliebige Menge, W eine Teilmenge von M und G eine

Gruppe eineindeutiger Abbildungen von M auf sich selbst.

Von einem allgemeinen nichtnegativen additiven und gegen alle Abbil-

dungen aus G invarianten Maß in M das durch W normiert ist kurz:

einem [M,W,G]-Maß verlangen wir:

Jeder Teilmenge N von M sei eine Zahl µ(M) ≥ 0 zugeordnet, derart

dass

α′. Wenn N und P elementfremd sind, so ist

µ(N+P) = µ(N) + µ(P).

β′. Wenn σ zu G gehört, so ist

µ(N) = µ(σN).

γ′. Es ist

µ(W) = 1.

Die Frage ist nunmehr offenbar: wie müssen M,W und G beschaffen

sein, damit ein [M,W,G]-Maß existiert?”

Roughly speaking, he defined a discrete group M to be amenable (here “mea-

surable”) if there is a finitely additive probability measure defined on all sub-

sets of M, which is invariant under left multiplication by elements of M.

1.3.2 Growth Functions and Følner Sequences

Consider a group Γ, generated by a finite symmetric set S. The growth func-

tion β(Γ, S, k) is the number of vertices in Γ such that their distance from

the origin is at most k. In other words, denoting by Bk the set of all these

elements:

β(Γ, S; k) = Card(Bk).
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The corresponding growth series is defined as

B(Γ, S | z) :=
∑

k≥0

β(Γ, S; k)zk .

Another fundamental tool is the so-called spherical growth function, defined

as follows:

σ(Γ, S; k) := β(Γ, S; k) − β(Γ, S; k − 1),

where of course σ(Γ, S; 0) = β(Γ, S; 0) = 1. Analogously, we can define the

spherical growth series

Σ(Γ, S | z) :=
∑

x∈Γ
zl(x) =

∑

k≥0

σ(Γ, S; k)zk .

For more details, we refer the reader to [15, Chapter VI].

Define the S-boundary of a subset A ⊂ Γ as:

∂SA := {y /∈ A and ys ∈ A for some s ∈ S} .

At this point we can define the Følner sequence: it is a sequence of finite

subsets (Fk)k≥1 s.t.

lim
k→∞

Card(Fk ∪ ∂SFk)

Card(Fk)
= 1.

A group is said to be amenable if it has a Følner sequence.

In [59], von Neumann showed that if a group contains a copy of F2, then

it cannot be “measurable” (amenable). It follows that every free product of

groups (except for Z2 ∗ Z2) is non-amenable.

1.3.3 Isoperimetric Inequalities

Another definition of amenability comes from the following concept: the isoperi-

metric number of a group G, denoted by ι(G), is defined as

ι(G) := inf
A⊂G

Card(∂SA)

Card(A)
,

where A denotes a finite set, and ∂SA denotes its boundary.

If ι(G) = 0, then the group is amenable, while if ι(G) > 0 the group is

non-amenable.

In the setting described in [64, Section I.4], the isoperimetric inequality is

presented on a network , i.e. a reversible (and irreducible) Markov chain. We

denote the network by N = (X,E, r(·)), where X is a countable set, E the set

of its edges, and r(·) a real function defined on E. We remark that in a more

physical context r({x, y}) is called the resistance of the edge {x, y} ∈ E.

Consider a function f : X → R, finitely supported. Its Sobolev norm is

defined as follows:

S(f) :=
1

2

∑

x,y∈X

|f(x)− f(y)|
r({x, y}) .
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If r(·) is a symmetric function (i.e. r({x, y}) = r({y, x})), we can define

m(x) :=
∑

y∈X

1

r({x, y}) ,

moreover, if this function is positive and finite for every x ∈ X, then

p(x, y) :=
1

r({x, y})m(x)

defines a reversible Markov chain on X, i.e. m(x)p(x, y) = m(y)p(y, x) for all

x, y ∈ X.

Remark 1.3.1. The matrix P :=
(
p(x, y)

)
x,y∈X is often called transition

matrix of the Markov chain.

Another norm can be considered for f , i.e. the norm in ℓp(X,m):

‖f‖p :=
(
∑

x∈X
|f(x)|pm(x)

)1/p

,

whenever this sum converges.

At this point, fix a value 1 ≤ d ≤ ∞. We can define the d-dimensional

isoperimetric inequality (ISd): let P denote the transition matrix described in

Remark 1.3.1, then we say that (X,P ) satisfies ISd if and only if there exists

a constant κ > 0 such that

‖f‖ d
d−1

≤ κS(f).

It holds (see e.g. [64, Section II.10]) that

IS∞ is satisfied ⇐⇒ X is non-amenable.

1.3.4 Spectral Radius and Amenability

Here we present a criterion for amenability due to Kesten (see [33]). This

result will be used all throughout this work. At this point we just explain the

main idea, for more details we refer to e.g. [64, Section II.12].

Let P denote the transition matrix of a (symmetric) reversible Markov

chain (as mentioned in Remark 1.3.1), and let Pn be its n-th power. Define

ρ := lim
n→∞

(
p(n)(x, y)

) 1
n
,

where
(
p(n)(x, y)

)
x,y∈X are the entries of Pn. The quantity ρ ≤ 1 is called

spectral radius of the Markov chain associated to P .

In [33] Kesten showed that

ρ < 1 ⇐⇒ IS∞ is satisfied,

giving a criterion connecting a geometric property of a group with a symmetric

random walk (Markov chain).
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Chapter 2

Boundaries and

Compactifications

In this chapter we recall the definitions of the end compactification and the

Martin compactification.

2.1 End Compactification

Let Γ be a finitely generated group, then we recall the fundamental definitions,

for further details we refer the reader to [64, Section 21].

(i) A ray is a semi-infinite, non-backtracking path [x0, x1, x2, . . . ], i.e., xi 6=
xj if i 6= j. At this point, we would like to be able to distinguish rays

ending up into different “zones” at infinity, therefore we introduce an

equivalence relation. Two rays η1 and η2 are equivalent if and only if

there is a third ray which shares infinitely many vertices with η1 and η2.

(ii) An equivalence class of rays is called end .

(iii) The set of equivalence classes of rays is called the end boundary of Γ,

denoted by ∂Γ.

We would like to remark that from a wider (topological) point of view, the

end-compactification is a particular case of the so-called ℓ-TOP, which was

introduced and studied mainly by A. Georgakopoulos (see e.g. [21] for an

introduction on the topic).

2.1.1 End Compactification of the Free Product

The graph X of Γ (free product of groups or free product with amalgamation)

is a countable, connected, locally finite graph with a distinguished vertex e

which we will refer to as the root. Γ is a finitely generated group: denote by

S its generating set.

A path in Γ is a finite sequence of vertices [x0, x1, . . . , xn] such that there

is an edge from xi−1 to xi for each i ∈ {1, . . . , n}.
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At this point we can naturally define two types of metrics on X : the so-

called Cayley graph distance and the block length.

W.r.t. the first, we denote by l(u) the length of u ∈ Γ relatively to e. In

particular for every element u ∈ Γ we have

l(u) := min{n ∈ N : u = sk11 s
k2
2 . . . s

kj
j , si ∈ S (∀ i = 1, . . . , j) and

j∑

i=1

kj = n}.

We say that a geodesic of u is a shortest path from e to u. W.r.t. this metric,

the geodesic is not necessarily unique (this fact will play an important role in

Chapter 7).

Näıvely, we can think of l(u) as the minimum amount of edges that we

need to cross in order to connect e to u.

The second definition of distance comes naturally by looking at Equation

(1.1): the block length of a word u = u1 . . . un ∈ Γ, is given by

‖u‖ = ‖u1 . . . un‖ := n.

Since e represents the empty word, we define ‖e‖ = 0.

Later on we will investigate situations in which the graph length of an

element differs drastically from its block length.

There are different types of ends occurring in the Cayley graph X of Γ:

denote by

Ω
(0)
i := set of ends arising from Xi,

and by Ω∞ the set of ends we will refer to as “infinite words”, more precisely

Ω∞ :=



x1x2x3 . . . ∈

(
⋃

i∈I
Γi\{ei}

)N ∣∣xj ∈ Γk\{ek} ⇒ xj+1 /∈ Γk \ {ek}



 .

For ωi ∈ Ω
(0)
i , let η = [ei, y1, y2, . . . ] be an element of the equivalence class

ωi and choose a geodesic x := [x0, x1, . . . , xn] from x0 to xn. Then, the ray

xη := [x0, x1, . . . , xn, y1, y2, . . . ] describes an end in Γ, denoted by xωi.

For simplicity of notation, we set Ωi :=
{
xωi | x ∈ Γ, ωi ∈ Ω

(0)
i

}
.

At this point, it is easy to see that Ω, i.e. the set of ends of X , can be

decomposed in the following way:

Ω = Ω∞ ⊔ Ω1 ⊔ Ω2 ⊔ · · · ⊔Ωm,

where ⊔ denotes the disjoint union.

Observe that Ωi is empty if and only if Γi is finite. Thus, if all factors Γi

are finite, then Ω = Ω∞.

2.1.2 How to measure the Boundary

In order to estimate the size of Ω we need to define a metric on it. We say

that an end ω1 ∈ Ω is contained in a connected component of X if all its

representatives have all but finitely many vertices there.
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By removing any finite subset F ⊆ X (including the edges connected to

vertices in F ), there is a unique connected component in the reduced graph

X \ F , containing a fixed end ω1. We call this component the ω1-component

and say that ω1 ends up in this component.

Denote by Bm := {x ∈ Γ | l(x) ≤ m} the ball centered at e with radius

(w.r.t. the Cayley graph distance) m ≥ 0.

Let us consider two different (i.e. non-equivalent) ends ω1, ω2 ∈ Ω. Since

they are not equivalent, there is a maximal m ∈ N0 such that ω1 and ω2 end

up in the same connected component of X \ Bm−1. We denote by c(ω1, ω2)

this maximal integer m. The metric on Ω that we will use is defined by

dΩ(ω1, ω2) := αc(ω1,ω2), (2.1)

where α ∈ (0, 1) is arbitrary, but fixed. Additionally, we set dΩ(ω1, ω1) := 0.

The ball B(ω, ε) centered at ω ∈ Ω with radius ε > 0 is given by all

elements ω̂ ∈ Ω such that dΩ(ω, ω̂) ≤ ε. In other words, if ε = αm then

ω̂ ∈ B(ω, ε) if and only if ω and ω̂ end up in the same component of X \Bm−1.

A cover of a subset Ω′ ⊆ Ω is a finite or countable set of balls of the form

B(ω, ε) with ω ∈ Ω′ and ε > 0 such that the union of these balls contains Ω′.
For every ω ∈ Ω′ and ε > 0 let Nε(Ω

′) be the minimal amount of balls of the

form B(ω, ε) needed to cover Ω′. It is easy to see that Nε(Ω
′) is bounded from

above by the number of elements in Γ at graph distance m = ⌈log(ε)/ log(α)⌉.
At this point it is natural to introduce the lower and upper box-counting

dimension (also known as Minkowski dimension) of Ω′, defined as

BD(Ω′) := lim inf
ε↓0

logNε(Ω
′)

− log ε
and BD(Ω′) := lim sup

ε↓0

logNε(Ω
′)

− log ε
. (2.2)

If the two limits are equal, the common value is called box-counting dimension

of Ω′, denoted by BD(Ω′).
Another well-known tool to estimate the size of Ω′ is given by the Hausdorff

dimension, defined as a function of the Hausdorff measure. For δ > 0, the δ-

dimensional Hausdorff measure of Ω′ is defined by

Hδ(Ω
′) := lim

ε↓0
inf
{∑

i

εδi

∣∣∣
{
B(·, εi)

}
i
is the smallest cover of Ω′ s.t. εi < ε

}
.

Then the Hausdorff dimension of Ω′ is defined as

HD(Ω′) := inf
{
δ ≥ 0

∣∣ Hδ(Ω
′) = 0

}
= sup

{
δ ≥ 0

∣∣ Hδ(Ω
′) = ∞

}
. (2.3)

Since X has bounded vertex degree, we have HD(Ω′) < ∞. It is well-known

that, for all Ω′ ⊆ Ω,

HD(Ω′) ≤ BD(Ω′).

2.2 Martin Boundary

The aim of this section is to give a short introduction to the Martin Boundary:

the interested reader can find more details and references in [64, Section 24].
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The Martin boundary is an analytical object associated to a structure with

a random walk defined on it.

Throughout the work, we consider different structures: here we give a

general introduction, and we will recall these concepts later on, when needed.

Let us consider a finitely generated, non-amenable group Γ equipped with

a random walk with n-step transition probabilities denoted by p(n)(x, y), for

all x, y ∈ Γ. In the next sections it will be explained and made rigorous what

we mean by this.

Since Γ is non-amenable, the power series

G(x, y|z) :=
∑

n≥0

p(n)(x, y)zn (2.4)

has radius of convergence R > 1 (this is a consequence of Kesten’s result, see

Section 1.3.4), and this holds for every x, y ∈ Γ.

A function h : Γ → R is said to be z-harmonic if

h(x) = z
∑

y∈Γ
p(x, y)h(y)

for all x ∈ Γ. We work in the space of all positive z-harmonic functions, and

in order to do this we need to assume 0 < z ≤ R (see e.g. [64, Section 24] and

references therein). This abstract space is completely described by the Martin

boundary, which we introduce in the following.

For 0 < z ≤ R we set t := 1/z and we define the Martin kernel as:

K(x, y|t) := G(x, y|z)
G(e, y|z) , (2.5)

where G(x, y|z) is defined in (2.4) and e denotes the identity element of the

group Γ.

The Martin Compactification Γ̂z of Γ (this depends not only on Γ, but also

on z and on µ), is the unique smallest compactification to which all kernels

K(x, ·|t) extend continuously.

The Martin Boundary is Mz := Γ̂z \ Γ.
Remark 2.2.1. As explained in [64, Section 24], the term “smallest” refers

to the partial order of compactifications, where idΓ extends to a continuous

surjection from the larger to the smaller compactification. Equality means in

this contest that the two compactifications are homeomorphic.

For more details the interested reader is referred to [62], [64, Section 24]

and references therein.

For various interesting results (that go beyond the aims of this work) about

the Martin boundary of nearest neighbor random walks on trees and non-

amenable graphs, we refer to [48] and [49].

For more detailed explanations and direct computations for Martin bound-

aries of Cartesian products, we refer to [51] and [50]. In particular, we would

like to mention that in [51, Corollary 4.3] the Martin boundary of Ta×Tb (the
Cartesian product of two homogeneous trees of degrees a and b respectively)

is computed explicitely.



Part I

Random Walks

on Free Products
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Chapter 3

Construction of a Random

Walk on a Free Product

In this chapter we describe how to define a random walk on a free product,

and this concept will be used as well in the context of branching random walks

(Chapter 7).

3.1 Main Definitions and Visualization of a Free

Product

Let us introduce some notation that will be used all throughout the first two

parts of our work; for more details we refer to [64]. Let Γ be a finitely generated

group with identity e (the group operation is written multiplicatively) and

generating set S, and fix a probability measure µ such that supp(µ) = S.

The random walk on Γ governed by µ is the Markov chain with state

space Γ and transition probabilities given by p(x, y) = µ(x−1y) for x, y ∈ Γ.

Therefore the random walk starting at x ∈ Γ can be written as

Xn = xη1 · · · ηn, n ≥ 0,

where ηj is a sequence of iid random variables with common distribution µ.

The law of Xn is the n-th convolution power µ(n) of µ, and if not mentioned

otherwise the random walk starts at the group identity e. For every two

elements x and y of Γ, we denote by

p(n)(x, y) := P[Xn = y|X0 = x] = µ(n)(x−1y)

the probability to go from x to y in n steps. Furthermore, we always assume

the random walk to be irreducible, i.e., for all x, y there exists a k ∈ N such

that p(k)(x, y) > 0.

We say that µ is symmetric if µ(x) = µ(x−1) for all x ∈ Γ.

Given a finite set of integers I := {1, 2, . . . , r}, where r ≥ 2, consider r

finitely generated groups Γ1, . . . ,Γr. Each of these groups has a presentation

of the form Γi = 〈Si | Ri〉, where Si is a symmetric generating set, and Ri is
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the set of relations. The free product (refer to Equation 1.1) can be written

as

Γ := Γ1 ∗ . . . ∗ Γr = 〈S1, . . . , Sr | R1, . . . , Rr〉.
We exclude the cases where Γi is the trivial group and the case r = 2 with

Card(Γ1) = Card(Γ2) = 2.

From now on, in order to simplify the notation, we define Γ×
i := Γi \ {ei},

for every i ∈ I. Hence, the free product Γ defined in Equation (1.1) can be

written as

Γ =

{
x1x2 . . . xn

∣∣∣ n ∈ N, xj ∈
⋃

i∈I
Γ×
i , xj ∈ Γ×

k ⇒ xj+1 /∈ Γ×
k

}
∪ {e} .

We associate to each group its Cayley graph with respect to the finite gener-

ating set S. In this context we will be more precise than in Section 1.1.2.

The Cayley graph X = X (Γ, S) has vertex set V (X ) = Γ, and the edge

{x, y} is an element of E(X ) if and only if x−1y ∈ S.

From now on, X will denote the Cayley graph of the free product. Its

construction is as follows: consider the Cayley graphs X1, . . . ,Xr of the factors

Γ1, . . . ,Γr respectively, w.r.t. the (finite) symmetric generating sets S1, . . . , Sr.

Take copies of X1, . . . ,Xr and glue them together at their identities to one

single common vertex, which becomes the representation of the empty word

e. Inductively, at each vertex v = v1 . . . vk with vk ∈ Γi attach a copy of every

Xj, j 6= i, identifying v with the identity ej of the new copy of Xj .

Example 3.1.1. According to the previous construction, the Cayley graph of

the free product (Z/2Z) ∗ (Z/3Z) looks like the one in Figure 3.1.

Figure 3.1: Cayley graph of the free product (Z/2Z) ∗ (Z/3Z).

3.2 Definition of a Random Walk on Γ

Assume that on every free factor Γi, i ∈ I, we are given a symmetric proba-

bility measure µi defined on the (finite) set of generators Si. In other words,

we can consider a random walk defined on each factor Γi governed by µi.

The most natural way to construct a random walk on Γ, is to start from

the ones defined on its free factors, and to make a convex combination out of
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them. Each of these random walks is irreducible, and for sake of simplicity,

we assume µi(ei) = 0 for every i ∈ I.
In order to fix the notation, the single-step transition probability of the

RW defined on Γi is denoted by pi(x, y) := µi(x
−1y), (for all x, y ∈ Γi), and

the n-step transition probability is denoted by p
(n)
i (x, y) := µ

(n)
i (x−1y).

We lift µi to a probability measure µ̄i on Γ by defining:

µ̄i(x) :=

{
µi(x) if x ∈ Γi,

0 otherwise.

Now let us fix positive real numbers α1, . . . , αr such that
∑

i∈I αi = 1. We

construct a probability measure defined on S = S1 ∪ . . . ∪ Sr (which is the

generating set of Γ) by a convex combination of the µ̄i’s, i.e.

µ :=
∑

i∈I
αiµ̄i. (3.1)

The random walk on Γ starting at e and governed by µ, is hence defined as

follows: for x, y ∈ Γ, the associated single and n-step transition probabilities

are given by p(x, y) := µ(x−1y) and p(n)(x, y) := µ(n)(x−1y) respectively.

Remark 3.2.1. Intuitively, the coefficients αi’s can be thought as “weights”:

αi is the weight of the measure µi relatively to µ. If a αj is very large (very

close to 1), then it seems plausible that the random walk governed by µ will

behave like the one defined on Γj. Later on (see Chapter 6) we will see that

this heuristic explanation lies at the basis of one of our main results.

3.3 Main Tool: Green Function

The aim of the first part of this work is to find the asymptotic behavior of the

non-exponential part of µ(n)(e). In order to achieve our results, we investigate

the so-called Green Functions, which are defined through series: the type of

their singularity contains fundamental information that we can exploit for our

purposes.

First of all, we should introduce some notation.

For a function f : D ⊆ C → C such that f(z0) = 0, for z0 ∈ D, 0 < q ∈ R and

k ∈ N0, we write:

f(z) = o
(
(z0 − z)q logk(z0 − z)

)
if lim

z→z0

f(z)

(z0 − z)q logk(z0 − z)
= 0;

f(z) = Oc

(
(z0 − z)q logk(z0 − z)

)
if 0 < lim

z→z0

f(z)

(z0 − z)q logk(z0 − z)
<∞;

f(z) = O
(
(z0 − z)q logk(z0 − z)

)
if lim sup

z→z0

f(z)

(z0 − z)q logk(z0 − z)
<∞.

Furthermore, we introduce the order relation �, we write

(z0 − z)q1 logk1(z0 − z) � (z0 − z)q2 logk2(z0 − z)
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if (z0 − z)q2 logk2(z0 − z) = O
(
(z0 − z)q1 logk1(z0 − z)

)
.

What the value z0 represents, will be clear from the context.

For z ∈ C, the Green functions associated to the random walks on Γi and

Γ are defined as

Gi(z) :=

∞∑

n=0

µ
(n)
i (ei)z

n and G(z) :=

∞∑

n=0

µ(n)(e)zn,

respectively.

The corresponding radii of convergence are denoted by Ri and R respectively.

According to Pringsheim’s Theorem, these values are the smallest singularities

of the above defined functions.

We would like to point out (recall Section 1.3.4) that R > 1, since Γ is

non-amenable (see e.g. [64, Corollary 12.5], recalling that R is the inverse of

the spectral radius of the random walk). In the following we assume that Gi(z)

is exactly di-times differentiable at z = Ri, for some non-negative integer di.

The next assumption will be fundamental:

Assumption 3.3.1. Whenever G′
i(Ri) < ∞, the expansions of the Green

functions Gi(z) in a neighborhood of z = Ri have the form

Gi(z) =

di∑

k=0

g
(i)
k (Ri−z)k+

∑

(q,k)∈Ti

g
(i)
(q,k)(Ri−z)q logk(Ri−z)+O

(
(Ri−z)di+2

)
,

where Ti is a finite subset of {(q, k) ∈ R × N0 | di < q ≤ di + 2}. In other

words, up to order (Ri − z)di+2, the only “admissible” singular terms are of

logarithmic and algebraic type.

Remark 3.3.2. Higher order terms are not necessary for the computation of

the non-exponential type of the n-step return probabilities of the random walk

on Γ.

Remark 3.3.3. Let us also emphasize that, in the case G′
i(Ri) = ∞, we do

not need any assumptions on the singularity type.

In the following we want to motivate this assumption on Gi(z): this prop-

erty is satisfied in several well-known cases, e.g., the Green functions of nearest

neighbor random walks on the d-dimensional lattice Zd have such an expan-

sion, see Proposition 5.3.1.

With some effort, it can be proved that also Zd × (Z/nZ) satisfies As-

sumption (3.3.1) by the same methods used for Zd. Moreover we will prove

our main result by induction on the number r of free factors of Γ: we will

show that Assumption (3.3.1) is stable under free products, except for some

degenerate cases (see Chapter 5).

3.4 More Generating Functions

In the following we look at free products of the form Γ1∗Γ2, while free products

with more than two factors are discussed in Section 5.2.
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Let us consider z ∈ C, i ∈ {1, 2} and si ∈ supp(µi). For all s ∈ supp(µ) =

supp(µ1)∪supp(µ2) we can define the first visit generating functions as follows:

Fi

(
si
∣∣z
)
:=
∑

n≥0

P
[
X(i)

n = ei,∀m < n : X(i)
m 6= ei

∣∣X(i)
0 = si

]
zn,

F
(
s
∣∣z
)
:=
∑

n≥0

P
[
Xn = e,∀m < n : Xm 6= e

∣∣X0 = s
]
zn,

(3.2)

where
(
X

(i)
n

)
n∈N0

denotes the random walk on Γi governed by µi. By condi-

tioning on the number of visits of ei the functions Fi

(
si
∣∣z
)
are directly linked

with Gi(z) via

Gi(z) =
1

1−∑si∈supp(µi)
µi(si) z Fi

(
si
∣∣z
) . (3.3)

In the following we summarize some important basic facts, we will refer to

Woess [64] for further details. We will make a wide use of the following func-

tions:

ζ1(z) :=
α1z

1− α2z
∑

s2∈supp(µ2)
µ2(s2)F (s2|z)

,

ζ2(z) :=
α2z

1− α1z
∑

s1∈supp(µ1)
µ1(s1)F (s1|z)

.

(3.4)

Remark 3.4.1. ζi(1) is the probability that the process (starting at e) makes

a step from e into Γi within a finite time.

Remark 3.4.2. For si ∈ supp(µi) we have F
(
si
∣∣z
)

= Fi

(
si
∣∣ζi(z)

)
. The

interested reader is referred to [64, Proposition 9.18c)] for more details.

By [64, Equation (9.20)] and (3.3), the functions Fi

(
si
∣∣ζi(z)

)
, Gi(z) and

G(z) satisfy the following relations:

αi zG(z) = ζi(z)Gi

(
ζi(z)

)
=

ζi(z)

1−∑si∈supp(µi)
µi(si) ζi(z)Fi

(
si
∣∣ζi(z)

) . (3.5)

Hence, in order to get a singular expansion for G(z) in a neighborhood of

z = R, we need to expand ζi(z).

We recall that (see [64, Proposition 9.10]) there are functions Φi, i ∈ {1, 2},
and Φ with the following properties:

Gi(z) = Φi

(
zGi(z)

)
and G(z) = Φ

(
zG(z)

)
(3.6)

for all z ∈ C in an open neighborhood of the intervals [0,Ri) and [0,R)

respectively. In particular, denoting by

θi := RiGi(Ri), and θ := RG(R),

the functions Φi and Φ are analytic in an open neighborhood of the intervals

[0, θi) and [0, θ), strictly increasing and strictly convex in [0, θi) and [0, θ)

respectively.
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In order to proceed with our discussion, we need to define a few further

functions, which will play a fundamental role in the next part of the work:

Ψi(t) := Φi(t)− tΦ′
i(t) and Ψ(t) := Φ(t)− tΦ′(t). (3.7)

It turns out that (a proof of this fact can be found in [64, Theorem 9.19]) the

following relations hold:

Φ(t) = Φ1(α1t) + Φ2(α2t)− 1 and Ψ(t) = Ψ1(α1t) + Ψ2(α2t)− 1. (3.8)

For simplicity of notation, we write Ψi(θi) := limt→θi−Ψi(t). Moreover, define

θ̄ := min

{
θ1
α1
,
θ2
α2

}
,

then we will write Ψ(θ̄) := limt→θ̄− Ψ(t) as well.

Despite the fact that we should be very careful not to create confusion

between the quantities θ̄ and θ, we will see in the next chapter that, in the

situations we are interested in, they coincide (see e.g. [64, Theorem 9.22]).
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Case Distinction

In the next sections, we will make a case distinction according to the finiteness

of Gi(Ri) and G
′
i(Ri), as well as to the sign of Ψ(θ̄). We will prove our results

separately for each situation.

4.1 Case Ψ(θ̄) < 0

Let δ denote the period of the random walk. In this case it is known that (see

e.g. [64, Theorem 17.3]) the n-step return probabilities of the random walk

on Γ behave asymptotically like

µ(nδ)(e) ∼ C ·R−nδ · n−3/2.

Moreover the Green function of the random walk on Γ has the form (see e.g.

[64, Proposition 17.4] or [19, Section VI.7]).

G(z) = A(z) +
√
R− z B(z), (4.1)

where A(z) and B(z) are analytic functions in a neighborhood of z = R, and

moreover B(R) 6= 0.

As usual, let us denote by Si a finite, symmetric set of generators for Γi,

i ∈ {1, 2}. If each Si contains at least one element of order larger than 2,

then µ1, µ2 and α1 can always be chosen in a suitable way in order to obtain

Ψ(θ̄) < 0, provided that supp(µi) = Si. A proof of this fact can be found in

[10] and [64, Corollary 17.10].

Example 4.1.1. A particular case where the Green function is of the form

(4.1) is the free product Γ1 ∗ Γ2 for finite groups Γ1 and Γ2, see [63], but the

easiest example we can think of, is the homogeneous tree.

Motivated by Example (4.1.1), we assume from now on that at least one

out of Γ1 and Γ2 is infinite, and we may restrict our investigation to the cases

Ψ(θ̄) > 0 and Ψ(θ̄) = 0.
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4.2 Case Ψ(θ̄) > 0

We start by remarking some important facts about the case Ψ(θ̄) ≥ 0.

We have that θ = θ̄ and G(R) <∞, see [64, Theorem 9.22]. Furthermore,

by [64, Lemma 17.1.a)] it holds that ζi(R) ≤ Ri for i ∈ {1, 2}, with equality

if and only if θ = θi/αi.

Throughout this chapter we assume that G1(z) and G2(z) are differentiable

di ≥ 1 times at their radii of convergence, and they satisfy Assumption (3.3.1).

In this setting we can apply the well-known method of Darboux (the reader

who is not familiar with this method, can get a flavor of the idea by reading

Appendix A, Section A.1). This yields that the n-step return probabilities

of the random walk on Γi behave asymptotically like the coefficients of the

Taylor expansion of the leading singular term in (3.3.1) in a neighborhood of

z = R.

Denote by Si(z) := (Ri − z)qi logki(Ri − z) the leading singular term

(i.e. the smallest term of the singular expansion w.r.t. �) i.e., q > qi or

(q = qi ∧ k < ki) for all (q, k) ∈ Ti \ {(qi, ki)}, then the coefficients of Si(z)

in a neighborhood of z = R behave asymptotically like the n-step return

probabilities on Γi. More precisely, their behavior is asymptotically of type

ĈiR
−nδi
i n−λi logκi(n), where

δi := gcd
{
n ∈ N | µ(n)i (ei) > 0

}

is the period of the random walk on Γi and

λi := qi + 1 and κi :=

{
ki, if qi /∈ N,

ki − 1 if qi ∈ N.
(4.2)

Analogously, δ := gcd
{
n ∈ N | µ(n)(e) > 0

}
= gcd{δ1, . . . , δm} is the period

of the random walk on Γ. For more details on the asymptotic behavior of the

coefficients for the expansion of (Ri − z)qi logki(Ri − z) in a neighborhood of

z = R, see e.g. Flajolet and Sedgewick [19, Chapter VI.2].

The method of Darboux needs some differentiability assumptions at z =

Ri; therefore, we need the expansions ofGi(z) up to terms of order (Ri−z)di+2.

We point out that another – modern – tool to handle singular expansions

as in (3.3.1) is Singularity Analysis, introduced by Flajolet and Odlyzko in

[18]. For a brief explanation on this method, we invite the reader to take a

look at Appendix A, Section A.2. However, in our context it turns out that the

verification of the specific requirements of this method is quite cumbersome

as one can also see in the work by Lalley [34].

The aim of this section is to prove the following:

Theorem 4.2.1. Assume that G1(z) and G2(z) are differentiable at z = R1

and z = R2 respectively, and satisfy Assumption (3.3.1). If S1(z) � S2(z)

and Ψ(θ̄) > 0 then:

µ(nδ)(e) ∼
{
C1 ·R−nδ · n−λ1 · logκ1(n), if α1 ≥ θ1

θ1+θ2
,

C2 ·R−nδ · n−λ2 · logκ2(n), if α1 <
θ1

θ1+θ2
,
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for some constants C1, C2 > 0.

Recall from Remark 3.4.2 that F (si|z) = Fi(si|ζi(z)) for all si ∈ supp(µi).

Then we rewrite (3.4) as follows:

α1z = ζ1(z)
(
1− α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

))
, (4.3)

α2z = ζ2(z)
(
1− α1z

∑

s1∈supp(µ1)

µ1(s1)F1

(
s1|ζ1(z)

))
. (4.4)

In the following we assume w.l.o.g. that θ = θ̄ = θ1/α1, therefore according to

what mentioned at the beginning of the section, ζ1(R) = R1 and ζ2(R) ≤ R2,

with equality if and only if θ = θ1/α1 = θ2/α2.

Remark 4.2.2. Ψ(θ̄) > 0 implies G′(R) < ∞: since Φ′(θ̄) < Φ(θ̄)/θ̄ = 1/R,

by differentiating (3.6) we get

G′(R) = lim
z→R

Φ′(zG(z)
)
G(z)

1− z Φ′(zG(z)
) =

Φ′(θ̄)G(R)

1−RΦ′(θ̄)
<∞.

To make the notation more clear, define

D :=

{
d1, if θ̄ < θ2/α2,

min{d1, d2}, if θ̄ = θ1/α1 = θ2/α2.
(4.5)

Denoting by S (z) the main leading singular term, we have

S (z) =

{
S1(z), if θ̄ < θ2/α2,

min
{
S1(z),S2(z)

}
, if θ̄ = θ2/α2.

The next lemma shows that ifG(z) is differentiable at its radius of convergence,

then the functions ζ1(z) and ζ2(z) are as well.

Lemma 4.2.3. 0 < ζ ′1(R) <∞ and 0 < ζ ′2(R) <∞.

Proof. We prove the result only for ζ ′1(R), since the proof for ζ ′2(R) is com-

pletely analogous. We write

H2(z) := α2z
∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

)
.

Since ζ1(R) = R1, we have H2(R) < 1; compare with the definition of ζ1(z).

Furthermore, the coefficient of zn in H2(z) is just the probability that the

random walk on Γ (starting at e) makes the first step w.r.t. µ2 and returns

for the first time to e at time n. Thus, this probability is bounded from above

by µ(n)(e), and consequently H ′
2(R) < G′(R) <∞. Computing the derivative

of ζ1(z) in a neighborhood of z = R gives

ζ ′1(z) =
α1

(
1−H2(z)

)
+ α1zH

′
2(z)(

1−H2(z)
)2 > 0.

Finiteness of ζ ′1(R) follows directly from the remarks above.
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Under Assumption (3.3.1), the functions Fi(si|z), for i ∈ {1, 2} and si ∈
supp(µi), are at least di-times differentiable at z = Ri, therefore we can com-

pare the n-th coefficients of Fi(si|z) and Gi(z) as follows:

µ
(n)
i (ei) ≥ µi(si) · P

[
X(i)

n = ei,∀m < n : X(i)
m 6= ei

∣∣X(i)
0 = si

]
.

Thus, we can rewrite these functions in the form

Fi(si|z) =
di∑

n=0

fn(si)(Ri − z)n + E(i)(si|z), (4.6)

where the coefficients fn(si) are real numbers, and E(i)(si|z) = o
(
(Ri − z)di

)
.

If we have ζ2(R) < R2, then F2(s2|z) is analytic at z = ζ2(R) for all s2 ∈
supp(µ2) and we can even write

F2(s2|z) =
∑

n≥0

fn(s2)
(
ζ2(R) − z

)n
.

Our first aim is to find out the right order of E(i)(si|z). An intermediate result

that will be useful to get to this goal, is Lemma 4.2.4. It shows that between

order di and di + 2 in the expansion of
∑

si∈supp(µi)
µi(si)zE

(i)(si|z), we can

have only finitely many singular terms.

Lemma 4.2.4. For z ∈ C in a neighborhood of Ri,

∑

si∈supp(µi)

µi(si) z E
(i)(si|z) = e

(i)
(qi,ki)

(Ri − z)qi logki(Ri − z)+

+
∑

(q,k)∈T̂i

e
(i)
(q,k)(Ri − z)q logk(Ri − z) +O

(
(Ri − z)di+2

)
,

where e
(i)
(qi,ki)

6= 0 and T̂i is a finite subset of

{
(q, k) ∈ R×N0 | di < q ≤ di + 2, q > qi or (q = qi ⇒ k < ki)

}
.

Proof. Define the first return generating function

Ui(z) :=
∑

si∈supp(µi)

µi(si) z Fi(si|z). (4.7)

The expansions of Ui(z) and Gi(z) have the same leading singular term since

both functions are di-times differentiable in a neighborhood of z = Ri. This

can be seen very clearly with the help of the well-known (see [64, Lemma 1.13])

relation

Gi(z) = 1/
(
1− Ui(z)

)
.

Therefore, we have expansions

Gi(z) =

di∑

k=0

g
(i)
k (Ri − z)k +RGi(z) and Ui(z) =

di∑

k=0

u
(i)
k (Ri − z)k +RUi(z),
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where RGi(z) = Oc

(
Si(z)

)
and RUi(z) = o

(
(Ri − z)di

)
. Plugging these ex-

pansions into Gi(z)(1 − Ui(z)) = 1, and taking all polynomial terms to one

side, we get

(
1− Ui(Ri)

)
RGi(z)−Gi(Ri)RUi(z) = p(z) + o

(
(Ri − z)di+1

)
,

where p(z) is a polynomial. This equation implies that the right hand side is

of order O
(
(Ri − z)di+1

)
, i.e. RUi(z) = Oc

(
Si(z)

)
and we can write

Ui(z) =

di∑

k=0

u
(i)
k (Ri − z)k + u

(i)
(qi,ki)

Si(z) + R̂Ui(z),

where R̂Ui(z) = o
(
Si(z)

)
. Plugging this expansion into Gi(z)(1 − Ui(z)) = 1,

comparing the error terms and iterating the last steps, together with using

(4.6) in (4.7), yields the claim.

Recall the definition of D from Equation 4.5. The next goal is to show that

both ζ1(z) and ζ2(z) are D times differentiable in a neighborhood of z = R.

Proposition 4.2.5. There are real numbers x0, x1, . . . , xD and y0, y1, . . . , yD
such that

ζ1(z) =
D∑

k=0

xk (R− z)k +X
(1)
D (z) and ζ2(z) =

D∑

k=0

yk (R− z)k +X
(2)
D (z),

where X
(1)
D (z) = o

(
(R− z)D

)
and X

(2)
D (z) = o

(
(R− z)D

)
.

Proof. Our strategy is to determine x0, x1, . . . , xD and y0, y1, . . . , yD induc-

tively. By Lemma 4.2.3 we can rewrite ζ1(z) and ζ2(z) as follows:

ζ1(z) = R1 − ζ ′1(R) (R − z) +X
(1)
1 (z), where X

(1)
1 (z) = o(R− z),

ζ2(z) = ζ2(R) − ζ ′2(R) (R − z) +X
(2)
1 (z), where X

(2)
1 (z) = o(R− z).

(4.8)

Thus, we have determined x0, x1 and y0, y1. Now assume that for some t < D

we can write

ζ1(z) =
t∑

k=0

xk (R−z)k+X(1)
t (z) and ζ2(z) =

t∑

k=0

yk (R−z)k+X(2)
t (z), (4.9)

where X
(1)
t (z) = o

(
(R− z)t

)
and X

(2)
t (z) = o

(
(R− z)t

)
.

By (4.6) we have

F1(s1|z) =
∑D

n=0 an(s1)(R1 − z)n +E(1)(s1|z) and

F2(s2|z) =
∑D

n=0 bn(s2)
(
ζ2(R) − z

)n
+ E(2)(s2|z),

(4.10)
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where E(i)(si|z) = o
(
(ζi(R) − z)D

)
. We use the expansions (4.9) and (4.10)

and plug them into Equations (4.3) and (4.4), and obtain the following system:

α1z =
( t∑

k=0

xk (R− z)k +X
(1)
t (z)

)[
1− α2

(
R− (R− z)

) ∑

s2∈supp(µ2)

µ2(s2)·

·
[ D∑

n=0

bn(s2)
(
−

t∑

k=1

yk (R− z)k −X
(2)
t (z)

)n
+ E(2)

(
s2
∣∣ζ2(z)

)]
]
,

α2z =
( t∑

k=0

yk (R − z)k +X
(2)
t (z)

)[
1− α1

(
R− (R − z)

) ∑

s1∈supp(µ1)

µ1(s1)·

·
[ D∑

n=0

an(s1)
(
−

t∑

k=1

xk (R− z)k −X
(1)
t (z)

)n
+ E(1)

(
s1
∣∣ζ1(z)

)]
]
.

(4.11)

We bring all polynomial and higher order terms to one hand side: by compar-

ison, we see that a convex sum of X
(1)
t (z) and X

(2)
t (z) is of the desired order

O
(
(R− z)t+1

)
:

P
(1)
t (z) + o

(
(R− z)t+1

)
=
[
1− α2R

∑

s2∈supp(µ2)

µ2(s2)b0(s2)
]
X

(1)
t (z)

+
[
α2R1R

∑

s2∈supp(µ2)

µ2(s2)b1(s2)
]
X

(2)
t (z),

P
(2)
t (z) + o

(
(R− z)t+1

)
=
[
α1ζ2(R)R

∑

s1∈supp(µ1)

µ1(s1)a1(s1)
]
X

(1)
t (z)

+
[
1− α1R

∑

s1∈supp(µ1)

µ1(s1)a0(s1)
]
X

(2)
t (z),

(4.12)

where P
(1)
t (z) and P

(2)
t (z) are polynomials in the variable z. By assumption

on X
(1)
t (z) and X

(2)
t (z), the right hand sides of (4.12) are of order o

(
(R −

z)t
)
. Therefore, the left hand sides have to be of order Oc

(
(R − z)t+1

)
, and

consequently the right hand sides are also of order Oc

(
(R− z)t+1

)
.

It still remains to show that both X
(1)
t (z) and X

(2)
t (z) are Oc

(
(R−z)t+1

)
.

For this purpose, we show that the coefficients of the convex sum are linearly

independent proving that the matrix of the coefficients has non-zero determi-

nant.

Define the matrix M = (mij)1≤i,j≤2 by

m11 := 1− α2R
∑

s2∈supp(µ2)

µ2(s2)b0(s2),

m12 := α2R1R
∑

s2∈supp(µ2)

µ2(s2)b1(s2),

m21 := α1ζ2(R)R
∑

s1∈supp(µ1)

µ1(s1)a1(s1),

m22 := 1− α1R
∑

s1∈supp(µ1)

µ1(s1)a0(s1).
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Then the system (4.12) is equivalent to

M ·
(
X

(1)
t (z)

X
(2)
t (z)

)
=

(
Q

(1)
t (z)

Q
(2)
t (z)

)
,

where Q
(1)
t (z) = Oc

(
(R− z)t+1

)
and Q

(2)
t (z) = Oc

(
(R− z)t+1

)
. If the matrix

M is invertible, then obviously X
(1)
t (z) = Oc

(
(R − z)t+1

)
and X

(2)
t (z) =

Oc

(
(R− z)t+1

)
.

Therefore we prove that M is indeed invertible: the last part of the proof

is devoted to show that det(M) 6= 0.
We start by differentiating Equations (4.3) and (4.4) in the variable z:

α1 =
(
−α2

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

)
− α2z

∑

s2∈supp(µ2)

µ2(s2)F
′

2

(
s2|ζ2(z)

)
ζ′2(z)

)
ζ1(z)

+ ζ′1(z)
(
1− α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

))
,

α2 =
(
−α1

∑

s1∈supp(µ1)

µ1(s1)F1

(
s1|ζ1(z)

)
− α1z

∑

s1∈supp(µ1)

µ1(s1)F
′

1

(
s1|ζ1(z)

)
ζ′1(z)

)
ζ2(z)

+ ζ′2(z)
(
1− α1z

∑

s1∈supp(µ1)

µ1(s1)F1

(
s1|ζ1(z)

))
.

We would like to point out that in the expansions given by relations (4.10) we

have:

a0(s1) = F1(s1|R1); a1(s1) = −F ′
1(s1|R1)

b0(s2) = F2

(
s2|ζ2(R)

)
; b1(s2) = −F ′

2

(
s2|ζ2(R)

)
.

Substituting these values in the above system and letting z → R yields

α1 =
(
−α2

∑

s2∈supp(µ2)

µ2(s2)b0(s2) + α2R
∑

s2∈supp(µ2)

µ2(s2)b1(s2)ζ
′
2(R)

)
R1

+ ζ ′1(R)m11,

α2 =
(
−α1

∑

s1∈supp(µ1)

µ1(s1)a0(s1) + α1R
∑

s1∈supp(µ1)

µ1(s1)a1(s1)ζ
′
1(R)

)
ζ2(R)

+ ζ ′2(R)m22.

Since ζ1(R), ζ2(R) > 0 and a1(s1), b1(s2) < 0, the last equations imply that

both m11,m22 > 0. We proceed by rewriting the last system:

α2R1R
∑

s2∈supp(µ2)
µ2(s2)b1(s2)ζ

′
2(R) = A− ζ ′1(R)m11,

α1ζ2(R)R
∑

s1∈supp(µ1)
µ1(s1)a1(s1)ζ

′
1(R) = B − ζ ′2(R)m22,

(4.13)

where we set

A := α1 + α2R1

∑

s2∈supp(µ2)

µ2(s2)b0(s2)

B := α2 + α1ζ2(R)
∑

s1∈supp(µ1)

µ1(s1)a0(s1).
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Multiplying side by side equations in (4.13) yields

ζ ′1(R)ζ ′2(R)m12m21 = AB − ζ ′1(R)m11B − ζ ′2(R)m22A+ ζ ′1(R)ζ ′2(R)m11m22.

The condition det(M) = 0 would imply

ζ ′1(R)m11B + ζ ′2(R)m22A = AB,

or equivalently,

ζ ′2(R) =
AB − ζ ′1(R)m11B

m22A
. (4.14)

Furthermore, (4.13) implies

ζ ′1(R) =
(
A− Cζ ′2(R)

)
/m11,

where C := α2R1R
∑

s2∈supp(µ2)
µ2(s2)b1(s2) < 0. Plugging the last relation

into (4.14) leads to

ζ ′2(R) =
BC

m22A
ζ ′2(R).

Observe now that A,B,m22 > 0 and C < 0. This yields a contradiction in

the last equation, since ζ ′2(R) > 0. Thus, det(M) 6= 0.

At this point we proved that both X
(1)
t (z) and X

(2)
t (z) are Oc

(
(R−z)t+1

)
:

in this way we obtain inductively the values x0, x1, . . . , xD and y0, y1, . . . , yD.

The next aim is to show that at least one of the functions X
(1)
D (z) and

X
(2)
D (z) has order Oc

(
(R− z)qi logki(R− z)

)
. To this end, we look at the final

step of the induction in the proof of Proposition 4.2.5. For t = D, the system
(4.11) becomes
[
1− α2R

∑

s2∈supp(µ2)

µ2(s2)b0(s2)
]
·X(1)

D (z) +
[
α2R1R

∑

s2∈supp(µ2)

µ2(s2)b1(s2)
]
·X(2)

D (z)

− α2R1

∑

s2∈supp(µ2)

µ2(s2) z E
(2)
(
s2|ζ2(z)

)
= P

(1)
D (z) + o

(
(R − z)D+1

)
,

[
α1ζ2(R)R

∑

s1∈supp(µ1)

µ1(s1)a1(s1)
]
·X(1)

D (z) +
[
1− α1R

∑

s1∈supp(µ1)

µ1(s1)a0(s1)
]
·X(2)

D (z)

− α1ζ2(R)
∑

s1∈supp(µ1)

µ1(s1) z E
(1)
(
s1|ζ1(z)

)
= P

(2)
D (z) + o

(
(R − z)D+1

)
,

where P
(1)
D (z) and P

(2)
D (z) are polynomials in the variable z. By (4.8), we may

conclude that
(
ζi(R) − ζi(z)

)
= Oc(R − z). Since ζ ′i(Ri) < ∞ by Lemma

4.2.3, we have for 1 < p ∈ R
(
ζi(R)− ζi(z)

)p
=
(
ζ ′i(Ri)(R− z) + o(R− z)

)p

= ζ ′i(Ri)
p (R− z)p

(
1 + o(1)

)p

= Oc

(
(R− z)p

)

and

log
(
ζi(R)− ζi(z)

)
= log

(
ζ ′i(Ri)(R− z) + o(R− z)

)

= log
(
ζ ′i(Ri)

)
+ log(R− z) + log

(
1 + o(1)

)

= log
(
ζ ′i(Ri)

)
+ log(R− z) + o(1).
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We remark that (1+z)p and log(1+z) are analytic functions in a neighborhood

of z = 0.

In the following we denote by ι ∈ {1, 2} the index such that S (z) = Sι(z).

Then the computations above, together with Lemma 4.2.4, imply that
∑

sι∈supp(µι)

µ(sι) z E
(ι)
(
sι|ζι(z)

)
= Oc

(
(R− z)qι logkι(R− z)

)
.

With an analogous reasoning to the one that allowed us to finish the proof of

Proposition 4.2.5, we can conclude that

X
(1)
D (z) = Oc

(
(R− z)qι logkι(R− z)

)
,

X
(2)
D (z) = Oc

(
(R− z)qι logkι(R− z)

)
.

Thus, what we have obtained, can be summarized as follows: the leading

singular term of ζι(z) has the same order as the leading singular term in

the expansion of Gι(z) if S (z) = Sι(z). Using (3.5), we conclude that the

leading singular term in the expansion of G(z) at z = R has the same form

as the leading singular term in the expansion of Gι(z) at z = Rι, namely

(R− z)qι logkι(R− z).

Recall that we assumed throughout this section that Gi(z) is di times

differentiable at z = Ri. For an application of Darboux’s method we need in

a first step the expansion of G(z) in a neighborhood of z = R up to terms of

order (R − z)D+2. Thus, by (3.5), we have to extend the expansions of ζ1(z)

and ζ2(z) up to terms of order (R− z)D+2.

We present a result that is analogous to Lemma 4.2.4: the next lemma ensures

that there are only finitely many singular terms in the expansions of ζ1(z) and

ζ2(z) up to order D + 2.

Lemma 4.2.6. For i ∈ {1, 2}, ζi(z) has an expansion of the form

D∑

k=0

xk(R− z)k +
∑

(q,k)∈T
x(q,k)(R− z)q logk(R− z) + o

(
(R− z)D+2

)
,

where xk, x(q,k) ∈ R, T is a finite subset of

T̂ :=
{
(q, k) ∈ R× N0 | D < q ≤ D + 2

}
.

In particular, if (qi, ki) ∈ T with x(qi,ki) 6= 0 and (q, k) ∈ T , then we have

(qi, ki) � (q, k).

Proof. Recall the expansion of
∑

si∈supp(µi)
µi(si) z E

(i)(si|z) from Lemma 4.2.4.

Assume that ζi(z) has already an expansion of the form

D∑

k=0

xk(R− z)k +
∑

(q,k)∈T ′

x(q,k)(R− z)q logk(R− z) + o(max T ′), (4.15)

where T ′ is a finite subset of T̂ and

max T ′ := max
�

{
(R− z)q logk(R− z) | (q, k) ∈ T ′}.
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In particular, x(qi,ki) ∈ T ′, and x(qi,ki) 6= 0. We proceed with expanding the

next terms of ζi(z) analogously to the proof of Proposition 4.2.5. For this

purpose, observe that for p > 1

(
ζi(R)− ζi(z)

)p
= (−x1)p (R− z)p

(
1 +

D∑

k=2

xk
x1

(R− z)k−1+

+
∑

(q,k)∈T ′

x(q,k)

x1
(R− z)q−1 logk(R− z) + o

(max T ′

R− z

))p

.

(4.16)

Analogously we have that

log
(
ζi(R) − ζi(z)

)
= C + log(R− z) + log

(
1 +

D∑

k=2

xk
x1

(R− z)k−1+

+
∑

(q,k)∈T ′

x(q,k)

x1
(R− z)q−1 logk(R− z) + o

(max T ′

R− z

))
.

(4.17)

We plug relations (4.15), (4.16) and (4.17) into Equation (4.6) and then ev-

erything into Equations (4.3) and (4.4). Finally we compare again the error

terms (we will repeat this procedure in each of the following steps). There-

fore, if max T ′ = (R−z)q̂ logk̂(R−z) then the next possible terms up to order

(R− z)q̂ in the expansion may only be

(R− z)q̂ logk̂−1(R− z), (R − z)q̂ logk̂−2(R− z), . . . , (R− z)q̂.

Analogously to the proof of Proposition 4.2.5 we determine step by step the

corresponding coefficients of these terms. The next term in the expansion of

ζi(z) has now the form (R− z)q̌ logǩ(R− z), where q̌ > q̂ is a sum of elements

from the finite set {
1, q, q − 1 | (q, ·) ∈ T1 ∪ T2

}

where Ti has the properties described in Assumption (3.3.1). The value of q̌

is minimal such that q̌ > q̂. By relations (4.16) and (4.17) there is a maximal

ǩ ∈ N0 such that (R − z)q̌ logǩ(R − z) may be a non-vanishing next term in

the expansion of ζi(z). Thus, we may iterate the last few steps again. Since

there are only finitely many possible values for q such that a term of the form

(R − z)q logk(R − z) may appear in the expansion up to order (D + 2), we

have shown the claim.

With the help of the last lemma we are now able to prove Theorem 4.2.1:

Proof of Theorem 4.2.1. We start by expanding ζ1(z) and ζ2(z) as in Propo-

sition 4.2.5. We have three possibilities:

1. α1 > θ1/(θ1 + θ2), implying θ̄ = θ1/α1 < θ2/α2. Moreover ζ1(R) = R1

and ζ2(R) < R2.

Consequently the leading singular term in the expansion of ζ1(z) (and

ζ2(z)) is of the same type as S1(z) = (R− z)q1 logk1(R− z).
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2. θ̄ = θ2/α2 < θ1/α1, implying ζ2(R) = R2 and ζ1(R) < R1.

Therefore the leading singular term is S2(z) = (R− z)q2 logk2(R− z).

3. α1 = θ1/(θ1 + θ2) implies θ̄ = θ1/α1 = θ2/α2, therefore ζ1(R) = R1 and

ζ2(R) = R2.

In this case the leading singular term in the expansions of ζ1(z) and ζ2(z)

is Sj(z) = (R − z)qj logkj (R − z), where j = 1, if S1(z) � S2(z), and

j = 2, if S2(z) ≺ S1(z).

Like we did in Proposition 4.2.5, for the rest of the proof we denote by ι ∈ {1, 2}
the index such that S (z) = Sι(z). Therefore, the expansion of the common

leading singular term of ζ1(z) and ζ2(z), namely Sι(z), in a neighborhood of

z = R has coefficients of asymptotic order proportional to R−nn−λι logκι n.

We will use Darboux’s method, described in Appendix A, Section A.1.

Briefly, the key of the method is the Riemann-Lebesgue-Lemma. It states

that if a function H(z) =
∑

n≥0 hnz
n has radius of convergence RH and if

H is k times continuously differentiable on its circle of convergence, then

hnR
n
Hn

k → 0 as n→ ∞. Thus, one identifies all singularities into one (which

is z = R) and subtracts parts of the expansion in a neighborhood of z = R,

such that the remaining part is sufficiently often differentiable on the circle of

convergence. Therefore the asymptotics of the coefficients hn arise from the

main leading singular term of the singular expansion. We refer e.g. to Olver

[46, Chapter 8, §9.2] for more details.

Lemma 4.2.6 assures that we have a singular expansion of ζ1(z) up to terms

of order ⌈λι⌉ = ⌈qι⌉+ 1 = D + 2, which allows us to apply Darboux’s method:

we get the asymptotic behavior of µ(nδ)(e) by plugging ζ1(z) into Equation

(3.5). Thus, the expansions of G(z) and of ζ1(z) have leading singular term of

the same type, namely (R− z)qι logkι(R− z).

We still need to show that the expansion of G(z) at every singular point

on the disc of convergence has the same form. The singularities are exactly

the points R exp(i2πj/δ) with 0 ≤ j < δ; see e.g. [64, Theorem 9.4]. Writing

z = λRωj , where ωj = exp(i2πj/δ) and λ ∈ C with |λ| < 1,

G(z) = G(λRωj) =
∑

n≥0

µ(nδ)(e)(λRωj)
nδ

=
∑

n≥0

µ(nδ)(e)(λR)nδ = G(λR) = G(z/ωj).

Thus, for every j ∈ {0, 1, . . . , δ − 1}, we can expand G(z) in a neighborhood

of z = Rωj as follows:

G(z) =

D∑

k=0

gk(R− z/ωj)
k+

+
∑

(q,k)∈T̂ι

g(q,k)(R− z/ωj)
q logk(R− z/ωj) +O

(
(Rωj − z)D+2

)
,

where again (like in Lemma 4.2.6) the set T̂ι is a finite subset of

{(q, k) ∈ R× N | D < q ≤ D + 2, q > qι ∨ (q = qι ⇒ k < kι)},
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g(qι,kι) ∈ T̂ι where g(qι,kι) 6= 0 and (q, k) ∈ T̂ι implies (qι, kι) � (q, k). There-

fore, the difference

G(z)−
δ−1∑

j=0

∑

(q,k)∈T̂ι

g(q,k)(R− z/ωj)
q logk(R− z/ωj)

is (D + 2)-times differentiable on the circle of convergence. Observe now

that the coefficients of the expansion of (R − z/ωj)
qι logkι(R − z/ωj) in a

neighborhood of 0 behave asymptotically like C (Rωj)
−n n−λι logκι(n). We

can drop higher order terms in the above difference because the corresponding

coefficients have higher asymptotic order. Since G(z) =
∑

n≥0 µ
(n)zn, we can

conclude that

µ(n)(e) ∼
δ−1∑

j=0

C n−λι logκι(n)R−n ω−n
j .

Observe that
∑δ−1

j=0 ω
−n
j = δ if δ divides n, and this sum is zero otherwise.

We remark that the asymptotic behavior of the coefficients in the singular

expansion of sqι logkι(s) near s = 0 are well-known; for more details we refer

to e.g. Flajolet and Sedgewick [19].

4.3 The Case Ψ(θ̄) = 0

In this section (and only in this section) we work under the following assump-

tion:

Assumption 4.3.1. for i = {1, 2} the quantities Gi(ζi(R)) and G′
i(ζi(R)) are

finite.

The cases that do not satisfy Assumption 4.3.1 will be treated separately

in Chapter 5.

Analogously to what we did in Section 4.2, we can assume θ = θ̄ = θ1/α1.

The aim of this section is to prove the following:

Theorem 4.3.2. Under Assumption 4.3.1, if Ψ(θ̄) = 0 we have

µ(nδ)(e) ∼ C ·R−nδ · n−3/2.

In the following we will derive expansions of ζi(z) and G(z) in a neigh-

borhood of z = R in order to prove Theorem 4.3.2. Recall from (3.7) that

Ψ(θ̄) = 0 implies

Φ′(θ̄) =
Φ(θ̄)

θ̄
=

Φ(θ)

θ
=

Φ
(
RG(R)

)

RG(R)
=

G(R)

RG(R)
=

1

R
.

Differentiating (3.6) yields

G′(z) =
G(z)Φ′(zG(z)

)

1− zΦ′(zG(z)
) . (4.18)
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Therefore, in this setting we have

G′(R) = ∞, (4.19)

and consequently we have to proceed differently from the previous section in

order to find the expansion of G(z).

A few important facts that we want to point out are the following. We can

rewrite the functions ζ1(z) and ζ2(z) as

ζ1(z) = R1 +X1(z), and ζ2(z) = ζ2(R) +X2(z), (4.20)

where X1(R) = X2(R) = 0. This, together with Equation 4.19 tells us that

X1(x),X2(z) 6= O((R− z)). (4.21)

Moreover, for i ∈ {1, 2},

Gi

(
ζi(z)

)
= Gi

(
ζi(R)

)
−G′

i

(
ζi(R)

)(
−Xi(z)

)
+ o
(
Xi(z)

)
. (4.22)

Substituting Equations (4.20) and (4.22) into (3.5) we get:

G(z) =
1

αiz
(ζi(R) +Xi(z))

(
Gi

(
ζi(R)

)
−G′

i

(
ζi(R)

)(
−Xi(z)

)
+ o
(
Xi(z)

))
.

Remark 4.3.3. By Assumption 4.3.1 and the last equality, we get that in a

neighborhood of z = R the expansions of G(z) and ζi(z) must be of the same

type.

In order to direct the reader on the right way, we can summarize the

reasoning that concludes this section in the following steps:

1. in Lemma 4.3.4 we show that Φ′′(θ̄) > 0;

2. in Lemma 4.3.5 we show that Φ′′(θ̄) <∞;

3. in Proposition 4.3.6 we use Step 1 and Step 2 to find the first singular

term of the expansion of G(z) in a neighborhood of z = R.

Lemma 4.3.4. Under Assumption 4.3.1, if Ψ(θ̄) = 0 then Φ′′(θ̄) > 0.

Proof. Differentiating (3.8) twice yields

Φ′′(θ̄) = α2
1Φ

′′
1(α1θ̄) + α2

2Φ
′′
2(α2θ̄). (4.23)

Since Φ1(t) and Φ2(t) are strictly convex for t ∈ [0, θ1) and t ∈ [0, θ2) respec-

tively, we get Φ′′(θ̄) > 0 whenever θ1/α1 6= θ2/α2.

If θ̄ = θ1/α1 < θ2/α2 then α2θ̄ < θ2, i.e., Φ
′′
2(α2θ̄) > 0.

Consider the case θ1/α1 = θ2/α2, i.e., ζ2(R) = R2, and assume (by con-

tradiction) that Φ′′(θ̄) = 0.

By this assumption together with Equation (4.23) it follows that we must

have Φ′′
1(θ1) = limt→θ1−Φ′′

1(t) = 0 and Φ′′
2(θ2) = limt→θ2−Φ′′

2(t) = 0. For

i ∈ {1, 2}, differentiating (3.6) yields

G′
i(Ri) = lim

z→Ri

Gi(z)Φ
′
i

(
zGi(z)

)

1− zΦ′
i

(
zGi(z)

) ,
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or equivalently

Φ′
i(θi) = lim

z→Ri

G′
i(z)

zG′
i(z) +Gi(z)

=
G′

i(Ri)

RiG′
i(Ri) +Gi(Ri)

<∞.

In particular, we have Φ′
i(θi) < 1/Ri since G

′
i(Ri) <∞ by Assumption 4.3.1.

If Φ′′
i (θi) = 0, differentiating (3.6) twice yields

G′′
i (Ri) = lim

z→Ri

Φ′′
i

(
zGi(z)

)(
Gi(z) + zG′

i(z)
)2

+ 2Φ′
i

(
zGi(z)

)
Gi(z)

1− zΦ′
i

(
zGi(z)

)

=
2Φ′

i(θi)Gi(Ri)

1−RiΦ
′
i(θi)

<∞.

At this point we consider again the first return generating function. It is

defined through a different formula than in Equation (4.7), but they are of

course equivalent:

Ui(z) :=
∑

n≥1

P
[
X(i)

n = ei,∀m ∈ {1, . . . , n} : X(i)
m 6= ei | X(i)

0 = ei
]
zn.

It satisfies the well-known equation Gi(z) = 1/
(
1 − Ui(z)

)
and is strictly

convex. Since G′′
i (Ri) < ∞ we get immediately that U ′′

i (Ri) < ∞. We can

use this result to compute Φ′′
i (θi):

Φ′′
i (θi) = lim

z→Ri

Gi(z)
3U ′′

i (z)(
Gi(z) + zG′

i(z)
)3 =

Gi(Ri)
3U ′′

i (Ri)(
Gi(Ri) +RiG

′
i(Ri)

)3 > 0.

This is a contradiction with our assumption that Φ′′
i (θi) = 0. Consequently

Equation (4.23) lead us to Φ′′(θ̄) > 0.

Lemma 4.3.5. Under Assumption 4.3.1, if Ψ(θ̄) = 0 then Φ′′(θ̄) <∞.

Proof. We will prove by contradiction that the situation Φ′′(θ̄) = ∞ cannot

be compatible with our hypotheses.

Consider the auxiliary function H(z) :=
(
G(z) − G(R)

)2
and its first

derivative H ′(z) = 2G′(z)
(
G(z) −G(R)

)
. Using Equation (4.18), we get

H ′(z) = 2
G(z)Φ′(zG(z)

)

1− zΦ′(zG(z)
)(G(z) −G(R)

)
.

We want to compute the first derivative of H(z) at z = R. For this purpose,

we consider the following limit:

lim
z→R

H ′(z) = lim
z→R

2G(z)Φ′(zG(z)
) G(z) −G(R)

1− zΦ′(zG(z)
) .

Since 2G(z)Φ′(zG(z)
)
tends to A := 2G(R)/R <∞, we just look at:

lim
z→R

G(z)−G(R)

1− zΦ′(zG(z)
) = lim

z→R

Φ
(
zG(z)

)
−G(R)

1− zΦ′(zG(z)
)

= lim
z→R

Φ′(zG(z)
)(
G(z) + zG′(z)

)

−Φ′(zG(z)
)
− zΦ′′(zG(z)

)(
G(z) + zG′(z)

) .
(4.24)
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In the last equality we applied De L’Hôpital’s rule. In order to simplify the

notation we can write G(z) := G(z)+zG′(z), which tends to infinity for z → R.

Recall that θ̄ = θ = RG(R) if Ψ(θ̄) = 0. Therefore, Equation (4.24) yields

H ′(R) = lim
z→R

AΦ′(θ)G(z)
−Φ′(θ)−RΦ′′(θ)G(z)

= lim
x→∞

AΦ′(θ)x
−Φ′(θ)−RΦ′′(θ)x

=
A

−R2Φ′′(θ)
.

If Φ′′(θ̄) = ∞ we get H ′(R) = 0, and consequently X1(z),X2(z) = o(
√
R− z)

where X1(z) and X2(z) are defined in Equation (4.20).

For i ∈ {1, 2} and si ∈ supp(µi), we will write Fi(si|z) =
∑

n≥1 f
(i)
n (si)z

n

for some suitable coefficients f
(i)
n (si) ∈ R. Our next aim is to find real numbers

C
(i)
1 and C

(i)
2 such that

C
(i)
1 X1(z) + C

(i)
2 X2(z) + o(R− z) = LPi, (4.25)

where LPi is a linear polynomial. For this purpose, we rewrite Equations (4.3)

and (4.4) with the help of (4.20). In the following denote by j the element of

{1, 2} which is different from i. We get:

(
1− αj(R−(R−z))

∑

sj∈supp(µj)

µj(sj)
∑

n≥1

f (j)n (sj)
(
ζj(R) +Xj(z)

)n)
×

×
(
ζi(R) +Xi(z)

)
= αiz.

(4.26)

Therefore the coefficients C
(i)
1 and C

(i)
2 of X1(z) and X2(z) respectively, are

C
(1)
1 := 1− α2R

∑

s2∈supp(µ2)

µ2(s2)
∑

n≥1

f (2)n (s2) ζ2(R)n

= 1− α2R
∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(R)

)
,

C
(1)
2 := −α2R1R

∑

s2∈supp(µ2)

µ2(s2)
∑

n≥1

f (2)n (s2)n ζ2(R)n−1

= −α2R1R
∑

s2∈supp(µ2)

µ2(s2)F
′
2

(
s2|ζ2(R)

)
,

C
(2)
1 := −α1ζ2(R)R

∑

s1∈supp(µ1)

µ1(s1)
∑

n≥1

f (1)n (s1)nR
n−1
1

= −α1ζ2(R)R
∑

s1∈supp(µ1)

µ1(s1)F
′
1

(
s1|R1

)
,

C
(2)
2 := 1− α1R

∑

s1∈supp(µ1)

µ1(s1)
∑

n≥1

f (1)n (s1)R
n
1

= 1− α1R
∑

s1∈supp(µ1)

µ1(s1)F1(s1|R1).
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For i = 1, the linear polynomial term on the left hand side of (4.26) is

R1

(
1− α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(R)

))
,

while on the right hand side it is α1z.

For i = 2, we have on the left hand side of (4.26)

ζ2(R)
(
1− α1z

∑

s1∈supp(µ1)

µ1(s1)F1(s1|R1)
)
,

and on the right hand side α2z. Therefore, (4.25) holds with

LP1 := α1z −R1

(
1− α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(R)

))
and

LP2 := α2z − ζ2(R)
(
1− α1z

∑

s1∈supp(µ1)

µ1(s1)F1(s1|R1)
)
.

The coefficients C
(i)
1 , C

(i)
2 satisfy

C
(1)
1 C

(2)
2 − C

(2)
1 C

(1)
2 = 0. (4.27)

Indeed, assume that C
(1)
1 C

(2)
2 −C(2)

1 C
(1)
2 6= 0. Then the following linear system

C
(1)
1 X1(z) + C

(1)
2 X2(z) + o(R− z) = LP1,

C
(2)
1 X1(z) + C

(2)
2 X2(z) + o(R− z) = LP2

would have a unique solution for X1(z) and X2(z), but this would mean that

both of them are of order O(R− z). This is in contradiction with (4.21).

Equation (4.27) yields

LP1−
C

(1)
2

C
(2)
2

LP2 = 0. (4.28)

Evaluating the last equation at z = 0 yields

−R1 +
C

(1)
2

C
(2)
2

· ζ2(R) = 0. (4.29)

Since C
(1)
2 < 0 and C

(2)
2 > 0 (this follows by evaluating Equation (4.26)

at z = R with i = 2), Equation (4.29) gives us a contradiction, therefore

Φ′′(θ̄) = ∞ cannot hold when Ψ(θ̄) = 0.

Proposition 4.3.6. Under Assumption 4.3.1, if Ψ(θ̄) = 0 then we can expand

G(z) in a neighborhood of z = R as follows:

G(z) = g0 + g1
√
R− z + o

(√
R− z

)
,

where g0, g1 ∈ R with g1 6= 0.
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Proof. By Lemma 4.3.5 it follows that Φ′′(θ̄) <∞. Therefore we get that the

limit (4.24) tends to a non-zero constant. In particular H ′(R) < 0, thus we

have:

lim
z→R

G(R) −G(z)√
R− z

= lim
z→R

√(
G(z)−G(R)

)2

R− z
=
√

−H ′(R) ∈ (0,∞).

This leads to the proposed expansion, namely

G(z) = G(R)−
√

−H ′(R)
√
R− z + o(

√
R− z),

where
√

−H ′(R) 6= 0.

Now we proceed analogously to the previous section: we substitute the

expansions found in Lemma 4.3.5 into Equations (4.3) and (4.4). Afterwards

we determine step by step the following terms of the expansions of ζ1(z) and

ζ2(z). By the argument explained in Remark 4.3.3, we get the expansion of

G(z).

The next lemma shows that we get only a finite number of singular terms

up to order (R− z)2:

Lemma 4.3.7. Let i ∈ {1, 2}. If Ψ(θ̄) = 0, we can expand ζi(z) in a neigh-

borhood of z = R in the following way:

ζi(z) = ζi(r) + c0
√
R− z +

∑

(q,k)∈T
c(q,k)(R− z)q logk(R− z) +O

(
(R− z)2

)
,

where T is a finite subset of T̂ :=
{
(q, k) ∈ R × N0 | 1/2 < q ≤ 2

}
and

c0, c(q,k) ∈ R with c0 6= 0.

Proof. We start by plugging

ζi(z) = ζi(R) + c0
√
R− z +X

(i)
0 (z), where X

(i)
0 (z) = o(

√
R− z)

into Equations (4.3) and (4.4) and determine step by step the next terms

inductively analogously to the proof of Lemma 4.2.6. Assume now that ζi(z)

has an expansion of the form

ζi(R) + c0
√
R− z +

∑

(q,k)∈T ′

c(q,k)(R− z)q logk(R− z) + o(max T ′),

with T ′ ⊆ T̂ finite. For p > 1,
(
ζi(R) − ζi(z)

)p
can be rewritten as

(−c0)p (R− z)p/2
(
1+

∑

(q,k)∈T ′

c(q,k)

c0
(R− z)q−1/2 logk(R− z)+o

( max T ′
√
R− z

))p

(4.30)

and log
(
ζi(R)− ζi(z)

)
as

C+
1

2
log(R−z)+log

(
1+

∑

(q,k)∈T ′

c(q,k)

c0
(R−z)q−1/2 logk(R−z)+o

( max T ′
√
R− z

))
.

(4.31)
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Once again, if max T ′ = (R− z)q̂ logk̂(R− z) then the next possible terms up

to order (R− z)q̂ in the expansion may only be

(R− z)q̂ logk̂−1(R− z), (R − z)q̂ logk̂−2(R− z), . . . , (R− z)q̂.

We determine step by step the corresponding coefficients of these terms by

plugging the expansions of ζi(z), given by (4.30) and (4.31) into Equations

(4.3) and (4.4), afterwards we compare the error terms.

The following term has the form (R− z)q̌ logǩ(R− z), where q̌ ≤ 2 is now

a sum of elements from the finite set
{
1/2, q/2, q/2 − 1/2 | (q, ·) ∈ T1 ∪ T2

}

such that q̌ > q̂ (recall the definitions of Ti from (3.3.1)).

By (4.30) and (4.31) there is a maximal ǩ ∈ N0 such that (R−z)q̌ logǩ(R−
z) may be a non-vanishing next term in the expansion of ζi(z). Iterating the

last steps yields the claim of the lemma, since there are only finitely many

possible values for q such that the term (R − z)q logk(R − z) can appear in

the expansion of ζi(z).

Substituting the obtained expansion of ζi(z) into Equation (3.5) yields the

proposed claim of Theorem 4.3.2.

Remark 4.3.8. The result could also be obtained by singularity analysis (see

[19, Section VI.7]), but one still has to distinguish different cases according to

positivity and finiteness of Φ′′(θ̄).



Chapter 5

Remaining Cases and

Examples

In this chapter we finish the classification of the free products of the form

Γ1 ∗ Γ2 (see Section 5.1); afterwards (in Section 5.2) we extend our results to

the more general free products Γ1 ∗ . . . ∗ Γm with m > 2. Finally, in Section

5.3 we show a few examples with the relative computations.

5.1 The remaining Cases

In this section we look at all remaining cases of free products of type Γ1 ∗ Γ2

not covered by Chapter 4.

5.1.1 Case G1(R1) < ∞ and G′
1(R1) = ∞

Theorem 5.1.1. Consider the free product of the form Γ1 ∗ Γ2, such that

G1(R1) <∞, G′
1(R1) = ∞ and G′

2(R2) <∞. Then:

µ(nδ)(e) ∼





C1 ·R−nδn−3/2, if θ̄ = θ1/α1 or Ψ(θ̄) ≤ 0,

C2 ·R−nδn−λ2 · logκ2(n), if θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) > 0.

Proof. We will divide the proof into two parts, and we will show that under

the given hypotheses both behaviors are possible.

For the first part let us assume that θ̄ = θ1/α1. We use again the first

return generating function, defined by Equation (4.7):

U1(z) =
∑

g∈Γ1

µ1(g) z F1(g
−1|z).

As previously said (see the proof of Lemma 4.2.4), we have the well-known

equation G1(z) = 1/
(
1−U1(z)

)
. Therefore, G′

1(R1) = ∞ implies U ′
1(R1) = ∞,

and by [64, Equation (9.14)] we get:

Ψ1(α1θ̄) = Ψ1(θ1) = lim
z→R1

Ψ1

(
zG(z)

)
= lim

z→R1

1

zU ′
1(z) + 1− U1(z)

= 0. (5.1)
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Thus,

Ψ(θ̄) = Ψ1(α1θ̄) + Ψ2(α2θ̄)− 1 = Ψ1(θ1) + Ψ2(α2θ̄)− 1 = Ψ2(α2θ̄)− 1.

Recall that Ψ(t) is strictly decreasing and Ψ2(0) = 1. Therefore Ψ(θ̄) < 0, and

consequently we obtain the asymptotic behavior µ(nδ)(e) ∼ C1R
−nδn−3/2; see

[64, Theorem 17.3].

For the case θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) = 0, we perform the same

computations as explained in Section 4.3.

In the case θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) > 0 the Green function G1(z) is

analytic at z = ζ1(R) < R1 and thus we may apply the techniques described

in Section 4.2 to obtain the proposed asymptotic behavior.

At this point, let us remark that the formula for Ψ(t) used in Equation

(5.1) always implies Ψi(θi) = 0 whenever G′
i(Ri) = ∞. Moreover:

Corollary 5.1.2. If G′
1(R1) = G′

2(R2) = ∞, then µ(nδ)(e) ∼ C ·R−nδ ·n−3/2.

Proof. Since U ′
1(R1) = U ′

2(R2) = ∞, Equation (5.1) implies that at least one

of Ψ1(α1θ̄) and Ψ2(α2θ̄) equals zero, yielding Ψ(θ̄) < 0.

5.1.2 Case G1(R1) = ∞

As mentioned earlier (see Section 4.1), for finite groups Γ1 and Γ2, Woess [63]

proved that the asymptotic behavior of the n-step return probabilities is of

the form

µ(nδ)(e) ∼ C ·R−nδ · n−3/2.

Moreover, we get the following asymptotic behaviors:

Theorem 5.1.3. Consider the free product Γ1 ∗ Γ2 with G1(R1) = ∞. Then:

µ(nδ)(e) ∼
{
C1 ·R−nδ · n−3/2, if Ψ(θ̄) ≤ 0,

C2 ·R−nδ · n−λ2 · logκ2(n), if Ψ(θ̄) > 0.

Proof. We have three possibilities:

• If G′
2(R2) = ∞, we have Ψ(θ̄) < 0; see proof of Corollary 5.1.2.

• If G2(R2) < ∞ and G′
2(R2) = ∞ then θ̄ = θ2/α2, and U ′

2(R2) = ∞.

This implies once again Ψ(α2θ̄) = 0, and thus Ψ(θ̄) < 0.

• If G′
2(R2) < ∞ then θ̄ = θ2/α2 and ζ1(R) < R1. Therefore, we can

argue in the same way as in Sections 4.2 and 4.3 to prove the proposed

claim.
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5.2 Free Products with more than two Factors

Let r ∈ N with r ≥ 3. Suppose we are given finitely generated groups

Γ1, . . . ,Γr, and consider the free product Γ := Γ1 ∗ . . . ∗ Γr, on which the

random walk is governed by the measure µ defined as µ :=
∑r

j=1 αjµ̄j ; see

Section 3.2. We get the following result:

Theorem 5.2.1. Consider the free product Γ := Γ1 ∗ . . . ∗Γr (r ≥ 3) equipped

with a random walk governed by µ. Assume that the Green functions Gi(z) on

the free factors Γi satisfy Assumption 3.3.1, whenever G′
i(R) <∞. Then the

asymptotic behavior of the corresponding n-step transition probabilities must

obey one of the following laws: CR−nδ n−λi logκi(n), where λi and κi are

inherited from one of the µi’s, or CR−nδ n−3/2 with some constant C = Cµ

depending on µ.

Proof. The proof is based on the induction on the number of free factors: we

consider the Green function associated to the random walk on Γ∗ := Γ1 ∗
. . . ∗ Γr−1 governed by µ∗ :=

∑r−1
j=1

αj

α1+...+αr−1
µ̄j (denote by R∗ its radius of

convergence). It has an expansion either of the form (5.2) or of the form (5.3):

G∗(z) =
D∑

k=0

gk(R
∗ − z)k +

∑

(q,k)∈T
g(q,k)(R

∗ − z)q logk(R∗ − z)

+O
(
(R∗ − z)D+2

)
,

(5.2)

where T is a finite subset of {(q, k) ∈ R×N0 | D < q ≤ D+2} and gk, g(q,k) ∈ R,

and:

G∗(z) = g0 + g1
√
R∗ − z +

∑

(q,k)∈T
g(q,k)(R

∗ − z)q logk(R∗ − z)

+O
(
(R∗ − z)2

)
,

(5.3)

where T is a finite subset of {(q, k) ∈ R × N0 | 1/2 < q ≤ 2} and g0, g1, g(q,k)
are real values. Thus, we may apply the results from Chapter 4 to the free

product Γ∗ ∗Γr equipped with µ = (α1 + . . .+αr−1)µ
∗ +αrµ̄r and obtain the

proposed claim.

5.3 Examples

In this section we would like to present some examples to clarify the funda-

mental concepts and to show to the reader that in a few concrete cases these

behaviors can be explicitly computed.

5.3.1 Free Products of Lattices

Let us take d1, . . . , dr ∈ N. In this subsection we consider free products of

the form Γ := Zd1 ∗ . . . ∗ Zdr , equipped with a nearest neighbor random walk,

that is, we always assume supp(µi) = {±e(i)j | 1 ≤ j ≤ di}, where e(i)j is the

j-th unit vector in Zdi . In the following subsection we show that the Green

functions of nearest neighbor random walks on Zd satisfy Assumption 3.3.1.
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Expansion of the Green Function on Zd

Since the factors of the free product are d-dimensional lattices, we compute

explicitly the Green function on each factor, depending on d ∈ N.

Given a probability measure π supported by {±e1, . . . ,±ed}, the set of

natural generators of Zd. Then π defines a random walk on Zd, and we denote

by π(n) its n-fold convolution power. We write for 1 ≤ i ≤ d

βi := π(ei) + π(−ei) and pi :=
π(ei)

π(ei) + π(−ei)
.

Denote by 0 the zero vector in Zd. Once again Gd(z) :=
∑

n≥0 π
(n)(0)zn

denotes the associated Green function, which has radius of convergence Rd.

The crucial point for our later discussion is the following:

Proposition 5.3.1. The Green function of the random walk on Zd has an

expansion of the form

Gd(z) =

{
f(z) + g(z)(Rd − z)(d−2)/2, if d is odd,

f(z) + g(z)(Rd − z)(d−2)/2 log(Rd − z), if d is even,

where the functions f(z), g(z) are analytic in a neighborhood of z = Rd and

moreover g(Rd) 6= 0.

Remark 5.3.2. For simple random walks on Zd, i.e. π(±ei) = 1/(2d), a proof

of this proposition can be found in [64, Proposition 17.16]. Here we generalize

the statement to arbitrary nearest neighbor random walks on Zd, but we will

only give a sketch of the proof and refer once again to [64].

Proof. First, note that the spectral radius of the random walk on Zd is given

by

ρ =
d∑

i=1

βi
√

4pi(1− pi) =
1

Rd
;

compare with [64, Theorem 8.23]. For every i ∈ {1, . . . , d}, we define a random
walk on the i-th factor Z, governed by a probability measure πi such that

πi(1) := pi and πi(−1) := 1 − pi. A standard tool that comes into play when

dealing with random walks on Cartesian products is the exponential generating

function: for z ∈ C

E(z) :=

∞∑

n=0

π(n)(0)
zn

n!
,

defined on Zd. Analogously we can define it coordinate-wise as follows: on the

i-th factor the exponential generating function is given by

Ei(z) :=
∑

n≥0

π
(n)
i (0)

zn

n!
=

∫ 1

−1
e
√

4pi(1−pi)tz
1

π
√
1− t2

dt.

In the last equation we applied the following relation:

π
(n)
i (0) =

∫ 1

−1

√
4pi(1− pi)

n
tn

1

π
√
1− t2

dt.



5.3 Examples 45

Furthermore, we get E(z) =
∏d

i=1Ei(βiz) =
∫ ρ
−ρ e

tz
(
f̂1 ∗ . . . ∗ f̂d

)
(t)dt, where

f̂i(t) :=
1

βi
√

4pi(1− pi)
f0

( t

βi
√

4pi(1− pi)

)

with

f0(t) :=





1
π
√
1−t2

, if t ∈ (−1, 1),

0, otherwise.

This allows us to rewrite the Green function in the following way:

Gd(z) =

∫ ρ

−ρ

1

1− zt

(
f̂1 ∗ . . . ∗ f̂d

)
(t) dt. (5.4)

Our next aim is to prove that there is a function gd(t), which is analytic in a

neighborhood of t = ρ and satisfies gd(ρ) 6= 0 such that

(
f̂1 ∗ . . . ∗ f̂d

)
(t) = (ρ− t)(d−2)/2gd(t). (5.5)

To prove this, we define f̄i(t) := f̂i
(
βi
√

4pi(1− pi)− t
)
and show inductively

that we can write

(f̄1 ∗ . . . ∗ f̄d)(t) = t(d−2)/2ḡd(t),

where the function ḡd(t) is analytic in a neighborhood of t = 0 and ḡd(0) 6= 0.

Analogously to the proof of [64, Proposition 17.16], we may conclude together

with (5.4) and (5.5) that Gd(z) has the proposed expansion.

Remark 5.3.3. With the help of Darboux’s method it follows that the asymp-

totic behavior of π(2n)(0) is of the form CR−2n
d n−d/2. This asymptotic be-

havior can also be deduced by Cartwright and Soardi [11].

Complete Classification of the Asymptotic Behavior

Observe that a nearest neighbor random walk on Zd has period 2 since it

can return to the origin only in an even number of steps. Therefore, the

period of a nearest neighbor random walk on Zd1 ∗ Zd2 is δ = 2. Now we can

give a complete classification of the asymptotic behavior of the n-step return

probabilities of nearest neighbor random walks on Zd1 ∗ Zd2 :

Theorem 5.3.4. Consider irreducible nearest neighbor random walks on the

lattices Zd1 and Zd2 with d1 ≤ d2. Then the n-step return probabilities of the

associated random walk on Zd1 ∗ Zd2 obey one the following laws:

µ(2n)(e) ∼





C1 ·R−2n · n−d1/2, if Ψ(θ̄) > 0 and θ̄ = θ1/α1,

C2 ·R−2n · n−d2/2, if Ψ(θ̄) > 0 and θ̄ = θ2/α2 < θ1/α1,

C3 ·R−2n · n−3/2, otherwise.

Remark 5.3.5. For seek of completeness, even though the reader might have

already noticed it, we point out the following fact: if both d1 and d2 are smaller

than 5, the function Ψ(θ̄) cannot be positive. Therefore the first two behaviors

described by Theorem 5.3.4 can show up only if at least one of the factors has

dimension at least 5.
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Consider now the multi-factor free product Zd1 ∗ . . . ∗ Zdr . Let µi be the

simple random walk on Zdi for each i ∈ {1, . . . , r}, i.e., µi(±e(i)j ) = 1/(2di),

where e
(i)
j is the j-th unit vector in Zdi .

As described in Section 3.2, choose α1, . . . , αr > 0 s.t.
∑r

j=1 αj = 1 and

denote by Gi(z) the Green function of the simple random walk on Zdi . In this

case Ri = 1, since each factor is amenable.

Cartwright [9] computed numerically some of the values of Ψi

(
Gi(1)

)

(where Ψi(t) is defined by Equation (3.7)) and showed that Ψi

(
Gi(1)

)
→ 1

when di grows to infinity. Thus, for large di we have Ψi

(
Gi(1)

)
> 1 − 1/r.

Recall also that Ψi(t) is decreasing. By [64, Equation 9.21] we know that

Ψ(θ̄) = 1 +
r∑

j=1

(
Ψi(αiθ̄)− 1

)
,

where θ̄ = min1≤i≤r θi/αi. If all exponents di ≥ 5 are large enough, we get

Ψ(θ̄) > 0. Furthermore, if αi is chosen large enough, we get an asymptotic

behavior of the form Ci R
−2n n−di/2.

On the other hand, one can define (symmetric) measures µ1, . . . , µr sup-

ported on the natural generators to obtain a C0 R
−2n n−3/2-law: it suffices to

choose µ1 and µ2 such that Ψ1(θ1),Ψ2(θ2) < 1/2, and α1 and α2 such that

θ̄ = θ1/α1 = θ2/α2, yielding

Ψ(θ̄) = 1 +
(
Ψ1(θ1)− 1

)
︸ ︷︷ ︸

<−1/2

+
(
Ψ2(θ2)− 1

)
︸ ︷︷ ︸

<−1/2

+
r∑

k=3

(
Ψk(αkθ̄)− 1

)

︸ ︷︷ ︸
≤0

< 0.

That is, we can have r+1 different asymptotic behaviors. This finally proves

the following

Theorem 5.3.6. Let r ∈ N, r ≥ 2 and d1, . . . , dr ∈ N. For i ∈ {1, . . . , r},
consider a probability measure µi supported on the natural set of generators

of Zdi. For any α1, . . . , αr > 0 with
∑r

i=1 αi = 1, let µ :=
∑r

i=1 αiµi govern

a (irreducible) random walk on the free product Zd1 ∗ · · · ∗ Zdr starting at its

identity e.

Then the return probabilities µ(2n)(e) have an asymptotic behavior either

of the form C · ρ2n · n−di/2 for i ∈ {1, . . . , r} or of the form C · ρ2n · n−3/2 for

some constant C = Cµ depending on µ.

Moreover, if all exponents di are different and min{d1, . . . , dr} ≥ 5 then

exactly r+1 different asymptotic behaviors may occur by choosing the random

walk adequately.

For instance, consider Γ = Z5 ∗Z6 ∗Z7 equipped with simple random walks

µ1, µ2 and µ3 on each free factor. For i ∈ {1, 2, 3}, we define Ψi(t) accord-

ing to Equation (3.7). In [9] Cartwright computed the values of Ψ1

(
G1(1)

)
,

Ψ2

(
G2(1)

)
and Ψ3

(
G3(1)

)
, which are 0.691, 0.824 and 0.876 respectively.

Thus, the random walk on Z5 ∗ Z6 governed by µ12 := α∗
1µ̄1 + α∗

2µ̄2, where

α∗
1 = α1/(α1 + α2) and α∗

2 = α2/(α1 + α2), satisfies Ψ(M) ≥ 0.515 with
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M := min{θ1/α∗
1, θ2/α

∗
2}. That is, M = R1,2G1,2(R1,2), where G1,2(z) is the

Green function of the random walk on Z5∗Z6 with radius of convergence R1,2.

Since all Ψi-functions are strictly decreasing, we obtain for the random walk

on Γ = Γ1 ∗ Γ2 with Γ1 = Z5 ∗ Z6 and Γ2 = Z7:

Ψ(θ̄) = Ψ1

(
(α1 + α2)θ̄

)
+Ψ2(α3θ̄)− 1 ≥ 0.515 + 0.876 − 1 > 0.

For the simple random walk on Γ, we have then the asymptotic non-exponential

type n−7/2, if α1 + α2 < M/
(
M +G3(1)

)
. Otherwise, if M = θ1/α

∗
1 we have

the asymptotic behavior n−5/2, and if M = θ2/α
∗
2 6= θ1/α

∗
1 we have n−3.

5.3.2 (Z/mZ) ∗ Zd

Consider the groups Γ1 = Z/mZ and Γ2 = Zd for any m,d ∈ N with m ≥ 2.

Suppose we are given a probability measure µ1 on Γ1 and a probability measure

µ2 on Zd, which is supported on the natural generators. Then G1(1) = ∞,

and thus we get the following classification:

µ(nδ)(e) ∼
{
C1 ·R−nδ · n−d/2, if Ψ(θ̄) > 0,

C2 ·R−nδ · n−3/2, otherwise.

Once again let us remark that if d ≤ 4 we have Ψ(θ̄) < 0: this follows from

the fact that G′
2(R2) = ∞ (see Proposition 5.3.1) and Corollary 5.1.2.

5.3.3 Πq ∗ Zd

Consider the groups Γ1 = Πq := ∗qi=1(Z/2Z) and Γ2 = Zd for any q, d ∈ N with

q ≥ 2. Observe that the Cayley graph of Γ1 is the homogeneous tree of degree

q. Suppose we are given probability measures µ1 on Γ1 and µ2 on Zd, which

are both supported on the natural generators. If q = 2 then G1(1) = ∞, and

thus we get the same classification as in the case (Z/mZ) ∗ Zd. If q ≥ 3, then

it is well-known (see e.g. Section 4.1, [64, Proposition 17.4] and [65, Equation

(4.5)]) that G1(z) can be written as

G1(z) = A(z) +
√

R1 − z B(z),

where A(z), B(z) are analytic in a neighborhood of z = R1 and B(R1) 6= 0.

Therefore, we get the following classification for the associated random walk

on the free product Γ1 ∗ Γ2:

µ(2n)(e) ∼
{
C1 ·R−2n · n−d/2, if θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) > 0,

C2 ·R−2n · n−3/2, otherwise.

Analogously to the previous example, observe that d ≤ 4 implies Ψ(θ̄) < 0.
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Chapter 6

Phase Transitions

6.1 Classification of Phase Transitions

At this point we would like to change the point of view of our investigation:

up to now we have been interested in whether it was possible to find different

measures that give us certain behaviors.

Now we fix the measures µ1 and µ2 on the free factors Γ1 and Γ2, and see

what happens on the free product Γ = Γ1 ∗ Γ2 when we make the parameter

α1 vary. More precisely we look at the variation of Ψ(θ̄) as a function of α1.

We start with the following result:

Lemma 6.1.1. Assume θ̄ <∞. Then the function Υ : (0, 1) 7→ R defined by

Υ(α1) := Ψ1(α1θ̄) + Ψ2

(
(1− α1)θ̄

)
− 1

is continuous, strictly decreasing on the interval
(
0, θ1

θ1+θ2

]
and strictly increas-

ing on the interval
[

θ1
θ1+θ2

, 1
)
.

Proof. Continuity of Υ is immediate, since Ψ1 and Ψ2 are analytic in an open

neighborhood of the intervals [0, θ1) and [0, θ2) respectively.

Note that Υ(α1) coincides with Ψ(θ̄), but seen as a function of α1.

We divide the proof of this lemma into three parts, according to finiteness

of θ1 and θ2.

Case θ1, θ2 <∞. If 0 < α1 <
θ1

θ1+θ2
then θ̄ = θ2/α2, therefore

Υ(α1) = Ψ1

( α1

1− α1
θ2

)
+Ψ2(θ2)− 1.

Since the function α1
1−α1

is strictly increasing, it follows that Ψ1(
α1

1−α1
θ2) is

strictly decreasing, implying Υ(α1) strictly decreasing.

If α1 =
θ1

θ1+θ2
we obtain θ̄ = θ1/α1 = θ2/α2, i.e.,

Υ(α1) = Ψ1(θ1) + Ψ2(θ2)− 1.

If θ1
θ1+θ2

< α1 < 1 we have

Ψ(θ̄) = Ψ1(θ1) + Ψ2

(
1− α1

α1
θ1

)
− 1.
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Since 1−α1
α1

is strictly decreasing, Υ(α1) is a strictly increasing function in the

above-mentioned interval.

Case θ1 = ∞. In this case θ̄ = θ2
1−α1

. The same reasoning as before shows

that Υ(α1) is strictly decreasing in the interval (0, 1).

Case θ2 = ∞. In this case θ̄ = θ1
α1
. Analogously, Υ(α1) is strictly increasing

in the interval (0, 1).

Let us remark that θ̄ = ∞ implies Ψ(θ̄) < 0 (see [64, Theorem 9.22]);

otherwise we would have a contradiction to transience of the process.

Now we can give a complete picture of the phase transition of the asymp-

totic behavior of the return probabilities in dependence of the parameter α1,

afterwards we present some examples.

In the following we discuss the different possible behaviors of the function

Υ(α1) = Ψ(θ̄). In Figures 6.1–6.6, the dashed line represents approximately

the qualitative behavior of Υ(α1); we denote its zeros (if they exist) by αlow

and αhigh (with αlow ≤ αhigh). Moreover, we denote

αc := θ1/(θ1 + θ2).

Our approach is the following: we decompose the interval (0, 1) into subin-

tervals such that every choice of α1 in a fixed subinterval leads to the same

non-exponential type. With the help of Figures 6.1–6.6 (at the end of this

chapter) we discuss case by case the different behaviors of Υ(α1), and for each

situation we give an example of a nearest neighbor random walk on Zd1 ∗Zd2 .

Recall that Ψ(0) = Ψi(0) = 1.

A: See Figure 6.1. Example: Γ = Zd1 ∗ Zd2 with d1, d2 ≥ 5 and µ1, µ2
such that Ψ1(θ1) < 1/2 and Ψ2(θ2) < 1/2 (by the argument at the end

of Section 4.1 and by [64, Lemma 17.9], such measures exist). Since

Ψi(θi) = 0 implies Φ′
i(θi) = 1/Ri, by differentiating (3.6) yields a con-

tradiction to Proposition 5.3.1 (according to which G′
i(Ri) must be finite

due to di ≥ 5), therefore we get Ψi(θi) > 0. Hence:

– If α1 is small (close to zero), then θ̄ = θ2/(1−α1) and therefore on

the limit for α1 → 0 we have Ψ1

(
α1

θ2
1−α1

)
→ 1. Then

Ψ(θ̄) = Ψ1

(
α1

θ2
1− α1

)
+Ψ2(θ2)− 1, (6.1)

that is, Ψ(θ̄) > 0 if α1 is sufficiently small. This yields a n−d2/2-law

for small values of α1.

– With a similar reasoning to the one above, we can see that if α1 is

close to 1 then θ̄ = θ1/α1, and we get a n−d1/2-law.

– For α1 = αc, we get Ψ(θ̄) = Ψ1(θ1) + Ψ2(θ2) − 1 < 0, therefore in

this case we have a n−3/2-law.



6.1 Classification of Phase Transitions 51

B: See Figure 6.2. Example: Γ = Z2 ∗ Z7. By Lemma 6.1.1 the function

Υ(α1) is strictly decreasing and θ̄ = θ2/α2. As in Case A we can divide

the reasoning according to the following different situations:

– If α1 is small (close to zero) then the same reasoning as in (6.1)

leads to Ψ(θ̄) > 0, that is, we have a n−d2/2-law for small α1.

– If α1 is close to 1 then Ψ1(α1
θ2

1−α1
) → 0 (recall that by Equation

(5.1) we have limt→∞Ψ1(t) = 0), and since Ψ2(θ2) < 1, we get

Ψ(θ̄) = Ψ1

(
α1

θ2
1− α1

)
+Ψ2(θ2)− 1 < 0.

Therefore we have a n−3/2-law for α1 close to 1.

C: See Figure 6.3. Example: Γ = Z7∗Z2, we have the symmetric situation

as in Case B. This gives an example for this case by exchanging the roles

of Z2 and Z7.

D: See Figure 6.4. Example: Γ = Z5 ∗ Z6 with µ1 and µ2 simple ran-

dom walks. By a result of Cartwright [9], we have Ψ1(θ1) = 0.691 and

Ψ2(θ2) = 0.824. Since Ψ1(t) and Ψ2(t) are strictly decreasing, we have

Υ(α1) ≥ Ψ1(θ1) + Ψ2(θ2)− 1 > 0.

Thus, we obtain a n−5/2-law for α1 ≥ αc, and a n−3-law for α1 < αc.

E: See Figure 6.5. Example: Γ = Z3 ∗ Z4. By Equation (5.1) it follows

that Ψ1(α1θ̄) = 0 or Ψ2(α2θ̄) = 0, that is, we have Υ(α1) < 0 for all

α1 ∈ (0, 1). This yields a n−3/2-law for all α1 ∈ (0, 1).

At this point we would like to give an example (see Figure 6.6) where the

n−3/2-interval described in Case A collapses to a singleton. For this purpose,

we need to prove the following:

Lemma 6.1.2. Consider Γ = Z5 ∗ Z6. Then there are probability measures

µ1 and µ2 supported on the natural generators of Z5 and Z6 respectively, such

that Ψ1(θ1) = Ψ2(θ2) =
1
2 .

Proof. Let i ∈ {1, 2}. In this example we have d1 = 5, d2 = 6. Choose any

δ ∈ (0, 1) and define

ν
(i)
δ (x) :=

{
(1− δ)/2, if x = (±1, 0, . . . , 0) ∈ Zdi ,

δ
2di−2 , if x = (0, . . . , 0,±1, 0, . . . , 0) ∈ Zdi \ {(±1, 0, . . . , 0)}.

(6.2)

The Green function associated with the random walk on Zdi governed by the

symmetric measure ν
(i)
δ has radius of convergence Ri = 1; see [64, Cor. 8.15].

Moreover, if δ = 1−1/di then Ψ1(θ1) = 0.691 > 1/2 and Ψ2(θ2) = 0.824 > 1/2;

see Cartwright [9].

On the other hand, choosing δ small enough, then Ψ1(θ1) < 1/2 and

Ψ2(θ2) < 1/2. A proof of this fact can be seen in [64, Lemma 17.9]. It remains
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to show that Ψi(θi) varies continuously in dependence of δ, which implies that

there is some value δ
(i)
0 such that Ψi(θi) = 1/2.

Denote by Ui(δ|z) and Ψi(δ|t) the generating functions Ui(z) and Ψi(t)

relative to the measure defined in (6.2).

Recall that

Ψi(δ|θi) =
1

U ′
i(δ|1) + 1− Ui(δ|1)

.

Since Ui(δ|1) can be rewritten as a power series in the variable δ, the function

δ 7→ Ψi(δ|θi) is continuous in δ. This finishes the proof.

Therefore, an example for Figure 6.6 is Γ = Z5 ∗ Z6 with measures µ1 and

µ2 chosen in such a way that Ψ1(θ1) = Ψ2(θ2) = 1/2. Obviously, we have

Υ(αc) = Ψ1(θ1) + Ψ2(θ2)− 1 = 0, implying the following possible asymptotic

behaviors:

µ(2n)(e) ∼





C1 ·R−2n · n−5/2, if α1 > αc,

C2 ·R−2n · n−3/2, if α1 = αc,

C3 ·R−2n · n−3, if α1 < αc.

As a final remark let us explain that if Υ(α1) > 0, it is not possible that Υ(α1)

is strictly increasing or decreasing for all α1 ∈ (0, 1). In order to show this

assume (by contradiction) that Υ(α1) is strictly increasing. Then, by Lemma

6.1.1, we have that θ2 = ∞ must hold, that is, G2(R2) = ∞.

The same reasoning as in Equation (5.1) leads to limz→R2 Ψ2

(
zG(z)

)
=

limt→∞Ψ2(t) = 0. Therefore, for α1 small enough we obtain

Ψ(θ̄) = Ψ1(θ1) + Ψ2

(
(1− α1)

θ1
α1

)
− 1 < 0.

Analogously, under the assumption Υ(α1) strictly decreasing, we find out that

Ψ(t) must have a zero.

6.2 Higher Asymptotic Orders

The techniques we used for determining the asymptotic behavior give us not

only the leading term n−λ logκ n, but also the following higher order terms,

according to the singular terms in the expansion after the leading one. For

instance, consider a nearest neighbor random walk on Z7 ∗ Z8 with α1 =

θ1/(θ1+ θ2). Then the associated Green function has the following expansion:

4∑

k=0

gk(R− z)4 + ĝ1(R− z)5/2 + ǧ1(R− z)3 log(R− z)

+ ĝ2(R− z)7/2 + ǧ2(R− z)4 log(R− z) + o
(
(R− z)4

)
,

where ĝ1 6= 0. That is,

µ(2n)(e) ∼ R−2n ·
(
C1 n

−7/2 + C2 n
−4 +C3 n

−9/2 + C4 n
−5 + o(n−5)

)
,

where C1 6= 0.
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Pictures of the different possible Behaviors

Figure 6.1: Type A

Figure 6.2: Type B

Figure 6.3: Type C
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Figure 6.4: Type D

Figure 6.5: Type E

Figure 6.6: Type A - singleton



Part II

Branching Random Walks

on Free Products



56 Phase Transitions



Chapter 7

Branching Random Walks on

Free Products

A Branching Random Walk (BRW for short) is a stochastic process, discrete

in space and time, which we can visualize as a cloud of particles, growing and

moving. It is characterized by two kinds of randomness, that we can describe

as follows: at each unit of time every alive particle has a random amount

of offspring, afterwards the old particles die and in the meanwhile the new

particles move independently of each other, performing one step according to

a underlying random walk.

We investigate BRW’s defined on free products of groups, more precisely

we look at their trace in the so-called weak-survival case.

7.1 Definition of the BRW

Let us fix two probability measures ν : N ∪ {0} → [0, 1] and µ : Γ → [0, 1].

The former is the offspring distribution, while the latter is the distribution of

the underlying random walk.

The law ν is defined such that for all k ∈ N ∪ {0}

νk := probability that a particle has exactly k offspring.

We have already described in Chapter 3 the features of the law µ: recall

Equation 3.1. From now on we assume that µ is symmetric.

As it can easily be seen, ν and µ are completely independent of each other:

they are fixed at the beginning and do not change throughout the whole time

of the process.

A BRW is a process that can be defined inductively, and this description

can be better followed with the help of Figures 7.1–7.5:

Step 1: We start with one particle at the root (a distinguished vertex), we will

always assume that the root is the element e; see Figure 7.1.

Step 2: The particle splits into a random number of offspring, according to the

law ν, afterwards it dies; see Figure 7.2.
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Step 3: The new particles perform (independently of each other) one step ac-

cording to the law µ; see Figure 7.3.

Step 4: As soon as they reach the new vertex, they split again (independently)

into a random amount of particles, according to ν, and so on; see Figures

7.4 and 7.5.

Among the most referred books about BRW’s there are the work of Athreya

and Ney (see [2]) and the pioneer book by Harris (see [28]), whose contribution

has been collected in [1]. To have quite a good understanding of this concept,

the reader is invited to consult these references.

Let Eν :=
∑

k≥0 kνk denote the expected value of the offspring distribution.

We mention here some of the fundamental results about BRW’s.

Long ago, in 1873, Francis Galton asked the question regarding the prob-

ability of survival of surnames. The following year, Reverend Henri Watson

gave him a solution, and they published the well-known paper [60]. The main

result is the following:

Eν ≤ 1 =⇒ P(the process dies out within a finite time) = 1,

Eν > 1 =⇒ P(the process survives for infinite time) > 0.

A BRW on a Cayley graph is called recurrent if each vertex is visited infinitely

many times and transient if any finite subset is eventually free of particles. The

interested reader can find useful explanations about Galton–Watson processes

and Branching Markov Chains in [66, Chapter 5].

In the nineties, Benjamini and Peres showed another fundamental result

(see [4]): if the given structure is non-amenable, there is a value R > 1 such

that

Eν < R =⇒ the BRW is transient,

Eν > R =⇒ the BRW is recurrent.

Moreover they find that R coincides with the inverse of the spectral radius of

the corresponding underlying random walk. By analogy to the previous part

of the work, we replace the notation R by R.

Gantert and Müller (see [20]) showed that at the critical value Eν = R the

process is transient.

Whenever we consider the situation 1 < Eν ≤ R, we say that the process

is in the weak survival case, while if Eν > R we are speaking about the strong

survival case.

We also refer to [26] for the corresponding result in the continuous setting.

In view of Section 2.1.2, a natural question that can be asked is “how big

is the random set of accumulation points of the BRW, in relation to the whole

boundary of the free product?”

Denote by Λ the random set of accumulation points of the process, and by

Ω the boundary of Γ.
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In the specific case of homogeneous trees, a precise answer comes from the

work of Hueter and Lalley [31], where they prove that in the weak survival

case (the only non-trivial case):

dim(Λ) ≤ 1

2
dim(Ω),

where dim(·) can denote the Box-counting dimension or the Hausdorff dimen-

sion. We will prove (see Theorems 8.1.1 and 9.1.1) that in our setting they

coincide.

Recall from Section 2.1.2 that for every set Ω′ ⊂ Ω we denote by HD(Ω′)
its Hausdorff dimension, and by BD(Ω′) its Box-counting dimension. In order

not to create confusion, we will be consistent with this notation.

An interesting phenomenon that we find on free products is the following:

we can divide the set Λ into two subsets: one consists of the typical ends,

and the other of the atypical ends. We speak of typical accumulation points

when we consider ends arising as limit of infinite words, while the atypical

accumulation points arise from parts of the process remaining infinitely often

in a copy of one of the factors. This is of course possible in case of transiency

of the process, but the necessary condition is that at least one factor is infinite.

We will give a characterization of this phenomenon (see Theorem 7.4.1) and

we prove that the amount of the atypical accumulation points does not affect

the Hausdorff (Box-counting) dimension of Λ, see Corollary 8.1.2.

Similar results are proved in the deterministic case where we show that the

atypical ends of the boundary of the free product do not give any contribution

to the Hausdorff (or Box-counting) dimension of Ω (see Corollary 9.1.2).

In case Γ is a free product of finite groups, we present a simpler version

of our results (see Chapter 10). In the same chapter we show that everything

holds as well if we consider free products with amalgamation.

At this point we can define a very useful concept, i.e. the type of a word.

For every u = u1u2 · · · um ∈ Γ define the type of u as follows:

τ(u) = i (7.1)

if its last “block” um ∈ Γ×
i . Moreover we set τ(e) := 0.

Remark 7.1.1. Recall that in this second part of the work we always assume

that the random walk on Γ is symmetric, unless otherwise explicitly stated.

This assumption can be dropped for free products of finite groups. In this case

the crucial property F (e, x|R) < 1 holds for all x ∈ Γ \ {e}. More precisely,

let us point out that in the symmetric case we have

G(e, e|z) > F (e, x|z)G(x, x|z)F (x, e|z),

implying F (e, x|R) < 1. But if the groups are finite we get, using [64, Lemma

17.1 and Proposition 9.8] for any x = x1 . . . xm ∈ Γ \ {e}

F (e, x1 . . . xm|R) =

m∏

j=1

Fτ(xj)

(
eτ(xj), xj | ζτ(xj)(R)

)
< 1,

because ζi(R) < 1, since Gi(ei, ei | 1) = ∞ on a finite group Γi.
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7.2 Pictures of the inductive Steps of a BRW

Figure 7.1: Step 1, one particle at e

Figure 7.2: Step 2, offspring at e
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Figure 7.3: Step 3, the offspring move

Figure 7.4: Step 4, the offspring have descendants
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Figure 7.5: Repetition, the descendants move

7.3 Tree-indexed BRW’s

For sake of clarity, we would like to summarize the main argument described

in [4].

Let T be a rooted infinite tree. The root is denoted by o and let v be any

vertex of T . Then we denote by l(v) the (graph) distance of v from o.

The random walk on Γ indexed by T is the collection of Γ-valued random

variables (Sv)v∈T defined as follows: label the edges of T with i.i.d. random

variables ηv with distribution µ, i.e. the random variable ηv is the label of the

edge (v−, v).
Define Sv := e ·∏l(v)

i=1 ηvi where 〈v0 = o, v1, . . . , vn = v〉 is the path, up to level

n, of the unique geodesic connecting the root o to v.

A tree-indexed random walk becomes a BRW if the underlying tree is a

Galton–Watson tree induced by the offspring distribution ν (for a detailed

description about Galton–Watson trees the reader is referred to [38, Section 1

and Chapter 5]).

We will refer to T as the family tree. More precisely, a vertex v ∈ T is a

particle of the BRW, and the vertices at level n of T represent the particles

alive at generation n.

7.3.1 Colored BRW

A variation of the BRW is the colored BRW , see [31]. This process behaves

like a standard BRW where in addition each particle is either blue or red. In

order to define this colored version we choose a subset M of Γ that plays the
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role of a “paint bucket”. We start the BRW with one blue particle at e. Blue

particles located outside M produce blue offspring. A blue particle that hits

M is frozen (makes no further movement and has no offspring anymore) and is

replaced by a red particle. This new particle starts an ordinary (red-colored)

branching random walk. As a consequence, every red particle has exactly one

“frozen” ancestor in M .

We denote by Z∞(M) ∈ N ∪ {∞} the random number of (blue) frozen

particles in M during the whole branching process. If M = {x} then we just

write Z∞(x).

Depending on the different purpose, we will be freely switching between

the different versions of the BRW; nevertheless it will always be clear from the

context which description we are using.

7.4 Typical vs. Atypical Accumulation Points

Analogously to [31], we have that the Hausdorff (or Box-counting) dimension

of the set Λ depends only on the expected value Eν. To simplify the notation,

we denote it by λ := Eν. Recall that R is the inverse of the spectral radius of

the random walk governed by µ, i.e. the critical value described by [4].

Recall the notation introduced in Section 2.1 and Equation 3.4.

The aim of this section is to prove the following result:

Theorem 7.4.1. Consider λ ∈ (1,R]. Then P
[
Λ ∩ Ωi 6= ∅

]
is either 0 or 1,

and P
[
Λ ∩ Ωi 6= ∅

]
= 1 if and only if ζi(λ) > 1. More precisely:

1. If ζi(λ) ≤ 1 then ∅ ( Λ ⊆ Ω∞.

2. If ζi(λ) > 1 then ∅ ( (Ω∞ ∩ Λ) ⊂ Λ with Λ ∩ Ωi 6= ∅ and we have that

Card(Λ ∩ Ωi) = ∞.

The last possibility can only show up if Γi is infinite, for some index i ∈ I.

Remark 7.4.2. If one of the free factors is an infinite amenable group, its

ends do not appear in Λ. In other words, if Ri = 1 is the radius of convergence

of Gi(ei, ei|z) then ζi(λ) ≤ 1 for all λ ∈ (1,R]; see [64, Lemma 17.1a]. Con-

sequently, none of the ends belonging to Ωi contribute to Λ, that is, Λ∩Ωi = ∅
almost surely.

Before proving the theorem, we illustrate the above described behavior by

two examples:

Example 7.4.3. Consider Γ = Zd1 ∗Zd2 and let µ1 and µ2 be two symmetric

probability measures on Zd1 and Zd2 respectively. Due to Kesten’s amenability

criterion (see Section 1.3.4) we have R1 = R2 = 1. Consequently, Λ ⊆ Ω∞
almost surely for all λ ≤ R.

Example 7.4.4. Consider Γ = Γ1 ∗ Γ2, where Γ1 and Γ2 are non-amenable

groups, and let µi define a symmetric random walk on Γi for i ∈ {1, 2}.
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Non-amenability implies R1,R2 > 1 and Gi(Ri) <∞.

Choosing

α1 =
R1G1(R1)

R1G1(R1) +R2G2(R2)
=

θ1
θ1 + θ2

we obtain by [64, Lemma 17.1] that ζ1(R), ζ2(R) > 1. Therefore, there are

values λ1, λ2 ∈ (1,R) such that ζ1(λ1) = ζ2(λ2) = 1. This determines a

change of behavior at λ1 and λ2.

7.4.1 Proof of Theorem 7.4.1

Using the description of a tree-indexed random walk (see [4]) it is easy to see

that the distribution of the location of a particle at the n-th generation has

the same distribution as the location of a (non-branching) random walk on Γ

after n steps.

In other words:

Fact 7.4.5. Let v ∈ T with l(v) = n for some n ≥ 1. Then

P[Sv = y] = P [Xn = y] = µ(n)(y).

Consider the colored BRW: the next Lemma gives us a formula for the

expected number of elements frozen in a set M ⊆ Γ. A proof of this fact can

be found for example in [45] or [31, Lemma 1].

Lemma 7.4.6. For any M ⊆ Γ, we have E
[
Z∞(M)

]
= F (e,M |λ).

For seek of clarity, we split the proof of Theorem 7.4.1 into the proof of

Propositions 7.4.7, 7.4.8 and 7.4.9.

Recall from Section 2.1 that Ω
(0)
i ⊆ Ωi ⊆ Ω.

Proposition 7.4.7. Ends of Ω
(0)
i belong to Λ with positive probability if and

only if ζi(λ) > 1, i.e., P
[
Λ ∩ Ω

(0)
i 6= ∅

]
> 0 if and only if ζi(λ) > 1.

Proof. In this context it is convenient to work with the colored BRW. In fact,

the idea of the proof is to define an embedded Galton–Watson process with

mean value ζi(λ), that counts the number of particles that hit Γi.

The BRW starts with one particle at e. Recall from Section 1.2.2 that by

construction we have that every identity element ei of Γi is identified with e.

The first generation of the embedded Galton–Watson process consists of all

particles of the BRW frozen at Γ×
i .

Since µ has finite support, every particle visiting Γ×
i has to pass through

supp(µi). Hence, Z∞(Γ×
i ) = Z∞(supp(µi)), which is almost surely finite,

because the BRW is transient. Therefore the amount of particles of the first

generation is almost surely finite.

Now let us fix a vertex x ∈ Γ×
i . For each particle frozen at x we start a new

BRW where particles freeze when reaching Γi \ {x}. The second generation

of the embedded Galton–Watson process consists of all these newly-frozen

particles.
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Further generations are constructed inductively in the same way. Let ψn

denote the amount of particles of this process at generation n, and let F (e, x|z)
be as defined in Equation (3.2). Then (ψn)n≥0 is a Galton–Watson process

with mean

mi = E
[
Z∞
(
supp(µi)

)]
= F

(
e, supp(µi)|λ

)
= ζi(λ).

Hence, this Galton–Watson process survives with positive probability if and

only if ζi(λ) > 1; see e.g. [28, Theorem 6.1] or the original paper by Galton

and Watson [60]. Therefore, we have that

ζi(λ) > 1 ⇐⇒ Γi is visited infinitely often by the process.

The previous statement can be written as

ζi(λ) > 1 ⇐⇒ P
[
Λ ∩ Ω

(0)
i 6= ∅

]
> 0,

which concludes the proof.

Recall from (7.1) the definition of type τ(·) of a word u = u1u2 · · · um, i.e.

the value i ∈ I such that um = i.

In the next proposition we show that

ζi(λ) > 1 =⇒ Card(Λ ∩ Ωi) = ∞.

Proposition 7.4.8. If ζi(λ) > 1 then there are almost surely infinitely many

cosets xΓi, where the BRW accumulates. That is, the set
{
x ∈ Γ

∣∣ τ(x) 6= i, xΩ
(0)
i ∩ Λ 6= ∅

}

is almost surely infinite.

Proof. We construct the family tree T of the BRWwith branching distribution

ν in the following way. We start with one geodesic v∞ = 〈o, v1, v2, . . .〉 and

attach to each of the vertices independent copies of Galton–Watson trees where

the distribution of the first generation is ν̃(k) = ν(k + 1) for k ≥ 0 and ν for

the other generations.

As already argued in Fact 7.4.5, the trajectory along v∞ has the same

distribution of a non-branching random walk. Hence, Svn converges almost

surely to a random infinite word g∞ = g1g2 . . . ∈ Ω∞ as n → ∞ (here we

mean convergence in the sense that the block length of the common prefix of

the location of Svn and g∞ tends to infinity).

Moreover, we define the random indices n1 := min{m ∈ N | gm ∈ Γi}, and
recursively nk := min{m ∈ N | m > nk−1, gm ∈ Γi}. Note that these indices

are almost surely finite; see e.g. [24, Section 7.I].

Denote by v̂k the first vertex in v∞ such that v̂k = g1 . . . gnk
, and by Λv

the set of accumulation points of the descendants of any element v ∈ T .

Moreover, let Bk be the set of offspring of v̂k different from the one on the

geodesic connecting the root to v∞.
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Let Ak denote the following event:

Ak := {Λv ∩ SvΩ(0)
i 6= ∅ for some v ∈ Bk s.t. τ(v) = i}.

We point out that the events Ak are i.i.d. because by transitivity we have

P[Λv ∩ SvΩ(0)
i 6= ∅] = P[Λ ∩ Ω

(0)
i 6= ∅], for every v ∈ T .

Now, due to Proposition 7.4.7 and the fact that

P[Bk 6= ∅,∃v ∈ Bk : τ(Sv) = i] =
(
1− ν(1)

)
· P[v ∈ Bk : τ(Sv) = i | Bk 6= ∅]

≥
(
1− ν(1)

)
· αi > 0

we have P[Ak] ≥ c for all k and some c > 0. The Borel–Cantelli Lemma

finishes the proof.

In order to complete the proof of Theorem 7.4.1, we still need to look at

the critical and subcritical cases ζi(λ) ≤ 1, and this is done in the next

Proposition 7.4.9. If ζi(λ) ≤ 1 then P[Λ ∩ Ωi 6= ∅] = 0.

Proof. From Proposition 7.4.7 it follows that P
[
Λ ∩ xΩ(0)

i 6= ∅
]
= 0 for all

x ∈ Γ: indeed, each x ∈ Γ is visited only a finite amount of times almost

surely. Each particle that hits x, starts its own BRW there and each of these

BRW’s hits xΩ
(0)
i only finitely many times with probability one.

Since we can write Λ ∩ Ωi as a disjoint union, i.e.

Λ ∩Ωi =
⊔

x∈Γ:τ(x)6=i

(Λ ∩ xΩ(0)
i ),

we have

P [Λ ∩ Ωi 6= ∅] =
∑

x∈Γ:τ(x)6=i

P
[
Λ ∩ xΩ(0)

i 6= ∅
]
= 0,

which concludes the proof.
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Dimension of Λ

The aim of this chapter is to show how to measure the size of Λ. i.e. the

random set of accumulation points of the BRW.

The most important tool that we are going to exploit is a variation of the

growth function defined in Section 1.3:

F(λ|z) :=
∑

x∈Γ
F (e, x|λ) zl(x), (8.1)

where we recall that l(u) is the graph distance of u from the root.

For i ∈ I we define

F+
i (λ|z) :=

∑

x∈Γ×

i

F (e, x|λ) zl(x) =
∑

x∈Γ×

i

Fi

(
ei, x

∣∣ζi(λ)
)
zl(x), (8.2)

and

Fi(λ|z) :=
∑

n≥1

∑

x=x1...xn∈Γ:
x1∈Γ×

i

F (e, x|λ) zl(x) = F+
i (λ|z)

(
1 +

∑

j∈I\{i}
Fj(λ|z)

)
.

(8.3)

By definition it follows:

F(λ|z) = 1 +
∑

i∈I
Fi(λ|z). (8.4)

We denote by R(F) and by R(F+
i ) the radii of convergence of 8.1 and 8.2

respectively.

By relations (8.3) and (8.4) we get

Fi(λ|z) = F+
i (λ|z)

(
F(λ|z) −Fi(λ|z)

)
,

or equivalently

Fi(λ|z) = F(λ|z) F+
i (λ|z)

1 +F+
i (λ|z) . (8.5)

Hence we have

F(λ|z) = 1 +
∑

i∈I
Fi(λ|z) = 1 + F(λ|z)

∑

i∈I

F+
i (λ|z)

1 +F+
i (λ|z) ,
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which leads to

F(λ|z) = 1

1−∑i∈I
F+

i (λ|z)
1+F+

i (λ|z)

. (8.6)

This relation holds for every z ∈ C with |z| < R(F).

8.1 Box-counting Dimension & Hausdorff Dimen-

sion

The the main result that we prove is the following:

Theorem 8.1.1. Suppose that ν has finite second moment. Then the box-

counting dimensions of Λ and Λ∩Ω∞ exist and equal the Hausdorff dimensions

of Λ and Λ ∩ Ω∞ respectively. Furthermore:

BD(Λ) = BD(Λ ∩ Ω∞) = HD(Λ) = HD(Λ ∩ Ω∞) =
log z∗

log α
,

where z∗ is the smallest real positive number such that

∑

i∈I

F+
i (λ|z∗)

1 + F+
i (λ|z∗) = 1. (8.7)

A first consequence of Theorem 8.1.1 that we obtain, is that only the set

of infinite words contributes to the dimension of Λ:

Corollary 8.1.2. For i ∈ I, HD(Λ ∩ Ωi) < HD(Λ ∩ Ω∞).

The proof of Theorem 8.1.1 is split into two sections. In Section 8.1.1 we

find the upper bound for the Box-counting dimension, that is the same as the

lower bound computed in Section 8.1.2.

8.1.1 Upper Bounds

The aim of this section is to show that log z∗/ log α is an upper bound for

BD(Λ). For this purpose we estimate the growth rate of the set of visited

sites. Therefore denote by

Hn :=
{
x ∈ Γ

∣∣ l(x) = n, x is visited by the BRW
}
. (8.8)

Since the random walk governing the considered BRW is of nearest-neighbor

type, we are sure that there are no jumps along the paths. Recall that on

the boundary we are working w.r.t. the metric defined by Equation (2.1).

Therefore, for every m ∈ N, the set of accumulation points of the process can

be covered by a finite amount of balls of radius αm.

Finiteness follows from the fact that the free product itself is locally finite,

and that the BRW has finite support.

From now on, Bm denotes the ball of radius m (in the Cayley-graph dis-

tance) centered at the origin. In formulas we have

Λ ⊆
⋃

x∈Hm

{ω ∈ Ω | x lies in the ω-component of X \Bm−1} .
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The growth rate of the set of occupied vertices is given by

lim
m→∞

(Card(Hm))1/m,

which is what we are going to estimate.

Recall from Section 7.3.1 the definition of Z∞(x). We remark that x ∈ Hm

if and only if Z∞(x) ≥ 1. Therefore, by Lemma 7.4.6,

1 ≤ ECard(Hm) ≤
∑

x∈Γ:l(x)=m

EZ∞(x) =
∑

x∈Γ:l(x)=m

F (e, x|λ) =: Hm.

Since each vertex can be reached more than once, we have thatHm+n ≥ HmHn

and hence Fekete’s lemma (see [16, Satz II] and [56, Lemma 11.6]) implies that

limm→∞H
1/m
m exists.

We can rewrite Equation (8.1) as F(λ|z) =
∑

m≥0Hm z
m. With this

notation, Equation (8.6) yields

1 ≤ lim
m→∞

H1/m
m = 1/R(F), (8.9)

therefore

R(F) ≤ 1. (8.10)

By Pringsheim’s Theorem R(F) corresponds to the smallest singularity on

the positive x-axis of F(λ|z). This value is either one of the R(F+
i )’s, or the

smallest positive number z∗ such that

∑

i∈I

F+
i (λ|z∗)

1 + F+
i (λ|z∗) = 1.

Before proving that in fact R(F) = z∗, we still need to introduce a few defini-

tions: we will need the so-called last visit generating functions. We define:

Li(xi, yi|z) :=
∑

n≥0

P
[
Y (i)
n = yi,∀1 ≤ m ≤ n : Y (i)

m 6= xi | Y (i)
0 = xi

]
zn and

L(x, y|z) :=
∑

n≥0

P
[
Xn = y,∀1 ≤ m ≤ n : Xm 6= x | X0 = x

]
zn.

By conditioning the random walk on its first visit to yi (on Γi) or to y (on Γ),

and its last visit to xi (on Γi) or to x (on Γ) we obtain:

Gi(xi, yi|z) = Fi(xi, yi|z) ·Gi(yi, yi|z) = Gi(xi, xi|z) · Li(xi, yi|z),
G(x, y|z) = F (x, y|z) ·G(y, y|z) = G(x, x|z) · L(x, y|z).

(8.11)

Thus, by transitivity we obtain

F (x, y|z) = L(x, y|z) for any x, y ∈ Γ and |z| ≤ R. (8.12)

Let x, y, w ∈ Γ be such that all paths of the random walk going from x to w

must pass through y. Then

F (x,w|z) = F (x, y|z) · F (y,w|z), L(x,w|z) = L(x, y|z) · L(y,w|z); (8.13)
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this can be checked by conditioning the paths from x to w on the first/last

visit to y.

Now we can show that R(F) = z∗. We split this proof into two lem-

mas: first we show that R(F) must be positive and strictly smaller than 1.

Afterwards we show that R(F) < R(F+
i ), giving the proposed result.

Lemma 8.1.3. R(F) ∈ (0, 1).

Proof. The Cayley graph of Γ grows at most at exponential rate, therefore

R(F) > 0.

To see that R(F) < 1 recall from Equation (8.11) that F (e, x|λ) and

G(e, x|λ) are comparable, i.e., G(e, x|λ) = F (e, x|λ)G(e, e|λ).
Hence, for some C > 0 we have that for all m ∈ N

∑

x:l(x)≤m

F (e, x|λ) ≥ C
∑

x:l(x)≤m

G(e, x|λ).

The sum on the right hand side is the expected number of times (i.e. the

total expected occupation time) that the BRW visits the ball Bm. Since

the underlying random walk is of nearest-neighbor type, all particles up to

generation m must be contained in the ball Bm. Moreover we know that the

expected population size at time m is λm (recall that λ > 1). Therefore we

have ∑

x:l(x)≤m

F (e, x|λ) =
∑

k≤m

Hk ≥ C
∑

x:l(x)≤m

G(e, x|λ) ≥ λm.

Taking the limit on m→ ∞ we obtain:

lim
m


∑

k≤m

Hk




1/m

≥ lim
m

(λm)1/m > 1,

Therefore Hm grows exponentially. By relation (8.9) we have the statement.

In the next lemma we show that R(F) must be the solution of (8.6).

Lemma 8.1.4. For all i ∈ I, R(F) = z∗ < R(F+
i ).

Proof. From an intuitive point of view, this must be true: the value R(F)−1

represents the growth rate of the process on Γ, while R(F+
i )−1 is the growth

rate of its projection on the i-th factor. The proof is based on the following

considerations: if the growth of the process on Γi is less than exponential, then

in view of Lemma 8.1.3 this property is trivially true. While, if the process

grows exponentially on each Γi, since the amount of Γi’s at each level increases

at exponential rate as well, it is becomes natural to guess that

R(F+
i )−1 < R(F)−1.

We split the proof into two parts: first we investigate the situation ζi(λ) ≤ 1,

and then the case ζi(λ) > 1.
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Case ζi(λ) ≤ 1: In view of Proposition 7.4.7 we know that in this situation

the expected value of the process projected on Γi is at most 1. This implies

that on each copy of Γi it will eventually die out almost surely, which means

its growth is less than exponential. Therefore from Lemma 8.1.3 the statement

follows.

Case ζi(λ) > 1: In this case the growth of the projected process is at least

exponential. Therefore we consider the following:

Hn =
∑

x∈Γ:
l(x)=n

F (e, x|λ) =
n∑

k=1

∑

x=x1...xk∈Γ:
l(x)=n

k∏

j=1

F (e, xj |λ).

Another fact that we have to keep in mind is:
∑

x∈Γi′ :l(x)=1 F (e, x|λ) ≥ ζi′(λ).

We can minorate Hn by conditioning the BRW on performing ⌊n/2⌋ con-

secutive steps on Γi, and then alternating between Γi and another factor Γi′ .

This leads to

Hn ≥
(

1

R(F+
i )

)⌊n/2⌋ ⌈n/2⌉∑

k=1

∑

x=x1...xk∈Γ:
l(x)=⌈n/2⌉

k∏

j=1

F (e, xj |λ)

≥
(

1

R(F+
i )

)⌊n/2⌋



⌈n/2⌉∑

k=1

(⌈n/2⌉
k

)(
1

R(F+
i )

)⌊n/2⌋−k

(ζi′(λ))
k


 .

The binomial coefficients come from the fact that we are counting all different

possibilities that satisfy our assumption. This is the same as counting in how

many ways we can place (n − ⌊n/2⌋ − k) indistinguishable balls into k urns.

Applying the binomial theorem (a more general version that can also be

used here is explained in [11]) we get

lim
n
(Hn)

1/n ≥
√

1

R(F+
i )

√
1

R(F+
i )

+ ζi′(λ)

=
1

R(F+
i )

√
1 +R(F+

i )ζi′(λ) >
1

R(F+
i )
.

(8.14)

The next lemma gives an almost sure upper bound for |Hm|1/m as m→ ∞.

Its proof is based on Markov’s Inequality and the Borel–Cantelli Lemma.

Lemma 8.1.5. Recall from (8.8) the definition of Hm. We have

lim sup
m→∞

(Card(Hm))1/m ≤ 1

z∗
almost surely.

Proof. Choose a value ε > 0 and define the event

Am :=
[
Card(Hm)1/m ≥ 1 + ε

z∗
]
.
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Since

lim sup
m→∞

(
E (Card(Hm))

)1/m ≤ lim sup
m→∞

H1/m
m =

1

z∗
,

there is a value m0 ∈ N such that E (Card(Hm)) ≤
(

1
z∗ +

ε
2

)m
for all m ≥ m0.

Therefore, for large m, using Markov’s inequality

P[Am] = P
[
Card(Hm) ≥ (1 + ε)m

(z∗)m

]
≤ (z∗)mE (Card(Hm))

(1 + ε)m
≤
(
1 + z∗ε/2

)m

(1 + ε)m
.

By Lemma 8.1.3 we know that z∗ < 1, therefore the Borel–Cantelli Lemma

yields that Am occurs only finitely many times almost surely. In other words,

lim sup
m→∞

Card(Hm)1/m ≤ (1 + ε)/z∗

almost surely. Since this inequality holds for every ε > 0, we get the proposed

claim.

Finally, the desired upper box-counting dimension is obtained:

Proposition 8.1.6.

BD(Λ) ≤ log z∗

log α

Proof. Denote by N(αm) the number of balls of radius at most αm needed to

cover the random set Λ. Then, for every ε > 0, we have that

N(αm) ≤ Card(Hm) ≤
(

1

z∗
+ ε

)m

almost surely for sufficiently large m. Therefore,

BD(Λ) = lim sup
m→∞

logN(αm)

− log αm
≤ lim sup

m→∞

log
(

1
z∗ + ε

)m

− logαm
=

log
(

1
z∗ + ε

)

− log α
.

Letting ε→ 0 proves the claim.

8.1.2 Lower Bounds

In this section we show that log z∗/ log α is also the lower bound for the Haus-

dorff dimension of Λ. From this fact we can conclude that the box-counting

dimension exists, indeed HD(Λ) ≤ BD(Λ) ≤ BD(Λ).

The “skeleton” of the proof recalls the main ideas used to prove a similar

result in [31, Section 6.3]: in order to help the reader follow, we use the same

notation as [31].

The main idea is to construct a sequence of Galton–Watson trees τr to

embed in the BRW, in such a way that the limit sets of the τr’s are subsets of

the limit set Λ.

Remark 8.1.7. In this context, r denotes the parameter of the Galton–Watson

trees, like in [31]: the offspring of a vertex x in τr are the vertices y at dis-

tance r from x, such that a particle of the BRW located at x has at least one

descendant entering the level containing y, for the first time at y.
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Let us denote by Λτr the limit set of τr.

As r goes to infinity we have HD(Λτr) → HD(λ). This approximation

relies mainly on the following facts:

• the particles travel essentially along the geodesics;

• the limit sets of multy-type Galton–Watson trees are well understood.

These two facts are still true in the case of free products of finite groups,

therefore the proof of the lower bound is similar to the one for homogeneous

trees (see [31]).

The case with at least one infinite factor, needs some extra care. In this

situation particles do not necessarily travel along geodesics, and infinite-type

Galton–Watson processes are not so easy to handle. To overcome these diffi-

culties we approximate the infinite factors by an increasing sequence of finite

subgraphs. These, denoted by X (d)
i , are the ones induced by balls

Bi(d) := {y ∈ Γi | l(y) ≤ d}, d ≥ 1.

Letting d→ ∞ we get the optimal bound log z∗/ log α.
Fix a value d ≥ 1. At this point we add an auxiliary vertex †i to X (d)

i ,

which we call “the tomb”. All edges in Xi exiting Bi(d) now lead to †i.
The random walk

(
Y

(i,d)
n

)
n∈N0

on X (d)
i behaves like the random walk on

Γi, with the exception that each particle that leaves Bi(d) is sent to †i (i.e. it
dies).

The next step is the construction of the free product X (d) whose free factors

are the X (d)
i ’s: analogously to Equation (1.1) we obtain

X (d) :=
{
x1 . . . xn ∈ Γ : n ∈ N, xj ∈

⋃

i∈I
X (d)
i \ {ei, †i},

and xj ∈ X (d)
i ⇒ xj+1 /∈ X (d)

i

}
∪ {e, †} ,

where † symbolizes the tomb on X (d). Roughly speaking, we identify all tombs

†i into a single vertex † ∈ X (d).

We identify every x ∈ X (d) with the corresponding element in Γ. Analo-

gously to Section 3.2, we lift the random walks defined on X (d)
i to a random

walk
(
X

(d)
n

)
n∈N0

defined on X (d). This new measure is the one governing the

associated BRW.

In order to avoid confusions, we write G(d)(x, y|z) for the Green function of

the random walk on X (d). In the same way, we denote the generating functions

on X (d) like the ones on Γ, but with an index “(d)” to distinguish the different

settings.

Remark 8.1.8. The comparison between the BRW defined on Γ and the one

defined on X (d) is in some sense very easy. There are particles of the first

process which can come back to the origin e after exiting the ball Bi(d), while

in the second case, by definition of X (d)
i they would be killed. Therefore the

return probability in the first situation is (from the exponential point of view) at
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least as large as the second one. It follows easily that the radius of convergence

of G(d)(x, y|z) is at least R.

From now on, unless otherwise stated, we refer to geodesics in the sense of

the Cayley-graph distance.

For every x, y ∈ Γ, we define x : y to be the set of vertices w ∈ Γ such that

there is a geodesic from x to y which passes through w. For u ∈ Γ, we denote

by d(u, x : y) the minimal distance (w.r.t. the Cayley-graph metric) of u to

any element of x : y.

Now let us reason in terms of the colored BRW on X (d). Let Z
(d)
∞ (y|x)

denote the total amount of blue particles arriving and freezing at y ∈ X (d),

under the assumption that the BRW starts with only one blue particle at x.

For r ∈ N, we denote by Z
(d)
∞,r(y|x) the total amount of particles counted in

Z
(d)
∞ (y|x) whose trails remain within distance r from a geodesic connecting x

to y.

In other words, at all sites u such that d(u, x : y) > r every blue particle

turns into a red one.

In the following we set x0 := x−1
1 for any x = x1 . . . xm ∈ X (d). The proofs

of the next two Lemmas follow step by step to the ones of [31, Lemma 4] and

[31, Proposition 7]. Nevertheless we present the main ideas for completeness.

Lemma 8.1.9.

lim
r→∞

inf
x=x1...xm∈X (d)

(∏m
j=1 EZ

(d)
∞,r(x1 . . . xj |x1 . . . xj−1)

EZ
(d)
∞ (x|e)

)1/l(x)

= 1.

Sketch of the Proof. First of all we see that for every x ∈ X (d) \ {e}
m∏

j=1

EZ(d)
∞,r(x1 . . . xj|x1 . . . xj−1) ≤ EZ(d)

∞,r(x|e) ≤ EZ(d)
∞ (x|e).

This implies that the seeked limit is at most 1.

In order to prove the other direction, consider an arbitrary element in

X (d), say x = x1 . . . xm, and apply Lemma 7.4.6 in this setting: we have

EZ
(d)
∞ (x|e) = F (d)(e, x|λ). Now observe that using Equations (8.11) and (8.13)

we get

EZ(d)
∞ (x|e) = F (d)(e, x|λ) = G(d)(e, e|λ)

G(d)(x, x|λ)

m∏

j=1

L
(d)
τ(xj)

(
eτ(xj), xj

∣∣ ζ(d)τ(xj)
(λ)
)
.

For every r ≥ 1, we can denote by G(d,r)(x, y|z) the Green function associated

to the random walk on X (d) which remains within distance r from the geodesics

x : y. In the same way we can define the first-visit and last-visit generating

functions F (d,r)(x, y|z), and L(d,r)(x, y|z).
We would like to remark that for all z ∈ C such that |z| ≤ R

lim
r→∞

G(d,r)(x, x|z) = G(d)(x, x|z), lim
r→∞

L
(d,r)
i (ei, xi|z) = L

(d)
i (ei, xi|z).
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If we fix any value ε > 0, there is some r such that

L
(d,r)
i

(
ei, xi

∣∣ ζ(d,r)i (λ)
)
≥ (1 − ε)L

(d)
i

(
ei, xi

∣∣ ζ(d)i (λ)
)

for all i ∈ I and xi ∈ X (d)
i \ {ei, †}.

At this point we can conclude the proof using the tree-like structure of

the free product, analogously to [31, Lemma 4], and since ε can be chosen

arbitrarily small, we obtain the claim.

The proof of [31, Lemma 5] can be easily adapted to our setting, giving a

more general result:

Corollary 8.1.10. For all x, y ∈ X (d) and r ≥ 1 we have VarZ
(d)
∞,r(y|x) <∞.

For x ∈ X (d), we define the event E(d)(x) that among all particles counted

in Z
(d)
∞ (x|e) there is at least one particle whose trail has not entered Γ×

1 yet,

and enters the set {
y ∈ X (d) | l(y) = l(x)

}

first at x. Obviously, Z
(d)
∞ (x|e) ≥ 1 on the event E(d)(x) and hence

P
[
E(d)(x)

]
≤ EZ(d)

∞ (x|e).

Lemma 8.1.11.

lim
k→∞

(
min

x=x1...xm∈X(d):
m∈N,x1 /∈Γ1,l(x)=k

P[E(d)(x)]

EZ
(d)
∞ (x|e)

)1/k

= 1.

Proof. The proof of this Lemma is completely analogous to the one of [31,

Proposition 7]. We would like to point out that in this case we must con-

sider the distance from elements x : y (which are sets of paths) instead of

single geodesics. For the rest, we apply the same reasoning explained in [31,

Proposition 7].

Analogously to (8.2) and (8.3), we define for i ∈ I and d ∈ N

L(d)+
i (λ|z) :=

∑

x∈Γ×

i

L(d)(e, x|λ) zl(x) =
∑

x∈Γ×

i

L
(d)
i

(
ei, x

∣∣ζ(d)i (λ)
)
zl(x),

L(d)
i (λ|z) :=

∑

n≥1

∑

x=x1...xn∈X (d)

τ(x1)=i

L(d)(e, x|λ) zl(x).

Therefore we obtain

L(d)
i (λ|z) = L(d)+

i (λ|z)
(
1 +

∑

j∈I\{i}
L(d)
j (λ|z)

)
. (8.15)

Like in the case of Equation (8.6) we have L(d)(λ|z) = 1+
∑

i∈I L
(d)
i (λ|z) and

therefore:

L(d)(λ|z) = 1

1−∑i∈I
L(d)+
i (λ|z)

1+L(d)+
i (λ|z)

.
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Since every L(d)+
i (λ|z) is convergent and strictly increasing for all 0 ≤ z <

R(L(d)+
i ) there is some unique z∗d,L > 0 such that

∑

i∈I

L(d)+
i (λ|z∗d,L)

1 + L(d)+
i (λ|z∗d,L)

= 1.

Hence the radius of convergence of L(d)(λ|z) is given by z∗d,L.
We define for k ∈ N

σ∗k :=
{
x1 . . . xs ∈ X (d)

∣∣ s ∈ N, l(x) = k, x1 /∈ Γ1, xs ∈ Γ1

}
.

Since we excluded the case Card(I) = 2 = Card(Γ1) = Card(Γ2) we have that

σ∗2 6= ∅ and σ∗3 6= ∅. Therefore, σ∗k 6= ∅ for all 2 ≤ k ∈ N.

Lemma 8.1.12.

lim sup
k→∞

(∑

x∈σ∗
k

P[E(d)(x)]

)1/k

=
1

z∗d,L
.

Proof. By Lemma 8.1.11, for all k large enough we have

P[E(d)(x)] ≥ (1− ε)kEZ(d)
∞ (x|e),

uniformly for all x such that l(x) = k.

Recall also that P[E(d)(x)] ≤ EZ
(d)
∞ (x|e). Thus, it is sufficient to prove

lim sup
k→∞

(∑

x∈σ∗
k

EZ(d)
∞ (x|e)

)1/k

=
1

z∗d,L
.

Using again Equations (8.11) and (8.13) we obtain

∑

x∈σ∗
k

EZ(d)
∞ (x|e) =

∑

x∈σ∗
k

F (d)(e, x|λ) =
∑

x∈σ∗
k

G(d)(e, e|λ)
G(d)(x, x|λ)L

(d)(e, x|λ).

Moreover 1 ≤ G(d)(x, x|λ) ≤ G(x, x|λ) = G(e, e|λ) <∞, therefore

lim sup
k→∞

(∑

x∈σ∗
k

L(d)(e, x|λ)
)1/k

= lim sup
k→∞

(∑

x∈σ∗
k

EZ(d)
∞ (x|e)

)1/k
. (8.16)

To determine the left-hand side of (8.16) we need some more tools. Since we

are considering elements starting with all possible words which are not in Γ1,

we define the following generating function:

L(d)
¬1,1(λ|z) :=

∑

n≥2

∑

x=x1...xn∈X (d):
x1 /∈Γ×

1 ,xn∈Γ×

1

L(d)(e, x|λ) zl(x),

whose zk-coefficient is just
∑

x∈σ∗
k
L(d)(e, x|λ). Equation (8.15) tells us

L(d)
1 (λ|z) = L(d)+

1 (λ|z)·
(
1 +

∑

i∈I\{1}
L(d)
i (λ|z)

)
,
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and hence the function 1 +
∑

i∈I\{1} L
(d)
i (λ|z) must have the same radius of

convergence of L(d)(λ|z), which is z∗d,L. Since

0 < L(d)
¬1,1(λ|z) ≤ 1 +

∑

i∈I\{1}
L(d)
i (λ|z),

for all z such that the right hand side converges, the function L(d)
¬1,1 has also

radius of convergence z∗d,L. This yields the claim.

Our next aim is to show that z∗d,L tends to z∗ as d→ ∞.

Since z∗d,L is strictly decreasing in d, and since

lim
d→∞

L(d)(e, x|λ) = L(e, x|λ) = F (e, x|λ) (8.17)

we have z∞ = limd→∞ z∗d,L ≥ z∗. Now we prove that in fact equality holds:

assume z∗ < z∞. In this case we obtain

1 = lim
d→∞

∑

i∈I

L(d)+
i (λ|z∗d,L)

1 + L(d)+
i (λ|z∗d,L)

≥ lim sup
d→∞

∑

i∈I

L(d)+
i (λ|z∞)

1 + L(d)+
i (λ|z∞)

=
∑

i∈I

F+
i (λ|z∞)

1 + F+
i (λ|z∞)

> 1,

which is obviously a contradiction. Thus,

lim
d→∞

z∗d,L = z∗. (8.18)

Choose a number 2 ≤ k ∈ N arbitrarily. Similarly to [31], we embed a Galton–

Watson process in the BRW defined on the free product X (d).

For n ∈ N0, we define the Galton–Watson process as follows: its genera-

tions are denoted by gen(n) and the level of generation n is denoted by σ∗nk.
We denote by ξx a distinguished particle associated to a vertex x ∈ gen(n).

The process is defined inductively as follows:

1. gen(0) := {e} consists of only one particle ξe located at e.

2. y ∈ σ∗(n+1)k belongs to gen(n+1) if and only if there exists a distinguished

particle ξx in gen(n) such that some of its offspring counted in Z
(d)
∞ (y|x)

has a trail which

(a) remains within the set

Γ(x) := {y ∈ Γ | y has the form xw1 . . . ws with w1 /∈ Γ1, s ≥ 1} ∪ {x},

(b) hits the set
{
w ∈ X (d)

∣∣ l(w) = (n+ 1)k
}
first at y.

3. The first particle hitting y ∈ σ∗(n+1)k becomes the distinguished particle

ξy.
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Let φn denote the number of particles alive at generation n. Since we have

the same offspring distribution at every x ∈ σ∗nk, the sequence (φn)n≥0 defines

a Galton–Watson process. We denote its mean value by Md,k. At this point

we can state the following result:

Proposition 8.1.13.

lim sup
k→∞

M
1/k
d,k =

1

z∗d,L
.

Proof. The claim follows directly from Lemma 8.1.12 because per definition

we have Md,k =
∑

x∈σ∗
k
P[E(d)(x)].

A crucial tool in the following is Hawkes’ Theorem: in his work (see [30]) he

finds a way to measure the boundary of a Galton–Watson tree T . This result

is extremely interesting and useful because in a Galton–Watson tree (which

Hawkes calls a simple branching process) each generation has a random amount

of elements. Denote by ∂T the limit set of the tree (i.e. its boundary).

Denote by pk the probability that a vertex has exactly k descendants (to

avoid trivialities assume p0, p1 < 1), and bym :=
∑

k≥0 kpk the expected value

of this offspring distribution.

His main result states as follows:

Theorem 8.1.14 (Hawkes’ Theorem). If the offspring distribution has mean

m > 1 and finite second moment, then, in the event of non-extinction, the

limit set of the Galton–Watson tree T has Hausdorff dimension

HD(∂T ) =
logm

− logα
a.s.

Remark 8.1.15. This result was proved with other techniques by Russell

Lyons (see [39]), using the so-called branching number (which corresponds

to m).

A sharper version of [30] can be found in [37].

Applying Hawkes’ Theorem as in [31, Corollary 7], together with Equation

(8.18) we get the following statement:

Proposition 8.1.16. With probability one,

HD(Λ ∩ Ω∞) ≥ log z∗

log α
.

8.1.3 Proofs of the Main Theorems

At this point we have all the tools we need in order to prove Theorem 8.1.1:

Proof of Theorem 8.1.1. The following chains of inequalities summarize the

previous results and finish the proof of the theorem. For the first part, Propo-

sitions 8.1.6 and 8.1.13 give us

log z∗

log α
≤ HD(Λ) ≤ BD(Λ) ≤ BD(Λ) ≤ log z∗

log α
.
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For the second part we use Proposition 8.1.6 again, together with Proposition

8.1.16, obtaining

log z∗

logα
≤ HD(Λ ∩ Ω∞) ≤ BD(Λ ∩ Ω∞) ≤ BD(Λ ∩ Ω∞) ≤ BD(Λ) ≤ log z∗

logα
.

Proposition 8.1.16 states that

HD(Λ ∩ Ωi) ≤ HD(Λ ∩ Ω∞),

but in the following we prove that in fact strict inequality holds.

Now we prove Corollary 8.1.2, i.e., we show that the amount of non-typical

ends does not give any contribution to the Hausdorff dimension of Λ.

Proof of Corollary 8.1.2. A well-known property of the Hausdorff dimension

is the following: the dimension of a countable union
⋃

iBi of sets Bi ⊆ Ω is

given by the supremum of the dimensions of the single sets Bi. Thus,

HD(Λ ∩ Ωi) = sup
x∈Γ:τ(x)6=i

HD(Λ ∩ xΩ(0)
i ) ≤ sup

x∈Γ:τ(x)6=i
BD(Λ ∩ xΩ(0)

i ).

For any fixed x ∈ Γ with τ(x) 6= i, denote by H(x)
m the vertices y in the coset

xΓi such that l(y) = l(x) +m and y has been visited by the BRW. Therefore,

by the property of tree-like structure endowed by the free product, we get

E|H(x)
m | ≤

∑

y∈Γi:l(y)=m

F (e, xy|λ) = F (e, x|λ)
∑

y∈Γi:l(y)=m

F (e, y|λ).

Now we can observe that the function

F (e, x|λ)
∑

m≥1

∑

y∈Γi:l(y)=m

F (e, y|λ) zm

has radius of convergence equal to R(F+
i ).

Therefore, Lemma 8.1.4 yields

lim sup
m→∞

(
E|H(x)

m |
)1/m ≤ 1/R(F+

i ) < 1/z∗. (8.19)

Applying a similar reasoning to Lemma 8.1.5 and Proposition 8.1.6, we show

that

HD(Λ ∩ Ωi) ≤
log(R(F+

i ))

logα
,

which by (8.19) leads to the statement.
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Chapter 9

Dimension of Ω

In this chapter we find the Hausdorff dimension of the boundary of the free

product: we will use the definitions and the tools described in Section 2.1.

In this case the proofs of the theorems are slightly easier than in the case of

Λ. This is due to the fact that Ω is a deterministic set, while Λ is a random

subset of Ω.

The main methods used to evaluate the dimension of Ω are roughly the

ones described in Chapter 8. For completeness, we present them as well.

We show an analogue of Theorem 8.1.1: we prove the existence of the

box-counting dimension of Ω and express it as the solution of a functional

equation.

In order to do it, we need to introduce some new tools. Recall the definition

of the growth functions from Section 1.3. To simplify the notation we set:

S(z) := Σ(Γ, S | z); Si(z) := Σ(Γi, Si | z);
σ(k) := σ(Γ, S ; k); σi(k) := σ(Γi, Si ; k).

We denote by R(S) and by R(Si) the radii of convergence of S(z) and Si(z)

respectively. With our notation, we can also write

σ(k) = #{x ∈ Γ | l(x) = k}, σi(k) = #{x ∈ Γi | l(x) = k}.

Exactly in the same way as in Chapter 8, we obtain the deterministic corre-

spondent of Equations (8.1)–(8.6): the function corresponding to (8.1) is

S(z) :=
∑

m≥0

σ(m) zm.

Then, for all i ∈ I we define

S+
i (z) :=

∑

m≥1

σi(m) zm,

Si(z) :=
∑

n≥1

∑

m≥1

∑

x=x1...xn∈Γ:
l(x)=m, x1∈Γ×

i

σ(m) zm = S+
i (z)

(
1 +

∑

j∈I\{i}
Sj(z)

)
.
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By definition it follows:

S(z) = 1 +
∑

i∈I
Si(z).

Therefore we get

Si(z) = S+
i (z)

(
S(z)− Si(z)

)
,

hence we have

S(z) = 1 +
∑

i∈I
Si(z) = 1 + S(z)

∑

i∈I

S+
i (z)

1 + S+
i (z)

,

which leads to

S(z) = 1

1−∑i∈I
S+
i (z)

1+S+
i (z)

. (9.1)

To cover Ω with balls of radius αm we need at least σ(m−1) balls, and at most

σ(m). Therefore we are interested in the asymptotic behavior of σ(m)1/m on

the limit m→ ∞.

9.1 Main Results

The main result we would like to present is the following:

Theorem 9.1.1. The box-counting dimensions of Ω and Ω∞ exist and satisfy

BD(Ω) = BD(Ω∞) = HD(Ω) = HD(Ω∞) =
log z∗S
log α

,

where z∗S is the smallest real positive number such that

∑

i∈I

S+
i (z∗S)

1 + S+
i (z∗S)

= 1. (9.2)

Analogously to Corollary 8.1.2 we obtain that the Hausdorff dimension of

Ω arises only from the ends in Ω∞.

Corollary 9.1.2. For all i ∈ I, HD(Ωi) < HD(Ω∞).

9.1.1 Proofs of the Statements

The following lemma shows that the value 1/z∗S corresponds to the growth

factor of the free product.

Lemma 9.1.3.

lim
m→∞

σ(m)1/m =
1

z∗S
< 1.

Proof. Obviously, R(S) ≤ R(F) < 1 since F (e, x|λ) < 1 for all x ∈ Γ \ {e}.
With the same reasoning done for Lemma 8.1.4, we get R(S) = z∗S . Therefore,

if the sequence σ(m)1/m converges, then we have

lim sup
m→∞

σ(m)1/m =
1

z∗S
=

1

R(S) > 1.
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Now we still have to prove that the sequence σ(m)1/m converges for m→ ∞.

By transitivity of Γ, we have σ(m)σ(n) ≥ σ(m + n) for all m,n ∈ N,

i.e. (σ(m))m∈N is a submultiplicative sequence. Fekete’s Lemma implies the

statement.

Remark 9.1.4. One can show analogously to Lemma 8.1.4 that z∗S < R(S+
i ),

being R(S+
i ) the radius of convergence of S+

i (z).

The next proposition shows that the box-counting dimension of Ω equals

the dimension of Ω∞.

Proposition 9.1.5.

BD(Ω) = BD(Ω∞) =
log z∗S
log α

.

Proof. If we try to give a rough estimate of the number of balls of radius αm

that we need to cover Ω∞ we find:

BD(Ω) ≥ BD(Ω∞) ≥ lim inf
m→∞

(
− log σ(m− 1)

log αm

)

= lim inf
m→∞

(
− log σ(m− 1)1/(m−1)

logα

m− 1

m

)
=

log z∗S
log α

.

Analogously,

BD(Ω∞) ≤ BD(Ω) ≤ lim sup
m→∞

(
− log σ(m)

log αm

)

= lim sup
m→∞

(
− log σ(m)1/m

log α

)
=

log z∗S
logα

.

These inequalities lead to the statement.

Finally, we can prove the formula for the Hausdorff dimensions of Ω and

Ω∞.

Proof of Theorem 9.1.1. It is sufficient to show that HD(Ω∞) ≥ log z∗
S

logα , there-

fore we adapt the tools described in Chapter 8 to our new setting.

We approximate the free product Γ by a sequence of “truncated” free

products X (d), and we do the same with the growth functions as well.

Since we are in the deterministic case, Lemma 8.1.11 is trivially true, since

here we do not count particles, but just possible trails. Reasoning in the same

way as done for the first part of the proof of Lemma 8.1.12, we get that the

amount of words of (Cayley graph) length k such that x1 /∈ Γ1 and xk ∈ Γ1

(denote it by σ
(d)
¬1,1(k)) is such that

(
σ
(d)
¬1,1(k)

)1/k k→∞−−−→ 1

z∗d,S

d→∞−−−→ 1

z∗S
.

We can proceed following the proof of Lemma 8.1.12 and embed a “determin-

istic” Galton–Watson tree into the free product analogously to what done in

Subsection 8.1.2. In this case each generation has exactly σ
(d)
¬1,1(k) descendants.
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By Hawkes’ Theorem, the Hausdorff dimension of the boundary of the

embedded tree is bounded from below by log z∗d,S/ log α, and therefore, con-

sidering the limit on d going to infinity we get:

HD(Ω∞) ≥ log z∗S/ log α.

At this point we prove the last result of this section:

Proof of Corollary 9.1.2. Analogously to the proof of Corollary 8.1.2 and by

Remark 9.1.4, we can use the property HD(∪iBi) = supiHD(Bi) for all count-

able unions of sets Bi ⊆ Ω. In this way we can show that

HD(Ωi) = sup
x∈Γ:τ(x)6=i

HD(xΩ
(0)
i ) ≤ BD(Ω

(0)
i ) < BD(Ω∞) = HD(Ω∞).

9.2 Continuity of the Hausdorff Dimension

The aim of this section is to investigate regularity properties of the function

“Hausdorff dimension” in dependence of the parameter λ. For a free product

Γ, let us consider the function

Φ : [1,∞) → R

λ 7→ HD(Λ),

which assigns to every λ the Hausdorff dimension of the limit set of a BRW

with growth parameter λ. The limit case λ = 1 corresponds to the degenerate

case of a non-branching random walk. In this case the Hausdorff dimension is

zero.

We can summarize the main properties of Φ in the following statement:

Theorem 9.2.1. The function Φ(λ) has the following properties:

(i) Φ(λ) is strictly increasing on [1,R], Φ(1) = 0 and Φ(λ) = HD(Ω) for all

λ > R.

(ii) Φ(λ) is continuous on [1,∞)\{R} and continuous from the left at λ = R.

Moreover

Φ(R) ≤ 1

2
HD(Ω).

Proof. Statement (i): This part follows from the next observations:

• the solution of Equation (8.7) must be strictly decreasing in λ;

• the BRW at λ = 1 dies out almost surely (see [60]);

• if λ > R the BRW is recurrent (see [4]) and therefore every point in

Γ ∪Ω is accumulation point for the process, implying HD(Λ) = HD(Ω).
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Statement (ii): This part can be split into two steps: in the first one we show

that Φ is continuous in [1,∞) \ {R} and continuous from the left at λ = R.

Afterwards we show that for all λ ≤ R we have HD(Λ) ≤ 1
2HD(Ω).

Step 1.: In order to prove continuity of Φ, it is sufficient to prove continuity

of the map λ 7→ z∗ = z∗(λ).

First, we prove continuity from the left at every λ0 ∈ (1,∞).

For this purpose, let (λn)n∈N be a sequence of strictly increasing real numbers

such that λn < λ0 and limn→∞ λn = λ0. By domination arguments, z∗(λn) can
not be smaller than z∗(λ0), therefore assume z0 := limn→∞ z∗(λn) > z∗(λ0).
We have that z∗(λn) is strictly decreasing.

Since f(x)/
(
1 + f(x)

)
is strictly increasing in [1,∞) if f(x) is a strictly

increasing function on [1,∞), we get the following contradiction:

1 = lim
n→∞

∑

i∈I

F+
i

(
λn
∣∣z∗(λn)

)

1 + F+
i

(
λn
∣∣z∗(λn)

) =
∑

i∈I

F+
i

(
λ0
∣∣z0
)

1 + F+
i

(
λ0
∣∣z0
)

>
∑

i∈I

F+
i

(
λ0
∣∣z∗(λ0)

)

1 + F+
i

(
λ0
∣∣z∗(λ0)

) = 1.

Thus, limn→∞ z∗(λn) = z∗(λ0).

Since HD(Λ) = HD(Ω) for all λ > R, it remains to prove continuity from

the right for λ0 ∈ [1,R). First of all we consider the case λ0 ∈ (1,R) and

afterwards we prove continuity at λ0 = 1.

Consider a sequence (λn)n∈N of strictly decreasing real numbers such that

λ0 < λn < R, and limn→∞ λn = λ0.

We want to show that under the assumption z0 := limn→∞ z∗(λn) < z∗(λ0)
(by domination arguments, z∗(λn) can not be larger than z∗(λ0)), we get a

contradiction. Observe that z∗(λn) is strictly increasing.

Therefore,

1 = lim
n→∞

∑

i∈I

F+
i

(
λn
∣∣z∗(λn)

)

1 + F+
i

(
λn
∣∣z∗(λn)

) =
∑

i∈I

F+
i

(
λ0
∣∣z0
)

1 + F+
i

(
λ0
∣∣z0
)

<
∑

i∈I

F+
i

(
λ0
∣∣z∗(λ0)

)

1 + F+
i

(
λ0
∣∣z∗(λ0)

) = 1,

which is a contradiction. Consequently, limn→∞ z∗(λn) = z∗(λ0).

It remains to prove continuity from the right at λ0 = 1. In this case we

have that ζi(1) < 1 (for a proof of this result, see e.g. [62, Section 6]). It

follows that for every δ > 0 such that ζi(λ0 + δ) < 1, we have

F+
i (λ0 + δ|1) =

∑

x∈Γ×

i

Fi(ei, x | ζi(λ0 + δ)) =

∑
x∈Γi

Gi(ei, x | ζi(λ0 + δ))

Gi(ζi(λ0 + δ))
− 1

=
1

Gi(ζi(λ0 + δ))
(
1− ζi(λ0 + δ)

) − 1 <∞.

(9.3)
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Here we used the fact that a random walk on Γ is transient, therefore it has

to pass through all intermediate levels at least once:

∑

x∈Γi

Gi(ei, x | ζi(λ0 + δ)) =
∑

x∈Γi

ζi(λ0 + δ)l(x) =
1

1− ζi(λ0 + δ)
.

Let (λn)n∈N be a strictly decreasing sequence of real numbers with limit λ0 = 1.

We write z0 = limn→∞ z∗(λn) ≤ 1. Then, for n large enough,

1 = lim
n→∞

∑

i∈I

F+
i

(
λn
∣∣z∗(λn)

)

1 + F+
i

(
λn
∣∣z∗(λn)

) ≤
∑

i∈I

F+
i

(
1
∣∣z0
)

1 + F+
i

(
1
∣∣z0
) . (9.4)

In order to finish the proof we verify that z∗(1) = 1, from which z0 = z∗(1) = 1

follows.

By Equation (9.3) we get

∑

i∈I

F+
i (1|1)

1 + F+
i (1|1) =

∑

i∈I

(
1−Gi

(
ζi(1)

)(
1− ζi(1)

))
.

From [24, Lemma 5.1] it follows that the quantity

1−Gi

(
ζi(1)

)(
1− ζi(1)

)

is nothing else but the probability that a non-branching random walk on Γ

tends to an infinite word of the form x1x2 · · · ∈ Ω∞ with x1 ∈ Γ×
i . In other

words, the above sum equals 1. By Equation (9.4) the statement follows.

The next result completes the proof of statement (ii):

Step 2.: For all λ ∈ [1,R], HD(Λ) ≤ 1
2HD(Ω).

Following a similar procedure as in [31], define the function

F (2)(λ|z) :=
∑

x∈Γ
F (e, x|λ)2 zl(x),

whose radius of convergence is denoted by z∗2 . The Cauchy-Schwarz Inequality
gives then

1

z∗
= lim sup

m→∞

( ∑

x∈Γ:l(x)=m

F (e, x|λ)
)1/m

≤ lim sup
m→∞

√√√√
( ∑

x∈Γ:l(x)=m

F (e, x|λ)2
)1/m

· lim sup
m→∞

√√√√
( ∑

x∈Γ:l(x)=m

12
)1/m

=

√
1

z∗2
·
√

1

z∗S
.

At this point it suffices (by the formulas given in Theorems 8.1.1 and 9.1.1)

to show that z∗2 ≥ 1. First,

F (2)(λ|1) =
∑

x∈Γ
F (e, x|λ)2 =

1

G(e, e|λ)2
∑

x∈Γ
G(e, x|λ)2

=
1

G(e, e|λ)2
∑

x∈Γ

(∑

n≥0

p(n)(e, x)λn
)2
.
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We can rewrite the squared sum as

(∑

n≥0

p(n)(e, x)λn
)(∑

m≥0

p(m)(e, x)λm
)
=
∑

n≥0

∑

m≥0

p(n)(e, x)p(m)(e, x)λn+m.

By symmetry we can expand the previous as

∑

k≥0

k∑

m=0

p(k−m)(e, x)p(m)(x, e)λk.

Therefore, for every fixed x ∈ Γ, the coefficient of λk in the inner squared sum

can (by symmetry) be rewritten as

1

G(e, e|λ)2
k∑

m=0

p(k−m)(e, x)p(m)(x, e). (9.5)

Thus, every path [x0 = e, x1, . . . , xk = e] of length k (consisting of k + 1

vertices) from e to e is counted k+1 times, because every xi can play the role

of x in Equation (9.5). That is,

F (2)(λ|1) = 1

G(e, e|λ)2
∑

k≥0

p(k)(e, e) · (k + 1) · λk =
λG′(e, e|λ)
G(e, e|λ)2 +

1

G(e, e|λ) .

From this follows z∗2 ≥ 1 whenever λ < R or G′(e, e|R) < ∞, and therefore

we get HD(Λ) ≤ 1
2HD(Ω) for λ < R.

By Step 1 (continuity from the left), we have the result for λ = R as

well.

For some examples the reader is referred to [7, Section 3.1].
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Chapter 10

Finite Case

10.1 Free Products of Finite Groups

In this section we give a more explicit formula for the box-counting dimension

with respect to a slightly changed metric on the boundary in the case of free

products of finite groups. In this case we have Ω = Ω∞.

Throughout the whole chapter we do not need the assumption that the

µi’s are symmetric.

For any ω1 = x1x2 . . . , ω2 = y1y2 · · · ∈ Ω∞ with ω1 6= ω2, we define the

confluent ω1∧ω2 of ω1 and ω2 to be the word x1 . . . xk of maximal length (see

below) such that xi = yi for all 1 ≤ i ≤ k. If x1 6= y1, then ω1 ∧ ω2 := e.

Recall from Section 2.1 that by ‖v‖ we denote the block length of the word

v. The metric on the boundary Ω∞ is defined by

dfinΩ (ω1, ω2) := α‖ω1∧ω2‖

for any arbitrary but fixed α ∈ (0, 1).

With respect to this metric on Ω∞ we can define analogously to (2.2)

and (2.3) the box-counting dimension BDfin(Ω′) and the Hausdorff dimension

HDfin(Ω′) for any Ω′ ⊆ Ω∞.

Now we set

F+
i (λ) := F+

i (λ|1),
and define the matrix M =

(
m(i, j)

)
i,j∈I by

m(i, j) :=

{
F+
j (λ), if i 6= j,

0, if i = j.

Since M is irreducible and has non-negative entries, the Perron–Frobenius

eigenvalue exists (see e.g. [55]). We denote it by θ.

Now let us define the matrix D =
(
d(i, j)

)
i,j∈I by

d(i, j) :=

{
|Γj| − 1, if i 6= j

0, otherwise,

and denote by ̺ its Perron–Frobenius eigenvalue. With this notation we get:
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Corollary 10.1.1.

BDfin(Λ) = HDfin(Λ) = − log θ

logα
and BDfin(Ω) = HDfin(Ω) = − log ̺

log α
.

In order to prove the corollary, we show the following intermediate result:

Lemma 10.1.2.

BDfin(Λ) ≤ − log θ

logα
and BDfin(Ω) = − log ̺

logα
.

Proof. First of all, we define the matrices M0 =
(
m0(i, j)

)
i,j∈I and D0 =(

d0(i, j)
)
i,j∈I by

m0(i, j) :=

{
F+

i (λ), if i = j,

0, otherwise,
d0(i, j) :=

{
|Γi| − 1, if i = j,

0, otherwise.

For m ∈ N, denote by Hfin
m the random number of words of (block) length m

visited by the BRW, and by 1 the vector of length r = Card(I) with all entries

equal to 1. Then

ECard(Hfin
m ) ≤

∑

x∈Γ:‖x‖=m

F (e, x|λ) = 1TM0M
m−11,

σ̂(m) = Card
({
x ∈ Γ

∣∣ ‖x‖ = m
})

= 1TD0D
m−11.

Let u ∈ Rr be an eigenvector w.r.t. the eigenvalue θ such that u ≥ 1

(component-wise). Then:

ECard(Hfin
m ) ≤




F1(λ)
...

Fr(λ)




T

Mm−1u ≤




F1(λ)
...

Fr(λ)




T

θm−1u.

Thus, lim supm→∞
(
EHfin

m

)1/m ≤ θ. Similarly, one can show that

lim
m→∞

σ̂(m)1/m = ̺,

obtaining the two inequalities by taking eigenvectors v1 ≥ 1 and v2 ≤ 1.

Analogously to the proofs of Lemma 8.1.5 and Propositions 8.1.6, 9.1.5 we

obtain the claim.

Now we can prove the stated corollary:

Proof of Corollary 10.1.1. First, we remark that we dropped the assumption

on symmetry of the µi’s, because we are working with finite groups. In the

present setting we have already that F (e, x|λ) < 1 (see Remark 7.1.1).

Let us recall Equation 3.5:

αizG(z) = ζi(z)Gi

(
ζi(z)

)
.
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Since G(R) <∞ and Gi(1) = ∞, we must have ζi(R) < 1. Consequently,

F (e, x1 . . . xk|λ) =
k∏

j=1

Fτ(xj)

(
eτ(xj), xj |ζτ(xj)(λ)

)

<

k∏

j=1

Fτ(xj)

(
eτ(xj), xj |1

)
≤ 1.

In order to show that (− log θ/ log α) is a lower bound for HDfin(Λ), we can

follow the same reasoning explained in [31, Section 6] and in Section 8.1.2.

Analogously to the proof of Theorem 9.1.1 we obtain that HDfin(Ω) =

BDfin(Ω).

As a particular case we can see that when Γ = Γ1∗Γ2 with |Γ1| = |Γ2| <∞,

we get the following explicit formulas for the dimensions:

BDfin(Λ) = HDfin(Λ) = −
log
√
F+
1 (λ)F+

2 (λ)

log α

BDfin(Ω) = HDfin(Ω) = −
log
√(

|Γ1| − 1
)(
|Γ2| − 1

)

log α
.

10.2 Free Products with Amalgamation

An important generalization of free products are amalgamated products (recall

Section 1.2.3 for the definitions).

Take Γ1, . . . ,Γr,H to be finite groups such that each group Γi contains a

subgroup Hi isomorphic to H and denote by φi : Hi → H this isomorphism,

for each i ∈ I.
Moreover, we denote by Si the generating set of Γi and by Ri its relations.

In general, we can define the free product with amalgamation with respect

to the subgroup H by

ΓH := Γ1 ∗H Γ2 ∗H · · · ∗H Γr

:= 〈S1, . . . , Sr | R1, . . . , Rn, (φi(a)) = (φj(a)), ∀a ∈ Hi ∀i, j ∈ I〉.

For i ∈ I, the quotient Γi/Hi consists of all left co-sets of the form

xiHi = {xih | h ∈ Hi},

where xi ∈ Γi.

Now we fix a set of representatives Ri := {gi,1 = ei, gi,2, . . . , gi,ni} for the

elements of Γi/Hi, i.e., for each yi ∈ Γi there is a unique gi,k ∈ Ri such that

yi ∈ gi,kHi. We write τ̂(x) = i if x ∈ Ri \ {ei}.
The amalgam ΓH consists of all finite words of the form

x1x2 . . . xnh (10.1)
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with n ∈ N0, xi ∈ ⋃j∈I Rj \ {ej} and h ∈ H. Here we need that τ̂(xi) 6=
τ̂(xi+1). W.l.o.g. we may identify h with φ−1

1 (h).

Let Ω be the set of all ends of ΓH , which consists of all infinite words of

the form w1w2 . . . ∈
(⋃

i∈I Ri\{ei}
)N

such that τ̂(wi) 6= τ̂(wi+1) for all i ∈ N.

For any two different ends ω1 = x1x2 . . . , ω2 = y1y2 . . . ∈ Ω, we can define

the confluent ω1 ∧ω2 of ω1 and ω2 to be the word x1 . . . xk of maximal length

with xi = yi for all 1 ≤ i ≤ k. Analogously to the previous section, if x1 6= y1,

then ω1 ∧ ω2 := e.

This definition allows us to define a metric on the boundary Ω:

d
(H)
Ω (ω1, ω2) := α‖ω1∧ω2‖ (10.2)

for any fixed parameter α ∈ (0, 1).

With respect to this metric, we can define analogously to (2.2) and (2.3)

the box-counting dimension BD(H)(Ω′) and Hausdorff dimension HD(H)(Ω′)
for any Ω′ ⊆ Ω.

Suppose every group Γi is equipped with a symmetric probability measure

µi, and a value αi > 0 such that
∑

i∈I αi = 1.

The random walk on ΓH is then governed by

µ(x) :=





αiµi(x), if x ∈ Γi \Hi,∑
i∈I αiµi

(
φ−1
i (φ1(x))

)
, if x ∈ H1,

0, otherwise.

For gi ∈ Ri, denote by TgiH the stopping time of the first visit to the set giHi.

We introduce the following generating functions:

FH(gh|z) :=
∑

n≥0

P
[
TgH = n,Xn = gh | X0 = e

]
zn,

where g ∈ ⋃i∈I Ri\{ei}, z ∈ C and h belongs to one of theHi’s. By symmetry

of the µi’s, we have FH(gh|z) ≤ F (e, gh|z) < 1.

Conditioning on the first step of the random walk, we get

FH(gh|z) = µ(gh)z +
∑

g0∈Γτ(g)\gHτ(g)

µ(g0)zFH(g−1
0 gh|z)

+
∑

i∈I\{τ(g)}

∑

g0∈Γi

µ(g0)z
∑

h0∈Hi

FH(g−1
0 h0|z)FH (h−1

0 gh|z).
(10.3)

Since there are only finitely many functions FH(·|z), one can compute FH(·|z)
by solving the finite system of quadratic equations (10.3). We define also

F (H)
i (λ) :=

∑

g∈Ri\{ei},
h∈Hi

FH(gh|λ)

and the matrix N =
(
n(i, j)

)
i,j∈I with entries

n(i, j) :=

{
F (H)
j (λ), if i 6= j,

0, if i = j.
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We denote by θH the Perron–Frobenius eigenvalue of N and by ̺H the one of

the matrix DH =
(
dH(i, j)

)
i,j∈I, defined by

dH(i, j) :=

{
[Γj : Hj]− 1, if i 6= j,

0 if i = j.

Finally, we can state the following formulas for the dimensions:

Corollary 10.2.1. With probability one,

BD(H)(Λ) = HD(H)(Λ) = − log θH
log α

and

BD(H)(Ω) = HD(H)(Ω) = − log ̺H
log α

.

To prove this statement, we start by showing the following intermediate

result:

Lemma 10.2.2.

BD(H)(Λ) ≤ − log θH
log α

and BD(H)(Ω) = − log ̺H
logα

.

Proof. We proceed similarly to the proof of Lemma 10.1.2. We define the
matrices N0 =

(
n0(i, j)

)
i,j∈I and D0,H =

(
d0,H(i, j)

)
i,j∈I by

n0(i, j) :=

{
F (H)

i (λ), if i = j,

0, otherwise,
d0,H(i, j) :=

{
[Γi : Hi]− 1, if i = j,

0, otherwise.

For m ∈ N, let H(H)
m denote the set of words of the form g1 . . . gmh ∈ Γ in the

sense of (10.1). Since every path from e to g1 . . . gmh ∈ Γ has to go through

the vertices g1 . . . gjhj ∈ Γ, where hj ∈ H and hm = h, we have

∑

g1...gmh∈Γ
FH(g1 . . . gmh|z) =

∑

g1...gmh∈Γ

∑

h1,...,hm−1∈H

m∏

i=1

FH(gihi|z)

= 1TN0N
m−11.

Choose now an eigenvector v ofN w.r.t. the eigenvalue θH such that component-

wise v = (v1, . . . , vr)
T ≥ 1. Then

ECard(H(H)
m ) ≤ 1TN0N

m−11 ≤ 1TN0N
m−1v = θm−1

H ·
(∑

i∈I
viF (H)

i (λ)
)
.

Therefore, lim supm→∞ ECard(H(H)
m )1/m ≤ θH .

Furthermore, we remark that

σ̂H(m) = Card
(
{x1 . . . xm | xi ∈

⋃

j∈I
Rj \ {ej}, xi ∈ Rj ⇒ xi+1 /∈ Rj}

)

can be written as

σ̂H(m) = 1TD0,HD
m−1
H 1.
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Taking eigenvectors v1 ≥ 1 and v2 ≤ 1 w.r.t. ̺H leads to

lim
m→∞

Card(σ̂H(m))1/m = ̺H .

Like for Lemma 10.1.2, one concludes the proof applying the same reasoning

used in the proofs of Lemma 8.1.5 and Propositions 8.1.6, 9.1.5.

Finally we can prove the advertised corollary:

Proof of Corollary 10.2.1. It is sufficient to show that − log θH/ log α is also

a lower bound for HD(H)(Λ). First, we remark that for m ∈ N

∑

g1...gmh∈Γ:g1 /∈R1

F (e, g1 . . . gmh|λ)

=
∑

g1...gmh∈Γ:g1 /∈R1

∑

h0∈H
FH(g1 . . . gmh0|λ)F (e, h−1

0 h|λ).

Since Card(H) <∞, there are real constants d,D > 0 such that for all h ∈ H

it holds d ≤ F (e, h|λ) ≤ D. Now we write 10 := (0, 1, . . . , 1)T ∈ Rr and

therefore we get:

( ∑

g1...gmh∈Γ:g1 /∈R1

EZ∞(g1 . . . gmh)
)1/m

≤
(
D · 1T0N0N

m−11
)1/m m→∞−−−−→ θH ,

( ∑

g1...gmh∈Γ:g1 /∈R1

EZ∞(g1 . . . gmh)
)1/m

≥
(
d · 1T0N0N

m−11
)1/m m→∞−−−−→ θH .

This can be verified by substituting 1 in the first case by an eigenvector (w.r.t.

θH) v1 ≥ 1, and in the second case by an eigenvector (w.r.t. θH) v2 ≤ 1.

With the help of this convergence, we can prove that the upper bounds in

Lemma 10.2.2 equal the Hausdorff and the Box-Counting dimensions. This

can be done once again following the procedure described in Section 8.1.2 (as

well as in [31, Section 6]).

Analogously to the proof of Theorem 9.1.1 we can finally conclude that

HD(H)(Ω) = BD(H)(Ω).

Example 10.2.3. Consider the amalgam (Z/6Z)∗Z/2Z (Z/6Z) and write Γ1 =

〈a | a6 = e1〉, Γ2 = 〈b | b6 = e2〉, and H = 〈c | c2 = eH〉, being eH the identity

of H.

The isomorphisms are defined by φ1(a
3) = c = φ2(b

3). Therefore,

(Z/6Z) ∗Z/2Z (Z/6Z) = 〈a, b | a6 = b6 = e, a3 = b3〉.

We set µ1(a) = µ1(a
5) = µ2(b) = µ2(b

5) = 1/2, α1 = α2 = 1/2 and consider

the distance defined by (10.2) with base α = 1/2. The system (10.3) becomes

then

FH(a|z) = z

4
+
z

4
FH(a2|z) + z

2

(
FH(a|z)2 + FH(a2|z)2

)
,

FH(a2|z) = z

4
FH(a|z) + z

2

(
FH(a|z)FH (a2|z) + FH(a2|z)FH(a|z)

)
.
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Observe that FH(a|z) = FH(a5|z) and FH(a2|z) = FH(a4|z). The Hausdorff

dimension of the limit set of the BRW is then given by

HD(H)(Λ) =
log
(
2FH(a|λ) + 2FH(a2|λ)

)

log 2
,

while HD(H)(Ω) = 1.
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Branching Random Walks
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Chapter 11

Critical BRW’s on T3 × Z

In this third part of our work, we investigate critical BRW’s on some Cartesian

products of groups. In particular we consider two settings: Tq×Zd and Tq×Tq,
being Tq a homogeneous tree of degree q.

Our aim is to understand the limit set of a critical BRW on these structures:

does it have finitely or infinitely many ends?

All computations presented in this chapter are done for the Cartesian prod-

uct of the binary tree (denoted by T3) with the set of integers Z, but they can

easily be generalized to a product of a homogeneous tree (with bounded de-

gree) with Zd (for every d ≥ 1). The reason will become clear by looking at

the computations.

Analogously to [12] we define the probability measure on T3 × Z as

µ := α1µ1 + α2µ2, (11.1)

where α1, α2 > 0 with α1 + α2 = 1, while µ1 and µ2 are the measures defined

on the generators of the first and second factor, respectively.

By analogy to the previous parts of the work, we denote by ρ the spectral

radius of the Markov chain governed by µ and by R its inverse. By [4, Section

4], the value R is the critical mean value for the offspring distribution of the

BRW, and by [20] we know that at this point the BRW is still transient,

afterwards it becomes recurrent.

By [12] we have:

lim
n→∞

(
µ(n)(0)

)1/n
= α1ρ1 + α2ρ2, (11.2)

where ρi denotes, as usual, the spectral radius of the random walk governed

by µi.

11.1 Isotropic Case

Let us start with the isotropic situation, i.e., µ1 and µ2 govern simple random

walks.

Under the condition of survival, we have the following result:
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Proposition 11.1.1. The limit set of the critical isotropic BRW on T3 × Z

has infinitely many ends almost surely.

Proof. The crucial fact is the following: the critical BRW defined on T3 × Z

can be projected on each of the two factors, and such projections are again

BRW’s.

Let us consider the projection of the process on the tree, in which case

every edge {x, y} ∈ Z reduces to a single vertex in T3. What we see is a BRW

governed by a probability measure (denote it by µ∗), such that every particle

moves with transition probabilities

µ∗(x−1y) :=





α1µ1(x
−1y) if the edge {x, y} ∈ T3,

α2 if the edge {x, y} ∈ Z,

0 otherwise.

By standard computations, we can evaluate the spectral radius ρ∗ of the

Markov chain governed by µ∗: this new Markov chain is nothing else but

a lazy random walk on T3. We find that

ρ∗ = α1ρ1 + α2. (11.3)

Using relation (11.2), we can evaluate the spectral radius of µ:

ρ = lim
n→∞

(
µ(n)(0)

)1/n
= α1ρ1 + α2ρ2 = α1

2
√
2

3
+ α2,

where in the last equality we used [64, Lemma 1.24] to find ρ1 = 2
√
2/3, and

the fact that ρ2 = 1, being Z amenable and µ2 symmetric (we refer again to

Section 1.3.4).

Therefore, since ρ = ρ∗, we can immediately deduce that the projection of

the entire BRW on the tree is transient (transience is assured by [20]), which

means that every copy of Z is visited by only finitely many particles almost

surely.

Consequently, the accumulation set of the considered BRW coincides a.s.

(on the event of survival) with a proper, non-trivial random subset of the

union of the boundaries of the trees. This union has infinitely many ends.

Remark 11.1.2. The previous computations can be repeated 1 to 1 if we

replace T3 by any homogeneous tree of degree q ≥ 3 and Z by any finitely

generated amenable group.

11.2 Anisotropic Case

In this second situation, we consider a BRW on T3×Z such that its underlying

walk has a drift on the second factor. More precisely, denote by e1 and e−1 the

two natural generators of Z and fix a parameter 0 < ε < 1 arbitrarily small.

Now we choose µ1 to be a simple random walk on T3, and µ2 such that

µ2
(
t
)
=

{
1+ε
2 if t = e1

1−ε
2 if t = e−1.

(11.4)



11.2 Anisotropic Case 101

Our aim is to show that in this situation, the limit set of the BRW on T3 × Z

is one-ended.

For this purpose, we start by investigating what happens on the second

factor, and then how this information can be used to understand the behavior

of the BRW on the Cartesian product.

Choosing µ2 as in (11.4), using (11.2) we get that for every ε > 0:

ρ := lim
n

(
µ(n)(0)

)1/n
< ρ∗. (11.5)

By [4] this means that the critical value of the offspring distribution in this

case is larger than the critical value of the projected process on the tree (for

every arbitrary choice of α1 and α2 := 1− α1).

From this result it follows immediately that every copy of Z is visited

infinitely often by the particles of the process: hence there are infinitely many

connections between different copies of Z.

On each copy of Z the drift in the direction e1 “pushes” the random walk,

making it transient at its critical value, which can be computed explicitly using

[66, Proposition 9.3]. Obviously, it is a function of ε, in fact it turns out to be

ρ−1
2 = (

√
1− ε2)−1.

Now we need to prove that all the particles of the critical BRW defined on

Z accumulate in the same direction: we prove this in the next lemma.

Lemma 11.2.1. For every ε > 0 the critical BRW on Z, whose underlying

random walk is governed by (11.4), is almost surely one-ended.

Proof. By [66, Proposition 9.3], we can easily compute the first arrival gener-

ating functions relatively to the second factor

F2(0, e1 | z) = 1±
√

1− (1− ε2)z2

(1− ε)z

F2(0, e−1 | z) = 1±
√

1− (1− ε2)z2

(1 + ε)z
.

Exploiting the natural tree-structure of Z we know that every element of Z is

either of the form x = (e1)
n, or of the form y = (e−1)

n, for some n ∈ N.

In the first case we have:

F2(0, x | z) = (F2(0, e1 | z))n,

and for every y = (e−1)
n

F2(0, y | z) = (F2(0, e−1 | z))n.

Since the ratio
√
1− ε2/(1 − ε) is larger than one, while

√
1− ε2/(1 + ε) is

strictly smaller, for every word x = (e1)
n and y = (e−1)

n we get:

lim
n
F2(0, x | ρ−1

2 ) = lim
n

(
F2(0, e1 | ρ−1

2 )
)n

= lim
n

(√
1− ε2

1− ε

)n

= ∞,

lim
n
F2(0, y | ρ−1

2 ) = lim
n

(
F2(0, e−1 | ρ−1

2 )
)n

= lim
n

(√
1− ε2

1 + ε

)n

= 0.
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Applying Lemma 7.4.6 (or, equivalently [31, Lemma 1]) and then Markov

inequality, we get the claim: the end determined by the direction limn(e−1)
n

is not an accumulation point for the process. The critical BRW on Z is almost

surely one-ended.

At this point we know that the BRW on Z will accumulate at the end

identified by direction e1.

Proposition 11.2.2. Choose µ1 to be a simple random walk on T3, and µ2
as in (11.4). Then the limit set of the critical BRW on T3 × Z is one-ended.

Proof. By relation (11.5) and Lemma 11.2.1, it follows that there are infinitely

many connections between the infinitely many one-ended sets of accumulation

points, i.e. the one ended-sets are all equivalent. Hence the BRW defined on

the Cartesian product accumulates on a one-ended limit set.

We would like to add that by the previous computations can be repeated

1 to 1 if we replace T3 by any homogeneous tree of degree q > 2 and Z by any

Cartesian product of the form Zd. In this case an analogue of Lemma 11.2.1

still holds in the following form:

Lemma 11.2.3. Denote by e±1, . . . , e±d the natural generators of Zd and for

every ε > 0 fix the measure on Zd defined by

µ2
(
t
)
:=





β1
(1+ε)

2 if t = e1

β1
(1−ε)

2 if t = e−1

βi

2 if t = e±i, for i ∈ {2, . . . , d},

where β1, . . . , βd > 0 and
∑d

j=1 βj = 1.

Then the limit set of the critical BRW on Zd is almost surely one-ended.

Proof. By projecting the process defined on Zd onto the first factor Z, we see

a BRW governed by the following probability measure:

µ∗1
(
t
)
=





β1
(1+ε)

2 if t = e1

β1
(1−ε)

2 if t = e−1∑d
i=2 βi otherwise.

This is the probability measure governing a biased lazy random walk on Z: it

stays in place with probability
∑d

i=2 βi and it moves on the considered factor

otherwise.

Using again [12] and [66, Proposition 9.3], we get that the spectral radius

of µ∗1 is given by

ρ∗1 = β1
√

1− ε2 +

d∑

i=2

βi.

In this case ρ∗1 = ρ2 (where as usual ρ2 denotes the spectral radius of µ2),

giving us a transient BRW on Z. By reasoning on the first factor Z, we can
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repeat the same steps done in the proof of Lemma 11.2.1, obtaining the claim.

In fact we know that the projection of the BRW on any factor other than the

first one would give us a recurrent lazy random walk (since the random walk

on the other factors is symmetric).

It follows that there are infinitely many connections between the infinitely

many one-ended sets, i.e., the limit set of the BRW on Zd is one-ended.

Now we can state the main result of this chapter:

Theorem 11.2.4. Denote by A any finitely generated amenable group. For

every probability measure µ1 and µ2, and every value of α1 and α2 := 1− α1

we have the following characterization (phase transition):

(i) if µ2 is a symmetric measure, then the limit set of the critical BRW on

Tq ×A has infinitely many ends almost surely;

(ii) if µ2 is non-symmetric (i.e. the random walk on Zd is biased towards one

direction), then the limit set of the critical BRW on Tq×Zd is one-ended

almost surely.

Proof. Statement (i): if µ2 is symmetric (i.e. it governs a simple random walk

on Zd), then a straightforward generalization of Proposition 11.1.1 holds when

µ1 is not symmetric. This implies that the limit set of the critical BRW on

Tq ×A has infinitely many ends almost surely. This happens independently of

the measure µ1 and of the values of α1, α2.

Statement (ii): If µ2 is a non-symmetric measure (i.e. the random walk

on Zd is biased towards one direction), then a straightforward generalization

of Proposition 11.2.2 holds. Using Lemma 11.2.3 we obtain that the limit set

of the critical BRW on Tq × Zd has only one end almost surely. This is true

independently of the measure µ1 and of the values of α1, α2.

At this point it is natural to conjecture the following (more general) state-

ment:

Conjecture 11.2.5. Choose any one-ended, finitely generated amenable group

A with a probability measure µ2 on A such that the random walk governed by

µ2 is biased towards one direction. If µ1 governs a simple random walk on T3,

then the limit set of the critical BRW on T3 × A (whose underlying walk is

governed by µ defined in (11.1)) is one-ended.

11.3 Generalization

The results found so far with the help of [4], [20] and [12], can be pushed

further to investigate more general situations.

We can, for example, consider the Cartesian product T ×Zd, where T is a

Galton-Watson tree (conditioned on survival).

In order to approach this topic, we need to recall the most important results

about BRW’s on Galton-Watson trees: the main work we refer to, is the one
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by Pemantle and Stacey [47]. In their paper, they find precise conditions

for a BRW defined on a Galton-Watson tree to survive and have two phase

transitions.

Denote by T a Galton-Watson tree whose evolution is determined by a

probability measure η, i.e.,

ηk := P(a vertex has k descendants).

We are interested in the case when T is infinite, then we need to assume

m :=
∑

k kηk > 1.

Remark 11.3.1. The topic “random walks on Galton-Watson trees” has been

studied by many authors, and the reader can find a summary of the known

results in [38, Chapter 16].

Grimmett and Kesten (see [27]) proved that the simple random walk on

infinite Galton-Watson trees is a.s. transient. This result was deepened by

Lyons, Pemantle and Peres: they investigated the rate of escape of the simple

random walk (in [40]) and of the biased random walk (in [41]).

Denote by deg(x) the degree of a vertex x ∈ T , then the simple random

walk on T is governed by the measure

µ1(x
−1y) =

{
1/deg(x) if x ∼ y,

0 otherwise.
(11.6)

Using the same techniques described in [12], we get that the simple random

walk on T ×A (being A any finitely generated amenable group) has spectral

radius

ρ =
1

2
(ρ1 + 1),

where ρ1 is the spectral radius of the simple random walk on T .

In [47], Pemantle and Stacey consider the development of BRW’s and con-

tact processes on Galton-Watson (as well as non-homogeneous) trees. They

define the BRW in a slightly different way, which we recall here for seek of

simplicity.

Denote by n(x, t) the amount of particles alive at vertex x ∈ T at time

t. According to their definition, at every unit of time, each vertex v gives

particles away at rate n(v, t), while it receives particles from its neighbors at

rate:

β
∑

u:u∼v

n(u, t),

being β > 0 a fixed parameter determining the evolution of the model. They

prove that under some conditions (see below) on the underlying Galton-Watson

tree, the BRW has two distinct critical values for β: one (denoted by βw) above

which the process survives weakly, and the other (denoted by βs) above which

every vertex is visited infinitely often by the BRW.

In particular, they show that (see [47, Propositions 2.5 and 2.6])

βs = 1/(2
√
d),
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where (d + 1) < ∞ is the maximum degree of the underlying Galton-Watson

tree T . They find a bound for βw as well:

βw ≤ 1/(m + 1),

where m > 1 is the mean value of η, the offspring distribution of T . In

addition, this inequality becomes strict if η is not concentrated on a single

value.

It follows (see [47, Theorem 2.1]) that if we have (m + 1) ≥ 2
√
d, then

βw < βs almost surely, on the event of nonextinction.

Therefore, from now on we assume the following condition:

Assumption 11.3.2. (m+ 1) ≥ 2
√
d.

In our setting, we can choose the tree T appropriately, i.e., in such a way

that Assumption 11.3.2 is satisfied and T has no leaves (i.e., η0 = 0). At this

point we define a BRW on T with transition probabilities governed by the

measure µ1 on T such that

P(a particle of the BRW moves from u to v in one step) = µ1(u
−1v),

where µ1 is defined by (11.6), i.e., it governs a simple random walk on T .

Denote by ν the probability distribution governing the offspring distribu-

tion of the BRW, and once again denote by

λ :=
∑

k

kνk,

where νk := P(a particle of the BRW defined on T has k offspring).

For each couple of neighbors u, v ∈ T denote by ξu,v the amount of particles

of the BRW that start at u and reach v. Then, for every βw < β < βs we have

E


β

∑

t≥1

n(u, t)


 = E(ξu,v) =

∑

t≥1

λtµ
(t)
1 (u−1v) = G1(u, v | λ), (11.7)

where G1(u, v | λ) is the Green function associated to the simple random walk

on T evaluated at z = λ. In the last equality we used a more general version

of [31, Lemma 1], considering all the particles going from u to v, and not only

the ones stopped on arriving at v for the first time. The proof of this equality

is based on the same techniques as the one of [31, Lemma 1], with some extra

care because the random walk is defined on a random structure.

Relation (11.7) shows us the connection between the paramenter β and

the mean value λ. It is clear that, in order to preserve equality in (11.7), if we

change the value of β then we need to modify λ accordingly. In particular it

is easy to see that λ not only varies continuously in β, but it can be seen as a

monotone increasing function of β.

In other words, there are two values λw (determining a phase transition

between death and weak survival) and λs (determining a transition between

weak and strong survival) such that under Assumption 11.3.2 we have

λw < λs.
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The necessary condition for survival of the BRW is λ > 1, then we get

1 < λs.

Since T has bounded maximum degree (d + 1), it is a quasi-transitive graph.

We can therefore apply the methods used in [20] to find that at λ = λs the

BRW is transient.

Given all these facts, we can perform the same steps as in Sections 11.1

and 11.2 in order to prove the next two statements:

Proposition 11.3.3. Consider a finitely generated, amenable group A and a

Galton-Watson tree T (without leaves) such that Assumption 11.3.2 is satis-

fied. Then the limit set of the critical isotropic BRW on T × A has infinitely

many ends almost surely.

Proposition 11.3.4. Consider a Galton-Watson tree T (without leaves) such

that Assumption 11.3.2 is satisfied. Let the measure µ2 have a bias in one

direction, then the limit set of the critical BRW on T × Zd is almost surely

one-ended.



Chapter 12

BRW’s on T3 × T3

In this chapter, all computations are made for the case Γ := T3×T3, but they

can easily be generalized to the Cartesian product of two homogeneous trees

of finite degrees a ≥ 3 and b ≥ 3 respectively.

Our aim is to investigate the critical BRW on T3 × T3 whose underlying

random walk is a simple random walk. This means that the underlying random

walk is governed by

µ :=
1

2
µ1 +

1

2
µ2, (12.1)

with µ1 and µ2 governing simple random walks on T3. Denote once again by

ρ the spectral radius of the simple random walk governed by µ.

In order to distinguish the two factors of the Cartesian product we will

denote by T h
3 the horizontal factor T3, and by T v

3 the vertical factor T3.

We can consider two compactifications of the Cartesian product: namely

the end compactification (recall Section 2.1) and the Martin compactification

(recall Section 2.2). As the reader can easily check, the former consists of only

one element. In order to deal with the latter we will need to be more careful.

Denote by ∂T h
3 and ∂T v

3 the end compactifications of T h
3 and T v

3 respec-

tively.

Here we are dealing with critical BRW’s, therefore all generating functions

are evaluated at z = R, which means that the Martin Kernel (recall Equation

(2.5)) is evaluated at t = R−1 = ρ.

We would like to anticipate that the Martin boundary is the tool that gives

us a more formal idea of what we mean by “infinitely ended (random) set”,

since Γ itself is one-ended.

By [51] we know that the Martin boundary M of T h
3 × T v

3 (when z = R)

is given by

M = (∂T h
3 × T v

3 ) ∪ (∂T h
3 × ∂T v

3 ) ∪ (T h
3 × ∂T v

3 ). (12.2)

Roughly speaking, M is the set of all possible directions that the process can

take. Since the BRW is transient, all particles will eventually move away from

any finite set: this means that they will follow a path going to some element

of M.
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12.1 Martin Topology

Denote by o1 and o2 the roots of T
h
3 and T v

3 respectively, and by o1o2 the origin

of the Cartesian product. By (Z
(n)
1 )n≥0 and (Z

(n)
2 )n≥0 we denote any sequence

of (non necessarily distinct) vertices in T h
3 and T v

3 respectively. In this way

each sequence on the Cartesian product Γ can be written as (Z
(n)
1 Z

(n)
2 )n≥0,

for some suitable sequences. For simplicity, we set Z
(0)
1 Z

(0)
2 := o1o2

Recall that l(u) is the Cayley graph distance of an element from the origin

(see Section 2.1). If at least one, out of (Z
(n)
1 )n≥0 and (Z

(n)
2 )n≥0 (denote it by

(Z
(n)
ι )n≥0), is such that

l(Z(n+1)
ι ) = 1 + l(Z(n)

ι ) ∀n ≥ 0,

then we say that (Z
(n)
1 Z

(n)
2 )n≥0 is an increasing sequence. We point out that it

is possible to describe any element ω ∈ M as limit of an increasing sequence

of vertices (Z
(n)
1 Z

(n)
2 )n≥0 ∈ T h

3 × T v
3 .

Define T h
3 (a, b) (resp. T

v
3 (a, b)) to be the horizontal (resp. vertical) binary

tree rooted at b not including a.

At this point we can state how the neighborhoods of each element of M
look like. By Relation (12.2), we have three possible cases.

For suitable increasing sequences (Z
(n)
1 )n≥0 and (Z

(n)
2 )n≥0, every element ω

belonging to (∂T h
3 × T v

3 ) or (T
h
3 × ∂T v

3 ) has neighborhoods of type

U (n) := (T h
3 (o1, Z

(n)
1 )× y), (12.3)

or

U (n) := (x× T v
3 (o2, Z

(n)
2 )), (12.4)

respectively. Here x ∈ T h
3 and y ∈ T v

3 .

In case ω ∈ (∂T h
3 × ∂T v

3 ), its neighborhoods are:

U (n) := (T h
3 (o1, Z

(n)
1 )× T v

3 (o2, Z
(n)
2 )). (12.5)

Now we can define what an accumulation point of the BRW is: it is an element

ω of M such that any arbitrarily small neighborhood U (n) of ω contains trails

of the BRW.

The goals of this section are the following:

(i) to understand which elements of M are accumulation points;

(ii) to distinguish different types of accumulation points.

Now we can show our first result.

Lemma 12.1.1. Every element of M is an accumulation point.

Proof. Given Relation (12.2) we should consider the three cases given by

Equations (12.3)–(12.5) separately but, exploiting the symmetry of (12.3) and

(12.4), we can reduce our investigation to only two situations.
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To show that in neighborhoods U (n) described by Equations (12.3) and

(12.4) there are trails for every n, it suffices to show that U (n) is touched

infinitely many times by the BRW.

This is a simple consequence of the following fact. Denote by ρ the spectral

radius of the simple random walk on T h
3 × T v

3 . By [4], the critical mean value

of the BRW is ρ−1, which (by [64, Lemma 1.24]) equals 3/(2
√
2).

If we project the BRW on T h
3 (or, equivalently, on T v

3 ), we see a BRW

governed by the lazy random walk, whose spectral radius is

ρlazy =
1

2

(
2
√
2

3
+ 1

)
.

Since ρ < ρlazy, we have that the BRW on each projection is recurrent (see

[4, Proposition 4.5]). Therefore elements ω whose neighborhoods are of type

(12.3) and (12.4) are accumulation points (in the Martin topology).

In the situation where ω has neighborhoods of type (12.5) we can analyze

things in a similar way: now we know that every copy of T h
3 and of T v

3 is

touched infinitely often (i.o. for short) by the process, i.e.

P(T h
3 touched i.o. by BRW) = P(T v

3 touched i.o. by BRW) = 1.

By symmetry we can argue that if we split T h
3 (or T v

3 ) into three equal subtrees

(denote them by T (1), T (2) and T (3)), the following holds:

P(T (1) touched i.o. by BRW)+

+ P(T (2) touched i.o. by BRW) + P(T (3) touched i.o. by BRW) ≥ 1.

This implies

P(T (1) touched i.o. by BRW) ≥ 1/3,

P(T (2) touched i.o. by BRW) ≥ 1/3,

P(T (3) touched i.o. by BRW) ≥ 1/3.

Since for j ∈ {1, 2, 3} the event {T (j) touched i.o. by BRW} is a tail event,

its probability must be 1. By (12.5) we see that the probability that U (n) is

touched infinitely often by the BRW is at least the product of the probabilities

of T h
3 (o1, Z

(n)
1 ) and T v

3 (o2, Z
(n)
2 ) being touched infinitely often.

It is clear that T h
3 (o1, Z

(n)
1 ) and T v

3 (o2, Z
(n)
2 ) are isomorphic to one of the

T (j)’s. By this observation we get that U (n) is touched infinitely often by the

BRW as well:

P(U (n) touched i.o. by BRW)

≥ P(T (i) touched i.o. by BRW)P(T (j) touched i.o. by BRW) = 1,

for some appropriate i, j ∈ {1, 2, 3}.
We would like to emphasize that the calculations do not depend on the

starting point of the process. More precisely, every neighborhood U (n) of every

element ω ∈ M is reached infinitely often by the BRW, independently of the

initial location of the particles.
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Remark 12.1.2. In particular, we can start the process as far away from the

chosen U (n) as we wish, and Lemma 12.1.1 assures that (with probability one)

there are particles of the BRW that eventually reach U (n).

Now we can distinguish two different types of accumulation points, that

we will call stable and unstable.

We say that ω ∈ M is stable if it is “attractive” for the process, i.e., for

every neighborhood U (n) of ω we have that

P(∃ particles of BRW that enter U (n) and eventually stay in U (n)) = 1.

Likewise, we say that ω ∈ M is unstable if

P(∃ particles of BRW that enter U (n) and eventually stay in U (n)) = 0.

Our next result is:

Proposition 12.1.3. Every ω ∈ (∂T h
3 × T v

3 ) ∪ (T h
3 × ∂T v

3 ) is an unstable

accumulation point.

Proof. Markov inequality tells us that for every random variable A

P(|A| ≥ a) ≤ E|A|
a

. (12.6)

Let us consider the following event:

An,k := {∃ particles that stay in T h
3 between time n and n+ k}.

We get:

E(|An,k|) = ρ−(n+k)P(Xn+i ∈ T h
3 , ∀i = 1, . . . , k)

= ρ−(n+k)P(Xn ∈ T h
3 )

(
1

2

)k

≤
(

3

2
√
2

)n( 3

4
√
2

)k

.

This last quantity goes to zero as k → ∞. Therefore

P(∃ particles that stay in T h
3 eventually)

= P(∪∞
n=0∃ particles that stay in T h

3 after time n)

≤
∑

n≥0

P(∃ particles that stay in T h
3 after time n)

=
∑

n≥0

lim
k→∞

P(|An,k| ≥ 1) ≤
∑

n≥0

lim
k→∞

E(|An,k|) = 0.

The last inequality is just (12.6), evaluated at a = 1.

This proves that there are no infinite trails of particles connecting a vertex

of T h
3 (resp. T v

3 ) to an element of ∂T h
3 (resp. ∂T v

3 ).

The meaning of Proposition 12.1.3 is the following: there are infinitely

many particles going through all neighborhoods U (n) of type (12.3) or (12.4),

but with probability one they are spending a very short time there. They are

leaving to reach some other accumulation point, i.e. a stable one.

On the other hand we have:
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Proposition 12.1.4. Every ω ∈ (∂T h
3 × ∂T v

3 ) is a stable accumulation point.

Proof. Let us split T3 into three equal subtrees, and let us analyze what a

single random walk (Xn)n∈N governed by µ (defined by (12.1)) does.

We know that for every fixed n, U (n) (of type (12.5)) is touched infinitely

often by the BRW with probability one. We claim that the following holds:

P(∃j ≥ 1 s.t. Xk ∈ U (n), ∀k ≥ j) ≥ 4

9
. (12.7)

This comes from the fact that the random walk must move in the right subtree

of T h
3 and of T v

3 containing the projections of U (n). In other words, once the

random walk Xj reaches U (n), it has to choose between three possible direc-

tions on T h
3 and three possible directions on T v

3 . Therefore, Xj has probability

2/3 of (eventually) ending up in T h
3 (o1, Z

(n)
1 ), as well as of (eventually) ending

up in T v
3 (o2, Z

(n)
2 ) on T v

3 . Thus:

P(∃j ≥ 1 s.t. Xk ∈ U (n) ∀k ≥ j)

≥ P
(
Xj ∈ T h

3 (o1, Z
(n)
1 ) eventually

)
P
(
Xj ∈ T v

3 (o2, Z
(n)
2 ) eventually

)

≥
(
2

3

)(
2

3

)
,

which is relation (12.7).

Define the following event:

Ak := {all descendants of a particle that hits U (n)

for the k-th time, eventually exit U (n)}.

Thus we get

P(Ak) = P(Ak ∩ {U (n) is visited infinitely often})
≤ lim

m→∞
P
(
∪m
k=1Ak ∩ {U (n) is visited infinitely often}

)

≤ lim
m→∞

(
1− 4

9

)m

= 0.

This means that the complement event has probability one, i.e. the elements

in (∂T h
3 × ∂T v

3 ) are stable.

Remark 12.1.5. We would like to point out that by these results we know that

the directions ω ∈ (∂T h
3 × T v

3 ) ∪ (T h
3 × ∂T v

3 ) are not limit points (in the graph

topology) of the trace of the BRW, since there are no infinite trails connecting

the starting point to any of these directions.

Therefore the limit set of the BRW on T h
3 ×T v

3 is contained in the set of stable

accumulation points.

12.2 The isotropic BRW has infinitely many Ends

So far we have considered BRW’s with their Martin topology. In this section

we state another result, that tells us what happens in the graph topology.
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Consider an isotropic BRW (with mean value m smaller or equal to ρ−1)

on T h
3 × T v

3 . In the event of non-extinction we have the following result:

Proposition 12.2.1. If the BRW is isotropic, then its limit set has infinitely

many ends (in the graph topology) almost surely.

Proof. At o1o2 start two identical but independent BRW’s (with mean value

m ≤ ρ−1) and say that one is the blue BRW (denote it by B), and the other

one is the red BRW (denote it by R).

By Bk we mean the blue BRW that ran for k steps, analogously we write

Rk for the red one. Moreover, we write ξk for any particle of Bk alive at time

k, and ξ′n for any particle of Rn alive at time n.

By xu we denote the position of the particle u.

Let us say that a vertex is purple if it is visited by a red and a blue particle.

Then:

E [#{purple vertices}] ≤ E



∑

k≥0

∑

n≥0

#{u ∈ Bk, v ∈ Rn : xu = xv}




=
∑

k≥0

∑

n≥0

E [#{u ∈ Bk, v ∈ Rn : xu = xv}] =
∑

k≥0

∑

n≥0

mk+nP[ξk = ξ′n].

Since the process is isotropic, we know the following facts:

(i) ξk and ξ′n are two particles that performed simple random walks;

(ii) P[ξk = ξ′n] is the probability that two simple random walks meet. Then:

P[ξk = ξ′n] = P[ξk+n = o1o2],

by invariance and reversibility of the process.

Here we recall the fundamental result by Cartwright and Soardi:

Theorem 12.2.2 ([12]). Consider a Cartesian product G of d discrete groups

G1, . . . , Gd, such that every Gj is equipped with a probability measure µj gov-

erning a random walk (Xj
n)n≥1. Suppose that for every element y ∈ G of the

form y = (y1, . . . , yd) ∈ G we have

P(Xj
n = yj) ∼ Cjρ

n
j /n

aj , for all j ∈ {1, . . . , d},

where ρj is the spectral radius of the random walk (Xj
n)n and aj > 0 are

numbers independent of n. Then the random walk (Xn)n on G governed by

µ := α1µ1 + . . .+ αdµd, (for αj > 0,

d∑

j=1

αj = 1)

satisfies

P(Xn = y) ∼ C(α1ρ1 + . . . + αdρd)
n

na1+...+ad
.
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Remark 12.2.3. In this case the random walk has period 2, then we should

consider only even values of n.

On every homogeneous tree it is known (see e.g. [23], [63] and [11] compare

also with Section 4.1) that

P(Xj
n = yj) ∼ Cjρ

n
j /n

3/2,

therefore, applying Theorem 12.2.2 we get that

P(Xn = y) ∼ Cρn

n3
.

Since

P(Xn = o1o2) ∼ P(Xn = y) for any y ∈ T h
3 × T v

3 ,

we have

P[ξk = ξ′n] = P[ξk+n = o1o2] ∼
Cρn

n3
.

From this reasoning it follows that

E [#{purple vertices}] ≤
∑

k≥0

∑

n≥0

mk+nP[ξk+n = o1o2]

≤
∑

k≥0

∑

n≥0

mk+n C
′ρn+k

(n+ k)3
.

The last sums are finite for all m ≤ ρ−1. This means that the expected

amount of blue particles that touch the red ones is finite, i.e., by definition of

the expected value it follows that

P [Card(B ∩R) <∞] = 1,

which implies that there are only finitely many connections between trails of

blue and red particles. Eventually the trails of particles will separate, which

means the limit set of the BRW has infinitely many ends almost surely.

12.3 A small Note on a BRW with a special Bias

The measure µ defined by (12.1) is an instance of a more general one:

µ := α1µ1 + (1− α1)µ2,

where α1 ∈ (0, 1), while µ1 and µ2 are the two measures governing random

walks on T h
3 and T v

3 respectively. By [11] we have that the spectral radius ρ

of the random walk governed by µ is given by

ρ = α1ρ1 + (1− α1)ρ2,

being ρ1 and ρ2 the spectral radii of the random walks governed by µ1 and µ2
respectively.
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We consider µ2 defined as

µ2 :=





P(o, a1) = 1/4;

P(o, a2) = 1/4;

P(o, a3) = 1/2;

(12.8)

being a1, a2, a3 the generators of T v
3 . In this case it is easy to verify that

ρ2 = 1.

Proposition 12.3.1. For every measure µ1 and every value α1, choose µ2 as

in Equation (12.8). Then the limit set of the critical BRW on T h
3 × T v

3 has

infinitely many ends (in the graph topology) almost surely.

Proof. By projecting the considered BRW on T h
3 we see a BRW whose under-

lying random walk is a lazy random walk, it stays in place with probability

(1 − α1) and moves on the tree with probability α1. The spectral radius of

this random walk is given by

ρlazy = α1ρ1 + (1− α1),

which obviously coincides with ρ in this case.

The lazy random walk on the tree is transient at its critical value then,

with probability one, every copy of T v
3 is visited only finitely many times by

the BRW.

The proof ends in the same way as the one of Proposition 11.1.1: the

particles of the BRW accumulate on a (proper, non-trivial) random subset of

the union of the boundaries of all copies of T h
3 , giving the statement.

Given these results, it is natural to conjecture the following statement:

Conjecture 12.3.2. For every biased underlying measure µ, the limit set of

a critical BRW on T h
3 × T v

3 has infinitely many ends, almost surely.



Appendix A

Darboux’s Method vs.

Singularity Analysis

As mentioned in Chapter 3 there are mainly two methods to deal with singular

expansions: one is Darboux’s Method, and the other is known by the name of

Singularity Analysis.

The authors who work in this setting are sympathizers either of one, or of

the other method. In our work we used mostly the first, this is why we are

going to describe it more in details.

There are a few references which can be looked at, e.g. [63], [65], [9] and

[10], where the Method of Darboux has been described and applied. Let us

explain how this method works.

A.1 Darboux’s Method

First of all we find the singular expansion of the function G(z), which means

that we have to understand how fast the quantity G(R)−G(z) tends to zero

in a neighborhood of z = R. Therefore, in the considered cases, we were able

to find an explicit function a(·) such that

G(z) = G(R) + a(R− z) + o(a(R − z)),

with a(R − z) going to zero as z tends to R. This function is the “leading

singular term” of the expansion. Under our assumption –see Equation (3.3.1)–

a(s) has a well known Taylor expansion in a neighborhood of s = 0, which

means that the asymptotic behavior of its coefficients an is known. In our case

it is of type

an ∼ R−nf(n),

where “∼” stands for “asymptotically equivalent up to a constant”, and the

function f(·) : N → R is of the form f(n) = n−λ logκ n for some real non-

negative (non both zero) λ and κ. This can be deduced from the book of

Flajolet and Sedgewick [19, Chapter VI.2].

It is clear that if R > 1 the sequence an converges to zero.
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The main point of this method is to compare an with µ(n)(e), and to find

out that

µ(n)(e) ∼ an,

whoch means to show that their difference tends to zero faster than an:

|µ(n)(e)− an| → 0 as n→ ∞.

In order to achieve this asymptotic estimate, the resource that we need to use

is the so-called Riemann-Lebesgue Lemma. Its statement can be found in many

works (see e.g. [57, Section 2.2]), but will be stated here for completeness:

Lemma A.1.1 (Riemann-Lebesgue Lemma). If a function H(z) = hnz
n is

analytic for |z| < 1, continuous for |z| ≤ 1 and d times continuously differen-

tiable over |z| = 1, then

hn = o(n−d).

Remark A.1.2. By an easy normalization, we can see that the Riemann-

Lebesgue Lemma can be generalized to the case when the radius of convergence

of H(z) is r ≥ 1, obtaining that

hn = o(r−nn−d).

In order to be able to apply Lemma A.1.1 we need a function that is enough

times continuously differentiable on |z| = R. The first idea is to consider

H(z) := G(R)−G(z) − a(R− z) = o(a(R− z)),

in order to obtain that the difference of the coefficients |µ(n)(e)− an| tends to
zero faster than an.

At this point (we can consider this as the first step) this is normally not

the case yet, which means that we need to expand the function further, to find

the next leading singular term. Let us denote it by b(R − z). Therefore we

find

G(R) −G(z) − a(R− z) = b(R− z) + o(b(R − z))

We can consider (this is the second step)

G(R)−G(z) − a(R− z)− b(R− z) = o(b(R − z)),

and hope that we have achieved already the right value of d that we need, in

order to exploit Lemma A.1.1 to obtain the desired approximation

|µ(n)(e) − an| = o(an) as n→ ∞.

If this is not the case yet, we must keep on expanding the considered function,

until we have enough differentiability on its circle of convergence.



A.2 Singularity Analysis 117

A.2 Singularity Analysis

This method has been introduced by Flajolet and Odlyzko (see [18]) and

further developed by Flajolet and Sedgewick (see [19]).

Like the method of Darboux, it is used to extract the asymptotic behavior

of the coefficients of a power series.

Apparently it is easier to use and faster to verify than the method of

Darboux, but in our case we found out that there was no advantage. The

problems that we had to face using Darboux’s method, arose as well when we

tried to verify the hypotheses of sufficient regularity of the function, required

to apply this second method.

The different situations described in Chapters 4 and 5, arising according to

different expansions of the Green functions, must be treated differently with

both methods.

A few references that can give an idea about the difference between these

two different approaches are the following: [17], [3].

We would like to describe shortly the basic facts that characterize this

method. For deep explanations and details we refer to [19, Part B].

The theory of singularity analysis essentially relies on two objects: Gamma

functions and Cauchy integrals. In order to make a proper use of these pow-

erful tools, there is a “price” to pay: we need some regularity assumptions on

the considered function.

This method relies on the contour integration by means of Hankel-type

paths, therefore the fundamental assumption that we need, is:

Assumption A.2.1. The considered function has an analytic continuation

to a small neighborhood outside its circle of convergence, except close to its

singularity.

Essentially, this means that the function must be analytic in a “pacman-

shaped” region containing the full disc of convergence, see Figure A.1.

Figure A.1: Pacman-shaped region (in yellow the disc of convergence).
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Consider a function f(z) that can be written as a formal power series

f(z) =
∑

n≥0 fnz
n. We denote by [zn]f(z) the coefficient fn.

Using the same notation as [19, Chapter VI], we define the following set:

S := {(1 − z)αλ(z)β | α, β ∈ C}, λ(z) :=
1

z
log

1

1− z
.

Here we would like to recall the following fundamental result: for its proof we

refer to [19, Theorem VI.4].

Theorem A.2.2. Let f(z) be an analytic function at 0 and such that satisfies

Assumption A.2.1; let us denote by R its singularity. Assume that there are

two functions σ and τ , where σ is a finite combination of elements of S and

τ ∈ S such that

f(z) = σ(z/R) +O(τ(z/R)), as z → R.

Then one has

[zn]f(z) = R−nσn +O(R−nτ⋆n),

where

σn := [zn]σ(z) = nα−1(log n)β
(
(Γ(α))−1 +O

(
(log n)−1

))
,

and τ⋆n = o(σn).

We conclude this appendix by recalling the Tauberian theorem (see e.g. [53]

for a detailed exposition of the Tauberian theory), which is another powerful

tool to get the asymptotic behavior of the coefficients of the power series f(z),

provided to know very little about f(z). For more details and more references

we refer to [19, Section VI.11].

For this method we only need to know the growth of f(z) on the positive

real line. It is very convenient to use this theorem when, for example, f(z)

has a very irregular behavior on its circle of convergence (a very interesting

example is described in [25]).

In the following, a function Λ(x) is said to be slowly varying at infinity if,

for any c > 0 we have

Λ(cx)/Λ(x) → 1 as x→ ∞.

Finally, we have all tools to state the Tauberian Theorem:

Theorem A.2.3 (Tauberian Theorem). Let f(z) be a power series with radius

of convergence equal to 1, satisfying (for z → 1)

f(z) ∼ 1

(1− z)α
Λ

(
1

1− z

)
,

for some value α ≥ 0 and Λ(x) slowly varying function. If the coefficients

fn = [zn]f(z) are all non-negative, then

n∑

k=0

fk ∼ nα

Γ(α+ 1)
Λ(n).
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[52] Georg Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betre-

ffend die Irrfahrt im Straßennetz. Math. Ann., 84(1-2):149–160, 1921.

[53] A. G. Postnikov. Tauberian theory and its applications. Proc. Steklov

Inst. Math., (2):v+138, 1980. A translation of Trudy Mat. Inst. Steklov.

144 (1979).

[54] Stanley Sawyer. Isotropic random walks in a tree. Z. Wahrsch. Verw.

Gebiete, 42(4):279–292, 1978.

[55] E. Seneta. Nonnegative matrices and Markov chains. Springer Series in

Statistics. Springer-Verlag, New York, second edition, 1981.



Bibliography 127

[56] J. H. van Lint and R. M. Wilson. A course in combinatorics. Cambridge

University Press, Cambridge, second edition, 2001.

[57] Jeffrey Scott Vitter and Philippe Flajolet. Average-case analysis of algo-

rithms and data structures. In Handbook of theoretical computer science,

Vol. A, pages 431–524. Elsevier, Amsterdam, 1990.

[58] Dan Voiculescu. Addition of certain noncommuting random variables. J.

Funct. Anal., 66(3):323–346, 1986.

[59] J. von Neumann. Zur allgemeinen Theorie des Maßes. Fundamenta,

13:73–116, 1929.

[60] H.M. Watson and F. Galton. On the probability of the extinction of

families. J. Anthropol. Inst. Great Britain and Ireland, 4:138–144, 1874.

[61] Wolfgang Woess. A local limit theorem for random walks on certain

discrete groups. In Probability measures on groups (Oberwolfach, 1981),

volume 928 of Lecture Notes in Math., pages 467–477. Springer, Berlin,

1982.

[62] Wolfgang Woess. A description of the Martin boundary for nearest neigh-

bour random walks on free products. In Probability measures on groups,

VIII (Oberwolfach, 1985), volume 1210 of Lecture Notes in Math., pages

203–215. Springer, Berlin, 1986.

[63] Wolfgang Woess. Nearest neighbour random walks on free products of

discrete groups. Boll. Un. Mat. Ital. B (6), 5(3):961–982, 1986.

[64] Wolfgang Woess. Random walks on infinite graphs and groups, volume

138 of Cambridge Tracts in Mathematics. Cambridge University Press,

Cambridge, 2000.

[65] Wolfgang Woess. Generating function techniques for random walks on

graphs. In Heat kernels and analysis on manifolds, graphs, and metric

spaces (Paris, 2002), volume 338 of Contemp. Math., pages 391–423.

Amer. Math. Soc., Providence, RI, 2003.

[66] Wolfgang Woess. Denumerable Markov chains. EMS Textbooks in Mathe-

matics. European Mathematical Society (EMS), Zürich, 2009. Generating
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